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Abstract
In a recent paper, we proposed closed-form expressions for the super-
conformal indices of the A A, n1 2 3( )- and A D, n1 2( ) Argyres–Douglas (AD)
superconformal field theories (SCFTs) in the Schur limit. Following up on
our results, we turn our attention to the small S1 regime of these indices.
As expected on general grounds, our study reproduces the S3 partition func-
tions of the resulting dimensionally reduced theories. However, we show
that in all cases—with the exception of the reduction of the A D,1 4( ) SCFT—
certain imaginary partners of real mass terms are turned on in the corre-
sponding mirror theories. We interpret these deformations as R symmetry
mixing with the topological symmetries of the direct S1 reductions. Moreover,
we argue that these shifts occur in any of our theories whose four-dimensional

2 = superconformal U 1 R( ) symmetry does not obey an SU(2)
quantization condition. We then use our R symmetry map to find the four-
dimensional ancestors of certain three-dimensional operators. Somewhat
surprisingly, this picture turns out to imply that the scaling dimensions
of many of the chiral operators of the four-dimensional theory are
encoded in accidental symmetries of the three-dimensional theory. We also
comment on the implications of our work on the space of general 2 =
SCFTs.

Keywords: conformal field theory, extended supersymmetry, superconformal
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1. Introduction

Argyres–Douglas (AD) superconformal field theories (SCFTs) were first discovered twenty
years ago at special points on the Coulomb branch of four-dimensional 2 = gauge theories
where mutually non-local BPS states become massless [1]. These non-Lagrangian SCFTs and
their generalizations [2, 3] exhibit many properties that are unfamiliar from the perspective of
weakly coupled theories. For example, their 2 = chiral primaries2 generally have non-
integer (rational) conformal dimensions, the a and c central charges of these theories can scale
linearly with the rank [4], their flavor anomalies are typically non-integer, and these SCFTs
are often isolated (see, however, the recent work [5]; see also [6] for a largely complementary
discussion).

While many of the above properties can be inferred simply from the existence of a
Seiberg–Witten (SW) curve and a UV Lagrangian from which these theories emerge in the
IR, more detailed properties of these theories have long remained hidden. For example, the
superconformal indices of these theories are only now being constructed and explored3. The
main reasons for this long delay are that the superconformal R symmetries of AD theories are
accidental from the perspective of UV Lagrangian descriptions and that AD theories are
defined by taking various subtle scaling limits. As a result, the powerful machinery of
localization is not available for computing the index and for learning more about the protected
spectra of these theories.

However, by generalizing a beautiful relation between q-deformed two-dimensional
Yang–Mills theory and the Schur limit of the superconformal index [8] and by gaining
inspiration from the class  construction of AD theories [3, 9], we recently proposed and
tested a closed-form expression for the index of two infinite sets of AD theories [10]: the
A A, n1 2 3( )- and A D, n1 2( ) SCFTs4. More precisely, we suggested a form for the Schur limit of
the A A, n1 2 3( )- and A D n1 2( ) indices.

This limit of the index counts all operators of a theory that are annihilated by the 1+ and

2,
˜

˙ - supercharges [12]5 weighted by fermion number, a fugacity, q, for E−R where E and R
are the scaling dimensions and SU 2 R( ) weights of the contributing operators, and fugacities,
as, for the flavor symmetries6. We can express this index formally as

q aTr 1 . 1.1F E R

s

n

s
f

1

s( ) ( ) = - -

=

One of the main results of [10] was to provide strong evidence that for the A A, n1 2 3( )-
theory

q a q R f q a; dim ; , 1.2A A
R

q R
n

, n1 2 3
( ) ( ) [ ] ˜ ( ) ( )( )

( )
  å=-

2 By 2 = chiral primaries, we mean primaries annihilated by all the 2 = anti-chiral Poincaré supercharges.
These operators are sometimes referred to as ‘Coulomb branch’ operators.
3 See [7] for a discussion of a particularly simple limit of the superconformal index for a large class of AD theories.
4 The label n is an integer related to the rank of these theories (i.e., the complex dimension of the corresponding
Coulomb branch). For the A A, n1 2 3( )- SCFT, the rank is n 2,- while for the A D, n1 2( ) theory, the rank is n 1.- The
class  realization of these theories in terms of the 2, 0( ) theory compactified on a sphere with an irregular singularity
(and a regular singularity in the case of the A D, n1 2( ) theories) was given in [3]. For a recent discussion of the
embedding in a four-dimensional gauge theory, see [11].
5 Here − and +̇ are values of Lorentz indices, and 1, 2 are values of SU 2 .R( ) We follow the conventions of [7].
6 By flavor symmetry, we mean a continuous symmetry commuting with the 2 = superconformal algebra whose
corresponding current does not sit in a multiplet with higher-spin symmetries.
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where q q1 ,
k

n
2

1( ) ( ) º -
=

¥ - k q q q q ,q
k k
2 2

1
2

1
2( )[ ] ( )º - -- - and R runs over all

the irreducible representations of su(2) (with dimension Rdim ). The factor f q a;R
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(interpreted as a wave function for the irregular singularity in the class  construction) is
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In equation (1.3), J3 and C R R Rdim dim 1 42 ( ) ( )( )= -
are the Cartan generator and quadratic Casimir of the su(2) representation.

Another main result of [10] was to provide strong evidence that for the A D, n1 2( ) theory

q a b f q a f q b; , ; ; . 1.4A D
R

R
n

R, n1 2
( ) ˜ ( ) ( ) ( )( )

( )
 å=

Here, f̃ is as in equation (1.3), while the remaining factor (interpreted as the wave function of
the regular singularity) is defined as

f q b P E
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where xTrR
su

R
J2 2 3[ ]( )c = is the character for the representation R, and the ‘plethystic

exponential’ is defined as P E F q a a. . ; , , exp .ℓ k
F q a a

k1 1
; , ,k k

ℓ
k

1( )[ ( )] ( )åº =
¥ 

In this paper, we will concern ourselves with studying the three-dimensional limit of
equations (1.2) and (1.4). On general grounds, this limit must reproduce the S3 partition
functions of the corresponding theories reduced on a circle [13–15]. However, this limit is
subtle, and we will drop certain divergent pre-factors that were described in [10]. While these
pre-factors contain interesting data about the four-dimensional theory (for example, the a – c
conformal anomaly), they do not play a role in what follows.

As we will see in much greater detail below, the three-dimensional limits of
equations (1.2) and (1.4) contain some surprises. For one, we will find that the resulting S3

partition functions are constructed with respect to R symmetries that generally include mixing
with the topological symmetries of the S1 reductions. This mixing turns out to encode data
about the scaling dimensions of the 2 = chiral primaries of the four-dimensional AD
theories. This result is somewhat unexpected since the Schur limit does not receive con-
tributions from such operators. However, the pole structure of the index turns out to know
something about these operators and implies certain relations between the physics on the
Coulomb branch (recall that the vevs of 2 = chiral primaries parameterize the Coulomb
branch) and the physics of Schur operators. This discussion can also be taken as further
evidence for the simplicity of the AD theories we consider (since the Coulomb branch
spectrum is not completely independent data).

