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Permutation centralizer algebras and multimatrix invariants
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We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix
gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers.
Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were
introduced in the physics literature to describe open strings attached to giant gravitons and were
subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models.
The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is
related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characteri-
zation of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are
related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants.
The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate
the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.

DOI: 10.1103/PhysRevD.93.065040

I. INTRODUCTION

A number of questions on gauge-invariant functions and
correlators of multiple matrices have been studied in the
context of N ¼ 4 super Yang-Mills (SYM) theory. The
impetus for these developments in physics has come from
the AdS/CFT correspondence [1–3], notably the duality
between the N ¼ 4 SYM theory with UðNÞ gauge group
and AdS5 × S5. Local composite operators are UðNÞ gauge
invariants. CFT gives extra motivation because of the
operator-state correspondence. Quantum states correspond
to local operators, which are composite fields. These can be
matrix-valued fields which are space-time scalars, fer-
mions, field strengths or covariant derivatives of these.
A generic problem is to understand UðNÞ invariants
constructed from a number n of such fields

F j1
1;i1

� � �F jn
n;in

: ð1:1Þ
This is subsequently used to understand their correlation
functions. The n upper indices each transform in the
fundamental of UðNÞ while the lower indices transform
in the antifundamental. Hence, an important ingredient is
the nature of the invariants in

V⊗n ⊗ V̄⊗n: ð1:2Þ
The number of linearly independent invariants is n!. They
are obtained by multiplying (1.1) with a product of n
Kronecker delta functions, contracted with a permutation
σ ∈ Sn. As n varies, we are interested in all possible values
of n, so the properties of

C½S∞� ¼ ⨁
∞

n¼0

C½Sn�

become important. If all the n operators are the same e.g. a
complex matrix X ¼ ϕ1 þ iϕ2 where ϕ1, ϕ2 are two of the
six Hermitian matrices transforming in the vector of SOð6Þ,
then the invariants are multitraces, of which there are pðnÞ,
the number of partitions of n. In terms of the permutations,
the composite operators are

OσðXÞ ¼ Xi1
iσð1Þ…Xin

iσðnÞ : ð1:3Þ

Distinct σ related by conjugation, i.e. σ and γσγ−1 for some
γ ∈ Sn give the same operator

OσðXÞ ¼ Oγσγ−1ðXÞ: ð1:4Þ

When we consider invariants built from two types of
matrices, say m copies of X and n copies of Y, then we
encounter equivalence classes

σ ∼ γσγ−1 ð1:5Þ

where σ ∈ Smþn and γ ∈ Sm × Sn.
The fact that the enumeration of gauge-invariant

operators can be effectively done by using a formulation
in terms of equivalence classes of permutations has driven
significant progress in the construction of operators and
computation of correlators for the half-BPS sector,
the perturbations of the half-BPS operators as well as
quarter BPS operators. Two key facts have been used. One
is that, by using the Fourier transformation which relates
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functions on a group to matrix elements of irreducible
representations, nice orthogonal bases of functions on these
equivalence classes can be found. In mathematics, in the
context of compact groups this is known as the Peter-Weyl
theorem. In the context of finite groups, this follows from
the Schur orthogonality relations. This leads to the con-
struction of operators in the half-BPS sector parametrized
by Young diagrams [4,5]. For the two-matrix sector, one
application of this thinking leads to restricted Schur
operators. These are labeled by three young diagrams
and a pair of multiplicity labels: a Young diagram R1 with
m boxes, a Young diagram R2 with n boxes and a third
diagram R with mþ n boxes. The two multiplicity labels
each run over a space of dimension equal to gðR1; R2;RÞ,
which is equal to the Littlewood-Richardson (LR) coef-
ficient for the number of times R appears in the tensor
product of R1 ⊗ R2 [6–10]. LR coefficients will be
reviewed as needed in this paper (see Appendix B).
One reason for the efficacy of permutation groups in

enumeration of gauge-invariant operators is Schur-Weyl
duality. This states that the tensor product of n copies of the
fundamental of UðNÞ decomposes into a direct sum of
irreps of Sn ×UðNÞ

V⊗n
N ¼ ⨁

R⊢N
c1ðRÞ≤N

VSn
R ⊗ VUðNÞ

R : ð1:6Þ

Each summand is labeled by a Young diagram, and the
Young diagrams are constrained to have no more than N
rows, equivalently the first column c1ðRÞ is no greater than
N. This uses the fact that Young diagrams are used to
classify representations of Sn as well as representations of
UðNÞ. This is useful in the permutation approach to gauge-
invariant operators, because it says that once we have
organized operators according to representation data for Sn,
it is easy to implement finite N constraints. In the one-
matrix problem, the single Young diagram label R is cut off
at N, c1ðRÞ ≤ N. This leads directly to the connection
between the stringy exclusion principle for giant gravitons
and Young diagrams [4,11–13]. In the two-matrix problem,
the Young diagram R is cut off at c1ðRÞ ≤ N, which implies
cutoffs for R1, R2. The two-matrix problem can also be
approached using the walled Brauer algebra BNðm; nÞ and
its representation theory [14]. A third way to enumerate
two-matrix invariants, also based on permutations but
involving Clebsch-Gordan multiplicities of Sn, keeps the
Uð2Þ global symmetry manifest [15,16].
Aside from enumerating gauge-invariant operators, the

permutation structures have been used to compute corre-
lators. Correlators in free field theory are obtained by sums
over Wick contractions. These sums are themselves para-
metrized by permutations. Correlators of gauge-invariant
operators are thus given in terms of these Wick permuta-
tions and the permutations which enumerate the operators.
Hence there are elegant formulas for the correlation

functions in terms of permutations. It can be shown that
the two-point functions of gauge-invariant operators in
the two-matrix sector are diagonalized by operators con-
structed using representation bases. This was done with the
Brauer basis in [14], with the Uð2Þ covariant basis in
[15,16] and with the restricted Schur basis in [17,18]. The
restricted Schur and covariant basis results have been
extended beyondN ¼ 4 SYM to the sector of holomorphic
operators in general quiver gauge theories [19–24] which
have been shown to include sectors related to generalized
oscillators [25]. Aspects involving Frobenius algebras have
been studied in [26]. Within N ¼ 4 SYM, perturbations of
half-BPS giant graviton operators have been studied and
integrability at one-loop [24,27,27–30] and beyond has
been established.
As a way to understand the existence of the different

bases in the multimatrix problems, the authors of [31]
conducted a detailed study of enhanced symmetries in the
free limit of Yang Mills theories. The authors showed that
Casimir-like elements constructed from Noether charges of
these enhanced symmetries can be used to understand these
different bases. Different sets of these Casimir-like charges
each consist of mutually commuting simultaneously diag-
onalizable operators, which associate the labels of the basis
with eigenvalues of Casimir-like charges. Thus there is a set
of Casimir-like elements for the restricted Schur basis,
another set for the covariant basis and yet another set for the
Brauer basis. The enhanced symmetries themselves take
the form of products of unitary groups, but the action of
these Casimirs on gauge-invariant operators can be related,
through applications of Schur-Weyl duality, to the algebraic
structure of certain algebras constructed from the equiv-
alence classes of permutations or of Brauer algebra
elements discussed above. The discussion of charges which
identify matrix invariants for general classical groups has
been given using a different approach in [32]. While a
uniform treatment of the Young diagram labels has been
achieved, a treatment of the multiplicity labels running
over Littlewood-Richardson coefficients in that approach
remains an interesting open problem.
This paper was motivated by the goal of obtaining a

systematic understanding of the algebraic structures
involved in the construction of charges in [31]. To be
more precise, we will define the notion of permutation
centralizer algebras. A particular class of these, denoted as
Aðm; nÞ, will be our main focus. Many of the important
formulas we will use have already appeared in the physics
literature. Nevertheless theAðm; nÞ, as associative algebras
with nondegenerate pairing, have not been made fully
explicit. This paper proposes that these algebras are
interesting to study intrinsically, disentangled from the
contingencies of being embedded in a bigger symmetric
group algebra, their simplicity hidden among the applica-
tion to matrix correlators for matrices of size N. Here we
define the algebras Aðm; nÞ, study their structure, and
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subsequently describe how they are relevant to matrix
theory invariants. We expect that a deeper study of this
algebraic structure has the potential to give a lot of
information about correlators in free Yang-Mills theory,
in the loop corrected theory, at all orders in the 1=N
expansion. This paper is a step in this direction. Much as it
is valuable to abstract Riemannian geometry from the study
of submanifolds of Euclidean spaces, abstracting a family
of algebras intrinsic to permutations hidden in the math-
ematics of matrix theory should be fruitful.
We describe the organization of the paper. In Sec. II we

introduce the definition of permutation centralizer algebras.
We consider four key examples of these algebras, which are
useful in the context of gauge-invariant operators. In
Sec. III, we focus on the algebras Aðm; nÞ formed by
equivalence classes of permutations in Smþn, with equiv-
alence generated by conjugation with permutations in
Sm × Sn. The dimension of this algebra is

jAðm; nÞj ¼
X

R1⊢m;R2⊢n
R⊢mþn

gðR1; R2;RÞ2 ð1:7Þ

where gðR1; R2;RÞ is the LR coefficient for the triplet of
Young diagram ðR1; R2; RÞ made with ðm; n;mþ nÞ boxes
respectively. Wewill show that this is an associative algebra
with a nondegenerate pairing. As a result, we know from
the Wedderburn-Artin theorem that it is isomorphic to a
direct sum of matrix algebras Mat [33,34]:

Aðm; nÞ ¼ ⨁
a
Mata: ð1:8Þ

In Eq. (3.5) we give a more precise version of this formula,
where the index a is identified with triplets ðR1; R2; RÞwith
nonvanishing LR coefficient gðR1; R2;RÞ. The construction
of restricted Schur operators in gauge theory is used to give
the Wedderburn-Artin decomposition of Aðm; nÞ. Two
subalgebras will be of interest. The center of the algebra
Zðm; nÞ is the subspace of the algebra which commutes
with any element of Aðm; nÞ. The dimension of this center
is equal to the number of triples ðR1; R2; RÞ of Young
diagrams, with numbers of boxes equal to ðm; n;mþ nÞ,
for which the LR coefficient is nonzero. It is useful to
develop some formulas for the nondegenerate pairing on
the center, using characters of Smþn; Sm; Sn. The
Wedderburn-Artin decomposition also highlights the
importance of a maximally commuting subalgebra
Mðm; nÞ. The dimension of this subalgebra is the sum
of Littlewood-Richardson coefficients gðR1; R2;RÞ.
Appendix A gives a multivariable generating function
for this sum of LR coefficients. We explain the relevance
of the this subalgebra to the enhanced symmetry charges
studied in [35]. In particular we give a precise algebraic
characterization (4.45) for the minimal number of charges
needed to identify all two-matrix gauge-invariant

operators. The evaluation of this number is an open
problem for the future.
In Sec. IV, we explain some further physical implications

of the permutation centralizer algebras. The simplest of
these algebras is the algebra of class sums of permutations.
Given the one-to-one correspondence between matrix
operators and conjugacy classes of permutations given in
(1.3), this means that there is a corresponding product on
half-BPS operators. This is not the usual product obtained
by multiplying the gauge-invariant operator built from X
under which the dimension of the operator adds. The
product on the class sums rather gives a product for the
BPS operators of fixed dimension, a product which is
associative and admits a nondegenerate pairing. We will
refer to this as a star product for half-BPS operators. We
explain the relevance of this star product for the compu-
tation of correlators. Similarly the product on the algebra
Aðm; nÞ gives a star product for gauge-invariant poly-
nomials in two matrices, with degree m in the X’s and
degree n in the Y’s. In the physics application, there is a
closed associative star product on the space of quarter-BPS
operators at zero Yang-Mills coupling. Conversely the
usual product of gauge invariants gives a product on
Að∞;∞Þ

Að∞;∞Þ ¼ ⨁
∞

m;n¼0

Aðm; nÞ ð1:9Þ

which is the direct sum over all m, n. Thus Að∞;∞Þ has
two products one of which closes at fixed m, n. This
generalizes a structure seen in the study of symmetric
polynomials.
In Sec. V, we show that the study of the structure of the

algebra Aðm; nÞ we developed in Sec. III is useful for the
computation of correlators of two-matrix gauge invariants.
In particular, we identify an efficiently computable sector
of central gauge-invariant operators whose correlators
can be computed using the knowledge of characters of
Smþn; Sm; Sn. It does not require the knowledge of more
detailed data such as matrix elements DR

ijðσÞ or branching
coefficients for Smþn → Sm × Sn. To illustrate the simplic-
ity of this central sector, we compute the two-point function

hTrðXmYnÞTrððX†ÞmðY†ÞnÞi ð1:10Þ

at finite N. The computation requires a calculation of
Littlewood-Richardson coefficients gðR1; R2;RÞ where R1,
R2 are hook-shaped Young diagrams. This computation is
given in Appendix B. Further technical aspects of the
computation are given in Appendix C. The computation
agrees with the one in [36] which was done with explicit
Young-Yamanouchi symbols which can be used to con-
struct states in irreps R and describe their reduction
to R1; R2.
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In Sec. VI, we outline some future research directions
related to the present results.

