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1. Introduction

It is well-known that N = 1 supersymmetric QCD (SQCD) has metastable supersym-

metry (SUSY) breaking vacua [1]. However, the situation for N = 2 SQCD is less clear.

Indeed, while Seiberg and Witten found an exact description of the quantum moduli space

of SUSY vacua in N = 2 SQCD [2][3], one expects, in particular, that higher derivative

corrections would be important in any (metastable) SUSY breaking vacua. In this paper,

we give strong evidence that N = 2 SYM and its cousins do not have metastable SUSY

breaking vacua.

Our proof is based on generalizing the results of a recent work by Komargodski and

Seiberg [4] (see also [5][6]). In that paper, the authors showed that the superconformal

anomaly multiplet defined in the UV flows, under the renormalization group, to a con-

strained chiral superfield in the IR that contains the goldstino as a component.

In what follows, we will use the RG evolution of the N = 2 linear superconformal

anomaly multiplet to show that as long as an N = 2 QFT has such a multiplet, it cannot

contain SUSY breaking vacua that admit a weakly coupled description in terms of gold-

stinos and goldstone bosons.2 We explicitly show that N = 2 SYM falls into this class

of theories and therefore conclude that it cannot contain weakly coupled SUSY breaking

vacua. In fact, this proof generalizes to arbitrary gauge group and matter content as long

as the theory possesses an (at most spontaneously broken) SU(2)R symmetry.3 We will

describe more explicitly some of these extensions after our detailed discussion of N = 2

SYM.

It would also be interesting to extend our analysis to theories that explicitly break

SU(2)R. We know that some theories in this class do admit SUSY breaking vacua since

they contain N = 2 D-terms which also explicitly break SU(2)R (this set of theories

includes modifications of the original N = 2 SUSY breaking theory studied by Fayet [8],

as well as models of partial supersymmetry breaking [9]). These theories do not posses

linear superconformal anomaly multiplets.

In the next section we briefly review the KS formalism and then quickly proceed to

generalize it to the case of interest. We end with some open questions.

2 It would be interesting to better understand the relation of this statement to the no-go

theorems recently discussed in [7].
3 We would like to emphasize that it is not important whether the theory admits additional

superconformal anomaly multiplets. Indeed, as long as the theory has a linear superconformal

anomaly multiplet, we are free to study its RG flow. In doing so, we will find the contradictions

described below.
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2. The KS formalism

The starting point of the KS formalism is the supercurrent multiplet constructed by

Ferrara and Zumino (FZ) [10]. In a superconformal theory, the FZ multiplet is described

by a real superfield, Jαα̇, subject to the constraint

DαJαα̇ = 0. (2.1)

This multiplet contains as its lowest component a conserved U(1)R current, jµ, while

the θ and θθ components correspond to the supercurrent, Sµ
α, and the stress-tensor, Tµν ,

respectively. One can describe the breaking of superconformal symmetry in a relatively

general way4 by modifying (2.1) as follows:

DαJαα̇ = Dα̇X, (2.2)

where X is a chiral superfield, i.e.

Dα̇X = 0. (2.3)

After solving the equation (2.2) in components one finds

X = x+
√
2θα

(√
2

3
σµ
αα̇S

α̇

µ

)
+ θ2

(
2

3
T + i∂µj

µ

)
, (2.4)

where the θ component of X is just the spin-half component of the supercurrent, T is the

trace of the stress tensor, and ∂µj
µ is the divergence of the U(1)R current.

The remarkable insight of Komargodski and Seiberg was to realize that in theories

of SUSY breaking, the operator X , defined in the UV, flows to a well-defined operator,

XNL, in the deep IR that contains the goldstino. For a generic theory, the scalar partner

of the goldstino will acquire a mass. The simplest state such an operator can then create is

the two goldstino state. Since supercharge (anti)commutators are well-defined even when

SUSY is spontaneously broken, the components of X must satisfy chiral commutation

relations along the full RG flow. It is then easy to see that the unique form of X , up to

an uninteresting constant, is [4]

XNL =
G2

2F
+

√
2θG+ θ2F, (2.5)

where Gα is the goldstino. Additionally, it follows from (2.5) that XNL satisfies the

nilpotent relation

X2
NL = 0. (2.6)

4 For various caveats that will not be important to us below, see [6] and [11].

2



3. Generalizing the KS formalism to N = 2

Let us now generalize the above construction toN = 2 SUSY. While there is no unique

generalization of the previous discussion toN = 2, we will find that a simple generalization,

due originally to Sohnius [12] (see also the more recent discussion in [13]), suffices for our

purposes. In particular, we will see that the conservation equation (2.2) follows from a

projection to N = 1 superspace and that the multiplet we consider consists of the two

supercurrents, the stress tensor, and the four currents of the U(2)R N = 2 R-symmetry

(along with various other operators required by extended SUSY). Of the four R-currents

in the supercurrent multiplet, three of them, corresponding to SU(2)R ⊂ U(2)R, will be

conserved while the fourth, corresponding to the N = 1 superconformal R-current, will

not.5 The reason we choose such a multiplet is simple: it is the precise multiplet structure

one finds in N = 2 SYM [14][15][16].

