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Abstract—The last five years have seen a dramatic shift in
media distribution. For decades, TV and radio were solely provi-
sioned using push-based broadcast technologies, forcing people to
adhere to fixed schedules. The introduction of catch-up services,
however, has now augmented such delivery with online pull-based
alternatives. Typically, these allow users to fetch content for a
limited period after initial broadcast, allowing users flexibility in
accessing content. Whereas previous work has investigated both
of these technologies, this paper explores and contrasts them,
focussing on the network consequences of moving towards this
multi-faceted delivery model. Using traces from nearly six million
users of BBC iPlayer, one of the largest catch-up TV services,
we study this shift from push- to pull-based access. We propose
a novel technique for unifying both push- and pull-based deliv-
ery: the Speculative Content Offloading and Recording Engine
(SCORE). SCORE operates as a set-top box, which interacts
with both broadcast push and online pull services. Whenever
users wish to access media, it automatically switches between
these distribution mechanisms in an attempt to optimise energy
efficiency and network resource utilisation. SCORE also can
predict user viewing patterns, automatically recording certain
shows from the broadcast interface. Evaluations using our BBC
iPlayer traces show that, based on parameter settings, an oracle
with complete knowledge of user consumption can save nearly
77% of the energy, and over 90% of the peak bandwidth, of pure
IP streaming. Optimising for energy consumption, SCORE can
recover nearly half of both traffic and energy savings.

I. INTRODUCTION

The last five years have seen a dramatic shift in the way peo-
ple interact with media services. Traditionally, those wishing to
enjoy TV and radio shows were forced to adhere to schedules
dictated by producers. Recently, however, broadcasters have
begun to also make their content available online using on-
demand services. This type of service is termed a ‘catch-up’
system, allowing viewers to watch recently broadcast media
for a specific period after its initial broadcast. This highlights
a key shift in the way users consume TV content, moving
from the traditional push model to a far more user-centric
pull model. Perhaps the most prominent example of this is
the BBC iPlayer, which allows users in the United Kingdom
(UK) to pull nearly all of BBC’s TV and radio shows from
the Internet for (typically) 7 days after their initial broadcast.
Launched at the end of 2007, the service has since exploded

The authors wish to acknowledge H2020-ICT-2014-2 project 5G NORMA
and UK EPSRC Grants No. EP/K024914/1. This paper is an extended version
of a paper presented at the 22nd World Wide Web conference, Rio De Janeiro,
Brazil, 2013.

in popularity with an estimated 40% of UK households using
it [29]. Although broadcast figures remain orders of magnitude
more than corresponding iPlayer audiences, it is undeniable
that catch-up has radically altered the way in which users
access the BBC’s content.

As more and more users start to rely on the flexibility of
catch-up TV and move away from traditional TV broadcasts,
it raises important questions about how to provision infras-
tructure for future TV audiences. For instance, by 2011, BBC
iPlayer had become one of the largest applications by traffic
volume on the UK Internet, second only to YouTube [30]. This
has implications for network capacity provisioning: traditional
TV has managed to scale up to large audiences because
of its reliance on broadcast infrastructure, but the costs of
catch-up viewing increases with each stream. Additionally,
this move towards individual, personalised online streaming
is signifiantly increasing the collective energy consumption of
TV content distribution: The BBC estimates that for all of
its channels except one1, Digital Terrestrial Television (i.e.,
broadcast TV) has a smaller per-viewer carbon footprint than
catch-up streaming. This is because broadcast has fixed carbon
costs that can be amortised over large audience sizes, whereas
the carbon costs of streaming grows with each additional
user [12]. Motivated by these observations, we ask whether
the flexibility of on-demand viewing can be supported whilst
still relying as much as possible on low energy broadcast.

With this in mind, we first explore how “catch-up” has
changed TV viewing, using BBC iPlayer, the UK’s largest TV
and radio catch-up service, as a case-study. Using historical
data of approximately 6 million users accessing radio and TV
content on iPlayer, we seek to explore the key consequences
of supplementing push-based broadcast delivery with a pull-
based online equivalent. We find that many users choose
to exploit the flexibility of online-pull, forming their own
personalised bundles of preferred content and watching it
in patterns specific to pull-based architectures (e.g. viewing
multiple episodes of a TV series in a short timespan). That
said, we also continue to observe push-like behaviour such
as viewing as soon as content is available and a general
preference for newly released content. We also see evidence of
high engagement, with high video completion ratios, and users
consistently watching many episodes of favourite TV serials.

1The BBC Parliament channel, which has fewer viewers compared to other
channels, is the sole exception.
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Through the above exploration, we highlight the unique
benefits and potential of both traditional broadcast and online
pull models. Using the access patterns we find, we design
the Speculative Content Offloading and Recording Engine
(SCORE), to combine the benefits of broadcast-based and
pull-based access and reduce the cost of content delivery
(both in terms of energy and network costs). Since our trace-
driven study shows that users on catch-up are constructing
highly personalised schedules of content to watch at their
convenience, SCORE attempts to emulate this by predicting
which shows a user is likely to watch, and then constructing
personalised lists of favourite shows for each user. Episodes of
favourite shows are then speculatively recorded on user-local
storage such as Digital Video Recorders (DVRs, also known as
Personal Video Recorders or PVRs), enabling later offline on-
demand access. This process can remove significant amounts
of energy-intensive IP traffic. Entire shows are recorded since
the traces show relatively low rates of abandonment.

Thus, SCORE effectively embeds a personalised local catch-
up service within Digital Video Recorders (DVRs) and thereby
offloads content from the Internet and from the Over-the-top
(OTT) catch-up TV service. When a show which has not
been recorded is requested, it falls back to the current online
pull-based model and streams the content item on-demand.
Through this predictive offloading of iPlayer load, SCORE
can mitigate the network footprint of catch-up services. Inter-
estingly, recording on DVRs complying with EU regulations
on power consumption of set-top boxes [1] can also decrease
the nationwide energy footprint, compared to streaming.

The basic SCORE concept is pluggable, and can be config-
ured for optimising either energy or traffic savings, given the
amount of locally available storage as a constraint. We focus
on energy savings for two reasons. First, sustainability is a
major concern for public service broadcasters like the BBC [8].
Second, whereas it is clear that speculative recording of DTT
broadcasts results in a non-negative decrease in network traffic
(with savings strictly positive when the user accesses the
recorded item from local storage rather than via OTT catch-
up), it is not a priori clear that energy can be saved, because
speculative recodring incurs an upfront energy expense which
only pays off if the recorded item is accessed by the user.
To demonstrate this potential, we explicitly develop the opti-
misation problem for saving energy by adding a penalty for
the energy expense of recording, and evaluate the benefits.
Note that the two benefits are not mutually exclusive – saving
energy saves traffic, and the reverse could hold as well.

Our evaluations show that given access to just 32GB of
storage, an oracle with complete knowledge of users’ future
accesses and optimising for net energy savings could, depend-
ing on parameter values of the energy model we use, the bit
rate used for streaming, etc., save up to 97% of peak traffic,
and up to 74% of the energy. For similar parameter values,
the energy-optimising version of SCORE is able to recover
more than 60% of the energy and traffic savings obtained by
the oracle. Dependency on parameter values is resolved using
sensitivity analysis. Optimising for traffic reductions rather
than energy consumption, an additional 5–15% traffic savings
can be achieved (at the cost of energy).

SCORE can be incorporated as a software update into
modern DVR architectures such as YouView. Considering that
DVRs have over 50% penetration in major markets such as
the US and UK [28], [15], and that common DVR standards
including YouView allow over-the-air software updates [35],
[2], we believe that deployment is highly feasible.

