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Automatic music transcription, a central topic in music signal analysis, is typically limited to

equal-tempered music and evaluated on a quartertone tolerance level. A system is proposed to

automatically transcribe microtonal and heterophonic music as applied to the makam music of

Turkey. Specific traits of this music that deviate from properties targeted by current transcription

tools are discussed, and a collection of instrumental and vocal recordings is compiled, along with

aligned microtonal reference pitch annotations. An existing multi-pitch detection algorithm is

adapted for transcribing music with 20 cent resolution, and a method for converting a multi-pitch

heterophonic output into a single melodic line is proposed. Evaluation metrics for transcribing

microtonal music are applied, which use various levels of tolerance for inaccuracies with respect to

frequency and time. Results show that the system is able to transcribe microtonal instrumental

music at 20 cent resolution with an F-measure of 56.7%, outperforming state-of-the-art methods for

the same task. Case studies on transcribed recordings are provided, to demonstrate the shortcomings

and the strengths of the proposed method. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4930187]
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I. INTRODUCTION

Automatic music transcription (AMT) is defined as the

process of converting an acoustic music signal into some

form of music notation. The problem may be divided into

several subtasks, including multiple-F0 estimation, onset/

offset detection, instrument identification, and extraction of

rhythmic information (Davy et al., 2006). Applications of

AMT systems include transcribing audio from musical styles

where no score exists (e.g., music from oral traditions, jazz),

automatic search of musical information, interactive music

systems (e.g., computer participation in live human perform-

ances), as well as computational musicology (Klapuri and

Davy, 2006). While the problem of automatic pitch estima-

tion for monophonic (single voice) music is considered

solved (de Cheveign�e, 2006), the creation of a system able to

transcribe multiple concurrent notes from multiple instru-

ment sources with suitable accuracy remains open.

The vast majority of AMT systems target transcription

of 12-tone equal-tempered (12-TET) Eurogenetic1 music

and typically convert a recording into a piano-roll represen-

tation or a MIDI file [cf. Benetos et al. (2013b) for a recent

review of AMT systems]. Evaluation of AMT systems is

typically performed using a quartertone (50 cent) tolerance,

as, for instance, in the MIREX Multiple-F0 Estimation and

Note Tracking Tasks (MIREX, 2007; Bay et al., 2009). To

the authors’ knowledge, no AMT systems have been

evaluated regarding their abilities to transcribe non-equal

tempered or microtonal music, even though there is a limited

number of methods that can potentially support the transcrip-

tion of such music.

Related works on multiple-F0 estimation and poly-

phonic music transcription systems that could potentially

support non-equally tempered music include the systems of

Fuentes et al. (2013), Benetos and Dixon (2013), and

Kirchhoff et al. (2013), which are based on spectrogram
factorization techniques and utilize the concept of shift-

invariance over a log-frequency representation in order to

support tuning deviations and frequency modulations. The

techniques employed include shift-invariant probabilistic

latent component analysis (Fuentes et al., 2013; Benetos and

Dixon, 2013) and non-negative matrix deconvolution

(Kirchhoff et al., 2013). The method of Bunch and Godsill

(2011) is also able to detect multiple pitches with high reso-

lution, by decomposing linear frequency spectra using a

Poisson point process and by estimating multiple pitches

using a sequential Markov chain Monte Carlo algorithm.

Other systems that support high-precision frequency estima-

tion for polyphonic music include Dixon et al. (2012), which

was proposed as a front-end for estimating harpsichord

temperament, and the method of Rigaud et al. (2013), which

is able to detect multiple pitches for piano music, as well as

inharmonicity and tuning parameters.

The value of a transcription that takes microtonal

aspects into account is illustrated by the history of transcrip-

tion in ethnomusicology. In the late 19th century Alexander

J. Ellis recognized the multitude of musical scales present in

the musical styles of the world, and proposed the cent scale

in order to accurately specify the frequency relations

between scale steps (Stock, 2007). In the beginning of the

20th century, Abraham and von Hornbostel (1994) proposeda)Electronic mail: emmanouil.benetos@qmul.ac.uk
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notational methods to transcribe “exotic” melodies, includ-

ing a multitude of ways to describe microtonal inflections.

Seeger (1958) suggested methods for accurately annotating

microtonal inflections with an accuracy of 20 cents, a value

close to the range of just noticeable differences in musical

intervals [see Houtsma (1968), as cited by Thompson (2013,

p.124)].

In addition to microtonality, another aspect of music

that has been so far ignored in AMT systems is the phenom-

enon of heterophony. Heterophony, as defined by Cooke

(2001), is the simultaneous variation of a single melody by

several musicians. From a technical perspective, a hetero-

phonic performance could be considered as polyphonic2 due

to the presence of several instruments, but the underlying

concept is a monophonic melody. While heterophony is

widely absent from European musical styles, it is often asso-

ciated with the music of the Arab world (Racy, 2003) and

encountered in similar ways in the music of the Balkans,

Turkey, Iran, and other cultures of the near and Middle East.

Not restricted to geographical area, it has also been assigned,

for instance, to Javanese Gamelan (Anderson Sutton and

Vetter, 2006), Korean music (Lee, 1980), and African

American congregational singing, to name but a few. It has

even been hypothesized as the origin of all music by Brown

(2007), by interpreting polyphony as a later state of organi-

zation in pitch space. Because there is an apparent absence

of previously published microtonal or heterophonic AMT

approaches [see Bozkurt et al. (2014)], presumably attrib-

uted to a cultural bias toward Eurogenetic music, a consider-

ation of these wide-spread musical traits in an AMT system

seems timely. In general this would be advantageous for

accommodating newfound access to the diversity of musical

styles.

In this work, a system for transcribing heterophonic and

microtonal music is proposed and applied to Turkish makam

music, following preliminary work presented by Benetos

and Holzapfel (2013). A collection of instrumental and vocal

recordings has been compiled, along with detailed microto-

nal reference pitch annotations for quantitative evaluation of

the system. The proposed method adapts a previously devel-

oped multi-pitch detection algorithm (Benetos and Dixon,

2013) to address the specific challenges of Turkish makam

music and includes methods for converting a multi-pitch

heterophonic output into a single melodic line. Evaluations

are performed using various levels of tolerance for inaccura-

cies with respect to frequency and time. Results show that

the system is able to transcribe microtonal instrumental

music with 20-cent resolution. Case studies on transcribed

recordings are provided, in order to demonstrate the short-

comings and the strengths of the method.

