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1 Introduction

HyperKähler cotangent bundles over a homogeneous space, T ⋆(G/H), arise
in a number of contexts in supersymmetric gauge theories, brane physics,
and in geometry. For instance, they bear a direct relation to solutions of
the Nahm equations [1] and hence to moduli spaces of T σ(G) theories [2, 3].
More generically, these spaces appear as building blocks of theories with
8 supercharges (in particular stemming from [4]. See also [5]), and have
interesting implications for N = 1⋆ theories as well [6]. In fact, they are
intimately related to a subject recently blossoming in a number of different
contexts in String Theory, namely the theory of nilpotent orbits (for an
introduction, see [7]).

Their avatars as Coulomb branches of T σ(G) theories, available for clas-
sical groups, is particularly interesting. For instance, concentrating on the
case of G = SU(N), σ is a partition of N specifying the brane system [8]
that realizes the theory, which is a linear quiver with flavors for each node.
Moreover, it specifies in a prescribed way a Levi subgroup H of G such that
the Coulomb branch moduli space is T ⋆(G/H) (we refer to [2, 3, 9]. Note
that this bears also interesting relations to 3d indices through the Coulomb
branch formula [10, 11, 12]). Other appearances of these spaces are in the
context of instanton moduli spaces, including also the cases of exceptional
Lie algebras (see e.g [13]).

On general grounds, an object of primary interest on a complex variety
is the ring of (polynomial) holomorphic functions defined on it. This object
carries a great deal of information about the underlying variety. A particu-
larly efficient device to encode its properties is the so-called Highest Weight
Generating function introduced in [14]. Our goal in this note is to provide a
very elegant and efficient way to compute the (unrefined, i.e. t = 1) Highest
Weight Generating function for hyperKähler cotangent bundles over homo-
geneous spaces.

In previous approaches one realizes the space T ⋆(G/H) as the vacuum
moduli space on either the Higgs or Coulomb branch of some (3d) gauge
theory, compute the Hilbert series either by the Molien integral (see e.g [15])
or the monopole formula (akin to an index) and then read off the Highest
Weight Generating function as in [12]. Instead, in this note we propose
a much shorter path stemming from the observation that the functions in
T ⋆(G/H) are associated to representations of G containing singlets of H
when branched under H .
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The rest of this note is organized as follows: in section (2) we provide,
for completeness, a lightning review of Highest Weight Generating functions.
In section (3) we describe precisely our conjecture – explicitly captured by
eq.(10) – for which we offer examples and tests in section (4). We conclude
in section (5) with some open problems.

2 Highest Weight Generating functions

On general grounds, ennumerating holomorphic functions on a complex va-
riety M is of great interest. Typically, these functions are labelled by their
quantum numbers under the isotropy group – which plays the role of a global
symmetry – and graded in a certain way.4 More precisely, introducing fu-
gacities z for the global symmetry and t for the grading, each function with
global charges q and corresponding grading r(q) can be encoded in a mono-
mial zqtr(q). The sum of these monomials is a generating function, counting
holomorphic functions in the variety, called Hilbert series5

HS[M](t; z) =
∑

q

m(q)zqtr(q) . (1)

The coefficients of t in the expansion of the Hilbert series group into char-
acters of the global symmetry, reflecting the fact that holomorphic functions
form multiplets of such global symmetry. Since, in turn, each representa-
tion can be labelled by the highest weight state with Dynkin labels n – that
is, we encode in the entries of the vector n the Dynkin labels of the rep-
resentation [n1, · · · , nrankG] – in [14] a more concise encoding of the same
information was introduced through the so called Highest Weight Generat-
ing function (HWG). The idea is to introduce a set of fugacities µ so that the

4Even though for our purposes it will not play an essential role, the grading corresponds
to the highest weight (twice the spin) of the SU(2)R representation. In more physical
terms, the spaces at hand can be thought as moduli spaces of theories with 8 supercharges.
In such theories the R-symmetry contains an SU(2) which acts antiholomorphically on a
hypermultiplet. Thus, in 4 supercharge language, only its highest weight r is visible,
assigning – in a certain normalization – r = 1 to both complex fields in a hypermultiplet.
This highest weight can be used to grade chiral operators – a.k.a. holomorphic functions on
the moduli space. Note that r is proportional to the scaling dimension ∆ of the operators.