3.1. N = 2 SCFT warmup

We begin our analysis by considering the N = 2 analog of (2.1). It turns out that the

supercurrents of an N = 2 superconformal theory can be packaged into a real dimension

two superfield, J , that satisfies

D〈ij〉J = D
〈ij〉J = 0, (3.1)

where i = 1, 2 is an index in the fundamental of SU(2)R and we place SU(2)R indices

inside angular brackets to distinguish them from powers of operators.6 The independent

components of J are then
SU(2)R Dim

J 1 2
J
〈i〉
α 2 5/2

Jαβ 1 3

J
〈i〉
〈j〉µ 3 3
Jµ 1 3

J
〈i〉
µα 2 7/2

Tµν 1 4

(3.2)

5 One can also consider a multiplet in which all four U(2)R currents are conserved [14]. This

is a simple generalization of the N = 1 case in which the theory has an exact U(1)R symmetry.
6 In (3.1) we define the SU(2)R spin one differential operator, D〈ij〉, to be D〈ij〉 = D〈ji〉 ≡

D〈j〉αD
〈i〉
α .
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where we have omitted the hermitian conjugates J 〈i〉α̇, J α̇β̇ , and J 〈i〉µα̇.
7

Reformulation in terms of N = 1 superspace

For our discussion below, we will not need the full N = 2 superspace. In fact, it

will be convenient to consider the above operators in an explicit N = 1 basis and to define

rotations into the remaining half of N = 2 superspace via the action of the second set of

supercharges. Therefore, let us consider the following N = 1 projections of J 〈ij〉

Ĵ ≡ J |, Jα ≡ (D〈2〉
α J )|, Jαα̇ =

(
−1

3

[
D〈1〉

α , D〈1〉α̇

]
+
[
D〈2〉

α , D〈2〉α̇

])
J |, (3.3)

where the vertical line “|” denotes the origin of the (θ〈2〉, θ
〈2〉

) superspace. These multiplets

obey the following N = 1 constraints descending from the N = 2 constraint in (3.1)

D
2Ĵ = D2Ĵ = 0, DαJα = 0, D

2Jα = 0, D
α̇Jαα̇ = 0, (3.4)

where the third constraint follows from the first by applying a variation with respect to the

second SUSY. Note that the first equation implies that Ĵ is a conserved current multiplet.

The second and third equations imply that Jα is a conserved current multiplet as well.

As we will see momentarily, the conserved currents sitting in the θθ components Jα and

Ĵ are just the second supercurrent and the R-current corresponding to the R-symmetry

that leaves the explicit N = 1 superspace invariant.8

We can expand the above multiplets in N = 1 superspace as follows

Ĵ = J + θαJ 〈1〉
α + θα̇J

α̇

〈1〉 + θσµθ(−1

2
Jµ + J

〈1〉
〈1〉µ) +O(θ2θ, θ

2
θ)

Jα = J 〈2〉
α + θβJβα + σµ

αα̇θ
α̇
J
〈2〉
〈1〉µ + θσµθ(−J 〈2〉

µα +
2

3
iσ β

µνα∂
νJ

〈2〉
β ) +O(θ2θ, θ

2
θ)

Jµ =
1

3
Jµ +

4

3
J
〈1〉
〈1〉µ + θαJ 〈1〉

µα + θα̇J
α̇
〈1〉µ + θσνθ

(
2Tνµ − 1

4
ǫνµρσ∂

[ρjσ]
)
+O(θ2θ, θ

2
θ)

(3.5)

where the higher-order terms depend on the lower components.9 From the expansions in

(3.5) and the conservation equations in (3.4), we easily verify the following component

7 In our conventions, J
〈i〉
〈j〉µ ≡ 1

2
σ
a〈i〉
〈j〉Jaµ.

8 Since the N = 1 supercurrent does not sit in Ĵ , the only consistent R-current that can sit

in Ĵ is the one we have described.
9 Note that as in [4], the lowest component of Jαα̇ is just the superconformal R-current of

the manifest N = 1 supersymmetry. Also, in the last equation of (3.5) we have defined Jµ =
1

4
σµα̇αJαα̇.
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conservation equations and trace identities

∂µJ 〈ij〉
µ = 0, ∂µJµ = 0, ∂µJ 〈i〉

µα = 0, σµα̇αJ 〈i〉
µα = 0, ∂µTµν = 0, T = 0. (3.6)

In fact, one can check that J
〈i〉
〈j〉µ and Jµ are just the conserved superconformal R-currents,

J
〈i〉
µα are the conserved supercurrents, and Tµν is the conserved and traceless stress-tensor.10