An outline of the paper is as follows: In Sec. II, motiva-

tions for creating technologies for transcribing heterophonic

and microtonal music are given. Section III presents the

instrumental and vocal music collections that were used for

experiments, along with the pitch annotation process. The

proposed system is described in Sec. IV. The employed eval-

uation metrics and results are presented in Sec. V. Finally,

the performance of the proposed system is discussed in Sec.

VI, followed by conclusions in Sec. VII.

II. MOTIVATIONS

Until recently, AMT approaches were developed and

evaluated mainly in the context of Eurogenetic music. A dis-

advantage of such concentration is that AMT technology

may be inadequate when applied to many music styles

around the world, whose characteristics are fundamentally

different from those of Eurogenetic music.

Regarding timbre as a first property, the authors note

that polyphonic performances by piano and other

Eurogenetic instruments attract a lot of attention for the

development of AMT systems, while the consideration of

instrumental timbres from other cultures represent rather an

exception (Nesbit et al., 2004). How a wider diversity of

instrumental timbres can be transcribed automatically and

accurately remains to be explored.

A second property of Eurogenetic music that limits the

musical diversity that AMT systems can handle is the

assumption that pitch is distributed according to the 12-TET

system. Most current AMT approaches aim to produce a

so-called “piano-roll” that specifies which note of the equal-

tempered system is sounded at what time. Many music tradi-

tions, however, make use of very different organization of

the tonal space, as for instance, the modal structures used in

Turkey, Iran, Iraq, and India.

Finally, AMT systems for Eurogenetic music have been

built on the assumption that music signals contain several dis-

tinct melody lines, or one melody line with a harmonic ac-

companiment. However, several music traditions in the world

express melodies in a heterophonic way. That means that sev-

eral instruments play one basic melody with each instrument

interpreting it slightly differently, according to the aesthetic

concepts of the music tradition. As far as the authors are

aware, heterophony, as a combination of apparent polyphony

at the signal level and monophony at the conceptual level has

so far never been approached systematically with a prior

AMT system.

The concentration of prior AMT systems on a limited

range of timbres, the equal-tempered system, and restriction

to either monophonic or polyphonic music, creates a distinct

cultural bias towards Eurogenetic music. This motivates us

to present a systematic study of an AMT system which

focuses on a music that challenges all three structural biases.

Turkish makam music was practiced at the Ottoman court

and in religious ceremonies during the times of the Ottoman

Empire, and continues to live on in today’s music practice in

modern Turkey in various forms. The melodies of this music

follow the modal framework of the makam, which includes

the notion of a scale and rules for melodic progression.

While a comprehensive overview of the tonal and rhythmic

concepts of Turkish makam music is given in Bozkurt et al.
(2014), some of the properties of this music that are of

particular relevance for the development of an AMT system

will be emphasized.

(1) The Arel-Ezgi notation and tuning (Arel, 1968) repre-

sents the official standard today. While intervals are

defined using Pythagorean pitch ratios, they are quan-

tized to integer multiples of the Holderian-Mercator

comma, � 22.64 cents (Bozkurt et al., 2014). As shown
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in Fig. 1, according to Arel-Ezgi notation the intervals of

1, 4, 5, 8, and 9 commas are used within a whole tone.

The whole tone interval, which is related to the fre-

quency ratio 9/8 or 203.91 cents, is slightly sharp com-

pared to 12-tone equal temperament (200 cents).

Musical practice, however, tends to deviate from this

notation by using pitch classes systematically different

from those defined by the accidentals. This theory-

practice mismatch in respect to the underlying tuning

system represents a challenge for an AMT system. It is,

however, important to point out that the Holderian-

Mercator comma defines the smallest pitch difference in

Turkish music, further supporting a maximum resolution

of about 20 cents in frequency.

(2) Whereas the staff notation in a Eurogenetic context gen-

erally relates a certain pitch value to a specific funda-

mental frequency, this is not the case for Turkish makam

music. Here, the musician may choose between one of

12 different transpositions, with the choice usually deter-

mined by the type of instrument being played, or the pre-

ferred vocal register of a singer.

(3) As a heterophonic music, a melody may be interpreted

by instruments in different octaves.

(4) The notated melodies are richly ornamented using a set

of idiosyncratic playing or singing techniques. These

techniques are not documented in written theory, but are

part of oral tradition and therefore only possible to grasp

by applying ethnographic approaches. According to

insights from fieldwork by the second author, the com-

mon practice is to add notes and embellishments during

a performance while at the same time maintaining the

onsets of the notes in a score. An illustrative example is

given in Fig. 2, where the notation of a short phrase in

makam Beyati is compared with the transcription of a

performance of the phrase as performed on the instru-

ment oud, a short-necked fretless lute. It is apparent that

the density of notes has increased, while the originally

notated onsets are maintained.

(5) In Turkish makam music, a set of instrumental timbres is

encountered that is very characteristic for this music, and

that differs from timbres usually encountered in

Eurogenetic music. Further detail about the timbral qual-

ities of these instruments is provided in Sec. III.

(6) Turkish makam music possesses no concept of func-

tional harmony, but is a music based on modes called

makam. The modes define a scale and characteristics of

melodic progression. In the melodic progression, central

notes of the mode are emphasized, and particular impor-

tance has the final note (karar) that concludes the pro-

gression and is usually referred to as the tonic in English

language.

While these traits clearly set Turkish makam music

apart from Eurogenetic music, Turkish makam music offers

a relatively well-controlled environment for experiments

with AMT systems. This is because of the large collections

of music recordings and associated notations that are avail-

able from the work of the CompMusic project.3 These con-

trolled conditions significantly facilitate the creation of

reference pitch annotations for music performances, which is

necessary for the quantitative evaluation of an AMT system.

On the other hand, establishing an AMT system for this

musical style is an important first step towards automatic

transcription of microtonal and heterophonic music through-

out the music traditions of the world.

III. MUSIC COLLECTION

Turkish makam music makes use of instrumental

timbres that clearly define the acoustic identity of this music.

In Sec. III A an overview of the two instrumental timbres

that were chosen as representatives of this identity is given,

and the recorded material used for acquiring timbral tem-

plates is explained. Since the music collection used for the

evaluation should cover a large variety, a set of instrumental

performances and a set of vocal performances were com-

piled, which will be described in detail in Secs. III B and

III C. Only performances of pieces that are available in the

SymbTr collection (Karaosmano�glu, 2012), which contains

microtonal notation for Turkish music in a machine-readable

format, were chosen. These annotations are a valuable start-

ing point for the note-to-note alignment between notation

and performance, which is needed for the evaluation of the

system. The compilation of these reference transcriptions

will be detailed in Sec. III D.