II. DEFINITIONS AND KEY EXAMPLES

When studying the representation theory of a group G, it
is useful to introduce the algebra C½G� which consists of
formal linear combinations of group elements, equipped
with the multiplication inherited from the group. In the
group algebra C½G�, for each conjugacy class, we can form
a sum over all the elements in the conjugacy class of G.
Such class sums commute with any element of G and form
the central subalgebra of C½G�, i.e. the subalgebra which
commutes with all C½G�. We will refer to Z½C½G�� as the
center of C½G�. Conjugacy classes are in 1-1 correspon-
dence with irreducible representations and there is a basis
of the center consisting of projectors of the form

PR ¼ dR
jGj

X
g∈G

χRðgÞg−1: ð2:1Þ

Of primary interest to us is the group algebra of C½Sn� and
its center Z½C½Sn��. The elements in Z½C½Sn�� are sums over
conjugacy classes t of Sn

T ¼
X
σ∈t

σ: ð2:2Þ

Given any σ ∈ Sn, we can generate an element of this
subalgebra by summing over γ ∈ H,X

γ∈Sn

γσγ−1: ð2:3Þ

Some properties of group algebras and their center
can be found in [33,37]. In the context of AdS/CFT, group
algebras C½Sn� and associated representation theory play a
role in the half-BPS sector of N ¼ 4 SYM in 4D [4,5] and
also in the symmetric orbifolds in AdS3/CFT2 [11,38].
Motivated by developments in AdS/CFTwe will introduce
a generalization of this construction.
Definition.—Consider an associative algebra A contain-

ing a subalgebra B ¼ C½H�, the group algebra of a finite
group H. Now define the subspace of A of elements which
are invariant under conjugation by H. This subspace will
contain group averages of the formX

γ∈H
γσγ−1; σ ∈ A ð2:4Þ

which commute with elements of B. It is easy to verify that
these subspaces are subalgebras. We have�X

γ1∈H
γ1σγ

−1
1

��X
γ2∈H

γ2σγ
−1
2

�
¼

X
γ1∈H

γ1

�X
γ3∈H

σ1γ3σ2γ
−1
3

�
γ−11

ð2:5Þ

where we set γ3 ¼ γ−11 γ2. This shows that the product of
two group averages is still a group average. This subalgebra
of A commuting with B, in cases where H is a permutation
group, will be called a permutation centralizer algebra.
Three cases of primary interest will be
(i) Example 1.—The algebra A ¼ C½Sn�. The algebra

B ¼ C½Sn�. The centralizer of B is Z½C½Sn��.
(ii) Example 2.—A ¼ C½Smþn�; B ¼ C½Sm × Sn�. We

will call this algebra Aðm; nÞ.
(iii) Example 3.—A ¼ BNðm; nÞ—the walled Brauer

algebra; B ¼ C½Sm × Sn�. This algebra is
called BNðm; nÞ.

(iv) Example 4.—A ¼ C½Sn × Sn�; B ¼ C½Sn� where the
latter is the Sn diagonally embedded in the product
group. This should be called KðnÞ.

The case where A is itself a group algebra has been studied
in mathematics, for example, in [39].
Our primary interest in this paper will be in Aðm; nÞ of

example 2. Z½C½Sn�� of example 1 will be a useful guide
and a source of analogies in our investigations. Fourier
transformation on Aðm; nÞ will be related to restricted
Schur operators studied in AdS/CFT. These are parame-
trized by representation theory data ðR;R1; R2; i; jÞ con-
sisting of Young diagrams R1, R2, R with m, n, mþ n
boxes as well as multiplicity indices i, j. The latter take
values 1 ≤ i, j ≤ gðR1; R2;RÞ where gðR1; R2;RÞ is the LR
multiplicity for the triple of Young diagrams computed
with the LR combinatoric rule (see for example [40]).
Unlike Z½C½Sn��, the algebra Aðm; nÞ is not commutative.
The central subalgebra Zðm; nÞ, consisting of the sub-
space Zðm; nÞ ⊂ Aðm; nÞ which commutes with all of
Aðm; nÞ will play a predominant role. Likewise the
algebras BNðm; nÞ and KðnÞ in examples 3 and 4 are
noncommutative.

III. STRUCTURE OF THE Aðm;nÞ ALGEBRA

The algebra Aðm; nÞ is constructed by taking all the
elements in C½Smþn� which are invariant under C½Sm × Sn�.
Any element of σ ∈ C½Smþn� can be mapped to a σ̄ ∈
Aðm; nÞ by the group averaging

σ̄ ¼
X

γ∈Sm×Sn

γ−1σγ: ð3:1Þ

The σ̄ are formal sums of permutations τ lying in the same
orbit of σ under the Sm × Sn action. Each τ has a stabilizer
group, given by those γ ∈ Sm × Sn for which

γ−1τγ ¼ τ: ð3:2Þ

The stabilizers of two permutations τ1, τ2 in the same orbit
are generally different (they are conjugate to each other),
but they have the same dimension. By the orbit-stabiliser
theorem, σ̄ is then a sum of permutations weighted by the
same coefficient:
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σ̄ ¼ jAutSm×SnðσÞj
X

τ∈Orbitðσ;Sm×SnÞ
τ: ð3:3Þ

Aðm; nÞ is a finite-dimensional associative algebra (the
associativity follows from the associativity of C½Smþn�),
which we can equip with the nondegenerate symmetric
bilinear form

hσ̄1; σ̄2i ¼ δðσ̄1σ̄2Þ;
σ̄1;2 ∈ Aðm; nÞ: ð3:4Þ

Here the delta function on the group algebra C½Smþn�
is a linear function which obeys δðσÞ ¼ 1 for σ ¼ 1 and
δðσÞ ¼ 0 otherwise.
The nondegeneracy of the bilinear form (3.4) implies that

Aðm; nÞ is semisimple. According to theWedderburn-Artin
theorem, it can then be decomposed into a direct sum of
matrix algebras:

Aðm; nÞ ¼ ⨁
R⊢mþn

R1⊢m;R2⊢n

SpanfQR
R1;R2;i;j

; i; jg: ð3:5Þ

In this equation R, R1 and R2 are representations of Smþn,
Sm and Sn respectively. The integers i, j run over the
multiplicity gðR1; R2;RÞ of the branching R → R1 ⊗ R2:
0 ≤ i, j ≤ gðR1; R2;RÞ. An explicit expression forQR

R1;R2;i;j

is given in terms of the restricted Schur characters
[17,22,31], defined as

χRR1;R2;i;j
ðσÞ ¼ DR

m;m0 ðσÞBR→R1;R2;i
m0→l1;l2

BR→R1;R2;j
m→l1;l2

: ð3:6Þ

Here DR
m;m0 ðσÞ are the matrix elements of σ in the

irreducible representation R. BR→R1;R2;j
m→l1;l2

is the branching
coefficient for the representation branching R → R1 ⊗ R2,
in the jth copy of R1 ⊗ R2 ⊂ R. l1;2 are states in R1;2. The
restricted Schur characters χRR1;R2;i;j

ðσÞ are invariant under
conjugation byC½Sm × Sn� elements. With these definitions
we can write

QR
R1;R2;i;j

¼
X
σ

χRR1;R2;i;j
ðσÞσ ð3:7Þ

which is manifestly invariant under the action of
C½Sm × Sn�. It follows that

QR
R1;R2;i;j

QS
S1;S2;k;l

¼ δR;SδR1;S1δR2;S2ðδjkQR
R1;R2;i;l

Þ: ð3:8Þ

This is in accordance with the decomposition (3.5).
Consequently it is useful to write QR

R1;R2;i;j
as

QR
R1;R2;i;j

¼
X
m1;m2

jR → R1; R2; m1; m2; ii

× hR → R1; R2; m1; m2; jj: ð3:9Þ

Moreover, the basis fQR
R1;R2;i;j

g is complete as we now
explain. The number of distinct QR

R1;R2;i;j
’s is equal to the

number of restricted Schur characters, which is in turn
equal to

P
R1;R2;RgðR1; R2;RÞ2. On the other hand the

dimension of Aðm; nÞ is by definition equal to the number
of elements of C½Smþn� invariant under the C½Sm × Sn�
action. Using the Burnside lemma, it is possible to show
that this dimension jAðm; nÞj is given as

jAðm; nÞj ¼
X

R1⊢m;R2⊢n
R⊢mþn

gðR1; R2; RÞ2: ð3:10Þ

In each of the blocks in (3.5) there is a projector of the
form PR

R1;R2
¼ P

iQ
R
R1;R2;i;i

. Let now PR, PR1
and PR2

be the
projectors onto the irreps R, R1 and R2 of Smþn, Sm and Sn
respectively. Since

hR → R1; R2; m1; m2; ijPRPR1
PR2

jR → R1; R2; m0
1; m

0
2; ji

¼ hR → R1; R2; m1; m2; ijPR
R1;R2

jR → R1; R2; m0
1; m

0
2; ji

¼ δm1;m0
1
δm2;m0

2
δi;j ð3:11Þ

for all triplets R, R1, R2, we can write

PR
R1;R2

¼ PRPR1
PR2

ð3:12Þ

so that the projectors PR
R1;R2

are just products of ordinary
Smþn, Sm and Sn projectors. The set fPR

R1;R2
g forms a basis

for the center of Aðm; nÞ, which we call Zðm; nÞ. Its
dimension is then given by the number of nonvanishing LR
coefficients gðR1; R2;RÞ, or

jZðm; nÞj ¼
X

R1⊢m;R2⊢n
R⊢mþn

ð1 − δðgðR1; R2;RÞÞÞ: ð3:13Þ

Here δðgðR1; R2;RÞÞ ¼ 1 if gðR1; R2;RÞ ¼ 0 and
δðgðR1; R2;RÞÞ ¼ 0 otherwise. The generating function
for the dimension of the center is [41]

Zðx; yÞ ¼
Y
i

1

ð1 − xi − yiÞ : ð3:14Þ

We will now argue that the collection of the generators
of the centers of C½Smþn�, C½Sm� and C½Sn�, that we denote
as fTðmþnÞ

p g, fTðmÞ
q1 g and fTðnÞ

q2 g respectively, is a set of
generators for Zðm; nÞ. Here p, q1 and q2 are integer
partitions of mþ n, m and n respectively. For example, for
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the partition p ¼ ðp1; p2;…Þ ofmþ n, the operator TðmþnÞ
p

consists of a sum over permutations belonging to the
conjugacy class p ¼ ðp1; p2;…Þ:

TðmþnÞ
p ¼

X
i1;…;ip1þp2þ…∈½mþn�

ði1i2 � � � ip1
Þ

× ðip1þ1ip1þ2 � � � ip1þp2
Þ � � � : ð3:15Þ

TðmþnÞ
p are sums of conjugates by elements of Smþn,

whereas TðmÞ
q1 and TðnÞ

q2 are sums over Sm ⊂ Smþn and Sn ⊂
Smþn respectively. To show that fTðmþnÞ

p ; TðmÞ
q1 ; TðnÞ

q2 g gen-
erate the whole center Zðm; nÞ we can use the following
argument. Using the Wedderburn-Artin decomposition
(3.5), we see that the center of Aðm; nÞ is the direct
sum of the centers of the matrix algebras
SpanfQR

R1;R2;i;j
; i; jg. For each of these matrix blocks, that

is for any fixed representations R, R1, R2 for which
gðR1; R2;RÞ ≠ 0, the center is one-dimensional, and is
spanned by

PR
R1;R2

¼
X
i¼1

QR
R1;R2;i;i

: ð3:16Þ

Using Eq. (3.8), it is immediate to check that

½PR
R1;R2

; QR
R1;R2;i;j

� ¼ 0; ∀ i; j: ð3:17Þ

We know that PR
R1;R2

¼ PRPR1
PR2

, with PR, PR1
and PR2

projectors on the representations R, R1 and R2. Therefore
every central element ofAðm; nÞ can be generated with the
collection of projectors fPR; PR1

; PR2
g. For an R irrep of

Sn, the projector is

PR ¼ 1

n!

X
σ∈Sn

χRðσÞσ ¼ 1

n!

X
p∈PartitionsðnÞ

χRðσpÞTðnÞ
p ð3:18Þ

where σp is a representative permutation belonging to
the conjugacy class p⊢n. This means that every projector
PR can be written as a linear combination of the central

elements fTðnÞ
p g. We can then write the set fPR; PR1

; PR2
g

in terms of the central elements fTðmþnÞ
p ; TðmÞ

q1 ; TðnÞ
q2 g. Since

we know that the former generates the whole Zðm; nÞ, we
can now conclude that the latter is a complete set of
generators for the center Zðm; nÞ as well. The basis thus
obtained will be useful in the following sections. However,
it is important to point out that such a basis is overcomplete.
An easy way to see it is to note that, given (3.12),
PRPR1

PR2
¼ 0 if gðR1; R2; RÞ ¼ 0. Therefore, taking a

triplet ðR1; R2; RÞ for which gðR1; R2; RÞ ¼ 0 we have,
using (3.18),

1

ðmþ nÞ!m!n!

X
p⊢ðmþnÞ

q1⊢m;q2⊢n

χRðσpÞχR1
ðσq1ÞχR2

ðσq2Þ

× TðmþnÞ
p TðmÞ

q1 TðnÞ
q2 ¼ 0: ð3:19Þ

This shows that fTðmþnÞ
p ; TðmÞ

q1 ; TðnÞ
q2 g is indeed an over-

complete basis.

