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Abstract— Recent advances in the development of multi-modal 

wearable sensors enable us to gather richer contexts of mobile 

user activities. The combination of foot force sensor (FF) and GPS 

is able to afford fine-grained mobility activity recognition. We 

derive and identify 12 (out of 31) maximally informative FF 

features, and the minimal most effective insole positions (two per 

foot) for sensing, to improve the use of FF+GPS methods for 

mobility activity recognition. We tested the improved FF+GPS 

method using over 7000 samples collected from 10 volunteers in a 

natural, unconstrained, environment. The results show that the 

improved FF+GPS can achieve an average accuracy of over 90% 

when detecting five different mobility activities including: 

walking, cycling, bus-passenger, car-passenger and car-driver. 

 
Index Terms— foot force sensors, activity recognition, mobile 

phone sensing. 

I. INTRODUCTION 

ser mobility or activity can be used as a user context to better 

tailor a raft of rich applications to users’ needs, in different 

mobility-related situations [1]. Many different types of sensors 

have been used to gather rich datasets of user motion during 

different activities [2-4]. Among these, foot force monitoring 

seems to be very useful in detecting different user activities 

with a fairly high accuracy [5] and can outperform 

accelerometer-based monitoring [1].  

The earliest foot force monitoring systems used foot-force 

plates which are fixed into a specific indoor environment for 

gait analysis [4, 6]. However, for the purpose of pervasive 

monitoring in people daily life, these fixed environment 

systems have been surpassed by wearable foot force sensors in 

recent years [5, 7]. Different FF sensor configurations can be 

used, either single sensor, multiple homogeneous sensors or 

multiple hybrid sensors. The main drawback of using multiple 

homogeneous sensors, e.g., FF, is that these may not capture 
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enough information to detect some fine-grained mobility 

activities such as riding a bus [1]. Our prior work has shown 

that a hybrid FF+GPS can outperform typical 

accelerometer-based methods in detecting fine-grained 

mobility activities with a both higher accuracy and a lower 

computational cost, but it did not investigate the effect of the  

FF sensor configuration on transport mode classification 

accuracy [1].  

For the same sensor configuration, there are different 

detailed sensor settings in how to use foot force sensors, e.g. 

different monitoring plan (both-feet-monitoring [5, 7] or 

single-foot-monitoring [8, 9]), different numbers of sensors for 

each foot, ranging from one [10] to sixteen [9], and different 

sensor placements on the foot (heel, middle, forefoot, or toe). 

Methods that use fewer sensors have potential benefits, such as 

system simplicity and a lower cost. However, methods that use 

more sensors are expected to be superior in terms of a better 

accuracy. How to find the trade-off between the number of FF 

sensors, their configuration and maintaining accuracy at 

classifying common transport modes is the main research 

challenge investigated in this paper. Additional challenges 

concern how to perform finely-grained mobility activity 

recognition, in the wild, using hybrid FF sensors and whether or 

not we need to monitor the FF in both feet versus just one, e.g., 

to differentiate between pedalling a bike versus the use of 

pedals to control a car whilst driving it. To the best of our 

knowledge, no other work has examined these research 

challenges for FF.  

The remainder of the paper is organised as follows: Section 2 

provides a review of the current FF-based activity recognition 

systems. Section 3 describes the method and presents an 

overview of the system. Section 4 describes experiments and 

evaluates the experimental results. Section 5 discusses the 

further work. Section 6 draws conclusions. 

II. RELATED WORK 

The study of human activity using foot force monitoring has 

a long history in computer science terms, dating back to about 

30 years ago when Dion and his colleagues first made use of a 

thin force transducer to monitor walking [6]. Similar foot force 

plate based research of gait analysis was also performed later 

by Hoyt and his colleagues in 1994 [4]. Though these early 

laboratory-based approaches are accurate in terms of gait 

analysis, they are not applicable to monitor mobility activities 

in daily living environment e.g., due the high cost and lack of 

feasibility of deploying a foot force plate for ubiquitous use. 
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The use of suitable wearable force sensors can achieve the same 

level of accuracy as using a foot plate [5, 7]. 