II. WHAT IS A CATCH-UP SERVICE?
Catch-up services offer temporary on-demand access to

media that has been previously broadcast via traditional means
(TV or radio). Its purpose, as the name suggests, is to allow
users to ‘catch-up’ with shows that they have missed on
broadcast. Within this paper, we focus on one prominent catch-
up service as a case-study, BBC iPlayer2, which we now detail.

A. BBC iPlayer

The BBC has a number of local and national TV and radio
channels, which broadcast content over the air in the UK.
The BBC makes this broadcast content freely available to
UK viewers on the iPlayer website for a fixed period of days
after the broadcast, depending on content licensing terms and
other policies. Thus, the iPlayer provides an alternate “over-
the-top” access mechanism for content which is typically
broadcast over the air. BBC iPlayer is widely used within
the UK, by an estimated 40% of households [29]. This
creates a significant infrastructural footprint, both in terms of
energy and bandwidth consumption. BBC iPlayer streams are
entirely free of advertisements since the content programming
is supported by TV licensing fees. It is worth highlighting
that, in contrast to traditional on-demand services, the content
items on BBC iPlayer change constantly; new items are added
(typically immediately after broadcast), and removed after a
short timespan.

B. BBC iPlayer Data-Set

This paper studies a dataset derived from eight weeks of
access logs to the BBC iPlayer catch-up service, from 04-Sep-
2010, to 31-Oct-2010. One in every four accesses to iPlayer
during this period is recorded in the access log, giving a 25%
sample of all accesses. Each log entry contains a timestamp
for the start and end of the stream for one content item to
one user. Altogether, the trace consists of 32,691,343 streams
from 5,985,458 users, accessing 37,728 unique content items
(episodes) from 3,518 programs broadcast over 73 channels.

In addition, the BBC maintains web pages about each
programme and episode which has been broadcast. We have
harvested this data to augment the historical access logs with
additional information such as the genres of the content item,
the time and channel of broadcast, and the theoretical duration
of the content item3. We also identify each content item
as belonging to one (or more) of eleven genre categories:
kids, drama, learning, factual, music, news, religion and ethics
(r&e), sport, weather, comedy and entertainment (entert.).
Each category has finer-grained subdivisions into genres.

2Sometimes shortened to iPlayer in the text.
3Access log duration may differ from theoretical duration if users stop

viewing before completion, e.g. due to network issues or of their own volition.
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Fig. 1: Content length distributions: Corpus shows the distribu-
tion of durations for all items in the content corpus. Theoretical
is the distribution of content lengths weighted by number
of views. Actual shows the observed distribution of stream
lengths. The content corpus has the most uniform distribution
of content lengths. The theoretical distribution has nearly 90%
of its mass under 60 minutes, showing that users prefer content
shorter than an hour. Theoretical and actual distributions are
close reconfirming low abandonment rates.

III. CHARACTERISTICS OF ON-DEMAND ACCESS

The introduction of catch-up services such as iPlayer has
introduced a whole new pull-based mechanism for on-demand
consumption of TV and Radio content traditionally pushed to
users via broadcast. This section explores the benefits from
the pull mechanism, and the extent to which users still follow
push-like access patterns. We divide this study into two parts,
first characterising the content access preferences, and then the
temporal access patterns.

A. Content access patterns

This section asks what items users watch when allowed
flexibility to pull items on-demand. We consider three axes of
choice: duration of content, the type or genre of content, and
whether the item is serialised, i.e. whether it belongs to a TV
series comprising several episodes in sequence.

In each case, we use the same method to determine user
preferences. We first consider the distribution of the parameter
(e.g. content duration, genre or serial/non-serial) in the content
corpus. Next, we consider a weighted distribution of the same
parameter, weighted by the number of accesses. Their relative
proportions indicate user preferences: If a particular value
of a parameter is overweighted in the weighted distribution
compared to the content corpus, then users prefer that value.
If underweighted, users dislike that value.

1) Users prefer serialised content: We first inspect the
preference users have for serialised content. We find that
serial content constitutes roughly 53.3% of the content corpus.
Yet, in the list of items watched, serial content constitutes
nearly 79.5%. Thus, it is evident that serialised content is
disproportionately popular. This is a curious attribute of catch-
up TV, which, in contrast to other platforms that consist more
prominently of ‘one off’ shows such as movies on Netflix,
or the shorter clips often seen in user generated repositories
such as YouTube, is often driven more prominently by well-
known serials (e.g. soap operas, comedy serials). That said,

Genre
kids drama learning factual music news r&e sport weather comedy entert.

P
e

rc
e

n
ta

g
e

 o
f 

E
p

is
o

d
e

s
 (

%
)

0

5

10

15

20

25

30

Corpus
Watched

Fig. 2: Distribution of genre categories showing that drama,
comedy and kids’ programmes are overweighted wrt. corpus.

it is interesting to note that nearly half of all corpus is non-
serial, suggesting that the BBC does invest significant amounts
of airtime to broadcasting such content. On closer inspection,
we find that traditional non-serial content (e.g. documentaries)
does constitute a large fraction of the corpus, but simply does
not gain the popularity of other serial-oriented genres (e.g.
comedy, drama). This is likely a combination of many factors,
not least the long history the BBC has in producing widely
appreciated serial shows. Communication theorists also believe
that strict, predictable schedules of serialised shows establishes
viewing habits that become automatic [17, p. 19].

2) Users prefer short duration content: Fig. 1 considers
three distributions of content durations, corpus, theoretical
and actual. Corpus is the distribution of content durations
for each item in the catch-up content corpus. Theoretical
is the distribution of durations obtained by weighting each
item by the number of times it is accessed. Corpus is much
more uniformly distributed than theoretical, which has most
of its mass under one hour. Further, the relative mass of
theoretical increases dramatically at two points: 30 and 60
minutes, which corresponds to standard durations of serialised
TV shows. This indicates the relative popularity of these
two kinds of content. The third distribution, actual, gives the
actual durations of streams observed. The difference between
theoretical and actual is an indication of how much of the
content is actually watched. We note that only ≈25% of the
requests are abandoned in the first five minutes, indicating
that three quarters of users are engaged and watch a large
proportion of the show. This is best highlighted by the close
alignment between the theoretical and actual curves in Fig. 1.

3) Users prefer specific genre categories: Next, in Fig. 2,
we consider the relative proportions of different genre cat-
egories in the content corpus compared to their proportions
when weighted by the number of accesses. Categories where
the watched bar is taller than the corpus are overweighted,
and hence preferred by users. This clearly indicates a strong
preference for certain categories such as drama, comedy and
kids’ shows. In contrast, genre categories such as factual
programs, music and news constitute a large proportion of the
content corpus but are not watched as much. Thus, although
a public service broadcaster might provide a balanced content
catalogue, users tend to prefer common kinds of entertainment.

Given such strong preferences, we ask whether genres are
a better way to create pull-based “channels” for users than the
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Fig. 3: Self-information of various content bundling strategies.

current broadcast channels. To answer this, we quantify how
well a given partition of content items — into channels or gen-
res — captures the content consumption history of individual
users. Specifically, we compare the self-information [14] of
describing users by the channels of their content items with
that of describing users by genres of the items they consume.
The higher the self-information is, the more information it
captures of a user. Recall that the entropy of a random variable
is obtained by taking the expectation of its self-information.
The higher the entropy of a partitioning method, the better its
representation of users is, on average, for the entire population.

Formally, let C be a set of content items available in
the system and B be a bundling of content defined as a
partition of C into N subsets (i.e. N bundles). Examples
of bundling include partitioning the set of programs based
on the channels they are broadcast on, or partitioning based
on genres, with each channel or genre forming a bundle
respectively. For a given bundling B, we denote the watching
history of a user with tuple tB = (n1, n2, ..., nN ), where nj
is the number of times a content item from a bundle j ∈ B
was watched by the user. Given a bundling method, we are
interested in the self-information of the random variable TB ,
I(TB) = − logP (TB = tB). Note that P (TB = tB) is given
by the multinomial distribution:

I(TB) = − log(
l!

n1!n2!...nN !
× pn1

1 pn2
2 ...pnN

N ) (1)

where pj is the probability of randomly choosing an item from
bundle j, and l is the number of user’s sessions, i.e. l =

∑
nj .