We can also argue that fTðmþnÞ
p ; TðmÞ

q1 ; TðnÞ
q2 g generate

Zðm; nÞ just by using the Schur-Weyl duality as in [31].
The TðmÞ elements are Schur-Weyl dual to UðNÞ Casimirs
of acting on the upper m indices of X-type matrices. This
action is generated by

ðExÞij ¼ ðDxÞij ¼ Xi
l
∂

∂Xj
l

ð3:20Þ

The TðnÞ elements are Schur-Weyl dual to UðNÞ Casimirs
acting on the upper n indices of Y-type matrices. We have

ðEyÞij ¼ ðDyÞij ¼ Yi
l
∂
∂Yj

l

: ð3:21Þ

Finally, the TðmþnÞ elements are Schur-Weyl dual to UðNÞ
Casimirs acting on the upper n and m indices of both
X- and Y-type matrices, and the generator is

Ei
j ¼ ðExÞij þ ðEyÞij: ð3:22Þ

We then have three distinct types of Casimirs:

CðmþnÞ
k ¼ Ei1

i2
Ei2
i3
� � �Eik

i1
;

CðmÞ
k ¼ ðExÞi1i2ðExÞi2i3 � � � ðExÞiki1 ;

CðnÞ
k ¼ ðEyÞi1i2ðEyÞi2i3 � � � ðEyÞiki1 : ð3:23Þ

But the CðmþnÞ
k , the CðmÞ

k and the CðnÞ
k operators measure

respectively the R, R1 and R2 labels of the restricted Schurs
χRR1;R2;i;j

. Therefore they can be used to isolate every
subspace R1 ⊗ R2⊆R, and to build all the correspondent
projectors PR

R1;R2
. Since we know that each of these

projectors is in a 1-1 correspondence with an element of
Zðm; nÞ, the whole center Zðm; nÞ is obtained.
On the other hand, noncentral elements are needed to

measure the multiplicity labels i, j. This observation will be
developed in Sec. IV.

A. Symmetric group characters and the pairing
on the center Zðm;nÞ

A central element Za ∈ Zðm; nÞ can be expanded in
terms of the projectors PR

R1;R2
as
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Za ¼
X

R;R1;R2

ZR;R1;R2
a PR

R1;R2
: ð3:24Þ

We can then define

χRR1;R2;i;j
ðZaÞ ¼

X
m1;m2

hR → R1; R2; m1; m2; ijZajR → R1; R2; m1; m2; ji

¼ δij
X
S;S1;S2

X
m1;m2

ZS;S1;S2
a hR → R1; R2; m1; m2; ijPS

S1;S2
jR → R1; R2; m1; m2; ji

¼ δijZ
R;R1;R2
a dR1

dR2
ð3:25Þ

and

χRR1;R2
ðZaÞ ¼

X
i

χRR1;R2;i;i
ðZaÞ ¼ ZR;R1;R2

a gðR1; R2; RÞdR1
dR2

: ð3:26Þ

From these equations it also follows that for any central element Za

χRR1;R2;i;j
ðZaÞ ¼

δi;j
gðR1; R2;RÞ

χRR1;R2
ðZaÞ: ð3:27Þ

Another useful expansion is in terms of fTðmþnÞ
p g, fTðmÞ

q1 g and fTðnÞ
q2 g. Since these elements generate the center, we can

write

Za ¼ Zp;q1;q2
a Tðm;nÞ

p TðmÞ
q1 TðnÞ

q2 ð3:28Þ

for some Zp;q1;q2
a coefficients. However, since the basis generated by fTðmþnÞ

p ; TðmÞ
q1 ; TðnÞ

q2 g is overcomplete, such coefficients
are not unique. Using the expansion (3.28), we can write

χRR1;R2;i;j
ðZaÞ ¼ δijZ

p;q1;q2
a

χRðTðmþnÞ
p Þ
dR

χR1
ðTðmÞ

q1 ÞχR2
ðTðnÞ

q2 Þ ð3:29Þ

and

χRR1;R2
ðZaÞ ¼

X
i

χRR1;R2;i;i
ðZaÞ ¼ Zp;q1;q2

a gðR1; R2; RÞ
χRðTðmþnÞ

p Þ
dR

χR1
ðTðmÞ

q1 ÞχR2
ðTðnÞ

q2 Þ: ð3:30Þ

From these equation we see that all the restricted characters of central elements are determined by characters of Smþn; Sm,
Sn. Just as the center of Sn is generated by class sums, which are dual to irreducible characters of Sn, the center Zðm; nÞ of
Aðm; nÞ is dual to the characters χRR1;R2

which are nothing but products of characters. Therefore, to compute restricted
characters of elements in Zðm; nÞ we only need the ordinary symmetric group character theory.
We will now use some of the known equations for the character of symmetric group and use them to compute restricted

characters in Zðm; nÞ. Our aim will be to compute the dual pairing (3.4) for central elements. Equation (B.12) in [22] reads

ðmþ nÞ!
m!n!

X
γ∈Sm×Sn

δðσγτγ−1Þ ¼
X

R;R1;R2;i;j

dR
dR1

dR2

χRR1;R2;i;j
ðσÞχRR1;R2;i;j

ðτÞ: ð3:31Þ

By setting τ ¼ 1 this equation simplifies to

ðmþ nÞ!δðσÞ ¼
X
R

dRχRR1;R2;i;i
ðσÞ ð3:32Þ

where we used
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χRR1;R2;i;j
ð1Þ ¼ δijdR1

dR2
: ð3:33Þ

We can immediately use this result to show that δðQR
R1;R2;i;j

Þ ¼ δijdR1
dR2

. This is because, using (3.7)

δðQR
R1;R2;i;j

Þ ¼
X
σ

χRR1;R2;i;j
δðσÞ ¼ χRR1;R2;i;j

ð1Þ ¼ δijdR1
dR2

: ð3:34Þ

It is also worthwhile to notice that, for O ∈ Aðm; nÞ, TrðOÞ ¼ δðOÞ. Therefore we could have obtained the same result by
considering

TrðQR
R1;R2;i;j

Þ ¼
X
S;S1;S2

X
m1 ;m2
m0
1
;m0

2

X
k

hS→ S1; S2;m0
1;m

0
2; kjR→ R1;R2;m1;m2; iihR→ R1;R2;m1;m2; jjS→ S1; S2;m0

1;m
0
2; ki

¼ δijdR1
dR2

ð3:35Þ

where we used the definition (3.9).
Let us now go back to Eq. (3.32). If we replace σ by a central element Za, using the expansion (3.28) and Eq. (3.30),

we find

ðmþ nÞ!δðZaÞ ¼
X

R;R1;R2

Zp;q1;q2
a gðR1; R2; RÞχRðTðmþnÞ

p ÞχR1
ðTðmÞ

q1 ÞχR2
ðTðnÞ

q2 Þ: ð3:36Þ

By further replacing σ → Za, τ → Zb in (3.31) we get, in a similar fashion

ðmþnÞ!δðZaZbÞ¼
X

R;R1;R2;i;j

dR
dR1

dR2

χRR1;R2;i;j
ðZaÞχRR1;R2;i;j

ðZbÞ

¼Zp;q1;q2
a Z

p0;q0
1
;q0

2

b

X
R;R1;R2

gðR1;R2;RÞ
dRdR1

dR2

χRðTðmþnÞ
p ÞχR1

ðTðmÞ
q1 ÞχR2

ðTðnÞ
q2 ÞχRðTðmþnÞ

p0 ÞχR1
ðTðmÞ

q0
1
ÞχR2

ðTðnÞ
q0
2
Þ: ð3:37Þ

Comparing the left-hand side above with Eq. (3.4) we find that for central elements Za, Zb

hZa; Zbi ¼ Zp;q1;q2
a Z

p0;q0
1
;q0

2

b
1

ðmþ nÞ!
X

R;R1;R2

gðR1; R2; RÞ
dRdR1

dR2

× χRðTðmþnÞ
p ÞχR1

ðTðmÞ
q1 ÞχR2

ðTðnÞ
q2 ÞχRðTðmþnÞ

p0 ÞχR1
ðTðmÞ

q0
1
ÞχR2

ðTðnÞ
q0
2
Þ:

ð3:38Þ

Thus we have an explicit way of computing the dual paring on the center Zðm; nÞ in terms of ordinary Sn characters.
Similarly, there is a character expansion for δðZaZbZcÞ. We begin by writing

ðmþ nÞ!δðZaZbZcÞ ¼
X

R;R1;R2;i;j

dR
dR1

dR2

χRR1;R2;i;j
ðZaZbÞχRR1;R2;i;j

ðZcÞ

¼
X

R;R1;R2

dR
dR1

dR2
gðR1; R2;RÞ

χRR1;R2
ðZaZbÞχRR1;R2

ðZcÞ: ð3:39Þ

Since Za is central, Za ¼ ðcaÞRR1;R2
1, where ðcaÞRR1;R2

is a constant. This constant can be obtained by considering

χRR1;R2;i;j
ðZaÞ ¼ ðcaÞRR1;R2

χRR1;R2
ð1Þ ¼ ðcaÞRR1;R2

dR1
dR2

gðR1; R2;RÞ: ð3:40Þ

We therefore have that

χRR1;R2
ðZaZbÞ ¼

χRR1;R2
ðZaÞχRR1;R2

ðZbÞ
dR1

dR2
gðR1; R2;RÞ

: ð3:41Þ
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Using (3.41) in (3.39), and then exploiting (3.30), we obtain

ðmþ nÞ!δðZaZbZcÞ ¼
X

R;R1;R2

dR
d2R1

d2R2
gðR1; R2;RÞ2

χRR1;R2
ðZaÞχRR1;R2

ðZbÞχRR1;R2
ðZcÞ

¼ Zp;q1;q2
a Z

p0;q0
1
;q0

2

b Z
p00;q00

1
;q00

2
c

X
R;R1;R2

gðR1; R2;RÞ
d2Rd

2
R1
d2R2

χRðTðmþnÞ
p ÞχR1

ðTðmÞ
q1 ÞχR2

ðTðnÞ
q2 ÞχRðTðmþnÞ

p0 Þ

× χR1
ðTðmÞ

q0
1
ÞχR2

ðTðnÞ
q0
2
ÞχRðTðmþnÞ

p00 ÞχR1
ðTðmÞ

q00
1
ÞχR2

ðTðnÞ
q00
2
Þ: ð3:42Þ

More generally, we can use (3.41) to compute the identity
coefficient of arbitrary large products of central elements,
δðZaZb � � �ZkÞ, just by using ordinary symmetric group
characters.

B. Maximal commuting subalgebra

In this section we describe the Maximal commuting
subalgebra Mðm; nÞ of Aðm; nÞ:

Zðm; nÞ⊆Mðm; nÞ⊆Aðm; nÞ: ð3:43Þ

We often refer to Mðm; nÞ as the Cartan subalgebra of
Aðm; nÞ. Mðm; nÞ is spanned by elements of the form
QR

R1;R2;i;i
(no sum over i). For fixed R1, R2 and R, the total

number of basis elements is gðR1; R2;RÞ, so that its
dimension is

jMðm; nÞj ¼
X

R1⊢m;R2⊢n
R⊢mþn

gðR1; R2;RÞ: ð3:44Þ

In Appendix A we derived the dimension formula

jMðm; nÞj ¼
X
p⊢m

X
q⊢n

FpF qFpþqSymðpþ qÞ ð3:45Þ

where p, q are partitions of m and n, Fp, F q, Fpþq are
combinatorial quantities dependent only on the partitions
p, q and pþ q respectively, and Symðpþ qÞ ¼Q

ii
piþqiðpi þ qiÞ! is a symmetry factor.

We now turn to the problem of constructing a basis
for Mðm; nÞ. According to the definition (3.9), to write
the basis elements QR

R1;R2;i;i
we first need to compute the

branching coefficients for the branching R → R1 ⊗ R2.
These quantities are in general computationally difficult to
obtain1 and require a choice of a basis in Smþn representa-
tions adapted to Sm × Sn. However, using the correspon-
dence with matrix algebras given by the Wedderburn-Artin
decomposition, we can construct the Cartan by solving, in

each block, the following equations for ðgðR1; R2;RÞ − 1Þ
linearly independent elements QR

R1;R2;a
∈ Aðm; nÞ:

PR
R1;R2

QR
R1;R2;a

¼ QR
R1;R2;a

; ð3:46aÞ

hPR
R1;R2

; QR
R1;R2;a

i ¼ 0; ð3:46bÞ

½QR
R1;R2;a

; QR
R1;R2;b

� ¼ 0: ð3:46cÞ

In the second equation, we are using the pairing defined
in (3.4).

IV. STAR PRODUCT FOR
COMPOSITE OPERATORS

In the previous sections we discussed the algebra
Aðm; nÞ and its center Zðm; nÞ. We noted that central
elements are special, as all their properties only depend on
ordinary symmetric group character theory. An example of
this is Eq. (3.42). In this section we will take advantage of
this fact to compute physically relevant quantities, in
particular two and three point functions of BPS operators
in N ¼ 4 SYM. To do so, we will first start by discussing
the one matrix sector in N ¼ 4 SYM, reviewing the
permutation description of UðNÞ matrix invariants which
are gauge-invariant operators (GIOs) in the conformal field
theory. We will stress that for this case there is an under-
lying Z½C½Sn�� algebra. The one matrix problem will be
used as a guide to extend to the two-matrix problem, which
we treat in Sec. IV B. Here the underlying algebra will
be Aðm; nÞ.

