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ABSTRACT

We show that correlators of the hermitian one-Matrix model with a general potential

can be mapped to the counting of certain triples of permutations and hence to counting

of holomorphic maps from world-sheet to sphere target with three branch points on the

target. This allows the use of old matrix model results to derive new explicit formulae for

a class of Hurwitz numbers. Holomorphic maps with three branch points are related, by

Belyi’s theorem, to curves and maps defined over algebraic numbers Q̄. This shows that

the string theory dual of the one-matrix model at generic couplings has worldsheets defined

over the algebraic numbers and a target space P1(Q̄). The absolute Galois group Gal(Q̄/Q)

acts on the Feynman diagrams of the 1-matrix model, which are related to Grothendieck’s

Dessins d’Enfants. Correlators of multi-matrix models are mapped to the counting of triples

of permutations subject to equivalences defined by subgroups of the permutation groups.

This is related to colorings of the edges of the Grothendieck Dessins. The colored-edge

Dessins are useful as a tool for describing some known invariants of the Gal(Q̄/Q) action on

Grothendieck Dessins and for defining new invariants.
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1 Introduction

Hermitian matrix models (subsequently labeled old matrix models) were the centre of intense

research in string theory in the early nineties [1, 2, 3]. This lead to connections with 2D

topological gravity and intersection theory on Mg,n [4, 5]. A physical picture in terms of

string theory in one physical (Liouville) dimension was developed. Some reviews on the

subject are [6, 7, 8].

In the mid-nineties, a string theory of two dimensional Yang Mills theory (2dYM) was dis-

covered [9]. Exact answers for partition functions were converted using Schur-Weyl duality,

to a 1/N expansion where the contribution at each order was expressed in terms of symmet-

ric group data. The simplest way to exhibit the string theory was in the form of Hurwitz

spaces of holomorphic maps and Euler characters of these spaces were identified in the large

N expansion [13]. A review and references can be found in [14]. Some recent developments

include a new understanding of the coupled expansion of 2dYM in terms of holomorphic

maps [10], connections between Hurwitz spaces and gauge-string duality in higher dimen-

sions (AdS3/CFT2) [11] and instanton based methods for the large order behavior for certain

Hurwitz spaces with simple branch points [12].

In this paper we follow the strategy which proved fruitful in constructing the string theory

dual of 2dYM : express the computation of correlation functions in hermitian matrix models

in terms of symmetric group data and interpret the result in terms of branched covers using

classic mathematical results (Riemann existence theorem). The Riemann surfaces appearing

as covering spaces are the string worldsheets. The target space of the maps define the target

space of the string theory.

In deriving the connection between matrix model correlators and symmetric group data,

we find it useful to use diagrammatic tensor space techniques which have found various

applications in 2dYM [15] and more recently in AdS/CFT [16, 17, 18, 19, 20, 21, 22]. These

techniques have been used to compute Wilson loops in 2dYM, diagonal bases for correlators

in the half-BPS sector of N = 4 SYM and more general sectors. We review some relevant

aspects of the tensor space techniques in section (2.2).

Our first result is a connection between one-point functions of arbitrary multi-trace oper-

ators of the one-matrix model and a counting of equivalence classes of three permutations.

These equivalence classes are defined in (2.1). The Riemann existence theorem relates the

counting of strings of permutations to Hurwitz counting problems of holomorphic maps from

one Riemann surface to another, with specified branching data. We review this in (2.1).

The importance of Riemann’s existence theorem is that it relates a discrete symmetric

group counting problem to holomorphic map counting defined in the continuum. The phi-

losophy of the old matrix models was that the Matrix models generate discretized Riemann

surfaces. Different scaling limits from these discretizations approach different string back-

grounds. Here we are using the Riemann existence theorem to get at a continuum picture
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for any correlator for generic potential. Then we are getting the different string backgrounds

from the scaling limits of this continuum problem (which admits a mathematically equivalent

discrete permutation interpretation).

The fact that three permutations appear in the counting problem means that we are

counting branched covers with 3 branch points on the sphere P1, which can be chosen to

be at 0, 1,∞. The covering space is a Riemann surface, equipped with a map to the target

sphere. The inverse image of each branch point contains one or more points on the covering

Riemann surface where the derivative of the map vanishes. These are called ramification

points. They are each labeled by a positive integer. The branch point is associated with a

set of ramification points and thus with a set of positive integers. A remarkable theorem

in mathematics [23], the Belyi theorem, implies that, for the case of three branch points,

the covering curve and the map are defined over algebraic numbers. These are numbers

which solve polynomial equations with coefficients in Q, the rational numbers. They give

rise to a field Q̄, which is the algebraic closure of Q. An important group in number theory,

called the absolute Galois group Gal(Q̄/Q) (which we will often call “the Galois group”),

acts on Q̄ while leaving Q fixed) organizes all the key properties of the algebraic numbers

[24]. A fact related to Belyi’s theorem, highlighted by Grothendieck, is that the Galois group

acts faithfully on the equivalence classes of triples of permutations. He described Dessins

D’enfants which capture these equivalence classes. In our case, the triples are coming from

Feynman diagrams of the one-matrix model. And in fact the direct connection between

Feyman diagrams and Dessins is not hard to see. It is explained in section (3.3) . This

means that the Galois group acts on the Feynman diagrams, and sets of Feynman diagrams

can be assembled into Galois orbits. Since the Feynman diagrams also correspond to Hurwitz

classes consisting of a string worldsheet and a holomorphic map to P1, we may say that the

Galois group organizes the string worldsheets contributing to the sum over maps.

We generalize the connection between permutation triples and correlators to multi-matrix

models. The Dessins d’Enfants of Grothendieck are replaced by colored-edge Dessins. We

define the equivalence classes of the colored-edge Dessins in terms of equivalences generated

by some subgroups of the permutation group. The continuum data related to the colored

Dessins is shown to be richer than just the holomorphic maps f related to the Dessins. It

is replaced by pairs (f, s) where the holomorphic map f is accompanied by additional data

consisting of sections of sheaves on the covering Riemann surface, supported at some of the

ramification points. These pairs are naturally related to sheaves over Hurwitz space. We

describe these results in section (4.4).

An important problem considered at length in the Math literature is that of finding

Galois invariants, properties of Dessins which are invariant under the Galois action. We

provide a new construction of Galois invariants using the colored-edge Dessins of the multi-

Matrix models. These invariants can be defined in terms of lists of multi-matrix operators,

which can be viewed combinatorially as multiple necklaces-with-colored-beads. We also use

the colored-edge Dessins to describe some known invariants from the mathematical literature.

3



It is interesting that the traditional picture of old Matrix Models is that of discretized

worldsheet Riemann surfaces for generic potential giving rise to continuum Riemann surfaces

in double scaling limits, while the picture developed using Hurwitz space and Belyi’s theorem

implies that we are getting another kind of “discretization” for generic potentials, namely

replacing curves, maps and target space defined over C with curves, maps and target space

defined over Q̄.

Since this paper overlaps with (superficially) disconnected areas of string theory, matrix

models and number theory, we collect some key words and facts in the Appendix A, which

should be useful to diverse readers.

2 One Matrix Model and Hurwitz space

2.1 Review : Riemann’s existence theorem and Riemann-Hurwitz

formula

Using local complex coordinates a holomorphic map satisfies ∂̄zf = 0. The Riemann exis-

tence theorem relates to the counting of holomorphic maps f : Σh → ΣT between world-sheet

Riemann surface Σh of genus h and target space Riemann surface ΣT . In this paper ΣT will

have genus 0, so it is the sphere or complex projective line P1. Two maps f1 and f2 are

defined to be equivalent if there is a biholomorphic isomorphism φ : Σh → Σh such that the

following diagram is commutative

Σh φ−→ Σh

f1 ց ւ f2
P1 (2.1)

In other words, equivalent maps f1, f2 obey the equation f1 = f2 ◦ φ or f2 = f1 ◦ φ−1. For

a generic point on P , the inverse image consists of d points, where d is the degree of the

map. For a finite set of points, called branch points, there are fewer inverse images. If we

consider a small disc around a branch point, the inverse images will be a number of discs.

Restricting the map to one of these discs, it looks like w = zr for some positive integer r.

If r = 1 the inverse image is an ordinary point. For r > 1 it is a ramification point.

For r = 2, it is a simple ramification point. The vector (r1, r2, · · · ) called the ramification

profile determines branching numbers
∑

i(ri−1). The sum of these over all branch points is

denoted as B. The degree of the map is equal to d =
∑

i iri. The Riemann-Hurwitz theorem

states that

(2h− 2) = d(2G− 2) +B (2.2)

Equivalent maps have the same set of branch points. Given such a holomorphic map

(branched cover) with L branch points, we can get a sequence σ1, σ2, · · ·σL of permuta-

tions in Sd. They are obtained by labeling the inverse images of a generic base point, and
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following the inverse images of a closed path starting at the base point. For the sphere

target, we have

σ1σ2 · · ·σL = 1 (2.3)

which follows from the fact that a path going round all the branch points is contractible. Two

equivalent holomorphic maps are described by permutations σ1, σ2, · · · , σL and σ′
1, · · · , σ′

L

which are related by

σi = ασ′
iα

−1 (2.4)

for some fixed α ∈ Sd. This correspondence between sequences of permutations and Holo-

morphic maps is the Riemann existence theorem. This reduces the counting of maps

with fixed branch points to a combinatoric problem in permutation groups. Thus a space

defined by maps from a smooth space (complex manifold) can be described by the data of

branch point locations and some discrete data of permutation counting. For fixed branch

points, the continuum problem is entirely reduced to discrete data. We will next show that,

precisely this kind of permutation counting arises in the computation of general 1-point

functions in the one-matrix model. In fact we always have L = 3.

We recap the key points for the case L = 3. Holomorphic maps from Riemann surfaces

to sphere with three branch points are determined by three permutations σ1, σ2, σ3 such that

σ1σ2σ3 = 1 (2.5)

Permutations (σ′
1, σ

′
2, σ

′
3) determine the same map iff

σ′
1 = ασ1α

−1

σ′
2 = ασ2α

−1 (2.6)

for some α ∈ Sd. Because of (2.5), the condition (2.6) suffices to ensure that σ′
3 = ασ3α

−1.

We will refer to (σ1, σ2, σ3) as Hurwitz data for a holomorphic map. Equivalence classes

under the conjugation (2.6) will be called Hurwitz classes.

The counting of triples obeying (2.5) is conveniently written by defining a delta function

over symmetric groups. For σ ∈ Sd we define

δSd
(σ) = 1 if σ = 1, the identity permutation

= 0 if σ 6= 1 (2.7)

By linearity this extends to a delta-function on the group algebra. So counting triples is

given by

∑

σ1,σ2,σ3∈Sd

δSd
(σ1σ2σ3) (2.8)

5



X X        = 
I 

J 

I 

J 

Figure 1: Operator in tensor space and diagram

2.2 Brief review of diagrams and tensor space techniques

It is useful in computations of correlators in matrix theories, to think of the matrices X, Y, Z

etc. as operators in a vector space V . Indeed a matrix X is a linear operator on a vector

space V . Choosing a basis |ei〉 we have

X|ei >= Xj
i |ej〉 (2.9)

We can extend this to define an action on V ⊗m as follows

(X ⊗X · · · ⊗X)|ei1 ⊗ ei2 ⊗ · · · eim >= Xj1
i1
· · ·Xjm

im |ej1 ⊗ ej2 ⊗ · · · ejm > (2.10)

We can write this more compactly, by writing X = (X ⊗X · · · ⊗X) and the multi-indices

I = (i1, i2, · · · , in)

X|eI〉 = XJ
I |eJ > (2.11)

By introducing dual vectors, we may also write

〈eJ |X|eI〉 = XJ
I (2.12)

Many manipulations are conveniently conducted by using diagrams. The first step is simply

to write the above operator in tensor space as in the Figure 1.

The strands represent the states (vectors) of V ⊗m.

Different traces and products of traces of X , such as (trX)2tr(X2) can be written by

composing the action of X with that of permutations σ ∈ Sm acting as

σ|ei1 ⊗ ei2 ⊗ · · · eim〉 = |eiσ(1)
⊗ eiσ(2)

⊗ · · · eiσ(m)
〉 (2.13)

For example

tr(X2) = trV ⊗2 ((X ⊗X)(12)) = trV ⊗2 ((12)(X ⊗X)) (2.14)
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X tr ( σ  ) 

σ 

X         = 

Figure 2: Multitrace operators

while replacing (12) by the identity permutation gives (trX)2. In the diagrammatic repre-

sentation of tensor space manipulations, tracing is drawn by joining strands. Any multi-trace

operator withm copies ofX can be obtained from an appropriate permutation of the strands.

This is shown in Figure 2. Two permutations which are conjugate to each other give rise to

the same multi-trace operator. There is a one-one correspondence between multi-traces and

conjugacy classes of permutations.

In quantum field theory X is a function of space-time coordinates, and in fact an operator

in a Hilbert space, hence the terminology “multi-trace operators”. Matrix models where X

depends on no coordinates at all are special cases of QFT in zero space-time dimensions.

