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Abstract

Learning Bayesian networks from scarce data is a major challenge in real-world

applications where data are hard to acquire. Transfer learning techniques at-

tempt to address this by leveraging data from different but related problems.

For example, it may be possible to exploit medical diagnosis data from a dif-

ferent country. A challenge with this approach is heterogeneous relatedness to

the target, both within and across source networks. In this paper we intro-

duce the Bayesian network parameter transfer learning (BNPTL) algorithm to

reason about both network and fragment (sub-graph) relatedness. BNPTL ad-

dresses (i) how to find the most relevant source network and network fragments

to transfer, and (ii) how to fuse source and target parameters in a robust way.

In addition to improving target task performance, explicit reasoning allows us

to diagnose network and fragment relatedness across BNs, even if latent vari-

ables are present, or if their state space is heterogeneous. This is important in

some applications where relatedness itself is an output of interest. Experimental

results demonstrate the superiority of BNPTL at various scarcities and source

relevance levels compared to single task learning and other state-of-the-art pa-

rameter transfer methods. Moreover, we demonstrate successful application to

real-world medical case studies.
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1. Introduction

Bayesian networks have proven valuable in modeling uncertainty and sup-

porting decision making in practice (Pearl, 1988; Fenton and Neil, 2012). How-

ever, in many applications it is hard to acquire sufficient examples to learn BNs

effectively from data. For example, in a small hospital or country there may

be insufficient data to learn an effective medical diagnosis network. However,

directly applying a network learned in another domain may be inaccurate or

impossible because the underlying tasks may have quantitative or qualitative

differences (e.g., care procedures vary across hospitals and countries). In this

paper we investigate leveraging BNs in different but related domains to assist

learning a target task with scarce data. This is an important capability in at

least two distinct scenarios: (i) those where the source tasks are the same as the

target, but have different specific statistics (e.g., due to different demographic

statistics in another country), and (ii) those where the source tasks are related

to the target in a piecewise way, (the target and source tasks are not the same,

but share common sub-graphs, e.g., two hospitals share a subset of procedures;

or two diseases share a subset of symptoms).

The proposed contribution falls under the topical area of transfer learning

(Torrey and Shavlik, 2009; Pan and Yang, 2010) (also known as domain adap-

tation), which aims to significantly reduce data requirements by leveraging data

from related tasks. Transfer has been successfully applied in a variety of machine

learning areas for example, recommendations (Pan et al., 2012), classification

(Li et al., 2012; Ma et al., 2012) and natural language processing (Collobert and

Weston, 2008). Central challenges include computing when to transfer (trans-

fer or not depending on relevance), from where (which of multiple sources of

varying relevance) (Eaton et al., 2008; Mihalkova and Mooney, 2009) and how

(how to fuse source and target information). These are crucial to ensure that
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transfer is helpful, and avoid ‘negative transfer’ risk (Pan et al., 2012; Seah

et al., 2013a). Despite the popularity of transfer learning, limited work (Luis

et al., 2010; Niculescu-mizil and Caruana, 2007; Oyen and Lane, 2012) has been

done on transfer learning of BNs. Outstanding challenges in BN transfer include

dealing automatically with from where to transfer, transferring in the presence

of latent variables and transferring between networks with heterogeneous state

spaces. In this paper we introduce the first framework that resolves these issues

in a BN context, leveraging the structured nature of BNs for piecewise trans-

fer, so multiple sources of partial relevance and potentially heterogeneous state

spaces can be exploited.

In this paper we assume the target and source domain structures are pro-

vided1 and concentrate on the challenges of learning the target network param-

eters in the presence of latent variables and from multiple sources of varying –

continuous and/or piecewise – relevance. Importantly, we do not require that

the source and target networks correspond structurally, or that node names are

shared. Our novel solution involves splitting the target and source BNs into

fragments (sub-graphs) and then reasoning explicitly about both network-level

and fragment-level relatedness. Reasoning simultaneously about both is im-

portant, because pure fragment-level relatedness risks over-fitting if there are

many sources. We achieve this via an Expectation Maximization (EM) style

algorithm that alternates between (i) performing a Bayesian model comparison

to infer per-fragment relatedness and (ii) updating a source network related-

ness prior. This solves when and from where to transfer at both coarse and

fine-grained level. Finally, the actual transfer is performed per-fragment using

Bayesian model averaging to robustly fuse the source and target fragments, ad-

dressing how and how much to transfer. In this way we can deal robustly with a

variety of transfer scenarios including those where the source networks are: (i)

highly relevant or totally irrelevant, (ii) have the same or heterogeneous state

1This is easiest to elicit from experts, and is moreover required in many domains such as
medicine where the structure must be semantically meaningful to be acceptable to end users.
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spaces and (iii) uniform or piecewise (varying per sub-graph) relevance. Our

explicit network and fragment relatedness reasoning also provides a diagnostic

of which networks/domains are similar, and which sub-graphs are common or

distinct. This is itself an important output for applications where quantifying

relatedness, and uncovering the source of heterogeneity between two domains is

of interest (e.g., revealing differences in treatment statistics between hospitals).

To evaluate our contribution, we conduct experiments on six standard networks

from a BN repository, comparing against various single task baselines and prior

transfer methods. Finally, we apply our method to transfer learning in two

real-world medical networks.

2. Related Work

Expert Elicitation. An advantage of BNs is their interpretable nature means

that experts can define variables, structure and parameters in the absence of

data. Nevertheless, learning BNs from data is of interest because there are

many situations for which there is no available expert judgment, or where it

may not be possible to elicit the conditional probability tables (CPTs). Studies

have therefore tried to bridge the gap between these two paradigms. Most

typically, experts specify a semantically valid network structure, and CPTs are

learned from data. Recently, expert specified qualitative constraints on CPTs

have been exploited to improve parameter learning. This is done, for example,

via establishing a constrained optimization problem (Altendorf, 2005; Niculescu

et al., 2006; de Campos and Ji, 2008; Liao and Ji, 2009; de Campos et al., 2009)

or auxiliary BNs (Khan et al., 2011; Zhou et al., 2014a,b). In this study we

exploit the ability of experts to easily specify a network structure and focus on

transfer to improve quantitative estimation of parameters.

CPTs combination. When there is limited training data, researchers have at-

tempted to construct CPTs from different relevant sources of information. Given

a set of CPTs involving the same variables, conventional methods to aggregate

them are linear aggregation (i.e., weighted sum) and logarithmic aggregation
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(Genest and Zidek, 1986; Chang and Chen, 1996; Chen et al., 1996). Based

on this, the work of (Luis et al., 2010) introduced the DBLP (distance based

linear pooling) and LoLP (local linear pooling) aggregation methods by consid-

ering the CPTs’ confidences and similarities learnt from the original datasets.

This method highlighted the importance of measuring the weights/confidences

of different CPTs. However, the method is a too simplistic heuristic: confidence

values depend only on the CPT entry size and dataset size, without considering

the fit to the target training data.

