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ABSTRACT: When developing a causal probabilistic model, i.e. a Bayesian network (BN), it is common to 

incorporate expert knowledge of factors that are important for decision analysis but where historical data are 

unavailable or difficult to obtain. This paper focuses on the problem whereby the distribution of some 

continuous variable in a BN is known from data, but where we wish to explicitly model the impact of some 

additional expert variable (for which there is expert judgment but no data). Because the statistical outcomes 

are already influenced by the causes an expert might identify as variables missing from the dataset, the 

incentive here is to add the expert factor to the model in such a way that the distribution of the data variable 

is preserved when the expert factor remains unobserved. We provide a method for eliciting expert judgment 

that ensures the expected values of a data variable are preserved under all the known conditions. We show 

that it is generally neither possible, nor realistic, to preserve the variance of the data variable, but we provide 

a method towards determining the accuracy of expertise in terms of the extent to which the variability of the 

revised empirical distribution is minimised. We also describe how to incorporate the assessment of extremely 

rare or previously unobserved events. 

Keywords: Bayesian networks, belief networks, causal inference, expert knowledge, knowledge elicitation, 

probabilistic graphical models. 

 

1 INTRODUCTION AND MOTIVATION 

 

Causal probabilistic networks, also known as Bayesian 

networks (BNs), are a well established graphical 

formalism for encoding conditional probabilistic 

relationships among uncertain variables. The nodes of a 

BN represent variables and the arcs represent causal or 

influential relationships between them. BNs are based on 

sound foundations of causality and probability theory; 

namely Bayesian probability (Pearl, 2009). 

It has been argued that developing an effective 

BN requires a combination of expert knowledge and data 

(Fenton & Neil, 2012). Yet, rather than combining both 

sources of information, in practice many BN models have 

been ‘learnt’ purely from data, while others have been 

built solely on expert knowledge. Apart from lack of 

data, one possible explanation for this phenomenon is 

that in order to be able to combine knowledge with data 

researchers typically require a strong background in both 

data mining and expert systems, as well as to have access 

to, and time for, the actual domain expert elicitation. 

Irrespective of the method used, building a BN 

involves the following two main steps:  

 

1. Determining the structure of the network: Many 

of the real-world application models that have 

been constructed solely based on expert 

elicitation are in areas where humans have a 

good understanding of the underlying causal 

factors. These include medicine, project 

management, sports, forensics, marketing and 

investment decision making (Heckerman et al., 

1992a; 1992b; Andreassen et al., 1999; Lucas et al., 

2000; van der Gaag, 2002; Fenton & Neil, 2012; 

Constantinou et al., 2012; 2015b; Yet et al., 2013; 

2015; Kendrick, 2015). 

In other applications such as 

bioinformatics, image processing and natural 

language processing, the task of determining the 

causal structure is generally too complex for 

humans. With the advent of big-data, much of 

the current research on BN development 

assumes that sufficient data are available to learn 

the underlying BN structure (Spirtes & Glymour, 

1991; Verma & Pearl, 1991; Spirtes et al, 1993; 

Friedman et al., 1997; 2000; Jaakkola et al., 2010; 

Nassif et al., 2012; 2013; Petitjean et al., 2013), 

hence assuming the expert’s input is minimal or 

even redundant. Recent relevant research does 

relax this impression and allows for some expert 

input to be incorporated in the form of 

constraints (de Campos & Ji, 2011; Zhou et al., 

2014a). It is, however, increasingly widely 

understood that incorporating expert knowledge 

can result in significant model improvements 

(Spiegelhalter et al., 2004; Rebonato, 2010; Pearl, 

2009; Fenton & Neil, 2012; Constantinou et al., 

2012; 2013; Zhou et al., 2014b), and this becomes 

even more obvious when dealing with 

interventions and counterfactuals (Constantinou 

et al., 2015a). 

 

2. Determining the conditional probabilities 

(CPTs) for each node (also referred to as the 

parameters of the model):  If the structure of the 

BN is learnt purely from data, then it is usual 
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also for the parameter learning to be performed 

during that process. On the other hand, if expert 

knowledge is incorporated into a BN then 

parameter learning is, most typically, performed 

(or finalised) after the network structure has been 

determined. 

The parameters can be learnt from data 

and/or expert judgments. If the data has missing 

values, then parameter learning is usually 

performed by the use of the Expectation 

Maximisation algorithm (Lauritzen, 1995), or 

other variations of this algorithm (Jamshidian & 

Jennrich, 1997; Jordan, 1999; Matsuyama, 2003; 

Hunter & Lange, 2004; Jiangtao et al., 2012), 

which represent a likelihood-based iterative 

method for approximating the parameters of a 

BN. Other, much less popular methods, include 

restricting the parameter learning process only to 

cases with complete data, or using imputation-

based approaches to fill the missing data points 

with the most probable values (Enders, 2006).  

 

When developing BNs for practical applications, 

it is common to incorporate expert knowledge of factors 

that are important for decision analysis but where 

historical data is unavailable or difficult to obtain.  That 

is the context for this paper. Previous related research in 

expert elicitation extensively covers:  

 

1. Accuracy in eliciting experts’ beliefs: It is often 

unrealistic to expect precise probability values to 

be provided by the expert. It is shown that 

participants with mathematical (or relevant) 

background tend to provide more accurate 

quantitative descriptions of their beliefs (Murphy 

& Winkler, 1977; Wallsten & Budescu, 1983). 

However, only few experts have sufficient 

mathematical experience and as a result, various 

probability elicitation methods have been 

proposed. These include probability scales with 

verbal and/or numerical anchors (Kuipers et al., 

1988; van der Gaag et al., 1999; van der Gaag et 

al., 2002; Renooij, 2001), iterative processes which 

combine whatever the expert is willing to state 

(Druzdzel & van der Gaag, 1995), use of 

frequencies such as "1 in 10" in situations where 

events are believed to be based on extreme 

probabilities (Gigerenzer & Hoffrage, 1995), 

visual aids (Korb & Nicholson, 2011), as well as 

estimating the probabilities based on the lower 

and upper extremes of the experts' belief 

(Hughes, 1991). 