5Note that more than one function might have the same quantum numbers. In that case
the corresponding monomial will appear as many times as functions with those quantum
numbers, that is, it will have some non-trivial multiplicity m(q).
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whole multiplet associated to the highest weight n contributes µn tr(n). Here
µ

n = µn1

1 · · ·µnrankG

rankG . Then, the HWG is (again, non-trivial multiplicities
m̂(n) may appear)

gM(t;µ) =
∑

n

m̂(n)µn tr(n) . (2)

Let us put this into practice with the simple example of the moduli space
of one SU(2) instanton, which corresponds to the minimal nilpotent orbit
of SU(2). Stripping off the center of mass, the Hilbert series is just that of
C2/Z2 [15]

HS
[

C
2/Z2

]

(t; z) =
1 + t2

(1− t2z2) (1− t2z−2)
, (3)

where z is the fugacity for the global SU(2) symmetry that commutes with
SU(2)R associated to the C2/Z2 space. Expanding this we have

HS
[

C
2/Z2

]

(t; z) = 1 + χ[2] t2 + χ[4] t4 + · · · , (4)

where χ[n] represents the character of the [n] representation (of dimension
n + 1) of SU(2) in terms of the fugacity z. Thus, we see that only [2n]
appears. Hence, the HWG is

gC
2/Z2(t;µ1) =

∞
∑

n=0

µ2n
1 t2n =

1

1− µ2
1 t

2
. (5)

Upon setting t = 1 we find the unrefined HWG, which in this case reduces
to gC

2/Z2(µ1) = PE[µ2
1].

Another device which will be useful for our purposes below is the so-
called character generating function for a certain group G. This function,
also introduced in [14], is designed so that the coefficient of the µ

n term
in its expansion gives the character χ[n] for the representation of G whose
Dynkin labels are n. In the following, we will use as group fugacities z, w and
u, and thus we will denote character generating functions as e.g. gG(µ; z).

Let us make this precise with the SU(2) example. The character of the
SU(2) representation with Dynkin label [n] is given by

χ[n] =
zn+1 − z−(n+1)

z − z−1
. (6)

Thus, the character generating formula for SU(2) representations is simply

3



gSU(2)(µ1; z) =
∞
∑

n1=0

χ[n1]µ
n1

1 =
1

(1− µ1 z) (1− µ1 z−1)
, (7)

in such a way that the coefficient of µn
1 in the expansion of gSU(2)(µ1, z) gives

the character of the [n] representation of SU(2).
Note that this can be extended in a straightforward way to SU(N), since

theWeyl character formula allows to write U(N) characters in terms of Young
tableux as

χ[n] =
det(ẑ

r̂j+N−j
i )

det(ẑN−j
i )

, i, j = 1 · · ·N . (8)

Projecting to SU(N) is done by setting ẑ1 = z1, ẑ2 = z2
z1
, · · · , ẑN = 1

zN−1

.

This allows to set r̂1 = r1 + r̂N , · · · , r̂N−1 = rN1
+ r̂N in such a way that r̂N

drops from the formula. Then, the character generating function for SU(N)
is

gSU(N)(µ; z) =
∞
∑

r1=0

r1
∑

r2=0

· · ·

rN−2
∑

rN1
=0

χ[n]µn . (9)

It is straightforward to see that this formula reproduces (7) in the N = 2
case.

