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Abstract: We demonstrate theoretically the trapping and manipulating of a 

gold nanoparticle dimer, using surface plasmon excited by a focused 

linearly-polarized laser beam on a silver film. We use both finite-difference 

time-domain force analysis and Maxwell stress tensor to show that the gold 

nanoparticle dimer can be trapped by a virtual probe pair. A formula is 

derived to represent the plasmonic field, suggesting that the gap between the 

two gold nanoparticles in the dimer can be controlled, for example, by 

tuning the excitation-laser wavelength. We further test our theory by 

successfully trapping nanoparticle dimers formed by nanospheres and 

nanorods. The controllable gap in between the nanoparticles can lead to 

tunable localized surface plasmon resonances, and this may find new 

exciting applications in plasmonic sensing or in lab-on-a-chip devices. 
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1. Introduction  

Gold nanoparticle dimers have attracted much attention in plasmonic sensing, because strong 

localized surface plasmon resonance (LSPR), also known as hot spots, can be excited in the 

nanoscale gap between the two gold nanoparticles [1-4]. This makes them useful for field 

enhancement in sensing and measurement applications, such as surface enhanced Raman 

spectroscopy (SERS) [5,6]. Compared to other nanostructures for hot-spot excitation, 

including nano-antennae [7] and metallic nano-tips [8], gold nanoparticles offer great 

flexibility and can be used for intracellular detections. In SERS, the nanoscale gap or void 

formed by gold nanostructures is important for field enhancement [5]. In general, the field 

enhancement factor is inversely-proportional to the size of the gap [9,10]. There are several 

methods that can achieve desirable nanoparticle dimers for LSPR generation, for example, 

using self-assembly of gold nanoparticles. However, the gap distance is pre-determined and is 



unable to be changed afterwards. In terms of controlling the size of the nano-gap in a dimer, 

nanomaterials such as DNA [11], cucurbit[n]uril [12] and graphene [13] were proposed as 

binding materials. However, these may limit the applications and can become a source of 

noise during measurements. Therefore, in this study, we aim to find an alternative way for a 

controllable nanoparticle gap for LSPR excitation.  

Optical trapping, or optical tweezers, has been applied in manipulating transparent objects 

ranging in size from tens of nanometers to tens of micrometers, by utilizing the gradient 

forces generated from focused laser beams [14]. Optical-tweezer arrays are capable of 

trapping and moving multiple particles [15]. However, it is very challenging to manipulate 

metallic particles using traditional optical trapping methods due to the high scattering from 

them. Although beam shaping method was used to trap metallic Rayleigh particles, i.e. 

particles with a radius less than the incident wavelength [16-18], the tuning of the nanoscale 

gap is very difficult, as is constrained by the diffraction limit of the light.  

Recently, plasmonic trapping was used to manipulate metallic particles ranging in size 

from tens of nanometers to hundreds of micrometers [19-29]. In these studies, the trapping 

force was enhanced to move gold particles, based on the coupling of surface plasmon 

polaritions (SPP) and localized surface plasmon (LSP). In our previous work, focused 

plasmonic trapping of metallic particles was demonstrated by using a virtual probe on a flat 

gold film [28]. We showed that the enhanced LSP field was able to trap metallic particles as a 

result of the rapidly varying electrical field.  

In this paper, we present the first study on plasmonic trapping and tuning of a gold 

nanoparticle dimer. We focus a linearly-polarized beam onto a silver film to excite surface 

plasmons (SPs). The interference between the excited SP waves forms two symmetrical 

virtual probes, which are used to trap two nanoparticles. To interpret the trapping process, 

Richard-Wolf diffraction theory and angular spectrum representation are used to calculate the 

plasmonic field. A relation between the virtual-probe spacing and the excitation wavelength is 

obtained. Subsequently, three-dimensional (3D) finite-difference time-domain (FDTD) 

simulations are carried out, to analyze the electrical field interacting with the gold 

nanoparticles. The forces are calculated using Maxwell stress tensor (MST). Both gold 

nanospheres and nanorods are used in our simulations to test the plamonic trapping system.  

2. Theory 

2.1 Plasmonic field calculation 

SPs are solutions of Maxwell’s equations for metal-dielectric interfaces [30]. The dispersion 

equation for SP, i.e. the relation between the frequency and the wave vector, is given as: 

2

0 2

2 m

sp

m

k
 

  



        (1) 

where 0 is the incident light wavelength, 2 and m are the dielectric constants of the sample 

and the metal respectively. 

Surface plasmon resonance (SPR) is excited when the horizontal component of the 

evanescent wave vector matches that of the SP: 
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where sp  is the resonance angle, and 1  is the dielectric constant of the substrate.  



