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ABSTRACT 24 
 25 

Background Visceral pain is a common symptom for patients with gastrointestinal (GI) 26 

disease. It is unpleasant, debilitating and represents a large unmet medical need for 27 

effective clinical treatments. Recent studies have identified NaV1.9 as an important 28 

regulator of afferent sensitivity in visceral pain pathways to mechanical and 29 

inflammatory stimuli, suggesting that NaV1.9 could represent an important therapeutic 30 

target for the treatment of visceral pain. This potential has been highlighted by the 31 

identification of patients who have an insensitivity to pain or painful neuropathies 32 

associated with mutations in SCN11A, the gene encoding voltage-gated sodium channel 33 

subtype 1.9 (NaV1.9).  34 

 35 

Purpose Here we address the role of NaV1.9 in visceral pain and what known human 36 

NaV1.9 mutants can tell us about NaV1.9 function in gut physiology and pathophysiology.  37 

 38 

Key words   39 

Irritable bowel syndrome; inflammatory bowel disease; visceral pain; voltage-gated 40 

sodium channel; NaV1.9; Nociceptor sensitivity; visceral afferent; enteric nervous 41 

system 42 

 43 
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KEY MESSAGES 44 
 45 

x Visceral pain and hypersensitivity are hallmark symptoms of patients with 46 

gastrointestinal diseases such as irritable bowel syndrome (IBS) and 47 

inflammatory bowel disease (IBD). 48 

x Recent evidence implicates the voltage-gated sodium channel subtype 1.9 49 

(NaV1.9) as a regulator of primary visceral nociceptor sensitivity and as a 50 

contributor to sodium current conductance in neurones of the enteric nervous 51 

system.  52 

x Patients with painful and painless phenotypes associated with mutations in 53 

NaV1.9 have been identified, which, in some cases, possess complex 54 

gastrointestinal disorders.  55 

x These studies have served to confirm a key role for NaV1.9 in visceral pain and 56 

suggest that NaV1.9 may contribute to gastrointestinal disorders.  57 

 58 
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INTRODUCTION 59 

 60 
Chronic visceral pain affects millions of individuals worldwide and is a leading reason 61 

for presentation to a surgeon or gastroenterologist.(1, 2) The most frequent diagnoses 62 

are functional pain disorders, such as irritable bowel syndrome (IBS), although chronic 63 

abdominal pain is commonly associated with gastrointestinal diseases such as 64 

inflammatory bowel disease (IBD) even during remission.(3) Pain from the 65 

gastrointestinal tract is thought to arise either as a consequence of the direct activation 66 

of nociceptive afferent nerves or the sensitisation of these nerves to physiological 67 

stimuli, such as bowel movements. Immune and inflammatory mediators including 68 

cytokines, proteases, ATP, histamine, 5-hydroxytryptamine and prostaglandins are 69 

strongly implicated in this process,(4, 5) with central sensitisation and psychological 70 

factors also contributing to altered pain thresholds.(6) Other disease pathologies that 71 

precipitate aberrant distension or obstruction of the bowel such as functional loss of 72 

motility or fibrosis will further trigger nociceptor activation and cause pain.(7) The use 73 

of existing analgesics (including non-steroidal anti-inflammatory drugs (NSAIDs) and 74 

opioids) to treat chronic visceral pain are often constrained by poor efficacy, risk of 75 

dependency and/or adverse gastrointestinal side effects; limiting their effectiveness in a 76 

clinical setting. As such, there is a clear need for novel pain therapies to provide benefit 77 

to those suffering from abdominal pain.  78 

Pain-sensing nerves or nociceptors are a subtype of extrinsic primary sensory neurones 79 

which innervate the gut.(8) They are activated by noxious stimuli, such as high-80 

threshold mechanical distension of the bowel, inflammatory mediators, hypoxia and 81 

ischaemia, and relay this signal to the central nervous system (CNS) where it is 82 

perceived as pain. Visceral spinal afferents have cell bodies located in the dorsal root 83 
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ganglia (DRG) and may project to lamina I, V and X of the dorsal horn.(9, 10) 84 