A. One matrix problem

Let us consider a matrix invariant constructed with n
copies of the same matrix Z. Any such invariant can be
written in terms of a contraction

OσðZÞ ¼ trðZ⊗nσÞ; σ ∈ Sn ð4:1Þ

subject to the equivalence relation
1See for example a discussion of the difficulty and the

simplifications in a “distant corners approximation” in [30].
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OσðZÞ ¼ Oγ−1σγðZÞ; γ ∈ Sn: ð4:2Þ

Polynomials in Z like the one in (4.1) can be multiplied
together. Set σ1 ∈ Sn1 , σ2 ∈ Sn2 . By multiplying together
Oσ1ðZÞ and Oσ2ðZÞ we get

Oσ1ðZÞOσ2ðZÞ ¼ Oσ1∘σ2ðZÞ ð4:3Þ

where σ1∘σ2 ∈ Sn1 × Sn2 ⊂ Sn1þn2 . Therefore for the usual
product of matrix invariants, σ1∘σ2 lives in the symmetric
group of degree n1 þ n2. We can define

C½S∞� ¼ ⨁
n
C½Sn� ð4:4Þ

which is closed under the circle product

∘∶ C½S∞� ⊗ C½S∞� → C½S∞�: ð4:5Þ

However, we can define another associative product, which
we call star product, which closes on the operators of fixed
degree:

Oσ1ðZÞ �Oσ2ðZÞ ¼ Oσ1σ2ðZÞ; σ1;2 ∈ Sn: ð4:6Þ

It is immediate to see how this product is different from the
ordinary GIO multiplication product (4.3): σ1, σ2and σ1σ2
are all permutations of n elements, and the star product is
generally noncommutative. Let ½σ� be the conjugacy class
of σ. We now define a map from the multitrace GIOs to the
class algebra

OσðZÞ →
1

size of ½σ�
X
τ∈½σ�

τ≡ Tσ

jTσj
: ð4:7Þ

This map is 1-1 at largeN. Let us focus on this case. We can
expand the product of Ti, Tj ∈ Z½C½Sn��as

TiTj ¼ Ck
ijTk: ð4:8Þ

Here the Ck
ij are the class algebra structure constants. By

multiplying both sides above by Tl and taking the coef-
ficient of the identity we get

δðTiTjTlÞ ¼ Ck
ijδðTkTlÞ ¼ δk;lCk

ijjTlj ¼ Ck
ijjTkj: ð4:9Þ

Now we expand the star product Oσ1ðZÞ �Oσ2ðZÞ as

Oσ1ðZÞ �Oσ2ðZÞ ¼
X
p

jTσp j
jTσ1∥Tσ2 j

Cp
½σ1�½σ2�OσpðZÞ

¼
X
p

δðTσ1Tσ2TσpÞ
jTσ1∥Tσ2 j

OσpðZÞ ð4:10Þ

where the sum is over the conjugacy classes p of Sn. σp is a
representative element of the conjugacy class p. This
equation will lead to a new expression for the two point
functions of GIOs built from Z, Z† in N ¼ 4 SYM. First
observe that setting Z to the identity N × N matrix

OσðZ ¼ 1NÞ ¼ NCσ ð4:11Þ

whereCσ is the number of cycles in the permutation σ. Now
consider taking the star product ofOσ1ðZÞ,Oσ2ðZÞ and then
setting Z ¼ 1N . We have, according to (4.10),

Oσ1ðZÞ�Oσ2ðZÞjZ¼1N
¼ 1

jTσ1∥Tσ2 j
X
p

δðTσ1Tσ2TσpÞOσpð1NÞ

¼ 1

jTσ1∥Tσ2 j
X
p

δðTσ1Tσ2TσpÞNCσp

¼ 1

n!jTσ1∥Tσ2 j
X
γ∈Sn

δðγTσ1γ
−1Tσ2ΩÞ

ð4:12Þ

where we set Ω ¼ P
pTσpN

Cσp . On the other hand the free
field correlator is known to be [4]

hOσ1ðZÞO†
σ2ðZÞi ¼

1

jTσ1∥Tσ2 j
X
γ∈Sn

δðγTσ1γ
−1Tσ2ΩÞ ð4:13Þ

so that

hOσ1ðZÞO†
σ2ðZÞi ¼ n!Oσ1ðZÞ �Oσ2ðZÞjZ¼1N

: ð4:14Þ

The two point function hOσ1ðZÞO†
σ2ðZÞi is therefore

proportional to the star product Oσ1ðZÞ �Oσ2ðZÞ followed
by the evaluation Z → 1N .
Similar considerations lead to the following expression

for the extremal three point function. In this case, we find
that hOσ1ðZÞOσ2ðZÞO†

σ3ðZÞi is proportional to the usual
product Oσ1ðZÞOσ2ðZÞ, followed by the star product with
Oσ3ðZÞ, followed by the evaluation Z → 1N . To see this,
take σ1 ∈ Sn1 , σ2 ∈ Sn2 and consider

ðOσ1ðZÞOσ2ðZÞÞ �Oσ3ðZÞjZ¼1N

¼ 1

jTσ1∘σ2∥Tσ3 j
δðTσ1∘σ2Tσ3ΩÞ ð4:15Þ

where Tσ1∘σ2 ∈ Z½C½Sn1þn2 ��, Tσ3 ∈ Z½C½Sn1þn2 �� and
Ω ¼ P

σ∈Sn1þn2
σNCσ . On the other hand the correlator in

N ¼ 4 SYM [4] is

PAOLO MATTIOLI and SANJAYE RAMGOOLAM PHYSICAL REVIEW D 93, 065040 (2016)

065040-10



hOσ1ðZÞOσ2ðZÞO†
σ3ðZÞi ¼

X
γ∈Sn1þn2

δðγðσ1∘σ2Þγ−1σ−13 ΩÞ ¼ ðn1 þ n2Þ!
jTσ1∘σ2∥Tσ3 j

δðTσ1∘σ2Tσ3ΩÞ ð4:16Þ

so that

hOσ1ðZÞOσ2ðZÞO†
σ3ðZÞi ¼ ðn1 þ n2Þ!ðOσ1∘σ2ðZÞÞ �Oσ3ðZÞjZ¼1N

: ð4:17Þ

Given that these correlators are neatly expressed in terms
of the star product, it would be interesting to give an
interpretation of the latter in the dual AdS5 × S5 side.
We will now write similar equations for the two-matrix

problem.

B. Two-matrix problem

For the two-matrix problem, the GIOs are polynomials in
the X, Y matrices. Formally, we can write them in terms of a
permutation σ ∈ Smþn as

OσðX; YÞ ¼ TrðX⊗m ⊗ Y⊗nσÞ: ð4:18Þ

As in the one-matrix problem, there is an equivalence
relation

OσðX; YÞ ¼ Oγσγ−1ðX; YÞ; γ ∈ Sm × Sn: ð4:19Þ

To each of these GIO Oσ we can associate a specific
element Nσ ofAðm; nÞ that we call a necklace. We define a
necklace Nσ as

Nσ ¼
1

jAutSm×SnðσÞj
X

γ∈Sm×Sn

γσγ−1 ð4:20Þ

or equivalently as

Nσ ¼
X

τ∈Orbitðσ;Sm×SnÞ
τ ð4:21Þ

where the sum is restricted to the permutations τ in the
group orbit of σ under Sm × Sn. We can think of the
necklaces as the normalized version of the σ̄ elements
defined in (3.3). The set of necklaces form a basis for
Aðm; nÞ. We associate a GIO to a necklace simply by
mapping

OσðX; YÞ →
1

jNσj
Nσ: ð4:22Þ

For example, for the GIO corresponding to the permutation
~σ ¼ ð1; 2; 4; 5Þð3; 6Þ ∈ S6,

O ~σðX; YÞ ¼ TrðX2Y2ÞTrðXYÞ; ð4:23Þ

we associate, through the map (4.22), the Að3; 3Þ
element

N ~σ ¼
X
S3×S3

γ ~σγ−1

¼
X

a1≠a2≠a3∈f1;2;3g
b̄1≠b̄2≠b̄3∈f4;5;6g

ða1; a2; b̄1; b̄2Þða3; b̄3Þ: ð4:24Þ

Similarly, for the GIO specified by ~σ ¼ ð1; 2; 3Þ ∈ S6

O ~σðX; YÞ ¼ TrðX2YÞTrðYÞ3 ð4:25Þ

we associate the Að2; 4Þ necklace

N ~σ ¼
X

a1≠a2∈f1;2g
b̄1∈f3;4;5;6g

ða1; a2; b̄1Þ: ð4:26Þ

Notice that in the necklaces we do not explicitly write
the single cycle permutations, but rather we leave them
implicit. In the last example, these single cycle permuta-
tions would account for the multitrace TrðYÞ3 component
of O~σ ¼ TrðX2YÞTrðYÞ3.
From these examples it is clear how these necklaces are

built by taking products of cyclic objects, which in turn are
constructed using two different types of beads. Such cyclic
objects are well studied in Polya theory. They can be related
to the single cycle permutations in Smþn with equivalences
generated by Sm × Sn. These equivalence classes form
the algebra Aðm; nÞ. We can imagine having blue beads
corresponding to integers ½1; 2; ::m� and red beads corre-
sponding to integers ½mþ 1; mþ 2;…; mþ n�. Therefore,
we can pictorially depict the necklaces of examples (4.24)
and (4.26) as in Fig. 1. The same structure is present in the
GIO Oσ corresponding to the necklace Nσ . In this case the
single-traces are the cyclic objects, and the role of the blue
and red beads is played by the X and Y type fields
respectively.
The map (4.22) is 1-1 at large N: as in the 1-matrix

problem, we now focus on this case. There is a natural
product on the space of two matrix GIOs coming from
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multiplying the multitraces. For such a product, the degrees
of the permutations add

Oσ1ðX; YÞOσ2ðX; YÞ ¼ Oσ1∘σ2ðX; YÞ: ð4:27Þ
Here σ1 ∈ Sm1þn1 is a representative of a class inAðm1; n1Þ
and σ2 ∈ Sm2þn2 represents a class in Aðm2; n2Þ, while
σ1∘σ2 ∈ Sm1þn1 × Sm2þn2 ⊂ Sm1þm2þn1þn2 represents a class
in Aðm1 þm2; n1 þ n2Þ. Continuing the analogy with
(4.4), we can define

Að∞;∞Þ ¼ ⨁
m;n

Aðm; nÞ ð4:28Þ

and for σ̄1 ∈ Aðm1; n1Þ and σ̄2 ∈ Aðm2; n2Þ we have

∘∶ Að∞;∞Þ ⊗ Að∞;∞Þ → Að∞;∞Þ: ð4:29Þ
As in the one-matrix case, there is however a second type of
product of GIOs that we can construct. The product on
Aðm; nÞ can in fact be used to define a closed and
associative star product on the space of the multitrace
operators with fixed numbers ðm; nÞ of ðX; YÞ, in the same
fashion as (4.6):

Oσ̄1ðX; YÞ �Oσ̄2ðX; YÞ ¼ Oσ̄1σ̄2ðX; YÞ;
σ̄1;2 ∈ Aðm; nÞ: ð4:30Þ

Notice that here σ̄1, σ̄2 and σ̄1σ̄2 are all of the same degree,
and that the star product is noncommutative. We will use
this star product to express the two point function of GIOs
built from X, Y.
Since the set of necklaces fNag forms a basis for

Aðm; nÞ, we can expand the product NaNb as

NaNb ¼ Cc
a;bNc ð4:31Þ

for some structure constants Cc
a;b. Moreover, the necklaces

are orthogonal in the metric (3.4):

hNa; Nbi ¼ δðNaNbÞ ¼ δa;bjNbj: ð4:32Þ

Here jNaj is the number of permutations in the necklace
Na. We can write

δðNaNbNcÞ ¼ jNcjCc
a;b: ð4:33Þ

Now use the map (4.22) to map the two matrix invariants
OaðX; YÞ and ObðX; YÞ to the necklaces Na and Nb
respectively. Then

OaðX;YÞ �ObðX;YÞ ¼
X
c

Cc
a;b

jNcj
jNa∥Nbj

OcðX;YÞ

¼
X
c

1

jNa∥Nbj
δðNaNbNcÞOcðX;YÞ:

ð4:34Þ

As for the one-matrix problem case, by setting X ¼ Y ¼ 1N
we get

OaðX;YÞ�ObðX;YÞjX¼Y¼1N
¼ 1

jNa∥Nbj
δðNaNbΩÞ ð4:35Þ

where Ω ¼ P
σ∈Smþn

σNCσ . On the other hand the free field
correlator [5,17] is

hOaðX; YÞO†
bðX; YÞi ¼

X
γ∈Sm×Sn

δðγaγ−1b−1ΩÞ

¼ 1

jNa∥Nbj
X

γ∈Sm×Sn

δðγNaγ
−1NbΩÞ

¼ m!n!
jNa∥Nbj

δðNaNbΩÞ: ð4:36Þ

Therefore, in analogy with (4.14) and (4.17), we can write
the two point function as

hOaðX; YÞO†
bðX; YÞi ¼ m!n!OaðX; YÞ �ObðX; YÞjX¼Y¼1N

ð4:37Þ

and the extremal three point function as

hOaðX; YÞObðX; YÞO†
cðX; YÞi

¼ ðm1 þm2Þ!ðn1 þ n2Þ!Oa∘bðX; YÞ �OcðX; YÞjX¼Y¼1N

ð4:38Þ

where a ∈ Sm1þn1 , b ∈ Sm2þn2 and c ∈ Sm1þn1þm2þn2 . Fi-
nally, notice that the pairing (3.4) is proportional to the
planar correlator [42–44] of BPS operators: givenOaðX; YÞ
and ObðX; YÞ, we have

hOaðX; YÞO†
bðX; YÞiplanar ¼ m!n!ha; bi ð4:39Þ

FIG. 1. Pictorial interpretations of the necklaces in the
examples (4.24) and (4.26).
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where the pairing on the right-hand side is the one in
Eq. (3.4).
Let us now focus on the center ofAðm; nÞ. In Sec. III we

argued that the center is generated by fTðmþnÞ
p ; TðmÞ

q1 ; TðnÞ
q2 g.

