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We study relations between different kinds of non-commutative spheres which have ap-

peared in the context of ADS/CFT correspondences recently, emphasizing the connections

between spaces that have manifest quantum group symmetry and spaces that have man-

ifest classical symmetry. In particular we consider the quotient SUq(2)/U(1) at roots of

unity, and find its relations with the fuzzy sphere with manifest classical SU(2) symmetry.

Deformation maps between classical and quantum symmetry, the Uq(SU(2)) module struc-

ture of quantum spheres and the structure of indecomposable representations of Uq(SU(2))

at roots of unity conspire in an interesting way to allow the relation between manifestly

Uq(SU(2) symmetric spheres and manifestly U(SU(2)) symmetric spheres. The relation

suggests that a subset of field theory actions on the q-sphere are equivalent to actions on

the fuzzy sphere. The results here are compatible with the proposal that quantum spheres

at roots of unity appear as effective geometries which account for finite N effects in the

ADS/CFT correspondence.
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1. Introduction

Non-commutative spacetimes which are deformations ADS × S backgrounds have

been studied as space-time explanation of the stringy exclusion principle [1], beginning

in [2] and further in [3][4][5][6][7], Another mechanism emphasizing non-commutativity

uses the fuzzy sphere world-volumes of fat gravitons moving as dipoles on a transverse

non-commutative space was given in [8], and further explored recently in [9][10][11]. The

fuzzy sphere worldvolumes appear by the polarization mechanism of Myers [12]. Some

qualitative properties of finite N ADS × S correlators [4][13] are reproduced by overlaps

of spherical harmonics on the fuzzy sphere [14].

For odd-dimensional spheres quantum groups give the natural non-commutative can-

didates. For even spheres the candidates discussed so far keep the classical symmetries

manifest and are generalizations of the fuzzy sphere [15]. One motivation of this paper

is to begin a study of the relation between the non-commutative spaces based on quan-

tum groups and those based on fuzzy sphere and its generalizations. The goal in this

direction is to study the relations, from the point of view of quantum space-time, which

are expected to exist in string theory [16]. Another motivation is to better understand

the relations between the candidate non-commutative spheres appearing as part of a non-

commutative space-time and the non-commutative structures appearing from choosing a

splitting of the spheres into non-commutative world-volume directions of a fat graviton and

non-commutative transverse directions as in [8]. Another purely mathematical motivation

is to ask if there is a generalization to the world of non-commutative spheres of relations

of the kind S2 = S3/U(1) = SU(2)/U(1).

The important feature that has to emerge from any convincing step in this direction

is to clarify in what sense having a quantum group symmetry is compatible with the clas-

sical symmetries. Uncovering quantum group symmetry in physical systems with manifest

classical symmetry has been undertaken in the context of WZW-quantum group correspon-

dences [17]. Some mathematical work in the direction of uncovering classical symmetry in

quantum groups has also been done, see for example [18][19][20][21], and at appropriate

points in this paper we will use some of these results.

In this paper we study the connection between SUq(2)/U(1) for q = e
iπ
M and fuzzy

sphere generated by SU(2) generators satisfying
∑

i S2
i = J(J + 1). The fuzzy sphere

algebra decomposes under representations of SU(2) acting iby commutators as irreducible

representations of spin s ranging from 0 to 2J . UqSU(2) has reps. which are cutoff at
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2s ≤ M − 2 for q = e
iπ
M . This suggests a relation for M = 2(2J + 1) between the q-sphere

and the fuzzy sphere.

Section 2 reviews some properties of the fuzzy sphere Af . Section 3 reviews properties

of the q-sphere Aq and its Uq(SU(2)) symmetry. Section 4 obtains the decomposition under

Uq(SU(2)) of Aq. The decomposition consists entirely of indecomposable representations

We observe that this spectrum of indecomposable representations contains a sub-module

which is the direct sum of standard representations of the kind appearing in the decompo-

sition of the fuzzy sphere. This allows us in section 5, to develop, using deformation maps

[18], the precise relations between Aq and Af .

2. Fuzzy sphere

The fuzzy sphere is defined as the algebra generated by the three generators S3, S+, S−

obeying the relations of the SU(2) Lie algebra :

[S+, S−] = 2S3

[S3, S+] = S+

[S3, S−] = −S−.