3.2. The N = 2 linear superconformal anomaly multiplet

To eventually make contact with SUSY breaking, we must generalize (2.2) by adding

an appropriate representation of N = 2 SUSY to the RHS of (3.1). For our purposes it

suffices to introduce the linear anomaly multiplet originally considered by Sohnius in [12]

and so we take

D〈ij〉J = 3L〈ij〉, (3.7)

with L〈ij〉 being a real SU(2)R spin one N = 2 linear superfield, i.e. a multiplet satisfying

the following conditions

(L〈ij〉)† = ǫ〈ik〉ǫ〈jl〉L〈kl〉, L〈ij〉 = L〈ji〉, D(〈i〉
α L〈jk〉) = D

(〈i〉
α̇ L〈jk〉) = 0, (3.8)

where “(...)” denotes total symmetrization of the included indices. The independent com-

ponents of L〈ij〉 are then
SU(2)R Dim

L〈ij〉 3 3
L
〈i〉
α 2 7/2
L0 1 4
Lµ 1 4

(3.9)

Let us stress once more that, as mentioned in the introduction, the theories we study have

a conserved (possibly spontaneously broken) SU(2)R ⊂ U(2)R symmetry. Indeed, as we

will see below, any solution to (3.7) necessarily satisfies

∂µJ
〈i〉µ
〈j〉 = 0. (3.10)

The intuitive reason for this is that, as we can see from (3.9), L〈ij〉 lacks a dimension four

SU(2)R scalar triplet operator.

10 As a result, the J multiplet has twenty-four bosonic and twenty-four fermionic components.
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The N = 2 linear anomaly multiplet in N = 1 superspace

Momentarily, it will prove useful to consider the organization of the fields in L〈ij〉

under the manifest N = 1 SUSY of the previous subsection, and so we define

X ≡ L〈22〉|, L ≡ iL〈12〉| (3.11)

Notice that the reality condition in (3.8) implies that X is complex while L is real.11

Furthermore, the N = 2 current conservation equation in (3.8) descends to the following

equations in N = 1 superspace

Dα̇X = 0, D2L = D
2
L = 0. (3.12)

As a result, we see that X is just a chiral superfield while L is an N = 1 linear superfield.

Therefore, the full anomaly multiplet has eight bosonic and eight fermionic components

with the following superfield expansion

X = L〈22〉 + θαL〈2〉
α + θ2L0 + iθσµθ∂µL

〈22〉 +O(θ2θ)

L = iL〈12〉 +
i

2
θαL〈1〉

α − i

2
θα̇L

α̇

〈1〉 + iθσµθLµ +O(θ2θ, θ
2
θ)

(3.13)

where Lµ is the conserved dimension four central charge current.

Analyzing (3.7) in N = 1 superspace, we find the following equations

D
2Ĵ = 3X, DαJα = −3iL, D

2Jα = 0, D
α̇Jαα̇ = DαX (3.14)

The third equation in (3.14) follows from the first equation because X is anti-chiral with

respect to the second SUSY. The fourth equation defines Jαα̇ as the FZ multiplet of the

explicitly realized N = 1 SUSY.

Solving the second, third, and fourth equations in (3.14) we find

Jα = J 〈2〉
α + θβ

(
Jβα − 3

2
iǫβαℓ

)
+ σµ

αα̇θ
α̇
J
〈2〉
〈1〉µ + θσµθ(−J 〈2〉

µα − 1

2
(σµσ

ρJ 〈2〉
ρ )α

+
2

3
iσ β

µνα∂
νJ

〈2〉
β ) + 2θ2σµ

αα̇J
α̇

〈2〉µ + θ2θα̇

[
3

2
σµα̇
α

(
−1

2
∂µℓ+ iℓµ

)
+

i

2
σµα̇
β ∂µJ

β
α

]
+O(θ

2
θ)

Jµ = jN=1
µ + θα

(
J 〈1〉
µα +

1

3
(σµσ

ρJ 〈1〉
ρ )α

)
+ θα̇

(
J
α̇

〈1〉µ +
1

3
ǫα̇β̇(J〈1〉ρσ

ρσµ)β̇

)

+ θσνθ

(
2Tνµ − 2

3
ηµνT − 1

4
ǫνµρσ∂

[ρj
σ]
N=1

)
+

i

2
θ2∂µx− i

2
θ
2
∂µx+O(θ2θ, θ

2
θ)

(3.15)

11 The definitions in (3.11) and the conservation equation in (3.8) imply that
[
Q

〈2〉
α , X

]
= 0,

[
Q〈2〉α̇, X

]
= −2iDα̇L,

[
Q

〈2〉
α , X

]
= 2iDαL,

[
Q〈2〉α̇, X

]
= 0,

[
Q〈2〉α̇, L

]
= i

2
Dα̇X, and

[
Q

〈2〉
α , L

]
= − i

2
DαX.
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with X and L expressed in terms of these components as follows12

X = x+ θα
(
2

3
σµ
αα̇J

α̇

〈1〉µ

)
+ θ2

(
2

3
T +

i

3
∂µJ

µ

)
+O(θθ)

L = ℓ− i

2
θα
(
2

3
σµ
αα̇J

α̇

〈2〉µ

)
+

i

2
θα̇

(
2

3
σµα̇
α J 〈2〉α

µ

)
+ θσµθℓµ +O(θ2θ, θ

2
θ).