 

2. Biases in experts’ beliefs: It has been 

demonstrated that limited knowledge of 

probability and statistics threatens the validity 

and reliability of expert judgments, leading to a 

number of biases (Johnson et al., 2010a). Various 

techniques for dealing with potential biases have 

been proposed. According to (Johnson et al., 

2010b), these include provision of an example 

(Bergus et al., 1995; Evans et al., 1985; Evans et 

al., 2002; White et al., 2005), training exercises 

(Van der Fels-Klerx, 2002), use of clear 

instructions (Li & Krantz, 2005) or a standardized 

script (Chaloner, 1996), avoidance of scenarios or 

summaries of data, provision of feedback, 

verification, and opportunity for revision 

(O’Hagan, 1998; Normand, 2002), and a 

statement of the baseline rate or outcome in 

untreated patients (Evans et al., 2002). Further 

general guidelines in terms of how to reliably 

elicit expert judgments and minimise potential 

biases are provided in (Druzdzel & van der 

Gaag, 1995; O’Hagan et al., 2006; Johnson et al., 

2010b). 

 

While the above previous relevant research deals 

extensively with the process by which expert judgments 

are elicited, it does so under the assumption that any 

resulting CPTs will solely be based on expert knowledge 

as elicited. This paper tackles a problem which does not 

seem to have been addressed previously. Specifically, we 

are interested in preserving some aspects of a pure data-

driven model when incorporating expert knowledge.  

 For example, we may have extensive historical 

data about Return on Investment (ROI) (we will call this 

the dependent data node) given different types of 

investment (such as properties, bonds, shares), as 

captured in the very simple BN model shown in Figure 1.  

 

 
 

Figure 1. Purely data-driven BN model M of the investment problem. 
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 If the data-driven ROI distribution given 

Investment is based on rich and accurate data that is fully 

representative of the context and is without bias, then we 

can be confident that the resulting marginal ROI 

distribution represents the true distribution. However, 

this distribution actually incorporates multiple 

dependent factors other than Investment type. If there is 

available expert knowledge about such factors such as, 

for example, Economic growth, then it is desirable to be 

able to incorporate such factors into an extended version 

of the BN as show in Figure 2. 

 

 
 

Figure 2. Extending model M from Figure 1 to model M' to include 

expert knowledge about economic growth. 

 

A logical and reasonable requirement is to 

preserve in M’ as much as possible of the marginal 

distribution for the dependent data node (ROI in the 

example) when the expert variables (Economic growth in 

the example) remain unobserved.  The paper describes a 

method to do this. In fact, for reasons explained in 

Section 2, it turns out that while it is possible to preserve 

the expected values of the marginal distribution under 

each of the known dependent scenarios, it is infeasible 

and unrealistic to preserve the variance. In Section 3, 

which describes the generic problem, we provide a 

method showing how to preserve the expectations. 

Section 4 demonstrates worked examples of the method. 

Section 5 addresses the issues of variance of the data 

node and provides a method for validating the expert 

judgments in terms of 'realism'. Section 6 demonstrates 

the applicability of the method to problems that, even 

though they are based on rich data, may still fail to 

capture extremely rare or previously unobserved events. 

Section 7 discusses limitations and extensions of the 

method, Section 8 discusses the scalability and 

practicality of the method for real-world applications, 

and we provide our concluding remarks in Section 9. 

 

  

2 WHY IT IS REASONABLE TO PRESERVE THE 

EXPECTED VALUE BUT NOT THE VARIANCE  

  

The statistical expectations of the dependent data 

node are already influenced by the causes the expert 

might identify as missing variables and it makes sense to 

preserve these expected values. However, the same is not 

true of the shape and variance of the distribution  To see 

why, Figure 3 presents two BN models, model A (left) 

and model B (right). Suppose that in this case, the 

variable b incorporated into model B is also based on 

data, rather than on expert judgments. The data taken 

into consideration for learning the models is presented in 

Table 1. Note that, 

 

1. The expected value of distribution a is 

preserved in model B; 

 

2. The shape of distribution a is subject to 

amendments in model B, even though both 

models consider identical data with regards to 

the outputs of a; 

 

3. The variance of distribution a increases in 

model B. 

 

Figure A.1 and Table A.1 in Appendix A replicate this 

example with different values to simply demonstrate that 

the variance of distribution a in model B can also 

decrease.  

 

 

 
 

Figure 3. The outputs of two data-driven BNs (Models A and B left and 

right respectively) based on the data presented in Table 1. 

 

 

 

 

 

 

 
 



Accepted for publication in Expert Systems with Applications. Draft v18.2, February 29th, 2016 

5 

 

Table 1. The data considered by the BNs presented in Figure 3. 

 

 Model A Model B 

 a a|b1 a|b2 

 34 34 12 

 5 5 13 

 56 56 10 

 34 34 9 

 12 12 8 

 32 32 15 

 12 - - 

 13 - - 

 10 - - 

 9 - - 

 8 - - 

 15 - - 

Mean 20 28.83 11.17 

Variance 238.55 330.56 6.97 

 

 

From this we conclude that, 

 

1. The expected value of a data-driven 

distribution in model A is already influenced 

by the causes that might be missing and hence, 

the expected value is preserved between 

models A and B; 

 

2. The variance and the shape of a data-driven 

distribution in model A is not fully influenced 

by the causes that might be missing and hence, 

both the variance and the shape of the 

distribution are subject to amendments 

between models A and B (as stated earlier, this 

is simply because the number of mixture 

distributions taken into consideration by 

variable a changes between models). 

 

 As a result, we focus only on preserving the 

expected value of a data-driven distribution, when 

incorporating expert judgments into the model. This 

leads to the following generic challenge:  

 

How do we introduce expert variables in a data-driven 

Bayesian network to improve decision analysis, but 

which will not affect the data-driven expectations of 

the model when these expert variables remain 

unobserved.  

 

Formally this is equivalent to saying that the marginal 

expectations of the outcome variable should be the same 

before and after the introduction of the expert variable(s).  

 With regards to the variance of the data-driven 

distribution, while there is no incentive to fully preserve 

it, we are still interested in preserving some aspects of it. 

More specifically, we do not want the revised 

distribution in model M' (i.e. which incorporates expert 

judgments) to have significant discrepancies, in terms of 

variability, from the respective distribution of model M. 

  

 

3 GENERIC DESCRIPTION OF THE PROBLEM 

AND THE METHOD 

 

3.1. Description of the problem 

 

The problem we are interested in solving is the general 

case where a discrete expert variable is inserted into a BN 

model as a parent of a discrete/continuous data variable. 

