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Abstract— An Early Warning System or EWS is a core type of 

data driven IoT (Internet of Things) system used for environment 

disaster risk and effect management. The potential benefits of 

using a semantic type EWS include easier sensor and data source 

plug-and-play, simpler, richer and more dynamic metadata-

driven data analysis and easier service interoperability and 

orchestration. The challenges faced during practical deployments 

of semantic EWS's are the need for scalable time-sensitive data 

exchange and processing (especially involving heterogeneous data 

sources) and the need for resilience to changing ICT resource 

constraints in crisis zones.  We present a novel IoT EWS system 

framework that addresses these challenges, based upon a multi-

semantic representation model. We use 'lightweight' semantics 

for metadata to enhance rich sensor data acquisition. We use 

'heavyweight' semantics for top level W3C OWL ontology models 

describing multi-levelled knowledge-bases and semantically-

driven decision support and workflow orchestration. This 

approach is validated through determining both system related 

metrics and a case study involving an advanced prototype system 

of the semantic EWS, integrated with a deployed EWS 

infrastructure. 

Index Terms— Early Warning System, Internet of Things, 

Crisis Management, Semantic Web, Scalable, Time-critical, 

Resilience 

I. INTRODUCTION 

A. 1.1 Motivation and Challenges 

atural environment disasters may be caused by natural 

hazard events, such as tsunamis, or by manmade hazard 

events such as earth substrate drilling. These may in turn 

cause widespread natural environment damage that can take 

the affected regions years to recover from, following the onset 

of the disaster. An Early Warning System or EWS is a core 

type of IoT information system used for environment disaster 

risk and effect management. It helps prevent loss of life and 

reduces the economic and material impact of disasters [1].  In 

2011, it has been estimated that the cost of installing an EWS 

for tsunami detection in the Indian Ocean was between $30 to 

$200 million dollars, depending on the number of sensor 

buoys used, the precision of the measurements; and that the 

benefit to cost ratio was 4:1, i.e., every dollar spent on 

mitigation saved society four US dollars [2]. An EWS is 

distinct from other types of environment ICT monitoring 

systems in that it supports four main functions: Risk analysis 

of predefined hazards and vulnerabilities; Monitoring and 

warning by means of relevant parameters used for forecasts to 

generate accurate and timely warnings; Dissemination and 

communication of the risk information and warnings to those 

at risk; Response capability built upon response plans that 

leverage local capabilities and the preparation to react to 

warnings.  

Typically, specific parts of natural environments are 

instrumented with fixed sensors to monitor them. These 

represent IoTs in the physical environment.  Examples of such 

instrumented environments include drilling rigs, which 

actively alter the natural environment, and specific regions 

that are monitored because they are prone to potential 

environment hazards, such as coastal regions where there is 

some risk that tsunamis may occur. This sensor data is then 

transmitted (upstream) to either an onsite, or remote, data 

processing centre, or to both when federated. These data 

centres run the (downstream) routine operational event 

detection, special event detection, event handling decision 

processes and command-control work-flows. Typical work-

flows are pre-planned and include: Geographical Information 

System (GIS) processing to capture, store, analyse and present 

the spatial -temporal context of the environment as customised 

maps; sensor data-fusion processing, decision analysis and 

support for information alerts to authorities and citizens. These 

data exchanges tend to be synchronised, predetermined and to 

use data structures that are pre-set by the command-control 

centre. The main requirements for a physical environment IoT 

EWSs are: 

1. Time-critical sensor data exchange, i.e., the combination 

of detection time, assessment time and citizen evacuation 

time needs to be minimal compared to the physical 

propagation time for a critical event, e.g., tsunami [3]. 

The seismic sensor sub-system of a tsunami EWS is 

expected to issue a warning within 2-3 minutes after an 

event is detected [4].  
2. To be able to scale-up (scalability) to deal with 

information floods as publisher numbers and rates 

increase  and scale-down (resilience) to handle local 

bottlenecks for upstream information communication 

caused by local physical network and power disruptions. 

Note it is presumed that the downstream communication 

is remote to, and away from, the region of the 

environment disaster. As such it is not as prone to be 

disrupted. It is also assumed to have some degree of fault-

tolerance.  
3. An EWS needs to support semantics to support context-

awareness of crisis events in order to adapt information 

services and to support data and service interoperability. 
Semantics refer to a representation that imparts meaning to 

concepts. There are several potential benefits in using a 
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semantic approach to design elements of an IoT EWS.  

Semantics can promote richer knowledge-driven use of data. 

Semantics is able to define richer conceptualisations or models 

in terms of richer relationships between the model concepts. 

Concepts can represent devices such as sensors, or 

communication channels, data processing services, or 

workflows and their data and processing contexts, e.g., a 

Tsunami buoy sensor is a specific type of sensor that supports 

all the general properties of a generic sensor. Thus, a semantic 

model can ease the way in which new types of sensor are 

plugged into the system through metadata driven automation.  

Semantics can also lead to richer processing of these 

concepts using rule-based and logic inferencing when 

processing these richer concepts, e.g., when the wave 

movement has a certain frequency range and exceeds a 

specific wave peak-to-trough threshold over a particular  time, 

this triggers a potential tsunami data processing event. A 

semantic model to underpin service processes can also 

enhance service interoperability, orchestration and extension. 

There are five main challenges when using a semantic 

approach:  

1. To specify what representation to use and where to use it, 

i.e., it is usually not practical to generate and exchange 

semantic representations at the sensors.   
2. To specify which semantic concepts are required, i.e., 

semantics can be introduced to enhance interoperability 

when fusing heterogeneous sensor datasets or used to 

select appropriate service work-flows for more flexible 

service orchestration.  

3. To define how any different domain standard semantic 

representations can be semantically mapped to each other 

and linked to the raw data, and when this should 

practically occur.  

4. To adhere to any performance constraints when using 

semantics, e.g., time-sensitivity, performance and 

resilience.  

5. The complexity in developing a usable shared semantic 

model, hence, this is often iteratively developed. 
In order to illustrate the use of a semantic model by an 

EWS, first, the use of a non-semantic model is considered. 

