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Abstract

Does the transmission of economic policies and structural shocks vary with the state
of the economy? We answer this question using a strategy based on quantile regressions,
which account for both endogeneous regressors and state-dependent parameters. An
application to real activity and the interest rate reveals pervasive asymmetries in the
propagation mechanism of economic disturbances across good and bad times. During
periods in which real activity is above its conditional average, the estimates of the
degree of forward-lookingness and interest rate semi-elasticity are signi�cantly larger
(in absolute value) than the estimates associated with below-average periods. Results
are robust to alternative estimation strategies to model state-dependent parameters.
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1 Introduction

The great recession of 2007-09 has sparkled renewed interest in the extent to which mon-

etary and �scal policies can stimulate the economy during bad and good times. On the

one hand, a number of empirical contributions have used Vector AutoRegressions (VAR)

or Augmented Distributed Lag (ADL) models to show that stabilization policies may have

asymmetric e¤ects over the business cycle (see for instance Auerbach and Gorodnichenko,

2011, for �scal policy and Tenreyro and Thwaites, 2013, for monetary policy). On the

other hand, Dynamic Stochastic General Equilibrium (DSGE) models typically assume

that the e¤ects of the short-term interest rate and government spending on real activity

during expansions are as large as the e¤ects during contractions.1

In this paper, we assess the evidence for asymmetries in the consumption-interest rate

relationship, which we argue can be interpreted as an Investment-Saving (IS) curve. Rela-

tive to the more reduced-form evidence from VAR and ADL models, our strategy accounts

for endogenous regressors by using an instrumental variables method. Relative to the more

structural evidence from DSGE models, our single equation approach allows us to model

explicitly the link between parameters evolution and the state of the economy in a way

that is both �exible and computationally feasible.

We propose an empirical model where the coe¢ cients are allowed, but not required,

to vary with the (unobserved) state of the economy, which is endogenously determined

within the estimation method. Our method is based on Instrumental Variable Quantile

Regressions (IVQR) which are designed to handle simultaneously endogenous regressors

and state-dependent parameters. To illustrate the potential of using quantile regressions on

time-series data, we also present a time-varying coe¢ cient interpretation of our estimates,

which complements recent evidence of parameter instability in DSGE models. Further-

more, we show that the evidence against a linear IS curve speci�cation is robust to using

instrumental variable Markov-switching and threshold models, though these estimates are

1While recent advances have made it possible to solve structural models that feature a zero bound for
the nominal interest rate (see Fernández-Villaverde et. al., 2012), we are not aware of contributions that
have estimated this type of nonlinearity in the context of a DSGE model.
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less accurate than the IVQR estimates.

Our �ndings on post-WWII U.S. data can be summarized as follows. First, there is

strong evidence for state-dependence in the weight of the forward-looking component of

the IS curve: periods in the bottom (top) 10% of the conditional distribution of real ac-

tivity are characterized by fully backward- (forward-) lookingness. Second, there is also a

signi�cant extent of nonlinearity in the estimates of the interest rate semi-elasticity with

values around �0:005 below the 70th percentile and values between �0:02 and �0:08 above

that. This suggests that monetary policy is more e¤ective during periods of conditionally

high consumption/output. Third, a constant parameter consumption-interest rate rela-

tionship signi�cantly over-estimates (under-estimates) the degree of forward-lookingness

and the interest rate semi-elasticity during periods of low (high) real activity conditional

on covariates. Fourth, mapping the state dependent estimates into time-varying coe¢ -

cients reveals that periods of conditionally low (high) real activity coincide with periods of

unconditionally below-trend (above-trend) consumption/output. The implication is that

our �ndings can be equivalently cast in terms of phases of the business cycle. Fifth, our

results are robust to employing alternative (i) �lters to isolate cyclical components, (ii)

measures of real activity, (iii) instrument sets, (iv) speci�cations of the lag structure in

the transmission mechanism and (v) strategy to identify the unanticipated component of

movements in the interest rate.

Finally, our �ndings may help reconcile con�icting evidence from earlier contributions.

Estimates of the degree of forward-lookingness in IS curve speci�cations range from values

not statistically di¤erent from one (Ireland, 2004) to values not signi�cantly di¤erent from

zero (Fuhrer and Rudebusch, 2004). The semi-elasticity of interest rate is often statistically

insigni�cant (Lindé, 2005), and when it is not, the point estimates are so small as to imply

only modest e¤ects through the transmission of structural shocks or economic policies

(Dennis, 2009). The evidence on state-dependent parameters presented in this paper may

thus o¤er a way to rationalize the seemingly contrasting estimates that are based on linear

models and di¤erent U.S. post-WWII samples.
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The paper is organized as follows. The empirical model is presented in section 2.

In section 3, we lay out the estimation method to explore state-dependence and account

for endogeneity. Section 4 introduces the data and the instrument sets. In section 5, we

present the main results of the paper, the robustness to alternative methods to model state-

dependent parameters as well as a time-varying coe¢ cient interpretation of the quantile

regression estimates. A sensitivity analysis is o¤ered in Section 6. Section 7 compares the

forecasting performance of the IVQR model relative to alternative strategies to deal with

parameter instability. The appendices report a Montecarlo analysis to assess the small

sample bias associated with the quantile regression method presented in section 3 as well

as convergence results for our Markov chain Montecarlo algorithm.

2 A state-dependent parameter transmission mechanism

In this section, we lay out a �exible empirical model that will be used in Section 3 to inves-

tigate asymmetries in the transmission mechanism. In Section 4, we con�rm the robustness

of the empirical �ndings to using two popular methods to estimate state-dependent para-

meters, namely Markov-switching and threshold models.

Our approach builds on Koenker and Xiao (2006) who develop asymptotic theory and

inference tools for quantile autoregressive models. More speci�cally, suppose that a cyclical

measure of real activity ct evolves according to the following rule F (�):

ct = F (ct�1; ct+1; it::it�h; �t+1::�t�h+1; ut) = F (it; dt) = F (Dt) (1)

where i denotes the nominal interest rate, � is in�ation, and d refers to leads and lags

of consumption and in�ation. The unobserved state of the economy, ut, is the source of

heterogeneity.