Note that while the description of the method provided 

below is based on the simplest form of a BN model, and 

based on the assumption that the data variable is 

continuous, the method is applicable to any BN structure. 

However, when the data variable is discrete some 

limitations apply, and which we discuss in section 7.  

Suppose we have a BN model fragment M as 

shown in Figure 4a, comprising two variables for which 

we have extensive data. This represents the simplest 

form of a BN mode. We assume that D is a discrete 

variable with states 𝑑1, … , 𝑑𝑛, and R is a continuous 

variable. The model M represents empirically observed 

data about the influence of D on R.   

In the example in Section 1, the states of D are the 

investment options {bonds, shares, properties} and R is 

the ROI, expressed as an observed distribution of values 

for each different investment option. 

 

 

 
 

Figure 4. Graphical representation illustrating the concept of the 

method, where Model M, with data variables D and R, is extended to 

alternative Model M' which incorporates expert variable X (the dashed 

arc is optional, indicating that expectations are preserved even if X is 

dependent on another data variable).  
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We assume that, from relevant data: 

 

a) 𝑃(𝐷𝑖) = 𝑑𝑖 is known1 for each 𝑖 = 1, … , 𝑛 

 

b) 𝑓(𝑅|𝐷𝑖) is a known distribution for each 𝑖 =
1, … , 𝑛 

 

Hence, these are the parameters of the model M. Let the 

expected value 𝐸(𝑓(𝑅|𝐷𝑖)) = 𝑟𝑖 for each 𝑖 = 1, … , 𝑛. For 

simplicity, we write this as 𝐸(𝑅|𝐷𝑖) = 𝑟𝑖. Hence, in model 

M the expected value of R is: 

 

𝐸𝑀(𝑅) = ∑ 𝐸(𝑅|𝐷𝑖)𝑃(𝐷𝑖) =

𝑛

𝑖=1

 

 

∑ 𝑟𝑖𝑑𝑖

𝑛

𝑖=1

                                (𝐸𝑞. 1)     

 

 Now consider the revised BN model M', as 

shown in Figure 4b. Here X is an expert supplied variable 

with m states 𝑋1, … , 𝑋𝑚. We assume the expert provides 

the prior probabilities for X, i.e. 𝑃(𝑋𝑗|𝐷𝑖) = 𝑝𝑖𝑗  for each 

𝑖 = 1, … , 𝑛 and for each 𝑗 = 1, … , 𝑚.  When D and X are 

not linked, then instead of 𝑛 × 𝑚 priors we only need m 

priors 𝑃(𝑋𝑗) = 𝑝𝑗 for each 𝑗 = 1, … , 𝑚. 

 The challenge for the expert is to complete the 

conditional probability table (CPT) for R in M' in such a 

way as to preserve all of the conditional expected values 

of R given D in the original model M, and also preserve 

the marginal expectation. Specifically, we require:  

 
𝐸𝑀′(𝑅|𝐷𝑖) = 𝐸𝑀(𝑅|𝐷𝑖) = 𝑟𝑖  for each 𝑖 = 1, … , 𝑛    (𝐸𝑞. 2)     

 

 Note that, if we can establish Equation 2, then it 

follows from Equation 1 that: 

 
𝐸𝑀′(𝑅) = 𝐸𝑀(𝑅) 

 

Specifically, Equation 2 is also sufficient to prove that the 

unconditional expected value2 of R is preserved in M'. 

  

3.2. The method 

 

The general form of the CPT for R in M' can be written as 

a function  𝑓𝑖𝑗 , whose expected value is 𝑟𝑖𝑗  for each 𝑖 =

1, … , 𝑛 and 𝑗 = 1, … , 𝑚, as shown in Table 2. Specifically,  

 

                                                           
1 Is known in the sense of being based on reliable relevant data. 
2 The expected value of R when D is unobserved. 

𝐸(𝑓𝑖𝑗  ) = 𝐸𝑀′(𝑅|𝐷𝑖 , 𝑋𝑗) = 𝑟𝑖𝑗  for each 𝑖 = 1, … , 𝑛 and 𝑗

= 1, … , 𝑚 

 

Since each 𝑋𝑗 is conditioned on 𝐷𝑖  we can use 

marginalisation to compute: 

 

𝐸𝑀′(𝑅|𝐷𝑖) = ∑ 𝐸(𝑅|𝐷𝑖 , 𝑋𝑗)𝑃(𝑋𝑗|𝐷𝑖)

𝑚

𝑗=1

= 

 

∑ 𝑟𝑖𝑗𝑝𝑖𝑗

𝑚

𝑗=1

                                 (𝐸𝑞. 3)     

 

Since by Equation 2 we require: 

 
𝐸𝑀′(𝑅|𝐷𝑖) = 𝐸𝑀(𝑅|𝐷𝑖) = 𝑟𝑖  for each 𝑖 = 1, … , 𝑛 

 

it, therefore, follows from Equation 3 that we require: 

 

∑ 𝑟𝑖𝑗𝑝𝑖𝑗

𝑚

𝑗=1

= 𝑟𝑖  for each 𝑖 = 1, … , 𝑛              (𝐸𝑞. 4)     

 Equation 4 thus expresses the necessary 

constraints on the expert elicited values for 𝑟𝑖𝑗 .  

We can use Equation 4 as a consistency check on 

the expert elicited values if the user wishes to provide 

them all. However, in practice we would expect the user 

to provide a subset of the values and so use Equation 4 to 

solve for the missing values.  There is a unique solution 

in the case when the expert is able to provide 𝑚 − 1 of 

the required 𝑚 values 

 
𝑟11, 𝑟12, … , 𝑟1𝑚−1, 𝑟1𝑚 

 

To prove this, without loss of generality suppose that 𝑟𝑖𝑚 

is the ‘missing value’. Then we can compute the value of 

𝑟𝑖𝑚 necessary to satisfy Equation 4. We know, by 

Equation 4, that: 

 

𝑟𝑖 = ∑ 𝑟𝑖𝑗𝑝𝑖𝑗

𝑚

𝑗=1

 

 

so: 

 

𝑟𝑖 = ( ∑ 𝑟𝑖𝑗𝑝𝑖𝑗

𝑚−1

𝑗=1

) + 𝑟𝑖𝑚𝑝𝑖𝑚 

 

thus: 
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𝑟𝑖𝑚 =
𝑟𝑖 − (∑ 𝑟𝑖𝑗𝑝𝑖𝑗

𝑚−1

𝑗=1
)

𝑝𝑖𝑚

                     (𝐸𝑞. 5)      

 

For each 𝑖 = 1, … , 𝑛 Equation 5 thus provides the formula 

for computing the missing CPT values necessary to 

preserve in the model M’ all of the conditional expected 

values of R given D in the original model M. 