FIG. 1. Visualization of the accidentals used in Turkish music. Only four of

the possible eight intermediate steps that divide a whole tone are used. The

size of the step is 1 Hc (Holderian-Mercator comma) �22:64 cents.

FIG. 2. Two representations of the

same melody, comparing the basic

form as found in a score with the tran-

scription of the same phrase as per-

formed on the oud.
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A. Timbral properties

Among the most widespread instruments for Turkish

makam music are the tanbur, a long-necked lute, and the

ney, an end-blown flute (constructed from reed material).

The tanbur in its common form has seven strings, one bass

string and three courses of double strings plucked using a

plectrum made of tortoise shell. Melodies are played almost

exclusively on the lowest course of double strings, while the

other strings are plucked as a drone when the player wishes

to give emphasis. Because of this playing technique, the

instrument can be considered to have a limited polyphonic

capacity. The length of the neck, the number of frets and

their placement vary among instrument makers. Because the

frets are movable, players frequently change their positions

to adapt their tuning to, for instance, the tuning of another

player. The main factor that influences the characteristic

sound of this instrument is its very thin resonating sound-

board, which does not have a sound hole. The open vibrating

drone strings amplified by the resonating soundboard lend a

very specific timbre to this instrument: the fourth harmonic

exceeds the energy of the second harmonic in the radiated

sound of the instrument, especially for forcefully plucked

notes (Erkut et al., 1999).

The ney has importance in court music ensembles as

well as in religious practice. It is an end-blown flute, and as

such is strictly monophonic, with a length between 52 and

104 cm depending on which lowest pitch is desired. As

described in Sec. II, there are theoretically 12 transpositions

in Turkish music, and their names refer to the ney’s funda-

mental pitches. There are variations in the positioning of the

finger holes depending on the instrument maker, just as there

are variations in the placement of frets on the tanbur.

Additionally, natural deviation of the nodes of the reed stalk

from being equidistant result in a further source of variance.

The pitch of a single fingering is strongly influenced by

embouchure adjustments and angle of attack, enabling a

player to precisely adjust tuning. The basic tonal range of

the instrument is expanded by varying force and angle,

reaching up to two and a half octaves. Notes in the higher

range in particular, demand greater effort by the player to

correct pitch to a desired one. Due to its construction as an

end-blown flute, including all variations in positioning the

instrument, the ney’s timbre always contains a very high

noise component.

Further instrumental timbres that are contained in

ensemble performances of Turkish makam music are the

kemence, a small fiddle played with a bow; the oud, a short

necked lute; and the kanun, a type of zither played by pluck-

ing the strings. While the kemence can be considered a

monophonic instrument, the oud and kanun can express

polyphony.

The AMT system introduced in this paper offers the

possibility to incorporate knowledge about the timbres of

instruments targeted for transcription. As described in more

detail in Sec. IV A, this knowledge is incorporated by learn-

ing typical magnitude spectra for pitches throughout the

range of an instrument. In order to learn these templates,

solo recordings of the target timbres are needed. To this end,

pitches in approximately semitone intervals throughout the

whole range of the instruments were recorded from ney,

tanbur, kemence and kanun in a quiet environment using a

studio quality portable recorder. In addition to these record-

ings, three ney and four tanbur solo performances from

commercially available recordings were included in order

to increase the timbral variety of the templates. In order to

evaluate the system for vocal performances, vocal timbre

templates were derived from solo recordings of those singers

included in the collection of performances used for system

evaluation. From the recordings of singers and the solo

instrument performances, regions with relatively stable pitch

were identified manually throughout the vocal range of the

singer or instrument. All recordings of stable pitch regions

were then used to derive the spectral templates for our

system as described in Sec. IV A.

Descriptive examples of the spectral content of these

template recordings are contrasted with a piano example in

Fig. 3. In Fig. 3(a), the harmonic series for the piano has a

clear fundamental, and generally slowly decreasing ampli-

tudes towards higher harmonics, with the second harmonic

at 220 Hz having a slightly smaller amplitude than the third

harmonic. The tanbur is characterized by a very weak funda-

mental (at 110 Hz), which is a phenomenon present through-

out the range of the instrument, and not restricted to this

note. The strongest harmonics are the third to fifth harmon-

ics, and the higher harmonics have less energy than for the

piano. Throughout the duration of the note, an increasing

focus on the frequency band between 300 and 1000 Hz can

be seen. The spectrogram of the ney in Fig. 3(c) displays its

noisy character caused by the type of excitation, as well

as the practical absence of harmonics beyond the fourth. A

harmonic series based on 220 Hz can be detected in the

spectrogram. Even so, the actual perceived pitch seems to be

about 440 Hz.

B. Instrumental performances

The most common forms of makam instrumental com-

positions are the Peşrev and Saz Semaisi forms. They share a

similar overall compositional structure, with one repeated

section (Teslim) interchanging with up to four sections

(Hane) of new thematic material. Five solo performances for

each ney and tanbur were chosen, and six ensemble perform-

ances that contain various instruments. Table I gives an

overview of the instrumental performances. Horizontal lines

in Table I divide the collection amongst groups that repre-

sent different recordings of the same composition. The tonic

frequencies, obtained by manual annotation, demonstrate the

different tonal ranges of the instruments, as well as the diver-

sity of chosen transpositions. The depicted number of notes

is obtained from the SymbTr notations, and the notes are

edited as described in detail in Sec. III D. For ensemble per-

formances, the instruments are identified as kanun (k),

kemence (f), ney (n), oud (o), percussion (p), and tanbur (t).

C. Vocal performances

Three renowned vocal performers of Turkish makam

music were chosen for vocal performances (see Table II),
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with most of the recordings chosen from the middle of the

20th century. All recordings contain the accompaniment by

several instruments and can therefore be considered as heter-

ophonic performances. The choice of singers was influenced

by the availability of recorded vocal performances without

instrumental accompaniment, a necessary prerequisite in our

context, in order to obtain spectral templates per pitch for

the specific singers. Solo vocal improvisations (gazel),
Quran recitations and vocal teaching material were used to

this end. Commercially or publicly available solo performan-

ces could not be found for any of the recent popular singers

of Turkish makam music. This led to the vocal collection

having an average recording quality that is inferior to the

average quality of the instrumental collection.

