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Abstract Many visual surveillance tasks, e.g. video sum-
marisation, is conventionally accomplished through analysing
imagery-based features. Relying solely on visual cues for
public surveillance video understanding is unreliable, since
visual observations obtained from public space CCTV video
data are often not sufficiently trustworthy and events of in-
terest can be subtle. We believe that non-visual data sources
such as weather reports and traffic sensory signals can be ex-
ploited to complement visual data for video content analysis
and summarisation. In this paper, we present a novel un-
supervised framework to learn jointly from both visual and
independently-drawn non-visual data sources for discover-
ing meaningful latent structure of surveillance video data.
In particular, we investigate ways to cope with discrepant
dimension and representation whilst associating these het-
erogeneous data sources, and derive effective mechanism
to tolerate with missing and incomplete data from different
sources. We show that the proposed multi-source learning
framework not only achieves better video content clustering
than state-of-the-art methods, but also is capable of accu-
rately inferring missing non-visual semantics from previously-
unseen videos. In addition, a comprehensive user study is
conducted to validate the quality of video summarisation
generated using the proposed multi-source model.
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1 Introduction

Visual features and descriptors are often carefully designed
and exploited as the sole input for surveillance video content
analysis and summarisation. For instance, optical or particle
flow is typically employed in activity modelling (Hospedales
et al, 2011; Wang et al, 2009; Wu et al, 2010), foreground
pixel feature is used for multi-camera video understanding (Loy
et al, 2012), space-time image gradient is adopted for crowd
analysis (Kratz and Nishino, 2012), and mixture of dynamic
textures is used for video segmentation (Chan and Vascon-
celos, 2008) and anomaly detection (Li et al, 2013).

A critical task in visual surveillance is to automatically
make sense of massive amount of video data by summaris-
ing its content using higher-level intrinsic physical events1

beyond low-level key-frame visual feature statistics and/or
object detection counts. In most contemporary techniques,
low-level imagery visual cues are typically exploited as the
only information source for video summarisation (Kang et al,
2006; Pritch et al, 2008; Feng et al, 2012; Lee et al, 2012;
Lu and Grauman, 2013a). On the other hand, in complex
and cluttered public scenes there are intrinsically more inter-
esting and salient higher-level events that can provide more
meaningful and concise summarisation of the video data.
However, such events may not be visually well-defined (eas-
ily detectable) nor detected reliably by visual cues alone. In
particular, surveillance visual data from public spaces is of-
ten inaccurate and/or incomplete due to uncontrollable sources
of variation, changes in illumination, occlusion, and back-
ground clutters (Gong et al, 2011).

1 Spatio-temporal combinations of human activity or interaction
patterns, e.g. gathering, or environmental state changes, e.g. raining.
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Fig. 1: The overview of the proposed multi-source driven video summarisation framework. We consider a novel setting
where multiple heterogeneous sources are present during the model training stage. The proposed Multi-Source Clustering
Forest discovers and exploits latent correlations among heterogeneous visual and non-visual data sources both of which can
be inaccurate and not trustworthy. In deployment, our model uncovers visual content structures and infer semantic tags on
previously-unseen video data for video summarisation.

In this study, we wish to exploit non-visual auxiliary in-
formation to complement the unilateral perspective from vi-
sual observations. Examples of non-visual sources include
weather report, GPS-based traffic data, geo-location data,
textual data from social networks, and on-line event sched-
ules. The auxiliary data sources are beneficial to visual data
modelling because despite that visual and non-visual data
may have very different characteristics and are of different
natures, they depict the common physical phenomenon in
a scene. They are intrinsically correlated, although may be
mostly indirect in some latent spaces. Effectively discover-
ing and exploiting such a latent correlation space can facil-
itate the underlying data structure discovery and bridge the
semantic gap between low-level visual features and high-
level semantic interpretation.

Challenges - Nevertheless, it is non-trivial to formulate a
framework that exploits both visual and non-visual data for
video content analysis and summarisation, both algorithmi-
cally and in practice.

Algorithmically, unsupervised mining of latent correla-
tions and interactions between heterogeneous data sources
faces a number of challenges: (1) Disparate sources signif-
icantly differ in representation (continuous or categorical),
and largely vary in scale and covariance2. In addition, the
dimension of visual sources often exceeds that of non-visual
information to a great extent (>2000 visual dimensions vs.

2 Also known as the heteroscedasticity problem (Duin and Loog,
2004).

<10 non-visual dimensions). Owing to this dimensional-
ity discrepancy problem, a straightforward concatenation of
features will result in a representation unfavourably inclined
towards the imagery data. (2) Both visual and non-visual
data in isolation can be inaccurate and incomplete.

In practice, auxiliary data sources, e.g. weather, traffic
reports, and event time tables, may be rather unreliable in
availability. Specifically, the reports may not be released on-
the-fly at a synchronised time stamp with the surveillance
video stream. In addition, existing video control rooms may
not necessarily have direct access to these sources. This ren-
ders models that expect complete visual and non-visual in-
formation during deployment impractical.

Our solution - In this study, we address this multi-source
learning problem in the context of video summarisation, con-
ventionally based on visual feature analysis and object de-
tection or segmentation. In particular, we formulate a novel
framework that is capable of performing joint learning given
heterogeneous multi-sources (Figure 1). We consider visual
data as the main source and non-visual data as the auxil-
iary sources, since we believe visual information still plays
the main role in video content analysis. During training, we
assume the access to both visual and non-visual data. The
model performs multi-source data clustering and discovers
a set of visual clusters tagged along with non-visual data dis-
tribution, e.g. different weathers and traffic speeds. We term
the model as multi-source model. During the deployment
stage, we only assume the availability of previously-unseen
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video data since non-visual data may not be accessible due
to the aforementioned limitations. Since the learned model
has already captured the latent structure of heterogeneous
types of data sources, the model can be used for semantic
video clustering and non-visual tag inference on previously-
unseen video sequence, even without the non-visual data.
Subsequently, key clips are automatically selected from the
discovered clusters. The final summary video can be pro-
duced by chronologically compositing these key clips en-
riched by the inferred tags.

Contributions - The main contributions of this work are:

1. We propose a unified multi-source learning framework
capable of discovering semantic structures of video con-
tent collectively from heterogeneous visual and non-visual
data. This is made possible by formulating a novel Multi-
Source Clustering Forest (MSC-Forest) that seamlessly
handles multi-heterogeneous data sources dissimilar in
representation, distribution, and dimension. Although both
visual and non-visual data in isolation can be inaccurate
and incomplete, our model is capable of uncovering and
subsequently exploiting the shared latent correlation for
better data structure discovery.

2. The model is novel in its ability to accommodate par-
tial or completely missing non-visual sources. In partic-
ular, we introduce a joint information gain function that
is capable of dynamically adapting to arbitrary amount
of missing non-visual information during model learn-
ing. In model deployment, only visual input is required
for inferring missing non-visual semantics.

Extensive comparative evaluations are conducted on two
public surveillance videos captured from both indoor and
outdoor environments. Comparative results show that the
proposed model not only outperforms the state-of-the-art
methods (Huang et al, 2012; Criminisi and Shotton, 2012)
for video content clustering and structure discovery, but also
is more superior in predicting non-visual tags for previously-
unseen videos. The robustness of the proposed model is fur-
ther validated by a user study on video summary quality.

2 Related Work

Multi-modality learning - There exist studies that exploit
different sensory or information modalities from a single
source for data structure mining. For example, Cai et al. (Cai
et al, 2011) propose to perform multi-modal image cluster-
ing by learning a commonly shared graph-Laplacian matrix
from different visual feature modalities. Heer and Chi (Heer
and Chi, 2001) combine linearly individual similarity matri-
ces derived from multi-modal webpages for web user group-
ing. Karydis et al. (Karydis et al, 2009) present a tensor
based model to cluster music items with additional tags. In

terms of video analysis, the auditory channel and/or tran-
scripts have been widely explored for detecting semantic
concepts from multimedia videos (Zhang et al, 2004; Fu
et al, 2013), summarising highlights in news and broadcast
programs (Taskiran et al, 2006; Gong, 2003), or locating
speakers (Khalidov et al, 2011). User tags associated with
web videos (e.g. YouTube) have also been utilised (Wang
et al, 2010; Toderici et al, 2010; Wang et al, 2012). In con-
trast, surveillance videos captured from public spaces are
typically without auditory signals nor any synchronised tran-
scripts and user tags available. Instead, we wish to explore
alternative non-visual data drawn independently elsewhere
from multiple sources, with inherent challenges of being in-
accurate and incomplete, unsynchronised to and may also be
in conflict with the observed visual data.

Multi-source learning - An alternative multi-source learn-
ing mechanism can be clustering ensemble (Strehl and Ghosh,
2003; Topchy et al, 2005) where a collection of clustering in-
stances is generated and then aggregated into the final clus-
tering solution. Typically only single data source is consid-
ered, but it can be easily extended to handle multi-source
data, e.g. creating a respective clustering instance for each
source. Nonetheless, cross-source correlation is ignored since
the clustering instances are separately formed and no inter-
action between them is involved. A closer approach to ours
is the Affinity Aggregation Spectral Clustering (AASC) (Huang
et al, 2012), which learns data structure from multiple types
of homogeneous information (visual features only). Their
method generates independently multiple affinity data ma-
trices by exhaustive pairwise distance computation for ev-
ery pair of samples in every data source. It suffers from un-
wieldy representation given high-dimensional data inputs.
Importantly, despite that it seeks for optimal weighted com-
bination of distinct affinity matrices, it does not consider
correlation between different sources in model learning, sim-
ilar to clustering ensemble (Strehl and Ghosh, 2003; Topchy
et al, 2005). Differing from the above models, our Multi-
Source Clustering Forest overcomes these problems by gen-
erating a unified single affinity matrix that captures latent
correlations among heterogeneous types of data sources. Fur-
thermore, our model has a unique advantage in handling
missing non-visual data over (Strehl and Ghosh, 2003; Topchy
et al, 2005; Huang et al, 2012).