Transfer Learning. Transfer learning in general is now a well studied area, with

a good survey provided by (Pan and Yang, 2010). Extensive work has been

done on transfer and domain adaptation for flat machine learning models, in-

cluding unsupervised transfer and analysis of relatedness (Duan et al., 2009;

Seah et al., 2013b,a; Eaton et al., 2008). However, these studies have generally

not addressed one or more of the important conditions that arise in the BN

context addressed here, notably: transfer with heterogeneous state space, piece-

wise transfer from multiple sources (a different subset of variables/dimensions in

each source may be relevant), and scarce unlabeled target data (thus precluding

conventional strategies that assume ample unlabeled target data, such as MMD

(Huang et al., 2007; Seah et al., 2013b)).

Transfer Learning in BNs. In the context of transfer learning in BNs, the

multi-task framework of (Niculescu-mizil and Caruana, 2007) considers struc-

ture transfer. However, it assumes that all sources are equally related and sim-

ply learns the parameters for each task independently. Kraisangka and Druzdzel

(2014) construct BN parameters from a set of regression models used in survival

analysis. However, this method cannot be generalized to transfer between BNs.

The transfer framework of (Luis et al., 2010) covers a more similar parameter

transfer problem to ours and proposes a method to fuse source and target data.

However, the heuristic CPT fusion used assumes every source is both relevant

and equally related. It is not robust to the possibility of irrelevant sources and

does not systematically address when, from where, and how much to transfer (as
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shown by our experiments where this method significantly underperforms ours).

The study (Oyen and Lane, 2012) considers multi-task structure learning, again

with independently learned parameters. They investigate network/task-level re-

latedness, showing transfer performs poorly without knowledge of relatedness.

However, they address this by using manually specified relatedness. Finally,

a recent study (Oates et al., 2014) improves this by automatically inferring

the network/task-level relatedness. However, they do not consider information

sharing of parameters. In contrast, we explicitly learn about both network and

fragment-level relatedness from data. None of these prior studies cover transfer

with latent variables or heterogeneous state spaces.

A related area to BN transfer is transfer in Markov Logic Networks (MLNs)

(Mihalkova et al., 2007; Davis and Domingos, 2009; Mihalkova and Mooney,

2009). In contrast to these studies, our approach has the following benefits:

We can exploit multiple source networks rather than exactly on each; we au-

tomatically quantify source relevance and are robust to some or all irrelevant

sources (rather than assuming a single relevant source); these MLN studies use

the transferred clauses directly rather than weighting the resulting transfer by

estimated relevance.

3. Model Overview

3.1. Notation and Definitions

In a BN parameter learning setting, a domain D = {V,G,D} consists of

three components: variables V = {X1, X2, X3, ..., Xn} corresponding to nodes

of the BN, associated data D, and a directed acyclic graph G encoding the

statistical dependencies among the variables. The conditional probability table

(CPT) associated with every variable specifies the probability p (Xi|pa(Xi)) of

each value given the instantiation of its parents as defined by graph G. Within

a domain D, the goal of parameter learning is to determine parameters for all

p(Xi|pa(Xi)). This is conventionally solved by maximum likelihood estimation

(MLE) of CPT parameters θ, θ̂ = arg maxθ log p(D|θ). We denote this setting
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Table 1: Notation used in this paper for the Bayesian network transfer learning task.

Index Notation Description

1 Dt
j The j th fragment in target domain

2 Ds
k The kth fragment in the sth source domain

3 Hs Hypothesis of domain-level relatedness between Dt and Ds

4 Hs
jk Hypothesis of fragment-level relatedness: Hs

jk ∈ {Hs
jk1, H

s
jk0}

5 Hs
jk1 Hypothesis of two fragments Dt

j and Ds
k share a common CPT

6 Hs
jk0 Hypothesis of two fragments Dt

j and Ds
k have distinct CPT

7 Dt
j The data for the j th fragment in target domain

8 Ds
k The data for kth fragment in the sth source domain

Single Task Learning (STL). The related notation in this paper are listed in

Table 1.

In this paper, we have one target domain Dt, and a set of sources {Ds}Ss=1,S ≥

1. The target domain and each source domain have training dataDt = {dt1, dt2, . . . , dtN}

and Ds = {ds1, ds2, . . . , dsMs}. For transfer learning we are interested in the case

where target domain data is relatively scarce: 0 < N �Ms, and/or N is small

relative to the dimensionality of the target problem N � n2. Following the

definition of transfer learning in (Pan and Yang, 2010), we define BN parameter

transfer learning (BNPTL).

Definition 1 BNPTL. Given a set of source domains {Ds} and a target

domain Dt, BN parameter transfer learning aims to improve the parameter

learning accuracy of the BN in Dt using the knowledge in {Ds}.

This task corresponds to the problem of estimating the target domain CPTs

θt given all the available domains:

θ̂t = arg max
θt

p(θt|Dt, {Ds}) (1)

If the networks correspond (V t = V s, Gt = Gs) and relatedness is assumed, then

this could be simple MAP or MLE with count-aggregation. In the more realistic

case of Ds 6= Dt due to different training data sets with different statistics and

thus varying relatedness; and potentially heterogeneous state spaces V , then

the problem is much harder. More specifically, we consider the case where
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dimensions/variables in each domain do not correspond Vs 6= Vt. They may be

disjoint Vs∩Vt = ∅, or partially overlap Vs∩Vt 6= ∅. However any correspondence

between them is not assumed given (variable names are not used). In the

following we describe an algorithm to maximize Eq (1) by proxy.

3.2. BN Parameter Transfer Learning

Typically, transfer learning methods calculate relatedness at domain or in-

stance level granularity. However, in real-world applications, that relevance may

vary within-domain – such that different subsets of features/variables may be

relevant to different source domains. In order to learn a target domain Dt lever-

aging sources {Ds} with piecewise relatedness, or heterogeneity V t 6= V s and

Gt 6= Gs, we transfer at the level of BN fragments.

Definition 2 BN fragment. A Bayesian network of domain D can be

divided into a set of sub-graphs (denoted fragments) D = {Df} by considering

the graph G. Each fragment Df = {Vf , Gf , Df} is a single root node or a node

Xi with its direct parents pa(Xi) in the original BN, and encodes a single CPT

from the original BN. The number of fragments is the number of variables in

the original BN.

To realize flexible BN parameter transfer, the target domain and source

domains are all broken into fragments Dt = {Dt
f}, {D

s} = {{Ds
f}}. Assum-

ing for now no latent variables in the target domain, then each fragment j

can be learned independently θ̂tj = arg maxθtj p(θ
t
j |D

t
j , {{D

s
f}}). To leverage the

bag of source domain fragments {{Ds
f}} in learning each θtj , we consider each

source fragment Ds
k as potentially relevant. Specifically, for each target frag-

ment, every source fragment is evaluated for relatedness and the best fragment

mapping is chosen. Once the best source fragment is chosen for each target,

a domain/network-level relatedness prior is re-estimated by summing the re-

latedness of its fragments to the target. The knowledge from the best source

fragment for each target is then fused according to its estimated relatedness.