Nociceptors transduce noxious stimuli through the activation of a variety of ion 85 

channels, or receptors present on their nerve endings evoking generator potentials. If 86 

the stimulus is sufficient, the generator potential produced will trigger an action 87 

potential leading to the transmission of painful stimuli along the somatosensory 88 

pathway in the form of regenerative action potentials. The probability of a given 89 

noxious stimulus initiating action potential firing is dependent on the afferent endings 90 

basal excitability, which is plastic and prone to modulation during inflammation.(11-15) 91 

One example of this plasticity is the development of mechanical hypersensitivity in 92 

“silent” afferents, a subset of nociceptors that are mechanically insensitive under 93 

normal conditions, which following inflammation become sensitised to mechanical 94 

stimuli.(14, 16) Additionally inflammation also results in the sensitisation of existing 95 

mechanosensitive nociceptors making them hyperexcitable to previously innocuous 96 

levels of physiological stimuli.(13) These changes in nociceptor behaviour undoubtedly 97 

contribute to the development of visceral hypersensitivity to colorectal distension and 98 

inflammatory hyperalgesia observed in both rodent colitis models and in the 99 

pathogenesis of human GI disorders.(4)  100 

As a consequence, the pharmacological modulation of visceral nociceptor excitability is 101 

a key approach to the development of novel visceral analgesics. This is likely to be 102 

successful as evidenced by the amelioration of abdominal pain following rectal 103 

application of the local anaesthetic lidocaine in patients with irritable bowel 104 

syndrome.(17, 18) Although identifying a common mechanism of action able to 105 

overcome the potential redundancy in nociceptor activation due to the multiple 106 

signalling pathways present on the afferent ending, or the multiple mediators 107 
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implicated in nociceptor activation during gastrointestinal disease, represents a 108 

significant challenge. 109 

Voltage-gated sodium channels (NaV) have the potential to act as one such point of 110 

convergence in nociceptor activation, being critical to the electrogenesis of excitable 111 

cells. In particular, three (NaV1.7, NaV1.8 and NaV1.9) subtypes of the nine NaV1.1-112 

NaV1.9 α-subunits encoded by the genes (SCN1A-SCN5A and SCN8A-SCN11A) are 113 

strongly expressed in sensory neurones and have been associated with human pain 114 

disorders.(19-24) Of these, the recent association of mutations in NaV1.9 with human 115 

pain phenotypes (23-25) has led to renewed interest in this channel as a therapeutic 116 

approach to the treatment of pain. Alongside NaV1.9 channelopathies, expression in 117 

nociceptive sensory neurones and attenuated pain behaviours in NaV1.9 knock-out mice 118 

have linked the channel to the transduction of noxious stimuli. This review addresses 119 

the role of NaV1.9 in visceral pain and the effect of NaV1.9 channelopathies on 120 

gastrointestinal phenotype. 121 

BIOPHYSICAL CHARACTERISTICS OF NAV1.9 122 
 123 

The tetrodotoxin (TTX)-resistant NaV1.9 isoform is expressed primarily by small 124 

diameter neurones of the peripheral nervous system and is implicated in 125 

nociception.(26) The channel possesses unique biophysical characteristics producing a 126 

persistent sodium current, with slow activation and inactivation kinetics, and a 127 

hyperpolarised voltage-dependent activation, activating close to the resting membrane 128 

potential (threshold of activation ~ -65mV).(27-30) The slow kinetics of NaV1.9 129 

activation likely precludes the channel from contributing to the action potential up-130 

stroke.(27) Indeed, the sub-threshold membrane potential activation of NaV1.9 and 131 
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significant overlap in activation/inactivation gating at around the resting membrane 132 

potential mean that NaV1.9 acts as a contributor to resting membrane conductance.(31-133 

33) It is in this capacity that NaV1.9 is likely capable of regulating resting neuronal 134 

excitability and the development of generator potentials in nerve terminals to 135 

depolarising stimuli, such as mechanical force, acidity or temperature. In addition to 136 

these voltage-dependent roles of NaV1.9, we and others have shown that NaV1.9-137 

mediated persistent sodium currents are greatly enhanced in the presence of 138 

inflammatory mediators, leading to more depolarised resting membrane potentials, 139 

which may be sufficient to trigger action potential electrogenesis. Therefore in the 140 

presence of inflammation, NaV1.9 has the potential to be both a key mechanism by 141 

which inflammatory mediators trigger spontaneous action potential firing and an 142 

important regulator of afferent sensitivity to external stimuli (see Figure 1). 143 