Veltink et al. [5] used two six-degrees-of-freedom 

movement sensors under each shoe to measure ambulatory 

ground reaction forces and centres of pressure. This work also 

demonstrated that the heel and forefoot are the two key 

positions for ambulatory foot force monitoring. However, this 

work only measured the foot ground reaction force during 

walking - other mobility activities were not considered. In 

addition, the FF sensors (15.7mm in thickness) that instrument 

the experimental shoe (on the inside sole) are too cumbersome 

to be worn daily. Another limitation of this work is that only 

one test subject was monitored.  

Zhang et al [9] assessed activities such as walking, jogging, 

and running by using a small, non-intrusive insole pressure 

measurement device. They studied 40 subjects and achieved a 

high accuracy for activity recognition of 95%. They showed 

that different subjects tend to generate similar foot force 

patterns when performing the same activity and that in addition 

to heel and forefoot, the toe is also a potential key position for 

activity recognition. However, one main drawback is that only 

different sub-types of walking and running are considered. 

Other important mobility activities, such as cycling, are not 

considered. Another limitation is that for one test subject, 32 

foot force sensors (16 per foot) are used to instrument both 

insoles. This is inefficient and costly for pervasive use.  

Tracie et al [7] designed and implemented a more efficient 

Wireless In-shoe Force System (WIFS) to acquire, process, and 

transmit foot force information. This pilot study showed that 4 

force sensors (per foot) are able to obtain accurate foot 

monitoring information when compared with using force plate 

monitoring as the ground truth, providing the FF sensors are 

arranged properly under the supporting bones of each foot. In 

addition, this work also promoted the feasibility of using a 

wireless foot force monitoring system, which is more suitable 

for ubiquitous use. However, the key limitation of this work is 

that only one foot, the left one, was considered for FF 

monitoring. The justification for sensing one rather than both 

feet is not clear. Further, this work only considered basic 

mobility activities such as walking and standing, other 

human-powered and motorised mobility activities were not 

studied. 

The above work focussed on using only FF sensors. Other 

work has investigated using FF combined with other sensors to 

improve user activity recognition [1, 8]. Tao et al. [8] combined 

FF with accelerometer and gyroscope sensors for fine grained 

gait analysis. Though this combination achieved improved 

results in gait detection, this cannot detect motorised activities. 

[1] solved this problem by combining FF with mobile phone 

GPS. By comparing this with a typical accelerometer-based 

method, it was shown that GPS speed is a useful combination 

with FF monitoring to detect fine-grained mobility activities. 

This work achieved a 95% overall accuracy in detecting 

walking, cycling, car (or taxi)-passenger, bus-passenger, and 

car (or taxi)-driver. The motivation for selecting these 5 modes 

is that they are 5 of the most common urban transportation 

modes and they require different types of navigation views, 

hence we need to be able to differentiate these. 

TABLE I 

 CLASSIFICAION OF RELATED WORK USED FOR FF-BASED 

ACTIVITY RECOGNITION 

Ref Sensor 

Config- 

uration 

Insole 

positions 

One or 

both 

feet 

No. of 

sensors / 

foot 

Mobility 

Activity 

Accu-

racy 

[7] FF 
Heel, Fore, 

Toe 
Left 4 Stand, Walk 90% 

[9] FF 

Heel, 

Middle, 

Fore, Toe 

Both 16 Walk, Run 97% 

[5] FF Heel, Fore Both 2 Stand, Walk 93% 

[8] 

FF + ACC 

+ 

Gyroscopes 

Heel, 

Middle, 

Fore, Toe 

Right 5 
Walk (gait 

analysis) 
97% 

[1] FF + GPS 
Heel, Fore, 

Toe 
Both 4 

Walk, Cycle, 

Car, Bus, 

Drive  

95% 

 

TABLE I illustrates that current FF based methods achieved 

a level of about 90% accuracy on average in detecting various 

foot-related mobility activities, e.g., walking. However, some 

mobility activities cannot be recognised by using force sensor 

alone, e.g., driving a car [1]. We also found that most of the 

work monitored the FF in both feet. The most commonly 

monitored insole positions are heal, forefoot, and toe. The 

number of sensors for one foot ranged from 4 to 16. Hence, we 

decide to extend the work [1] to further improve the FF+GPS 

method for use in mobility activity recognition through 

investigating the effect of different FF sensor configurations. 