3 HWG for hyperKähler T ⋆(G/H)

As discussed in the introduction, hyperKähler spaces of the form T ⋆(G/H)
are very interesting for a number of reasons. On general grounds, at least
locally, the cotangent bundle over G/H is hyperKähler if G/H is Kähler. On
the other hand, G/H is Kähler if rank(G) = rank(H) and H = H ′ × U(1)
(see e.g. [16, 17]). Thus, we will restrict to those cases. Note that, in
particular, for G = SU(N) the possible H are in one-to-one correspondence
with partitions of N . Note also that the condition rank(G) = rank(H) is
needed to ensure that the characteristic polynomial of the adjoint valued
generators of T ⋆(G/H) vanishes (this is equivalent to the vanishing of all
Casimir invariants, hence the name nilpotent). In turn, this has to be the
case, as these spaces arise in particular as moduli spaces of T σ(G) theories
and thus correspond to nilpotent orbits.
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A key fact we will use is that the hyperKähler manifold T ⋆(G/H) is equiv-
alently realized as GC/HC [18, 19]. Our primary interest is in the counting
of the set of holomorphic functions on this space. As discussed above, a
particularly convenient way to encode such functions is the HWG. Thus, we
will be interested on the (t-unrefined) HWG for T ⋆(G/H). The realization
as GC/HC allows us to compute the HWG function using a standard result
from the theory of homegeneous spaces: namely that the functions can be de-
composed into representations of G which contain one or more singlets of H .
The multiplicity of singlets leads to a multiplicity of the G-representations
[20]. This is a consequence of the Peter-Weyl theorem

We can motivate our procedure from physical intuition, as we might think
of GC/HC as the target space manifold of a low energy effective theory after
symmetry breaking (see [21] and [22] for a recent analysis). In this context,
the operation of keeping representations of G containing singlets under H
naturally counts chiral operators in this effective theory and hence holomor-
phic functions on the target space T ⋆(G/H).

4 Examples

Since we have proposed that holomorphic functions on T ⋆(G/H) correspond
to representations of G containing H singlets, we have an operationally easy
procedure to construct and ennumerate all such functions – that is, to con-
struct the HWG. Let us put this into practice with examples. In principle,
we can compute the HWG of the cotangent bundle over G/H by brute force
decomposing the representations of G under H and selecting by hand those
containing singlets of H . Then, re-summing the series we can obtain the
HWG at t = 1. However, a more refined approach is to start with the
character generating function of G. Then, the projection to representations
containing H-singlets is tantamount to gauging H . Thus, integration over H
of the character generating function of G will precisely pick the representa-
tions containing singlets, labelling them by their highest weight. Thus, the
HWG at t = 1 of T ⋆(G/H) can be easily computed as

gT
⋆(G/H) =

∫

dµH gG , (10)

where
∫

dµH represents the integration over H including its Haar measure.
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4.1 G = SU(2)

The character generating function for SU(2) is shown in (7). On the other
hand, for SU(2), the subgroup H with rank(H) = rank(SU(2)) can only
be H = U(1). Note that T ⋆(SU(2)/U(1)) is the resolution of C2/Z2, and
therefore we should recover the results above. Moreover, it is clear that
H = U(1) is precisely the Cartan of SU(2), and thus its fugacity is simply z.
Hence, we can easily project gSU(2) down to H-singlets to find gT

⋆(SU(2)/U(1))

as

gT
⋆(SU(2)/U(1))(µ1) =

∫

dz

z
gSU(2)(µ1, z) =

1

1− µ2
1

=
∞
∑

n=0

µ2n
1 . (11)

Thus we see that in this case only the reps [2n] survive the projection, exactly
as expected for T ⋆(SU(2)/U(1)) corresponding to C2/Z2. Moreover we have
that gT

⋆(SU(2)/U(1)) = PE[µ2
1], and we therefore see that the generator of the

holomorphic functions on T ⋆(SU(2)/U(1)) is the adjoint of SU(2).
Note that the spaces T ⋆(SU(N)/U(N − 1)) can be regarded as reduced

moduli spaces of one instanton of SU(N), whose corresponding HWG have
been computed in [14, 23]. The result above reassuringly matches the ex-
pected one.

4.2 G = SU(3)

Using (9), the SU(3) character generating function is

gSU(3)(t; z) =
1− µ1 µ2

(1− µ1 z1) (1−
µ1

z2
) (1− µ1

z2
z1
) (1− µ2 z2) (1−

µ2

z1
) (1− µ2

z1
z2
)
.

(12)
In the case of SU(3) there are two possible H , namely U(1)2 and U(2).

Let us treat both separately

4.2.1 H = U(1)2

In this case T ⋆ (SU(3)/U(1)2) corresponds to the maximal nilpotent orbit of
SL(3,C) of complex dimension 6. The U(1)2 simply is the Cartan subalgebra
of SU(3). Hence the corresponding fugacities are directly the z. Thus, we
can compute the HWG of gT

⋆(SU(3)/U(1)2) as
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gT
⋆(SU(3)/U(1)2)(µ) =

∫

dz1
z1

∫

dz2
z2

gSU(3)(µ; z) = (13)

1 + µ1µ2 + µ2
1µ

2
2

(1− µ1) (1 + µ1 + µ2
1) (1− µ2) (1 + µ2 + µ2

2) (1− µ1µ2)
.