NAV1.9 IN VISCERAL NEURONES AND BEHAVIOURAL PAIN PHENOTYPES 144 
 145 

In line with these proposed roles for NaV1.9 in the modulation of sensory neuronal 146 

excitability, several studies have provided evidence for the involvement of NaV1.9 in 147 

visceral pain and the development of inflammatory mechanical hypersensitivity.(34-38)  148 

Most recently, Hockley et al. has shown using a combination of in situ hybridisation and 149 

immunohistochemistry that approximately half of thoracolumbar DRG neurones back-150 

labelled by tracer injection into the wall of the distil colon express NaV1.9,(36) building 151 

on previous qualitative studies.(39-41) Consistent with the expression of NaV1.9 in gut-152 

projecting DRG neurones, the colonic afferent fibre response to a broad range of 153 

algogenic inflammatory mediators, such as ATP, PGE2, adenosine, and bradykinin are 154 

greatly attenuated in NaV1.9 -/- mice.(36, 42, 43) Importantly, from a translational 155 
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perspective, responses to the application of multiple inflammatory mediators applied at 156 

once, either in the form of supernatants from both chronically and acutely inflamed 157 

human bowel (e.g. resected tissue from patients with inflammatory bowel disease or 158 

appendicitis), or as an experimental inflammatory soup (ATP, PGE2, bradykinin, 159 

histamine & 5-hydroxytryptamine) were also significantly reduced in visceral afferents 160 

of NaV1.9 -/- mice.(36, 44) This illustrates NaV1.9 as a down-stream effector of afferent 161 

excitability to multiple inflammatory mediators, including those present in human 162 

disease, and highlights its value as a target for the treatment of inflammatory visceral 163 

pain. Afferent responses to direct nerve activators such as capsaicin or mechanical 164 

stimuli, which stimulate pain-sensing nerves through the activation of channels such as 165 

TRPV1, TRPV4, TRPA1 or ASIC3 are also significantly reduced in NaV1.9 -/- mice, as was 166 

the mechanical hypersensitivity observed following application of inflammatory 167 

soup.(36) The translation of these observations into a loss of the perception of pain 168 

centrally is supported by behavioural studies that have demonstrated robust visceral 169 

phenotypes in NaV1.9 -/- mice to colorectal distension after intracolonic instillation of 170 

an inflammatory agent.(45) A reduction in bladder afferent activity to PGE2 has also 171 

been reported in NaV1.9 -/- mice, and thermal and mechanical hypersensitivity 172 

following intraplantar injections of inflammatory agents (including carrageenan and 173 

complete Freud’s adjuvant) is greatly attenuated in NaV1.9-/- mice implicating NaV1.9 in 174 

the broader regulation of nociceptor activation by inflammatory mediators.(33-35, 46, 175 

47) 176 

GUT PHENOTYPES ASSOCIATED WITH HUMAN NAV1.9 CHANNELOPATHIES  177 
 178 
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The recent identification of human NaV1.9 channelopathies associated with congenital 179 

insensitivity to pain, episodic pain syndrome and painful neuropathy has led to 180 

functional studies of this channel. Familial episodic pain has been associated with point 181 

mutations in SCN11A, the gene encoding NaV1.9, in two Chinese families.(24) These two 182 

separate mutations at Ala808Gly and Arg225Cys cause episodic pain predominantly in 183 

the lower distal extremities and was worsened by fatigue (see Figure 2A). Specifically, 184 

these mutations possess significantly increased current density and unaltered voltage 185 

dependence of activation and inactivation.(24) This leads to increased neuronal 186 

excitability, which was not attributed to changes in resting membrane potential or 187 

action potential threshold. Instead, increased action potential firing following current 188 

injections is likely causal to the observed hyperexcitability of sensory neurones.  189 