Fig. 3 plots this value for several bundling strategies:
Bundling programs into the current set of channels; bundling
into one of the 11 coarse-grained genre categories, bundling
into fine-grained genres, and, finally, bundling into individual
programs, as an example of extremely fine-grained bundling.
As expected, program-based bundling has the highest self-
information. Interestingly, despite the population as a whole
favouring certain genres over others, channels defined for
push-based broadcast capture users’ consumption patterns
better than genre categories. However, when genre categories
are split into finer-grained genres, user interests are captured
with similar amount of self-information as broadcast channels.

B. Temporal characteristics
A key feature of the pull model is that it creates temporal

flexibility–users can choose when they consume content, rather

than adhering to a push schedule. This leads to two benefits: At
the infrastructure level, we see a flatter demand pattern as users
are not restricted to the evening prime-time hours if they watch
popular content. At the same time, users are able to consume
content in a bursty fashion, for instance, watching multiple
episodes in short time periods. Despite these trends, we also
see access patterns that resemble push-like consumption, with
a preference for fresh content, and spikes in access as soon as
content is made available on the platform.

1) Pull flattens demand: To explore how viewers make use
of the temporal flexibility of pull, Fig. 4 depicts the average
number of requests received per hour across the whole trace.
We plot two curves: the first (marked broadcasting time)
plots access frequency by the original broadcast time of the
content being requested, the second (marked request time)
plots access frequency by the request timestamps in our traces.
For example, suppose a primetime TV show was broadcast at
9PM in the night but was requested at 10AM the following
morning. This request would be placed in the 10AM bucket
for the request time and 9PM for the broadcasting time.

It can be seen that the access patterns of users in the
pull model change significantly compared to broadcast. By
allowing users to select when they consume content, requests
are flattened far more over the day: When inspecting the
broadcasting time, huge demand peaks occur for content
broadcast between 18:00–20:00 for radio, and 19:00–23:00 for
TV (corresponding to traditional “prime time”). In contrast,
these peaks are flattened greatly in the request times of on-
demand access. That said, it is evident that content that is
broadcast during the peak time also dominates in catch-up
service with greater volumes of access, indicating that TV
producers do an effective job of scheduling popular shows.
The same (popular) items are watched in both pull and push
models; albeit at different times.

Further, the demand patterns are different between TV and
radio content. Whereas TV has pronounced diurnal patterns
with large numbers of requests during evening peak or prime
time hours, radio has a flatter demand pattern, with its peak
hours actually occurring during the afternoon. From an infras-
tructure perspective, these differences in peak times could be
exploited by hosting both TV and radio content on the same
delivery infrastructure, which can be used more efficiently
throughout the day.

2) Pull allows bursty access: Anecdotal evidence suggests
that it is increasingly popular for people to spend evenings
watching several episodes of particular shows. More generally,
users can “catch up” on multiple episodes over time spans
shorter than a week, the typical duration between consecu-
tive episodes for serialised broadcast content. This is a key
flexibility of the pull-based model in contrast with push-
based delivery, where shows must be broadcast following
predetermined schedules.

To quantify such bursty behaviour, Fig. 5 presents a CDF of
the number of episodes from the same TV show requested over
various time periods by individual users. It can be seen that
a small, but noticeable, number of users do exhibit burstiness
when consuming media for both radio and TV, with slightly
more multiple accesses in radio. For example, we find that
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Fig. 5: Burstiness of Accesses for Serial Content: CDF of the number of accesses from the same user for different episodes of
the same serialised programme within a time window (windows size: 6 hours, 24 hours, and one week) by considering users
that have at least 10 logs in the whole dataset and programmes that have at least 4 different episodes. Note that the full range
of the Y-axes for both figures is 0–1, but the figures are cut off at y=0.45 to show the variation clearly.

≈10% of the time, users watch multiple (> 1) TV episodes
from the same programme within a 6 hour period, and nearly
≈30% do so within a week.

Two sets of factors of the current system might actually
limit the extent of such bursty accesses. The first is the nature
of the content. Some kinds of shows (e.g. news, weather)
are outdated soon after release, or when a new episode is
uploaded. Many programmes in the UK tend to have fewer
episodes than elsewhere (e.g. 6 episodes is common for a TV
series in contrast to 13 or 26 episodes typical in other nations).
This limits the maximum size of bursts. Additionally, iPlayer
carries so called “long-form” content (e.g. TV episodes tend
to be 60, or 30 minutes long), which limits the number of
episodes that can be consumed over very short time periods.

The second set of limiting factors arise as a product of the
way content is managed on iPlayer. Content is only available
for catch-up if it has been broadcast previously. Similarly,
content is periodically removed according to predetermined
rules (driven by licensing and other policies), typically after
the last episode of a show. Thus, during the early weeks of a
serialised show, the size of bursts is limited by the number of
episodes broadcast, whereas later on, typically after the final
episode is broadcast, some early episodes may have expired.

Regardless of these system limitations, some unique to the
platform, some to the content corpus, there appears to be a
non-trivial apetite for bursty consumption of multiple episodes

of content over short periods of time, which is catered to by
the pull model. Future system designs for on-demand access
can better support such needs, for example, by creating content
bundles comprising all episodes of a particular show.

3) Push-like access patterns – preference for fresh content:
Although iPlayer allows for on-demand access, the limited
availability of content on the platform, as well as the outdating
of certain kinds of content such as news and weather, place
limits on delayed viewing, as discussed in the previous section.

To quantify this, Fig. 6a plots a cumulative distribution
function (CDF) of the freshness of content, according to two
metrics: Lifetime shows the length of time between the first
and last view for each content item, and captures the rate at
which content gets outdated. Episode Age shows the age of
content items at each distinct view. It can be seen that there
is a skew towards watching content soon after release. Almost
50% of views occur on the first day, even though much of the
content does not get outdated until later on (average lifetime
is ≈ 7 days). Over 90% of views happen within a week.

Notable differences also seem to appear between on-demand
access for radio and TV. Fig. 6a shows that more radio content
gets outdated early on: Whereas similar proportions of TV and
radio content tend to get watched in the early stages of their
release (e.g. under 4 days), TV viewers more slowly tail off
as the content ages (after fourth day), as compared to radio,
where over 95% of users listen to radio within the first 7 days
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Fig. 6: Push-like access patterns: (a) Age of episodes at time of access vs. lifetime of episode (time between last and first
access), showing that most accesses happen early on, when content is still fresh. The inset graph zooms into the first week of
accesses. (b) Normalised number of first views in each time interval of 1 minute between 7pm-12am of every day, showing an
adherence to broadcast schedule for eagerly awaited content (c) CDF of the number of contents simultaneously broadcasted
and watched by a user. Both the maximum (per user), and average values are shown. Over 96% have a maximum value of 1,
and over 99.99% have an average of 1.1. Note that the y-axis range has been set to 0.95–1.

of its release. This may be a product of radio’s greater temporal
dependency, where shows tend to relate to real-world events
(e.g. topical discussions or talk shows).