Our aim is to estimate the shape of (1) using quantile regressions (QR). Above all,

this will not assume that the relationship between consumption, its leads and lags and

the interest rate is linear. Furthermore, we will consider the possibility that both the

ex-ante real rate and future consumption are endogenous variables. The QR approach
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treats the measure of real activity as a potential latent outcome. It is latent because,

given the covariates it and dt, the observed outcome in each unit of time t is only one of

the possible realizations in the admissible space of outcomes. The quantiles, Q� , of the

potential outcome distributions conditional on covariates are denoted by:

Q� (ctjit; dt) with � 2 (0; 1): (2)

The e¤ect of a change in the real rate on di¤erent points of the marginal distribution of

the potential outcome is given by:

QTE� =
@Q� (ctjit; dt)

@r
(3)

where r is the real rate of interest. The quantile treatment model can then be written as:

ct = q (it; dt; ut) with utjit; dt � U (0; 1) : (4)

where q (it; dt; ut) = Q� (ctjit; dt). Note that we can always work with a suitable monotonic

transformation of the underlying measure of unobserved heterogeneity such that ut is a

rank variable, i.e. it measures the relative ranking of states of the economy in terms of

potential outcomes. According to this interpretation, QTE� measures the causal e¤ect of

the real rate on real activity, holding the latent state �xed at ut = � .

The model that we propose (and specify explicitly below) is a generalisation of the

Quantile Autoregressive model (QAR) introduced in Koenker and Xiao (2006), who con-

sider the following QAR(1) speci�cation:

Q� (ctj�) = � (�) + � (�) ct�1 (5)

where � (�) = min [�0 + �1� ; 1], �0 2 (0; 1) and �1 > 0: At higher values of the con-

ditional quantiles, the QAR model implies that ct displays behaviour consistent with a

persistent AR process, while quicker mean reversion occurs at lower conditional quantiles.

The QAR model is, therefore, able to describe asymmetric persistence in ct and provides

a useful approximation to non-linear dynamics.
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Galvao, Montes-Rojas and Park (2009) extend the QAR model to include exogenous

regressors on the right hand side of equation (5). In other words, they consider models of

the following form:

Q� (ctj�) = � (�) + � (�) ct�1 +$ (�)xt (6)

The Quantile Autoregressive distributed lag model (QARDL) in equation (6) accounts for

the impact of the exogenous covariates xt at di¤erent values of � , as well as allowing for

the possibility of non-linear dynamics.2

While the QARDL model can be used to model reduced form relationships, the exo-

geneity of xt rules out applications in a more structural setting such as the one considered in

equation (1). Hence, following Chevapatrakul, Kim and Mizen (2009), this paper extends

the QARDL model further by explicitly allowing for endogenous covariates. The model

that we consider assumes that the empirical speci�cation of the conditional � -th quantile

distribution of ct takes the following form:

Q� (ctj�) = � (�) + [1� � (�)] ct�1 + � (�) ct+1 + � (�)

241
�

��1X
j=0

(it+j+m � �t+j+m+1)

35 (7)

It seems natural to assume that the real interest rate and future consumption may be

endogenous for current consumption. Furthermore, the recent evidence discussed in the

introduction (and based on VAR/ADL models) suggests that the impact of ct+1 and (it+j-

�t+j+1) on ct tend to vary over the business cycle. A standard QARDL speci�cation that

ignores this dependence may result in biased estimates of (7).

The choice of a suitable set of instruments Zt can provide a source of variation in the

endogenous regressors that is independent from the latent state. To the extent that lagged

values of ct; it and �t are uncorrelated with the forecast errors of variables dated at future

time periods, then they can be used as valid instruments. We explore various instrument

sets below and show that the results are robust across di¤erent choices for Zt:
2The authors apply this model to UK house price returns and show that the policy interest rate has

a larger negative impact at lower conditional quantiles while the e¤ect of real GDP is smaller at medium
values of the conditional quantile.
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Given Zt, the Instrumental Variable Quantile Regression (IVQR) model of Chernozhukov

and Hansen (2005) can be used to estimate the parameters of interest. Consider the process

for real activity:

ct = q (it; dt; ut) with utjZt; dt � U (0; 1) : (8)

where

Prob[c � q (i; d; �) jZ] = Prob[U � � jZ; d] = � for each � 2 (0; 1):

The IVQR estimator proposed by Chernozhukov and Hansen (2005) relies on two main

assumptions: independence and rank invariance/similarity. The �rst assumption is shared

by any instrumental variable estimator and requires that the instruments are uncorre-

lated with the error term. Interpreting the residuals ut in (1) as structural shocks (in a

combination for instance of preference and �scal shocks), the assumption of independence

corresponds to assume that lagged values of the interest rate, consumption and in�ation

do not predict demand shocks. As for rank invariance, this requires that the ranking of

the unobserved heterogeneity ut does not vary with potential treatment states. In our

application, this amounts to assume that a month whose particular level of interest rate

(say below-average) leads to a state of the economy at the � th percentile of the conditional

distribution of (positive) consumption growth would have had consumption growth still

at the � th percentile of the conditional distribution of (negative) consumption growth if

another level of the interest rate (say above-average) had instead induced that outcome

(i.e. a consumption contraction). In the weaker form of rank similarity, it su¢ ces that the

ranks of the states of the economy induced by a particular shock do not to vary system-

atically with the level of the interest rate or with future consumption. It is important to

emphasize that rank similarity does not imply that the states of the economy should not

vary with the level of interest rate. Rather, it amounts to the weaker requirement that the

ranking in the conditional consumption distribution induced by a shock of a given size is

not systematically di¤erent from the ranking that the same shock would have generated to

if the interest rate was at a di¤erent level.
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3 Estimation

The parameters of the model in equation (8) can be estimated by solving the following

optimisation problem

min
�






 1T
TX
t=1

[1 (ct �Dt�)� � ]Zt






 (9)

where 1 (�) is an indicator function that takes value one if (ct�Dt�) � 0 and zero otherwise

and � = f�; �; �g is a k � 1 vector of model parameters.

