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Abstract  
 

Stereo vision from short-baseline image pairs is one of the most active 

research fields in computer vision. The estimation of dense disparity maps from stereo 

image pairs is still a challenging task and there is further space for improving accuracy, 

minimizing the computational cost and handling more efficiently outliers, low-

textured areas, repeated textures, disparity discontinuities and light variations.  

This PhD thesis presents two novel methodologies relating to stereo vision 

from short-baseline image pairs:  

I. The first methodology combines three different cost metrics, defined 

using colour, the CENSUS transform and SIFT (Scale Invariant Feature Transform) 

coefficients. The selected cost metrics are aggregated based on an adaptive weights 

approach, in order to calculate their corresponding cost volumes. The resulting cost 

volumes are merged into a combined one, following a novel two-phase strategy, 

which is further refined by exploiting semi-global optimization. A mean-shift 

segmentation-driven approach is exploited to deal with outliers in the disparity maps. 

Additionally, low-textured areas are handled using disparity histogram analysis, which 

allows for reliable disparity plane fitting on these areas.  

II. The second methodology relies on content-based guided image 

filtering and weighted semi-global optimization. Initially, the approach uses a pixel-

based cost term that combines gradient, Gabor-Feature and colour information. The 

pixel-based matching costs are filtered by applying guided image filtering, which relies 

on support windows of two different sizes. In this way, two filtered costs are estimated 

for each pixel. Among the two filtered costs, the one that will be finally assigned to 

each pixel, depends on the local image content around this pixel. The filtered cost 

volume is further refined by exploiting weighted semi-global optimization, which 

improves the disparity accuracy. The handling of the occluded areas is enhanced by 

incorporating a straightforward and time efficient scheme.  

The evaluation results show that both methodologies are very accurate, since 

they handle efficiently low-textured/occluded areas and disparity discontinuities. 

Additionally, the second approach has very low computational complexity.  

Except for the aforementioned two methodologies that use as input short-

baseline image pairs, this PhD thesis presents a novel methodology for generating 3D 

point clouds of good accuracy from wide-baseline stereo pairs.  
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Chapter 1 

1. Introduction  
 

Computer vision is a scientific field that studies how to reconstruct, interpret 

and understand a real word scene from its 2D images in order to extract numerical or 

symbolic information. This information may be exploited in a second stage by an 

autonomous system to take proper decisions and perform proper actions. 

 This PhD thesis deals with stereo vision, which is an important sub-domain of 

computer vision. Stereo vision aims at estimating the 3D structure of a scene from 

two images that capture the scene from two different viewpoints. The 3D information 

can be extracted by detecting the relative position of the scene’s objects in the two 

images.  

The process of retrieving 3D information from stereo cameras may appear 

simple, since humans are able to perceive 3D data naturally using human binocular 

vision. However, it turns out that is a complex task for a computer. 

 In the following of Chapter 1, after mentioning several applications of stereo 

vision, the background and the research objectives relevant to stereo vision are 

provided. Additionally, this Chapter concisely describes the contributions of this PhD 

towards the realization of the research objectives, before giving the outline of this 

thesis. 

 

1.1 Applications of stereo vision  
 

Stereo vision, which is one of the most active research fields in computer vision 

[1], is exploited in a wide range of applications such as: 

 Robot navigation: Autonomous robot navigation in dynamic environments 

requires the study of relative motion of the objects in the robot’s environment 

with respect to the robot and the analysis of depth towards those objects. 

Stereo vision can be used to efficiently estimate the depth to the surfaces that 

lie in the vicinity of the mobile robots [2], [3].  
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 Augmented reality: Stereo vision processing is a critical component of 

augmented reality systems that rely on the precise depth map estimation of a 

scene to properly place computer generated objects with real life video [4], [5]. 

 Automotive applications: The 3D perception of a car’s surroundings is crucial, 

both for driver assistance and for safety systems. An option to obtain 3D 

measurements of the surroundings is to use a stereo vision system [6], [7].  

 

1.2 Background of stereo vision and disparity estimation 
 

1.2.1 Stereo vision theory  

 

This subsection provides the basic theory of stereo vision [8]. In stereo vision, 

two cameras, displaced horizontally from one another are used to obtain two differing 

views on a scene. By comparing these two images, the relative depth information can 

be obtained. In more detail, the two images are shifted together over top of each 

other to find the parts that match. The shifted amount is called “disparity’’. The higher 

is the disparity of an object pixel the closer is this object to the cameras.  If the object 

lies very far from cameras, the disparity is approximately zero. This means the object 

on the left image is the same pixel location as on the right image.  

   

Figure 1. A stereo pair of images and their image planes of projection. 

Figure 1 depicts an example of a stereo vision system. The stereo cameras lie on 

the same plane and have the same direction. The position of both cameras is different 
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along the X-axis. The image planes are presented in front of the cameras in order to 

ease the modeling of the projection. 

Now, let us consider a point P on a scene’s object, whose perspective projections 

are located at pixels Pl and Pr on the image planes of left and right cameras, 

respectively. The left camera’s projection point Pl is shift from the center, while the 

right camera’s projection point Pr is at the center. This shift between the 

corresponding pixels on the left and the right camera images should be computed to 

get the depth information of the object. 

Therefore, the main purpose of stereoscopic vision is to estimate the 

corresponding (matching) pixels between the left and right image of the stereo image 

pair. Afterwards, the depth information can be generated from the corresponding 

points.   

In order to limit the search pixel-correspondences along the same horizontal 

epipolar line the stereo image pairs have been rectified to epipolar geometry. The 

epipolar geometry of stereoscopic camera is illustrated in Figure 2. This simple stereo 

model shows two different perspective views of an object point P from the two 

cameras centers Fl and Fr, which separate only in the x-axis direction by a baseline 

distance. Points Pl and Pr, which are the perspective projections of P in left and right 

view, constitute a pair of corresponding pixels. The plane passing through the camera 

centers Fl, Fr and the object point P in the scene is called the epipolar plane. The 

intersection of the epipolar plane with each image plane is called epipolar line and 

projections at pixels Pl and Pr lie on the same epipolar line. 

    

Figure 2. The epipolar geometry of stereo vision. 
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Figure 3. Top view of the epipolar geometry. 

 

 The matching of pixels between the two views is the standard procedure for 

the depth recovery. The depth information can be evaluated by using the triangle 

similarity algorithms as follows. Figure 3 displays the top view of the epipolar 

geometry of Figure 2. The distance, T , between the two camera centers Fl and Fr, is 

called the baseline of the stereo system and f is the focal length. While, lx  and rx  are 

the coordinates of Pl and Pr, with respect to the principal centers lc  and rc . The 

distance Z of point P to the baseline can be determined by comparing the similar 

triangles (P,Fl ,Fr) and (P,Pl,Pr). After straightforward computations, distance Z is given 

by: 

,
l r

T T
Z f f

x x d
 


                                                                             ( 1 ) 

where the disparity is: l rd x x  .  

The main objective of this PhD is to improve the process of estimating of dense 

disparity maps (i.e. to estimate for all pixels of a stereo image their corresponding 

pixels on the other image). Dense disparity maps can be used to compute, in a second 

stage, the depth information via Equation (1). 
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1.2.2 Disparity estimation steps 
 

The process of estimating disparity maps can be roughly divided into four steps 

[1]: matching cost computation, cost aggregation, disparity optimization, and disparity 

refinement.  

The matching cost computation step deals with the definition of cost metrics 

that measure the similarity of two corresponding pixels from the left and right images, 

respectively. The cost aggregation step relies on supporting pixel areas (i.e. pixel 

neighbourhoods) to aggregate pixel-based matching costs in order to reduce the 

ambiguity of matching. The disparity optimization step is used then to correct errors 

in the disparity maps, which are acquired after performing the matching cost 

computation and cost aggregation steps. Finally, disparity refinement involves a series 

of calculations for dealing with outliers in the disparity maps. 

The literature relevant to the aforementioned steps is described extensively in 

Chapter 2. 

 

 

Figure 4. Challenging image areas for disparity estimation. 

 

1.3 Research challenges and objectives 
 

The disparity estimation problem is very challenging, since the correspondence 

estimation process is hindered due to several factors. First of all, it is difficult to 

establish correspondences between pixels that lie inside low-textured image areas. 
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For example, for the pixels that lie inside the brown box on the left image of Figure 4, 

it is ambiguous which their corresponding pixels on the right image are. Additionally, 

there are image areas that are visible in one image and invisible in the other image, 

such as the area of the left image that lies inside the cyan box in Figure 4. It is 

challenging to deduce the disparity of these areas from neighbouring areas that are 

visible in both images.  Regions near disparity discontinuities may also give inaccurate 

disparity estimates. The yellow and green pixels in Figure 4 are examples of pixels near 

depth discontinues. Moreover, there are areas with repeated texture, such as the area 

inside the red box, which may cause inaccurate correspondences. Another factor that 

hinders disparity estimation is illumination changes. 

Though mature, the estimation of dense disparity maps from stereo image pairs 

is still a challenging task, since there is sufficient space for improving accuracy, 

minimizing the computational cost and providing new ways of handling efficiently low-

textured areas, outliers and depth discontinuities. 

This PhD proposes two methodologies to fulfil the objectives of handling 

efficiently low-textured areas, disparity discontinuities, repeated textures and outlier 

areas.  

 

1.4 Contributions of the proposed methodologies 
 

This PhD thesis proposes two methodologies for the accurate estimation of 

dense disparity maps, which are referred in the following as “methodology A” and 

“methodology B”. The synoptic contributions of these methodologies are provided in 

this section.  

 

1.4.1 Contributions of methodology A 
 

Methodology A is the first approach in the literature that combines efficiently 

colour, CENSUS and SIFT information. In more detail, colour, CENSUS and SIFT 

information is used to define three matching cost metrics. The matching cost metrics 

are aggregated using adaptive weights and their cost volumes are acquired. A novel 

two-phase strategy is then applied to merge the individual cost volumes into a 
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combined one. The strategy followed for the combination could inspire future 

approaches to fuse cost volumes, which have been acquired from different types of 

cost metrics.  

Methodology A exploits efficiently image segmentation in the disparity 

optimization and disparity refinement steps.  

Regarding the disparity optimization step (which helps to improve the disparity 

estimation in low-textured regions and in regions with repetitive texture), image 

segmentation is used to introduce a new criterion for the definition of the smoothness 

penalty terms that are used in a semi-global disparity optimization method. This 

criterion helps to improve the accuracy of the original semi-global method. 

Image segmentation is also used for different tasks within the disparity 

refinement step. One of these tasks is the outliers handling, where methodology A 

proposes a new approach. Briefly, in this approach inlier pixels of a segment propagate 

their disparities to the outlier pixels. When, there is not a sufficient number of inlier 

pixels in a segment, the disparity information from reliable neighboring segments is 

used to define the disparity of this segment. A second important task, within the 

disparity refinement step, concerns the handling of large low-textured areas. This task 

is based on novel disparity histogram analysis, which helps to filter out outlier 

disparities from large low-textured image regions, before applying disparity plane 

fitting in each region using the remaining reliable disparities. The exploitation of 

histogram analysis contributes to improve the accuracy of the disparity plane fitting. 

Methodology A also introduces a two-step approach to refine the disparity 

information at the depth discontinuities.  

The most computationally expensive parts of methodology A are suitable for 

Graphics Processing Units implementation (GPU).  This fact helps to minimize the total 

computational cost of methodology A.  

 

1.4.2 Contributions of methodology B 

 

Methodology B combines Gabor, gradient and colour information to define a 

matching cost metric. This cost metric, which is newly introduced in the literature, can 

be rapidly estimated, while contributing to the improvement of the accuracy.   
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Moreover, methodology B provides a novel approach of using guided image 

filtering for the cost aggregation step. This approach suggests to apply guided image 

filtering separately for support windows of two different sizes and then to select the 

appropriate support window size for each pixel based on the texture homogeneity 

within the local region around this pixel. Therefore, for low-textured areas the larger 

one support window is preferred in order to contain more discriminative information. 

This helps to enhance the accuracy of matching, since the matching between regions 

that contain discriminative information is more reliable. The suggested approach of 

using guided image filtering contributes to acquire better disparity estimation results 

than following other literature approaches, which also use guided image filtering.  

With respect to the disparity optimization step, methodology B proposes 

innovative weighted semi-global disparity optimization, where the path costs of a 

considered pixel may have different weights depending on the pixels that precede the 

considered pixel along each path direction. The weighted semi-global optimization 

improves the disparity estimation in image regions with low or repeated textures and 

gives better results than the original semi-global method [38]. 

Regarding the disparity refinement step, the handling of the outlier areas is 

performed by exploiting a straightforward scheme that slightly increases the 

computational cost. This scheme examines the inlier pixels that lie on the left and the 

right sides of an outlier pixel before propagating a disparity value to the outlier pixel. 

Finally, methodology B introduces an efficient technique for correcting disparity errors 

at depth discontinuities. 

The most computationally expensive parts of methodology B can be 

implemented in GPU, therefore reducing the computational cost of methodology B.  

 

1.4.3 Conclusions on contributions of methodology A and 

methodology B 
 

To sum up, methodology A and methodology B introduce innovative ideas 

related to the stereo disparity estimation steps, thus contributing positively to the 

research objectives of handling outliers, low-textured areas, repeated textures and 

depth discontinuities. The fulfillment of these objectives helps methodology A and 
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methodology B to achieve high disparity estimation accuracy. A more complete 

description of the contributions is given in Chapter 3. 

 

1.4.4 Contributions of the approach developed for dense stereo 3D 

point cloud generation 
 

Evidently, the main focus of this PhD thesis is to present novel solutions for 

estimating dense disparity maps form short-baseline stereo image pairs. Nevertheless, 

during the PhD study, it was invested some research effort to develop an approach 

that aims to improve the accuracy of the 3D point clouds, which are generated from 

wide-baseline stereo pairs. 

Initially, this approach applies some criteria to select appropriately the stereo 

image pairs to be used for 3D point cloud generation. Then for a selected stereo pair, 

the DAISY descriptor is exploited to estimate dense correspondences between the 

rectified images of the stereo pair. Afterwards, this approach applies a novel two-

phase strategy to remove outliers, while the accuracy of the generated 3D point cloud 

is improved by combining sub-pixel accuracy estimation and the moving least squares 

algorithm. 

This approach contributes to acquire point clouds of better accuracy when 

compared to the point clouds that are generated using descriptor-based matching in 

pixel accuracy. Additionally, this approach contributes to remove multiple point cloud 

outliers.  

 

1.5 Outline  
 

The current thesis is laid out as described below. Chapter 2 contains the 

literature review relevant to the stereo disparity estimation problem. In specific, the 

disparity estimation methodology has been divided into generic steps and the 

background relevant to each step is presented in this chapter. Chapter 2 also provides 

information on non-conventional disparity estimation techniques that fuse different 

sensor types.  

Chapter 3 gives an overview of the two methodologies developed through the 
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PhD period and compares those methodologies with literature. Moreover, Chapter 3 

describes the preprocessing steps that are applied prior to the methodologies.  

In Chapters 4 to 6 the detailed description and the experimental evaluation of the 

methodologies that were developed during the PhD are provided. In particular, 

Chapter 4 provides details on the pixel-based cost measures and the cost aggregation 

approaches that are considered in the presented methodologies. Chapter 5 contains 

information regarding the disparity optimization step and the disparity refinement 

approaches for handling problematic areas, which include outlier areas, uniform areas 

and repeated textures. Chapter 6 provides information on the used parameters and 

the experimental results. Chapter 7 gives an overview of the work completed so far 

with respect to the short-baseline stereo disparity estimation and suggests several 

directions of possible future work. In Appendix A the disparity and error results of the 

extended stereo dataset are given.  

While, Chapters 3 to 7 deal with the short-baseline stereo disparity estimation, 

which is the main subject of this PhD thesis, in Appendix B a methodology that assists 

in improving the accuracy of stereo point clouds that are extracted from stereo pairs 

with wide-baseline is presented. 
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Chapter 2  

2. Stereo vision background  
 

2.1 Generic steps of stereo disparity estimation  
 

The work in [1] presents a complete taxonomy of approaches used for stereo 

disparity estimation. The categorization of the approaches is based on the following 

four generic steps, into which most of the stereo algorithms can be decomposed: (a) 

matching cost computation; (b) cost aggregation; (c) disparity optimization; and (d) 

disparity refinement.  In sections 2.2 and 2.3, the literature review relevant to 

matching cost computation and cost aggregation is presented, respectively. Section 

2.4 describes existing disparity optimization approaches, while section 2.5 reports on 

disparity refinement techniques. Additionally, sections 2.2 to 2.5 include subsections 

that briefly mention the literature exploited by the proposed methodologies. Finally, 

in section 2.6 other non-conventional disparity estimation techniques are described.  

 

2.2 Matching cost computation 
 

Matching computation deals with the definition of pixel-based cost measures. 

A pixel-based cost measure determines the matching cost between two pixels that lie 

on different images. Usually, different types of pixel-based cost measures are 

combined in order to form efficient cost metrics. Prevalent, pixel-based cost measures 

include the absolute difference of image intensity values [9], gradient-based measures 

[9], the sampling insensitive cost measure [9], Gabor-feature-based measures [11], 

and non-parametric transforms such as CENSUS [12]. 

Disparity estimation approaches use combinations of individual pixel-based 

cost measures in order to form a final matching cost term that inherits the 

advantageous characteristics of each measure. In specific, the works in [14], [15], [16]

exploit a combination of absolute intensity differences, as well as the Hamming 

distance of CENSUS transform coefficients. The cost term used in [17], [18]  combines
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absolute intensity differences and a gradient based measure. The work in [19] uses a 

combination of CENSUS, colour and gradient based cost measures. The matching cost 

term used in [11] integrates Gabor, gradient and colour information.  

The matching cost values over all pixels and all candidate disparities form the 

initial cost volume. If the matching cost over a single pixel is used for disparity 

estimation, the resulting disparity map will be heavily corrupted by noise. In order to 

reduce matching ambiguity, pixel-based matching costs are locally aggregated in the 

initial cost volume. In section 2.3 different approaches for performing cost 

aggregation are described.  

 

2.2.1 Matching cost terms used in the proposed methodologies 

 

Methodology A, following the paradigm of algorithms [14], [15], [16] uses a 

combination of colour and CENSUS information to define cost terms. However, 

methodology A does not rely only on colour and CENSUS information, but also studies 

how SIFT information could be efficiently used to increase the accuracy of the disparity 

results.  

Methodology B, similarly to the method described in [11], uses a combination of 

Gabor, gradient and colour information to define a cost term. The difference between 

methodology B and the method in [11] is that methodology B uses the sampling 

insensitive cost measure [9] to exploit colour information, while the method in [11] 

uses the sum of absolute difference between the pixel intensity values as a cost 

measure. 

 

2.3 Cost aggregation approaches 
 

The performance evaluation on different cost aggregation approaches, which 

was presented in [20], shows that until 2008, Adaptive support weight [21] and 

Segment-support [22] approaches outperformed the rest of cost aggregation 

approaches. The adaptive support weight method [21] adjusts the weights based on 

colour similarity and proximity principles. In the Segment-based approach [22], pixels 

inside the support window that belong to the same segment as the center pixel are 
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given a weight equal to 1, while pixels inside the support window, which do not belong 

the same segment, are given a weight according to their colour similarity to the center 

pixel.  