Thus, it appears that users are broadly using catch-up for re-
cent broadcasts, creating a strong preference for fresh content,
akin to push-based consumption. We note that this preference
for fresh content has been observed in other systems with
progressive content releases [3]. However, our dataset also
shows an interestingly strict adherence to broadcast schedule
on the part of several users. Fig. 6b plots the number of first
views that occur to each content on a minutely basis. For
clarity, we focus on the evening peak hours, when the majority
of requests are made (see Fig. 4), and also the maximum
number of channels are broadcasting. It can be seen that
especially with TV content, the first views spike strongly on
the hour and half-hour marks, immediately after the content is
put up on the platform, suggesting a strong push-like demand
for accessing eagerly awaited content as soon as it is made
available. Similar access patterns are seen outside the evening
peak hours; although the spikes are strongest in the evening.

4) Push-friendly serialisable access pattern: In the pull
paradigm, if a user is interested in content being broadcast
over two channels simultaneously, they can simply fetch it on-
demand one after another, in a serialised fashion. Fig. 6c shows
that despite this flexibility, users tend not to be interested in
simultaneously broadcast content: Over 96% of users never
need to watch content items that are broadcast simultaneously.
On average, for over 99% of users, the average number of
simultaneously broadcast shows that they are interested in is
1.1 or fewer. We conjecture that this is the result of careful
planning of TV channel schedules to ensure that audiences
interested in the same content items can watch them at
broadcast time. Such planning is known to take into account
not only the different channels of a single broadcaster such as
BBC but also the popular shows of competing broadcasters,
to ensure maximum audience sizes. One implication of this is
that if each user had personal “virtual channels” constructed
by merging the different public broadcast channels, then one
(or at most two) channels would suffice for nearly all users.

IV. SCORE: OFFLOADING ON-DEMAND ACCESS

The previous section has explored the characteristics of on-
demand catch-up, showing that whilst it benefits from the pull
model of on-demand access, it still needs to support push-like
access patterns. With this in mind, we now propose a new sys-
tem capable of exploiting these observations: the Speculative
Content Offloading and Recording Engine (SCORE). SCORE
connects to both broadcast services and the Internet, unifying
access to these mediums from the viewer’s perspective via
a set-top box. Whenever a user wishes to consume content,
SCORE transparently decides how best to access it: via broad-
cast (if at the appropriate time), or via online pull (if it is later
on). Importantly, SCORE also integrates the principles of these
two models by intelligently recording popular content from
the broadcast interface, creating local personalised bundles
for individual users, by predicting their viewing patterns.
This has clear benefits for users by providing an extremely
high performance local catch-up service that is not limited
by network capacity and performance. However, the benefits
extend beyond this. Specifically, we identify the potential to
significantly decrease the energy footprint of content delivery
by offloading traffic from the costly IP network onto the
broadcast network instead (via automated recording)4.

A. Designing SCORE
We start by considering the implications of the trace-driven

measurements of §III for the design of SCORE, and derive the
following design choices and simplifications:

1) Speculative Recording for on-demand access: The sup-
port for time-shifted viewing is used extensively: Fig. 4 shows
that although content broadcast during TV prime time is also
popular on catch-up and has the largest audiences, audience
accesses for catch-up TV are more distributed in time. On the
one hand, this decreases the overall load of simultaneous uni-
cast streams to the server, leading to better network utilisation.

4. The rest of this section discusses the use of SCORE with energy
efficiency as the objective. However, this choice is pluggable; an alternative
that optimises for network traffic is explored in §VI-B. We also focus on the
use of SCORE for TV but the principle is equally applicable to radio.
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On the other hand, on-demand access also renders it difficult
to share resources using multi-user reception mechanisms such
as multicast, which would be ideal for amortising costs across
large audiences. In designing SCORE, these considerations
lead us to derive amortised cost savings by exploiting an
alternate broadcast channel available to BBC programmes:
Digital Terrestrial Transmission (DTT). We offer on-demand
access by speculatively recording broadcasts of content items
predicted to be watched later.

2) Whole item recording: Users show a high engagement:
In contrast with the previously reported high-levels of short-
intervalled viewing due to channel surfing5 in traditional (live)
TV [36], [11], the proportion of short-intervalled catch-up
streams (i.e., streams abandoned or stopped after a short period
of viewing) is relatively small (Fig. 1). This stronger com-
mitment suggests a simplified speculative recording scheme
that stores entire items rather than hedging bets by storing
a “sampler” such as the first few minutes of a content item.
Our decision to store entire content items is also influenced
by the relative energy costs of recording broadcasts and on-
demand network streaming: as described later, DVR recording
is generally greener than streaming; thus recording entire
shows can deliver more savings than recording samples.

3) Programme history-based prediction: Users exhibit
strong personalised preferences (§III-A1, §III-A2 and §III-A3);
thus speculative recording needs to be based on personalised
predicions. In particular, users’ affinity to watch many episodes
of the same programme has the highest self-information
(Fig. 3) leading us to design simple personalised predictors
based on programme history. As expected, this leads to the best
performance, but we also report the performance of alternative
prediction mechanisms in §VI.

4) Expiration-based content replacement and weekly cache
refills: Fig. 6a shows a strong push-like preference for fresh
content with nearly 90% of accesses being for content broad-
cast less than a week before. It also shows that over 80%
of items expire within 7 days of broadcast, and cannot be
watched later even if the user wishes to. In addition, it is
common for TV shows to follow a weekly cycle, with new
episodes broadcast around the same time each week.

Driven by these observations, we adopt an extremely simple
cache management policy for SCORE: SCORE is run on a
weekly basis, and a schedule of new recordings for the rest
of the week is decided based on previous watching history.
We assume that amount of storage available for each week is
constrained by a fixed amount S. This limit can be set by the
user, or reasonable defaults can be set automatically depending
on a variety of factors, such as the total storage available on
the DVR, or the bitrate encoding used. Given a specific storage
constraint S and an objective such as minimising energy
or traffic footprint, SCORE speculatively decides the best
schedule of items to store based on the predicted probability
of access. However, once an item has been recorded, we do
not actively evict it from the cache but allow it to be removed
naturally when the content expires or once it has been watched
by the user. Thus, content items can remain for longer than

5Also called channel “zapping” or “scanning”.

a week, but we expect the number of such items to be small
given the nature of the content corpus.

B. Overview of operation

Fig. 7: Schematic of a DVR/STB with SCORE

Fig. 7 shows a schematic of the SCORE Digital Video
Recorder (DVR). Content can be acquired either from the
Digital Terrestrial Television (DTT) interface during broadcast
time, or pulled from the IP network interface. For each content
item requested by a user, a coordinator decides whether to
show the content from (i) the DTT interface if the content
is being broadcast live when the user requests to view; (ii)
the DVR if the content is locally stored; or (iii) IP streaming
from the catch-up servers, if not stored locally. This unified ap-
proach hides complexity from the user, automatically obtaining
the content from the preferred means without intervention.

SCORE’s key novelty comes in its ability to create per-
sonalised bundles by learning and predicting viewing pref-
erences. Exploiting this, SCORE automatically records and
stores items speculatively from the broadcast channel. The
SCORE element consists of a predictor and an optimiser. The
predictor calculates weighting factors for each content item
based on the program series to which it belongs. The decision
on which items will be recorded (from the broadcast channel)
speculatively is made by an optimiser, which calculates the
expected utility of speculatively recording an item, subject to
the storage limitations, and the other items that are due to be
broadcast. The SCORE optimiser is run at the beginning of
every week, using the upcoming broadcast schedule and the
user’s previous catch-up viewing history as inputs. The output
is a schedule of content items to record speculatively from the
DTT interface. SCORE wakes up the DVR from sleep/stand
by at the scheduled broadcast time, records the item, and goes
back to sleep. This therefore allows the user to stream the con-
tent locally, rather than use pull-based delivery via the Internet.