In fact, the S1 reductions of our theories themselves are very simple: they can also be
described by the long-distance limits of renormalization group (RG) flows from certain
asymptotically free Abelian theories in three dimensions. In terms of the variables of these
Abelian theories, we find another small surprise: the 2 = chiral primaries of the AD
theories map to monopole operators in three dimensions7. While this mapping is somewhat
unusual from the perspective of the reduction of four-dimensional Lagrangian theories, it is
not completely surprising in our case. Indeed, our RG flows from four dimensions never pass

7 In terms of the mirror three-dimensional theories, these monopole operators are standard matter operators.
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through the weak-coupling limit of the corresponding three-dimensional Abelian theories8. In
fact, we expect generalizations of our operator map between four-dimensional chiral pri-
maries and three-dimensional monopole operators to apply to many more general theories.

The plan of this paper is as follows. In the next section, we introduce a main tool used in
our subsequent analysis and explain how it manifests itself in the study of the index. This
object is an interpolating R symmetry that exists as we flow from four dimensions in the UV
to three dimensions in the IR when we put our AD theories on a circle. In the UV, this R
symmetry is the four-dimensional U U SU1 1 2R R R( ) ( ) ( )Ì ´ symmetry, while in the IR it is
an R symmetry that can mix with the topological symmetries of the long-distance three-
dimensional theories. In section 3, we argue that this mixing occurs if the four-dimensional
U 1 R( ) symmetry does not obey an SU(2) quantization condition. We give some examples of
theories in which we believe this mixing does not occur (including the A D,1 4( ) theory). In
sections 4 and 5 we then apply our formalism to the A A, n1 2 3( )- SCFTs and the remaining
A D, n1 2( ) theories. We describe the resulting operator maps involving the 2 = chiral
primaries in four dimensions and the resulting monpole operators in three dimensions. In
section 6 we comment on potential completions of this operator map, and in section 7 we
conclude and mention several open problems.

2. The interpolating R symmetry

Our theories of interest are four-dimensional 2 = SCFTs. As such, their R symmetry is
SU U2 1 .R R( ) ( )´ One particularly important class of operators below is the set of 2 =
chiral primaries. An operator, , in this class satisfies

Q , 0, 2.1i ( )⎡⎣ ⎤⎦ =a

where i = 1, 2 is an SU 2 R( ) index, and 1, 2a = is a left-handed Lorentz index. is charged
under U 1 R( ) but is a singlet under SU 2 .R( ) Moreover, the scaling dimension of , E ,( ) is
determined by itsU 1 R( ) charge, r ,( ) via (we are following the normalization conventions of
[7])

E r . 2.2( ) ( ) ( ) = -

If the theory has a Coulomb branch, it can be parameterized by vevs of these types of
operators.

Another interesting set of protected operators are scalar primaries of short mutliplets that
are charged under SU 2 R( ) but are neutral underU 1 ,R( ) i i k1 2  (the i 1, 2a = are symmetrized
SU 2 R( ) indices). These operators have dimension

E j R k, 2.3i i
R

i i 1 1k k1 2 1 2( ) ( ) ( ) ( )  = = =  

where jR is the total SU 2 R( ) spin, and R is the SU 2 R( ) Cartan. In our conventions, the highest-
weight components of such operators satisfy

, , 0. 2.41 1 1
2

1 1˜ ( )˙
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦   = =a a

 

Note that the lowest-weight components, ,2 2  satisfy

, , 0. 2.51
2 2 2 2 2˜ ( )˙⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦   = =a a
 

8 We thank N.Seiberg for a discussion of this point.
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Vevs of operators of the type given in equations (2.4) and (2.5) parameterize the Higgs branch
(if one exists).

When we write down the superconformal index of an AD theory, we are, roughly
speaking, placing the SCFT on S S3 1´ with twisted S1 boundary conditions and computing
the partition function [16–18] (we will only consider the case of the round S3 in this paper).
The resulting curvature couplings give rise to non-conformal terms However, we preserve a
U 1 R( ) symmetry and a Cartan I SU 2R

R3 ( )Ì subgroup. In the flat-space limit, these sym-
metries become, respectively, the elements r and R of the four-dimensional superconformal R-
symmetry described above.

Let us now consider the regime of small S1. To that end, we fix the S3 to have unit radius
and define r2 ,1b p= where r1 is the radius of the S1. Then we take the limit 0.b  In this
regime, our theories can effectively be thought of as three-dimensional9.

Three-dimensional 4 = superconformal theories on R3 have an SU SU2 2L R( ) ( )´
superconformal R symmetry. The 2 4 = Ì = superconformal R-symmetry, r ,d

2
3
= is the

U 1 R( ) Cartan subgroup of the diagonal SU SU SU2 2 2 .D L R( ) ( ) ( )Ì ´ When we consider the
partition function of the theory on S3, we preserve this diagonal r .d

2
3
= More generally, we can

consider placing the theory on S3 by coupling it to the current multiplet for any R symmetry
related to the superconformal one by mixing with the U(1) flavor symmetries of the three-
dimensional theory [17, 19, 20]10. These mixings, which appear as imaginary partners of real
mass parameters and Fayet–Iliopoulos (FI) terms in the S3 partition function, ZS3[17], will
play an important role in what follows (our conventions for the real and imaginary parts of the
parameters appearing in ZS3 are opposite those in [17])11.

Therefore, if we start from the superconformal index in four-dimensions, and we take the
0b  limit, the most general R symmetry we can expect to appear in ZS3 is

r r c T h T , 2.6d d a
a

i
i

3
2

3 · · ( )
 = + +=

where the c a and h i are real constants, the Ta
 are generators for U(1) symmetries acting on

operators charged under SU 2 ,L( ) and the Ti
 are generators for U(1) symmetries acting on

operators charged under SU 2 .R( ) The superscripts ‘’ and ‘’ stand for ‘Coulomb branch’
and ‘Higgs branch’ respectively, since chiral primaries charged under these symmetries may
(sometimes) acquire vevs that parameterize branches of these two types (we call these latter
operators ‘Higgs branch’ or ‘Coulomb branch’ operators; note that we can in principle
consider theories which also have, in the same duality frame, twisted cousins of Higgs branch
and Coulomb branch operators, i.e., operators with opposite quantum numbers under
SU SU2 2L R( ) ( )´ [22]; however, we will not consider such theories in this paper)12.Note that
the dimensions of such operators are given by their R symmetry quantum numbers. In
particular, equations (2.2) and (2.3) are replaced by

9 In this limit, the index generally develops an essential singularity in a pre-factor that is governed by the linear
combination of anomaly coefficients a−c. In the case of our AD theories, this pre-factor was studied in [10] and
will be mentioned in passing below. When writing the S3 partition function, we strip off these pre-factors, and they do
not play an important role in our discussion.
10 The superconformal R symmetry maximizes the free energy of the theory on S3[19].
11 Recall that FI terms are the real mass parameters for topological symmetries in R3 [21].
12 In four dimensions, 2 = chiral primaries (recall that the Coulomb branch is parameterized by vevs of such
operators), ,i cannot be charged under flavor symmetries. The reason is that flavor symmetry multiplets have
primaries of SU 2 R( ) spin one and are therefore forbidden from appearing in the i ī

† OPE [23]. On the other hand, in
three dimensions, SU 2 L( ) -charged chiral primaries (the three-dimensional analog of the four-dimensional 2 =
chiral primaries) are charged under SU 2 ,L( ) and current multiplets corresponding to the a

 (and their non-Abelian
partners) have primaries of SU 2 L( ) spin one. Therefore, it follows that SU 2 L( ) -charged chiral primaries can be
charged under the corresponding symmetries.