(2.1)

together with a constraint on the Casimir :

S2
3 +

1

2
(S+S− + S−S+) = J(J + 1) (2.2)

This algebra is infinite dimensional. For example Sl
− for any l are independent elements. It

admits however a finite dimensional quotient which is isomorphic to the algebra of N ×N

matrices where N = 2J + 1. We will call this finite dimensional truncation Af (N).

It admits a right action of the universal enveloping algebra of SU(2), by taking com-

mutators from the right. We could also work with a left action instead but choose to

work with the right action for convenience. Under this action of U(SU(2)), the Af (N)

decomposes as a direct sum of representations of integer spin s with unit multiplicity with

s ranging over integers s from 1 to 2J = N − 1.

Af = ⊕2J
s=0Vs (2.3)
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3. The q-sphere

We start with the q-deformed algebra of functions SU(2) which we call Funq(SU(2)),

generated by α, β, γ, δ which obey

αβ = qβα αγ = qγα

βγ = γβ βδ = qδβ

αδ − δα = (q − q−1)βγ

αδ − qβγ = 1

(3.1)

The choice of SUq(2) real form is the choice of the involution

α∗ = δ

β∗ = γ
(3.2)

In the last line we have set to 1 the central element.

The algebra (3.1) has a left and a right action of Funq(SU(2)). Under the left U(1),

the generators α, γ have charge 1, and the generators β, δ have charge −1. The U(1)

invariant sub-algebra is generated by αβ, αδ and γβ. For a more complete discussion of

the quantum geometry of these q-spheres see for example [22].

Defining the combinations

e0 = 1 + (q + q−1)βγ,

e+ = q−1(q + q−1)1/2αβ,

e− = −(q + q−1)1/2γδ

(3.3)

one finds that we have an algebra belonging to the family of Podles quantum 2-spheres

[23]

e+e− − e−e+ + λe2
0 = µe0

qe0e+ − q−1e+e0 = µe+

qe−e0 − q−1e0e− = µe−

e2
0 + qe−e+ + q−1e+e− = 1,

(3.4)

where λ = (q − q−1), with µ = (q − q−1).

This algebra has infinite dimensional representations for generic q. For roots of unity

q = e
iπ
M it displays some special properties. It is easy to prove for example that eM

− and

eM
+ are central elements. We expect that there will be finite dimensional representations
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of the q-sphere algebra for any µ when q is a root of unity, which can be constructed

by the method of highest weights much the same way we construct representations of

U(SU(2)) or of UqSU(2). In the following we will focus on the case of the quotient 2-

sphere. Finite dimensional representations will lead to finite dimensional quotients of the

q-sphere algebra, much the way they do for the fuzzy sphere as discussed in section 2. We

will denote these finite dimensional q-sphere algebras as Aq.

3.1. Finite dimensional truncations of the quotient sphere

There are known representations of the Funq(SU(2)) algebra which we will use to

obtain representations of its U(1) quotient. By specializing to roots of unity we can obtain

finite dimensional truncations of these algebras. The FunqSU(2) algebra has a family of

reps. labelled by t [24]:

α|k >= (1 − q2k)1/2|k − 1 >

β|k >= −qk+1t−1|k >

γ|k >= qkt|k >

δ|k >= (1 − q2k+2)1/2|k + 1 >

(3.5)

Using the expressions (3.3) we get a representation of the S2
q algebra.

e0|k >= (1 − q2k(1 + q2))|k >

e+|k >= −qkt−1
√

q + q−1(1 − q2k)1/2|k − 1 >

e−|k >= −t
√

q + q−1(1 − q2k+2)1/2qk+1|k + 1 >

(3.6)

The parameter t will not affect the form of the finite dimensional quotient algebra Aq, as

we will see in explicit examples in later sub-sections.