Recently eight heterozygous variants of SCN11A were identified in 12 patients from a 190 

cohort of 393 patients with painful neuropathy.(25) Mutations in SCN9A and SCN10A 191 

were not found in these patients and a detailed functional electrophysiological analysis 192 

was carried out on two NaV1.9 mutations (Ile381Thr and Leu1158Pro) possessed by 193 

four patients, which were shown to confer gain-of-function characteristics to the NaV1.9 194 

channel (see Figure 2A).  Symptoms presented late in life (>50 years of age) and 195 

consisted of numbness, tingling and typically dull burning pain in the lower limbs. These 196 

symptoms were associated with autonomic changes including diarrhoea, hyperhidrosis, 197 

dry mouth/eyes and altered blood flow. Ile381Thr and Leu1158Pro mutations were 198 

located in membrane-spanning segments lining the pore (DI/S6) and in the voltage-199 

sensor (DIII/S3) of the channel, respectively (see Figure 2A). Both mutations lead to 200 

hyperpolarising shifts in the voltage dependence of activation and, in the case of 201 

Ile381Thr, a depolarising shift in the voltage dependence of inactivation, whilst this 202 
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remained unchanged for Leu1158Pro. Resting membrane potential was depolarised and 203 

action potential current threshold was reduced by both mutations, resulting in 204 

significant increases in action potential firing during depolarising current steps.   205 

Finally, a single de novo Leu811Pro mutation located at the distal end of the S6 206 

transmembrane helix in domain II of NaV1.9 has been linked to the inability to 207 

experience pain in humans (see Figure 2A).(23) Clinically, this results in multiple 208 

painless fractures and slow wound healing. Further, gastrointestinal function is also 209 

impaired with patients requiring temporary parenteral nutrition and possessing 210 

morphologically abnormal small intestine and enlarged colon.(23) This phenotype is 211 

driven by changes in NaV1.9 voltage-dependant gate closure and channel inactivation 212 

caused by the mutation. As such, NaV1.9 Leu811Pro possesses a leftward shift in 213 

activation and deactivation kinetics (~-29mV), and results in increased NaV1.9 Na+ 214 

current flux at rest, and a subsequent ~7mV depolarisation of the resting membrane 215 

potential. Leipold et al. hypothesise that other voltage-gated sodium channels and 216 

voltage-gated calcium channels are therefore progressively inactivated and the sensory 217 

neurone experiences conduction block.(23, 31) Given the extensive expression of 218 

NaV1.9 within small DRG neurones, this could result in a selective blockade of primary 219 

nociceptive pathways and an inability to sense pain. This hypothesis had been 220 

challenged by recent studies linking mutations in NaV1.9 with hyperexcitability of 221 

sensory neurones. Whilst the change in the voltage dependence of activation and 222 

deactivation associated with the Leu811Pro mutation are far greater than those seen in 223 

the Huang et al. and Zhang et al. mutations, the subsequent depolarisation in resting 224 

membrane potential (RMP) observed by Leipold et al. of ~7mV is comparable to that 225 

seen by Huang et al.(23-25) As such it is difficult to reconcile these findings with current 226 
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hypotheses correlating point mutations in both NaV1.7 and NaV1.9 to depolarising 227 

changes in resting membrane potential and subsequent hyperexcitability of DRG 228 

neurones.(25, 48) Indeed, Huang et al. go on to state that ‘hypoexcitability of mouse 229 

DRG neurones that express the NaV1.9 L811P mutation cannot be explained by the shift 230 

in RMP of these neurones’.(25) This is likely due to the expression of NaV1.8 in the vast 231 

majority of small sensory neurones, which unlike other voltage-gated sodium channels, 232 

has voltage-dependencies of activation and inactivation 20-40mV more 233 

depolarised.(49) As such a 5-7mV depolarising shift in resting membrane potential is 234 

unlikely to drive significant proportions of NaV1.8 channels into inactivated states and 235 

will result in hyperexcitability of these neurones,(25, 50) however in those cells not 236 

expressing NaV1.8, hypoexcitability is the likely phenotype.(51) Further, Huang et al. 237 

suggest that the hypoexcitability observed in sensory neurones expressing the NaV1.9 238 