Most of this paper is indeed focused on that case, but diagrammatic tensor space techniques

are useful more generally. The key element of free QFT (Gaussian matrix models) we will use

is that observables are correlators of multi-traces and these can be computed by combining

Wick’s theorem with the basic formula

〈X i
jX

k
l 〉 = δilδ

k
j (2.15)

Wick’s theorem implies that for a correlator involving a large number of X ’s we need to sum

〈X i1
j1
X i2
j2
· · ·X i2n

j2n
〉 =

∑

γ∈[2n]
δi1jγ(1)δ

i2
jγ(2)

· · · δi2njγ(2n)
(2.16)

The permutation γ is being summed over all elements in the conjugacy class of S2n with

n cycles of length 2. The size of the conjugacy class is (2n)!
2nn!

which is the number of ways

of choosing n pairs from 2n objects. The equation (2.16) is expressed diagrammatically in

Figure 3.

For computations in Gaussian multi-matrix models, involving matrices X, Y, Z · · · , the
correlator of a pair of different matrices is zero, and for each pair of like matrices we have the

correlator in (2.15). Again, the above remark that multi-traces can be obtained by composing

permutations with an appropriate operator in tensor space holds true. Multi-traces with
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X < 

< 

=     Σ    
γ 

γ 

Figure 3: Correlator using Wick’s theorem : γ in [2n] (see text for further explanation)

m1, m2, m3 copies of X, Y, Z are obtained from X⊗Y⊗Z acting on V ⊗m1+m2+m3 . While in

the case of the single matrix model, conjugations by permutations in Sm lead to the same

operator, here conjugations by permutations in the subgroup Sm1 × Sm2 × Sm3 lead to the

same multi-matrix operator. For a non-zero correlator, we need m1, m2, m3 to be even, so

we write m1 = 2n1, m2 = 2n2, m3 = 2n3. Wick’s theorem results in sums over permutations

γ in [22n1 , 22n2, 22n3 ] of S2n1 × S2n2 × S2n3.

Some recent papers where diagrammatic tensor space techniques play an important role

include [19, 20, 21, 22, 25, 26, 27].

2.3 Gaussian Matrix Model and maps to P1 with three branch

points

Choose a permutation σ ∈ S2n which characterizes a multi-trace operator with 2n copies of

X . The correlator only depends on the conjugacy class [σ] of σ. Compute the correlator in

the Gaussian matrix model which has the two point function

〈X i
jX

k
l 〉 = δilδ

k
j (2.17)

Using this two point function and Wick’s theorem (2.16), we have

〈tr2n(σX)〉 =
∑

γ∈[2n]
tr2n(γσ)

=
∑

γ∈[2n]
NCγσ

=
∑

τ∈S2n

∑

γ∈[2n]
NCτ δS2n(σγτ) (2.18)

Here [2n] is the conjugacy class with n cycles of length 2 and Cγσ is the number of disjoint

cycles in the permutation γσ.
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A judicious choice of normalization gives

|[σ]|
(2n)!

NCσ−n〈tr2n(σX)〉

=
1

(2n)!

∑

τ∈S2n

∑

σ∈[σ]

∑

γ∈[2n]
δS2n(σγτ)N

Cσ+Cτ−n (2.19)

In the above |[σ]| is the size of the conjugacy class [σ]. b(σ) = 2n − Cσ is the branching

number of the permutation, which only depends on the conjugacy class of the permutation.

b([2n]) is the branching number of the conjugacy class with n cycles of length 2, which is

equal to n.

The above sum counts branched covers of the sphere, with 3 branched points, described

by permutations σ, γ, τ . The power of N keeps track of the genus of the worldsheet

(2− 2h) = 2n(2− 2G)−B

= 4n− (2n− Cσ)− (2n− Cτ )− (2n− C[2n])

= Cσ + Cτ − n (2.20)

where G is the genus of the target, in this case 0, and B is the total branching number.

Using (2.20) and (2.19) we have

|[σ]|
(2n)!

NCσ−n〈tr2n(σX)〉 =
∑

f([σ],[2n]):Σh→P1

1

|Autf |N
2−2h (2.21)

The sum is over the branched covers with three branch points. The first branch point is

described by permutations σ in the conjugacy class [σ] defined by the observable tr2n(σX).

The second branch point, resulting from Wick contractions, is described by permutations γ

in the conjugacy [2n]. The third branch point can be in any conjugacy class which arises in

the product of σ and γ. Given two maps

φ : Σh → Σh
f : Σh → P1 (2.22)

we say that φ ∈ Aut(f) if

f ◦ φ = f (2.23)

To obtain the result (2.21) we have used the fact that the sum over σ,γ and τ of δS2n(σγτ)

with a factor of 1
(2n)!

, is equal to the sum over maps f(σ,T) : Σh → P1 with each map

weighted by 1
|Autf | [9, 14].

If we sum over [σ] with the above weights we can define a generating function

F(N) =
∑

n

∑

[σ]∈[S2n]

|[σ]|
(2n)!

NCσ−n〈tr2n(σX)〉

9



=
∑

f([2n]):Σh→P1

1

|Autf |N
2−2h (2.24)

Here the sum is over maps, with three branch points, one with ramification profile [2n], and

the other two arbitrary, and weighted correctly (as in string theory) by the worldsheet genus.

2.4 Comments on integrality

Considering (2.21) and (2.18) and noting that (2n)!
|[σ]| is the number of permutations α in S2n

which leave σ fixed under conjugations, i.e ασα−1 = σ, we can write this factor as |Aut(σ)|.
This indicates that it is the order of the subgroup Aut(σ) of S2n which leave σ fixed under

conjugation. Hence we can write

〈tr2n(σX)〉 =
∑

σ∈[σ]

∑

γ∈[2n]
NCγσ

|Aut(σ)|
|Autfσ,γ|

(2.25)

fσ,γ is a Hurwitz class determined by the pair σ, γ. We know that the LHS is an integer times

a power of N because it is a sum over Wick contractions. We can also see this directly from

the RHS because Autfσ,γ = Aut(σ) ∩ Aut(γ) which means that it is a subgroup of Aut(σ),

hence by group theory must have an order which divides |Aut(σ)|. For the same reason,

using |Aut(γ)| = 2nn!, we have 2nn!
|Autfσ,γ| is an integer, which means

2nn!

|Aut(σ)|〈tr2n(σX)〉 (2.26)

is a sum of positive integers.

The factor |Aut(σ)|
|Autfσ,γ | appearing in (2.25) has a nice interpretation. Fix a σ to describe

our operator. Pick a γ which determines a Wick contraction. The pair (σ, γ) determines

a Hurwitz class. As γ runs over its conjugacy class, we sum over Wick contractions. How

many of these Wick contractions are in the same equivalence class as (σ, γ) ? We can get

other permutations γ̃ in the conjugacy class of γ by conjugating with h ∈ S2n. Note that

other representatives of the same Hurwitz class are related to σ, γ as (hσh−1, hγh−1). As

we are summing over γ with σ fixed, we are running over pairs (σ, hγh−1). For this to be

equivalent to (σ, γ̃) we need h to fix σ, i.e h ∈ Aut(σ). But if h ∈ Aut(γ) as well, then it

does not change the pair. So the number of Wick contractions which give contributions from

the same Hurwitz class as the one of σ, γ is Aut(σ)/Autfσγ . Finally, the group that leaves σ

and γ fixed is clearly a subgroup of Aut(σγ) so that |Aut(σγ)|
|Autfσ,γ | is also an integer.

2.5 Perturbed model, 3 Branch points, and new results on Hur-

witz numbers

In this section we will perturb the Gaussian matrix model, with a potential of the form

Tr (Xn). Expanding the exponential of the perturbation, we see that the partition function
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of the perturbed model can be computed by summing over correlators in the Gaussian model,

with insertions of powers of Tr (Xn). At each order in the coupling constant, we have the

correlator of a multi-trace operator in the Gaussian model, which as shown in section (2.3),

amounts to summing over Hurwitz classes with three branch points. These Hurwitz classes

have a permutation σ in the conjugacy class [nm] coming from the operator insertion, a

permutation γ in the conjugacy class [2
nm
2 ] from the Wick contraction and a permutation τ

which is the product γ−1σ−1.

2.5.1 Perturbation by trX4 and Hurwitz numbers

For concreteness we start with perturbation by trX4

Z(X) =

∫

dXe−N( 1
2
trX2+ g2

4
trX4) (2.27)

The free two-point function is

〈X i
jX

k
l 〉0

=

∫

dXe
−N
2
trX2

X i
jX

k
l

=
1

N
δilδ

k
j

=
1

N
〈X i

jX
k
l 〉 (2.28)

This is the same as (2.17) up to an immaterial factor of 1
N
.

Expanding the exponential

Z(X) =
∑

k

∫

dXe−
N
2
trX2 (−Ng2trX4)k

4kk!

=
∑

k

(−g2)kNk

4kk!
〈(tr(X4))k〉0

=
∑

k

(−g2)kNk

4kk!
〈tr4k(σX)〉0 (2.29)

We have used the observation from section 2.2 that multi-traces can be written as a trace in

a tensor product space with a permutation inserted. In this case, (tr(X4))k can be written

as a trace in V ⊗4k, which is indicated by the subscript in tr4k. The permutation σ has k

cycles of length 4. So Cσ = k. We can now write

Z(X) =
∑

k

(−g2)k
(4k)!

NCσ
(4k)!

4kk!
〈tr4k(σX)〉0

=
∑

k

(−g2)k
(4k)!

NCσ

∑

σ∈[4k ]
〈tr4k(σX)〉0
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=
∑

k

(−g2)k
(4k)!

NCσ−2k
∑

σ∈[4k ]

∑

γ∈[2k]

∑

τ∈S4k

tr4k(σγ)

=
∑

k

(−g2)k
(4k)!

∑

σ∈[4k ]

∑

γ∈[2k]

∑

τ∈S4k

δS4k
(σγτ)NCσ+Cτ−2k

=
∑

k

(−g2)k
∑

f([4k ],[22k]):Σh→P1

1

|Aut( f([4k], [22k]) )|N
2−2h (2.30)

The factor |[σ]| we needed in (2.19) arose naturally as a result of expanding the standard

normalization of the potential in the Matrix Model.

For any g we have a Hurwitz interpretation of the Matrix model correlator. As g ap-

proaches gc the partition functions diverges and the standard string interpretation of the

90’s emerges i.e CFT coupled to pure c ≤ 1 matter. In this case, it is just pure gravity. Very

importantly now we also have an interpretation in terms of continuum worldsheets and

holomorphic maps for any g.

The double-scaled string theory (see the review [8]) related to the pure gravity arises in

the limit,

g → gc = − 1

12
(2.31)

where it can be proved that

Zh ∼ (gc − g)
5χh
2 (2.32)

and where it becomes appropriate to define a new genus counting parameter

κ−1 = N(g − gc)
5/4 (2.33)

Our results imply that 2D gravity coupled to different minimal models arises from critical

limits of generating functions of Hurwitz numbers.

Fluctuations in the matrix model are of size 1
N2 . By switching to eigenvalue variables,

one can use a classical (saddle point) analysis to extract the leading large N behavior. This

will give Hurwitz numbers for maps with both worldsheet and target a sphere. Let us make

this explicit. The large N eigenvalue density for this model has been calculated [28]

ρ(λ) =
1

2πg
(λ2 + 1 +

1

2
a2)

√

(a2 − λ2) (2.34)

where

a2 =
2

3
(−1 +

√

1 + 12g) .

The free energy is given as usual by the log of the partition function Z. For the model we

consider here

F = N2
(

∫

dλdµρ(λ)ρ(µ) log |λ− µ| − 1

g

∫

dλρ(λ)(
λ2

2
+
λ4

4
)
)

(2.35)
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Using the explicit eigenvalue density the free energy is evaluated to obtain [28]

F (g)− F (0)

N2
=

∞
∑

k=1

gk
(−1)k+1(2k − 1)!!6k

2k (k + 2)!
.

This free energy can be recovered by summing the connected planar diagrams. To make sure

we pick the connected part in the delta function δ(σγτ) appearing in (2.30), we keep only

triples σ,γ,τ which are transitive. To be more precise, the coefficient of gk in the free energy

is the number of times σγ = τ−1 for (i) σ summed over [4k] (ii) γ summed over [22k] and (iii)

the group generated by σ, γ, τ acts transitively on the set {1, 2, ..., 4k}. In other words σ, γ, τ

generate the whole of S4k. In what follows we use the notation Hg
α,β to denote the number of

degree d branched covers of P1 by a genus g connected Riemann surface with three branch

points, the first two having ramification profiles α and β, and the third having arbitrary

ramification. If the cover has automorphism group Autfσ,γ it is counted with multiplicity

1/|Autfσ,γ |. This notation coincides with that of [29]. The Hurwitz number H0
[22k],[4k] is given

by the absolute value of the coefficient of gk in the free energy. From the free energy above

H0
[22k],[4k] = (2k−1)!!6k

2k(k+2)!
(2.36)

In terms of delta functions

∑

σ∈[4k ]

∑

γ∈[22k ]

∑

τ∈S4k:Cτ=k+2

1

(4k)!
δ(conn:0)(σγτ) =

(2k − 1)!!6k

2k(k + 2)!
(2.37)

The superscript conn on the delta functions indicating that we are restricting to transitive

triples which give rise to connected covers. The superscript 0 indicates that we are restricting

to genus zero worldsheet, which is equivalent (see (2.20)) to restricting Cτ = 2k + 2.