To realize this strategy, four issues must be addressed: (1) which source

fragments are transferable, (2) how to deal with variable name mapping, (3)
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how to quantify the relatedness of each transferrable source fragment in order

to find the best one and (4) how to fuse the chosen source fragment. We next

address each of these issues in turn:

Fragment Compatibility For a target fragment j and putative source frag-

ment k with continuous sate spaces, we say they are compatible if they have the

same structure. For fragments with discrete and finite state spaces, we say they

are compatible if they have the same structure2 and state space. That is, the

same number of states and parents states3, so

compatible(Gtj , G
s
k) =

1 if Gtj = Gsk & dims(θtj) = dims(θsk)

0 otherwise

This definition of compatibility could be further relaxed quite straightforwardly

(e.g., allowing target states to aggregate multiple source states) at the expense

of additional computational cost. However, while relaxing the condition of com-

patibility would improve the range of situations where transfer can be exploited,

it would also increase the cost of the algorithm by increasing the number of al-

lowed permutations, as well as decreasing robustness to negative transfer (by

potentially allowing more ‘false positive’ transfers from irrelevant sources). This

is an example of pervasive trade-off between maximum exploitable transfer and

robustness to negative transfer (Torrey and Shavlik, 2009).

Fragment Permutation Mapping For two fragments j and k determined

to be compatible, we still do not know the mapping between variable names.

For example if j has parents [a, b] and k has parents [d, c], the correspondence

could be a− d, b− c or b− d, a− c. The function permutations(Gtj , G
s
k) returns

an exhaustive list of possible mappings Pm that map states of k to states of j.

2Note, that transfer at the level of compatible edges rather than fragments is based on the
ICI (Independence of Causal Influences) assumption, and would be a straightforward extension
of this algorithm. However we do not consider it here in order to constrain the computational
complexity, and to avoid “by chance” false positive transfer matches that can lead to negative
transfer.

3This assumes that the number of parameters is proportional to the number of rows in the
conditional probability table, and no parametric dimension reduction is used.
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Here we provide an illustrative example of fragment-based parameter trans-

fer: the target is a three node BN shown in the left part of Figure 1 (a), and the

source is a eight node BN shown in the right part of Figure 1 (a). In Figure 1

(b), there are two source fragments ({T s, Ls, Es} and {Es, Bs, Ss}) which are

compatible with target fragment. Thus, there are four permutations of compat-

ible source fragments (assuming binary parent nodes). All four of these options

are then evaluated for fitness, and the best fragment and permutation is picked

(shown with dashed triangle in Figure 1 (b)). Finally, this selected fragment

and permutation will be fused with target fragment via our fusion function.

We next discuss the more critical and challenging questions of how a par-

ticular target fragment Gj and specific permuted source fragment Pm(Gsk) are

evaluated for relevance, and how relevant sources are fused.

3.3. Fitness Function

To measure the relatedness between compatible target and source fragments

Dt
j and Ds

k, we introduce a function fitness(Dt
j ,D

s
k, p(H

s)), where p(Hs) is

a domain-level relatedness prior. Here we consider a discrete random vari-

able indexing the related source s among S possible sources. So p(Hs) is a

S-dimensional multinomial distribution encoding the relatedness prior. In this

section, for notational simplicity we will use t and s to represent the jth target

and kth source domain fragments under consideration.

A systematic and robust way to compare source and target fragments for

relevance is to compute the probability that the source and target data share a

common CPT (hypothesis4 Hs
1) versus having distinct CPTs (hypothesis Hs

0).

This idea was originally proposed in a recent work (Zhou et al., 2015), which is

called as Bayes model comparison (BMC) for hypotheses Hs ∈ {Hs
1 , H

s
0} is:

4Consistent with the simplification of fragment notation, here Hs
1 only refers the dependent

hypothesis between Dt
j and Ds

k.
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Figure 1: A simple example to show the fragment compatibility measurement, and the permu-
tations of all possible parental nodes in a fragment. (a) The dashed triangle represents source
fragments {T s, Ls, Es} and {Es, Bs, Ss}, which are compatible with the target fragment. (b)
All the permutations of compatible source fragment, and the most fit one {Ls, T s, Es}.

p(Hs
1 |Ds, Dt) ∝

∫
p(Dt|θ)p(θ|Ds, Hs

1)p(Hs
1)dθ,

p(Hs
0 |Ds, Dt) ∝

∫
p(Dt|θt)p(θt|Hs

0)p(Hs
0)dθt.

(2)

where we have made the following conditional independence assumptions: Ds⊥Hs
1 ,

Dt⊥{Ds, Hs
1}|θ and θt⊥Ds|Hs

0 .

For discrete likelihoods p(D|θ) and Dirichlet priors p(θ|Hs), integrating over
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INPUT : Target domain Dt, Sources {Ds}
OUTPUT: θt =

{
θtj
}

and p(Hs)

1 Initialize the domain-level relatedness p(Hs) (uniform);
2 repeat
3 for target fragment j = 1 to J do
4 for source network s = 1 to S and fragment k = 1 to K do
5 if compatible(Gtj , G

s
k) then

6 P = permutations(Ds
k);

7 for permutation m = 1 to M do
8 measure relatedness:

fitness(Dt
j , P

sk
m (Ds

k), p(Hs)) =

p(Hs
jk1|Dt

j , P
sk
m (Ds

k));

9 end

10 end

11 end

12 end

13 for source network s = 1 to S do
14 Re-estimate network relevance: p(Hs) ∝

∑
jk p(H

s
jk|Dt

j , D
s
k);

15 end

16 until convergence;

17 for target fragment j = 1 to J do
18 Find the best source and permutation:

k′, s′,m′ = arg maxk,s,m p(H
s
jk1|Dt

j , P
sk
m (Ds

k));

19 θtj = fusion(Dt
j , P

s′k′

m′ (Ds′

k′));

20 end

21 return θt =
{
θtj
}

and p(Hs)

Algorithm 1: BNPTL

the unknown CPTs θ, the required marginal likelihood is the Dirichlet com-

pound multinomial (DCM) or multi-variate Polya distribution:

p(Dt|Ds, Hs
1) =

Γ(AX
s

)

Γ(NXt +AXs)

C∏
c=1

Γ(nX
t

c + αX
s

c )

Γ(αXsc )
(3)

where c = 1 . . . C index variable states, nX
t

c is the number of observations of

the cth target parameter value in data Dt, and NXt =
∑
c n

Xt

c ; αX
s

c indicates

the aggregate counts from the source domain and distribution prior, and AX
s

=∑
c α

Xs

c .
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Maximal fitness(·) is achieved when the target data are most likely to share

the same generating distribution as the source data. As we can see, previously

proposed fitness function (Zhou et al., 2015) only addresses discrete data with

Dirichlet conjugate priors. In this paper, we derive the analogous computations

for continuous data with Gaussian likelihood with Normal-Inverse-Gamma con-

jugate priors.