D. Manual pitch annotation process

For evaluation purposes, it was a necessary step to spec-

ify the onset times of notes as well their (microtonal) pitch

values. Considering the performance practice described in

Sec. II, where a high density of individual notes corresponds

to a lower density series of notes in the notated melody, note

offset times were not annotated. Machine-readable notations

from the SymbTr collection were used as a starting point to

derive the desired reference annotations. The semi-automatic

approach that was followed had to take into account the

micro-tonality and elaboration of melodies that are described

in Sec. II. The SymbTr collection includes microtonal infor-

mation, but all currently available pitch and onset alignment

software is restricted to the lower resolution of the 12-TET

system. For this reason, time alignment was performed using

standard tools in 12-TET resolution, and then microtonal

information was re-established. However, the SymbTr nota-

tions depict only the notes of the basic melody of a composi-

tion, with embellishments in the performances not being

included. Hence, the objective of the transcription task is

to create a transcription of the basic melody played by all

included instruments in the heterophony, rather than a

descriptive transcription (Seeger, 1958) of the detailed orna-

mentations present. The manual annotation process was con-

ducted by the two authors. The first author holds a degree in

piano performance, and the second author has five years of

TABLE I. Collection of instrumental recordings used for transcription.

Form Makam Instr. Notes Tonic/Hz

1 Peşrev Beyati Ensemble (k,f,n,o,p,t) 906 125

2 Peşrev Beyati Ney 233 438

3 Saz S. Hicazkar Tanbur 706 147

4 Peşrev H€useyni Ensemble (n,p) 302 445

5 Peşrev H€useyni Ensemble (k,f,n,p,t) 614 124

6 Saz S. Muhayyer Ney 560 495

7 Saz S. Muhayyer Ensemble (k,f,n,t) 837 294

8 Peşrev Rast Tanbur 658 148

9 Peşrev Rast Ney 673 392

10 Peşrev Segah Ney 379 541

11 Peşrev Segah Ensemble (k,f,n) 743 246

12 Saz S. Segah Ensemble (k,f,n,p,t) 339 311

13 Saz S. Segah Tanbur 364 186

14 Saz S. Uşşak Tanbur 943 165

15 Saz S. Uşşak Tanbur 784 162

16 Saz S. Uşşak Ney 566 499

FIG. 3. Note spectrograms for three instruments. The sidebar values are in

dB, with 0 dB denoting the largest magnitude in the depicted power

spectrum.

TABLE II. Collection of vocal recordings used for transcription.

Singer Title (Makam) Notes Tonic/Hz

1 Bekir Sıdkı

Sezgin

Bekledim Yıllarca Lâkin Gelmedin

(H€uzzam)

451 141

2 Bekir Sıdkı

Sezgin

Yandıkça Oldu Sûzân (Suzidil) 243 111

3 Kani Karaca Bir Nigâh Et Ne Olur Halime (Hicaz) 306 123

4 Kani Karaca €Ulfet Etsem Yâr ile A�gyâre Ne

(Hicaz-Uzzal)

425 123

5 Safiye Ayla Vars in G€on€ul Aşkınla (Nişaburek) 339 335

6 Safiye Ayla Bu Akşam Ayışı�g inda (Saba) 333 328
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practice of Turkish oud and took lessons from several mas-

ters of Turkish makam music.

As a first step in compiling the reference annotations,

the SymbTr notations were manually edited in order to

reflect exactly the sequence of sections as chosen in the

performance. This is necessary because performers may

omit sections of a piece or their notated repetitions. In the

next step the (microtonal) SymbTr notation was converted to

standard MIDI, and the approach presented by Macrae and

Dixon (2010) was applied in order to get a rough estimate of

the temporal alignment between the recording and the

notes in a MIDI representation of the music. The resulting

pre-aligned MIDI file was then loaded into Sonic Visualiser4

as a notation layer on top of the spectrogram of the record-

ing, and the timing of the alignment was corrected manually.

The manual alignment resulted in a list of notes with an

accurate temporal alignment and a frequency resolution of 1

semitone. Micro-tonal information was then recovered from

the edited SymbTr notations, obtaining a list of pitch values

with 1 Hc resolution. The pitch values are normalized with

respect to the tonic (karar) of the piece, so that the tonic was

assigned a value of 0 cent. In Fig. 4 an example of the pitch

annotation output is depicted. In this example, the ornamen-

tations resulting in additional notes between 135.5 and 137 s

(vertical lines caused from onsets of the kanun can be recog-

nized) were not annotated, resulting in an alignment of the

basic melody to this heterophonic ensemble performance.

The annotation process resulted in reference annotations

containing a total of 11 704 notes, consisting of 2411 for

ney, 3455 for tanbur, 3741 for ensemble, and 2097 for vocal

pieces. The annotations are available on the second author’s

website,5 while the audio recordings can be obtained by

using the provided identifiers.

In order to compare a reference pitch annotation with

the output of the system for a given performance, the tonic

frequency from this performance is needed. As described in

Sec. II, this frequency depends on the chosen transposition

and on tuning inaccuracies. The tonic frequencies for all per-

formances were manually annotated. However, experiments

on automatic tonic frequency estimation (Bozkurt, 2008)

were conducted, and errors due to automatic estimation were

monitored.

IV. SYSTEM

The proposed system takes as input an audio recording

and information about the melodic mode (in this case, the

makam). Multi-pitch detection with 20 cent resolution is per-

formed based on the systems of Benetos and Dixon (2013)

and Benetos et al. (2013a), which were originally proposed

for transcribing Eurogenetic music [they ranked first in the

MIREX 2013 Multiple F0 Estimation & Note Tracking pub-

lic evaluation (MIREX)]. The original systems’ abilities to

support multi-pitch detection in a resolution finer than a

semitone, which had not been exploited nor evaluated in

Benetos and Dixon (2013), have been utilized. In addition, a

note template dictionary using instruments and vocal

performances from Turkish makam music is included in

the proposed system. Finally, in order to support the tran-

scription of heterophonic music, post-processing steps are

included that convert a multi-pitch output into a single

melodic line, and center the cent-scale output around

the detected tonic. A diagram of the proposed transcription

system can be seen in Fig. 5.

A. Spectral template extraction

In dictionary-based transcription systems, spectral tem-

plates per pitch are typically extracted from isolated note

samples (Dessein et al., 2010). Since to the authors’ knowl-

edge such a database of isolated note samples for Turkish

instruments and vocals does not exist, recordings were

performed and appropriate available solo performances were

selected in order to obtain material from which to extract

spectral templates, as detailed in Sec. III A.