By expanding the partition function itself, we can obtain the Hurwitz numbers H̃0
[22k],[4k]

which are defined as before except that the covers need not be connected. Finally, correlators

at large N are given as moments of the large N eigenvalue density. For an arbitrary 2j cycle1

σ we have
1

N j

∫

dX tr2j(σX)e−N( 1
2
trX2+ g2

4N
trX4) =

∫ a

−a
dλρ(λ)λ2j

Expanding this correlator in powers of gk, the expansion coefficients are related to H̃0
[22k+2j ],[σ◦4k].

2.5.2 Perturbation by tr(X3) and Hurwitz numbers

To obtain the Hurwitz numbers H0
[23k],[32k] we consider the matrix model

Z(X) =

∫

dXe−N( 1
2
trX2+ g

3
trX3) . (2.38)

1We assume that σ has a single cycle. Using the large N eigenvalue density one is only able to compute

the leading contribution to any given correlator. This is disconnected if σ is not a single cycle.
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For this model [28],

F (g)− F (0)

N2
= −1

2

∞
∑

k=1

(8g2)k

(k + 2)!

Γ(3k/2)

Γ(k/2 + 1)
,

so that

H0
[23k],[32k] = 1

2
8k

(k+2)!
Γ(3k/2)
Γ(k/2+1)

. (2.39)

In terms of delta functions

∑

σ∈[32k ]

∑

γ∈[23k ]

∑

τ∈S6k:Cτ=k+2

1

(6k)!
δ(conn:0)(σγτ) =

1

2

8k

(k + 2)!

Γ(3k/2)

Γ(k/2 + 1)
(2.40)

The connectedness condition is a transitivity constraint on the triples, the genus zero con-

dition is equivalent to Cτ = 2 + k.

2.5.3 Perturbation by trX6 and Hurwitz numbers

Finally, we consider the matrix model with trX6 potential

Z(X) =

∫

dXe−N( 1
2
trX2+ g

6
trX6) . (2.41)

The large N limit for this model has been studied in [30]. From [30] we obtain the free

energy

F =
−a4
12

+
7

12
a2 − 1

2
log a2

where

ĝa6 + a2 − 1 = 0 ĝ = 60g

Using these two equations we will now develop the series expansion of the free energy. This

last cubic is easily solved to give

a2 =
1√
3ĝ

(

√

1 +
27ĝ

4
+

√

27ĝ

4

)
1
3 − 1√

3ĝ

(

√

1 +
27ĝ

4
−

√

27ĝ

4

)
1
3 (2.42)

We know that we have the correct root because it is clear that a2 has an expansion starting

at 1 for small ĝ. It is now easy to obtain the following series expansions

a2 =

∞
∑

k=0

(

3k

k

)

1

2k + 1
(−1)kĝk (2.43)

a4 =

∞
∑

k=0

(3k + 1)!

(2k + 1)!(k + 1)!
(−1)kĝk
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and

log(a2) =
∞
∑

k=1

(−1)k
(3k − 1)!

k!(2k)!
ĝk

Collecting these results we obtain

F (g)− F (0)

N2
=

∞
∑

k=1

(−1)k+1

2

(10)k(3k − 1)!

(2k + 1)!(k + 1)!
gk (2.44)

and hence the Hurwitz numbers

H0
[23k],[6k] = 1

2
(10)k(3k−1)!
(2k+1)!(k+1)!

(2.45)

To check our result (2.44), we will now explain how the free energy, or equivalently,

Hurwitz numbers, can be computed from the class algebra coefficients of the symmetric

group. Return to the formula (2.18)

〈tr2n(σX)〉 = 1

|[σ]|
∑

ρ∈[σ]

∑

γ∈[2n]

∑

τ∈S2n

NCτ δS2n(ργτ)

=
∑

[τ ]

f τσ,γ
Sym([σ])

Sym([τ ])
(2.46)

where f τσ,γ are the class algebra coefficients

TσTγ = f τσ,γTτ

In this last expression, Tψ stands for the sum of elements in the conjugacy class [ψ]. The

class algebra coefficients are easily evaluated with the help, for example, of the Symmetrica

program [31].

The partition function is

Z = 1− gN

6
〈tr(X6)〉0 +

1

2!

(

gN

6

)2

〈tr(X6)2〉0 + ...

To evaluate 〈tr(X6)〉0 we need to consider the product

[σ][γ] = [6][23] = 6[3 13] + 8[2212] + 5[5 1] + 4[4 2] + 3[32] (2.47)

The first two terms on the right hand side each correspond to cycles with 4 parts (Cτ = 4)

so these give the leading (planar) contribution. The remaining four terms give a torus (down

by 1
N2 ) correction. It is in fact straightforward to identify each of the terms above with a

particular double line diagram. Our original operator tr(X6) is a sum over 6 indices. We will

represent each index by a dot, as shown in Figure 4. These are the object that are permuted

by S6.
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Figure 4: The graphical representation of tr(X6).

Figure 5: For this double-line diagram τ = [133].

To obtain the double line diagram, the 6 “stubs” must be connected by fat (double line)

propagators. One such connection is shown in 5 below. The connected double line diagram

is in fact a graphical representation of τ . To read τ from this double line diagram, recall that

each dot is an object that gets permuted. Each closed loop in the double line diagram will

contain at least one dot. These loops tells you how the dots are permuted by the action of

S6. Thus a loop with n-dots in it corresponds to a n-cycle in τ . For the double line diagram

in Figure 5 it is clear that τ = [133]. From (2.47) we see that the relevant group algebra

coefficient is 6 and hence this diagram has a coefficient

f
[133]

[6][23]

Sym([σ])

Sym([τ ])
= 6

6

3 · 3! = 2

For the double line diagram in Figure 6 it is clear that τ = [1222] and hence this diagram

has a coefficient

f
[1222]

[6][23]

Sym([σ])

Sym([τ ])
= 8

6

222! · 122! = 3

The non-planar double line diagrams are shown in Figure 7. They correspond to τ = [3 3],

τ = [4 2] and τ = [1 5] respectively. Notice that each term in (2.47) corresponds to a unique

double line diagram. At higher orders in g this is no longer the case - there may be two

different double line diagrams with the same cycle structure for τ .

It is now simple to obtain

Z = 1− g

6
(5N4 + 10N2) +

g2

36 · 2!(700N
6 +O(N4)) +O(g3)
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Figure 6: For this double-line diagram τ = [1222].

Figure 7: Non-planar double-line diagrams contributing to 〈tr(X6)〉

The free energy is obtained by summing connected diagrams. To get the connected diagrams,

take the log

log(Z) = −g
6
(5N4+10N2)+

g2

36 · 2!(700N
6+...)+...−1

2
(−g

6
(5N4+10N2)+

g2

36 · 2!(700N
6+...)+...)2+...

= −5
gN4

6
+ 25

g2N6

3
+ ...

This matches the free energy computation above.

We can state the result in terms of the delta functions on symmetric groups

∑

ρ∈[6k]∈S6k

∑

γ∈[23k ]∈S6k

∑

τ∈S6k:Cτ=2+2k

1

(6k)!
δ(conn;h=0)(ρ γ τ) =

1

2

(10)k(3k − 1)!

(2k + 1)!(k + 1)!
(2.48)

The superscripts on the delta function indicate that we are restricting to genus zero connected

maps. The constraint of the worldsheet being connected is implemented by requiring that

the σ, γ, τ generate the whole symmetric group S6k.

2.6 Universal expressions, Branes and Resolvents

Having shown (section (2.3)) that the 1-point function of any multi-trace operator in the

Gaussian model counts holomorphic maps with three branch points, it is clear that the

partition function and correlation functions of the Gaussian model perturbed by a general

potential can likewise be expressed in terms of holomorphic map counting with three branch

points. It suffices to just treat the exponential of the perturbation as an observable in the
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Gaussian model. Indeed we have seen explicit examples in section (2.5). It is possible to

express this simple consideration in elegant formulae if we introduce some definitions.

Given two permutation groups Sn1 and Sn2 , we can define a canonical embedding of Sn1×
Sn2 into Sn1+n2, by considering Sn1 as permutations of {1 · · ·n1} and Sn2 as permutations of

{n1 + 1, · · · , n1 + n2}. Given two permutations σ1, σ2 respectively in Sn1 and Sn2 we write

σ1 ◦ σ2. We will call this the outer product of the two permutations. This operation can

clearly be extended to an arbitrary string of permutation groups.

We can define an outer-exponential of a permutation σ ∈ Si as follows

eσ◦ =

∞
∑

k=0

1

k!
σ◦k (2.49)

where σ◦k ≡ σ ◦ σ ◦ · · · ◦ σ is using the embedding of S×k
i in Ski. The definition can

be extended, by linearity and distributivity of the outer product over sums, to the outer

exponential of a sum of permutations.

e
∑

i giσi◦ =

∞
∑

k=0

∑

i1,i2··· ,ik

gi1gi2 · · · gik
k!

σi1 ◦ σi2 ◦ · · · ◦ σik (2.50)

Another useful definition will be a generalization of the delta functions for multiple per-

mutations in the same symmetric group (2.7) to a delta function, denoted δ, which takes three

arguments in symmetric groups Sd1 , Sd2 , Sd3 of permutations of {1, 2, · · · , d1}, {1, 2, · · · , d2}
and {1, 2, · · · , d3} where the di are arbitrary positive integers. If the degrees are not equal

the delta function is defined to be zero. When the degrees are equal the δ is defined as equal

to the usual δSd
. In other words it is equal to 1 if the three permutations are in the same Sd

and multiply to 1.

Calculations similar to those involved in (2.19) and (2.30) lead in the case of a perturba-

tion of the Gaussian term by gTrX i as

Z = δ ( eg ci◦ T Ω ) (2.51)

Here ci is a cyclic permutation of length i in Si. T is a sum of permutations in [2p] which

is itself summed over p. As p increases S2p viewed as permutations of {1, 2, · · · , 2p}, which
can be viewed as a subgroup of S∞.

T =
∑

p

∑

γ∈[2p]∈S2p

γ (2.52)

Similarly

Ω =
∑

p

∑

τ∈Sp

NCτ τ (2.53)
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Keeping track of all the factors of N from normalizations of the perturbations and 2-point

function as done in the previous examples shows that the power of N is consistent with a

string interpretation according to the Riemann-Hurwitz formula. Likewise, the combinatoric

factors lead to 1
|Autf | .

A general potential tr(X2) + V (X) is naturally associated with a sequence of formal

sums of permutations. Usually one considers single trace terms in the potential, so that the

V̂ =
∑

i gici is a sum over single cycles. For multi-trace perturbations we have a sum of

more general permutations and V̂ =
∑

i giσi. In this case the partition function is

Z = 〈1〉trX2+V = δ( eV̂◦ T Ω ) (2.54)

The expansion of the exponential according to (2.50) contains terms in permutation groups

of different degrees. For all the terms of a fixed degree d, the definition of δ picks out from

the sums in T and Ω precisely those terms which belong to symmetric groups of the same

degree d. Then δ reduces to a sum over d of terms δSd
.

This extended language of δ,T,Ω allows us to give neat expressions for some key quan-

tities in Matrix theory. Consider the function Det(x−X). Using the earlier manipulations

we can write

〈 Det(x−X) 〉trX2+V = δ( (D ◦ eV̂◦ ) T Ω ) (2.55)

where D =
∑

i x
N−i(−1)i

∑

σ∈Si
(−1)σ. This uses the expansion of the determinant

〈 Det(x−X) 〉 =
∑

i

xN−i(−1)i〈 χ[1i](X) 〉 (2.56)

where χ[1i](X) is the Schur polynomial for the representation of U(N) corresponding to the

anti-symmetric Young diagram which is a column of length i or equivalently i rows of length

1 as indicated by [1i]. The Schur polynomial has an expansion

χ[1i](X) =
∑

σ∈Si

(−1)σ

i!
Tr i(σX) (2.57)

where (−1)σ is 1 if the permutation is even and −1 if it is odd.

The 1-point function 〈Det(x−X)〉 defines the Baker-Akhiezer function which is used in

[32] to argue that the target space of the 1-Matrix model is P1. This conclusion is reached

by identifying the insertion of the exponentiated macroscopic loop operator exp(Tr log(x−
X)) = Det(x−X) as the matrix model description of an FZZT brane [33]. Since x describes

the position of the brane, that is, the allowed places where open strings can end, it is natural

to identify x with the target space coordinate. Since the Baker-Akhiezer function is an entire

function, x runs over P1. We can write formally

Det(x−X) → D =
∑

i

xN−i(−1)i
∑

σ∈Si

(−1)σσ (2.58)
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This a universal formula which works for correlation functions of Det(x − X) inside the

delta functions as in (2.55). The lesson which emerges from equations (2.58) and (2.55)

is that the operator which creates FZZT branes is a fermionic condensate of worldsheet

ramification points . It would be interesting to clarify the connection between this remark

and the interpretation of FZZT-branes as a condensate of long strings [34].