Typically raw data, formatted in binary, with no metadata, is 

published by the sensor hardware as these are very resource 

constrained and are designed to support efficient data transfer. 

A data client subscribed to the use of the sensor data would be 

expected to hard-code a shared knowledge of the sensor data 

structure into the client into order to parse it. An example of 

this would be to use netCDF (Network Common Data Form) 

formatted binary sensor data, exchanged using the AMQP 

(Advanced Message Queuing Protocol, see Section III.A) as 

its message payload. Although such binary data is quite 

efficient to exchange, it is more difficult to fuse with other 

heterogeneous sensor data, and it is difficult to query and 

process this data flexibly 

A semantic model includes explicit metadata and 

ontological concept definitions, e.g. domain measurement 

concepts like 'water elevation', so that clients can, if they want 

to, semantically map concepts and still understand the data 

they receive. An example of this is to use OGC’s O&M model 

and W3C’s SSNO ontology formatted as XML metadata, 

stored in a semantic registry, and associated with the data 

streams. The OGC O&M model, see Section III.B, is a simper 

or lighter semantic model in the following sense: it defines 

concepts such as Features of Interest, Procedures, Observed 

Properties, etc. but defines only very basic relations 

(ObjectType Properties) between these concepts and little 

inference mechanisms (reasoning).  

An example of a more complex, heavier, semantic model is 

the use of SSNO (see Section III.C). This was designed to 

allow richer modelling capabilities such as defined sub-

classes, constraints and, especially, the alignment with other 

existing domain and high-level ontologies, such as DUL, the 

set SWEET of ontologies, as well as the possibility to apply 

different levels of OWL reasoning. The main benefits of a 

“heavyweight” ontology is when data and information coming 

from different sources, including their corresponding 

metadata, is fused and combined and when this is used to infer 

new “knowledge”, independently of the up-stream (from the 

sensor) or downstream (from the knowledgebase) data. For 

example: upstream messages refer to single concepts or single 

data “channels”. Sensors as raw data sources, upstream, do not 

make use of “relationships” between the different concepts or 

channels. Downstream, alert messages (in the tsunami 

scenario) as short semi-structured text message can be 

generated by means heavyweight semantics, i.e. data fusion, 

simulations and/or other “inference” mechanisms by 

processing the stored sensor data. 

B. Scope and Focus  

Although EWSs can be applied to several application 

domains, our focus is solely on their use to aid natural 

environment disaster management. As there are different types 

of natural disasters, we focus on a subset of these. In particular 

we focus on geologic hazards, rather than on atmospheric 

hazards, insect swarms, etc. Different types of hazards differ 

in the types of IoT they use in terms of sensors, sensor 

mobility, and how these communicate.  We focus on fixed 

environment sensors, not mobile sensors, and not on remote 

sensors that have no direct contact with the natural 

environment, such as airborne sensors or satellites out in 

space. We also focus on rapid onset natural hazards whose 

primary effect takes of the order of several tens of minutes up 

to days to primarily affect a region, rather than on slow onset 

hazards such as droughts whose primary effect can take 

months to years to occur.  We do not focus on humans as 

sensors who generate microblogs about crisis events in text 

and image format. Most disaster and emergency information 

systems are classified using the generic management functions 

they support: as decision support systems, expert systems (to 

guide novice users), database systems and document 

management systems (to organise data) or communication 

systems. They are not classified according to how the 

information model is structured, i.e., as a KMS or Knowledge 

Management System, or as a sub-type of KMS, i.e., as a 

semantic system to better enable some management function. 

Our focus here is the on the design and validation of semantic 

EWSs to support the EWS monitoring and warning function. 

Although, we developed and demonstrated a semantic EWS 

for use with two different types of natural hazard tsunami 

Natural Crisis Management (NCM) and Industrial Sub-surface 
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Development (ISD), because of space limitations we 

emphasise the application to tsunamis (NCM) only here.  

Our primary objective is to research and develop a 

semantic EWS for use in aiding management of rapid onset 

geological type natural disasters. Our second objective is to 

research and develop and validate a semantic EWS for such 

deployments. To the best of our knowledge, our novelty is that 

no current semantic EWS has been proposed and validated to 

meet these two objectives (see section II). Our third 

contribution is that based upon our design, implementation 

and validation experiences, we highlight some of the key 

trends to advance the application of semantic computing to 

types of systems such as EWSs (Section V). 

The remainder of this paper is organised as follows. Related 

work is critically analysed (Section II). The experimental 

framework is discussed (Section III). The results and 

validation of the method are presented (Section IV). Finally, 

the conclusions are presented (Section V). 

II. RELATED WORK 

The semantic models used by EWSs in quick onset natural 

environment disaster situations are critically analysed and 

classified here. As EWSs tend to be quite specialised 

environment monitoring systems, the semantic models used by 

other types of natural environment ICT systems are also 

surveyed to assess whether or not their semantic models could 

be applied for EWS use.  

A distinction is made between syntactical or structural 

representations, e.g., W3C XML extensions, versus 

representations with a richer explicit semantics (or meaning) 

such as W3C’s RDF (Resource Description Framework), 

RDF-S (RDF Schema) and OWL (Web Ontology Language). 

Semantic representations can be viewed as a range of 

lightweight to heavyweight semantic conceptualisations 

[6],[7],[8], the range defined informally in terms of the 

expressivity of their semantic data structures. Very 

lightweight ontologies provide the simplest model 

formalization for the task at hand to codify the meaning of 

nodes and their links e.g., they use tree-like structures where 

each node label is a language-independent propositional DL 

(Description Logic) formula [7]. Each node formula is 

subsumed by the formula of the node above. As a 

consequence, the backbone structure of a lightweight ontology 

is represented by subsumption relations between nodes. In 

addition to this, heavyweight ontologies use more complex 

formal logics to describe nodes, to inference and to prove 

theorems, e.g., OWL-DL or OWL-Full. EWS Semantics in 

practice are affected by time-sensitivity, scalability and 

resiliency, by local ICT resource constraints and by, a possibly 

temporary, lack of resource availability. The length of time the 

computation takes also affects its use as contexts change when 

resource constrained systems are situated in dynamic 

environments [9]. 