(3.16)

In writing the F component ofX , we have used the fact that our solution in (3.15) preserves

SU(2)R (∂µJ
〈i〉µ
〈j〉 = 0) to rewrite

∂µj
µ
N=1 =

1

3
∂µJ

µ. (3.17)

Furthermore, note that, as claimed above, the conserved current in L corresponds to the

central charge current since (3.15) yields

{
Qα, J

〈2〉µ
β

}
= 3iǫαβℓ

µ +

(
2iσµν

αγ∂νJ
γ
β − 2

3
iσµν

βγ∂νJ
γ
α − 2σµν

βα∂νℓ

)
, (3.18)

where the terms in parenthesis are Schwinger terms.

Of course, the solution we have derived in (3.15) is not unique. As stressed in [5][4],

there is still the freedom to choose improvement terms. In our case, these improvement

terms fill out a reduced N = 2 chiral multiplet, W , i.e., a chiral multiplet satisfying the

N = 2 generalization of the Bianchi identity,

D〈ij〉W = D
〈ij〉

W. (3.19)

Indeed, it is easy to check that for any solution J ,L〈ij〉 to (3.7), the pair

J − 3

2
(W +W ), L〈ij〉 − 1

2
D〈ij〉W, (3.20)

also satisfies the same equations with the component currents shifted by the following

improvement terms

δJ
〈j〉
〈i〉µ = 0, δℓµ = 2

√
2∂νF

µν , δJ 〈i〉
µα = 2iσ β

µνα∂
νλ

〈i〉
β ,

δTµν = −(∂ν∂µ − ηµν∂
2)(φ+ φ),

(3.21)

where λ〈i〉 are the two Weyl fermions in W , φ = W |
θ〈i〉,θ

〈i〉 is the lowest component of the

multiplet, and Fµν is the anti-symmetric tensor in Wα ≡
{
Q2

α,W
}
|
θ〈2〉,θ

〈2〉 .13

12 In (3.15) we have defined jN=1

µ ≡ 1

3
Jµ + 4

3
J

〈1〉
〈1〉µ and ℓµ = iLµ.

13 The terms given in (3.21) are improvement terms as long as the fields on the RHS vanish

sufficiently quickly as we go to infinity.
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3.3. Spontaneous SUSY breaking

We would now like to study the solutions to (3.7) as we flow along the RG of a theory

that spontaneously breaks the N = 2 SUSY completely. Deep in the IR, the spin half

projections of the two supercurrents should flow to the two independent goldstinos

Sµ〈i〉
α =

√
2f 〈i〉σµ

αα̇G
〈i〉α̇

+ ... (3.22)

where we can take the f 〈i〉 to be real and positive without loss of generality. Therefore,

from (3.16) we see that in the IR X and L contain the two goldstinos as their O(θ)

components

XIR = x+
√
2θαG〈1〉α + θ2F +O(θθ)

LIR = ℓ− i√
2
θαG〈2〉α +

i√
2
θα̇G

〈2〉α̇
+ θσµθℓµ +O(θ2θ, θ

2
θ).

(3.23)

where we have rescaled the superfields by 3/8f and redefined the goldstino fields by tak-

ing14

G〈i〉 →
f

f 〈i〉
G〈i〉. (3.24)

It will be useful to remind ourselves again of the SU(2)R transformation properties

of the various components in (3.23). For convenience, we translate table (3.9) into the

language of (3.23)
SU(2)R Dim

(X,−iL) 3 1
G〈i〉α 2 3/2
F 1 2
ℓµ 1 2

(3.25)

Note that the decay constant sitting in F is an SU(2)R singlet.

Let us now proceed with our analysis of the IR form of the anomaly multiplet. On

general grounds, we expect that unless the bosonic superpartners of the goldstinos in XIR

and LIR correspond to goldstone bosons of broken symmetries, they will acquire a mass.

Keeping these facts in mind, first consider the case of unbroken SU(2)R. At zeroth

order in an expansion in derivatives, we find that the N = 2 SUSY algebra for the linear

multiplet (see Appendix A) fixes the low energy superfields as follows

XIR =
G〈1〉G〈1〉

2F
+

G
〈2〉

G
〈2〉

2F
+

√
2θG〈1〉 + θ2F +O(∂µ),

LIR = −i
G〈1〉G〈2〉

2F
+ i

G
〈1〉

G
〈2〉

2F
− i√

2
θG〈2〉 +

i√
2
θG

〈2〉
+O(∂µ).

(3.26)

14 We give the resulting component SUSY transformations in Appendix A.
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This solution satisfies the zero momentum (i.e., zero derivative) N = 2 SUSY algebra.

However, the explicit solution in (3.26) does not satisfy the full N = 2 SUSY algebra.