Cost aggregation methods that build a support window with variable size 

and/or shape, adaptive to the image content, can also be found in the literature. In 

[23] a fast method, where an upright cross local support skeleton is adaptively 

constructed for each anchor pixel, is presented. Then, given the local cross-decision 

results, a shape adaptive full support region is dynamically constructed by merging 

horizontal segments of the crosses in the vertical neighbourhood. 

In recent years, several approaches perform cost aggregation by filtering the 

initial cost volume. A prevalent filter used for this scope is the bilateral filter [24]. For 

instance, the work in [25]  proposes a recursive implementation of the bilateral filter, 

where the computational complexity is linear in both input size and dimensionality. 

Recently, the use of more efficient filters has been proposed. The edge preserving 

guided image filter [26] has been exploited in [18] and [27]. While, the constant 

weighted median filter has been proposed and exploited in [29]. 

 

2.3.1 Cost aggregation approaches used in the proposed 

methodologies 
 

Methodology A uses the adaptive support weight [21] cost aggregation 

approach. This traditional approach is selected because it gives satisfactory disparity 

estimation accuracy, while at the same time it is suitable for Graphics Processing Units 

(GPU) implementation [27].  

On the other hand, methodology B performs cost aggregation using the guided 

image filter [26]. This filter helps to achieve good disparity estimation accuracy at a 

low computational cost. Moreover, guided image filter can be implemented in GPU 

[27]. 

 

2.4 Disparity optimization approaches  
 

After estimating the aggregated costs for all pixels and all disparities, the next 
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step is to select the optimum disparity of each pixel that best represents the scene 

surface.  

The simplest approach of estimating the disparity of a pixel is to select the 

disparity with the lowest associated aggregated matching cost. This approach, which 

is called the Winner-Takes-All (WTA) approach, is used by the local methods [15], [18], 

[21], [22], [23], [27], [30] that give emphasis on the matching cost computation and 

the cost aggregation steps and not to the disparity optimization step.  

However, the WTA approach does not contribute to the improvement of 

disparity estimation in low-textured regions and areas were repetitive features occur. 

Therefore, in order to improve disparity estimation in these areas various disparity 

optimization approaches have been proposed. Appropriate disparity optimization 

approaches include cooperative, global and semi-global methods. 

Cooperative methods [33], [34] firstly use colour or grayscale information to 

segment the input images into meaningful non-overlapping regions. Then, they 

compute the initial disparity estimate of the image by exploiting a prevalent matching 

algorithm. Afterwards, a disparity fitting technique is employed to perform the task of 

disparity refinement for each region. Cooperative algorithms reduce the number of 

regions by clustering regions in the parameter space of the disparity plane before 

optimization. The main drawback of cooperative methods is that their iterative nature 

increases their computational burden.   

Global optimization methods initially define a global energy function for the 

whole image. Once the global energy has been defined, global optimization algorithms 

attempt to estimate for each pixel of the image the disparity d that minimizes this 

global function. Graph-cuts [31], [32], [35] and belief propagation [17], [36] are two 

prevalent approaches for minimizing a global function.  Though graph-cuts and belief 

propagation give accurate depth maps, they have increased computational complexity 

and memory requirements, while graph cuts are also relatively slow [37].  

Another category of disparity optimization methods, includes the semi-global 

methods [38], [39]. Those approaches attempt to find the global minimum for 

independent scanlines and not for the complete images. Semi-global approaches 

provide a good balance between computational complexity and accuracy.  

Table 1 summarizes the advantages and the disadvantages of the presented 
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disparity optimization approaches. Semi-global optimization approaches combine 

both computational efficiency and accuracy, while the rest of the approaches, though 

they provide high accuracy, they have increased computational cost, too. 

 

Disparity 
optimization 
approaches 

Algorithms Advantages Disadvantages 

 
Cooperative 
optimization 

 

Cooperative   
algorithms [33], [34] 

 

 Good accuracy 
 High computational 

cost  

 
 

 
Global optimization 

 

Graph cut algorithms 
[31], [32], [35] 
 

 
  Good  accuracy 

 High computational 
cost 

 Memory intensive 

 

Belief propagation 
Algorithms [17], [36] 

 

 Good accuracy 
 Medium 

computational cost 

 Memory intensive 

 
Semi-global 
optimization 

 

Semi-global 
algorithms [38], [39] 

  Good accuracy 

 Reduced 
computational 
cost 

 

Table 1. Comparison of disparity optimization approaches. 

 

2.4.1 Optimization approach used in the proposed methodologies 
 

The semi-global method [38] is exploited in both of the proposed 

methodologies to optimize the disparity estimation results. The reason behind this 

selection is that the semi-global method has decreased computational complexity, 

while at the same time it contributes significantly to the improvement of the disparity 

results. The two methodologies of this thesis propose extensions of the original semi-

global method, which assist in enhancing the disparity estimation accuracy. 

 

2.5 Disparity refinement techniques  
 

The disparity results have to be refined, since they are polluted with outliers in 

occluded areas, uniform areas and depth discontinuities.  

The disparity value of an occluded point is usually inferred from the disparities 

of its neighbouring unoccluded pixels. In the approach of [36], the disparity of an 
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occluded pixel is set equal to the disparity of the horizontally closest left non-occluded 

neighbour. In the methodology of [18], the disparity value, which is assigned to the 

occluded pixel, is set equal to the minimum disparity between the non-occluded pixels 

that lie on the left and the right sides of the occluded pixel, along the horizontal 

direction. A bilateral filter is used to smooth the filled regions, in order to deal with 

horizontal artifacts that are produced after applying this outlier filling scheme.  The 

method presented in [17] uses image segmentation to separate images into segments 

and then solves the disparity estimation problem by estimating a disparity plane for 

each estimated segment of the scene. In this method, the disparity of an occluded 

pixel is deduced from the disparity plane it belongs to. The work in [16] uses iterative 

region voting to fill outliers, where the filled outliers are marked as ‘reliable’ pixels and 

used in the next iteration, so that valid disparity information can gradually propagate 

into outlier regions.  

In [40], two approaches for reliably filling outliers are proposed. The weighted 

least squares approach is based on absolute colour difference and weighted least 

squares, while the segmentation-based least squares approach is based on least 

squares with segmented points. The second approach is more accurate than the first 

one, but it requires much more computational cost.  

 

2.5.1 Refinement techniques used in the proposed methodologies 
 

Methodology A does not rely on any particular refinement approach to build 

its disparity refinement approach. However, it bears general similarity to methods, 

such as [17] and [40], which also utilize image segmentation to perform the disparity 

refinement task.  

Methodology B uses as basis the refinement approach of methodology [18] 

and builds upon it a straightforward disparity refinement scheme, which yields to 

better refinement results than the basis approach, with minor increase in the 

computational cost.  
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2.6 Non-conventional disparity estimation approaches  
 

Disparity estimation using stereo vision is a cost efficient solution for 

generating depth maps. However, there are other options to perform this task. In 

recent years, low-cost sensors, such as Kinect or Time-of-Flight (TOF) sensors, are used 

to estimate depth maps.  

Though low-cost sensors give reliable depth estimates for surfaces with low or 

repeated textures, their spatial and depth resolution is low. On the other hand, a 

stereo vision system, which uses high resolution cameras, can provide high resolution 

depth maps. However, stereo vision systems usually show difficulty in estimating 

depth in low-textured surfaces and surfaces with repeated textures.  

Some recent works attempt to fuse depth sensors with stereo vision systems 

in order to combine the advantages of both systems.  

In [41], a TOF sensor is combined with a stereo vision system. The data term, 

which is used by the introduced Markov Random Field to estimate depth maps of high 

accuracy, is formed from a weighted linear combination of a cost function of stereo 

matching and a cost function of the TOF sensor.  

The method in [42] computes a TOF sensor confidence map and a stereo 

confidence map based on local image features. The two confidence maps are then 

incorporated into the cost function, which is used to populate the 3D volume created 

by a plane-sweeping stereo matching algorithm. The final depth map is acquired after 

applying WTA to this 3D volume. 

The work in [43] proposes a global optimization scheme that combines depth 

information from Kinect with stereo matching. The fusion of both sensors helps to 

obtain correct scene depth in ambiguous areas and fine structural details in textured 

areas. 

 

2.7 Summary 
 

Chapter 2 provided the literature related to the generic steps of binocular 

stereo vision, which are the following: (i) matching cost computation, (ii) cost 

aggregation, (iii) disparity optimization and (iv) disparity refinement. Additionally, this 
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chapter briefly referred to the literature exploited by the two methodologies 

proposed in this thesis. Chapter 2, finally, described several non-conventional 

disparity estimation techniques which attempt to fuse depth sensors with binocular 

stereo vision systems.  

The following chapter describes the contributions of methodologies A and B 

and discusses their differences to relevant state-of-the art methods. Moreover, it 

gives the flowcharts of methodologies A and B as well as their preprocessing steps. 
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Chapter 3 

3. Overview of the proposed methodologies 
 

As it was aforementioned, this thesis presents two methodologies that were 

developed during the PhD period. Τhe complete contributions and the flowcharts of 

these methodologies are given in this Chapter. Additionally, these methodologies are 

compared with the state of the art. Finally, this Chapter describes the preprocessing 

steps of the methodologies.  

 

3.1 Contributions of developed methodologies 
 

This section concisely describes the contributions of each of the proposed 

methodologies.  

 

3.1.1 Contributions of methodology A 
 

The most significant contributions of methodology A include the following: 

 This methodology acquires a combined cost volume by exploiting three types 

of cost metrics. The first cost metric combines RGB-CENSUS information, the 

second one uses only CENSUS information and the third one SIFT information. 

The cost metrics are aggregated using adaptive weights and their cost volumes 

are acquired. A reliable two-phase strategy is then followed to merge the 

individual cost volumes into a combined one.  

This methodology, to the extent of my knowledge, is the first one that 

combines efficiently RGB, CENSUS and SIFT information. 

 This method exploits image segmentation in several stages of this approach. 

This methodology applies plane fitting just to segments that correspond to 

large uniform areas and not to all segments. This fact reduces the dependency 

of methodology A from the result of the disparity plane fitting, which may be 

of reduced accuracy for small segment areas, due to the decreased number of 

contained disparities. Also, a metric that verifies if planar fitting is successful is 
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used, since not all large uniform areas can be considered as planar. 

Segmentation is also useful in the disparity optimization step. In more detail, 

the mean-shift segmentation maps of the stereo pair are used to introduce a 

new criterion for the definition of the smoothness penalty terms that are used 

in the original semi-global scanline optimization method of [38] (previously 

exploited, among other works, in [13], [16], [44], [45]). The modified scanline 

method is employed for the optimization of the combined cost volume. 

Moreover, segmentation is exploited for the outliers handling task, where an 

efficient strategy that incorporates segmentation-based outliers handling to 

successfully cope with occluded areas, is presented. 

 Handling of large uniform areas is based on disparity histogram analysis, which 

removes outlier disparities from large uniform regions, before applying 

disparity plane fitting in each region using the remaining reliable disparities. 

 

Except for the major contributions, some secondary contributions of methodology A 

are the following: 

 A weighted variant of the original CENSUS transform, which improves the 

disparity accuracy, is proposed. 

 Disparity refinement at disparity discontinuities is performed by applying a 

two-step disparity edges refinement approach. The first step handles disparity 

errors at depth discontinuities in a coarser level and the second one in a finer 

level. 

 

3.1.2 Contributions of methodology B 
 

Most significant contributions of methodology B include the following: 

 An efficient cost metric for estimating the similarity between two pixels. The 

cost metric combines gradient difference, Gabor feature difference and a 

sampling-insensitive dissimilarity measure. It can be rapidly estimated, while it 

contributes to the accuracy improvement. 

 A novel strategy for exploiting guided image filtering [26]. In brief, the guided 

image filtering is applied separately for support windows of two different sizes 
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and the appropriate support window size for each pixel is selected based on 

the texture homogeneity within the local region around this pixel. Texture 

homogeneity is examined exploiting the mean-shift segmentation maps [46] 

of the stereo pair. 

 An innovative weighted variant of the semi-global optimization method of [38], 

where the path costs of a considered pixel may have different weights 

depending on the pixels that precede the considered pixel along each path 

direction. This feature improves the overall performance of the original semi-

global method. 

 A novel simple scheme, which assists in successfully handling outliers. This 

scheme examines if the pixels on the right or on the left side of the outlier pixel 

are more similar in terms of colour to that pixel, before assigning a disparity 

value to it. Finally, an efficient technique for correcting disparity errors at 

depth discontinuities is introduced. 

 

3.2 Proposed methodologies in comparison to state-of-the-

art methods 
 

This section gives the differences between the proposed methodologies and 

state-of-the art methods in this field. 

 

3.2.1 Methodology A in comparison to state-of-the-art methods 
 

Methodology A is the first one that combines RGB, CENSUS and SIFT 

information by utilizing an efficient strategy. There are several works that use RGB 

and/or CENSUS information, such as [12], [14], [15], [16], [45], [47], but they do not 

exploit the SIFT information, which could probably improve their performance. 

However, the approaches that use SIFT descriptors, or similar ones (such as SURF [48]), 

for the case of short-baseline stereo disparity estimation, are limited. For instance, the 

work in [49] combines mutual information, SIFT descriptors and segment based plane-

fitting to find correspondences for stereo image pairs which undergo radiometric 

variations. The paper in [50] uses SURF key points for the initial disparity estimation, 
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which is further improved by using graph cuts for disparity plane assignment. 

Many methods, such as [17], [33], [35], [50], [51], exploit image segmentation 

algorithms in order to separate images into segments and then solve the disparity 

estimation problem by assigning, in various ways, a disparity plane for each estimated 

segment of the scene. In contrast to this class of approaches, the proposed method 

applies plane fitting only to large segments that correspond to low-textured areas. 

Additionally, a metric that verifies the success of plane fitting is used to prevent 

application of plane fitting to low-textured areas that are not (near) planar. 

The disparity histogram analysis, described in this thesis, could be used as 

preprocessing step in algorithms that perform plane fitting using methods that are 

sensitive to outliers, such as the least square error (LSE) based plane fitting algorithm, 

which is used in [35] and [51]. Even plane fitting algorithms that are insensitive to 

outliers, such as RANSAC (Random Sample Consensus) [52], could be fostered by this 

outlier filtering technique, since their computational cost would be reduced in case 

the data to be fitted contains less outliers.  Disparity estimation methods that exploit 

RANSAC plane fitting include [36], [50] and [51]. 

Many methods, such as [11], [16], [17], [22], [23], [33], [44], [53], [54], are 

evaluated using just the four well-known stereo pairs of the Middlebury Stereo Online 

Evaluation Benchmark and some of them [16], [17], [33] manage to rank among the 

top methods. However, there are additional Middlebury stereo pairs that can be used 

to present a more thorough and complete evaluation. Methodology A, except for the 

well-known stereo pairs, uses 27 more stereo pairs for assessing the overall 

performance of this approach. 

 

3.2.2 Methodology B in comparison to state-of-the-art methods 
 

Several methods require iteration cycles in order to improve gradually the 

accuracy of the estimated disparity maps [33], [53], [54], [55]. Consequently, the 

number of iterations affect the computational cost of an approach. On the contrary, 

the proposed method gives disparity results of superior accuracy without performing 

any repetitive refinement. 

Plenty of methods, such as [17], [33], [35], [50], exploit image segmentation 
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algorithms in order to separate images into segments and then solve the disparity 

estimation problem by assigning a disparity plane for each estimated segment of the 

scene. In contrast to this class of approaches, the proposed method does not require 

plane fitting to give accurate disparity results. 

Methodology B, such as methodology A, also uses 27 additional stereo pairs 

for assessing its overall performance. 

 

3.3 Flowchart of the proposed methodologies 
 

The developed methodologies can be concisely demonstrated using flowcharts, 

which are presented in this subchapter. 

 

3.3.1 Flowchart of methodology A 

 

Methodology A is divided into four steps, as visualized in the flowchart of 

Figure 5. 

 
Figure 5. Flowchart of methodology A. 

 

The matching cost computation and cost aggregation steps are described in 

Chapter 4. While, the disparity optimization and disparity refinements steps are 

described in Chapter 5. 
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3.3.2 Flowchart of methodology B 

 

Methodology B is also divided into four steps, as visualized in the flowchart of 

Figure 6. 

 
Figure 6. Flowchart of methodology B. 

The matching cost computation and cost filtering steps are described in 

Chapter 4. While, the disparity optimization and disparity refinements steps are 

described in Chapter 5. 

 

3.4 Preprocessing steps 
 

3.4.1 Rectified image pairs  
 

As it is mentioned in subsection 1.2.1, the input stereo image pair should be 

rectified, so that the epipolar lines become horizontal [56]. Therefore, the search of 

point-correspondences between the two images can be performed along the same 

horizontal epipolar line. Except for limiting searching area, rectified input makes 

simpler the application of optimization algorithms, such as the scanline optimization 

used in this work that uses specific path directions. Additionally, since the resulting 

rectified images have similar scale and the epipolar lines have the same orientation, it 

is feasible to define and compare adaptive support areas of the same size and 

orientation between two rectified images. Any efficient existing algorithm, such as the 

one in [56], can be used for the rectification task. 
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3.4.2 Radiometric alignment of stereo images 

 

Stereo images may have inconsistent colour values between corresponding 

pixels due to unknown various radiometric variations. This PhD thesis does not deal 

with disparity estimation from image pairs that are affected from radiometric 

variations. However, some approaches that attempt to radiometrically align stereo 

images are mentioned for completeness. 

The work in [57] proposes a radiometric calibration method to align multiple 

images of moving cameras. This method defines the Brightness Transfer Function 

through the joint histogram produced by Normalized Cross Correlation based stereo 

matching, and then it estimates the camera response function and vignetting effects 

between images. In [58], a colour mapping method, between images acquired under 

different acquisition conditions, is suggested. This approach uses SIFT features to find 

a minimal set of piecewise consistent colour mappings assuming planar regions. The 

method in [59] transforms the input colour images to log-chromaticity colour space 

from which a linear relationship can be established during constructing a joint 

probability density function of transformed left and right colour images. From this 

joint probability density function, a linear function that relates the corresponding 

pixels in stereo images can be estimated. 

 

3.4.3 Image segmentation 
 

The developed methodologies exploit image segmentation for various tasks. 

The mean-shift segmentation software (EDISON software [60]), which relies on colour 

and edge information is used to segment images into non-overlapping regions. 

Detailed information about the mean-shift segmentation and the EDISON software 

can be found in [46], [62], [63]. The parameters used for the mean-shift segmentation 

are the segmentation spatial radius σs, which is set to σs = 3 and the segmentation 

feature space radius σr, which is set to σr = 3. The selection of these strict values 

ensures that the segmentation map will be of high reliability, meaning that most likely 

a segment will not overlap a depth discontinuity, and this fact is verified also in [22] 

and [61]. The mean-shift segmentation map for the “Tsukuba” left image (see Figure 
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7a) is visualized in Figure 7b. The pixels that belong to the same mean-shift segment 

have an individual label and their mean colour value is computed. Let the labels image 

be denoted as Lab . The segmentation maps of the left and the right image are 

computed once and then used in the following algorithmic steps. 

     

(a)                                                                           (b) 

Figure 7. Illustration of (a) the left ``Tsukuba'' image and (b) its mean-shift segmentation 
map. 

 

3.5 Summary 
 

This chapter gave analytically the contributions of methodologies A and B and 

described their differences to state of the art approaches as well. The flowcharts, 

which show the outline of the methodologies steps, were also given in the current 

chapter. Finally, this chapter described the rectification and mean-shift segmentation 

pre-processing steps and provided information regarding approaches that perform 

radiometric alignment of stereo images.  

