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Abstract

We explore dualities and solution-generating transformations in various

contexts. Our focus is on the T-duality invariant form of supergravity

known as double field theory, the SL(5)-invariant M-theory extended

geometry, and metrics dual under the fluid/gravity correspondence to an

incompressible Navier-Stokes fluid.

In double field theory (DFT), a wave solution is shown to embed both the

F1 string and the pp-wave. For the former, the Goldstone mode dynamics

reproduce the duality symmetric string introduced by Tseytlin.

We consider solution-generating techniques in DFT in the presence of

an isometry, firstly via Buscher-like transformations in the DFT string

σ-model, and secondly via the DFT equations of motion.

In the SL(5)-invariant geometry, we provide a chain rule derivation of the

covariant equations of motion, and present a wave solution embedding

the M2 brane.

Lastly, solution-generating transformations for metrics with an isometry

are considered in the context of the fluid/gravity correspondence. Our

focus is on the vacuum Rindler metric dual to a codimension one Navier-

Stokes fluid. In particular, when there is a radially directed Killing vec-

tor, the dual fluid is found to exhibit an energy scaling invariance valid

to all orders in the hydrodynamic expansion.
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Chapter 1

Introduction

It is perhaps because all phenomena play out in one continuous, insepara-

ble experience, that we look to find a theory which describes all physical

phenomena on a unified level, that we search for a unified “theory of

everything”.

Two great edifices of modern physics, the standard model of particle physics and

Einstein’s general theory of relativity, both describe in fantastic detail and accuracy

their respective phenomena. The standard model is a quantum field theory (QFT)

which describes the states and interactions of half-integer spin fermions and integer

spin bosons, which are quite naturally unified in the supersymmetric standard model.

Supersymmetry additionally removes shortcomings in the standard model such as

the hierarchy problem, and provides a dark matter candidate. Meanwhile, Einstein’s

theory of gravitation describes the interplay between space-time and energy/matter.

These two theories, supersymmetric QFT and general relativity can be unified in

what is known as supergravity. However, supergravity is non-renormalisable, and so

can only provide a low energy effective unified theory.

One candidate for a unified theory valid at all energy scales is superstring theory,

a supersymmetric quantum theory whose fundamental objects are one-dimensional

rather than the point-like particles of standard QFT. There exist five different forms

of string theory: Heterotic SO(32), Heterotic E8 × E8, and Types I, IIA and IIB.

In their low energy limits, each reproduces a supergravity theory composed of a

fermionic sector, and a bosonic sector of two parts: the RR and NS-NS sectors

composed respectively of tensor products of fermions and bosons. The NS-NS sector

is common to the low energy limit of all string theories.

For superstring theories to preserve Lorentz invariance, they must have a critical
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spacetime dimension of ten. Clearly these ten dimensions needs to be reconciled

with our apparent four-dimensional world. Analogous to rolling a piece of paper

into a thin, infinitely long tube, whose circumference is now much smaller than the

wavelength of any common measuring device, and is thus largely invisible, dimensions

in string theory are wrapped at distance scales too small for low energy objects

to probe. This process is called compactification, and using it one can reduce a

spacetime theory from ten to four macroscopic dimensions.

In this process, certain connections are revealed between the different string the-

ories, which rely on the string’s extended nature to form closed cycles round compact

dimensions. One finds that a Type IIA string compactified on an S1 of radius R

is equivalent to a Type IIB string compactified on an S1 with radius α′/R, where

1/2πα′ is the string tension. The same holds for the two heterotic string theories.

This equivalence is dubbed T-duality, and is not alone in the string dualities. There

also exists a duality between theories at strong and weak coupling, called S-duality,

under which Heterotic SO(32) and Type I are dual, and Type IIB is dual to itself.

If one goes to the strong coupling limit of the Type IIA theory, one arrives at

an eleven-dimensional theory [3] whose fundamental objects are higher-dimensional

branes, and whose low energy effective field theory is eleven-dimensional supergravity

[4]. The full eleven-dimensional theory, dubbed M-theory, is largely unknown, but

yields in its various compactification limits all five string theories, while T-duality

and S-duality become united as components of a larger U-duality web which relates

all the string theories [5].

1.1 Duality-invariant theories

We could view this thesis as an exploration of dualities both in themselves, and as

the basis for solution-generating techniques in the low energy limit of string theory,

and the long-wavelength limit of holography. That this is so was not in fact entirely

intentional. However, that we have returned to dualities in various forms serves to

illustrate the ubiquitous nature of the duality in modern theoretical physics. We

have already encountered the T-, S- and U-dualities of string theory. We look here

to illustrate a duality arising in electromagnetism, and from it motivate the duality-

invariant approach.

Consider Maxwell’s unification of the electric and magnetic fields E and B in the
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absence of sources

∇ ·E = 0 ∇ ·B = 0 (1.1)

∇×E = −∂B

∂t
∇×B =

1

c2

∂E

∂t
. (1.2)

where c is the speed of light. A quick check verifies that the full set of equations are

invariant under a simple form of S-duality:

(E/c,B)→ (B,−E/c). (1.3)

A system with electric field E0 and magnetic field B0 is dual to another system with

electric field cB0 and magnetic field −E0/c. They are non-trivially distinguishable

from each other, yet exist as dual solutions to Maxwell’s equations. The system is

also invariant under Lorentz rotations.

We can define a Lorentz-covariant tensor in Minkowski space with coordinates

xµ = (ct, xi) by

F i0 = Ei/c F ij = εijkB
k, (1.4)

such that the Maxwell equations can now be expressed in a Lorentz-covariant form

∇µFµν = 0 ∇µ (εµνσρFσρ) = 0, (1.5)

where ε is the antisymmetric symbol (see app. A). In addition, noting that (1.3) can

be generated by

Fµν → εµνσρF
σρ, (1.6)

we illustrate the possibility of promoting duality (in this case both S-duality and

Lorentz duality) to manifest symmetry.

1.1.1 Double field theory

This process is analogous the the promotion of T-duality to a manifest symmetry

of generalised geometry by Hitchin [6] and Gaultieri [7], which extends the tangent

space TM of a d-dimensional theory, whose sections are vectors parametrising dif-

feomorphisms of a symmetric gµν , to TM ⊕ T ∗M , such that sections additionally

include one-forms parametrising gauge transformations of a two-form field Bµν . In

particular, there exists in this generalised geometry a natural O(d, d,R)-invariant

inner product. In double field theory (DFT), with origins in [8–12] (see [13–15] for
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reviews and [16–84] for further literature) one additionally doubles the coordinate

space itself, and allows dependence of the fields on the the full set of coordinates. The

extended coordinates are reduced to a physical subset by a weak constraint arising

from the level matching condition of string theory, which can be supplemented by

a strong constraint which ensures closure of gauge transformations on the extended

space. Various solutions to these constraints yield NS-NS supergravity backgrounds

related under T-duality, in addition to gauged supergravities with non-geometric

fluxes recovered via Scherk-Schwarz reductions [78–85].

The supergravity fields (including the dilaton) are collected in an

O(d, d,R)/O(d,R)×O(d,R) coset representative generalised metric and a DFT dila-

ton. These objects’ dynamics are governed by an action whose minima provide the

equations of motion. When directions are compactified, T-duality transformations

appear as coordinate transformations on the doubled space.

1.1.2 U-duality invariant M-theory

In M-theory’s low energy limit of eleven-dimensional supergravity, compactification

on Tn reveals an En symmetry originating from the M-theory U-duality group [86].

Analogous to how O(d, d,R) is promoted to a manifest symmetry in generalised

geometry and DFT, one can promote U-duality to a manifest symmetry, construct-

ing Ed duality-invariant theories without requiring compactified directions. This is

achieved in various frameworks: d-dimensional generalised geometry where the tan-

gent bundle is extended to allow for membrane charges [87–93]; extended geometry

where the d spacetime dimensions are supplemented with w “wrapping” coordi-

nates dual to membrane charges, and fields are allowed to depend on all coordi-

nates [36,75,94–103]. From the perspective of the parent eleven-dimensional theory,

the d-dimensional internal space is decoupled from the (11 − d)-dimensional exter-

nal space; exceptional field theory where the full eleven dimensional supergravity is

supplemented by w wrapping coordinates, and the internal and eternal spaces are

no longer decoupled [104–119]. Without a level matching constraint equivalent for

the membrane, the dependence on the additional coordinates appearing in extended

and exceptional geometry is constrained by closure of gauge transformations on the

extended space. Again, gauged supergravities can be recovered from exceptional and

extended geometry via Scherk-Schwarz reductions [85,120–122].
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1.2 The solution-generating transformation

Many sets of equations we encounter in physics are intractable as they stand, ex-

amples of particular relevance to this work being the Einstein field equations of

general relativity and the incompressible Navier-Stokes equations of hydrodynam-

ics. A natural question with solving such notoriously difficult equations, is whether

there is some sensible constraint we can place on solutions, such as time indepen-

dence, which will reduce the equations to a more tractable system. Not only would

the more tractable system be easier to solve, it may possess symmetries not present

in the full, unconstrained set of equations. Such symmetries would manifest as dual-

ities between solutions. In particular, simple solutions may be dual to more complex

ones, and we can use the symmetry groups to generate these additional solutions

perhaps more easily than trying to solve any of the equations directly. Let us offer

an example from d-dimensional static vacuum Einstein gravity, originally derived

by Buchdahl [123]. We will present a derivation using a similar method to that we

will employ in §4.2. Consider a spacetime static with respect to a coordinate x0.

Defining coordinates xµ = (x0, xa), the metric can be written

gµν =

(
F 0

0 gab

)
=

(
F 0

0 F−1/(d−3)γ̂ab

)
,

∂

∂x0
gµν = 0, (1.7)

where

γ̂µν = F 1/(d−3)(gµν − F−1g0µg0ν) (1.8)

is a metric on the space orthogonal to the isometry ∂0. The vacuum field equations

Rµν = 0 reduce to

(γ̂R)µν =
d− 2

4(d− 3)

1

F 2
D̂µFD̂νF (γ̂−1)µνD̂µ

(
1

F
D̂νF

)
= 0, (1.9)

where D̂µ is the covariant derivative, and (γ̂R)µν the Ricci tensor, with respect to

γ̂µν . For fixed γ̂µν , equations (1.9) are invariant under

F → 1

F
, (1.10)

and thus we can generate the vacuum solution

g′µν =

(
F−1 0

0 F 1/(d−3)γ̂ab

)
=

(
F−1 0

0 F 2/(d−3)gab

)
. (1.11)
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We will see throughout this thesis how we can apply generalisations of this technique

to the NS-NS fields of supergravity, the generalised metric of DFT, and to the

hydrodynamics holographically dual to gravity, to which we now turn our attention.

1.3 The fluid/gravity correspondence

The limit of long wavelengths and long time scales of any interacting field theory

at finite temperature is governed by hydrodynamics. This fact, leading to the great

plethora of such phenomena, from the atmosphere to the oceans, from plasmas in

the RHIC to the sun itself, make the study of hydrodynamics not only fascinating,

but virtually unavoidable.

This area was perhaps somewhat unexpectedly connected with string theory by

Maldacena’s observation [124] that the dynamics on a codimension one hypersurface

in a general relativistic anti-de-Sitter bulk spacetime is dual to a conformal field

theory. This is an example of holography, where a gravitational theory is dual to

a codimension one quantum field theory. It was realised in [125, 126], that if we

scale to the hydrodynamic limit of this duality, we find that the long wavelength,

long time scale limit of general relativity is holographically dual to hydrodynamics.

This is the fluid/gravity correspondence, which has been explored in [1, 127–175]

(see [176,177] for reviews). One finds that under a hydrodynamic expansion governed

by this limit, whilst demanding regularity on the future horizon, the Goldstone

mode dynamics of metrics in general relativity are governed by the equations of

motion of a codimension one fluid [178–184]. The correspondence has been shown to

hold for higher derivative gravity corrections [185–190]. By considering various bulk

spacetime backgrounds and stress-energy content, one finds dual hydrodynamics on

curved backgrounds [191, 192] and in the presence of forcing terms responsible for

e.g. magnetohydrodynamics [193].

1.4 Structure of the thesis

We will begin in chapter 2 with an exploration of DFT, starting with an introduction

in §2.1 to the NS-NS sector of supergravity and in §2.2 to T-duality via Buscher’s

procedure of the string σ-model. Section 2.3 continues with an introduction to

O(d, d,R)-invariant double field theory, adapted largely from [13,15,194]. In §2.3.1,

a novel derivation of the full DFT equations of motion is presented and, using this,

we offer in §2.4 a pp-wave type DFT solution which embeds both the fundamental
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string and the spacetime pp-wave for two different solutions to the section condition.

The Goldstone modes of this solution are analysed in §2.4.1 for the string case, where

the dynamics are governed by a self-duality relation in agreement with the duality-

symmetric string of [10–12]. We proceed in §2.5 with an adaptation of the Buscher

procedure for the string σ-model to σ-model actions in DFT.

We move in chapter 3 to an introduction to Ed invariant geometries, in particular

the SL(5)-invariant extended geometry in §3.1, including in §3.1.1 a full chain rule

derivation of the equations of motion, and in §3.1.2 a wave solution which corresponds

to the M2-brane from the spacetime perspective.

Chapter 4 discusses solution generating techniques in general relativity, super-

gravity and DFT in the presence of an isometry. We detail in §4.2 a (d − 1) + 1

split of d-dimensional spacetime in the presence of one Killing vector. We introduce

in §4.2 a formalism due to [195] for determining solution generating symmetries of

general relativity with an isometry in the case that the dynamics can be encoded

in an effective action of scalar potentials. In §4.3 this is applied to two sectors of

static NS-NS supergravity. Lastly, we briefly explore analogous solution-generating

techniques in DFT in §4.4.

In chapter 5 we look to extend these solution-generating techniques in the pres-

ence of an isometry to the fluid/gravity correspondence. Section 5.1 begins with

an introduction, largely adapted from [176], to relativistic hydrodynamics and the

non-relativistic limit governed by the incompressible Navier-Stokes equations (INS).

Section 5.2 continues with a brief introduction to the fluid/gravity correspondence,

leading into a summary of the derivation in [183] of a vacuum metric dual to a

codimension one incompressible Navier-Stokes fluid. We proceed in §5.4 to apply

the generalised Ehlers group of [196] in the presence of a Killing vector to this vac-

uum metric to derive transformations of the Navier-Stokes fluid, and find in §5.4.2

and §5.4.4 a set of invariance transformations of the fluid. We discuss how these

transformations act from the bulk spacetime perspective in §5.4.5. Section §5.4.6

takes a brief look at similar solution-generating transformations for a metric dual to

magnetohydrodynamics.

Finally, chapter 6 concludes with a discussion of our results and their implica-

tions, and a look at possible directions of further research. The appendices include

notations and useful formulae for differential forms.



Chapter 2

Double field theory

2.1 NS-NS supergravity

In the low energy limit of the five string theories one obtains various supergravity

theories, each with fermionic and bosonic contributions. These supergravity theories

share a common bosonic NS-NS sector, whose fields derive from purely bosonic modes

on the string worldsheet. This sector forms a consistent supersymmetric theory on

its own—supersymmetry generators transform the NS-NS fields among themselves.

On this basis, it is quite reasonable, for simplicity, to restrict our analysis to the

bosonic NS-NS sector of supergravity.

The degrees of freedom are the spacetime metric gµν , two-form Kalb-Ramond

field Bµν , and dilaton φ. These vary as functions of the coordinates xµ, and the

action is given by

S =
1

2κ2

∫
ddx
√
−det(g) e−2φ

(
R+ 4∂µφ∂

µφ− 1

12
HµσρH

µσρ

)
, (2.1)

where κ is a constant. The three-form field strength of B

H = dB (2.2)

additionally satisfies the Bianchi identity

dH = 0. (2.3)
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The minima of (2.1) are given by the equations of motion

Rµν −
1

4
Hµ

σρHνσρ + 2∇µ∇νφ = 0 (2.4a)

∇µ(e−2φHµνρ) = 0 (2.4b)

1

6
HµσρHµσρ + 2∇µ∇µφ− 4∇µφ∇µφ = 0. (2.4c)

The equations of motion and action are invariant under gauge transformations

of the two-form, along with diffeomorphisms whose infinitesimal action is given by

the Lie derivative. For one-forms ` and infinitesimal vectors k, these are

g → g + Lkg B → B + LkB + d` φ→ φ+ Lkφ, (2.5)

where the Lie derivative of (zero weight) tensors Tµ1...µpν1...νq with respect to vectors

a is

(LaT )µ1...µpν1...νq = aρ∂ρT
µ1...µp

ν1...νq

−
p∑
s=1

Tµ1...µs−1ρµs+1...µp
ν1...νq∂ρa

µs

+

q∑
r=1

Tµ1...µpν1...νr−1ρνr+1...νq∂νra
ρ.

(2.6)

The action exhibits no further symmetries as is, but when the theory is compactified

on T r, the equations of motion (but not the action) are invariant under a solution-

generating symmetry group O(r, r,R).

2.2 T-duality

The Buscher rules

The extended nature of the string allows it to wrap round non-contractible compact

dimensions, resulting in “winding mode” contributions to its dynamics in addition to

the momentum mode contributions familiar from particle dynamics. We will present

here a type of duality that relates these two modes, called T-duality, which can be

traced back to work by [197,198]. A thorough review of the subject is given in [194].

The particular presentation given here was derived by Buscher [199, 200] from the
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string σ-model, whose action is

S =
1

4πα′

∫
d2σ
√

deth [habgµν∂ax
µ∂bx

ν + iεabBµν∂ax
µ∂bx

ν + α′R(2)φ(x)], (2.7)

where the target space (coordinates xµ) has metric gµν , two-form Bµν , and dilaton

φ, and the worldsheet (coordinates σa) has metric hab with scalar curvature R(2),

and alternating symbol εab (see app. A). The worldsheet is two-dimensional and

thus the metric hab can be brought (locally on the worldsheet) to Minkowski form

via conformal rescaling and diffeomorphisms.

If one imposes an abelian isometry ∂/∂x0· = 0 on the target space, where xµ =

(x0, xm), then the action

S′ =
1

4πα′

∫
d2σ
√

deth [hab(g00VaVb + 2g0nVa∂bx
n + gmn∂ax

m∂bx
n)

+ iεab(2B0nVa∂bx
n +Bmn∂ax

m∂bx
n) + 2ix̂0εab∂aVb + α′R(2)φ(x)]

(2.8)

provides equation of motion for Lagrange multiplier x̂0

εab∂aVb = 0, (2.9)

which on topologically trivial worldsheets fixes Va = ∂ax
0, which returns the original

action (2.7). If one instead integrates by parts the term with x̂0, and substitutes in

the resulting equations of motion for Va,

Va = − 1

g00
(g0n∂ax

n + ihabε
bc(B0n∂cx

n + ∂cx̂
0)), (2.10)

one recovers the dual action

S′ =
1

4πα′

∫
d2σ
√

deth [habg′µν∂ax̂
µ∂bx̂

ν + iεabB′µν∂ax̂
µ∂bx̂

ν + α′R(2)φ′(x̂)], (2.11)

with dual coordinates x̂µ = (x̂0, xm), background

g′00 =
1

g00
g′0n =

B0n

g00
g′mn = gmn −

g0mg0n −B0mB0n

g00

B′0m =
g0m

g00
B′mn = Bmn −

g0mB0n −B0mg0n

g00

(2.12)

and dilaton

φ′ = φ− 1

2
ln g00. (2.13)
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The dilaton shift is found by a careful regularisation of determinants [12,201,202].