Indeed, consider imposing the N = 1 chirality condition, [ξQ
〈1〉

, xIR] = 0. We then must

demand that at the one derivative level

xIR =
G〈1〉G〈1〉

2F
+

G
〈2〉

G
〈2〉

2F
− i

2|F |2
(
G〈1〉σ

µG
〈1〉

+G〈2〉σ
µG

〈2〉
)
∂µ

(
G

〈2〉
G

〈2〉

F

)

+ gµ(0)α̇(G〈i〉, G
〈2〉

)∂µ

(
G

〈1〉α̇

F

)
+ g(1)(G〈i〉, G

〈2〉
) +O(∂2),

(3.27)

where the terms in gµ(0)α̇ have zero derivatives and are independent of G
〈1〉

. Similarly, the

terms in g(1) have one derivative and are independent of G
〈1〉

.

On the other hand, imposing the anti-chirality condition with respect to the second

SUSY,
[
ξQ〈2〉, xIR

]
= 0, we find that

xIR =
G〈1〉G〈1〉

2F
+

G
〈2〉

G
〈2〉

2F
+

i

2|F |2
(
G〈1〉σ

µG
〈1〉

+G〈2〉σ
µG

〈2〉
)
∂µ

(
G〈1〉G〈1〉

F

)

+ g̃α(0)µ(G〈1〉, G
〈i〉
)∂µ

(
G〈2〉α

F

)
+ g̃(1)(G〈1〉, G

〈i〉
) +O(∂2),

(3.28)

where the terms in g̃α(0)µ have zero derivatives and are independent of G〈2〉. Similarly,

the terms in g̃(1) have one derivative and are independent of G〈2〉. Clearly, (3.27) and

(3.28) are not mutually compatible and so we conclude that the goldstinos must have

scalar superpartners in the deep IR. Since the SUSY breaking theory was assumed to be

interacting, this is unnatural and represents a contradiction.

We should note that in writing (3.27) and (3.28), we have assumed that the spin one

operator in LIR is composite, i.e.

ℓµIR = ∂ν

(
1

F
G〈1〉σ

µνG〈2〉 +
1

F
G

〈2〉
σνµG

〈1〉
)
+O(∂2). (3.29)

One may worry that it is possible to have ℓµ non-composite in the IR if, for instance, the

central charge symmetry is spontaneously broken or if ℓµIR is given by the field strength of

an abelian gauge field of an unbroken gauge symmetry. While this situation is certainly

possible, it does not affect our above reasoning. Indeed, we would find that (3.27) and

(3.28) are essentially the same up to terms proportional to the difference of the right and

left hand sides of (3.29), and so our logic is not affected.
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It follows from the above analysis that if the goldstinos of N = 2 spontaneous SUSY

breaking belong to a linear superfield of the type L〈ij〉, or equivalently (L,X), there are

no constraints compatible with N = 2 SUSY and SU(2)R that can eliminate all remaining

components. In principle, this should be possible to show directly using N = 2 superfields

which we do not use here.15 The next step would be to weaken our requirement on the

IR theory, by including other massless degrees of freedom besides the goldstinos and ℓµIR.

However, as we show below, in that case, although weaker constraints might be compatible

with N = 2 SUSY, the symmetries of the low energy theory turn out to be different from

those in the UV.

For instance, the previous reasoning does not necessarily go through when the SU(2)R

symmetry is spontaneously broken. Indeed, in such a case, the lowest components of

XIR and LIR can contain the R-axions of the broken SU(2)R since their dimensions and

quantum numbers are the same.

However, it is still useful to ask whether we can construct a consistent low energy

effective action using XIR and LIR (with the R-axions now in the lowest components). In

order to make this question meaningful, we will assume that whatever strong dynamics

takes place in the theory can be integrated out and what is left in the deep IR is a weakly

coupled theory of goldstinos and Goldstone bosons. In such a case, we expect

LIR =

∫
d4θ

(
XIRXIR − 2L2

IR

)
+

(∫
d2θfXIR + c.c.

)
+ ... (3.30)

where the ellipses contain weak interactions and kinetic terms for the other light fields.

In order for (3.30) to constitute a consistent low energy description of our original UV

theory, it must be the case that the superconformal anomaly multiplet for (3.30) matches

the (RG evolved) superconformal anomaly multiplet for the UV theory. In other words,

the anomaly multiplet for (3.30) should just be the pair (XIR, LIR) up to possible field

redefinitions. However, this is not what happens. The heuristic reason for this difference is

that the action for the linear multiplet has a different set of symmetries than the original

theory. In particular, there is no (non-trivial) conserved central charge current.

To make our discussion more precise, consider the N = 2 supercurrent for the theory

in (3.30)

J = 2
(
L〈11〉L〈22〉 −L〈12〉L〈12〉

)
. (3.31)

15 A possible starting point would be to use the off-shell formulation of the N = 2 linear

superfield used in [17] which admits also a constraint with one non-linear SUSY.
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From this expression, we then deduce the following component conservation equations

D
2Ĵ = 8fXIR + 2D

2
(L2

IR),

DαJα = 2iDαLIRDαXIR − 8ifLIR,

D
2Jα = −2iD

2
(LIRDαXIR) ,

D
α̇Jαα̇ =

8

3
Dα

(
fXIR −Dα̇LIRD

α̇
LIR

)
+ 2D

2
Dα

(
L2
IR

)
+ 2Dα̇DαXIRD

α̇
XIR.