Video summarisation - Contemporary video summarisa-
tion methods can be broadly classified into three paradigms:
(1) key-frame-based (Kim et al, 2014; Khosla et al, 2013;
Lee et al, 2012; Cong et al, 2012; Wolf, 1996; Zhang et al,
1997; Truong and Venkatesh, 2007; Money and Agius, 2008),
(2) segment-based (Gygli and Van Gool, 2015; Chu et al,
2015; Sun et al, 2014; Potapov et al, 2014; Gygli et al, 2014;
Zhao and Xing, 2014; Lu and Grauman, 2013b; Cong et al,
2012), and (3) object-based (Pritch et al, 2008; Feng et al,
2012; Pritch et al, 2007; Lin et al, 2015) methods.
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Specifically, the key-frame-based approaches select rep-
resentative key-frames by analysing low-level imagery prop-
erties such as optical flow (Wolf, 1996) or image differ-
ences (Zhang et al, 1997), by modelling object’s appearance
and motion (Lee et al, 2012), or by forming a storyboard
of still images through exploiting internet-images using ei-
ther a single photographer (Kim et al, 2014) or a collection
of user-provided images (Khosla et al, 2013). Similarly, the
aim of video segment based methods is to identify interest-
ing and representative short moments. Different measure-
ment and selection criteria have been exploited. For exam-
ple, Chu et al (2015) consider visual co-occurrence among
the same-topic videos as a content importance measure; both
Zhao and Xing (2014) and Cong et al (2012) treat video
summarisation as a sparse coding problem wherein a dic-
tionary based reconstruction error is used as the selection
standard; Gygli et al (2014) consider the interestingness of
visual content; Potapov et al (2014) and Sun et al (2014)
assume that video category are known a priori and measure
shot importance with category-specific learned models, such
as SVMs; Gygli and Van Gool (2015) perform joint learn-
ing of multiple objectives (e.g. representativeness, interest-
ingness and uniformity) over training summary videos for
extracting global importance from raw videos. Lu and Grau-
man (2013b) focus on the connectivity and coherency of the
generated summary storyline by selecting video parts with
important shot-to-shot influence. Object-based summarisa-
tion techniques (Pritch et al, 2008; Feng et al, 2012; Lin
et al, 2015), on the other hand, rely on object segmentation
and tracking to extract object-centric trajectories/tubes, and
compress those tubes to reduce spatio-temporal redundancy.
In particular, Pritch et al (2008) and Feng et al (2012) sum-
marising all detected motion trajectories, whilst Lin et al
(2015) additionally consider the abnormality and category
nature of individual motions by modelling localised spatio-
temporal blobs and composite category-specific summary
videos using only abnormal object-tubes.

All the above schemes utilise solely visual information
and make implicit assumptions about the completeness and
accuracy of the visual data available in extracting visual fea-
tures or object-centered representations. They are unsuitable
nor scalable to complex scenes where visual data are inher-
ently incomplete and inaccurate, mostly the case in surveil-
lance videos. Our work differs significantly to these studies
in that we exploit not only visual data without object track-
ing, but also non-visual sources as complementary informa-
tion. The summary generated by our approach is semanti-
cally enriched – it is labelled automatically with semantic
tags, e.g. traffic condition, weather, or event. All these tags
are learned from heterogeneous non-visual sources in an un-
supervised manner during model training without any man-
ual labels.

Random forests - Random forests (Breiman, 2001; Crim-
inisi and Shotton, 2012) have proven as powerful models in
the literature. Different variants of random forests have been
devised, either supervised (Shotton et al, 2011; Gall et al,
2011; Schulter et al, 2013a; Bosch et al, 2007; Caruana et al,
2008), or unsupervised (Liu et al, 2000; Shi and Horvath,
2006; Perbet et al, 2009; Moosmann et al, 2008; Zhu et al,
2013, 2014, 2015). Supervised models are not suitable to our
problem since we do not assume the availability of ground
truth labels during model training. Existing clustering forest
models, on the other hand, assumes only homogeneous data
sources such as pure imagery-based features. No principled
way of combining multiple heterogeneous and independent
data sources in forest models is available.

3 Multi-Source Clustering

Video summarisation by content abstraction aims to gener-
ate a compact summary composed of key/interesting con-
tent from a long previously-unseen video for achieving effi-
cient holistic understanding (Truong and Venkatesh, 2007).
A common way to establish a video summary is by extract-
ing and then combining a set of key frames or shots. These
key contents are usually discovered and selected from clus-
ters of video frames or clips (Truong and Venkatesh, 2007).

In this study, we follow the aforementioned approach but
consider not only visual content of video, but also a large
corpus of non-visual data collected from heterogeneous in-
dependent sources (Figure 2(a)). Specifically, through learn-
ing latent structure of multi-source data (Figure 2(b-c)), we
wish to make reference to and/or impose non-visual seman-
tics directly into video clustering without any human manual
annotation of video data (Figure 2(d)). Formally, we con-
sider the following different data sources that form a multi-
source input feature space:

Visual features - We segment a training video into n either
overlapping or non-overlapping clips, each of which has a
duration of lclip seconds. We then extract a d -dimensional
visual descriptor from the ith video clip denoted by xi =

(xi,1, . . . , xi,d) ∈ Rd , i = 1, . . . , n.

Non-visual data - Non-visual data are collected from het-
erogeneous independent sources. We collectively represent
m types of non-visual data associated with the ith clip as
yi = (yi,1, . . . , yi,m) ∈ Rm , i = 1, . . . , n. Note that any (or
all) dimension of yi may be missing.

We aim at formulating a unified clustering model capa-
ble of coping with the few challenges as highlighted in Sec-
tion 1. The model needs be unsupervised since no ground
truth is assumed. To mitigate the heteroscedasticity and di-
mension discrepancy problems, we require a model that can
isolate the very different characteristics of visual and non-
visual data, yet can still exploit their latent correlation in the
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Fig. 2: Multi-source model training stage: The pipeline
of performing multi-source clustering on visual and non-
visual data with the proposed Multi-Source Clustering For-
est (MSC-Forest).

clustering process. To handle noisy data, feature selection is
needed and necessary.

In light of the above demands, we choose to start with
the clustering random forest (Breiman, 2001; Liu et al, 2000;
Shi and Horvath, 2006) due to (1) unsupervised information
gain optimisation thus requiring no ground truth labels; (2)
its flexible objective function for facilitating the modelling
of multi-source data as well as the processing of missing
data; (3) and its implicit feature selection mechanism for
handling noisy features. Nevertheless, the conventional clus-
tering forest is not well suited to solve these challenges since
it expects a full concatenated representation as input during
both model training and deployment. This does not conform
to the assumption of only visual data being available during
model deployment for previously-unseen videos. Moreover,
due to its uniform variable selection mechanism (Breiman,
2001) (e.g. each feature dimension has the same probabil-
ity to be selected as a candidate optimal splitting variable),
there is no principled way to ensure balanced contribution
from individual visual and non-visual sources in the node
splitting process. To overcome these limitations, we propose
a new Multi-Source Clustering Forest (MSC-Forest) by in-
troducing a new objective function allowing joint optimisa-
tion of individual information gains of different sources. We
first describe the conventional forests prior to detailing the
proposed MSC-Forest.

3.1 Conventional Random Forests

Classification forests - A general form of random forests
is the classification forests. A classification forest (Breiman,
2001; Schulter et al, 2013b) is an ensemble of γclass binary

decision trees ftree(x): X̊ → Rk̊, with X̊ the d-dimensional
feature space, and Rk̊ = [0, 1]k̊ denoting the space of class
probability distribution over the label space L̊ = {1, . . . , k̊}.

Decision trees are learned independently of each other,
each with a random subset Xt of the training samples X =

{xi}, i.e. bagging (Breiman, 2001). Growing a decision tree
involves a recursive node splitting procedure until some stop-
ping criterion is satisfied, e.g. leaf nodes are formed when no
further split can be achieved given the objective function, or
the number of training samples arriving at a node is smaller
than the predefined node size, φ. Small φ leads to deep trees.
We set φ = 2 in our experiments for capturing sufficiently
fine-grained data structure. At each leaf node, the class prob-
ability distribution is then estimated based on the labels of
the arrival samples.

The training of each internal/split node is a process of
binary split function optimisation, defined as

h(x,w) =

{
0 if xκ < ϑ,
1 otherwise.

(1)

This split function is parameterised by two parameters w =

[κ, ϑ]: (i) a feature dimension xκ with κ ∈ {1, . . . , d}, and
(ii) a feature threshold ϑ ∈ R. All samples of a split node s
will be channelled to either the left l or right r child nodes,
according to the output of Eqn. (1).