The next chapter gives a deep insight into the matching cost computation and 

the cost aggregation steps of methodology A and methodology B. 
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Chapter 4 

4. Matching cost computation and cost aggregation  
 

4.1 Matching cost computation 
 

This section describes the pixel-based matching costs that are exploited by the 

proposed methodologies to measure the similarity between two pixels. 

 

4.1.1 Pixel-based matching costs for methodology A 
 

The cost metrics used in methodology A rely on pixel similarity measures that 

are defined using (i) RGB information, (ii) CENSUS transforms and (iii) SIFT coefficients. 

This choice is made for the following reasons:  

 Exploitation of RGB information gives better results in areas where depth 

discontinuities exist. 

 CENSUS is able to cope with radiometric changes and noise [16].  

 The exploitation of SIFT improves the results in textured unoccluded areas, as 

verified in subsection 4.2.1.2. 

 

 Weighted CENSUS transform 

 

Methodology A proposes a modification of the original CENSUS transform, 

which is defined as “weighted CENSUS transform”. This modification is described after 

the definition of the original CENSUS transform. 

In order to define the original CENSUS transform [12], a function  , which 

represents the relationship between the intensity of a pixel T( , )x yx  and a 

neighbour pixel nx , is used: 

n

n

1,if ( ) ( )
( , )

0, otherwise,

I I



 


x x
x x                                                             ( 2 ) 

where ( )I x  represents the image intensity of pixel x .
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Figure 8. Weighted CENSUS Transform. 

The CENSUS transform for pixel x  is computed by comparing its intensity with 

the intensity of other pixels nx  that lie within a square window ( )x  around x . The 

results of these comparisons are then concatenated into a single CENSUS binary vector. 

Thus, the CENSUS transform of a pixel x  is defined as: 

n

n
( )

( ) ( , ),CENSUS 


 
x x

x x x                                                 ( 3 ) 

where   represents the concatenation operation. 

In the proposed “weighted CENSUS transform” (see Figure 8) the bit string that 

is generated from the original CENSUS transform for a central pixel x , is multiplied by 

a weight vector, whose elements correspond to the weights between x  and each 

pixel n ( )x x . The weight between the central pixel x  (red circle in Figure 8) and a 

pixel nx  (green circle in Figure 8) is defined as: 

n n( , ) 1 · ( , ),e   x x x x                                                   ( 4 ) 

where  n,e x x  is the Euclidean distance between x  and nx  and   is a constant 

parameter. The window size of the weighed CENSUS transform is set experimentally 

to 5x5. The weight vector gives greater weights for pixels closer to the central pixel, 

since they are considered as more reliable than those which lie further. Let us denote 

as ( ,c)CEN x  the weighted CENSUS transform at pixel x  for the colour band

c {R,G,B} . 
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 SIFT-based cost 

 

The SIFT coefficients are extracted densely from an image using the SIFT 

implementation that was used in the work of [64], which originally deals with visual 

concept classification. In detail, the parameters used for the SIFT coefficients 

extraction were selected as: Size of subregions 1PN  , Scale of Gaussian Derivatives 

1DOG  , and Number of subregions 2SN  . These parameters define a SIFT 

descriptor composed of SN  x SN  subregions with subregions' size equal to PN  x PN  

pixels. The horizontal and vertical responses for SIFT are calculated using a Gaussian 

derivative filter, while the diagonal responses are calculated using a fast anisotropic 

Gaussian derivative filter [65], both using a scale of DOG . When, a larger support area 

was used for the extraction of the SIFT descriptor vector (by increasing PN  and/or 

SN ), the “foreground fattening” effect [1] was becoming more intense in the 

estimated disparity map. Let us denote as ( ,c)SIFT x  the SIFT descriptor at pixel x  

for the colour band c {R,G,B} . 

 

 Cost metrics 

 

In this subsection, the way that RGB, weighed CENSUS and SIFT are used to 

define the similarity between pixels, is described. Given a pixel x  on the left image 

(reference image) ( )lI x , the corresponding pixel on the right image (target image) 
rI

for a candidate disparity d  will be ( )rI d
x , where  d

x x d  and ( ,0)d T
d , since the 

input stereo images are rectified and consequently the disparity has only a horizontal 

component. The individual pixel similarity measures RGB ( , )C x d , CENSUS ( , )C x d  and 

SIFT ( , )C x d  are given from: 

RGB

c { , , }

( , ) | ( , ,c)- ( c) |,l r

R G B

C I I


  d
x d x x                                                   ( 5 ) 

CENSUS 1
c { , , }

( , ) ( , c)- ( c), ,l r

R G B

C


  d
x d CEN x CEN x                                     ( 6 ) 

SIFT 1
c { , , }

( , ) ( , c)- ( c), .l r

R G B

C


  d
x d SIFT x SIFT x                                        ( 7 ) 
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Using the aforementioned measures three different matching costs are 

defined. A RGB-CENSUS combination cost 
R-C ( , )C x d  (following the paradigm of 

algorithms [14], [15], [16]), a pure weighted CENSUS-based cost CEN ( , )C x d  and a SIFT-

based cost 
S( , )C x d , which are given from: 

   R-C RGB RGB CENSUS CEN( , ) ( , ), ( , ), ,C C C    x d x d x d                                 ( 8 ) 

 CEN CENSUS CEN( , ) ( , ), ,C C x d x d                                                       ( 9 ) 

 S SIFT SIFT( , ) ( , ), ,C C x d x d                                                        ( 10 ) 

where 
 /

( , ) 1 y yC

y yC e


 


  . 

The exponential function ( , )y yC   has the advantage of mapping the values 

of a measure in the range of [0, 1]. This allows different types of measures with 

different ranges to be scaled into the same range and then to be combined. 

Additionally, this function allows trimming of outlier values of yC , depending on the 

value of y . 

 Matching cost volumes R-C ( , )C x d , CEN ( , )C x d  and S( , )C x d  are three-

dimensional arrays which store the matching costs for all pixels and all possible 

disparity candidates. The disparity maps which are acquired after applying WTA to 

R-C ( , )C x d , CEN ( , )C x d  and S( , )C x d , respectively, are heavily corrupted by estimation 

error noise. The severe estimation error noise is obvious in Figure 9, which depicts the 

disparity map that corresponds to R-C ( , )C x d . 

 

 

Figure 9. Disparity map after applying WTA to R-C ( , )C x d . 
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4.1.2 Pixel-based matching costs for methodology B 
 

The cost metric used in methodology B is composed of three individual pixel-

based cost terms: (i) a gradient-based cost term, (ii) a Gabor-Feature-Image based 

term [11] and (iii) a Birchfield-Tomasi dissimilarity term [9]. The reasons for using 

those three terms to compute a combined cost metric are the following: 

 The gradient-based cost term shows high robustness to illumination changes, 

has strong local minima and can be estimated very fast [9]. 

 The Gabor-Feature-Image, according to [11] is appropriate for texture 

representation and discrimination, robust to illumination changes, insensitive 

to image noise and can be calculated quite fast. 

 The Birchfield-Tomasi dissimilarity measure, presented in [9], is insensitive to 

image sampling. 

Let c

lI  and c

rI  be the left and right colour images of the stereo pair, while lI

and rI  are their respective grayscale images. Given a pixel x  on the left image 

(reference image), the corresponding pixel on the right image (target image), for a 

candidate disparity value d  is denoted as d
x . 

The gradient-based cost term for a pixel x  and disparity d  is given by: 

gra H H( , ) | ( ( )) ( ( )) |,l rC I I   d
x d x x                                  ( 11 ) 

where H ( ( ))I x  denotes the gradient in horizontal direction at pixel on grayscale 

image I . 

The second term, as in [11], is based on the Gabor-Feature-Image, which is 

generated after applying a Gabor filter on an image. The kernel of the Gabor filter can 

be expressed as:  

                 

2 2 2

2

γ
( , , λ,θ, , γ) exp cos 2

2 λ

x y
G

x
x y  



     
     

  
                   ( 12 ) 

where  

                                                         
cos(θ) sin(θ)

sin(θ) cos(θ)

x x y

y x y

    

     

                        ( 13 ) 

In Equation (12) and Equation (13), λ  represents the wavelength of the 
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sinusoidal factor, θ  represents the orientation of the normal to the parallel stripes of 

a Gabor function,   is the standard deviation of the Gaussian envelope and γ  is the 

spatial aspect ratio. The aforementioned values are set as in [11]:  

  λ,θ, , γ 3,3π/2,1.5,1}  . 

Let H ( ( ))lG I x  and H ( ( ))rG I d
x  denote the outputs of above vertically-varying 

Gabor kernel for lI  and rI , respectively. The cost term gab ( , )C x d  for pixel x  at 

disparity d  is given by: 

gab H H( , ) | ( ( )) ( ( )) | .l rC G I G I  d
x d x x                                           ( 14 ) 

The third term is given by: 

c

BT

c R,G,B

( , )
( , ) ,

3

D
C



 
d

x x
x d                                                   ( 15 ) 

  

where c ( , )D d
x x , which is the Birchfield-Tomasi (BT) dissimilarity measure between 

pixels x  and d
x  [9], is estimated as follows. Initially, the intensities in c

lI  and c

rI  are 

interpolated using either a previous or a subsequent pixel along the epipolar line. For 

instance        c c c1 1 1
2 2l l lI I I  x x x  is the interpolated intensity value at 

pixel x  with respect to its previous pixel. Let       c c c c1 1( ) , ,
2 2

ˆ
l l l lI I I I  x x xx  

be the set containing the intensity at pixel x  in image c

lI  and the interpolated 

intensities with its previous and subsequent pixel. In the same manner, cˆ ( )rI d
x  is the 

set containing the intensity at pixel d
x  in image c

rI  and the interpolated intensities with 

its previous and subsequent pixel. The Birchfield-Tomasi dissimilarity measure is 

estimated by: 

  
c ( , ) min( , ),D a bd

x x                                                    ( 16 ) 

where  

                              
    

    

c c c c

c c c c

max ( ) max ( ) ,min ( ) ( )

max ( ) ma

ˆ ˆ0,

ˆ ˆ0 x ( ) ,min ) ( ), (

l r r l

r l l r

I I I I

I I

a

b I I

   


   


d d

d d

x x

x x x

x x

x

                    ( 17 ) 

The combined matching cost term, merging Equation (11), Equation (14) and 
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Equation (15), is expressed as: 

   
   

1 gra gra 2 gab gab

1 2 BT BT

( , ) ·min ( , ), ·min ( , ),

1 ·min ( , ), ,

C C T C T

C T

 

 

  

 

x d x d x d

x d
                 ( 18 ) 

where 1 , 2  are balance weights and 
graT , gabT , BTT  are truncation thresholds. 

 Cost volume ( , )C x d  stores the matching costs for all pixels and all possible 

disparity candidates. The disparity map of Figure 10 is acquired after applying WTA to 

( , )C x d . Evidently, the disparity map of Figure 10  is heavily corrupted by estimation-

error noise. 

 

Figure 10. Disparity map after applying WTA to ( , )C x d . 

 

4.2 Cost aggregation 

 

The disparity maps, which are generated relying only on pixel-based matching 

cost, are heavily corrupted by disparity noise. In order to improve matching 

robustness, disparity estimation methods use supporting pixel areas (i.e. pixel 

neighbourhoods) to aggregate pixel-based matching costs. 

 

4.2.1 Cost aggregation for methodology A using adaptive weights 

 

4.2.1.1 Adaptive cost aggregation 

 

The pixel-based matching costs R-C ( , )C x d , CEN ( , )C x d  and S( , )C x d  (their 

estimation is described in subsection 4.1.1) are aggregated spatially over support 
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regions around each pixel. According to the evaluation studies of [20], [66] the 

adaptive weight approach [21] produces reasonably accurate disparity maps. Thus, 

this aggregation approach with slight modifications is used in this work. 

More specifically, adaptive support-weight based aggregation applies weights to 

each of the pixels surrounding the pixel of interest. The adaptive-support weights 

notion is based on the Gestalt principles of similarity and proximity [21]. The similarity 

principle assumes that the more similar colour a surrounding pixel has to the central 

pixel of interest, the more likely it is to belong to the same surface, while the proximity 

principle assumes that the closer a surrounding pixel is to the central pixel of interest, 

the more likely it is to belong to the same surface. 

In order to describe the adaptive-supports weights notion with mathematical 

expressions, a pixel of interest x  and a neighbour pixel nx  are considered. The 

adaptive weight between x  and nx , is given by: 

   n n

c

, ,

n( , ) · ,e

I e

w e e
 

    
      
   

x x x x

x x                                       ( 19 ) 

where c  and e  are constant parameters,  n,e x x  is the Euclidean distance 

between x  and nx  and  n,I x x  is given by: 

   2

n c {R,G,B} n, | ( , c)- ( .,c) |I I I  x x x x                                     ( 20 ) 

Similar to [23], the adaptive weights are computed on the input stereo images 

after applying a median filter that uses a 2x2 neighbourhood in order to alleviate the 

impact of image noise and subtle non-Lambertian effects. 

    

Figure 11.  Adaptive weights support region on reference and target “Tsukuba” images. 
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The adaptive weight approach used in this work has two slight modifications 

compared to the original work of [21]. Experimental results in [22] proved that the use 

of the RGB colour space for computing colour similarity decreases the possibility that 

pixels belonging to different depths are being aggregated in the same support region. 

For this reason, the RGB colour space is used to compute colour similarity in 

methodology A, contrary to [21] that uses the CIELab colour space. Additionally, 

instead of using all pixels in the square support region, only pixels within radius SR  

from the central pixel are used. In this way, the support region becomes symmetric 

around the central pixel x  of interest. 

A weight support mask is generated for a pixel x  on the left stereo image, 

denoted as n( , )lw x x . Similarly, a weight support mask is generated for the right 

stereo image around the corresponding pixel d
x  and is denoted as n,( )rw d d

x x .  Both 

n( , )lw x x  and n,( )rw d d
x x  are taken into consideration to define the aggregated cost 

( , )V x d  between x  and d
x  as: 

n L n R

n L n R

n n n

S , S

n n

S , S

, ,

,

( , )· ( )· ( )

( , ) ,
( , )· ( )

l r

l r

w w C

V
w w

 

 







d

d

d d

x x

d d

x x

x x x x x d

x d
x x x x                ( 21 ) 

where LS  defines the support region around pixel x  on the left image and RS  the 

support region around pixel d
x , on the right image, as it is visualized in Figure 11. If 

cost ( , )C x d is replaced by R-C ( , )C x d , CEN ( , )C x d  or S( , )C x d , the aggregated cost 

volumes R-C ( , )V x d , CEN ( , )V x d  and SIFT ( , )V x d  can be estimated, respectively. The 

schematic representation of a cost volume is depicted in Figure 12a. 

 

4.2.1.2 Combination of aggregated cost volumes 

 

In subsection 4.1.1, the reasons for using the specified cost metrics R-C ( , )C x d , 

CEN ( , )C x d  and S( , )C x d  are explained. In this paragraph, the details of combining 

their corresponding cost volumes R-C ( , )V x d , CEN ( , )V x d  and SIFT ( , )V x d  to produce a 

“combined” cost volume, are described. 
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(a) 

 

(b) 

 

(c) 

Figure 12. Visualization of (a) a cost volume. The cost variation along disparity for a                 

pixel x  of (b) R-CV  and (c) CENV . 
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The proposed approach uses a combination of RGB and CENSUS information 

via Equation (8) in order to compute R-CV . However, after extensive experiments, it 

was deduced that the cost volume CENV  computed using only weighted CENSUS 

information, could be efficiently exploited to refine R-CV . Additionally, it was noticed 

that the WTA estimated disparity map from SIFTV  is reliable for unoccluded textured 

areas.  This fact is exploited here to further refine R-CV . The reason for not combining 

directly the SIFT information with the RGB and CENSUS information (for instance using 

an equation similar to Equation (8), with an additional term for SIFT information), is 

that the ability of the SIFT-based metric to provide accurate disparity estimates at 

unoccluded textured areas degrades significantly when SIFT is combined directly with 

other cost metrics, as experimentally verified. In the following, an efficient two-phase 

strategy for combining R-CV , CENV  and SIFTV  is described. This strategy is built upon 

the aforementioned conclusions regarding CENV  and SIFTV . 

 

First Combination Phase 

During the first phase, CEN ( , )V x d  is used to refine R-C ( , )V x d . The Peak Ratio 

confidence measure, one of the best confidence measures according to [67], is used 

for this purpose. 

 

Peak Ratio confidence measure: Let us consider the curve of cost variation along 

disparity d  for a pixel x  from cost volume ( , )V x d . This term is depicted visually with 

green colour in the visual representation of a cost volume ( , )V x d  in Figure 12a and 

an example of cost variation curve is shown in Figure 12c. Let us define as 

 ( ) min ( , )G V
d

x x d  the global minimum of ( , )V x d  and as ( )L x  the second local 

minimum of ( , )V x d . Then, the peak ratio confidence measure is defined as:  

( )
( )

( )

L
R

G


x
x

x
.                                                                              ( 22 ) 
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Finally, let ( ) arg min{ ( , )},V 
d

x x d  be the optimum disparity value that gives 

the global minimum of ( , )V x d . The higher ( )R x , the more reliable the global 

minimum of ( , )V x d  is. 

     

                                           (a)                                                                         (b) 

Figure 13. Disparity maps after applying WTA to (a) 
'

R-CV  and (b) SIFTV . 

Based on this confidence measure, the optimum disparity for a pixel x , as 

estimated from CEN ( , )V x d , will be “propagated” to R-C ( , )V x d . The curves of cost 

variation along disparity for R-C ( , )V x d  and CEN ( , )V x d  are depicted in Figure 12b and 

Figure 12c, respectively. 

In more detail, for a pixel x , the confidence R-C
R-C

R-C

( )
( )

( )

G
R

L


x
x

x
 based on 

R-C ( , )V x d  (Figure 12b), is estimated. Similarly, the confidence CEN
CEN

CEN

( )
( )

( )

G
R

L


x
x

x
 

based on CEN ( , )V x d  (Figure 12c), is estimated. 

In case that CEN R-C( ) ( )R Rx x , at the disparity position CEN ( ) x  (position of the 

global minimum of CEN ( , )V x d ), the corresponding value of R-C CEN( , ( ))V x x  is 

modified according to: 

 R-C CEN R-C( , ( )) min ( , )V V  
d

x x x d                                  ( 23 ) 

with 0  , so that the global minimum of R-C ( , )V x d  to coincide with the one of 

CEN ( , )V x d . The part of the curve that changes after this step is depicted with green 

colour in Figure 12b.  The case CEN R-C( ) ( )R Rx x  means that the global minimum of 

CEN R-C( ) ( )R Rx x  is more confident than that of R-C ( , )V x d . In this case, information 

about the disparity that gives this global minimum is propagated to R-C ( , )V x d . After 
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executing the first phase, '

R-C ( , )V x d  is acquired. The WTA of '

R-C ( , )V x d gives the 

disparity map of Figure 13a. 

 

      

                                         (a)                                                                          (b) 

Figure 14. Disparity maps (a) LR ( )d x  and (b) RL ( )d x  after applying second combination 

phase. 