III. METHOD DESIGN AND SYSTEM OVERVIEW 

In our previous work [1], it was found that foot force patterns 

for some different mobility activities, e.g., between different 

motorised activities, are quite similar [1]. This is why GPS 

speed (in m/s) is used to complement the use of FF to detect 

motorised activities. This achieved a higher accuracy. 

It is noted that the FF patterns are quite unique for classifying 

walking, cycling, bus passenger, car passenger and car driver 

[1]. This is because in human powered activities, the feet 

generate unique force patterns. Hence, we hypothesize that if 

when using FF only (i.e., without GPS) we should be able to 

recognize human powered mobility activities (walking and 

cycling) at a fairly high accuracy as well. However, sometimes 

single FF patterns, e.g., from cycling, are similar to those of 

another mobility activity, e.g., car-driver pedal use for driving 

control, or when a bus-passenger rocks his or her foot. This can 

introduce FF misclassification errors. This is the motivation to 

monitor the FF in both feet to see if the patterns were different. 

A. Correlation Coefficient between left and right foot 

In order to solve the challenges mentioned above to detect 

human-powered activities using FF only, we use the correlation 

coefficient between left foot force and right foot force to 

capture the characteristic of regular force shifting between left 

and right feet during different mobility activities (walking and 

cycling). It is also observed that such periodic force shifting 
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between the left and right feet does not frequently exist in 

motorized activities. 

The correlation coefficient between left and right feet is 

calculated as follows. For each window of FF values, ‘Lx’ is 

used to denote the force values from the left foot sensors and 

‘Rx’ is used to denote the force values from the right foot 

sensors. ‘X’ represents the sequential number of the sampled 

value. For a data window with N samples (N is the window 

size), we get the following set of foot force value pairs (L1, R1), 

(L2, R2), … , (LN, RN). 

The equations for generating the mean values of left foot 

force (L̅) and right foot force (R̅) are as follows: 

  �̅� =  
∑ 𝐿𝑖

𝑁
𝑖=1

𝑁
;                  �̅� =

∑ 𝑅𝑖
𝑁
𝑖=1

𝑁
                          (1) 

The equations for generating the standard deviation of left 

foot force (SL) and right foot force (SR) are as follows: 

𝑆𝐿 = √∑(𝐿𝑖 − �̅�)2

𝑁

𝑖=1

 ;           𝑆𝑅 = √∑(𝑅𝑖 − �̅�)2

𝑁

𝑖=1

     (2) 

Based on the equations mentioned above, the correlation 

coefficient (γLR) between the left foot force and the right foot 

force is computed using the following equation: 

𝛾𝐿𝑅 =
∑ (𝐿𝑖 − �̅�)(𝑅𝑖 − �̅�)𝑁

𝑖=1

𝑆𝐿𝑆𝑅

=
∑ (𝐿𝑖 − �̅�)(𝑅𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝐿𝑖 − �̅�)2 ∑ (𝑅𝑖 − �̅�)2𝑁
𝑖=1

𝑁
𝑖=1

  (3) 

In the equation above,  γLR  is the correlation coefficient 

between the left foot force and the right foot force. The range of 

γLR is between -1 and 1. In a positive relationship, as the left 

foot force increases, the right foot force tends to increase too. 

The value range is between 0 and 1. In a negative relationship, 

as the left foot force increases, the right foot force tends to 

decrease. The value range is between -1 and 0. If the left foot 

force and right foot force are independent, then the coefficient 

will tend to be zero, e.g., this value tends to be zero for a 

car-passenger. This feature can increase the accuracy in using 

FF alone to detect human-powered activities e.g., walking and 

cycling. 