The objective function in equation (9) is not straightforward to minimise given the dis-

continuity introduced by the indicator function. Chernozhukov and Hansen (2005) show,

however, that minimisation of (9) is equivalent to considering the following Quantile re-

gression objective function

Q� (:)=
1

T

TX
i=1

��

8<:ct-f� (�)+ [1-� (�)] ct-1+� (�) ct+1+� (�) [ 1�
��1X
j=0

(it+j+m-�t+j+m+1)]g-�Zt

9=;
where �� (u)=(� -1 (u<0))u.

The coe¢ cients � and � can be estimated as (� (� ; �; �) ; � (� ; �; �))=min�;�Q� (:).

The coe¢ cients on the endogenous variables � and � are estimated as those values that

make �̂ (� ; �; �) as close as possible to zero. This latter step involves searching over

a grid of possible values for the coe¢ cients. The �nal parameter vector is given by�
�̂ (�) ; �̂ (�) ; �̂

�
�̂ (�) ; �̂ (�) ; �

��
. The main attraction of this inverse QR approach is

its simplicity and the fact that it only requires a series of standard QR regressions to be

run at each point in the grid. However, the need for a grid search places a practical limit

on the number of endogenous variables in the model. Chernozhukov and Hansen (2005)

report that this estimator works well when the number of exogenous regressors is large

relative to the number of endogenous covariates.

In our application, instead, the number of endogenous regressors is relatively large and

application of the inverse QR method requires a multi-dimensional grid search. We found

that in our setting the estimates of the parameters were highly dependent on the limits and

the length of the grid. Therefore, we consider an alternative estimation strategy based on
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a Markov chain montecarlo (MCMC) approach introduced for moment based estimators in

Chernozhukov and Hong (2003). The authors de�ne the quasi-posterior of the parameters

of moment based models as

Pn (�) =
exp (Ln (�))� (�)R
exp (Ln (�))� (�)

(10)

where � (�) is a prior density and Ln (�) is de�ned as

Ln (�) = �
1

2

0@ 1p
N

NX
t=1

mt (�)

!0
Wn (�)

 
1p
N

NX
t=1

mt (�)

!1A (11)

with mt (�) = (� � 1 (ct �Dt�)) zt and Wn (�) is a weighting matrix. Chernozhukov and

Hong (2003) set out the conditions under which a random walk Metropolis-Hastings (MH)

algorithm provides valid point estimates and con�dence intervals for �: Note that unlike the

grid search approach in Chernozhukov and Hansen (2005), the MCMC approach can easily

be used for applications involving a moderate to large number of endogenous regressors.

In our application, a prior distribution is not explicitly speci�ed for the parameters

and a data driven approach is adopted. However, some of the parameters are required

to lie within the bounds implied by economic theory. These are reported in Table 1 and

they are imposed by assigning an acceptance probability of zero to any draw that violates

these bounds. The steps of the MH algorithm (implemented for a given value of �) are

summarised in algorithm 1.

Following Chernozhukov and Hong (2003) a random walk is used as the candidate

density q
�
�new��old

�
:

�new = �old + P 0" (12)

where " is a k�1 vector from the standard normal distribution and P is a scaling matrix.3

The model is estimated using 1; 100; 000 MCMC iterations discarding the �rst 100; 000 as
3More speci�cally, we conduct a grid search for the scaling parameter ĉ over M discrete intervals and

store the acceptance rate �̂ associated with each run of the MCMC algorithm. We then estimate the
following regression model: �̂ = â0 + a1ĉ+ a2ĉ2 + a3ĉ3 + e and �nd the value of c that solves numerically
the polynomial â0 + â1c+ â2c2 + â3c3 = �target where �target is the desired acceptance rate. The value of
c is used as the scaling factor in the main MCMC run. We set �target = 0:3 and this choice delivers an
acceptance rate between 20% and 40%.
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Algorithm 1 The random walk Metropolis Hastings algorithm for the QR model

1. Starting values for the model parameters: Let i = 0: Initialise the draws of
the parameters by specifying the initial value of the parameters �0, set �old = �0

and evaluate the posterior at �old using equation (10). In our application, we set
�0 = �QR, where �QR is the standard quantile regression estimator.

2. Candidate draw: Draw a candidate value for the parameters �new using the pro-
posal density q

�
�new��old

�
3. If �new violates the bounds in Table 1 set i = i + 1 and go to step 2. Otherwise go
to step 4.

4. Posterior evaluation: Evaluate the posterior at �new via equation (10).

5. Accept/Reject: Calculate the acceptance probability accept =
Pn(�new)=q(�new��old)
Pn(�old)=q(�old��new)

. Draw a scalar u from the standard uniform distribu-

tion. If accept > u, set �old = �new and Pn
�
�old

�
= Pn (�

new) : Otherwise retain
the old parameter draw and the corresponding posterior.

6. Iterate: Set i = i+ 1: Go to step 2 and repeat until i = R.

burn-in. We retain every 50th draw of the remaining 1; 000; 000 iterations. As shown in

Appendix A, this procedure leads to a chain where the diagnostic statistics of Gelman and

Rubin (1992) suggest convergence.

4 Data and instruments

The data were collected from the website of the Federal Reserve Bank of St. Louis. The

nominal rate is the three month treasury bill rate. In�ation is measured as the �rst dif-

ference in the logarithm of the personal consumption expenditure (PCE) de�ator. In the

baseline case, real consumption is measured as the logarithm of the personal expenditure

on nondurable goods and services, de�ated by the PCE de�ator and divided by the civil-

ian noninstitutional population. In one of the sensitivity analyses, we will also consider

durable consumption and the monthly estimates of real GDP in Stock and Watson (2010).

All series but population are seasonally adjusted at the source.
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The Montecarlo analysis in Appendix B reveals that the small sample bias associated

with the IVQR method can be large using either a sample size or a sample frequency leading

to about 200 observations. In contrast, it appears far more muted using as many as 700

observations. This result encourages us to work with monthly rather than quarterly data as

for the latter there would be at most 250 data points available over the post-WWII period.