This is called T-duality, and can be generalised to to the case of toroidal T r

compactifications defined by r compact bosonic directions identified as Xi ∼ Xi+2π,

where the full T-duality group is given by O(r, r,Z) acting on the background matrix

Eij = gij +Bij (2.14)

and dilaton in the non-linear form

E′ =
aE + b

cE + d
φ′ = φ+

1

4
ln

[
det(g′)

det(g)

] (
a b

c d

)
∈ O(r, r,Z). (2.15)

The O(r, r,Z) group is generated by three elements:

• Large diffeomorphisms of T r preserving periodicities which produce a GL(r,Z)

basis change

OA =

(
AT 0

0 A−1

)
where A ∈ GL(r,Z) (2.16)

• Integer shifts in the B field which enact a shift 2πZ in the action and thus do

not change the path integral

OΩ =

(
1r Ω

0 1r

)
where Ωij = −Ωji ∈ GL(r,Z) (2.17)

• Factorised dualities, which in even dimensions correspond to the generalisation

of the radial inversion g00 → 1/g00 in (2.12)

Oes =

(
1r − es es

es 1r − es

)
where (es)ij = δsjδsk (2.18)

for some s ∈ [1, r].

In the low energy limit, this symmetry becomes the O(r, r,R) of NS-NS supergravity

compactified on T r.
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2.3 The doubled space

There has been a long-standing interest [10–12] in formulating string dynamics in

a manifestly T-duality-invariant manner, where T-duality acts linearly on fields.

Exactly how to do this was greatly aided by the generalised geometry construction of

Hitchin [6] and Gaultieri [7], who studied structures on the tangent space TM⊕T ∗M ,

where sections consist of the sum of vectors and one-forms. This sum can then

parametrise gauge transformations of a symmetric tensor g and two-form B. Of

particular interest here, is that the tangent space has a natural O(d, d,R) inner

product which, in local coordinates such that A = Aµ∂µ and a = aµdxµ, becomes

〈A+ a,B + b〉 =
1

2
(Aµbµ +Bµaµ). (2.19)

In double field theory (DFT), one doubles not just the tangent space, but the coor-

dinates space itself. We shall follow the expositions in [13–15] for this short intro-

duction to DFT. The dimension of the coordinate space is given by the dimension

2d of the fundamental of O(d, d,R), and the doubled coordinates

XM = (xµ, x̃µ) (2.20)

then transform linearly as a group representative

XM → OMNX
N , (2.21)

where O is an O(d, d,R) matrix defined to preserve the inner product

OM
P ηPQON

Q = ηMN , ηMN =

(
0 δµν

δνµ 0

)
(2.22)

and we have introduced the O(d, d,R) metric η. This O(d, d,R) is a global symmetry

of DFT.

The supergravity fields g, B and φ will now depend on the 2d coordinates of this

doubled space. This is clearly undesired from a supergravity perspective. Before

we formally introduce how this is remedied, let us illustrate the connection with the

O(d, d,Z) of T-duality. Consider a particular case where the fields depend only on

the directions xµ6=d (and not the x̃µ), as is the case in supergravity with an isometry

∂/∂xd· = 0. Then we are quite free to demand that the physical coordinates of

spacetime are the xµ6=d, plus one of the pair (xd, x̃d). This freedom corresponds to the
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O(1, 1,Z) = Z2 T-duality transformation. In particular, the choice xd corresponds

to the usual spacetime coordinate, whilst the choice x̃d corresponds to the T-dual

coordinate. In this way, in compactification on tori, one can see the x̃µ as “winding”

coordinates, Fourier dual to the winding momenta in the string context, though this

is not their interpretation in general. One can thus see the connection with the

T-duality of closed string theory (for a more detailed discussion, see [45]).

In fact, one finds on formulating the level matching constraint in closed string

field theory in a O(d, d,R) covariant manner, the condition needed to restrict the

dependence of the fields on the number of coordinates [19]. It is termed the weak

constraint and requires that

YMN
PQ∂M∂Nθ = 0 (2.23)

annihilates single fields θ, where the DFT Y-tensor1

YMN
PQ = ηMNηPQ. (2.24)

One can define local gauge transformations on this space in terms of a generalised

Lie derivative with respect to a generalised vector UM , the most general form of

which, acting on a tensor AM
N with weight w(A), is

(LUA)M
N = UP∂PAM

N +AP
N∂MU

P −AMP∂PU
N

+AM
PY QN

PR∂QU
R −APNY QP

RM∂QU
R + w(A)∂PU

PAM
N . (2.25)

It is important to note that these generalised coordinate transformations are not

conventional coordinate transformations on a doubled space—one cannot form (2.25)

from the conventional diffeomorphism group on the 2d space with the additional

condition that diffeomorphisms respect the O(d, d,R) metric ηMN . To ensure that

the generalised Lie derivative sends tensors into tensors requires its closure

[LU1 , LU2 ]VM = L[U1,U2]CV
M (2.26)

on to the C-bracket

[U1, U2]C ≡
1

2
(LU1U2 − LU2U1) , (2.27)

1We write the weak constraint explicitly in terms of the Y-tensor as this form is also applicable
to the Ed-invariant extended geometries we will discuss in chapter 3 (where the form of the Y-tensor
depends on the relevant duality group Ed). In DFT, it is frequently written in the literature in the
simpler yet equivalent form ηMN∂M∂Nθ = 0, for single fields θ.
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which, for weight zero vectors U1, U2, V , requires

Y RS
PQ

(
UP1 ∂RU

Q
2 ∂SV

M + 2∂RU
P
1 ∂SU

M
2 V Q

)
− U1 ↔ U2 = 0. (2.28)

One solution to this is the strong constraint or section condition, that in addition to

the weak constraint (2.23),

YMN
PQ∂Mθ1∂Nθ2 = 0 (2.29)

annihilates products of fields. In [48] the authors discuss the CFT origin of this

constraint. It can be shown that all solutions to the strong constraint are O(d, d,R)

rotations of ∂̃µθ = 0 for any field θ. We will refer to the frame where all objects

have no dependence on the x̃µ coordinates as the supergravity frame. We note that

(2.29) is not the most general solution to (2.28). More general solutions are possible,

and are pivotal in the Scherk-Schwarz reduction of DFT to gauged supergravities

[78–80,83–85,120].

The supergravity fields may be cast into representations of O(d, d,R). One can

unify the spacetime metric and two-form into a O(d, d,R)/O(d,R) × O(d,R) coset

representative2 generalised metric

HMN =

(
gµν −BµρgρσBσν Bµρg

ρν

−gµσBσν gµν

)
, (2.30)

transforming as an O(d, d,R) tensor:

HMN → OM
PHPQON

Q. (2.31)

The coset form ensures the metric has inverse HMN = ηMPHPQη
QN . Meanwhile,

the supergravity dilaton is shifted to define an O(d, d,R) scalar density DFT dilaton

d defined by3

e−2d =
√
−det(g) e−2φ. (2.32)

Infinitesimal gauge transformations of the generalised metric and dilaton are given

by the generalised Lie derivative with respect to an infinitesimal generalised vector

(kµ, `µ). In the supergravity frame, these generate the spacetime diffeomorphisms

2The O(d,R)×O(d,R) forms a local symmetry of the theory, analogous to the Lorentz symmetry
of relativity.

3To align with the literature, we use d to mean both the spacetime dimension and the DFT
dilaton field, though it should be clear which is implied in each instance.
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and gauge transformations (2.5) of the supergravity fields.

2.3.1 Action and equations of motion

One can form an action in the DFT metric and dilaton. The supergravity Lagrangian

contains terms up to second order in derivatives, so one also expects two derivatives

on the metric H and dilaton d in the DFT Lagrangian4. All possible O(d, d,R)-

covariant terms can be linearly summed over, and the relevant constants fixed on

requiring the Lagrangian transforms covariantly under DFT gauge transformations.

Meanwhile, the DFT dilaton forms the measure in the action. The action is thus

[23,24]

S =

∫
d2dXe−2dR, (2.33)

where the O(d, d,R) scalar

R =
1

8
HMN∂MH

KL∂NHKL −
1

2
HMN∂MH

KL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MH
MN∂Nd.

(2.34)

We have neglected an additional term (see e.g. [80]) whose contribution vanishes

under the strong constraint here and in all further dynamics, but is necessary for

the Scherk-Schwarz reduction to gauged supergravity. A treatment of boundary

contributions for the DFT action can be found in [75]. It is non-trivial that the

action (2.33) reproduces the NS-NS supergravity action (2.1) in the supergravity

frame.

We now introduce a novel derivation of the DFT equations of motion. The

degrees of freedom are encoded within the metric H and dilaton d. Varying the

action with respect to the latter produces

δdS =

∫
d2dX

(
−2e−2dRδd

)
+ boundary terms, (2.35)

yielding the dilaton equation of motion

R = 0. (2.36)

4Higher derivative corrections have been considered in [39,41,57].
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Meanwhile, varying the action with respect to the metric yields

δHS =

∫
d2dXe−2dKMNδH

MN + boundary terms, (2.37)

where

KMN =
1

8
∂MH

KL∂NHKL −
1

2
HPKHQL∂LHPM∂KHNQ

+
1

4
HPQHKL∂PHKM∂QHNL + 2∂M∂Nd

+ (∂L − 2(∂Ld))

[
HLK

(
∂(MHN)K −

1

4
∂KHMN

)]
.

(2.38)

However, this does not yield the equations of motion KMN = 0, since δHS is required

to vanish only for those δHMN constrained by the O(d, d,R)/O(d,R) × O(d,R)

coset form of the generalised metric. This was realised by the authors of [24], who

derived the full equations of motion by ensuring that the coset form was satisfied

through the condition ηMPH
PQηQN = HMN . We will take a different route, which

while considerably more cumbersome, may be adapted quite naturally to the more

demanding case of Ed-covariant extended geometries, where the full equations of

motion are largely unknown. We will

• Demand that the metric assumes the coset form (2.30)

• Expand variations of the generalised metric using the chain rule in terms of

variations of the field content: the spacetime metric g and two-form B

• Re-express the result in a manifestly duality-covariant form

• Determine the duality-covariant equations of motion which contains precisely

the information of the equations of motion for the fields g and B
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That is,

KMNδH
MN = KMN

(
∂HMN

∂gµν
δgµν +

∂HMN

∂Bµν
δBµν

)
(2.39a)

=
[
−Kµνgµρgσν + 2KµνgµρgστBτν

+Kµν
(
δρµδ

σ
ν +Bµτg

τρgσλBλν

) ]
δgρσ

+
[
−2Kµνgµτδρτ δσν − 2KµνBµτgτλδρλδ

σ
ν

]
δBρσ

(2.39b)

=
[
−KµνHµρHσν + 2KµνHµρHσ

ν

+Kµν
(
δρµδ

σ
ν −Hµ

ρHσ
ν

) ]
δgρσ

− (KµνHµτ +KµνHµ
τ ) (δρτ δ

σ
ν − δστ δρν) δBρσ

(2.39c)

= KKL
(
ηKρησL −HKρHσL

)
δgρσ

−KKL
(
HKP ηPMη

LN −HKP δNP δ
L
M

)
ηMρδσNδBρσ

(2.39d)

= PMN
KLKKL

(
ηMρησNδgρσ + ηMρHσNδBρσ

)
, (2.39e)

where

PMN
KL = δKMδ

L
N −HMP η

PKηNQH
QL. (2.40)

Thus,

PMN
KLKKL = 0 (2.41)

are sufficient covariant equations of motion which correspond to minima of the action

(2.33). That they are necessary (i.e. that they do not over-constrain g and B), can

be seen from a simple degree of freedom counting. We do this for vanishing two-form

field and a Minkowski metric. We find PMN
KL has a kernel on symmetric objects

JKL of dimension d(d + 1) which, of the 2d(2d + 1)/2 degrees of freedom in the

symmetric KMN , leaves d2 degrees of freedom, i.e. (2.41) contains d2 equations of

motion. Alongside the 1 dilaton equation of motion (2.36), this corresponds to the

d(d+ 1)/2 + d(d− 1)/2 + 1 degrees of freedom in the supergravity fields5 (g,B, φ).

Indeed, the equations of motion (2.36), (2.41) are in agreement with those calculated

in [24] up to contributions which vanish under the section condition.

5We note that this degrees of freedom counting, while highly suggestive, is not strictly a full proof
that (2.41) are the covariant DFT metric equations of motion. Specifically, we have not shown that
the variation of the spacetime metric and two-form do not lie within the kernel of the projector.
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2.4 A double field theory wave solution recovers the

string

We seek a generalised metric solution for the DFT equations of motion corresponding

to a null wave whose momentum is pointing the x̃d direction. The ansatz will be

analogous to that of a pp-wave in general relativity [203]. That this is a solution

of the DFT equations of motion does not follow obviously from the existence of the

spacetime pp-wave. As we have seen, the equations of motion of the generalised

metric in DFT are certainly not the same as the equations of motion of the metric

in relativity. Let us remove any source of confusion. The pp-wave as a solution

for g may of course, by construction, be embedded as a solution in DFT by simply

inserting the pp-wave solution for g and B into H. However, here we will consider

a pp-wave analogue (that is the usual pp-wave ansatz of [203]) not for g but for

the DFT metric H itself and then determine its interpretation in terms of the usual

metric g and two-form B.

With generalised coordinates written

XM = (xµ, x̃µ) = (t, ym, z, t̃, ỹm, z̃), (2.42)

the following metric

HMNdXMdXN = (K − 2)(dt2 − dz2) + δmndymdyn

+ 2(K − 1)(dtdz̃ + dt̃dz)

−K(dt̃2 − dz̃2) + δmndỹmdỹn

(2.43)

and constant dilaton d constitute a solution to the DFT equations of motion (2.36),

(2.41) provided K satisfies certain conditions we will shortly discuss.

Since it is of the same form as the usual pp-wave solution, the natural inter-

pretation is of a pp-wave in the doubled geometry. One can therefore imagine it

propagates with momentum in the z̃ direction. To determine whether it truly car-

ries momentum would require the construction of conserved charges in DFT, which

is yet to be done. It would be useful to consider objects like generalised Komar

integrals, and other ways one defines charges in general relativity, but now for DFT.

Nevertheless, we shall proceed with our interpretation.

From a DFT perspective, it is required (at least naively) that K satisfies the

section condition. We take K to be a harmonic function of the usual transverse
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coordinates ym (but not of their duals ỹm):

K = K(ym), y�K = 0, where y� ≡ δmn∂m∂n. (2.44)

This is sufficient for the solution to satisfy the equations of motion. For illustrative

purposes, we will adopt the explicit form

K = 1 +
k0

|y|d−4
, |y|2 = ymynδmn, (2.45)

where k0 is a constant. In particular, this gives an asymptotically flat background

metric. We note that the precise form of K does not affect the Goldstone mode

calculations appearing later in §2.4.1. That H depends only on the ym and not

their duals implies that the wave solution is smeared in the ỹm directions. One can

think of it as a plane wave front extending along the dual ỹm directions but with

momentum in the z̃ direction.

The generalised metric as (2.30) corresponds to a Kaluza-Klein ansatz from which

we can determine the supergravity metric and two-form:

HMNdXMdXN = (gµν−BµρgρσBσν)dxµdxν+2Bµρg
ρνdxµdx̃ν+gµνdx̃µdx̃ν , (2.46)

while we can determine the dilaton φ from (2.32). If we choose the spacetime coor-

dinates to be the subset xµ = (t, ym, z̃), the DFT wave (2.43) reduces via (2.46) to

the spacetime pp-wave solution

gµνdxµxν = (K − 2)dt2 + 2(K − 1)dtdz̃ +Kdz̃2 + δmndymdyn

Bµν = 0 e−2φ = e−2d,
(2.47)

with momentum along the z̃ direction. Alternatively, with spacetime coordinates

xµ = (t, ym, z), we find

gµνdxµdxν = −K−1(dt2 − dz2) + δmndymdyn e−2(φ−d) = K

Btz = 1−K−1 Bµn = 0,
(2.48)

which is the fundamental string solution extended along the z direction [204]. We

have thus shown that the solution (2.43) which carries momentum in the z̃ direction

in the doubled space corresponds in the supergravity frame to a string extended

along the z direction from the spacetime perspective, and a spacetime pp-wave with
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momentum in the z̃ direction in a T-dual frame.

Of course this is no surprise from the point of view of T-duality. Momentum and

string winding exchange under T-duality. It is precisely as expected that momentum

in the dual direction corresponds to a string. What is more surprising is when one

views this from the true DFT perspective. There are null wave solutions that can

point in any direction. When we analyse these null waves from the reduced theory

we see them as fundamental strings in the supergravity frame, or as pp-waves from

a dual direction. It is a simple rotation of direction of propagation that takes one

solution into the other. This is duality from the DFT perspective.

Moreover, in the doubled formalism the solution is a massless wave with

PMPNHMN = 0 (where the PM are some generalised momenta), while from the

spacetime perspective in the supergravity frame the string has a tension T and

charge q which are given by the momenta in the dual directions with a resulting

BPS equation T = |q|.

2.4.1 Goldstone modes of the wave solution

In the previous section we presented a solution to the equations of motion of DFT

which reduces in the supergravity frame to the fundamental string. It will be in-

teresting to analyse the Goldstone modes of this DFT solution in the supergravity

frame. Especially since the advent of M-theory, it was understood that branes are

dynamical objects and that when one finds a solution of the low energy effective

action one can learn about the theory by examining the dynamics of the Goldstone

modes. For D-branes in string theory this was done in [205] and for the membrane

and fivebrane in M-theory, where such an analysis was really the only way of de-

scribing brane dynamics, this was done in [205, 206]. We will follow the excellent

exposition and the method described in [205] as closely as possible.

We will consider small perturbations hMN and λ of the generalised metric and

dilaton respectively, each generated by the generalised Lie derivative (2.25) with

respect to a generalised vector ζM ,

hMN = (LζH)MN (2.49)

λ = Lζd = ζM∂Md−
1

2
∂Mζ

M . (2.50)

Note that (2.50) contains a weight term for the dilaton (whose exponential e−2d has

weight 1).
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The wave solutions are extended objects and therefore sweep out a worldvolume

in space, spanned by the coordinates (t, z). The solution clearly breaks transla-

tion symmetry and so one naturally expects worldvolume-scalar zero-modes. One

immediate puzzle would be to ask about the number of degrees of freedom of the

Goldstone modes. Given that the space is now doubled one might imagine that any

solution which may be interpreted as a string would have 2d− 2 degrees of freedom

rather than the expected d − 2. We will answer this question and show how the

Goldstone modes have the correct number of degrees of freedom despite the solution

living in a 2d dimensional space. The projected form of the equations of motion are

crucial in making this work out.