 

 
Table 2. The CPT for R in M' 

 
D 𝐷1 … 𝐷𝑖 … … 𝐷𝑛 

X 𝑋1 𝑋2 … 𝑋𝑚−1 𝑋𝑚 … 𝑋1 𝑋2 … 𝑋𝑚−1 𝑋𝑚 … 𝑋1 𝑋2 … 𝑋𝑚−1 𝑋𝑚 

R 𝑓11 𝑓12 … 𝑓1𝑚−1 𝑓1𝑚  𝑓𝑖1 𝑓𝑖2 … 𝑓𝑖𝑚−1 𝑓𝑖𝑚  𝑓𝑛1 𝑓𝑛2 … 𝑓𝑛𝑚−1 𝑓𝑛𝑚 

 

 

 

4 WORKED EXAMPLE OF THE METHOD 

 

Again using the ROI example introduced in Section 1, 

Figure 5, shows the BN model M and with the data-

driven priors for the investment type (D) and the 

conditional distribution for ROI (R). We assume an 

investment firm provides this information to Peter – an 

expert investor. So R is represented by a mixture set of 

three Gaussian distributions  𝑁(𝜇𝑖 , 𝜎𝑖
2) for i=1,..,3.  

 From this model we know, for example, that 

historically properties have been the most popular 

investment (50%) but the best investment option, in 

terms of maximising ROI, would be Shares. Running the 

BN model3 in Figure 5 based on these priors indicates 

that the average investor has received a ROI (R) of 6.6%, 

on an annual basis. 

 

 
 

Figure 5. The data-driven BN model M for the example with 

conditional and marginal probabilities superimposed. 

                                                           
3 The model is run here in AgenaRisk which handles continuous nodes 

efficiently and accurately using the dynamic discretisation algorithm 

(Neil et al., 2007). The fully functional free version of AgenaRisk can be 

downloaded from agenarisk.com 

4.1. Case 1: Incorporating expert node X that is 

independent from node D 

 

Peter would like to incorporate an expert variable into 

the model - Economic growth, which is only available in 

the database to those who pay a fee. Instead of ignoring 

this important factor, however, Peter decides to use his 

own knowledge (as an experienced investor) to produce 

reasonable estimates with regards to the impact of 

economic growth on these potential investments. He 

remembers that over the past 10 years economic growth 

has been negative twice, and positive eight times. He, 

therefore, uses this information as the prior for node 

Economic growth (X) as shown in Figure 6. 

 

 

 
 

Figure 6. Extending model M of Figure 5 into model M’ presented in 

this figure, by incorporating expert knowledge for node Economic 

growth. 

 

 Peter knows from experience that when 

economic growth is negative, ROI is, for each of the 

respective investment options; properties, bonds and 

shares, approximately 1%, 1.5%, and -15%. He, therefore, 

uses those suggestions to complete part of the CPT in 

Table 3, assuming Normality and as defined by data given 

D. Peter need not provide any suggestions with regards 

to how ROI is expected to change under a positive 

economic growth, since this is determined by the method 

of Section 2 and, in particular, Equation 5. 
 

 

Table 3. The CPT for node ROI based on the model presented in Figure 

6 and Peter’s expert judgments under negative economic growth. 

 

D Properties Bonds Shares 

X Neg. Pos. Neg. Pos. Neg. Pos. 

R N(1, 50) ? N(1.5, 1) ? N(-15, 500) ? 
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Specifically, Equation 5 determines the missing 

parameters of Table 3 in such a way as to ensure the 

model preserves the data-driven expectations when 

Economic growth remains unobserved. Namely, not only 

the prior expectations of ROI (i.e. 6.6%), but also the 

posterior expectations of ROI under each investment 

option (i.e. 6%, 3% and 10%).  

Using the notation of Section 2, in this example, 

the probability values of X are simplified from 𝑝𝑖𝑗  to pi 

since X is independent from D. Accordingly, and based 

on Equation 5: 

 

𝑟12 =
𝑟1 − (∑ 𝑟1𝑗𝑝𝑗

1

𝑗=1
)

𝑝2

=
6 − (1 × 0.2)

0.8
= 7.25 

 

𝑟22 =
𝑟2 − (∑ 𝑟2𝑗𝑝𝑗

1

𝑗=1
)

𝑝2

=
3 − (1.5 × 0.2)

0.8
= 3.375 

 

𝑟32 =
𝑟3 − (∑ 𝑟3𝑗𝑝𝑗

1

𝑗=1
)

𝑝2

=
10 − (−15 × 0.2)

0.8
= 16.25 

 

We have now determined the impact on ROI under 

positive economic growth, given Peter’s judgments with 

respect to negative economic growth. Table 4 presents 

the completed CPT for node ROI after the method is 

applied to learn the missing values indicated in Table 3. 

As shown in Figure 6, the revised CPT of node ROI 

incorporates Peter's judgments and successfully 

preserves the expected value of the distribution (i.e. 

6.6%).  
 

 

Table 4. The CPT for node ROI based on the model presented in Figure 

6. 

 

D Properties Bonds Shares 

X Neg. Pos. Neg. Pos. Neg. Pos. 

R N(1,50) N(7.25,50) N(1.5,1) N(3.375,1) N(-15,500) N(16.25,500) 

 

 

4.2. Case 2: The expert variable X is dependent on D 

 

Now suppose that Peter were to incorporate the 

expert variable Tax allowances claimed, conditioned on the 

type of investment, for ROI assessment. Any type of 

investment may have some tax deductible allowances 

associated with them. For instance, the tax allowances 

associated with property investments are nowadays 

lower and more complex than those associated with 

certain types of share investment. Further, a person who 

invests in shares may be more likely to claim any full tax 

allowance than a person who invests in properties. Given 

that it is the investor's responsibility to apply for the 

appropriate tax relief, there will be variations in the 

amount claimed even for the same type of investment 

due to people having different incentives about whether 

to bother applying for tax allowances.  