Second Combination Phase 

In a second phase, SIFT ( , )V x d  is used to refine '

R-C ( , )V x d . The WTA of 

SIFT ( , )V x d  gives the SIFT-based disparity map SIFT ( )d x  (see Figure 13b), which 

provides reliable disparities in textured unoccluded areas where depth does not 

change. This is evident in Figure 13b for the disparity of the left ``Tsukuba'' image. 

 

Detection of reliable disparities: In order to find the regions in SIFT ( )d x  that are reliable, 

the mean-shift colour segmentation map (see subsection 3.4.3) is used. If ( )n S  

denotes the number of pixels in a colour segment S  and ( )fn S  is the number of 

pixels that have the most frequent disparity in this segment according to SIFTd , then 

( )
( )

( )

fn S
P S

n S
x  adaptive threshold is defined. If ( ) 90%P S 

x , then it is assumed that 

the disparities inside this segment are reliable (since the vast majority of pixels have 

the same disparity value). 

According to the above, reliable disparities in SIFT ( )d x  are propagated to 

'

R-C ( , )V x d  in the following way: For every pixel Sx , the disparity estimate SIFT ( )d x  

is propagated to '

R-C ( , )V x d  according to: 

   ' '

R-C SIFT R-C( , ( )) min ( , )V d V  
d

x x x d                    ( 24 ) 
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with 0  . After executing this second phase, ( , )fC x d  is acquired. Let the WTA-

estimated disparity map from ( , )fC x d  be 
LR ( )d x . After applying a 3x3 median filter 

on LR ( )d x , in order to remove spurious disparities, the disparity map of  Figure 14a is 

generated. By comparing Figure 13a and Figure 14a, it is evident that LR ( )d x  can be 

exploited to efficiently enhance the results in unoccluded textured regions. 

Except for the visual demonstration of using the two-phase combination 

strategy to improve the generated disparity map, an additional numeric evaluation is 

presented in subsection 6.5.1.2.  

If the right image is considered as reference image, then the disparity map 

LR ( )d x  of Figure 14b is acquired. 

 

4.2.2 Cost aggregation for methodology B using guided image 

filtering 

 

4.2.2.1 Guided image filtering 
 

The matching costs ( , )C x d  (their estimation is described in subsection 4.1.2) 

are filtered using the guided image filter [18]. In detail, the filtered cost value of pixel 

x  at a fixed disparity d  is given by: 

'( , ) ( , ) ( , ),C W C
q

x d x q x d                                                         ( 25 ) 

where the filter weights ( , )W x q  depend on the colour guidance image I  (which is the 

reference stereo image) and they are given from [18]: 

  1

2
( , )

1
( , ) 1 ( ( ) ) ( ( ) ) ,

| |

T

w

W I U I
w

  




     
k

k k k

x qk

x q x q     ( 26 ) 

where | |w
k  is the total number of pixels in a support window wk  centered at pixel 

k  and   is a smoothness parameter. k  and k  are the covariance and the mean of 

pixels colours within | |w
k . ( )I x , ( )I q  and k are 3 1  (colour) vectors, while k  and 

the unary matrix U  are of size 3 3 . 

The selection of the appropriate support window size for each pixel, based on 

its local image content, is discussed in the following paragraph. 
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4.2.2.2 Selection of the window size based on local image content 

 

This subsection proposes a novel scheme for exploiting guided image filtering. 

First of all, the shape of the support window is selected to be rectangular and the 

largest dimension of the support window to be the horizontal one (width). The 

window's width is twice its height. A support window elongated along the horizontal 

dimension, i.e., along the dimension in which disparity varies, is used in order to 

increase the discriminating ability of the window. This fact is experimentally verified 

in subsection 6.5.2.2. 

Except for the rectangular shape, in methodology B, windows of two sizes are 

used. The small window size is SR  x S / 2R    and the large one is S2R x SR . The guided 

image cost filtering is performed separately for both window sizes. Given the two 

filtered costs, which were estimated by applying guided image filtering for both 

window sizes, the filtered cost that is finally assigned to a pixel, depends on the local 

image content around this pixel. In specific, the preferred support window size for 

each pixel is selected according to the information about the texture homogeneity 

within the local region around the pixel. Hence, if the neighbourhood around a pixel 

is homogeneous, then the large support window size, which contains more 

information, shall be preferred. The criterion to decide which support window is 

appropriate for a pixel depends on image's segmentation map that provides 

information about the homogeneity of the image region around a pixel. 

In detail, based on image's segmentation map, for each pixel x  the lengths of 

the ``arms'' stretching to left ( Fl ), right ( Fr ), up ( Fu ) and down ( Fd ) directions are 

estimated as visualized in Figure 15a: Given a pixel x  and a direction Fi , ( , , , )i l r u d , 

the length of x 's arm along the considered direction is given by the number of pixels 

between x  and the end of the segment where x  belongs. The length is denoted as 

M ( )i x , ( , , , )i l r u d . The average length of the arms is given by: 

M( ) M ( )+M ( )+M ( )+M ( ) /4( )l r u dx x x x x                                      ( 27 ) 
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(a)                                                                            (b) 

Figure 15. Illustration of: (a) the arms lengths for a pixel x  on a segmentation map and 

(b) the pixels with support region of S2R x SR . 

       

(a)                                                                           (b) 

Figure 16. Disparity maps (a) LR ( )d x  and (b) RL ( )d x  after applying content based 

guided image filtering. 

If  SM( ) Rx  then it is assumed that x  lies inside a homogeneous area. Hence, 

the large window of size S2R x SR  is considered as the appropriate support window 

for x , in order to contain more information. For pixels with SM( ) Rx , the 

appropriate support window is the one with size SR  x S / 2R   . In Figure 15b the pixels 

for which the appropriate support window has size S2R x SR  are visualized with red. 

Let the filtered cost using the small window be denoted as 1

'( , )C x d , while 

2

'( , )C x d  denotes the filtered cost using the large one. Given 1

'( , )C x d  and 2

'( , )C x d , 

the final filtered cost ( , )fC x d  at pixel x  is set equal to the filtered cost that 

corresponds to the support window size that is appropriate for this pixel. The left 
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disparity map 
LR ( )d x  (Figure 16a) is acquired after applying WTA to the cost volume 

( , )fC x d . If the right image is considered as reference, then the disparity map 
RL ( )d x  

of Figure 16b is acquired. 

In subsection 6.5.2.2, the selection of rectangular support windows of two 

sizes is experimentally justified. Provably, more than two window sizes could be used. 

However, this would increase the computational cost of the algorithm. Moreover, two 

window sizes are sufficient to achieve high disparity estimation accuracy.  

 

4.3 Summary 

 

This chapter described the matching cost computation and the cost 

aggregation steps for methodologies A and B.  

In brief, methodology A used RGB information, weighted CENSUS transform 

and SIFT coefficients to define the pixel similarity measures RGB ( , )C x d , CENSUS ( , )C x d  

and SIFT ( , )C x d , respectively. These pixels measures were used to form a RGB-CENSUS 

combined matching cost R-C ( , )C x d , a pure weighted CENSUS-based matching cost 

CENSUS( , )C x d  and a SIFT-based matching cost SIFT ( , )C x d . After applying adaptive 

support-weight based aggregation for R-C ( , )C x d , CEN ( , )C x d  and S( , )C x d  the 

aggregated cost volumes R-C ( , )V x d , CEN ( , )V x d  and SIFT ( , )V x d  were estimated, 

respectively. A novel two-phase strategy for combining R-CV , CENV  and SIFTV  was 

introduced. During the first combination phase, CEN ( , )V x d  was used to refine 

R-C ( , )V x d  resulting to '

R-C ( , )V x d . While during the second combination phase, 

SIFT( , )V x d  was used to refine '

R-C ( , )V x d  resulting to ( , )fC x d  cost volume.  

On the other hand, in methodology B, a gradient-based cost term
gra ( , )C x d , a 

Gabor-Feature-Image based term gab ( , )C x d  and a Birchfield-Tomasi dissimilarity term 

BT ( , )C x d  were linearly merged to form the combined matching cost ( , )C x d . An 

innovative content-based guided image filtering approach was used to filter 

(aggregate) the matching costs ( , )C x d . The content-based guided image filtering was 

applied separately for rectangular support windows of two different sizes and the 
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appropriate support window size for each pixel was selected based on the texture 

homogeneity within the local region around this pixel. After applying content-based 

guided image filtering to ( , )C x d  the ( , )fC x d  cost volume was acquired.  

In the forthcoming chapter, the disparity optimization and disparity 

refinement steps of methodology A and methodology B are extensively presented. 
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Chapter 5 

5 Disparity optimization and disparity refinement  
 

5.1 Disparity optimization 
 

The disparity maps, which are acquired after performing the pixel-based 

matching cost and cost aggregation steps of Chapter 4, need further optimization in 

order to correct disparity estimation errors. Before applying disparity optimization, 

the outliers in problematic areas should be detected.  

 

5.1.1 Outliers detection 

 

The disparity maps LR ( )d x  and RL ( )d x  are taken into consideration to detect 

problematic areas, especially outliers in occluded regions and depth discontinuities. 

A prevalent strategy for detecting outliers is the Left-Right consistency check [44]. 

In this strategy, the outliers are disparity values that are not consistent 

between the two maps and therefore, they do not satisfy the relation: 

LR RL LR LR( ) ( ( ))d d d T  x x x                                                ( 28 ) 

 

5.1.1.1 Outliers detection for methodology A 

 

In order to compute the outliers for methodology A, the disparity maps 

LR ( )d x  (see Figure 14a) and RL ( )d x  (see Figure 14b), which were computed in 

subsection 4.2.1.2, are considered in Equation (28). 

The threshold for outliers detection is set equal to LR 1T  . With this value, 

pixels with difference equal to 1 in the Left-Right consistency check are not considered 

as outliers. This is plausible, since disparity in stereo images usually varies smoothly 

along the epipolar lines, in regions without depth discontinuities. Figure 17 shows the 

outliers map LR 1

1O ( )
T 

x  for LR 1T  . The blue regions are the outlier regions. 
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Figure 17. Outliers map LR 1

1O ( )
T 

x  in methodology A for threshold LR 1T  . 

 

5.1.1.2 Outliers detection for methodology B 
 

In order to compute the outliers for methodology B, the disparity maps 

LR ( )d x  (Figure 16a) and RL ( )d x  (Figure 16b), which were computed in subsection 

4.2.2.2, are considered in Equation (28). 

The threshold for outliers detection is set equal to LR 0T  . Figure 18 shows 

the outliers map LR 0

1O ( )
T 

x   for LR 0T  . The blue regions denote the outliers. 

 

Figure 18. Outliers map LR 0

1O ( )
T 

x  in methodology B for threshold 
LR 0T  . 

5.1.2 Enhanced semi-global disparity optimization  
 

The disparity optimization relies on the semi-global optimization method of 

[38], which aggregates matching costs in 1D from multiple path directions. This 

subsection provides information on how to improve the accuracy of the original semi-
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global optimization method.  

 

Figure 19. Path directions used for semi-global optimization. 

 

The semi-global optimization approach considers four path directions r , 

namely left-to-right, right-to-left, up-to-down and down-to-up, which are denoted as 

[ 1,0]lr   T
r , [ 1,0]rl   T

r , [0, 1]ud   T
r  and [0, 1]du   T

r , respectively (see Figure 

19). 

Let L
r  be a path that is traversed in the direction { , , , }lr rl ud dur r r r r . The path 

cost ( , )L
r

x d  of pixel x  at disparity d  is computed recursively from: 

i i

1

i 2 i

( , ) ( , ) min ( , ), ( , 1) ( ),

min ( , ) ( ) min ( , )

{

}

fL C L L

L L





     

   

r r r

r r
d d

x d x d x r d x r d x

x r d x x r d
       ( 29 ) 

where i [ ]disparity ranged  and x r  denotes the previous pixel along the path 

direction. Parameters 1( ) x  and 2 ( ) x  are two smoothness penalty terms (with 

1 2( ) ( ) x x ) for penalizing disparity changes between neighbouring pixels. The 

work in [44] assumes that a depth discontinuity usually coincides with an intensity 

edge; hence the smoothness penalty must be relaxed along edges and enforced 

within low-textured areas. Therefore, it applies a symmetrical strategy so that 1( ) x  

and 2 ( ) x  depend on the intensities of both left and right images. In this PhD, two 

criteria are used to check depth discontinuity. The first criterion, similarly to [16], is 

based on intensity difference, which is computed as:  

         ( ) ( ) ( )l lI I   x x x r                                                                  ( 30 ) 

and                                            ( ) ( ) ( ) ,r rI I   d d d
x x x r                                                ( 31 ) 
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where 
lI  and 

rI  are the images in grayscale. 

The second criterion, introduced in this PhD, checks whether two pixels belong to the 

same mean-shift segment.  Let us assume that after applying mean-shift 

segmentation to the left and right images the label images lLab  and rLab , are 

acquired. Each segment is denoted by a specific label. The second criterion is denoted 

as: 

( ) ( ) ( )l l lL Lab Lab   x x x r                                                       ( 32 ) 

and                                       ( ) ( ) ( )r r rL Lab Lab   d d d
x x x r                                          ( 33 ) 

The smoothness penalty terms are defined according to: 

         
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  ( 34 ) 

where so  is a threshold for colour difference, 1 , 2  are constant parameters and  

lLab , rLab  are the labels images after applying mean-shift segmentation (see 

subsection 3.4.3)  to the left and right images, respectively.  

Existing methods, such as those in [16], [44] use only intensity based criteria 

to check intensity discontinuity and define parameters 1( ) x  and 2 ( ) x . The second 

criterion, which is based on mean-shift segmentation, improves the refinement 

results, as it is experimentally verified. The reason behind this improvement is that 

sometimes the first criterion denotes incorrectly a depth discontinuity due to texture 

edges that may be contained in image areas where depth does not change. On the 

contrary, mean-shift image segmentation is able to distinguish better between object 

texture edges and object boundaries. Therefore, the segmentation results are 

exploited for the definition of the smoothness penalties. In order to compensate for 

segmentation errors (include in the same segment areas with different depth) the 

denominator used for the definition of 1( ) x  and 2 ( ) x  is slightly increased to 1.5 for 
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the case that the second statement of Equation (34) is satisfied. 

After computing the four path costs ( , , ,
lr rl ud du

L L L Lr r r r ) using Equation (29), 

the final cost volume opt ( , )C x d  is calculated from: 

opt

( )· ( , ) ( )· ( , ) ( )· ( , ) ( )· ( , )
( , ) ,

4

lr rl ud dulr rl ud duw L w L w L w L
C

  


r r r r
x x d x x d x x d x x d

x d  ( 35) 

where ( ) ( ) ( ) ( ) 4lr rl ud duw w w w   x x x x . 

In the original approach of the semi-global optimization [38]: 

( ) ( ) ( ) ( ) 1lr rl ud duw w w w   x x x x , while in the proposed modification these 

weights may not be equal. Practically, if along a path direction, the non-outlier pixels 

that belong to the same surface as the considered pixel x , are much more than the 

non-outliers pixels of other directions, it is assumed that this direction should get a 

higher weight since it will give more accurate estimates. Therefore, for a pixel x  and 

a specific direction, the total number of non-outlier pixels that precede x  along this 

direction and at the same time they belong to the same surface as x , is computed. 

The total number of non-outlier pixels for directions , ,lr rl udr r r  and dur  for pixel x  is 

denoted as M ( )'

l x , M ( )'

r x , M ( )'

u x  and M ( )'

d x , respectively. M ( )'

l x , M ( )'

r x , 

M ( )'

u x  and M ( )'

d x  are computed as described in the next paragraph. 

Let that the lengths of a pixel's arms, as estimated in subsection 4.2.2.2, are

M ( )l x , M ( )r x , M ( )u x  and M ( )d x . The number of the pixels across an arm, which 

are outliers according to the outliers map LR 0

1O ( )
T 

x  (see Figure 18), is subtracted 

from the size of the arm. The sizes of the arms, after subtracting the number of outlier 

pixels, are denoted as M ( )'

l x , M ( )'

r x , M ( )'

u x  and M ( )'

d x , respectively. 

Let maxM ( )'
x  denote the maximum value among M ( )'

l x , M ( )'

r x , M ( )'

u x  and 

M ( )'

d x , while 
secM ( )'

x  denotes the second highest value. Based on maxM ( )'
x  and 

secM ( )'
x , the following conditions are defined: 

max sec max SM ( )/M ( ) 2 and M ( ) R /2' ' ' x x x                                   ( 36 ) 

The first condition confirms that a direction has much more non-outlier pixels 

than the other directions, while the second condition confirms that there is a 

sufficient number of non-outlier pixels along this direction. In case both the conditions 
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in Equation (36) are satisfied, then a higher weight is given to the path cost that 

corresponds to the direction from which maxM ( )'
x  has been derived. 

For example, if maxM ( )'
x  is equal to M ( )'

u x , which corresponds to direction 

udr , then the weights used in Equation (35) will be set as: ( ) 1.6udw x  and 

( ) ( ) ( ) 0.8lr rl duw w w  x x x . That is, a higher weight is given to the direction that 

has much more pixels that belong to the same surface as x , when compared to the 

other directions, which at the same time are non-outliers. If any of the conditions in 

Equation (36) is not satisfied then all weights are set equal to 1. 

To summarize, two novel ideas, regarding the semi-global optimization, have 

been introduced in this subsection. The first idea, which is used by methodology A, 

concerns the introduction of a criterion that relies on mean-shift segmentation for 

the detection of depth discontinuities. The second idea, which is used by 

methodology B, concerns the introduction of a scheme for defining the weights of 

each path cost.  
 

5.1.2.1 Disparity maps after optimization for methodology A 
 

Having as input in Equation (29) the ( , )fC x d  volume, which has been 

estimated in subsection 4.2.1.2, the optimized cost volume opt ( , )C x d  is acquired via 

equation (35). The WTA of opt ( , )C x d  gives the disparity map LR ( )'d x  (see Figure 20a). 

If the right image is considered as reference image, then the disparity map RL ( )'d x  

(see Figure 20b) is acquired. 

 

   

 (a)                                                                          (b) 

Figure 20. Disparity maps (a) LR ( )'d x   and (b) RL ( )'d x  after optimization for methodology 

A. 
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5.1.2.2 Disparity maps after optimization for methodology B 

Having as input in Equation (29) the ( , )fC x d  volume, which has been 

estimated in subsection 4.2.2.2, the optimized cost volume opt ( , )C x d  is acquired via 

equation (35). The WTA of opt ( , )C x d  gives the disparity map LR ( )'d x  (see Figure 21a). 

If the right image is considered as reference image, then the disparity map RL ( )'d x  

(see Figure 21b) is acquired. 

 

         
(a)                                                                           (b) 

Figure 21. Disparity maps (a) LR ( )'d x  and (b) RL ( )'d x  after optimization for methodology 

B.     

 

5.2 Disparity refinement 
 

The optimized disparity results have to be refined, since they are polluted with 

outliers in occluded areas, low-textured areas and depth discontinuities. This section 

provides detail on how the outliers can be handled after they are detected.  

 

5.2.1 Outliers detection from optimized disparity maps 
 

The optimized disparity maps LR ( )'d x  and RL ( )'d x  are taken into consideration 

to detect problematic areas.  The outlier pixels do not satisfy the relation: 

LR RL LR LR( ) ( ( ))' ' 'd d d T  x x x                                                  ( 37 ) 

5.2.1.1 Outliers detection for methodology A 

 

In order to compute the outliers for methodology A, the disparity maps 

LR ( )'d x  (see Figure 20a) and RL ( )'d x  (see Figure 20a), are considered in Equation (37). 
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For LR 0T   and 
LR 1T   the outliers maps LR 0

2O ( )
T 

x  (see Figure 22a) and LR 1

2O ( )
T 

x  

(see Figure 22b) are acquired, respectively. 