For the resolvent

R(x) = Tr
1

x−X
=

∞
∑

k=0

x−k−1TrXk (2.59)

we have

〈R(x)〉trX2+V = δ( (R ◦ eV̂◦ ) T Ω ) (2.60)

where R =
∑

k x
−k−1ck. The resolvent is a very useful auxiliary function used when deter-

mining the largeN eigenvalue density. One can define a quadratic equation which determines

the resolvent. This equation defines the spectral curve, which has a natural interpretation

in terms of topological string theory on certain Calabi-Yau manifolds [35, 36]. The spectral

curve can also be used to compute correlators at genus zero and higher genus [37].

It is interesting that the area dependence in the string theory of 2dYM [9] appears

through exponentials such as eAT
(d)
2 , where T

(d)
2 is the sum of elements in the conjugacy

class of simple transpositions in Sd. At each order in the expansion of the exponential,

the product (T
(d)
2 )k is a product in the class algebra of a fixed symmetric group Sd. These

products lead to counting problems with k simple branch points. For the 1-matrix model

at hand we encounter the outer exponential of (2.50). In a sense the difference between the

areas in string theory of 2dYM (generalized “areas” couple to higher branch points [14, 38]),

which sums over different numbers of branch points, and the couplings of the string theory

of the 1-matrix model, which is about three branch points but different ramification types,

arises from the choice of exponentials in symmetric groups.

3 Feynman Graphs and the absolute Galois group

Traditionally we think of the Feynman graphs for matrix model correlators in terms of

double line diagrams, following ’t Hooft [39]. Equivalently we can use the language of ribbon

graphs, where the propagators are single lines, but each vertex is equipped with a cyclic

ordering of the edges (see for example [40]). In section 2 we have expressed correlators

using triples of permutations (which multiply to one) of the kind that appear in counting

branched covers with 3 branch points. This allows an immediate use of a theorem of Belyi to

deduce an interesting connection to curves and maps defined over algebraic numbers (section

(3.2)). Grothendieck exploited this theorem of Belyi to show that the absolute Galois group

Gal(Q̄/Q) acts on the equivalence classes of triples of permutations (Hurwitz-classes for
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branched covers with 3 branch points). In his discussion, Grothendieck used the notion of

Dessin D’Enfants (Dessins for short), which are yet another way to talk about ribbon graphs

or double-line Feynman diagrams. The upshot is that “double-line Feynman diagrams of the

1-Matrix Model”, “Dessins ” , “ribbon graphs” , “triples of permutations” are all different

descriptions of the same thing, and they admit an action of the absolute Galois group.

Having a precise characterization of Feynman diagrams in terms of triples of permu-

tations allows us then to observe that the Galois group acts on Feynman graphs of the

one-matrix model, or equivalently on the pairs (Σh, f) where Σh is the string worldsheet and

f a holomorphic map to the target space P1 with 3 branch points. Most of the mathematical

elements of this remark are found already in [40, 41], but have not been fully interpreted

and exploited in the string theory literature. The current section explains, with concrete

examples, the role of the Galois group in organising the Feynman graphs of the 1-Matrix

model. In section 4, we will extend our considerations to multi-matrix models, where we are

lead to introduce a new combinatoric object, colored-edge Dessins. In section 5 we will use

these to find new results on invariants of the Galois action on ordinary Dessins.

3.1 3 Branch points : The Observable, The Wick contraction and

the Product

The key result from the previous section (2.3) is that any correlator of the one matrix model,

Gaussian or perturbed, can be written as a sum over maps from a Riemann surface to the

sphere. The genus h of the Riemann surface determines the power of N , which is N2−2h, at

which it contributes. The map has three branch points with monodromies σ, γ ∈ [2n] and

τ . The monodromy σ determines the observable whose correlator we are computing, γ is

determined by the Wick contraction and τ is the product γ−1σ−1. Our goal in this section

is to explore and develop the consequences of this observation. We will associate σ with the

ramification over 0, γ with the ramification over 1 and τ with the ramification over ∞. To

reflect this in our notation we will sometimes refer to σ, γ, τ as σ0, σ1, σ∞.

3.2 Belyi’s theorem : From Three branch points to Q̄

Useful references for this section are [42, 43, 44]. In what follows we will consider algebraic

number fields, which are field extensions of the field of rational numbers Q. Thus, an

algebraic number field is a field that contains Q and has finite dimension when considered

as a vector space over Q. The field Q̄ obtained by adding all algebraic numbers to Q will

play an important role in what follows.

A classic theorem due to Weil states that a curve is defined over Q if there exists a non-

constant holomorphic function f : Σh → P1C all of whose critical values lie in Q. Belyi’s

theorem on algebraic curves states that given any algebraic curve defined over C, it can be
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σ0

σ1

σ1σ0

=

Figure 8: Tensor operator equality corresponding to cleaning of Belyi map

defined over Q̄ if and only if there exists a holomorphic function f : Σh → P1 such that its

branch points lie in the set {0, 1,∞}. Following conventions in Belyi literature, we will use

the notation X = Σh and β = f . The pair (X, β) where X is a compact Riemann surface

and β : X → P1 is a holomorphic map unbranched outside the set {0, 1,∞}, both defined

over Q̄, is called a Belyi pair and we call β a Belyi function.

The inverse image under β of the closed interval [0, 1] defines a Grothendieck Dessin (or

just Dessin for short). The points in the preimage of 0 are marked with a black vertex and

the points in the preimage of 1 are marked with a white vertex. Permutations σ0, σ1 can

be assigned to Dessins by labelling the edges and going round the black and white vertices

respectively (see for example the explanation in [44]).

A clean Belyi map is one which has all ramification orders equal to 2 over the point at 1.

The Dessin corresponding to a clean Belyi map has exactly two edges for every preimage of

1. Given a general map α of Belyi type, we can get a new Belyi map β with β = 4α(1− α),

such that β is a clean Belyi map. Recall from the previous subsection that since γ ∈ [2n], it

is clear that it is the clean Belyi maps that arise as Feyman graphs in the 1-matrix model.

The ramification orders above the point 0 are described by σ.

From the point of view of a Dessin, the process of cleaning amounts to converting the

white vertices into black vertices and introducing white vertices in the middle of the edges

joining the white vertices. If, with a labelling of the edges, σ0 ∈ Sd describes the permutation

of edges around the black vertices, and σ1 ∈ Sd describes the permutation of the edges around

the white vertices, then after the cleaning operation, (σ0◦σ1) ∈ S2d describes the permutation

of the black vertices and a permutation which maps {1 · · · d} to {d+1, d+2, · · · , 2d} pairwise,
i.e the permutation with cycle decomposition (1 d + 1)(2 d + 2) · · · (d 2d), describes the

permutation around the white vertices. In terms of tensor diagrammatics, sequences σ0, σ1
acting on V ⊗d have a trace given by the diagram on the left of Figure 8. The same trace can

be described as a trace of something in V ⊗2d by a simple diagrammatic manipulation, as in

the right of Figure 8.

As a side-remark, consider the Dessin associated to a clean Belyi pair. After choosing

a marking of the Dessins, the oriented cartographic group C+
2 , an infinite discrete group,
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permutes these marked Dessins. It is possible to prove that Dessins associated to a clean Belyi

pair (which are also the Feynman graphs in the 1-matrix model) are in 1-1 correspondence

with the conjugacy classes of subgroups of C+
2 [42]. The generators of C+

2 are ρ0, ρ1, ρ2
with relations ρ21 = 1, ρ0ρ1ρ2 = 1. Thus, Feynman graphs are in 1-1 correspondence with

conjugacy classes of subgroups of the Cartographic group.

3.3 Gal(Q̄/Q) for organizing Feynman graphs

An important group in number theory, called the absolute Galois group Gal(Q̄/Q), organizes

all the key properties of the algebraic numbers. It is the group of all automorphisms of the

algebraic closure Q̄ that fix Q. By allowing the absolute Galois group to act on the numerical

coefficients appearing in the Belyi pair, we get an action of the group on Dessins. The Galois

group acts faithfully on Dessins2. This means that the Galois group acts faithfully on the

Feynman diagrams, and sets of Feynman diagrams can be assembled into Galois orbits. We

have exploited the symmetric groups for organizing the Feynman graphs contributing to the

Matrix model correlator. Now we are saying that the absolute Galois group can further be

used to organize the Feynman graphs into orbits.

The correlator 〈Oσ0〉 in the the Gaussian 1-Matrix model is a sum over Hurwitz classes

weighted by 1/|Autf |. Choosing a multitrace operator is a choice of [σ0]. Choosing a Wick

contraction is a choice of a permutation σ1 from the conjugacy class [σ1] = [2n]. Then we

sum over [σ∞] which runs over conjugacy classes that can appear in the product of permu-

tations from [σ0] and [σ1]. When computing the correlator of the gauge invariant operator,

contributions are weighted by 1
|Autf | (see 2.21). It is known that the data [σ0], [σ1], [σ∞], Autf

are Galois invariants [45]. This means that every 1-point function 〈Oσ0〉 is a sum over Galois

invariant data. The set of Hurwitz classes which share the above data can be one or many,

and they can fit in one or more complete Galois orbits. When there are multiple orbits for

fixed [σ0], [σ1], [σ∞], Autf , there will be a list of finite subgroups of Gal(Q̄/Q) which will

each act transitively on each orbit. In one of our examples of 3.4, this Galois group will be

an S3 acting as permutations of the three roots of (3.4).

It is worth noting that the Galois invariance of the conjugacy classes [σ0], [σ1], [σ∞] is

also useful in proving the finiteness of the length of the Galois orbit for any Dessin. There

is a lot of mathematical interest in developing a complete list of Galois invariants which can

be used to determine when a pair of Dessins are in the same orbit and when they are not

[42, 43, 46, 47].

In the above, we have described the route from Feynman graphs to triples of permutations.

Grothendieck relates these triples to Dessins. Now we explain how to obtain the Dessins

directly from the Wick contractions without going through the triple of permutations: Each

2In fact, Gal(Q̄/Q) acts faithfully on the set of genus 1 Dessins, on the set of genus 0 Dessins and even

on the set of trees[42].
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trace operator trXk corresponds to a black vertex with k edges emerging from it, cyclically

ordered using the orientation on a plane. Join the edges emerging from the vertices, in

pairs, according to the Wick contractions. Insert a white vertex along every propagator and

introduce extra handles to avoid intersections. The result is a clean Dessin.

We know how to get the Dessin from the Belyi pair: the Dessin is the inverse image of the

closed interval [0, 1] with points in the preimage of 1 marked with a white vertex and points

in the preimage of 0 marked with a black vertex. It is possible to go in the other direction

and obtain the Belyi pair from the Dessin [48, 44]. Start by placing a point within each

closed region of the Dessin and label it as ∞. Connect this new point to the black and white

points forming the boundary of the region, connecting multiple times to the same black or

white point if it appears multiple times on the boundary of the region. The result is a set

of triangles each of which has three vertices, one labeled 0 (for the black point), one labeled

1 (for the white point) and ∞ (the new point). Each triangle is a half-plane. If the triangle

has 0, 1, and ∞ in counterclockwise order it is an upper half-plane and if not, it is a lower

half-plane. Adjacent pairs of triangles can now be glued together along the shared portion

of their boundaries. The result is a Riemann surface. It can be mapped to the Riemann

sphere by using the identity map within each half-plane so that we have indeed obtained a

Belyi pair.

The role of Gal(Q̄/Q) in organizing Feynman graphs of the 1-matrix model is rather

different from the action of symmetries we are used to in quantum field theory. Usually we

relate correlators of different observables, when the observables fall in representations of a

symmetry group. Another good example are the Schwinger-Dyson equations in the 1-matrix

model, which are a consequence of the invariance of the matrix integral under changes of

variable. The Schwinger-Dyson equations relate the correlators of different observables to

each other. In this case, the Galois group Gal(Q̄/Q) relates different contributions to a fixed

observable. Perhaps the MHV re-organization of Feynman diagrams [49] is a reasonable

analogy to this organization, although we are not aware of a group which relates the set of

different Feynman diagrams which are collected together in the MHV method.

3.4 Examples

The connections developed above can be made very concrete in the context of specific exam-

ples. For a sequence of observables in the Gaussian 1-matrix model, described by conjugacy

classes [σ0] in S2n, we will consider the class algebra multiplication [σ0] · [2n]. For each [σ∞]

appearing in the product, we will consider

• The Hurwitz classes, their genus and automorphism group

• The size of the Galois orbit

• The Belyi pair
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Figure 9: The Dessins corresponding to operators built using two matrices

• The field of definition

These choices deserve a few comments. The nature of the Galois orbit will provide insight

into the symmetry which organizes the Feynman graphs. The field of definition is interesting,

since its giving detailed information about the Belyi map itself. Related to fields of definition

is the moduli field K which is the intersection of all the fields of definition [43]. The moduli

field K is interesting because deg[K : Q] is equal to the size of the orbit. In our examples,

the need to distinguish K from the minimal field of definition will not be necessary.