p(Dt|Ds, Hs
1) =

N∏
i=1

 1√
π

Γ
(

2αm+1
2

)
Γ
(

2αm
2

) √ Λ

2αm

(
1 +

Λ(dti − µm)2

2αm

)−( 2αm+1
2 )


(4)

where Λ = αmkm
βm(km+1) , the hyperparameters µm, km, αm and βm are updated

based on the source data Ds
k, which contains M samples with center at d̄s:



µm = k0µ0+Md̄s

k0+M

km = k0 +M

αm = α0 + M
2

βm = β0 + 1
2

∑M
i=1(dsi − d̄s)2 + k0M(d̄s−µ0)2

2(k0+M)

(5)

Transfer Prior: The final outstanding component of BMC is how to define

the transfer prior p(Hs). We assume that transfer is equally likely a priori within

a given source domain, but that different source domains may have different

prior relatedness. Thus we set the transfer prior for a particular fragment pair

to the prior for the corresponding source network, i.e., p(Hs
jk1) = p(Hs). The

fragment transfer prior p(Hs
jk) is then normalised as p(Hs

jk0) = 1− p(Hs
jk1).

3.4. Fusion Function

Once the best source fragment Ds
k is found for a given target fragment Dt

j ,

the next challenge is how to optimally fuse them. Our solution (denoted BMA)

is to infer the target CPT, integrating over uncertainty about whether the se-

lected source fragment is indeed relevant or not (i.e., if they share parameters

or not – Hs
1 and Hs

0 in last section).
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We perform Bayesian model averaging, summing over these possibilities.

Specifically, we ask p(θt|Dt, Ds) =
∑
Hs p(θ

t, Hs|Dt, Ds) which turns out to be:

p(θt|Dt, Ds) = p(Hs
1 |Dt, Ds)Dir(θ;α+NXt +NXs)

+p(Hs
0 |Dt, Ds)Dir(θ;α+NXt) (6)

where p(Hs|Dt, Ds) comes from Eq (2). This means the strength of fusion is au-

tomatically calibrated by the estimated relevance. Since there is no closed form

solution for the sum of Dirichlets, we approximate Eq (6) by moment match-

ing. For conditional Gaussian nodes, the weighted sum is also approximated by

moment matching.

Moment matching (also known as Assumed Density Filtering (ADF)) is to

approximate a mixture such as Eq (6) by a single distribution whose mean and

variance is set to the mean and variance of the weighted sum. The estimated

relatedness provides the weights w1 = p(Hs
1 |Dt, Ds), w0 = p(Hs

0 |Dt, Ds). As-

suming the posterior mean and variance of the parameters in the related and un-

related condition are u1, v1 and u0, v0 respectively. Then the approximate poste-

rior mean is u = w1u1+w0u0, and variance is v = w1(v1+(u1−u)2+w0(u0−u)2

(Murphy, 2012). For Gaussian distributions we can use this directly. For Dirich-

let distributions with parameter vector α, the variance parameter v = 1/
∑
α,

and the mean parameter vector is u = vα.

3.5. Algorithm Overview

An overview of our BNPTL framework is given in Algorithm 1. Each target

fragment is compared to all permutations of compatible source fragments and

evaluated for relevance using BMC fitness. The most relevant source fragment

and permutation is assigned to each target fragment. The network-level rele-

vance prior is re-estimated based on aggregating the inferred fragment relevance

for that source: p(Hs) ∝
∑
jk p(H

s
jk|D

t
j ,D

s
k). This way of updating the source

network prior reflects the inductive bias that fragment should be transferred

from fewer distinct sources, or that a source network that has already produced
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many relevant fragments is more likely to produce further relevant fragments

and should be preferred.

Finally, the most relevant source fragment for each target is fused using

BMA. If there are missing or hidden data in the target domain, we start by

running the standard EM algorithm in the target domain, to infer the states of

each hidden variable. We use these expected counts to fill in Dt when applying

BNPTL.

Properties. Our BNPTL has a few favorable properties worth noting: (i) If there

is no related source fragment, then the most related source fragment will have

estimated relatedness near zero and no transfer is performed (p(Hs
1 |Dt, Ds) ≈ 0

in Eq (6)). This provides some robustness to irrelevant sources (as explored in

Section 4.7-4.8). (ii) Although we rely on an EM procedure to estimate fragment

and source relatedness, starting from a uniform prior p(Hs), our algorithm is

deterministic and we use only one run to get results, (iii) Explicitly reasoning

about both fragment and network level relatedness allows the exploitation of

heterogeneous relevance both within and across source domains.

Computational Complexity. The computational complexity of this algorithm

lies in the total number of relatedness estimates. We treat a relatedness calcu-

lation as an elementary operation O(1). Assuming there are J target fragments,

S′ compatible source fragments (typically much less than total number of source

fragments S), and each fragment has v parent nodes. Then the time complexity

of each EM iteration in BNPTL is: O(JS′v!). Where v! is the total number

of permutations searched to transfer a compatible fragment pair. In practice it

always converged in 10-30 EM iterations. For example, I took 0.47 seconds to

process Asia network (see Table 4, row 7) on our computer (Intel core i7 CPU

2.5 GHz).
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4. Experiments

We first evaluate transfer learning on 6 standard networks from the BN

repository5 before proceeding to real medical case studies. Details and descrip-

tions of these BNs can be found in Table 2

Table 2: Descriptions of Weather, Cancer, Asia, Insurance, Alarm and Hailfinder BNs

Name Nodes Arcs Paras† M-ind‡ Descriptions

Weather 4 4 9 2 Models factors like rain and sprinkler, which
can be affected by the weather condition
and all determine the presence of wet grass
(Russell and Norvig, 2009).

Cancer 5 5 10 2 Models the interaction between risk factors
and symptoms for diagnosing lung cancer
(Korb and Nicholson, 2010).

Asia 8 8 18 2 Used for a patient entering a chest clinic to
diagnose his/her most likely condition given
symptoms and risk factors (Lauritzen and
Spiegelhalter, 1988).

Insurance 27 52 984 3 Used for estimating the expected claim costs
for a car insurance policyholder (Binder
et al., 1997).

Alarm 37 46 509 4 This network is a medical diagnostic
application for patient monitoring and is
classically used to explore probabilistic
reasoning techniques in belief networks.
(Beinlich et al., 1989).

Hailfinder 56 66 2656 4 Prediction of hail risk in northern Colorado
(Abramson et al., 1996).

† Total number of parameters in each BN.
‡ The maximum edge in-degree, the maximum number of node parents in each BN.

4.1. Baselines

We compare against existing strategies for estimating relatedness and fusing

source and target data. For relatedness estimation, we introduce two alternative

fitness functions to BMC:

Likelihood: The similarity between the fragments is the log-likelihood of the

target data under the ML source parameters θ̂s,
∑
l log p(dtl |θ̂s).