Computational intensive data processing often uses a big 

data cloud model, where the semantic data is uploaded in real-

time to remote high resource servers for data processing and 

storage over high capacity links, but such an approach faces 

several as yet unsolved challenges [10],[11]. In terms of the 

use of semantic computing for quick onset EWS applications, 

disruptions to the physical environments can disrupt the 

communication infrastructure leading to low or variable 

bandwidth availability. Big data processing tends to be 

designed for low priority batch-mode processing, rather than 

for high priority, time critical processing, e.g., for DSS. In 

addition, big processing is strongly oriented towards 

parallelising numerical computation so that this can complete 

more quickly, rather than on supporting high performance 

semantic data processing.  Hence, our time-critical semantic 

computing EWS is designed to deal with a variable bandwidth 

network, with failed links, and to use a hybrid semantic data 

model and processing, leveraging the use of lightweight 

ontologies as much as possible. 

Use of semantics to enhance (the upstream) data exchange 

at or near the environment sensor data sources may not be 

required as these tend to be designed to transmit data to a local 

sensor access node using relatively simple, proprietary, data 

structures and encodings. This multiplexes data from multiple 

sensors and routes these to a remote data processing centre. 

Thus, sensors only need to simply interoperate with a control 

centre via a sensor’s access node. However, multiple sensors’ 

data may need to interoperate and be fused to enhance data 

processing. These data processes occur more downstream: 

semantic representations can be better added where the data is 

stored, not where it is generated.  Only a few of the current 

proposed EWS designs tend to use a lightweight semantic 

design: e.g., UrbanFlood [12], DEWS [13] and [2]. Even 

fewer EWSs state that they use heavyweight semantic support 

but they give too few details to understand how and why such 

semantic models are specifically being used, e.g., SLEWS 

[14].  The development of shared domain-specific rich 

ontologies is challenging [15]. It often relies heavily on 

domain experts. Meta-data model driven approaches can 

reduce the reliance on the use of domain experts to validate 

operational semantic data model changes [16]. 

In terms of non-EWS type environment monitoring 

systems, first, semantics can be used to define a richer 

meaning for sensor data e.g., the W3C Semantic Sensor 

Network, SSN, [17] ontology. SSN adds lightweight 

semantics to concepts defined using the OCG’s (Open GIS 

Consortium’s) SWE (Sensor-Web Enablement) standard 

specifications. The main SSN ontology classes have been 

aligned with classes in the DUL (DnS Ultra Lite) foundational 

ontology, to facilitate reuse, interoperability and ontology 

alignment and matching [17].  However, each application 

tends to define their own different ontological commitments to 

use an ontology, and their own instantiations and extensions to 

it. For example, the SSN ontology can be used to promote 

automatic plug and play for sensors while the OCG SWE 

specifications cannot [18]. However, the SSN ontology does 

not specify types of observed properties but introduces a 

generic property concept for further sub-classing. Hence 

specific properties and feature types can be imported from 

other ontologies, e.g., the Semantic Web for Earth and 

Environmental Terminology (SWEET) [19]. Non-SSN, sensor 
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data, ontologies and SPARQL, the SPARQL and RDF Query 

Language, can be used to query the ontology model but in 

some cases the justification for using the semantic model and 

its deployment details are weak [20]. 

The sensor context, such as space and time, can be 

represented in a richer semantic form, to better support 

conditional queries and to adapt data services to these 

contexts. Spatial and temporal extensions to RDF, stRDF, 

have been proposed, to develop a Semantic Sensor Web 

registry that can be queried in space and time [21]. The 

spatial-temporal context of citizens can also be used to alert 

targeted individuals [22]. Semantics can be used to enhance 

data processing such as fusion from multiple data sources and 

enhance queries and to adapt the results to support different 

ontological commitments [23]. Due to additional unexpected 

events – e.g. aftershocks – workflow plans may vary over 

time: other regions may become affected and different 

recommendations may have to be given. Semantics can be 

used to improve service discovery [24] and to enable more 

flexible, dynamic, work-flow or plans for services [25]. 

Services can be represented using semantic descriptors and 

different techniques, such as automated planning [26], can 

then be applied.  To conclude,  

 Majority of current reported EWSs tend to use non-

semantic models.  

 Relatively few EWSs use lightweight semantic models, 

even less use heavyweight ones.  

 Current reported EWSs do not take explicit account of 

practical system constraints such as being used in time-

critical, high-demand and resource-constrained situations 

(to meet objective 1, see Section I.B).    

III. SEMANTIC IOT EWS DESIGN AND IMPLEMENTATION 

 

Fig. 1  Overview of the semantic high-level IoT EWS architecture. Risk 

assessment is performed interactively by experts using the command and 

control UI. Assessments are based on visualizing raw heterogeneous 

information feeds, simulation results and analytic reports generated by 

decision support workflows and processing services. 

An overview of the high-level semantic IoT EWS architecture 

is given in Fig. 1.  The overall data flow is that application 

specific (upstream) data flows are driven by fixed sensor data 

acquisition. Downstream, the main data flows are driven by 

the need to use the data for data fusion and mining, decision 

support and command-control driven workflows. Note that the 

semantic EWS system architecture offers generic semantic 

data analysis support. Hence, the domain-specific risk analysis 

is done at the application layer outside the system architecture. 

The design and implementation of the main components of the 

semantic EWS are given in the following sections. The main 

components are as follows: a Message-Oriented Middleware 

(MOM) service is used both to manage the lightweight 

semantic message exchange upstream to the data store, and to 

support the heavyweight semantic message exchange for 

downstream Data Fusion, the Decision Support System (DSS) 

and for workflow services. 

A. Message-Oriented Middleware (MOM) 

A federated MOM system is used to manage the data 

exchange with lightweight semantics across the whole 

distributed semantic EWS as a system-of-systems. There are 

two benefits in using a MOM:  

 It supports asynchronous data exchange between multiple 

publishers (data sources or sinks) and multiple consumers 

(data services) as well as synchronous data exchange. 