This can be neatly written as

gT
⋆(SU(3)/U(1)2)(µ) = PE

[

µ3
1 + µ3

2 + 2µ1µ2 − µ3
1µ

3
2

]

. (14)

One can check that this result is indeed consistent with the Hilbert series for
the corresponding T σ(SU(3)) theory as computed in [12].

4.2.2 H = U(2)

In this case T ⋆(SU(3)/U(2)) corresponds to the minimal nilpotent orbit of
SL(3,C) of complex dimension 4. Writing z1 = uw, z2 = u−1w, the char-
acter of the fundamental representation arising from (12) becomes u−2 +
u (w+w−1). In these coordinates, it is clear that H = U(2) = U(1)×SU(2)
is parametrized by u for the U(1) charges and w for SU(2). Thus, projecting
to H-singlets yields the HWG for T ⋆(SU(3)/U(2))

gT
⋆(SU(3)/U(2))(µ) =

∫

du

u

∫

dw
1− w2

w
gSU(3)(µ; u, w) =

1

1− µ1µ2

. (15)

This can be re-written as

gT
⋆(SU(3)/U(2))(µ) = PE[µ1µ2] , (16)

which reproduces the expected result as in [14]. It again shows the adjoint
representation as generator of the space.

4.3 G = SU(4)

Making use of (9), it is possible to resum the expression and explicitly com-
pute the HWG for SU(4). Yet, its form is very cumbersome and we will
refrain from explicitly quoting it (see nevertheless [14]). Moreover, in this
case the possible H are U(1)3, U(2) × U(1), S(U(2) × U(2)) and U(3). For
simplicity we will only focus on the last two cases.
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4.3.1 H = S(U(2)× U(2))

In this case T ⋆(SU(4)/S(U(2)× U(2))) corresponds to the next to minimal
nilpotent orbit of SL(4,C) of complex dimension 8. Writing z1 = uw1,
z2 = u2 and z3 = uw2 the character of the fundamental of SU(4) becomes
u(w1 + w−1

1 ) + u−1(w2 + w−1
2 ). Thus we see that wi parametrizes each of

the SU(2)’s inside S(U(2) × U(2)), while u parametrizes the antidiagonal
combination of the U(1)’s which remains to form S(U(2)×U(2)). Thus, the
HWG for T ⋆(SU(4)/S(U(2)× U(2))) is

gT
⋆(SU(4)/S(U(2)×U(2)))(µ) =

∫

du

u

2
∏

i=1

∫

dwi
1− w2

i

wi
gSU(4)(µ; u, wi) =

1

(1− µ2
2) (1− µ1 µ3)

. (17)

This can be re-written as

gT
⋆(SU(4)/S(U(2)×U(2)))(µ) = PE[µ2

2 + µ1µ3] . (18)

Again, it is easy to check that this result is consistent with the Hilbert series
for the corresponding T σ(SU(4)) theory computed in [12].

In fact this example can be regarded as part of the general family T ⋆(U(N)/U(N−

k)× U(k)). This space appears as the Higgs branch moduli space of SQCD
with 8 supercharges for gauge group U(k) and N flavors. As another exam-
ple, it is easy to check that the SU(5)/S(U(3)× U(2)) case has as HWG

gT
⋆(SU(5)/S(U(3)×U(2)))(µ) = PE[µ2µ3 + µ1µ4] . (19)

In general, provided that N ≥ 2k, one can convince oneself [25, 15] that the
HWG is

gT
⋆(U(N)/U(N−k)×U(k))(µ) = PE

[

k
∑

i=1

µi µN−i

]

. (20)

The cases N = 2k for k = 1 and k = 2 are presented respectively in sections
(4.1) and (4.3.1) respectively.
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4.3.2 H = U(3)

In this case T ⋆(SU(4)/U(3)) corresponds to the minimal nilpotent orbit of
SL(4,C) of complex dimension 6. We write z1 = uw1, z2 = u−2w1 and
z3 = u−1w1w