To carry out the analysis it will be useful to split up the space into parts longi-

tudinal and transverse to the string. We will do this using an alternative coordinate

notation for this section XM = (xµ, x̃µ̄), so as not to confuse the inverse metric and

dual coordinates. We collect the coordinates into xa = (t, z), x̃ā = (t̃, z̃) such that

the generalised coordinates are XM = (xa, ym, x̃ā, ỹm̄). We will refer to the (x̃ā)

xa as the (dual) worldsheet coordinates, and the (ỹm̄) ym as the (dual) transverse

coordinates. In this notation, the non-zero components of the metric and its inverse

are
Hab = (2−K)Iab Hab = KIab

Hāb̄ = KIāb̄ H āb̄ = (2−K)Iāb̄

Hab̄ = (K − 1)Jab̄ Hab̄ = (K − 1)Jab̄

Hmn = δmn Hmn = δmn

Hm̄n̄ = δm̄n̄ Hm̄n̄ = δm̄n̄

(2.51)

where Iab = Iab (Iāb̄ = Iāb̄) is the Minkowski space metric I = diag(−1, 1) in the

(dual) worldsheet coordinates, and the 2× 2 matrix

J =

(
0 1

1 0

)
. (2.52)

We now choose a transformation parameter ζM with components along the trans-

verse directions (and their duals),

ζM = (0,Kαϕm, 0,Kβϕ̃m̄). (2.53)

Here, ϕm and ϕ̃m̄ are coordinate-independent vectors that will become the Goldstone

modes once we allow them to depend on the worldsheet coordinates, and α and β are
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constants that will be determined by demanding that the Goldstone modes become

normalisable. From (2.49), the non-zero components of the metric perturbation are

hab = −ϕmKα∂mKIab hmn = 2ϕqδq(mδn)
p∂pK

α

hāb̄ = ϕmKα∂mKIāb̄ hm̄n̄ = −2ϕqδq(m̄δn̄)
p∂pK

α

hab̄ = ϕmKα∂mKJab̄ hmn̄ = −2ϕ̃q̄δq̄[mδn̄]
p∂pK

β,

(2.54)

while the dilaton perturbation (2.50) is

λ = −1

2
ϕm∂mK

α. (2.55)

We now promote the moduli to depend on the worldsheet coordinates (but not

their duals, so as to satisfy the section condition),

ϕm → ϕm(xa), ϕ̃m̄ → ϕ̃m̄(xa). (2.56)

These are the Goldstone modes, which are really the normalisable modes corre-

sponding to broken gauge symmetry. Whereas for gravity gauge transformations are

ordinary diffeomorphisms, in the case of DFT they are generated by the generalised

Lie derivative.

The equations of motion of the modes are determined by those of the perturbed

DFT metric H + h and dilaton d+ λ. We will determine them to linear order in h

and λ (it would certainly be interesting to move beyond this expansion and compare

with a Nambu-Goto type action but we will not do so here). In approaching the

equations of motion to linear order, we will simplify our calculation with the fact

that both the background and gauge transformations of the background (which were

calculated for constant ϕm, ϕ̃m̄) will satisfy the equations of motion. Thus, terms

will only contribute to the equations of motion when there are xa derivatives acting

on modes.

For the metric equations of motion, we note that the background satisfies K = 0.

Therefore, in the linear order equations of motion, K will only contain terms linear

in the modes, while P will contain no contribution from the modes—it will be given

purely by the background metric. With the projector only in terms of the background

metric, the equations of motion automatically satisfy

(PK)MN = −HMKY
KP

NLH
LQ(PK)PQ, (2.57)
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which we can use to determine the independent components, which are as follows.

We begin with the transverse-worldsheet cross components (and their duals),

(PK)ma and (PK)mā, where

(PK)ma + IabJbā(PK)mā = − 1

2

(
δpmδ

r
q − δmqδpr

)
×
[
∂aϕ

q∂r∂pK
α − Iabεbc∂cϕ̃q̄δqq̄∂r∂pKβ

]
,

(2.58)

with antisymmetric symbol εab (see app. A). So as to obtain an equation of motion

for the modes independent of the background function K, we choose α = β, where

the above vanishes if the modes satisfy a duality relation

∂aϕ
q = Iabεbc∂cϕ̃q̄δqq̄ , (2.59)

which in turn implies the wave equations

�ϕq = �ϕq̄δqq̄ = 0, where � ≡ Iab∂a∂b. (2.60)

Employing α = β and the duality relation (2.59), we also have the contribution

IabJbā(PK)mā =
1

2

(
δpmδ

r
q − δmqδpr

) [
∂aϕ

q∂r(K
α∂pK) + Iabεbc∂cϕ̃q̄δqq̄∂r(K∂pKβ)

]
=

1

2
(α+ 1)

(
δpmδ

r
q − δmqδpr

)
∂aϕ

q∂r(K
α∂pK),

(2.61)

which vanishes for α = −1. Indeed, this is the value derived in [205] for the Goldstone

dynamics of branes. In particular, for the D3, M2 and M5 brane, α = −1 provided

normalisable modes. The independent transverse and worldsheet components, along

with the scalar R of the dilaton equation (2.36) are

(PK)mn = −K�ϕqδq(m∂n)K
α (2.62a)

(PK)mn̄ = K�ϕ̃q̄δq̄[mδ
p
n̄]∂pK

β (2.62b)

(PK)ab = f1(K,α)Iab�ϕq∂qK + (α+ 1)(K − 2)Kα∂a∂bϕ
q∂qK (2.62c)

IbcJcb̄(PK)ab̄ = f2(K,α)Iab�ϕq∂qK + (α+ 1)(1−K)Kα∂a∂bϕ
q∂qK (2.62d)

R = −(2α+ 1)�ϕqKα∂qK, (2.62e)

where f1 and f2 are functions whose form is unimportant for this analysis. These

all vanish by means of the wave equations (2.60) and α = −1.



double field theory 31

Returning to the duality relation (2.59), we can combine the Goldstone modes

into a generalised vector ΦM = (0, ϕm, 0, ϕ̃m̄), where we find

HMN∂aΦ
M = ηMN Iabεbc∂cΦN , (2.63)

in agreement with Duff’s result in [10] for the duality symmetric string. Alterna-

tively, expressed in terms of the (anti-)chiral combinations

ψm± = ϕm ± ϕ̃n̄δmn̄ , (2.64)

equation (2.59) describes the familiar (anti-)self-dual left- and right-movers

∂aψ
m
± = ±Iabεbc∂cψm± (2.65)

of the Tseytlin-string [11,12]. Thus the dynamics of the Goldstone modes of the wave

solution reproduce the duality symmetric string in doubled space. The number of

physical degrees of freedom are not doubled but just become rearranged in terms of

chiral and anti-chiral modes on the worldsheet.

2.4.2 Comparison with the σ-model evaluated in the string or wave

background

The equations of motion derived in the previous section recover the equations of

motion of the Tseytlin string. A natural question would be to ask what background

is the string in? Is the target space of the doubled solution the combination of the

fundamental string with the spacetime pp-wave background? The answer to this

question can be seen immediately from the Goldstone mode analysis which gives the

equations of motion of the free string i.e. that of the σ-model in a flat background.

To understand this it is worth understanding what the Goldstone mode analysis

provides us with in other cases where this has been carried out in a more conven-

tional setting. In [205] the Goldstone mode analysis for the D3, M2 and M5 branes

was completed and used to determine the effective equations of motion for each

of those objects. In each case the analysis gave the description of the brane in a

flat background—as one would expect—the Goldstone mode analysis must give the

equations of motion of the brane in a flat background since the solution for which

one is determining the moduli is that of the brane in a flat background. The same

argument applies here—the string dynamics must be those of the string in a flat
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background.

A string solution in the background of other strings i.e. a string σ-model in a

string background would be a different solution and as such obey a different set

of equations of motion. Describing this more technically, to find the σ-model in a

non-trivial background one must find the back-reacted wave solution not for asymp-

totically flat space but for one with asymptotically switched on NS-fluxes and then

determine its moduli and their equations of motion. Once one has determined the

effective equations of motion through a Goldstone mode analysis, one can then pro-

ceed to covariantize these equations (in terms of the geometry of moduli space) to

determine the general equations of motion. In terms of the doubled string above,

this would imply just replacing the flat target space generalised metric with the

generalised metric of an arbitrary background.

2.5 Buscher-type transformation in the double field

theory σ-model

We have seen in §2.2 how Buscher recovered T-duality transformations from the

string σ-model with an isometry in the target space. We have also seen in §2.4 how

string dynamics can be approached in an O(d, d,R)-covariant manner via DFT. In

this section, we look at manifestly O(d, d,R)-covariant string σ-models in DFT, and

apply a Buscher procedure to these. A Floreanini-Jackiw-style [207] string σ-model

was derived for O(d, d,R)-invariant field theory initially in [11, 12], which takes the

form

S =
1

2

∫
d2σ(−HMN∂1X

M∂1X
N + ηMN∂1X

M∂0X
N ), (2.66)

where indices on the partial derivatives correspond to worldsheet directions (as op-

posed to the doubled target space indices M,N . . .). This is not, however, manifestly

worldsheet covariant—covariance is recovered on-shell. A manifestly worldsheet-

covariant action was proposed by Hull [58] (which has been shown to be equivalent

to (2.66) [66], see also [61, 68]), which can be gauged by a derivative-index-valued

connection AM ∼ ψ∂Mϑ, to produce the gauged action of [60]

S =

∫
d2σ

1

2
HMNDaX

MDbX
Nhab − εabDaX

MAbM . (2.67)

Here, DaX
M = ∂aX

M − AMa , and target space indices are here raised and lowered

with η. We will apply the Buscher procedure with one Lagrange multiplier to the
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ungauged version of the covariant action (2.67), and with two Lagrange multipliers

to the non-covariant action (2.66). For both cases, we will split the coordinates as

µ = (0,m), where x0 need not be the time coordinate.

A single Buscher transformation

The action

S′ =
1

2

∫
d2σ [(H00CaCb + 2H0mCa∂bX

m +Hmn∂aX
m∂bX

n

+2H0
νCa∂bXν + 2Hm

ν∂aX
m∂bXν +Hµν∂aXµ∂bXν)hab + α∂aCbε

ab
]

(2.68)

has equations of motion for the Lagrange multiplier α

∂[aCb] = 0, (2.69)

which on identifying Ca = ∂aX
0 recovers the covariant action (2.67) for AM = 0. If

instead we integrate by parts the Lagrange multiplier term, we find (up to boundary

contributions)

S′ =
1

2

∫
d2σ [(H00CaCb + 2H0mCa∂bX

m +Hmn∂aX
m∂bX

n

+2H0
νCa∂bXν + 2Hm

ν∂aX
m∂bXν +Hµν∂aXµ∂bXν)hab − ∂aαCbεab

]
,

(2.70)

which has equations of motion

hab (2H00Cb + 2H0m∂bX
m + 2H0

ν∂bXν)− εab∂bα = 0. (2.71)

If we insert this into the action (2.70), we find

S′ =

∫
d2σ

1

2
H ′MN∂a(X

′)M∂b(X
′)Nhab + εab∂a(X

′)M∂b(X
′)0H0M

H00
, (2.72)

where (X ′)M = (α/2, Xm, Xµ) and

H ′00 =
1

H00
H ′mn = Hmn −

H0mH0n

H00

H ′0n = 0 H ′m
ν = Hm

ν − H0mH0
ν

H00

H ′0
µ = 0 H ′µν = Hµν − H0

µH0
ν

H00
.

(2.73)
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While it may appear that (2.72) takes the form of the gauged σ-model (2.67), we

recall that AM is required to be derivative-index-valued. With this in mind, we do

not find that (2.72) corresponds to a gauged DFT σ-model. That is, we find no

solution-generating transformations for one Lagrange multiplier.

A double Buscher transformation

We now extend the analysis to include an additional Lagrange multiplier term in the

dual coordinates, but here for the action (2.66). Consider the action

S′ =
1

2

∫
d2σ(−H00A

2
1 − 2H0mA1∂1X

m − 2H0
0A1B1 − 2H0

mA1∂1Xm

−Hmn∂1X
m∂1X

n − 2Hm
0∂1X

mB1 −Hmn∂1Xm∂1Xn

− 2Hm
n∂1X

m∂1Xn −H00B2
1 − 2H0mB1∂1Xm +A1B0 +A0B1

+ ∂1X
m∂0Xm + ∂1Xm∂0X

m − α(∂1A0 − ∂0A1)− β(∂0B1 − ∂1B0)).

(2.74)

The Lagrange multipliers α and β have resulting equations of motion

∂1A0 − ∂0A1 = 0 ∂0B1 − ∂1B0 = 0, (2.75)

solutions of which are Aa = ∂aC, Ba = ∂aD. When we reinsert these solutions in

to the action (2.74) we recover the action (2.66) with the identification C = X0,

D = X0.

If instead we integrate (2.74) by parts so that the derivatives act on the Lagrange

multipliers, we find, up to total derivatives,

S′ =
1

2

∫
d2σ(−H00A

2
1 − 2H0mA1∂1X

m − 2H0
0A1B1 − 2H0

mA1∂1Xm

−Hmn∂1X
m∂1X

n − 2Hm
0∂1X

mB1 −Hmn∂1Xm∂1Xn

− 2Hm
n∂1X

m∂1X
n −H00B2

1 − 2H0mB1∂1Xm +A1B0 +A0B1

+ ∂1X
m∂1Xm + ∂1Xm∂0X

m +A0∂1α−A1∂0α−B1∂0β +B0∂1β).

(2.76)

The equations of motion for Aa and Ba are now

A1 + ∂1β = 0 (2.77a)

−2H0
0A1 − 2Hm

0∂1X
m − 2H00B1 − 2H0m∂1Xm +A0 − ∂0β = 0 (2.77b)

B1 + ∂1α = 0 (2.77c)

−2H00A1 − 2H0m∂1X
m − 2H0

0B1 − 2H0
m∂1Xm +B0 − ∂0α = 0. (2.77d)
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Inserting these into (2.76), we recover the action

S′ =
1

2

∫
d2σ(−HMN∂1(X ′)M∂1(X ′)N + ηMN∂1(X ′)M∂0(X ′)N ),

where (X ′)M = (−β,Xm,−α,Xm).

(2.78)

We observe that the Lagrange multiplier α for the A equation of motion (which was

used to replace X0) becomes the dual coordinate X0, likewise for β and B. That is,

the transformation sends x0 ↔ x̃0. One can see this is the T-duality invariance of

the theory manifesting if instead we equivalently write

S′ =
1

2

∫
d2σ(−H ′MN∂1(X ′)M∂1(X ′)N + ηMN∂1(X ′)M∂0(X ′)N ),

where (X ′)M = (−α,Xm,−β,Xm)

(2.79)

where we find the corresponding spacetime metric and two-form field transformations

are given by the Buscher rules (2.12).



Chapter 3

U-duality invariant M-theory

The strong coupling limit of type IIA string theory is an eleven dimensional theory,

termed M-theory, which has as its fundamental objects not strings, but membranes

and five-branes. Various compactification limits of M-theory yield all five string

theories, while T-duality and S-duality are united as part of a larger web of U-

dualities. Though our understanding of the full theory remains rather incomplete,

we can look to the low energy limit, eleven dimensional supergravity, discovered by

Cremmer, Julia, and Scherk [4], and whose action in the bosonic sector is given by

S11 =
1

2κ2

∫
M11

√
det(g)

(
R− 1

48
F 2

4

)
− 1

4
F4 ∧ F4 ∧ C3, (3.1)

where F4 = dC3 is the field strength of the three-form gauge field.

In 1980, Julia [86] demonstrated that compactifications of eleven dimensional

supergravity on Tn exhibit the En symmetries listed in table 3.1. These symmetries

are inherited from the U-duality group of M-theory. We will here on use the name

U-duality interchangeably to mean both the continuous hidden symmetry group of

supergravity and the parent M-theory duality group.

It has been proposed that these U-duality groups are not only present on com-

pactification, but are symmetries of the full M-theory [208]—when compactifying

on Tn, an En subset of the full E11 symmetry group is revealed, acting on the

compactified directions. In the supergravity theory, the symmetries act on the met-

ric and gauge fields on equal footing, and so one may ask whether there is some

way of unifying these objects in a manifestly duality-invariant form. However, since

the symmetry is not present in the supergravity theory as it stands, some kind of

extension is required. This is the role of the exceptional geometries.
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11− n n G H

10 1 SO(1, 1) 1
9 2 SL(2) SO(2)
8 3 SL(3)× SL(2) SO(3)× SO(2)
7 4 SL(5) SO(5)
6 5 SO(5, 5) SO(5)× SO(5)
5 6 E6 USp(8)
4 7 E7 SU(8)
3 8 E8 SO(16)

Table 3.1: The symmetry groups G and their maximally compact subgroups H of
11-dimensional supergravity compactified on Tn.

n G = Ed Tangent space D

4 SL(5) TM ⊕ ∧2T ∗M 10
5 Spin(5, 5) TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M 16
6 E6 TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M 27
7 E7 TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ ∧6T ∗M 56

Table 3.2: The tangent space and coordinate representationD of Ed duality-invariant
extended geometries

Recall that in O(d, d,R)-invariant generalised geometry, the duality group of

compactified NS-NS supergravity is made manifest without compactification by ex-

tending the tangent space to include one-forms which can parametrise gauge trans-

formations of the two-form field. Analogously, Hull [209], and later Pacheco and

Waldram [210] made manifest the Ed duality group in exceptional generalised geom-

etry by extending the tangent space to include forms which can parametrise gauge

transformations of the form field content inherited from the parent membrane theory.

The tangent spaces are given for d = 4–7 in table 3.2. One can think of the tangent

space contributions as arising with three-form gauge transformations (∈ ∧2T ∗M),

fivebrane-modes (∈ ∧5T ∗M) for d ≥ 5, and six-form (dual to C3) gauge transforma-

tions (∈ ∧6T ∗M) for d ≥ 7. Meanwhile, the form fields and metric are unified into

a G/H coset representative which encodes precisely the

d(d+ 1)/2 +

(
d

3

)
+

(
d

6

)
= dim(G/H) (3.2)

degrees of freedom in g, C3 and C6 (these have been constructed for d = 3, 4 [94],

d = 5–7 [97] and d = 8 [211]).
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As DFT is to generalised geometry, where one extends not just the tangent space,

but the coordinate space itself, [36,75,94–103] constructed extended geometries where

the d spacetime dimensions are supplemented with w “wrapping” coordinates which

in the supergravity picture correspond to membrane charges. The Ed duality group

now acts as a manifest symmetry of a (d+ w)-dimensional space. Again, there has

been no compactification, unlike in the standard torus compactification of eleven-

dimensional supergravity. That Ed can act on the space is precisely due to the pres-

ence of the additional wrapping coordinates1. The tangent spaces of the extended

geometries are the same as those of their corresponding exceptional generalised ge-

ometry, given in table 3.2. Again, the crucial difference between generalised and

extended geometries is that, in the latter, one allows dependence of all the fields

on the additional coordinates, while imposing a section condition which determines

the physical subset. Different solutions to this section condition are related by Ed

rotations.

Extended geometry is in fact a truncation of exceptional field theory [104–119].

There, the eleven-dimensional supergravity coordinates are split 11 = (11 − d) + d

without dimensional reduction, and then supplemented with the w wrapping coor-

dinates. While the extended geometries can be seen as (a truncation of) an eleven-

dimensional theory which exhibits manifest Ed×GL(11−d,R) invariance, and where

the internal and external sectors are decoupled, in exceptional field theory these sec-

tors are no longer decoupled.

In this chapter, we focus on the four-dimensional SL(5)-invariant extended ge-

ometry constructed in [94–96, 98, 99], whose corresponding four-dimensional super-

gravity has action (3.1) (short of the Chern-Simons terms which can only be defined

in eleven dimensions). The picture we illustrate in the next section is similar to that

in d = 5–7.