 

Fig. 1. (a) The proposed plasmonic trapping system. The incident light is linearly-polarized and 

is focused to a 45nm-thick silver film through a 1.49- NA objective lens. Green-colored arrows 
indicate the polarization direction of the incident light (x direction). Red-colored field is the 

calculated surface plasmonic field, excited by the focused linearly-polarized beam. (b) Front 

view of the system in x-z plane, showing the plasmonic virtual-probe pair generated by 
interference. 2, m and 1 indicate different substrates, and are used as subscripts in following 

derivations and equations. The solid green lines indicate the incident light at an angle close to

sp . Z0 represents the distance from the laser focus to the metal film. (c) Calculated 

transmission coefficients as a function of incident angles for s- and p-polarization for different 

electrical field components. 2 1.33  , 
2

1 1.515  ,  the thickness of sliver film 45d nm , the 

dielectric constant of Ag film is -11.76+0.37i at 532nm, and the water layer thickness is 3μm. 
(d) Top-view of the plasmonic field (showing the electrical-field distribution 10nm above the 

silver layer. z0=1μm and 0 1f  [ 0f is the filling factor and the identifier defined in Eq. (10)] 

Our proposed plasmonic trapping system is shown in Fig. 1(a). The plasmonic field is 

excited on the Ag film by a focused linearly-polarized beam, and two virtual probes are 

formed for gold-nanoparticle trapping. Since the SP excitation is polarization selective (p-

polarization), it has the maximum efficiency along the polarization (x direction). A simplified 

system (x-z plane) is shown in Fig. 1(b), where two sets of symmetrical plane waves incident 

at angles sp  and excite a pair of counter-propagating SP waves with wave vectors spk . The 

  phase delay between these two SP waves leads to a destructive interference and two 

enhanced lobes in the standing wave are formed [Fig. 1(b)]. Evidence of such counter-

propagating waves were presented experimentally in [31,32] .  

According to Fresnel functions, for Kretschmann configuration (three-layer structure: 

substrate-Ag-water), the transmission coefficients for rE , E  and zE  transmitting through a 

metal film are given as [30]: 
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where 2

0 1 sinzi ik k      is the longitudinal wave vector, 
1 is the dielectric constant of 

the substrate, d is the thickness of the metal film, s

ijr and p

ijr  are the Fresnel reflection 

coefficients for s-polarization and p-polarization at the i (incident) and j interfaces 

respectively.  

Figure 1(c) shows that the transmission coefficients as a function of the light incident 

angles for different electrical fields at both s- and p-polarizations. The dielectric constant of 

Ag is obtained according to Johnson and Christy [33].  It can be seen that T  is relatively 

small over the entire angle range. This suggests that E  is significantly attenuated by the Ag 

film. Compared to T , both 
rT and 

zT  are relatively large with the values of 7.6 and 8.9 at

72.3sp  . The maximum incident angle can be achieved by 1.49- NA objective lens is 79.6

, which is sufficient for SPP excitation. 

In a strongly focused system as shown in Fig. 1(a), the angular spectrum representation 

shows how the field propagates and how it is mapped onto other planes [34]: 
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Where xk , yk and zk are the transverse and longitudinal components of the wave vector 

respectively, and  ,x yE k k  is the incident electromagnetic field. Considering asymptotic far-

zone approximation of this field, Eq. (4) becomes 
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Invoking the boundary conditions at
0Z Z in Eq. (5), and using Fresnel coefficients, we 

obtain, 
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where 
pt  and 

st  are the transmission coefficients of the p-polarization and s-polarization 

light respectively. We are interested in the longitudinal component in Eq (6),  
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In the following analysis, we follow the theory established by Richards and Wolf and use 

cylindrical coordinates [35,36]:  
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By using the mathematical identity 
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where 
1( )J x is the first order Bessel function of the first kind, we have  
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Assuming the incident light as a linearly-polarized Gaussian beam, we can obtain 
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where 
0

0

maxsin

w
f

f 
  is the filling factor and the identifier [34], and 1n is the refractive index 

of the substrate. The plasmonic electrical field in Eq. (10) becomes 
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where  is the distance from the excitation point,  is the angle with respect to the 

polarization direction and z is the distance to the metal film, 1k and 2k are the propagating 

wave vectors in the substrate and in the sample respectively, subscript z indicates the 

longitudinal component, and 
pt is the transmission coefficient defined in Eq. (3). Given 

z=0.01μm, z0=1μm, the calculated plasmonic field is shown in Fig. 1(d). The fringe period 

shown in Fig. 1(d) is approximately 185nm, which is in close agreement with the half SP 

wavelength.  

2.2 Total electromagnetic force calculation for particles in the plasmonic field 

The electromagnetic force on particles is the Lorentz force:  

                f E J B              (13)            

Based on Maxwell equations, Eq. (12) can be written as 
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Using vector calculus identity
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where I is a unit tensor. 