 It decouples these from each other via a message broker 

so that new ones can be added and old ones can be 

removed, more flexibly at runtime. This decoupling 

enables sensor data to be published at a faster rate using 

lightweight semantic mark-up, i.e., using the MOM topic 

namespace model.  
Heavyweight semantics can be added and linked via 

additional metadata when the sensor data is imported in the 

knowledgebase (Section III.B). MOMs support highly scalable 

message exchange, e.g., a multi-core MOM server can handle 

throughputs of up to the order of 100 million messages per 

second over a fast dedicated LAN. However, in practice, the 

throughput is far more limited due to the propagation delay 

caused by physical environment changes that disrupt the 

communication bandwidth availability of the local access 

loop, especially when using a shared public WAN or LAN 

rather than using a dedicated end-to-end network. A MOM 

supports basic resilience for the message broker via simple 

mirroring and guaranteed message delivery  

The MOM is implemented as an extension of Apache Qpid 

that supports the use of a standard binary encoded message 

exchange protocol AMQP (Advanced Message Queuing 

Protocol) to enhance interoperability rather than supporting a 

(programming language) specific message API. First, the 

extended MOM improves the basic resilience of the standard 

message broker to prevent it becoming overloaded, i.e., by 

rogue publishers flooding the broker with large fake messages, 

by high-rate messaging, and by publishing unneeded topic 

messages. Second, the extended MOM prevents rogue slow 

rate subscribers causing messages to build up in the broker 

[27]. Brokers can be organized into one or more interlinked 

broker clusters with each cluster organised as a hierarchy of a 

head broker and two or more edge ones, to aid scalability and 

resilience (see Section IV.A). The extended Qpid MOM does 

Sensor Networks Simulations WWW, RSS
Social Media

Context-aware 
intelligent filtering

AMQP

Database(s)

SO
S

Processing 
Service(s)SP

S
W

P
S

Ontology 
Management

SPARQL/SQL

AMQP

Rule 
Management 
Service

Decision Table 
Authoring Service

Semantic Registry

H
TT

P
U

I
U

I

Decision Support
Workflow Service

AMQP

UI

AMQP AMQP AMQP

EWS Command 
and Control

AMQP

Message Oriented Middleware



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

not instrument or modify the broker itself  to enable this 

enhanced scalability and resilience, but uses a special client of 

the broker, called  a Management Agent (MA) that interfaces 

it via a system management API such as the Java Management 

eXtension or JMX. Broker management agents use a subset of 

AMQP to exchange information about the load of any attached 

publishers and subscribers with each other.  The MAs can be 

used to achieve a Load Balancing Head Edge Broker Overlay 

or LBHERO for brokers [27]. The broker load metrics are 

described in Section IV.A. 

The upstream sensor (message publisher) data exchange to 

the broker is not designed to support heavyweight semantics. 

Such semantics is added downstream. The upstream message 

broker itself does however support lightweight semantics, i.e., 

topic (name) matching [27]. Two example topic subscriptions 

using a wildcard “*”are given below: 

“Bodrum.EastMediterranean.SeaLevel.SeaServiceHeight.*”.   

 “Bodrum.EastMediterranean.SeaLevel.*.*”  

The 1st one is used to subscribe to any measurements 

produced by the SeaServiceHeight  sensor. The 2nd one 

subscribes to only SeaLevel measurements, regardless of the 

sensor used. The topic namespace and its hierarchical data 

structure are mapped to the application domain specific part of 

the ontology model used by the semantic registry (Section 

III.C). Because the upstream sensor data exchange needs only 

to support very simple workflows for data to reach the sensor 

data repository, and because new types of fixed sensor are 

seldom added to the operational system, the need for 

heavyweight SSN ontology to support plug and play is not 

required for the upstream exchange in our semantic EWS.   

B. Knowledgebase, Data Fusion and Mining Services 

The Semantic EWS Knowledgebase (KB) is much more than a 

basic database, it holds a wide variety of data at different 

semantic levels. A real-time database feeder filters and caches 

sensor data in a scalable way, transcoding MOM messages 

using a variety of domain semantics and making them 

available as a common database layer in the KB. Raw sensor 

upstream measurement data is stored using the Open 

Geospatial Consortium (OGC, see 

http://www.opengeospatial.org) Observation and 

Measurement (O&M) model, which defines measurement 

concepts, units, allowed values and uncertainty information. 

Data and metadata are deliberately stored separately, 

allowing faster, more efficient SQL/NoSQL lookups on large 

amounts of raw data versus slower but more expressive 

SPARQL queries on the metadata.  

The KB holds the result sets that are continually generated 

and updated by online data-mining and data-fusion techniques, 

each producing data at a variety of semantic levels. Some data 

describes the features and patterns discovered in a domain. 

Other data represents reports from domain experts and other 

data represents the knowledge extracted by off-line semi-

manual data-mining and data-fusion techniques. The stored 

data elements are mapped to the decision support upper 

ontology (Section III.C), to ensure that the concepts are 

semantically grounded in a common understanding.  

In more detail, the semantic data fusion services are 

responsible for combining and analysing data or information 

from different sources to estimate or predict the states of 

entities existing in the problem domain or the occurrence of 

events of interest. The ‘knowledge-base’ uses a variety of data 

fusion algorithms and models wrapped as OGC remote Web 

Processing Service (WPS) or OGC Sensor Planning Service 

(SPS). Multiple levels of data are stored, based upon use of the 

Joint Directors of Laboratories (JDL) data fusion model [28]. 

These levels are:  

 Level 0 (Pre-processing): this allocates data to 

appropriate processes. It selects appropriate sources and 

data adjustments to attain a common data structure. It uses 

noise reduction and it deals with missing data etc. 

 Level 1 (Object assessment): transforms data into a 

consistent structure for discovery of features and patterns, 

data and object correlation, hypothesis formulation and 

feature extraction. 

 Level 2 (Situation assessment):  provides a contextual 

description of relationships among objects and observed 

events, using a-priori knowledge and context information 

and models errors and uncertainty. 