Peter, therefore, introduces an arc from Investment 

to Tax allowances claimed4. As a result, in this example, X 

becomes dependent on D as shown in Figure 7. Once 

again, Peter makes use of his knowledge to inform the 

model with regards to how ROI is expected to be 

amended under all of the expertly defined states of Tax 

allowances claimed, except one, as shown in Table 5. 

 

 
 

Figure 7. Modifying the investment example such that X becomes 

dependent on D. 

 

 
Table 5. The CPT for node ROI based on the model presented in Figure 

7 and Peter’s expert judgments under None (N) and Some (S) tax 

allowance claimed. 

 

D Properties Bonds Shares 

X N S A N S A N S A 

R N(4,50) N(5,50) ? N(2,1) N(2.5,1) ? N(5,500) N(7,500) ? 

 

 

In order to preserve the data-driven expectations 

of M in M’, we must now account for the posterior 

marginal probabilities of X given D. The same method 

(i.e. Equation 5) can be used to learn the missing values 

of Table 5. Thus,  

 

𝑟13 =
𝑟1 − (∑ 𝑟1𝑗𝑝1𝑗

2

𝑗=1
)

𝑝13

=
6 − (4 × 0.10 + 5 × 0.6)

0.3
= 8.6666 

 

                                                           
4 It is crucial to note that the expert node is Tax allowances claimed and 

not Tax allowances. The former is something that the investor decides on 

and is influenced by the investment type (as well as other factors but 

which are not included for simplicity). On the other hand, Tax 

allowances influence Investment. If, for example, there are much more 

generous tax allowances for property investments then people are 

much more likely to invest in properties. 
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𝑟23 =
𝑟2 − (∑ 𝑟2𝑗𝑝2𝑗

2

𝑗=1
)

𝑝23

=
3 − (2 × 0.3 + 2.5 × 0.4)

0.3
= 4.6666 

 

 

𝑟33 =
𝑟3 − (∑ 𝑟3𝑗𝑝3𝑗

2

𝑗=1
)

𝑝33

=
10 − (5 × 0.2 + 7 × 0.2)

0.6
= 12.6666 

 

 

Table 6 presents the revised CPT for node ROI, based on 

the modified model of Figure 7, and after using the 

method to learn the missing values of Table 5. Figure 7 

confirms that the revised CPT of node ROI, which 

incorporates Peter's latest judgments, successfully 

preserves the expected value of the distribution (i.e. 

6.6%). 

 

 
Table 6. The CPT for node ROI based on the model presented in Figure 

7. 
 

D Properties Bonds Shares 

X N S A N S A N S A 

R N(4,50) N(5,50) N(8.66,50) N(2,1) N(2.5,1) N(4.66,1) N(5,500) N(7,500) N(12.66,500) 

 

 

5 ASSESSING EXPERT JUDGMENTS FOR 

REALISM 
 

While the method is capable of preserving the data-

driven expectations independent from expert judgments 

(i.e. a preservation will be achieved however the expert 

judgments are proposed), we still need to ensure 

judgments are 'realistic'. In other words we require a 

consistency check between the shape and variance of a 

data-driven distribution in model M, and that of its 

revised version in model M'. 

Consider the earlier model presented in Figure 6. 

The summary statistics of node ROI indicate that at the 

5th percentile the value of the distribution is -15.3, and at 

the 95th percentile the respective value is 34.7. With this 

level of variability in mind, we could argue that the 

expert judgments provided in Table 4 under Negative 

economic growth, as well as the values learnt under 

Positive economic growth, are realistic. To assess whether 

this is the case, we plot the distributions of R generated 

under each state of X (as defined in Table 4) and examine 

their distance from the prior data mixture distribution, as 

shown in Figure 8. Figure 9 demonstrates an alternative 

scenario whereby the distributions of R generated under 

each state of X are based on expert judgments that could 

be described as being unrealistic (see the superimposed 

CPT in Figure 9).  
 

 
 

Figure 8. The distributions under Negative and Positive economic 

growth, superimposed against the prior data distribution, based on the 

Model of Figure 6. 

 
 

 
 

Figure 9. The distributions under Negative and Positive economic 

growth, superimposed against the prior distribution, based on the 

Model of Figure 6, and by taking into consideration the new 

hypothetical CPT (which also preserves data expectations) presented 

below the figure. 

 

Comparing Figure 8 to Figure 9, it is apparent 

that one of the expert weighted distributions of Figure 9 

falls well outside of the variability of the prior data 

mixture distribution. More specifically, the expert 

judgment provided for state Negative of variable X seems 

to have been exaggerated towards higher losses. 

Measures such as the KL-divergence (Kullback & Leibler, 

1951; Kullback, 1959) can be used for measuring the 

distance between distributions. For two discrete 

probability distributions P and Q, the KL divergence 

expectation is defined as: 

 

𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

 

and which represents the expectation of the logarithmic 

difference between probabilities P and Q. Note that the 

KL divergence is non-symmetric and hence, the 

divergence expectation as defined above is based on 

probabilities P; i.e. the divergence from P to Q is not 

equivalent to the divergence of Q to P. For continuous 

distributions P and Q the divergence score is (Bishop, 

2006): 

 

𝐾𝐿(𝑃||𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)

∞

−∞

 d𝑥 
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where p and q are the densities of P and Q.  

 For example, from Figure 8, the KL divergence 

expectations between the Prior distribution and the 

Negative and Positive distributions are 

𝐾𝐿(𝑃𝑟𝑖𝑜𝑟||𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1.3 and 𝐾𝐿(𝑃𝑟𝑖𝑜𝑟||𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =

9.22 respectively, and under the assumption that they fit 

a Normal distribution. On the other hand, 

𝐾𝐿(𝑃𝑟𝑖𝑜𝑟||𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 23.58 from Figure 9.  

The divergence expectation is highly sensitive to 

variance and distributional assumptions and hence, the 

‘acceptable threshold’ for divergence between 

distributions should be agreed in advance and may well 

be dependent on the type of information the expert 

variable represents. In the case whereby the distance 

between the distributions is assessed as being unrealistic, 

then the method has also helped in identifying expert 

judgments that are either erroneous or biased. It is 

advisable that, under such circumstances, the expert 

judgments are revised in terms of impact. If the initial 

judgments are erroneous, then the same expert should be 

able to reassess them and provide improved estimates. If 

subsequent estimates do not improve, it might be the 

case that the judgments are based on biased beliefs, and it 

would be reasonable to seek judgments from additional 

expert/s. Eventually, all of the expert weighted 

distributions should have an acceptable distance from the 

overall prior data distribution. In a recent study where 

we have applied the method (see Section 8), we 

considered divergence threshold 10 as the point by which 

we seek to reassess the expert judgments incorporated, 

and which influence the shape of the particular 

distribution. 