3.1 The SL(5)-invariant theory

In SL(5)-invariant M-theory, one supplements the four-dimensional spacetime co-

ordinates with the six coordinates dual to wrapping configurations of M2-branes in

four dimensions. These can be combined into an SL(5) coordinate on the full space

1More accurately, the extended geometries exhibit manifest Ed(R) covariance, while compactifi-
cation on T r reveals an Er(Z) symmetry group, analogous to how O(d, d,R)-covariant DFT com-
pactified on T r reveals an O(r, r,Z) T-duality group.
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via the decomposition2

XM = X [mm′] =

Xµ5 = xµ

Xµν = 1
2ε
µνρσ5yρσ

(3.3)

where µ ∈ {1, . . . , 4}. Here, capital Roman indices run M ∈ {1, . . . , 10} and corre-

spond to an antisymmetric pair of later-alphabet lower Roman indices m, . . . , z ∈
{1, . . . , 5}. Fields are allowed to depend on all XM .

For the SL(5) geometry, the Y-tensor takes the form

YMN
KL =

1

4
εaMN εaKL, (3.4)

where εaMN = εamm
′nn′ is the five-dimensional antisymmetric symbol. In terms of

this Y-tensor, the reduction to the physical set of coordinates is once again achieved

by a section condition of the form (2.23) with (2.29). This additionally guarantees

closure of gauge transformations on the extended space, which are given by the

corresponding generalised Lie derivative (2.25) (in this comparison, indices M,N . . .

should of course be understood here as those of the SL(5) representation (3.3)).

Solving the section condition by demanding independence from the dual coordinates

yρσ recovers the supergravity frame, while other solutions are SL(5) rotations of this.

One may relax the section condition to allow Scherk-Schwarz reductions to gauged

supergravities [85,120,121].

The metric and form field C3 are unified into the 10 × 10 symmetric coset gen-

eralised metric

MMN = g1/5

(
gµν + 1

2Cµ
ρσCνρσ − 1

2
√

2
Cµ

ρσερσλλ′

− 1
2
√

2
Cν

ρσερσηη′ (det g)−1gηη′,λλ′

)
, (3.5)

where gηη′,λλ′ ≡ gη[λgλ′]η′ (also gηη
′,λλ′ ≡ gη[λgλ

′]η′) and C = C3 is the three-form

2Note that with our summation convention, we have

AMdxM = Aµ5dXµ5 +A5µdX5µ +AµνdXµν = 2Aµ5dxµ +
1

2
Aµνε

µνσρdyσρ.

In particular, we note the factor of 2 for the dxµ contribution.
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gauge field. The inverse3 metric is

MMN = g−1/5

(
1
4g
µν 1

4
√

2
gµκCκωω′ε

ωω′λλ′

1
4
√

2
gνκCκωω′ε

ωω′σσ′ (det g)gσσ
′,λλ′ + 1

8g
αβCαωω′ε

ωω′σσ′Cβχχ′ε
χχ′λλ′

)
.

(3.6)

There is further field content which can be seen to arise from the truncation of the

eleven dimensional theory to four dimensions. In this process, the E11 decomposes

as SL(5) × GL(7), and the eleven-dimensional metric as g11 = diag(g, g7), where

g7 is the metric on the seven-dimensional space. Extending the four-dimensional

spacetime with six wrapping coordinates, the resulting metric on the (4 + 6 + 7)-

dimensional space is [94]

M = | det(g11)|−1/2

(
det(g)−1/5M 0

0 g7

)
. (3.7)

If we assume the diagonal form4 g7 = det(g7)1/7δ7, we can use det(g11) = det(g) det(g7)

to find

M =

(
e−∆M 0

0 e−5∆/7δ7

)
, (3.8)

where

e∆ = det(g7)1/2 det(g)7/10 (3.9)

defines the additional degree of freedom, the volume factor scalar density ∆.

3.1.1 Action and equations of motion

We can now apply the method used in §2.3.1 to derive the full equations of motion

for SL(5)-invariant M-theory. The action (up to boundary contributions, treated

in [75]) is

S =

∫
d10Xe∆R, (3.10)

3Note that the identity here takes the form

δNM =

(
δν[µδ

5
5] δν[µδ

5
µ′]

δν[µδ
ν
5] δν[µδ

ν′
µ′]

)
=

( 1
2
δνµ 0

0 δν[µδ
ν′
µ′]

)
4As would arise on compactification on T 7 where the tori have equal radii det(g7)1/7.
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where the SL(5) scalar

R =
1

12
MMN∂MM

KL∂NMKL −
1

2
MMN∂MM

KL∂LMKN − ∂M∂NMMN

− 1

7
MMN∂M∆∂N∆− 2

7
∂MM

MN∂N∆− 2

7
MMN∂M∂N∆.

(3.11)

The first three terms reproduce the four-dimensional supergravity action in the su-

pergravity frame, whilst the latter three are kinetic terms for ∆.

Varying the action with respect to the volume factor yields the equation of motion

R = 0, (3.12)

while varying the action with respect to the metric yields

δMS =

∫
d10Xe∆KMNδM

MN , (3.13)

where

KMN =
1

12
∂MM

KL∂NMKL −
1

2
MPKMQL∂LMPM∂KMQN

+
1

6
MPQMKL∂PMKM∂QMLN − ∂M∂N∆− 6

7
∂M∆∂N∆

+ (∂L + (∂L∆))

[
MLK

(
∂(MMN)K −

1

6
∂KMMN

)]
.

(3.14)

Again, this does not requireKMN = 0, since δMMN is constrained by its SL(5)/SO(5)

coset structure (3.5). As shown in [98], this particular coset structure allows one to

write the metric and volume factor in full generality in terms of a “little metric”

mab where Mab,cd = ma[cmd]b. From this, equations of motion were derived via

construction of a semi-covariant derivative and curvature tensor analogous to the

Riemann tensor. We will determine the metric equations of motion by the chain

rule method of §2.3.1. For this purpose, it is convenient to define a rescaled metric
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M̃MN = g1/5MMN . Thus,

g1/5KMNδM
MN (3.15a)

= g1/5KMN

(
g−1/5δM̃MN + δg−1/5M̃MN

)
(3.15b)

= KMN

[
∂M̃MN

∂gµν
δgµν +

∂M̃MN

∂Cµνρ
δCµνρ + δ ln g−1/5M̃MN

]
(3.15c)

=

[
− gµσgνρKµ5ν5 −

1√
2
gµσgρκCκωω′ε

ωω′νν′Kµ5νν′

+

(
ggσρgµµ

′,νν′ − ggµσgρ[νgν
′]µ′ − ggµ[νgν

′]σgρµ
′

− 1

8
gσαgρβCαωω′ε

ωω′µµ′Cβχχ′ε
χχ′νν′

)
Kµµ′νν′ −

1

5
gρσKMNM̃

MN

]
δgσρ

+

[
1√
2
gµαεβγνν

′Kµ5νν′ +
1

4
gσαεβγµµ

′
Cσχχ′ε

χχ′νν′Kµµ′νν′
]
δCαβγ

(3.15d)

=

[
− 4M̃σ5MM̃ρ5NKMN + M̃ρ5N εµσ5P εµNRM̃

RQKPQ

− 4

5
M̃σ5ρ5KMNM̃

MN

]
δgρσ +

√
2MMα5εβγνν

′KMνν′δCαβγ

(3.15e)

= 4M̃σ5MM̃ρ5N

(
−δPMδ

Q
N +MMLY

LP
NRM

RQ − 1

5
MMNM

PQ

)
KPQδgρσ

+

√
2

1 + 2x
MMσ5

(
δPMδ

Q
N − xMMLY

LP
NRM

RQ − yMMNM
PQ
)

×KPQδCσωω′εωω
′N5,

(3.15f)

where the constants x 6= −1/2 and y are otherwise arbitrary. Sufficient equations

of motion are thus

PMN
PQKPQ = 0, (3.16)

where the projector

PMN
PQ = δPMδ

Q
N −MMLY

LP
NRM

RQ +
1

5
MMNM

PQ

=

(
δRMδ

S
N −

1

10
MMNM

RS

)(
δPRδ

Q
S −MRKY

KP
SLM

LQ
)
.

(3.17)

As in §2.3.1, one can determine if (3.16) are necessary by counting the dimension of

the symmetric kernel of P for Minkowski metric and vanishing C3. We find, of the
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10(10 + 1)/2 = 55 degrees of freedom in KMN , that 41 are projected out, leaving

precisely the
(

4
3

)
and 4(4+1)/2 degrees of freedom in C3 and g respectively5. Further

work includes verifying that these equations agree with those of [98].

In (3.17), the first bracket projects out terms proportional to the metric. This

can be seen to arise from the relation

(KPQ +MPQ)δMPQ = KPQδMPQ − δ ln detM = KPQδMPQ, (3.18)

where we have used the fact that det(M) = 1. Such a term does not explicitly arise

in the DFT projector simply because the metric is already projected out by the

projector (2.40). Thus, both projectors are of the form

PMN
PQ =

(
δRMδ

S
N −

1

D
MMNM

RS

)(
δPRδ

Q
S −MRKY

KP
SLM

LQ
)
, (3.19)

where D is the dimension of the extended geometry. A natural question is whether

the equations of motion in extended geometries in higher dimensions are also given

by (3.16) with projector (3.19), where metrics/vielbein have been constructed in [94]

(d = 3, 4), [97] (d = 5–7), [211] (d = 8), and the corresponding Y-tensors in [102] for

d = 3–7.

3.1.2 An SL(5) wave solution recovers the M2-brane

In this section, we will redefine many of the symbols used in chapter 2 to keep

analogy to the DFT case clear. A wave solution for the SL(5) duality invariant

theory is given by the generalised metric MMN with line element

MMNdXMdXN = (K − 2)[(dx1)2 − (dx2)2 − (dx3)2] + (dx4)2

+ 2(K − 1)[dx1dy23 + dx2dy13 − dx3dy12]

−K[(dy13)2 + (dy12)2 − (dy23)2] + (dy34)2 + (dy24)2 − (dy14)2,

(3.20)

and constant volume factor ∆. It can be interpreted as a pp-wave in the extended

geometry which carries momentum in the directions dual to x2 and x3, i.e. combina-

tions of y12, y13 and y23 (though as for the DFT case in §2.4, we have not constructed

the conserved charges). In the pp-wave interpretation, it has no mass or charge and

5Again, we note that this degrees of freedom counting, while highly suggestive, is not strictly a
full proof that (3.16) are the SL(5) covariant metric equations of motion. Specifically, we have not
shown that the variation of the spacetime metric and three-form do not lie within the kernel of the
projector.



u-duality invariant m-theory 44

the solution is pure metric, i.e. there is no form field it couples to. K is a harmonic

function of the transverse radial coordinate |x4|: K = 1 + k0|x4|, where k0 is a

constant. The wave is smeared in the remaining dual directions.

So that we may interpret this solution from the perspective of objects originating

in eleven-dimensional supergravity, we use a Kaluza-Klein reduction from eleven to

four dimensions: M11 = M4 ×M7, followed by an augmentation by the relevant

winding coordinates to a ten-dimensional extended geometry. We do this assuming

the supergravity frame, with spacetime coordinates xµ. The metric ansatz is thus

MMNdXMdXN =
(
gµν + e2wCµ

ρσCρσν
)

dxµdxν

+ 2e2wCµ
ρσdxµdyρσ + e2wgλτ,ρσdyλτdyρσ,

(3.21)

where the function e2w(xµ) is a scale factor inherited from the KK reduction from

eleven to four dimensions. Comparing (3.21) with (3.20), we find

gµνdxµdxν = −K−1
[
(dx1)2 − (dx2)2 − (dx3)2

]
+ (dx4)2

C123 = 1−K−1 Cµν4 = 0
(3.22)

with e2w = K−1. We now view this solution in the Einstein frame related to (3.22)

by

gµν =
√
| det(e2wgµν,ρσ)| gµν = K3/2gµν , (3.23)

where the determinant is calculated by considering gµν,ρσ as a 6 × 6 matrix with

rows given by {µν} = {12, 13, 14, 23, 24, 34}, and similarly for columns. The C-field

is not transformed (only its field strength obtains a different factor in the action)

and we find

gµνdxµdxν = −K1/2
[
(dx1)2 − (dx2)2 − (dx3)2

]
+K3/2(dx4)2

C123 = 1−K−1 Cµν4 = 0,
(3.24)

which is the four-dimensional M2-brane in the Einstein frame, extended in the x2−x3

plane. We have thus shown that the solution (3.20) which carries momentum in the

directions dual to x2 and x3 in the extended geometry corresponds to a membrane

stretched along these directions from a spacetime perspective. By similar arguments

as in the string case, the mass and charge of the M2-brane are given by the momenta

in the dual directions.

It would be interesting to see a Goldstone mode analysis for the SL(5) wave
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analogous to that achieved for the DFT wave in §2.4.1. One would consider pertur-

bations of the metric and volume factor given by the generalised Lie derivative with

respect to a generalised vector ∼ Kαϕ∂/∂x4 + Kβϕ̃µ∂/∂yµ4, which is constant on

the worldvolume. Promoting the constants ϕ and ϕ̃µ to functions of the worldvol-

ume coordinates, one could then determine the linear equations of motion, which we

expect would produce the duality relation of Duff [212] for the membrane.



Chapter 4

Solution-generating

transformations in NS-NS

supergravity and double field

theory

In 1954, Buchdahl [123] found a symmetry group of the vacuum Einstein equations

for static vacuum metrics. Metrics are defined to be static if they possess a Killing

vector ξ which is additionally hypersurface orthogonal. This is true if and only if

the twist, proportional to ιξ ? dξ[, vanishes. In adapted coordinates ξ = ∂0 (where

xµ = (x0, xa)), this is equivalent to the statement that the metric takes the block

diagonal form g = diag(g00, gab).

Buchdahl’s symmetry group was extended significantly in (3 + 1) dimensions by

the work of Ehlers [213] and Geroch [214] to an SL(2,R) symmetry group of the vac-

uum Einstein equations in the presence of a non-null Killing vector1. Harrison [215]

extended their work to generate maps between solutions to Einstein-Maxwell theory

and vacuum Einstein gravity. These symmetry groups were found by considering a

split of the metric and electromagnetic field into two parts:

• Those defining a codimension one reduced metric orthogonal to Killing direc-

tion, for example gab when ξ = ∂0. The symmetry groups preserve a conformal

transformation of this metric.

1Mars [196] showed that their analysis was also valid for null Killing vectors.
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• All remaining contributions, which are decomposed into a set of scalar functions

or potentials, whose invariance transformations determine the symmetry group.

The symmetry group was completed by Neugebauer and Kramer [195] in Einstein-

Maxwell theory for any non-null Killing vector.

In this chapter, we look at how we might find similar solution-generating sym-

metries in NS-NS supergravity and DFT (see [216–221] for similar studies in super-

gravity). We have seen that NS-NS supergravity with an isometry has an O(1, 1,R)

symmetry group, a remnant of string theory T-duality, and how this is made man-

ifest in DFT. However, we also look for symmetries which lie outside this manifest

symmetry group, and how they might appear within the DFT context. We begin

our exploration with a reformulation of general relativity with an isometry, decom-

posing the metric into a reduced metric and p-form potentials, and then apply this

to NS-NS supergravity before we approach DFT.

4.1 Reduction of Einstein gravity with respect to an

isometry

The space Vd−1 orthogonal to a Killing vector

Consider a gravitational theory with arbitrary field content. Define a d-dimensional

manifold Vd with metric gµν which exhibits some isometry

(Lξg)µν = 2∇(µξν) = 0 (4.1)

with respect to a Killing vector ξ. We can define a (d− 1)-dimensional hypersurface

Vd−1 in Vd where objects Tµ1...µp
ν1...νq are defined to live on Vd−1 if they satisfy

(LξT )µ1...µp
ν1...νq = 0 (4.2a)

ξµsTµ1...µs...µp
ν1...νq = 0 ∀s ∈ {1, . . . , p} (4.2b)

ξνsTµ1...µp
ν1...νs...νq = 0 ∀s ∈ {1, . . . , q}. (4.2c)

The reduced metric on Vd−1 is

γµν = gµν −
1

F
ξµξν F = ξµξµ, (4.3)
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where the norm F , which lives on Vd−1, is required to be non-vanishing throughout

the geometry2 (ξ may be spacelike or timelike). The reduced metric acts in Vd as a

projector on to Vd−1. The derivative on Vd of the Killing vector can be written in

terms of objects on Vd−1 as

∇µξν =
1

F

(
− 1

2(d− 3)!
ξρε̂σ1...σd−3ρµνω

σ1...σd−3 + ξ[ν∇µ]F

)
, (4.4)

where ε̂µ1...µd is the alternating tensor (see app. A), and we have introduced the

twist

ωσ1...σd−3 ≡ ε̂σ1...σd−3αβγξα∇βξγ . (4.5)

which lives on Vd−1.

We can define the unique metric-compatible derivative operator on Vd−1 [222,

p. 257] by

DµT
σ1...σk

ρ1...ρl = γσ1α1
. . . γσkαkγ

β1
ρ1 . . . γ

βl
ρl
γνµ∇νTα1...αk

β1...βl , (4.6)

in terms of which the twist and norm satisfy the following relations which will prove

useful:

Dµ

(
F−3/2ωσ1...σd−4µ

)
= 0 (4.7)

∇[νωµ1...µd−3] = −2ξχε̂χνµ1...µd−3λR
λ
ηξ
η (4.8)

DµDµF =
1

2F
DµFDµF −

1

(d− 3)!F
ωσ1...σd−3ωσ1...σd−3

− 2ξµξνRµν .

(4.9)

In particular, while the twist is not one of the potentials which we use to define our

solution-generating transformations, we will find the necessary potential via (4.8)—

for example, consider vacuum spacetimes where dω = 0 implies ω = dχ.

We can define a reduced determinant of the reduced metric γ as follows. First,

we note that γ has a zero eigenvalue and thus zero determinant

γµνξ
ν = 0 ⇒ det(γµν) = 0. (4.10)

2The results of this formalism may in fact remain valid for null ξ, but we have not verified as
such. For example, in [196], the author presents the (3 + 1)-dimensional case in a manner valid for
null Killing vectors.
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Writing the determinant of a p× p matrix Aab as

det(Aab) =
1

p!
εc1...cpεd1...dpAc1d1 . . . Acpdp , (4.11)

where lower Roman indices here run 1 to p (note that we use the alternating symbol,

rather than the tensor), we can decompose (4.10) to derive

det(g) = Fγξ, (4.12)

where we have defined, for an arbitrary d× d matrix Jµν , a reduced determinant

Jξ ≡
1

(d− 1)!F 2
ξαε

ασ1...σd−1ξβε
βφ1...φd−1Jσ1φ1 . . . Jσd−1φd−1

, (4.13)

which is normalised such that for ξ = ∂0, with xµ = (x0, xa), we have

γξ = det(γab). (4.14)

It is central to our construction that for a given metric γ, twist ω, and norm

F , all living on Vd−1, and satisfying (4.7), in addition to the Killing vector ξ and

reduced metric determinant γξ, we can reconstruct entirely the original metric g (up

to diffeomorphisms) as follows. We can rewrite equation (4.4) in the form

∇[µ(F−1ξν]) = − 1

2(d− 3)!F 2

√
−Fγξ ξρεσ1...σd−3ρµνω

σ1...σd−3 , (4.15)

which has a solution F−1ξµ if the right hand side of (4.15) has vanishing exterior

derivative

∇[η∇µ(F−1ξν]) = − 1

3!(d− 4)!