B. System Overview 

We propose to answer the following research questions: Is 

monitoring both feet better than monitoring just one? Where are 

the most effective and minimal insole positions (as fewer 

sensors make it more energy efficient) to monitor FF? Which 

features are the maximal informative ones in differentiating 

mobility activities? How can we reduce the use of GPS, when 

we use FF, in order to further improve the energy-efficiency?  

In the data collection phase when deploying our system, see 

Fig. 1, data is acquired from both smart phone GPS and a set of 

foot force sensors. In total, 8 foot force sensors are used for foot 

force monitoring from both feet. The insole positions of sensors 

are clearly labelled (Fig. 2). The data from foot force sensors 

and mobile phone GPS are collected simultaneously to form the 

raw data set. All the results generated at the classification phase 

originate from the same raw data set.  

Table II 

FEATURE NUMBERS AND CORRESPONDING FEATURES 

Number Feature Number Feature 

1 GPS Mean Speed 17 P4 Max Force 

2 GPS Max Speed 18 P4 STD Force 

3 GPS STD Speed 19 P5 Mean Force 

4 P0 Mean Force 20 P5 Max Force 

5 P0 Max Force 21 P5 STD Force 

6 P0 STD Force 22 P6 Mean Force 

7 P1 Mean Force 23 P6 Max Force 

8 P1 Max Force 24 P6 STD Force 

9 P1 STD Force 25 P7 Mean Force 

10 P2 Mean Force 26 P7 Max Force 

11 P2 Max Force 27 P7 STD Force 

12 P2 STD Force 28 Cor-Coe of P0 & P4 

13 P3 Mean Force 29 Cor-Coe of P1 & P5 

14 P3 Max Force 30 Cor-Coe of P2 & P6 

15 P3 STD Force 31 Cor-Coe of P3 & P7 

16 P4 Mean Force   

 

In the feature extraction phase (Fig. 1), a uniform-duration (8 

seconds window) segmentation (without overlap) as used in [1] 

is applied to all methods. It has been shown that time domain 

features are more computational light than frequency domain 

features [11, 12]. We focused on using the following time 

Fig. 1. Architecture of the FF+GPS system with different sensor configurations for mobility activity recognition 
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            (a)                               (c)     

domain features: mean, max, and standard deviation. Hence, 

the following 31 features form the features pool of this paper: 

mean, max, and standard deviation of GPS speed, mean, max, 

and standard deviation of force readings from positions P0, P1, 

P2, P3, P4, P5, P6, and P7 (see Fig. 2). The correlation 

coefficient between counterpart sensors from both feet are 

represented as: γ(P0, P4); γ(P1, P5); γ(P2, P6); γ(P3, P7) (see 

Equation 3). In the same order, numbers from 1 to 31 are used 

in the following paragraph to denote these features as shown in 

Table II. 

The usefulness of these features for mobility activity 

recognition has been proven in our previous research [1]. The 

mean and max value of foot force readings can be used to 

determine whether whole body weight is supported by the feet 

during different activities, e.g., between walking and 

car-passenger. The standard deviation value of foot force 

readings can be used to specify whether or not an activity 

involved dynamic foot force variations e.g. cycling. The mean 

and max value of GPS speed can be used to differentiate 

between human powered activities and motorised activities. 

The standard deviation of GPS speed can be used to determine 

whether the motorized activity involved frequent speed 

variations e.g., to differentiate between car and bus.  The 

correlation coefficient between left foot force and right foot 

force can be used to determine whether the activity involved 

regular force shifting between left foot and right foot e.g., to 

differentiate between cycle-pedalling and drive-pedalling. 

As Fig. 1 shows, different sensor configurations have been 

employed, including FF(left), FF(right), FF(both), and 

FF(both)+GPS.  