      
(a)                                                                           (b) 

Figure 22. Outliers map (a) LR 0

2O ( )
T 

x  for threshold LR 0T   and (b) LR 1

2O ( )
T 

x  for 

threshold LR 1T  . 

 

5.2.1.2 Outliers detection for methodology B 
 

In order to compute the outliers for methodology B, the disparity maps 

LR ( )'d x  (see Figure 21a) and RL ( )'d x  (Figure 21b), are considered in Equation (37). For 

LR 0T   the outlier map LR

2O ( )
T

x  (see Figure 23) is acquired. 

 

Figure 23. Outliers map LR

2O ( )
T

x  for threshold LR 0T  . 

 

5.2.2 Outliers handling 
 

With the algorithmic steps, described through this subsection, the outliers 



Chapter 5 – Disparity optimization and disparity refinement 

68 
 

that are contained in occluded regions, uniform areas and depth discontinuities can 

be efficiently handled. 

 

5.2.2.1 Outliers handling for methodology A 

 

Outliers handling in methodology A is performed by combining two outlier 

handling schemes that are executed independently. The first outlier scheme is called 

“Basic outlier handling’’ and the second scheme is called “Mean-shift segmentation-

based outlier handling”. 

 

Basic outlier handling 

The basic outlier handling strategy is performed for the outlier map LR 0

2O ( )
T 

x  (see 

Figure 22a). In more detail, an outlier pixel x  is filled by the disparity of its closest 

inlier pixel. Practically, the disparity values of x 's left nearest inlier pixel lx  and x 's 

right nearest inlier pixel rx  are denoted as LR ( )'

ld x  and 
LR ( )'

rd x , respectively. Then, 

the disparity value of LR LRmin( ( ), ( ))' '

l rd dx x   is assigned to x . The disparity map, after 

the basic outlier handling, is visualized in Figure 24c. 

 

Mean-shift segmentation-based outlier handling 

There is high probability that the candidate ``outlier'' points for LR 1T  , are 

not actual outliers. Instead, it is probable that there is a slight difference in the 

disparity estimation between the left and the right disparity maps. The following 

technique is applied to propagate reliably disparity information from the right 

disparity map to the left disparity map. 

For a pixel  , with LR ( ) 1T   , the subset of pixels within radius 7 from  , 

which at the same time belong to the same segment as  , is defined. This subset is 

used to estimate a reliability metric LR ( )Rel  , whose value is given by the division of 

the number of pixels within this subset with LR 0T   towards the total number of 

pixels in this subset. Correspondingly, for a pixel  , which is the correspondence of 

pixel   in the right image, the metric RL ( )Rel   is similarly computed. 
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(a)                                                                             (b) 

     

(c)                                                                              (d) 

 

(e) 

Figure 24. Illustration of: (a) the reliability map, (b) an unreliable segment and its 
neighboring segments, (c) the disparity map after applying basic outlier handling, (d) 
the disparity map mean-shift based segmentation outlier handling, (e) the disparity map 
after combined outlier handling. 

The disparity of pixel   is propagated to pixel   in case that LR RL( ) ( )' 'd d   

and LR RL( ) ( )Rel Rel  . Pixels  , whose disparity has been propagated from their 

corresponding   pixels and the pixels   with LR ( ) 0T    are considered as 
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“unoccluded'”. These “unoccluded” pixels are used in the application of the mean 

shift segmentation-based outlier handling, as follows. 

Initially, for each mean-shift segment the ratio of the unoccluded pixels inside 

this segment over the total number of segment’s pixels is evaluated. This ratio 

constitutes a reliability measure for the disparities inside this segment. Such a 

reliability map is illustrated in Figure 24a. The warmer the colour, the more reliable 

the disparities inside a segment are. A segment is considered as “reliable” if the ratio 

is over T
r
 (experimentally defined to be 0.3). 

 

Reliable segments:  For the outlier pixels inside a reliable segment S , a voting scheme 

that counts votes of the reliable pixels’ disparities is applied. In more detail, for each 

outlier pixel Sx , the inlier pixels that belong to S  and lie within Euclidean distance 

SR  (radius of support region defined in subsection 4.2.1.1) from x  are taken into 

account in order to get the most frequent disparity. This disparity is propagated to x  

which is considered as reliable now. This process is repeated for all outliers inside a 

segment S . 
 

Unreliable segments: For unreliable segments, the information from reliable 

neighboring segments is used to define their disparity. Reliable neighboring segments 

are the reliable segments that have common borders with the unreliable segments. 

For example, in Figure 24b the unreliable segment is surrounded by the colored 

neighboring segments. The reliable neighboring segment that will propagate its 

prevalent disparity to the unreliable segment is the one that has the most similar 

colour to the unreliable segment. Notice that the mean colour of each segment was 

estimated during the mean-shift segmentation. The colour similarity between two 

segments is defined as the mean Euclidean distance between their mean RGB colours 

and should be below ST  (experimentally defined to be 25). The disparity map, after 

handling outlier areas based on the mean-shift segmentation-based outlier handling 

scheme, is visualized in Figure 24d. The red areas in Figure 24d correspond to pixels 

that have not been handled using the mean-shift segmentation-based outlier 

handling. 
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Combined outlier handling 

Finally, the occluded areas that have not been handled using the mean-shift 

based segmentation outlier handling are filled with the disparities that have been 

estimated through the basic outlier handling and in this way the combined disparity 

map of Figure 24e is acquired. 

 

5.2.2.2 Outliers handling for methodology B 

 

Outliers handling in methodology B is performed by combining “Background 

outliers handling” and “Generic outliers handling”. 

 

     

                                        (a)                                                                          (b) 

 Figure 25. Disparity map after applying: (a) “Generic outliers handling” and (b) 
“Background outliers handling” plus bilateral smoothing. 

 

Background outliers handling 

The ``Background outliers handling’’ is performed for the outlier map LR

2O ( )
T

x  

(see Figure 23). One of the simplest approaches for handling an outlier pixel x , which 

belongs to the pixels of the occluded background,  is to set its disparity LR ( )'d x  equal 

to the disparity of its closest consistent pixel [18]. That is, the minimum between 

LR ( )'

ld x  and 
LR ( )'

rd x  is assigned to LR ( )'d x , where lx  and rx  stand for the nearest 

consistent pixels on the left and the right of pixel x , respectively. 
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Generic outliers handling 

Since the outliers do not always correspond to background occlusions, it has 

been introduced a straightforward scheme which precedes the ``Background outliers 

handling''. This scheme does not presume that an outlier pixel x  belongs to the 

background, but it checks whether its left or right side has more similar (in term of 

colour) pixels to that pixel. In more detail, for an outlier pixel x , separately for the 

left and right side, the inlier pixels, for which the following condition is verified, are 

counted:  

    
1( ) ( ) ,l lI I   x x s                                                                ( 38 ) 

where x( s ,0)
l

  Ts , 
maxxs [1,s ( ))

l l x  for the left side and x(s ,0)
r

 Ts , 

maxxs [1,s ( ))
r r x  for the right side, while 1  is a threshold for colour difference. 

max
s ( )l x  and 

max
s ( )r x  are the integer values for which the condition of Equation (38) 

fails for the first time when examining the left and the right sides, respectively. For 

the pixels on the left side of x , the weights ( )l x s  are calculated from: 

1, if is inlier
( )

0, if is outlier.
l


  



x s
x s

x s
                       ( 39 ) 

Afterwards, for the left side the following disparity histogram is generated: 

i

i

: ( )

H ( , ) ( ),l l

d d

d 
  

 
x s x s

x x s                                             ( 40 ) 

where i [ ]d disparity range . 

In an analogous manner, the disparity histogram 
iH ( , )r dx  for the right side is 

generated. Let now the maximum values of the left and the right histograms be 

i
imax

h ( ) max H ( , ){ }l
dl

dx x  and 
max

h ( )r x , respectively and the corresponding 

disparity values be 
i

imax
( ) arg max H ( , ){ }l

d
l

d dx x  and 
max

( )rd x , respectively. Based 

on the above, the new disparity estimate ( )d x  is given from: 

 

 

 
maxmax max max

max max maxmax

S

S

( ), if h ( ) h ( ) h ( ) R /2
( )

( ), if h ( ) h ( ) h ( )

&

& R /2

rl l l

r r rl

d
d

d

   
  

   

x x x x
x

x x x x
             ( 41 ) 

The outliers that have been handled using Equation (41) are considered now 
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as inliers. The disparity map of Figure 21a after applying the ``Generic outliers 

handling'' is visualized in Figure 25a. For the remaining outliers (i.e. none of the 

conditions in Equation (41) holds), the approach in paragraph ``Background outliers 

handling'' is performed. 

In order to deal with horizontal artifacts that are produced after applying the 

``Background outliers handling'', a bilateral filter is used to smooth the filled regions. 

The bilateral filter weights are given by [18]: 

, ,

,

1
·exp ,

s c

s c
W

k  

   
     

  

x q x q

x q                                        ( 42 ) 

where k  is a normalization factor, ,s x q  and ,c x q  denote the spatial distance and 

the colour difference between pixels x , q  and s , c  are constant parameters that 

adjust the spatial and colour distance. The parameters of the bilateral filter are set as 

in [18]: 9s  , 0.1c   and its window size is S SR R . The disparity map of Figure 

25a after applying ``Background outliers handling'' and bilateral smoothing is 

visualized in Figure 25b. 

 

5.2.3 Disparity edges refinement  
 

Disparity edges, which correspond to depth discontinuities, may contain 

disparity errors [16]. In the following, two simple approaches, which are used by the 

two methodologies to refine depth discontinuities, are presented.  

 

5.2.3.1 Disparity edges refinement in methodology A 
 

A two-step approach is used to refine the disparity information at the disparity 

edges. The first step detects and handles the disparity edges at a coarser level and the 

second one at a finer level. 

The pixels that belong to a disparity edge are assumed to have a difference 

greater or equal to 2 with at least one of their 4-adjacent pixels disparity. Otherwise, 

if the difference is below 2, then the surface varies smoothly and therefore one can 

assume that there is no depth discontinuity.  Figure 26b shows the disparity edges 

extracted from the disparity map of Figure 26a. 
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(a)                                                                           (b)  

     

(c)                                                                            (d) 

Figure 26. Illustration of: (a) the disparity map to be used for disparity edges 
refinements, (b) the disparity map’s disparity edges, (c) the disparity map after coarse 
discontinuity refinement, (d) the disparity edges after applying canny disparity edge 
detection. 

During the first step, around each pixel of the disparity edge, a circular region 

of radius 3 is defined. The disparities of the pixels that fall inside the circular region 

and at the same time belong to the same mean-shift segment, as the pixel of the 

disparity edge, are used to find the most frequent disparity value. This value is 

propagated to the edge pixel. The disparity result after the first step is depicted in 

Figure 26c. 

The second step handles discontinuities at a finer scale. Firstly, canny edge 

detection (see Figure 26d) is applied to the disparity result of Figure 26c. Canny can 

detect disparity edges at finer scale than the coarse previously-described step (this is 

evident when comparing Figure 26b and Figure 26d). Then a patch of size 3x3 is 

centered at each edge point and the disparity regions separated by the edge are found. 

Figure 26d shows that the edge separates the patch into a yellow and green disparity 



Chapter 5 – Disparity optimization and disparity refinement 

75 
 

region. The disparity region that contains the pixel with the greatest colour similarity 

to the edge pixel (the colour similarity is found according to the initial reference 

stereo image) gives its disparity to the considered pixel. 

 

5.2.3.2 Disparity edges refinement in methodology B 

 

Methodology B uses a straightforward efficient approach to refine the 

disparity estimation at the edges. Initially, the pixels that belong to disparity edges 

are assumed to have absolute disparity difference greater or equal to 1 with at least 

one of their 4-adjacent pixels. Figure 27a shows the disparity edges extracted from 

the disparity map of Figure 25b. 

      

                              (a)                                                                     (b) 

Figure 27. Illustration of: (a) the disparity edges of the disparity map to be used for 
disparity edges refinements, (b) the disparity map after disparity edges refinement. 

Around each pixel cx  of the disparity edge, a circular region of radius 4 is 

defined. The colour similarity between the center pixel cx  and a pixel x  within the 

circular region is estimated as: 

 c

c

,

c( , ) ,

I

w e


 
  
 

x q

x q                                                             ( 43 ) 

where  

  c c 2

c c {R,G,B} c, | ( ) ( ) | .I I I  x q x q                                       ( 44 ) 

A disparity histogram is generated for each cx , where the values of its 

disparity bins are computed as follows: 
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 
c

i

c i c

: ( )

H ( , ) , ,
d d

d w


 x

q q

x x q                                   ( 45 ) 

where 
i [ ]d disparity range . Let now the maximum and the second maximum value 

of 
c c iH ( , )d

x
x  be 

c
i

max c c ih ( ) max H ( , ){ }
d

d
x

x x  and sec ch ( )x , respectively and the 

corresponding disparity value for max ch ( )x  be 
c

i

max c c ih ( ) arg max H ( , ){ }
d

d d
x

x x . If 

max c sec ch ( ) / h ( ) 2x x  then 
maxc ch( ) ( )d dx x , otherwise the disparity value of 

c( )d x

does not change. 

 The disparity result after the disparity edges refinement is depicted in Figure 

27b. A median filter, using a 3x3 neighborhood, is applied to the disparity result of 

Figure 27b in order to remove spurious disparities before acquiring the final disparity 

map, which is depicted in the upper image of the third column Figure 35. 

 

5.2.4 Selective uniform areas handling used in methodology A 

 

Usually, images contain large uniform areas, where it is difficult to establish 

accurate pixel correspondences between two images. In order to deal with 

ambiguous matches in these areas, methodology A uses a novel approach presented 

in this subsection.  

 

5.2.4.1 Detection of uniform areas 

 

Initially, large uniform areas on the image are detected. Large uniform areas 

are considered to be the mean-shift segments that contain over 2

S2·R  pixels ( SR  is 

the radius of the support region as defined in subsection 4.2.1.1). Then, each 

segment's ``inlier'' pixels are estimated and used for the uniform areas handling. 

 

5.2.4.2 Inlier pixels regions 

 

Inlier pixels x  from LR ( )d x  (see Figure 14a in subsection 4.2.1.2), are used for 

the uniform-areas handling. The inlier pixels regions are determined as follows: 

 The outliers map LR 1

1O ( )
T 

x  of subsection 5.1.1.1 (see Figure 17), as well as the 
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outliers map LR 0

2O ( )
T 

x  of subsection 5.2.1.1 (see Figure 22a) are considered 

in order to acquire their union, which defines the overall outliers map 
UO ( )x . 

In 
UO ( )x , outlier pixels are those that are outliers in either LR 1

1O ( )
T 

x  or 

LR 0

2O ( )
T 

x . Let InX  be the set of inlier pixels in UO ( )x . 

 

   

(a)                                                                             (b) 

   

(c)                                                                             (d) 

Figure 28. Inlier pixels (red regions) in UO ( )x   for (a) the left “Tsukuba” image and (c) 

the left “Cones” image. A segment on (b) the left “Tsukuba” image and (d) the left 
“Cones” image (shown with blue). 

 

A visual example is given in the first row of Figure 28. Figure 28a shows the 

overall outliers map UO ( )x  that is generated after the union of the outliers maps   

LR 1

1O ( )
T 

x  and LR 0

2O ( )
T 

x  acquired in subsections 5.1.1.1 and 5.2.1.1, respectively. The 

inlier pixels InX  are denoted with red colour. 
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(a)                                                                               (b) 

Figure 29. Disparity histogram of the inlier pixels in a segment on (a) the left “Tsukuba” 
image and (b) the left “Cones” image. 

 

   

  (a)                                                                               (b) 

Figure 30. Fit a plane (blue) to a segment, applying PCA on the reliable subset of pixels 
(red) for a segment on (a) the left “Tsukuba” image and (b) the left “Cones” image. 

 

5.2.4.3 Extraction of a reliable pixels, based on histogram analysis 

 

A histogram analysis, based on the inlier pixels' disparities LR In(X )d  is applied 

in order to acquire a reliable subset of the pixels. For instance, for the mean-shift 

segment of Figure 28b (marked with blue colour), the histogram of the disparities of 

the inlier pixels inside this segment is depicted in Figure 29a. 

Theoretically, the disparities of the pixels in a segment S  should vary 

continuously within a disparity range, since they belong to the same continuous 

surface. Based on this assumption, the employed approach is followed to get the 

subset of the reliable pixels. 

Initially, the histogram of disparities is separated into parts (each part 

expresses a disparity range), as shown in Figure 29a. To separate the histogram into 
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parts, bins with a height below a ``separation threshold'' are ignored, so that they do 

not affect the separation process. This threshold is selected equal to: 

Number of inlier pixels in

Number of possible disparities

S
. The reliable subset of inlier pixels includes the pixels 

whose disparities belong to the histogram part with the most numerous population 

(3rd part of Figure 29a). 

 

Figure 31. Disparity maps before (1st row) and after applying uniform region handling 
(2nd row). 

 

5.2.4.4 Planar fitting 
 

Afterwards, the reliable pixels and their disparities (red points in Figure 30a) 

are used to fit a planar surface to the segment. The robust method of Principal 

Components Analysis (PCA) described in [70] is used to estimate the parameters of 

the plane. The two first principal components define the plane. Let the estimated 

plane be: T

pd ( ) · ,x p x  where T

1 2=[p ,p ]p . Then each Sx  is assigned the disparity 

pd ( )x . The new disparity values inside the segment are depicted with blue in Figure 

30a. 

A second example of uniform area handling is given considering the Cones 

stereo pair. In brief, Figure 28c shows the overall outliers map. For the mean-shift 

segment of Figure 28d (marked with blue colour), the histogram of the disparities of 

the inlier pixels inside this segment is depicted in Figure 29b. The reliable subset of 

inlier pixels includes the pixels whose disparities belong to the 1st histogram part of 
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Figure 29b. The reliable pixels and their disparities (red points in Figure 30b) are used 

to fit a planar surface to the segment. The new disparity values inside the segment 

are depicted with blue in Figure 30b. 

Figure 31 shows three examples of uniform region handling. In the first and 

second rows of Figure 31, the disparity results before and after uniform regions 

handling are visualized, respectively.  The first and second columns include the result 

of handling the blue-colored segments of Figure 28b and Figure 28d, respectively. The 

third column shows an example for the Teddy stereo pair. The examples in the second 

and third column show clearly the improvements in the disparity maps after applying 

the plane fitting process. 

   

(a)                                                                      (b) 

    

(c)                                                                      (d)  

Figure 32. Illustration of: (a) the disparity map without uniform areas handling, (b) the 

disparity map with uniform areas handling (without exploiting the fitMED  verification 

metric), (c) the uniform areas, which are denoted with green, where the disparity plane 

fitting is assumed as successful according to 0.5fitMED  , (d) the disparity map after 

uniform area handling for the areas that satisfy 0.5fitMED  . 