• 〈trX2〉 : [2] · [2] = 2[12]

There is a single Hurwitz class, a single ribbon graph corresponding to [12]. Since there

is a one-to-one correspondence between ribbon graphs and Dessins, this immediately

implies that the size of the Galois orbit has to be 1. Hence deg[K : Q] = 1, which

means the field of definition is K = Q. |Aut(f)| = 2. The Belyi map corresponding to

this observable is

w =
z2

z − 1
4

(3.1)

The corresponding Dessin is given in Figure 9.

• 〈(trX)2〉 : [12] · [2] = [2]

There is a single Hurwitz class, a single ribbon graph which immediately implies that

the size of the Galois orbit has to be 1. Hence deg[K : Q] = 1, which again means the

field of definition is K = Q. |Aut(f)| = 2. From Figure 9 it is clear that the Dessin

for this observable can be obtained by cleaning the Dessin whose Belyi map is w = z,

which gives

w = 4z(1 − z) (3.2)

• 〈trX4〉 : [4] · [22] = 2[2 12] + [4]

There are two Hurwitz classes, one for [2 12] and one for [4]. One corresponds to a map
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from the sphere to the sphere and one to a map from the torus to the sphere. Since

genus is a Galois invariant, this correlator gets contributions from two Galois orbits

each of which have size 1. Thus, the field of definition for both is again K = Q. The

map for the Dessin of genus zero is

w =
(z − 3

2
)4

(z − 1)(z − 2)
(3.3)

The two poles in the Belyi function are needed because each closed loop in the Dessin

contains the point w = ∞. These are the new points that we added in order to obtain

the Belyi pair from the Dessin in section 3.3. This Dessin is given in Figure 10. A

model for the genus 1 Dessin is more involved, because we need both a model for the

map and for the torus. The fact that there is a single Feynman diagram appearing in

the orbit implies that the Belyi pair will have all coefficients in Q. The Belyi curve

(worldsheet of torus topology) is defined by the

y2 = x3 − x

and the Belyi map is

w = x2

The reader can readily verify that, as x → 0, we can choose local coordinates w = ǫ1
on the target and ǫ2 on the worldsheet (y = ǫ2, x = −ǫ22) so that ǫ1 = ǫ42 as required

for a ramification point described by a 4-cycle. For w = 1, we have worldsheet points

(x = 1, y = 0), (x = −1, y = 0). Take the first : a local coordinate on the worldsheet is

ǫ2 with (x = 1+
ǫ22
2
, y = ǫ2). On the target a local coordinate is (w−1) = ǫ1 and locally

the map is ǫ1 = ǫ22 as required for a simple ramification point. The same argument

holds at (x = −1, y = 0) so that we have ramification profile [22] over w = 1. Near

w = ∞, we have w = x2, y2 = x3. We can choose local coordinate ǫ1 on the target

with w = 1
ǫ1

and ǫ2 on the worldsheet with (y = 1
ǫ32
, x = 1

ǫ22)
, so that ǫ1 = ǫ42 as required

for ramication profile [4] over w = ∞.

• 〈trX3trX〉 : [3 1] · [22] = [3 1]

There is a single Hurwitz class and hence a single element in the Galois orbit so that

again K = Q. The Belyi map of this Dessin is

w =
(z + 13

4
)(z + 5

4
)3

z + 1

We can easily see that z = −13
4

has image w = 0 and no ramification, while z = −5
4

also mapping to w = 0 is a third order zero, so the ramifcation profile over w = 1 is

[31]. Points z = −7
4
±

√
3
2

on the worldsheet map to w = 1 and each is a second order

zero of w − 1 thus describing ramifcation profile [22] over w = 1. The points z = −1

and z = ∞ map to w = ∞. While z = 1 is a simple pole, the large z, w behaviour is

w ∼ z3, so that w = ∞ has a ramification profile [31].
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Figure 10: The Dessins corresponding to operators built using four matrices

• 〈(trX2)2〉 : [22] · [22] = 3[14] + 2[22]

The contribution coming from [14] is disconnected and hence is not considered. There

is a single Hurwitz class corresponding to [22], a single element in the Galois orbit and

so K = Q. The Belyi map of the Dessin can be obtained by cleaning from the Tr (X2)

Belyi map 3.1, which gives

w =
4z2(z − 1

4
− z2)

(z − 1
4
)2

• 〈trXtrXtrX2〉 : [2 12] · [22] = [2 12] + 2[4]

The contribution corresponding to [2 12] is disconnected and hence not considered.

There is a single Hurwitz class corresponding to [4]. This class which is related to

Chebyshev polynomials, have a chain Dessin [43]. There is again a single element in

the Galois orbit so that again K = Q. The Belyi map of the Dessin can be obtained

by cleaning from the (TrX)2 Belyi map (3.2)

w = 16z(1− z)(1− 2z)2

• 〈(trX)4〉:
All contributions are disconnected.

• The (single) connected Feynman diagram contributing to the correlator

〈

(TrXk)(TrX)k
〉
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Figure 11: A Dessin for the connected piece of 〈(TrXk)(TrX)k〉.

is given by the Dessin in Figure 11. The Belyi function for this flower is[50]

w = (1 + xk)2

The field of definition is equal to the moduli field is equal to Q. Thus, these belong

to a Galois orbit of length 1. Further, this Dessin is the only Dessin that arises in the

connected correlator so that this connected correlator gets its complete contribution

from a single Galois orbit. By applying the cleaning map to these we would get Dessins

that give one of many contribution to correlators of the form

(TrXk)(TrX2)k(TrX)k

Thus, for k > 2 all of these correlators we get contributions from more than one Galois

orbit. Consider the case k = 3. We have [σ0] = [32313], σ1 = [26]. There are a total

of four connected diagrams associated with the conjugacy class made of one cycle of

length 12. One of them is defined over rationals as above and lies alone in a Galois

orbit. The other three lie in a single orbit; they correspond to the cleaned versions of

the Dessins shown in Figure 12. The Belyi functions for the Dessins of Figure 12 take

the form

w = z3(z − a1)(z − a2)
2

To fix a1 and a2 following the method of [43] one needs to pick a root of

25α3 − 12α− 24α− 16 = 0 (3.4)

Each root corresponds to a particular Dessin. Given α compute

b =
5 + 4α−

√

(5 + 4α)2 − 62α

12

and (the six possible roots for a1 all give rotated versions of the single Dessin)

a1 =

(

1

b3(b− 1)(b− α)

)
1
6
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Figure 12: The Dessins shown belong to a single Galois orbit.

a2 = αa1

The field generated by the defining polynomial (3.4) has discriminant −5038848 =

−2839[51]. This is not a perfect square which tells us that the Galois group of this field

is S3[52].

• There is another interesting example of an operator which receives contributions from

Dessins belonging to more than one orbit. The Leila Flowers are a pair of genus zero

Dessins (in fact trees) which can be described by permutations

[σ0] = (1)15(5)

[σ1] = (2)(3)(4)(5)(6)

[τ ] = (20) (3.5)

By cleaning (See Figure 17) we have genus zero Dessins with

[Σ0] = (1)15(2)(3)(4)(5)2(6)

[Σ1] = (2)20

[τ ] = (40) (3.6)

Hence there are at least 2 distinct Galois orbits contributing to the connected piece of

〈(tr(X))15tr(X2)tr(X3)tr(X4)(tr(X5))2tr(X6)〉 (3.7)

3.5 Belyi pairs and square Strebel differentials

Zapponi [53, 54] describes how to go from a Dessin to a Ribbon-graph which is the critical

graph of a quadratic differential ω. The Dessin is the inverse image of [0, 1]. The critical graph

of the quadratic differential is the inverse image of the unit circle. For a quadratic differential

to correspond to a Belyi-pair, its ribbon graph must be bi-colorable. This is equivalent to

requiring that the quadratic differential is a square of a holomorphic differential. From the

Belyi data the holomorphic differential is dβ
β
. The vertices of the critical graph correspond

to the ramification points over 1. For clean Belyi maps, these dβ have a zero of order 1,

hence ω has a zero of order 2 and consequently the critical graph has valency 4. For the

curve defined over Q̄, the lengths are all 1 [55]. These facts constrain the places of Mg,n
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which correspond to clean Belyi maps of degree 2n. Since the quadratic differentials and

their critical graphs give a cell decomposition of Mg,n as well as a combinatoric description

of Mumford Morita-classes [56], these facts should be useful in developing a combinatoric

derivation of ELSV type formulae [57] in terms of Mumford Morita-classes for the Hurwitz

numbers we have derived.

It is interesting that Strebel differentials, and the Galois action on Dessins have been

studied in a physics context before in connection with Seiberg-Witten theory [58]. Strebel

differentials also a prominent role in the programme of [59].

3.6 Topological string theory on P1

We have seen that the 1-matrix model has an interpretation as a string theory with a

P1 target space. It is then natural to look for a topological string theory on P1 which

reproduces the correlators of the matrix model. A connection between topological σ-models

and large N -matrix integrals has been established in [60]. This work provides an explicit

matrix model which reproduces the topological σ-model (A-model) coupled to gravity on

P1. The observables of the topological σ-model come from the de Rahm classes of the target

manifold. For P1 there are two de Rahm classes, the identity and the Kähler class. Denote

the corresponding physical observables P and Q. Further, because the topological σ-model

is coupled to gravity, new observables given by gravitational descendents of P and Q can be

constructed. Any of these observables can be added as a term in the action with a coupling tP
(tQ) for P (Q), and with a coupling tn,P (tn,Q) for the nth descendant of P (Q) respectively.

The corresponding matrix model is

Z =

∫

dMe−TrV (M)

where

Tr V (M) = −2TrM(logM − 1) +
∑

n=1

2tn,PTrM
n(logM − cn) +

∑

n=1

1

n
tn−1,QTrM

n

c0 = 0 cn =

n
∑

j=1

1

j

The matrix M is an N∗ × N∗ matrix with N∗ = Nt0,P . To get the Gaussian matrix model

we should choose t1,P = 1, t1,Q = 1 and set all other couplings equal to zero. Since the

perturbation is being chosen to cancel the logarithmic term, this may well be a subtle limit

of the model.

One could also consider a more direct route to constructing the relevant topological string

theory on P1. It is shown in [53] how to obtain Strebel graphs from Dessins. These Strebel

graphs are not the most general. Rather they have the property that they are related to

quadratic differentials which are squares of ordinary holomorphic differentials. In fact, in
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terms of the Belyi map, we have ωzz = ∂zf
f

∂zf
f
. Topological string constructions can be

designed to localize on the solution sets of appropriate equations. This equation should form

the basis of a topological string construction with P1 target where the constraint of three

branch points is automatically included.

Some insights on the string dual of 2dYM, which has a string theory interpretation in

terms of two-dimensional target spaces ΣG , have been obtained by developing an interpreta-

tion in terms of a six-dimensional Calabi-Yau target space which are bundles over ΣG[63]. It

would be interesting in the case of the string dual of the Hermitian Matrix model to explore

if a six-dimensional target space interpretation can provide a natural home for the P1 with

three branch points discussed here.

4 Multi-Matrix models and colored-edge Dessins

4.1 Multi-Matrix models

Consider the Gaussian 2-matrix model and a multi-matrix operator tr(σX⊗2n1 ⊗ Y ⊗2n2).

The correlator is given by

〈tr(σX⊗2n1 ⊗ Y ⊗2n2)〉 =
∑

γ1∈[2n1 ]

∑

γ2∈[2n2 ]

tr2n(σγ1 ◦ γ2)

=
∑

τ∈S2n

∑

γ1,γ2

δ(σ(γ1 ◦ γ2)τ)NCτ (4.1)

The choice of an operator, say trXY trXY , chooses a coloring of the cyclically ordered

edges coming out of a black vertex (associated with σ0 in Belyi literature conventions, here

σ). The choice of a contraction gives a clean Dessin, equipped with the additional data of

a coloring of the edges. Any open circle (associated with σ1 in Belyi literature conventions,

here σ1 = γ1 ◦ γ2) has 2-edges of the same color, which form the propagator in the matrix

theory language. We can think of X and Y propagators as having different colors. For an

earlier use of related ideas see [64].

In the case of the 1-matrix model, we normalized the 1-point functions by introducing
|[σ]|
(2n)!

. Here 2n1 + 2n2 = 2n and the natural normalization factor is

|[σ](2n1,2n2)|
(2n1)!(2n2)!