Using Poynting Vector
1
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     in Eq. (15), we can obtain 
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Where 
2 2

( )
2

I
T EE H H E H         represents the MST matrix. In scalar form, the MST 

matrix is written as 2 21 1
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4 2
ij i j i j ijE E H H E H 


    , where ij is Kronecker delta, and 

n  is a unit vector normal to ds , which is the small area on particle surface. 

The total electromagnetic force (Lorentz force) on the particle, given in Eq. (10), can be 

described as 
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According to the divergence theorem 
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In a static electromagnetic field, 0
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 (average over time), and then the total average force 

is  

s
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According to the electrical field distribution obtained in our FDTD simulation, the MST 

formula can be used to calculate the electromagnetic forces exerted on the gold nanoparticle, 

as both the electrical and magnetic field can be obtained directly from the simulation data. 

3. Results and discussion 

We firstly calculated the average force using Eq. (19). 5nm grids were used in the FDTD 

simulation and the electromagnetic fields in the 3D space can be obtained. The total force was 

the combination of the individual force calculated for each surface point on the nanoparticle. 

Fig. 2 showed the calculated force in x-z plane. Since the field distribution was symmetrical 

with respect to x-z plane, forces in y direction cancelled each other. Therefore, the force 

distribution in Fig. 2 indicated the actual force exerted on the particles. In Fig. 2(a), when a 

single particle was considered and placed on the left virtual probe (0.1μm off the center), the 

force direction was in negative z direction. This suggested that the particle can be stably 

trapped by the virtual probe on the left. In Fig. 2(b), a gold nanosphere was placed slightly off 

the center and to the left of the virtual probe. Apart from the main force in the negative Z 

direction, there was additionally forces exerted on the particle in positive x direction (white 

arrow), which moved the particle to the left virtual probe. Then we examined the situation 

when the second particle was introduced into the system as was shown in Fig. 2(c).  We found 

that these two particles were trapped by pulling forces to the surface due to enhanced 

localized field of the virtual probes. This proved that the virtual probe pair in our model 

formed two trapping wells for gold nanoparticles. This further suggested that the spacing 

between the two particles can be adjusted by changing the lobe locations in the plasmonic 

field. In our simulation, the virtual probe spacing was approximately 210nm and the radius of 

the nanosphere was 100nm. These resulted in a 10nm gap [Fig.2 (c)]. In practice, the particle 

size and shape could be irregular.  Nevertheless, our simulations suggested that the spacing 

tuning of a dimer was possible in plasmonic trapping.  
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Fig. 2. The force analysis for: a single 200nm-diameter gold nanosphere (a) placed on the left 
virtual probe, 0.1μm off the center and (b) placed 0.35μm off the center; (c) Two gold 

nanospheres (diameter 200nm), trapped by the plasmonic field; and (d) two gold nanorods 

(200nm long and 40nm in diameter). Green and yellow arrows show the force around the 
particle in X-Z plane. The white arrows show the total force. The schematic diagrams show the 

locations of particles in the plasmonic field. 

We further investigated the trapping of nanorods in our system, as the nanorod is a 

common type of nanoparticles and can be easily synthesized in solution. Fig. 2(d) showed the 

force distribution around the nanorods. The forces exerted on both nanorods were similar, 

leading to a stable spacing. The trapping force was resulted from the coupling between SPP 

and LSP. Essentially this was the interaction between charges. The free electrons were re-

distributed by polarization as a result of interaction between the optical field and free 

electrons. Our results demonstrated that other nanoparticles at different shapes and sizes can 

be trapped by the plasmonic field in the system described here. 

 In order to explain the plasmonic trapping mechanisms, we calculated the exerted forces 

on a gold nanosphere at different locations in the plasmonic field. Firstly, the particle was 

placed above the left plasmonic lobe and was moved away from the substrate along z 

direction. It can be seen in Fig. 3(a) that the force increased exponentially when the particle 

was moved closer to the substrate. As was proven by Zhan et al. [37], since the excited field 

was a non-diffraction field, the force distributions in x direction remain similar for particles 

with different z coordinates. Fig. 3(b) showed how forces varied in x direction. The 

plasmonic-field force was strongest at around 100nm (the location of the virtual probe) to the 



center and became smaller when moved away from the center. The fluctuation was a result of 

the Bessel distribution of the plasmonic field. In Fig. 3 (c), we calculated the forces in x 

direction. It can be seen that the force in x direction (Fx) was much smaller than the force in z 

direction (Fz), and therefore forces in z direction was dominant in particle trapping. In 

addition, as was shown in Fig. 3(c), when the distance to the center was less than 0.615μm, 

the force became an attracting force, which moved the particle towards the virtual probe.  