However, it is not always valid to assume that large areas with low texture are 

planar. Additionally, some large areas may have been wrongly segmented, leading to 
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inaccurate plane fitting. Therefore, a specific metric is adopted, which is used to verify 

if the planar fitting is successful. This metric is the median of the absolute differences 

between the initial disparities of the reliable pixels and the disparities of the reliable 

pixels that are estimated after the plane fitting and is defined as: fitMED  (measured 

in disparity units). The condition 0.5fitMED   has to be satisfied, in order to consider 

the planar fitting as successful. 

Figure 32 visualizes an example of uniform areas handling applied on the 

Midd1 stereo pair, which belongs to the extended stereo dataset [71] (see section 

6.1) and contains large low-textured areas. In Figure 32a the estimated disparity map 

without applying the uniform areas handling is depicted. It is obvious that disparity 

estimation is not reliable in low-textured areas. Figure 32b shows the disparity map 

after applying uniform areas handling to all low-textured areas. Figure 32c visualizes 

with green the low-textured areas with 0.5fitMED   and with red the low-textured 

areas with 0.5fitMED  . In Figure 32d the disparity map after applying uniform areas 

handling only for the green low-textured areas is depicted. The disparity error for the 

case of all regions and 1d   for the Midd1 stereo pair is 40.65%, 14.88% and 9.69% 

for the disparity maps of Figure 32a, Figure 32b and Figure 32d, respectively. 

Therefore, this example verifies the efficiency of the uniform areas handling to 

decrease the disparity estimation error. 

A median filter using a 5x5 neighborhood is applied to the disparity result that 

is generated after executing all the steps of methodology A, in order to remove 

spurious disparities before acquiring the final disparity map.   

 

5.3 Summary 
 

The current chapter presented the disparity optimization and disparity 

refinement steps for methodologies A and B. 

The disparity optimization for both methodologies is based on the semi-global 

optimization approach, where two novel ideas are introduced to improve its 

performance. The first idea, which is used by methodology A, concerns the 

introduction of a new criterion that relies on mean-shift segmentation for the 
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detection of depth discontinuities. This criterion, which is used in the definition of the 

smoother penalty terms, checks whether or not two neighboring pixels, along a path 

direction, belong to the same mean-shift segment. The second idea, which is used by 

methodology B, concerns the introduction of a weighted variant of the semi-global 

optimization, where the path costs of a considered pixel may have different weights 

depending on the number of the pixels that precede the considered pixel along each 

path direction. Practically, for a considered pixel, the path direction that contains 

much more non-outlier (inlier) pixels than the other directions will receive higher 

weight.  

The disparity refinement step in methodology A comprises outliers handling, 

disparity edges refinement and uniform areas handling.  

Outliers handling in methodology A, is performed by combining the “Basic 

outlier handling’’ scheme and the “Mean-shift segmentation-based outlier handling” 

scheme. The ``Basic outlier handling’’ scheme sets the disparity of an outlier pixel 

equal to the minimum disparity between the disparities of its spatially closest inlier 

pixels on its left and its right side. On the other hand, the ``Mean-shift segmentation-

based outlier handling” scheme initially classifies segments into reliable and 

unreliable segments. For each outlier pixel inside a reliable segment, a voting scheme 

that counts the disparities of the inlier pixels that belong to the same segment as the 

outlier pixel is applied. The most repeated disparity is propagated to the outlier pixel. 

For an unreliable segment, the reliable neighboring segment that will propagate its 

prevalent disparity to this unreliable segment is the one that has the most similar 

colour to the unreliable segment. Then, methodology A applies a two-step approach 

to perform disparity edges refinement. The first step handles the disparity edges at a 

coarser level and the second one at a finer level. Uniforms areas handling 

encompasses disparity histogram analysis, which helps to acquire a reliable subset of 

inlier pixels that can be used to perform accurate disparity plane fitting on these 

uniform areas. 

The disparity refinement step in methodology B comprises outliers handling 

and disparity edges refinement.  

Outliers handling in methodology B is performed by applying sequentially 

“Generic outliers handling” and “Background outliers handling”. “Generic outliers 
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handling” generates two disparity histograms for the left and the right side of an 

outlier pixel. If either of two specific conditions is met, then the disparity of the outlier 

pixel is set equal to the disparity which corresponds to the bin containing the 

maximum value in the disparity histogram of the left or the right side.  `` Background 

outliers handling’’ sets the disparity of an outlier pixel equal to the minimum disparity 

between the disparities of its spatially closest inlier pixels on its left and its right side. 

The filled regions are then smoothed using a bilateral filter. After outliers handling, 

methodology B applies a straightforward efficient approach to refine the disparity 

estimation at the edges. This approach builds a disparity histogram for each pixel lying 

on a disparity edge. The disparity of the edge pixel is set equal to the disparity that 

corresponds to the bin containing the maximum value in the generated disparity 

histogram. 

The next chapter provides the evaluation and the experiments that were 

conducted to test the performance of methodology A and methodology B.  
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Chapter 6 

6 Evaluation and experiments  
 

Chapter 6 presents the experimental evaluation of the proposed 

methodologies.   

 

6.1 Datasets 
 

The experiments are performed using Middlebury stereo pairs that belong to 

three datasets. The four stereo image pairs of the Middlebury online stereo 

benchmark dataset are used to present computational time results, evaluate the 

accuracy of the presented methodologies and select optimum parameters. The online 

dataset includes the Tsukuba, Venus, Teddy and Cones stereo pairs. The Tsukuba pair 

was used to demonstrate methodology A, while the Teddy pair was used to 

demonstrate methodology B. The left views of these four image pairs and their ground 

truth disparity maps are referred as the Dataset 2003 in Figure 33.  

 

Figure 33. Left views of the stereo image pairs and their corresponding ground truth 
disparity map
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Two more datasets, which include in total twenty seven stereo pairs, have 

been also used for evaluating the accuracy of the presented methodologies. The left 

views and the corresponding ground truth disparity maps from the six pairs of the 

Dataset 2005 and the twenty one pairs of the Dataset 2006 are visualized in Figure 

33. 

 

6.2 Computational analysis  
 

6.2.1 Computational analysis for methodology A 
 

A non-optimized C++ implementation of methodology A is used to report on 

the required computational time. The algorithm was executed on a desktop PC with 

Core i7-3770 3.40 GHz CPU and 8 GB RAM. The total processing time, using as input 

the four stereo pairs of the Middlebury evaluation benchmark [68], is indicated in 

Table 2. The measured time is the average of 5 separate runs. Additionally, this table 

provides the percentage of the total time that is spent for each of algorithm's steps, 

which include: 1. the Matching Cost Computation step (M.C.) (subsection 4.1.1), 2.the 

Cost Aggregation step (C.A.) (subsection 4.2.1), 3. the Disparity Optimization step 

(D.O) (subsection 5.1.2) and 4. the Disparity Refinement step (D.R.) (subsections 

5.2.2.1, 5.2.3.1 and 5.2.4). The Cost Aggregation is the most computational expensive 

step (on average 91.84 % of the total processing time). Nevertheless, this step can be 

parallelized since cost aggregation can be performed independently for non-

overlapping parts of the image. 

 

Image Resolution Disp.Levels Meth. A (s) M.C.(%) C.A.(%) D.O.(%) D.R.(%) 

Tsukuba 384 x 288 15 24.33 4.30 88.93 0.93 5.84 

Venus 434 x 383 20 49.25 3.71 89.72 0.92 5.65 

Teddy 450 x 375 60 154.23 2.89 94.35 0.86 1.90 

Cones 450 x 375 60 154.78 2.82 94.45 0.92 1.81 

Table 2. Computational time in seconds and the percentage of time spent on each step 
of methodology A. 

Concluding, most parts of the algorithm have low computational cost. The step 

of the algorithm with increased computational cost includes the adaptive support 
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weight cost aggregation (see subsection 4.2.1). However, this time consuming part 

can be implemented in Graphics Processing Units (GPU) as can be verified in [28]. 

Additionally, there are works, such as [69], [72] that propose approximations to derive 

fast implementations of the original adaptive support weight algorithm [21]. The 

drawback of these methods is that they sacrifice quality for high computational speed 

[28]. 

 

6.2.2 Computational analysis for methodology Β 
 

A C++ implementation of the methodology B is used to report on the required 

computational time. The algorithm was executed on a desktop PC with Core i7-3770 

3.40 GHZ CPU and 8 GB RAM. The low processing time using as input each of the four 

stereo pairs of the Middlebury evaluation benchmark [68] is indicated in Table 3. The 

measured time is the average of 5 separate runs. Table 3 provides the percentage of 

the total time that is spent for: 1. the Matching Cost Computation step (M.C.) 

(subsection 4.1.2), 2. the Cost Aggregation step (C.A.) (subsection 4.2.2), 3. the 

Disparity Optimization step (D.O) (subsection 5.1.2) and 4. the Disparity Refinement 

step (D.R.) (subsections 5.2.2.2 and 5.2.3.2). The Cost Aggregation step, which relies 

on content-based guided filtering, is the most computational expensive step (on 

average 61.78 % of the total processing time). 

 

Image Resolution Disp.Levels Meth. B (s) M.C.(%) C.A.(%) D.O.(%) D.R.(%) 

Tsukuba 384 x 288 15 1.9 20.45 59.02 15.90 4.63 

Venus 434 x 383 20 3.6 20.95 61.06 15.32 2.67 

Teddy 450 x 375 60 9.7 19.91 63.61 13.34 3.14 

Cones 450 x 375 60 9.6 19.63 63.42 13.82 3.13 

Table 3. Computational time in seconds and the percentage of time spent on each step 
of methodology B. 

 

Concluding, the step of the methodology B with increased computational cost 

includes the content-based guide image filtering (see subsection 4.2.2). However, this 

part can be implemented in GPU as can be verified in [18], [27]. The semi-global 
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optimization method, which is used in the Disparity Optimization step, can be also 

implemented in GPU according to [16], [73]. Therefore, methodology B is appropriate 

for real-time GPU implementation. 

 

6.3 Parameters selection  
 

6.3.1 Set of optimum parameters for methodology A 

 

The parameters used for the experiments are the same for all tested stereo pairs. 

More specifically,   is set equal to 0.3  , while the parameters used for the cost 

functions are RGB 30  , CEN 45   and SIFT 45   (see subsection 4.1.1). The radius 

of the support area (see subsection 4.2.1.1) is set equal to S 19R   and the adaptive 

weight parameters are c 8   and e SR  . The parameters used in subsection 5.1.2 

are  1 20.2, 0.6     and so 10  . 

 Best     β=0.25   β=0.35   λRGB=25    λRGB=35    γc=7     γc=9     λCEN=40   λCEN=50   RS=17   RS=21   No Crit. 

Avg. Rank 15.6     17.4    15.9      16.5      17.5      18.2   17.2     17.7      17.1      16.2    17.4     18.5 

Nonocc (%) 2.08     2.11    2.09      2.10      2.11      2.10   2.10     2.12      2.10      2.09    2.10     2.16 

All (%) 4.51     4.57    4.52      4.51      4.53      4.53   4.54     4.54      4.53      4.52    4.54     4.57 

Disc (%) 6.41     6.41    6.43      6.43      6.41      6.51   6.43     6.41      6.48      6.46    6.49     6.39 

Table 4. Parameters testing for methodology A. 

 

The column ``Best'' of Table 4 gives, for methodology A, the numeric results 

from the Middlebury Stereo evaluation for the disparity maps extracted using the 

optimum parameters. The results include the overall performance measure (``Avg. 

Rank''), the error in non-occluded regions (``Nonocc''), the error in all regions (``All'') 

and the error near depth discontinuities (``Disc''). In subsection 6.5.1.4 further 

parameters testing is performed. 

 

6.3.2 Set of optimum parameters for methodology B 
 

The parameters used for the experiments are the same for all tested stereo 

pairs. More specifically, the parameters used for the estimation of the cost term (see 
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subsection 4.1.2) are defined as: 
1 2 gra gab BT{ , , , , } {0.75,0.20,2 / 255,4 / 255,T T T    

7 / 255} . The variables used for the cost filtering are the smoothness parameter   

(see subsection 4.2.2.1), which is set to 0.0001   and the parameter SR  that 

defines the size of the rectangular window (see subsection 4.2.2.2), which is set to 

S 17R  . The selection of S 17R   is based on the experiments described in 

subsection 6.5.2.2. The parameters used in subsection 5.1.2 are  

1 20.002, 0.006     and so 10 / 255  . Finally, the colour difference threshold 1  

in subsection 5.2.2.2 is set to 1 10 / 255  . 

 

 “Best’’ “Adapt. Windows” as in [27] “Simple S-G” as in [44] 

Avg. Rank 16.8  23.4  18.0 

Nonocc (%) 1.91  2.12 1.95 

All (%) 4.68 4.85 4.70 

Disc (%) 6.41 6.41 6.43 

Table 5. Evaluation results for methodology B. 

 

The column ``Best'' of Table 5 gives, for methodology B, the numeric results 

from the Middlebury Stereo evaluation for the disparity maps extracted using the 

optimum parameters. The results include the overall performance measure (``Avg. 

Rank''), the error in non-occluded regions (``Nonocc''), the error in all regions (``All''), 

the error near depth discontinuities (``Disc'') and the average percent of bad pixels 

(``APBP''). 

 

6.4 Disparity results  
 

6.4.1 Disparity results of methodology A 
 

The disparity results of methodology A, for the optimum parameters set, 

accompanied with the disparity error maps as extracted by the Middlebury evaluation 

system are visualized in Figure 34. Errors in non-occluded and occluded regions are 

marked in black and gray respectively in the second row of Figure 34. 
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Table 6. The rankings in the Middlebury benchmark. 

 

Figure 34. Disparity maps generated using methodology A and their corresponding 
disparity error maps for error threshold 1. 

 

The ranking results in Table 6, for error threshold equal to 1, indicate that 

methodology A is 4th out of 164 methods that are included in the Middlebury Stereo 

Evaluation. However, no information on the 1st [74] ranked methods is available, since 

it is currently under review. Therefore, methodology A ranks 3rd among already 

published methods. More specifically, the proposed method ranks: 10th for the 

``Tsukuba'' image pair, 4th for the Venus image pair, 37th for the Teddy image pair and 

4th for the ``Cones'' image pair. 

The 37th position in the ranking for the Teddy image pair is because of the very 

slanted surface at the bottom of the image, where the proposed method cannot 

handle well the very slanted surface. However, it can be deduced from the 

experimental results that the proposed method outperforms the rest of the published 

 
Algorithm 

Avg. 

Rank 

Tsukuba 

nonocc  all       disc 

Venus 

nonocc   all     disc 

Teddy 

nonocc  all       disc 

Cones 

nonocc  all       disc 

IGSM[74] 10.5 0.93    1.37   5.05 0.07    0.17   1.04 4.08    5.98    11.4 2.14   6.97    6.27 

TSGO[75] 13.8 0.87    1.13    4.66 0.11    0.24   1.47 5.61    8.09    13.8 1.67    6.16    4.95 

JSOSP-GCP[76] 15.2 0.74    1.34    3.98 0.08    0.16   1.15 3.96    10.1    11.8 2.28    7.91    6.74 

Methodol. A 15.6  1.02    1.23    5.51 0.08    0.20   1.11 5.16    9.43    13.0 2.07    7.16    5.97 

Methodol. B 16.8  1.01    1.32    5.17 0.08    0.21   1.17 4.35    9.83    12.3 2.19    7.35    6.43 

SSCBP[77] 18.2 1.05    1.39    5.57 0.10    0.16   1.39 3.44    8.32    9.95  2.60    7.13    7.23 

ADCensus[16] 18.8 1.07    1.48    5.73 0.09    0.25  1.15 4.10    6.22    10.9 2.42    7.25    6.95 
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stereo methods, which are evaluated online in the Middlebury stereo evaluation 

benchmark, in image areas excluding very slanted surfaces. 

 

6.4.2 Disparity results of methodology B 
 

The disparity results of methodology B, for the optimum parameters set, 

accompanied with the disparity error maps are visualized in Figure 35.  

 

Figure 35. Disparity maps generated using methodology B and their corresponding 
disparity error maps for error threshold 1. 

 The ranking results in Table 6, for error threshold equal to 1, indicate that 

methodology B is 5th out of 164 methods that are included in the Middlebury Stereo 

Evaluation. Since the 1st [74] ranked methods is currently under review, methodology 

B ranks 4th among already published methods (methodology A is included in the 

published methods that rank above methodology B). This is an important 

achievement bearing in mind the reduced computational complexity of this algorithm 

and its suitability to be implemented in GPU. Moreover, though methodology B is less 

accurate than methodology A and the JSOSP-GCP approach [76], it is faster than them. 

This fact is evident in Table 7 that displays the computational times of methodology 

A, methodology B and the approach in JSOSP-GCP (the computational times regarding 

JSOSP-GCP were obtained from [76] after converting minutes into seconds). 

Additionally, methodology B outperforms in terms of disparity estimation accuracy 

the methods presented in [18] and [27], which also exploit the guided image filter and 

rank in positions 48 and 18, respectively. 

In more detail, regarding the Middlebury Stereo Evaluation, the proposed 

method ranks: 12th for the ``Tsukuba'' image pair, 6th for the Venus image pair, 29th 
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for the Teddy image pair and 15th for the ``Cones'' image pair. 

 

Image Resolution Disp.Levels Meth. A  Meth. B  JSOSP-GCP[76] 

Tsukuba 384 x 288 15 24.33 1.9 143.4 

Venus 434 x 383 20 49.25 3.6 249.0 

Teddy 450 x 375 60 154.23 9.7 262.8 

Cones 450 x 375 60 154.78 9.6 306.6 
Table 7. Comparison of computational times in seconds. 

6.5 Evaluation Results 
 

6.5.1 Evaluation Results of methodology A 
 

6.5.1.1 Evaluation of methodology A 

 

The initial disparity map (see Figure 9) that is generated after applying WTA to 

the cost volume R-C ( , )C x d  ( R-C ( , )C x d  has been computed in subsection 4.1.1.3 via 

Equation (8)) is heavily corrupted with noisy disparities. This subsection examines 

how the accuracy of the initial disparity map, which has been estimated via 1. the 

Matching Cost Computation step (M.C.) , is improved after applying sequentially: 2. 

the Cost Aggregation step (C.A.) (subsection 4.2.1), 3. the Disparity Optimization step 

(D.O) (subsection 5.1.2) and 4. the Disparity Refinement step (D.R.) (subsections 

5.2.2.1, 5.2.3.1 and 5.2.4). 

   

               (a)                                                  (b)                                                 (c) 

 Figure 36. Average percent of bad pixels after applying sequentially the steps of 
methodoylogy A for (a) non-occluded regions, (b) all regions and (c) near depth 
discontinuities regions. 
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Figure 36 depicts the average percent of bad pixels for the disparity maps of 

the four Middlebury image pairs, which are generated after applying sequentially 

each step of methodology A. This table includes results for non-occluded regions 

(``Nonocc''), all regions (``All'') and regions near depth discontinuities (``Disc''). 

The cost aggregation step significantly enhances the initial disparity map. This 

is evident in the results of Figure 36 where the average percent of bad pixels 

drastically reduces from the Matching Cost Computation (M.C.) step to the Cost 

Aggregation (C.A.) step. The disparity map accuracy is further improved after applying 

disparity optimization. This is evident in Figure 36, where the percent of bad pixels 

declines from the Cost Aggregation (C.A.) step to the Disparity Optimization (D.O.) 

step. Finally, the Disparity Refinement (D.R.) step helps in further lowering the 

percent of bad pixels with respect to the Disparity Optimization (D.O.) step, as it is 

also shown in Figure 36. 