 Level 3 (Impact assessment): evaluates the current 

situation, projecting it into the future to identify forecasts 

and inferring possible impact based on multi-perspective 

assessments. This level includes the data processing 

required for decision support. 

 Level 4 (Process refinement): is considered outside the 

domain of our specific data fusion functions. 

Note that the SSN ontology type services surveyed (in section 

II) focus on support for data fusion levels 0-1 only. We 

support more data fusion levels, 0-3. In our Semantic EWS, 

result sets are explicitly stored at different fusion levels as 

separate database entries. This aids decoupling algorithms 

from the data, encouraging agile composition of processing 

services working at different semantic levels and provides 

decision support actors with the ability to drill down and 

review data at different semantic levels, helping them to fully 

understand the context in which knowledgebase results are 

presented.  

The access to the data-fusion functionality is achieved via 

the OGC WPS and SPS services. The resulting data is 

accessible as a result of an OGC Sensor Observation Service 

(SOS) call or directly via SPARQL/SQL queries to the result 

databases. WPS processes and SPS tasks can be configured, 

and re-configured, to factor in contextual information 

available at any moment in time. Algorithms run continuously 

over long periods of time to receive and process raw data 

updates, checking the databases via polling SPARQL/SQL 

queries or receiving event streams directly via defined APIs. 

Real-time updates to their configuration via contextual 

steering, driven from the intelligent context processing are 

also supported. A process steering component sets up and 

manages processing pipelines of WPS and SPS services, each 

providing access to specific algorithms and models. 

C. Semantic Registry, Decision Support Ontologies (DSO) 

and Services 

The Semantic Registry or repository offers the ability to 

publish, search, query and retrieve descriptive information 

(meta-information) for resources (i.e. data and services) of any 

type, in a standardized manner, across the whole EWS 

distributed system. Its ontology data model links all other 
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services and their data together. The Ontology Store part of 

the semantic registry is used to store and maintain the DSO 

(see Fig, 2).  
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Fig. 2 Components of the Semantic Registry 

There are several interfaces to the Ontology Store:  

 A SPARQL endpoint and client act as a proxy to the 

triple-store that backs on to the Semantic Registry.  

 A RESTful service interface maps REST 

(Representational state transfer) operations to semantic 

queries, allowing client applications to execute complex 

queries without requiring support of semantic web 

standards and SPARQL.  

 A Web-based User Interface and further interfaces, e.g. an 

OGC conformant Catalogue Service and OWLLink (see 

http:// www.owllink.org/), can be adapted for use with 

specific applications. 
The main challenge in the design of the DSO is to 

adequately adapt the concepts to the objects (e.g. sensors, 

data streams) and operational procedures, which govern the 

management of a crisis. The design of the DSO is based on a 

top down approach by re-using and extending ontological 

patterns from available ontology sources, and a bottom-up 

approach by designing thematic models derived from use-

cases found in the domains for the NCM and ISD scenarios. 

The top-down development of the DSO involves a 

collaborative effort amongst domain experts and data 

contributors. As these are generally not experts in ontology 

engineering, we set up a development process that only 

required a minimum of expertise about the principal 

ontological elements. An agreement on a common 

terminology had to be reached which mediates between 

domain experts (who have the knowledge about NCM and 

ISD domains, who possibly speak different languages and who 

may have distinct responsibilities and play different roles) and 

IT experts (who have the knowledge about specific 

technological vocabularies, but might lack the necessary 

domain knowledge for deciding on the right course of action 

as the crisis evolves).  

The need to extend a standard ontology to support different 

applications’ Ontological commitments has already been 

mentioned (Section II). The design of the Decision Support 

Ontology (DSO) supports four requirements: to express sensor 

measurements with a spatial context, their measurement units, 

their time context and the event context The DSO uses the 

W3C SSN ontology [17] as a base ontology, to express the 

sensor measurements with a spatial context. This is aligned to 

the OGC sensor device standards, e.g., WPS, SPS, and SOS 

but while these OGC standards provide description and access 

to data and metadata for sensors, they do not provide facilities 

for abstraction, categorization, and reasoning that are offered 

by semantic technologies. Hence, the DSO is designed to 

aggregate and align multiple ontologies to support compound 

EWS semantics and ontology commitments as follows: 

 SSN ontology does not define a system of units and 

quantities to enable measurements in different units to be 

combined. Hence, a Measurement Units (MU) ontology 

represented in OWL [29] is added and aligned with 

concepts in SSN as part of the DSO.  

 SSN inherently supports spatial properties but it does not 

define support for temporal concepts. The OWL-Time 

ontology [30] is used to capture topological relations 

among instants and intervals, together with information 

about durations, and about date-time information, and 

integrated into DSO.  

 DSO integrates concepts set of ontologies from SWEET 

for the geo-science domain [19].  

 DSO also integrates an event ontology to express any 

events detected in real time [31].  
These events arise from complex correlations of 

measurements made by independent sensing devices. Because 

the mapping of such complex events to direct sensor 

measurements may be poorly understood, such methods must 

also support experimental and frequent re-specification of the 

events of interest. This means that the event specification 

method must be embedded in the problem domain of the end-

user, must support user discovery of the observable properties 

of interest, and must provide automatic and efficient enacting 

of the specification. 

 

Fig. 3  Excerpt of Concepts contained in the DSO 

The example in Fig.3 illustrates an excerpt of DSO showing 

the main relationships of SSNO (Semantic Sensor Network 

Ontology) concepts “Sensor” and “Property”. Sensors defined 

as (DUL) “Physical Objects” attached to a SSNO “Sensing 

Device”. Properties are qualities that can be observed by a 
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certain kind of sensor; they infer the SSNO Features of 

Interest, which are entities in the real world that are the target 

of sensing. A Property has relationships to classes defined by 

the upper ontologies (e.g. Unit of Measure) and to subclasses 

which have been defined for the TRIDEC domains (e.g. 

“Tsunami Velocity” or “Focal Mechanism” defined in for the 

NCM domain). 