1

F 1/2
ξδ ε̂δηµνσ1...σd−4

Dλ

(
F−3/2ωσ1...σd−4λ

)
. (4.16)

By contracting with ιξ?, we find that the RHS of (4.16) vanishes if and only if

(4.7) holds. The physical contribution to the gauge freedom in F−1ξµ from (4.15) is

fully constrained by the definition of the norm ξµF−1ξµ = 1. The remaining gauge

freedom

F−1ξµ → F−1ξµ + ∂µz(x
ν) ξµ∂µz = 0 (4.17)

corresponds merely to a coordinate transformation which, in the coordinate frame

where ξ = ∂0 (x0 need not be the time coordinate) is x0 → x0 + z(xµ6=0).
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Curvature and conformal transformations on Vd−1

The Riemann tensor on Vd−1 is defined in terms of a one-form u on Vd−1 by

(γR)µνρ
σuσ = (DµDν −DνDµ)uρ. (4.18)

One can show that the Riemann tensors on Vd and Vd−1 are related by

(γR)µνρ
η = γφ[µγ

σ
ν]γ

β
ρ γ

η
λ

[
Rφσβ

λ +
2

F
γλχ(∇φξβ∇σξχ +∇φξσ∇βξχ)

]
, (4.19)

where we have used the relation [223, p. 100]

∇µ∇νξσ = Rσνµλξ
λ. (4.20)

Substituting the expression (4.4) for the derivative of the Killing vector in to the

Riemann curvature (4.19) on Vd−1, the Ricci tensor on Vd−1 is then

(γR)µρ = (γR)µνρ
ν =

1

2F
DµDρF −

1

4F 2
DρFDµF

+
1

2F 2

1

(d− 3)!
[(d− 3)ωσ1...σd−4

ρωσ1...σd−4µ

− γµρωσ1...σd−3ωσ1...σd−3
] + γσµγ

ν
ρRσν .

(4.21)

We note at this point that all components of the Ricci tensor on Vd are encoded in

the equations (4.8), (4.9), (4.21). With these equations interpreted as equations of

motion for F , ω and γ, one can then reconstruct g from these objects provided the

integrability condition (4.7) is satisfied. That is, these four equations fully determine

the dynamics of the metric g—they are the full metric equations of motion.

It is useful for solution-generating transformations to consider a conformal rescal-

ing of Vd−1 with respect to a scalar κ on Vd−1. Define the space V̂d−1 with metric

and “inverse”

γ̂µν = κγµν (γ̂−1)µν = κ−1γµν Lξκ = 0. (4.22)

where the inverse is defined such that for tensors T on V̂d−1 (equivalently on Vd−1),

γ̂−1γ̂T = T (in particular, γ̂µν = κ2(γ̂−1)µν). If we write the covariant derivatives

on Vd−1 and V̂d−1 (acting on a objects on these spaces) as

Dµuλ = ∂µuλ − (γΓ)ρµλuρ (4.23)

D̂µuλ = ∂µuλ − (γ̂Γ)ρµλuρ (4.24)
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respectively, we can use metric compatibility on Vd−1: Dµγνρ = 0, and demand

metric compatibility on V̂d−1: D̂µγ̂νρ = 0 to determine(
(γ̂Γ)σρν − (γΓ)σρν

)
γλσ = −1

2
γλµ (γνρ∂µ lnκ− γνµ∂ρ lnκ− γµρ∂ν lnκ) . (4.25)

This is sufficient to relate the Ricci tensors on V̂d−1 and Vd−1 by

(γ̂R)µρ = (γR)µρ −
1

2
γµργ

σν

[
D̂σD̂ν lnκ− 1

2
(d− 3)D̂σ lnκD̂ν lnκ

]
− 1

2
(d− 3)D̂µD̂ρ lnκ− 1

4
(d− 3)D̂µ lnκD̂ρ lnκ.

(4.26)

4.2 Solution-generating symmetries from an effective

action

We look now to construct solution-generating transformations deriving from isome-

tries, which preserve the conformally rescaled reduced metric γ̂. Transformed quan-

tities will be denoted with primes. Suppose the full equations of motion of the theory

can be recovered by variation of an action∫
V̂d−1

√
|γ̂ξ|

(
γ̂R+ Lp

)
where δγ̂ξ = γ̂µνδ(γ̂

−1)µν , (4.27)

we define γ̂R =
(
γ̂−1

)µν (γ̂R)
µν

, and Lp denotes all contributions from remaining

fields, both metric and non-metric.

That Lp is the only part of the action that transforms is seen as follows. Firstly,

the scalar curvature γ̂R is conserved. That the reduced determinant γ̂ξ is invariant

is shown as follows. Expanding γ̂′ = γ̂, the transformed metric g′ is

g′µν =
κ

κ′
gµν −

κ

κ′
1

F
ξµξν +

1

F ′
ξ′µξ
′
ν , (4.28)

where ξ′µ ≡ ξνg′µν . We can then use the following equation valid for any invertible

d× d symmetric matrix Mij [196]

det(a1Mij + a2bibj + a3cicj) = ad−2
1 det(Mij)

[
(a1 + a2b

2)(a1 + a3c
2)− a2a3(b · c)2

]
b2 ≡ bibj(M−1)ij c2 ≡ cicj(M−1)ij b · c ≡ bicj(M−1)ij , (4.29)

where a1 6= 0, a2 and a3 are all real constants and bi, ci are arbitrary d-column
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vectors. Applying (4.29) to (4.28) we find

(κ′)d−1

F ′
det(g′) =

κd−1

F
det(g), (4.30)

or, using (4.12) and γ̂ξ = κd−1γξ from (4.13), we arrive at our result

γ̂′ξ = γ̂ξ. (4.31)

Invariance transformations of Lp can in simple cases be found by observation or com-

parison with previous known results. However, in the case Lp forms a scalar sigma

model, [195] developed a methodical procedure to find all resulting transformations.

Suppose all potentials are given by N scalars ϕA, A = 1, . . . , N , and their con-

tribution to the action (4.27) can be written

Lp = GAB(ϕC)(γ̂−1)µν∂µϕ
A∂νϕ

B, (4.32)

where det(GAB) 6= 0. One can consider the object GAB as a metric on a potential

space with coordinates ϕA, whose line element is

GAB(ϕC)dϕAdϕB. (4.33)

Infinitesimal invariance transformations of Lp are then generated by m Killing vec-

tors Φ(m) = Φ(m)A∂/∂ϕA on this potential space satisfying

(LΦG)AB = 0, (4.34)

as

ϕA → ϕA + λ(m)Φ(m)A, (4.35)

for infinitesimal parameters λ(m). Finite transformations can be found by exponen-

tiation, while discrete transformations can be derived by taking appropriate limits

of the finite continuous transformations.

4.2.1 An example: (3 + 1)-d vacuum Einstein gravity with an isom-

etry

It will be instructive for our exploration of solution-generating transformations in su-

pergravity to briefly review the corresponding transformations in (3+1)-dimensional
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vacuum Einstein gravity. The Einstein equations

Rµν = 0 (4.36)

can be reduced in the presence of a Killing vector ξ in terms of the metric Fγ (i.e.

κ = F ) and the scalars F and χ, where ∂µχ = ωµ and the existence of this scalar is

guaranteed by (4.8) in vacuum. The full equations of motion are

(γ̂R)µρ =
1

2F 2
D̂µFD̂ρF +

1

2F 2
D̂ρχD̂µχ (4.37a)

D̂µD̂µχ =
2

F
D̂µFD̂µχ (4.37b)

D̂µD̂µF =
1

F
D̂µFD̂µF −

1

F
D̂µχD̂µχ (4.37c)

where indices are raised with γ̂−1, and can be found by variation of the action∫
V̂d−1

√
−γ̂ξ

[
γ̂R− 1

2F 2

(
D̂µFD̂µF + D̂µχD̂µχ

)]
. (4.38)

Following §4.2, one can then form the potential space line element

dS2 =
1

2F 2
(dF 2 + dχ2), (4.39)

whose Killing vectors generate the transformations with infinitesimal real parameters

k, p, q,

F → F + kFχ+ pF χ→ χ+
1

2
k(χ2 − F 2) + pχ+ q. (4.40)

The finite counterparts are the finite invariance transformations of the (3 + 1)-

dimensional vacuum Einstein equations in the presence of an isometry, which can be

combined into the Möbius map

σ = F + iχ σ → ασ − iβ
iγσ + δ

(
α β

γ δ

)
∈ SL(2,R) (4.41)

for constant α, β, γ, δ.
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4.3 Application to NS-NS supergravity

We now apply our analysis to d-dimensional NS-NS supergravity with equations of

motion

Rµν −
1

4
Hµ

σρHνσρ + 2∇µ∇νφ = 0 (4.42a)

d ? (e−2φH) = 0 (4.42b)

H ∧ ?H − e2φd ? de−2φ = 0, (4.42c)

and Bianchi identity

dH = 0, (4.43)

for the case that the field content satisfies3

LξH = 0 Lξφ = 0 Lξg = 0. (4.44)

We begin by constructing the potentials of theory, then proceeding to express the

equations of motion in terms of these potentials. The field strength can be expressed

under an “electric-magnetic” decomposition (see app. A.1)

FH = −
(

(−1)d(ιξ?)
2 + (?ιξ)

2
)
H

= −ιξ ? β − ?ιξ ? α, (4.45)

where the forms

α = ιξH β = (−1)dιξ ? H (4.46)

satisfy

dα = LξH − ιξdH (4.47)

Lξα = ιξLξH (4.48)

dβ = (−1)d(Lξ ? H − ιξd ? H) (4.49)

Lξβ = (−1)dιξLξ ? H. (4.50)

We will refer to α and β as the electric and magnetic contributions respectively, for

3Owing to the gauge freedom in B, we do not require LξB = 0.
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any ξ. Using the equation of motion (4.42b), equation (4.49) becomes

d
(
e−2φβ

)
= (−1)dLξ

(
e−2φ ? H

)
. (4.51)

Thus we have, at least locally, for all (g,H, φ) satisfying the equations of motion and

Bianchi identity, and annihilated by Lξ, that we can write

α = da β = e2φdb, (4.52)

where da and db live on V̂d−1. Additionally, under isometry the exterior derivative

of the twist (4.8) becomes

d
(
e−2φω

)
= −(−1)d4d(a ∧ db), (4.53)

which ensures that we can define a potential χ by

ω = e2φ(dχ− 4(−1)ddb ∧ a). (4.54)

Our potentials are thus (F, χ, φ, a, b).

We now restrict to the scalar potential space, by demanding that all higher

form potentials vanish. There are multiple cases where this is true. These include

static Einstein-dilaton theory in arbitrary dimension, and the magnetic sector of

five-dimensional static NS-NS supergravity (for the latter, we refer the reader to the

closely related analysis [221]).
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4.3.1 Static Einstein-dilaton theory

We first examine static Einstein-dilaton theory in arbitrary dimension, with vanish-

ing H and ω. The equations of motion are (raising indices with γ̂−1)

(γ̂R)µν =
1

2F
D̂µD̂ρF −

1

4F
γ̂µρD̂

σ lnκD̂σF +
1

2F
D̂(µ lnκD̂ρ)F −

1

4F 2
D̂µFD̂ρF

− 2D̂µD̂ρφ+ γ̂µρD̂
σ lnκD̂σφ− 2D̂(µ lnκD̂ρ)φ

− 1

2
γ̂µρ

(
D̂σD̂σ lnκ− 1

2
(d− 3)D̂σ lnκD̂σ lnκ

)
− 1

2
(d− 3)D̂µD̂ρ lnκ− 1

4
(d− 3)D̂µ lnκD̂ρ lnκ

(4.55a)

D̂µD̂µF =
1

2F
D̂µFD̂µF + 2D̂µFD̂µφ+

1

2
(d− 3)D̂µ lnκD̂µF (4.55b)

D̂µD̂µφ = 2D̂µφD̂µφ−
1

F
D̂µFD̂µφ+

1

2
(d− 3)D̂µ lnκD̂µφ. (4.55c)

We employ the conformal rescaling4

κ =
(
|F |e−4φ

)1/(d−3)
, (4.56)

where the equations of motion simplify to

(γ̂R)µν =
1

4F 2
D̂µFD̂ρF +

1

d− 3

[
1

4F 2
D̂µFD̂ρF −

2

F
D̂(µ lnκD̂ρ)F − 4D̂µφD̂ρφ

]
(4.57a)

D̂µD̂µF =
1

F
D̂µFD̂µF (4.57b)

D̂µD̂µφ = 0, (4.57c)

which can be derived by variation of the following action with potentials F , κ∫
V̂d−1

√
|γ̂ξ|

[
γ̂R−

(
γ̂−1

)µν ( 1

4F 2
D̂µFD̂νF +

d− 3

4κ2
D̂µκD̂νκ

)]
. (4.58)

4This is chosen as it is a simple example—in particular to render the equations of motion first
order in derivatives. It would be interesting to find if other rescalings allowed different symmetry
groups.
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This action exhibits a Z2 × R× Z2 × R invariance group with finite generators

F → 1

F
& φ→ φ− 1

2
ln |F | (4.59a)

F → qF & φ→ φ q ∈ R (4.59b)

F → F & φ→ −φ+
1

2
ln |F | (4.59c)

F → F & φ→ φ− p p ∈ R (4.59d)

for constant p and q.

4.3.2 5-d static magnetic NS-NS supergravity

Here we consider the magnetic sector of static five-dimensional supergravity, where

α and ω vanish. The equations of motion are

(γ̂R)µν =
1

2F
D̂µD̂ρF −

1

4F
γ̂µρD̂

σ lnκD̂σF +
1

2F
D̂(µ lnκD̂ρ)F −

1

4F 2
D̂µFD̂ρF

+
e4φ

F

(
D̂µbD̂ρb− γ̂µρD̂σbD̂σb

)
− 2

(
D̂µD̂ρφ−

1

2

(
γ̂µρD̂

σ lnκD̂σφ− 2D̂(µ lnκD̂ρ)φ
))

− 1

2
γ̂µρ

(
D̂σD̂σ lnκ− D̂σ lnκD̂σ lnκ

)
− D̂µD̂ρ lnκ− 1

2
D̂µ lnκD̂ρ lnκ

(4.60a)

D̂µD̂µF = D̂µ lnκD̂µF +
1

2F
D̂µFD̂µF + 2D̂µFD̂

µφ (4.60b)

D̂µD̂µφ = D̂µ lnκD̂µφ+ 2D̂µφD̂µφ−
1

2F
D̂µFD̂µφ+

e4φ

2F
D̂µbD̂µb (4.60c)

D̂µD̂µb = D̂µ lnκD̂µb+
1

2F
D̂µFD̂µb− 2D̂µφD̂µb. (4.60d)

We employ the conformal factor (4.56)

κ = |F |1/2e−2φ, (4.61)
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where the equations of motion become

(γ̂R)µν =
3

8F 2
D̂µFD̂ρF + 2D̂µφD̂ρφ−

1

F
D̂(µφD̂ρ)F +

e4φ

2F
D̂µbD̂ρb (4.62a)

D̂µD̂µF =
1

F
D̂µFD̂µF (4.62b)

D̂µD̂µφ =
e4φ

2F
D̂µbD̂µb (4.62c)

D̂µD̂µb =
1

F
D̂µFD̂µb− 4D̂µφD̂µb, (4.62d)

which can be derived by variation of an action, here written in terms of κ (as (4.61)),

F and b, as∫
V̂d−1

√
|γ̂ξ|

[
γ̂R−

(
γ̂−1

)µν ( 1

4F 2
D̂µFD̂νF +

1

2κ2
D̂µκD̂νκ+

1

κ2
D̂µbD̂νb

)]
.

(4.63)

This action exhibits an SL(2,R)× Z2 × R invariance group with finite generators

F → 1

F
& φ→ φ− 1

2
ln |F | (4.64a)

F → qF & φ→ φ− 1

4
ln |q| q ∈ R (4.64b)

σ → ασ − iβ
iγσ + δ

(
α β

γ δ

)
∈ SL(2,R) σ = |F |1/2e−2φ + ib. (4.64c)

for constant q, α, β, γ and δ.

4.4 Extension to double field theory

In this section, we offer a few thoughts on extensions of the solution-generating

techniques presented in this chapter to DFT. We will use the coordinate notation

XM = (xµ, x̃µ̄) throughout. To do this, we will take inspiration from our analysis of

Einstein-dilaton theory and static magnetic five-dimensional NS-NS supergravity in

§4.3. It is the generalised metric H which is dynamical, and not the metric η which

defines inner products, so it is the former, along with the DFT dilaton, that we will

generate solutions of. We will choose an isometry ∂0 = 0, here with respect to a

generalised vector V = ∂0 with Killing equations

∂0HMN = 0 ∂0d = 0. (4.65)
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We begin by noting that vanishing α and ω implies, for a given gauge of B,

B0m = g0m = 0. (4.66)

This can be seen from the DFT perspective as some kind of staticity requirement on

the generalised metric with respect to X0 = x0, that

H0M = δ0
MH00 H0̄M = δ0̄

MH0̄0̄. (4.67)

With regard to solution-generating techniques, one can easily see that preserving

a reduced metric orthogonal to ∂0 (as we did in supergravity) would be far too

restrictive: all of the metric data is contained within this choice of reduced metric,

and so preserving it allows only the dilaton to transform. Which quantity is it then

that we wish to preserve? In our analysis of 5-d static magnetic supergravity, which

can be found from DFT in the supergravity frame, where one imposes the section

condition ∂̃µ̄ = 0, we preserved a conformally rescaled metric proportional to the

Hm̄n̄ part of the generalised metric. Perhaps a natural generalisation is as follows

• Solve the section condition by requiring the fields depend on spacetime coor-

dinates Xs, where s runs over some d of (1, . . . , 2d).

• Determine the metric components along these Xs directions, but excluding the

direction of the isometry (and its dual).

• Preserve a conformal rescaling of these components.

For example, we could have

1. For Killing vector ∂0 and section ∂̃µ̄ = 0, we preserve ∝ Hm̄n̄

2. For Killing vector ∂̃0̄ and section ∂µ = 0, we preserve ∝ Hmn .

We note however that since the metric is not an arbitrary symmetric object, but takes

a coset form, there will be other metric components which must also be preserved by

this transformation. It remains unclear how we determine which other components to

preserve in general, and how precisely we do this. However, we circumvent this issue

here by studying the simple case of vanishing two-form field (equivalently zero Hmn̄),

corresponding to O(d, d,R)-covariant Einstein-dilaton theory, where the procedure

becomes quite straightforward.
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We will impose the supergravity frame. Recalling that the metric is static (see

(4.67)) with respect to x0, it takes the diagonal form

H = diag(H00, Hmn, H0̄0̄, Hm̄n̄). (4.68)

We will look for transformations which preserve a conformal rescaling of the metric

components Hmn. From the coset form of the metric, we can determine that this

must also preserve appropriate rescalings of Hm̄n̄, Hmn and Hm̄n̄.