The improvement in the disparity map quality, introduced by the 

aforementioned steps, is also visually demonstrated. As it is obvious in Figure 9, the 

disparity map, which is acquired via the matching cost computation (M.C.) step, is 

severely corrupted with estimation-error noise. After applying the cost aggregation 

(C.A.) step the noise is removed, as it is evident in Figure 14a. The disparity 

optimization step (D.O.) further improves the disparity results. This is clearly seen 

observed from the comparison between Figure 14a and Figure 20a. The disparity map, 

which is given on the left image in the 2nd row of Figure 31, shows the disparity map 

after performing the disparity refinement (D.R.) step to the disparity map of Figure 

20a. The outlier regions of the disparity map in Figure 20a have been efficiently 

handled in the disparity map given on the left image in the 2nd row of Figure 31.  

In the following, particular evaluations of several steps of methodology A are 

also provided.  

  

6.5.1.2 Evaluation of the two-phase combination strategy  

 

 This subsection provides the evaluation of the two-phase combination 

strategy, which is part of the cost aggregation step. The improvement in the accuracy 
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of the disparity map resulting via WTA from '

R-CV , which is achieved by using the two-

phase combination strategy of subsection 4.2.1.2, is evaluated according to the 

Middlebury online evaluation system. Table 8 depicts the average percent of bad 

pixels for the disparity maps generated using the four Middlebury image pairs. This 

table includes results for non-occluded regions (``Nonocc''), all regions (``All'') and 

regions near depth discontinuities (``Disc''). 

 

 Init. Phase1 Phase2 CENSUS SIFT 

Nonocc (%) 8.81 7.91 6.43 18.5 15.0 

All (%) 14.4 13.6 12.2 23.1 19.8 

Disc (%) 15.9 15.6 14.6 27.3 27.8 

Table 8. Evaluation of the two-phase combination strategy of methodology A. 

 

The evaluation results for the disparity map resulting via WTA from '

R-CV  are 

given in the ``Init.'' column. The evaluation results for the disparity map resulting via 

WTA from '

R-CV  (which is acquired after applying first combination phase) are given in 

the ``Phase1'' column. The average numeric results for the disparity map LRd  

resulting via WTA from ( , )fC x d  (which is acquired after applying second 

combination phase) are given in the ``Phase2'' column. Obviously, each combination 

phase assists in improving the accuracy of the generated disparity map. 

Additionally, Table 8 includes in the ``CENSUS'' column the evaluation results 

for the disparity map resulting via WTA from CENV  and in the ``SIFT'' column the 

evaluation results for the disparity map resulting via WTA from SIFTV . Though, the 

results in ``CENSUS'' and ``SIFT'' are worse that the results in ``Init.'' the efficient 

exploitation of CENV  and SIFTV  in the two-phase combination strategy improves the 

disparity estimation accuracy. 

 

6.5.1.3 Evaluation of the disparity refinement process 

 

Furthermore, the Middlebury online benchmark is exploited in order to 
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examine the improvement introduced by the proposed disparity refinement steps. 

Figure 37 depicts how the average percent of bad pixels decreases after applying 

sequentially each of the disparity refinement steps, which include outlier handling, 

disparity edges refinement and uniform regions handling. Figure 37 includes results 

for non-occluded regions (see Figure 37a), all regions (see Figure 37b) and regions 

near depth discontinuities (see Figure 37c). As it is expected, the outlier handling 

decreases the bad pixels percent more than the rest refinement steps, since it handles 

large outlier areas. Disparity edges refinement and uniform regions handling improve 

further the accuracy, so that the proposed framework becomes the top ranked 

published method in the Middlebury stereo evaluation. 

   

                         (a)                                                   (b)                                                    (c) 

Figure 37. Average percent of bad pixels after applying sequentially refinement steps 
for (a) nonoccluded regions, (b) all regions and (c) near depth discontinuities regions. 

 

6.5.1.4 Further parameters testing 

 

As mentioned in subsection 6.3.1, the column ``Best'' of Table 4 gives the 

numeric disparity estimation results using optimum parameters. In the rest columns 

of Table 4, the results in the case that all parameters are kept the same as the 

optimum ones, except for the parameter in the top of the column, are provided. For 

each parameter a smaller and a larger value than the optimum one are tested. Table 

4 verifies that the optimum parameters give the best results. 

The last column of Table 4, with the annotation ``No criterion'', gives the 

results of this method for the best set of parameters, with the difference that in this 

case the introduced second criterion for the definition of the smoothness terms in 

Equation (34) is not used. The results prove that without the exploitation of the 
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second criterion the disparity accuracy decreases. 

The segmentation maps are exploited in different stages of this method. 

Therefore, it is important to verify that small variations to the optimum parameters 

( , ) (3,3)s r    that adjust the segmentation result (see subsection 3.4.3) do not 

affect significantly the performance of this method. Table 9 exhibits the error results 

for different values of the spatial radius and space feature radius. The rest of 

parameters are set to their optimum value. 

 

 (σs,σr)=(2,3) (σs,σr)=(3,4) (σs,σr)=(4,4) 

Avg. Rank 18.5 19.4 18.6 

Nonocc (%) 2.16 2.14 2.12 

All (%) 4.77 4.69 4.69 

Disc (%) 6.51 6.54 6.59 

Table 9. Segmentation parameters testing for methodology A. 

 

For all parameter tests, the proposed method ranks in the top five ranking 

positions though the disparity accuracy decreases. This fact proves that this approach 

maintains its good disparity estimation accuracy even with changes to the optimum 

parameters. 

 

6.5.2 Evaluation Results of methodology B 
 

6.5.2.1 Evaluation of methodology B 

 

The initial disparity map (see Figure 10) that is generated after applying WTA 

to the cost volume ( , )C x d  ( ( , )C x d  has been computed in subsection 4.1.2 via 

Equation (18)) is heavily corrupted with noisy disparities. This subsection examines 

how the accuracy of the initial disparity map, which has been estimated via 1. the 

Matching Cost Computation step (M.C.) (subsection 4.1.2), is improved after applying 

sequentially: 2. the Cost Aggregation step (C.A.) (subsection 4.2.2), 3. the Disparity 

Optimization step (D.O) (subsection 5.1.2) and 4. the Disparity Refinement step (D.R.) 

(subsections 5.2.2.2 and 5.2.3.2). 
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             (a)                                                   (b)                                                  (c) 

Figure 38. Average percent of bad pixels after applying sequentially the steps of 
methodoylogy A for (a) non-occluded regions, (b) all regions and (c) near depth 
discontinuities regions. 

The cost aggregation step significantly enhances the initial disparity map. This 

is evident in the results of Figure 38, where the average percent of bad pixels 

significantly declines from the Matching Cost Computation (M.C.) step to the Cost 

Aggregation (C.A.) step. The disparity map accuracy is further improved after applying 

disparity optimization. This is evident in Figure 38, where the percent of bad pixels 

reduces from the Cost Aggregation (C.A.) step to the Disparity Optimization (D.O.) 

step. The improvement is stronger for the regions near depth discontinuities. Finally, 

the Disparity Refinement (D.R.) step helps in further lowering the percent of bad 

pixels with respect to the Disparity Optimization (D.O.) step, as it is also shown in 

Figure 38.  

The improvement in the disparity map quality, introduced by the 

aforementioned steps, is also visually demonstrated. The disparity map, which is 

estimated via the matching cost computation (M.C.) step, is heavily corrupted with 

estimation-error noise, as it is evident in Figure 10. After applying the cost aggregation 

(C.A.) step the noise is eliminated, as it is evident in Figure 16a. The disparity 

optimization step (D.O.) further improves the disparity results. This fact is visually 

verified from the comparison between Figure 16a and Figure 21a. Figure 27b shows 

the disparity map after performing the disparity refinement (D.R.) step to the 

disparity map of Figure 21a. The outlier regions of the disparity map in Figure 21a 

have been efficiently handled in the disparity map in Figure 27b.  

In the following, particular evaluations for several steps of methodology B are 

also provided.  
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6.5.2.2 Experiments on the definition of support windows 

 

In order to prove why the exploitation of rectangular support windows of two 

sizes (as suggested in subsection 4.2.2.2) enhances the disparity estimation results, 

experiments using support windows of either rectangular or square shape have been 

performed. 

 

Figure 39. Average Rank against SR  for four different cases of defining support 

windows sizes. 

 In specific, the following cases of defining support windows have been 

examined: 

 Case 1: Use one rectangular support window with size SR x S / 2R   . 

 Case 2: Use one square support window with size SR x SR . 

 Case 3: Use two rectangular support windows with sizes SR x S / 2R    and           

S2R x SR . 

 Case 4: Use two square support windows with sizes SR x SR  and S2R x SR . 

 

Those four cases affect subsection 4.2.2.2. In more detail, when using just one 

support window (``Case 1'' or ``Case 2'') the selection of the appropriate support 

window size for each pixel is not required, while when using two support windows 
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(``Case 3'' or ``Case 4'') the condition ``If 
SM( ) Rp '' (see subsection 4.2.2.2) is 

examined to decide which of the two windows is more appropriate to determine the 

filtered cost of each pixel. 

The curves in Figure 39 show the Average Rank (as estimated according to the 

online Middlebury evaluation) for each of the above four cases, for different values 

of SR . An important finding is that between ``Case 1'' and ``Case 2'', ``Case 1'' 

(rectangular support window) gives better Average Rank than ``Case 2'' (square 

support window). Moreover, by comparing ``Case 1'' and ``Case 2'' with ``Case 3'' and 

``Case 4'', it is evident that the use of two support windows sizes gives a better 

Average Rank. Finally, it is shown that ``Case 3'' (this is the case proposed in 

subsection 4.2.2.2) gives the best disparity estimation results among all cases. The 

value of SR  for which the best Average Rank is accomplished is S 17R  . 

 

6.5.2.3 Further parameters testing 

 

As mentioned in subsection 6.3.2, the column ``Best'' of Table 5 gives the 

numeric disparity estimation results using methodology B with the optimum 

parameters. In the rest of the columns of Table 5, experimental results after making 

some modifications to the methodology are demonstrated. 

In order to evaluate how the proposed improvement with respect to the semi-

global optimization (this improvement includes the weighted average of path costs 

according to section 5.1.2) ameliorates the disparity results, numeric results for the 

case where the semi-global approaches of [16], [44] have been used, instead of the 

weighed semi-global approach (which is proposed in 5.1.2), have been included. The 

approaches in [16], [44] use a simple average of path costs, while the threshold used 

for the identification of depth discontinuities is constant. The numeric disparity 

results, which have been estimated using the simple average of path costs as in [44] 

are given in the column of Table 5, with the annotation ``Simple S-G''. Except for the 

semi-global optimization step the other steps of methodology Β are applied as they 

are. The differences between the column ̀ `Best'' and ̀ `Simple S-G'' prove that without 

the weighted semi-global optimization the disparity estimation accuracy decreases. 
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 (σs,σr)=(2,3) (σs,σr)=(3,4) (σs,σr)=(4,4) 

Avg. Rank 18.0 16.9 17.5 

Nonocc (%) 1.94 1.91 1.90 

All (%) 4.71 4.68 4.69 

Disc (%) 6.31 6.27 6.26 

Table 10. Segmentation parameters testing for methodology B. 

 

The mean-shift segmentation map (subsection 3.4.3) is exploited for selecting 

the appropriate support window size of each pixel (see subsection 4.2.2.2). Therefore, 

it is important to verify that small variations to the optimum parameters 

( , ) (3,3)s r    that adjust the segmentation result do not affect significantly the 

performance of this method. Table 10 shows the error results for different values of 

the spatial radius and space feature radius. For the pairs of ( , ) (2,3)s r   , 

( , ) (3, 4)s r    and ( , ) (4,4)s r    this methodology remains in the third position. 

Hence, it is deduced that even varying the segmentation parameters the method 

remains in the top performers. 

 

6.5.2.4 Comparison with the related approach of [27] 

 

A relevant work that uses adaptive guided image filtering is presented in [27]. 

However, there are significant differences between [27] and methodology B, 

regarding the selection of the support window for each pixel. In [27] the support 

window for each pixel is based on a skeleton that is built from four arms stretching in 

four directions, where the borders of the support window are determined directly by 

the endpoints of the arms. Therefore, for each pixel there is a different support 

window. On the contrary, in methodology B two support window sizes are used. 

A main advantage of the guided filter is that the computation cost is 

independent to the size of the selected support window. This is because Equation (25) 

can be expressed as a linear transform as follows: 
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Here ( , )C k d  is the mean of the thd  slice of C  within w
k

. Moreover, a 

factor that increases the speed of the guided image filter is that the summations in 

equations: Equation (46), Equation (47) and Equation (48) can be computed using box 

filters with a fixed window size [26]. Methodology B runs the guided image filtering 

for two fixed support windows sizes, therefore it can use box filters. On the other 

hand, the method in [27] that uses support windows of random sizes needs to 

estimate the summations for each pixel separately, an operation that increases the 

computational cost of [27].  

The numeric disparity estimation results, after using in methodology B the 

scheme of [27] for performing guided image filtering, are given in the ``Adapt. 

Windows'' annotated column of Table 5. The differences between the column ``Best'' 

and ``Adapt. Windows'' prove that the proposed scheme for the definition of pixels 

support windows (see subsection 4.2.2.2) give better disparity evaluation results 

within methodology B. 

 

6.6 Extended Comparison of both methodologies 
   

Evaluation on just the four stereo pairs from the Middlebury online stereo 

database is not adequate to give a clear picture of the overall performance of an 

algorithm, since the average error rates of the best performing techniques are close 

to each other. Hence, the two proposed methodologies have been also evaluated on 

Dataset 2005 and Dataset 2006 (see Figure 33) in order to assess more extensively 

the performance of the proposed methodology. Dataset 2005 and Dataset 2006, 

which are presented in [71], include 27 stereo pairs with their ground truth.  

Table 11 shows the results for the percentage of erroneous pixels having 1 or 
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2 disparity level difference with respect to ground truth. The results regarding the rest 

of methods in Table 11 are copied from the very recent work of [15]. The column ̀ `All'' 

refers to case where all pixels on the disparity map are considered to estimate the 

percentage of erroneous pixels, while the term ̀ `Visible'' refers to the case where only 

the pixels on the disparity map that correspond to unoccluded regions are considered 

to estimate the percentage of erroneous pixels. Methodology B gives slightly better 

results for the case of ``All'' regions and Δd>1, while it gives evidently better results 

for the case of ``Visible’’ regions and Δd>1. However, Methodology A gives 

significantly better results than Methodology B for both ``All’’ and ``Visible’’ regions 

and Δd>2. This indicates that for methodology A the estimated disparity for some 

pixels is very close to their ground truth disparity and differs just 2 disparity levels. 

In the Appendix the numeric error results for each of the 27 stereo pairs for both 

methodologies can be found. In particular, the numeric error results for methodology 

A and methodology B are given in Table 12 and Table 14, respectively. Additionally, 

the disparity maps for the 27 stereo pairs, with their respective disparity error maps 

for Δd>2, can be found for methodology A and methodology B in Table 13 and Table 

15, respectively. 

 

Error% Δd>1 Δd>1 Δd>2 Δd>2 

 All Visible All Visible 

Methodology A 12.13 8.26 7.64 4.74 

Methodology B 12.07 7.71 8.32 5.07 

Inf. Permeability[15] 14.15 7.98 10.34 6.46 

Guided Filter[18] 15.06 8.40 11.82 6.80 

Geodesic Support[30] 16.49 9.85 11.76 8.04 

Var. Cross[23] 17.13 8.81 12.69 7.04 

Adapt. sup.[21] 16.94 9.54 13.10 7.42 

Table 11. The error results for the extended stereo datasets. 

6.7 Summary  
 

The current chapter presented the evaluation and the experiments related to 

methodologies A and B.  
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The computational analysis shows that methodology B is faster than 

methodology A and that for both methodologies the major portion of the 

computational cost is spent on the cost aggregation (C.A.) step. In order to evaluate 

the accuracy of methodologies A and B, the disparity maps generated for the Tsukuba, 

Venus, Teddy and Cones image pairs (after executing methodologies A and B using 

their optimum parameters) were submitted to the Middlebury online evaluation 

system. The ranking results indicate that methodology A and methodology B rank 4th 

and 5th, respectively, among 164 methods. Therefore, both methodologies have high 

disparity estimation accuracy. This fact is also confirmed from the evaluation of both 

methodologies on the 2005 and 2006 Middlebury Datasets, where methodologies A 

and B give more accurate results than several literature approaches tested on the 

same datasets. 

Moreover, this chapter contains the numerical and the visual evaluations of 

the overall steps of methodologies A and B, which show how the quality of the 

disparity map gradually improves after applying sequentially methodologies’ 

corresponding steps. Except for the overall evaluation of methodologies A and B, 

particular evaluations for several steps of these methodologies are also given. 

 Regarding methodology A, this chapter provides the numerical evaluation of 

the two phase combination strategy, which was introduced in the cost aggregation 

step of methodology A, and it also gives the numeric evaluation of the substeps that 

constitute the disparity optimization step. Further parameters testing for 

methodology A is included in the current chapter, too.  

Regarding methodology B, this chapter includes experimental results showing 

that the exploitation of rectangular support windows of two sizes in the cost 

aggregation step helps to enhance the disparity estimation accuracy. Additionally, this 

chapter gives comparison results, which show that the cost aggregation approach 

proposed in methodology B outperforms a relevant cost aggregation method 

proposed in the literature. Further parameters testing for methodology B is provided 

in this chapter, too.  
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Chapter 7 

7 Conclusions and Discussion 

 

7.1 Conclusions 
 

Methodology A produces very accurate disparity results for stereo image pairs. 

In order to achieve increased accuracy, this methodology uses efficiently three cost 

metrics to acquire a reliable combined cost volume. The optimization of the cost 

volume is performed using a semi-global optimization method, where a new criterion 

for the definition of the smoothness penalty terms is introduced, which helps to 

improve the disparity estimation results. Outliers handling is performed combining 

basic outlier handling and mean-shift segmentation based outlier handling. Another 

innovative aspect of this methodology is the way disparities are filtered based on 

histogram analysis in order to be used in uniform regions handling.  

Methodology B, as well as methodology A, gives very accurate disparity results 

for stereo image pairs. This approach uses an efficient cost term, composed of three 

individual pixel-based cost terms, in order to estimate the initial cost volume. The 

filtered cost volume is acquired after applying image guided filtering to the initial cost 

volume, using rectangular support regions of two sizes. The optimization of the 

filtered cost volume is performed using weighted semi-global matching. Outliers 

handling is improved by introducing a straightforward scheme.  

The high performance of the both methodologies method is verified 

experimentally using the Middlebury evaluation benchmark and an extended stereo 

dataset.

 

7.2 Discussion  
 

This PhD proposes two methodologies that introduce novel ideas in the short-

baseline stereo vision problem. In specific, methodology A, introduces an approach 

for acquiring a combined cost volume by exploiting three types of cost metrics. The 

first cost metric combines RGB-CENSUS information, the second one uses only CENSUS 

information and the third one SIFT information. The cost metrics are aggregated using 
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adaptive weights and their cost volumes are acquired. A reliable two-phase strategy 

is then followed to merge the individual cost volumes into a combined one. This 

approach, to the extent of my knowledge, is the first one that combines efficiently 

RGB, CENSUS and SIFT information in order to acquire a combined cost volume. 