Note that what has been discussed in this 

subsection is trivial for states of X which are not captured 

by data, either because they represent extremely rare 

and/or previously unobserved events. This scenario is 

discussed in Section 6. 

 

 

6 APPLICATION TO PROBLEMS WITH RARE 

AND/OR PREVIOUSLY UNOBSERVED EVENTS 

 
In this section we discuss an entirely different concept in 

terms of how the method can be used. This involves the 

common problem whereby the application domain 

incorporates events that are extremely rare and/or 

previously unseen. Under such a scenario, even ‘big data’ 

may be insufficient to approximate the impact of these 

kinds of events, and which are typically overlooked. We 

demonstrate how the method can be exploited to provide 

improved assessments of uncertainty under 

circumstances of such events not captured by data. 

 Suppose the expert node X now includes states 

𝑢1, … , 𝑢𝑘, (where 𝑘 ≥ 1) that have never (or only 

extremely rarely) been observed. In this case the problem 

is that, instead of having to preserve the expected value 

such that:  

 
𝐸𝑀(𝑅|𝐷) = 𝐸𝑀′(𝑅|𝐷, 𝑋) 

 

we only have to ensure that: 

 
𝐸𝑀(𝑅|𝐷) = 𝐸𝑀′(𝑅|𝐷, 𝑋 not equal to any of 𝑢1, … , 𝑢𝑘) 

 

So Equation 5 needs only to preserve the data-driven 

network in model M' under the states of X for which the 

expert assumes that they are indirectly captured by data 

and hence, ignore any 𝑢1, … , 𝑢𝑘. This implies that the 

states 𝑢1, … , 𝑢𝑘 of X, which are assumed not to have been 

captured by data, will now have added impact on R.  

 Suppose, for example, that Peter lives in a 

country within the Eurozone and fears that a possible 

Grexit5 will have a significant impact on his investment. 

He would like to incorporate this possibility into his 

calculations. However, he acknowledges that Grexit 

represents a previously unobserved event and hence, 

there is no relevant historical data available for him to 

consider for analysis in terms of its impact on his 

investments.  

 However, by knowing that Grexit represents a 

previously unseen event, Peter realises this implies that 

the historical records of ROI assume Grexit=No. He 

models the expert knowledge for node Grexit, making 

sure that the data-driven expectations of the model are 

preserved when Grexit=No, as shown in Figure 10 and 

Table 7. 

 

 
 

Figure 10. Replacing the expert node of Figure 6 with the expert node 

Grexit, which represents a previously unobserved event. The model 

                                                           
5 The withdrawal of Greece from Eurozone. 
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preserves the data-driven expectations when the previously 

unobserved event is set to No (i.e. Grexit=No). 

 
 
Table 7. The CPT for node ROI given Grexit=No, and based on the 

model presented in Figure 10.  

 

D Properties Bonds Shares 

X No No No 

R N (6, 50) N (3, 1) N (10, 500) 

 
 
 Peter now has to incorporate into the model the 

impact on ROI under Grexit=Yes. He updates the CPT for 

node ROI given Grexit=Yes according to his beliefs, as 

shown in Table 8. The CPT of Table 8 shows that, in 

addition to providing a revised expected value for each 

of the possible investment scenarios under Grexit=Yes, 

Peter also assumes that his estimates are highly uncertain 

and hence, the values provided for each 𝜎2 are increased 

according to his lack of confidence. Figure 11 

demonstrates the impact Grexit is expected to have on 

Profit, when Grexit is unknown, and as defined by Peter's 

assumptions. The prior expectation of ROI declines from 

6.6% to -0.48%. Therefore, the method provides decision 

makers with the ability to better manage and assess the 

impact of rare or previously unseen events which are not 

captured by data.   

 

 
Table 8. The CPT for node ROI given Investment, assuming Grexit=Yes, 

and based on the model presented in Figure 11.  

 

D Properties Bonds Shares 

X Yes Yes Yes 

R N(-10, 100) N (0, 1) N (-40,1000) 

 

 

 
 

Figure 11. The expectations of the model of Figure 10 when the 

observation of Grexit=No is removed. 

 

 

 

7 LIMITATIONS AND POSSIBLE EXTENSIONS 

 

In the previous sections we have described the method as 

well as demonstrated how to apply it. We have also 

illustrated a number of scenarios under which the 

method provides additional benefits that go beyond the 

preservation of expected values. In this section we 

discuss a number of limitations which arise under 

specific circumstances, as well as possible extensions for 

future research. 

 

1. Expert judgments for the CPTs: The method we have 

described defines the constraints required for the 

CPT entries. If, for any given state of the node D and 

state of the node X, the expert is able to supply all of 

the entries of the CPT then the method provides a 

consistency check for the expert values. If the expert 

can supply all but one of the values then Equation 5 

provides a unique solution for the missing entry.  

However, when there is more than one missing entry 

the solution to Equation 4 is not unique.   

 

2. Discrete nodes: The method assumed the empirical 

data node R is continuous. The method is applicable 

to discrete nodes, but there is a limitation in this case. 

Since the expected values at each discrete state 

represent probabilities rather than utility values (as 

in the case of continuous nodes like ROI), the expert 

elicited entries have to satisfy not only the constraint 

of Equation 4 but the additional constraints that each 

must lie within the boundary [0,1]. This means, for 

example, that we cannot assume that the method will 

provide the ‘missing value’ once the expert supplies 

all but one of the expert CPT entries, since these may 

be inconsistent with all the constraints.  
 

3. Ranked nodes: In describing the method in Section 2, 

we have shown how the solution works when the 

expert provides judgments for states up to and 

excluding 𝑋𝑚 of the required 𝑚 values for each set of 

states in R given 𝐷𝑖 . However, when the expert node 

follows a ranked/ordinal distribution (e.g. from Very 

low to Very high (Fenton et al., 2007)) there is a risk 

that the learnt value 𝑋𝑚 will fail to respect the ordinal 

nature of the ranked distribution, in terms of impact 

on R, depending on what judgments the expert 

provides for 𝑋𝑚−1 states. 