The equations of motion which do not vanish identically are

R = 0 (4.69a)

K00 = (H 0̄0̄)2K0̄0̄ (4.69b)

Kmn = Hmrη
rs̄Hnlη

lūKs̄ū (4.69c)

where R and the non-vanishing components of K are written explicitly as

R =
1

4
Hmn∂mH

qr∂nHqr −
1

2
Hmn∂mH

ql∂qHnl

+ 4Hmn∂m∂nd− ∂m∂nHmn − 4Hmn∂md∂nd+ 4∂mH
mn∂nd

+
1

8
Hmn

(
∂mH

00∂nH00 + ∂mH
0̄0̄∂nH0̄0̄

)
(4.70a)

K00 =
1

4
HmnH00∂mH00∂nH00 −

1

4
(∂l − 2∂ld)(H lk∂kH00) (4.70b)

K0̄0̄ =
1

4
HmnH 0̄0̄∂mH0̄0̄∂nH0̄0̄ −

1

4
(∂l − 2∂ld)(H lk∂kH0̄0̄) (4.70c)

Kmn =
1

8

(
∂mH

00∂nH00 + ∂mH
0̄0̄∂nH0̄0̄

)
+

1

8
∂mH

qr∂nHqr +
1

8
∂mH

q̄r̄∂nHq̄r̄

− 1

2
HrsHql∂lHrm∂sHnq +

1

4
HrsHql∂rHqm∂sHnl

1

4
(∂l − 2∂ld)[H lq(4∂(mHn)q − ∂qHmn)] + 2∂m∂nd

(4.70d)

Km̄n̄ =
1

4
HrsH l̄q̄∂rHl̄m̄∂sHn̄q̄ −

1

4
(∂l − 2∂ld)(H lq∂qHm̄n̄). (4.70e)

Noting that H 0̄0̄ = 1/H00 = H00 = 1/H0̄0̄, and fixing d and Hmn etc. (employing

a trivial conformal rescaling of 1), the equations are clearly invariant under the
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transformations

H00 → 1/H00 (4.71a)

H00 → qH00 q ∈ R. (4.71b)

So that we may compare this with the Einstein-dilaton analysis of §4.3.1, we note

the relations

γmn = Hmn, F = H00, κd−3 =
1

|γξ|
e−4d. (4.72)

From these equalities, we see that fixed d and Hmn corresponds to fixed κ, and that

(4.71) are the Z2 × R transformations (4.59a) and (4.59b). The first constitutes

a T-duality transformation, while the second a trivial coordinate rescaling. The

remaining symmetries in (4.59) are not manifest, since they do not belong to T-

duality. Retrieving these, and any further possible invariance transformations from

these equations, are avenues for future research. It would indeed be interesting to see

more general constructions for finding solution-generating symmetries in DFT, per-

haps utilising the constructions of DFT covariant derivatives and curvature tensors

in [69–74].



Chapter 5

Solution-generating

transformations in the

fluid/gravity correspondence

5.1 Hydrodynamics

The study of hydrodynamics is fundamental to vast areas of physics and engineer-

ing, owing to its origin as the long-wavelength limit of any interacting field theory at

finite temperature. Such a limit needs a consistent definition. Consider a quantum

field theory where quanta interact with a characteristic length scale `corr, the cor-

relation length. The long-wavelength limit simply requires that fluctuations of the

thermodynamic quantities of the system vary with a length scale L much greater

than `corr, parametrized by the dimensionless Knudsen number

Kn =
`corr

L
. (5.1)

For a fluid description to be useful in non-equilibrium states, we naturally require

that L remain small compared to the size of the system. This is usually satisfied

trivially by considering systems of infinite size.

The long-wavelength limit allows the definition of a particle as an element of the

macroscopic fluid, infinitesimal with respect to the size of the system, yet containing

a sufficiently large number of microscopic quanta. One mole contains an Avogadro’s

number of molecules, for example. Each particle defines a local patch of the fluid

in thermal equilibrium, that is, thermodynamic quantities do not vary within the
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particle. Away from global equilibrium quantities vary between particles as function

of time τ and spatial coordinates xi, combined as xa = (τ, xi). The evolution of

particles in the fluid is parametrized by a relativistic velocity ub(xa), which refers

to the velocity of the fluid at xa. It is well known [224] that the thermodynamic

quantities, such as the temperature T (xa) and the local energy density ρ(xa), are

determined by the value of any two of them, along with the equation of state. The

evolution of the system is then specified by the equations of hydrodynamics in terms

of a set of transport coefficients, whose values depend on the fluid in question.

Fluid flow is in general relativistic in that the systems it describes are constrained

by local Lorentz invariance, and velocities may take any physical values below the

speed of light. Applications at relativistic velocities are multitudinous: the dust

clouds in galaxy and star formation; the flow of plasmas and gases in stars supporting

fusion; the superfluid cores of neutron stars; the near-horizon dynamics of black

holes are all described by hydrodynamics. Modelling black holes (and black branes

in M/string theory) with hydrodynamics has now developed into a fundamental

correspondence of central importance to our present study, as discussed in §5.2.

Quark-gluon plasmas behave as nearly ideal fluids and are expected to have formed

after the inflationary epoch of the big bang, and are reproduced in collisions at

the RHIC and LHC. Non-relativistic fluids are equally ubiquitous, somewhat more

familiar, and constitute an endless list of phenomena from the atmosphere to the

oceans.

5.1.1 The fluid equations

We begin with a discussion, adapted from [176], of the relativistic fluid described by

the stress energy tensor T ab and a set of conserved currents JaI where I indexes the

corresponding conserved charge. The dynamical equations of the (d− 1)-spacetime

dimensional fluid are

∇aT ab = 0 (5.2a)

∇aJaI = 0 . (5.2b)



solution-generating transformations
in the fluid/gravity correspondence 64

For an ideal fluid, with no dissipation, the energy-momentum tensor and currents

may be expressed in a local rest frame in the form

T ab = ρuaub + p(gab + uaub) (5.3a)

JaI = qIu
a (5.3b)

where p is the pressure, qI are the conserved charges and gab is the metric of the

space on which the fluid propagates. The velocity is normalised to uaua = −1.

The entropy current is given by (5.3b) with the charge q being given by the local en-

tropy density. The conservation of the entropy current illustrates the non-dissipative

nature intrinsic to zero entropy production.

In a dissipative fluid, there are corrections to (5.3). We must first take into

account the interrelation between mass and energy to define the velocity field more

rigorously. This is achieved by using the Landau gauge, which requires that the

velocity be an eigenvector of the stress-energy tensor with eigenvalue the local energy

density of the fluid. This is satisfied when dissipative terms are orthogonal to the

velocity (it is satisfied for the ideal fluid by the normalisation of the velocity). If the

stress energy tensor gains a dissipative term Πab, and the current a term Υa
I , this

reads

Πabua = 0 Υa
Iua = 0. (5.4)

Dissipative corrections to the stress tensor are constructed in a derivative expansion

of the velocity field and thermodynamic variables, where derivatives implicitly scale

with the infinitesimal Knudsen number (5.1). Recalling that the equations of motion

for the ideal fluid are composed of relations between these gradients, we may express

Πab purely in terms of the derivative of the velocity. This can be iterated to all

orders in the expansion (except when charges are present in which case this is only

true to to first order). Now, the derivative of the velocity may be decomposed

using the acceleration Aa, divergence ϑ, a symmetric traceless shear σab, and the

antisymmetric vorticity wab into the form

∇bua = −Aaub + σab + wab +
1

d− 2
ϑP ab, (5.5)
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where

ϑ = ∇aua (5.6)

Aa = ub∇bua (5.7)

σab = P acP bd∇(cud) −
1

d− 2
θP ab (5.8)

wab = P bcP ad∇[cud]. (5.9)

and P ab = gab+uaub is a projection operator on to spatial directions. In the Landau

frame, only the divergence and shear can contribute to the first-order stress-energy

tensor. A similar analysis for the charge current retains the acceleration, and if one

includes the parity-violating pseudo-vector contribution

`a = ε̂bcd
aub∇cud, (5.10)

the leading order dissipative equations of motion for a relativistic fluid are (5.2) with

T ab = ρuaub + pP ab − 2ησab − ζϑP ab (5.11a)

JaI = qIu
a − χIJP ab∇bqJ −ΘI`

a − γIP ab∇bT, (5.11b)

where η and ζ are the shear1 and bulk viscosities respectively, χIJ is the matrix of

charge diffusion coefficients, γI indicates the contribution of the temperature gra-

dients and ΘI the pseudo-vector transport coefficients. The transport coefficients

have been calculated in the weakly coupled QFT in perturbation theory, whereas in

the strongly coupled theory, a dual holographic description may be employed, see

e.g. [129].

5.1.2 Non-relativistic Navier-Stokes fluids

We now take the non-relativistic limit, defined by long distances, long times and

low velocity and pressure amplitudes, of the relativistic fluid on a spacetime lightly

perturbed in the following manner [131]. Consider an arbitrary perturbation

Gab = gab +Hab (5.12)

1We use the traditional notation of [128, 131, 224] rather than that of [182, 183]. We introduce
the kinematical viscosity ν in §5.1.2.
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of the background metric

gabdx
adxb = −dτ2 + gijdx

idxj (5.13)

(this form is purely a choice of coordinate system for a large class of metrics), where

Hττ = ε2hττ (ε2τ, εxi)

Hτi = εâi(ε
2τ, εxi)

Hij = ε2hij(ε
2τ, εxi),

(5.14)

for infinitesimal scaling parameter ε. Treating the fluid on Gab as an effective forced

flow of that on gab, whilst preserving the normalisation uau
a = −1, the velocity

ua =
1√

1− gijV iV j
(1, V i), (5.15)

density and pressure may be expanded about an equilibrium configuration (ρ0, V
i

0 , p0)

of a stationary, uniform fluid at rest2, as

V i = εvi(ε2τ, εxi)

p− p0

ρ0 + p0
= ε2pe(ε

2τ, εxi).
(5.16)

The scaling of the density is fixed by the equation of state. The scaling of time τ and

space xi are implicit: time and space derivatives acting on the velocity and pressure

will draw out, via the chain rule, the corresponding power of ε. In this limit, the

temporal component of the relativistic Navier-Stokes equations becomes

∇aT aτ = ε2(ρ0 + p0)∇ivi +O(ε4), (5.17)

where∇i is the covariant derivative with respect to the spatial metric gij . Separating

the gauge field âi into its pure curl and divergence parts

âi = ai +∇iχ, (5.18)

2We assume the background allows such stationary, uniform solutions. In particular, one would
not expect generic non-static metrics gab to allow stationary fluid solutions. On the other hand,
stationary, uniform solutions will of course exist in flat space, for example.
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such that ∇iai = 0, and defining an effective pressure

P = pe −
1

2
hττ +

∂χ

∂τ
, (5.19)

the spatial components yield

∇aT ai =ε3(ρ0 + p0)[∇iP + ∂τvi + vj∇jvi − ν(∇j∇jvi +Rijv
j)

+ ∂τai + vjfji] +O(ε5),
(5.20)

where

ν = η/(ρ0 + p0) (5.21)

is the kinematical viscosity, fij ≡ ∂iaj − ∂jai is the field strength of ai (equivalently

âi) and Rij is the Ricci tensor of gij . If a fluid carries conserved charges, equation

(5.2b) will also yield incompressibility (5.17). Taking the hydrodynamic limit ε→ 0,

these give the non-relativistic incompressible Navier-Stokes (INS)3 equations with a

forcing function due to an external electromagnetic field,

∂τvi − ν(∂2vi +Rijv
j) + ∂iP + vj∂jvi = −∂τai − vjfji (5.22a)

∂iv
i = 0. (5.22b)

Ideal fluids are described by Euler’s equations, obtained by setting ν = 0. We will

mostly be concerned with fluid flow on flat space (Rij = 0) in the absence of external

forces, where Hab, thus ai, are zero.

5.1.3 Open problems in the Navier-Stokes equations

Despite extensive and successful application in physics and engineering, and two

hundred years of intense mathematical study, the Navier-Stokes equations still ob-

scure a great number of secrets. In particular, the questions of existence, uniqueness

and regularity, see [225].

Consider a solution vj(τ, xi), P (τ, xi) ∈ C∞(Rd) to the incompressible Navier-

Stokes equations in some domain Γ ∈ Rd, initially at time τ = τ0. Existence refers

to the condition that the kinetic energy v2/2 remains bounded for all time. In fact,

we expect for finite mean dissipation, solutions to decay to equilibrium for τ →∞.

Uniqueness refers to the question of whether vj(τ, xi) is uniquely determined by

3INS will refer to the non-relativistic incompressible Navier-Stokes equations without forcing
terms, i.e. when ai = 0 in (5.22).
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vj(τ0, x
i) for all τ ≥ τ0, and regularity is concerned with, for an isolated system, the

most general conditions for smooth solutions to exist, which may be expressed in

terms of the mean-square of the vorticity ωij = ∂ivj − ∂jvi, as whether

∫ τ1≥τ0

τ0

dτ

[∫
Γ
|ω(τ, xi)|2

]2

<∞. (5.23)

For d = 2, the vorticity is self-parallel, and resulting conservation laws fix the vor-

ticity to remain finite, so solutions are smooth. Moreover, it is known that solutions

are unique [226].

5.2 The fluid/gravity correspondence

In 1974, Damour [227], and later in 1986, Thorne et al. [228], considered an observer

outside a black hole, interacting with (perturbing) the event horizon. Surprisingly,

they found that the observer will experience perturbations of the “stretched” horizon

(no observer can exist at the horizon itself) described by modes of a viscous fluid

possessing electric charge and conductivity. While this model is just that, a model,

it did inspire investigation into whether a more concrete correspondence could be

found. This began when Policastro et al. [125] related the shear viscosity of N = 4

super Yang-Mills theory to the absorption of energy by a black brane (a further set of

coefficients were subsequently similarly derived in [129]). This was carried out in the

context of the anti-de Sitter/conformal field theory correspondence, an equivalence

between a theory of gravity in anti-de Sitter space and a conformal field theory in

one dimension less [124].

This signalled a major emergence in holography, the correspondence between

gravitational theories on d-dimensional manifolds and (d− 1)-dimensional quantum

field theories dual to the the dynamics on a hypersurface within. The correspondence

holds independent of the coupling of the QFT, though in the strong coupling limit,

the gravitational dual becomes classical. Motion of the hypersurface along the bulk

dimension parametrizes the renormalisation group (RG) flow, or energy scaling of

the dual QFT.

What was now understood was that this holographic correspondence can be

viewed in the long-wavelength limit of the dual QFT, where one recovers a dual

hydrodynamics. In particular, the long-wavelength limit can be expressed as the set

of hydrodynamic solutions varying slowly on a scale set by the extrinsic curvature

of the hypersurface. This motivated what is now known as the fluid/gravity corre-
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spondence. The gravitational dual to the thermal state is given by the structure of

the spacetime, for example in AdS space by an AdS black hole. As one expects from

the UV/IR connection [229], where infrared effects in the bulk emerge as ultravio-

let effects in the boundary theory, the relativistic hydrodynamics of perturbations

about this thermal state determine the bulk gravity solution in a gradient expansion

off the hypersurface. The corresponding metric construction was developed initially

in [178].

5.2.1 The Navier-Stokes fluid on a Rindler boundary

A metric dual to the INS equations was first developed in [182] on the Rindler wedge,

up to third order in the non-relativistic, small amplitude expansion detailed later in

this section. An algorithm for generalising this metric to all orders was subsequently

developed in [183], though terms calculated beyond third order are not universal.

They receive corrections from quadratic curvature in Gauss-Bonnet gravity [184].

The construction of general metrics dual to relativistic fluids is set up in [181]. We

summarise the construction in [183] here.

Consider the (d− 1)-dimensional surface Σc with induced metric

yabdx
adxb = −rcdτ2 + dxidx

i, (5.24)

where the parameter rc is an arbitrary constant. One metric embedding this surface

is

ds2 = −rdτ2 + 2dτdr + dxidx
i, (5.25)

which describes flat space (fig. 5.1) in ingoing Rindler coordinates xµ = (τ, xi, r),

defined in terms of the Cartesian chart (t, xi, z) by

z2 − t2 = 4r z + t = eτ/2. (5.26)

The hypersurface Σc is defined by r = rc where r is the coordinate into the bulk. Al-

lowing for a family of equilibrium configurations, consider diffeomorphisms satisfying

the three conditions

i) The induced metric on the hypersurface Σc takes the form (5.24).

ii) The stress tensor on Σc describes a perfect fluid.

iii) Diffeomorphisms return metrics stationary and homogeneous in (τ, xi).
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H+

H-

Σc

Figure 5.1: The past H− and
future H+ horizons define the
boundary of the Rindler wedge.
Grey lines demonstrate lines
of constant r (curved) and τ
(straight). Long-wavelength
perturbations of the hypersur-
face Σc are described by the
equations of hydrodynamics
(image from [152]).

The allowed set is given by the following boost, shift and rescaling of xµ. First, a

constant boost βi,

√
rcτ → γ(

√
rcτ − βixi), xi → xi − γβi

√
rcτ + (γ − 1)

βiβj
β2

xj , (5.27)

where γ = (1− β2)−1/2 and βi ≡ rc−1/2vi. Second, a shift in r and a rescaling of τ ,

r → r − rh, τ → (1− rh/rc)−1/2τ. (5.28)

These yield the flat space metric in rather complicated coordinates,

ds2 =
dτ2

1− v2/rc

(
v2 − r − rh

1− rh/rc

)
− 2γ√

1− rh/rc
dτdr − 2γvi

rc
√

1− rh/rc
dxidr

+
2vi

1− v2/rc

(
r − rc
rc − rh

)
dxidτ +

(
δij −

vivj
r2
c (1− v2/rc)

(
r − rc

1− rh/rc

))
dxidxj .

(5.29)

The Brown-York stress tensor on Σc (in units where 16πG = 1) is given by

Tab = 2(Kyab −Kab), (5.30)
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where

Kab =
1

2
(Lny)ab, K = Ka

a, (5.31)

are the extrinsic curvature and its mean, and nµ is the spacelike unit normal to the

hypersurface.

By imposing that the Brown-York stress tensor on Σc gives that of the stress-

energy tensor of a fluid we can identify the parameters of the metric (5.29) with the

density ρ, pressure p and four-velocity ua of a fluid, as follows:

ρ = 0, p =
1√

rc − rh
, ua =

1√
rc − v2

(1, vi). (5.32)

The Hamiltonian constraint

Rµνn
µnν = 0 (5.33)

on Σc yields a constraint on the Brown-York stress tensor

(d+ 2)TabT
ab = (T aa )2. (5.34)

When this constraint is applied to the equilibrium configurations described above,

one finds the equation of state is ρ = 0 (as above), or ρ = −2(d+ 2)(d+ 1)p which

occurs for a fluid on the Taub geometry [180].

Promoting vi and p to slowly varying functions of the coordinates xa, and re-

garding vi(xa) and p = r
−1/2
c + r

−3/2
c P (xa) as small perturbations scaling as

vi ∼ ε, P ∼ ε2, (5.35)

about equilibrium, yields the metric

ds2 =− rdτ2 + 2dτdr + dxidxi

− 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc

dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2 + 2P

rc

)
dτdr +O(ε3)

(5.36)

which satisfies the Einstein’s equations toO(ε2) if vi satisfies incompressibility, ∂iv
i =

O(ε3). Corrections appear in powers of ε2, so this is the complete metric to second

order.
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The metric may now be built up order by order in the hydrodynamic scaling.

