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Abstract

Graphene has been investigated intensively since its discovery in 2004, for

its unique mechanical and electrical properties. Strain modifies these properties

to meet specific scientific or technological needs. Therefore, the strain determi-

nation and monitoring are of critical application importance and contribute to

the characterization and understanding of this remarkable material. However,

in many cases strain cannot be directly and precisely measured. Strain is there-

fore related to easily-detected phonon frequency. To be specific, researchers

attribute the frequency shift of graphene in-plane vibrational mode E2g (the

graphite-mode) entirely to the in-plane strain and quantify this relation via the

Grüneisen parameter and shear deformation potential. Different values of these

parameters however have been reported by various experiments and calcula-

tions. The discrepancy comes from considering the in-plane strain contribution

alone and whether this error is acceptable depends on the accuracy required in

the specific scientific or technological problem. Chapter 2 presents our work to

quantify other contributions to the graphite-mode shift under strain, namely

the compression of the π-electrons into the sp2 network. Calculations will use

density functional theory, generalised gradient approximation for the exchange-

correlation potential, with the van der Waals interaction add-on.

Carbon nanotubes can be considered as rolled-up graphene sheet. Similar to

graphene, strain modifies their properties and can be determined and monitored

by the graphite-mode frequency. The tube structure gives additional mechan-

ical stability for application and meanwhile, complication in the relationship

between frequency and applied strain. The thick wall tube model explains the

effect of tube diameter on this relation (Chapter 3) while more recent exper-

iment shows the graphite-mode frequencies of tubes of similar diameter but

different chiralities shift very differently under pressure (Chapter 4), which is

beyond current understanding. The significant bundling effect is reported but

not fully understood either (Chapter 5). Chapter 6 presents our attempt to

describe the collapse of tubes with the atomistic refined elastic ring model.
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Chapter 1

Introduction

Carbon nanotubes (CNTs) have extraordinary mechanical properties due to the

stiff sp2 bond resulting in the exceptionally high Young’s moduli at a typical

value of 1 TPa, together with their tube structure [Treacy et al., 1996]. They

have unique electronic properties; they can be either metallic or semiconduct-

ing depending on the chirality — the direction along which a tube is rolled up

[Odom et al., 1998]. Pressure modifies these properties. The sp2 bond stiff-

ens further, and the band gap in semiconducting CNTs changes with pressure

[Yang and Han, 2000]. To characterize and understand the behaviour of CNTs

under pressure, the shift rates of the phonon frequencies with pressure are very

interesting, as they directly reflect the mechanics and are closely related to the

electronic properties. They can also be used as strain sensors.

In this thesis, I will focus on the shift with pressure of the graphite mode

(GM). The GM is an in-plane vibrational mode, coming from graphite and

characteristic of sp2-hybridized carbon [Tuinstra and Koenig, 1970]. Studies

of the GM pressure coefficients of CNTs thus provides a direct approach to

understand the sp2 bond. It links closely to the high pressure study of other

sp2-bonded materials such as graphene and graphite. That is why we will start

with the study of graphene and graphite and then introduce the complexity

brought by the wall curvature of CNTs.

1.1 The Graphite-mode Phonons in Graphite

The GM is the Raman-active E
(2)
2g optical mode of graphite at 1582 cm−1, illus-

trated in Figure 1.1 by Reich and Thomsen [2004]. It is a two-fold (longitudinal

and transverse) degenerate mode, first reported by Tuinstra and Koenig [1970].

The degeneracy is removed if the symmetry is broken by an external perturba-

tion, such as strain. Mohiuddin et al. [2009] demonstrated this in the case of
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graphene under uniaxial tensile strain, where the G+ (+ for higher energy) and

G− denote the two perpendicular modes (see Figure 1.2).

Figure 1.1: “Phonon eigenvectors of graphene and graphite. Every phonon
eigenvector of graphene gives rise to two vibrations of graphite. For example,
the in-phase combination of the two layers for the E2g optical mode of graphene
yields E2g⊗A1g = E2g and the out-of-phase combination E2g⊗B1u = E1u. Next
to the graphite modes it is indicated whether they are Raman (R) or infrared
(IR) active and the experimentally observed phonon frequencies. The trans-
lations of graphite are omitted from the figure.” After Figure 2 of Reich and
Thomsen [2004].

Hanfland et al. [1989] recorded the first Raman spectrum of graphite under

high pressure. Figure 1.3 shows the GM frequencies with the pressure under

which they are obtained. The pressure dependence of the frequency

ω(P )/ω0 = [(δ0/δ
′)P + 1]δ

′
(1.1)

where δ0 is the logarithmic pressure derivative (dlnω/dP )P=0 and δ′ is the

pressure derivative of dlnω/dP , least-square fitted to the experimental data.

The frequency of the GM increased sublinearly under pressure with an initial

pressure coefficient of 4.7 cm−1GPa−1.

The GM is an in-line anti-phase motion (see Figure 1.1) and therefore the

shift of its frequency with pressure (4.7 cm−1GPa−1) should be determined

by the shortening of C − C bond. The sublinearity observed in graphite was

considered [Sun et al., 2013] to be the result of the combination of the very soft

C33, 39 GPa in graphite [Bosak and Krisch, 2007] together with its relatively

large pressure coefficient C ′33 ∼10 [Green et al., 1972] (see Section 2.1).
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Figure 1.2: “Eigenvectors of G+ and G− modes determined by density-
functional perturbation theory. These are perpendicular to each other, with
G− polarized along the tensile strain axis, as expected.” Reprinted figure with
permission from [T. M. G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009)]
Copyright (2009) by the American Physical Society.

Figure 1.3: Raman shifts of the two E2g modes of graphite. Lines are for the
results of a least-squares fit of Eq. (1) to the experimental data. Open circles are
for decreasing pressure. Reprinted figure with permission from [M. Hanfland,
H. Beister, and K. Syassen, Phys. Rev. B 39, 12598 (1989)] Copyright (1989)
by the American Physical Society.
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1.2 What We Expect in Single-Wall Carbon Nano-

tubes

Graphene sheets are stacked to make graphite and rolled up to make single-wall

carbon nanotubes (SWCNTs). It is reasonable to assume that the GM pressure

coefficient of SWCNTs is also determined by the shortening of C −C bond and

therefore the shift rate of a solvent-filled tube is expected to be 4.7 cm−1GPa−1.

Now we consider an empty tube under hydrostatic pressure. Taking a finite

wall thickness into account (the thick−wall− tube model), the tangential stress

is

σt =
ro

ro − ri
P (1.2)

and the axial stress is

σa =
r2o

r2o − r2i
P (1.3)

where ro is the outer radius of the wall and ri is the inner radius. Setting, for

example, the diameter at a typical value of 1.3 nm and the wall thickness at 0.36

nm (the interlayer distance a33 of graphite), we expect the pressure coefficients of

the ‘tangential’ mode to be 8.5 and the ‘axial’ to be 5.9 cm−1GPa−1 (see Chapter

3 for details). Jorio et al. [2002] assigned the lower energy G− to the tangential

mode, the frequency of which is sensitive to the tube wall curvature and the

higher energy G+ to the axial mode which is independent of the curvature. A

caveat here is the significant electron-phonon coupling due to a Kohn anomaly,

which softens only the axial mode of metallic tubes and hereby makes it G−.

This was predicted [Dubay et al., 2002] and confirmed [Farhat et al., 2007],

while its effect on the GM pressure coefficients, however, is still unclear.

If we keep compressing an empty tube, there is a critical point, beyond

which it will collapse. Therefore we expect the GM to shift with pressure as

illustrated in Figure 1.4 — the shift rate is at the value of a thick-wall hollow

tube initially and the frequency and its shift rate should both decrease to the

values of graphite when the tube collapses [Caillier et al., 2008]. I will briefly

discuss the problem of the collapse in Chapter 6.

1.3 What We Find (Not What We Expect)

First, I introduce early published results of the GM pressure coefficients which

were not assigned to a specific tube diameter. Venkateswaran et al. [1999] per-

formed the first high pressure experiment on SWCNTs. They loaded samples

into a diamond anvil cell (DAC) and recorded their Raman spectra at various

pressures (see Figure 1.5). They plotted the frequencies of the G+ (T3) and
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Figure 1.4: The solid line is for the GM shift with pressure of a hollow SWCNT
and the dash line is for graphite. The GM frequency of CNTs first shifts at a
higher rate than graphite and after the critical pressure PC , both the shift rate
and the frequency drop to the value of graphite, corresponding to a collapse
phase. This illustration is based on the results reported by Caillier et al. [2008].

the wall-curvature (tube diameter) dependent G− band (T1 and T2) with pres-

sure (see Figure 1.6), and obtained initial linear shift rates at 7.1, 10 and 8

cm−1GPa−1 for T3, T2 and T1, respectively.

Since then, many high pressure studies on the GM of SWCNTs has been

published, using various laser excitation wavelength and different pressure trans-

mit media (PTM). Only recently were the GM pressure coefficients assigned to

a specific diameter; we return to this point later. Meanwhile, no consensus

on the value of the pressure coefficient was achieved, as shown in Figure 1.7

[Venkateswaran et al., 1999, Christofilos et al., 2007, 2005, Ghandour et al.,

2011, Venkateswaran et al., 2001, Proctor et al., 2006, Thomsen et al., 1999,

Lebedkin et al., 2006, Sood et al., 1999, Sandler et al., 2003, Merlen et al., 2005,

Yao et al., 2008], which gives a summary of some early work on the shift rates

of the dominant G+ band (the signal is clear enough to extract accurate fre-

quencies despite to the weaker signals from inside diamond-anvil high-pressure

cells). Nevertheless, what can be seen from Figure 1.7 is that effects such as

PTM, laser excitation energy and bundling/surfactant can all affect the GM

pressure coefficients observed.

Although we cannot yet give a clear answer what the GM pressure coefficients

are, some facts are worth noticing before considering the assignment of data to

particular diameters. First, the evolution of the GM shift with pressure was

reported to indicate tube collapsing as expected. Yao et al. [2008] and Caillier

et al. [2008] presented a representative GM shift with pressure (see Figure 1.8),

23



Figure 1.5: The pressure dependence of the room-temperature Raman spectra
of SWCNTs bundles for the GM. The GM intensity drops significantly above 1.5
GPa. The spectra were recorded using 514.5 nm excitation. Reprinted figure
with permission from [U. D. Venkateswaran et al., Phys. Rev. B 59, 10928
(1999)] Copyright (1999) by the American Physical Society.
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Figure 1.6: Pressure dependence of the GM frequencies of SWCNTs bundles.
The results of the calculations using different models are indicated by solid
and dotted lines. Experimental data (T1, T2, and T3) measured during the
upward and downward cycles of pressure are plotted as solid and open circles,
correspondingly. Dashed line corresponds to generalized tight-binding molecular

dynamics result for the E
(2)
2g mode frequency in graphite. Reprinted figure with

permission from [U. D. Venkateswaran et al., Phys. Rev. B 59, 10928 (1999)]
Copyright (1999) by the American Physical Society.
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Figure 1.7: The GM pressure coefficients of SWCNTs reported in previous
literature are plotted against the laser excitation wavelengths, at which they
were obtained. Symbols identify the PTM used. The stars are for the individual
tubes dispersed by surfactants. Three points are labelled with specific chiralities,
to which they are assigned. M:Methanol; E:Ethanol; W:Water; SDS:Sodium
dodecyl sulfate; SDBS:Sodium dodecylbenzene sulfonate. i: samples produced
by pulsed-laser vaporization process, with a diameter range of 1.22–1.36 nm; ii:
high pressure catalytic decomposition of carbon monoxide, 0.8–1.2 nm; iii: arc
discharge method, 1.2–1.6 nm; iv: synthesis method not specified, 1.3±0.2 nm,
labelled as dark green, blue, black and grey, respectively.
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clearly showing that GM frequency of empty tubes shifts faster than graphite

initially. The rate and the frequency dropped to the values of graphite after

the tubes collapse. Second, the GM pressure coefficients of solvent-filled tubes,

against expectation, are not 4.7 cm−1GPa−1. Merlen et al. [2006] reported the

GM pressure coefficients of open-ended tubes as 6.5 cm−1GPa−1 in argon and in

4:1 methanol-ethanol, and as 10 cm−1GPa−1 in paraffin oil. This raises another

issue: what molecules can enter, and how much they can enter, into a SWCNT

through an open end. Third, doping shifts the GM frequencies. Skakalova

et al. [2005] reported the doping effects on the GM frequency (see Figure 1.9),

which indicates that the charge transfer shifts the GM frequency, but whether it

changes the GM pressure coefficient is unclear — an increase in charge transfer

with pressure is plausible, and this would impact on the pressure coefficient.

Figure 1.8: The frequencies of two RBMs (circles) and the most intense G+

peak (squares) are plotted with pressure. Reprinted figure with permission
from [Mingguang Yao et al., Phys. Rev. B 78, 205411 (2008)] Copyright (2008)
by the American Physical Society.

Recent reported experimental work enables the assignment of the observed

GM pressure coefficients to a specific tube diameter. This can be done in two

ways: using resonance-enhanced Raman spectroscopy (RRS), which generally

requires a Raman system with a wavelength-tunable laser (see Chapter 2), or us-

ing SWCNTs samples of a single diameter. Liu et al. [2011] fractionalised SWC-

NTs of a single chirality (and therefore diameter) and later Sanchez-Valencia

et al. [2014] successfully synthesised them, but these tubes are not yet commer-

cially available and no high pressure study of them has been reported. Hence,

here our study focuses on the other method, picking out tubes of a specific

diameter by RRS.
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Figure 1.9: Raman shifts of the GM for SWCNTs chemically treated with dif-
ferent molecules as labelled are compared to the values for the pristine sample
(dotted lines). The order of samples along the horizontal axis is of increas-
ing conductivity. Aniline data (open squares) are not included in the trend
lines. Adapted with permission from (V. Skkalov, A. B. Kaiser, U. Dettlaff-
Weglikowska, et al, J. Phys. Chem. B, 2005, 109 (15), pp 7174-7181). Copyright
(2005) American Chemical Society.

RRS depends on the electronic structure of SWCNTs. As one-dimensional

materials, they have the feature that their density of states (DOS) is not a

continuous function of energy, but descends gradually and increases in a spike.

The sharp peaks are called Van Hove singularities and the gaps between them

are found to be related to the tube diameters. This was presented by Kataura

et al. [1999] in the famous Kataura Plot (see Figure 1.10).

In this plot, tubes are denoted by a certain chiral index (n, m), the way of

which is illustrated in Figure 1.11.

For Raman scattering, the resonance condition was given by Martin and

Falicov [1975] as

I(Elaser) ∝ |
1

(Elaser − Eii − iΓ)(Elaser ± Eph − Eii − iΓ)
|2 (1.4)

where I is the intensity of Raman scattering, Elaser is the laser energy, Eii is

the transition energy (gap between Van Hove singularities), Eph is the energy

of a specific phonon mode, and Γ is the broadening factor deriving from the life

time of the resonant states. Because Γ is usually tiny compared to other terms,

the Raman intensity will increase significantly when either the incident photon

at Elaser or the outgoing photon at Elaser ± Eph (+ for anti-Stokes and - for

Stokes scattering) matches the transition energy Eii (resonance). Practically,
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Figure 1.10: “Calculated gap energies between mirror-image spikes in density of
states for γ = 2.75 eV. Solid circles indicate the metallic SWNTs and open cir-
cles the semiconducting ones. Double circles indicate the armchair-type SWNTs.
Gap energies for all the chiral indexes with larger diameter than (5, 5) are plotted
as a function of diameter. Arrows show diameter distributions for the each cat-
alyst. Two horizontal lines in each catalyst area show metallic window in which
the optical transitions only by the metallic tubes would be observed.” Reprinted
figure with permission from [H. Kataura,Y. Kumazawa,Y. Maniwa,I. Umezu,S.
Suzuki,Y. Ohtsuka,Y. Achiba, Synthetic Metals 103, 2555–2558 (1999)] Copy-
right (1999) by the Elsevier.
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Figure 1.11: “The (n, m) nanotube naming scheme can be thought of as a
vector (Ch) in an infinite graphene sheet that describes how to ‘roll up’ to
graphene sheet to make the nanotube. T denotes the tube axis, and a1 and
a2 are the unit vectors of graphene in real space.” Reproduced from https://

en.wikipedia.org/wiki/Carbon_nanotube and based upon similar diagrams
found in the literature.
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the amount of such increase can easily reach up to 106. Therefore, at selected

laser excitation wavelength, we can obtain a Raman spectrum dominated by the

SWCNTs of a specific diameter, which are in resonance. A 3D plot by Fantini

et al. [2004] gives a clear demonstration for the radial breathing mode (RBM)

(see Figure 1.12). The GM behaves similarly, as long as we pay attention to the

Eph, which is about 200 meV for the GM and about 50 meV for the RBM.