(4.2)

where [σ](2n1,2n2) is the set of permutations in S2n related to σ by conjugation with elements

in S2n1 × S2n2 . This is analogous to the fact that [σ] was the set of elements related to

σ by conjugation in S2n, equivalently the elements in the same conjugacy class as σ or

elements with same cycle structure. A natural guess now is that the answer will be related to

Aut(Dcol), the automorphism group of the colored Dessin. It is clear that the colored Dessin
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Dcol gives a clean Dessin D of usual type (familiar from Belyi literature) by forgetting

the colors. This has Aut(D) which is the same as the Aut(f), the automorphism of the

holomorphic map. As a step towards the definition of Aut(Dcol), note that two colored

Dessins are equivalent when they are related by permutations in S2n1 ×S2n2 . We are lead to

Aut(Dcol) = Aut(D) ∩ (S2n1 × S2n2) (4.3)

Both Aut(D) and (S2n1 ×S2n2) are subgroups of S2n and the intersection is a subgroup. This

symmetry appears in the appropriately normalized correlator

|[σ](2n1,2n2)|
(2n1)!(2n2)!

NCσ−n〈tr(σX⊗2n1 ⊗ Y ⊗2n2)〉 =
∑

σ∈[σ]2n1,2n2

∑

τ,γ1,γ2

Nχ(D)

(2n1)!(2n2)!
δ(σ(γ1 ⊗ γ2)τ)

=
∑

Dcol

Nχ(D)

|Aut(Dcol)|
(4.4)

The last line follows from a general fact about group actions. In this case there is an action by

conjugation of S2n1×S2n2 on the permutations solving the delta function and the multiplicity

of equivalence classes is given by the order of the cosets (2n1)!(2n2)!
|Aut(Dcol)|

The remark of section 2.4 generalizes to the colored case.

NCσ−n〈tr(σX⊗2n1 ⊗ Y ⊗2n2)〉 =
∑

[Dcol(σ)]

|Aut2n1,2n2(σ)|
|Aut(Dcol)|

Nχ(D) (4.5)

The Aut2n1,2n2(σ) is the group of permutations in S2n1 ×S2n2 which leaves invariant σ ∈ S2n

|Aut2n1,2n2(σ)| =
(2n1)!(2n2)!

|[σ]2n1,2n2|
(4.6)

The ratio
|Aut2n1,2n2 (σ)|
|Aut(Dcol)| is integral because Aut(Dcol) is the intersection in S2n1 × S2n2 of

Aut2n1,2n2(σ) and γ1 ◦ γ2 ∈ ([2n1], [2n2 ]). Hence it is a subgroup of Aut2n1,2n2(σ). The ratio is

the number of Wick contractions of tr(σ(X ⊗Y )) which give the colored-Dessin-equivalence

class Dcol. As before we also deduce the integrality of

2n1+n2n1!n2!

Sym([σ]2n1,2n2)
〈tr(σX ⊗ Y )〉 (4.7)

Note that the set of Dcol for a given D is clearly a property of the Hurwitz-class, i.e of

the conjugacy class of (σ0, σ1) under simultaneous conjugation by S2n, hence its a property

of an equivalence class of holomorphic maps. This remark will be exploited in section 5 to

build Galois invariants of the Hurwitz class.

4.2 Colored Dessins, permutation triples and subgroups of S2n

In the classic case we have the correspondence between
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X X Y Y

X X YY 

EQUIVALENT
COLORED−EDGE DESSINS

Figure 13: Colored Dessins in the same equivalence class

• Triples of permutations σ0, σ1, σ∞ in S2n obeying σ0σ1σ∞ = 1, up to equivalence under

simultaneous conjugation in S2n. Further permutation the σ1 belongs to the conjugacy

class [σ1] = [2n].

• Clean Dessins d’Enfants which are graphs with alternating black and white vertices.

The cyclic order for the edges at each vertex is part of the data of the graph. The

white vertices have valency 2.

This correspondence implies that the automorphism of a triple is a symmetry of the Dessin.

There is more we could add to this list of remarkable equivalences, including Hurwitz classes

and Belyi-pairs of (X, β) defined over Q̄. To motivate our generalization, the above list is

rich enough.

The above list generalizes to colored Dessins as follows

• Triples of permutations σ0, σ1, σ∞ with σ0 ∈ S2n, [σ1] ∈ [2n1, 2n2] in an S2n1 × S2n2

subgroup of S2n obeying σ0σ1σ2 = 1 up to equivalence under simultaneous conjugation

in S2n1 × S2n2 .

• Clean Dessins d’Enfants which are again graphs with alternating black and white

vertices. The white vertices again have valency 2. In the colored Dessin, the edges can

be red or blue. The edges incident on a white vertex are both red or both blue. The

edges ending on a black vertex can have any color.

Automorphisms of the colored Dessin defined as conjugations in S2n1 × S2n2 which leave

the triple fixed, coincide with the symmetry group of the colored Dessins.

We have given formal definitions of equivalence of the colored Dessins. In simple exam-

ples, this reduces to fairly obvious-looking equivalences. Two simple colored Dessins which

are in the same equivalence class, are shown in Figure 13.

The following question is natural : What continuum object does a choice of Dcol corre-

spond to ? We will develop two related answers to this question. One is that a choice of Dcol
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is a pair consisting of (f, s), a holomorphic map from a Riemann surface to P1 with branch

points at 0, 1,∞ and a section s of a skyscraper sheaf on the Riemann surface. The second

answer is that the colored Dessins define sheaves over Hurwitz space.

4.3 Coloring edges to coloring vertices

The Dessins that arise as Feynman diagrams of the Hermitian matrix model are cleanDessins.

Each propagator is a pair of edges which are joined at a white vertex. These white vertices

are inverse images of 1. Coloring the propagators is equivalent to coloring the white vertices

instead and leaving the edges uncolored. Each Dessin determines a Riemann surface and an

equivalence class of maps from the Riemann surface to P1 with three fixed branch points,

chosen to be at 0, 1,∞. Recall that the white vertices correspond to inverse images of 1, which

are ramification points of order 2. Each colored Dessin associates colors to these ramification

points. This can be described in terms of skyscraper sheaves on the worldsheet, localised at

the ramification points above 1, which associate the set of colors to these points.(We have

found [61] to be a useful reference on the basics of sheaves we need for this discussion).

Choosing a coloring is a choice of sections of the skyscraper sheaves. The Automorphism

group AutDcol can then be equated to Aut(f, s) which is the automorphism of the pair

consisting of the map from the worldsheet with simple ramification points above 1, along

with a coloring of the ramification points. For the Dessins corresponding to the map f , the

automorphisms are just maps φ obeying f ◦ φ = f . Such maps φ have to map the set of

ramification points above 1 back to itself. To define Aut(f, s) we also require that φ preserves

the color at the ramification points. So we can say that

|[σ](2n1,2n2)|
(2n1)!(2n2)!

NCσ−n〈tr(σX⊗2n1 ⊗ Y ⊗2n2)〉 =
∑

Dcol

Nχ(D)

|Aut(Dcol)|
=

∑

(f,s)

Nχ(D)

|Aut(f, s)| (4.8)

4.4 Sheaves of colored Dessins over Hurwitz space

Consider the Hurwitz space with 3 branch points at 0, 1,∞ on P1. Consider small non-

overlapping open discs drawn on the P1. If we let the branch points move over their respective

discs, there is a 3-complex dimensional subspace of Hurwitz space. The Sd equivalence

classes of triples [σ0, σ1, σ∞] describe different strata of Hurwitz space. Each of these strata

is associated to a Dessin corresponding to [σ0, σ1, σ∞]. For our current applications we are

interested in strata where d = 2n and [σ1] = [2n]. For each choice of a positive integer

k, we can consider colorings of the Dessins with k-colors, where we can further specify a

partition of n of length k, i.e n = n1 + n2 + · · · + nk. For each (k, ~n = (n1, · · · , nk)),
we have a set of equivalence classes of colored Dessins. Equivalently, as explained above

we have the pairs (f, s). We can define a sheaf over the set of Grothendieck Dessins by

associating to each Dessin the set of equivalence classes of colorings of that Dessin. Since

strata of Hurwitz space map to Dessins, we can pull back the sheaf of colored Dessins to
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the open three-dimensional regions of Hurwitz space described above. This gives one answer

to the question of the continuum interpretation of the colored Dessins. They are related

to sheaves over Hurwitz space. We leave a more detailed and general discussion of such

sheaves to the future, including the questions of how to extend the definition to compactified

Hurwitz spaces where branch points are allowed to collide, Dessins degenerate and non-trivial

restriction maps of sets of colored Dessins arise.

4.5 Hurwitz space and String theory for multi-matrix models

In section 2 we developed an interpretation of the one-matrix model at generic couplings

in terms of a topological string theory which localizes on the Hurwitz space of holomorphic

maps with three branch points on P1 target space.

In this section we have shown that the Hurwitz spaces for P1 target and 3 branch points

continue to provide a string theory interpretation for multi-matrix models at generic cou-

plings. Now it is a string theory related to sheaves over Hurwitz space.

It would be interesting to develop a more physical approach to this string theory, e.g as

topological sigma model coupled to 2D gravity, or as some topological WZW CFT coupled

to 2D gravity, perhaps along the lines of [62] where a physical set-up for intersection theory

for bundles over Mg,n is described.

5 Colored-edge Dessins as a tool for Galois invariants

In the following we will refer to Grothendieck Dessins (ribbon graphs) as Dessins for short.

We will use the abbreviations CEDs for colored-edge Dessins and MMOs for multi-matrix

operators.3

5.1 From Dessin to list of colored-Dessins and list of multi-matrix

operators

We showed in section 4 that the 1-point function of a multi-trace operator in multi-matrix

theory is obtained by summing over certain triples of permutations which correspond to

colored-edge Dessins (CEDs). These CEDs project to ordinary Dessins with black and white

vertices by forgetting the edge-colorings. A simple example illustrating the concept of color-

forgetting projection map from the set of equivalence classes of colored Dessins to ordinary

Dessins is given in Figure 14.

We have labeled the colors as X, Y . Since the correlator of a given multi-matrix operator

is a sum over colored-edge Dessins, multiple CEDs are associated to a single multi-matrix

3We apologize to readers who hate acronyms and appeal to their concern for the trees we save.
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COLOUR−FORGETTING PROJECTION 

DESSIN 

COLORED−EDGE DESSINS

Figure 14: Equivalence classes of colored Dessins and projection to Dessin

operator (MMO). Forgetting the coloring gives an ordinary Dessin. We will show that the

set of Dessins associated to a multi-matrix operator in this way do not form complete Galois

orbits, unlike the case of the one-matrix model.

One can also associate a list of MMOs with a Dessin. For a fixed Dessin there is list of

MMOs receiving contributions from the colorings of that Dessin, in other words, from the

set of colored Dessins which project to the given Dessin.

The two-color-Dessin in Figure 14 arises when we consider the one-point function of

trXtrY trXY in the Gaussian 2-matrix model. The fact that one black vertex has a single

incident edge labeled with a single X , another black vertex has a single incident edge labeled

with a single Y , and the middle black vertex has two incident edges labeled X, Y , reflect

the structure of the operator. Colored Dessins, like ordinary Dessins, come equipped with a

cyclic order at each vertex. This corresponds to the cyclic property of traces. The one-color

Dessin in Figure 14 arises from considering the correlator of (trX)2(trX2) in the Gaussian

1-matrix model. So we can associate, to the uncolored Dessin in the figure, two distinct

MMOs, namely (trX)2(trX2) and trXtrY trXY . We will explain shortly how these lists of

colored Dessins or lists of MMOs provide combinatoric Galois invariants.

A general Dessin where the white vertices do not all have exactly two incident edges, can

as discussed in section (3.2) be converted into a clean Dessin by turning the white vertices

into black vertices, and introducing white vertices in the middle of the existing edges. In the

Galois theory literature, one performs this operation to define the cartographic group of a

Dessin, which is a Galois invariant. We can also use this procedure of cleaning to associate

to a Dessin combinatoric Galois invariants related to lists of CEDs or lists of MMOs.

We will describe a convenient way to generate lists of possible MMOs for a given Dessin
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Figure 15: Two distinct Dessins with same cycle structure for permutations

with a given number of different matrix types, which can be done with a computer program
4. For concreteness, we will describe the construction with the aid of an example. Take two

Dessins as in Figure 15 which can be described by permutations as in the Figure. For the

Dessin S1 we have two permutations σ0, σ1 which can be read off by going round the black

and white vertices respectively, in the orientation indicated. The same procedure produces

a pair of permutations σ′
0, σ

′
1 for the Dessin S2. The cycle structures of the (σ0, σ1) are the

same as (σ′
0, σ

′
1) but there is no permutation which can simultaneously conjugate the first

pair to the second. So these are inequivalent Dessins. They are not clean Dessins. After

applying the cleaning procedure, the cleaned version of S1 is described by permutations

Σ0 = (152)(34)(67)(8)(9, 10)(11)(12, 13)(14)

Σ1 = (1, 8)(2, 9)(3, 10)(4, 11)(5, 12)(6, 13)(7, 14) (5.1)

The permutation Σ0 is written down by composing σ0 with a shifted version of σ1 (see Figure

16). The cleaned version of S2 is described by permutations

Σ′
0 = (123)(45)(67)(8)(9)(10, 11)(12, 13)(14)

Σ′
1 = (1, 8)(2, 9)(3, 10)(4, 11)(5, 12)(6, 13)(7, 14) (5.2)

To list the MMOs associated with these clean Dessins, proceed as follows. Fix a number of

matrix types, say for example 2, i.e we are looking at X, Y . Fix the number of each matrix

type, say 2n1 = 10 X ’s and 2n2 = 4 Y ’s. There are n!
n1!n2!