Leu811Pro mutation may potentially be explained by a sampling bias towards these 239 

cells, with cells expressing NaV1.8 significantly fatigued or subnormal.(25) 240 

NaV1.9, in conjunction with NaV1.5, have been shown to be the two sodium channels 241 

responsible for carrying the TTX-R Na+ currents observed in myenteric neurones of the 242 

enteric nervous system, and responsible for regulating tonic firing and the amplification 243 

of incoming signals.(52-54) The enteric nervous system regulates digestive functions 244 

including secretomotor reflexes and the detection of luminal contents; and is organised 245 

into two plexuses: the myenteric plexus, located between the circular and longitudinal 246 

muscle layers, the submucosal plexus, located between the mucosa and the circular 247 

muscle.(55) The contribution of NaV1.9 to secretomotor function is supported by mice 248 

lacking NaV1.9 possessing altered gut motility(56) and the complex gut phenotypes 249 

observed in patients with NaV1.9 Leu811Pro variants.(23) These GI phenotypes may be 250 
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a manifestation of myenteric dysfunction, possibly driven by the same aberrant 251 

mechanism speculated for sensory neurones possessing NaV1.9 mutations.(23, 25) This 252 

is especially pertinent given the lack of NaV1.8 in myenteric neurones.(52) Recent 253 

successes modelling in silico the role of NaV1.5 and NaV1.9 in the control of myenteric 254 

neuronal excitability provide an opportunity to explore how altered channel kinetics, 255 

such as those seen in NaV1.9 mutants, may impact myenteric neuronal function.(52)  256 

The association of multiple variants in SCN5A, the gene encoding NaV1.5, with a subset 257 

of diarrhoea-predominant irritable bowel syndrome (IBS) patients suggests that altered 258 

sodium channel function may be clinically relevant to functional GI disorders.(57) 259 

Whilst the mechanism underpinning altered GI function in NaV1.5 mutants is yet to be 260 

fully resolved, expression of NaV1.5 in pace-maker interstitial cells of Cajal (ICC),(58) 261 

smooth muscle(59) and myenteric neurones,(52) implicates a significant contribution 262 

to normal secretomotor function in tissues other than those of primary expression, i.e. 263 

cardiac myocytes. Importantly, such NaV1.5 mutants may not necessarily possess a 264 

cardiac phenotype, suggesting that phenotypic presentation of specific sodium channel 265 

variants is dependent on the tissue or cell-type of expression.  266 

Given this, and the role of NaV1.9 in both visceral extrinsic afferent pathways and the 267 

enteric nervous system, it suggests that potentially novel disease-causing NaV1.9 268 

mutations may exist for gastrointestinal disorders. Specifically, that NaV1.5 is co-269 

expressed alongside NaV1.9 in myenteric neurones, novel therapeutics impacting NaV1.9 270 

channel function may also possess beneficial disease-modifying characteristics in IBS, in 271 

addition to any putative analgesic properties. As such, further research is warranted 272 

into the effects of altered NaV1.9 function in the enteric nervous system, in addition to a 273 

more comprehensive phenotyping of visceral sensation in NaV1.9 mutants. These 274 
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findings also suggest that the interrogation of existing genome-wide association studies 275 

(GWAS) for IBS and other function GI disorders may be beneficial in defining any 276 

pathogenic role for mutations in NaV1.9.   277 

What do human channelopathies tell us about NaV1.9 as an analgesic target for 278 

inflammatory pain? The GI phenotype presented by Leipold et al., alongside rodent 279 

models of enteric neuronal function, suggests that NaV1.9 contributes to the effective 280 

function of the GI tract, including peristaltic propulsion.(23, 53, 54, 56) Mouse knock-281 

out shows that NaV1.9 likely acts to regulate the site of origin and frequency of 282 

migrating motor complexes along the GI tract.(56) By contrast, in patients with familial 283 

episodic pain as a result of alterations in NaV1.9, no GI dysmotility was reported.(24) 284 

Collectively this data would suggest that complete ‘conduction block’ of myenteric nerve 285 

action potential firing, as may be occurring in Leu811Pro NaV1.9 mutants, is 286 

significantly more detrimental to GI function than either the loss of NaV1.9 or 287 

modulation of current amplitude through genetic alteration. As such, it is hard to 288 

predict whether pharmacological inhibition of NaV1.9 will significantly alter 289 

gastrointestinal function; however as observed in NaV1.9 -/- mice complete loss of 290 