MatchCPT: The dis-similarity between the fragments is the K-L divergence

between their ML parameter estimates KLD(θ̂t, θ̂s) (Dai et al., 2007; Selen and

Jaime, 2011; Luis et al., 2010).

5http://www.bnlearn.com/bnrepository/
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For fusing source and target knowledge, we introduce two competitors to our

BMA:

Basic: Use the estimated source parameter directly θ̂sj . A reasonable strategy

if relevance is perfect and the source data volume is high, but does not exploit

target data and it is not robust to imperfect relevance.

Aggregation: A weighted sum reflecting the relative volume of source and

target data (Eq (12) in (Luis et al., 2010)), it exploits both source and target

data, but is less robust than BMC to varying relevance.

Neither Basic nor Aggregation is robust to varying relevance across and within

sources (they do not reflect the goodness of fit between source and target), or

situations in which no source node at all is relevant (e.g., given partial overlap

of the source and target domain).

The algorithms implemented in MATLAB are based on functions and sub-

routines from the BNT6 and Fastfit/Lightspeed7 toolboxes. All the experiments

were performed on an Intel core i7 CPU running at 2.5 GHz and 16 GB RAM.

4.2. Overview of Relatedness Contexts

Before presenting experimental results, we first highlight the variety of possi-

ble network-relatedness contexts that may occur. Of these, different relatedness

scenarios may be appropriate depending on the particular application area.

Structure and Variable Correspondence: In some applications, the source

and target networks may be known to correspond in structure, share the same

variable names, or have provided variable name mappings. In this case the only

ambiguity in transfer is which of multiple potential source networks is the most

relevant to a target. Alternatively, structure/variable name correspondence may

not be given. In this case there is also ambiguity about which fragment within

each source is relevant to a particular target CPT.

Cross-network relevance heterogeneity: There may be multiple potential

6https://bnt.googlecode.com/
7http://research.microsoft.com/en-us/um/people/minka/software/

lightspeed/
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source networks, some of which may be relevant and others irrelevant. The most

relevant source should be identified for transfer, and irrelevant sources ignored.

Continuous versus discontinuous relevance: When there are multiple po-

tential source networks, it may be that relevance to the target varies continu-

ously (e.g., if each network represents a slightly different segment of demographic

of the population), or it may be that across all the sources some some are fully

relevant and others totally irrelevant. In the latter case it is particularly impor-

tant not to select an irrelevant source, as significant negative transfer is then

likely.

Piecewise Relevance: Relevance may vary piecewise within networks as well

as across networks. Consider a target network with two sub-graphs A and B: A

may be relevant to a fragment in source 1, and B may be relevant to a fragment

in source 2. For example, in the case of networks for hospital decision support,

different hospitals may share different subsets of procedures – so their BNs may

correspond in a piecewise way only. A target hospital network may then ideally

draw from multiple sources. Note that this may happen either because (i) sub-

graphs in the target are structurally compatible with different sub-graphs in the

multiple sources (which need not be structurally equivalent to each other), or

(ii) in terms of quantitative CPT fit, fragments in the target may each be better

fit to different sources.

Our BNPTL framework aims to be robust to all the identified variations in

network relatedness. In the following experiments, we will evaluate BN transfer

in each of these cases.

4.3. Transfer with Known Correspondences

In this section, we first evaluate transfer in the simplest setting, where struc-

ture/variable name correspondence is assumed to be given. This setting is same

as (Luis et al., 2010): the transfer only happens between target/source nodes

with the same node index Xt
i = Xs

i , where Xt
i ∈ Vt, X

s
i ∈ Vs and Vt = Vs,

Gt = Gs. (In our framework this is easily modelled by providing the prior

p(Hs
jk1) = 0, and hence p(Hs

jk0) = 1, for non-corresponding pairs j 6= k.) This
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Table 3: Performance (known correspondences) of STL, ALL and transfer learning methods:
CPTAgg, BNPTLnp and BNPTL.

Name STL ALL CPTAgg BNPTLnp BNPTL

Weather 0.02±0.02* 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00

Cancer 0.33±0.31* 0.01±0.00 0.12±0.09* 0.10±0.07* 0.10±0.05*

Asia 0.85±0.18* 0.36±0.04 0.68±0.27 0.30±0.12 0.24±0.14

Insurance 1.82±0.16* 1.05±0.09* 1.47±0.17* 0.77±0.05 0.76±0.04

Alarm 2.43±0.15* 1.70±0.10* 2.19±0.13* 0.64±0.02 0.63±0.02

Hailfinder 2.85±0.03* 1.98±0.02* 2.44±0.04* 0.97±0.07 0.97±0.04

Average 1.38±0.14 0.85±0.04 1.15±0.12 0.47±0.05 0.45±0.05

setting has the least risk of negative transfer, because there is less chance of

transferring from an irrelevant source CPT.

We use six standard BNs (Weather, Cancer, Asia, Insurance, Alarm and

Hailfinder) to compare our approach (BMC fitness with BMA (BNPTL)) to

the state-of-art (MatchCPT fitness with Aggregation fusion (CPTAgg) (Luis

et al., 2010)). In this case we use “soft noise” to simulate continuously varying

relatedness among a set of sources. The specific soft noise simulation procedure

is as follows: For each reference BN three sets of samples are drawn with 200,

300 and 400 instances respectively. These sample sets are used to learn three

different source networks. Because the source networks are learned from varying

numbers of samples, they will vary in degree of relatedness to the target, with

the 400 and 200 sample networks being most and least related respectively.

Subsequently, 100 samples of each source copy are drawn and used used as the

actual source data. Because node correspondences are known in this experiment,

another baseline is simply to aggregate all target and source data. This method

is referred as ALL, and also will be compared. Results are quantified by average

KLD between estimated and true CPTs. In each experiment we run 10 trials

with random data samples and report the mean and standard deviation of the

KLD.

The results are presented in Table 3, with the best result in bold, and sta-

tistically significant improvements of the best result over competitors indicated

with asterisks * (p ≤ 0.05). Compared with CPTAgg, BNPTL achieves 60.9%
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average reduction of KLD compared to the ground truth. These results ver-

ify the greater effectiveness of BNPTL even in the known correspondence set-

ting, where the assumptions of CPTAgg are not violated. To demonstrate the

value of our network-level relevance prior p(Hs), we also evaluate our framework

without this prior (denoted BNPTLnp). The comparison between BNPTL and

BNPTLnp demonstrates that the network-level relevance does indeed improve

transfer performance. In this case it helps the model to focus on the higher qual-

ity/more relevant 400-sample source domain: even if for a particular fragment

a less relevant source domain may have seemed better from a local perspective.

The ALL baseline also achieves good results in Cancer and Weather net-

works. We attribute this to these being smaller BNs (node ≤ 5), so all the

source parameters are reasonably well constrained by the source samples used

to learn them, and aggregating them all is beneficial. However in large BNs with

more parameters, the difference between the 200 and 400 sample source networks

becomes more significant, and it becomes important to select a good source in-

stead of aggregating everything including the noisier less related sources. In

real-world settings, we may not have node/structure correspondence. Thus we

do not assume this information is available in all the following sections.