 As in the general discrete case this is not strictly a 

limitation of the method. When this occurs, it may 

simply imply that the expert judgments are 

inadequate in terms of accuracy. We would advise 
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that decision makers be mindful of this possibility 

and, when it occurs, they should revise their 

judgments to respect the ordinal nature from 𝑋1 to 

𝑋𝑚 in terms of impact on R. 

 

4. Amending the BN structure: The type of models we 

are interested in this paper are those where the 

supplementary expert variable is a concomitant 

cause. In other cases, however, an expert variable 

that is inserted into a model will amend the data-

driven structure. Figure 12 demonstrates such a 

simple example where the expert variable X is 

inserted between the data variables D and R. Under 

such scenarios, the method presented in this paper is 

not supposed to be applicable since the data-driven 

network is amended and hence, there is no data-

driven network to preserve. However, in large scale 

BN models some data-driven model fragments might 

remain unaffected and hence, the method can still be 

applied to those fragments. 

 

 
 

Figure 12. The case where the expert variable X is incorporated 

into the data-driven model in a way that amends the data-driven 

structure. 

 

5. Preserving Variability: While the expectations of the 

empirical data node are preserved6 using the method 

we have described, the variance and/or the shape of 

the revised data node distribution are subject to 

amendments as discussed in Section 5.  

 Without detailed data on the factors that the 

expert might identify as missing, it is not possible to 

know whether model uncertainty is supposed to 

increase or decrease. Since the model’s 

dimensionality is increased, one could argue that 

model uncertainty increases with it. However, in 

some cases there could be an argument against 

increasing the variance. As a result, such undesirable 

effects will have to be managed subjectively.  

 We explained in Section 2 why there is no 

incentive in preserving the variance of the data 

                                                           
6 Note that the expected values are preserved however the variance is 

defined. 

variables between models M and M'. However, in 

Section 5, we have proposed ways towards ensuring 

that the variability between distributions of the same 

data variable are reasonably correlated. In general, 

this is a problem that poses major challenges for 

future research. 

 

 

8 APPLYING THE METHOD TO REAL-WORLD 

MODELS 

 

In this section we aim to clarify under what scenarios the 

method presented in this paper becomes useful for real-

world BN models.  

 

8.1. Scalability of the method 

 

There are a number of factors which determine the 

scalability of the method. Specifically : 

 

1. Type of the model: Since the method is proposed 

for the purpose of preserving some features of a 

data-driven model when incorporating expert 

judgments, this implies that the method is useful 

only for models which incorporate both data and 

expert information. This method is not relevant 

for models that only rely on one of the two types 

of information; data or expert knowledge. 

  

2. Size of the model: The method is independent of 

the size of the model. What is important is how 

the expert variable is introduced within the 

network. Linking an expert variable with three 

data-driven variables in a network consisting of 

just three variables represents a more challenging 

task than linking an expert variable with two 

data-driven variables in a network consisting of 

thousands of variables. The same applies to the 

number of expert variables introduced; 

incorporating 𝑛 expert variables in a simple 

network is more complex than incorporating 𝑛 −

1 variables in a large-scale network, under the 

assumption that the variables are incorporated in 

the same way. 

 

3. Number of child nodes: The expert variable can 

influence any number of child nodes. In the case 

where the expert variable does not have any child 

nodes (i.e. only has parent nodes), then there is no 

need to make use of the method presented in this 

paper. This is because such a BN model already 
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preserves its data-driven expectations, as long as 

the expert variable remains unobserved. The 

method becomes useful as long as the expert 

variable introduced is linked to at least one data-

driven child node. 

 

4. Number of parent nodes: Any number of data-

variables can serve as parent nodes of the expert 

variable. Without parent nodes, the solution is 

simplified as demonstrated in Section 4.1. With 𝑛 

parent nodes, we must account for the posterior 

marginal probabilities of the expert variable given 

all of the parent nodes, as demonstrated in Section 

4.2. 

 

5. Number of states: The solution works for any 

number of states incorporated into the expert 

variable.  

 

6. Type of nodes: Some restrictions apply when it 

comes to the type of variables being used by the 

method. Specifically, while any parent and child 

nodes of the expert variable can be represented by 

either a continuous or a discrete distribution, the 

expert variable itself must be discrete (so that one 

of its states can serve as state 𝑚 to solve for 

preservation of the expected value of the child 

node). 

 

 

8.2. Practicality of the method 

 

The process can also be automated using equation 5. But 

this requires a number of expert inputs. Assuming that 

the data-driven network is already learnt, the process of 

incorporating an expert variable is as follows: 

 

1. Incorporate the expert variable and link it to the 

child and (optional) parent nodes; 

 

2. Parameterise the CPT of the expert node with 

expert judgments; 

 

3. Parameterise the CPT of each child node with 

expert judgments for states up to 𝑚 − 1 (i.e. entry 

𝑚 stays empty); 

 

4. Use equation 5 to learn the probabilities or utility 

values/distributions for each state 𝑚 of the data-

driven variables serving as child nodes of the 

expert variable. The model should now preserve 

the expected values of the data-driven variables. 

 

 

8.3. Real-world examples 

 

The proposed method is especially useful for adding 

explanatory power to medical diagnostic models, such as 

those that incorporate a diagnostic test result. For 

example, extensive data are available on mammographic 

screening test results given the presence of breast cancer 

(Hofvind et al., 2012). But, as in the ROI example of 

Section 2, these data hide influential factors which can be 

exploited by expert knowledge, such as the impact of 

benign cysts driving up the false positive rate (see Figure 

13). 

 

 

 
 

Figure 13. Adding expert knowledge Benign cyst to breast screening, 

while preserving data expectations. 

 

 

 Another typical real-world example where the 

method is useful is that in (Fenton & Neil, 2012) where 

the authors consider data from the US department of 

transport, that shows (counter-intuitively) that fatalities 

in car accidents is strongly negatively correlated with 

temperatures. The authors recognise that, in the absence 

of relevant explanatory variables, we run the risk of 

having models proposing it is safer to drive during the 

winter when the weather is worst. Incorporating the 

expert variables proposed in  (Fenton & Neil, 2012), in 

conjunction with the method presented in this paper, we 

can preserve the expectation relating to the risk of an 

accident and at the same time explain the observations 

based on additional expert explanatory variables such as 

Driving conditions and Driving speed as illustrated in 

Figure 14.  
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Figure 14. Adding expert knowledge Driving conditions and Driving 

speed to the fatal car crashes problem (Fenton & Neil, 2012), while 

preserving data expectations. 