= 7!
5!2!

ways of distributing X, Y

among 1, · · ·7. Each of these choices leads to a multi-matrix operator. By scanning this list

we can get all the possible MMOs for two matrix types whose correlators in the 2-matrix

model receive contributions from colored versions of each Dessin.

4code written in SAGE available from authors if desired
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Figure 16: Cleaned version of S1 and permutations

It is known that S0 and S1 are in the same Galois orbit (see page 90-91 of [43] and [65])

In the above case, we see that the operator (Y 2X)(Y X)2(X2)2(X)3 appears in the list for

the cleaned version of S1 but not in the cleaned version of S2. Its appearance in the cleaned

version of S1 arises by associating colors as (2, 9) → Y, (5, 12) → Y and remaining pairs of

edges in cleaned S1 as X .

This example illustrates an important point, which was a priori not obvious to us. In

the case of the Gaussian 1-matrix model with matrix X , an operator with non-zero 1-point

function has 2n copies ofX . The different ways of tracing are described by permutations σ0 ∈
S2n. Different elements in the conjugacy class [σ0] give the same operator. The computation

of its correlator involves a sum over all permutations σ1 in the conjugacy class with n cycles

of length 2. This sum includes all possible Dessins with the specified conjugacy classes

of [σ0], [σ1]. Two Dessin in the same Galois orbit necessarily have the same [σ0], [σ1]. This

means that correlators in the 1-matrix model sum over complete Galois orbits. In the case at

hand, we have seen two Dessins in the same Galois orbit, one of which has the property that

its colorings include one which contributes to the 1-point function of (Y 2X)(Y X)2(X2)2(X)3

whereas the other Dessin does not have a coloring which contributes to the 1-point function

of (Y 2X)(Y X)2(X2)2(X)3. So we conclude that in general multi-matrix operator correlators

do not receive contributions from complete Galois orbits of Dessins.

5.2 Some new combinatoric Galois invariants

We fix a number k of Matrix types. We specify a vector of positive integers ~n = (n1, n2 · · · , nk)
of length k, which determines how many matrices of each type we have. For each Dessin,

we get a list of multi-matrix operators. If we take the intersection of the lists associated
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with each Dessin in an orbit we get a Galois invariant. In examples where we know a set

of Dessins to form a complete Galois orbit, we can compute the lists for each Dessin and

then determine the intersection. To make this a powerful idea in the determination of Galois

orbits we would need to find some method, which, just by considering the list of MMOs for

a single Dessin can determine, without prior knowledge of the orbit structures, which of the

MMOs belong to the intersection.

Similarly we can consider the union of lists over a Galois orbit, which gives another Galois

invariant. The intersection appears a more economical invariant to consider.

An analogy is that the moduli field of a Dessin KD is not Galois invariant. Although it

does contain some Galois-invariant information such as the length of the Galois orbit which

is equal to deg(KD : Q). But the moduli field of the orbit, which is the normal extension of

KD and contains all the moduli fields of the individual Dessins, is a Galois invariant [43].

A natural question is whether these combinatoric multi-matrix Galois invariants are a

complete set ? The union invariant is complete. By choosing k to be as large as the number of

edges in the Dessin, we can determine permutations σ0, σ1 which describe the Dessin. Since

the Sd equivalence class of σ0, σ1 completely identify the Dessin, the maximal number of

colors certainly determines the Galois orbit which the Dessins sits in. By using fewer colors,

we may hope to extract information that identifies the orbit only and not extra information

about the Dessin. It is not at all obvious that the intersection invariant is complete.

It is worth remarking that we have considered the construction of Galois invariants from

lists of MMOs, but we could equally well have considered lists of CEDs, then taken intersec-

tions and unions.

We leave it to future research to determine effective ways of computing the intersection in-

variant, or similar invariants from lists of colored edge Dessins or multi-matrix operators, and

to determine their usefulness. What is clear is that lists of CEDs and MMOs capture more

detailed information about Desssins than coarse Galois invariants such as [σ0], [σ1], [σ0σ1].

In the following section, we will make use of this observation to translate known Galois

invariants into the language of CEDs and MMOs.

5.3 Known invariants and edge-colorings of Ribbon graphs

5.3.1 Flower-shaped trees

There is a famous case of two trees, which are in different Galois orbits, but require a rather

non-obvious Galois invariant to separate them [42]. Both trees have a central black vertex,

and 5 white vertices joined to it. These 5 white vertices have, respectively, 1, 2, 3, 4, 5 black

vertices attached to them. The ordering of these 5 white vertices is different in the two trees.

According to Zapponi [53] the action of the Galois group is to permute the five petals to

give a permutation in S5 defined up to multiplication by the 5-cycle (12345), which means
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Figure 17: A multi-matrix operator from Leila Flower

that the sign of the permutation is invariant, so there are two distinct Galois orbits among

Dessins of this type.

This description of the Galois invariant in terms of the sign of a permutation of the

petals can be mapped to a description in terms of multi-matrix operators or colored Dessins

associated to the specified Dessin.

We will use 5 types of matrices Y1, Y2, Y3, Y4, Y5 along with the matrix X . We will focus

on operators where the central vertex has these 5 Yi. The remaining edges are labeled by

X . In the list associated with the first tree, we will have

(Y1Y2Y3Y4Y5)(Y1X)(Y2X
2)(Y3X

3)(Y4X
4)(Y5X

5)(X)(X2)(X3)(X4)(X5) (5.3)

In the list for the second tree, the multi-matrix operator will be

(Y1Y2Y3Y4Y5)(Y2X)(Y1X
2)(Y3X

3)(Y4X
4)(Y5X

5)(X)(X2)(X3)(X4)(X5) (5.4)

So clearly we can express the permutation relating the two configurations in terms of a

permutation relating operators in the respective lists, constrained to have Y ’s at the central

vertex. Hence the Galois invariant can be expressed in terms of combinatoric information

about the Dessin encoded by the lists of MMOs associated to it. In the Figure 17, we show

one of these trees and we also show how the tree changes when we apply β → 4β(β − 1),

and the corresponding multi-matrix operator.

Galois orbits are understood for more general classes of trees related to the one above. If

the valencies (2, 3, 4, 5, 6) of outer white vertices are replaced by (a1, a2, a3, a4, a5), then we

have two orbits if a1a2a3a4a5(a1 + a2 + a3 + a4 + a5) is a square and one orbit otherwise.

We observe that the data (a1, a2, a3, a4, a5) which is important in determining Galois

orbits can also be described in terms of CEDs. Again we color the central edges Y1, Y2, · · ·Y5.
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The X ’s are replaced by X1, X2 · · · with the condition that the X ’s going with Y1 have lower

indices than those going with Y2 etc. Then we have (Y1X1), (Y2X2X3)... Now if we keep

the colors of edges connected to the central vertex fixed and let colorings vary only in the

cycle containing Yi along with X ’s we get the numbers pi!. From this we can extract the

ai = pi + 1. The condition on a1a2..a5(a1 + · · ·+ a5) can now be expressed in terms of these

multiplicities of CEDs or of MMOs.

5.3.2 Galois orbits for Kn,n

Consider Dessins with underlying graph consisting of n black vertices and n white vertices.

To get the underlying graph from a Dessin, just forget the cyclic ordering at each vertex.

Further restrict to the case where each of the n black vertices is connected to each white

vertex by exactly one edge. This is called a complete bi-partite graph Kn,n. Further restrict

to the case n = pe for a prime p which is not equal to 2 and positive integer e. The set of

all Dessins with this underlying graph are regular and the structure of their Galois orbits

is known [66]. Regular Dessins have an automorphism group which is transitive, i.e when

viewed as a subgroup of Sd can map any integer from {1, · · · , d} to any other. There are

pe−1 distinct Dessins. These are organized into orbits parameterized by integers f from the

set {1, 2, · · · e}. For each f consider integers u from the set {1, 2, · · · , pe−f), which are not

divisible by p. There are ϕ(pe−f) such choices, where ϕ is the Euler totient function. Each

choice leads to a curve Xp,e,f,u and a Belyi map to P1. Using an identity
∑

f ϕ(p
e−f) = pe−1

we have the number of Dessins stated above.

The construction of these Dessins is given a group theoretic description in [66]. It is

useful, for our purposes, to find explicitly the description in terms of permutations σ0, σ1.

We know from the description above that the degree of the map is n2. Above each of 0 and

1, there are n ramification points each with degree n. So we are looking for permutations in

Sn2 .

Define q = pf + 1, and consider

h(nk + 1 + i) = nk + 1 + (i+ 1)n
g−1(nk + 1 + i) = n(k + 1)n + 1 + (qi)n

g(nk + i+ 1) = n(k − 1)n + 1 + (
i

q
)n (5.5)

with i = 0 · · ·n− 1 , k = 0, · · · , (n− 1). We can check that these satisfy

gh = hqg

gn = hn = 1 (5.6)

These equations (5.6) are the fundamental equations used to describe the Dessins in [66, 67].

We can also check (gh)n = 1.
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The check for hn is trivial. For gn one writes out

g−n(nk + 1 + i) = n(k + n)n + 1 + (qni)n (5.7)

(qni)n = ((qn)n(i)n)n = i. Using Lemma 6 of [67] we have (qn)n = 1. We can also write out

the action of (gh).

gh(nk + 1 + i) = n(k − 1)n + 1 + (
i+ 1

q
)n (5.8)

It is clear from this formula that n(k + 1)n ≤ gh(x) ≤ n(k + 2)n for nk ≤ x ≤ n(k + 1). We

can also check that gh obeys (gh)n = 1. This proves that gh consists of n cycles of length n.

From these fundamental permutations we get the Dessins [66] as

σ0 = gu

σ1 = (gh)u (5.9)

As explained in the previous section 5.1, if we use the maximal number of colors, we can

certainly reconstruct σ0, σ1. The degree of the map is n2, the cycle decompositions of σ0, σ1
are [nn], so we can extract n = pe. To extract f, u from the permutations, we calculate from

the basic relations (5.6) that

σ1σ
−1
0 = (σ−1

0 σ1)
qu (5.10)

Hence the colored Dessins with maximal colors allow us to recover σ0, σ1, and by comparing

σ1σ
−1
0 and σ−1

0 σ1 we extract q, u, and in turn we extract f from the definition q = pf + 1.

This gives a proof-of-principle that the Galois invariants p, e, f can be extracted using

colorings of the Dessins. We have used the maximal number of colors which allow us to

directly construct σ0, σ1. It would be interesting to find the minimal number of edge-colors

which can reconstruct the data p, e, f .

6 Summary and Outlook

Our motivation was to apply the logic of the string theory of 2dYM where Hurwitz space

was found to play a central role, to the case of correlators in hermitian matrix models.

Summary of Key points

1. By using diagrammatic tensor space calculations, we showed that correlators of arbi-

trary multi-traces of the 1-matrix model at generic couplings can be mapped to count-

ing problems involving certain triples of permutations. This lead to an interpretation

in terms of Hurwitz numbers. The matrix model has a dual string theory interpretation

in terms of a target space P1, which localizes on holomorphic maps with three branch

points. Note that, in contrast to the traditional non-critical string interpretation, this

requires no double-scaling limit for a continuum interpretation.
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2. We used results in the Matrix model literature to get explicit results on Hurwitz num-

bers with three branch points. We believe these results on Hurwitz numbers are new

and these calculations should admit many generalizations.

3. Exploiting one of Grothendieck’s remarks [68], we highlighted the fact that the absolute

Galois group organizes the Feynman graphs of the 1-matrix model.

4. We observed that edge-colorings of Grothendieck Dessins arise when we consider corre-

lators of the multi-matrix models. The counting of these edge-colored Dessins is related

to counting of triples of permutations in Sd with equivalences defined by subgroups.

5. We argued that multi-matrix models at generic couplings are related to a continuum

string theory defined by sheaves over the Hurwitz space of branched covers with 3

branch points.

6. We used edge-colorings and related lists of multi-matrix operators to define new in-

variants of the Galois action on Dessins.

7. We related known Galois invariants to edge-colorings and lists.

We will discuss extensions of this work, connections to recent literature and intriguing

puzzles under three main headings.

• 1. Hurwitz spaces, Mg,n and topological strings,

• 2. The target space of the string dual of Matrix models.

• 3. The absolute Galois group Gal(Q̄/Q).