Figure 1.12: The RBM Raman measurements of SWCNTs dispersed in SDS
aqueous solution [O’Connell et al., 2002], measured with 76 different laser lines.
The non-resonance Raman spectrum from a separated CCl4 solution is obtained
after each of the RBM measurement, and is used to calibrate the intensities of
the spectra and to check the frequency calibration. Reprinted figure with per-
mission from [C. Fantini et al., Phys. Rev. Lett. 93, 147406 (2004)] Copyright
(2004) by the American Physical Society.

A specific tube diameter corresponds to a unique chirality. In principle, the

GM pressure coefficient can be assigned to a specific chirality, while the practical

difficulty rises because lots of chiralities may correspond to very similar diame-

ters. The uncertainty can be decreased by a further analysis of the Katuara plot

— the branches in Figure 1.10 refer to semiconducting or metallic tubes, which

is determined by the chirality [Odom et al., 1998], and the order of transitions

(E11 for the nearest van Hove singularities and so on). It says that chiralities

corresponding to similar tube diameter but belonging to other branches will not

contribute to the ambiguity in chirality assignment. Further refinement of the

Kataura plot has been carried out by detailed comparison of experiment and
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theory. Figure 1.13 by Maultzsch et al. [2005] is a good reference for chiral-

ity assignment in RRS experiments of SWCNTS under high pressure, with the

caveat that we do not know exactly how the whole diagram shifts with pressure.

Figure 1.13: “Experimental (large open and closed circles, left and bottom
axes) and theoretical (small gray circles, right and top axes) Kataura plot. The
second transitions of semiconducting tubes ES22 and the first transitions EM11 of
metallic tubes are shown. The solid lines give the approximate 1/d dependence
of the transition energies. The dashed lines indicate the ‘V’-shaped branches,
where the chirality of a tube is related to its left neighbour (n1, n2) by (n′1,
n′2)=(n1–1, n2+2). In the experimental data, the assignment is given for the
first tube in each branch, where upright numbers indicate semiconducting and
italic numbers indicate metallic tubes. The semiconducting tubes are divided
into two families with ν=(n1–n2) mod 3= –1 (full circles, lower branches) and
with ν= +1 (open circles, upper branches).” Reprinted figure with permission
from [J. Maultzsch et al., Phys. Rev. B 72, 205438 (2005)] Copyright (2005) by
the American Physical Society.

Ghandour et al. [2013] gave an experimental example of achieving the GM

pressure coefficient of a specific chirality. This will be discussed in details in

Chapter 2.

Experimental data for many more chiralities is required in order to reliably

establish a relationship between the GM pressure coefficients and the tube chi-

ralites. Sun et al. [2014] reported the GM pressure coefficient of (6, 5) tubes,
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which are of similar diameter to the (9, 1) tubes discussed in Chapter 2. Un-

expectedly, the result is very different from the (9, 1) tubes and from the value

predicted by the thick − wall − tube model. It will be discussed in details in

Chapter 3.

In conclusion, we cannot yet give a clear answer what the GM pressure co-

efficient is, but we may expect to be able to, after obtaining sufficient chirality-

assigned data. At the same time, we need to quantify and understand the

exogenous effects such as the laser energy, PTM, doping and bundling on the

shift rates, based on variable controlled and of course chirality assignable exper-

iments. The summary of the current understanding of these effects is as follows.

First, the laser energy dependence of the GM pressure coefficient shown in Fig-

ure 1.7 can be explained that tubes of different chiralities are picked out at

different excitation energy. Therefore it is in fact the intrinsic tube chirality de-

pendence. It now makes sense as we do not expect the laser energy to have any

effect (only what affects the C − C bond shortening with pressure is expected

to have an effect). This however needs to be confirmed by measurements on

samples of a single chirality in the same conditions except the excitation energy.

Second, it was reported that PTM shift the transition energy [Ghandour et al.,

2012] and therefore the PTM effect in Figure 1.7 can be again interpreted as

the chirality dependence, as tubes of different chiralities are picked out in differ-

ent PTM, at the same excitation energy. The PTM should not affect the GM

pressure coefficient. Third, doping shifts the GM frequency at ambient pressure

but no evidence shows whether it affects the shift rates with pressure. And

fourth, understanding bundling effects is more complicated than all the above.

CNTs tend to form bundles [Bandow et al., 1998], which means that, if not

otherwise specified, all the reported results of GM pressure coefficients are of

CNTs bundles. Moreover, bundling effects on the GM pressure coefficient of the

tube picked out by RRS may vary with parameters such as the diameters of the

surrounding tubes, the bundling configuration (tangled, etc) and the degree of

bundling, which is affected by the sample concentration but cannot be precisely

controlled. On the other hand, surfactants stably disperse CNTs, which allows

to exclude the bundling effects and their uncertainties, while possibly introduces

surfactant effects (via the interaction between surfactant molecules and tubes).

Early work compared the GM shift rates of individual tubes dispersed by sur-

factants to the shift rates of bundles (see Figure 1.7) [Christofilos et al., 2007,

Lebedkin et al., 2006], but they were not assigned to a specific chirality. The

bundling effects will be discussed in Chapter 5.
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1.4 Double-wall Carbon Nanotubes (Not What

We Expect)

Here I briefly discuss the GM pressure coefficients of double-wall carbon nan-

otubes (DWCNTs). We expect the outer tube to behave similarly to a SWCNT

and the inner tube to be protected by the outer tube from external pressure,

because the strong sp2 bonds, compared with the soft C33 of graphite, leads to

only a small shrinkage of the outer tube under pressures in the gigapascal range.

However, Puech et al. [2006] reported the GM pressure coefficients of the inner

tube at 3.3, 4.1 and 5.1 cm−1GPa−1 in methanol-ethanol, oxygen and argon,

respectively, about 2/3 of the corresponding values of the outer tube. These

values vary with the PTM, even there is no contact at all between the inner

tube and the PTM. A possible explanation is that the π-electrons compressed

through the sp2 network of the outer wall may act as a PTM and this might

be a link to the type of PTM. To investigate the effect of π-electrons behaviour

on the pressure dependence of CNTs is the original motivation of our study of

graphite and graphene in Chapter 2.

To summarize, we expect the GM pressure coefficients of the outer tubes of

DWCNTs to be consistent with the value of the SWCNTs from the thick wall

tube model and the inner tubes to be close to zero. They do not appear to be,

but more data from tubes assigned to a specific chirality are required.

1.5 Resonance and Effects of Solvents

In this thesis I do not intend to discuss the pressure dependence of the RBM,

it is nevertheless necessary to mention it. The RBM, though related to the

GM, is a unique signature of CNTs [Rao et al., 1997]. Its vibrational frequency

is diameter-dependent and therefore of critical importance to the study of the

features, which are related to the tube structure, including the GM pressure

coefficients (see Chapter 3).

The RBM is derived from tube structure, first reported by Rao et al. [1997].

The frequency of RBM is proportional to the inverse tube diameter [Reich et al.,

2004], which is refined as

ωRBM =
c1
d

+ c2 (1.5)

where c1=215 cm−1nm and c2 was introduced to account for additional external

forces from environment [Maultzsch et al., 2005]. So if individual RBM peaks

are resolved, the pressure coefficients of RBM obtained in a high pressure mea-

surement can be assigned to tubes of specific chiralities without finely tuning the

excitation wavelength to make tubes of only one specific chirality in resonance,
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thereby dominating the spectrum.

In this section, I will introduce how the RBM is used to study the effects

of solvents on the CNTs resonance condition. A preferable way to present the

results is to plot the RBM peak intensity in different conditions, with excitation

energy and the RBM frequency. It has to be mentioned that when making the

chirality assignment of the RBM peaks according to the Kataura plot, we need

to consider both the first and second optical transition (E11 and E22). Telg

et al. [2007] gave an example for samples of several chiralities (see Figure 1.14).

According to the study by Cambré et al. [2010], solvent-filling effect shifted

not only excitation energy, but also the RBM frequency, as clearly shown in

Figure 1.15. Maultzsch et al. [2005] found small shifts in excitation energy

peaks for metallic and semiconducting tubes, but in opposite directions, when

the tubes were in two different surfactants. The Figure 1.16 by Ghandour et al.

[2012] shows that the effects of solvents and pressure on tubes of a specific

chirality are roughly orthogonal to each other — solvents shift the resonance

energy without shifting the RBM frequency (with exception of air) and pressure

shifts the frequency with only a slight shift in energy.

1.6 Summary

In this chapter, I review the study of the SWCNTs GM under pressure and

introduce how the following chapters fit into the big picture. For GM, we give

expectations for the pressure coefficients from its origin in graphite (the shift of

frequency with pressure is induced by the shortening of C − C bond) and the

tube structure (the thick−wall− tube model). Early studies have no consensus

on the value of the pressure coefficient. This emphasizes the importance of

chirality assignment in high pressure studies of the GM. For the future work,

we think the study of CNTs under pressure relies on high resolution Raman

spectroscopy equipped with a tunable laser, as RRS not only picks out specific

tubes but also significantly increases their Raman signals.
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Figure 1.14: “The plotted intensities are proportional to the Raman suscepti-
bility. Upper plots contain anti-Stokes(a) and Stokes(b) Raman spectra excited
resonantly via E11. Lower plots show anti-Stokes(c) and Stokes(d) spectra in res-
onance with E22.” Reprinted figure with permission from [H. Telg, J. Maultzsch,
S. Reich, C. Thomsen, Phys. Status Solidi (b) 244, 4006–4010 (2007)] Copyright
(2007) by John Wiley and Sons.
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Figure 1.15: The Raman-excitation maps of the first electronic transition of the
(5, 4) tubes. The sample used for the upper panes contains less open (solvent-
filled) tubes than the sample used for the lower ones. Reprinted figure with
permission from [Sofie Cambré et al., Phys. Rev. Lett. 104, 207401 (2010)]
Copyright (2010) by the American Physical Society.
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Figure 1.16: Data points corresponding to the RBM frequency and the exci-
tation resonance energy for HiPCO semiconducting nanotubes with the chiral
indices (m,n) labelled. The squares are for dry nanotubes in air; the down
triangles for sulphuric acid; the up triangles for hexane. The solid circles are
for bundled tubes in water and the open circles for unbundled in water with
surfactant. Data taken under the pressure of 2GPa is shown by the crosses (+)
for bundled nanotubes in water. The arrows show the shifts due to pressure.
After Figure 2 of Ghandour et al. [2012].
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1.7 Associated publications

Portions of the work detailed in this thesis have been presented in international

scholarly publications, as follows:

• Chapter 2: Section 2.1 was published in Proceedings in the Applied

Mathematics and Mechanics [Sun et al., 2013].

Section 2.2 and 2.3 were just accepted by Physical Review B (arXiv:1502.04323).

• Chapter 3: Published in Physical Review B [Ghandour et al., 2013].

• Chapter 4: Published in High Pressure Research [Sun et al., 2014].

• Chapter 5: This work was submitted to Journal of Physical Chemistry

C (arXiv:1411.5832).

• Chapter 6: Published in Proceedings in the Applied Mathematics

and Mechanics [Sun et al., 2013].

39



Chapter 2

Graphene and Graphite

Under Strain

This chapter demonstrates our study of the vibrational frequency of the in-plane

phonon modes of graphene and graphite under strain. I will start with a simple

one-dimensional ball and spring model to explain the marked sublinearity of the

experimental in-plane phonon pressure dependence of graphite, and then show

the problem in determining the relationship between strain and the phonon

frequency from a two-dimensional analysis. Finally and most importantly, I

will present our recent work introducing a quantified significant contribution

of out-of-plane compression to in-plane phonon frequency, which was entirely

ignored previously and might help to understand the vital environmental effects

on graphene.

2.1 One-dimensional Analysis

This section explains the sublinearity of the GM pressure dependence of graphite.

Because of the unavailability of large single crystals, the best estimation of

the elastic constants of graphite come from inelastic X-ray scattering techniques

[Bosak and Krisch, 2007]. These experiments gave the full Cij stiffness tensor,

with C11 = 1109, C33 ≈ 38.7, C12 = 139, C13 ≈ 0 and C44 = 4.95 GPa. For

an interlayer spacing of 3.35Å, in-plane 2D values of C11 = 423 and C12 = 49

Nm−1 may be used. This Cij tensor is consistent with the results from ab initio

Density Functional Theory (DFT).

The same experiments also detected the energies of all the phonons of graphite.

Knowing these energies allows for determining interatomic force constants. Us-

ing stretching, in-plane bending and out-of-plane bending (torsion) motions,
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Mohr et al. [2007] found that it is necessary to consider interactions up to the

fifth nearest neighbour, yielding a total of fifteen force constants. Of these, the

C-C stretch between the nearest neighbour is the dominant one, with a force

constant of 25.88 eVÅ−2.

In Raman spectroscopy, the G-mode (E
(2)
2g ) phonon at 1581 cm−1 is the

most important, as it is fully allowed and observed in all graphite, graphene and

CNTs. Hanfland et al. [1989] and subsequent authors have measured its pres-

sure coefficient of graphite, obtaining values of 4.7 cm−1GPa−1 with a marked

sublinearity. The question to answer is, if these values can be explained by the

theoretically or experimentally derived interatomic force constants discussed

above. The harmonic force constant for a C-C pair of atoms performing in-line

antiphase motion (bond stretching) corresponding to 1581 cm−1 is readily cal-

culated, and is 54 eVÅ−2. In the force constant model of Mohr et al. [2007],

this indicates that over half the force constant comes from elsewhere than the

stretching constant 25.88 eVÅ−2 between the nearest neighbour. However, only

nearest-neighbour potentials include the repulsive term due to atomic core over-

lap, and this is by far the fastest-changing term with atomic separation (e.g.

r−12 in the Lennard-Jones potential), so it might be expected that the pressure

coefficient would come largely from the increase of this stretching constant with

pressure. This increase is due to the shift of the bond length to smaller than its

equilibrium (at zero pressure) values when the pressure is increased and reflects

the aharmonicity of the bond stretching potential. The three-parameter Morse

potential fits ab initio theoretical data well. For the case of DFT data cor-

responding to the generalized gradient approximation (GGA) of the exchange

and correlation potential, Holec et al. [2010] explicitly show that the sp2 stretch

potential is well fitted by

E(r) = E0[(1− exp[−β(r − r0)])2 − 1] (2.1)

with E0=6.13 eV, β=1.85 Å−1 and r0=1.43 Å. These values correspond to a

k=∂2E/∂r2 of 42 eVÅ−2 and ωG=
√

2k/m/2πc = 1380 cm−1. Again one must

suppose other contributions to the G-mode force constant, and again supposing

them to be independent of pressure. We then obtain a pressure coefficient of 3.8

cm−1GPa−1, derived from pressure induced change in force constant, which is

rather low. Walther et al. [2001] reported MD modelling of carbon nanotubes

in water in which they used a Morse potential with parameters which gives a

still lower pressure coefficient. The sublinearity of the pressure dependence is

very small until we include the reduction in the in-plane force due to the large
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compression of the c-axis under pressure. We have

c33(P ) = c33 + Pc′33 ⇒ a33(P ) = a33(1 +
c′33P

c33
)
− 1

c′33 ⇒ F =
P

a33(P )
(2.2)

so that the in-plane biaxial force F on the graphene sheet is sub-linear with

pressure. The in-plane biaxial strain gives an atomic bond-length r(P) and

hence a spring constant k(P),

r(P ) = r0(1− F

c2D11 + c2D12
)⇒ k(P ) =

∂2E(r)

∂r2

∣∣∣∣
r=r(P )

(2.3)

The resulting expression for ωG(P ) is plotted in Figure 2.1. It is interesting

that the fit is poor if we let the other contributions required above to give

1580 cm−1 be pressure-independent; on the other hand, if we simply multiply

k by the factor 27/22 to obtain 1580 cm−1 then the whole curve ωG(P ) fits

the data very well with no free fitting parameters. A possibility is that GGA

usually underestimates bonding, which is responsible for the low frequency and

pressure coefficient, and therefore is likely the reason of the multiplication.

To summarise the understanding of the mechanical properties of graphite

which we will carry forward to a consideration of nanotubes, the elastic proper-

ties and the vibrational frequency of the G-mode are reasonably well-explained

by the known properties of the sp2-bonded structure, but it is less clear whether

the pressure-dependence of the G-mode is adequately accounted for in this way,

whereas the sublinearity comes from the relatively fast stiffening C33 under

pressure.

There is no reason to distinguish the elasticity and G-mode frequency of

graphene from graphite. Nevertheless, opposing results can be found in lit-

erature. Some authors reported a frequency of the G-mode to 1590 cm−1 in

graphene(e.g. Mohiuddin et al. [2009]) – while others did not (e.g. Nicolle

et al. [2011]). This discrepancy is attributed to effects of the environment,

but without a definitive explanation. A finer calculation requires taking both

GGA’s underestimation of bonding and pressure independent contribution of

other parts (bending and torsion) from Morse potential to the force constant

into consideration and possibly it will be necessary to invoke the behaviour of

the π-orbitals under pressure.