The optimal split parameter w∗ is chosen via

w∗ = argmax
W

∆ψclass, (2)

where W =
{
wi
}mtry(|S|−1)

i=1
represents a parameter set

over mtry randomly selected features, with S the sample set
reaching the node s. The cardinality of a set is given by | · |.
Typically, a greedy search strategy is exploited to identify
w∗. The information gain ∆ψclass is formulated as

∆ψclass = ψs −
|L|
|S|ψl −

|R|
|S|ψr, (3)

where L and R denote the sets of data routed into l and r,
and L ∪ R = S. The information gain ψ can be computed
as either the entropy or Gini impurity (Breiman et al, 1984).

Clustering forests - In contrast to classification forests, clus-
tering forests require no ground truth label information dur-
ing the training phase. A clustering forest consists of γclust

binary decision trees. The leaf nodes in each tree define a
spatial partitioning of the training data. Interestingly, the
training of a clustering forest can be performed using the
classification forest optimisation approach by adopting the
pseudo two-class algorithm (Breiman, 2001; Liu et al, 2000;
Shi and Horvath, 2006). Specifically, we addN pseudo sam-
ples x̄ = {x̄1, . . . , x̄d} (Figure 3(b)) into the original data
space X (Figure 3(a)), with x̄i ∼ Dist(xi) sampled from
certain distributions Dist(xi). In the proposed model, we
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(a) (b) (c) (d)

Fig. 3: An illustration of clustering toy data with a clustering forest. (a) Original toy data are labelled as class 1, whilst (b)
the pseudo-points (red +) as class 2. (c) A clustering forest performs two-class classification in the augmented space. (d)
The final data partitions on the original data.

adopt the empirical marginal distributions of the feature vari-
ables owing to its favourable performance (Shi and Horvath,
2006). With this data augmentation strategy, the clustering
problem becomes a canonical classification problem that can
be solved by the classification forest training method as dis-
cussed above. The key idea behind this algorithm is to parti-
tion the augmented data space into dense and sparse regions
(Figure 3(c-d)) (Liu et al, 2000).

3.2 Multi-Source Clustering Forest

Conventional clustering forests assumes only homogeneous
data sources such as pure imagery-based features. In con-
trast, the proposed Multi-Source Clustering Forest can take
heterogeneous sources as input. In particular, the proposed
model uses visual features as splitting variables to grow Multi-
Source Clustering trees (MSC-trees) as in Eqn. (1), and ex-
ploits non-visual information as additional data to help de-
termining the w = [κ, ϑ]. In this way, auxiliary non-visual
information is used, in addition to visual data, to guide the
tree formation.

Formally, we define a new joint information gain func-
tion for node splitting during training MSC-trees as:

∆ψ = αv
∆ψv
ψv0︸ ︷︷ ︸

visual

+

m∑
j=1

αj
∆ψj
ψj0︸ ︷︷ ︸

non-visual

+αt
∆ψt
ψt0︸ ︷︷ ︸

temporal

. (4)

Similar to Eqn. (3), the optimal parameter corresponds to
the split with the maximal ∆ψ. This formulation defines the
best data split across the joint space of multi-source data,
beyond visual domain alone. All the terms in Eqn. (4) are
interpreted as below.

Visual term:∆ψv = ∆ψclass (Eqn. (3)) denotes the informa-
tion gain in visual domain. Precisely, this measure is com-
puted from the pseudo class labels. Therefore, it reflects the
visual data structure characteristics given that the pseudo
data samples are drawn from the marginal feature distribu-
tions (Section 3.1). In this study we utilise the Gini impurity

egini (Breiman et al, 1984) to estimate ∆ψclass by setting
ψ = egini in Eqn. (3) due to its simplicity and efficiency.
The Gini impurity is computed as egini =

∑
i 6=j pipj , with

pi and pj being the proportion of samples belonging to the
ith and jth category in a split node s. High value in egini

indicates pure category distribution.

Non-visual term: This is a new term we introduce as aux-
iliary information on visual term. More specifically, ∆ψj
denotes the information gain in the jth non-visual data. A
non-visual source can be either categorical or continuous.
For a categorical non-visual source, similar to visual term
we use the Gini impurity egini as its data split measure cri-
terion. In the case of non-visual source with continuous val-
ues, we adopt least squares regression (Breiman et al, 1984)
to enforce continuity in the clustering space:

elsr =
1

|S|

|S|∑
i=1

(yi,j −
1

|S|

|S|∑
i=1

yi,j)
2, (5)

where yi,j represents the value in the jth non-visual space
associated with the ith sample xi ∈ S, and S is the set of
samples reaching node s. That is ∆ψj = elsr.

Temporal term: We add a temporal smoothness gain ∆ψt
to encourage temporally adjacent video clips to be grouped
together. The intuition is that human activity/event patterns
may present a great deal of disparity at different times of a
day, e.g. day versus night, or morning versus afternoon. In
other words, activity video semantic structure is inherently
time-dependent. Therefore, this temporal information can
help in mining visual data structure. Specifically, we utilise
the video recording time associated with video clips as a
temporal-constraint, and exploited the least squares regres-
sion (Eqn.(5)) to compute its information gain since time is
continuous.

The information gain by different sources may live in
very disparate ranges due to the different natures of source,
each term of Eqn. (4) is therefore normalised by its initial
data impurity denoted by ψv0, ψj0, and ψt0. These impuri-
ties are obtained at the root node of every MSC-tree. The
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source weights are denoted by αv , αi, and αt accordingly,
holding αv +

∑m
i=1 αi + αt = 1. We set αv = 0.5 ob-

tained by cross-validation. A detailed analysis on αv is given
in Section 6.2. For non-visual and temporal information,
we uniformly assign αt = αi = 1−αv

m+1 since their impor-
tance is not known a prior, withm the number of non-visual
sources.

The role of different source data - Given the main role and
much more stable provision of the visual source in video
understanding, non-visual data are regarded as auxiliary in-
formation over visual source. During the training of MSC-
Forest, the split functions (Eqn. (1)) are defined on visual
features, but w = [κ, ϑ] is collectively determined by vi-
sual features and the associated non-visual as well as tem-
poral information (i.e. the non-visual and temporal term in
Eqn. (4)). Alternatively, one can think of that the main vi-
sual data source is ‘completely-visible’ to the MSC-Forest
since it is needed during both forest training and evalua-
tion, whilst the auxiliary non-visual data are ‘half-visible’
in that they are exploited as side information for embedding
their knowledge into the MSC-tree growing during model
training but not required any more during the MSC-Forest
evaluation (due to their restricted availability as explained
in Section 1).

Joint information gain - We interpret the intrinsic advan-
tage of the joint information gain defined by Eqn. (4), with
comparison against the naı̈ve feature concatenation strategy.
With the latter scheme, the information gain (Eqn. (3)) is
directly estimated in a heterogeneous joint space where vi-
sual, non-visual and temporal data are mixed together. This
would suffer from the heteroscedasticity problem, as dis-
cussed in Section 1. Instead, Eqn. (4) overcomes this chal-
lenge by modelling different sources via separate informa-
tion gain terms, resulting in a more balanced exploitation
of multi-source data. In this way, the proposed joint infor-
mation gain of multi-source data encourages more appro-
priate visual data separation both visually and semantically.
This formulation is the essential contribution of our pro-
posed MSC-Forest model.

The merits of MSC-Forest - The formulation in Eqn. (4)
brings two unique benefits: (A) Thanks to the information
gain optimisation, the influences of visual and non-visual
domains on data partitioning can be better balanced com-
pared to naı̈ve feature concatenation. (B) Eqn. (2) and Eqn. (4)
together provide a mechanism to discover strongly corre-
lated heterogeneous source pairs and to exploit joint infor-
mation gain of such correlated pairs for data partitioning.
In other words, only selective visual features (Eqn. (2)) that
yield high information gain collectively with non-visual in-
formation (Eqn. (4)) will contribute to the MSC-tree grow-
ing. Such a mechanism cannot be realised using the conven-
tional clustering forests (Breiman, 2001; Liu et al, 2000). We

shall demonstrate the multi-source correlation discovered by
our proposed MSC-Forest in experiments (Section 6.4).

3.2.1 Coping with Partial/Missing Non-Visual Data

We introduce a new adaptive weighting mechanism to dy-
namically deal with the inevitable partial/missing non-visual
data3. Specifically, when some non-visual data are missing
and suppose the missing proportion of the ith non-visual
type in the training set Xt for MSC-tree t is δi, we reduce
its weight from αi to αi − δiαi. The total reduced weight∑
i δiαi is then distributed evenly to the weights of all sources

to ensure αv +
∑m
i=1 αi + αt = 1. This linear adaptive

weighting method produces satisfactory results in our ex-
periments.

3.2.2 Model Complexity

The upper-bound learning complexity of a whole MSC-Forest
can be examined from its constituent parts, i.e. at tree- and
node-levels. Formally, given a MSC-tree t, we denote the set
of all the split nodes as Πt and the sample subset used for
training a split node j ∈ Πt as Sj . The training complex-
ity of j-th node is given by mtry(|Sj | − 1)u, when a greedy
search algorithm is adopted, with mtry the number of fea-
tures attempted to partition Sj , and u the running time of
conducting one data splitting operation. Consequently, the
overall computational cost of learning a MSC-Forest can be
computed as

lcost =

γclust∑
t

∑
j∈Πt

mtry(|Sj | − 1)u (6)

= mtryu

γclust∑
t

∑
j∈Πt

(|Sj | − 1).