On the other hand, monthly consumption data are available since 1959:1 but they can be

extended back to 1948:5 by linearly interpolating quarterly observations. This implies that

our sample, which ends in 2010:7, includes about 750 data points.

The cyclical component of real activity ct is constructed using �ve methods: (1) HP

�lter, (2) Band-Pass �lter, (3) linear de-trending, (4) quadratic de-trending and (5) the

approximated de-trended method proposed by Cogley and Sargent (2005) where the trend

c�t is computed using the recursion c
�
t = c

�
t�1 + 0:075(ct � c�t�1). The data are displayed in

Figure 1.

Our benchmark instrument set includes lags of the cyclical measure of consumption,

in�ation and the nominal interest rate: Zt = (ct�2; ct�3; it�2; �t�2; 1). We also consider

four alternative sets which include di¤erent lags of the endogenous variables, namely

Z1t = (ct�2::ct�6; it�2::it�6; �t�2::�t�6; 1); Z2t = (ct�2::ct�12; it�2::it�12; �t�2::�t�12; 1);

Z3t = (ct�1; it�1; �t�1; 1); Z4t = (ct�2; it�2; �t�2; 1).

While the results are similar across the four alternative groups, the benchmark instru-

ment set is preferred when considering instrument strength. The �rst row of Table 2 shows

that the multivariate F-statistics for the baseline instrument set are consistently larger

than the critical value of 9:5 determined by Stock and Yogo (2003).4 The entries for Zt

compare favourably to the entries in the third row of Table 2 for the alternative instrument

sets used in the sensitivity analysis.

4This critical value depends on the number of endogenous variables, d = 3, the number of included and
excluded regressors, k = 5, and the bias relative to OLS, b = 0:05, (see Stock and Yogo, 2003).
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5 Results

In this section, we present our main results. These are organized around the di¤erent

cyclical measures of consumption and the benchmark instrument set. In the following

section, we assess the sensitivity of our results to changes in the model speci�cation as

well as in the instrument set, the identi�cation strategy and the measure of real activity.

An important �nding of this section is that the evidence in favour of state dependence in

the consumption-interest rate relationship is robust to using three alternative estimation

methods: quantile regressions, markov-switching and threshold models.

5.1 Baseline speci�cation

Figure 2 presents the estimates of the state-dependent IS curve parameters using the bench-

mark instrument set and assuming � = 1 and m = 0:

ct = � (�) + (1� � (�)) ct�1 + � (�) ct+1 + � (�) [(it � �t+1)] + ut; ut � U(0; 1)

The rows of Figure 2 present results for the �ve �lters used in Section 4 to extract

the cyclical component of consumption. Our discussion begins with the left column which

displays the estimated coe¢ cient on ct+1. The Two Stage Least Square (TSLS) estimates,

reported as dotted lines, are centered around the value of 0:5, consistent with the �ndings

in Fuhrer and Rudebusch (2004). On the one hand, the IVQR estimates are signi�cantly

smaller than the TSLS estimates for quantiles below 20%. On the other hand, the TSLS

signi�cantly under-estimates the extent of forward-looking behaviour at the top 30th per-

centile of the conditional distribution of consumption. This evidence suggests that periods

in which consumption is conditionally low (high) are also periods characterized by higher

(lower) persistence. In other words, agents appear more forward looking in good times (as

measured by high values of �). This �nding appears robust across the di¤erent cyclical

measures.

As for the interest rate semi-elasticity, the TSLS estimates in the second column of

�gure 2 are centered around zero and they are never statistically signi�cant as it is often
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the case in Fuhrer and Rudebusch (2004). This �nding is similar to the IVQR estimates

obtained for values of � < 65%. In the top 25th percentiles of the conditional distribution

of consumption, however, the sensitivity of the IS schedule to the real rate is recorded at

values around �0:04. This evidence of nonlinearity suggests that monetary policy (and

more generally the e¤ects of real rate on consumption) exerts its maximum impact during

periods in which consumption is conditionally high.

In summary, we �nd strong evidence in favour of state-dependent coe¢ cients: the

heterogeneous estimates of the IS curve parameters across the conditional distribution of

consumption di¤er signi�cantly from the average e¤ect estimated using a constant para-

meter speci�cation.

5.2 Alternative estimation methods

The results in Figure 2 are based on quantile regressions. In this section, we show that

the evidence against a linear consumption-interest rate relationship is robust to using two

popular methods to deal with state-dependent parameters, namely Markov-switching and

threshold models. While the details of these two speci�cations are postponed until the

model comparison in Section 7, we anticipate here that the quantile regression estimates

are associated with the best out-of-sample forecasting performance.

Table 3 reports the estimates of the state-dependent parameters obtained from a two-

states Markov-switching model (top panel) and a threshold model (bottom panel) using

HP-�ltered consumption.5 Both estimation methods reveal that one set of observations,

which we refer to as regime 1, is characterized by a signi�cantly smaller coe¢ cient on

future consumption as well as an insigni�cant coe¢ cient on the real rate. As for regime 2,

in contrast, one cannot reject the hypothesis that agents are purely forward-looking and

that the impact of the real rate on consumption is signi�cant.

In the threshold model, regime 1 (2 ) corresponds to observations below (above) the

estimated threshold of �0:004 and therefore it can be interpreted as the below- (above-)
5The results below are robust to estimating a three-states speci�cation. As for the threshold model, we

use ct�1 as threshold variable but similar �ndings hold using ct.
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average consumption regime. In the Markov-switching model, this information is conveyed

by the regime probability, which is reported in Figure 3 (grey areas) together with the

cyclical measure of consumption (blue line). The probability of being in regime 2, which

according to Table 3 is characterized by a higher (lower) estimated coe¢ cient on the lead of

consumption and the ex-ante real rate is signi�cantly larger during periods of above-average

consumption.