NaV1.9 current may not induce significant GI dysmotility.(56) The ability to test this 291 

hypothesis in human bowel tissues is critical in the understanding of this pathway 292 

before commencing costly clinical studies.(60, 61) 293 

Importantly, cognitive function and brain development appears normal in patients 294 

possessing these NaV1.9 mutations.(23-25) This may have been unexpected given the 295 

purported requirement of NaV1.9 in neurotrophin-evoked depolarisations in 296 

mammalian brain.(62) Interestingly, patients with NaV1.9 Leu811Pro presented with 297 

delayed motor development and mild muscular weakness, although biopsies and 298 
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electromyography were normal.(23) Such motor phenotypes were not explicitly 299 

mentioned for Ala808Gly and Arg225Cys mutations(24), or Ile381Thr and Leu1158Pro 300 

mutations.(25) Indeed, one patient is reported to have been a soldier previously, at least 301 

suggesting that motor or muscular deficits, if present, were not incapacitating.(24) 302 

NaV1.9 has been implicated in the development of motoneurone axons, with NaV1.9 -/- 303 

mice showing marked reductions in axon growth.(63) This axon growth is dependent 304 

upon voltage-gated calcium channel activation and suggests that aberrant Leu811Pro 305 

NaV1.9 Na+ flux may impair motoneurone development in patients with this 306 

mutation.(23) However, it is clear that these patients ultimately exhibit normal motor 307 

control, suggesting that compensation at least within motoneurones for NaV1.9 deficits 308 

can occur.  309 

The recent reporting of NaV1.9 possessing a specialised role in cold pain sensation and 310 

cold allodynia is consistent with patients with episodic pain syndrome reporting the 311 

pain region as feeling extremely cold.(24) This is in stark contrast to the presentation of 312 

NaV1.7-dependent erythromelalgia where severe burning pain in the extremities may be 313 

relieved by ice bath or cold compress.(64) Whether there are consequences to visceral 314 

sensation of the involvement of NaV1.9 in detecting noxious cold, it remains to be seen. 315 

Our current understanding of the function of NaV1.9 in conjunction with pain 316 

phenotypes of human mutants suggests a significant role for the channel in the 317 

development of visceral inflammatory pain. Together these findings indicate that 318 

pharmacological blockade of NaV1.9 may prove an effective analgesic strategy in 319 

pathologies where the predominant pain is caused by acute or on-going inflammation. 320 

This may be particularly relevant for gastrointestinal disorders, where there is an 321 

unmet medical need for mechanistically novel analgesics. As such, NaV1.9 represents a 322 
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unique modulator of visceral afferent excitability capable of significantly impacting the 323 

development of visceral pain. 324 
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FIGURE LEGENDS 489 

 490 
Figure 1. Contribution of NaV1.9 to visceral afferent action potential generation. A 491 

Schematic of visceral afferent ending in the gastrointestinal tract. When expressed, 492 

NaV1.9 contributes to setting resting membrane potential, acts to amplify generator 493 

potentials evoked by external stimuli, such as a mechanical force and functions to 494 

transduce sensitising stimuli such as inflammatory mediators. B NaV1.9’s contribution 495 

to the resting membrane potential and amplification of depolarising stimuli means that 496 

in a sensitised state where a greater NaV1.9 Na+ current is present, a smaller stimuli and 497 

generator potential is required to evoke action potential firing. TRP, transient receptor 498 

potential; BKR, bradykinin receptor; EPR, prostaglandin receptor. 499 

 500 

Figure 2. NaV1.9 variants associated with clinical pain or painless phenotypes and 501 

expression of NaV1.9 in gastrointestinal tissues. A In purple, two mutations (R225C and 502 

A808G) linked to episodic pain syndrome (24). In red, seven mutations (I381T, K419N, 503 

A582T, A681D, A842P, L1158P and F1689L) associated with painful neuropathy. An 504 

eighth mutation was also identified at the 3’ acceptor splice site of intron 24 (25). In 505 

purple, gain-of-function mutation (L811P) linked to congenital insensitivity to pain 506 

(23). B NaV1.9 has been identified in extrinsic afferents innervating the mesentery and 507 

gastrointestinal wall and contributes to the development of inflammatory 508 

hypersensitivity and visceral pain. The expression of NaV1.9 by enteric neurones 509 

present in both the submucosal and myenteric plexi suggest that NaV1.9 influences 510 

secretomotor function and may have a role in the development of conditions involving 511 

GI dysmotility such as irritable bowel syndrome (IBS).  512 
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