(3.32)

Notice that this set of equations cannot be brought to the form given in (3.14) with

(X,L) → (XIR, LIR). Indeed, suppose we try to shift Ĵ so that it satisfies the first

conservation equation in (3.14). After performing this transformation, we would still find

that DαJα is not a real linear superfield. This mismatch is a symptom of the fact that

the symmetry structure of the IR theory is not compatible with the symmetry structure

of the original theory.

4. Metastable vacua in N = 2 SYM

In the previous section, we saw that any N = 2 theory with a linear superconformal

anomaly cannot break SUSY under the assumption of a weakly coupled description in the

deep IR. As we will now see, one interesting consequence of the above proof is that if this

assumption holds for N = 2 SYM, it cannot contain metastable SUSY breaking vacua.

To understand this statement, we begin by noting that in the asymptotically free

regime, dimensional analysis and U(2)R covariance tell us that, up to an overall con-

stant, the SYM supercurrent conservation equation should be (see also the discussions in

[16][14][15])

D〈ij〉J = L〈ij〉
C,SYM =

c

2
D

〈ij〉
trW

2
(4.1)

where c = 8πiβ is the one-loop beta function [18] and W is the SYM field strength

superfield. Notice that the anomaly satisfies

D(〈i〉
α L〈jk〉)

CSYM = D
(〈i〉
α̇ L〈jk〉)

CSYM = 0 (4.2)

and so it is an N = 2 linear superfield. However, unlike the linear superfield described in

the previous section, this superfield is complex (hence the subscript “C”) and so

(L〈ij〉
CSYM)† 6= ǫ〈ik〉ǫ〈jl〉L〈kl〉

CSYM (4.3)
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In particular, (4.1) and (4.3) imply that J embeds all of the conserved currents considered

in the previous section plus an additional central charge current (i.e., the central charge

current is now complex).

However, as mentioned by the authors in [13], (4.1) can be brought to the form (3.7)

by the local gauge invariant shift J → J − c
2 trW

2 + c
2trW

2
. In particular, we find

D〈ij〉J =
c

2
(D

〈ij〉
trW

2 −D〈ij〉trW 2) (4.4)

Therefore, it follows from the results of the previous section that N = 2 SYM has no

metastable vacua as long as the theory has a weakly coupled description in the IR. Alter-

natively, one can use arguments analogous to those given in the previous section for the

complex anomaly multiplet in (4.1) and reach the same conclusions.

4.1. Beyond N = 2 SYM

We can now conjecture a generalization of this argument. Indeed, notice that the

particular N = 2 representation appearing on the RHS of (4.4) is fixed by the symmetries

of the theory and the requirement that the equation be well-defined. Therefore, it seems

plausible that a whole host of theories like N = 2 SQCD (and various quiver generaliza-

tions) with arbitrary gauge group and number of flavors also cannot have weakly-coupled

metastable vacua since these theories have supercurrent multiplets with the same conserved

symmetries (conserved SU(2)R and central charge currents) as N = 2 SYM.

More precisely, consider defining a J as in (4.1) for an arbitrary non-abelian gauge

group (possibly a product gauge group consisting of many non-abelian factors) and adding

matter hypermultiplets Qi, Q̃
i transforming in an arbitrary representation of the gauge

group so that the theory is still asymptotically free. Let us also assume that we do not

deform the theory in the UV by introducing explicit SU(2)R breaking (note that we cannot

include an FI term). Then, it is easy to see that J in (4.1) should be deformed as follows

J → J +
1

2

∑

i

(
QiQ

i
+ Q̃iQ̃

i
)
. (4.5)

Therefore, the theory admits a linear superconformal anomaly and cannot posses weakly

coupled SUSY breaking vacua.
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5. Conclusions

We have shown that theories with an N = 2 linear superconformal anomaly cannot

break SUSY as long as they admit a free description in the IR. This fact strongly suggests

that a large class of theories that includes N = 2 SYM cannot have metastable SUSY

breaking vacua.

An interesting future direction would be to study generalizations of the ansatz in

(3.7) to include anomalies that describe the breaking of more symmetries (like the SU(2)R

symmetries). For example, one could imagine considering theories in which

D〈ij〉J = 3L〈ij〉, (5.1)

with real but non-conserved Lij , i.e.