2.2 Two-dimensional Analysis

Strain, induced by compression or tension, modifies properties of graphene.

Strain determination and monitoring are therefore of critical application impor-
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Figure 2.1: “Hanfland et al. [1989]’s experimental data (black dots) of the GM
frequency of graphite under applied pressure, is plotted. The theoretical lines are
calculated as described in the text, when we take a) other contributions(bending
and torsion) to k pressure independent and then b) multiply k by the factor
27/22. In both a) and b) blue lines are without the stiffening of c33 with pressure,
and red lines are with c′33=10.3.” Adapted from Sun et al. [2013].
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tance and contribute to the characterization and understanding of graphene.

Strain is related to phonon frequencies, which can be directly obtained by exper-

iments. The analysis, rather naturally, is two-dimensional. Thus the frequency

shifts of the graphene E2g mode are considered as entirely induced by in-plane

strain.

Stacking graphene sheets forms graphite. The in-plane vibrational modes

E1u and E
(2)
2g of graphite are derived from the graphene E2g mode, and from

the two dimensional analysis, all these three modes are expected to have the

same shift rate [Thomsen et al., 2002, Mohiuddin et al., 2009, Reich et al., 2000,

Proctor et al., 2009, Ding et al., 2010, Sun et al., 2013] with in-plane strain. The

problem is that the shift rates are not the same. That is what we investigate here

by density functional theory (DFT) calculations Hohenberg and Kohn [1964],

Kohn and Sham [1965] of graphite under non-hydrostatic conditions.

Huang et al. gave the dynamical equations of the graphene optical phonon

modes E2g as [Huang et al., 2009]∑
β

Kαβuβ = ω2ua (2.4)

where u=(u1,u2) is the relative displacement of the two carbon atoms in the

unit cell, ω is the phonon frequency, and K is the force constant tensor, which

can be expanded in powers of strain as

Kαβ = K0
αβ +

∑
lm

Kε
αβlmεlm (2.5)

Kε
αβlm has only two independent elements because of the hexagonal lattice,

so Eqs. 2.4 and 2.5 may also be written as(
ω2
0 +Aεxx +Bεyy 0

0 ω2
0 +Bεxx +Aεyy

)(
u1

u2

)
= ω2

(
u1

u2

)
(2.6)

where A and B are the two independent elements of Kε
αβlm and ω0 is the unper-

turbed frequency. Thomsen et al. expressed the solution to the secular equation

of Eq. 2.6 with the Grüneisen parameter and shear deformation potential (SDP)

as [Thomsen et al., 2002]

∆ω

ω0
= γ(εxx + εyy)± 1

2
SDP (εxx − εyy) (2.7)

Eq. 2.7 makes explicit the two-dimensional nature of the analysis. The Grueneisen

parameter γ and the SDP are the two key parameters and a number of exper-

imental [Mohiuddin et al., 2009, Huang et al., 2009, Ni et al., 2008, Proctor
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Table 2.1: The Grüneisen parameter and SDP obtained from various exper-
iments and calculations of graphene. The values in square brackets are the
corrections by Ghandour et al. [Ghandour et al., 2013]

Experiments γ SDP
uniaxial strain(beam flexure) [Huang et al., 2009] 0.69[0.58] 0.38[0.435]
uniaxial strain(beam flexure) [Mohiuddin et al., 2009] 1.99[1.34] 0.99[1.31]
uniaxial strain(substrate stretch) [Ni et al., 2008] 1.5
hydrostatic pressure [Proctor et al., 2009] 1.99
hydrostatic pressure [Soldatov et al., 2012] 2.3

Calculations
uniaxial strain [Mohiuddin et al., 2009] 1.87 0.92
uniaxial strain [Mohr et al., 2009] 1.83 1.18
biaxial strain [Mohiuddin et al., 2009] 1.8
hydrostatic and shear strain [Thomsen et al., 2002] 2.0 0.66

et al., 2009, Soldatov et al., 2012] and theoretical [Mohiuddin et al., 2009, Mohr

et al., 2009, Thomsen et al., 2002] papers reported work on graphene under

strain to define their accurate values. The results are shown in TABLE 2.1. It

is worth noticing that Ghandour et al. pointed out that the transverse strain

εT=0 rather than εT=-νεL, where ν is the in-plane Poisson’s ratio and εL is

the longitudinal strain, in the case that uniaxial strain is applied by flexure of

a beam to which a graphene flake adhered [Ghandour et al., 2013].

For graphite, when two adjacent graphene layers are considered, we can

simply make two copies of Eq. 2.6, as


ω2
0 +Aεxx +Bεyy 0 C 0

0 ω2
0 +Bεxx +Aεyy 0 C

C 0 ω2
0 +Aεxx +Bεyy 0

0 C 0 ω2
0 +Bεxx +Aεyy



u1

u2

u3

u4

 = ω2


u1

u2

u3

u4


(2.8)

where C is added to account for the interlayer coupling. The longitudinal modes

are not coupled with the transverse modes, giving the zero elements. Eq. 2.7 still

applies and the weak interlayer coupling is usually neglected. Thomsen et al.

obtained the corresponding Grüneisen parameter as 2.0 [Thomsen et al., 2002],

from the experimental data of graphite under hydrostatic pressure [Hanfland

et al., 1989].

We are now able to demonstrate the problem more explicitly — if the fre-

quency shifts of the in-plane modes are induced by in-plane strain alone, as

shown in Eq. 2.7, for graphene, the shift rates of E2g with in-plane strain (there-

fore the Grüneisen parameter) should be the same no matter how the strain is

applied and for graphite, E1u and E
(2)
2g modes should have the same shift rates

as the graphene E2g, also no matter how the strain is applied (hydrostatic or
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biaxial). This is against the results shown in TABLE 2.1 and previous high

pressure studies on graphite — that is, E1u shifts faster than E
(2)
2g under hydro-

static pressure [Hanfland et al., 1989, Abbasi-Perez et al., 2014, Cousins and

Heggie, 2003].

The difference between them could be a consequence of the compression of

the π-electrons changing the in-plane bonds. To quantify this effect, we model

uniaxial strain and uniaxial stress along the out-of-plane c-axis, and hydrostatic

pressure. To describe the results, it is necessary to introduce a new parameter

γ′ to relate out-of-plane strain to its contribution to the shift of the in-plane

phonon frequencies.

The rest of this chapter employs DFT. Graphite was studied at 0 K using

DFT [Hohenberg and Kohn, 1964, Kohn and Sham, 1965] as implemented in the

Vienna Ab initio Simulation Package (VASP) [Kresse and Furthmuller, 1996].

The exchange-correlation effects were treated within the generalised gradient

approximation as parameterized by Perdew, Burke and Ernzerhof [Perdew et al.,

1996] and the projector augmented-wave method pseudopotentials [Kresse and

Joubert, 1999] for carbon were used. To reach highly accurate results, we used

900 eV plane-wave cut-off energy, and the reciprocal unit cell was sampled with

18x18x9 k-mesh. Van der Waals effects were included using the Grimme method

[Grimme, 2006] as implemented in the VASP code. The elastic properties were

evaluated using the stress-strain method [Yu et al., 2010]. The vibrational

frequencies at the Brillouin zone centre, the Γ point, were calculated using the

2×2×2 supercell employing the finite displacement method as implemented in

the Phonopy code [Togo et al., 2008].

First of all, we obtain the optimized geometry for unstrained graphite, as

the in-plane bond length of a = 1.42Å. and the interlayer distance of c = 3.20Å.

The errors relative to the experimental values [Hanfland et al., 1989] are 0.06%

and 4.6%. The vdW add-on is included, nevertheless the interlayer interaction

is not so well-described as the in-plane covalent bonding. The LDA calculation

(without vdW) usually gives a better agreement to the experimental value of

the interlayer distance, however this is considered to be a coincidence because

LDA is a local approximation which overestimates bonding. To minimize the

effects of calculating vdW inaccurately , we study the bond anharmonicity un-

der compressive strain, where the vdW attractive potential plays only a small

role compared to the dominant repulsion. The error in the value of interlayer

distance would not affect the phonon frequency shift rates with compressive

strain as much as it would under tensile strain.

We then model hydrostatic pressure on graphite by setting a smaller unit

cell volume than the unstrained, optimizing the geometry at that certain vol-

ume, and calculating the corresponding sp2 bond length, interlayer distance,
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pressure and phonon frequencies. The frequencies of the E1u and E
(2)
2g modes

of unstrained graphite are 1565.2 and 1559.1 cm−1, respectively. The errors

relative to the experiments are 1.4% and 1.3% [Hanfland et al., 1989, Nemanich

et al., 1977]. We assume that they are linked to the vdW attractive term and so

they would not affect the shift rates with compressive strain. Phonon frequen-

cies are plotted against pressure in Fig. 2.2, as is the standard for presenting

experimental data. And the pressure, now as a calculation output, is plotted

against the input here — the unit cell volume. (L) and (T) refer to two orthog-

onal in-plane vibrations, longitudinal and transverse. The frequency difference

between these two under hydrostatic condition is less than 0.4 cm−1 for both

E1u and E
(2)
2g and the shift rates of (L) and (T) with pressure are the same in the

case of the E1u and E
(2)
2g . Therefore, here and in the following calculation, we

treat the differnce between longitudinal and transverse modes as computational

error and will study the longitudinal modes alone as a representative. Linear

least square fits give the shift rates with compressive pressure up to 10 GPa at

5.3 and 4.3 cm−1GPa−1 for E1u and E
(2)
2g modes, respectively. No experimental

data for E1u exists and the shift rates for E
(2)
2g are 4.1–4.6 [Hanfland et al., 1989,

Liu et al., 1990, Sandler et al., 2003]. In the previous theoretical work, Cousins

et al. obtained 4.74 and 4.67 cm−1GPa−1 for E1u and E
(2)
2g modes [Cousins and

Heggie, 2003], while Abbasi-Pérez et al. [Abbasi-Perez et al., 2014] got 5.0 and

4.3 cm−1GPa−1. To summarize, the calculation results are reliable and rea-

sonable, with the shift rates with pressure comparable to previous work, with

observable sublinearity of the frequency shift due to the pressure dependence of

the elastic constant C33, and with the two in-plane modes degenerate when the

graphene layers are pulled apart. However, the problems are again the different

shift rates for E1u and E
(2)
2g with pressure, and the behaviour of the frequency

starting off vertically upwards with pressure (see FIG. 2.2). The latter point

implies that the pressure (force) may be inaccurately calculated under tensile

stress (pressure remains at about -2GPa when the unit cell volume keeps increas-

ing), where vdW plays an important part. We will resolve the former point and

we avoid the latter point by focusing on the compressive part.

Modelling non-hydrostatic condition helps to investigate problems found un-

der hydrostatic condition. The only study of graphite under non-hydrostatic

condition reported so far is that of Abbasi-Pérez et al.. They suggested that

the contribution to the shift of the in-plane phonon frequency from the out-of-

plane compression is so little that it can be neglected [Abbasi-Perez et al., 2014].

The following results do not agree with that.

We model uniaxial strain along the c-axis of graphite by varying the inter-

layer distance while fixing the in-plane geometry. The phonon frequencies and

out-of-plane stress are calculated at each interlayer distance and fixed sp2 bond
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Figure 2.2: (colour online) [Modelling] Graphite under hydrostatic pressure.

The frequencies of the graphite E1u and E
(2)
2g are plotted against pressure. The

pressures are plotted against the unit cell volumes at which they are calculated.
V0 is the unit cell volume of unstrained graphite. The linear fit of the phonon
frequencies at compressive pressure up to 10 GPa is presented as dashed lines,

black for E1u and blue for E
(2)
2g .
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Figure 2.3: (colour online) [Modelling] Graphite under uniaxial strain / stress

along the c-axis. The frequencies of the graphite E1u and E
(2)
2g are plotted against

out-of-plane stress in the case of uniaxial strain (a) and uniaxial stress (c). The
out-of-plane stresses are plotted against the interlayer distances at which they
are calculated, in the case of uniaxial strain (b) and uniaxial stress (d). The
linear fit of the phonon frequencies at compressive stress to about 10 GPa is

presented as dashed lines, black for E1u and blue for E
(2)
2g .

length. FIG. 2.3 (a) shows the shifts of the in-plane phonon frequencies against

out-of-plane stress along c-axis. In FIG. 2.3 (b), the stress as a calculation out-

put, is plotted against the input — the interlayer distance in this case. The shift

rates with stress up to about 10 GPa, by least square linear fits, are 0.8 and

-0.2 cm−1GPa−1 for E1u and E
(2)
2g , respectively. It is worth noticing that the

elastic constant C13, determining the Poisson’s ratio νzx, is poorly defined due

to the structural anisostropy of graphite, but can be considered to be close to

zero [Bosak and Krisch, 2007]. Our calculated C13 value is -10.5 GPa, and the

corresponding νzx is -0.024. Therefore, uniaxial compressive strain here induces

in-plane tensile stress. The degeneracy of the two modes can be again seen in

this case when the graphene sheets are pulled apart. The problem is that the

E1u and E
(2)
2g modes shift with opposite signs.

Next we consider uniaxial stress on graphite along the c-axis, by varying

the interlayer distance and optimizing the in-plane geometry at each interlayer

distance. The phonon frequencies, the out-of-plane stress and the sp2 bond
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Figure 2.4: (colour online) [Modelling] Graphite under uniaxial stress along c-
axis. The sp2 bond length is plotted against the interlayer distance, at which it
is calculated.

length are calculated at each interlayer distance. The effect of the negative

Poisson’s ratio can now be clearly illustrated in FIG. 2.4 as the in-plane bond

is also compressed as we compress along the c-axis. The amount, however, is

tiny. FIG. 2.3 (c) presents the in-plane phonon frequency against out-of-plane

stress and again the output stress is plotted against the input interlayer distance

in FIG. 2.3 (d). The shift rates with stress up to 10 GPa in this case are 1.3

and 0.3 cm−1GPa−1 for E1u and E
(2)
2g , respectively. The shift rate with uniaxial

stress for the E1u is about a quarter of the shift rate under hydrostatic stress;

this is large enough to be significant.

It is usual to present frequency against stress, because stress is considered as

input in experiments. However, the atomic positions (strain) determine proper-

ties such as phonon frequency, and it is therefore helpful to plot the frequencies

against strain. To be specific, for graphite, the shifts of the frequencies of the

in-plane modes E1u and E
(2)
2g are considered to be induced by in-plane strain. So

we plot the phonon frequencies against in-plane strain under hydrostatic and

non-hydrostatic conditions and then obtain the corresponding Grüneisen pa-

rameters γE1u and γ
E

(2)
2g

for the E1u and E
(2)
2g modes, respectively, according to

Eq. 2.7. Values for the two modes should be the same from the two dimensional

nature of Eq. 2.4–2.7.

In the case of uniaxial strain, the phonon frequencies for both modes shift

at fixed in-plane geometry. The Grüneisen parameters are hence γE1u=∞ and

γ
E

(2)
2g

=∞, according to Eq. 2.7.
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In the case of uniaxial stress, in FIG. 2.5 (a) we plot the in-plane phonon

frequencies against the sp2 bond length, which is calculated by optimizing the

in-plane geometry at each interlayer distance. The top axis of in-plane strain is

converted from the sp2 bond length by ε = (a−a0)/a0×100%, where ε is the in-

plane strain, a is the sp2 bond length and a0 is the sp2 bond length of unstrained

graphite. This is the same data as in FIG. 2.3. We apply a linear fit to the

data points under compression up to about 10 GPa (the same as in FIG. 2.3),

and obtain the shift rates ∂ωE1u
/∂ε=-152.00 cm−1/% and ∂ω

E
(2)
2g
/∂ε=-35.50

cm−1/%, which correspond to γE1u
=4.86 and γ

E
(2)
2g

=1.14.

In the case of hydrostatic pressure, in FIG. 2.5 (b) we plot in-plane phonon

frequency against the sp2 bond length, which is calculated by the geometry

optimization at each unit cell volume. The top axis of in-plane strain is con-

verted in the same way as before. The data is the same as in FIG. 2.2. We

apply a linear fit to the data points under compression up to about 10 GPa

(the same as in FIG. 2.2) and get the shift rates ∂ωE1u
/∂ε=-69.20 cm−1/% and

∂ω
E

(2)
2g
/∂ε=-56.59 cm−1/%, corresponding to γE1u

=2.21 and γ
E

(2)
2g

=1.81.