In summary, quantile regressions, Markov-switching and threshold models paint a fairly

robust picture: state dependent parameters are a pervasive feature of the transmission

mechanism in post-WWII U.S. data. In particular, all methods suggest that during pe-

riods of above-average consumption agents tend to be more forward-looking and their

consumption becomes more sensitive to movements in the real rate.

5.3 From state-dependent to time-dependent estimates

The focus of our analysis is on assessing the assumption of constant parameters that is

behind the majority of existing estimates of the IS curve. For the sake of illustration to

a broader audience, in this section we o¤er a time-varying coe¢ cient interpretation of our

results. To this end, we link the distribution of consumption conditional on covariates

(which is the basis for the IVQR estimation) to the unconditional distribution of consump-

tion. A main goal is to establish whether periods of conditionally low (high) consumption

correspond to periods of unconditionally below-trend (above-trend) consumption. We �nd

that they do, which allows us to interpret the state-dependent estimates of Figure 2 in

terms of phases of the business cycle.

To map the quantile regressions into time-varying estimates, we use a version of the

procedure described in Koenker (2005 pp. 295-316). In particular, in this sub-section and

this sub-section only, we estimate the following version of the benchmark speci�cation:

ct = �
� (�) + (1� � (�)) ~ct�1 + � (�) ~ct+1 + � (�) [(~{t � ~�t+1)] + ut

where the superscript ~ indicates deviations from the mean. Note that �� (�) now captures

the level of ct in each � , given the mean of the real rate and lagged consumption. We then
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use the estimated value of �� (�) in each quantile to link the level of the dependent variable

across time to the values of � (�) and � (�) : More speci�cally, we de�ne a T � 1 indicator

variable Ii [ct � �� (� i)] for i = 1 and Ii [�� (� i�1) < ct � �� (� i)] for i = 2::M where M

indexes the values of � that we consider. We also specify �t and �t as two T � 1 vectors

with all elements initially equal to zero.

For each value of i (and thus the indicator variable Ii [ct � �� (� i)]), we loop through

time t = 1:::T i.e. through the elements of �t and �t setting �t = � (� i) and �t = � (� i) if

the tth element of Ii [:] = 1: Repeating this for i = 1::M �lls all elements of �t and �t and

produces a time-series for these coe¢ cients.

Our �ndings are reported in Figure 4. The top (bottom) panel shows the estimates of �

(�) over the post-WWII sample together with our baseline measure of cyclical consumption.

Whenever consumption is above trend, consumption decisions appear (i) more forward-

looking and (ii) more sensitive to movements in the real rate. On the other hand, during

the troughs of the cycle, and especially during the recession episodes of the 1970s, 1981,

1992 and 2008, agents tend to be signi�cantly more backward-looking and their expenditure

becomes far less sensitive, if any, to the real rate. While this �nding is not based on any

speci�c assumption on the way IS curve parameters evolve over time, it is interesting to

note that the evidence in Figure 4 appears more reminiscent of the type of time-variation

estimated using a regime switching model than using random walk drifting coe¢ cients.

6 Sensitivity Analysis

In this section, we perform �ve robustness checks. First, we consider alternative measures

of real activity. Second, we allow for four di¤erent instrument sets. Third, we experiment

with di¤erent lags of the real rate structure. Fourth, we estimate the IVQR model without

imposing the restrictions that the coe¢ cient on the real rate should be non-positive and

that the coe¢ cients on consumption should sum up to one. Five, we use the monetary

policy shocks series constructed by Romer and Romer (2004) in place of the real rate. Our

�ndings are robust to all these modi�cations of the baseline case.
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6.1 Measures of activity

In the baseline case, we have used per capita real expenditure on non-durable goods and

services. In this section, we �rst consider non-durable goods and services consumption

separately, and then perform the IVQR estimation using the real expenditure on durable

goods and the monthly estimates of GDP produced by Stock and Watson (2010).

The results are reported in Figure 5 and they show a similar pattern to Figure 2

with some important quali�cations. First, for both IS curve coe¢ cients, the evidence

of state-dependence is signi�cantly stronger using services consumption than using non-

durable goods consumption. Second, there is little evidence of heterogeneity across phases

of the business cycle using durable goods consumption. Third, using Stock and Watson�s

monthly GDP measure the estimates of degree of forward-lookingness at the upper tail of

the conditional distribution are larger than the estimates at the lower tail while the evidence

for the interest rate semi-elasticity is more muted. The corresponding F-statistics for the

four measures are reported in the second row of Table 2. Only services consumption and

Stock and Watson�s monthly GDP pass comfortably Stock and Yogo�s test of instrument

strength. Interestingly, these are also the only two measures for which we �nd strong

evidence of state-dependent IS curve parameters.

6.2 Instrument set

The results of the F-tests using the di¤erent �lters together with the Montecarlo analysis

in Appendix A suggest that our baseline estimates are unlikely to su¤er from a weak in-

strument problem. Nevertheless, it is useful to assess the sensitivity of our �ndings to using

instruments set with a di¤erent number of lags for each endogenous variable. The results

are reported in Figure 6 for the instrument sets Z1t = (ct�2::ct�6; it�2::it�6; �t�2::�t�6; 1);

Z2t = (ct�2::ct�12; it�2::it�12; �t�2::�t�12; 1); Z3t = (ct�1; it�1; �t�1; 1); Z4t = (ct�2; it�2; �t�2; 1).

The conclusions one can drawn upon the alternative instrument sets are very similar to the

ones for the baseline case. It should be noted, however, that according to the F-statistics in

the third row of Table 2 the alternative sets are less likely to qualify as strong instruments.
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Indeed, this is the reason behind our choice of focusing on the baseline set Zt in Section 5.

