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Evidence shows the important role biota play in the carbon cycle, and strategic 21 

management of plant and animal populations could enhance CO2 uptake in aquatic 22 

ecosystems. However, it is currently unknown how management-driven changes to 23 

community structure may interact with climate warming and other anthropogenic 24 

perturbations to alter CO2 fluxes. Here we show that under ambient water temperatures, 25 

predators (Three-Spined Stickleback) and nutrient enrichment synergistically increased 26 

primary producer biomass, resulting in increased CO2 uptake by mesocosms in early 27 

dawn. However, a 3˚C increase in water temperatures counteracted positive effects of 28 

predators and nutrients leading to reduced primary producer biomass, and a switch from 29 

CO2 influx to efflux. This confounding effect of temperature demonstrates that climate 30 

scenarios must be accounted for when undertaking ecosystem management actions to 31 

increase biosequestration.  32 

 33 

Keywords: trophic cascades, biosequestration, carbon cycling, climate change 34 

1. INTRODUCTION  35 

In freshwater ecosystems, projected increases in water temperatures (3-5˚C) [1] are likely 36 

to interact with bottom-up and top-down processes to modify community structure [2] and CO2 37 

dynamics [3,4]. Heterotrophs contribute to the net carbon balance of ecosystems by consuming 38 

organic matter and respiring it as CO2. Predators and herbivores can further influence carbon 39 

balance by directly or indirectly (via trophic cascades) shifting the balance between heterotrophic 40 

respiration and photosynthesis. However, warming and eutrophication can modify food web 41 

structure by increasing species extinctions, especially at higher trophic levels [5], altering species 42 
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interactions. Phytoplankton blooms caused by eutrophication and trophic cascades can only 43 

enhance long-term carbon storage if plant matter escapes mineralization and is buried in 44 

sediments; however, higher water temperatures increase metabolism and remineralization rates. 45 

Because temperature modifies food web structure with consequences for CO2 assimilation and 46 

remineralization [6], alterations to animal and plant populations could cause complex climate 47 

feedbacks in a warmer world.  48 

We tested two hypotheses of how elevated water temperatures could alter the effects of 49 

top-down and bottom-up manipulations on the CO2 flux of freshwater pond mesocosms. 50 

Mesocosm food webs contained phytoplankton, periphyton, zooplankton, benthic 51 

macroinvertebrates and in treatments containing fish, Gasterosteus aculeatus (Three-Spined 52 

Stickleback; Table S1). First, warming would increase the strength of trophic cascades and 53 

decrease mesocosm CO2 emissions. We predicted that warming would increase indirect positive 54 

effects of predators on primary production [7,8] leading to higher CO2 influx in treatments 55 

containing predominantly odd-numbered food chains with top predators. Second, warming 56 

would alter interactive effects between eutrophication and predators on primary producers and 57 

CO2 flux. In a previous study we described the temporal response of phytoplankton to the same 58 

three variables, showing that warming reduced the positive effects of nutrients on primary 59 

producers [7]. We predicted that this interaction between nutrients and warming would lead to 60 

increased CO2 emissions [9]. However, because our previous study also showed that warming 61 

enhanced top-down control [7], it is difficult a priori to predict the combined effects of  all three 62 

stressors on CO2 flux.  63 

2. MATERIALS AND METHODS 64 

(a) Experimental set-up 65 
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We manipulated water temperature, nutrients, and the presence of Stickleback in a 2x2x2 design 66 

using 40, open-air, well mixed, 1,136 L Rubbermaid plastic mesocosms (0.6 m deep, 1.5 m in 67 

diameter) to test their independent and interactive effects on consumer biomass, producer 68 

biomass and CO2 flux. Each treatment was replicated 5 times. Water temperatures were either 69 

ambient or 3.04˚ ± 0.05˚ C (mean ± s.e.) above ambient. Mesocosms had either ambient nutrient 70 

levels or were meso-eutrophic (N:P ratio of 22) with monthly additions of both nitrogen and 71 

phosphorus (264 µg of nitrogen/L as NaNO3 and 27 µg of phosphorus/L as KH2PO4). Finally, 72 

mesocosms contained either five Stickleback (54.4 ± 0.05 mm standard body length) or no fish. 73 

Detailed experimental methods can be found in Supplementary Material. 74 

(b) Organism sampling and CO2 measurements  75 

Primary producer biomass, consumer biomass (not including fish), and water CO2 concentrations 76 

were collected one year (May) and 16 months (October) following the start of the study. 77 

Phytoplankton and periphyton biomasses and benthic and pelagic consumer biomasses were 78 

combined for total primary producer and total consumer biomasses, respectively. 79 

Water samples for dissolved CO2 were extracted at dawn using 50-mL gas-tight syringes 80 

and headspace equilibrium analysis. CO2 concentrations were measured on a 5890 Series II gas 81 

chromatograph within 24 h. 82 

CO2 flux (mg C m
-2

 d
-1

) to the atmosphere was calculated as follows: 83 

    CO2flux = (CO2water  - CO2sat)*k   84 

 Here CO2water is the temperature corrected CO2 concentration of the water, CO2sat is the 85 

concentration the water would have if it were at equilibrium with the atmosphere (390 ppm), k is 86 
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the CO2 exchange velocity coefficient (0.63 m d
-1

), which was estimated using literature values 87 

for our study sites average wind speed (2.8 ± 0.09 m s
-1

)[10].   88 

(c) Statistical analyses 89 

Treatment effects on primary producer biomass, consumer biomass, and CO2 flux were tested 90 

using linear mixed-effects models (α= 0.05) in R 3.1.1 (R Development Core Team, 2014). 91 