C. Optimiser

First, we describe SCORE’s optimiser component. Specula-
tive recording will never increase network traffic, but recording
content not watched later on wastes energy. Although savings
from watched items can compensate for unwatched items over
a set of recordings, there can still be net energy loss. This is
particularly undesirable, as these losses will be incurred by the
viewer (in terms of their energy bills). As such, it is critical
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to ensure that energy reductions occur in a wider context,
creating benefits across all stakeholders (both in the home and
networking infrastructure). Consequently, we conservatively
offload only content which is expected to minimise the overall
energy spent in providing catch-up functionality.

Deciding which items to record can be formulated as a
binary integer linear programming problem. Formally, given
a set of content items C that are known to be broadcast in
a given week, and a space constraint that a maximum of S
bits can be stored, the task of the optimiser is to compute
a binary valued variable xi ∈ {0, 1} for each item i ∈ C.
xi = 1 if i is stored in the DVR, 0 otherwise. The decision
is based on P IP , the power consumption characteristics of
the IP streaming option, PDVR, the power consumed by
the DVR for speculative recording, and the characteristics of
the content item: the duration τi and the bitrate encoding r,
which determine the space occupied, and a weighting factor
πpi
∈ [0, 1] that encodes the probability that the user will

watch item i ∈ C based on the TV series pi that i is part of.
We model energy consumed in the Internet by on-demand

streaming in terms of an energy per bit figure Eb, following
Baliga et al. [7]. This is a well known and widely used
model for capturing the energy consumption of a network
infrastructure. Although it cannot provide exact measurements
of energy consumption, it is built upon a realistic design of
a countrywide network, assuming data from commercially
deployed networking equipment. It also uses a nationwide
video-on-demand service as a driving case study, therefore
closely matching our needs. As such, we find it an effective
choice to use for SCORE, as even loosely accurate energy
predictions allow SCORE to make effective decisions (as we
later show). As with any such model, however, we are required
to perform several approximations. §V-A provides numerical
details and discusses how we resolve the dependency on the
Eb value by sensitivity analysis. In practice, for the storage
levels we assume, the savings realised are relatively insensitive
to Eb, especially for higher bit rates, which are indicative of
future trends. Speculative recording on the DVR can therefore
save energy only if:

P IP = Eb ∗ r > PDVR (2)

It is important to note that speculative recording cannot
be used bluntly. It can waste energy in either of two ways.
First, the optimiser might decide to store an item which is
subsequently never watched; thus, wasting the energy involved
in speculatively storing the item in the DVR. Second, the
optimiser might decide not to store a content item which is
subsequently streamed by the user, incurring a larger energy
footprint than recording.

The function of the optimiser is therefore to minimise
wasted energy expenditure while speculatively recording con-
tent. This is encoded in the following decision problem:

minimize
∑
i∈C

πpi · P IP · (1− xi)+
∑
i∈C

(1− πpi) · PDVR · xi

(3)
subject to

∑
i∈C

r · τi · xi ≤ S (4)

The objective function (3) is composed of two addends.
The first computes the expected power spent for streaming
items which the optimiser decides not to store, based on a
probability of watching πpi

. The second addend computes the
expected power spent speculatively recording content which
is not subsequently watched, based on the probability of not
watching 1−πpi . Equation (4) imposes the constraint that the
amount of stored contents must to be smaller or equal to the
size of the memory S available on the DVR.

Simplifications for practical application In theory, solving
the above decision problem accurately is a 0-1 Knapsack
problem, which is well-known to be NP-hard. However, we can
adopt a greedy approach and select content items one by one
in descending order of the objective function value (3) until we
run out of space S. This works well in practice because most
high probability content items are 30 or 60 minute programs;
thus, this heuristic fills available storage except for a small
slot usually < 60 minutes long.

Similarly, in theory, it is possible that the result schedules
generated by SCORE may contain more than two items
that are broadcast simultaneously. Given that typical DVRs
have two tuners, it is not feasible to record all simultaneous
broadcasts. However, as described in §III-B4, users are in
general interested in only one amongst items that share the
same airtime. For the rare cases when the recording schedule
generated by SCORE may require simultaneously broadcast
shows (this happens on average for 0.01% of users), it may
be possible to exploit the fact that many shows have repeat
broadcasts and record at a later time (assuming the user has not
streamed from iPlayer before the repeat). Unfortunately, our
dataset does not contain times of all subsequent repeats of a
programme, so we are unable to quantify (in §V) the benefits
of utilizing repeats for speculative recordings. In extremely
rare cases, it may mean that some shows are not able to be
recorded and need to be streamed. Equally, it is possible that
the user has a more advanced DVR or simply has additional
TV tuners installed to handle the case. Given that the vast
majority of users do not watch simultaneously broadcast shows
on catch-up, we consider this a corner case, and rather than
complicate the optimization problem for all users, we handle
the recordings as a “best effort”: In case of conflict, SCORE
could simply choose to record the content with the higher πpi

.

D. Weighting factors
To be usable in the optimiser, the end requirement from a

weighting model M is a weighting factor 0 ≤ πM
p (u) ≤ 1 for

each user u and program p, with larger πM
p indicating greater

confidence that episodes of p will be watched via IP streaming.
The episodic nature of TV programmes and the strong

preference of users for serialised content, as discovered in
Section III-A1, gives a simple but powerful history-based
weighting model: watching previous episodes of a series is a
good indication that the future episodes will also be watched.
Formally, a weighting factor πH

p can be derived for a user u
who has previously watched nup episodes of a program p with
np episodes, as the probability of watching that program:

πH
p (u) =

nup
np

(5)
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Plugging in πpi
= πH

p (u) in the optimization problem (3)-
(4) obtains the best performance amongst the alternatives we
have tried. Therefore, our main evaluation of SCORE uses
this weighting factor. This holds for the content make-up of
the BBC, however, this is not generalisable to all content
repositories. As such, alternative models would be required
for different repository types (e.g. movies); other weighting
factors are explored in Section VI.

V. PERFORMANCE ANALYSIS

This section analyses the performance of SCORE using the
trace discussed before (§II-B). We compute the aggregate en-
ergy and traffic savings achieved when SCORE is run by users
in our trace, and present the results as percentage savings. We
first discuss the simulation parameters used (§V-A). Then we
assess the energy (§V-B) and traffic (§V-C) savings achieved
by SCORE. In each case, we first use an oracle-based approach
to compute the theoretical limits of the savings achievable by
speculative recording. Next, the savings achieved by SCORE is
measured relative to the oracle. The dependence on parameter
values is resolved by sensitivity analysis across the range of
possible values for all parameter combinations.

In computing the list of content items to speculatively
record, we focus on weeks 4, 5 and 6 of our eight-week trace.
This allows SCORE to work with the previous three weeks
of history for the predictor, and at least two weeks after the
broadcast for the user to watch the show, allowing a better
estimation of achievable savings.

A. Parameters for trace-driven simulation

SCORE balances two factors which contribute to energy
consumption other than on the content provider servers. The
first factor is the energy consumed on DVRs to record the
content. We conservatively consider HD double-tuner DVRs,
which are the most energy-intensive of the simple Set-Top
Boxes under EU regulations. EU regulations [1] mandate a
maximum power consumption of 13W when turned on or on
active standby, and 1W when on passive stand-by. DVRs must
also automatically be switched into standby mode when not in
use. The SCORE DVR must therefore adhere to these require-
ments. Hence, the power consumption added by speculatively
storing a content in the DVR, PDVR, is conservatively taken
as the maximum power difference possible between on and
stand by states, i.e. 12W. For the experiments, we assume that
users do not use their DVRs, as this represents the worst-case
scenario for SCORE (i.e. it is necessary to take the DVR out
of standby for all speculative recordings).