We present the Grüneisen parameters obtained in the case of uniaxial stress

and hydrostatic pressure in FIG. 2.5 and compare them to that of uniaxial strain

and those reported in TABLE 2.1. The values for the E1u and E
(2)
2g modes ob-

tained under hydrostatic condition are in good agreement with the most values

of the E2g mode of graphene presented in TABLE 2.1. Similar agreement has

been reported in the literature; this is the quantitative reason why the in-plane

phonon frequency shifts were considered as induced by in-plane strain alone

[Thomsen et al., 2002, Mohiuddin et al., 2009, Reich et al., 2000, Proctor et al.,

2009, Ding et al., 2010]. However, the difference between the values of the E1u

and E
(2)
2g modes grows and neither of the values agrees with the E2g of graphene,

under uniaxial stress, where the relative out-of-plane compression to in-plane is

considerably larger than it is under hydrostatic pressure. Under uniaxial strain,

where there is only out-of-plane strain, the difference of the frequency shifts can

be considered as infinity. The out-of-plane strain is responsible for the differ-

ence of the Grüneisen parameters for the E1u and E
(2)
2g modes. Regarding the

amount of the difference, to include the out-of-plane strain contribution to the

in-plane phonon frequency is desirable in the case of hydrostatic pressure (where

the ‘good agreement’ is actually with the presence of errors in TABLE 2.1) and

definitely necessary in the cases of uniaxial strain and stress.
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Figure 2.5: (colour online) [Modelling] Graphite under uniaxial stress along c-
axis (a) / hydrostatic pressure (b). The data in (a) is the same as in Figure 2.3
(c) and the data in (b) is the same as in Figure 2.2. Here the frequencies of the

graphite E1u and E
(2)
2g are plotted against in-plane sp2 bond length, which is

calculated at each interlayer distance (a) / unit cell volume (b). The top axis of
in-plane strain is converted from the sp2 bond length by ε = (a−a0)/a0×100%.
The linear fit of the phonon frequencies at compressive stress to about 10 GPa

is presented as dashed lines, black for E1u and blue for E
(2)
2g . The Grüneisen

parameters for both modes, obtained from the linear fit, are presented in each
case for comparison to the values in TABLE 2.1.
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2.3 Three-dimensional Analysis

To quantify this contribution, we suggest refining Eq. 2.8, as


ω2
0 +Aεxx +Bεyy +Dεzz 0 C + Eεzz 0

0 ω2
0 +Bεxx +Aεyy +Dεzz 0 C + Eεzz

C + Eεzz 0 ω2
0 +Aεxx +Bεyy +Dεzz 0

0 C + Eεzz 0 ω2
0 +Bεxx +Aεyy +Dεzz



u1

u2

u3

u4

 = ω2


u1

u2

u3

u4


(2.9)

where D and E are the additional two independent parameters. The solutions

of the secular equation of Eq. 2.9 are

ω2
(1) = ω2

0(E
(2)
2g ) + (A+B)× εin−plane + (D + E)× εzz

ω2
(2) = ω2

0(E
(2)
2g ) + (A+B)× εin−plane + (D + E)× εzz

ω2
(3) = ω2

0(E1u) + (A+B)× εin−plane + (D − E)× εzz
ω2
(4) = ω2

0(E1u) + (A+B)× εin−plane + (D − E)× εzz

where εxx is equated to εyy for all the three cases in this paper and C accounts

for the separation of the frequency of the E1u and E
(2)
2g modes of unstrained

graphite. For small shifts, ω2−ω2
0 ≈ 2ω0(ω−ω0), we now have a new parameter

γ′, relating out-of-plane strain to its contribution to in-plane phonon frequency

for Eq. 2.7 as

∆ω

ω0
= −γ(εxx + εyy)∓ 1

2
SDP (εxx − εyy)− γ′εzz (2.10)

where γ = (A + B)/2ω2
0 , γ′E1u

= (D + E)/2ω2
0 and γ′

E
(2)
2g

= (D − E)/2ω2
0 .

Alternatively, we can preserve the true hydrostatic term (εxx + εyy + εzz) as

∆ω

ω0
= −γ(εxx + εyy + εzz)∓

1

2
SDP (εxx − εyy)− (γ′ − γ)εzz (2.11)

We believe this out-of-plane contribution is mostly related to the compression

of the π electrons, which is beyond the picture of the force constant model.

Let us now return to Eq. 2.10. In the case of uniaxial strain, where the shifts

of the frequencies are entirely from the out-of-plane strain, we plot the in-plane

phonon frequencies against the interlayer distance — the calculation input, in

FIG. 2.6 (a) and fit the data under compression up to about 10 GPa (the same

as in FIG. 2.3 (a)). The top axis of out-of-plane strain is converted from in-

terlayer distance by ε = (a33 − a330/a330)× 100%, where εo is the out-of-plane

strain, a33 is the interlayer distance and a330 is the value of unstrained graphite.
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The shift rates for the E1u and E
(2)
2g modes are ∂ωE1u

/∂ε=-0.915 cm−1/% and

∂ω
E

(2)
2g
/∂ε=0.204 cm−1/%, corresponding to γ′E1u

=0.0585 and γ′
E

(2)
2g

=-0.0131,

according to Eq. 2.10. They are small, but non-negligible as the out-of-plane

strain is about 30 times larger than the in-plane strain under hydrostatic condi-

tion (the anisotropy of graphite) and can be even larger under non-hydrostatic

conditions. It is worth noticing that the in-plane phonon frequency cannot be

considered as an indicator of the in-plane bond stiffness in this case as the E1u

and E
(2)
2g modes, both representing the in-plane bond stiffness, shift with oppo-

site signs under out-of-plane compressive strain. Now we have quantified the

out-of-plane strain contribution by γ′, which is responsible for the separating

of the E1u and E
(2)
2g modes and then the in-plane γ can be the same in various

conditions for the two modes (and the E2g of graphene) as it should be from its

definition.

Finally, we calculate the refined value for the in-plane γ from Eq. 2.10, by

γ′E1u
and γ′

E
(2)
2g

obtained under uniaxial strain. For both modes, in the case of

uniaxial stress and hydrostatic pressure, we calculate the contribution to the

shifts of the frequencies from out-of-plane strain by γ′ and attribute the rest to

the in-plane strain. And from that we obtain the refined in-plane γ.

We plot the in-plane phonon frequencies against interlayer distance, which

is the calculation input under uniaxial stress in FIG. 2.6 (b) and calculated by

the geometry optimization at each unit cell volume under hydrostatic pressure

in FIG. 2.6 (c). The top axis of the out-of-plane strain is converted from the

interlayer distance in the way as mentioned above. The data is the same as in

FIG. 2.3 (c) and 2.2, for uniaxial stress and hydrostatic pressure, respectively.

We obtain the shift rates for the two modes at the same pressure range as

before. Under uniaxial stress, we obtain γE1u=1.84 and γ
E

(2)
2g

=2.01 from the

results shown in FIG. 2.5 (a) and 2.6 (b). Under hydrostatic pressure, the

values are γE1u=1.85 and γ
E

(2)
2g

=1.90, from the results shown in FIG. 2.5 (b)

and 2.6 (c).

The proposed Eq. 2.10 describes the graphite E1u very well, while the error in

the E
(2)
2g mode is due to the non-linear relationship between out-of-plane strain

and the shifts of the frequencies, as shown in FIG. 2.6 (a). This indicates a

more complicated relation of out-of-plane strain to in-plane phonon frequency,

when the two adjacent graphene layers vibrate in-phase (E
(2)
2g ) than out-of-phase

(E1u). We consider the refined value of the γE1u as a reliable one, relating in-

plane strain to in-plane phonon frequency of both graphite and graphene, which

excludes any out-of-plane contribution. An additional term to refine the non-

linear effect for the E
(2)
2g mode could be introduced but should await further

work — either initial experimental evidence or, theoretically, the evolution of
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Figure 2.6: (colour online) [Modelling] Graphite under uniaxial strain (a) /
uniaxial stress (b) / hydrostatic pressure (c). The frequencies of the in-plane

modes of the graphite E1u and E
(2)
2g are plotted against interlayer distance, which

is the calculation input in the case of (a)&(b) and is calculated at each unit cell
volume in the case of (c). The top axis of out-of-plane strain is converted from
interlayer distance by ε = (a33−a330/a330)×100%. The linear fit of the phonon
frequencies at compressive stress to about 10 GPa is presented as dashed lines,

black for E1u and blue for E
(2)
2g .
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the π-electrons may be visualized under compression to give a clearer picture of

the phenomenon to be quantified. Further analysis can also be done to study the

phase transition induced by the change of interlayer distance, which has clear

signs in the presented results, namely the significant drop of phonon frequency

in FIG. 2.3 (b), 2.5 (a) and 2.6 (b) under large compression.

As a result of this work, for existing [Abbasi-Perez et al., 2014, Pena-Alvarez

et al., 2014] or future study of in-plane phonon frequency of graphite under

uniaxial compression along c-axis, we suggest an additional contribution from

out-of-plane strain by γ′ and for the study of graphene, we suggest a reliable in-

plane γ, based on which the disparity in different cases (uniaxial/biaxial in-plane

strain, hydrostatic pressure, with/without substrate, etc.) can be attributed to

the behaviour of the π-electrons.

To summarize Section 2.2&2.3, we model uniaxial strain, stress along c-axis

and hydrostatic pressure on graphite and calculate the vibrational frequencies

of the in-plane modes derived from the graphene E2g mode. The shifts of the

frequencies come from both in-plane and out-of-plane compression. We quantify

the contribution from out-of-plane strain by a new parameter γ′ and therefore

refine the existing value of the Grüneisen parameter γ. This contribution is

responsible for the separating shifts of the E1u and E
(2)
2g modes of graphite under

hydrostatic pressure and therefore non-negligible, against previous conclusion.

It can be significant under non-hydrostatic condition. The reliable value of

the in-plane Grüneisen parameter can be used for strain calibration in various

applications and for further refinement of studying the π-electron behaviour.
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Chapter 3

The Diameter Effect on the

GM Pressure Coefficients of

Carbon Nanotubes

This chapter presents the experimental work employing Raman Spectroscopy

equipped with a wavelength-tunable laser to obtain the GM pressure coefficients

of SWCNTs, each assigned to a specific chirality and we explain the diameter

dependence of the GM pressure coefficients with a thick-wall tube model.

Studies of the mechanical properties of single-walled carbon nanotubes are

hindered by the availability mostly of ensembles of tubes with a range of di-

ameters. Raman spectroscopy with tunable excitation picks out identifiable

tubes. The pressure coefficient of the GM varies with diameter consistent with

the thick-wall tube model. Reappraisal of data for graphene and graphite sug-

gests revision of the G-mode Grüneisen parameter γ and the shear deformation

parameter β values towards 1.34.

Raman spectroscopy has been used extensively for investigating the struc-

tural, mechanical and vibrational properties of SWCNTs. The GM at about

1600 cm−1 derives from the bulk graphite in-plane E2g mode while the low-

frequency radial breathing mode (RBM) is a consequence of the tube structure.

The pressure dependence of these modes carries key information about the bond

anharmonicity and the mechanical strength of the curved graphene sheet. How-

ever, the Raman signal is highly resonant and nanotube samples usually contain

a large number of different diameters and chiralities, denoted by the chiral in-

dices (n, m). The Raman spectrum is dominated by those tubes for which the

excitation photon energy or the Raman photon energy match the electronic

transition energies Eii [Kataura et al., 1999, Fantini et al., 2004]. As well as
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shifting with pressure [Ghandour et al., 2012, Deacon et al., 2006] the electronic

transition energies are also highly sensitive to the nature of the solvent or hy-

drostatic PTM in which the nanotubes are immersed [Ghandour et al., 2012,

Deacon et al., 2006, Merlen et al., 2005]. The result is that different nanotubes

are in resonance, for any given laser excitation energy, in different solvents, and

with increasing pressure different tubes come in and out of resonance [Dunstan

and Ghandour, 2009]. As a consequence, unambiguous determination of the

pressure coefficients of the Raman peaks is complicated, and, most remarkably,

especially for the RBM, no clear difference between (solvent) filled and empty

tubes has yet been reported [Merlen et al., 2005].

A large body of published work has shown that resonant Raman spectroscopy

of carbon nanotubes at ambient pressure, in which both the RBM shift ωRBM

and the resonance energy Eii are measured, giving peaks on a two-dimensional

surface to which chiral indices (n, m) can be assigned. This work began with the

Kataura plot of theoretical Eii values against diameter for all (n, m) [Kataura

et al., 1999]. More recent experimental and theoretical work refined this plot so

that identification of many peaks from their (ωRBM , Eii) position is now un-

ambiguous [Maultzsch et al., 2005, Telg et al., 2007, Araujo et al., 2009, Fantini

et al., 2004]. Whilst the bulk of these studies concern unbundled nanotubes in

water with surfactant, different shifts have been observed with different surfac-

tants [Maultzsch et al., 2005], and the effect of filling open tubes with water has

also been reported [Cambré et al., 2010].

We have reported large shifts in the Eii co-ordinate of some (n, m) nanotubes

in the form of bundles in different solvents (water, hexane, sulphuric acid) and

in air [Ghandour et al., 2012]. In contrast, high pressure with water as the

PTM (solvent) gives a shift which is mainly in the ωRBM coordinate [Ghandour

et al., 2012]. This showed that solvent effects and pressure effects are distinct,

and opens the way to obtaining reliable pressure coefficients for each (n, m), not

only for the RBM mode but also for the G mode . To do this, it is necessary

to find a sparse region of the (ωRBM , Eii) map so that the G mode resonance

observed can be identified with the RBM resonance and hence with a specific

chirality or diameter. Here we demonstrate this by obtaining the RBM and

G-mode pressure coefficients for three peaks in the (ωRBM , Eii) map. Results

for the RBM agree well with previous authors. For the G-mode the results are

not as expected from the current interpretation of the pressure dependence of

the graphene and graphite equivalents of the GM — an issue which we address

here.

HiPCO SWCNTs (see Appendices) were used as bought (powder) from

NanoIntegris Inc., without debundling (see Appendices), in water as the PTM.

The spectra were obtained using a triple spectrometer (see Appendices) equipped
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Figure 3.1: “The RBM and G-mode spectra for the excitation energies and pres-
sures marked, offset vertically for clarity. The spectra under 1.75-eV excitation
(upper group) are assigned to the (9, 1) chirality, the spectra under 1.64-eV
excitation (middle group) to the (11, 0) and (10, 2) chiralities, and the spectra
under 1.53 eV (lower group) to the (12, 1) and (11, 3) chiralities.” Reprinted
figure with permission from [A. J. Ghandour et al., Phys. Rev. B 87, 085416
(2013)] Copyright (2013) by the American Physical Society.

with a Ti-sapphire laser over the excitation range 1.48 eV – 1.78 eV at intervals

of about 10 meV. At each excitation energy, Raman spectra were recorded over

the range 210 cm−1 - 320 cm−1 to capture the RBM peaks, and from 1500

cm−1 - 1700 cm−1 for the G-band spectra. The RBM spectra are fitted with

Lorentzian peaks (giving the positions ωRBM ), and the intensity of each peak

is plotted against the laser wavelength. The laser excitation energy giving max-

imum RBM intensity is taken as Eii for that peak. We presented the Kataura

plot thereby obtained, with the chiralities assigned by comparison with the re-

sults of Araujo et al. [2009, 2010] in Ghandour et al. [2012]. Given the chiralities

(n, m), the diameters are calculated as d = aπ−1
√

(n2 + nm+m2) where a =

0.246 nm is
√

3 times the C-C bond length. At laser wavelengths near 1.75

eV there is a single dominant peak in the RBM spectrum (Figure 3.1) that is

assigned to the (9, 1) chirality (d = 0.747 nm). At 1.64 eV the peak assigned to

the (11, 0) (d = 0.861 nm) and (10, 2) (d = 0.872 nm) chiralities dominates the

spectrum, and at laser wavelengths near 1.53 eV it is the (12, 1) (d = 0.981nm)

and (11, 3) (d = 1.000 nm) peak which dominates. At most other excitation

wavelengths there are two or more strong peaks in the RBM spectrum.

If there are two or more strong peaks in the RBM spectrum then the G-band

peak would contain contributions from both of the corresponding chiralities or

diameters. When a single RBM peak dominates the spectrum, it might be hoped
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that the G-band peak would be largely due to the same diameter tube. However,

resonances with Eii may occur with the outgoing Raman photon, and the effect

on the Raman intensity is the same [Fantini et al., 2004]. The resonance with

the Stokes Raman photon is shifted up in energy and the resonance with the

anti-Stokes Raman photon is shifted down relative to the resonance with the

excitation photon. For the RBM, the energies are too close to be resolved, and

this effect merely broadens and shifts the resonance by 10 – 20 meV (~ωRBM ).