J. Phys. A: Math. Theor. 49 (2016) 045401 M Buican and T Nishinaka

5



E j k E j ℓ, , 2.7a a
L

a a i i
R

i i, , , , , ,k k ℓ ℓ1 2 1 2 1 2 1 2( ) ( )( ) ( ) ( )      = = = =   

where aj and ik are symmetrized SU 2 L( ) and SU 2 R( ) indices respectively, a a, k1 2
 is an

SU 2 L( ) -charged primary (a subset of these operators parameterize the Coulomb branch if it
exists), and i i, , ℓ1 2

 is an SU 2 R( ) -charged primary (a subset of these operators parameterize
the Higgs branch if it exists).

Using the fact that the i
 can only act on SU 2 R( ) -charged operators and the fact that the

SU 2 R( ) Cartan is preserved on S S ,3 1´ we expect the following identification of symmetries
as we go from four to three dimensions via the RG flow in the 0b  limit

R I h T , 2.8R d i
i3

,3 · ( ) +

where I R d
3

,3 is the Cartan of SU SU SU2 2 2 .R L R( ) ( ) ( )Ì ´ By similar reasoning for
SU 2 L( ) -charged operators and the action of a

 (and using the fact that r is preserved), we
expect

r I c T , 2.9L d a
a3

,3 · ( ) +

where I L d
3

,3 is the Cartan of SU SU SU2 2 2L L R( ) ( ) ( )Ì ´ 13.
In the cases of interest below, the resulting long-distance three-dimensional theories will

be interacting 4 = SCFTs that can also be described as the IR limits of certain Abelian
gauge theories with fundamental and bifundamental matter (recall, however, that our RG
flows from the AD theories never pass through the weakly coupled limit of these gauge
theories). Let Z u v,S

a i3 ( ) be the resulting S3 partition function for such a theory. The variables
ua and v i are complex parameters whose real parts are the FI parameters and real mass
parameters [17] (as mentioned above, our conventions differ from those in [17]; in particular,
up to a real overall constant, we have v iv ,s

s~ where vs is the background vector multiplet
vev in [17]). On the other hand, the imaginary parts of these variables parameterize the
mixing of the manifest U 1 R( ) symmetry on S3 with the Coulomb branch and Higgs branch
symmetries (the discussion in [17] is at the level of 2 = SUSY). Note that unlike uRe a( )
and vRe ,i( ) the imaginary parts are not parameters of the flat-space theories. If we turn off the
real masses and FI parameters (i.e. we are at the critical point of the flat-space theory), the S3

partition function we should compare with the 0b  limit of the four-dimensional super-
conformal index is

Z u v, . 2.11S
a i

u ic v ih,a a i i3 ( )∣ ( )= =

Here the imaginary parts of ua and v i are turned on because, if we start from the four-
dimensional superconformal index, the R-symmetry that couples to the theory on S3 is
equation (2.6). Under mirror symmetry, we have the following identification

Z u v Z u v, , , 2.12S
a i

u ic v ih S
dm i a

u ih v ic,
3

,a a i i i i a a
3 3( ) ( )˜ ˜ ( )

˜ ˜
«

= = = =

since the Higgs and Coulomb branch data are exchanged. We will find it simpler in our work
below to compute the partition function in the mirror and compare this result with the 0b 
limit of our superconformal index. In particular, the signature of mixing with Coulomb branch
symmetries in the direct S1 reduction will be mixing with Higgs branch symmetries in the
mirror.

13 The equations (2.8) and (2.9) can be thought of as following from the map

r R r c T h T , 2.10d a
a

i
i2

3 · · ( )
 +  + +=

where the four-dimensional R symmetry on the LHS of equation (2.10) acts non-trivially only on Q1a and Q .1˜ ȧ
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3. The SU(2) quantization condition

In equation (2.9), we saw that when flowing from four dimensions to three dimensions (as
0b  ), the U U SU1 1 2R R R( ) ( ) ( )Ì ´ generator, r, can map to a linear combination of the

Cartan generator of the SU 2 L( ) R-symmetry, I ,L d
3

,3 and various topological symmetries that
act on the three-dimensional Coulomb branch.

How do we know when there is necessarily non-trivial mixing of the R symmetry with
the topological symmetries? One situation in which this mixing must occur is when the four-
dimensionalU 1 R( ) symmetry does not obey an SU(2) quantization condition. More precisely,
we claim r can flow to I L d

3
,3 only if

r n I
n

2
, 3.1L d

3
,3

min( ) · ∣ ( ) 
= =

where is any four-dimensional operator that does not flow to zero in the three-dimensional
SCFT, n is an integer that depends on , and I L d

3
,3

min is the minimal absolute value of the

SU 2 L( ) weight of an operator in the IR SCFT14. Clearly I
1

2
,L d

3
,3

min = since there are three-

dimensional supercurrents with weight 1/2. If the condition in equation (3.1) is violated by
some , then there must be mixing with some other symmetries, since, by definition, the
Cartan of SU 2 L( ) satisfies an SU(2) quantization condition. These additional symmetries are
topological symmetries of the three-dimensional theory.

From this discussion, we expect that generic AD theories (and generic 2 = SCFTs)
will have non-trivial mixing in equation (2.9), i.e. there will be some c 0.a ¹ Indeed, these
theories generically have 2 = chiral primaries of non-integer and, more importantly, non-
half-integer dimension. By equation (2.1) these non-half-integer dimension operators translate
into non-half-integer U 1 R( ) charges. Since the four-dimensional Coulomb branch is embed-
ded non-trivially in the three-dimensional Coulomb branch, it follows that these operators
cannot flow to zero in three dimensions (at least the ones whose vevs parameterize the moduli
space of the flat-space theory). Therefore, we expect that we will find u ic 0a a= ¹ as in
equation (2.11). Alternatively, in the mirror description, we will find v ic 0a a˜ = ¹ (see
equation (2.12)). We will find ample evidence for this picture below.

3.1. Some theories obeying the SU (2) quantization condition

Before discussing our AD theories of interest, which, as we have explained, should gener-
ically violate equation (3.1), let us first mention some theories that apparently do satisfy this
condition. Indeed, many theories considered in the literature seem to satisfy equation (3.1)
under some assumptions we will discuss. This fact might explain why R symmetry mixing
with topological symmetries has not (to our knowledge) been observed in the 0b  limit of
the superconformal index before.

One set of examples that satisfy equation (3.1) are the Lagrangian SCFTs in four
dimensions. For example, the 2 = chiral primaries are Casimirs of the gauge group and
hence have integer U 1 R( ) charge. Although we cannot be sure that there are not operators
which violate equation (3.1) at some point on the conformal manifold of these theories (recall
that the operators subject to our quantization condition need not be protected operators), we
find it unlikely.

Upon reducing to three dimensions, a Lagrangian SCFT maps to the three-dimensional
gauge theory with the same gauge group and matter content (however, in three dimensions,

14 Note that the operators, , in equation (3.1) need not transform as parts of short multiplets.

J. Phys. A: Math. Theor. 49 (2016) 045401 M Buican and T Nishinaka

7



there is no longer a marginal coupling)15. The four-dimensional Casimirs of the gauge group
(i.e. the 2 = chiral primaries built out of the adjoint chiral multiplets) map to the Casimirs
of the gauge group in three dimensions. This fact is compatible with our discussion because
the adjoint chiral multiplets in three dimensions, ,iF also have scaling dimension one (in the
Abelian case, this scaling dimension follows from the fact that the iF are related by 4 =
SUSY to a topological current of canonical dimension).