4.4. Dependence on Target Network Data Sparsity

In this section, we explore the performance for varying number of target

samples, focusing on the Asia and Alarm networks. Here the target and source

domain are both generated from the Asia or Alarm networks, and the related-

ness of the source domain varies (soft noise). For relatedness, we consider 2

conditions for the source domains: (i) two Asia/Alarm networks learned from

200 and 300 samples respectively, this results 16 source fragments in Asia net-

work (Row 1 of Figure 2) and 74 source fragments in Alarm network (Row 3 of

Figure 2), and (ii) three Asia/Alarm networks learned from 200, 300 and 400

samples respectively, this results 24 source fragments in Asia network (Row 2

of Figure 2) and 111 source fragments in Alarm network (Row 4 of Figure 2).

The latter condition potentially contains stronger cues for transfer – if a good
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Figure 2: Transfer performance of varying target data volume and source relatedness (soft
noise) in Asia and Alarm BNs. Top two rows: transfer learning with 16 and 24 source
fragments in Asia BN. Bottom two rows: transfer learning with 74 and 111 source fragments
in Alarm BN. Columns: Basic, Aggregation and BMA fusion.
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decision is made about which source network to transfer from. To unpack the

effectiveness of our contributions, we investigate all combinations for different

fitness methods and fusion methods under these settings.

In each sub chart of Figure 2, the x-axis denotes the number of target domain

training instances, and the y-axis denotes the average KLD between estimated

and true parameter values. The blue line represents standard MLE learning,

green denotes transfer by MatchCPT fitness, purple shows transfer with like-

lihood fitness, and red line the results using our BMC fitness function. The

columns represent Basic (source only), Aggregation and BMA fusion. As we

can see from the results, the performance of transfer methods with BMC fit-

ness function improves with more source fragments, especially in Asia network.

Furthermore, algorithms with our BMC fitness function (red) achieve the best

results in almost all situations. Even the simple basic fusion method gets reason-

able learning results (< 0.50) using the BMC fitness function to choose among

the 24 source fragments in Asia network. Also, our BMA fusion (right col-

umn) significantly outperforms other fusion methods. For instance, when there

are 16 source fragments in Asia network (top row), the average performance

of BMC fitness function in BMA fusion increased 25.4% and 29.3% compared

with the same fitness function in Basic fusion and Aggregation fusion settings.

Although these margins decrease with increasing source fragments, our BNPTL

(BMC+BMA) is generally best.

4.5. Illustration of Network and Fragment Relatedness Estimation

To provide insight into how network and fragment relatedness is measured

in BNPTL, we continue to use the Asia network and its three sources (soft

noise). Network Relatedness: Figure 3 shows the estimated relatedness

prior p(Hs) for each source s over EM iterations. As we can see the network-level

relatedness converges after about 10 iterations, with the relatedness estimates

being in order of the actual source relevance.

Fragment Relatedness: To visualize the inferred fragment relatedness, we

record the estimated relatedness between every fragment in the target and every
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Figure 3: The estimated network relatedness p(Hs) between target Asia network and its
three source copies of varying quality/relatedness.

fragment in source 3 of the Asia network. This is plotted as a heat map in

Figure 4(a), where the y-axis denotes the index of target fragment, and x-axis

denotes the index of source fragment. Darker color indicates higher estimated

relatedness p(Hs
jk1|D

t
j ,D

s
k) between two fragments j and k. Some incompatible

source fragments have zero relatedness automatically. For each target fragment,

the most related (darkest) source fragment is selected for BMA fusion. Although

there is some uncertainty in the estimated relatedness (more than one dark cell

per row), overall all but one target fragment selected the correct corresponding

source fragment (Figure 4(b).

4.6. Robustness to Hidden Variables

In this section, we evaluate the algorithms on six standard BNs. We use

the same sampled target and sources as in Table 3, but we introduce additional

hidden variables in the target. We learn the target parameters by: conventional

single task BN learning (EM with MLE), MatchCPT fitness with Aggregation

fusion (CPTAgg) (Luis et al., 2010) (note that CPTAgg does not apply to latent

variables, but we use their fitness and fusion functions in our framework), and

our BNPTL. Three conditions are considered: (i) fully observed target data, (ii)

small number of hidden variables and (iii) medium number of hidden variables.
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Figure 4: Fragment relatedness experiment in Asia network. (a) The inferred fragment
relatedness between target and source fragments. (b) The final selected source fragment for
each target.

(In the hidden data conditions, the specified number of target network nodes

are chosen uniformly at random on each trial, and considered to be unobserved,

so the data for these nodes are not used.)

Table 4 summarises the average KLD per parameter. In summary, the trans-

fer methods outperform conventional EM with MLE (STL) in all settings. Com-

pared with the state-of-the-art CPTAgg, BNPTL also improves performance:

improvement on 15 out of 18 experiments, with an average margin of 53.6%

(the average reduction of KLD). Of the total set of individual target CPTs,

84.3% showed improvement in BNPTL over CPTAgg.

4.7. Exploiting Piecewise Source Relatedness

Thus far, we simulated source relevance varying smoothly at the network

level – all nodes within each source network were similarly relevant. So all frag-

ments should typically be drawn from the source estimated to be most relevant.

In contrast for this experiment, we investigate the situation where relatedness

varies in a piecewise fashion. In this case, to effectively learn a target net-

work, different fragments should be drawn from different source networks. This

is a setting where transfer in Bayesian networks is significantly different from

transfer in conventional flat machine learning models (Pan and Yang (2010)).
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Table 4: Performance (unknown correspondences and hidden variables) of STL and transfer
learning methods: CPTAgg and BNPTL.

Name Hidden Vars STL CPTAgg BNPTL

Weather

None 0.03±0.02 0.02±0.02 0.02±0.02

1 0.55±0.07* 0.41±0.00 0.45±0.01*

2 0.59±0.00* 0.45±0.01 0.49±0.01*

Cancer

None 0.33±0.31 0.14±0.09 0.09±0.08

1 0.33±0.28 0.12±0.09 0.09±0.09

2 0.39±0.27 0.20±0.08 0.15±0.06

Asia

None 0.85±0.18* 0.73±0.22* 0.31±0.09

1 0.93±0.18* 0.87±0.27* 0.42±0.15

2 1.17±0.17* 0.93±0.27 0.63±0.26

Insurance

None 1.82±0.16* 1.51±0.13* 0.76±0.06

3 1.96±0.15* 1.56±0.11* 0.87±0.05

5 2.08±0.13* 1.66±0.11* 1.01±0.05

Alarm

None 2.43±0.15* 2.13±0.12* 0.66±0.06

3 2.48±0.14* 2.20±0.14* 0.64±0.01

5 2.47±0.14* 2.20±0.09* 0.79±0.06

Hailfinder

None 2.85±0.03* 2.47±0.02* 1.03±0.07

5 2.84±0.03* 2.47±0.02* 1.00±0.05

10 2.86±0.03* 2.49±0.03* 1.06±0.04

To simulate this setting, we initialise a source network pool with three copies

of the network, before introducing piecewise “hard noise”, so that some com-

patible fragments are related and others are totally unrelated. Specifically, we

choose a portion (25% and 50%) of each source network’s CPTs uniformly at

random and randomise them to make them irrelevant (by drawing each en-

try uniformly from [0,1] and renormalizing). This creates a different subset of

compatible but (un)related fragments in each network. Thus piecewise transfer

- using different fragments from different sources is essential to achieve good

performance.