However, for the G-mode of any given tube, this effect gives peaks about 200

meV (~ωGM ) apart in excitation energy. Consequently, any given excitation

energy may be in resonance with one tube for the excitation photon, giving

both the RBM and the G-mode Raman peaks of that tube, and it may also be

in resonance with the Raman (Stokes) G-mode photon of another tube, giving

the G-mode Raman peak but not the RBM peak for that tube. To determine

whether there may be other contributions of this sort to the G-mode peak when

we observe only one RBM peak requires considering where these resonances are

on the Kataura plot.

Figure 3.2 shows the Kataura plot for the RBM resonances for the HiPCO

nanotubes bundled in water in the range of excitation energies used [Ghandour

et al., 2012]. The predicted incident and Stokes resonances for the G-mode are

also shown. We see that the 1.53 eV excitation energy which excites the (12, 1)

and (11, 3) tubes risks slightly exciting the larger (10, 5) and (9, 7) tubes, but

not more in the G-band than in the RBM. The 1.64 eV excitation is close only

to the target (11, 0) and (10, 2) tubes. The 1.75 eV excitation, aimed at the (9,

1) tubes, comes close to exciting the Stokes photon resonance of the large (10,

5) and (9, 7), but is not on the peak. We consider below what the consequences

on the interpretation of our data would be if there were significant excitation

of these tubes via their G-mode Stokes Raman photon. At lower and higher

energies, there are no other tubes or Eii states giving resonances that would be

excited.

The pressure experiments were carried out in a DAC (see Appendices) oper-

ated in the Zen configuration (using a single diamond [van Uden and Dunstan,

2000], see Appendices), which permits good control over the pressure in the

range 0 – 2 GPa. The pressure was measured using the standard technique of

ruby photoluminescence [Mao et al., 1986]. The dependence of the RBM spec-

tra and the G-band spectra on pressure is shown in Figure 3.1 for the three

excitation wavelengths. The peak positions are plotted in Figure 3.3 with linear

least-squares fits to obtain the pressure coefficients. To estimate the errors due

to scatter, and also because the 2 GPa points may have increased error due to

the freezing of the water PTM above 1 GPa, least-squares fits to the data for

the three lower pressures are also shown.
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Figure 3.2: “The solid ellipses represent the observed RBM resonances for
HiPCO nanotubes bundled in water, reported in Ghandour et al. [2012]. The
expected resonances for the G-mode are shown by the open ellipses; for each
tube diameter the lower ellipse is for the resonance with the incident photon and
the upper ellipse for the resonance with the Stokes Raman photon. The lines
joining the upper and lower ellipses represent the non-zero intensity between
the two peaks.” Reprinted figure with permission from [A. J. Ghandour et al.,
Phys. Rev. B 87, 085416 (2013)] Copyright (2013) by the American Physical
Society.

Figure 3.3: “Shifts with pressure for (a) the RBM peaks, and (b) the G-mode
peaks, for the three excitation energies of Figure 3.1. The solid lines are linear
least-squares fits to the whole datasets, while the dashed lines are fits to the lower
three pressure points.” Reprinted figure with permission from [A. J. Ghandour
et al., Phys. Rev. B 87, 085416 (2013)] Copyright (2013) by the American
Physical Society.
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Figure 3.4: Pressure coefficients from Figure 3.3 plotted against the tube di-
ameters for the three excitation energies of Figure 3.1. In (a), the RBM data
(large circles) are compared with experimental results for bundled semiconduct-
ing tubes in ethanol/methanol (triangles) [Venkateswaran et al., 2003], unbun-
dled semiconducting tubes in water/surfactant (small solid circles) [Lebedkin
et al., 2006], and with the MD simulation results for unbundled semiconduct-
ing tubes in water from Longhurst and Quirke [2007] (open squares). In (b),
the GM data are plotted. The broken lines show the dependence on diameter
expected for the G+ and G− bands from Eq. 3.3 with the values for γ and
β given in Mohiuddin et al. [2009] and the solid lines show the results for the
revised values discussed in the text. For comparison, the pressure coefficients
of graphite (solid circle) [Hanfland et al., 1989] and graphene (solid triangle)
(revised value from the data of Mohiuddin et al. [2009] according to Eq. 3.2
with εT = 0) are shown, plotted at d = w. Reprinted figure with permission
from [A. J. Ghandour et al., Phys. Rev. B 87, 085416 (2013)] Copyright (2013)
by the American Physical Society.

In Figure 3.4, the pressure coefficients we measure are plotted against the

tube diameters, using solid circles for the fits to the lower pressure points and

open circles for the fits that include the 2 GPa data. Literature data for the pres-

sure coefficients of the RBM peaks of semiconducting SWCNTs is also shown.

Experimental data is for the RBM of bundled tubes in an ethanol-methanol

mixture from Venkateswaran et al. [2003] and the RBM of unbundled tubes in

water with surfactant from Lebedkin et al. [2006]. Simulation data is for molec-

ular dynamics (MD) of the RBM of isolated tubes in water from Longhurst and

Quirke [2007].

Here I will briefly discuss about the results of the RBM, as they are related

to the GM. A striking feature in Figure 3.4 (a) is the excellent agreement of our

RBM data with the data for semiconducting debundled tubes of Lebedkin et al.

[2006] and for the bundled tubes of Venkateswaran et al. [2003]. Previously,
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differences in reported pressure coefficients were attributed to consequences of

bundling (e.g. hexagonalisation under pressure [Venkateswaran et al., 2003]) and

to the different solvents used as PTM [Dunstan and Ghandour, 2009]. The good

agreement between bundled and unbundled tubes in water and unbundled tubes

in ethanol-methanol suggests that neither of these factors affects the pressure

coefficients. This is a surprising but useful result.

The RBM frequency has been related to the G-band frequency by Venkateswaran

et al. [2003] using a continuous elastic medium approximation and by Gerber

et al. [2009] using a simple ball-and-spring model. In both analyses good agree-

ment is obtained with the empirical dependence of ωRBM on diameter. Both

analyses imply a small RBM pressure coefficient of about 0.8 d−1cm−1GPa−1

where the tube diameter d is in nm (before correction for the thick-wall effect,

see Eq. 3.1 below), very much less than the values observed. The MD simu-

lations of Longhurst and Quirke [2007] explain this in terms of the interaction

between the (unbundled) nanotube and its environment by considering a nan-

otube surrounded by water molecules at high pressure. The vdW interaction

between the nanotube and the first shell of water molecules provides only a small

correction to the ambient-pressure RBM frequency, but the increase in the force

constant of this interaction with pressure gives the bulk of the RBM pressure

coefficient. This is a greater effect for low RBM frequencies (large tubes) than

for high (small tubes), giving the dependence of the pressure coefficient on the

diameter seen in Figure 3.3 (a). The good agreement of the data for bundled

tubes in water, unbundled tubes in water and surfactant, and bundled tubes

in ethanol-methanol suggests that the increase in the force constant of the in-

teraction between the nanotube and its environment is similar in all cases. It

would seem that the same RBM pressure coefficient (within experimental error)

is obtained by the stiffening of the inter-nanotube vdW interaction in nanotube

bundles as by the stiffening of the water (or surfactant) vdW interaction with

unbundled tubes.

The GM pressure coefficients in Figure 3.4 (b) are remarkably low – in

this low-pressure range, values up to 8 or 10 cm−1GPa−1 have commonly been

reported [Dunstan and Ghandour, 2009] – and vary quite fast with diameter.

The dependence on diameter may be understood by considering the nanotube

as a thick-walled closed tube under external pressure P [Sandler et al., 2003,

Elliott et al., 2004]. For an outside diameter of d + w and an inside diameter

of d − w, with d > w, the axial and tangential stresses are greater than the

pressure P,

σL =
(d+ w)2

4dw
P, σT =

d+ w

2w
P (3.1)
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These are unequal, so to predict the pressure coefficient we require both the

hydrostatic and the shear deformation parameters (mode Grüneisen parameters)

γ and β. These are available from the experimental data of Mohiuddin et al.

[2009] who studied the Raman G-band in graphene as a function of uniaxial

strain, obtained by flexure of a beam to which a graphene flake adhered. Under

uniaxial strain, the G-band splits into two components, G+ and G−. Dropping

unnecessary notation and combining their Eq. 3 with their experimental results,

they gave

ωG
±

εL =
∂ωG

±

∂εL
= −2125∓ 1045cm−1 = −ωG0 γ(εL + εT )± 1

2
ωG0 β(εL− εT ) (3.2)

where εL is the longitudinal strain imposed on the graphene flake by the

curvature of the substrate beam. They used the Poisson ratio ν = 0.33 of the

substrate to obtain the transverse strain εT = νεL, and, using the experimen-

tal value of ω0 = 1590 cm−1 for the GM frequency at ambient pressure, they

obtained the G-mode parameters as γ = 1.99 and β = 0.99. The hydrostatic

strain coefficient of graphene under hydrostatic pressure P is ωG
±

ε = 2ω0γ =

6340cm−1, which, with (s11 + s12)−1 = 1250GPa, corresponds to ωG
±

P =

5.07cm−1GPa−1 in good agreement with experimental values for graphite [Han-

fland et al., 1989]. However, using εT = −νεL for the transverse strain is incor-

rect. For a thin beam in flexure, as the tensile part above the neutral plane tries

to contract laterally and the compressive part below tries to expand, anticlastic

curvature develops. Only if the anticlastic curvature is completely unconstrained

is εT = νεL. Otherwise, if the anticlastic curvature is constrained by the beam

aspect ratio [Timoshenko and Goodier, 1970] or by the loading contacts, there

may be little or no transverse strain – i.e. this may be better treated as a plane

strain problem [Timoshenko and Goodier, 1970]. Taking this limiting case and

putting εT = 0 in Eq. 3.2, gives γ = 1.34 and β = 1.31, or to experimental

accuracy, γ ∼ β ∼ 4/3. Then the predicted pressure coefficient for graphene

and graphite from the experimental data of Mohiuddin et al. [2009] becomes

3.40 cm−1GPa−1. For the nanotube, using Eq. 3.1 for the axial and tangential

stresses under a pressure P and taking ν = 0.13 = -s12/s11, s11 + s12 = 1/1250

GPa as in Mohiuddin et al. [2009], the strains and the pressure coefficients of

the G± bands are given by
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εL = s11σL + s12σT , εT = s12σL + s11σT

εH = εL + εT , εS = εL − εT

ωG
±

P = ω0γεH ∓
1

2
ω0βεS

(3.3)

These curves are plotted in Figure 3.4 (b) against d for w = 0.36 nm for

the values of γ = 1.99 and β = 0.9918 (broken curves) and these do not agree

with the data. They are plotted also for the revised values of γ = 1.34 and

β = 1.31 (solid curves) and these show good agreement with the data, within

experimental uncertainty. In these fits we have not taken into the effect of the

wall curvature on the Raman frequencies or pressure coefficients [Aguiar et al.,

2012].

Here we should consider also the possible consequence of Figure 3.2, that

there may be some contribution to the G-band of the nanotube diameters that

we ruled out above. Clearly, if the G-band was always given equally by all nan-

otube diameters, its pressure coefficient would not vary with excitation energy.

Since it does, the observed values must be attributed to the different diameters.

However, it is possible that the pressure coefficient we attribute to the (12, 1)

and (11, 3) tubes (d = 0.98 nm) with 1.53 eV excitation comes partly from

the tubes with diameters up to 1.1 nm. This would improve the agreement in

Figure 3.4 (b) between the observed and calculated values.

These results are surprising. With the maximum revision for plane strain

of the result of the uniaxial experiment of Mohiuddin et al. [2009] we have

good agreement between their data and the data for nanotubes under high

pressure. On the other hand, these results are in sharp disagreement with data

for graphene and graphite under high pressure, where much higher pressure

coefficients are reported. Initial experiments on graphene under hydrostatic

pressure [Proctor et al., 2009] gave the GM peak shifts as a function of strain /

pressure that were consistent with DFT calculations [Mohiuddin et al., 2009] and

simple mechanical models assuming that the Raman peak shifts are due entirely

to the bond stiffening when the C-C distance decreases. However, more recent

experimental results [Nicolle et al., 2011] showed the graphene GM pressure

coefficient varying from 8–11 cm−1GPa−1 according to the choice of PTM, as

observed in nanotubes. If a significant part of the G-mode pressure coefficient

derives from interaction with the environment, then it is noteworthy that the

uniaxial stress experiment on graphene and nanotubes under pressure (whether

bundled or unbundled) have condensed matter (solid or liquid) in contact with

one side only of the graphene sheet. In contrast, graphene under pressure and

graphite both have condensed matter (solid or liquid) in contact with both sides
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of each graphene sheet. Why and by how much environment can affect the C-

C bond stiffening under pressure are unclear and without speculating on the

origin of the environmental effect, there is scope for it being twice as large in

this case. This requires that a significant part of the graphite pressure coefficient

is due to interactions between the graphene sheets (each sheet serving as part

of the environment of its neighbours). This interpretation also predicts that

open tubes which fill with PTM will display a higher pressure coefficient than

expected from the data for closed tubes (but independent of diameter). This

may explain why no clear difference has been reported between closed tubes,

with pressure coefficients raised by the thick-wall effect (Eq. 3.1), and open

tubes [Merlen et al., 2005].

In pressure experiments on double-walled nanotubes [Puech et al., 2006], the

inner tube has condensed matter on one side only, while the outer tube has it on

both sides. The pressure coefficients of the inner tubes (3.3–5.1 cm−1GPa−1)

are consistently much lower that those of the outer tubes (5.8–8.6 cm−1GPa−1)

[Puech et al., 2006]. The data were interpreted in terms of the intertube pres-

sure, but the data are also consistent with the environmental effect suggested

here.

In conclusion, the data reported here utilise tunable laser excitation to ob-

tain the first reliable pressure coefficients for both the Raman modes of bundled

single-walled carbon nanotubes that may be assigned to chirality and diame-

ter. Experimentally, it is clearly urgent to find the GM pressure coefficients for

nanotubes for a larger range of diameters, in different solvents, and for open

tubes as well as closed. The results for the RBM show that the increase in

the force constant of the interaction between the nanotube and its immediate

surroundings at high pressure occurs in a similar manner for tubes surrounded

by other nanotubes, surfactant or solvent. The results for the G-band are un-

expected and have stimulated a correction of the available data for graphene.

Theoretically, they suggest the calculation ab initio of graphene, when the π-

orbitals are compressed by an adjacent graphite layer or PTM on one side and

on both sides. This study represents a major step forward to achieving a unified

understanding of the characteristics of graphene-based structures under stress

and gives clear guidance as to what further studies are necessary to complete

this understanding.
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Chapter 4

The Chirality Effect on the

GM Pressure Coefficients of

Carbon Nanotubes

Following the work in Chapter 3, we intend to obtain the GM pressure coefficient

of (6, 5) tubes as a supplement. Unexpectedly, due to the significant chirality

effect this work develops to the whole chapter.

Here we use 488 nm and 568 nm laser Raman spectroscopy under high pres-

sure to selectively follow evolution of Raman GM signals of SWCNTs of selected

diameters and chiralities ((6, 5) and (6, 4)). The GM pressure coefficients of

tubes from the work in Chapter 3 are consistent with the thick-wall tube model.

Here we report the observation of well-resolved G− peaks in the Raman spec-

trum of SWCNTs in a DAC. The pressure coefficients of these identified tubes in

water, however, are unexpected, having the high value of over 9 cm−1GPa−1 for

the G+ and the G−, and surprisingly the shift rates of the same tubes in hexane

have clearly lower values. We also report an abrupt increase of G− peak width

at about 4 GPa superposed on a continuous peak broadening with pressure.

In Chapter 3, we only reported the G+ peaks. The GM splits in carbon

nanotubes into the G+ and the G−, distinguished by their different in-plane

vibrational directions, along and perpendicular to the tube axis, respectively,

and split by the curvature of the tube wall [Jorio et al., 2002]. The G− has been

observed by many groups. Thomsen et al. [1999] used 514 nm laser excitation to

record the GM spectra of arc-discharge-grown SWCNTs samples of diameters

ranging from 1.2–1.5 nm. Using a 4:1 methanol-ethanol mixture under pres-

sure, they reported pressure coefficients of 3.7 cm−1GPa−1 for both of the two

G− peaks they found in the spectra. Venkateswaran et al. [2001] recorded the
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GM spectra of purified arc-discharge-grown SWCNTs samples (bucky paper) of

diameters ranging from 1.2–1.5 nm also with 514 nm laser and 4:1 methanol-

ethanol mixture, obtaining three G− peaks with pressure coefficients of 6.1, 5.7

and 5.9 cm−1GPa−1, from higher to lower G− frequency respectively. Christofi-

los et al. [2006] performed high pressure measurements on SWCNTs material

with a diameter distribution from 1.25–1.47 nm in 4:1 methanol-ethanol, with

a 647 nm laser, obtaining two G− peaks with pressure coefficients of 5.9 and

5.8 cm−1GPa−1, respectively, from lower to higher frequency. Lebedkin et al.