Specializing to roots of unity, we find finite dimensional reps. with k extending from

0 to M − 1, since e+ annihilates |M > and e− annihilates |M − 1 >. In these finite M2

dimensional reps. e0 van be expressed as a sum of

e0 =
M−1
∑

l=0

Cle
l
−el

+ (3.7)

The coefficients can be determined recursively by acting successively on |0 > ( which

determines C0 directly ), and then |1 > ( which determines C1 in terms of C0 ), and so

forth. We will write down the explicit expressions for the cases M = 3, 4 below.

The first technical result of this paper is to give the decomposition of this M2 dimen-

sional Uq module algebra in terms of representations of Uq. We have explicit proofs for

the cases M = 3, 4, and we have several tests of the proposed decomposition in the general

case.
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3.2. Action of UqSl(2)

The right action of the UqSl(2) on the q-sphere is given below. It can be obtained

from [25] after some changes of variables.

(e−)K = q(e−) (e0)K = e0 (e+)K = q−1e+

(e−)X+ = −e0 (e0)X+ = e+ (e+)X+ = 0

(e−)X− = 0 (e0)X− = −(q + q−1)e− (e+)X− = (q + q−1)e0

(3.8)

We can check that these are indeed consistent with the standard relations of Uq, which

in our conventions, are :

KX+K−1 = qX+ KX−K−1 = q−1X−

X+X− − X−X+ =
(K2 − K−2)

(q − q−1)

(3.9)

To obtain the standard form of classical U(SU(2)) algebra in the q → 1 limit we write

K = qH and get :

[H, X+] = X+

[H, X−] = −X−

[X+, X−] = 2H

(3.10)

The Uq algebra admits finite dimensional quotients at roots of unity, and acts as finite

dimensional symmetry algebras on the q-sphere, and as we will show in section 4 on the

fuzzy sphere.

We can also check that the relations of the q-sphere are invariant under the action of

the Uq symmetry. In checking this we have to use the following action of Uq on products :

(eiej)X+ = (ei)X+(ej)K + (ei)K
−1(ej)X+ (3.11)

This form of the action on products uses the co-product of the quantum group and the

q-sphere is a module-algebra for the quantum group. For a general discussion of module

algebras acted on by Hopf algebras we refer the reader to [24].

For real q there is a conjugation operation on the q-sphere where

(e+)† = −(q + q−1)e−

(e−)† = −
1

(q + q−1)
e+

(3.12)
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Using this we can reconstruct the action of X− from that of X+.

Using (3.8) and (3.4) we can write down the action of X+ on eL
− as

((e−)L)X+ = −
q−L+3

1 − q4
(1 − q2L)(1 − q2(L−1))eL−1

− − q−L+1 (1 − q4L)

(1 − q4)
eL−1
− e0 (3.13)

Using the conjugations symmetry at real q or directly (3.8) and (3.4), we can obtain :

((e+)L)X− =
q−L+2

(1 − q2)
(1 − q2L)(1 − q2(L−1))eL−1

+ + q−1 (1 − q4L)

(1 − q4)
(1 + q4)e0e

L−1
+ (3.14)

For q = e
iπ
M , the above equations imply

(eM
+ )X− = 0, (eM

− )X+ = 0. (3.15)

This means that the constraints eM
+ = 0, eM

− = 0 are consistent with the action of the Uq

symmetry. The finite dimensional quotient should be a Uq module algebra. As q → 1,

only the term eL−1
+ e0 survives. When L = M/2, the coefficient of eL−1

+ e0 vanishes. In this

sense this power of e+ shows very non-classical behaviour.

4. Reduction to Indecomposables

The q-sphere module algebra can be decomposed into reps. of Uq. We would like to

know what kind of reps. appear. We first perform a reduction eM
+ = 0, eM

− = 0 together

with the polynomial expression of e0 in terms of
∑M−1

l=0 Cle
l
−el

+. This reduced algebra is

spanned by el1
−el2

+, with 0 ≤ l1, l2 ≤ M − 1, and is therefore M2 dimensional. It contains

M highest weights 1, e−, e2
−, · · · eM−1

− annihilated by X− (this may seem unusual but it is

because we are using right action of Uq rather than left action ) and M lowest weights

1, e+, e2
+, · · · eM1

+ annihilated by X+. The following is a proposed reduction of the module

algebra in terms of indecomposables which is consistent with the dimension M2 and with

the above set of highest and lowest weights. For even M we propose,

AM2 = ⊕
M
2

k=1I
2k
0 . (4.1)