The second factor, the energy spent in the IP network to
transport the content to the user, is much harder to quantify.
However, this is vital to measure the combined energy impact
of both the network infrastructure and the home environment.
Our use case of distributing content from a national broad-
caster to audiences within the country over the public Internet
closely fits the assumed model of Baliga et al. [7], which
is based on a paper design of a national-level network in a
broadband-enabled country, and includes a video distribution
network for applications such as Video on Demand. The model

makes detailed calculations using realistic numbers from var-
ious networking equipment currently deployed commercially.
It therefore provides an effective and convenient method to
calculate energy consumption parameterised in terms of Eb,
the average energy per bit transported. However, as with
other current energy models for the Internet, this introduces
assumptions about the models and technology of networking
equipment used, network hops from server to user, network
over-provisioning and multiplexing levels, etc. To account for
these uncertainties, Baliga et al. derive a range of values
possible for this figure, from Eb = 75µJ for current networks
down to Eb = 2µJ , for a future energy-efficient all-optical
network. Power consumed can be calculated as P IP = Ebr
where r is the bit rate encoding of the content provider.
Given the inherent uncertainty and approximations involved in
coming up with these values, we perform a sensitivity analysis
over a wide range of values. This allows us to model the energy
use for a large set of potential networked environments.

When calculating energy consumption, we first vary the
bit rate as r ∈ {480, 800, 1500, 5000}Kbps to calculate the
number of bits transmitted within each stream. r0 = 800Kbps
represents the current default rate6; higher rates show currently
available, and potential future encoding rates. We use constant
bit rate encoding, which means that the number of bits
transmitted within a stream is proportional to the encoding
rate7. To calculate the actual cost per bit transmitted, we use a
variety of values to capture the many possible network setups.
Specifically, we experiment with Eb ∈ { 758 ,

75
4 ,

75
2 , 75}µJ , to

see the effects over four (binary) orders of magnitude. We do
not consider Eb = 2µJ , the lowest value in the Baliga et
al. [7], because when Eb = 2µJ , P IP < PDVR for the bit
rates we consider, making streaming greener than recording.

The amount of content that can be offloaded depends on the
storage available on individual users’ DVRs. Many current
DVRs may have a 500GB or 1TB hard disk. Standardised
technical specifications such as YouView DVR specify a
minimum of 320 GB [35]. However, users also need this
space for manually set recordings. Therefore, we assume that
SCORE has access to a small fixed size partition in this space.
As a baseline, we assume that a storage of S0 = 32GB
is available, similar to the size of “reserved” partitions in
architectures such as YouView [35]. We refer to this as the
constant S case. As the content encoding bitrate increases,
fewer content items can be stored in a fixed size partition,
leading to decreased gains. Therefore, we also experiment with
a rate-proportional S case, where the partition size is taken as
proportional to the bit rate encoding r as S = S0

r
r0

.

B. Understanding energy savings
The energy benefits are quantified by computing the metric

Energy Savings =
EIP − ESCORE

EIP
· 100, where EIP is

6http://www.bbc.co.uk/blogs/bbcinternet/2009/04/bbc iplayer goes hd
adds highe.html. However, when operating in full-screen mode on modern
laptops, BBC iPlayer is seen to switch to 1500 Kbps.

7The impact of changing to Variable Bit Rate (VBR) encoding would also
be negligible because, on average, the file size (and therefore stream size)
will be a product of the video length and encoding rate (although the rate
will vary over time).

http://www.bbc.co.uk/blogs/bbcinternet/2009/04/bbc_iplayer_goes_hd_adds_highe.html
http://www.bbc.co.uk/blogs/bbcinternet/2009/04/bbc_iplayer_goes_hd_adds_highe.html
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(a) Constant S (b) Rate-proportional S (c) No storage constraints (S = ∞)
Fig. 8: Average energy savings (%) with oracle for different Eb, r and S parameter combinations.

the energy consumption of streaming all the contents and
ESCORE is the energy consumption using SCORE.

We wish to understand energy savings at two levels. First,
we quantify the theoretical potential of content offloading.
Second, we measure the savings achieved by SCORE.

1) Oracle-based savings: To understand the full potential
of content offloading, we consider the best-case scenario for
a personalised solution: an oracle that has full knowledge of
future content consumption decides offloads. Every item stored
is guaranteed to be watched by the user. In this scenario, the
achievable savings are limited only by the storage available.

Fig. 8 shows the results, for different combinations of
parameter settings8. Note that the use of constant bit rate
encoding means that the different encoding rates have a linear
relationship. The energy savings metric depends on Eb and
r, which determine the power consumed by the IP streaming
option, and S, which determines the amount of content that can
be offloaded. Only those combinations where inequality (2)
holds are considered; combinations of low r and Eb, known to
result in negative energy savings, are not shown. In general, as
Eb and r increase, IP streaming consumes more energy, and
the energy savings are higher. However Fig. 8a shows that
for very high bitrates, storage can become a limiting factor:
The oracle is not able to store as many items as possible at
lower bit rates, resulting in smaller energy savings (e.g. at
Eb = 75µJ , the savings from r = 5000Kbps is smaller
than savings from lower bit rates). Fig. 8b shows that this
limitation is overcome when the storage is proportional to bit
rate encoding. Fig. 8c shows the maximum savings achievable,
by removing all storage constraints (i.e. S = ∞). If every
item can be stored locally when broadcast, up to 97% savings
can be achieved at high r and Eb. The maximum savings are
≈ 75% considering a constant storage S = S0 = 32GB, and
≈ 90% considering a rate-proportional S.

2) Energy savings in SCORE: Next, we study the savings
achieved by SCORE, given access to S0 = 32GB9. Fig. 9
performs a sensitivity analysis and shows the average energy
savings by using SCORE for different combinations of pa-
rameter choices. For low values of r and Eb, the achievable
energy savings are small, and errors in speculatively recording
items not watched later can lead to negative energy savings.
However, at higher bit rates, savings appear to be relatively

8Error bars in all figures show 95% confidence intervals.
9Due to space constraints, only the more challenging constant S case is

presented for SCORE energy & traffic savings.
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Fig. 9: Energy savings of SCORE relative to Oracle. Parameter
combinations where Internet streaming is more energy efficient
than DVR recording (i.e., Eb∗r <= PDVR) are omitted, since
SCORE (similarly Oracle) would not record content in settings
guaranteed to waste energy.
insensitive to the assumed values of Eb and SCORE can
recover 40-60% of the optimal savings achieved by the oracle.

C. Understanding traffic savings

Next we study traffic savings by computing the metric:

Peak bandwidth savings =
QIP

95 −QSCORE
95

QIP
95

, where QSCORE
95

and QIP
95 are the 95th percentile bandwidth taken across 5

minutes intervals by using SCORE and by streaming all the
contents, respectively. This metric is intended to approximate
the reductions in operating costs for ISPs, which often rely on
95th percentile bandwidth pricing. We compute the savings
across the entire trace, and therefore the figure may be seen
as representative of the savings for the content provider or its
CDN affiliate. Similar results are obtained by replacing the
95th percentile with average traffic savings, and also at the
level of individual autonomous system or AS (these results
omitted due to space constraints).

1) Oracle-based savings: Fig. 10 shows the traffic savings
obtained using an oracle with complete knowledge of future
requests. Unlike the energy savings computation, the oracle-
based traffic savings do not depend on Eb, but only on r, the
bit rate encoding, which determines the size of the IP flow,
and S, the storage available on the DVR, which determines
the amount of content which can be offloaded; an oracle with
infinite storage can offload all the traffic. Thus, we only study
the variation in savings for different values of r and finite
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Fig. 10: Peak bandwidth savings of oracle.
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Fig. 11: SCORE peak bandwidth savings relative to oracle

values of S. The figure highlights that peak bandwidth is
insensitive to the bit rate for rate-proportional S, because the
memory size per content item remains constant across bit rates.
Fig. 10 shows that the peak bandwidth savings can be up to
96% (i.e. peak bandwidth with the oracle can be as low as
4% of the peak without oracle-based offloading), but the peak
bandwidth savings rapidly decreases when storage becomes a
constraint (constant S scenario, for higher bandwidths).