Let us now consider some more interesting examples of theories that apparently satisfy
equation (3.1). After discussing these theories, we will turn our attention to theories that
violate this condition.

3.1.1. The TN theories. In [24], Gaiotto constructed an important class of four-dimensional
2 = SCFTs that can be engineered by putting the six-dimensional 2, 0( ) theory on a sphere

with three full punctures. The Schur limit of the superconformal index of the TN theories was
constructed in [8] (these results were generalized away from the Schur limit in [12, 25]), and
takes the form

q a a a q
R

q

q n
a a, , ,

1

dim
exp

1

1
,

3.2

q s n

n

n s
n

R s1 2 3 , ,
1

3

1
adj1 2 3 [ ] ( )( ) ( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥  å  å c c=

-
r r r

l l = =

¥

l

where λ is a label for representations, R ,l of SU N ,( ) Rc l
is the corresponding character, and

Rdim q[ ]l is the q-deformed dimension

R
j i

j i
dim . 3.3

q
i j

i j q

q
[ ] [ ]

( )
⎡⎣ ⎤⎦


l l

=
- + -

-
l

<

Note that the il in equation (3.3) are just the lengths of the rows of the Young diagram
corresponding to R .l

The authors of [26] took the 0b  limit of equation (3.2) (dropping divergent quantities
that do not affect ZS3) and matched it onto the three-dimensional mirror partition function for
the corresponding ‘star-shaped’ quiver gauge theory [27] (see also the discussion in [28]). In
particular, they found that the sum over representations in equation (3.2) is replaced by an
integral over a gauge group for a diagonal flavor symmetry of three linear quiver ‘tails’ that
comprise the IR mirror theory

Z m m Z md , 3.4
S

m

i
i

a,3d 2

1

3
N

3 ( )( ) ( ) ò = D
=

where Zi is the partition function of the ith quiver tail gauge theory, ma are the fugacities for
the diagonal symmetry, m m msinh ,

a b
a b( ) ( ) pD = -

<
and we have turned off the flat-

space parameters in equation (3.4) (i.e. we are in the superconformal limit of the flat-space
theory).

Note that there are no va˜ in the mirror partition function equation (3.4) and so there are no
ua in the direct S1 reduction. This result implies that the IR limit of the r symmetry in
equation (2.9) is just I .L d

3
,3 We claim this discussion is compatible with our SU(2)

quantization condition in equation (3.1). While we have not checked this claim for all the
operators, , of the TN theory subject to equation (3.1) (moreover, we are not aware of a
method that would allow us to perform this check), we can already see it is true for a highly

15 For a comparison of the index and the corresponding ZS3 in the case of SU(2) gauge theory with N 4,f = see [14].
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non-trivial set of operators: the 2 = chiral primaries. In the TN theories, these operators are
integer dimensional and hence have integer r ( ) and n .

3.1.2. The A1;D4ð Þ theory. While it is generically true that our AD theories do not satisfy the
condition in equation (3.1), there is an important exception: the A D,1 4( ) SCFT. As in the case
of the TN theories, we have not checked that equation (3.1) holds for all operators that flow to
non-trivial operators in the S1 reduction of A D, .1 4( ) However, we have strong evidence that
this is the case. Indeed, the A D,1 4( ) theory has a unique 2 = chiral generator, ,0 of
dimension 3/2 (the absence of higher-spin cousins of this operator was discussed in [7]).
Therefore, all 2 = chiral operators satisfy equation (3.1).

While consistency of our above discussion does not directly demand that there be no
mixing of r with topological symmetries upon reduction to three dimensions (we have not
investigated whether our quantization condition can be turned into an if and only if
statement), such a situation is compatible with our quantization condition (and provides some
relatively weak empirical evidence that our quantization condition might be a biconditional
statement). To see that there is indeed no such mixing, let us first write down the index for
A D, .1 4( ) We can find a useful representation of this quantity by taking n = 2 in equation (1.4)
and rewriting it as follows16

q a b

b

q q b b

q b a

q ba

q b a

q b a

; ,

;

1

1 1

A D

SU

k s

k k k s

k s

k k k s

k s

,

vect
2

1
2

0
1

1

2 1 2 2 2

2

2 1 2 2 2

2 1

1 4

2 2

1
2

2 2

1
2

( )
( ) ( )

( )

( )

( )

( )

( ) ( ) ( )⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥




å å=

- -
-

-

-

¥ =

¥

-
=

+ - +

+

+ - - -

+ -

q b . 3.5k k
k

2 1
2 1 )( ) ( )( )c+ +

+

Let us take q e ,= b- a e ,i 1= bz- and b e i 2= bz- (where a and b are the flavor SU(3)
fugacities). Taking the 0b  limit of this equation, we find (dropping a divergent and flavor-
independent pre-factor discussed in [10])

k is is
lim

1

sinh 2

1

2

i

2

1

sinh 2
tanh

2
tanh

2
. 3.6

A D A D
d d

k s s

s

0
, ,

4 3

2 0 , 1

1
2

1
2 1 1 2 2

2

1 2 1 2

1 4 1 4

1 2

2

( )
( ) ( )

( )

( )

( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

  å åpz z z

p
pz

p z z p z z

º
-

+ + +

=-
+

-
-

b



=

¥

=

-



Let us now compare equation (3.6) to ZS3 for the S
1 reduction of A D, .1 4( ) The resulting

theory has a simple mirror description consisting of the IR limit of aU U1 11 2( ) ( )´ 4 =
gauge theory [3] (see also the discussion in [30]). The matter fields are X with charge 1, 1 ,( ) A
with charge 1, 0 ,( ) and Â with charge 0, 1 .( ) X, A, and Â have corresponding partners Y, B,
and B̂ of opposite charge. There is also a U(1) flavor symmetry, J ,˜ under which
J X J A J A 1 2,˜( ) ˜( ) ˜( ˆ )= = = and the partners have opposite charge. Note that this flavor
symmetry translates into a U(1) symmetry of the Coulomb branch of the direct S1 reduction17.

16 Based on the discussions of the chiral algebras of the E6 theory and the SU(2) theory with Nf = 4 in [29], a natural
guess for the Schur index of the A D,1 4( ) theory is that it is given by the torus partition function of the SU(3) affine
Kac–Moody algebra at level k .3

2
= - Indeed, our expressions below and in equation (1.4) (for n = 2) coincide with

this quantity [10].
17 It would be interesting to understand if this symmetry descends from some symmetry in four dimensions.
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The S3 partition function for this theory can be computed using the methods in [31]

Z d d
e

cosh cosh cosh
1

2 cosh cosh cosh
, 3.7

S
A D m, ,3d

1 2

i

1 1 2 2

4 4 4

3
1 4

1 1 2 2

1 2 1 2

( )
( )

( )

( ) ò s s
ps p s s ps

p p p

=
-

=

p x s x s

x x x x

+

+

where the ix are the FI parameters of the three-dimensional theory. It is straightforward to
check that

Z . 3.8A D
d d

S
A D

,
4 3 ,

1 4 3
1 4 ( )( )

( )  

When we write ‘;’, we mean that the two sides of the relation agree up to an unimportant
overall factor that is independent of the continuous parameters of the theories. Note that we
have identified 1

1

4 1 2( )z x x= - and .2
1

4 1 2( )z x x= +
In particular, we see that the three-dimensional reduction of the index and the S1

reduction of the partition function agree (up to an overall constant that is not directly relevant
to our analysis) without the need to turn on an imaginary partner of the real mass parameter
corresponding to J̃ in the mirror theory. This result is therefore consistent with our above
discussion. In particular, we have

r I . 3.9L d
3

,3 ( )

By equation (2.7), we see that the four-dimensional 2 = chiral generator, ,0 should map
to an operator of dimension 3/2 in three dimensions.