For the ney and tanbur solo performances, each note

segment is identified and manually labeled, and the probabil-

istic latent component analysis (PLCA) method (Smaragdis

et al., 2006) with one component was employed per segment

in order to extract a single spectral template per pitch. The

time/frequency representation used was produced by a

FIG. 4. Screenshot of an aligned sequence: the spectrogram for a short

phrase in recording 5, with the aligned note onsets. Four instruments inter-

pret the melody heterophonically: while the kanun ornaments strongly, the

other instruments play closer to the basic melody.

FIG. 5. Proposed transcription system diagram.
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constant-Q transform (CQT) with a spectral resolution of 60

bins/octave (corresponding to 20 cent resolution), with

27.5 Hz as the lowest bin, and a 20 ms time step (Brown,

1991). Since in log-frequency representations like CQT

inter-harmonic spacings are consistent for all pitches, spec-

tral templates for missing pitches in the training set were

created by shifting the CQT spectra of neighboring pitches.

The same PLCA-based process was used for extracting

templates from the set of isolated notes for ney, tanbur,

kemence, and kanun. This resulted in an instrumental dic-

tionary consisting of 5 ney models (spanning notes 60–88 in

the MIDI scale), 5 tanbur models (spanning notes 39–72), 2

kanun models (spanning notes 53–88), and one kemence

model (spanning notes 56–88).

For creating vocal templates, a training dataset of six

solo voice recordings of Turkish makam music was used,

covering the singers listed in Table II. Given the non-stable

nature of the singing voice, a semi-supervised method was

employed in order to speed up the annotation/template

extraction process. A spectrogram of each recording was

displayed using Sonic Visualiser;4 stable pitch areas were

manually annotated, and these annotated segments were con-

catenated to a new recording exclusively containing stable

pitches. The aforementioned recording was used as input to

the supervised PLCA algorithm, where the pitch activations

were fixed (using the aforementioned user annotations) and

the dictionary was estimated. The resulting vocal templates

span MIDI notes 46 to 80.

B. Transcription model

For performing multi-pitch detection the model of

Benetos and Dixon (2013), originally developed for compu-

tationally efficient transcription of Eurogenetic music,

was employed and adapted. This model expands PLCA

techniques by supporting the use of multiple pre-extracted

templates per pitch and instrument source, as well as shift-

invariance over log-frequency; the latter is necessary for

performing multi-pitch detection at a frequency resolution

higher than the semitone scale, as in the present work.

The transcription model takes as input a normalized log-

frequency spectrogram Vx;t (x is the log-frequency index

and t is the time index) and approximates it as a bivariate

probability distribution Pðx; tÞ. Pðx; tÞ is decomposed into a

series of log-frequency spectral templates per pitch, instru-

ment, and log-frequency shifting (which indicates deviation

from the 12-TET system), as well as probability distributions

for pitch activation, instrument contribution, and tuning.

The model is formulated as

Pðx; tÞ ¼ PðtÞ
X

p;f ;s

Pðxjs; p; f ÞPtðf jpÞPtðsjpÞPtðpÞ; (1)

where p denotes pitch, s denotes instrument source, and f
denotes log-frequency shifting. P(t) is equal to RxVx;t,

which is a known quantity. All factors in the right-hand side

of Eq. (1) are matrices (or tensors) containing values which

vary from 0 to 1, indexed by their respective integer random

variables. Pðxjs; p; f Þ denotes pre-extracted log-spectral

templates per pitch p and source s, which are also pre-shifted

across log-frequency according to index f. The pre-shifting

operation is made in order to account for pitch deviations,

without needing to formulate a convolutive model across

log-frequency, as was the case for Smaragdis (2009). Ptðf jpÞ
is the time-varying log-frequency shifting distribution per

pitch, PtðsjpÞ is the time-varying source contribution per

pitch, and finally, PtðpÞ is the pitch activation, which is

essentially the resulting transcription. The shifting index f is

constrained to a semitone range with respect to an ideally

tuned pitch according to 12-TET; given the CQT resolution

(20 cents), f 2 ½1; :::; 5�, with 3 indicating no deviation from

12-TET (this represents tuning values of �40, �20, 0, 20,

and 40 cents).

The unknown model parameters Ptðf jpÞ; PtðsjpÞ, and

PtðpÞ are estimated using iterative update rules based on the

expectation-maximization (EM) algorithm (Dempster et al.,
1977). For the expectation step, an intermediate distribution

(i.e., the model posterior) is computed,

Pt p; f ; sjxð Þ ¼
P xjs;p; fð ÞPt f jpð ÞPt sjpð ÞPt pð Þ

X

p;f ;s

P xjs;p; fð ÞPt f jpð ÞPt sjpð ÞPt pð Þ
: (2)

For the maximization step, the unknown model parame-

ters are updated using the posterior from Eq. (2):

Pt f jpð Þ ¼

X

x;s

Pt p; f ; sjxð ÞVx;t

X

f ;x;s

Pt p; f ; sjxð ÞVx;t

; (3)

Pt sjpð Þ ¼

X

x;f

Pt p; f ; sjxð ÞVx;t

X

s;x;f

Pt p; f ; sjxð ÞVx;t

; (4)

Pt pð Þ ¼

X

x;f ;s

Pt p; f ; sjxð ÞVx;t

X

p;x;f ;s

Pt p; f ; sjxð ÞVx;t

: (5)

Equations (2)–(5) are iterated, with the number of itera-

tions set to 30. The various matrices are initialized with ran-

dom values; from EM theory, convergence to a local

maximum is guaranteed (Dempster et al., 1977). The tem-

plates Pðxjs; p; f Þ are kept fixed using the pre-extracted and

pre-shifted spectral templates from Sec. IV A. The output of

the transcription model is a pitch activation matrix and a

pitch shifting tensor, which are, respectively, given by

Pðp; tÞ ¼ PðtÞPtðpÞ; (6)

Pðf ; p; tÞ ¼ PðtÞPtðpÞPtðf jpÞ: (7)

By stacking slices of Pðf ; p; tÞ for all pitch values, a

time-pitch representation with 20 cent resolution can be

created,
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Pðf 0; tÞ ¼ ½Pðf ; plow; tÞ � � �Pðf ; phigh; tÞ�; (8)

where f 0 denotes pitch in 20 cent resolution, with plow¼ 39

being the lowest MIDI-scale pitch value, and phigh¼ 88 the

highest pitch value considered. In Fig. 6 the time-pitch repre-

sentation for a ney recording (piece no.2 from Table I) can

be seen.