The comparisons between FF(left), FF(right), and FF(both) 

configurations are used to prove the usefulness of using sensors 

on both feet and correlating a coefficient between the left foot 

and right foot force to detect human powered activities (see 

Section IV-C-1).  

The combined FF (from both feet ) plus GPS speed is used to 

identify the maximally informative features and the 

corresponding best insole positions to detect the required 

mobility activities (more details in IV-C-2 and IV-C-3). 
TABLE III 

DIFFERENT SENSOR CONFIGURATIONS AND CORRESPONDING 

FEATURE SET 

Sensor 

Configurations 

Features used (in number) 

FF(both) + GPS 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,

19,20,21,22,23,24,25,26,27,28,29,30,31 

FF(both) 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31 

FF(Right) 16,17,18,19,20,21,22,23,24,25,26,27 

FF(Left) 4,5,6,7,8,9,10,11,12,13,14,15 

TABLE III shows the different features extracted for 

different sensor configurations. These are used to generate the 

classification results used for comparison and evaluation. 

In the classification phase of Fig. 1, a decision tree classifier 

which proved to be the most effective classifier in mobility 

activity recognition was used to generate the final classification 

results [1]. All experimental data collected (from 10 volunteers) 

were equally divided into 10 folds so that a 10-fold cross 

validation mechanism is used for validation [13]. 

Fig. 2. Experiment equipment: (a) experimental insoles with 8 Flexiforce sensors instrumented; (b) the scene of foot force measurements; (c) The foot force 

sensing system and a Samsung galaxy II smart phone. 

 (b) 
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Fig. 3. Recall results from using foot force sensors only  

IV. EXPERIMENTS AND RESULTS EVALUATION 

A. Participants 

All study procedures were approved by the Research Ethics 

Committee at Queen Mary, University of London. All 

participants signed a written informed consent form. Data 

collection took place over an 8-month period from Oct, 2012 to 

June, 2013. Five mobility activities (walking, cycling, bus 

passenger, car passenger, and car driver) were performed by 10 

volunteers (6 male; 4 female) with ages ranging from 24 to 56.   

During data collection, volunteers had the liberty of carrying 

the mobile phone device in any orientation and position that 

was desired. They were instructed to perform different 

activities in daily life environment, and a researcher observed 

them to take notes about the actual activity being performed. 

The data collected totalled 7536 samples, of which 1643 

samples were from walking, 1521 samples were from cycling, 

1597 samples were from riding buses, 1403 samples were from 

taking car/taxi, 1372 samples were from driving. Each sample 

contains sensor data collected during 8 second time duration. 

B. Equipment 

During the data collection procedure, each participant carried 

a Samsung Galaxy II smart phone, and wore a pair of special 

insoles. The special insoles were instrumented by eight 

Flexiforce sensors (4 in each sole).  This number was chosen as 

the baseline number of sensors because it was show that this 

can  obtain accurate ground reaction force values [7]. Hence, 

four Flexiforce sensors have been mounted directly under the 

major weight-bearing points of each foot in order to cover the 

force reaction area of heel, forefoot, and toe for both feet as 

shown in Fig. 2 (a). All Flexiforce sensors are interfaced to the 

smart phone via a Bluetooth connection (see Fig. 2 (b)). The 

foot force sensing system (see Fig. 2 (c)) is implemented with 

four adaptors (marked as 1), one Arduino Nano Board (marked 

as 2), one Bluetooth module (marked as 3), and one 9v battery 

box (marked as 4). Flexiforce sensor reading frequency is set to 

35 Hz, and mobile phone embedded GPS is set to 1 Hz 

according to settings used in [1]. 

C. Results and Evaluation 

Accuracy is defined as the sum of correctly classified 

instances of all mobility activities over the total number of 

classifications. Precision for activity (A) is defined as the 

number of correctly classified instances of activity (A) over the 

number of instances classified as activity (A). Recall for 

activity (A) is defined as the number of correctly classified 

instances of activity (A) over the number of instances of 

activity (A). 