D(〈i〉
α L〈jk〉) = Dα〈l〉T 〈lijk〉, D(〈i〉

α T 〈jklm〉) = D
(〈i〉
α̇ T 〈jklm〉)

= 0 (5.2)

where T 〈ijkl〉 is a real SU(2)R spin two field.16
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Appendix A. Component field commutators

The variations of the component fields in the N = 2 linear anomaly multiplet, Lij
IR,

with respect to the first SUSY are

[
ξQ〈1〉, xIR

]
=

√
2ξG〈1〉,

[
ξQ〈1〉, xIR

]
= 0

[
ξQ〈1〉, G〈1〉α

]
=

√
2ξαF,

[
ξQ〈1〉, G〈1〉α

]
= i

√
2σµ

αα̇ξ
α̇
∂µxIR

[
ξQ〈1〉, F

]
= 0,

[
ξQ〈1〉, F

]
= i

√
2ξα̇σ

µα̇α∂µG〈1〉α

[
ξQ〈1〉, xIR

]
= 0,

[
ξQ〈1〉, xIR

]
=

√
2ξG

〈1〉

[
ξQ〈1〉, G

〈1〉
α̇

]
= −i

√
2ξασµ

αα̇∂µxIR,
[
ξQ〈1〉, G

〈1〉
α̇

]
=

√
2ξα̇F

[
ξQ〈1〉, F

]
= i

√
2ξασµ

αα̇∂µG
〈1〉α̇

,
[
ξQ〈1〉, F

]
= 0

[
ξQ〈1〉, ℓIR

]
= − i√

2
ξG〈2〉,

[
ξQ〈1〉, ℓIR

]
=

i√
2
ξG

〈2〉

[
ξQ〈1〉, G〈2〉α

]
= 0,

[
ξQ〈1〉, G〈2〉α

]
= i

√
2σµ

αα̇ξ
α̇
(ℓIRµ + i∂µℓIR)

[
ξQ〈1〉, G

〈2〉
α̇

]
= −i

√
2ξασµ

αα̇(ℓIRµ − i∂µℓIR),
[
ξQ〈1〉, G

〈2〉
α̇

]
= 0

[
ξQ〈1〉, ℓµIR

]
=

√
2ξσµν∂νG〈2〉,

[
ξQ〈1〉, ℓ

µ
IR

]
= −

√
2∂νG

〈2〉
σµνξ

(A.1)

The variations of the component fields with respect to the second SUSY are

[
ξQ〈2〉, xIR

]
= 0,

[
ξQ〈2〉, xIR

]
=

√
2ξG

〈2〉

[
ξQ〈2〉, G〈1〉α

]
= 0,

[
ξQ〈2〉, G〈1〉α

]
= −i

√
2σµ

αα̇ξ
α̇
(ℓIRµ − i∂µℓIR)

[
ξQ〈2〉, F

]
= 0,

[
ξQ〈2〉, F

]
= i

√
2ξσµ∂µG〈2〉

[
ξQ〈2〉, xIR

]
=

√
2ξG〈2〉,

[
ξQ〈2〉, xIR

]
= 0

[
ξQ〈2〉, G

〈1〉
α̇

]
= i

√
2ξασµ

αα̇(ℓIRµ + i∂µℓIR),
[
ξQ〈2〉, G

〈1〉
α̇

]
= 0

[
ξQ〈2〉, F

]
= i

√
2ξσµ∂µG〈2〉,

[
ξQ〈2〉, F

]
= 0

[
ξQ〈2〉, ℓIR

]
= − i√

2
ξG〈1〉,

[
ξQ〈2〉, ℓIR

]
=

i√
2
ξG

〈1〉

[
ξQ〈2〉, G〈2〉α

]
=

√
2ξαF,

[
ξQ〈2〉, G〈2〉α

]
= i

√
2σµ

αα̇ξ
α̇
∂µxIR

[
ξQ〈2〉, G

〈2〉
α̇

]
= −i

√
2ξασµ

αα̇∂µxIR,
[
ξQ〈2〉, G

〈2〉
α̇

]
=

√
2ξα̇F

[
ξQ〈2〉, ℓµIR

]
= −

√
2ξσµν∂νG〈1〉,

[
ξQ〈2〉, ℓ

µ
IR

]
=

√
2∂νG

〈1〉
σµνξ

(A.2)
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At zero momentum (i.e., no derivatives), the algebra simplifies considerably, and the

only non-vanishing commutators are

[
ξQ〈1〉, xIR

]
=

√
2ξG〈1〉,

[
ξQ〈1〉, G〈1〉α

]
=

√
2ξαF,

[
ξQ〈1〉, xIR

]
=

√
2ξG

〈1〉

[
ξQ〈1〉, G

〈1〉
α̇

]
=

√
2ξα̇F ,

[
ξQ〈1〉, ℓIR

]
= − i√

2
ξG〈2〉,

[
ξQ〈1〉, ℓIR

]
=

i√
2
ξG

〈2〉
(A.3)

and

[
ξQ〈2〉, xIR

]
=

√
2ξG

〈2〉
,
[
ξQ〈2〉, xIR

]
=

√
2ξG〈2〉,

[
ξQ〈2〉, ℓIR

]
= − i√

2
ξG〈1〉

[
ξQ〈2〉, ℓIR

]
=

i√
2
ξG

〈1〉
,
[
ξQ〈2〉, G〈2〉α

]
=

√
2ξαF,

[
ξQ〈2〉, G

〈2〉
α̇

]
=

√
2ξα̇F

(A.4)

Appendix B. Some simple examples

In this appendix we will consider some simple examples to illustrate the above

discussion. To that end, consider the following N = 2 U(1) gauge theory with N = 2 field

strength W = (Φ,Wα)

L =

∫
d2θ1d

2θ2 F(W ) + h.c. (B.1)

where

F(W ) =
1

4
W 2 + ... (B.2)

is the N = 2 prepotential and the ellipses contain possible higher-order interactions.