6.3 Timing of the transmission mechanism

Di¤erent speci�cations of the lag structure for the real interest rate also appear unable

to overturn our evidence of state-dependence. Specifying [k=0, m=1], [k=12, m=0] and

[k=12, m=1] for
P��1
j=0 (it+j+m � �t+j+m+1) in the �rst, second and third row of Figure 7

respectively makes our conclusions even stronger. (Fully) backward-looking behaviour is

predominant at the bottom (end) 20% of the conditional distribution while (fully) forward-

looking behaviour is predominant at the top (end) 20%. As for the interest rate semi-

elasticity, we con�rm that only the top 25% observations above the consumption average

are associated with signi�cantly negative estimates, ranging from values around �0:03 in

the �rst row to values around �0:06 in the last row. The F-statistics for these speci�cations,

reported in the last row of Table 2, are always above Stock and Yogo�s critical value.

6.4 Unrestricted estimates

The estimates above restrict the coe¢ cient on the real interest to be non-positive. Fur-

thermore, the coe¢ cients on backward-looking and forward-looking terms are restricted to

sum up to one. In this section, we assess the robustness of our �nding on state-dependence

to relaxing both restrictions.

The estimated coe¢ cients on future and lagged consumption in Figure 8 are very similar

to the benchmark results and their sum is never statistically larger than one. The pattern of

the coe¢ cient on the real interest rate across quantiles is very similar to the pattern for the

benchmark case: the estimates of � become more negative and statistically signi�cant at

the right tail of the consumption distribution. Note, however, that for quantiles � < 30%,

the positive coe¢ cient is hard to justify from an economic perspective. The Stock and

Yogo�s F-statistics for this case is 18.6.

17



6.5 Monetary policy shocks

In this section, we use an alternative identi�cation strategy to assess the extent to which

the IVQR estimates reported above genuinely re�ect the causal e¤ect of interest rate on

consumption and therefore can be interpreted as describing an IS curve type of relation-

ship. The alternative strategy is based on the measure of monetary policy shocks proposed

by Romer and Romer (2004) and available on their websites. These are the residuals of a

regression of changes in the federal funds rate around FOMC meetings on the level of the

federal fund rate as well as the levels and the changes of the Greenbook forecasts for in�a-

tion, real output growth and unemployment in the previous quarter, contemporaneously

and two quarters ahead.

Following Romer and Romer (2004), we use thirty six lags of the monetary policy shock

and twelve lags of consumption to generate a quantile regressions version of their estimated

transmission mechanism speci�cation:

ct = � (�) +
24X
j=1

�j (�) ct�j +
36X
i=1


i (�)MPt�i + vt; vt � U(0; 1) (13)

The cumulated impulse responses for each quantile of the conditional consumption dis-

tribution estimated on the basis of equation (13) are reported in Figure 9. Two main

results emerge from this exercise. First, for any given quantile, the pro�le of the expected

consumption adjustments to a monetary policy shock resembles on average the shape of

the impulse response of real activity reported by Romer and Romer (2004), sharing both

the hump shape and the peak between two and three years after the shock across most

quantiles. Second, consistent with the results in Section 5, for any given forecast horizon,

the consumption reactions tend to be close to zero at the left tail of the conditional distrib-

ution and then become more negative (and signi�cant) at higher quantiles. Together with

the results from the previous section, we conclude that our quantile regression estimates

are likely to re�ect the causal e¤ect of interest rate movements on real activity.
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7 Model comparison

In this section, we perform a statistical comparison of the performance of the IVQR method

relative to alternative strategies to model parameter instability in the consumption-interest

rate relationship. To this end, we consider four competing speci�cations: (i) IV Markov

switching regimes, (ii) an IV threshold model, (iii) an IV speci�cation augmented with an

interaction term between the endogenous variables and a dummy that takes value of one

during NBER recession months and (iv) an IV random walk drifting parameter model.

The �rst three speci�cations explicitly model state dependent parameters with endoge-

nous regressors. The fourth speci�cation postulates that the coe¢ cients of the structural

equation evolve smoothly over time.

Following Sola, Psaradakis and Spagnolo (2005), the Markov switching model is speci-

�ed as

ct = �s + (1� �s) ct�1 + �sct+1 + �s [(it � �t+1)] + �sut

where s=0; 1 denotes the unobserved regime which is assumed to follow a two state Markov

chain with �xed transition probabilities. Sola, Psaradakis and Spagnolo (2005) show how

to modify the �lter in Hamilton (1994) to allow for endogenous variables, which are dealt

with via regime dependent instruments.

As for the threshold model, we adopt the strategy proposed in Caner and Hansen (2004)

and specify aggregate consumption as:

ct = �1 + (1� �1) ct�1 + �1ct+1 + �1 [(it � �t+1)] + �1ut if qt � 


ct = �2 + (1� �2) ct�1 + �2ct+1 + �2 [(it � �t+1)] + �2ut if qt > 


where 
 is the threshold parameter and qt is the threshold variable. Results below refer to

qt = ct�1 but we have veri�ed robustness to using ct�2. Carner and Hansen (2004) gener-

alize the regression case in Hansen (2000) to estimate threshold models with endogenous

variables but an exogenous threshold variable.

The time-varying parameter model with endogenous regressors is borrowed from Kim

(2006) who proposes a Heckman-type two-step procedure to estimate the following system
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of equations:

ct = �t + (1� �t) ct�1 + �tct+1 + �t [(it � �t+1)] + �ut

�t = �t�1 + "t with �t � [�t; �t; �t]

xt = Z 0t�t + vt with �t = �t�1 + et and xt � [ct+1; (it � �t+1)]

where Zt is the instrument set and the errors are i.i.d. and normally distributed with

variance matrices �", �v and �e, respectively.

To evaluate the performance of IVQR vis a vis the performance of the alternative

strategies (i) to (iv), we focus on a measure of out of sample predictability for each model

relative to the predictability of the IVQR speci�cation which is used as benchmark. In

all models, consumption is measured relative to the HP trend and the instrument set is

the same as in Section 4. The �rst estimation sample is 1948:5-1969:12. After that, we

re-estimate each model recursively from j = 1970:1 to 2009:7 adding one observation at

a time. At each recursion j and for each model m, we compute a pseudo out-of-sample

forecast at the monthly horizon h (with h=1, 6 and 12) and use this to compute the root

mean squared forecast error (RMSE) as RMSEm;h =
PJ
j=1

1
J

q
1
Tj

PTj
t=1 (ĉt+h � ct)

2 where

Tj is the length of the time series in the jth recursion for modelm and J is the total number

of recursions. The measure of relative predictability is then the ratio between RMSEm;h

and the RMSEIV QR;h of the IVQR model: values larger than one denotes a forecasting

deterioration relative to the benchmark model. Statistical di¤erences are assessed using

the test of equal predictive accuracy proposed by Diebold and Mariano (1996).