To understand which operator 0 maps to in the S1 reduction, let us again consider the
mirror. In particular, we are interested in the operators that parameterize the Higgs branch of
the mirror (in the flat-space limit) since they map to operators that parameterize the Coulomb
branch of the direct S1 reduction (in the flat-space limit). The mirror theory has an 4 =
superpotential

W AB XY AB XY . 3.101 2( )( ) ˆ ˆ ( )= F + + F +

As a result, we have

AB AB XY. 3.11ˆ ˆ ( )= = -

Let us define XY ,0
22

̃ = BXB,1 2
222˜ ˆ =- AYA ,1 2

222˜ ˆ = where the superscripts give the
SU 2 R( ) quantum numbers, and the subscripts give the symmetry quantum numbers under the
U 1 J( ) ˜ symmetry. In terms of these variables, we find

. 3.121 2
222

1 2
222

0
22 3( )˜ ˜ ˜ ( )  =-

In particular, we see that the Higgs branch of the mirror (in the flat-space limit) is C Z .2
3

Under mirror symmetry

, , , 3.131 2
222

1 2
222

1 2
222

1 2
222

0
22

0
22˜ ˜ ˜ ( )     « « «- -

where the operators on the RHS of the first two mappings are monopole operators (of
dimension 3/2) parameterizing the C Z2

3 Coulomb branch of the direct S1 reduction, and

0
22 is the vector multiplet chiral scalar. The subscripts on the RHS of equation (3.13) are

charges with respect to the topological symmetry, J, of the direct S1 reduction (J J˜ « under
mirror symmetry). As a result, we see that the four-dimensional operator, ,0 maps to the
following linear combination of monopole operators that parameterize the Coulomb branch of
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the S1 reduction (in the flat space limit)

c c , 3.140 1 2
222

1 2
222 ( )   ++ - -

where c± are undetermined constants. Therefore we conclude that, unlike in the case of the
reduction of a Lagrangian SCFT, 2 = chiral operators in the A D,1 4( ) SCFT map to
monopole operators in three dimensions.

4. S1 reduction of the A1;A2n−3ð Þ theory

In this section we turn our attention to one of the main theories we wish to study: the
A A, n1 2 3( )- theory (with n 3 so that it is interacting). As we will see, unlike the examples
discussed so far, the A A, n1 2 3( )- SCFT does not satisfy the SU(2) quantization condition in
equation (3.1). As a result, we will find an intricate pattern of R symmetry mixing with
topological symmetries of the resulting S1 reduction.

Two pieces of information about this theory are relevant to our discussion below. First,
the A A, n1 2 3( )- theory has a U(1) flavor symmetry for n 3> and an SU(2) flavor symmetry
for n = 3 (the free hypermultiplet case, n = 2, also has an SU(2) flavor symmetry). Second,
this theory has rank n 2- and a spectrum of 2 = chiral generators

E
n

ℓ

n
ℓ n2 1

1
, 0 3. 4.1ℓ( ) ( )⎜ ⎟⎛

⎝
⎞
⎠  = - - -

We see from this expression that, with the exception of the free hypermultiplet theory, all the
A A, n1 2 3( )- theories violate the SU(2) quantization condition (3.1) in the 2 = chiral sector.

In order to understand the quantitative details of this picture, let us first rewrite the Schur
index in equation (1.2) as follows

q a

q

q q q q
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q
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1 1
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Taking 0b  with q e= b- and flavor fugacity a e ,i= bz- we find (recall that we are
dropping a flavor-independent divergent pre-factor)

k n is k n s

n n n

lim
1 1

1

2
i

i
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2 i

2
tanh

2 i

2
. 4.3

A A A A
d d
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The S1 reduction of the A A, n1 2 3( )- theory flows to a three-dimensional 4 = SCFT that
is also the IR limit of the U 1 n 2( ) - gauge theory with matter content summarized in table 1.
The theory also has hypermultiplet partners, qi˜ , with opposite quantum numbers under the
U 1 n 2( ) - gauge symmetry.
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However, in what follows, we will find it easier to work with the mirror [3, 30]. This
theory is just SQED with N n 1f = - . We denote the fundamental flavors as XI and the anti-
fundamental 4 = partners as Y I . The S3 partition function for the mirror is

Z u v, d
e

cosh
, 4.4

S
A A m a

u v n
, ,3d

, 0

i

1
n

a3
1 2 3 ( )˜ ˜ ∣ ( )( )

˜ ˜ ò s
ps

=x

p xs

= = -
-

where the FI parameter, x , corresponds to the real mass parameter in the direct S1 reduction.
Note that this theory has an SU n 1( )- flavor symmetry that is accidental from the point of
view of the A A, n1 2 3( )- SCFT. Under this symmetry, the XI transform as fundamentals and the
Y I transform as anti-fundamentals.

We should now try to match the pole structures of equations (4.3) and (4.4). To perform
this comparison, we must first express z in terms of x . These variables are clearly related since
z is the vev of (the zeroth component of) the background gauge field for the flavor symmetry
in four dimensions, and x is dual (by mirror symmetry) to the vev of a background real scalar
coupled to the corresponding flavor symmetry in three dimensions. In fact, it turns out that the
precise relation is

2
. 4.5( )z

x
=

Given this dictionary, it is straightforward to check that the pole structures in equations (4.3)
and (4.4) do not match.

We claim this mismatch can be explained in terms of the RG flow of theU 1 R( ) symmetry
and the resulting mixing with topological symmetries of the three-dimensional theory. Before
explaining this statement for the case of general n, let us consider the A A,1 3( ) SCFT.

The A A,1 3( ) theory has a single 2 = chiral generator of dimension 4 3 which clearly
violates equation (3.1). This means that there should be non-trivial R-symmetry mixing of the
form (2.9). Indeed, in order to find Z

S
A A

A A
d d,

,
4 3

3
1 3

1 3

( )
( )  (as before, when we write ‘;’, we mean

that the two sides of the relation agree up to an unimportant overall factor that is independent
of the continuous parameters of the theories), we must turn on an imaginary partner of the real
mass in the three-dimensional mirror

Table 1. The matter fields (and charges) of the three-dimensional gauge theory that
flows to the S1 reduction of the A A, n1 2 3( )- theory.

U 1 1( ) U 1 2( ) L U 1 n 3( ) - U 1 n 2( ) -

q1 1 0  0 0

q2 1 1 L 0 0

M M M O M M

qn 2- 0 0 L 1 1

qn 1- 0 0 L 0 1
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Z u v, d
e
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tanh

i
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tanh

i

6
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3
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
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The ambiguity in the sign of the imaginary part of ṽ reflects the fact that the partition function
is invariant under an SU 2( ) Weyl reflection18. Turning on the imaginary partner of the real
mass term breaks the accidental flavor symmetry from SU U2 1( ) ( ) and corresponds to
turning on an imaginary partner of the topological real mass term in the direct S1 reduction
that breaks the Coulomb branch symmetry from SU U2 1( ) ( ) .