[2006] studied HiPCO SWCNTs with diameters of 0.8–0.13 nm in water with

surfactant. Their G− peaks were too weak to analyze with all three excitations,

514, 633 and 785 nm laser, used in their work. Here we report the pressure co-

efficients for both the G+ and the G−, of tubes assigned to a specific diameter

and chirality in water and compare them with the values in hexane.

Besides shifting GM frequency, pressure ovalizes and then squashes tubes.

One might expect a broadening of the curvature-sensitive G− mode due to

the continuously varying curvature along the tube wall in an oval phase and

a splitting in a collapsed phase [Aguiar et al., 2012]. Here we also report the

experimental broadening of the G− of a specific chirality with pressure.

Room temperature non-polarized Raman spectra were obtained in the backscat-

tering geometry with a Horiba T64000 Raman system (see Appendices) with

a confocal microscope in the single mode, a 1800 grooves/mm grating and a

100-µm slit. The system is equipped with a liquid N2-cooled CCD detector

(Jobin-Yvon Symphony) and has a resolution of 0.6 cm−1. Excitation was at 488

nm (equipped with a laser edge filter (see Appendices)) and 568 nm (equipped

with a 550 nm Longpass Colored Glass Filter (see Appendices)) lines of a Co-

herent Innova Spectrum 70C Ar+-Kr+ laser, with 514, 520, 531, 647 nm lines

also available. It was focused in the DAC with a 20× objective. We kept the

power on the sample below 5 mW to avoid laser-heating effects on the probed

material and the concomitant softening of the observed Raman peaks. For the

high pressure experiments we used a membrane diamond anvil cell (MDAC)

(see Appendices) with two diamond anvils of 500 microns of culet size and a

very low fluorescence (Type IIa).

We use water and hexane as pressure media in this work, one polar and the

other non-polar. It is necessary to take advantage of the established Kataura

plot to indentify tubes of a specific diameter for a GM spectrum Kataura et al.

[1999], as we did in Chapter 3. The Kataura plot has been refined by several

groups Maultzsch et al. [2005], Araujo et al. [2010].

CoMoCAT SWCNTs, grown on a silica support with a low mass ratio of Co

to Mo, are used as purchased from Sigma-Aldrich Co., without debundling. We

choose CoMoCAT tubes for their small diameter (0.8 nm) and narrow range
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of diameter distribution(±0.1 nm). In the raw sample powder, carbon is over

90%, in which SWCNTs are over 77% and among the tubes the (6, 5) ones are

over 50%, where all the percentages are in mass. There are two main reasons to

study bundles in this work: 1) the previous study on the relation between GM

pressure coefficient and tube diameter, which we want to compare with, was

on bundles. 2) Individualization and surfactant effects are not experimentally

separable in water, so the surfactant effect itself on the electronic transition

energy Eii and the GM pressure coefficient of tubes is still unclear.

Carbon nanotubes samples usually contain a number of different chiralities,

denoted by the chiral indices (n, m). The diameter is given by d= a
π

√
n2 + nm+m2,

where a is related to the C-C bond length. The Raman spectrum is dominated

by the contribution from tubes when the in-coming laser or out-going Raman

photon energy matches the electronic transition energy Eii of these tubes. The

Kataura plot gives Eii against diameter for all (n, m) [Kataura et al., 1999].

Taking advantage of the Kataura plot, we are able to obtain the Raman spec-

trum dominated by the GM of a specific chirality at a certain laser excitation

energy, which is equal to or 200 meV higher (corresponding to the phonon energy

of GM) than the Eii of that tube (see chapter 3).

In this study a perfect resonance condition is not necessary as we are still able

to trace the GM of specific diameters under pressure because of the properties

of the CoMoCAT samples and so instead of a continuously tunable laser, we

perform the measurement with a selection of discrete laser energies.

In water, we use 514, 520, 531 and 568 nm laser to record the RBM spectra

and get one dominant peak only with 568 nm, which can be assigned to the (6, 5)

tubes according to the Kataura plot and the sample property. We also check the

RBM spectra with 647 nm (about 200 meV below) and find no dominant peak,

suggesting that the contribution from (6, 5) tubes dominates the GM spectra

obtained with 568 nm laser. In hexane, we obtain the GM of (6, 5) tubes at

the excitation of 488 nm, following the same procedure as in water. Figure 4.1

shows clear G+ and G− peaks of (6, 5) in hexane and two well-resolved G−

peaks in water, as the resonance condition for (6, 5) tubes in water with 568

nm laser is not perfect. These are assigned to (6, 5) and (6, 4) according to

their transition energies and G− frequencies [Maultzsch et al., 2005, Jorio et al.,

2002].

After selecting a suitable laser energy, we increase the pressure on the sam-

ples and obtain their GM spectra, ranging from 1400 cm−1 to 1800 cm−1, every

0.5 GPa in the low pressure regime, followed by a gradual increase of intervals

up to the 10th pressure point. We present several raw spectra under pressure

in Figure 4.1. The Raman intensity decreases with pressure and as a result, in

water, the G− peak of (6, 4) tubes can no longer be resolved above 2.5 GPa. We
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fit the Raman peaks by Lorentzian peaks, and plot the frequencies as a function

of pressure in Figure 4.2. We stop fitting the G− of (6, 4) tubes when the peak

can hardly be seen at 2.4 GPa. It is worth noticing that the G+ in Figure 4.2

a) is contributed by both (6, 5) and (6, 4) tubes. The pressure coefficients are

obtained by linear least-square fits and then plotted as a function of diameter

in Figure 4.3, along with our previous data and the theoretical predictions from

the thick-wall tube model in Chapter 3.

Before discussing the results of the GM pressure coefficients, the hydrostatic-

ity of the PTM needs to be considered. Water solidifies at 1 GPa and undergoes

a further transition at around 2 GPa, and hexane transforms to solid at around

1.4 GPa and there is an evidence of further transition at 9.1 GPa Liu et al.

[2006], Kavitha and Narayana [2007]. This can lead to non-hydrostatic pressure

conditions, the effect of which might vary from one experiment to another. We

record the variation of the full width at half maximum (FWHM) of the ruby

R1 line, and find that the width in water stays around 0.59 nm until 8 GPa. In

contrast, it starts to increase at 2 GPa in hexane. Here we consider that there

is only a small non-hydrostatic effect on the pressure coefficients in hexane be-

cause the data after 2 GPa (Figure 4.2 (b)) stays on much the same line as that

below 2 GPa. The error bars of pressure should be obtained by measuring the

ruby pieces at several different positions. We did not do this in this experiment.

The results are striking, in terms of the followings. First, all the GM pressure

coefficients are too high to be within the range of the thick−wall− tube model.

Second, at 568 nm in water, the G+ shift rate of a tube should be a lower than

the G− according to the thick−wall− tube model, whereas the G+ shift rate of

the (6,4) and (6,5) mixture appears to be higher than either of the G− peaks.

Third, the pressure coefficients obtained in hexane are clearly lower than the

ones in water, suggesting a strong solvent effect on the GM pressure dependence,

which is not expected as the GM shift with pressure is considered to be mostly

induced by the decrease of the C-C bond length [Gerber et al., 2009] Ironically,

solvent effects on the RBM pressure dependence have not been reported where

it might be expected to be strong as the RBM shift with pressure is mostly

induced by the decrease of the interlayer distance between the tube wall and

the absorbed fluid shell around [Longhurst and Quirke, 2007, Ghandour et al.,

2013] Except for these surprises, the results make sense in a higher shift rate of

G− than G+ for (6, 5) in hexane. And in water the pressure coefficient of G−

from (6, 5) is higher than the one from (6, 4) as expected.

Since the diameter of (6, 5) tubes are very close to the diameter of (9, 1)

tubes, the pressure coefficient of which in water from Chapter 3 is also plotted

in Figure 4.3, the very different values of these two suggest a strong effect other

than diameter. The chirality is the key difference but how it affects the shift
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Figure 4.1: “The raw Raman spectra of the GM obtained a) in water with
568 nm laser excitation and b) in hexane with 488 nm laser excitation, under
different pressures (labeled) are presented.” Adapted from Sun et al. [2014].
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Figure 4.2: “The GM frequencies from the spectra obtained a) in water with 568
nm laser excitation and b) in hexane with 488 nm laser excitation, are plotted
against pressure. In a), the blue, red and black points correspond to the G+ of
the mixture, the G− of (6, 5) tubes and the G− of (6, 4) tubes. In b), the red
and black points correspond to the G+ and G− of (6, 5) tubes only.” Adapted
from Sun et al. [2014].
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Figure 4.3: The pressure coefficients of carbon nanotubes are plotted against
their diameters. The solid lines are for the values predicted by the thick-wall-
tube model. The colour red is for the G+ and the blue is for the G−. The
experimental data is presented as labelled. The data of (9, 1), (11, 0) and
(12, 1) tubes are from Ghandour et al. [2013] and the others are from Sun
et al. [2014], with the corresponding laser excitation wavelength labelled. Solid
symbols are for the data obtained in water and open symbols are for in hexane.
The ‘mixture G+’ refers to the mixture of (6, 5) and (6, 4) tubes. After Figure
3 of Sun et al. [2014].
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Figure 4.4: “The FWHM of the (6, 5) GM from the spectra obtained in hexane
with 488 nm laser excitation is plotted against pressure.” Reproduced from Sun
et al. [2014].

rates remains unknown at the moment.

With the presence of the G− peak of tubes of a single diameter in a high

pressure experiment, we are able to monitor the change of the tube shape in-

duced by high pressure, by plotting the G− width against pressure in Figure

4.4. As the G− is very sensitive to the curvature of the tube wall, it is reason-

able to predict a broadened G− peak in a circular phase (continuous curvature)

and a split peak in a collapsed phase (discrete curvature) [Aguiar et al., 2011].

Under the current resolution, the abrupt increase of the G− width might be

interpreted as the splitting and thus implies the collapsing of a tube. The width

of G− peak is now available, as a direct probe of the shape status. However,

firm conclusions can only be based on results with a higher resolution and with

consideration of bundling effects. In particular, Christofilos et al. [2007] sug-

gested that intertube interaction enhanced the deformation processes, which, as

mentioned before, would broaden or split the G− peak.

In this chapter, we probe the pressure response of (6, 5) and (6, 4) tubes,

by using laser of proper energies, which meet the resonance condition of these

tubes in a sample of a narrow diameter distribution, to follow their G+ and

G− under pressure. The striking GM pressure coefficients of (6, 5) and (6, 4)

tubes strongly suggest that the shift is not only affected by the diameter and

rise a question here — if chirality matters, how it would affect the shift rate. An

unexpected clear solvent effect on the GM pressure dependence is also reported,

which is contradict to the current understanding. Finally, the broadening of the
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G− might be interpreted as the change of the tube shape, but firm conclusions

require better-resolved Raman peaks.
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Chapter 5

The Effect of Bundling on

the GM Pressure

Coefficients of Carbon

Nanotubes

This chapter focuses on one of the very important exogenous effects on the

GM pressure coefficients — the bundling effect, via Octadecylamine (ODA)

functionalized tubes. One key point here is that for the first time we exclude

the bundling effect without introducing a new one (from surfactant or functional

group).

The study of the GM pressure coefficients is hindered by the availability of

carbon nanotubes samples only as bundles or isolated with surfactants. ODA

functionalized carbon nanotubes are mostly of a single diameter and can be sta-

bly dispersed in 1, 2-dichloroethane (DCE) and chloroform without surfactants.

Here we perform high pressure Raman spectroscopy on these tubes and obtain

their experimental GM pressure coefficients for individual tubes and bundles.

The G+ pressure coefficient for bundles is only about half of that for individual

tubes in DCE and is about two-thirds in chloroform. The G− pressure coef-

ficient for bundles is about one-third of G+ in DCE and about the same in

chloroform. These results for the first time provide unambiguous experimental

evidence of the significant effect of bundling on carbon nanotubes’ GM pressure

coefficients, identifying it as one of the major reasons for the lack of consensus

on what the values are in the literature.

As well as intrinsic effects such as diameter (Chapter 3) and chirality (Chap-
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ter 4), the pressure dependence of the GM can be affected by exogenous effects,

such as bundling, due to the vdW interaction between the tubes within a bun-

dle. CNTs tend to form bundles [Bandow et al., 1998]. Moreover, bundling

effects on the GM pressure coefficient of the tube picked out by RRS may vary

with parameters such as the diameters of the surrounding tubes, the bundling

configuration (tangled, etc) and the degree of bundling, which is affected by the

sample concentration but cannot be precisely controlled.

On the other hand, surfactants stably disperse CNTs, which allows to ex-

clude the bundling effects and their uncertainties, but possibly introduces sur-

factant effects (vdW interaction between the ambipolar surfactant molecules

and CNTs). Researchers compared the GM shift rates of individual tubes to

the ones of bundles Christofilos et al. [2007], Lebedkin et al. [2006]. Again, in

literature most research on tubes individualised by surfactants were done on

samples of mixed diameters and reported varied values of GM pressure coeffi-

cients (see Figure 1.7).

Functionalized CNTs provide an alternative approach to study the GM pres-

sure dependence, excluding both the diameter effects and the relatively strong

vdW interaction between tubes or between tube and surfactants, and that is

the approach we use here, with ODA functionalized tubes. The functional

groups are expected to keep the tubes apart in solution and deter bundling, by

steric hindrance (see Figure 5.1), while having themselves much less effect on

the tubes than surfactant molecules since they are bonded to only one carbon

in the order of a hundred. Venkateswaran et al. [2001] first studied the pres-

sure response of ODA functionalized tubes. However, they used ODA tubes in

solid (powder) form, which are still bundles (albeit small bundles). No further

pressure experiments have been reported on ODA tubes since then. Here we

carry out a complete and systematic study, clearly exposing the advantages and

disadvantages of using such tubes.

The typical bundle diameter of the solid form of ODA functionalized tubes is

2–8 nm while the length is 0.5–1 µm, which Donovan and Scott [2012] considered

to be a very low degree of bundling. They can be stably dispersed in certain

organic solvents, such as DCE and chloroform, without the aid of surfactants. In

fact, DCE disperses well even non-functionalized SWCNTs after sonication (this

can be imaged by STM techniques [Venema et al., 2000]), but the dispersion

does not persist long enough for a series of Raman measurements under pressure

[Venema et al., 2000]. The steric hindrance caused by the functional group

coverage of SWCNTs between 1.8 and 3.2 ODA chains per nanometre stabilizes

the suspension [Donovan and Scott, 2013]. It must be noted that as a result of

acid treatment during the ODA functionalization, the caps at the end of tubes

are removed [Niyogi et al., 2002] and this raises the issue, whether the PTM can
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Figure 5.1: A scheme of an ODA functionalized CNT.

enter freely into the tubes. The density of states is largely disrupted [Chen et al.,

1998] and therefore no resonance condition applies. This has the advantage

that the contribution of CNTs in a given sample to the Raman spectrum is

independent of the laser excitation wavelength.

It would be outside the scope of the work reported here to provide a clear

answer to what the GM pressure coefficients should be, out of the various values

reported in the literature. However, these experiments do present unambigu-

ous experimental evidence, for the significant contribution that bundling alone

makes to the pressure coefficients, by comparisons between tubes individualized

without surfactants and bundles in DCE and chloroform.

The ODA functionalized tubes were used as purchased from Carbon Solu-

tions, who synthesized them by the arc discharge method, and functionalized

them with ODA following a nitric acid treatment [Chen et al., 1998]. The man-

ufacturer specifies that the carbonaceous purity is over 90%, in which SWCNTs

loading is 65%±15%, determined by solution-phase near-IR spectroscopy [Itkis

et al., 2003]. When first synthesising ODA tubes by this route, Chen et al. [1998]

reported a single radial breathing mode (RBM) Raman peak at 170 cm−1 in

CS2, at 1064 nm excitation wavelength, indicating that they are of single di-

ameters 1.41 nm, according to the commonly used relation Maultzsch et al.

[2005].

d =
215

ωRBM − 18
(5.1)

78



We prepared four samples of ODA functionalized CNTs — bundled SWCNTs

(b-SWCNTs) and individual SWCNTs (i-SWCNTs) in DCE, b-SWCNTs and

i-SWCNTs in chloroform, following the recipe (sonication time, power, etc.),

which Donovan and Scott [2012, 2013] used in their study. The dispersion

was tested by the dichroism [Donovan and Scott, 2012] and viscosity of the

solution [Donovan and Scott, 2013], determined by polarizability, thus sensitive

to the bundled or individualized status. The concentrations of the samples were

1×10−4 wt% for b-SWCNTs in DCE, 1×10−6 wt% for i-SWCNTs in DCE,

1.5×10−4 wt% for b-SWCNTs in chloroform and 1×10−6 wt% for i-SWCNTs

in chloroform.