The value of parameter mtry is identical across all MSC-
trees. The learning time is thus determined by (1) the value
of u, and (2) the factor that we name as tree fan-in

$(t) =
∑
j∈Πt

|Sj − 1|. (7)

Clearly, u of a MSC-Forest is larger than that of conven-
tional forests since we need to compute additional informa-
tion gains of non-visual and temporal information (Eqn. (4)).
On the other hand, the value of $(t) primarily relies on

3 There exist missing data filling algorithms utilised in conven-
tional random forests, e.g. for the missing value of one feature in one
class, the median value (continuous) or the most frequent category (dis-
crete) of this feature over the current class can be used as the estima-
tion (Breiman, 2003). Whilst a similar strategy is possible to apply on
our MSC-Forest, we consider an alternative by proposing an effective
adaptive weighting algorithm in order not to further introduce noisy
training data.
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the tree structure/topological characteristics (Martin, 1997):
a balanced and shallower tree has smaller$(t), thus the tree
shall be more efficient in training and inference on previously-
unseen samples, in that the paths from the root to leaf nodes
are relatively shorter. In Section 6.5, we will show that the
additional non-visual information encourages more balanced
and shallower decision trees than learning from single visual
source alone.

3.3 Latent Multi-Source Data Structure Discovery

Given heterogeneous feature spaces involving visual and non-
visual data, it is non-trivial to discover their underlying group
structures, due to the heteroscedasticity problem aforemen-
tioned (Section 1). To this end, MSC-Forest is particularly
designed to principally extract and combine the information
from multiple individual sources so as to more accurately
measure data pairwise similarity relations, which in turn fa-
cilitates existing graph-based clustering algorithm, e.g. spec-
tral clustering, to eventually reveal the latent data clusters.
Figure 2 depicts the pipeline of our video data clustering ap-
proach based on the learned MSC-Forest.

The spectral clustering (Zelnik-manor and Perona, 2004)
groups data using eigenvectors of an affinity matrix derived
from the data. The goodness of the resulting cluster for-
mation primarily relies on the quality of the input affinity
matrix which reflects and embeds the essential data struc-
tures (Zhu et al, 2014). Below we describe the details of con-
structing multi-source referenced affinity matrix from MSC-
Forest. Intuitively, the multi-source learning nature of MSC-
Forest renders its data similarity measure sensitive to the
joint knowledge from diverse source data.

The learned MSC-Forest offers an effective way to de-
rive the required affinity matrix. Specifically, each individual
tree within the MSC-Forest partitions the training samples at
its leaves `(x): Rd → L ⊂ N, where ` represents a leaf in-
dex and L refers to the set of all leaves in a given tree. For
each MSC-tree, we first compute a tree-level n × b affinity
matrix At with elements defined as At

i,j = exp−dist(xi,xj)

where

dist(xi,xj) =

{
0 if `(xi) = `(xj),

+∞ otherwise.
(8)

We assign the maximum affinity (affinity=1, distance=0) be-
tween points xi and xj if they fall into the same leaf, and
the minimum affinity (affinity=0, distance=1) otherwise. A
smooth affinity matrix can be obtained through averaging all
the tree-level affinity matrices

A =
1

γclust

γclust∑
t=1

At, (9)

Eqn. (9) is adopted as the ensemble model of MSC-Forest
due to its advantage of suppressing the noisy tree predic-
tions, though other alternatives such as the product of tree-
level predictions are possible (Criminisi and Shotton, 2012).
We then construct a sparse k-NN graph, whose edge weights
are defined by the affinity matrix A (Figure 2(c)).

Subsequently, we symmetrically normalise A to obtain
S = D−

1
2 AD−

1
2 , where D denotes a diagonal degree ma-

trix with elements Di,i =
∑n
j Ai,j . Given S, we perform

spectral clustering to discover the latent clusters of training
clips with the number of clusters automatically determined
through analysing the eigenvector structure (Zelnik-manor
and Perona, 2004). Each training clip xi is then assigned to
a cluster ci ∈ C, with C the set of all clusters.

The learned clusters group similar clips both visually
and semantically, with each of the clusters associated with
a unique distribution for each non-visual data (Figure 2(d)).
We denote the distribution of the ith non-visual data type of
the cluster c as

p(yi|c) ∝
∑

xj∈Xc
p(yi|xj), (10)

where Xc represents the set of training samples in c. These
multi-source data clusters form a component of our multi-
source model (Figure 1).

4 Semantic Video Summarisation

In Section 3 we presented multi-source data clustering by
learning a Multi-Source Clustering Forest (MSC-Forest), re-
sulting in a consistent cluster formation. Once this multi-
source model is learned, it can be deployed for semantic
video summarisation. Specifically, we follow the established
approach of summarising videos by clustering (Truong and
Venkatesh, 2007) but with the introduction of two noticeable
differences in our method.

Firstly, our video summary is multi-source referenced.
Specifically, the MSC-Forest is trained on heterogeneous
sources, its optimised split functions {h} (Eqn. (1)) there-
fore implicitly capture the complex multi-source structures.
When one deploys the trained model for content summarisa-
tion of previously-unseen video data, the model only needs
to take visual inputs without any non-visual data sources.
And yet it is able to induce video content partitions that
not only correspond to visual feature similarities, but also
are consistent with meaningful non-visual semantic inter-
pretations. Secondly, our video summary is automatically
tagged as the result of model inference. This is made possi-
ble through exploiting the non-visual data distributions asso-
ciated with the discovered clusters on the training data (see
Eqn. (10) and Figure 2(d)). Below we discuss the details of
generating a semantic video summary.
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Fig. 4: The pipeline of our multi-source referenced key-clips detection algorithm. (a) Channel a clip x∗ into MSC-trees. (b)
Search tree-level nearest clusters of x∗, hollow circle denotes cluster. (c) Predict the final nearest cluster. A red ? depicts a
representative previously-unseen clip.

4.1 Key-Clip Extraction and Composition

Suppose we are given a previously-unseen surveillance video
footage without meta-data tagging/script. The video is pre-
processed by segmenting it into a set of n∗ either overlap-
ping or non-overlapping short clips {x∗i }n

∗

i=1 with equal du-
ration. Our aim is to first assign cluster membership to each
previously-unseen clip using the trained multi-source model,
and then select key-clips from the resulting clusters4. The
chosen key-clips are then chronologically ordered to con-
struct a video summary.

Clustering previously-unseen video clips - Inferring clus-
ter memberships of previously-unseen clips is an intricate
task. A straightforward method is to assign cluster member-
ship by identifying the nearest cluster c∗ ∈ C to a sample
x∗, where C represents the set of clusters we discovered in
Section 3.3. However, we found this hard cluster assignment
strategy susceptible to outliers in C and source noise. To
mitigate this problem, we consider an alternative approach
by utilising the MSC-Forest tree structures for soft cluster
assignment. This is more robust to either source noise or
outliers.

Figure 4 depicts the soft cluster assignment pipeline. First,
we trace the leaf `t(x∗) of each tree t where x∗ falls by
channelling x∗ into the tree (Figure 4(a)). This step is criti-
cal as it establishes a connection for x∗ with an appropriate
training subset X`t(x∗) using the split functions {h}t op-
timised by multi-source data. Here, X`t(x∗) represents the

4 It is worth noticing that the purpose of this clustering step is com-
pletely different from the multi-source data clustering during model
training, as presented in Section 3.3. The latter is a component of our
multi-source model training pipeline (Figure 2), whilst the former aims
at revealing the latent structure over testing data for video summarisa-
tion.

set of training samples associated with `t(x
∗). The set is

consistent with x∗ both visually and semantically since they
encompass identical response w.r.t {h}t.

Second, we retrieve the cluster membershipCt = {ci} ⊂
C of X`t(x∗), against which we search for the tree-level
nearest cluster c∗t for x∗ (Figure 4(b)) via

c∗t = argminc∈Ct ||x∗ − µc||, (11)

with t the tree index, and µc the centroid of cluster c, esti-
mated as

µc =
1

|Xc|
∑

xi∈Xc

xi, (12)

where Xc represents the set of training samples in c. Per-
forming nearest cluster search withinCt rather than the whole
cluster space C brings a key benefit: since the search space
is constrained by MSC-tree, it is more meaningful and also
less noisy than the entire space C, leading to more accurate
c∗t estimation.

Once we obtain all tree-level nearest clusters from all the
trees in the forest, {c∗t }γclustt=1 , the final nearest cluster c∗ is
obtained as the one with maximal votes from all the trees
(Figure 4(c))

c∗ = max {c∗t }γclustt=1 (13)

By repeating the above steps on all previously-unseen clips
{x∗i }n

∗

i=1, we obtain their cluster labels as C∗ = {c∗i }n
∗

i=1

(Figure 4(e)).

Extracting key-clips - With the assigned cluster member-
ships C∗ on all previously-unseen clips, the key-clip of a
previously-unseen video data cluster c∗ can be represented
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Algorithm 1: Infer non-visual tags of previously-
unseen clips.