2) Traffic benefits from SCORE: Fig. 11 shows a sensitivity
analysis of the peak bandwidth savings obtained by SCORE
for different parameter settings. Note that unlike the oracle
case, the savings with SCORE depend on Eb as well as r and
S. This is because the items to download are decided as a side
effect of saving energy (Eq. (3), also see discussion in §VI-B).
As with energy, SCORE typically recovers ≈ 40–60% of the
traffic savings achieved by the oracle, using 32GB storage6.
These savings are relatively insensitive to Eb.

VI. “NATURAL” DESIGN ALTERNATIVES

The generic SCORE approach presented in §IV consists
of an optimiser which decides to speculatively record items
based on weighting factors assigned by a predictor. However,
the specific version evaluated in §V uses a personalised
optimiser for each user, which attempts to minimise the energy
consumed by the user’s content access needs, using knowledge
of previously watched programmes. Alternatives to the design
presented above can be generated by using different optimi-
sation functions or predictors which yield different weighting
factors. We illustrate this by considering three “natural” design

variants: First, we study a non-personalised version, where the
same weighting factor is generated for each user, based on
program popularity. Next, we consider a different optimiser
that aims to reduce traffic in the network, arguably a more
“natural” goal. Finally, we consider how to assign weighting
factors for programs not watched previously by the user. In
each case, we highlight why the design we presented earlier
departs from these expected “natural” choices.

A. Understanding the need for personalisation

n: 1 10 20 50 100
% savings: 3.3% 4.6% -5.7% -38.1% -99.0%

TABLE I: Indiscriminately recording most popular n items
for every user leads to negative energy savings relative to
streaming from the Internet (Eb = 75µJ , r = 800Kbps,
S = 32GB, week 6)

As a baseline, we first study a simple and straightforward
approach to content offloading: offloading the most popular
content to all users. Table I shows that doing so can lead
to large numbers of unwatched items; recording items not
watched wastes energy, resulting in decreased energy savings
as n is increased. We see a net energy loss for n = 20 and
beyond, motivating the need for a personalised, user-specific
solution as developed by SCORE. §V-B2 and §V-C2 show
that our personalised solution can perform better the best
performing baseline: saving the most popular 10 items for
every user (top10 in Table I).

B. Traffic Optimisation

As previously discussed, SCORE is optimised for energy
efficiency. This can result in suboptimal traffic savings because
storage capacity might not be used if the energy cost is too
high. Our second design alternative therefore considers the
implications of optimising for traffic costs alone.

To achieve this, SCORE should speculatively record items
regardless of energy costs. We evaluate this “price of green”,
by changing the optimiser to the following “non green”
version, which purely minimises the probability that a recorded
content is not watched:

minimize
∑
i∈C

πpi · (1− xi) (6)

subject to the memory constraint, Eq. (4).
Fig. 12a shows the impact of greening on the energy and

traffic savings in terms of the ratio of the savings achieved
in the energy aware or “green” case considered previously
(Eq. (3)) to the savings achieved using the “non-green” case
(Eq. (6)). The black bars show that the green solution saves up
to 40% more energy compared to the non-green solution.The
white bars highlight that using energy-unaware SCORE, we
could only achieve a traffic savings that is about 1.05 times
greater, for the parameter settings indicated. This gap would
be bigger if we consider lower values of Eb. It is worth
highlighting that different users can freely choose different
options, optimising for traffic or energy, since SCORE operates
solely on the user’s device.
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Fig. 12: Performance of “natural” alternatives in optimisation and prediction. Parameters used: (Eb = 75µJ , r = 1500Kbps,
S = 32GB) (a) Optimising Energy (Green) vs optimising Traffic (non-green) savings. The green variant incurs 1.05-1.15
times more traffic than the non-green version. However, Green also saves 40% more energy than Non-Green. (b) Collaborative
Filtering (CF ) does not offer any significant energy savings benefit over just history (H). (c) Privacy-preserving recommender
using only genre affinity (G+H) performs similarly to Collaborative Filtering (CF +H).

C. Speculatively recording new programme recommendations

Up until now, we have employed a relatively simple history-
based algorithm to inform SCORE. Although our evaluations
show its effectiveness, the predictor of Eq. (5) cannot assign
non-zero weights to new programs previously unwatched by
the user. Similarly, this cannot be used for one-off programmes
such as movies. Next, we explore new weighting models which
allow such predictions to be made.

1) A collaborative filtering weighting model (CF ): Our
first approach is based on the same intuition as recommender
systems: that new programmes explored by users will be
similar to programmes watched in the past. Therefore, to
recommend new programmes to speculatively record, histori-
cal data about pairwise similarities between programmes are
captured as a global parameter matrix Γ. The prediction task
is to use this global prior information to perform a Bayesian
inference of future probabilities of watching a programmes for
each user. We develop a latent variable probabilistic model
parameterised by Γ to perform this inference. Because it is
parameterised by the program-program similarity matrix Γ,
this amounts to an item-item collaborative filtering approach
similar to [27], [4].

Formally, let, UH , UF denote latent multinomial (categori-
cal) random variables for a user’s history and future programs
respectively. These random variables can take on 1-of-K
states, each state corresponding to a different program. Let
YH denote the recorded historical data (programmes watched
by the user). The probabilistic model is then given by:

p (UH , UF , YH |Γ) ∝ p (YH |UH , UF ) Ψ (UH , UF |Γ) , (7)

or, making the assumption that the recorded history YH is
dependent only on UH :

p (UH , UF , YH |Γ) ∝ p (YH |UH) Ψ (UH , UF |Γ) . (8)

In the above, p (YH |UH) is the programme likelihood, which
we compute as

p (YH |UH) ,

{
1 if, UH ⊂ YH ,
0 otherwise.

(9)

Similarly, Ψ (UH = i, UF = j|Γ) is the prior belief between
the history and future programmes which we define as:

Ψ (UH = i, UF = j|Γ) , γi,j , i, j ∈ 1 : K, (10)

where, γi,j is the i, j entry in the Γ parameter matrix. In this
work, Γ is computed using historical data as γi,j = |Pi ∩ Pj |
where, Pi, Pj are the sets of the users watching programmes
i and j respectively. Thus, Γ attempts to capture global prior
information of correlations (similarities) between programmes.

The final task is to infer user-specific posterior probabilities
of watching different programmes in the future F , given the
history of recorded observations YH . Using Bayes’s rule:

p (UF |YH ,Γ) ∝
∑
H

p (UF , UH |YH ,Γ) . (11)

By performing the summation on the R.H.S, the posterior
predictive probability for a program k and user u is:

πCF
k (u) = p (UF = k|YH ,Γ) =

∑
j∈YH

γk,j

Z
, (12)

where Z =
∑

k∈1:K

∑
j∈YH

γk,j is a normalisation factor.
It is natural to combine the benefits of our initial model,

Eq. (5), which accurately assigns high weights for episodes of
programs regularly watched by a user, with the second model
(12), which can assign non-zero weights to new programs.
Thus we get a new weighting factor CF +H:

πCF+H
p (u) = max(πH

p (u), πCF
p (u)) (13)

2) Privacy Preserving Recommendations (G+H): CF and
CF+H require a central server to collect and retain information
about all users’ viewing patterns, to create the global matrix Γ.
Although this is done inherently in iPlayer’s current streaming
model, it will not be the case with SCORE, which records
autonomously from the broadcast interface. Consequently, we
must sacrifice some degree of privacy to implement a CF
strategy. We therefore extend this to offer a local content-
based filtering approach that does not require a user to reveal
viewing history.