We consider two evaluation metrics here: the accuracy of the fragment se-

lection - whether each target fragment selects a (i) corresponding and (ii) non-

corrupted fragment in the source, and accuracy of the learned CPTs in the target

domain. Table 5 presents the results, where our model consistently outperforms
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Table 5: The fragment selection performance of CPTAgg and BNPTL. The numbers 25% and
50% indicate different portions of irrelevant fragments in the sources. Note that chance here
is much lower than 75/50% due to unknown network correspondence.

Name

25% random CPTs

Fragment Accuracy KLD

CPTAgg BNPTL STL CPTAgg BNPTL

Weather 61.0%* 90.0% 0.03±0.02* 0.01±0.00 0.01±0.00

Cancer 94.8% 96.0% 0.33±0.31 0.14±0.09 0.07±0.05

Asia 78.0%* 97.5% 0.85±0.18* 0.67±0.14* 0.18±0.00

Insurance 82.4% 70.7%* 1.82±0.16* 1.01±0.04* 0.74±0.02

Alarm 61.7% 58.8%* 2.43±0.15* 1.60±0.27* 0.57±0.02

Hailfinder 75.5% 62.4%* 2.85±0.03* 2.04±0.03* 0.79±0.02

Average 75.6% 79.2% 1.38±0.14 0.91±0.10 0.39±0.02

50% random CPTs

Weather 57.0%* 74.5% 0.03±0.02* 0.01±0.00 0.01±0.00

Cancer 79.2% 82.4% 0.33±0.31 0.13±0.07 0.08±0.04

Asia 61.5%* 80.8% 0.85±0.18* 0.42±0.19 0.20±0.01

Insurance 65.9% 51.9%* 1.82±0.16* 0.97±0.05 0.90±0.04

Alarm 51.0% 46.4%* 2.43±0.15* 1.38±0.17* 0.63±0.04

Hailfinder 65.7% 49.9%* 2.85±0.03* 2.07±0.03* 0.43±0.02

Average 63.4% 64.3% 1.38±0.14 0.83±0.09 0.38±0.03

CPTAgg in Weather, Cancer and Asia networks. Although the fragment se-

lection accuracy of BNPTL failed to outperform the CPTAgg in Insurance,

Alarm and Hailfinder networks due to the greater data scarcities in their tar-

get networks, the general good performance (KLD) of BNPTL verifies that the

framework still can exploit source domains with piecewise relevance. Meanwhile

the fragment selection accuracy of BNPTL explains how this robustness is ob-

tained (irrelevant fragments (Eq (2)) are not transferred (Eq (6))). In addition

to verifying that our transfer framework can exploit different parts of different

sources, this experiment demonstrates that it can further be used for diagnosing

which fragments correspond or not (Eq (2)) across a target and a source – which

is itself of interest in many applications.
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Table 6: Performance (domain-partially-irrelevant) of STL and transfer learning methods:
CPTAgg and BNPTL.

Name
Domain Accuracy KLD

CPTAgg BNPTL STL CPTAgg BNPTL

Weather 80.0%* 100.0% 0.03±0.02* 0.01±0.00 0.01±0.00

Cancer 80.0%* 92.0% 0.33±0.31 0.11±0.07 0.07±0.04

Asia 77.5%* 85.0% 0.85±0.18* 0.49±0.15* 0.18±0.01

Insurance 97.8% 97.8% 1.82±0.16* 0.82±0.03* 0.51±0.02

Alarm 94.1% 82.7%* 2.43±0.15* 1.64±0.06* 0.70±0.03

Hailfinder 99.3%* 100.0% 2.85±0.03* 1.74±0.01* 0.84±0.02

Average 88.1% 92.9% 1.38±0.14 0.80±0.05 0.38±0.02

4.8. Robustness to Irrelevant Sources

The above experiments verify the effectiveness of our framework under con-

ditions of varying source relatedness, but with homogeneous networks Vt = Vs.

In this section we verify robustness to two extreme cases of partially and fully

irrelevant heterogeneous sources.

Partially irrelevant In this setting, we use the same six networks from the

BN repository, and consider each in turn as the target, and copies of all six

networks as the source (thus five are irrelevant and one is relevant). Therefore

the majority of the potential source fragments come from 5 irrelevant domains.

Table 6 presents the results of transfer learning in these conditions. We evaluate

performance with two metrics: (i) percentage of fragments chosen from the cor-

rect source domain, and (ii) the usual KLD between the estimated and ground

truth parameters in the target domain.

As shown in Table 6, our BNPTL clearly outperforms the previous state-of-

the-art CPTAgg in each case. This experiment verifies that our framework is

robust even to a majority of totally irrelevant source domains, and is achieved

via explicit relatedness estimation (p(Hs
1) in Algorithm 1 and Eq (2)).

Fully irrelevant In this setting, we consider the extreme case where the

source and target networks are totally different Gt 6= Gs, Vt ∩ Vs = ∅. Note

that since the source and target are apparently unrelated, it is not expected

that positive transfer should typically be possible. The test is therefore primar-
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Table 7: Performance (domain-fully-irrelevant) of STL and transfer learning methods: BM-
CBasic and BNPTL. The symbol � represents the transfer relationship: target � source.
Here ‘Other’ represents the six BN repository networks with the target removed.

Transfer Setting STL BMCBasic BNPTL

Asia � Other 0.85±0.18* 0.34±0.02* 0.19±0.03

Weather � Other 0.03±0.02 0.21±0.01* 0.04±0.01

Cancer � Other 0.33±0.31 0.23±0.01* 0.08±0.02

Alarm � Other 2.43±0.15 2.59±0.11* 2.27±0.14

Insurance � Other 1.82±0.16 2.28±0.13* 1.82±0.15

Hail.� Other 2.85±0.03 3.12±0.03* 2.86±0.03

Average Performance 1.38±0.14 1.46±0.05 1.21±0.06

ily whether negative transfer (Pan and Yang, 2010) is successfully avoided in

this situation where all source fragments may be irrelevant. Note that since the

sources are totally heterogeneous, prior work CPTAgg (Luis et al., 2010) does

not support this experiment. We therefore compare our algorithm to a variant

using BMC fitness and Basic fusion function (denoted BMCBasic) and target

network only STL.