Assume one has the metric at order εn−1, where the first non-vanishing component

R̂
(n)
µν of the Ricci tensor appears at order n. By adding a correction term g

(n)
µν to the

metric at order n, resulting in a shift in the Ricci tensor δR
(n)
µν , we can ensure the

vanishing of the Ricci tensor is guaranteed to order n if

R̂(n)
µν + δR(n)

µν = 0. (5.37)

Recalling that, in the hydrodynamic scaling, derivatives scale as

∂r ∼ ε0, ∂i ∼ ε1, ∂τ ∼ ε2, (5.38)

one sees that corrections δR
(n)
µν at order n will appear only as r derivatives of g

(n)
µν . It

is shown in [183] that, using the Bianchi identity and the Gauss-Codacci relations,

integrability of the set of differential equations (5.37) defining δR
(n)
µν in terms of g

(n)
µν

is given by imposing the momentum constraint, equivalent to the conservation of

the stress tensor on Σc,

Raµn
µ = ∇aT ab|(n)

Σc
= 0, (5.39)

which is precisely the fluid equations of motion, to order n.

The perturbation scheme contains several degrees of freedom. The gauge freedom

of the infinitesimal perturbations

g(n)
µν → g(n)

µν + ∂µϕ
(n)
ν + ∂νϕ

(n)
µ (5.40)

for some arbitrary vector ϕµ(n)(τ, ~x, r) at order εn, which may be fixed by demanding

that grµ is that of the seed metric to all orders in ε. The xa-dependent functions of

integration from equation (5.37) may be fixed by imposing the boundary form (5.24)

of the metric on Σc, and also requiring regularity of the metric at r = 0, which in

this construction translates to the absence of logarithmic terms in r. Corrections to
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the bulk metric under these conditions then become

g(n)
rµ =0

g(n)
ττ =(1− r/rc)F (n)

τ (xa) +

∫ rc

r
dr′
∫ rc

r′
dr′′(R̂

(n)
ii − rR̂

(n)
rr − 2R̂(n)

rτ )

g
(n)
τi =(1− r/rc)F (n)

i (xa)− 2

∫ rc

r
dr′
∫ rc

r′
dr′′R̂

(n)
ri

g
(n)
ij =− 2

∫ rc

r
dr′

1

r′

∫ r′

0
dr′′R̂

(n)
ij ,

(5.41)

where the F
(n)
a (xb) comprise of the remaining integration functions, and the final

degree of freedom; field redefinitions δv
(n)
i and δP (n) at order εn. F

(n)
i is related

to redefinitions of the fluid velocity and is fixed by the isotropic gauge condition

P baTbcu
c = 0. F

(n)
τ is related to redefinitions of the pressure and is fixed by defining

the isotropic part of Tij to be

T isotropic
ij =

(
1
√
rc

+
P

r
3/2
c

)
δij (5.42)

to all orders.

Applying the perturbation scheme to the seed metric yields to third order

ds2 =− rdτ2 + 2dτdr + dxidxi − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc

dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2 + 2P

rc

)
dτdr

−
[

(r2 − r2
c )

rc
∂2vi +

(
1− r

rc

)(
v2 + 2P

rc

)
vi

]
dxidτ +O(ε4),

(5.43)

which satisfies the vacuum Einstein equations if

r3/2
c ∇aTai|Σc = ∂τvi − rc∂2vi + ∂iP + vj∂jvi = O(ε5), (5.44)

which are the Navier-Stokes equations with kinematical viscosity

ν = rc. (5.45)

We will refer to (5.43) as the fluid metric, not to be confused with the metric (5.24)

of the space on which the fluid evolves.
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Higher order corrections to the Navier-Stokes equations follow from conservation

of the stress tensor on Σc. Vector and scalar quantities are at odd and even orders

respectively in the scaling ε. Accordingly, corrections to the scalar incompressibility

equation appear at even orders, and to the vector Navier-Stokes equations at odd

orders.

5.3 Duality in the context of holography

The defining equations in general relativity are the Einstein field equations, and

in the non-relativistic limit of hydrodynamics, the Navier-Stokes equations (5.22).

Each is a set of non-linear partial differential equations whose solutions exhibit fan-

tastically varied phenomenology. When approaching any complex physical system

with a view to finding solutions, it is often advantageous to consider the symmetries,

intensively studied in both of these systems since their conceptions. Beyond diffeo-

morphisms, the search in gravity has in general been somewhat limited [223, 230],

however in the presence of a spacetime isometry, the symmetry group becomes re-

markably large [231], particularly for vacuum spacetimes. For symmetries of the

Navier-Stokes equations see [232], and with regards to the conformal group [131,233].

In light of the fluid/gravity correspondence, one may ask whether the symmetries of

these systems are linked.

In [234–241], the authors apply known symmetries of the Einstein equations to

spacetimes with perfect fluid sources in the presence of one or two Killing vectors,

constructing new spacetimes with fluids possessing the same equation of state. Our

approach will differ from theirs in that the fluid we will consider is no longer a

perfect fluid evolving in the d-dimensional bulk spacetime, but is a holographically

dual dissipative fluid on a flat (d− 1)-dimensional hypersurface. Meanwhile, rather

than employing the symmetries of Einstein gravity with a perfect fluid source, we

will employ invariance transformations of the vacuum Einstein equations and holo-

graphically project these to the dual fluid to find invariance transformations of the

Navier-Stokes fluid. It is in this way that we look for dualities between solutions to

the Navier-Stokes equations arising from dualities between solutions to the vacuum

Einstein equations: dual metrics yield dual fluid configurations.

To do this, we will will impose an isometry on the fluid metric, and then act on

the metric with the generalised Ehlers group defined in terms of this isometry, which

does not in general generate vacuum metrics from vacuum metrics, but does contain

such transformations. At the same time, we will preserve certain aspects of the
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fluid metric (5.43) such as the embedded flat background on which the fluid evolves.

Despite the fact that we will not have explicitly demanded that the transformed

metric is vacuum, we will find that it is regardless, and that no additional constraints

are required for the transformed fluid to satisfy the incompressible Navier-Stokes

equations. We will discuss this unexpected result in §5.4.5.

5.4 The generalised Ehlers transformation in the

fluid/gravity correspondence

The generalised Ehlers group

We will use a solution-generating technique detailed in [196], which is similar to that

in chapter 4, in that it preserves the conformally rescaled reduced metric Fγ defined

in (4.3), orthogonal to a Killing vector ξ. However, it has the crucial difference that

it allows the use of null Killing vectors. For Killing vector4 ξ = ξµ∂µ and one-form

W = Wµdxµ, the generalised Ehlers transformation is given by

gµν → hµν(ξ,W, g) = Ω2gµν − 2ξ(µWν) +
F

Ω2
WµWν , (5.46)

where Ω2 = 1 + ξµWµ ≥ 1, and the transformation defines a group. As such, the

group does not in general send vacuum metrics to vacuum metrics, but does contain

such transformations.

5.4.1 Introducing the transformed fluid metric ansatz

The Rindler metric (5.43) dual to the incompressible Navier-Stokes fluid is defined

in terms of the fluid velocity, pressure, and the hypersurface position within the

bulk, (vi(x
a), P (xa), rc). Let us consider those transformed metrics h(ξ,W, g) which

have the same functional form as (5.43), but now in terms of a transformed set

(v′i(x
a), P ′(xa), r′c). On satisfying the vacuum Einstein equations on Σ′c, now at

r = r′c in the new geometry, the metric h will yield the incompressible Navier-Stokes

4The generalised Ehlers transformation as a group is actually defined in [196] for any vector ξ.
However, we will in our analysis restrict to the assumption it is a Killing vector. We discuss this
choice in §5.4.5.
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equations in the transformed set

∂iv
′
i = 0 (5.47a)

∂τv
′
i + ∂iP

′ + v′k∂kv
′
i − r′c∂2v′i = 0. (5.47b)

Crucially, if (vi, P ) satisfy the Navier-Stokes equations with viscosity ν = rc, and if

the metric transformation is vacuum to vacuum, the transformed velocity and pres-

sure (v′i, P
′) represent a new set of solutions for viscosity ν = r′c. We will confine

our search for vacuum to vacuum metric transformations to those that lie within the

generalised Ehlers map. Thus, we look for a subset of the generalised Ehlers trans-

formation acting on the fluid metric (5.43), obeying some Killing isometry, which

corresponds to solution-generating transformations of the velocity and pressure, and

RG flow parametrised by rc, of an incompressible Navier-Stokes fluid in arbitrary

dimension.

Now the Rindler metric is just one fluid metric supporting flat background ge-

ometries on the boundary. Rather than demanding we preserve the full form of the

fluid metric, we therefore retain only some common features of such metrics; the

metric gauge gµr, and the flat boundary metric of the form (5.24). This data is

sufficient to define both the fluid to all orders and the background upon which it

evolves. The equation we wish to solve is thus

g(vi, P, rc)µν → h(ξ,W, g)µν = g′(v′i, P
′, r′c)µν , (5.48)

where

g′τr = 1 +
(v′)2 + 2P ′

2r′c
, g′ir = −v

′
i

r′c
, g′rr = 0, (5.49a)

g′ab|r′c = y′ab, where y′ττ = −r′c, y′ai = yai. (5.49b)

5.4.2 Deriving the transformation on the fluid

Equation (5.49) provides us with sufficient information to derive the possible fluid

transformations via the form of the one-form W . The parameters of the transformed

fluid are determined, to all orders in ε, by g′ar = g′ar|r′c . Consequently, the fluid

transformations will be given by the transformation of these components. Evaluation

at r′c is necessary in order to circumvent the ambiguity in the dual metric and provide
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explicit fluid transformations. Before we specialise to the cases of null and non-null

Killing vectors, we note the relations

F

Ω2
Wµ = ξν(gµν − g′µν), (5.50)

F/Ω2 = ξµξνg′µν , (5.51)

valid for all Killing vectors, found by contraction of (5.46) once and twice respectively

with the Killing vector.

Now, for non-null Killing vectors, the transformation (5.46) for the vanishing

components of the metric g′rr = grr = 0 fixes

Wr = 2αξrΩ
2/F where α = 0, 1. (5.52)

Also, one may obtain an expression for Wa by contracting (5.46) with the boundary

indices (a, b, . . .) of the Killing vector5:

Wa =
Ω2ξr(gar − ξaξr/F ) + ξbg′ab
−F/Ω2 + (1− 2α)ξrξr

+
Ω2ξa
F

. (5.53)

Note: this expression is uniquely defined only at the hypersurface Σ′c of the trans-

formed geometry, where we have defined the form of g′ab andWa becomes independent

of the transformed fluid velocity and pressure. We also have

ξa(g′ar − (1− 2α)gar) = 0, (5.54)

derived by comparing (5.50) and (5.52). Inserting Wr (5.52) and Wa (5.53) into the

generalised Ehlers transformation (5.46) and employing (5.54) and (5.51), one finds,

on evaluating at r′c,

g′ar =

[
Fgar + ξr((1− 2α)ξby′ab − ξa)

ξcξdy′cd + (1− 2α)ξrξr

]
r′c

. (5.55)

Meanwhile, for Killing vectors null at r′c: F |r′c = 0, we find (5.50) gives

g′ar = gar +

[
ξb(gab − y′ab)

ξr

]
r′c

, (5.56)

5Here and in what follows ξµ = gµνξ
ν , i.e. indices are raised and lowered with the metric g and

never with g′.
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alongside the requirement the Killing vector remains null in the transformed geom-

etry ξµξνg′µν = 0.

5.4.3 Energy scaling invariance from an isometry into the bulk

We begin with an example of a (null) Killing vector into the bulk, ξ = ξr(xµ)∂r.

The Killing equations require the integrability condition

∂[ivj] = O(ε4), (5.57)

while transformation (5.56) yields g′ar = gar, or

v′i =
r′c
rc
vi

1

2
(v′)2 + P ′ =

r′c
rc

(
1

2
v2 + P

)
, (5.58)

which is exact to all orders in ε. Since rescaling rc allows for renormalisation group

flow of the hypersurface position into the bulk, it is unsurprising that this results in a

rescaling of the fluid energy v2/2+P . That this rescaling is exact to all order appears

however to be non-trivial. If one were to calculate the integrability condition for the

Killing vector order by order in ε, then solutions to these equations along with the

incompressible Navier-Stokes equations to the corresponding order, will satisfy the

exact rescaling invariance (5.58) to all orders.

For example, at leading order, the general solution to the integrability condition

and INS equations is potential flow defined in terms of a potential q(xa),

vi = ∂iq, P = −∂τq −
1

2
(∂iq)(∂iq) + P0(τ), (5.59)

where P0(τ) is an arbitrary function of τ , and the INS equations reduce to

∂2q = 0. (5.60)

Meanwhile, the fluid transformation (5.58) becomes

q → r′c
rc
q P0 →

r′c
rc
P0, (5.61)

and thus it is trivial that the pair (v′i, P
′) satisfy the fluid equations with if (vi, P ) do

so due to the scale invariance of the Laplace equation (5.60) in q. It is interesting to

consider the problems of existence, uniqueness and regularity of the Navier-Stokes

in this case. Vanishing mean square vorticity ensures the class of solutions (vi, P )
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generated by (5.61) are regular. With respect to existence, the kinetic energy v2

scales by a factor (r′c/rc)
2 and thus is bounded for finite r′c and smooth q.

The timelike Killing vector

One might expect, in the presence of a timelike Killing vector ξ = ∂τ (it is sufficient

for this discussion to consider stationary solutions) a duality of the form

v′i = −vi, P ′ = P, r′c = −rc (5.62)

enacting time-reversal of the fluid, but this is not the case. This is explained by

noting that time-reversal is enacted by redefining the viscosity by ν = ±rc, see [182],

rather than by changing rc itself. This is because sending rc → −rc brings the fluid

outside the causal region of the spacetime.

5.4.4 Fixed viscosity Z2 transformations

We turn to fixed boundary (viscosity) transformations, where r′c = rc. If α = 0, or

for Killing vectors null at the dual boundary, one recovers the identity. For non-null

Killing vectors with α = 1, one finds

g′ar = gar − 2ξr

[
ξbyab − ξrgar
ξcξdycd − ξrξr

]
rc

, (5.63)

which defines a Z2 group.

Spacelike Killing vectors

Consider a generic space-like Killing vector ξ = ξk∂k. Under (5.63), the pressure is

preserved, while the velocity transforms as

v′i = vi − 2

[
ξi

∑
k ξ

kvk∑
j(ξ

j)2

]
rc

, (5.64)

which is a reflection in the hyperplane normal to the Killing vector (evaluated at the

hypersurface) and containing the point xi at which the velocity is defined.
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Translational isometry

Consider ξ = ck∂k where the constants ck are normalised to
∑

k c
2
k = 1. The corre-

sponding isometries are ck∂kvi = 0 and ck∂kP = 0. The pressure is preserved, while

the velocity transforms as

v′i = vi − 2cickvk. (5.65)

The incompressibility condition

∂iv
′
i = ∂ivi − 2cick∂ivk = 0 (5.66)

and Navier-Stokes equations

∂τv
′
i + ∂iP

′ + v′k∂kv
′
i − rc∂2v′i =(δik − 2cick)(∂τvk + ∂kP + vj∂jvk − rc∂2vk)

+ 2cick∂kP − 2cjvjck∂k(vi − 2ciclvl) = 0
(5.67)

are satisfied by the INS equations in the original fluid parameters along with the

isometries.

Rotational isometry

Consider a Killing vector ξ = −x2∂1 + x1∂2 corresponding to a rotational isometry

in the fluid. In cylindrical coordinates

x1 = ρ cos θ, x2 = ρ sin θ xk = xk ∀k > 2, (5.68)

where the Killing vector becomes ξ = ∂θ, the isometries are

∂θv1 = −v2 ∂θv2 = v1 ∂θvk = 0 ∀k > 2 ∂θP = 0. (5.69)

Solutions satisfy

v1 = x1µ− x2η v2 = x2µ+ x1η, (5.70)

where µ = µ(τ, xk>2, ρ), η = η(τ, xk>2, ρ), with transformed velocities

v′1 = x1µ+ x2η v′2 = x2µ− x1η. (5.71)
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That is, the transformation sends η → −η (equivalently θ → −θ). The incompress-

ible Navier-Stokes equations for the original fluid may be expressed as

0 = (2 + ρ∂ρ)µ+
∑
k>2

∂kvk (5.72a)

0 = ∂τµ+ ρ−1∂ρP + µ2 − η2 + µρ∂ρµ+
∑
k>2

vk∂kµ

− rc

(
3ρ−1∂ρµ+ ∂2

ρµ+
∑
k>2

∂k∂kµ

) (5.72b)

0 = ∂τη + 2µη + µρ∂ρη +
∑
k>2

vk∂kη − rc

(
3ρ−1∂ρη + ∂2

ρη +
∑
k>2

∂k∂kη

)
(5.72c)

0 = ∂τvj + ∂jP + µρ∂ρvj +
∑
k>2

vk∂kvj − rcρ−1∂ρ(ρ∂ρvj) ∀j > 2, (5.72d)

It is clear from the parity of these equations in η that if there exists a fluid so-

lution defined in terms of a pair (µ, η) by (5.70), then there also exists a solution

parametrized by the pair (µ,−η). That is, the dual fluid satisfies the INS equations.

We provide an example with the three-dimensional fluid solution

v1 = A
(
x1 − x2e

−2A(τ−τ0)
)

v2 = A
(
x2 + x1e

−2A(τ−τ0)
)

(5.73a)

v3 = B exp

(
4A(τ − τ0) +

Aρ2

2rc

)
− e2Aτ

∫ τ

dτ ′ q(τ ′)e−2Aτ ′ − 2Ax3 (5.73b)

P =
1

2
A2ρ2(e−4A(τ−τ0) − 1) + q(τ)x3 − 2A2x2

3 (5.73c)

which satisfies the isometries (5.69) (note that this is in general an unphysical solu-

tion, presented primarily for illustrative purposes). Here, A, B and τ0 are arbitrary

non-vanishing constants and q(τ) is an arbitrary function of time. The duality is

equivalent to sending τ0 → τ0 + iπ/2A.

5.4.5 Are the metric transformations vacuum to vacuum?

We have found solution-generating transformations of an INS fluid by applying the

generalised Ehlers transformation with respect to a Killing vector, while requiring

a particular ansatz for the the transformed metric at the hypersurface. However,

that this procedure has provided us with solution-generating transformations of the

dual fluid is somewhat unexpected. After all, we have not yet demanded that the

metric transformation takes vacuum metrics to vacuum metrics. Here, we review
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the metric transformations and whether they are in fact vacuum to vacuum. We do

this in the case of four bulk dimensions by considering the potential formalism in §4
(in particular §4.2.1).

However, before we do this, we recall that the generalised Ehlers transformation

(5.46) was defined in the literature for arbitrary ξ, in particular that it need not be

a Killing vector. We briefly discuss whether ξ need be a Killing vector for our fluid

transformations to yield valid INS fluid solutions.

Spacelike Killing vector ξi∂i

For the case ξ = ck∂k, we can determine whether ξ need be a Killing vector from

the equations of motion (5.66) and (5.67) in the transformed variables. A simple

calculation in the frame where ck = δ1
k determines that the INS in the transformed

variables are satisfied only if vi and P are independent of x1. Since there is no other

dependence of the fluid metric on x1, this implies that ∂1 must be a Killing vector

in the bulk geometry. We have not completed the corresponding calculation for the

rotational vector ξ = −x2∂1 + x1∂2, since our construction of fluid solutions, along

with our presentation of the INS equations, relies on −x2∂1 + x1∂2 being a Killing

vector. However, we expect an equivalent result: that the vector ξ must be a Killing

vector in the bulk geometry for the transformed fluids to satisfy the INS equations.