We are here using the notation of [26] for the indecomposables. Each of these inde-

composables has dimension 2M , so the above is consistent with the dimension count

M2 = M
2

(2M). For odd M we propose

AM2 = ⊕
(M−1)

2

k=1 I2k+1
0 ⊕ I1

0 (4.2)
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Since I1
0 has dimension M the above is consistent with the dimension count M2 =

(M−1)
2 (2M) + M . A similar discussion of quantum group structure of Matrix algebras

has appeared in [27][28], where the the geometric objects considered were quantum planes

rather than quantum spheres.

Counting the number of highest and lowest weights gives another check of (4.1) and

(4.2). Each rep. of the form I2k
0 has two highest weight states and two lowest weight

states. Each rep. of the form I
(1)
0 has one highest weight and one lowest weight. The

decomposition in (4.1) has 2(M/2) = M highest weights. The decomposition in (4.2) has

2 (M−1)
2

+ 1 = M highest weights.

Each representation of the type I2k
0 contains as a submodule an ordinary representa-

tion of dimension M − p + 1. The dimensions of these reps add up to (M/2)2 for even M ,

and to (M−1
2 )2for odd M . So we can map them to the fuzzy sphere corresponding to the

respective matrix algebras while keeping the same structure of SU(2) representations as

the ones of classical SU(2).

The above proposal for the decomposition of the Aq algebra in terms of indecompos-

ables has some implications which can be checked. In the case of even M the set of highest

weights e
M/2
− , e

M/2+1
− , e

M/2+2
− , · · · eM−1

− pair up, respectively, with e
M/2−1
− , e

M/2−2
− · · · 1. By

applying an appropriate number of powers of X+ we get from the upper highest weights

to the lower ones according to the structure of Ip
0 described in [26]. We need to check that

(e
M−2+p

2
− )Xp−1

+ ∼ ek1−k2
− (4.3)

for p = 2, 4, · · ·M . The equation (3.13) proves the desired result for p = 2, since it

shows that in (e
M/2
− )X+ only the first term survives. Similarly from (3.14) (e

M/2
+ )X− is

proportional to e
M/2−1
− . It will be an interesting exercise to give the explicit proof for other

values of p. Rather than pursuing this direct route for general M and p we give a counting

arguments which works in the general case, and we give explicit formulae for q3 = −1 and

q4 = −1 in the following sections.

4.1. Counting for even M .

Let us check that the number of states in the algebra is indeed consistent with the

above decomposition. At H = L, for positive L, the polynomials are spanned by

ek
−, ek+1

− e+, ek+2
− e2

+, · · · eM−1
− eM−1−k

+ (4.4)
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i.e a total of M − k states.

For L < M/2, the proposed decomposition has representations which contribute states

with multiplicity 1 and representations which contribute states with multiplicity 2. The

representations with p = 2, 4, · · · (M − 2k) contribute two states each, giving a total of

M − 2L. The representations with p = M, M − 2, · · · (M − 2L + 2) contribute one state

each giving a total of L states. Adding these up we get M − L states in agreement with

the explicit counting of polynomials.

For H > L/2 we have representations I2l
0 contributing one state each for l = L −

M/2 + 1, L − M/2 + 2, · · ·M − L, giving us exactly M − H states, in agreement with the

counting of polynomials in e+, e−.

4.2. Counting for odd M

In this case, we propose a decomposition into (M−1)
2 repsresentations of dimension

2M and one representation of dimension M . This spectrum is the set of representations

Ip
0 with p ranging over the set p = 1, 3, · · ·M . The highest weight e

M−1
2

− belongs to p = 1.

The remaining highest weights pair up as (e
M+p−2

2
− , e

M−p

2
− ) in the reps. Ip

0 , for p ranging

over 3, 5 · · ·M .

Consider eigenvalues of H which are equal to L ≤ (M−1)
2 − 1. There are two states

with such eigenvalue from all reps I with (M − p) ≥ 2L, i.e for p = 3, 5, · · ·M − 2L. From

these we get a total of M − 1 − 2L states. I-reps with (M − p) < 2L give one state each.