1) Mobility activity recognition using different FF 

configurations (without GPS)  

From Fig. 3 and Fig. 3, it is noted that all three settings 

(FF-Left, FF-Right, and FF-Both) perform equally well in 

detecting walking. This is because there are three stances used  

in normal human walking, heel strike, mid-stance, and toe-off 

[14]. The foot force patterns from either left or right are quite 

unique in terms of both mean and standard deviation [1]. 

Sensing both feet can achieve a better accuracy in detecting 

cycling than sensing either one of them (Fig. 3 and Fig. 3). This 

is because by knowing the correlation coefficient between left 

and right feet, noise arising from body motion, e.g., leg rocking, 

can be ruled out. It is also found that by using the correlation 

coefficient between left and right feet, cycle-pedalling can be 

differentiated from drive-pedalling with a higher accuracy.  

However, use of FF only cannot classify motorised mobility 

activities at a high accuracy. This is because on many occasions, 

the foot force patterns from motorised modes are quite similar, 

e.g., seated bus passengers have quite similar foot force 

patterns to car passengers. It is also noticed that sensing the FF 

in only one foot may mislead the system into inferring false 

user postures during travel, which in turn affects the accuracy in 

differentiating mobility activities. For example, a standing bus 

passenger may lean, putting the majority of weight on one foot, 

which makes his right FF patterns similar to that of a car 

passenger. Also a car passenger sitting with crossed legs may 

also be misclassified as a standing bus passenger or even a car 

driver if we only sense the weight-bearing foot force. The 

majority of these misclassifications can be resolved by sensing 

both feet plus GPS-speed. Hence, we propose a hybrid GPS 

use-plan to reduce the use of GPS of the FF+GPS method.  
Fig. 4.  Precision results from using foot force sensors only 
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TABLE V 

CLASSIFICATION FEATURE RANKING AND SELECTION 

Selection  Algorithms Features Rank in Number (from left to right is the order from 1
st
 to 31

st
) 

InfoGain 02,12,10,24,21,30,20,01,03,09,22,29,31,11,23,08,05,15,18,19,17,06,04,28,16,26,25,27,14,13,07 

ChiSquare 12,02,30,21,10,24,22,03,01,29,20,31,09,16,06,19,17,26,13,27,14,18,25,11,23,08,04,05,15,07,28 

 

In the proposed hybrid GPS use-plan, GPS is only activated 

when detecting motorised mobility activities. For the majority 

of foot related activities such as walking and cycling, only FF is 

used. The merit of using this hybrid GPS use-plan is to reduce 

the use of the most energy hunger sensor, GPS, but without 

significantly affecting the overall accuracy. The final results of 

employing this new GPS use-plan are presented in section 

IV.C.4. 

2) Best Feature Selection 

Although sensing both-feet is better than single-foot-sensing 

to detect walking and cycling (Section IV.C.1), GPS speed is 

also useful to help better differentiate different motorised 

mobility activities. However, we hypothesize that, given the 

range of features and insole positions we considered, whether 

or not there are less informative features and less useful insole 

positions when detecting mobility activities that can then be 

pruned to improve (simplify) the FF+GPS method. Hence, the 

following two commonly used feature selection algorithms, 

Chi Square and Information Gain [15], have been employed to 

identify the best feature set. 

From the results as shown in Fig. , we can see that the 

accuracy tapers off for about the top 13 features for both feature 

selection algorithms (TABLE V). If we were to pick more 

features beyond the top 13, the performance only improves 

slightly, < 1% for all 31 features. From TABLE V, It is also 

noted that although the order of the 13 top rank features is not 

the same, the set of 13 top rank features (as marked in grey) is 

the same for both Chi Square [15] and Information Gain [15]. 

This indicates that the 13 top rank features are the maximally 

informative features within our pool of 31 features. 

3) Best insole positions selection 

The practical advantage of best insole positions selection is 

that we can significantly reduce the equipment cost, without 

drastically affecting the performance. Our best insole position 

selection is based upon the best features selection, as we need to 

select the insole positions that provide the maximally 

informative features. 