Room temperature non-polarized Raman spectra of the samples were ob-

tained in the backscattering geometry with a Horiba T64000 Raman system

with a confocal microscope that had a resolution of 0.6 cm−1, a single 1800

grooves/mm grating and a 100-µm slit, and was equipped with a liquid N2-

cooled CCD detector (Jobin-Yvon Symphony). Suitable edge filters for the 488

nm, 514 nm and 647 nm lines of a Coherent Innova Spectrum 70C Ar+-Kr+

laser could be used with the system. We kept the laser power on the sample

below 5 mW to avoid significant laser-heating effects on the probed material

and the concomitant softening of the Raman peaks.

For the high pressure experiments, we used a MDAC with anvils of 500

µm culet size and very low fluorescence (Type IIa). The ruby luminescence

R1 line was used for pressure calibration [Mao et al., 1986]. For the Raman

spectroscopy, we used a 20× objective on the b-SWCNTs, i-SWCNTs in DCE

and i-SWCNTs in chloroform in the pressure cell and a 40× objective on b-

SWCNTs in chloroform. We set the pinhole size in confocal configuration at

200 µm. These settings were found to give the best quality spectra. The four

samples were separately loaded into the cells in four separate experiments. After

loading the samples into cells with a small pressure applied to prevent the solvent

from evaporating, initial RBM and GM spectra of all the samples under 488, 514

and 647 nm excitation were obtained. Then the Raman was measured at higher

pressures under 488 nm excitation for b-SWCNTs in DCE and b-SWCNTs in

chloroform, and under 514 nm excitation for i-SWCNTs in DCE and i-SWCNTs

in chloroform. In all cases, the signal-to-noise ratio of the GM spectra decreased

with pressure and therefore this study is in a low pressure range, well below 10

GPa, which is the reported experimental collapse pressure of CNTs of diameters

similar to those used here [Caillier et al., 2008].

DCE solidifies at 0.6 GPa [Sabharwal et al., 2007] and chloroform between

0.60–0.79 GPa [Dziubek and Katrusiak, 2008]. To check for non-hydrostatic

conditions, we observed the R1 wavelength from two different ruby chips in

the cell. Typical values were 694.66 and 694.67 nm at 1.20/1.24 GPa, 694.86
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and 694.87 at 1.74/1.76 GPa for b-SWCNTs in chloroform, after observing the

solvent solidification. The corresponding errors in pressure are 3.3% and 1.1%,

showing acceptable hydrostaticity in this high-pressure study.

Figure 5.2 shows the raw RBM spectra of the dry sample on a glass slide

and four prepared samples in cells. The spectra are vertically shifted for clarity

to compare the spectra of i-SWCNTs to b-SWCNTs.

Following the literature, we assign the peaks at 268, 302 and 414 cm−1 to

DCE [Sabharwal et al., 2007] and the peaks at 251 and 368 cm−1 to chloroform

[Hubel et al., 2006]. For the CNTs, the fitted RBM frequencies (Lorentzian fit)

of the dry sample are at 164.9 and 179.5 cm−1, and correspond to tubes of diam-

eters 1.46 and 1.33 nm, according to Eq. 5.1. The ratio of the peaks’ integrated

area is 9.85:1, former to latter. The small RBM peak cannot be detected for

samples loaded into diamond-anvil cells as the absorption by diamonds weakens

the signal. For i-SWCNTs which are at an order of magnitude lower concentra-

tion than b-SWCNTs, even the main peak is no longer detectable.

Figure 5.3 shows the raw D, G and 2D-band spectra of the dry sample on

a glass slide. A clear single G− peak at 1565.9 cm−1 can be observed. The

defectiveness of the tubes can be judged by the peak intensity ratio of the G to

D-band features IG/ID=46.33. This may be compared with the values given by

Brown et al. for non-functionalized SWCNTs of a diameter distribution vary

from about 2 to 30 [Brown et al., 2001]. The low implied defectiveness is not

unexpected given that the coverage of the functional groups is between 1.8 and

3.2 ODA chains per nanometre (approximately per 150 carbon atoms). Thus

we suppose that the GM and RBM of these tubes are representative of the

unperturbed (non-functionalised) tubes.

Before presenting the data, it may be noted that the signal to noise ratio

of the Raman spectra presented here is low, for two reasons. Firstly, the Ra-

man experiments are performed under non-resonance conditions as the density

of states of these tubes is largely disrupted and thus the peak intensities are

up to 6 orders of magnitude lower than those under resonance conditions. Sec-

ondly, extremely low samples concentration are used, which is necessary for the

stability of the dispersions.

We need to consider the effect of concentration on CNTs GM pressure co-

efficients, as i-SWCNTs and b-SWCNTs, which we are going to compare, are

of different concentration. Figure 5.4 presents the GM spectra obtained in high

pressure measurements on b-SWCNTs in chloroform, from two different spots

— one in a dark area, which is richer in bundles, making it observable under

microscope, and the other in a transparent area, which is less concentrated. We

label the GM spectra as concentrated bundles and diluted bundles. The base-

lines are subtracted, and then the spectra are vertically shifted, proportional
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Figure 5.2: The RBM spectra of ODA functionalized tubes are shown for (a)
dry samples on a glass slide, (b) b-SWCNTs (black) and i-SWCNTs (red) in
DCE and (c) b-SWCNTs (black) and i-SWCNTs (red) in chloroform. In (b)
and (c) the spectra are vertically shifted for clarity. The Raman peaks from the
solvent are labelled. Laser excitation wavelengths are 488 nm for b-SWCNTs
in DCE and b-SWCNTs in chloroform, and 514 nm for i-SWCNTs in DCE
and i-SWCNTs in chloroform. Raman shifts do not vary with the excitation
wavelength.

81



1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0 3 2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0
Ra

ma
n i

nte
ns

ity 
(cp

s)

R a m a n  f r e q u e n c y  ( c m - 1 )

D

G +

G + R B M 2 D
G -

Figure 5.3: The D, G and 2D spectrum of ODA functionalized tubes are shown
for dry samples on a glass slide. The laser excitation wavelength is 514 nm.

to pressure. Importantly, figure 5.4 shows that the GM frequencies are nearly

unaffected by the sample concentration and therefore it is reasonable to consider

that the GM pressure coefficients are independent of the sample concentration

in the low pressure range in this study.

Figure 5.5 exhibits the GM spectra of b-SWCNTs and i-SWCNTs at similar

pressure points in both DCE and chloroform. For b-SWCNTs in chloroform,

the spectra are those of concentrated bundles in Figure 5.4. For i-SWCNTs in

DCE and chloroform, the Raman intensities are multiplied by a factor 200, in

order to get clear comparisons to the b-SWCNTs. As a result, the i-SWCNTs

spectra show an increased level of noise compared to b-SWCNTs spectra. The

baselines are subtracted, and then the spectra are shifted vertically, proportional

to pressure. The narrow peak at 1554.4 cm−1 in the GM spectrum of i-SWCNTs

in DCE is assigned to an oxygen vibrational Raman peak from the air between

the microscope and the cell Fletcher and Rayside [1974]. It is on top of a wide

peak, which might be from carbonaceous impurities in the samples. The GM

peak is right next to the wide peak and the signal to noise ratio is low. The

ratio looks rather lower in the presented spectra than it is due to the wide

range of the y-axes in Figure 5.5 (a) and (b). The y-axis zoomed-in spectra of

b-SWCNTs in DCE at 2.44 GPa, i-SWCNTs in DCE at 2.12 GPa, b-SWCNTs

in chloroform at 2.28 GPa and i-SWCNTs in chloroform at 1.20 GPa are shown
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Figure 5.4: GM spectra of b-SWCNTs in chloroform are collected from the dark
area (black) and the transparent area (blue). The spectra are vertically shifted,
proportional to pressure. The pressures, under which the spectra are obtained,
are labelled. The laser excitation wavelength is 488 nm.
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Figure 5.5: The GM spectra of i-SWCNTs (blue) and concentrated b-SWCNTs
(black) are shown in (a) DCE and (b) chloroform. For i-SWCNTs the Raman
intensities are multiplied by 200. The spectra are vertically shifted, proportional
to pressure. The pressures, under which the spectra are obtained, are labelled in
the colours corresponding b-SWCNTs (black) or i-SWCNTs (blue). The oxygen
vibrational Raman peaks are labelled. The laser excitation wavelength is 488
nm for b-SWCNTs in DCE and b-SWCNTs in chloroform, and 514 nm for i-
SWCNTs in DCE and i-SWCNTs in chloroform. Raman shifts do not vary with
the excitation wavelength. In (c), four labelled spectra and the Lorentzian fits
are shown as examples as they are of the lowest signal to noise ratio among
the spectra which will be used to extract the GM pressure coefficients for each
samples.

in Figure 5.5 (c). These four spectra are selected as examples because they are

of the lowest signal to noise ratio among the spectra which we will use to obtain

the GM pressure coefficients for each samples. Remarkably, the GM intensities

of i-SWCNTs are extremely low – about 0.5 cps in DCE (400 s to collect and

accumulated twice) and 0.1 cps in chloroform (900 s to collect and accumulated

twice). The Lorentzian fits for the four spectra are shown in yellow lines and

the details of the fitting will be discussed in the following part.

We fit the GM spectra of i-SWCNTs in DCE and chloroform in Figure 5.5

each with a single Lorentzian and the GM spectra of b-SWCNTs in DCE and

chloroform in Figure 5.5 each with two Lorentzians (except b-SWCNTs in chlo-

roform at 2.28 GPa). In the latter case these correspond to the G+ and G−

peaks, which are initially well separated but cannot be told apart with increased
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Figure 5.6: The GM frequencies of b-SWCNTs in DCE are plotted against
pressure. The frequencies are obtained by fixing the integrated area ratio of
G+ to G− at the free fitting value at 0.44 GPa (black), and by releasing all the
fitting parameters of the two Lorentzians (blue). The squares are for G+ and
the circles are for G−. Where they exceed the size of the data-points, error bars
are shown.

pressure. We fix the integrated area ratio of G+ to G− at the value obtained

by free fitting at the first pressure point (0.44 GPa) during the whole fitting, to

avoid unphysical fitting results such as a larger G− than G+ peak, that may be

obtained when releasing all the fitting parameters of the two Lorentzians. Fig-

ure 5.6 shows how these two fitting procedures lead to different GM frequencies

of b-SWCNTs in DCE. The difference is mainly at the uncertain frequencies of

the weak G− peak. We plot GM frequencies, obtained by fixing the integrated

area ratio, of all the samples against pressure with error bars in Figure 5.7.

Linear least square fits are shown, excluding the points of b-SWCNTs in DCE

at 3.23 GPa, for the similar pressure range to that of i-SWCNTs in the same

solvent and the point of i-SWCNTs in DCE at 0.63 GPa as an abnormal point,

which is exactly at the DCE solidification point. The excluded data points are

labelled green.

The reliability of the obtained GM frequencies can be seen from Figure 5.5

(c). It can be further validated by Figure 5.8, where we plot the GM width of all

the samples against pressure. We expect the GM width to evolve systematically

with pressure and therefore an absurd value of the GM width might indicate

that the corresponding GM frequency is questionable. The points in Figure 5.8

are all of reasonable values while the second point of i-SWCNTs in DCE is

excluded in the extraction of the GM pressure coefficient as being exactly at
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Figure 5.7: The GM frequencies of all the samples are plotted against pres-
sure. The colour black is for G+ frequencies of b-SWCNTs, red is for G− of
b-SWCNTs and blue is for G+ of i-SWCNTs. The squares are for samples in
DCE and the circles are for chloroform. Error bars are shown, where they ex-
ceed the size of the points. The linear fits are presented as solid lines for DCE
and dashed lines for chloroform. The fits exclude the points for b-SWCNTs in
DCE at 3.23 GPa and i-SWCNTs in DCE at 0.63 GPa, which are shown as
open symbols.
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colour black is for G+ and blue is for G−. The squares are for samples in DCE
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Table 5.1: The GM pressure coefficients for all measured samples

GM pressure coefficients (cm−1GPa−1) G+ G−

b-SWCNTs in DCE 6.6±0.7 2.0±0.1
i-SWCNTs in DCE 13.8±0.6
b-SWCNTs in chloroform 7.1±0.3 6.7±0.7
i-SWCNTs in chloroform 10.2±1.3

the DCE solidification point.

We present the GM pressure coefficients in Table 5.1 from the linear fit in

Figure 5.7. The errors are from the linear fit, the Lorentzian fit for the peak

position and the system resolution.

Figure 5.7 and Table 5.1 present the key results that the G+ pressure coef-

ficient for bundles is only about half of that for individual CNTs in DCE and

is about two-thirds in chloroform. For bundles, the G− pressure coefficient is

about one-third of G+ in DCE and about the same in chloroform.

At the moment we do not fully understand these results. There are four key

issues. First, the pressure dependence of the GM is commonly considered as

determined by the shortening of sp2 bond, which should have little to do with

the environment, in contrast with the apparent bundling and solvent effects
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reported here. This is quite unlike the pressure dependence of the RBM, which

is due to the decrease of the distance between tube shell and the absorbed fluid

layer and therefore unsurprisingly sensitive to the environment [Longhurst and

Quirke, 2007]. Second, according to the thick-wall tube model [Ghandour et al.,

2013], the G+ and G− pressure coefficients of 1.46 nm tubes should be 6.0 and

8.0 cm−1GPa−1 respectively. The model is based on individual tubes but the

G+ values of i-SWCNTs are much higher than the predicted ones. The G+

values of b-SWCNTs agree well, as the previous work on bundles [Ghandour

et al., 2013]. Third, the tangential stress is always larger than the axial stress

for a tube under hydrostatic pressure. The pressure coefficient of the vibrational

mode along tube circumference (G−) should therefore be always larger than the

one along tube axis (G+). This is again against our observations in DCE. And

fourth, considering that the end of the tubes has been removed, the solvents

might be expected to enter inside the tubes. If the internal pressure (pressure

of the solvent inside the tube) is at a value between 0 and the external pressure,

the pressure coefficients for both G+ and G− should lie between the graphene

value and the thick-wall-tube model predictions. Results of i-SWCNTs in Table

5.1 are out of this range. The normal way to judge whether tubes are solvent-

filled by the shift of RBM frequency [Cambré et al., 2010] is not possible in

this case, because no close-ended ODA functionalized CNTs are available for

comparison (the caps are removed during the ODA functionalisation).

ODA functionalized CNTs, as samples to study the CNTs GM pressure

coefficients, have the following advantages. First, given that they are mostly of a

single diameter and their density of states is largely disrupted, the contributions

to the RBM and GM signals from tubes of different diameters may be taken

proportional to their contents in samples, regardless of the laser excitation. In

Figure 5.2, we obtained the RBM integrated area ratio of 1.46 nm to 1.33 nm

tubes at 9.85 to 1. The G+ signal is contributed by 1.46 and 1.33 nm tubes,

and in the absence of resonance, also with a ratio of 9.85 to 1. It is reasonable

to attribute the GM pressure coefficients in Table 5.1 to 1.46 nm tubes only.

Second, the ODA side chains offer the steric hindrance and therefore provide us

with SWCNTs samples stably dispersed without the aid of surfactants. This is

the main reason we use ODA CNTs in this study.

There are related disadvantages, namely the limited choices of PTM con-

sistence with dispersion and the potential side chain effect on GM pressure

coefficients. DCE and chloroform are effective in dispersing CNTs samples but

are not considered as good PTMs because of their low solidification pressures.

In order to exclude the inter-tube or tube-surfactant van der Waals inter-

action, we introduce the side chains. The ODA coverage between 1.8 and 3.2

chains per 150 carbon atoms may be high from the point of view of chemistry,
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but it is too low to have an effect on the in-plane vibrational frequencies at

ambient pressure, and there is no reason to suppose it should have any more

effect at high pressure. The upshift of GM frequency with pressure is induced

by the increasing overlap of electrons of carbon atoms. In the case of bundles

or surfactants, each carbon atom is under the influence and the behaviour of its

electrons are affected, as shown in this work, while in the case of ODA tubes,

electrons of most carbon atoms are not affected by the sp3 defects (1.8–3.2 sp3s

in 150 sp2s). Thus its effect on the pressure coefficient should be small, certainly

not comparable to the effects of bundles or surfactants. Therefore, the exper-

imental data of ODA functionalized tubes presented here can be meaningfully

compared to the theories of the in-plane bond response to pressure in pristine

SWCNTs.

In conclusion, we present the experimental demonstration of the significant

and unexpected bundling effects on the CNTs GM pressure coefficients of a

specific chirality. The G+ pressure coefficient for bundles is only about half of

that for individual CNTs in DCE and is about two-thirds in chloroform. For

bundles, the G− pressure coefficient is about one-third of the G+ in DCE and

about the same in chloroform. Such comparison for the first time excludes the

effect of surfactants, achieved by using ODA functionalized tubes. The origin

of the bundling and solvent effects on GM pressure coefficients is unclear at the

moment and the values of the pressure coefficients in this work are beyond the

framework of the current understanding, especially the thick-wall tube model.