Input: A previously-unseen clip x∗, a trained MSC-Forest,
training data clusters C;

Output: Predicted tag ŷi;
1 Initialisation:
2 Compute p(yi|c) for each training data cluster (Eqn. (10));
3 Compute cluster centroid µc (Eqn. (12));
4 Non-Visual Tag Inference:
5 for t← 1 to γclust do
6 Trace the leaf `t(x∗) where x∗ falls (Figure 4(a));
7 Retrieve the training samples X`t(x∗) associated with

`t(x∗);
8 Obtain the clusters Ct = {ci} ⊂ C of X`t(x∗);
9 Search the tree-level nearest cluster c∗t of x∗ within Ct

(Eqn. (11));
10 end
11 Estimate tag distribution p(yi|x∗) (Eqn. (14));
12 Compute the final tag ŷi (Eqn. (15)).

by the representative previously-unseen clip r∗ that is clos-
est to the cluster centroid µc∗ (Figure 4(e)). Concatenat-
ing these key-clips chronologically establishes a visual sum-
mary. Such a summary, however, is likely to be discontinu-
ous in preserving visual context therefore non-smooth visu-
ally due to abrupt changes between adjacent key-clips. To
enforce some degrees of smoothness in the visualisation of
video summary whilst minimising redundancy, we adopt a
shortest path strategy (Boccaletti et al, 2006) to induce an
optimal path between two temporally-adjacent representa-
tive r∗ on a graph G. This approach produces a visually
more coherent video summary whilst discards as much re-
dundancy as possible.

More precisely, we construct a graphG = (V,E), where
V and E indicate the set of previously-unseen video clip
vertices and edges (Figure 4(d)). The weights of edges can
be efficiently estimated using Eqn. (8) and (9). Note that the
graph G is also multi-source referenced since it is derived
from our multi-source MSC-Forest model. We then perform
shortest path search between temporally-adjacent r∗ on G
(Figure 4(f)) and all the samples that lie on the shortest paths
compose the final key-clip set Ks (Figure 4(g)).

4.2 Video Tagging

Summarising video with high-level interpretation requires
plausible semantic content inference from video data x∗.
We derive a tree-structure aware tag inference algorithm ca-
pable of predicting tag types same as training non-visual
data, based on the learned MSC-Forest and discovered train-
ing data clusters. Specifically, we first obtain the tree-level
nearest cluster c∗t of a previously-unseen sample x∗ using
Eqn. (11). Second, the p(yi|c∗t ) associated with c∗t is utilised
as the tree-level non-visual tag estimation for the ith non-

visual data type. To achieve a smooth prediction, we average
all p(yi|c = c∗t ) obtained from individual trees as

p(yi|x∗) =
1

γclust

∑γclust

t=1
p(yi|c∗t ). (14)

The final tag ŷi for the ith non-visual type is obtained as

ŷi = argmaxyi p(yi|x∗). (15)

With the above steps, we can estimate all m non-visual tags
ŷis with i ∈ {1, . . . ,m}. The procedure of our tagging al-
gorithm is summarised in Algorithm 1.

Given the extracted key-clips Ks and automatic assign-
ment of non-visual semantic tags (Eqn. (15)), we can now
construct a video summary by chronologically concatenat-
ing each clip x∗ ∈ Ks with smooth inter-clip transition, e.g.
crossfading, and labelling each clip with their inferred se-
mantic tags.

5 Experimental Settings

Datasets - We conducted experiments on two datasets col-
lected from publicly accessible webcams that feature an out-
door and an indoor scene respectively: (1) the TImes Square
Intersection (TISI) dataset, and (2) the Educational Resource
Centre (ERCe) dataset5. There are a total of 7324 video clips
spanning over 14 days in the TISI dataset, whilst a total of
13817 clips were collected across a period of two months in
the ERCe dataset. Each clip has a duration of 20 seconds.
The details of the datasets and training/deployment parti-
tions are given in Table 1. Example frames are shown in
Figure 5.

The TISI dataset is challenging due to severe inter-object
occlusion, complex behaviour patterns, and large illumina-
tion variations caused by both natural and artificial light-
ing sources at different day time. The ERCe dataset is non-
trivial due to a wide range of physical events involved that
are characterised by large changes in environmental setup,
participants, crowdedness, and intricate activity patterns.

Table 1: Details of datasets. FPS = frames per second. Train-
ing Size = video clip numbers used for model training. De-
ployment Size = video clip numbers in model deployment.

- Resolution FPS Training Size Deployment Size

TISI 550×960 10 5819 1505

ERCe 480×640 5 9387 4430

Visual and non-visual sources - We extracted the following
set of visual features for representing visual content in each
clip: (a) colour features including RGB and HSV; (b) local

5 Datasets available: www.eecs.qmul.ac.uk/%7Exz303/download.html
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(a)

(b)

Fig. 5: Examples of the (a) TISI and (b) ERCe datasets.

texture features based on Local Binary Pattern (LBP) (Ojala
et al, 2002); (c) optical flow; (d) holistic features of the scene
based on GIST (Oliva and Torralba, 2001); and (e) person
and vehicle6 detection (Felzenszwalb et al, 2010).

We collected 10 types of non-visual sources for the TISI
dataset: (a) weather data extracted from the WorldWeath-
erOnline with 9 elements: temperature, weather type, wind
speed, wind direction, precipitation, humidity, visibility, pres-
sure, and cloud cover; (b) traffic speed data from the Google
Maps with 4 levels of traffic speed: very slow, slow, moder-
ate, and fast. For the ERCe dataset, we collected data from
multiple independent on-line sources about the time table
of campus events including: No Scheduled Event (NoEvt),
Cleaning (Cln), Career Fair (CrF), Gun Forum Control and
Gun Violence (GunFrm), Group Studying (GrStd), Scholar-
ship Competition (SchlCpt), Accommodative Service (AcmSvc),
Student Orientation (StdOrt).

Note that other visual features and non-visual data types
can be considered without altering the training and inference
methods of our model in that the MSC-Forest model is ca-
pable of coping with different families of visual features as
well as distinct types of non-visual sources.

Baselines - To evaluate the proposed method for multi-source
video clustering and tag inference, we compared the Vi-

6 No vehicle detection on the ERCe dataset.

sual + Non-Visual + MSC-Forest (VNV-MSC-Forest) model
against the following baseline models:

1. VO-Forest: a conventional forest (Breiman, 2001) trained
with visual feature vectors alone, to demonstrate the ben-
efits from using non-visual sources7.

2. VNV-Kmeans: k-means (Jain, 2010) using concatenated
vectors of visual and non-visual features, to highlight the
heteroscedasticity and dimensionality discrepancy prob-
lem caused by heterogeneous visual and non-visual data.

3. VNV-Forest: a conventional forest (Breiman, 2001) trained
with concatenated visual and non-visual feature vectors,
to compare the effectiveness of MSC-Forest that exploits
non-visual data during forest formation.

4. VNV-AASC: a state-of-the-art multi-source spectral clus-
tering method (Huang et al, 2012) learned by treating
each type of visual or non-visual feature as an individ-
ual source, to demonstrate the superiority of MSC-Forest
in handling diverse data representations and correlating
multiple sources.

5. VNV-COP-Mahal: a state-of-the-art Mahalanobis distance
metric learning method (Xing et al, 2002) using both
data features and two types of pairwise constraints, i.e.

7 Evaluating a forest that takes only non-visual inputs is not possi-
ble, since non-visual data is not available for previously-unseen video
footages.
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must-links: the two linked samples are in the same clus-
ter; and cannot-links: the two linked samples are from
two different clusters. In our multi-source data context,
these pairwise constraints are generated from all non-
visual data sources. Specifically, first, we computed in-
dividual similarity matrices from each non-visual source
and averaged them for getting the fused pairwise simi-
larity measure between video samples. The top-k high-
est and lowest pairwise similarity values were then used
to generate must-links and cannot-links respectively. We
set k = β ∗ n ∗ (n− 1) ∗ 10−5 where n is the number of
training samples, whilst β was cross-validated in a range
between 1 and 10, (i.e. k lies in [339, 3390] on TISI,
[881, 8810] on ERCe), and the best results were utilised
for comparison in our evaluation. Once the Mahalanobis
distance metric was learned from both the visual feature
data and the generated pairwise links using the algorithm
proposed in (Xing et al, 2002), COP-Kmeans (Wagstaff
et al, 2001) was employed along with pairwise links as
well as the learned metric to obtain the final clusters of
video data.

6. VNV-MSC-Forest-hard: a variant of our model using hard
cluster assignment strategy for inferring semantic tags
of previously-unseen samples (Section 4.2), to highlight
the effectiveness of the proposed tree structure based tag
inference algorithm.

7. VT-MSC-Forest: a variant of our model using only tem-
poral information and visual data. In order to show the
exact effectiveness of exploiting non-visual data, the weight
ratio between visual data and time retains the same as in
VNV-MSC-Forest with the only difference of discarding
non-visual data during model training.

8. VPNVρ-MSC-Forest: a variant of our model but with ρ%
of training samples having arbitrary number of missing
non-visual types, to evaluate the robustness of MSC-
Forest in coping with partial/missing non-visual data.

Implementation details - The clustering forest size γclust

was set to 1000, including both the conventional forest and
the proposed MSC-Forest. We observed a slight increase in
performance given a larger forest size, which agrees with (Cri-
minisi and Shotton, 2012). The training set Xt of the tth
MSC-tree was obtained by performing random selection with
replacement from the augmented data space (Figure 3(b)).
We setmtry =

√
dwith d the data feature dimension (Eqn. (2)).

This is typically practised (Breiman, 2001). We employed
linear data separation (Criminisi and Shotton, 2012) as the
test function for node splitting. We set the same number of
clusters across all methods. This cluster number was discov-
ered automatically using the method presented in (Zelnik-
manor and Perona, 2004). For each dataset, ∼ 75% out of
the total data was utilised for model training, and the remain-
ing was reserved for testing. Additional previously-unseen

Table 2: Compare cluster purity in mean entropy. Lower is better.