Hurwitz spaces and topological strings

The computation (section 2.5), using existing Matrix model literature, of explicit Hurwitz

numbers with general ramification profiles over two branch points but with simple ramifica-

tion points over one branch point, can clearly be generalized. The computation of explicit

Hurwitz numbers [69] for a different case, namely where all branch points have simple ram-

ification profile of type [21d−2] has been related recently to intersection theory over Mg,n

[57]. An intersection theory approach to more general branching data for the case of genus

zero world-sheet is available [70]. Elaborating on the connection with the results of section

2.5 would be interesting.

In the recent work [71] exact answers for generating functions of correlators in the her-

mitian matrix correlators were constructed. Given the results of section 2, these can be

interpreted as generating functions for Hurwitz numbers.

Different spacetimes from Refinements of Hurwitz counting

In this article we have focused on Matrix models which are zero dimensional quantum field
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theories. Similar calculations in higher dimensional conformal field theories, in the context

of the Zamolodchikov inner product on the space of all gauge invariant operators of interest

in AdS/CFT, express correlators in terms of symmetric group data [16, 17, 18, 19, 20, 21,

22, 72]. In [17] (for example section 5 and 8) there are computations showing how different

refinements of symmetric group counting problems (hence Hurwitz space combinatorics) are

weighted with different space-time dependences of correlators. This suggests that spacetime

might emerge from refinements of Hurwitz counting problems. Another recent AdS/CFT

development in connection with Hurwitz spaces is the work [73].

The target space of the dual string theory for the one-Matrix model

Our work provides a continuum string interpretation of one-Matrix model correlators

at for arbitrary parameters of the potential V (X). The target space is P1. The maps we

encounter involve those where there are precisely three branch points on the target space.

The ramification points in the inverse image of the branch points are determined by the

parameters of the potential and the observable inserted (see section 2.6). Using the Belyi

theorem, these curves and maps are defined over Q̄. This suggests that the target space is

really P1(Q̄).

The traditional spacetime interpretation of the minimal strings is that we have one real

dimension : which can be viewed as the Liouville direction, or as the eigenvalue direction

of the Matrix model. A two dimensional target space, which is a Riemann surface semi-

classically but becomes a P1 non-perturbatively was discussed in [32]. The P1 target space is

compatible with our interpretation. While the observables we have considered are powers of

traces, the ones considered in [32] involve determinants. The geometrical structure we have

developed is Hurwitz spaces, whereas the geometries related to the integrable structures there

are infinite dimensional Grassmannians. The Matrix theory transformation between the two

types of observables (see expressions in 2.6) therefore seems to be capturing some interesting

geometrical relations between Hurwitz spaces for 3-branch point maps and Grassmannians.

It would be very interesting to articulate that more precisely.

In the picture developed in this paper, the double-scaling limits can be viewed as arising

by tuning the couplings of the different ramification points which are present in the expo-

nential of the potential (2.50). So the string theory on P1(Q̄) contains these different double

scaled limits when the couplings of ramification points are tuned. This has some similarity

to the phase transition in 2dYM which was interpreted in terms of “condensation of branch

points”[75].

Our claim that we have the string theory for the 1-matrix model at generic coupling is

based on treating the partition function as a perturbation of the Gaussian model. In cases

where the perturbation series has a finite radius of convergence, one could argue that beyond

the radius of convergence, the description in terms of string theory on P1 is not valid. This

is reminiscent of the discussion of phase transitions for 2dYM on the sphere [74]. Quite

generally one can view the integral as a formal series rather than a convergent series, so the
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picture of P1(Q̄) holds in this interpretation (for relations between the convergent series and

formal series interpretations see [76]).

String theory over fields other than C were discussed in the past, especially p-adic strings

[77, 78] and they have received renewed interest recently in the context of tachyon conden-

sation [79]. The observations in this paper are suggesting that old-matrix models at generic

couplings admit such an interpretation as string theory over Q̄ with target space P1(Q̄). Is

there a concrete construction of such a string ? Since a lot of algebraic geometry such as

that of Hurwitz spaces and Mg,n (see for example [80]) is done over general algebraically

closed fields, it is tempting to believe that the answer is yes. Is there an explicit construction

of a worldsheet string path integral over Q̄ and the string field theory on P1(Q̄) ?

The absolute Galois group

The Galois group Gal(Q̄/Q) is of fundamental interest in number theory. It has no known

explicit description in terms of generators and relations for example. For mathematicians,

the interest in the faithful action action of Gal(Q̄/Q) on Dessins comes from the fact that

it is a way to learn about the mysterious group itself. The coarser invariants of the Galois

action, such as the conjugacy classes of the permutations in the description in terms of triples

of permutations, do not suffice to distinguish distinct Galois orbits.

We have been lead, by considering Feynman diagrams of multi-matrix models, to study

the Galois action on Dessins by doing what infants would naturally do, namely color the

edges. Coloring the edges captures combinatoric information about the Dessins 5. Some

of this combinatoric information was related in section 5 to known mathematical Galois

invariants which contain information about how Dessins fit into Galois orbits. We also

defined new invariants in terms of intersections and unions over Galois orbits of colored-edge

Dessins. The union-invariants, with sufficiently many colors, are complete, in the sense that

they can certainly contain enough information to characterize orbits. However, they contain

in a sense too much information and computing them would seem to require scanning entire

orbits. The intersection-invariant by contrast is local in that it is a property of the set

of colorings of any single Dessin. An interesting problem is to find out if the intersection

invariant is useful for distinguishing orbits that cannot be distinguished by other methods.

More generally, we can ask whether there exists any complete set of local invariants, which

can be defined in terms of the colorings of a given Dessin, and are complete in that they can

always tell whether a pair of Dessins are in the same orbit or not.

5Incidentally, another variation on this theme is that working with complex matrix models amounts to

coloring the edges as well as giving them an arrow.
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A Glossary and key facts

Absolute Galois group

The Galois group of the closure Q̄ of the rationals Q. It is the subgroup of the automorphism

group of Q̄ which leaves Q fixed.

Automorphisms

Aut(σ0, σ1) is the automorphism group of a set of triples σ0, σ1, (σ0σ1)
−1 (defined in section

(2.1)), AutD the automorphism group of a Dessin D, Autf the automorphism group of

a holomorphic map f (defined in section 2.3). Under the correspondence between triples,

Dessins and holomorphic maps with 3 branch points, these are isomorphic.

Belyi map

A map from β : Σh → P1 with three branch points at 0, 1,∞ from a curve Σh (which is

interpeted as the string worldsheet). The image P1 is the target space of the string theory.

Belyi’s theorem

All Belyi maps are defined over Q̄. The underlying curve can be defined by algebraic

equations involving algebraic number coefficients and the map itself involves only such coef-

ficients.

Bipartite graph

A graph with two types of vertices : Black and white. Black vertices are connected to white.

The white vertices correspond to ramification points above 1. These graphs correspond to

triples of permutations. The first permutation σ0 described by the permutation of labeled

edges around the black vertices as specified by the cyclic order which comes with each

vertex. The second permutation σ1 describes permutations around the white vertices. See

[42, 43, 44].

Branch point

A point on the target space, such that inverse image contains one or more points where the

derivative vanishes. In terms of local coordinates w on the target there is at least one point

in the inverse image of w = 0, with local coordinate z on the worldsheet where the map is

described by w = zi with i > 1. CARE : A branch point is a point on the target (unlike a

ramification point).
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Clean Belyi map

Belyi maps such that all ramification indices over the point 1 are simple (look like w = z2

in local coordinates). These maps are the sorts that arise in the string description when we

consider correlators in perturbed Gaussian matrix models.

Clean Dessins

The white vertices each have two incident edges. Clean Dessins correspond to clean Belyi

maps.

Clean Dessins ↔ Gaussian Matrix model

The clean Dessins come from the Wick contractions in a Gaussian matrix model. Each

trace trXk gives a black vertex with k edges. Each propagator is associated with a white

vertex. See section 3.3.

Colored-Edge-Dessins (CEDs)

They are the Feynman graphs obtained in the multi-Matrix models, e.g a matrix model

(Gaussian or perturbed Gaussian) with different types of matrices X, Y, Z · · · . They are

related to triples of permutations in Sd with equivalences defined by subgroups of Sd (see

definition in section 4).

Complete bi-partite graph

Every white vertex is connected to every black vertex. Special case of interest to us in

section 5.3.2 is Kn,n where there is an equal number of black and white vertices. Many

different Dessins can have the same underlying graph. Physicists are familiar with this fact

from Feynman diagrams in matrix models, where different connections between the same

vertices in a Feynman graph can change the N dependence of the diagram.

Correlators of Matrix operators

Correlators of the matrix operators are defined by insertion of the matrix operator in

a hermitian matrix integral with a Gaussian action or perturbed Gaussian with a general

potential parametrised by couplings g3, g4, · · · . After interating the Matrix we have the

correlator.

Delta function over symmetric group

For σ ∈ Sd we define δSd
(σ) = 1 if σ is the identity permutation, and δSd

(σ) = 0 otherwise.

By linearity this extends to a delta-function on the group algebra. This arises in counting

branched covers (section (2.1) ).

Double Line diagrams, Ribbon graphs, Grothendieck Dessins

Physicists usually use double line diagrams to describe the Feynman graphs of one-Matrix

models. If we collapse the double lines to single lines, there is no loss of information as

long as we keep track of a cyclic order at the vertices, inherited from an oriented surface

supporting the graph. These are ribbon diagrams or Grothendieck Dessins. In this paper, we

mapped the computation of correlators in the Matrix model directly to counting of certain

triples of permutations, which are well-known to be the combinatoric description of Dessins.

From Belyi map to Dessin
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The Dessin coresponding to a Belyi map is obtained as the inverse image of [0, 1] under

the Belyi map. Points over 1 are marked with white vertices and points over 0 are marked

with black vertices.

Galois action on Dessins, or triples of permutations

Dessins or triples of permutations correspond to worldsheets and maps to the sphere P1

defined over Q̄. The Galois group acts on the elements of Q̄ and hence on Dessins or triples.

Galois invariants of action on Dessins or triples

Examples of invariants are the conjugacy classes [σ0], [σ1], [σ∞], the automorphism group

Aut(D). Finer invariants are discussed in section (5).

Galois closure of rationals Q̄

The Galois closure of the rationals contains the solutions of all possible polynomial equations

in a variable x with coefficients which are rational, i.e in Q.

Holomorphic map to P1

A map f : Σh → P1 from a Riemann surface of genus h to the sphere P1. Fixing a small

disc on the target space described by a local coordinate w, the inverse image consists of a

number of discs. Restricting to one disc, the map looks like w = zi. Summing over the

indices i, we get the degree d of the map.

Matrix operators

When computing a matrix integral over a matrix X , with a Gaussian or more general

weight, observables of interest include arbitrary moments built using traces and multi-traces

such as (tr(X))3, trX3. We call these observables matrix operators. Multi-trace operators

with m copies of X are related to conjugacy classes of Sm (see section 2.2).

Multi-Matrix operators (MMOs)

They are traces of matrices involving multiple matrix types, e.g trX2trY 2, trX2Y 2, trXY XY .

Correlators of these multi-matrix multi-traces are the observables of interest in multi-matrix

models.

Notation for conjugacy class of a permutation

If σ is a permutation, [σ] is the conjugacy class of the permutation, which is also the cycle

structure of the permutation. Conjugacy classed of Sd are specified by partitions of d.

Number field

Fields consists of a set of elements together with four operations, addition, subtraction,

multiplication and division by nonzero elements. The rational numbers Q, together with

their usual operations, form a number field.

P1(Q̄)

The projective line over the field Q̄ is defined as the set of one-dimensional subspaces of the

two-dimensional vector space Q̄2.

Ramification point

A point on the world-sheet where the derivative of the map vanishes. In the local description
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in terms of w = zi, we have i ≥ 1. CARE : A ramification point is a point on the worldsheet

(unlike a branch point). This usage of branch point and ramifcation point is conventional in

mathematical literature on branched covers, but not by no means universal.

Ramification profiles

A set of positive integers describing the ramifications of all points in the inverse image of a

branch point. The ramification profile of a branch point for a map of degree d is a partition

of d, which corresponds to conjugacy classes of Sd.

Riemann’s existence theorem

Relates (equivalence classes of) a sequence of permutations σ1, σ2, · · · , σL obeying σ1σ2 · · ·σL =

1 to (equivalence classes of) holomorphic maps to P1 target with L branch points (see section

2.1).

Simple Hurwitz space

This is the space of holomorphic maps from worldsheet to target space, where the ramifi-

cation profiles over all branch points are of the form [21d−2]. This is the focus in a number

of discussion of Hurwitz spaces in the context of topological string theory and algebraic

geometry. It is not the main subject of this paper.

Triples of permutations

A set of three permutations σ0, σ1, σ∞ ∈ Sd, such that σ0σ1σ∞ = 1. Equivalence of triples is

defined in section 2.1. The computation of any observable in Gaussian or perturbed Gaussian

matrix model can be mapped to a summation over equivalence classes of these triples (see

section 2.3).

Wick’s theorem

A combinatoric rule which allows the computation of correlators in a Gaussian matrix model

and its perturbations by a general potential (see 2.15). It involves a sum over products of

Wick contractions.
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