These values of p are M − 2L + 2, M − 2L + 4, · · ·M . The representation with p = 1 also

contributes one state, giving a total of H + 1 states coming from representations which

contribute one each. Adding up the states from reps which contribute 2 each we get

(M − 2L − 1) + (L + 1) = M − L (4.5)

This agrees with the count of independent polynomials with H = L.

For eigenvalues H = L which obey L ≥ (M−1)
2

we have I-reps contributing one state

if M + p− 2 ≥ 2L. This allows M −L different values of p, again agreeing with the count

of independent expressions of the form el1
−el2

+ .
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4.3. An explicit example : q = e
iπ
3

The expression for e0 in this case is :

e0 = −q2 − q2e−e+ + qe2
−e2

+ (4.6)

The highest eigenvalue of H in a rep. Ip
0 is j which is given by 2j = M + p − 2 .

The structure of the rep. I1
0 is given by

fig. 1

0

e

-e

-e +

-

The structure of the rep. I3
0 is given below.

fig. 2

e -
2

1

e

2

+
2

s

- e   e   + q e+   -          +

-   +         -e  e   - q e2
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The element denoted as s can be determined up to an arbitrary constant to be :

s = A1 + e−e+ + q(1 + q)e2
−e2

+ (4.7)

4.4. An explicit example : q = e
iπ
4

e0 = −q2 − q3e−e+ +
(q2 − 1)

2
e2
−e2

+ −
q(1 + q2)

2
e3
−e3

+ (4.8)

The rep. I2
0 is shown below.

fig. 3

e 2

e
+
 2

e
+

e

e

-

-

0

s

s)( X

(s) X2
  -

  -

Using the formulae for the right action of Uq we find that (e2
−)X+ = (q3 − q)e−. Note

that there is no e2
−e+ appearing in (e2

−)X+. This means that (e2
−)X+X− = 0 as indicated

in Fig.3 by the absence of a upward arrow emerging from the state at the second row. To

get the form of the element s of the Aq, which sits at the right end of the second row of

Fig. 3 we solve the equation (s)X+ = e2
−. This allows solutions

s = ae− − e3
−e2

+ − q(1 − q2)e2
−e+, (4.9)

where a is an arbitrary constant. Explicit expressions for the other states on the right leg

of Fig. 3 can be obtained by acting with X+ on the element s.
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The rep. I4
0 is shown below.

fig. 4

-
 3e

( e   ) X -       +

( e   ) X -       +
2

 q ( q -1 )  2 t 

 ( t ) X +

 ( t ) X +
2

 ( t ) X +
3 ~ e +

3

Similarly we find that (e3)X
2
+ is proportional to the identity, with no combination of

e−e+, e2
−e2

+, e3
−e3

+. And we can solve for the element t up to an arbitrary constant b by

requiring that (t)X− gives (e3
−)X2

+. This gives an expression

t = b − qe−e+ +
1

2
e2
−e2

+ +
q(1 + q2)

2
e3
−e3

+. (4.10)

The steps, described above for q = e
iπ
3 and q = e

iπ
4 make it clear how to obtain

explicit expressions form for polynomials which fill out the appropriate set of I-reps in the

case of general M .

4.5. Relation to fuzzy sphere

The decomposition (4.1) contains as a sub-module the direct sum of standard represen-

tations of Uq. These are representations which have the same structure as representations

of ordinary SU(2). For Uq at roots of unity there is a finite set of these, with spins

2s ≤ M − 2. This set of representations forms a closed fusion ring and is used as a model
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for fusion rules of WZW models [17]. Integer spin representations within this range appear

in the decomposition of the fuzzy sphere (2.3).

The representation Ip
0 contain as a sub-module the representation Vs with spin given

by 2s = M − p. This means that included in (4.1) is a direct sum of the standard

representations with integer spins ranging up to M − 2. This will allow us to exhibit some

interesting properties of a map ρ : Aq → Af (M
2 ) in the next section. The same property

holds for the case of odd M , i.e we have a sub-module in (4.2) which is the direct sum of

standard reps. with integer spins ranging up to (M − 3)/2. In this case we have a map

ρ : Aq → Af (M−1
2

).