Although SSN was extended to be combined with MU, OWL-

TIME, SWEET and Event ontologies to form the DSO, domain 

specific ontology adaptation is still needed. Initially, the SSN 

ontology formed the main conceptual backbone of our 

approach, however, these remain very high level specifications 

offering very generic terms and attributes. In contrast, the 

terminological definitions found in specific application 

domains are very concrete and focused. Moreover, in the ISD 

domain for instance, properties typically have different names 

depending on the users’ roles and views, i.e. we often found 

many definitions for identical items.  Thus, we had to provide 

the means to identity the different items and to additionally 

find adequate mappings to the definitions given in DSO. This 

involved not only a great deal of work for the ontology 

mappings at a technological level, but also involved many 

discussions with domain experts in order to find the correct 

mappings and to use the available ontologies properly [33]. 

The DSO is formally represented in OWL, containing 

description logic (DL) expressions. These are hard to 

understand by, and somewhat too generic for, non IT-experts, 

hence, this process needs much mediation and guidance by the 

experts who developed the formal ontology. 

When filling up the Semantic Registry with descriptions of 

concrete objects (e.g. sensors, properties) data entered follows 

the ontological concepts defined for these objects. For 

instance, the data entered for a sensor comprises specific 

relations of this sensor, e.g. the properties it observes and the 

system to which it is attached. The forms for entering these 

definitions are generated automatically from the SSN ontology 

definitions. As mentioned above, these descriptions are quite 

exhaustive and comprise many attributes and relations. 

Consequently, the generated forms comprise a large number of 

entered data. Most of this data is not needed in our application 

context, but the forms appear large and awkward to the user.  

Hence, in order not to deter users from giving inputs, we 

developed a solution with slim forms which fits the input to the 

needs of the application as follows: 

 We used a selection to fit the application-driven ontology 

requirements, not the complete SSN and DUL ontologies. 

 We developed a mechanism by which the administrator of 

the Semantic Registry can easily select those relations of 

concepts which should appear in the input forms. 

D. Workflow Service and Rule Engine 

Current operational EWS systems tend to use hard-coded 

information logistics processes even though they are subject to 

change. In addition, systems are tailored to the policies and 

requirements of a certain organization and changes can require 

major refactoring. Hence, our workflow management system 

(WfMS) was designed to meet these requirements:  

 It can be deployed and adapted to multiple organizations 

with different policies.  

 Changes can be applied locally, without affecting the 

larger parts of the system.  

 Extensibility:  new services and information sources can 

be integrated and used within DSS workflows.  
As business processes and emergency plans are similar, the 

use of WfMS for automating and managing emergency plans 

has been proposed [32]. Hence, a standard solution is adopted 

to use WfMS that execute workflows modelled using 

graphical notations, such as BPMN2 (Business Process Model 

and Notation 2.0, see http://www.bpmn.org/). Note that 

workflow models are used more to govern the more complex 

downstream information dissemination in the system to the 

stakeholders rather than to govern the simpler continuous 

upstream operational data processes for data acquisition, 

knowledgebase updates. 

At the core of the Workflow Service is Activiti 

(http://activiti.org/), an open-source BPMN2 workflow engine 

that in addition manages workflow deployments and monitors 

and tracks the history of workflows. The Workflow Service is 

accessed via a web-based user interface and a RESTful HTTP 

interface (Fig. 4).  Workflows can be authored offline using a 

BPMN2 editor and then deployed via a RESTful interface.  

  
Fig. 4  Interfaces of the Workflow Service 

The Workflow Service integrates the workflow engine with 

the MOM via additions to the workflow engine that parse each 

new deployed workflow in order to update the necessary 

MOM topic subscriptions, which enable workflows to interact 

with existing and newly developed services. This enables any 

MOM topic to be used within message and signal events and 

hence within workflows. All MOM subscriptions are handled 

dynamically. 

Workflows often include rules that determine, for example, 

under which circumstances certain services are invoked or 

alert messages are sent. These rules can in principle be 

encoded in BPMN2 using branches and conditions. However, 

rules are separated from workflows for two main reasons.  

 When rules become complex, the resulting workflow 

becomes difficult to understand and to maintain.  

 If rules change separately from the general workflow, 

different versions of rule sets can be tested without 

modifying the overall workflows.  
This separation can reduce the complexity for users at the 

user interface to allow changing rules without dealing with the 

possible complexity of workflows. While various 

representations for rules exist, an empirical evaluation of the 

comprehensibility of decision tables, decision trees and textual 
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propositional rules showed that decision tables perform 

significantly better against other formats under consideration 

(binary decision trees, propositional rules and oblique rules) 

on all three criteria applied in an end-user experiment  

(accuracy, response time and answer confidence for a set 

problem-solving tasks involving the above representations) 

[34]. Additionally, a majority of the users found decision 

tables the easiest representation format to work with. These 

findings corresponded with our experience that decision tables 

can be used for communicating rules. Consequently, decision 

tables are integrated into the decision support and workflow 

system.  

The Drools Expert rule-engine (http://www.drools.org/) is 

used to evaluate rule sets. However, the rule sets represented 

as decision tables are not edited directly but instead edited 

using a custom editor or using a spread sheet application. 

Decision tables are then compiled into rule sets which can be 

used within workflows.  

IV. VALIDATION AND RESULTS 

Two main types of validation are undertaken for the Semantic 

IoT EWS system:  

 Non-functional (scalability and resilience) tests were 

performed for the upstream system components that 

needed to be scalable, for the MOM, and for the 

knowledgebase. The downstream system interaction for 

DSS and workflows is more complex and application 

specific, and its throughput performance is far lower than 

the upstream message exchange performance.  

 Functional validation of the semantic EWS was 

performed in two different application domains: tsunami 

NCM and ISD but here the focus is on the tsunami NCM.  
These were done as part of the EU FP7 funded TRIDEC 

Collaborative, Complex and Critical Decision-Support in 

Evolving Crises) project. 