TABLE IV shows that within the range of 13 top rank 

features identified in section IV.C.2, no feature is selected from 

insole positions P0 and P4. This is because little force is 

generated on both toes during the required mobility activities, 

so P0 and P4 are pruned. 

In addition, the insole positions P3 and P7 only contribute to 

one feature (No. 31), which is the correlation coefficient 

between P3 and P7. Moreover, it is also discovered that the 

overall accuracy only decreased 1% by removing this feature 

(31). This is because the information provided by this feature is 

also covered by other similar features such as feature 30, which 

is the correlation coefficient between P2 and P6. Hence, feature 

31 is also removed from the selective feature set. The 

corresponding insole positions (P3 and P7) are also pruned.  

Finally, the following 12 top ranking features are selected as 

the optimum feature set: 1 (GPS mean speed), 2 (GPS max 

speed), 3 (std. dev. of GPS speed), 9 (std. dev. of P1 force), 10 

(P2 mean force), 12 (std. dev. of P2 force), 20 (P5 max force), 

21 (std. dev. of P5 force), 22 (P6 mean force), 24 (std. dev. of 

P6 force), 29 (correlation coefficient between P1 and P5), and 

30 (correlation coefficient between P2 and P6). The following 

insole positions are selected as the optimum insole positions: 

P1, P2, P5, and P6. 
TABLE IV  

THE PERCENTAGE OF FEATURES FROM THE TOP 13 THAT 

ORIGINATED FROM DIFFERENT SENSOR POSITIONS 

Sensor Related Top 13 

Features 

Percentage 

GPS 1, 2, 3 18.9% 

FF Sensor P0 None 0% 

FF Sensor P1 9,29 12.4% 

FF Sensor P2 10, 12, 30 18.9% 

FF Sensor P3 31 6% 

FF Sensor P4 None 0% 

FF Sensor P5 20, 21, 29 18.9% 

FF Sensor P6 22, 24, 30 18.9% 

FF Sensor P7 31 6% 

4) The improved FF+GPS method 

 
Fig. 6. Precision accuracy for the improved FF+GPS method 

 
Fig. 5. Overall accuracy as a function of the number of top rank features 
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Fig. 7. Recall accuracy when using he improved FF+GPS method 

According to the results we get from IV.C.1), IV.C.2) and 

IV.C.3), we propose the following improved FF+GPS method 

that employed the 12 best features (out of 31), 4 best insole 

positions (out of 8), and the proposed hybrid GPS use-plan. 

Fig. and Fig. 7 show the results of using the improved FF+GPS 

method (white bars) for detecting the 5 predefined mobility 

activities. Compared with the original FF+GPS method (black 

bars), the precision and recall accuracy of using the new 

improved FF+GPS hardly changes. For the decision tree 

classifier, only a 1.8% reduction in overall accuracy is noticed 

when using the improved FF+GPS method. 

V. DISCUSSION AND FUTURE WORK 

It is shown that the number of foot force sensors in the 

FF+GPS method can be reduced to four (two sensors per foot) 

to still achieve the same level of accuracy. In addition, the 

minimal most effective insole positions with respect to 

accuracy for different (number of foot force sensors) 