We remind the reader that fTðmþnÞ
p g, fTðmÞ

q1 g and fTðnÞ
q2 g are

the generators of the centers of C½Smþn�, C½Sm� and C½Sn�
respectively, and that p, q1 and q2 are integer partitions of
mþ n,m and n. A GIOO

TðmþnÞ
p

ðX; YÞ can be understood as
a descendant of a single matrix 1=2 BPS state O

TðmþnÞ
p

ðXÞ
under the Uð2Þ internal symmetry that mixes the X and Y
fields. In fact, given ðD−Þij ¼ Yi

k
∂

∂Xj
k

, we can write

O
TðmþnÞ
p

ðX; YÞ ∼ ðD−ÞnO
TðmþnÞ
p

ðXÞ: ð4:40Þ

This means that central elements (and their corresponding
matrix gauge invariants), described in terms of the over-

complete basis fTðm;nÞ
p TðmÞ

q1 TðnÞ
q2 g, are formed from compo-

sites which employ both the usual product and the star
product:

½descendant operators� � fðX-operatorsÞðY-operatorsÞg:
ð4:41Þ

The descendant GIOs are associated with TðmþnÞ
p elements,

X- and Y- GIOs to TðmÞ
q1 and TðnÞ

q2 elements, respectively. In
terms of the permutations we are taking the product in
Aðm; nÞ along with the circle product ∘∶Aðm; 0Þ ⊗
Að0; nÞ → Aðm; nÞ.
Single-trace symmetrized traces are Uð2Þ descendants of

single-trace operators built from a single matrix. In terms of
the permutation language, they correspond to single-cycle
permutations that are invariant under any reshuffling.2 On
the other hand, Uð2Þ descendants of multitrace operators
built from one matrix form a subspace of the space spanned
by products of symmetrized single-trace states. In other
words, not all products of single-trace descendants are
themselves descendants. One way to see this explicitly is
the following. Let STm;n be the space of symmetrized traces
with m copies of X and n copies of Y matrices. The
generating function for the dimension DimðSTm;nÞ is

Y
i;j∈Ω

1

1 − xiyj
¼

X
m;n

DimðSTm;nÞxmyn ð4:42Þ

where Ω ¼ f0 ≤ i ≤ ∞g∪f0 ≤ j ≤ ∞gnfi ¼ j ¼ 0g. Let
STmþn be the space of symmetrized traces with a total of
mþ n matrices, with any number of X or Y. We have

DimðSTmþnÞ ¼
Xmþn

i¼0

DimðSTi;mþn−iÞ: ð4:43Þ

On the other hand, the total number of Uð2Þ descendants
obtained from a multitrace operator with mþ n copies
of X is

ðmþ nþ 1Þpðmþ nÞ: ð4:44Þ

pðmþ nÞ is the number of partitions of mþ n (the number
of highest weight states), whilemþ nþ 1 is the number of
descendants for a fixed highest weight. It can now be
checked that DimðSTmþnÞ > pðmþ nÞðmþ nþ 1Þ. This
indeed proves our original claim.

C. Cartan subalgebra and the minimal set of charges

In [31], it was observed that, in the free limit, multimatrix
gauge theories have enhanced symmetries including prod-
ucts of unitary groups. There are Noether charges for these
enhanced symmetries. Casimirs constructed from these
charges have eigenvalues that can distinguish all the labels
R, R1, R2, i, j of restricted Schur operators. Because of
Schur-Weyl duality, these charges are also expressible in
terms of permutations. Given the definitions in this paper,
this action of permutations amounts to the action of
Aðm; nÞ on itself by the left or right regular representation.
We can now characterize more precisely what is a minimal
set of charges that can measure all the labels. In Sec. III B
we introduced the Cartan subalgebra Mðm; nÞ, and gave a
prescription to build a basis for it. We need to find a
subspace Cm;n of Mðm; nÞ such that polynomials in some
basis elements ca ∈ Cm;n with coefficients taking values in
the center Zðm; nÞ span Mðm; nÞ. In other words Cm;n
contains a minimal set of generators for Mðm; nÞ as a
polynomial algebra over Zðm; nÞ. A minimal set of gen-
erators for Zðm; nÞ, along with the basis elements of the
subspace Cm;n, provide a complete set of charges, which
can measure all the labels of the QR

R1;R2;i;j
by left and right

multiplication. Let NminðZðm; nÞÞ be the minimal number
of elements of Zðm; nÞ which generate Zðm; nÞ as a
polynomial algebra. Also, let Nmin

Zðm;nÞðMðm; nÞÞ be the
minimal number of elements of Mðm; nÞ which generate
Mðm; nÞ as a polynomial algebra over Zðm; nÞ. Left
multiplication by these generators correspond to enhanced
symmetry charges that measure the multiplicity index i of
restricted Schur operators. Right multiplication by the same
generators correspond to other enhanced symmetry charges
that measure the multiplicity index j of restricted Schur
operators. Hence the minimal number of charges is

NminðZðm; nÞÞ þ 2Nmin
Zðm;nÞðMðm; nÞÞ: ð4:45Þ

An important open problem is to determine this function
of ðm; nÞ in general. This will tell us how many bits of

2Further details of symmetrized traces in terms of an operation
on the permutations in the OσðX; YÞ can be found in [44].
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information completely specify all the operators in a
multimatrix setup.
The above discussion is complete for the case where

mþ n < N, which is adequate for a treatment of the
physics at all orders in the 1=N expansion. For finite N
effects, where we consider mþ n > N, the charges given
by the above still determine all the multimatrix invariants,
but they are not a minimal set any more. The discussion can
be easily adapted to this case. Define

Anull
N ðm; nÞ ¼ ⨁

R⊢mþn∶c1ðRÞ>N
⨁

R1⊢m;R2⊢n
SpanfQR

R1;R2;i;j
; i; jg:

ð4:46Þ
The quotient

ANðm; nÞ ¼ Aðm; nÞ=Anull
N ðm; nÞ ð4:47Þ

is a closed subalgebra of blocks surviving the finite N cut. It
has a centerZNðm; nÞ andaCartanMNðm; nÞ that are simply
related toZðm; nÞ andMðm; nÞ by quotienting out the parts
belonging toAnull

N ðm; nÞ. LetNminðZNðm; nÞÞ be the number
of generators in a minimal generating set for ZNðm; nÞ as a
polynomial algebra. LetNmin

ZNðm;nÞðMNðm; nÞÞ be the number
of generators in a minimal generating set forMNðm; nÞ as a
polynomial algebra over ZNðm; nÞ. The minimal number of
charges needed is

NminðZNðm; nÞÞ þ 2Nmin
ZNðm;nÞðMNðm; nÞÞ: ð4:48Þ

We expect (4.45), (4.48) will have implications for informa-
tion theoretic discussions of AdS/CFT such as [45,46].

V. COMPUTATION OF THE FINITE
N CORRELATOR

In this section we will derive a finite N generating
function for the two point function of operators of the form

O ¼ TrðXmYnÞ ð5:1Þ

in the free field metric. Operators like the one in (5.1)
correspond to Aðm; nÞ elements

1

m!n!
T 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� ð5:2Þ

where T 1̄;1 ¼ TðX;YÞ
2 − TðXÞ

2 − TðYÞ
2 . Here TðX;YÞ

2 , TðXÞ
2 and

TðYÞ
2 are the sum of transpositions in Smþn, Sm and Sn

respectively. T 1̄;1 can be understood as a joining operator,
merging the (1…m) type cycles with the (mþ 1…mþ n)
type cycles.
The two point function (4.36) therefore reads,

with O ¼ TrðXmYnÞ

hOO†i ¼ 1

m!2n!2
X

γ∈Sm×Sn

X
σ∈Smþn

δðγT 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� γ

−1T 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� σÞNCσ

¼ 1

m!n!
δðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� T 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� ΩÞ ð5:3Þ

where we setΩ ¼ P
σ∈Smþn

σNCσ . This quantity can be computed using only ordinary character theory. Using Eq. (3.42) and
using the shorthand notation g ¼ gðR1; R2;RÞ we write

hOO†i ¼ 1

ðmþ nÞ!m!n!

X
R1⊢m

R2⊢n

X
R⊢mþn

dR
d2R1

d2R2
g2

ðχRR1;R2
ðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� ÞÞ

2
χRR1;R2

ðΩÞ: ð5:4Þ

We now expand T 1̄;1 ¼ TðX;YÞ
2 − TðXÞ

2 − TðYÞ
2 so that

T 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� ¼ TðX;YÞ

2 TðXÞ
½m�T

ðYÞ
½n� − TðXÞ

2 TðXÞ
½m�T

ðYÞ
½n� − TðXÞ

½m�T
ðYÞ
2 TðYÞ

½n� : ð5:5Þ

We also have (see e.g. [22])

χRR1;R2
ðΩÞ ¼ χRR1;R2

� X
σ∈Smþn

σNCσ

�
¼ gdR1

dR2

dR
ðnþmÞ!DimNðRÞ: ð5:6Þ

Equation (5.4) simplifies then to
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hOO†i ¼ 1

m!n!

X
R1⊢m
R2⊢n

X
R⊢mþn

1

dR1
dR2

g
DimNðRÞðχRR1;R2

ðT 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� ÞÞ

2: ð5:7Þ

On the other hand, as shown in Appendix C

χRR1;R2
ðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� Þ ¼

(
ð−1ÞcR1þcR2 gðm − 1Þ!ðn − 1Þ!

�
χRðTðX;YÞ

2
Þ

dR
− χR1 ðT

ðXÞ
2

Þ
dR1

− χR2 ðT
ðYÞ
2

Þ
dR2

�
; R1; R2hooks

0 otherwise:

Here cRi
is the number of boxes in the first column of the Young diagram associated with the representation Ri. This

expression restricts the sums over representations R1⊢m, R2⊢n in (5.7) to a sum over hook representations h1⊢m; h2⊢n.
We now need an equation for gðh1; h2;RÞ, with h1 and h2 hook representations of Sm and Sn respectively. We specify any

representation R by the sequence of pairs of integers R ¼ ðða1; b1Þ; ða2; b2Þ;…ðad; bdÞÞ. In a Young diagram interpretation,
aj (1 ≤ j ≤ d) is the number of boxes to the right of the jth diagonal box, and bj is the number of boxes below the jth
diagonal box. We refer to d as the “depth” of the representation R. Let us write h1 ¼ ðk1; l1Þ, h2 ¼ ðk2; l2Þ and
R ¼ ðða1; b1Þ; ða2; b2ÞÞ. In Appendix B we show that

gðh1; h2;RÞ ¼ δk1þk2;a1δl1þl2þ1;b1δ−1;a2δ0;b2 þ δk1þk2þ1;a1δl1þl2;b1δ0;a2δ−1;b2

þ
X1

ϵ1;ϵ2¼0

Xminðk1−ϵ̄1 ϵ̄2;k2−ϵ1ϵ2Þ

i¼ϵ1 ϵ̄2

Xminðl1−ϵ̄1 ϵ̄2;l2−ϵ1ϵ2Þ

j¼ϵ̄1ϵ2

δk1þk2−iþϵ̄1ϵ2;a1δl1þl2−jþϵ1 ϵ̄2;b1δi−ϵ1 ϵ̄2;a2δj−ϵ̄1ϵ2;b2 ð5:8Þ

where ϵ̄1;2 ¼ 1 − ϵ1;2. Using this identity, in Appendix C we derive the formula

hTrðXmYnÞTrðXmYnÞ†i ¼
Xm

k1;l1¼0

Xn
k2;l2¼0

Xnþm

a1 ;b1¼0
a2 ;b2¼0

gδðk1 þ l1 −mÞδðk2 þ l2 − nÞFða1; b1; a2; b2; k1; l1; k2; l2Þ ð5:9Þ

where we defined the function

Fða1; b1; a2; b2; k1; l1; k2; l2Þ ¼
k1!k2!l1!l2!ða1 − a2Þðb1 − b2Þ

4ða1 þ b2 þ 1Þða2 þ b1 þ 1Þðk1 þ l1 þ 1Þðk2 þ l2 þ 1Þ

×

�
a1 þ b1

b1

��
a2 þ b2

b2

��
N þ a1

a1 þ b1 þ 1

��
N þ a2

a2 þ b2 þ 1

�

× ðða1 þ b1 þ 1Þða1 − b1Þ þ ða2 þ b2 þ 1Þða2 − b2Þþ
− ðk1 þ l1 þ 1Þðk1 − l1Þ − ðk2 þ l2 þ 1Þðk2 − l2ÞÞ2: ð5:10Þ

In [36] a closed form for the two point function has been given by using a different approach based on Young-Yamanouchi
symbols. We have checked agreement of (5.9) with that closed form for up to n ¼ m ¼ 10. It is an interesting exercise to
simplify (5.9) into the closed form obtained in [36]. It will also be interesting to apply the present franework to obtain
formulas analogous to (5.9) for more general GIOs corresponding to central elements of Aðm; nÞ.
In this section we have shown how to calculate a particular two point function of a central operator, without explicitly

constructing projectors. The result rather follows from knowing how central operators of interest are generated via the star
product of pure X gauge invariants, pure Y gauge invariants and descendants of half-BPS operators.