C. Post-processing

The outputs of the transcription model of Sec. IV B are

non-binary and need to be converted into a list of note

events, listing onset, offset, and pitch (the latter relative to

the tonic frequency). First, median filtering is performed

on P(p, t), which is subsequently thresholded (i.e., matrix

elements below a certain value are set to zero), and followed

by minimum duration pruning (i.e., removing note events

with durations less than 120 ms).

Since a significant portion of the transcription dataset

consists of ensemble pieces where instruments (and in some

cases, voice) are performing in octave unison, the hetero-

phonic output of the multi-pitch detection algorithm needs to

be converted into a monophonic output that will be usable as

a final transcription. Thus, a simple “ensemble detector” is

created by measuring the percentage of octave intervals in

the detected transcription. If the percentage is above 15%,

the piece is considered an ensemble piece. Subsequently, for

each ensemble piece each octave interval is processed by

merging the note event of the higher note with that of the

lower one.

In order to convert a detected note event into the cent

scale, information from the pitch shifting tensor Pðf ; p; tÞ is

used. For each detected event with pitch p and for each time

frame t, the value of pitch deviation f that maximizes

Pðf ; p; tÞ is found,

f̂ p;t ¼ arg max
f

Pðf ; p; tÞ: (9)

The median of f̂ p;t for all time frames belonging to each note

event is selected as the tuning that best represents that note.

Given the CQT resolution (60 bins/octave), the value in cent

scale for the lowest frequency bin of the detected pitch is

simply 20ðf̂ � 1Þ, where f̂ is the pitch shifting index

(f 2 ½1;…; 5�) of the detected note.

D. Tonic detection

Because of the unknown transposition of the perform-

ance, we need to determine the frequency of the tonic in Hz

in order to compare the automatic transcription with the ref-

erence pitch annotations. To this end, the procedure

described by Bozkurt (2008) is applied. The method com-

putes a histogram of the detected pitch values and aligns it

with a template histogram for each makam using a cross-

correlation function. The peak value of the pitch histogram

is then assigned to the tonic that is closest to the peak of the

tonic in the template, and all detected pitches are centered

on this value. Finally, after centering the detected note

events by the tonic, note events that occur more than 1700

cents or less than �500 cents from the tonic are eliminated,

since such note ranges are rarely encountered in Turkish

makam music.

V. EVALUATION

A. Metrics

For assessing the performance of the proposed system in

terms of microtonal transcription, a set of metrics is pro-

posed, by adapting the onset-based transcription metrics used

for the MIREX Note Tracking evaluations (Bay et al., 2009).

In onset-based transcription evaluation of Eurogenetic music,

an automatically transcribed note is assumed to be correct if

its F0 deviates less than 50 cents from the annotated refer-

ence pitch and its onset is within either a 50 or 100 ms toler-

ance from the ground truth onset.

For the proposed evaluations, an automatically tran-

scribed note is considered to be correct if its F0 is within a

620 cent tolerance around the annotated reference pitch and

its onset is within a 100 ms tolerance. The 620 cent and

6100 ms tolerance levels were considered as “fair margins

for an accurate transcription” by Seeger (1958). The

FIG. 6. The time-pitch representation

Pðf 0; tÞ for the ney piece No. 2 from

Table I.
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following onset-based Precision, Recall, and F-measure are

subsequently defined:

Pons ¼
Ntp

Nsys
; Rons ¼

Ntp

Nref
; F ons ¼

2RonsPons

RonsþPons
; (10)

where Ntp is the number of correctly detected notes, Nsys the

number of notes detected by the transcription system, and

Nref the number of reference notes. Duplicate notes are

considered as false positives. In all results, we display the

metrics averaged across groups of recordings. It is important

to point out that notes in octave distance are not considered

as equal, since the differentiation of the octaves is important

for a correct transcription of the melodic progression.

B. Results—Instrumental transcription

Two types of instrumental transcription evaluations

were performed. The first tested the automatically detected

tonic produced by the system of Bozkurt (2008). In the

second evaluation, a manually annotated tonic was used. The

proposed method was able to transcribe the entire 75 min

instrumental dataset in less than one hour, i.e., less than

real time. The instrumental transcription system included

templates from the ney, tanbur, kanun, and kemence

dictionaries.

Results using manually annotated tonic are shown in

Table III, for the complete dataset as well as for individual

instrument families. Results using the automatically detected

tonic for the same dataset can be seen in Table IV. Using a

manually annotated tonic, the proposed system reached

F ons ¼ 56:75% with a 20 cent tolerance [preliminary experi-

ments in Benetos and Holzapfel (2013) reached 51.24%

using a smaller dictionary]. All instrument subsets exhibited

transcription performance above 50%, with a best perform-

ance of 58.5% being reached by the tanbur subset.

In order to demonstrate the robustness of the pitch-

activation threshold parameter, an ROC curve for recall-vs-

precision is shown in Fig. 7, where the thresholded values

are varied from 1.0 to 10.0 [determined by the values in

P(t)]. It can be seen that the system is fairly robust to thresh-

old changes, with the lowest values reached by Precision and

Recall being around 45%. From Fig. 7 it is apparent that the

curve for tanbur reaches higher precision values than the ney

and ensemble curves, which implies that the system detects

fewer spurious onsets for the tanbur. One reason for the

maximum possible precision being the lowest for the ensem-

ble pieces is due to a heterophonic performance practice. In

the presence of several instruments, usually at least one

instrument will strongly ornament the basic melody, which

adds additional notes to the automatic transcription. An

example of this process is given in Fig. 8, which shows the

same excerpt as Fig. 4, but visualizes the automatically tran-

scribed notes. The presence of ornamentations led to four

false positive detections (according to the reference pitch

annotation) between 135 and 138 s.

For comparing the proposed method with a recently

published transcription algorithm, the method of Vincent

et al. (2010) was employed. This method performs multi-

pitch detection using adaptive non-negative matrix factoriza-

tion and expresses an audio spectrogram as a series of

weighted narrowband harmonic spectra. To ensure a fair

comparison with the proposed method, the output of the

aforementioned multi-pitch detection system (a list of note

onsets and corresponding pitches) is post-processed in the

same way as described in Sec. IV C, resulting in a list of

onsets and pitches in cent value centered by a tonic. Results

for the complete instrumental set using a manually annotated

tonic show that the Vincent et al. (2010) method reaches

F ons ¼ 38:52% with 20 cent tolerance and F ons ¼ 49:84%

with 50 cent (i.e., semitone scale) tolerance, indicating that

the proposed method, which reached 56.75%, is more suita-

ble for the task of transcribing Turkish makam music, both

in a microtonal setting and using a semitone resolution (cf.