configurations are also of interest, as the resources in practical 

systems may be limited. 
TABLE VI 

BEST INSOLE POSITIONS AND OVERALL ACCURACY 

FOR DIFFERENT NUMBER OF FF SENSORS USED 

Number of FF 

sensors per foot 

Best insole 

Positions 

Overall 

Accuracy 

1 (2 in total) P2 and P6 75% 

2 (4 in total) P1, P2, P5, and P6 91% 

3 (6 in total) P1, P2,P3, P5, P6, 

and P7 

93% 

As TABLE VI shows, given the configuration of using only 

one sensor per foot, the overall accuracy of FF+GPS method is 

lower, 75%. This is mainly because of the lack of sensing in the 

fore part of the foot. Though, P2 and P6 in the heel can detect 

walking with a high accuracy and can indicate whether or not a 

user is sitting in a car versus standing on a bus, heal sensing still 

cannot sense the force variations of pedalling e.g., during 

cycling or driving.  Given the configuration of using only two 

sensors per foot, the overall accuracy has been increased to 

92%. This is because by adding two forefoot sensors P1 and P5, 

most of the foot force variations during different mobility 

activities can be sensed and contribute to the classification 

results. However, the configuration of using three sensors per 

foot only leads to a 1% gain in accuracy. This is because the 

information gained by adding the insole sensor position P3 and 

P7 do not contribute much to detect mobility activities. 

It is also discovered that by adding the correlation coefficient 

feature, to sense the FF in both feet, walking and cycling can be 

detected more accurately. The potential correlation between 

other features is also of interest. The foot force variation of the 

driver relates to speed variations when driving the car, e.g., step 

on the accelerate pedal to speed up; step on the brake pedal to 

slow down.  

 
Fig. 8. GPS speed, foot force variations during a 30 minutes driving process 

We also investigated if a study of foot force variations can be 

used to better understand driver behaviour. However, there is 

no obvious correlation between GPS speed and foot force value 

(Fig.8), i.e., while driving, an increment/decrement of vehicle 

speed does not correspond clearly to an increment/decrement of 

the foot force. However, our experiments do show that dips in 

GPS speed do correspond to variations in left (shifting) foot 

force. The right (accelerating/breaking) foot force also varies 

with GPS speed dips, however with a smaller amplitude. This is 

mainly because the pressures used on different pedals are 

different. 

If one could find a valid correlation function between foot 

force and car speed, this could be used to help improve car 

driving. However, since driving is a complex behaviour and FF 

is only partially sensing the driving behaviour, e.g., driving 

behaviour depends on many other factors such as the type of the 

car, driving habits, traffic/road condition, etc. More specific 

experiments and data analysis of FF for car-driving behaviour 

is considered as future work.  

   With regard to energy efficiency, the new improved 

FF+GPS method reduces the use of GPS and reduces the 

number of required foot force sensors to 4 (50% more efficient 

than the original FF method in [1]). However, a detailed energy 

consumption analysis of the current hybrid GPS use-plan and 4 

sensors based foot force monitoring sensors is not included in 

this work. We leave exploring the energy efficiency of the 

improved FF+GPS method as part of future work. 

We selected car and bus as the most representative motorised 

transportation modes. Further work will also investigate if FF 

patterns can be used to differentiate train versus bus versus car. 

This is especially challenging because: of the greater variations 

of types of train in terms of acceleration and speed;  the greater 

freedom variations of movement for passengers in trains and 
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the lack of GPS availability for position and speed 

determination when travelling underground or in tunnels. 

VI. CONCLUSION 

We researched and developed an improved FF+GPS method 

to detect mobility activities.  Our contributions are fivefold. 

First, we investigated whether or not we could reduce the 

number of FF sensors (compared to [1], we reduced the no. 

from 8 to 4 for both feet) and second, where we could most 

effectively position these sensors without affecting the 

transport mode classification accuracy. Third, we investigated 

if monitoring the FF in both feet versus one foot improves 

transport recognition accuracy (it does). The correlation 

coefficient between left foot force and right foot force can 

improve the accuracy in detecting walking and cycling. Forth, 

we investigated if could identify the most important features 

used for classification and omit some features (we reduced the 

no. from 31 to 12 compared to [1]), whilst maintaining an 

overall detection accuracy of about 90%. When a decision tree 

classifier is employed, only a 1.8% reduction in overall 

accuracy occurs when using the improved FF+GPS method 

compared to the original FF+GPS method [1]. The reduction in 

both the number of sensors and derived features computed 

improve the energy efficiency of the sensing. Fifth, we further 

improved the energy efficiency of our proposed FF+GPS 

method for mobility detection by improving the plan to reduce 

the use of (the most energy hunger sensor) GPS sensor.  
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