The results are shown in Table 7, from which we make the following ob-

servations. (i) BNPTL is never noticeably worse than STL. This verifies that

our framework is indeed robust to the extreme case of no relevant sources:

p(Hs
0 |Dt, Ds) is correctly inferred in Eq (2), thus preventing negative transfer

from taking place (Eq (6)). (ii) In some cases, BNPTL noticeably outperforms

STL, demonstrating that our model is flexible enough to achieve positive transfer

even in the case of fully heterogeneous state spaces. (iii) In contrast, BMCBasic

is worse than STL overall demonstrating that these properties are unique to our

approach.

5. Real Medical Case Studies

The previous section demonstrated the effectiveness of our BNPTL under

controlled data and relatedness conditions. In this section we explore its ap-

plication to learn BN parameters of two medical networks, where the “true”

relatedness is unknown, and data volume and relatedness reflect the conditions

of real-world medical tasks.
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The Indian Liver Patient (ILP) (Bache and Lichman, 2013) has 583

records about liver disease diagnosis based on 10 features. This dataset is pub-

licly available. Because the BN structure for this dataset is not provided. We

follow previous work (Friedman et al., 1997) to apply a naive BN structure for

this classification problem. To enable transfer learning, this dataset is divided

into 4 subsets/domains by grouping patient age, following common procedure

in medical literature (Jain et al., 2000). To systematically evaluate transfer, we

iteratively take each group in turn as the target, and all the others as potential

sources.

The AUC (area under curve) for the target variable of interest is calculated.

This is repeated for each of 100 random 2-fold cross-validation splits, and the

results averaged (Table 8). Here STL denotes single task learning from target

domain data, ALL indicates the baseline of concatenating all the source and

target data together before STL. Although we are primarily interested in the

case of unknown correspondence, we investigate both the conditions of known

and unknown target-source node correspondence (denoted by suffix KC and UC

respectively). Note that the ALL baseline needs to know node correspondence,

so should be compared with BNPTL (KC) for a fair comparison. The results

show that predictive performance can be greatly improved by leveraging the

source data. Our BNPTL (UC) outperforms STL and state-of-the-art transfer

algorithm CPTAgg in each case. As we can see, ALL also achieves good perfor-

mance based on the strong assumption of known correspondence. Nevertheless,

it is still outperformed by our BNPTL (KC).

Trauma Care (TC) dataset (Yet et al., 2014) has a BN structure designed

by trauma care specialists, and relates to procedures in hospital emergency

rooms. The full details of the network and datasets are proprietary to the hos-

pitals involved, however it contains 18 discrete variables (of which 3 are hidden)

and 11 Gaussian variables. It is important because rapid and accurate identifica-

tion of hidden risk factors and conditions modeled by the network are important

to support doctors’ decision making about treatments which reduce mortality

rate (Karaolis et al., 2010). The relevance of this trauma model to our transfer
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Table 8: Prediction performance (AUC) for medical tasks. The target attributes for ILP
and TC datasets are Liver disease and Death respectively. Statistically significant improve-
ments of BNPTL(UC) and BNPTL(KC) over alternatives are marked with symbols ∗ and ∆
respectively.

Dataset Missing Data STL ALL CPTAgg BNPTL(UC) BNPTL(KC)

ILP YES 0.674∗∆ 0.709∆ 0.674∗∆ 0.712 0.727

TC YES 0.771∗∆ 0.933∗∆ 0.796∗∆ 0.967 0.967

algorithm is that there are two distinct datasets for this model. One dataset

is composed primarily of data from a large inner city hospital with extensive

data (1022 instances) and the second dataset is composed of data from a smaller

hospital and city in another country (30 instances). The smaller hospital would

like an effective decision support model. However, using their own data to learn

the model would be insufficient, and using the large dataset directly may be

sub-optimal due to (i) differences in statistics of injury types in and out of ma-

jor cities city, (ii) differences in procedural details across the hospitals and (iii)

differences in demographic statistics across the cities/countries.

We therefore apply our approach to adapt the TC BN from the inner city

hospital to the small hospital. We perform cross-validation in the target do-

main of the small hospital, using half the instances (15) to train the transfer

model, and half to evaluate the model. To evaluate the model we instantiate

the evidence variables in the target domain test set, select one of the variables

of interest (Death), and query this variable. AUC values are calculated for the

query variable, and shown in Table 8. Every method is better than using the

scarce target data only (STL). Our BNPTL significantly outperforms the alter-

natives in each case. BNPTL (UC) also matches the performance of BNPTL

(KC) demonstrating the reliability of the fragment correspondence inference.

6. Conclusions

6.1. Summary

When data is scarce, BN learning is inaccurate. Our framework tackles this

problem by leveraging a set of source BNs. By making an explicit inference
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about relatedness per domain and per fragment, we are able to perform ro-

bust and effective transfer even with heterogeneous state spaces and piecewise

source relevance. Our approach applies with latent variables, and is robust to

any degree of source network relevance, automatically adjusting the strength of

fusion to take this into account. Moreover, it is able to provide estimated do-

main and fragment-level relatedness as an output, which is of interest in many

applications (e.g., in the medical domain, to diagnose differences in procedures

between hospitals). Experiments show that BNPTL consistently outperforms

single task STL and former transfer learning algorithms. Finally, experiments

with a real-world trauma care network show the practical value of our method,

adapting medical decision support from large inner city hospitals with extensive

data to smaller provincial hospitals.

6.2. Discussion of Limitations and Future Work

An assumption made by our current framework is that transfer is only per-

formed from the single most relevant source fragment. An alternative would be

to transfer from every source fragment estimated to be relevant. This would

be a relatively straightforward extension of Eq (6) to sum up multiple poten-

tial relevant sources. However, by increasing the number of source fragments

used, the risk of negative transfer may be increased. If any irrelevant source is

transferred as a ‘false positive’ (i.e., p(Hs
jk1|Dt

j , D
s
k) > 0 for irrelevant source

fragment Ds
k) then it may negatively affect the target in Eq (6). This even-

tuality is more likely if many sources can be fused. In contrast, our current

framework just needs to rank a irrelevant sources below a relevant source in

order to be robust to negative transfer. This is an example of a general tradeoff

between flexibility/amount of information possible to transfer, and robustness

to negative transfer (Torrey and Shavlik, 2009).

A second limiting assumption is that the underlying relatedness is binary

(i.e., sources are relevant or irrelevant). Clearly sources may have more con-

tinuous degrees of relatedness to the target. In our framework this is only

supported implicitly through the fact that a somewhat related source will have
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an intermediate probability of relatedness (Eq (2)), and thus be used but with

a smaller weight Eq (6). In future continuous degrees of relatedness could be

modelled more explicitly.

Finally, in this paper we have addressed relatedness inference in an entirely

data-driven way. In future we would like to integrate expert-provided priors and

constraints to guide transfer parameter learning, and transfer structure learning.
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