A. Non-Functional Tests (Scalability and Resilience)   

These tests are divided into two:  

1. Tests for the upstream lightweight sensor data and 

metadata acquisition and exchange 
2. Tests  for the sensor data and semantic data annotation 

and storage to enable downstream heavyweight semantic 

data driven processing [36]. 

3. We tested MOM performance, in terms of scalability 

and resilience in order to exchange data and 

metadata in both multi-broker, single cluster and 

multi-broker, multi-cluster settings, (see Fig. 5). In 

our experimental testbed, message brokers run in 

different virtual machines (VMs) on the same server 

or on different servers (typically, with a 2.3 GHz 

CPU, 4 GB memory and 100 Mbps bandwidth). The 

single cluster deployment (Fig. 5, top) consists of 

one head broker cluster (active head broker B0 and 

backup broker B0
’) connected to three edge brokers 

(B1, B2, and B3). It forms a star structure that mimics 

a cluster at a typical data centre as found in practice 

[35]. The federate deployment consists of two 

clusters that are connected via two head brokers (B0 

and Ba) as shown in Fig. 5, bottom. In each cluster 

of the head-edge model, message consumers or 

subscribers only connect to edge brokers; while 

message producers connect to edge brokers if there 

are only local subscribers, i.e., subscribers in the 

same cluster that subscribe on the same topic. If 

there are remote subscribers, i.e., subscribers in a 

neighbour cluster that subscribe to the same topic, 

publishers publish messages to the cluster-head 

broker. 

          

                 
Fig. 5  Broker deployment as a single cluster deployment (top) versus 

federated cluster deployment (bottom) 

Providing the broker runs on a high capacity server, it is 

well able to cope with the message rate load. However, on a 

lower capacity server its load may be exceeded. In a MOM 

broker the load in the broker is measured in terms of the 

message queue which increases when publishers publish on a 

topic to a broker versus decreases when a subscriber 

subscribes to a topic in a broker. A queue builds up when the 

message input rate from a publisher exceeds the message 

output (or consumption) rate by a subscriber for that topic.  

Experiments to test how a federated broker handles a potential 

broker overload and triggers load rebalancing are given as 

follows.  

Each experiment is divided into three phases: 1) client 

distribution phase: 1s – 15s, subscribers of each topic in a 

EWS are registered and distributed to the available brokers in 

each second; 2) equilibrium phase: 15s - 29s, both publishers 

and subscribers in a EWS run without message bursts or client 

joining or leaving; 3) message burst simulation and offloading 

phase: at 30s, a burst that simulates a message flood when a 

crisis detected is generated by doubling the speed of 

publishing 7 topics (e.g., topic 2, 4, 6,..., 12, 14); after 31s, up 

to the end of the experiment, offloading will be triggered if 

any load metric exceeds its higher threshold, i.e., a broker 

becomes overloaded.  
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Fig. 6  Simulation Result for OutBW Utilisation with LBHEBO 

The duration of each phase does not affect the behaviour of 

the system. The main reason to set the time slots to these 

values is to highlight the changes in each stage of the 

simulation. Fig. 6 shows the simulation results for the outBW 

utilisation in percent (y) against time in second (x) in one 

experiment. After the load distribution, broker b1 serves topics 

1, 3, 8, and 14 (see to the 4 inflection points of b1 in the topic 

distribution stage, Fig. 6). For b1, the output queue starts to 

build up after a message burst at 30s as the outBW utilisation 

exceeds 100%; 4s after the burst (34s), the queue depth value 

of topic 8 exceeds THhigh, and thus offloading is triggered. 

Topic 1 in b1 is migrated to broker b0. Therefore, a broker b1 

has more bandwidth to clear the messages for topic 8 in the 

queue (from 34s – 62s, a balancing stage). After 62s, the 

message queue for topic 8 in broker b1 is removed. The 

outBW utilisations for all the brokers are below 100%. 

 
Fig. 7  Query speed as a factor of OWLIM-lite database volume 

In addition, a detailed evaluation of the knowledgebase 

storage and retrieval performance was performed through 

comparing different database approaches to store semantic 

data structures in the form of triples that included 4-store 

(http://4store.org/), OWLIM (now called GraphDB,  

www.ontotext.com/products/ontotext-graphdb/), MySQL 

(http://www.mysql.com/) that were combined with the 

prototype database feeder module. Of these, 4-store does not 

support multi-client connections for data importing (a serious 

flaw) hence we discounted it. In an experiment we ran many 

clients, each importing data into the database in parallel (see 

Error! Reference source not found.) to see how each 

databases performance is effected by multiple clients 

populating it with data in parallel.  

This test gives us an insight into how many data sources 

and database feeders are practical to use with each database 

solution. An alternative to store and retrieve semantic data 

structures is to use non-relational databases (i.e., NoSql 

solutions). Most of the data storage technologies used for Big 

Data fall into this category such as Google’s BigTable, 

Amazon’s Dynamo and open source databases such as 

Apache’s Cassandra and MongoDB (see 

http://www.mongodb.org). 

 
Fig. 8 Simulation import time in MongoDB 

An example use of a NoSql approach is as part of a tsunami 

scenario matching service that allows users to retrieve a set of 

tsunami simulations that have been previously pre-computed 

and stored in the system. The retrieval task is driven by a 

concept of similarity between the recorded event and the 

simulated one which is twofold. A tsunami can be compared 

either by: seismic parameter similarity, or by water height 

distribution similarity. The first similarity concept requires the 

similarity to be computed over the recorded parameters that 

are stored. Once a set of similar scenarios have been identified 

the system can extract the simulation data and the measure of 

similarity of the water height distributions. The similarity is 

computed by comparing the water height distributions. The 

computation performance is mainly influenced by the size of 

the data cubes which are stored and retrieved as binary blobs 

by the service. For testing the behaviour when importing the 

simulations, we first used a typical data cube from a typical 

scenario (1.3Gb in size each) and recorded the import time at 

different stages. The resulting distribution shows that despite 

the time to import a single scenario being around 45 seconds, 

it remains constant even when the number of scenarios stored 

in the system increases (see Error! Reference source not 

found.).  