Dataset TISI ERCe
p(y|c) traffic speed weather event

VO-Forest (Breiman, 2001) 0.8675 1.0676 0.0616
VNV-Kmeans (Jain, 2010) 0.9197 1.4994 1.2519
VNV-Forest (Breiman, 2001) 0.8611 1.0889 0.0811
VNV-AASC (Huang et al, 2012) 0.7217 0.7039 0.0691
VNV-COP-Mahal (Xing et al, 2002) 0.8523 1.2301 1.0685
VT-MSC-Forest 0.7275 0.9577 0.0580
VNV-MSC-Forest 0.7262 0.6071 0.0024
VPNV10-MSC-Forest 0.7190 0.6261 0.0024
VPNV20-MSC-Forest 0.7283 0.6497 0.0090

video data was collected from the Time Square Intersection
scene on a separate day for video summarisation.

6 Evaluations

6.1 Multi-Source Clustering

To evaluate the effectiveness of different clustering models
for multi-source video clustering, we compared the quality
of their clusters formed on the training dataset. For deter-
mining clustering quality, we quantitatively measured the
mean entropy (Zhao and Karypis, 2004) of non-visual dis-
tributions p(yi|c) (Eqn. (10)) associated with training data
clusters to evaluate how coherent video content are parti-
tioned, assuming all methods have access to non-visual data
during the entropy computation.

It is evident from Table 2 that our VNV-MSC-Forest
achieves the best cluster purity on both datasets8. Despite
that there are gradual degradations in clustering quality when
we increase the non-visual data missing proportion, overall
the VNV-MSC-Forest model copes well with partial/missing
non-visual data. With no aid of non-visual tag information,
VT-MSC-Forest forms much worse clusters. Whilst the su-
periority of VT-MSC-Forest over VO-Forest suggests the ef-
fectiveness of temporal information with MSC-Forest. In-
ferior performance of VO-Forest to VNV-MSC-Forest sug-
gests the importance of learning from auxiliary non-visual
sources. Nevertheless, not all methods perform equally well
when learning from the same visual and non-visual sources:
the Kmeans, AASC, and COP-Mahal perform much poorer
in comparison to MSC-Forest. The results suggest the pro-
posed joint information gain criterion (Eqn. (4)) is more ef-
fective in handling heterogeneous data than the conventional
clustering models.

For qualitative comparison, we show examples in Fig-
ure 6 using the TISI dataset for detecting ‘sunny’ weather.
It is evident that only VNV-MSC-Forest is able to provide
coherent video grouping, with only slight decrease in clus-
tering purity given partial/missing non-visual data. Other

8 VNV-MSC-Forest-hard shares the same clusters as VNV-MSC-
Forest.
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Fig. 6: Qualitative comparison on cluster quality on TISI. A key frame of each video is shown. (X/Y) in brackets: X =
the number of clips with sunny weather; Y = the total number of clips in a cluster. The frames inside the red boxes are
inconsistent clips in a cluster.

methods including VNV-AASC result in a large cluster ei-
ther leaving out some relevant clips or including many non-
relevant ones, with most of them under the influence of strong
artificial lighting sources. These non-relevant clips are vi-
sually ‘close’ to sunny weather, but semantically not. The
VNV-MSC-Forest model avoids this mistake by correlating
both visual and non-visual sources in an information theo-
retic sense.

6.2 Video Tagging

Generating video summary with semantic interpretations re-
quires accurate tag prediction. In this experiment we com-
pared the performance of different methods in inferring se-
mantic tags given previously-unseen clips extracted from
long videos. The proposed tagging algorithm (Section 4.2)
is used for VO-Forest, VT-MSC-Forest, VNV-MSC-Forest,
and VPNV10/20-MSC-Forest, whilst nearest neighbour (NN)
strategy for the others. For quantitative evaluation, we manu-

Table 3: Comparison of tagging accuracy on TISI.

(%) traffic speed weather

VO-Forest (Breiman, 2001) 27.62 50.65
VNV-Kmeans (Jain, 2010) 37.80 43.14
VNV-Forest (Breiman, 2001) 34.95 43.81
VNV-AASC (Huang et al, 2012) 36.13 44.37
VNV-COP-Mahal (Xing et al, 2002) 26.22 40.03
VNV-MSC-Forest-hard 32.86 49.59
VT-MSC-Forest 35.99 54.47
VNV-MSC-Forest 35.77 61.05
VPNV10-MSC-Forest 37.99 55.99
VPNV20-MSC-Forest 38.05 54.97

ally annotated 3 weather conditions (sunny, cloudy and rainy)
and 4 traffic speeds on TISI previously-unseen clips, whilst
8 event categories on ERCe previously-unseen clips.

Tagging video by weather and traffic conditions - The
experiment was conducted on the TISI outdoor dataset. It
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is observed that the performance of different methods (Ta-
ble 3) is largely in line with their performance in data clus-
tering (Section 6.1). Poor result of tagging traffic conditions
is yielded by VO-Forest. This suggests the significance of
exploiting non-visual data during model training. It is also
seen from Figure 7 that VNV-MSC-Forest not only outper-
forms other baselines in isolating the sunny weather, but also
performs well in distinguishing visually ambiguous cloudy
and rainy weathers. In contrast, both VNV-Kmeans and VNV-
AASC mistake most of the ‘rainy’ scenes as either ‘sunny’
or ‘cloudy’, as they can be visually similar. Interestingly, the
poorest tagging results are obtained by VNV-COP-Mahal
where non-visual data is alternatively used as side infor-
mation for generating pairwise constraints over video sam-
ples. The potential reasons include (1) COP-Mahal assumes
completely-accurate pairwise links, which however is largely
invalid in our context due to the intrinsic noisy nature of
non-visual data sources; (2) the errors in pairwise constraints
can be propagated during the clustering process of COP-
Kmeans and therefore is likely to further worsen the cluster
solution and finally the tagging accuracy. This reflects the
significant difficulty of jointly learning inherently heteroge-
neous and inaccurate visual and non-visual data as afore-
mentioned, and in turn the advantages of the proposed joint
information gain formulation over existing competitive al-
gorithms.

Tagging video by activity events - Tagging semantic events
was tested using the ERCe dataset. By VO-Forest, poor re-
sults (Table 4 and Figure 8) are obtained especially on ‘Ac-
commodation Service’, which involves only subtle activity
patterns, i.e. students visiting particular rooms, suggesting
using visual data alone is not sufficient to detect such vi-
sually subtle events. VT-MSC-Forest over-fits to ‘Cleaning’
event, therefore performs poorly on ‘Student Orientation’
event.

Due to the typical high-dimension of visual sources com-
pared to non-visual data, the latter is often overwhelmed by
the former in representation. VNV-Kmeans severely suffers
from this problem as its most predictions are biased to ‘No
Scheduled Event’ that is more common and frequent visu-
ally. This suggests that this distance-based clustering is poor
in handling the heteroscedasticity and dimension discrep-
ancy problems in learning heterogeneous data. VNV-AASC
attempts to circumvent these problems by seeking for an
optimal combination of affinity matrices derived indepen-
dently from distinct data sources. However this is proved
challenging, particularly when each source is inherently noisy
and inaccurate. As an alternative way of utilising non-visual
data, VNV-COP-Mahal yields again the lowest overall accu-
racy. This further shows the unsuitability of COP-Mahal in
learning ambiguous heterogeneous data due to its stringent
assumption on the availability of accurate and reliable pair-
wise links and the lack of noisy data handling mechanism.

In contrast, the proposed MSC-Forest correlates different
sources via a joint information gain criterion to effectively
alleviate these problems, leading to more robust and accu-
rate tagging performance. Again, VPNV10/20-MSC-Forest
perform comparably to VNV-MSC-Forest, further validat-
ing the robustness of MSC-Forest in tackling partial/missing
non-visual data with the proposed adaptive weighting mech-
anism (Section 3.2.1).

Interestingly, in some cases, VPNV10/20-MSC-Forest
models even outperform VNV-MSC-Forest slightly. We ob-
serve that this can be caused by missing noisy non-visual
data, which may lead to better results. Overall, the perfor-
mance difference is marginal and the results demonstrate
that MSC-Forest provides stable tagging results across both
datasets.
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Fig. 9: The average tagging accuracy against varying visual
data weight αv in Eqn. (4).

Evaluating α sensitivity - We analyse the relative signif-
icance of visual data against non-visual and temporal data
by varying its weight αv (Eqn. (4)) in MSC-Forest during
model training. The average tagging accuracy is utilised as
performance measure criterion. It is observed from Figure 9
that setting αv = 0.5 achieves satisfactory results for both
datasets. This observation suggests that visual and non-visual
data are almost equally informative. This setting of α is
adopted throughout our experiments.

6.3 Semantic Video Summarisation

In this experiment, we follow the method described in Sec-
tion 4, and show that the learned model MSC-Forest can be
easily extended to produce compact yet meaningful video
summary of previously-unseen video footage, e.g. from the
Time Square Intersection scene, with automatically gener-
ated semantic tags. Despite captured from the same scene as
the TISI dataset, this previously-unseen video is challenging
in that it contains a number of events not seen before (e.g.
scaffolding event), with very different weather and traffic
conditions. It is interesting to examine how well the multi-
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Fig. 7: Weather tagging confusion matrices (TISI dataset).

Table 4: Comparison of tagging accuracy on the ERCe dataset.