Our content-based filtering model weights each programme
based on the affinity of the user to the genre(s) of the
programme. We adopt a vector space approach, and assign
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to each user u a vector gu = (g1u, g
2
u, . . . , g

m
u ), where gju

is the number of content items of the jth genre watched
by the user. Similarly, each program p is assigned a vector
gp = (g1p, g

2
p, . . . , g

m
p ), where gjp is the number of episodes

of p tagged with the jth genre. The genre-based weight πG
p

is then calculated as the cosine similarity between the user’s
genres and the genres of the program:

πG
p (u) =

gu · gp

‖gu‖ ‖gp‖
(14)

As before (e.g˙ (13)), we combine this with the user’s
personal history (which can be computed and kept locally on
the user’s DVR, and thus does not compromise privacy):

πG+H
p (u) = max(πH

p (u), πG
p (u)) (15)

3) Evaluating Program Recommendation Extensions: We
evaluate these new weighting models by randomly select-
ing 27,459 users from our traces, who watched at least
2 programmes a week (to allow program-program similar-
ity to be calculated). Fig. 12b compares this against our
original history-based weighting model H . It presents the
energy savings, and the overall traffic savings, as defined by
TSCORE − T IP

T IP
, where TSCORE and T IP are the amount

of streamed traffic by using SCORE and by streaming all the
watched content, respectively.

It can be seen that CF by itself performs poorly, suggesting
that users’ content consumption patterns are dictated more
by history (i.e., watching different episodes of the same pro-
grammes), rather than by exploring new programmes. Indeed,
even CF + H does not offer any significant benefits over
the much simpler weighting factor H . Fig. 12c shows that
the privacy-preserving model G + H performs similarly to
CF +H , suggesting that simple models may be sufficient to
incorporate recommendations for speculatively recording new
programmes not watched before. Of course, results for H are
limited to corpora that are serial-based. The BBC, and most
terrestial TV channels in the UK, have a heavy bias towards
serial content, which is why H is so effective. Although these
channels do serve non-serial content, this does not achieve
the popularity of their serialised counterparts. This means that
SCORE would be effective at serving most TV channels,
excluding those specialising in one-off shows, e.g. movies.
Our future work will involve looking at the performance of
these weighting models for different corpora.

VII. RELATED WORK

A number of seminal works [36], [19], [11], [16], [3] have
examined different forms of (video) delivery over the Internet.
These range from walled garden IPTV architectures to P2P
live streaming workloads. We add to this list by examining
a catch-up TV workload. Here, we focus on push- vs. pull-
style accesses. Previously, we have also examined the factors
affecting adoption and usage of TV streaming across the UK
ISP ecosystem [24]. In comparison with the previous largest
measurement study of catch-up TV [3], our work makes new
observations on push vs. pull access patterns, includes radio
workloads in addition to TV, and proposes SCORE as a novel

mechanism to mitigate the footprint of catch-up. Our dataset
also contains orders of magnitude more users.

The key contribution of our work has been a novel ap-
proach to combining the benefits of push and pull content
delivery. This has been driven by an optimiser targeted at
reducing energy costs. It has been recognised before that a
large amount of savings can be realised by offloading content
from the servers [20]. In walled-garden IPTV approaches,
when the operator has control over the network, caching at
appropriate locations and branch points within the network
can be effective [33], [6], [9]. Deployments operating over
the public Internet have to rely on end-users, and a popular
strategy is to use P2P approaches where users collaboratively
download from each other to decrease server load. However,
supporting the delivery constraints of streaming in P2P ar-
chitectures typically introduces complexity such as elaborate
mesh/tree topology construction (e.g. [25], [10]), or careful
chunk-scheduling strategies (e.g. [5], [34], [13], [21]). Instead
of peers, SCORE exploits the existing broadcast channel
to decrease server and network load. While this makes the
SCORE solution specific to catch-up TV/radio, it also makes
the design straightforward. Recently, we have shown that peer-
assisted CDNs can also be effective for catch-up TV [23].

Pre-fetching content is a common trick in Content Delivery
Networks (e.g. [22], [32], [9] and references therein). How-
ever, most such works that consider delivering large objects
such as videos need to balance the bandwidth consumed
by speculative pre-fetching with the potential benefits. In-
stead, SCORE uses a cheaper, out-of-band distribution channel
(DTT), and hence can replicate freely, subject only to storage
constraints. In this respect, SCORE is similar to offload-
ing from 3G/4G onto cheaper Wi-Fi networks (e.g., [26]).
However, mobile data offloading schemes typically involve
delaying access until Wi-Fi becomes available, whereas with
SCORE, content is pre-fetched and therefore immediately
available. Importantly, Wi-Fi allows fetching data using user-
specific request/response streams, whereas SCORE operates
over a broadcast delivery mechanism common to all users.
This allows the benefits of SCORE to acrue not only to users
and access networks, but also the core and also decreases the
content provider’s network costs. Recent work explores the
use of cellular broadcast channels (e.g. in LTE) to broadcast
popular objects [18]. However, recording the top-n items could
lead to negative energy savings (c.f. Table I). SCORE exploits
semantic knowledge of access patterns to catch-up videos (e.g.
serial affinity), to make more informed, personalised decisions.
Our focus on decreasing system-wide energy footprint (rather
than just on mobile phones), is also a distinguishing factor.

Functionality similar to SCORE is available on some com-
mercially available DVRs, but there are differences. For ex-
ample, some DVRs, such as TiVo, assist in content discovery
by recommending new programs to watch [31]. Our goal is
similar but with an important difference: we wish to learn
the existing viewing habits of users and anticipate their usage
of catch-up TV. TiVo essentially records as many relevant
suggestions as possible, as low priority items to be erased
if user-requested recordings require space. SCORE is much
more conservative because recording content not watched later
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on wastes energy. Recent commercial offerings in the USA
such as “Primetime Anytime” (c.f. http://dishuser.org/ptat.php)
from DISH, automatically record evening prime time shows
for the four major broadcast networks during evening Prime
Time. Sky TV in the UK follows a similar approach. The
programmes recorded by these offerings are expected to be
the most popular shows. However, as discussed above, this
could lead to negative energy savings.

VIII. DISCUSSION AND CONCLUSIONS

We are currently witnessing the long-predicted convergence
of IP and media networks in various forms. While this has
offered additional functionality such as catch-up TV, the
encroaching of broadcast media on the IP network can lead to
additional network traffic and energy consumption.

Our contributions are twofold. First, we have explored
the key differences between traditional broadcast (push) and
emerging pull-based models of delivery. These observations
led us to our second contribution: a simple approach that can
leverage both broadcast push and online pull–the Speculative
Content Offloading and Recording Engine (SCORE). SCORE
exploits the predictable nature of users’ content consumption
patterns to reduce the energy and network footprint of catch-
up TV. Our evaluation using traces from BBC iPlayer showed
that significant energy savings can be achieved (up to 77%)
whilst also reducing the network footprint. We believe that
the results are robust, given the scale of our trace. The results
may be also generalisable to other catch-up TV systems (e.g.,
iView in Australia, Hulu in the USA or 4oD and ITV Player
in the UK), which all share similar access patterns such as a
dominance of serialised TV shows.

Our main motivation in developing SCORE was to demon-
strate that it is relatively easy to offload catch-up video streams
from the Internet. Various future avenues of work exist for
expanding upon this concept. There is great potential for devel-
oping more sophisticated prediction algorithms. Although we
experimented with this, we did not find notable savings over
SCORE’s simple history-based approach. Future work would
therefore need to focus on exploiting alternative information
sources, e.g. content ratings, recommender systems and social
network information. A second avenue of future work would
be to develop optimisation algorithms that focus on different
considerations, e.g. content provider preferences or ISP costs.
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