5. Deformation Map, deformed product and deformed co-product

The decomposition of Aq contains as a submodule the H = ⊕Vs, where Vs is the

standard representation of spin s. While H is a sub-module it is not a subalgebra of Aq.

It turns out that we can define a new product on H, which we call µ∗
q : H × H → H,

and which is a natural additional product to consider on any Uq module algebra given the

existence of twistings of the standard co-product of Uq. This new product will allow the

sub-module to be, in addition, a sub-algebra and will in fact be the same as the fuzzy

sphere product. We will begin by elaborating the properties of the map ρ : Aq → Af in

connection with deformation maps, and then show the relation between the new product

and twisted co-products.

We have a vector space isomorphism between H and Af . Let us call this map ρ :

Af → Aq. There is deforming map :

D : U → Uq (5.1)

Let the map λf : Af ⊗U → Af denote the right action of the universal enveloping algebra

of SU(2) on the fuzzy sphere. Let the map λf : Aq ⊗ Uq → Aq denote the right action of

Uq on the q-sphere. The deforming map satisfies the property

ρ ◦ λf = λq ◦ (ρ ⊗ D) (5.2)

This is illustrated diagrammatically in the figure below.

12



fig. 5

fA

A q

ρ

f

q q

Dρ

λ

λ q

fA      U

A      Ux 

x 

To be more explicit we can choose the isomorphism ρ and the deformation map as

follows. A highest weight of Uq with H eigenvalue l is given by el
−. A highest weight

of U with eigenvalue of H equal to l is given by Sl
−. We define Y

(q)
l,m = λq(e

l
−, X

(l−m)
+ ).

We also define Y
(f)
l,m = λf (Sl

−, X
(l−m)
+ ) . With these definitions ρ takes a simple form

ρ(Y (f)) = Y (q). And the deformation map is :

K = qH

X
(q)
+ = X+

X
(q)
− =

(l − H)(l + H + 1)

(l − H)q(l + H + 1)q
X−

(5.3)

Here l is understood to be expressed in terms of the generators of the algebra using

l(l + 1) = H2 + 1
2(X+X− + X−X+). If we use this formula in a space where l takes the

value M/2, the denominator can vanish with the numerator finite. In the application of

interest the eigenvalues of l extend from 0 to M/2−1 ( for M even ) and to (M −1)/2−1

(for M odd ).

The content of (5.2) can now be expressed more simply as

λf (Y (f), X) = λq(Y
(q), D(X)) (5.4)

The meaning of (5.2) and (5.4) is that using the action of Uq on the vector-subspace H

of Aq we can reconstruct the action of the U on Af . So far we have only discussed the

module structure of H. We now turn to the product structure H.

We can define a new product on the Y (q) by first mapping with ρ and then multiplying.

The modified q-product is acted on by the q-symmetry through the co-product :

∆∗
q = (D ⊗ D) ◦ ∆ ◦ D−1 (5.5)

This may be seen as follows.

λq(Y
(q) ∗ Y (q), X(q)) = (λf ⊗ λf )(Y (q) ⊗ Y (q), ∆ ◦ D−1(X(q)))

= (λq ⊗ λq)(Y
(f) ⊗ Y (f), (D ⊗ D) ◦ ∆ ◦ D(X(q)))

(5.6)
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This new co-product for the q-algebra can in fact be written as a conjugation of the

standard co-product by an element F of Uq ⊗ Uq. The existence of such an element for

large M , follows from work of Drinfeld [21]. The work of [18] shows how to construct

it from Clebsch-Gordan coefficients of the q-symmetry and the classical symmetry. The

twist element is related to the R matrix but unlike the R matrix it is not very explicitly

known [29]. Drinfeld twists have recently appeared in discussions of brane world-volume

non-commutativity recently [30][31]. Some of their abstract properties are discussed in

generality in [32].