(%) NoEvt Cln CrF GunFrm GrStd SchlCpt AccSvc StdOrt Average

VO-Forest (Breiman, 2001) 79.48 39.50 94.41 74.82 92.97 82.74 00.00 60.94 65.61
VNV-Kmeans (Jain, 2010) 87.91 19.33 59.38 44.30 46.25 16.71 00.00 09.77 35.45

VNV-Forest (Breiman, 2001) 32.47 30.25 65.46 45.77 41.25 33.15 13.70 33.59 36.96
VNV-AASC (Huang et al, 2012) 48.51 45.80 79.77 84.93 96.88 89.40 21.15 38.87 63.16

VNV-COP-Mahal (Xing et al, 2002) 41.98 71.43 54.61 15.07 21.88 00.00 00.24 00.00 25.65
VNV-MSC-Forest-hard 81.25 41.60 70.07 60.48 84.22 82.88 10.82 47.85 59.89

VT-MSC-Forest 57.43 70.17 91.45 79.96 99.22 90.08 00.00 43.75 66.50
VNV-MSC-Forest 55.98 41.28 100.0 83.82 97.66 99.46 37.26 88.09 75.69

VPNV10-MSC-Forest 47.96 46.64 100.0 85.29 97.66 99.73 37.26 92.38 75.87
VPNV20-MSC-Forest 55.57 46.22 100.0 85.29 95.78 99.59 37.02 88.09 75.95
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Fig. 8: Event tagging confusion matrices (ERCe dataset).

source model could generalise for drawing meaningful sum-
marisation given such unexpected disparities.

6.3.1 A Quantitative Evaluation on Summary Quality

Measuring the quality of video summary quantitatively is
non-trivial since there is no formal definition in the litera-

ture. In this study, we employ a coverage metric – an ideal
summary should cover as many events of interest as possi-
ble9. More precisely, given a video summary V , its coverage
is defined as c̃ = ncovered

nall

(
maxi |Vi|
|V|

)
, where ncovered and

9 The event of interest is analogous to important objects/regions
in (Lee et al, 2012).
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nall represent the number of covered and all events of in-
terest, respectively. The |V| is the length of the current sum-
mary, whilst maxi |Vi| represents the maximum length of all
comparative synopses. The term

(
maxi |Vi|
|V|

)
thus penalises

a summary with longer length. Higher coverage is better,
implying lower redundancy.

In order to generate unbiased ground truth of event of
interest, we asked 10 annotators to watch the previously-
unseen video carefully and label each video clip with arbi-
trary event tags. Although these event tags were produced
independently in a somewhat subjective manner, the repeti-
tion of similar tagging among different annotators is high,
e.g. most annotators labelled ‘unloading scaffolding tubes’,
‘policemen on-duty’, as events of their interest. Thus, we
formed the ground truth with events that were agreed by over
50% of the annotators. The final ground truth consists of 12

events (Figure 10).
Given the ground truth, we compared the quality of sum-

mary generated using the proposed multi-source MSC-Forest
with the following baseline methods: (1) Uniform-Sampling:
a straightforward way of summarising video by uniformly
sampling video clips over time, assuming key events are
distributed evenly (Truong and Venkatesh, 2007; Lee et al,
2012). (2) Sufficient-Change: a type of classical summarisa-
tion strategy generic to video category (Zhang et al, 1997;
Kim and Hwang, 2002; Truong and Venkatesh, 2007). The
idea is to select the clip sufficiently different from the previ-
ous key clip, e.g. using a pre-defined threshold to decide the
change sufficiency. Therefore, the extracted key clips may
provide a more diverse and complete summary of the source
video. The threshold can be estimated based on the num-
ber of key clips. For the distance metric, we adopt L1-norm
and L2-norm to measure pairwise similarity between clips
in our experiment. (3) VO-Forest: the conventional random
forest (Breiman, 2001) that exploits visual features alone.
(4) LiveLight (Zhao and Xing, 2014): a dictionary learn-
ing based method that considers video summarisation as a
sparse coding problem. This aims to encourage the gener-
ated summary video to cover sufficiently diverse content
with less redundancy. In this sense, LiveLight shares a simi-
lar principle to that of “Sufficient-Change” models (both L1
and L2 in Table 5) but with a more sophisticated summari-
sation algorithm.

More specifically, for VO-Forest and MSC-Forest, we
applied the summarisation pipeline described in Section 4
for summary composition. As the code for LiveLight is not
publically accessible, we implemented this model by using
the SPAMS solver (Mairal et al, 2010) based on the details
provided in (Zhao and Xing, 2014). In particular, we fixed
the dictionary size to 200 and learned the initial dictionary
with the beginning 10 video clips. We cross-validated the
threshold of reconstruction error in the range from 0 to 1 for
on-line dictionary update, and the best result was utilised for

comparison. The summary video was composed using video
clips with the highest reconstruction errors. For the remain-
ing methods, we generated the respective video summary via
setting a duration similar to the summary by MSC-Forest.
Note that non-visual information are not available during
the summarisation stage. Hence, for clustering based mod-
els, the quality of a summary essentially ties to the purity
and coherency of video clusters discovered using different
methods.

The results are shown in Figure 10 and Table 5. It is
evident that the MSC-Forest model achieves higher event
coverage than the baselines. This is in large due to the MSC-
Forest’s ability for latent data structure discovery (Section 6.1).
To reveal concrete reasons on the summarising performance
difference, for the same previously-unseen samples x∗ with
event of interest, e.g. parcel delivery, we compared the as-
signed clusters: c∗vnv by our model and c∗vo by VO-Forest.
It is found that samples in c∗vnv are visually consistent each
other and the majority share some similarity with x∗, e.g.
someone standing at the edge of pathway; whilst cluster c∗vo

is much larger with no obvious visual commonality over its
cluster members. Uniform-Sampling performs poorly since
the assumption of uniform event distribution is often in-
valid. Sufficient-Change is inferior to our model since the vi-
sual data distance/similarity measure can be inaccurate and
less meaningful due to the challenging semantic gap prob-
lem. Owing to the basis component learning strategy and in
turn more advanced visual change detection, the LiveLight
model can locate more accurately events-of-interest than the
non-learning based Sufficient-Change methods. However, the
LiveLight model is still inferior to the proposed VNV-MSC-
Forest method (Table 5). The plausible reasons are twofold:
(1) visual observation obtained from crowded public spaces
is often ambiguous and noisy, which makes the learned dic-
tionary unreliable/inaccurate and thus ineffective to model
such dynamic visual patterns; (2) to bridge low-level vi-
sual features and high-level interpretation is a long-standing
challenge and visual-data-only based modelling is typically
insufficient to overcome this semantic gap. By jointly learn-
ing and correlating both visual and non-visual sources, our
VNV-MSC-Forest model shows its superiority and advan-
tage in mitigating this difficulty.

6.3.2 A User Study on Summary Quality

We conducted a user study to examine if the non-visual tags
inferred using the MSC-Forest model could complement the
unilateral perspective offered by pure visual summary alone.
We showed two video summaries to 10 volunteers: (i) a pure
visual summary, and (ii) the same summary but enriched
with semantic tags inferred using the proposed multi-source
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Fig. 10: The multi-source affinity matrix constructed by our model, along with key frames corresponding to ground truth
events of interest: (1) policemen on-duty, (2) blocking pathway, (3) workers unloading scaffolding tubes, (4)-(6) different
stages of scaffolding, (7)(9)(10) van parking aside, (8) parcel delivery, (11)(12) loitering events. The event covered by some
particular method is indicated on the left-bottom corner of key frame with their ID defined as: (a) Uniform-Sampling; (b)
Sufficient-Change (L1); (c) Sufficient-Change (L2); (d) VO-Forest; (e) LiveLight; (f) VNV-MSC-Forest.

Table 5: Quantitative comparison of summary. Length =
video clip number in summary. Event No. = the number of
event-of-interest included in summary.

Method Length Event No. Coverage

Uniform-Sampling 28 3 25.9%
Sufficient-Change(L1) 29 2 16.7%
Sufficient-Change(L2) 29 4 33.3%

VO-Forest 21 3 34.5%
LiveLight 28 5 40.2%

VNV-MSC-Forest (Ours) 28 7 60.4%

model10. The tagged summary is shown in Figure 11. Each
volunteer was asked to compare and rate the two summaries
based on their preference. It is worth pointing out that pass-
ing the user test is challenging because providing additional
non-visual tags to summary is not necessarily better than

10 The inferred non-visual tags include weather, traffic conditions,
and typicality. The typicality tag, i.e. usual and interesting, of each clip,
is computed based on the size of their assigned clusters (Figure 4(c)).
Clips assigned to the top 20% smallest clusters are treated as ‘interest-
ing’.

none. Tags that correlate poorly with visual context could
even jeopardise user experience.

It is evident from Figure 12 that visual summary aug-
mented with non-visual tags was well accepted by all partic-
ipants over the conventional visual-only summary. A follow-
up survey with the volunteers reveals several interesting rea-
sons of their selection. Many volunteers found that the in-
ferred non-visual tags were valuable in providing auxiliary
context to achieve better global situational awareness. In
particular, the tags helped them to ‘connect the dots’ and
making sense of the previously-unseen (and likely unfamil-
iar) video footages. Some other volunteers credited the addi-
tional non-visual tags in focusing their attention on particu-
lar events, and helping them in spotting ‘outliers’ of interest.