A. Coloured ribbon graphs

The correlator computations above can be expressed in terms of ribbon graphs, equivalently the usual double-line graphs
of large N expansions, but with edges coming in two colors, as explained for example in [47]. The graphs can be organized
by the minimum genus of the surface they can be embedded in and these graphs of a given genus contribute to a fixed power
of N. For small m, n, we have checked with a Groups, Algorithms, Programming (GAP) code that directly computing the
permutation sums for a given genus agrees with the analytic result (5.9) we have derived.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we initiated a systematic study of permu-
tation centralizer algebras, in connection with gauge-
invariant operators. We focused our attention on the
algebras Aðm; nÞ which are related to restricted Schur
operators studied in the context of giant gravitons in AdS/
CFT. Other closely related algebras are related to the Brauer
basis for multimatrix invariants, the covariant basis and to
tensor models.
While many of the key formulas we have used were

already understood in the literature on giant gravitons, we
have emphasized the intrinsic structure of Aðm; nÞ as an
associative algebra with a nondegenerate pairing. This
means that it has a Wedderburn-Artin decomposition,
which gives a basis for the algebra in terms of matrixlike
linear combinations. The construction of these matrix units
in terms of representation theory data from Smþn; Sm, Sn
has already been extensively used in the context of giant
gravitons, although the link to the Wedderburn-Artin
decomposition has not been made explicit before. In
addition to explicating this link, the new emphasis in this
paper has been on the structure of the center Zðm; nÞ and
the maximally commuting subalgebra Mðm; nÞ.
We have used the structure of Mðm; nÞ as a polynomial

algebra over Zðm; nÞ to characterize the minimal number
of charges needed to identify any two-matrix gauge
invariant (Sec. IV C). It will be interesting to generalize
this discussion to gauge invariants for more general gauge
groups.
Two key structural facts about Aðm; nÞ have played a

role in the computation of correlators in Sec. V. The first is
that ðxmÞ � ðynÞ ¼ ðxmynÞ and the second is that ðxmynÞ is
part of Zðm; nÞ. The nondegenerate pairing on Aðm; nÞ,
when restricted to elements in the center, can be expressed
in terms of characters of Sn, Sm, Snþm without requiring
more detailed representation theory data such as matrix
elements and branching coefficients. These are in general
computationally difficult to calculate, although there has
been progress in the context of “perturbations of half-BPS
giants.” This makes it very interesting to understand the
structure of the center Aðm; nÞ. A special case is Z½C½Sn��,
which is the algebra of class sums in Sn.

A. Structure of the center

A number of questions about AðnÞ, Aðm; nÞ and the
center Aðm; nÞ can be explored experimentally, with the
help of group theory software, notably GAP. In particular,
sinceZðm; nÞ is generated by the center of Sm, the center of
Sn and that of Snþm it is a useful first step to know about
these centers.
Since Sn is generated by transpositions, one might

naively expect that the sum of permutations T2 will
generate AðnÞ. This is actually not true. We know that
T2 obeys a relation of degree pðnÞ

Y
R⊢n

�
T2 − χRðT2Þ

dR

�
¼ 0: ð6:1Þ

If this is the only relation, then we know that T2 alone
generates Z½C½Sn��. However simpler relations occur when
there are coincidences in the normalized characters, e.g.
two different irreps have the same normalized character. In
fact the failure of T2 to generate center is always correctly
predicted by the degeneracies of the normalized characters.
If we take

Y
R
0
�
T2 − χRðT2Þ

dR

�
¼ 0 ð6:2Þ

where the product is taken over a maximal set of irreps with
distinct normalized characters, we are getting an element in
C½Sn� which vanishes in all irreps. It is a central element, so
the matrix elements in any irrep are proportional to the
identity. We conclude that the above element vanishes.
Given that the Peter-Weyl theorem gives an isomorphism
between C½Sn� and matrix elements of irreps, it follows that
something which has vanishing matrix elements in all
irreps should be identically zero.
Even for large n, it is possible to check that the center of

C½Sn� is generated by a small number of Tp ’s. Using GAP
we tested that T ½2;1n−2� and T ½3;1n−3� are enough to generate
the center forC½Sn� up to n ¼ 14. The procedure we used to
perform these checks is the following. We know that the set
of projectors fPRg, with R integer partition of n, generate
the center of Sn. We can compute the overlap of PR with the
kth power of Tp, that we simply write as Tk

p:

hTk
p; PRi ¼ δðTa

pPRÞ

¼ 1

n!

X
S⊢n

χSðTk
pÞχSðPRÞ

¼ 1

n!

X
S⊢n

dS

�
χSðTpÞ
dS

�
k

χSðPRÞ

¼ dR

�
χRðTpÞ
dR

�
k

: ð6:3Þ

Similarly, we can derive

hTk
pTl

q; PRi ¼ dR

�
χRðTpÞ
dR

�
k
�
χRðTqÞ
dR

�
l

: ð6:4Þ

Now we construct the AB × pðnÞ matrix MðA;BÞ, whose
matrix elements are the overlaps (6.4)

MðA;BÞjðk;lÞ;R ¼ dR

�
χRðTpÞ
dR

�
k
�
χRðTqÞ
dR

�
l

ð6:5Þ

with 0 ≤ k < A and 0 ≤ l < B. By computing the rank of
this matrix we obtain the number of independent central
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elements in C½Sn� that are obtained by taking at most A − 1
powers of Tp and B − 1 powers of Tq. This method can be
easily generalized to obtain the number of central elements
generated by the string of operators Tk1

p1
Tk2
p2
� � �TkN

pN .
These studies on the center of C½Sn� inspire a similar

analysis for center ofAðm; nÞ. The task is to find a minimal
set of generators for Zðm; nÞ as a polynomial algebra. The
importance of this problem is discussed in Sec. IV C.
Concretely, we would like to determine NminðZðm; nÞÞ.
There are many approaches one can take in this case, which
would be interesting to investigate in the future. For
example, using GAP we checked that low powers of the

sum of two- and three-cycles permutations, TðmþnÞ
2 and

TðmþnÞ
3 , together with the generators of the centers of C½Sm�

and C½Sn�, generate the whole center Zðm; nÞ. We leave a
more systematic discussion of this problem for future work.

B. Construction of quarter-BPS operators beyond zero
coupling and the structure constants of Aðm;nÞ
The center of C½Smþn� is denoted by Z½C½Smþn��.

Z½C½Smþn�� is a commutative subalgebra of Aðm; nÞ.
The Aðm; nÞ algebra is a module over Z½C½Smþn��. We
can write

T pNi ¼ ~Ck
pjNk ð6:6Þ

for some coefficients ~C. The T p are themselves linear
combinations of necklaces:

T p ¼ Ti
pNi: ð6:7Þ

Hence

T pNi ¼ Tj
pNjNi ¼ Tj

pCl
jkNl: ð6:8Þ

Another subspace in Aðm; nÞ is the subspace of sym-
metrized traces. A symmetrized trace Sv can be para-
metrized by a vector partition v of ðm; nÞ. We can expand
Sv on the basis of necklaces fNkg as

Sv ¼ SkvNk: ð6:9Þ
Symmetrized traces and their products are quarter-BPS
at weak coupling in the large N limit. One can get the
complete set of 1=N corrected BPS states at large N by
acting on Sv with Ω−1 which belongs to Z½C½Smþn�� ⊗
Cð1=NÞ [15,16,22,43]. The coefficients of Tp are easily
computable. The expansion of Tp in terms of necklaces is
also easily computable. The nontrivial part of the calcu-
lation is the Ck

ij of the necklace algebra Aðm; nÞ. For any
symmetrized trace Sv, the corrected operator is

Ω−1
k Sv ¼ Ω−1

p TpS
j
vNj ¼ Ω−1

p Sjv ~Ck
pjNk ¼ Ω−1

p SjvTl
pCk

ljNk:

ð6:10Þ

1. Central quarter BPS sector

A subspace of symmetrized trace elements is central. The
symmetrized trace elements give a subspace of Aðm; nÞ
and the central elements form another subspace. The
intersection is the space of central symmetrized traces.
The dimension of this subspace can be computed for small
m, n using GAP. Suppose SC is an element in this subspace.
Then elementsΩ−1SC inAðm; nÞ are very interesting. They
are quarter-BPS beyond zero coupling and they are central,
so computations of their correlators have the simplicity of
the center. The computations can be done using knowledge
of the characters of Sm, Sn, Smþn, without knowing
branching coefficients. From AdS=CFT this central quarter
BPS sector should have a dual in the space-time theory, e.g.
some subclass of states in the tensor product of super-
graviton states. An interesting question is to compute their
correlators in space-time and verify the matching with the
gauge theory computations.

C. Noncommutative geometry
and topological field theory

Studies in noncommutative geometry in string theory
suggest that open strings can be associated to noncommu-
tative algebras and the center is related to closed strings
[48]. If we apply this thinking to Aðm; nÞ and Zðm; nÞ,
how do we interpret these emergent open and closed
strings? The traditional view is that Yang-Mills theory is
the open-string picture in AdS=CFT with the closed string
picture given by the AdS description, so this is an intriguing
question. Noncommutative algebras and their center have
also been discussed in noncommutative geometry in [49].
The study of the pair fAðm; nÞ;Zðm; nÞg should form an
interesting example of this discussion. Additionally we
have the Cartan Mðm; nÞ here, with physical relevance in
distinguishing the multiplicity labels. So a more complete
picture of strings and noncommutative geometry for the
triple fAðm; nÞ;Mðm; nÞ;Zðm; nÞg looks desirable.
Given that the infinite direct sum Að∞;∞Þ comes up in
connection with matrix invariants, it would also be inter-
esting to study the triple fAð∞;∞Þ;Mð∞;∞Þ;Zð∞;∞Þg
from this point of view. Some relevant work in this
direction is in [26] (see also [50]).

D. Other examples of permutation centralizer
algebras and correlators

Based on our study of Aðm; nÞ, we outline some
properties of the other examples of permutation centralizer
algebras given in Sec. II and sketch the connection to
correlators. We leave a more detailed development for the
future.
Consider BNðm; nÞ, which is the subspace of the Brauer

algebra BNðm; nÞ invariant under C½Sm × Sn�. This is
example 3 in Sec. II. Brauer algebras were used to construct
gauge-invariant operators in [14] from tensor products of a
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complex matrix and its conjugate. For an element b in the
walled Brauer algebra BNðm; nÞ, we use

trm;nðZ⊗m ⊗ Z̄⊗nbÞ ð6:11Þ

where the trace is taken in V⊗m ⊗ V̄⊗n, a tensor product of
fundamentals and antifundamentals of UðNÞ. We focus
here on the case mþ n ≤ N. The number of gauge-
invariant operators is X

γ;α;β

ðMγ
α;βÞ2 ð6:12Þ

where γ labels an irrep of BNðm; nÞ, while α, β are irreps of
Sm and Sn respectively. Mγ

α;β is a multiplicity with which
ðα; βÞ appears in the reduction of γ from BNðm; nÞ to its
C½Sm × Sn� subalgebra. The sum of squared dimensions in
(6.12) is the dimension of the algebra BNðm; nÞ. This is a
noncommutative algebra. The dimension of its center is the
number of triples ðγ; α; βÞ for which Mγ

α;β is nonvanishing.
There is a maximally commuting subalgebra of dimension
equal to the sum X

γ;α;β

Mγ
α;β: ð6:13Þ

This follows since the ðγ; α; βÞ give a Wedderburn-Artin
decomposition of BNðm; nÞ. A tractable sector of correla-
tors should be given by the center of BNðm; nÞ and more
detailed study of the structure of this center will be useful.
The next algebra of interest is the subalgebra KðnÞ of

C½Sn� × C½Sn� which is invariant under conjugation by
DiagðC½Sn�Þ. Let us denote this as Adiagðn; nÞ. We can
generate elements in this algebra by summing over the
elements of the subgroup

σ1 ⊗ σ2 →
X
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1: ð6:14Þ

The dimension of this algebra isX
R;S;T

CðR; S; TÞ2 ð6:15Þ

where CðR; S; TÞ is the Kronecker coefficient, i.e. the
number of times the irrep T of Sn appears in the tensor
product R ⊗ S. The dimension of the center is the number
of triples ðR; S; TÞ for which the CðR; S; TÞ is nonzero. A
maximal commuting subalgebra has dimensionX

R;S;T

CðR; S; TÞ: ð6:16Þ

These properties follow from the fact that Wedderburn-
Artin decomposition of the algebraKðnÞ has blocks labeled

by triples ðR; S; TÞ with nonvanishing CðR; S; TÞ. An
explicit formula for this decomposition is

QR;S;T
τ1;τ2 ¼

X
σ1;σ2

X
i1;i2;i3;j1;j2

SR;S;T;τ1i1;i2;i3
SR;S;T;τ2j1;j2;i3

DR
i1j1

ðσ1Þ

×DS
i2j2

ðσ2Þσ1 ⊗ σ2: ð6:17Þ

The D’s are representation matrices for Sn irreps. The S’s
are Clebsch-Gordan coefficients. One verifies, using equiv-
ariance properties of the Clebsch’s that these are invariant
under conjugation by the diagonal Sn.
There is another definition of KðnÞ which is more

symmetric in ðR; S; TÞ. CðR; S; TÞ is also the multiplicity
of invariants of the diagonal Sn acting on R ⊗ S ⊗ T.KðnÞ
can be defined as the subalgebra of C½Sn� ⊗ C½Sn� ⊗ C½Sn�
which is invariant under left action by the diagonal C½Sn�
and right action by the diagonal C½Sn�. These invariant
elements can again be constructed by averagingX

γ1;γ2

ðγ1σ1γ2; γ1σ2γ2; γ1σ3γ2Þ: ð6:18Þ

A representation basis is given by

σ1 ⊗ σ2 ⊗ σ3DR
i1;j1

ðσ1ÞDS
i2;j2

ðσ2ÞDT
i3;j3

ðσ3Þ
× SR;S;T;τ1i1;i2;i3

SR;S;T;τ2j1;j2;j3
ð6:19Þ

labeled by R, S, T, τ1, τ2.
These triples of permutations ðσ1; σ2; σ3Þ, with equiv-

alences given by left and right diagonal action have
appeared in the enumeration invariants for tensor models
built from 3-index tensors [51]. The simplification from a
description in terms of permutation triples to one in terms
of permutation pairs was also described there, which lead to
a connection between 3-index tensor invariants and Belyi
maps. By analogy with the discussion in this paper, we
expect that the center of KðnÞ will lead to a class of simpler
correlators in tensor models. The discussion of Að∞;∞Þ
will analogously lead to