Despite posing unresolved questions, this work clarifies that the bundling effect,

is one of the major reasons for the current lack of consensus on the value of the

GM pressure coefficients.
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Chapter 6

The Collapse of Carbon

Nanotubes

In this chapter, we consider the collapse of closed tubes at high pressure. The

collapse under external pressure of a long tube is a classic problem, for which

with R0 the outer radius, E Young modulus, ν Poisson ratio and h wall thick-

ness, there are analytic solutions for both thin-walled (after the second equal

sign) and thick-walled tubes (after the first equal sign),

PC = 2
E

1− ν2
h3

R0(R0 − h)2
= 2

Mh3

R3
(6.1)

where M is the plane strain modulus and the expression in M is for a thin

wall, h � R [Corradi et al., 2011]. It is appropriate to use the thin-walled

approximation for nanotubes, with R being the radius at the nuclear positions,

although the wall thickness of 0.34 nm is not small compared with the diameter.

Figure 6.1 illustrates the argument. The circle is discretised to a regular

polygon with hinges at the corners and with rigid sides which are impermeable

to the pressure-transmitting medium (PTM). This is progressively modified in

Figure 6.1 (a) to (e) without changing the appropriate value of R. The diagram

Figure 6.1 (e) is thus a model for the nanotubes, with the weak material which

defines a wall thickness representing the π-orbitals. So the conclusion is that

any of these models in Figure 6.1 are to be compared with the thin-wall analytic

equation rather than the thick-walled.

We recognise the term Mh3 in Eq. 6.1 as twelve times the bending stiffness

of the wall of the thin-wall tube. We use an atomic model with discretised

bending stiffness k0 (angular springs) at each atom, and for a spacing of a0 the

stiffness of a chain of such atoms is k = a0k0. Then the collapse pressure of a
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Figure 6.1: “In (a), a thin-wall tube is discretised with hinges and angular
springs. In (b) the angular springs are replaced by levers and linear springs
permeable to the PTM, and in (c) the linear springs extend the full length of
the sides. In (d) the rigid sides are themselves made into springs (impermeable
to the PTM) and in (e) a weak material is added to give a real wall-thickness.”
Reproduced from Sun et al. [2013].

ring of N such atoms is

PC =
24k

d3
=

24π3k0
N3a20

(6.2)

where d is the diameter of the ring.

Numerical data for the collapse pressure of such rings is shown in Figure 6.2

(a). Results of DFT - Monte Carlo calculations are shown in Figure 6.2 (b) for

nanotubes where the interaction between carbon atoms was described with the

potentials introduced in Holec et al. [2010]. Periodic boundary conditions were

used along the axis of the tube and the length of the tube was held constant.

When the pressure is increased, first, the nanotube only changes its radius, but

preserves its shape. After a critical pressure is exceeded, at 3.2 GPa in Figure

6.2 (b), the nanotube shows a transition from a circular to elliptic cross section.

This is accompanied by a much faster change in radius with pressure. In the

final stage the structure bulges inwards. Both models, Hooke’s law atomic model

as well as the Monte Carlo simulation, predict a well defined collapse pressure.

Furthermore, the larger the nanotubes the closer they follow the predictions

from continuum tube models.

Finally, it should be pointed out that the collapse pressure is hard to relate

to experiment; the collapse is clearly a continuous process but completes over a

narrow pressure range perhaps difficult to resolve in experiment.
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Figure 6.2: “Models of nanotubes under pressure are shown in (a), the Hookes
Law atomic model, and (b) Monte Carlo simulations of the change of radius
of the shown nanotube as a function of the applied pressure. In (c) the initial
() and final (+) collapse pressures from Hooke’s Law atomic model (blue) and
Monte Carlo simulations (red) are plotted in against the size of the tubes. The
theoretical line for the thin-wall continuum tube is shown for comparison.”
Adapted from Sun et al. [2013].
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Chapter 7

Conclusions and further

work

7.1 Summary

This thesis reviews the research on carbon nanotubes under pressure as my PhD

project.

Researchers recorded the Raman spectra of carbon nanotubes under pres-

sures and obtained the GM pressure coefficients. The discrepancy of the results,

obviously, is because some of the many variables which matter in a high pres-

sure experiment on carbon nanotubes change in different measurements. The

questions to answer, naturally, are which of the variables matter and how they

affect the GM pressure coefficients.

The diameter of tubes should matter. Via Raman spectroscopy equipped

with a wavelength-tunable laser we obtain the GM pressure coefficients of tubes

of specific diameters and explain the experimental diameter effect well with a

thick-wall tube model and revised Grüneisen parameter and shear deformation

potential.

The chirality of tubes should not matter. Unexpectedly, we report a signifi-

cant chirality effect by a comparison between the GM pressure efficients of (6,

5) and (9, 1) tubes, which have very similar diameters.

Apart from intrinsic effects, bundling might also matter. In most literature,

unbundling is accompanied by surfactant. If bundling affects the GM pressure

coefficients, very likely for the vdW between tubes, so does the surfactant, for

a similar reason — interactions between tubes and large surfactant molecules.

Using ODA tubes, we compare the bundled and individual tubes excluding the

surfactant and report a very strong bundling effect.
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We do not understand the chirality and bundling effects, but we have suspi-

cions, that it is related to the π-electrons behaviour. Opposite to experiments,

a theoretical work introduce the variables one by one. A natural start point

is graphene and graphite, without the complexity of the wall curvature. We

introduce a new parameter relating the out-of-plane strain to in-plane phonon

frequency, which very likely reflects the effect of π-electron behaviour.

Finally, we find that a thin-wall model and atomistic-refined elastic ring

model are fairly good approximation in predicting the critical pressure for car-

bon nanotubes, through comparison with the results from MD.

7.2 Further work

For the theoretical work, frequencies of graphite in-plane modes have already

been calculated under uniaxial strain (in-plane geometry fixed) and stress (re-

leased) along c-axis (see Chapter 2). I will then do the calculation for bi-layer

graphene changing interlayer distance, to quantify the amount of -electrons

squeezed through sp2 network and its contribution to G-mode frequency. Fol-

lowing this I will displace the upper layer in tri-layer graphene along c-axis, to

apply pressure to the lower two, which are fixed still, to calculate the amount

of -electrons squeezed through the middle layer and pressure transmitted to the

lower layer. This quantifies the capability of -electrons acting as pressure trans-

mitting media (PTM) and its contribution to the G-mode shift of the lower

layer. The next part concerns interactions of fundamental importance to the

applications of graphene to batteries, electronics, etc. I plan to insert solvent

molecules (e.g. water) in between the graphene layers, to quantify solvent ef-

fects on G-mode frequencies and their response to pressure. This will lead to a

better understanding of the role PTM (and any substrate) play in the -electron

behaviour. Finally I plan to calculate G-mode frequency under strain for carbon

nanotubes of specific chiralities, which is related to the following part.

From the experimental side, my approach is to establish sufficient experi-

mental data for tubes of specific chiralities — most existing data are from tubes

of mixed chiralities, then attempt to empirically quantify the chirality effect

by chiral angles or pyramidaliztion or -orbital misalignment angle, and finally

interpret the effect with -electron behaviour, combing the results obtained for

graphene. To achieve the goal, I will firstly run a laser excitation wavelength

scan to obtain Kataura plot under ambient and high pressure. Then I will

focus on tubes of a specific chirality and obtain a 3D plot of pressure vs. ex-

citation wavelength vs. Raman GM intensity. The above will be repeated in

DWCNTs, the results of which will be compared to tri-layer graphene, which

originally mimics DWCNTs under pressure. I will use various PTM to quantify
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the solvent effect, and compare with the results for graphene.
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Chapter 8

Appendices

8.1 Raman Spectroscopy Under High Pressure

Raman scattering is inelastic. Stokes scattering refers to the process that inci-

dent photon excites atom or molecule from its ground state to a virtual energy

level and as it drops to an excited vibrational state, the emitted photon has

lower energy than the incident photon. Anti-Stokes refers to the process that

has a vibrational state as start and a ground state as end. We detect scattered

photon, the energy difference between which and the incident photon is the

energy of the corresponding vibrational mode. We typically use wavelength to

describe the energy of the photons and naturally the energy of a vibrational

state is in wavenumbers, as

∆ω = (
1

λ0
− 1

λ1
) (8.1)

where λ0 is for the incident photon and λ1 is for the scattered.

Raman signals are very weak. One in 1012 excitation photon is Raman-

shifted and one in 103 passes optical filters. A further signal loss of 99 % is

expected if a triple spectrometer is used. Some vibrational modes are Raman-

inactive, if there is no change in the polarisability. However, RRS is able to

increase the intensity by up to 105 if the virtual energy level happens to match

a real state. The momentum of a phonon is usually three orders of magni-

tude smaller than the π/a of a Brillouin zone, so Raman spectroscopy gives

information only at the Γ-point.

High pressure is generated in a DAC. The Raman signal is further reduce to

1/1000 because of the absorption of the diamond. Diamond is stiff and the culet

size is small to generate high pressure, up to 100 GPa. A thin gasket makes

the cell more stable than a thick one, so the pre-indentation of the gasket is
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Figure 8.1: A photo of all apparatus, including the spectrometer and the DAC
(Taken by Prof J. Gonzalez).

desirable. When decreasing pressure, we expect the sample hole to be enlarged

to reduce the pressure in the cell. However, the pressure in the fluid is not

sufficient to extrude the gasket outwards and the pressure will be reduced by

leaking, as no seal is provided between the anvil and gasket. The data collected

during decreasing is not so reliable as that during increasing.

A photo of all apparatus is shown in Figure 8.1 (The author thanks Prof J.

Gonzalez for providing this photo.). More details can be found below.

HiPco: The details of the HiPco SWCNTs are available at http://www.

nanointegris.com/en/hipco. Overall, they contain tubes of a wide diameter

distribution and are commonly used in research.

Debundling: CNTs tend to form bundles and sonication can break bundles.

Sonication with a probe is more efficient in debundling than sonication bath as

the power is directly applied to the bundles. In general, the sonication power and

time should be set high and long enough to break the bundles but not too high

and long to destroy the tubes. The concentration of the samples should be low

to prevent rapid re-bundling after the sonication. Two methods to significantly

extend the duration of the debundled status are to add surfactant in solvents

or use ODA functionalised tubes.

Triple spectrometer: Three monochromators are connected in series. The

diagram of a Czerny-Turner monochromator is shown in Figure 8.2 (source:

www.gnu.org/copyleft/fdl.html). B and F are slits, C and E are curved

mirrors to collimate/refocus the light, and D is either a grating or a prism, to
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Figure 8.2: A diagram of a Czerny-Turner monochromator (source: www.gnu.

org/copyleft/fdl.html)

disperse the light on the slit F. The angle of D can be tuned to make the lights

of a specific wavelength pass through. A triple spectrometer is suitable with a

multi-wavelength laser or a wavelength tuneable laser, while the disadvantage

is the huge loss of the signal during the reflections/diffractions.

Edge/colour filter: An Edge/colour filter allows near 100% transmission

above a certain wavelength and near zero transmission below a certain wave-

length. The edge steepness (the difference between the above two wavelengths)

is usually below 10 nm for an edge filter and can be more than 50 nm for a

colour filter. Both filters are suitable with laser of a specific wavelength. The

advantage of them is the low signal loss compared to the use of a triple spec-

trometer. Colour filters are very cheap, which provides a way to avoid huge

signal loss in the experiments with multi/tuneable-wavelength laser, by having

many colour filters for different wavelengths, and using the one corresponding

to a specific laser wavelength, if we do not study low wavenumber modes.

Horiba T64000 Raman System: The details are available at http://www.

horiba.com/fileadmin/uploads/Scientific/Documents/Raman/T64000.pdf.

The advantage is the flexibility that it can switch between the triple and single

(employing the edge/colour filter) configuration to suit the specific study. A

schematic of subtractive foremonochromator and spectrograph configuration is

shown in Figure 8.3 (The author thanks Prof J. Gonzalez for providing this

schematic.).

DAC: A diagram of the standard DAC and the Zen configuration are shown

in Figure 8.4 [Dunstan, 1989]. The Zen configuration provides a good control

of pressure due to the large contact area between the single diamond and the

gasket. The pressure can be applied by screws or a hydraulic ram to these

cells. The pressure is applied by inflating the membrane to a MDAC, which
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Figure 8.3: A schematic of subtractive foremonochromator and spectrograph
configuration (provided by Prof J. Gonzalez).

provides a good control of pressure and a much wider pressure range than the

Zen configuration.

The experimental procedures: 1) We need to align the diamonds in the

diamond anvil cells to avoid diamond breakage. We first do the tilt alignment

by looking at the number of coloured fringes – two fringes indicate a good tilt

alignment. We then perform the axial alignment, simply making the culets

of the two diamonds overlap. 2) We pre-indent the gasket to the thickness of

70 µm. For the standard DAC, we need to pre-indent the gasket gently and

gradually, by applying a bit pressure, taking the gasket out of the cell, checking

the thickness, loading it back to the cell and repeating all the above until the

thickness reaches 70 µm . For MDAC, because the pressure of the inflated gas

can be precisely controlled (i.e. the force on the gasket is precisely controlled),

we can directly pre-indent the gasket to 70 µm. 3) We drill a hole at the centre

of the indent (we use a driller but the spark drilling is desired if the pressure

measurement goes above 10 GPa.) and then clean the gasket in sonication bath.

4) We load samples into the hole of the gasket after fixing the gasket on the

bottom diamond. For bundled CNTs in solvent, we use a needle to tip some

tubes powders into the hole, load a drop of solvent into the hole and close the

cell by the top diamond with ruby pieces stick to its culet – I personally like this

way, as often the ruby flows out after loading the liquid drop if we load the ruby

first. For ODA tubes, we load a drop of samples into the hole and need to close

the cell very fast and apply an initial pressure at several kbar to prevent the

evaporating of DCE and chlorofrom. 5) We use a silicon piece to calibrate the
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a)

b)

Figure 8.4: Diagrams of a standard diamond anvil cell and the Zen configuration
[Dunstan, 1989].

Raman system and then we record the spectrum of a ruby piece on a glass slide

as a pressure reference. 6) We put the cell under the microscope subjected to

the Raman spectrometer and focus on the ruby piece and record its spectrum.

7) We focus on the samples and record their spectra. A test Raman spectrum

of bundled CNTs in cell usually takes less than three minutes to record. We

focus on different areas and at different depth in the cell to get the best signal

of the sample – a trick I use here is that after I focus on the surface of the

sample, I tune the focus a bit into the bulk (make full use of the cone) to get

a better signal. After selecting a certain point, we increase the collecting time

to 15 – 20 minutes to improve the quality of the spectrum and accumulate it

twice to further reduce the noise. 8) We circulate the collection of the ruby

spectrum as a monitor when we increase pressure. We stop slightly before the

aimed pressure and wait 10 minutes till the ruby lines (i.e. the pressure inside

the cell) get stable. We repeat 6) and 7), to continue the measurements under

pressure. Above are the general procedures of an experiment.

8.2 Density Functional Theory

To solve the Schrödinger equation is extremely difficult in most cases. We apply

the Born-Oppenheimer Approximation and the Kohn-Sham scheme to make the
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Hamiltonian H = − ~2

2m∇
2 +V non−int.e−e [ρ] +Ve−n[ρ] +Vxc[ρ], where e is electron,

non − int. is non-interacting, n is nuclei and xc is exchange. We do not know

what Vxc[ρ] is. LDA assumes that electrons are evenly spread in space and

therefore contribution to Exc only relies on ρ(r). GGA additionally uses the

gradient of ρ.

In crystals, we have periodic potential and therefore density. Bloch’s theorem

gives the wavefunction ψ(r + L) = eik(r+L)u(r+L) = eikLψ(r), where L is a

lattice vector. Instead of integrating all k, we sum up enough k-points to get

accurate results. u(r) is periodic and therefore can be expanded in plane-waves

and we set a cut-off energy to include all the plane-waves with less energies and

get enough accurate results. Also, we replace the near-nuclei Coulomb potential

with a weaker pseudopotential.

Perturbation of ionic positions gives phonons. To solve the dispersion rela-

tion is difficult if the system is complex — two atoms per unit cell beyond 1D is

complex. We use the finite-displacement method — we displace an ion by small

distance and calculate the force and its derivative to the displacement on every

ion and repeat for each ion, to obtain the dynamical matrix, the eigenvalues of

which are the frequencies.

I acknowledge the CASTEP 2014 training workshop in University of Oxford

for clear, detailed and systematic demonstrations.
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