This user study provides an independent means to anal-
yse and validate the usefulness of visual summarisation with
auto-tag inference of previously-unseen video footages with-
out a priori semantics or meta-data, mostly typical of surveil-
lance videos. It also shows the effectiveness of the proposed
model for mapping multi-source non-visual information to
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Typicality:	  usual	  
Weather:	  cloudy	  
Traffic:	  medium	  
Time:	  05:00	  am	  

Typicality:	  usual	  
Weather:	  sunny	  
Traffic:	  slow	  
Time:	  15:21	  pm	  

Typicality:	  interes;ng	  
Weather:	  sunny	  
Traffic:	  medium	  
Time:	  06:31	  am	  

Typicality:	  usual	  
Weather:	  sunny	  
Traffic:	  slow	  
Time:	  13:38	  pm	  

Typicality:	  interes;ng	  
Weather:	  sunny	  
Traffic:	  slow	  
Time:	  10:14	  am	  

Typicality:	  usual	  
Weather:	  sunny	  
Traffic:	  slow	  
Time:	  10:24	  am	  

Fig. 11: A storyboard version of our video summary enriched with non-visual tags.

Is tagged-summary better/worse 
than pure visual summary? 

similar (0%) 
worse (0%) 
much worse (0%) 

much better (10%) 
better (90%) 

Fig. 12: User study: tagged versus pure-visual summary.

unstructured and previously-unseen video data in automatic
tagging and summarisation of the videos.

6.4 Multi-Source Model Visualisation

The superior performance of VNV-MSC-Forest can be bet-
ter explained by examining more closely the capacity of
MSC-Forest in uncovering and exploiting the intrinsic cor-
relation among different visual sources and more critically
among visual and non-visual sources. This indirect correla-
tion among heterogeneous sources results in well-structured
decision trees, subsequently leading to more consistent data
clusters and more accurate semantics inference. The details
of computing the multi-source correlation are presented in
Appendix A. Here we show an example multi-source cor-
rection revealed by our MSC-Forest for model visualisation
purpose.

Intuitively, vehicle and person counts should correlate
in a busy scene like TISI. Our MSC-Forest discovered this
correlation (see Figure 13(a)), so the less reliable vehicle de-
tection from distance against a cluttered background, could
enjoy a latent support from more reliable person detection
in regions 5-16 close to the camera view.

Moreover, visual sources also benefit from correlated
support from non-visual data through our cross-sources in-
formation gain optimisation (Eqn. (4)). An example is the
intuitive correlation between traffic speed and visual appear-
ance, e.g. slow traffic speed often corresponds to crowded

scenarios with a large quantity of pedestrians and vehicles
whilst fast traffic speed to sparse people and cars. Such cross-
source correlation can be captured by our MSC-Forest, as
observed in Figure 10(b) that the vehicle detection responses
over road area present a stronger interaction with traffic speed
data than those on walk path where vehicles should not ap-
pear. In other words, vehicle detection features of road area
are preferred over those on walk path in node splitting due
to larger induced joint information gain (Eqn. (4)), which
is clearly desired. This discovered correlation is further ex-
ploited by MSC-Forest during the node splitting optimisa-
tion process and thus facilitates the separation of different
crowdedness levels of visual data. This leads to better clus-
ters and eventually benefits video summarisation.

6.5 Computational Costs and Model Complexity

We examined the computational costs for training the pro-
posed MSC-Forest, in comparison to the conventional forests.
Time is measured on a Windows PC machine with a dual-
core CPU @ 2.66 GHz, 4.0GB RAM, with C++ implemen-
tation. Only one core is utilised for training each forest. We
recorded the model training time under the same experimen-
tal setting as stated in Section 5. It is observed from Table 6
that the training cost of a MSC-Forest model is significantly
lower than that of learning conventional forests. In partic-
ular, VNV-MSC-Forest records a reduced training time by
14.4% and 17.1% on TISI, and 64.1% and 64.4% on ERCe,
when compared with VO-Forest and VNV-Forest, respec-
tively. We observed similar trend on the model inference
time.

The lower computational cost of MSC-Forest is owing to
its shallow and balanced trees, thanks to the additional non-
visual and temporal information during tree optimisation.
To make this concrete, we showed in Table 6 the averaged
tree fan-in$∗ = 1

γclust

∑γclust
t $(t) of different forest mod-

els. A forest with shallow and balanced trees tend to have a
small $∗ (see Section 3.2.2 for a discussion on tree fan-in).
In addition, we also profiled the length of path (from root
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Fig. 13: The discovered multi-source correlations by our
MSC-Forest on TISI.

to leaf node) traversed by training samples. A shallow and
balanced tree tends to have shorter path length. The distri-
butions depicted in Figure 14 suggest that MSC-Forest has
a shallower and more balanced tree topology than that of
conventional forests. It is worth pointing out that despite the
shallower structure, MSC-Forest outperforms other models
in our clustering and tagging experiments.

Table 6: Random forest model training complexity. Lower is
better. TT = Training Time (unit is second).

Dataset TISI ERCe
- TT $∗ TT $∗

VO-Forest 10306 109392 21831 359247
VNV-Forest 10646 108865 22015 359364
VNV-MSC-Forest 8823 91316 7845 137620

7 Conclusion and Future Work

We have presented a novel unsupervised multi-source learn-
ing model for video summarisation. Specifically, we intro-
duced a joint information gain function for discovering and
exploiting latent correlations among independent heteroge-
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Fig. 14: Comparing tree path length statistics. The same leg-
end is used for both charts.

neous data sources. The function naturally copes with di-
verse types of data with different representations, distribu-
tions, and dimensions. Importantly, our model is capable of
tolerating partial and missing non-visual data, lending it well
for automatic semantic tag inference on previously-unseen
video footages and for video summarisation. Furthermore,
the proposed joint optimisation encourages more compact
decision trees, leading to more efficient model training and
semantic tag inference. Extensive comparative experiments
have demonstrated the advantages of the proposed multi-
source video clustering model over existing visual-only mod-
els, for both discovering latent video clusters and inferring
non-visual semantic tags on previously-unseen video footages.
A comprehensive user study was carried out to validate inde-
pendently the effectiveness of deploying the proposed model
for generating contextually-rich and semantically-meaningful
video summary.

The proposed model is not limited to surveillance-type
videos but can be generalised to other types of unstructured
and un-tagged consumer videos or egocentric videos, if 3D
camera motion-invariant features or egocentric features (Lee
et al, 2012) are adopted. For future work, we will consider
generalising/transferring a learned model to new scenes that
are significantly different from the training environments.
This can be partly addressed by utilising intermediate data
representations such as attributes.

A Quantifying Correlation between Sources

Quantifying latent correlation between different sources gives insights
into their interactions in forming coherent video groupings. This can be
done once a MSC-Forest is trained. To quantify between-source corre-
lation, we first estimate correlation among their constituent features.
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Visual-visual feature correlation - Visual-visual feature correlation
is typically quantified based on their similarity in inducing split node
partitions L and R (Breiman, 2001). In particular, given a split node s
and its final optimal split, sayLν andRν by feature ν. ¿From Eqn. (2),
we recall that this feature ν is selected out from the mtry randomly
sampled features F s = {f1, . . . , fmtry

}. Let τ ∈ F s \ ν and its
optimal left-right partitions beLτ andRτ respectively. The node-level
correlation between features ν and τ is then defined as

λf (ν, τ) =
pν − (1− |Lν∩Lτ ||Lν∪Rν|

− |Rν∩Rτ ||Lν∪Rν|
)

pν
, (16)

where pν = min( |Lν|
|Lν|+|Rν|

, |Rν|
|Lν|+|Rν|

), thus pν ∈ (0, 1
2
]. With

Eqn. (16) we assign a strong correlation (λf (ν, τ) = 1) to a feature
pair (ν, τ ) if they produce the same data partition, whilst a weak cor-
relation (λf (ν, τ) ≤ −1) when their partitions have no overlaps. For
simplicity we let λf (ν, τ) = max(λf (ν, τ), 0) such that λf (ν, τ)
lies in the range of [0, 1]. The final visual-visual feature correlation
λ(ν, τ) is obtained via

λ(ν, τ) =
1

γclust

γclust∑
t=1

 1

Nt(ν,τ)

Nt
(ν,τ)∑
k

λf (ν, τ)

 , (17)

where Nt(ν,τ) refers to the number of sampling co-occurrences of a
feature pair (ν, τ ) during the splitting process of a MSC-tree t.

Visual-nonvisual feature correlation - Recall that visual and non-
visual data play different roles in our MSC-Forest, e.g. the former as
splitting features whereas the later as auxiliary information. This dif-
ference makes the above equations not applicable to the computation
of visual-nonvisual feature correlation since no data split is associ-
ated with non-visual features. Instead, we adopt information gain as
the visual-nonvisual feature correlation metric. This metric is appro-
priate in that it also reflects the intrinsic mutual interaction between
visual and non-visual features during joint information gain optimisa-
tion (Eqn. (4)). Formally, we quantify the node-level correlation be-
tween the optimal splitting visual feature ν and a non-visual feature
ω as λf (ν, ω) = ∆ψω

ψω0
(the non-visual term of Eqn. (4)). The final

visual-nonvisual feature correlation λ(ν, ω) is computed similarly by
Eqn. (17).

Correlation between sources - Given between-feature correlation, the
final correlation between any two sources ξi and ξj can then be esti-
mated through

ψ(ξi, ξj) =
1

|ξi||ξj |
∑

ν∈ξi,τ∈ξj

λ(ν, τ). (18)
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