Kð∞Þ ¼ ⨁
∞

n¼0

KðnÞ: ð6:20Þ

This space will have two products: one related to the
algebra structure of KðnÞ and one related to the multipli-
cation of tensor invariants. Somewhat related algebraic
structures appear in [52] and it would be useful to better
understand these relations. As a last remark, consider the
Kronecker multiplicities CðR;R; TÞ, i.e., in the special case
where R ¼ S. These have also appeared in the construction
of gauge-invariant multimatrix operators in a basis which is
covariant under the global symmetries [15,16]. The struc-
ture of KðnÞ can thus also be expected to have implications
for multimatrix correlators in the covariant basis.
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APPENDIX A: ANALYTIC FORMULA
FOR THE DIMENSION OF Mðm;nÞ

In this section we derive a formula for the dimension
of Mðm; nÞ. This dimension is equal to the sum of
Littlewood-Richardson coefficients

DimMðm; nÞ ¼
X

R1⊢m;R2⊢n

X
R⊢mþn

gðR1; R2; RÞ: ðA1Þ

The sum of squares of the Littlewood-Richardson
coefficients is the dimension of Aðm; nÞ and has a simple
2-variable generating function. It is natural to ask if we can
write a nice generating function for the dimension of
Mðm; nÞ. While we have not been able to derive something
of comparable simplicity, we will derive two interesting
expressions (A11) and (A28) in terms of multivariable
polynomials.
Let Tp denote a conjugacy class of permutations with

cycle structure determined by a vector ðp1; p2;…Þ, i.e.
permutations with pi cycles of length i. Let now σp be an
element in Tp. For σp ∈ Tp, it is known that [53]

X
R

χRðσpÞ ¼
Y
i

Coeff
�
fiðtiÞ;

tpi
i

pi!

�
ðA2Þ

where

fiðtiÞ ¼ e
ð1−ð−1ÞiÞ

2
tiþ

it2
i
2 : ðA3Þ

We can define

Fðt1; t2;…Þ ¼
Y
i

fiðtiÞ ðA4Þ

and write

X
R

χRðσpÞ ¼ Coeff

�
Fðt1; t2;…Þ;

Y
i

tpi
i

pi!

�
: ðA5Þ

It is also useful to define

~fiðtiÞ ¼ fi

�
ti
i

�

~Fðt1; t2;…Þ ¼ F

�
t1;

t2
2
;
t3
3
� � �

�
¼ F

��
ti
i

��

¼
Y
i∶odd

e
ti
i

Y∞
i¼1

e
it2
i
2i : ðA6Þ

We can write the LR coefficients in terms of Tp ’s as

gðR1; R2; RÞ ¼
1

m!n!

X
σ1∈Sm

X
σ2∈Sn

χR1
ðσ1ÞχR2

ðσ2ÞχRðσ1∘σ2Þ

¼
X
p⊢m

X
q⊢n

χR1
ðTpÞχR2

ðTqÞχRðTp∘TqÞ
Y
i

1

ipiþqipi!qi!
: ðA7Þ

This uses the fact that the number of permutations in the class Tp is n!=
Q

ii
pipi!. Now use the above formula for

P
RχRðTpÞ

to obtain

X
R1;R2;R

gðR1; R2; RÞ ¼
X
p⊢m

X
q⊢n

Y
i

Coeff ð ~fiðsiÞ; tpi
i ÞCoeff ð ~fiðtiÞ; tqii ÞCoeff ðfiðuiÞ; upiþqi

i Þðpi þ qiÞ!

¼
X
p⊢m

X
q⊢n

Coeff

�
~Fð~sÞ ~Fð~tÞFð~uÞ;

Y
i

spi
i t

qi
i u

piþqi
i ðpi þ qiÞ!−1

�

¼
X
p⊢m

X
q⊢n

Coeff

�
~Fð~sÞ ~Fð~tÞ ~Fð~uÞ;

Y
i

spi
i t

qi
i u

piþqi
i

�
ipiþqiðpi þ qiÞ! ðA8Þ
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It is useful to make the substitutions si → sizi, ti → tizi,
ui → z̄i and to introduce a pairing3

hzkj ; z̄lii ¼ δijδklk!ik: ðA9Þ

With these substitutions define

F ðzi; sÞ ¼ ~Fðti → siziÞ: ðA10Þ
Then we can write

DimðMðm; nÞÞ ¼ hCoeffðF ðzi; sÞF ðzi; tÞF ðzi; u ¼ 1Þ; smtnÞi: ðA11Þ

This has been checked for very simple cases, e.g. up to
ðm; nÞ ¼ ð3; 3Þ.

1. Multivariable polynomials

It is useful to isolate the multivariable polynomials in
the zi variables at each order in the s, t variables. Let us
introduce the quantities

Að~z; sÞ ¼
Y
i

exp

�
s2iz2i
2i

�

Bð~z; sÞ ¼
Y

i¼1;3;::

exp

�
sizi
i

�
: ðA12Þ

It follows from previous formulas (A6) and (A10) that

F ð~z; sÞ ¼ Að~z; sÞBð~z; sÞ: ðA13Þ

Introducing polynomials Fmð~zÞ for each order in s we can
rewrite the latter quantity as

F ð~z; sÞ ¼
X
m¼0

Fmð~zÞsm: ðA14Þ

We will now write formulas for the coefficients of sm in A
and B. For Að~z; sÞ we derive

Að~z; sÞ ¼
X∞
m¼0

A2mð~zÞs2m ¼
X∞

p1;p2;…¼0

Y∞
i¼1

s2ipiz2ipi
i

ð2iÞpipi!
ðA15Þ

so that

A2mð~zÞ ¼
X
p⊢m

z2ipi
i

ð2iÞpipi!
: ðA16Þ

We can also defineAmð~zÞ to be zero for oddm and equal to
the above for the even values. It is useful to define the
coefficients of z2p1

1 z4p2

2 …z2ipi
i in the Að~z; s ¼ 1Þ as

A½p� ¼ A½p1;p2���� ¼
Y
i

1

pi!ð2iÞpi
ðA17Þ

so that we may write

A2m ¼
X
p⊢m

A½p�
Y∞
i¼1

z2ipi
i : ðA18Þ

Similarly, for Bð~z; sÞ we obtain

Bð~z; sÞ ¼
Y∞
i¼0

exp

�
sð2iþ1Þz2iþ1

ð2iþ 1Þ
�

ðA19Þ

and

Bmð~zÞ ¼
X

fp1;p3���g⊢m

Y
i odd

zipi
i

ðiÞpipi!
: ðA20Þ

Therefore it is natural to define

B½p1;p3;…� ¼
Y
i

1

ipipi!

Bmð~zÞ ¼
X
p⊢m

B½p1;p3;…�
Y
i odd

zipi
i : ðA21Þ

Going back to (A14) we get, using the formulas just
derived,

Fmð~zÞ ¼
Xm
k¼0

Akð~zÞBm−kð~zÞ ¼
X⌊m2⌋
k¼0

A2kð~zÞBm−2kð~zÞ

¼
X⌊m2⌋
k¼0

X
r⊢k

X
q⊢m−2k
q odd

A½r�B½q�
Y
i

zið2riþqiÞ
i : ðA22Þ

Grouping terms with the same power of zi we obtain

F ð~z; s ¼ 1Þ ¼
X

½p1;p2…�
F ½p1;p2…�

Y
i

zipi
i ðA23Þ

with

3Alternatively we can think about expectation values in a Fock
space with zi → ai, z̄i → a†i . This would allow us to write the
subsequent formulas in terms of quantities in a 2D field theory.
This perspective could be fruitful, but we will leave its explora-
tion for the future.
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F ½p� ¼
X

½r1;r2;…�

X
½q1;q2����

A½r1;r2����B½q1;q2;…�

×
Y
i even

δðpi; 2riÞ
Y
i odd

δðpi; 2ri þ qiÞ: ðA24Þ

Note that the function F ð~z; sÞ is closely related to the
generating function for the cycle indices of Sn which is

Zð~z; tÞ ¼ exp

�X∞
i¼1

tizi
i

�
;

~Að~z; sÞ ¼ ðZðzi → z2i ; s → s2ÞÞ1=2;
~Bð~z; sÞ ¼ ðZðz2iþ1 → z2iþ1; z2i → 0ÞÞ1=2: ðA25Þ

We can work with the same function if we change the
pairing. With the pairing

hzkii ; zkjj i ¼ δi;jδki;kjki! i
ki ðA26Þ

we can write the above formulas as

DimðMðm; nÞÞ ¼ hFmð~zÞF nð~zÞ;Fmþnð~zÞi ðA27Þ

or, equivalently,

DimðMðm; nÞÞ ¼
X
p⊢m

X
q⊢n

Fp1;p2���F q1;q2;…Fp1þp2;q1þq2;…

×
Y
i

ipiþqiðpi þ qiÞ!

¼
X
p⊢m

X
q⊢n

FpF qFpþqSymðpþ qÞ:

ðA28Þ

This is Eq. (3.45).

APPENDIX B: LR RULE FOR HOOK
REPRESENTATIONS

Here we derive the LR decomposition rule for the tensor
product of two hook representations. Let us consider three
representations R, R1 and R2 of Smþn, Sm and Sn respec-
tively. The LR coefficient gðR1; R2;RÞ gives the multiplic-
ity with which the representation R1 ⊗ R2 appear in the
representation R upon its restriction to Sm × Sn. There is a
systematic procedure to obtain such coefficients [40], that
we now briefly review. We take the Young diagrams
corresponding to R1 and R2, and we start by decorating
the latter as follows. We write “1” in all the boxes of the
first row, “2” in all the boxes of the second row and so on in
a similar fashion until the last row. Then we proceed to
move all the 1 boxes from R2 to R1, ensuring that we
produce legal Young diagrams and no two copies of 1
appear in the same column. We then move the 2 boxes
following the same rules, and so on. In doing so, we also

require a reading condition. At any step, reading from right
lo left along the first row and then subsequent rows, the
number of 1 boxes must be greater or equal to the number
of 2 boxes. Similarly, the number of 2 boxes must be
greater or equal to the number of “3” boxes, and so on.
At the end of this procedure we are left with a collection

of Young diagrams, made withmþ n boxes. If two or more
of the resulting diagrams are identical (that is, they not only
match in shape but also in the numbering of their boxes),
we only retain one of them. Otherwise, if k diagrams R
appear with the same shape but different numbering, we
can say that gðR1; R2;RÞ ¼ k. These will be the prescrip-
tions that we will follow to derive our LR formula.
We specify any representation R by the sequence of pairs

of integers R ¼ ðða1; b1Þ; ða2; b2Þ;…ðad; bdÞÞ. In a Young
diagram interpretation, aj (1 ≤ j ≤ d) is the number of
boxes to the right of the jth diagonal box, and bj is the
number of boxes below the jth diagonal box. We refer to d
as the “depth” of the representation R. Hooks therefore are
representations of depth 1. Schematically, in this appendix
we will obtain the right-hand side of

ðk1; l1Þ ⊗ ðk2; l2Þ ¼ ⨁ðða1; b1Þ; ða2; b2ÞÞ: ðB1Þ

In our derivation we imagine to keep the first hook fixed,
and to add to it boxes coming from the second diagram. In
doing so we are careful to follow the LR prescription. The
boxes of the second diagram are decorated by a 1 or a v,
depending whether they come from the first row of the
diagram or not. The tensor product ðk1; l1Þ ⊗ ðk2; l2Þ will
decompose into a direct sum of a varying number of depth 2
representation and precisely two hooks (regardless of the
actual value of k1;2, l1;2). These hooks are

Hook 1∶ ðk1 þ k2 þ 1; l1 þ l2Þ;
Hook 2∶ ðk1 þ k2; l1 þ l2 þ 1Þ: ðB2Þ

Notice that we can rewrite them using the notation we use
for the depth two diagram as

Hook 1∶ ððk1 þ k2 þ 1; l1 þ l2Þ; ð0;−1ÞÞ; ðB3Þ

Hook 2∶ ððk1 þ k2; l1 þ l2 þ 1Þ; ð−1; 0ÞÞ: ðB4Þ

This notation will be helpful at a later stage.
We now turn to the depth two representations. We

proceed systematically, grouping them into four categories
according to the two yes/no questions:
(1) Is there a 1 in the first column of the resulting

diagram?
(2) Is there a v in the first row of the inner hook of the

resulting diagram?
We now analyze these four possibilities.
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1. ðY;YÞ case
The diagrams in this class are of the form depicted

in Fig. 2.
They can be described by the expression

ðY; YÞ∶ ððk1 þ k2 − i; l1 þ l2 − jÞ; ði; jÞÞ ðB5Þ

where i and j are constrained by the boundaries

0 ≤ i ≤ minðk1; k2 − 1Þ;
0 ≤ j ≤ minðl1; l2 − 1Þ: ðB6Þ

The upper bound on i is minðk1; k2 − 1Þ because, if
k1 ≥ k2, we cannot remove all the k2 1 type boxes from
the first row. This has to be avoided since by construction
the rightmost box in the second row has to be a v type box.
A diagram with no 1 type boxes on the first row and a v
type box at the end of the second row would violate the LR
reading condition.