The results are presented in Table 4 and they reveal a number of regularities. First, the

forecasting performance of the IVQR model tends to be at least as good as the performance

of the other non-linear models. Second, most of the relative RMSE statistics are larger

than one and often statistically signi�cant (denoted by asterisks) according to the Diebold-

Mariano statistics. Third, the largest gains for the IVQR speci�cation are recorded relative

to the Markov-switching and the NBER dummy models. Fourth, the performances of the

time-varying parameters and the threshold models tend to be similar to the performance of

the IVQR speci�cation, resulting in forecasts that appear less accurate at shorter horizons
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but marginally more accurate at longer horizons. In summary, the IVQR speci�cation �ts

U.S. data on consumption well in a way that tends to compare favourably to other non-

linear alternatives, both out-of-sample as shown here and in-sample as shown in Mumtaz

and Surico (2011).

8 Conclusions

This paper provides empirical evidence in favour of signi�cant nonlinearity in the dy-

namic relationship between real activity and the interest rate. In periods of below-average

consumption/output, households� decisions tend to be more backward-looking and less

sensitive to movements in the real rate of interest. Periods at the other end of the con-

ditional distribution of real activity are associated with fully forward-looking behaviour

and with the maximum impact of the real rate. The average e¤ect estimated on the basis

of a constant parameter speci�cation, in contrast, points toward an insigni�cant interest

rate semi-elasticity and towards roughly equal weights received by backward-looking and

forward-looking components.

Our results o¤er empirical support for the notion that the dynamics of consumption and

output during expansions are qualitatively and quantitatively di¤erent from the dynamics

during contractions, suggesting that monetary policy (and any other shock channelled

through the real rate of interest) has asymmetric e¤ects over the business cycle. One

caveat is that our estimates are not obtained in the context of a fully speci�ed structural

model. While we are not aware of contributions estimating a DSGE model with parameters

that are explicitly allowed to vary with the state of the economy, in future research it would

be interesting to generalize our method to the multivariate case in a way that would retain

the advantages of a general equilibrium analysis while providing a �exible strategy to model

state-dependent parameters.
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Table 3: Alternative state-dependent parameter estimates

Markov-switching ct+1 it � �t+1 intercept

regime1 0.404* -0.007 -0.07*
(0.14) (0.006) (0.03)

regime2 0.929* -0.02* 0.009*
(0.06) (0.009) (0.03)

threshold model Etct+1 it � Et�t+1 intercept

regime1 0.120 0.005 -0.001*
(0.10) (0.008) (.0002)

regime2 0.866* -0.03* 0.001*
(0.11) (0.01) (.0002)

Note: the instruments are Zt=(ct�2..ct�3,it�2,�t�2,1). In the Markov-switching model, the
probability to stay in regime 1 (2) is 0:83 (0:92) with standard error 0:02 (0:01). The esti-
mated threshold for ct�1 is �0:004 with standard error 0:005 and regime 1 refers to obser-
vations below the threshold. * denotes signi�cance at 1% con�dence level.

Table 4: Out-of-sample relative RMSE

monthly forecast horizon (h)
MODELS h = 1 h = 6 h = 12

Markov Switching 1:42� 1:48� 1:58�

Time-varying parameters 1:22� 1:04 0:97
NBER dummy 2:18� 1:58� 1:38�

threshold 1:13 1:01 0:94�

Note: the Root Mean Squared forecast Error (RMSE) of each model is reported

relative to the instrumental variable quantile regressions model. Asterisks denote

signi�cant di¤erences at the 5% level as measured by a statistic greater than 1:96
for the test of equal predictive accuracy proposed by Diebold and Mariano (1996).
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Figure 5: IVQR estimates of the parameters of equation (7) with � = 1;m = 0 using
the benchmark instrument set Zt = (ct�2; ct�3; it�2; �t�2; 1), the HP �lter and alternative
measures of real activity. Dotted lines represent to TSLS estimates and 95% credible sets.
Sample: 1948:5-2010:7.
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Figure 6: IVQR estimates of the parameters of equation (7) with � = 1;m = 0 using the
HP �lter on the per-capita real personal consumption expenditure of non-durable goods
and services, and the alternative instrument sets Z1t = (ct�2::ct�6; it�2::it�6; �t�2::�t�6; 1);
Z2t = (ct�2::ct�12; it�2::it�12; �t�2::�t�12; 1); Z3t = (ct�1; it�1; �t�1; 1); Z4t =
(ct�2; it�2; �t�2; 1). Dotted lines represent to TSLS estimates and 95% credible sets. Sam-
ple: 1948:5-2010:7.
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Figure 7: IVQR estimates of the parameters of equation (7) using the HP �lter on the
per-capita real personal consumption expenditure of non-durable goods and services, the
benchmark instrument set Zt = (ct�2; ct�3; it�2; �t�2; 1) and alternative values of � and
m for the timing of the e¤ect of the expected real interest rate. Dotted lines represent to
TSLS estimates and 95% credible sets. Sample: 1948:5-2010:7.
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Figure 8: IVQR estimates of the parameters of equation (7) with � = 1;m = 0 using the
HP �lter on the per-capita real personal consumption expenditure of non-durable goods
and services, and the benchmark instrument set Zt = (ct�2; ct�3; it�2; �t�2; 1), without
imposing (i) the coe¢ cient on expected real interest rate to be non-positive and (ii) the
coe¢ cients on backward- and forward-looking components to sum up to one. Dotted lines
represent to TSLS estimates and 95% credible sets. Sample: 1948:5-2010:7.
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Figure 9: point estimates of the cumulated impulse responses based on (13) using the HP
�lter on the per-capita real personal consumption expenditure of non-durable goods and
services and the measure of monetary policy shocks proposed by Romer and Romer (2004).
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Appendix A: convergence

For each quantile � , we report below the statistics proposed by Gelman and Rubin (1992).