B. Functional Tests (tsunami NCM) 

On November 27-28, 2012, the Kandilli Observatory and 

Earthquake Research Institute (KOERI) joined other countries 

in the North-Eastern Atlantic, the Mediterranean and 

connected seas (NEAM) region as participants in an 

international tsunami response exercise. The exercise, titled 

NEAMWave12, simulated widespread tsunami watch 

situations throughout the NEAM region. It was the first 

international exercise in this region where the UNESCO-IOC 

ICG/NEAMTWS (Intergovernmental Coordination Group for 

the NEAM region Tsunami Warning System) had been tested, 

full scale, with different systems, including the semantic EWS 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

which was developed as part of the TRIDEC project [37], see 

Fig. 9.  

Because tsunami occurrences in specific regions tend to be 

relatively infrequent, tsunami EWS system tests typically 

involve the use of simulated tsunami data and events, e.g., 

using the SeisComP seismological software simulator 

(http://www.seiscomp3.org/) to support data acquisition, 

processing, distribution and interactive analysis, the MOD1 

(Model1) tsunami Scenario Database and TAT (Tsunami 

Analysis Tool) [38]. NEAMWave12 involved the simulation 

of the assessment of a tsunami, based on an earthquake-driven 

scenario followed by alert message dissemination by 

Candidate tsunami Watch Providers-CTWP (Phase A). It 

continued with the simulation of the tsunami Warning Focal 

Points/National tsunami Warning Centres (TWFP/NTWC) and 

Civil Protection Authorities (CPA) actions (Phase B), as soon 

as messages produced in Phase A have been received. Phase A 

covers the simulation of a tsunami assessment triggered by an 

earthquake scenario, tsunami alert message dissemination by 

CTWP and the message reception and evaluation by tsunami 

Warning Focal Points (TWFP). Each CTWP selected one 

single earthquake scenario and computed the corresponding 

prescheduled tsunami assessment. The exercise included the 

dissemination of 4 messages at the 10th, 25th, 62nd and 180th 

minutes of the scenario event, respectively. KOERI exploited 

the TRIDEC system in addition to the existing operational 

infrastructure, especially making use of artificial eye-witness 

reports sent and geographically referenced by the Geohazard 

Android Application  [39] and the open-source crowd-

mapping platform Ushahidi (http:// www.ushahidi.com/).  

 

  
 

Fig. 9  Screenshot from TRIDEC command and control user interface (CCUI) taken during NEAM Wave 12 exercise. The contours represent a spatial-temporal 

view of a tsunami simulation for the exercise's earthquake event in the Eastern Mediterranean. The coloured circles represent anticipated tsunami impact at pre-

determined tsunami Forecast Points on the coast where warnings should be disseminated to the general public through civil protection authorities via channels 

such as SMS, Email & Twitter. 

The tsunami scenario database used by KOERI is based 

upon code that solves the shallow water equations using a 

finite difference numerical scheme. Initial conditions for the 

tsunami model are obtained using an analytical solution for 

surface deformation in an elastic half-space by estimating the 

distribution of co-seismic uplift and subsidence using the 

earthquake source parameters. The code is validated by first 

initialising the calculation space and then performing the 

travel time propagation calculation. At each step the locations 

reached by the wave are verified and thus the visualization and 

animation files are updated [40]. In addition to providing 

synthetic test sensor data measurements representing a 

tsunami occurrence, there are two further uses of the tsunami 

simulations.  

 Simulations can be applied pre-emptively, to the decision 

support system in order to assess a predicted tsunami as 

early as possible, before enough real observations from 

sea level sensors are available. 

 Reverse computing (predicting) the sensor observations 

(synthetic time series) from the simulated wave 

propagation can be used to verify a tsunami assessment 

by matching synthetic data with real data (as soon as they 

are available) in order to confirm or take back the 

predictions made. 

http://www.seiscomp3.org/
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User-tailored warning messages with customization based 

on recipients' vocabulary, language, subscribed region, 

criticality, and channel have been generated and disseminated 

to the Turkish CPA via email and to other registered message 

recipients via FTP (imitating the Global Telecommunications 

System, GTS, network for the transmission of meteorological 

data), email and SMS as well as social media channels via 

installations of the twitter clone StatusNet and a WordPress 

blog. Exercise messages were disseminated containing hazard 

maps with the affected coastal zones possibly being exposed 

to the tsunami inundation as well as containing the same 

content as the NEAMTWS messages. Again, the direct centre-

to-centre communication with the TRIDEC system deployed 

at IPMA (Instituto Portuguese do Mar e Atmosfera) was 

exercised [37].   

V. CONCLUSIONS 

Based upon our experiences of developing a semantic IoT 

EWS, the following emerging trends are identified in order to 

more effectively apply the use of semantic computing models 

for use with EWS type environments.  

1. In practice, heavyweight semantics should be selectively 

used in specific parts of a distributed, multi-sensor IoT as 

the use of heavyweight semantics requires substantive 

computation and memory use that may not be available in 

low resource sensor things.  
2. Support for multiple levels of semantics and mapping 

between them are needed, i.e., between lightweight and 

heavyweight representations.   

3. Multiple domain ontologies may need to be combined, in 

part because of the cross-disciplinary concepts used by 

stake-holders of a domain specific IoT; multiple 

knowledge representations need support from a range of 

data fusion algorithms.  
4. Some higher-level abstractions and user interfaces to the 

semantic models are needed for use by domain experts 

who are perhaps not experts in semantic modelling, to 

ease their input and their manipulation of these.  
5. The use of semantic computing models in specific 

application domain IoTs needs to be tempered in practice 

according to their operational constraints, e.g., for EWSs 

these effect the time-critical, scalable, resource-

constrained and resilient data (and metadata) exchange 

and management. 
 Although, we oriented our discussion of the application of 

semantics to IoT EWS use for natural crises management, 

IoTs for other application domains that share similar 

operational system constraints could also benefit from our 

design and implementation of a semantic computing system. 

These potential applications include financial and banking 

systems, health and physiological signal acquisition and 

monitoring, and smart transport and utility management in 

smart cities.  
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