Using equations (2.9) and (2.12), we read off the following flow upon compactifying
on S1

r I H , 4.7L d
3

,3 1
3

( ) +

where H is the topological symmetry, i.e., the Cartan of the Coulomb branch SU 2( )
symmetry. In writing equation (4.7), we have chosen a particular sign in equation (4.6):
Z , i 3

S
A A,
3

1 3 ( )( ) x (we assign the contribution from the lowest SU 2( ) weight component of the
hypermultiplet doublet to the first factor in the denominator of the integrand of equation (4.6)).
Under a Weyl reflection, equation (4.7) becomes r I HL

3
1

3
 - .

Given equation (4.7), we can ask how the 2 = chiral generator, 0 , is mapped under
the RG flow. Since this operator has r 4 30( ) = - , we must find a chiral operator of the
same charge under the RHS of equation (4.7). Working in the mirror theory, we should find a
chiral operator of charge I4 3 under HR m

3
,3d 1

3
˜- + (where H H I Iand R m L d

3
,3d

3
,3˜ « « under

mirror symmetry). The chiral operators satisfying this condition are X Y X Yand2
1

1
2 2( ) . Under

mirror symmetry, these operators map to the dimension one monopole operator, 1
22- , (this is

the primary moment map for the multiplet that contains a symmetry current associated with
the enhancement of the topological symmetry to SU 2( )) and the dimension two monopole
operator, 1

22 2( )+ , respectively, where the subscript is the SU 2( ) Coulomb branch symmetry
weight. As a result, we see that

c c , 4.80 0, 1 1
22

0, 2 1
22 2( ) ( )   +- - + +

where c cand0, 1 0, 2- + are constants. Under a Weyl reflection we have 1
22

1
22 «- + , since the

Weyl reflection exchanges the positive and negative roots of SU 2( ).
While we do not know how to compute the coefficients in equation (4.8), we can argue

that c 00, 1 ¹- . To understand this statement, note that, since vevs of 0 parameterize the four-
dimensional Coulomb branch (in the flat space limit), we expect this operator to flow to a
three-dimensional operator whose vev parameterizes a subspace of the hyperkähler Coulomb
branch moduli space (in the flat space limit). Indeed, the Coulomb branch moduli space of the
S1 reduction (in the flat space limit) is described by

, 4.91
22

1
22

0
22 2( ) ( )  =- +

and so we expect c 00, 1 ¹- (presumably c 00, 2 =+ by dimensional analysis in the flat-space
limit). By an appropriate rescaling we can then rewrite equation (4.8) as

18 The relative factor of two appearing in ṽ versus the terms i 6 in the arguments of the trigonometric functions on
the RHS of equation (4.6) is due to the fact that we take the generator of the SU 2( ) Cartan to be H diag 1, 11

2
( )= - .
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c . 4.100 1
22

0, 2 1
22 2( ) ( )   +- + +

In particular, we conclude that the non-trivial scaling dimension of the 2 = chiral
generator in four dimensions is encoded in the quantum numbers of the monopole operator
that is related by 4 = SUSY to currents associated with the SU 2( ) accidental symmetry in
three dimensions.

Let us now consider the general case. The mirror of the S1 reduction of the A A, n1 2 3( )-
theory was described around equation (4.4). It has an SU n 1( )- flavor symmetry (that is
accidental from the point of view of the four-dimensional theory) under which the X YandI

I

transform as fundamentals and anti-fundamentals respectively. Up to unimportant Weyl
reflections that generalize the previous discussion for n 3= , we find that in order for
Z and

S
A A

A A
d d,

,
4 3n

n3
1 2 3

1 2 3

( )
( ) -

-
in equation (4.3) to coincide (up to an overall constant independent

of the continuous parameters) we must turn on the following SU n U1 1 n 2( ) ( )-  -

breaking imaginary partners of the real masses in the case of even n (i.e., n p2= )19
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Similarly, in the case of odd n (with n p2 1= + ), we have
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The imaginary partners of the real masses in equations (4.11) and (4.12) correspond to
the following shift of the R2 4 = Ì = symmetry in the mirror

r I I
n

a a H
1

2
1 1 , 4.13m L m R m

a

n
n a

a
3d

3
,3d

3
,3d

1

2

( ) ( ) ˜ ( )å + + - +
=

-
+

where the Ha˜ are the Cartans of the SU n 1( )- flavor symmetry (normalized such that
H H2 Tr a b ab( ˜ ˜ ) d= ). Therefore, we conclude that in the RG flow from the four-dimensional

theory to the direct S1 reduction, we have

r I
n

a a H
1

2
1 1 , 4.14L d

a

n
n a

a3
,3

1

2

( ) ( ) ( )å + - +
=

-
+

where H Ha a˜ « under mirror symmetry. In particular, the Ha are generators of the SU n 1( )-
Coulomb branch symmetry of the direct S1 reduction

19 We suppress the obvious arguments of Z
S

A A m, ,3dp
3

1 4 3( )- for notational simplicity.
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The resulting weights for the fundamental representation are
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From these weights, we can define the n 2- simple roots to be a a a 1a n n= - + .
A particularly important set of operators parameterize the n2 2( )- complex dimensional

Coulomb branch (in the flat space limit) via the n 2- equations

, 4.17a a
22 22

0,
22

0, 1
22

a a
( )   =a a- +

where the a0,
22 are the dimension one vector multiplet chiral scalars for the U 1 n 2( ) - gauge

symmetry (and n b

n
b0, 1

22
1

2
0,
22 å= -- =

- ), the 22
a

a are monopole operators of dimension one
that correspond to the simple roots of the SU n 1( )- symmetry (they are primaries for
multiplets that contain the corresponding conserved currents), and the 22

a
 a- are monopole

operators corresponding to the reflected roots. We also have the following equations

, 4.18
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where the ℓwith 122
a a ℓ0 0

 >n n- +
are monopole operators for the positive (non-simple) roots20.

There is an analogous set of equations for operators corresponding to the negative roots.
Using the same arguments as around equation (4.10), we find the following operator map

c c

c
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, , 4.19
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where the ci, ja are constants (by a rescaling we can set the coefficient of 22
n 2

 a- -
to one). The

ellipses on the RHS of each of the ‘¢ indicate possible (undetermined) mixings with various
other dimension one monopole operators corresponding to other roots with the same charge
under the RHS of equation (4.14) (and higher dimension monopole operators with the same
charge under the R symmetry, although such mixings presumably vanish by dimensional

20 Under mirror symmetry, X Y X Y X Y, ,a a
a

a
a

a
a

0,
22 22 1 22

1a a  « « «a a
+

- + , and X Ya
a ℓ22

a a ℓ0 0 0
0 «n n-
+

+ . The
operator relations discussed above can then be straightforwardly derived in the mirror theory (see also the recent
discussion in [32]).
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analysis). Note that, by our above arguments, there must at least be one non-trivial monopole
operator of dimension one appearing on the RHS of each of the ‘→’ in equation (4.19)
(otherwise we would find that the operators whose vevs parameterize the Coulomb branch in
four dimensions flow to operators whose vevs do not specify a subspace of the Coulomb
branch in three dimensions). As a final comment, we observe that the U 1 R( ) charges of the
operators on the LHS of equation (4.19) agree with the charges of the operators on the RHS of
equation (4.19) under the matching of symmetries in equation (4.14).