The existence of this twist of the standard co-product of Uq allows the definition of a

new product on the sub-module H of the Aq module algebra. This new product allows the

sub-module to be, in addition, a sub-algebra. The action of Uq on the sub-module with

multiplication on the sub-module defined by the star product recovers the fuzzy sphere

and its U(SU(2) symmetry. This transformation was possible because of the fact observed

in section 4 that Aq contains a sub-module which transforms under Uq exactly the way Af

trasnforms under the classical symmetry. We expect that these observations will allow an

understanding of how to relate field theories naturally written in terms of q-sphere variables

to field theories written in terms of fuzzy sphere variables. These transformations may have

analogies to the Seiberg-Witten map [33].

6. Summary and Outlook

We have elaborated on connections between different kinds of non-commutative

spheres. We gave a strategy for recovering the fuzzy 2-sphere from the q-sphere at roots of

unity. Our main result relates to the module structure of Aq and its relation via deforma-

tion maps to the module structure and the product structure of the fuzzy sphere. Further

work is needed to understand the detailed implications for maps between field theories

defined on q-sphere and field theories defined on fuzzy sphere. A preliminary remark is

that the subset of theories defined on Aq which only use the sub-module made of V reps

and use the deformation product, can be mapped to fuzzy sphere field theories. It remains

to study in more detail issues of reality, invariant traces and field theoretic Feynman rules

in the light of the deformation maps and Drinfeld twists. Some works that are likely to be

useful in this direction are [30].

One intriguing fact we have uncovered about the fuzzy sphere in this investigation

is that Af (M/2) and Af (M) ( for M even ) are both module algebras which have the
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same finite dimensional symmetry algebra ( the finite Uq algebra for q = e
iπ
M ). Af (M) is

a module algebra with the standard q-co-product. Af (M/2) is a module algebra with a

twisted q-co-product.

We already discussed two physical motivations for this work in the introduction. An-

other direction where work along these lines can be useful is towards the formulation of

a precise relation between the structure of the chiral ring of theories dual to string the-

ory on AdS × S and quantum group symmetries. In some sense the chiral ring of the

orbifold CFT dual to AdS3 × S3 would be analogous to the q-sphere algebra. It would

be a module algebra which admits a left and right action of Uq(SU(2)). We might also

look for action of Uq(SU(1, 1)) but even if such an action exists, it would be simpler to

first focus of SU(1, 1) highest weights and identify the Uq(SU(2)) action. The existence

of some relations between the fuzzy sphere and the chiral ring [14] and the results of the

current paper relating fuzzy sphere to quantum groups give good reason to expect that

a lot of information about the chiral ring might be encoded in the existence of a hidden

quantum group symmetry.

There are other connections between fuzzy spheres and quantum group symmetric

spaces explored in [34]. These q symmetric spaces are module algebras ( with the standard

q-co-product ) which involve the V -representations of [26]. The finite dimensional quo-

tient we studied has I-reps which in turn contain the V -reps sub-module. By considering

conjugations of the standard co-product of Uq by the deformation map, we were lead to

define a new product on the sub-module which makes it a sub-algebra as well. It will be

interesting to see if there are examples of finite dimensional Uq module algebras where one

has mixtures of I and V reps ( when we use the standard q-coproduct ) and which can

nevertheless be related to fuzzy spheres after an appropriate modification of the product

based on deformation maps.

It will be interesting to look for generalization of the connections between q-2sphere

and fuzzy 2-sphere to the case of 4-spheres. q-4-spheres can be constructed along the

lines of [35]. At roots of unity we expect finite dimensional truncations to exist. Relations

between the q-sphere and its differential calculi with the fuzzy 4-sphere [36] would be a good

test of usefulness of the non-commutative spheres in providing models of non-commutative

space-time where similarities in the finite N physics of different backgrounds entering the

ADS/CFT correspondence can be made manifest. The need for considering differential

calculi would appear necessary from the observation of [37] that the deformed algebras

relevant in the fuzzy 4-sphere case mix momenta and coordinates. Similar questions can
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be asked about the relation between classical and quantum spaces for the AdS part of space-

time. Some relevant works on non-compact quantm groups are [38][39][40][41][42][43].

There have been other recent appearances of fuzzy spheres in the literature [44]. It

will be very interesting to explore whether a picture of non-commutativity of space-time

in string theory, e.g along the lines of [45][46], can coherently account for these diverse

appearances of fuzzy structures.
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