−1
2 , we can explicitly see H = U(3) = U(1) × SU(3), where

u parametrizes U(1) and w parametrizes the SU(3). Then, the HWG for
T ⋆(SU(4)/U(3)) is

gT
⋆(SU(4)/U(3))(µ) =

∫

du

u

∫

dw1

w1

dw2

w2
(1− w1w2) (1−

w2
1

w2
) (1−

w2
2

w1
) gSU(4)(t; u,w)

=
1

1− µ1µ3

. (21)

This can be re-written as

gT
⋆(SU(4)/U(3))(µ) = PE[µ1µ3] , (22)

which shows the adjoint as the generator and coincides with the expected
result [23]. In fact, in view of the T ⋆(SU(2)/U(1)), T ⋆(SU(3)/U(2)) and
T ⋆(SU(4)/U(3)) cases, and setting k = 1 in (20), we can conjecture the
general form [15] for T ⋆(SU(N)/U(N − 1))

gT
⋆(SU(N)/U(N−1))(µ) = PE[µ1µN−1] , (23)

which corresponds to a space generated by the adjoint representation. It is
straightforward to check that also the N = 5 follows this prescription. Note
that this space, which corresponds to the minimal nilpotent orbit of SU(N),
is the reduced one-instanton moduli space of SU(N), and hence has complex
dimension 2N − 2.

4.4 Next to minimal orbit of E6

We now consider G = E6 and H = SO(10)×U(1). This case corresponds to
the so-called next to minimal nipotent orbit of E6 of complex dimension 32.
In this case following the above methods is hopeless, as finding the HWG
for E6 is very complicated. However, by explicitly branching the first few
representations of E6 into SO(10) × U(1) using LieART [26], and selecting
those containing singlets of SO(10)×U(1) one can convince oneself that the
HWG for gT

⋆(E6/SO(10)×U(1)) is
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gT
⋆(E6/SO(10)×U(1))(µ) = PE[µ2 + µ1µ6] . (24)

This is again consistent with expectations [27] (see also [12]).

5 Conclusions and open directions

HyperKähler spaces of the form T ⋆(G/H) are very interesting, as they appear
in a number of situations of relevance in physics: building blocks of gauge
theories with 8 supercharges, instanton moduli spaces, non-linear σ-model
target spaces; to name just a few. In this note we have provided a very simple
method to compute HWG for hyperKähler spaces of the form T ⋆(G/H).
This provides an efficient way to list the global charges of the holomorphic
functions – a.k.a. chiral operators in the physical language – on these spaces.
While we have checked our formula against a number of examples (of which
we displayed only a subset to ease the presentation), it will be very interesting
to fully clarify the origin of this formula.

Nilpotent orbits are a class of co-adjoint orbits, obtained when a Lie group
G acts on the dual g⋆ of its Lie algebra g. In this paper we have exploited
relations between the co-adjoint orbits of compact groups such as SU(N)
and their complexifications such as SL(N,C). This has been used along
with the properties of functions on coset spaces GC/HC to give a simple rule
for the GC representation content (Highest Weight Generating functions)
of hyperKahler spaces T ∗(G/H), demonstrating agreement with previous
computations based on Higgs and Coulomb branches of quiver gauge theories.
Co-adjoint orbits have been extensively studied in the context of quantization
as a tool for representation theory [28] and the relations between GC and G
are discussed for example in [29]. The interplay between the theory of co-
adjoint orbits as a tool of representation theory, nilpotent orbits as algebraic
varieties arising in supersymmetric gauge theories, and harmonic analysis on
homogeneous spaces (studied in Kaluza-Klein reductions in physics) promises
to be a fruitful area for future investigations.

It is also interesting to note that co-adjoint orbits have played a role in
connection with emergent geometry in Matrix theory [30, 31]. For example,
finite matrix approximations of SO(2k)/U(k), SO(2k+1)/U(k), SO(2k)/(U(k−
1)× U(1)) play a role in connection with higher dimensional fuzzy spherical
branes [32, 33, 34]. Mathematical applications and physical interpretation
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of finite matrix approximations in the context of the hyperKähler moduli
spaces under study here is a very interesting avenue for the future.
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