These statistics are based on multiple runs of the MCMC algorithm from overdispersed

starting values.6 The statistic compares the within and between estimate of the variance

of parameters. Note that the former does not take the overdispersed starting values into

account and will under-estimate the variance before convergence. If these two estimates

are close together, then the MCMC algorithm has probably converged. Gelman and Rubin

(1992) suggest a statistic that compares the two estimates. A value of this statistic near 1

is regarded as evidence in favor of convergence.

Table 5: Gelman and Rubin�s convergence statistics

quantile � � (�) � (�) � (�)

0.1 0.99995 0.99995 0.99995
0.15 1.0207 1.0001 1.0016
0.2 1.0036 1.0001 1.0017
0.25 1.0021 1.0001 1
0.3 1.0014 1.0002 0.99996
0.35 1.0026 1.0001 1
0.4 1.0067 1.0001 0.99996
0.45 1.0058 0.99996 1
0.5 1.0055 0.99999 1.0008
0.55 1.0157 1 1.0006
0.6 1.0073 0.99999 1.0002
0.65 1.0018 0.99996 1
0.7 1.0054 1.0001 1.0004
0.75 1.0049 1.001 1.0015
0.8 1.0031 1.0003 1.0003
0.85 1 0.99995 0.99995
0.9 1.001 1.0006 1.0006

Note: statistics based on Gelman and Rubin (1992)

6More speci�cally, we run the MCMC algorithm for our benchmark model using four di¤erent starting
values. We base the starting values for � = 0:1 to 0:9 on the benchmark posterior estimates at di¤erent
quantiles. For example, the �rst run of the MCMC algorithm uses the estimates of the parameters obtained
at � = 0:1 and �xes this starting value for all quantiles. We then repeat this run using the posterior estimates
at � = 0:25; 0:75; 0:9 as starting values. This gives a wide range of starting values of the algorithm.
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Appendix B: montecarlo analysis

Chernozhukov and Hong (2003) present montecarlo evidence to show that the MCMC es-

timator performs well when considering a simple quantile regression model with exogenous

regressors. Here we extend their simulation to instrumental variables by considering a

state-dependent parameter version of the output/consumption equation studied by Fuhrer

and Rudebusch (2004). In particular, we consider a version of the output/consumption

equation where the interest rate semi-elasticity is assumed to vary. This DGP allows us to

assess the ability of the IVQR estimator to recover coe¢ cients that are �xed or vary across

conditional quantiles. The arti�cial data are generated by the following process:

ct = �0 (u) + (1� �) ct+1 + �ct�1 � � (u) [it � �t+1] (14)

where � = 0:5; � (u) = 0:1 + 0:5u and �0 (u) = ��1 (u) with ��1 denoting the inverse

normal cumulative distribution function (see Koenker and Xiao, 2006). We augment equa-

tion (14) with the following bivariate VAR(1) model which describes the dynamics of

zt = fit; �tg

zt = ~c+ ~Bzt�1 + ~

1=2et (15)

where the coe¢ cients ~c and ~B and the error covariance matrix ~
 are estimated via OLS

using HP �ltered data for zt over the sample period 1980m1 to 2010m7.

We generate three samples of T + 50 observations and discard the �rst 50 to reduce

dependence from initial conditions. The length of the arti�cial samples are 100, 200 and

700 with the latter re�ecting the typical number of observations used in the empirical

investigation in the main text. An important goal of this montecarlo analysis is to assess

the role played by the number of observations and the span of the data in determining the

accuracy of the estimates. In order to isolate the impact of the data span, we report an

additional experiment where we sample every 3rd observation from the largest generated

sample to create a new �quarterly� dataset. This dataset retains the same span as the

original sample but has a 3rd of the available observations because of the di¤erent sample
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frequency. The estimates based on this sample can be used to gauge the role played by

data span relative to data frequency (i.e. the total number of available observations for a

given sample span).

For each observation, we draw the latent state u from a standard uniform distribution.

We then solve the system given by equations (14) and (15) using the gensys.m solution

algorithm proposed by Sims (2002). The reduced form representation of the structural

model is used to generate data on ct; it and �t.

The model is estimated on this arti�cial data using 100; 000 replications of the MCMC

algorithm for the 20% to 80% quantiles (with incremental steps of 5%). In line with the

benchmark instrument set used in the analysis on actual data of Section 5, we use the

second and third lags of ct; and the second lag of it and �t as instruments. The experiment

is repeated 1000 times and the results are presented in Figure 10. The panels show the

mean estimates across montecarlo replications (red line), the 90% con�dence interval across

the replications (shaded area) and the (sorted) mean of the true parameter values across

the 1000 replications (black line).

The left panel of the �gure reveals that the estimator is able to recover the true para-

meter even with a small number of observations as long as there is no parameter variation

across quantiles. The right panel shows, however, that the number of observations mat-

ter when the underlying parameter varies across quantiles. Using 700 observations, the

estimates track closely the underlying distributions with the true value always within the

con�dence interval. On the other hand, when the number of observations is lower, the

point estimates tend to diverge from the true values. For example, the small sample bias

associated with 100 observations could be as large as 150%.

Figure 11 reports the results from the additional experiment that considers the same

span of data as the largest sample, but reduces the data frequency to �quarterly�. In

other words, this DGP has around 230 observations but retains the same span of data

as the DGP with 700 observations. The right panel of �gure 11 shows that the bias in

the estimates is substantially larger when compared to the case when all 700 observations
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Figure 10: Montecarlo experiments based on di¤erent sample sizes.
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are used. For example, the mean estimate is almost twice as small as the true value for

quantiles below 0.5. This suggests that the frequency (and not exclusively the span) of the

sample is important in ensuring good performance of the IVQR estimator.
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