Therefore, we see that the 2 = chiral generators of the four-dimensional theory are in
one-to-one correspondence with the simple roots of the accidental SU n 1( )- Coulomb
branch symmetry of the S1 reduction. Moreover, the scaling dimensions of these generators
are encoded in the quantum numbers of monopole multiplets that contain the conserved
currents of the SU n 1( )- symmetry21.

5. S1 reduction of the A1;D2nð Þ theory

In this section, we will study the general A D, n1 2( ) theories. In the discussion around
equation (3.8), we saw that, in the special case of the A D,1 4( ) SCFT, the S3 partition function
of the S1 reduction coincided with the 0b  limit of the superconformal index (after
dropping singular flavor-independent terms that measure a linear combination of the con-
formal anomalies of the four-dimensional theory [10]). Furthermore, we argued that the
reason for this matching was that the A D,1 4( ) theory satisfies the quantization condition in
equation (3.1).

However, for n 2> , the A D, n1 2( ) SCFT violates equation (3.1) since it has
n 1 2- = chiral generators of dimensions

E
n

ℓ

n
ℓ n2 1

1

2
, 0 2. 5.1ℓ( ) ( )⎜ ⎟⎛

⎝
⎞
⎠  = - - -

As a result, we expect that we will have non-trivial mixing of the R symmetry and the
topological symmetries in the three-dimensional limit22. The n 2> case also differs from the
n 2= case in one other important way: the flavor symmetry is SU U2 1( ) ( )´ instead
of SU 3( ).

In order to determine the expected mixing, we will first find it useful to rewrite the Schur
index in equation (1.4) as follows
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21 Just as in the discussion below equation (4.8), the Weyl group acts on the SU n 1( )- quantum numbers of the
operators on the RHS of equation (4.19) in the same way it acts on the roots.
22 Note that the highest dimension generator has E 2 1

n0
1

2( )( ) = - . The remaining operators have precisely the

same dimensions as the generators of the A A, n1 2 3( )- theory. Intuitively, this matching follows because, in the class 
construction, these latter generators are associated with the irregular singularity while the highest dimension
generator is associated with the regular singularity [3]. This intuition can be made more precise, because Higgsing the
regular singularity induces a flow to the A A, n1 2 3( )- theory [10].
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Taking q0 with eb  = b- and flavor fugacities a be and ei i1 2= =bz bz- - , we find
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The S1 reduction of the A D, n1 2( ) SCFT flows to an 4 = SCFT that is the IR limit of a
U 1 n 1( ) - gauge theory with matter content summarized in table 2. The theory also has
hypermultiplet partners, qi˜ , with opposite quantum numbers under the U 1 n 1( ) - gauge
symmetry.

Just as in the case of the A A, n1 2 3( )- theory, we will find it easier to work with the mirror
theory [3, 30]. In this case, the mirror is the IR limit of a U 1 2( ) gauge theory with matter
content summarized in table 3. The X I nwith 1, , 1I = - have partners Y I of opposite
gauge charges, and A and Â have partners B and B̂ with opposite gauge charges. Note that
there is an SU n 1( )- flavor symmetry that acts on the XI via the fundamental representation
and on the Y I via the anti-fundamental representation. Moreover, all the fields in table 3 are
charged under a U 1( ) flavor symmetry with charge 1 2 (their partners have charge 1 2- ).
These SU n U1 1( ) ( )- ´ flavor symmetries are mapped to Coulomb branch symmetries in
the direct S1 reduction described by table 2.

Table 2. The matter fields (and charges) of the three-dimensional gauge theory that
flows to the S1 reduction of the A D, n1 2( ) theory.

U 1 1( ) U 1 2( ) L U 1 n 2( ) - U 1 n 1( ) -

q1 1 0 L 0 0

q2 1 0 L 0 0

q3 1 1 L 0 0

 M M O M M

qn 0 0 L 1 1

qn 1+ 0 0 L 0 1

Table 3. The matter fields in the mirror theory and their charges.

U 1 1( ) U 1 2( )

XI 1 1

A 1 0

Â 0 1
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The S3 partition function for the mirror is
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where we have suppressed the obvious dependence of the LHS on u vandi a˜ ˜ . We can again try
to match the pole structures of equations (5.4) and (5.3) as we did in the case of n 2= using
the identification
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However, it is straightforward to check that this matching does not work for n 2> .
As in the case of the A A, n1 2 3( )- theories, we can obtain Z
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on SU n U1 1 n 2( ) ( )-  - breaking imaginary partners of the real masses in the mirror. For
even n (with n p2= ), we find
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while for odd n (with n p2 1= + ), we have
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The above imaginary partners of the real masses describe (upon performing a mirror
symmetry transformation) the following RG flow of the four-dimensional U 1 R( ) charge

r I
n

a a H
1

2
1 1 . 5.8L d

a

n
n a

a3
,3

1

2

( ) ( ) ( )å + - +
=

-
+

Note that the mixing in equation (5.8) matches precisely the mixing in the A A, n1 2 3( )- theory
described in equation (4.14). In particular, the Ha and corresponding weights are given as in
equations (4.15) and (4.16) respectively (we again define the n 2- simple roots of
SU n 1( )- to be a a a 1a n n= - + ). This matching is consistent with the fact that we can flow
to the A A, n1 2 3( )- SCFT by Higgsing the regular singularity of the A D, n1 2( ) theory [10] (note
that this Higgsing preserves the Coulomb branch symmetries since we do not turn on vevs for
SU 2 L( ) -charged operators).
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Analogously to the case of the A A S, n1 2 3
1( )- reduction, a particularly interesting set of

operators parameterize the hyperkähler Coulomb branch (in the flat space limit) via the
following equations
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where the i0,0,
22 are the vector multiplet chiral scalars for the U 1 n 1( ) - gauge symmetry, the

0,
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a
 a are the monopole operators corresponding to the simple roots, the 0,

22
a

 a- are the
monopole operators corresponding to the reflections of the simple roots, the
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22

a a ℓ0 0
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are the monopole operators corresponding to the positive (non-
simple) roots, and the ,

222
i

1
2

 n  are monopole operators of dimension 3 2.23 The first quantum

number in the subscripts of the operators in equation (5.9) is the charge under the U 1( )
Coulomb branch flavor symmetry (this symmetry maps to a U 1( ) flavor symmetry of the
matter in the mirror discussed above equation (5.4)).

As in the case of the A A, n1 2 3( )- theory, we should demand that the 2 = chiral
generators in four dimensions flow to the operators in three dimensions whose vevs para-
meterize non-trivial subspaces of the Coulomb branch (in the flat space limit). Moreover,
consistency of the operator maps with the flow to the A A, n1 2 3( )- theory requires that the

iwith 1i  flow to linear combinations that include at least one monopole operator of
dimension one. These requirements imply that
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with the ellipses parameterizing mixing with other dimension one and higher monopole
operators with the same R charge (although mixings with higher dimensional operators
presumably vanish on dimensional grounds). For the operator of the regular singularity, we
find

c c c c, 0 or 0, 5.110 ,
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where c are undetermined constants, and the ellipses include possible mixing with higher
dimension monopole operators (which again likely vanish).

As a result, we see that, just as in the case of the A A, n1 2 3( )- theory, the scaling
dimensions of the 2 = chiral operators of the A D, n1 2( ) theory are encoded in the quantum

23 There is an equation analogous to the second one in equation (5.9) for the negative roots. Note also that under
mirror symmetry,
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. The operator relations discussed above can then be straightforwardly derived in the mirror theory

(see also the recent discussion in [32]).
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numbers of the low-dimensional monopole operators in the S1 reduction (in particular, for
n 3> , we see that the quantum numbers of the monopole operators associated with acci-
dental symmetries in three dimensions play an important role).