Table V).

Another comparison is carried out with respect to

monophonic transcription, using the benchmark YIN pitch

detection algorithm (de Cheveign�e and Kawahara, 2002).

Since YIN returns a continuous series of pitch values with-

out identifying onsets/offsets, an “oracle” approach was

employed, by using the ground truth (i.e., manually

derived) onsets and offsets as additional information. Thus,

for each annotated note event (defined by its ground truth

TABLE III. Instrumental transcription results using manually annotated

tonic.

Pons Rons F ons

Ney recordings 55.89% 54.71% 55.00%

Tanbur recordings 64.88% 53.41% 58.52%

Ensemble recordings 51.44% 65.71% 57.06%

All recordings 57.31% 57.74% 56.75%

TABLE IV. Instrumental transcription results using automatically detected

tonic.

Pons Rons F ons

Ney recordings 53.22% 51.12% 51.91%

Tanbur recordings 44.51% 36.26% 39.91%

Ensemble recordings 42.72% 54.24% 47.34%

All recordings 47.22% 47.45% 46.73%

FIG. 7. ROC curves for recall-vs-precision using the instrumental dataset,

as pitch-activation threshold values are varied.
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onset-offset), its pitch is estimated by selecting computing

the median pitch returned from YIN for that segment; this

process is followed by the same post-processing steps

described in Sec. IV C, again returning a list of onsets and

pitches in cent value centered by a tonic. For the instrumen-

tal set, F ons ¼ 51:71% (cf. Table V), while for the mono-

phonic recordings F ons ¼ 55:41% (the latter compared to

56.60% for the proposed system).

Experiments on the robustness of the proposed method to

degradations of the audio input were also carried out, using

the Audio Degradation Toolbox of Mauch and Ewert (2013).

Pre-defined “vinyl” degradations were used, which are rele-

vant for the collection selected for evaluation. The toolbox

adds impulse responses, LP surface crackle, wow-and-flutter

irregularities in playback speed, and pink noise. Using the

degraded audio recordings, transcription performance reached

46.42%, which shows that the proposed system is relatively

robust to reduction in recording quality (cf. Table V).

As in our preliminary experiments (Benetos and

Holzapfel, 2013), there is a performance drop (10% in terms

of F-measure) when the automatically detected tonic was

used compared to the manually supplied one. This is attrib-

uted to the fact that with a 20 cent F0 evaluation tolerance,

even a slight tonic miscalculation might lead to a substantial

decrease in performance. Major tonic misdetections were

observed for instrumental recordings 3 and 5 (described in

Table I), leading to F-measures close to zero for those cases.

The impact of F0 and onset time tolerance on F ons is

shown in Table VI. With a 50 cent tolerance (corresponding

to a standard semitone-scale transcription tolerance) the

F-measure reaches 66.95%. This indicates that the proposed

system is indeed successful at multi-pitch detection, and that

a substantial part of the errors stems from detecting pitches

at a precise pitch resolution.

In order to demonstrate the need for using instrument-

specific templates for AMT, comparative experiments were

made using piano templates extracted from three piano models

taken from the MAPS database (Emiya et al., 2010). Using

the piano templates, the system reached F ons ¼ 53:28%, indi-

cating that a performance decrease occurs when templates are

applied that do not match the timbral properties of the source

instruments (cf. Table V). This best performance with piano

templates was obtained for the tanbur recordings (which might

be attributed to those instruments having similar excitation

and sound production); the ney recording performance was

close to the average (53.4%), while the worst performance (of

51.2%) is observed for the ensemble recordings.

The impact of system sub-components can also be seen

by disabling the “ensemble detection” procedure, which

leads to an F-measure of 51.94% for the ensemble pieces,

corresponding to about 5% decrease in performance. By

removing the minimum duration pruning process, the

reported F-measure with manually annotated tonic is

54.54%, which is a performance decrease of about 2%.

Finally, by disabling the sub-component which deletes note

events that occur more than 1700 cents or less than �500

cents from the tonic, system performance drops to 54.55%;

this decrease is more apparent for the ensemble pieces

(which were performed in an octave unison, spanning a

wider note range), leading to an F-measure of 51.45%.

C. Results—singing transcription

For transcribing the vocal dataset, evaluations were also

performed using the automatically detected and manually

annotated tonics. The dictionary used for transcribing vocals

consisted of a combination of vocal, ney, and tanbur

templates.

Results are shown in Table VII; as with the instrumental

dataset, there is a drop in performance (7% in terms of F ons)

when using the automatically detected tonic. Performance is

quite consistent across all recordings, with the best perform-

ance of F ons ¼ 72:2% achieved for recording No. 4 from

FIG. 8. (Color online) Excerpts from an ensemble transcription: Piece 5

from Table I, F-measure: 42.3%. The pitch axis is normalized to have the

tonic frequency at 0 cent. The log-frequency spectrogram is depicted, over-

laid with the automatic transcription as crosses, and the reference annotation

indicated by black rectangles, framed by white color for better visibility.

Width and height of the black rectangles are confined to an allowed toler-

ance of 100 ms and 20 cents.

TABLE V. Instrumental transcription results using various system configu-

rations, compared with state-of-the-art approaches.

System F ons

Proposed method 56.75%

Proposed method—added “vinyl” degradation 46.42%

Proposed method—using piano templates 53.28%

(Vincent et al., 2010)—20 cent evaluation 38.52%

(Vincent et al., 2010)—50 cent evaluation 49.84%

YIN (de Cheveign�e and Kawahara, 2002) 51.71%

TABLE VI. Instrumental transcription results (in F ons) using different F0

and onset tolerance values.

F0 tolerance 10 cent 20 cent 30 cent 50 cent

F ons 38.90% 56.75% 62.68% 66.95%

Onset tolerance 50 ms 100 ms 150 ms 200 ms

F ons 42.75% 56.75% 60.66% 62.95%

TABLE VII. Singing transcription results using manually annotated and

automatically detected tonic.