Clearly, if the higher-order interactions are non-vanishing, the theory has a superconformal

anomaly.

We know that this example must fall within the class of theories we have considered

because it appears, for example, in the low energy theory on the Coulomb branch of SU(2)

SYM [2].17 To see this fact more explicitly, we can construct the N = 2 supercurrent

multiplet and anomaly by starting with the operator

Ĵ = −Φ∂ΦF − Φ∂ΦF −
(
F̃ + F̃

)
. (B.3)

17 Note also that the expression in (B.1) makes it clear that the theory is SU(2)R invariant

for arbitrary F . Indeed, F is itself SU(2)R invariant and so too is the N = 2 chiral integration

measure.
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The first two terms in (B.3) are (minus) the Kähler potential for Φ that descends from

(B.1),(B.2), and the two terms in the parenthesis are local chiral and antichiral shifts. We

define the chiral function F̃ , up to an uninteresting constant, as follows

∂ΦF̃ ≡ ∂ΦF − Φ∂2
ΦF . (B.4)

From (B.3) we construct the full supercurrent multiplet by the action of the second set of

supercharges. The crucial point is that the anomaly multiplet is just

X = −1

3

((
∂ΦF − Φ∂2

ΦF
)
D

2
Φ+ 2Φ∂3

ΦF W 2 +D
2F̃
)

L =

√
2

3

(
Dα̇

[
W

α̇
(
∂ΦF − Φ∂2

Φ
F
)]

+Dα
[
Wα

(
∂ΦF − Φ∂2

ΦF
)]) (B.5)

Clearly X is chiral and L is real and linear. Therefore, this example is in our class of

theories, and it is easy to see directly that SUSY cannot be broken in this case. Finally,

notice that for a trivial prepotential the theory is superconformal and X = L = 0.

Massive hypermultiplets

For our next example, let us consider a simple generalization of the original example

in [12] and examine a theory of free massive hypermultiplets

L =

∫
d4θ

(
Q

i
Qi + Q̃iQ̃i

)
+

(∫
d2θ

1√
2
MiQiQ̃

i + h.c.

)
. (B.6)

Without loss of generality we can take the masses to be real. The hypermultiplets are

doublets under SU(2)R and have charge −1 under the R-symmetry that leaves the manifest

N = 1 superspace invariant. Therefore, we can construct the following Ĵ operator for the

theory

Ĵ =
1

2

∑

i

(
QiQ

i
+ Q̃iQ̃

i
)
. (B.7)

From (B.7) and the action of the second SUSY it follows that the anomaly multiplet is

X =
2
√
2

3

∑

i

MiQiQ̃
i,

L = −
√
2

3

∑

i

Mi

(
QiQ

i − Q̃iQ̃
i
)
.

(B.8)

This theory is therefore in the class we have considered in this paper, and it is straight

forward to see directly that SUSY is not broken. As a final note, we see that in the limit

of vanishing masses, the theory is superconformal and X = L = 0.
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We can also consider coupling the massive hypermultiplets to an N = 2 U(1) gauge

multiplet

L =

∫
d4θ

(
ΦΦ +

∑

i

(
Q

i
eniV Qi + Q̃ie−niV Q̃i

))

+

(∫
d2θ

(
1

4
W 2 +

ni√
2
(Φ +Mi)QiQ̃

i

)
+ h.c.

)
,

(B.9)

where we have taken the prepotential to be trivial for simplicity. Using the fact that the

free superconformal R-charge of Φ under the U(1)R symmetry that leaves the N = 1

superspace invariant is +2 we can construct the Ĵ operator

Ĵ = −ΦΦ+
1

2

∑

i

(
QiQ

i
+ Q̃iQ̃

i
)
. (B.10)

It then follows that the (classical) anomaly multiplet is just

Xcl =
2
√
2

3

∑

i

(Mi −M1)QiQ̃
i,

Lcl = −
√
2

3

∑

i

(Mi −M1)
(
QiQ

i − Q̃iQ̃
i
)
.

(B.11)

Without loss of generality, we have shifted the definition of Φ to Φ +M1 so as to absorb

M1 6= 0 into the vacuum expectation value (VEV) of Φ. By examining (B.10) we see that

this corresponds to an improvement transformation since we are only considering a trivial

prepotential for Φ (in the quantum theory, with a non-trivial prepotential, this is no longer

true, but we consider the classical case for simplicity). Since the VEV of Φ breaks the

superconformal symmetry spontaneously, it does not contribute to the classical anomaly.

This example is also clearly in our class of theories, and it is easy to check directly

that SUSY is not broken.
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