 

 

 8.3.1. Applying the method to another study  

 

 We have already made use of the method in a 

real-world setting. This involves a dynamic time-series 

BN model used to assess football teams in terms of 

fluctuations in team strength (Constantinou & Fenton, 

2016). The assessment is based on events that occur 

between seasons (e.g. player transfers) as well as events 

that occur during the season (e.g. injuries) and which 

may influence the actual strength of the team. The whole 

model consists of 34 variables, both discrete and 

continuous.  

Figures 15, 16, and 17 present fragments of this 

real-world BN which incorporate expert variables. The 

expert variables, along with arcs introduced as a result of 

the expert variables, are indicated by dashed lines.  All of 

the expert variables have been incorporated following 

the method presented in this paper, hence preserving the 

expected values of the data-variables, as long as the 

expert variables remain unobserved. In brief, 

 

1. Squad instability: Figure 15 illustrates the process 

by which the impact of changes in players is 

measured. Historical data indicates that 

increasing net transfer spending and increasing 

team wages (higher relative to other teams) 

generally result in improved team strength. 

However, sometimes the scale of such changes in 

a short period of time results in instability within 

the team and reduced team performance 

immediately after the changes occur. This 

scenario is not captured by available data, hence 

the incorporation of Squad instability as 

demonstrated in Figure 15. 

 

 
 

Figure 15. The BN fragment which incorporates the expert 

variable Squad instability (Constantinou & Fenton, 2016). 

 

 

2. Managerial ability: Figure 16 illustrates the 

process by which the impact of changes in 

management is measured. In this case, we were 

able to assess managerial instability from data. 

However, the data fails to capture whether the 

arriving manager is superior or inferior to the 

departing manager, in terms of managerial skills. 

As a result, the expert variable Managerial ability is 

incorporated, to deal with this important missing 

factor subjectively, as illustrated in Figure 16. 

 

 
 

Figure 16. The BN fragment which incorporates the expert 

variable Managerial ability (Constantinou & Fenton, 2016). 

 
3. Team stress and fatigue: Figure 17 illustrates the 

process by which the model assesses the impact of 

European (EU) match involvement has on team 

performance in the league. While historical data 

indicates that, overall, involvement in EU 

competitions negatively influences league 

performance, this is not true for all of the teams 

(especially for the high performing teams). One 

hypothesis is that teams experience the effect of 

EU competition with different levels of stress and 

fatigue, and this may also depend on the type of 

EU competition (e.g. some teams send their 

reserves to travel around Europe when 

participating in the Europa league). Figure 17 
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illustrates how this hypothesis is captured 

subjectively by incorporating the expert variable 

Team stress and fatigue. 

 

 
 

Figure 17. The BN fragment which incorporates the expert 

variable Team stress and fatigue (Constantinou & Fenton, 2016). 

 

The expert explanatory variables incorporated into the 

BN of (Constantinou & Fenton, 2006), and which are 

based on the method presented in this paper, form part 

of the Smart-Data method which seeks to improve 

predictive accuracy and resulting decision making that 

goes beyond the capabilities of what Big-Data can 

provide. This is achieved using BN models that have two 

subsystems: a) a knowledge-based intervention for 

informing the model about real-world time-series facts, 

and b) a knowledge-based intervention for data-

management purposes to ensure data adheres to the 

structure of the model. 

 

 

9 CONCLUDING REMARKS 

 

We have described a method that allows us to 

incorporate expert variables in a data-driven Bayesian 

network without affecting the model’s expectations, as 

generated from data, as long as the expert variables 

remain unobserved. The method assumes that: 

 

1. the data variables are based on sufficiently rich and 

accurate data and thus represent a good 

approximation of the true distribution (hence, the 

desire to preserve the expectations); 

 

2. the expert variables are factors that are important for 

decision analysis but which historical data fails to 

capture (hence, the desire to incorporate these 

variables into the model as supplementary expert 

judgments, but which will not affect the model as 

long as they remain unobserved). 

 

 In addition to meeting this main objective we 

have demonstrated that the benefits of the method 

extend to answering questions about accuracy of 

expertise and how the assessment of extremely rare or 

previously unobserved events can be addressed:  

 

a) Realism of expert judgments: We have shown the 

method can be used along with variability to 

validate the expert judgments in terms or 

'realism'. More specifically, to assess whether the 

expert judgments provided for newly 

incorporated states within the model satisfactorily 

fall within reasonable boundaries as defined by 

the variability in the data driven model. Section 5 

demonstrates this case with examples. 

 

b) Handling rare or previously unobserved events: 

The method allows for better management of 

problems for which big-data is available, but 

which still fails to capture rare or previously 

unseen events. Under such circumstances, this is 

achieved by preserving the data-driven 

expectations of the model under the assumption 

that these known rare or unobserved events are 

set to false within the model. Section 6 

demonstrates this case with examples. 

 

 It is important to note that the method is not 

proposed as a solution to any probabilistic network 

which incorporates expert knowledge along with data. 

Namely, if a data variable is believed not to capture the 

true distribution with sufficiently high accuracy, either 

because of limited or poor-quality data, then there is no 

incentive to use this method and preserve its 

expectations. Nevertheless, while the method might not 

be useful for every single data variable, it will still be 

useful for every single model that incorporates at least one 

data variable for which decision makers would like to 

preserve its expectations. 
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APPENDIX A:  The problem with preserving the 

variance of a data-driven distribution. 
 

 

 
 

Figure A.1. The outputs of the data-driven BNs (Models A and B left 

and right respectively) based on the data presented in Table A.1. 

 

 

Table A.1. The data considered by the BNs presented in Figure A.1. 

 

 Model A Model B 

 a a|b1 a|b2 

 3 3 12 

 4 4 13 

 5 5 10 

 2 2 9 

 5 5 8 

 4 4 15 

 12 - - 

 13 - - 

 10 - - 

 9 - - 

 8 - - 

 15 - - 

Mean 7.5 3.83 11.17 

Variance 18.45 1.37 6.97 
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