Pons Rons F ons

Manually annotated 39.70% 44.71% 40.63%

Automatically detected 33.71% 36.53% 33.41%
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Table II and the worst performance of F ons ¼ 21:2% for

recording No. 1 (which suffers from poor recording quality).

When using only vocal templates, system performance

reaches F ons ¼ 34:8%, while when using only the instru-

mental templates an F-measure of 39.5% is achieved. This

indicates that the instrumental templates contribute more to

system performance than the templates extracted from the

vocal training set, although including the vocal templates

leads to an improvement over using only the instrumental

templates. For comparison, using the multi-pitch detection

method of Vincent et al. (2010) as in Sec. V B, with 20 cent

tolerance yields F ons ¼ 22:8%, while 50 cent tolerance gives

F ons ¼ 36:6%.

In general, these results indicate the challenge of

transcribing mixtures of vocal and instrumental music, in

particular, in cases of historic recordings. However, the

results are promising, and indicate that the proposed system

can successfully derive transcriptions from vocal and instru-

mental ensembles, which can serve as a basis for fixing

transcription errors in a user-informed step. Detailed discus-

sion on the instrumental and vocal systems will be made in

Sec. VI.

VI. DISCUSSION

The results obtained from the proposed AMT system indi-

cate lower performance for vocal pieces compared to results

for instrumental recordings. As pointed out in Sec. III C, the

recording quality of the vocal recordings is generally lower

than the quality of most instrumental performances, which is

reflected in a higher noise level and the absence of high-

frequency information due to low-quality analog-to-digital

conversion. In order to assess the impact of the low recording

quality, an informal experiment was carried out, in which six

new vocal recordings were chosen for transcription. Since for

those recordings no time-aligned reference pitch annotations

exist, a qualitative evaluation was performed by an aural com-

parison of an original vocal recording with a synthesizer play-

back of a transcription of the recording. This experiment did

not indicate a clear improvement of vocal transcription for the

newer recordings.

An insight can be obtained into what was identified as

the main reason for the low transcription performance for

vocal pieces by comparing the depicted spectrograms in

Figs. 9(a) and 9(b). The instrumental example in Fig. 9(a) is

characterized by pitch that remains relatively stable for the

duration of a note, and by note onsets that can be identified

by locating changes in pitch. However, the vocal example in

Fig. 9(b) is completely different. Here, the pitch of the voice

is clearly distinguishable but characterized by a wide

vibrato. For instance, in the downward movement starting at

about 170 s, the notation contains a progression through sub-

sequent notes of the H€uzzam-makam scale, which appears in

the singing voice with a vibrato of the almost constant range

of five semitones. Such characteristics are typical of Turkish

vocal performances, and it seems hard to imagine a method

based purely on signal processing that could correctly inter-

pret such a performance in terms of the underlying implied

note sequence. It is an open question whether this difficulty

of transcribing vocal performances is unique to this form of

music, or if AMT systems would exhibit similar perform-

ance deficits for other styles of music as well. Based on our

own observations of musical practice in Turkey, instrumen-

tal music education more frequently explains ornamentations

in terms of notes than in vocal education, where teachers

tend to teach ornamentations such as the vibrato in Fig. 9(b)

purely in terms of performance demonstrations.

One aspect important to point out is that the system

performance values displayed in Sec. V contain an over-

pessimistic bias. As explained in Sec. II, Turkish makam

music practice deviates from the pitch values implied by

notation, due to a mismatch between theory and practice.

However, our reference annotations contain pitch values

that are following the most common theoretical framework

to explain the tonal concepts of Turkish makam music,

while the performances contain pitches that will deviate

from the theoretical values at least for some cases. For

instance, the step from the tonic to the fourth note in makam

Segah is usually notated as a perfect fourth. However,

within performances this interval tends to be larger because

the tonic is typically played (by instruments) at a lower

pitch. For piece 10 in Table I, a clear increase of this inter-

val compared to the annotated one is observed. For this

piece, correcting this interval from 500 to 530 cents changes

the F-measure from 30.6% to 39.7%, a substantial improve-

ment. Similar phenomena are very likely to occur for other

pieces, but a systematic evaluation would require manual

correction of all individual pitch values in our reference

annotations.

FIG. 9. (Color online) Excerpts from transcriptions. Axes and symbols fol-

low the principle of Fig. 8.
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VII. CONCLUSIONS

In this paper, a system for transcribing microtonal

makam music of Turkey is proposed, based on spectrogram

factorization models relying on pre-extracted spectral tem-

plates per pitch. A collection of instrumental and vocal

recordings was compiled and annotated, and evaluation met-

rics suitable for microtonal transcription were proposed.

Results show that the system is able to transcribe both instru-

mental and vocal recordings with variable accuracy ranging

from approximately 40% to 60% for 20 cent resolution,

depending on several factors. Results are substantially better

using manually determined tonic values as compared with an

automatic method. We also observed a discrepancy between

music theory and practice, as observed through the reference

pitch annotations that followed a theoretical framework. The

code for the proposed system is available online.6

A logical extension of this work is to combine acoustic

models with music language models suitable for microtonal

and heterophonic music, in order to both improve transcrip-

tion performance and quantify the gap between theory and

practice in Turkish makam music. Finally, following work in

Benetos and Dixon (2013), another suggested extension is to

annotate the various sound states observed in typical Turkish

makam music instruments (such as attack, sustain, decay),

which the authors believe will result in a more robust and

accurate AMT system for microtonal music.
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1Term used to avoid the misleading dichotomy of Western and non-

Western music, proposed by Reigle (2013).
2The term “polyphony” in the context of AMT does not necessarily refer to

a polyphonic style of composition. It rather refers to music signals that

contain either several instruments, or one instrument that is capable of

playing several individual melodic voices at the same time, such as the

piano. On the other hand, “monophonic” refers to signals that contain one

instrument that is capable of playing at most one note at a time (e.g., flute).

The two terms are used with this technical interpretation in the paper.
3http://compmusic.upf.edu (Last viewed August 6, 2015).
4http://www.sonicvisualiser.org/ (Last viewed August 6, 2015).
5Please follow the links provided at http://www.rhythmos.org/

Datasets.html (Last viewed August 6, 2015) in order to obtain the annota-

tions as two archives. Lists that identify all performances using their

MusicBrainz ID (musicbrainz.org) or a YouTube-link if no ID is available,

are included.
6Code for proposed system: https://code.soundsoftware.ac.uk/projects/

automatic-transcription-of-turkish-makam-music (Last viewed August 6,

2015).
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