2. ðY;NÞ case
The diagrams in this class are of the form depicted

in Fig. 3.
They can be described by the expression

ðY;NÞ∶ ððk1 þ k2 − i; l1 þ l2 − jþ 1Þ; ði − 1; jÞÞ ðB7Þ

with the boundaries

1 ≤ i ≤ minðk1; k2Þ;
0 ≤ j ≤ minðl1; l2Þ: ðB8Þ

3. ðN;NÞ case
The depth two diagrams in this class are of the form

depicted in Fig. 4.
They can be described by the expression

ðN;NÞ∶ ððk1 þ k2 − i; l1 þ l2 − jÞ; ði; jÞÞ ðB9Þ

FIG. 2. ðY; YÞ case.

FIG. 3. ðY;NÞ case.

FIG. 4. ðN;NÞ case.

FIG. 5. ðN; YÞ case.
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with the boundaries

0 ≤ i ≤ minðk1 − 1; k2Þ;
0 ≤ j ≤ minðl1 − 1; l2Þ: ðB10Þ

4. ðN;YÞ case
The diagrams in this class are of the form depicted

in Fig. 5.
These can be described by the equation

ðN; YÞ∶ ððk1 þ k2 − iþ 1; l1 þ l2 − jÞ; ði; j − 1ÞÞ: ðB11Þ

The boundary for i is

0 ≤ i ≤ minðk1; k2Þ: ðB12Þ

The upper bound is k2 and not k2 þ 1 because we cannot
remove all the 1 from the first row, as the rightmost box in
the second row has to be a v type box. In this way, we are
enforcing the LR reading condition. On the other hand, the
boundary for j is

1 ≤ j ≤ minðl1; l2Þ: ðB13Þ

The lower bound is a 1 as by construction there has to be a
v box in the first row of the inner hook.

5. A summary

These four cases comprise all possible valid depth two
diagrams. Summarizing our result, we have

(i) ðY; YÞ case: ððk1 þ k2 − i; l1 þ l2 − jÞ; ði; jÞÞ,
0 ≤ i ≤ minðk1; k2 − 1Þ;
0 ≤ j ≤ minðl1; l2 − 1Þ: ðB14Þ

(ii) ðY;NÞ case: ððk1þk2− i;l1þ l2−jþ1Þ;ði−1;jÞÞ,

1 ≤ i ≤ minðk1; k2Þ;
0 ≤ j ≤ minðl1; l2Þ: ðB15Þ

(iii) ðN;NÞ case: ððk1 þ k2 − i; l1 þ l2 − jÞ; ði; jÞÞ,

0 ≤ i ≤ minðk1 − 1; k2Þ;
0 ≤ j ≤ minðl1 − 1; l2Þ: ðB16Þ

(iv) ðN; YÞ case: ððk1þk2− iþ1;l1þ l2−jÞ;ði;j−1ÞÞ,

0 ≤ i ≤ minðk1; k2Þ;
1 ≤ j ≤ minðl1; l2Þ: ðB17Þ

We now introduce the boolean parameters

ϵ1 ¼
�
0 If the answer to the first question isno

1 If the answer to the first question is yes

ðB18Þ

and

ϵ2 ¼
�
0 If the answer to the second question isno

1 If the answer to the second question is yes

ðB19Þ

With this notation we can compactly rewrite (B14)–(B17) as

ððk1 þ k2 − iþ ϵ̄1ϵ2; l1 þ l2 − jþ ϵ1ϵ̄2Þ; ði − ϵ1ϵ̄2; j − ϵ̄1ϵ2ÞÞ ðB20Þ

where the sign ¯ denotes the logical negation of a boolean variable, so that ϵ̄1;2 ¼ 1 − ϵ1;2. In this notation, i and j have the
boundaries

ϵ1ϵ̄2 ≤ i ≤ minðk1 − ϵ̄1ϵ̄2; k2 − ϵ1ϵ2Þ;
ϵ̄1ϵ2 ≤ j ≤ minðl1 − ϵ̄1ϵ̄2; l2 − ϵ1ϵ2Þ: ðB21Þ

By denoting h1 ¼ ðk1; l1Þ and h2 ¼ ðk2; l2Þ, together with R ¼ ðða1; b1Þ; ða2; b2ÞÞ we can then write

gðh1; h2;RÞ ¼ δk1þk2;a1δl1þl2þ1;b1δ−1;a2δ0;b2 þ δk1þk2þ1;a1δl1þl2;b1δ0;a2δ−1;b2

þ
X1

ϵ1;ϵ2¼0

Xminðk1−ϵ̄1 ϵ̄2;k2−ϵ1ϵ2Þ

i¼ϵ1 ϵ̄2

Xminðl1−ϵ̄1 ϵ̄2;l2−ϵ1ϵ2Þ

j¼ϵ̄1ϵ2

δk1þk2−iþϵ̄1ϵ2;a1δl1þl2−jþϵ1 ϵ̄2;b1δi−ϵ1 ϵ̄2;a2δj−ϵ̄1ϵ2;b2 ðB22Þ
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where we also added the two hooks in the depth two notation, (B3) and (B4). Explicitly, summing over the ϵ1;2 parameters,
we get the lengthier expression

gðh1; h2;RÞ ¼ δk1þk2;a1δl1þl2þ1;b1δ−1;a2δ0;b2 þ
Xminðk1;k2Þ

i¼1

Xminðl1;l2Þ

j¼0

δk1þk2−i;a1δl1þl2−jþ1;b1δi−1;a2δj;b2

þ δk1þk2þ1;a1δl1þl2;b1δ0;a2δ−1;b2 þ
Xminðk1;k2Þ

i¼0

Xminðl1;l2Þ

j¼1

δk1þk2−iþ1;a1δl1þl2−j;b1δi;a2δj−1;b2

þ
� Xminðk1;k2−1Þ

i¼0

Xminðl1;l2−1Þ

j¼0

þ
Xminðk1−1;k2Þ

i¼0

Xminðl1−1;l2Þ

j¼0

�
δk1þk2−i;a1δl1þl2−j;b1δi;a2δj;b2 : ðB23Þ

From this equation it is clear that gðh1; h2;RÞ can be either 0, 1 or 2. In particular, gðh1; h2;RÞ ¼ 2 only if R ¼
ððk1 þ k2 − i; l1 þ l2 − jÞ; ði; jÞÞ and 0 ≤ i < minðk1; k2Þ, 0 ≤ j < minðl1; l2Þ.

APPENDIX C: DERIVING THE TWO POINT CORRELATOR

In this appendix we will derive Eq. (5.9) from Eq. (5.7). Let us start by considering the quantity

χRR1;R2
ðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� Þ ðC1Þ

where we remind the reader that R1, R2 and R are irreps of Sm, Sn and Smþn respectively. Let us define T
ðX;YÞ
2 , TðXÞ

2 and TðYÞ
2

as the sum of transpositions in Smþn, Sm and Sn respectively. We can expand (C1) as

χRR1;R2
ðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� Þ ¼ χRR1;R2

ðTðX;YÞ
2 TðXÞ

½m�T
ðYÞ
½n� Þ − χRR1;R2

ðTðXÞ
2 TðXÞ

½m�T
ðYÞ
½n� Þ − χRR1;R2

ðTðXÞ
½m�T

ðYÞ
2 TðYÞ

½n� Þ

¼ g
χRðTðX;YÞ

2 Þ
dR

χR1
ðTðXÞ

½m� ÞχR2
ðTðYÞ

½n� Þ −
1

gdR1
dR2

χRR1;R2
ðTðXÞ

2 ÞχRR1;R2
ðTðXÞ

½m�T
ðYÞ
½n� Þþ

−
1

gdR1
dR2

χRR1;R2
ðTðYÞ

2 ÞχRR1;R2
ðTðXÞ

½m�T
ðYÞ
½n� Þ

¼ g
χRðTðX;YÞ

2 Þ
dR

χR1
ðTðXÞ

½m� ÞχR2
ðTðYÞ

½n� Þ −
χR1

ðTðXÞ
2 Þ

dR1

χRR1;R2
ðTðXÞ

½m�T
ðYÞ
½n� Þ þ −

χR2
ðTðYÞ

2 Þ
dR2

χRR1;R2
ðTðXÞ

½m�T
ðYÞ
½n� Þ

¼ gχR1
ðTðXÞ

½m� ÞχR2
ðTðYÞ

½n� Þ
�
χRðTðX;YÞ

2 Þ
dR

− χR1
ðTðXÞ

2 Þ
dR1

− χR2
ðTðYÞ

2 Þ
dR2

�
: ðC2Þ

But now

χR1
ðT ½m�Þ ¼

� ð−1ÞcR1þ1ðm − 1Þ! if R1 is a hook representation

0 otherwise
ðC3Þ

where cR1
is the number of boxes in the firs column of the Young diagram associated with the representation R1. A similar

equation holds for χR2
ðT ½n�Þ. We then have

χRR1;R2
ðT 1̄;1T

ðXÞ
½m�T

ðYÞ
½n� Þ ¼

(
ð−1ÞcR1þcR2gðm − 1Þ!ðn − 1Þ!

�
χRðTðX;YÞ

2
Þ

dR
− χR1 ðT

ðXÞ
2

Þ
dR1

− χR2 ðT
ðYÞ
2

Þ
dR2

�
; R1; R2 hooks

0 otherwise
ðC4Þ

This is Eq. (5.8). Let us now restrict to the case in which both R1, R2 are hooks representations. We will denote there
representations as h1 ¼ R1 ¼ ðk1; l1Þ and h2 ¼ R2 ¼ ðk2; l2Þ. This also forces the representation R to be at most of depth
two, as we derived in Appendix B. We now consider such a representation. With the notation given at the beginning of this

section, R ¼ ðða1; b1Þ; ða2; b2ÞÞ, it is immediate to write an equation for the normalized character χRðT2Þ
dR
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χRðT2Þ
dR

¼ 1

2

X
i

riðri − 2iþ 1Þ ¼ a1ða1 þ 1Þ þ ða2 þ 2Þða2 − 1Þ þ 2
Xb2þ2

i¼3

ð3 − 2iÞ þ 2
Xb1þ1

i¼b2þ3

ð1 − iÞ ðC5Þ

¼ 1

2
ða21 þ a22 þ a1 þ a2Þ − 1

2
ðb21 þ b22 þ b1 þ b2Þ ¼

1

2
ða1 þ b1 þ 1Þða1 − b1Þ þ

1

2
ða2 þ b2 þ 1Þða2 − b2Þ: ðC6Þ

We now need the equivalent of this formula for the depth one representations h1 and h2, i.e. the hooks. Such an equation can
be directly obtained by setting ða2; b2Þ ¼ ð−1; 0Þ or ða2; b2Þ ¼ ð0;−1Þ in (C5). We can then write (C4) as

χRh1;h2ðT 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� Þ ¼

ð−1Þch1þch2

2
gðm − 1Þ!ðn − 1Þ! × ½ða1 þ b1 þ 1Þða1 − b1Þ þ ða2 þ b2 þ 1Þða2 − b2Þþ

−ðk1 þ l1 þ 1Þðk1 − l1Þ − ðk2 þ l2 þ 1Þðk2 − l2Þ� ðC7Þ

where R ¼ ðða1; b1Þ; ða2; b2ÞÞ and h1 ¼ ðk1; l1Þ, h2 ¼ ðk2; l2Þ.
The last piece we need is an equation for the UðNÞ dimension of a depth two representation R ¼ ðða1; b1Þ; ða2; b2ÞÞ. It is

straightforward to write

DimNðRÞ ¼
ða1 − a2Þðb1 − b2Þ

ða1 þ b2 þ 1Þða2 þ b1 þ 1Þ
�
a1 þ b1

b1

��
a2 þ b2

b2

��
N þ a1

a1 þ b1 þ 1

��
N þ a2

a2 þ b2 þ 1

�
: ðC8Þ

This equation reduces to its depth 1 equivalent by imposing ða2; b2Þ ¼ ð−1; 0Þ or ða2; b2Þ ¼ ð0;−1Þ. It is also helpful to
recall the dimension formula for a Slþkþ1 hook representation ðk; lÞ:

dR ¼
�
kþ l

k

�
ðC9Þ

Let us now consider Eq. (5.7):

hOO†i ¼ 1

m!n!

X
R1⊢m
R1⊢n

X
R⊢mþn

1

dR1
dR2

g
DimNðRÞðχRR1;R2

ðT 1̄;1T
ðXÞ
½m�T

ðYÞ
½n� ÞÞ

2: ðC10Þ

Inserting Eq. (C7), (C8) and (C9) into the above equation gives

hTrðXmYnÞTrðXmYnÞ†i ¼
Xm

k1;l1¼0

Xn
k2;l2¼0

Xnþm

a1 ;b1¼0
a2 ;b2¼0

g δðk1 þ l1 −mÞδðk2 þ l2 − nÞFða1; b1; a2; b2; k1; l1; k2; l2Þ ðC11Þ

where we defined the function

Fða1; b1; a2; b2; k1; l1; k2; l2Þ ¼
k1!k2!l1!l2!ða1 − a2Þðb1 − b2Þ

4ða1 þ b2 þ 1Þða2 þ b1 þ 1Þðk1 þ l1 þ 1Þðk2 þ l2 þ 1Þ

×

�
a1 þ b1

b1

��
a2 þ b2

b2

��
N þ a1

a1 þ b1 þ 1

��
N þ a2

a2 þ b2 þ 1

�
× ðða1 þ b1 þ 1Þða1 − b1Þ þ ða2 þ b2 þ 1Þða2 − b2Þþ
− ðk1 þ l1 þ 1Þðk1 − l1Þ − ðk2 þ l2 þ 1Þðk2 − l2ÞÞ2: ðC12Þ
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