Additionally, I did not come across any other method in this field that attempts to 

combine cost volumes that emerged from different cost metrics. Therefore, it is 

expected that this work could serve as guidance for other approaches, which will 

attempt to combine cost volumes that emerge from different cost metrics.  

Additionally, methodology A introduces histogram analysis for handling 

uniform areas. This technique removes efficiently outlier disparities from large low-

texture image regions, before applying disparity plane fitting in each region using the 

remaining reliable disparities. Furthermore, methodology A proposes an efficient 

strategy, which incorporates mean-shift segmentation-based outlier handling, to 

successfully cope with occluded areas. 

Methodology B introduces a novel approach for exploiting guided image 

filtering to solve the stereo vision problem. In summary, the guided image filtering is 

applied separately for orthogonal support windows of two different sizes, where the 

appropriate support window size for each pixel is selected based on the texture 

homogeneity within the local region around this pixel. The texture homogeneity of a 

pixel is analyzed according to the mean-shift segment where the pixel belongs. 

Methodology B also exploits a simple, but efficient scheme, to successfully handle 

outliers. This scheme checks if the pixels on the right or on the left side of the outlier 

pixel are more similar in terms of colour to that pixel, before assigning a disparity value 

to it. 

Both methodologies A and B have contributed to enhance the semi-global 

optimization technique. In specific, methodology A proposes the exploitation of 

mean-shift segmentation for introducing an additional criterion, which is used for the 

definition of the smoothness penalty terms. On the other hand, methodology B 

proposes a weighted variant of the semi-global optimization, where the path costs of 

a considered pixel may have different weights depending on the pixels that precede 

the considered pixel along each path direction. 

Regarding the disparity estimation accuracy, both methodologies A and B rank 
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very high on the Middlebury online evaluation benchmark as it is evident in Table 6. 

In specific, methodology A ranks third among published methods, while methodology 

B ranks fourth among published methods. Table 11 also confirms the high accuracy of 

methodologies A and B. Methodology B gives slightly better accuracy for disparity 

level difference Δd>1 than methodology A, while methodology A gives significantly 

better accuracy for disparity level difference Δd>2 than methodology B. This fact 

shows that the disparity maps that are generated using methodology A have more 

pixels with disparity value that is close to their ground truth disparity value than the 

disparity maps that are generated using methodology B. 

The computational cost of methodology B is significantly less than that of 

methodology A as it is deduced from Table 7. The computational burden of 

methodology A lies in the cost aggregation step which involves the computation of 

adaptive support weights. The other steps of methodology A are not computationally 

intensive.  

 

7.3 Possible extensions and future work 
 

Regarding methodology A, a future extension could be the adoption of a 

different cost aggregation approach, which will have low computational cost and at 

the same time will keep the disparity estimation accuracy at the same standards as 

the naive methodology A. Future work on both methodologies A and B could focus on 

improving the disparity estimation for very slanted surfaces, since it was not spent 

special effort on handling them. Future work could also involve the implementation 

of these methodologies in GPU, in order to improve their computational efficiency by 

taking advantage GPU’s powerful parallel processing capabilities.  

Section 2.6 presents some approaches that fuse depth sensors with stereo 

vision systems. As a future work, it would be interesting to examine the possibility to 

exploit particular elements of the proposed methodologies to develop such a fusion 

system.  
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Appendix A – Results on the extended dataset 
 

Results on the extended dataset for methodology A 

 

Error% Δd>1 Δd>1 Δd>2 Δd>2 

 All Visible All Visible 

Aloe 7.97 4.903 5.49 3.17 

Art  18.23 8.516 13.655 4.62 

Baby1 5.33 4.158 3.198 1.948 

Baby2 11.704 10.218 6.191 4.278 

Baby3 8.26 5.793 4.579 2.577 

Books 22.769 17.222 17.47 12.885 

Bowling1 20.334 13.469 12.602 7.147 

Bowling2 17.128 10.635 9.753 4.98 

Cloth1 4.489 0.625 1.899 0.311 

Cloth2 10.532 3.467 6.635 1.619 

Cloth3 4.5467 1.518 3.16 0.822 

Cloth4 11.986 1.721 9.005 0.695 

Dolls 13.85 7.836 8.091 3.344 

Flowerpots 26.81 23.348 16.529 14.531 

Lampshade1 10.86 6.84 4.586 3.541 

Lampshade2 11.212 8.763 6.24 5.623 

Laundry 18.44 11.798 10.594 5.972 

Midd1 9.69 7.46 6.291 4.697 

Midd2 6.709 4.966 4.281 3.308 

Moebius 13.207 8.97 8.985 5.526 

Monopoly 16.918 16.72 15.881 15.872 

Plastic 28.337 31.827 12.76 14.287 

Reindeer 7.375 3.961 4.288 2.016 

Rocks1 6.949 2.597 4.172 1.06 

Rocks2 5.605 1.735 3.264 0.66 

Wood1 4.557 3.439 3.062 2.148 

Wood2 3.801 0.409 3.507 0.3575 

Average 12.13 8.26 7.64 4.74 
 

Table 12. Analytical error results for the extended stereo datasets using methodology A. 
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Table 13. Disparity maps of the 27 stereo pairs generated using methodology A and their 
corresponding disparity error maps for error threshold 1. 
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Results on the extended dataset for methodology B 

 

Error% Δd>1 Δd>1 Δd>2 Δd>2 

 All Visible All Visible 

Aloe 7.002 4.139 4.688 2.59 

Art  16.975 7.364 13.56 4.827 

Baby1 5.218 3.982 3.414 2.196 

Baby2 7.842 5.316 4.954 2.277 

Baby3 6.065 2.92 4.522 1.986 

Books 17.41 10.536 12.395 5.588 

Bowling1 17.168 9.217 10.532 3.79 

Bowling2 14.073 6.475 8.259 2.61 

Cloth1 4.298 0.387 2.02 0.24 

Cloth2 10.685 3.177 7.06 1.48 

Cloth3 4.955 1.65 3.48 0.846 

Cloth4 10.63 1.621 6.656 0.928 

Dolls 10.80 4.497 6.946 2.205 

Flowerpots 15.616 9.145 7.58 3.56 

Lampshade1 14.825 8.418 8.926 6.09 

Lampshade2 17.042 12.924 12.482 10.82 

Laundry 19.64 11.104 15.073 7.27 

Midd1 26.164 22.256 22.63 19.43 

Midd2 19.88 16.125 16.504 13.80 

Moebius 12.51 8.526 9.23 5.98 

Monopoly 12.41 10.873 10.04 9.187 

Plastic 30.628 34.172 20.95 23.32 

Reindeer 8.063 5.345 4.726 2.92 

Rocks1 4.802 1.849 2.563 0.766 

Rocks2 4.60 1.296 2.706 0.51 

Wood1 5.78 4.573 2.448 1.465 

Wood2 0.724 0.262 0.267 0.258 

Average 12.07 7.71 8.32 5.07 
 

Table 14. Analytical error results for the extended stereo datasets using methodology B. 
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Table 15. Disparity maps of the 27 stereo pairs generated using methodology B and 

their corresponding disparity error maps for error threshold 1. 
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Appendix B – Case Study: Wide-baseline stereo matching 

and point cloud generation 
 

The main objective of this PhD thesis is to present solutions for addressing the 

short-baseline stereo vision problem. Thus, the largest part of this thesis is devoted to 

describe relevant methodologies.  

However, during the PhD period, some research effort was devoted to develop 

an approach aiming to increase the accuracy of the stereo point clouds, which are 

generated from stereo pairs with wide-baseline. Appendix B presents this approach. 

 

B.1   Introduction  
 

The automatic and accurate 3D modeling of objects and scenes, from multiple 

photographs or videos, constitutes an important objective in the computer vision and 

graphics research fields. The realistic 3D models can be exploited in multiple 

applications, such as computer graphics, TV/film special effects and computer games. 

Research in 3D model reconstruction, using multi-view stereo algorithms, has 

made significant progress in the computer vision community. Multi-view stereo (MVS) 

algorithms take multiple images with pose information as input and produce dense 

3D models with increased accuracy.  

Several of the algorithms generate and merge collections of 3D points clouds, 

which may be then used to generate a mesh surface [78], [79], [80], [81]. Many of the 

algorithms that rely on 3D point clouds, put emphasis on the merging of the point 

clouds that are generated from different stereo pairs by using visibility constraints to 

filter erroneous points. 

The approach presented in this chapter could foster these algorithms by 

improving the accuracy of the individual point clouds, which are generated from each 

wide-baseline stereo pair, before point clouds from all stereo pairs are merged. 

The proposed approach is described  in section B.2. While, section B.3 provides 

information on the parameters used, the experimental results and the computational 

cost. 



 

124 
 

B.2   Stereo dense 3D point cloud generation 
 

In general, the first step of multi-view 3D reconstruction is the computation of 

camera(s) poses that capture a scene.  The Structure-from-Motion (SfM) approach 

presented in [82] provides an efficient way for computing robustly the camera 

parameters from a set of user-generated images. 

In this appendix, an efficient methodology for generating an accurate 3D point 

cloud from a stereo image pair, is presented. The approach can be divided into three 

stages: 

 During the first stage, the stereo pairs to be used for the generation of each 

stereo point cloud are appropriately selected, based on specific conditions, in 

order to ensure the accuracy of reconstruction. 

 The second stage includes the estimation of dense correspondences between 

the images of the stereo pair, based on DAISY [84] descriptor matching. 

Additionally, a strategy for filtering outlier correspondences is presented. 

 The third stage involves the refinement of the generated 3D point cloud. 

Refinement is accomplished by estimating the correspondences in sub-pixel 

accuracy and by smoothing the resulting point cloud using the moving least 

squares algorithm. 

 

The innovation of this methodology lies mainly in the efficient strategy for 

removing outliers and in the effective combination of sub-pixel accuracy 

correspondences estimation with the moving least squares algorithm to improve the 

accuracy of the generated 3D point cloud. In the following, more details are provided 

on what each of these stages comprises. 

 

B.2.1 Stereo pair selection 
 

Stereo images pair selection is a crucial step to acquire stereo 3D point clouds 

with good accuracy. The images of an ``adequate'' stereo pair should have significant 

overlap to be easily matched, but also to be sufficiently separated, since much 

closeness may result to point cloud estimation errors. This is quantified, similarly to 
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[80], by measuring the angle   between the camera principal rays of the stereo 

images. The condition that   should satisfy is: min max    . 

Afterwards, Quasi-Euclidean epipolar rectification [83] is applied to each 

stereo images pair that satisfies the previous condition. If the Quasi-Euclidean epipolar 

rectification error rectT  is below a threshold maxT , the stereo pair is assumed as suitable 

for proceeding to the estimation of its point cloud. Consequently, this work, except 

for the condition based on  , defines a second condition based on rectT  for selecting 

adequate stereo pairs. 

 

 

Figure 40. Correspondence in rectified stereo images. 

B.2.2 Dense correspondences estimation and outliers filtering 

 

During the second step, the DAISY descriptor [84] is exploited to estimate 

dense correspondences between the images of a stereo pair. DAISY has been selected 

for this scope, because it has been proved in [84] to be very efficient for dense wide 

baseline matching. 

 More specifically, in order to find for a pixel on one image its corresponding 

pixel to the other image, for the pixel's DAISY descriptor the pixel with the nearest 

DAISY descriptor on the second image is searched. The search is constrained along 

horizontal epipolar lines, since the images have been rectified using Quasi-Euclidean 

epipolar rectification [83]. Figure 40 depicts a pixel correspondence α-β  on an 
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epipolar line, between a rectified stereo pair. The search for the nearest descriptor is 

performed using approximate nearest neighbor searching based on randomized kd-

trees [85], where trees are searched in parallel. The kd-trees search approach 

significantly boosts the speed of searching, when compared to exhaustive search. 

The correspondence estimation is performed twice. Once having as reference 

the first image of the stereo pair and once having as reference the second image. Then, 

the Left-Right consistency check [44] is used for detecting the correspondence outliers. 

 

(a)                                                        (b) 

Figure 41. Illustration of: (a) left image’s mean-shift segmentation map, (b) the generated 
stereo point cloud without using (upper part) and, when using (bottom part) the 
proposed outliers filtering strategy. 

 

Except for this common technique, an additional technique for filtering outliers 

in a segment level, and not in a pixel level, is proposed. This technique helps to remove 

outliers that appear in low-textured regions. Initially, mean-shift segmentation is used 

to partition the image into different segments that contain groups of pixels (the 

segmentation map of the left image of Figure 40 is visualized in Figure 41a). 

Then for each segment, the percent of pixels that pass the right-left 

consistency check to the total number of pixels contained in the segment, is computed. 

If this percent is over 50%, then the correspondences in the segment are considered 

as inliers. Otherwise, all the correspondences in the segment are considered as 
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outliers. 

This strategy assists in filtering numerous outliers. This fact is evident in the 

visual example of Figure 41b. The upper part of Figure 41b shows the point cloud that 

is generated without using the proposed outliers filtering strategy, while the bottom 

part of Figure 41b depicts the point cloud after applying the outliers filtering strategy. 

Obviously, the second point cloud contains less outliers. 

 

 

Figure 42. Sub-pixel accuracy correspondence using quadratic curve fitting. 

 

B.2.3 Point cloud refinement 
 

B.2.3.1   Correspondences estimation in sub-pixel accuracy 

 

So far, the estimated correspondences have pixel accuracy. However, 

correspondence estimation at sub-pixel accuracy can significantly improve the quality 

of the generated 3D point cloud, since pixel accuracy matching, results in discrete and 

not continuous values of depth information. 

In order to achieve sub-pixel accuracy the following process is followed. Let us 

suppose that a pixel α  on the left image corresponds to a pixel β  on the right image 

and their matching cost (α,β)C  has already been estimated. Then, the matching cost 

(α,β-1)C  between the DAISY descriptors of pixels α  and β-1  and the matching cost 

(α,β+1)C  between α  and β+1  are estimated. The three points ( (α,β-1),β-1)C , 

( (α,β),β)C  and ( (α,β+1),β+1)C  (these points are visualized in Figure 42) are used to 
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estimate a quadratic function and estimate the minimum cost 
m(α,β )C  of the 

quadratic function's curve, which corresponds to 
mβ . Consequently, the sub-pixel 

accuracy correspondence is assumed to be given by the pair m(α,β ) , while the pixel 

accuracy correspondence was given by the pair (α,β) . 

The upper part of Figure 43a shows the point cloud that corresponds to pixel 

accuracy correspondences, while the bottom part of Figure 43a depicts the point 

cloud that corresponds to sub-pixel accuracy correspondences. It is evident, by 

comparing these two parts, that the bottom point cloud is more accurate, since depth 

information is continuous. 

 

(a)                                                              (b) 

Figure 43 Illustration of: (a) the point cloud that corresponds to pixel accuracy (upper 
part) and sub-pixel accuracy (bottom part) correspondences, (b) the point cloud before 
(upper part) and after (bottom part) applying the Moving Least Squares algorithm. 

 

Β.2.3.2   Point cloud smoothing 

The estimated 2D sub-pixel correspondences are converted into 3D point 

clouds using the projection matrices that were estimated during the SfM process. 

Afterwards, a final step is applied to improve the reconstruction quality. 

More specifically, in order to resample and smooth the generated point cloud 

the Moving Least Squares (MLS) algorithm, described in [86], is exploited. The upper 
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part of Figure 43b shows the point cloud before applying the MLS algorithm, while the 

bottom part of Figure 43b after applying the MLS algorithm. Evidently, the bottom 

point cloud is more accurate. 

 

B.3   Experimental results 
 

B.3.1 Set of optimum parameters 
 

The limits for the principal rays’ angles are set to 5min   and 25max  . The 

rectification error threshold is set to 0.5·( / 640) max maxT D  pixels, where maxD  is the 

maximum dimension of the images (width or height), which constitute the image pair, 

in pixels. In this way, maxT  is set proportional to the size of the stereo images to be 

rectified. 

The selected parameters for computing the DAISY descriptor are the radius of 

the descriptor 9R  , the number of rings 3Q  , the number of histograms on each 

ring 4T   and the number of bins of the histograms 4H  . 

The parameters used for the mean-shift segmentation are the segmentation 

spatial radius σs, which is set to σs = 3 and the segmentation feature space radius σr, 

which is set to σr = 3. 

 

Β.3.2 Experiments 
 

A stereo pair of images, which has been derived from the Herz-Jesu-P8 [87] (in 

specific images ``0007.png'' and ``0008.png'') is used to visually indicate the 

improvement introduced by the proposed methodology, regarding the accuracy of the 

estimated stereo point cloud. The images have been downscaled with a factor of 3, so 

as to make more obvious the accuracy improvement in visual data of lower resolution. 

The generated stereo 3D point cloud using this approach is visualized in Figure 44a. 

In the following, the stereo point cloud, with or without using the proposed 

refinement steps, is estimated. The point cloud (observed from the upper viewpoint): 

(i) without using sub-pixel accuracy nor MLS algorithm is visualized in Figure 44b, (ii) 

using only sub-pixel accuracy is visualized in Figure 44c, (iii) using only MLS algorithm 

is visualized in Figure 44d and (iv) using both sub-pixel accuracy and MLS algorithm is 
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visualized in Figure 44e. Evidently, Figure 44e gives the more accurate stereo point 

cloud. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 44. Illustration of (a) the colored stereo point cloud. The generated point cloud 
using: (b) neither sub-pixel accuracy nor MLS, (c) only sub-pixel accuracy, (d) only 
MLS, (e) sub-pixel accuracy and MLS. 
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Figure 45. Rotunda 3D Reconstruction 

In the second example, the proposed methodology is used to generate 

individual stereo point clouds using images captured from the Rotunda Ancient 

Monument in the city of Thessaloniki. Then, the point clouds are finally concatenated 

to form the final 3D point cloud. This 3D reconstruction example is depicted in Figure 

45. The right part of Figure 45, which depicts the overview of the Rotunda 3D 

reconstruction, indicates that individual point clouds have satisfactory accuracy, so 

that they are well registered to form a complete 3D representation of the captured 

object, even without using any method for combining the individual point clouds. 

 

B.4   Discussion and future work 
 

The methodology, presented in this case study, which assists in generating 

accurate point clouds from wide-baseline stereo pairs, could be exploited by multi-

view algorithms, which attach great importance to the combination of sets of stereo 

point clouds and not to the computation of the individual stereo point clouds. In 

specific, these algorithms could be fostered by using the proposed methodology in 

order to improve the accuracy of the individual stereo point clouds, before point 

clouds from all stereo pairs are merged. For instance, the method in [80] uses a 

complex methodology that verifies the accuracy of each 3D point on more multiple 

depth maps and does not give weight to the individual stereo point cloud computation.  

Future work could examine the exploitation of the presented methodology 

within a general framework that will also contain an approach for the efficient 

combination of individual stereo point clouds. 
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B.5   Summary 
 

This case study presents a time efficient and accurate methodology for 

generating 3D point clouds of good accuracy from wide-baseline stereo pairs. Initially, 

the methodology defines some conditions for the proper selection of image pairs. 

Then, the selected stereo images are used to estimate dense correspondences using 

the Daisy descriptor. An efficient two-phase strategy to remove outliers is then 

introduced. Finally, the 3D point cloud is refined by combining sub-pixel accuracy 

correspondences estimation and the moving least squares algorithm. The 

experimental results show that this methodology assists in acquiring point clouds of 

better accuracy when compared to the point clouds that are generated using 

descriptor-based matching in pixel accuracy.
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