6. Comments on completing the operator map

In equation (3.14), (4.10), (4.19), (5.10), and (5.11) we argued that certain linear combina-
tions of monopole operators that partially parametrize the Coulomb branch in the three-
dimensional IR SCFT (in the flat space limit) descend from 2 = chiral operators in the
four-dimensional UV AD theory. Therefore, it is natural to ask if we can find a four-
dimensional interpretation for the remaining operators that parameterize the Coulomb branch
in three-dimensions (in the flat space limit).

In general such a question is ill-defined. If we start from a well-defined operator at short
distance, then it follows that this operator must flow to a well-defined operator at long
distance. On the other hand, if we start with a well-defined operator in the IR, it need not
come from a well-defined operator in the UV.

Still, we have seen that the four-dimensional 2 = chiral operators map to linear
combinations of monopole operators that are related to the currents arising in the symmetry
enhancement of the IR three-dimensional SCFT (or, in the case of the 0 operator of the
A D S, n1 2

1( ) reduction, a monopole operator of the next-to-lowest dimension). As a result, it is
tempting to imagine that the remaining linear combinations of monopole operators and IR
descendants of three-dimensional vector multiplet scalars come from well-defined quantities
in four dimensions that are part of some deeper structure of the parent AD theory.

While we do not have anything definite to say about this possibility, we can list the
constraints on these potential ancestors (again, assuming they are well-defined, which need
not be the case). A priori, the four-dimensional ancestors might be local or non-local.

If the four-dimensional ancestors are non-local, they could potentially be related to the
line operators discussed in [33]. If the four-dimensional operators are local, they may
transform as parts of long multiplets or as parts of short multiplets. If they are part of long
multiplets, we cannot say anything further. On the other hand, if the four-dimensional
ancestors are part of local short multiplets (as in the case of the ancestors of the linear
combinations described above), then we can say something about their possible super-
conformal representations.

Let us first consider the four-dimensional ancestors of the IR limits of the three-
dimensional vector multiplet chiral scalars in the theories described in tables 1 and 2 (there are
n 2- such operators in the S1 reduction of the A A, n1 2 3( )- SCFT and n 1- such operators in
the S1 reduction of the A D, n1 2( ) SCFT). In three dimensions, these operators have
j I1, 1L

L d
3

,3= = - , and j 0R = . Furthermore, they are uncharged under the topological
symmetries discussed above and so, by equations (2.9) and (2.8), their four-dimensional
ancestors should have r j1 and 0R= - = .

Clearly, there are no chiral operators with these quantum numbers in our AD theories, since
they would correspond to freeU 1( ) multiplets. Moreover, such operators cannot be primaries in

, ¯ , or ̂ type multiplets since R 0= (these multiplets become chiral in this case)24. The ̂

24 Here we are using the nomenclature of [34] (see also the earlier work [35] which uses different terminology). The
highest-weight primaries of the  multiplets are annihilated by the Q1

a supercharges (and Q 2
a as well if R 0= ; the ̄

multiplets are the conjugate multiplets). The highest-weight primaries of the ̂ multiplets are annihilated by
Q Qand1

2˜ ˙a a. When R 0= , the B̂ mutltiplet is trivial since its heighest-weight primary is also annihilated
by Q Qand2

1˜ ˙a a.
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type multiplets are also ruled out since r 1= - implies that j j j1 and j˜ ( ˜= + are the left-
handed and right-handed Lorentz spins respectively) and so, upon reduction to three dimen-
sions, such operators do not have scalar components25. Our operators of interest in four-
dimensions also cannot be primaries of scalar type  multiplets since the highest weight
primaries of these multiplets are annihilated by Qi 2( ) . In three dimensions, this property would
imply that the adjoint chiral scalars are free, which is not correct (similar arguments rule out the
higher-spin  multiplets).

The only remaining possibility for a short local UV ancestor is a primary of type
j j0, 1 ,1 2( )̄ - (i.e., an operator that is annihilated by Qi

2( ˜ ) ). These multiplets are captured by the
index, but not by any of the special limits discussed in [12]. More generally, we can attempt
to apply similar reasoning to the other SU 2 L( ) -charged operators that parameterize the
Coulomb branch in the three-dimensional theory. However, we leave a more detailed
investigation of such multiplets (and whether they actually have a sensible four-dimensional
interpretation) to future work.

7. Conclusions

We have seen that the three-dimensional limits of the A A A D, and ,n n1 2 3 1 2( ) ( )- theories
contain some surprises. In particular, we saw that, when compactifying these theories on S1,
their U 1 R( ) symmetries flowed to three-dimensional R symmetries that mixed with topolo-
gical symmetries of the corresponding S1 reductions. Using this mixing we argued that the

2 = chiral primaries of the AD theories flowed to monopole operators of the three-
dimensional descendants, and we saw new connections between theU 1 R( ) quantum numbers
of the four-dimensional 2 = chiral operators and the accidental symmetries of the
reduction.

These results lead to some open questions. A partial list of these questions is as follows:

• Find a method to compute the undetermined constants in equations (3.14), (4.10), (4.19),
(5.10), and (5.11).

• Understand if (some of) the remaining operators that parameterize the Coulomb branch of
the S1 reductions have well-defined four-dimensional interpretations. If so, are these local
operators or non-local operators in four dimensions? Are they part of short multiplets or
long multiplets?

• Is our SU 2( ) quantization condition a biconditional statement? In particular, is it true that
a theory satisfying the quantization condition must necessarily have no mixing of its R
symmetry with topological symmetries of the S1 reduction? We saw some modest
empirical evidence in favor of this statement in the A D,1 4( ) example we studied.

• Generic AD theories (and, presumably, generic 2 = SCFTs) violate the SU 2( )
quantization condition in equation (3.1). This fact implies that there should typically be
non-trivial Coulomb branch symmetries in the corresponding S1 reductions that mix with
the R symmetry. In the case of the A A A D, and ,n n1 2 3 1 2( ) ( )- theories, these symmetries
were topologicalU 1( ) symmetries that enhanced to accidental non-Abelian symmetries in
the IR. Does this enhancement always occur?

25 The spin zero ̂ multiplets have highest weight components that are annihilated by Q Qand1 2
2

2( ) ( ˜ ) [34]. On the
other hand, if the left-handed spin of the multiplet, j, is non-zero, then the spin j 1

2
- contraction with Q1

a vanishes

(and similarly for the right-handed spin, j ,˜ and the spin j 1

2
˜ - contraction with Q2˜ ȧ).
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• What does the existence of non-trivial Coulomb branch symmetries of the S1 reduction of
generic AD theories tell us about the space of 2 = SCFTs? Can we use properties of
three-dimensional 4 = theories to say something general about the 2 = chiral
spectra of 2 = SCFTs in four dimensions? Can we, perhaps, prove that 2 = SCFTs
in four dimensions necessarily have rational dimensional 2 = chiral operators?

• On a related note, can we use any results found while answering the questions in the
previous item to show that a cand for 2 = SCFTs are necessarily rational? Since the
rational numbers are countable, does the relation between four and three dimensions shed
light on the nature of the resulting counting problem?

• Can we realize constraints similar to the ones discussed in this paper in flows between
other dimensions?
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