Fig. 3 Calculated forces on gold nanoparticles in the plasmonic field when: (a) the gold nanoparticle was placed 

above the trapping lobe and moved towards the Ag-film substrate (z =0). Negative force means the force direction is 
in negative z; (b) the gold nanoparticle was placed on the Ag film and moved away from the center of virtual probe (x 

= 100nm) in x direction; and (c) the calculated force in x direction under the same condition as that in (b), and the 

negative force means the direction away from the center. 

 

Fig. 4 Calculated virtual-probe-pair spacing as a function of the incident light wavelength 

We also studied the possibility of controlling the spacing between the two virtual probes 

for dimer-spacing control. This spacing can be calculated by using Eq. (12). We assumed that 

the two virtual probes were located on x axis and the light was linearly-polarized in x 

direction ( 0  ). Since the transmission efficiency for p-polarization components was 

maximum at sp , we can obtain the relation 1 2( ) ( sin )t spE J k    based on Eq. (12), by 

using sp  as the integration variable. Therefore, the virtual-probe spacing was a function of 

sp , as 0i ik k n can be regarded as a constant. According to Equations (1) and (2), sp  was 

determined by both the incident wavelength and the permittivity of Ag. The permittivity of Ag 

was wavelength-dependent and can be approximated based on Drude-Lorentz model 

described in [38]. Therefore, the virtual-probe was a function of the excitation wavelength and 

the calculated virtual-probe pair spacing as a function of the incident wavelength was given in 

Fig. 4. This suggested that the particle spacing in the dimer can be tuned by changing the 

excitation wavelengths.   



Finally we investigated the LSPR and the field enhancement in our system. We used the 

relation
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 to estimate the filed enhancement (where 

inE  is the incident 

electrical field, and
locE  denotes the local electrical field) [39]. In Fig. 5(a), the SPP was 

excited by a linearly-polarized beam. Two strong LSPRs can be seen clearly, leading to an 

enhancement of ~20 times, which agreed well with the theoretical results based on Fresnel 

transmission calculation [Fig. 1 (c)]. The field distribution in Z direction matched the force 

curve shown in Fig. 3(a). By placing a single gold nanosphere on the Ag film as was shown in 

Fig. 5(b), the SPR became more localized with a greater enhancement near 130 in the 10nm 

gap between the particle and the film, while the other virtual probe reduced in intensity due to 

the strong absorption resulted from the gold nanosphere. Fig. 5(c) showed that when a dimer 

was introduced into our system. The gap of the gold nanosphere dimer was set to 10nm and 

the distance between the nanospheres and the film remained at 10nm. The hot spots were 

localized in the gaps between the particles and the film, and no strong LSPR was observed 

between two nanoparticles. This was because that LSPR is dependent on the direction of 

polarization of the incident light. The plasmonic field in the dimer gap was perpendicular to 

the light polarization direction, which led to a weaker LSPR. In Fig. 5 (c), the field 

enhancements for both particle-film gaps were about 60 (less than half of 130). Strong LSPR 

in particle-film gaps and weak LSPR between particles was a result of the plasmonic field 

distribution. Further comparison was made in Fig. 5(d) to show the potential applications of 

trapped gold nanoparticle dimer in SERS. An excitation beam linearly-polarized in x direction 

was used to achieve a field enhancement factor near 1300.  

 

Fig. 5. The calculated field enhancement in x-z plane, when: (a) no gold particles, (b) one gold 

nanosphere placed on the Ag film, (c) a gold nanosphere dimer placed on the gold film. (d) the 
nanosphere dimer was illuminated by a focused linearly polarized beam, the polarization 

direction in horizontal. Dashed circles are the gold nanospheres (Diameter: 200nm). The gap 

between the Ag film and the nanoparticle is 10nm. The spacing between two nanospheres in 
the dimer is 10nm. The dashed lines are the top and bottom of the Ag film (Thickness: 45nm). 

4. Conclusion 

In conclusion, we presented a plasmonic trapping system for manipulating and tuning the 

metallic nanoparticle dimers. We found that two virtual probes in the plasmonic field with 

strong field concentration can be formed by focused linearly-polarized beam excitation. These 

virtual probes were capable of trapping multiple metallic particles. Our simulation showed 

that two free-standing nanoparticles, such as nanospheres or nanorods, can be trapped 

simultaneously in this proposed plasmonic trapping system. We also proved theoretically that 



the gap spacing between the nanoparticles in the dimer can be tuned by changing the 

excitation wavelength. The work presented in this paper is believed to be the first study on 

multiple-nanoparticle trapping without using structured light. We consider this as a step 

towards the development of new plasmonic trapping technologies for multiple metallic 

particles, where no nanofabrication is involved. Our technique can be combined with other 

technologies or trapping methods and may achieve a high resolution beyond the diffraction 

limit for nanoscale manipulation. The proposed method may serve as a new way of realizing 

strong LSPR hot spots for SERS detections with single molecule sensitivity.  
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