We now discuss whether the transformed metric is vacuum.

In this case, the norm F and twist ω are not defined unambiguously for the

transformed metric, and so we cannot determine whether the transformations are

vacuum to vacuum using these. However, the fluid transformations acts as a reflec-

tion in the isometry direction—e.g. ξ = ∂1 sends v1 → −v1. It is quite reasonable to

expect that this is also the case for the metric—simply a coordinate reflection and

therefore a (somewhat trivial) symmetry of the vacuum Einstein equations.

A Killing vector into the bulk ξ = ξr∂r

Again, we first determine whether ξ need be a Killing vector for (5.58) to be a valid

fluid transformation. One finds that to leading order in ε, the transformed fluid

satisfies the INS equations only if ∂[ivj]∂[ivj] vanishes (assuming finite rc). This is

true if and only if ∂[ivj] vanishes, which is the integrability condition for ξ being a

Killing vector. That is, the transformed fluid is once again a fluid solution only if ξ

is a Killing vector. We now discuss whether the transformed metric is vacuum.

The transformed potentials are in this case determined unambiguously for the
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transformed metric. The Killing vector is null to all orders for both the metric

and the transformed metric by the gauge condition grr = 0. The twist can also be

determined by noting

0 = ξµωµ = ξµ∂µχ = ξr∂rχ ⇒ χ = χ|rc (5.74)

and similarly χ′ = χ′|r′c . To leading order, a direct calculation yields ∂µχ = ∂µχ
′ =

0. Meanwhile, the metric transformation (5.46) preserves the conformally rescaled

reduced metric γ̂ = Fγ, which is here

γ̂µν = −gµrgνr. (5.75)

Collecting these results, the transformation we encounter in §5.4.3, corresponds to6

g′µr = gµr F ′ = F ∂µχ
′ = ∂µχ, (5.76)

which corresponds to a trivial invariance transformation of the vacuum field equa-

tions. However, we saw in §4.1 that for non-null Killing vectors, trivial invariance

transformations correspond to redefinitions of the coordinate defined by the Killing

vector, e.g. τ for ξ = ∂τ . We therefore expect that, under the constraint (5.57), the

transformation (5.58) applied to the fluid metric is equivalent to a redefinition of the

radial coordinate r, though we do not offer a proof here. Whether these results hold

true in greater than four bulk dimensions has not been determined.

Our brief analysis therefore suggests that all the fluid transformations we have

encountered, even if non-trivial from the fluid perspective, are trivial from the gravity

perspective.

5.4.6 Extension to magnetohydrodynamics

The fluid/gravity correspondence has been extended to include various fields and

matter content in the bulk spacetime. We look now to applying the solution-

generating technique of this section to Einstein-Maxwell theory dual to magneto-

hydrodynamics (MHD). We use the metric as given in [193], where they use units

with 8πG = 1. The bulk dynamics are governed by the Einstein-Maxwell equations

6One may ask why we have not uncovered the map g′µr = −gµr. This is simply because this map
would change the metric signature, while the generalised Ehlers transformation is shown in [196] to
preserve metric signature.
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of motion

Rµν =
1

4π

(
FµρFν

ρ − 1

2(d− 2)
gµνFσρF

σρ

)
∇µFµν = 0. (5.77)

The field strength additionally satisfies the Bianchi identity

dF = 0. (5.78)

Meanwhile, the MHD equations are given, for magnetic conductivity 1/4πrc and

viscosity rc, by

∂τvi + vj∂jvi + ∂i

(
P − 1

16π

d

d− 2
f2

)
− rc∂2vi = −∂jπji

πji =
1

4π

(
fjlfil −

1

4
f2δji

)
fτi = −rc∂jfij − vjfji ∂[afbc] = 0 ∂ivi = 0.

(5.79)

A similar metric expansion to that outlined in §5.2.1 is employed here, which

uses the invariance of the equations under the hydrodynamic scaling (5.38), (5.35)

with

fij ∼ ε fτi ∼ ε2, (5.80)

and the resulting metric and field strength are given by

gµνdxµdxν = − rdτ2 + 2dτdr + dxidxi − 2

(
1− r

rc

)
vidx

idτ − 2
vi
rc

dxidr

+

(
1− r

rc

)[
(v2 + 2P )dτ2 +

vivj
rc

dxidxj
]

+

(
v2

rc
+

2P

rc

)
dτdr

− 1

16π(d− 2)

(
1− r

rc

)2

f2dτ2 +
1

2πrc

(
1− r

rc

)
πijdx

idxj

− (r2 − r2
c )

rc
∂2vidx

idτ +O(ε3)

(5.81)

rcF =
1

2
fijdx

i ∧ dxj + fiτdxi ∧ dτ − ∂jfijdxi ∧ dr +O(ε3), (5.82)

which satisfy the Einstein-Maxwell equations to order O(ε3) provided (5.79) hold.
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Bulk Killing vector

The Killing equations for a Killing vector ξr∂r are highly restrictive. In particular,

they demand that fij vanishes. The MHD equations then implies that fτi vanishes.

We therefore recover the unforced INS equations, and the scaling invariance of §5.4.3.

Fixed viscosity Z2 transformation

Transformation (5.63) with the choice ξ = ∂1 again yields the simple reflection of

the velocity (5.65) with ck = δ1
k:

v1 → −v1 vı̂ → vı̂, (5.83)

where hatted indices omit 1. The pressure is preserved. Rather than looking to

determine the bulk or boundary field strength transformations explicitly, we can

look to the MHD equations which can be expanded as

∂[ĉfâb̂] = 0 ∂[âfb̂]1 = 0 ∂ı̂v
ı̂ = 0 (5.84)

fτ1 = −rc∂̂f1̂ − v̂f̂1 fτ ı̂ = −rc∂̂fı̂̂ − v̂f̂̂ı − v1f1ı̂ (5.85)

∂τv1 + v̂∂̂v1 − rc∂ ̂∂̂v1 = − 1

4π
∂ ̂
(
f̂k̂f1k̂

)
(5.86)

∂τvı̂ + v̂∂̂vı̂ − ∂ı̂
(
P − 1

16π

d

d− 2
fl̂k̂fl̂k̂

)
− rc∂ ̂∂̂vı̂ = − 1

4π
∂ ̂
(
f̂k̂fı̂k̂ − fl̂k̂fl̂k̂δ̂̂ı

)
.

(5.87)

We see that a reflection (5.83) with (5.85) requires a reflection

fâ1 → −fâ1 fâb̂ → fâb̂ (5.88)

while all other equations are invariant under (5.83) and (5.88). This transformation

is simply equivalent to reflection of the coordinate x1 → −x1. One can find trans-

formations allowed by other spatial Killing vectors by suitable rotations of the xi

coordinates.

On projecting solution-generating transformations to the dual fluid, we had

hoped to arrive at some non-trivial fluid transformations deriving from non-trivial

symmetries in the vacuum field equations, such as the F → 1/F of Buchdahl. For

example, perfect fluids with an isometry along x1 are invariant under v1 → 1/v1.

However, we have arrived, particularly for spacelike Killing vectors, at rather triv-
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ial transformations. It would be interesting to see if extensions of this work could

uncover further non-trivial physics, and if not, whether this trivial result was an

inevitable product of some unknown property of the fluid/gravity correspondence.



Chapter 6

Conclusion and outlook

6.1 Double field theory and U-duality-invariant

M-theory

We have presented new derivations of the equations of motion for the generalised

coset metrics of DFT and SL(5)-invariant extended geometry from their respective

actions. In the DFT case, we offered a pp-wave solution in the doubled geometry,

which reduces under two different solutions to the section condition to the F1 string

and the spacetime pp-wave. The Goldstone modes of the DFT pp-wave are found, in

the string case, to be governed by the equations of motion of the duality-symmetric

string of Duff [10] and Tseytlin [11, 12]. In the SL(5) geometry, we offer a pp-wave

generalised metric solution which reduces in the supergravity frame to the M2-brane.

We have looked at the O(d, d,R)-covariant string (gauged) σ-model actions of

[11,12,58,60], and applied a Buscher-type procedure with both one and two Lagrange

multipliers. With one Lagrange multiplier, the resulting action is not of the form

of a DFT σ-model. For two Lagrange multipliers, we find the expected O(1, 1,Z)

T-duality transformation.

There are plenty of avenues of further research in the duality-invariant geometries.

U-duality-invariant theories have been constructed in all cases where the dimension

of the duality group is finite, i.e. 3 ≤ d ≤ 8. However, the full equations of motion

have been constructed only for d = 4, and it would be relatively simple to extend

our chain rule approach to higher dimensional geometries, where the Lagrangians,

vielbein, and Y-tensors are known [97, 102]. However, we note that one can find

some solutions in these geometries purely by variation of the Lagrangian with respect

to the generalised metric treated as an arbitrary symmetric object. For example,
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in the SL(5) geometry, solving K = 0. Indeed, the SL(5) pp-wave generalised

metric does this. That the generalised metric takes the appropriate coset form

only projects out, via the appropriate projector P , some components of K—that

is while all solutions satisfy PK = 0, some also satisfy K = 0. A related example

of note is the self-dual solution in E7 exceptional field theory constructed in [118],

which reproduces the complete 1/2-BPS spectrum of ten- and eleven-dimensional

supergravity. However, determining the full equations of motion would be required

in, for example, a Goldstone analysis of these solutions.

6.2 Solution-generating techniques in supergravity,

double field theory and beyond

In our study of symmetries of NS-NS supergravity with one non-null isometry, we

decompose all field content into fields living on a codimension one submanifold de-

fined by the Killing vector. Specifically, we define a set of p-form potentials and

a submanifold reduced metric. We restrict to the cases where these potentials are

scalars, and determine the equations of motion of these potentials and the reduced

metric. Via the corresponding effective actions, we determine a set of symmetry

groups which preserve the submanifold metric. In static Einstein-dilaton theory we

find a non-trivial Z2 × Z2 symmetry group, and in five-dimensional static magnetic

supergravity, a non-trivial SL(2,R)× Z2 group.

We looked at how similar techniques might be applied to DFT with an isometry.

We discussed which components of the generalised metric to transform, and which

to keep fixed when looking for symmetry groups, and looked at a specific case cor-

responding in the supergravity frame to static Einstein-dilaton gravity. In this case,

we recovered only the Z2 T-duality we encountered in Einstein-dilaton theory, which

is of course manifest in DFT. We would like to see how the remaining Z2 appears in

the DFT context. Moreover, it would be interesting to see this extended to the full

DFT case, especially in a covariant form. One could perhaps decompose the DFT

fields in to potentials analogous to those for Einstein gravity in §4.1, by employing

the studies of DFT geometry in [69–74], where analogues of the covariant derivative

and curvature tensors are constructed.

For example, in [218] the author constructed an effective action for station-

ary four-dimensional NS-NS supergravity containing two sigma models, each with

SL(2,R) invariance. One group corresponded to S-duality and the other to an
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Ehlers-type symmetry. Moreover, they point out that these sigma models can be

mapped into each other by an O(1, 1,Z) T-duality transformation. That is, in that

case, the Ehlers symmetry is T-dual to S-duality. It would be interesting to see how

this would play out within DFT. Since the theory is T-duality invariant in the pres-

ence of an isometry, we ask if Ehlers-type transformations would appear on the same

footing as S-duality, where one would rotate between the two for different solutions

to the section condition. Perhaps this is one way of recovering U-duality from DFT.

Returning to solution-generating transformations in Einstein gravity coupled to

form fields, a much greater goal would be to be able to find the symmetry groups

for any spacetime dimension and with any form-field content (it would of course be

ideal to verify if these methods are valid for null Killing vectors, not only space-

like/timelike). The potential space line element method in §4.2 clearly would not

suffice, since the potentials are no longer scalars, though it would be interesting to

see if one can construct appropriate generalisations of this method.

One could of course introduce more isometries, e.g. stationary-axisymmetric

systems relevant to stars and black holes. This includes the generalisation of the

Ehlers symmetry to the SL(d − 2,R) invariance of d-dimensional vacuum Einstein

gravity with (d − 3) isometries. One could also consider solution-generating isome-

tries in other gravitational theories; the presence of matter, for example a perfect

fluid [234–241]; form fields with Lagrangian contributions beyond the quadratic term,

such as the Chern-Simons term appearing in eleven-dimensional supergravity (3.1);

and Lanczos-Lovelock gravity [242,243], where the Ricci curvature in the Lagrangian

is generalised to

L =

kmax∑
k=0

akδ
ρ1
[µ1
δσ1ν1 . . . δ

ρk
µk
δσkνk]

k∏
l=1

Rµlνlνlσl , (6.1)

where kmax ≤ (d−1)/2 and ak are dimensionful constants. It was shown by Brustein

and Medved [244] that Lovelock gravity is equivalent to Einstein gravity coupled

to forms fields. It would be interesting to see how this works with regards to the

potentials which appear in the presence of a Killing vector. After all, our work in §4.2

shows how the metric and Riemann tensor can, via (4.19) and (4.4) be decomposed in

terms of the twist (4.5), norm and reduced metric (4.3). On the other hand, equation

(4.45) illustrates how form fields decompose into two potentials each. Brustein and

Medved’s work then suggests that the potentials encoding the metric in Lovelock

gravity in some way correspond to the potentials encoding form fields in Einstein

gravity.
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6.3 Solution-generating transformations in the

fluid/gravity correspondence

We have explored how solution-generating transformations of the Einstein equations

in the presence of a Killing vector may be mapped to the codimension one hydrody-

namics holographically dual under the fluid/gravity correspondence. Our focus has

been on the incompressible Navier-Stokes fluid dual to vacuum Rindler spacetime,

where we have uncovered a selection of fluid transformations.

Firstly, we discovered a linear scaling of the fluid velocity and total energy with

the viscosity, corresponding in the gravity dual to renormalisation group flow of the

hypersurface through the bulk. This scaling invariance is exact, in that it receives

no corrections at higher orders in the hydrodynamic expansion. It would be rel-

atively simple to solve the Killing equations for the fluid metric at higher orders

and check the validity of the scaling invariance at the corresponding order in the

INS equations. Higher order corrections for the metric and INS equations are given

in [183]. Secondly, we find that spacelike isometries in the fluid yield somewhat

trivial Z2 transformations of the fluid velocity (it would be interesting to see if other

Killing vectors, such as those with components along both radial and hypersurface

directions, might yield more non-trivial results). Explicit examples are given of

reflection-like symmetries for translational and rotational isometries in the fluid. Fi-

nally, we determine that all of our transformations are trivial from the point of view

of the bulk spacetime.

There are plenty of immediate extensions to this work from the a large literature

on gravitational systems dual to hydrodynamics, such as: fluid flow on a sphere

dual to the Schwarzschild black hole [192]; cyclonic flow dual to the Kerr-Newman

AdS4 black hole [245]; (non-)conformal relativistic hydrodynamics dual to vacuum

Einstein gravity [152, 178–181]; forced fluids dual to non-vacuum gravity, such as

bulk ideal fluids [158]. In particular, we ask if it is possible to transform between

fluid solutions on flat backgrounds and those on curved backgrounds. Not only

would this allow us to find fluid flows on curved backgrounds, where the equations

are often more difficult to solve than the INS equations, one could possibly generate

non-trivial fluid flows on flat space from trivial flows on curved space.

Extensions further afield include condensed matter systems dual to gravity (see

[246] for a review). One could even look to solution-generating techniques in holog-

raphy beyond the hydrodynamic limit. Indeed, in the epilogue of [177], the authors

consider the following. If the Einstein equations in the long-wavelength limit are
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dual to fluid dynamics, then perhaps the there may be a similar connection be-

tween the full Einstein equations and a strong coupling analogue of the Boltzmann

transport equations, describing the thermodynamics of a system out of thermal equi-

librium. Essentially, we wish to open up the use of gravitational solution-generating

symmetries in holography.



Appendix A

Conventions and useful formulae

Metric signature Lorentzian: (−+ + . . .+), Riemannian: (+ + . . .+)

(Anti)symmetrization

A(µ1...µp) =
1

p!

∑
π

Aµπ(1)...µπ(p) (A.1)

A[µ1...µp] =
1

p!

∑
π

δπAµπ(1)...µπ(p) , (A.2)

where the sum is taken over all permutations, π, of 1, . . . , p and δπ is +1 for even

permutations and −1 for odd permutations.

Alternating symbol and tensor For totally antisymmetric symbol

εµ1...µd = εµ1...µd = ε[µ1...µd], ε012...d = 1, (A.3)

on a d-dimensional space, we define the totally antisymmetric tensor on Lorentzian

space with metric g by

ε̂µ1...µd =
√
−det(g) εµ1...µd , (A.4)

whose indices can be raised and lowered with g, which gives

ε̂µ1...µd =
−1√
−det(g)

εµ1...µd . (A.5)
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The antisymmetric tensor is annihilated by the covariant derivative. It contracts as

ε̂µ1...µrνr+1...νd ε̂ρ1...ρrνr+1...νd = −r!(d− r)!δµ1[ρ1
. . . δµrρr]. (A.6)

A.1 Differential forms

The results in this section are valid for d-dimensional Lorentzian spacetimes with

metric g, for arbitrary forms A, B, C (where lowercase Roman subscripts indicate

rank), and vectors υ.

Definitions

(?A)µ1...µd−p =
1

p!
ε̂µ1...µd−p

ν1...νp(Ap)ν1...νp (A.7)

(Ap ∧Bq)µ1...µpν1...νq =
(p+ q)!

p!q!
(Ap)[µ1...µp(Bq)ν1...νq ] (A.8)

(ιυAp)µ2...µp = υµ1(Ap)µ1µ2...µp (A.9)

(dAp)µ1...µp+1 = (p+ 1)∂[µ1(Ap)µ2...µp+1] (A.10)

Musical notation is defined for vectors υ and one-forms ω as

(υ[)µ = gµνυ
µ (ω])µ = gµνων . (A.11)
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Useful formulae

For the following identities, references are given in the second column in certain

cases.

LυA = (ιυd + dιυ)A [247, p. 202] (A.12)

?2Ap = (−1)1+p(d−p)Ap [247, p. 291] (A.13)

(A ∧B) ∧ C = A ∧ (B ∧ C) [247, p. 198] (A.14)

Ap ∧Bq = (−1)pqBq ∧Ap [247, p. 198] (A.15)

Ap ∧ ?Bp = Bp ∧ ?Ap [247, p. 292] (A.16)

d(Ap ∧Bq) = dAp ∧Bq + (−1)pAp ∧ dBq [247, p. 199] (A.17)

ιυ(Ap ∧Bq) = ιυAp ∧Bq + (−1)pAp ∧ ιυBq [247, p. 202] (A.18)

Lυ(A ∧B) = (LυA) ∧B +A ∧ LυB (A.19)

(?d ? Ap)µ1...µp−1 = (−1)pd∇σ(Ap)σµ1...µp−1 (A.20)

?(Ap ∧ ?Ap) =
1

p!
(−1)1+p(d−p)Aµ1...µpA

µ1...µp (A.21)

υ[ ∧ ?Ap = (−1)d−p ? ιυAp (A.22)

?(υ[ ∧Ap) = (−1)d−p+1ιυ ? Ap (A.23)

(−1)pd+1(iυυ[)Ap =
[
(iυ?)

2 + (−1)d(?iυ)2
]
Ap (A.24)
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