Individual mesocosms and date were treated as random factors. Date was included as a random 92 

factor to account for non-independence between dates and because our sampling design did not 93 

have sufficient power to describe temporal differences. In order to understand how treatment-94 

mediated changes to food web structure influenced CO2 flux, it was imperative to analyse only 95 

dates where pelagic and benthic organisms and CO2 were sampled at the same time. Because of 96 

the highly destructive nature of benthic sampling on the community (see supplementary for 97 

detailed methods) we limited our collections to only two occasions.  98 

3. RESULTS & DISCUSSION 99 

Under ambient water temperatures, we detected independent and interactive effects of nutrients 100 

and predators on total consumer and producer biomass that led to increased CO2 influx (Table 1, 101 

Fig. 1). Increased CO2
 
influx was likely the result of predator- (in predator only) and nutrient-102 

induced (in nutrient addition treatments only) increases in primary production [9,11]. In the 103 

absence of predators, nutrient additions doubled consumer and plant biomass, which would have 104 

increased both primary production and respiration (Tables S2). However, because increases in 105 

CO2 influx were still observed in these treatments, the effect of nutrients on CO2 assimilation 106 

appears greater than their effect on respiration. Fish reduced consumer biomass by 70% and 107 

increased primary producer biomass by 32% (Table S2). Trophic cascades were enhanced by 108 
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nutrient enrichment, with a 27-fold increase in producer biomass (Table S2). Similar to Cole et 109 

al. [10], mesocosms with both nutrient additions and top predators had the greatest CO2 influx. 110 

In general, warming had strong negative effects on trophic cascade strength and the 111 

influence of nutrients on primary producers, generating top-heavy food webs with reductions in 112 

CO2 influx (Table 1; Fig. 1). Higher emissions in warmed mesocosms likely resulted from 113 

positive effects of warming on respiration rates [3] and observed negative effects of warming on 114 

primary producers. Contrary to our prediction, warming only strengthened trophic cascades in 115 

non-fertilized mesocosms. In fertilized mesocosms, warming dampened consumer effects 116 

resulting in similar CO2 fluxes as mesocosms without predators (Fig. 1, Table S2). The negative 117 

effect of warming on primary producers was strongest in mesocosms with nutrient additions and 118 

especially large in mesocosms with nutrients and predators. Warmed mesocosms containing both 119 

added nutrients and predators had 90% less primary producer biomass compared to ambient 120 

temperature mesocosms (Table S2). The negative effect of warming on primary producer 121 

biomass in our study and others [3,12] may have been the result of increased consumption by 122 

herbivores under warmer temperatures [6,8], or the replacement of productive phytoplankton 123 

taxa by stress tolerant, but less productive taxa. Although further studies are needed to 124 

understand the mechanisms by which increased temperatures alter CO2 cycling, our results 125 

suggest that future increases in temperatures could reduce biosequestration by aquatic 126 

ecosystems.  127 

Mesocosms are well suited to explore complex interactions between global change 128 

drivers that are otherwise difficult to study in natural systems. Nevertheless, the use of 129 

mesocosms and our context-dependent results should be considered. First, our mesocosms did 130 

not receive large terrestrial subsidies, which can make up > 50% of the dissolved organic C pool 131 
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in natural ecosystems [13]. Thus, respiration in natural lentic ecosystems is not constrained by in 132 

situ primary production, as was the case in our mesocosms. Because respiration rates have a 133 

stronger temperature-dependence than photosynthetic rates [3], the positive effects of warming 134 

on CO2 efflux seen in our study may be conservative. Second, the effects seen on communities 135 

and ecosystem process in this study may be only short-term, transient responses to perturbations 136 

that could greatly differ from long-term ones. Future studies should investigate whether the 137 

effects seen in our study are consistent across diurnal cycles and longer time scales within a 138 

myriad of aquatic ecosystems. Finally, the direction and magnitude of predator effects on food 139 

webs and carbon cycling may depend on predator identity, food chain length, and species 140 

diversity [8]. Despite these limitations our study is the first to our knowledge to unravel the 141 

cumulative effects of eutrophication, warming, and alterations to top predators on the CO2 flux 142 

of an ecosystem.   143 

Our findings support other studies [9,14] which suggest that maintaining viable predator 144 

populations in odd-numbered food webs and/or adding nutrients could increase natural 145 

biosequestration. However, our results reveal how previously unknown interactions between 146 

warming, nutrients, and changes to top predators could create positive climate feedbacks by 147 

reducing the capacity of top-down and bottom-up forces to reduce the production of in situ CO2. 148 

The number of freshwater ecosystems experiencing negative or undesirable anthropogenic 149 

impacts is likely to increase in the future due to a combination of a 2.4-2.7 fold increase in 150 

eutrophication [15] and increased rates of trophic downgrading [16]. As most freshwater 151 

ecosystems are sources of CO2, our results suggest that CO2 emissions from aquatic systems 152 

could increase as temperatures rise.  153 

 154 
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Figure Legend 218 

Figure 1 Interaction plots illustrating the impacts of warming, nutrient additions, and predators 219 

on community biomass and CO2 flux of mesocosms. Effects of nutrients and warming on 220 

consumer biomass (a), primary producer biomass (c), and CO2 flux (e) in food webs where fish 221 

are absent. Effects of nutrients and warming on consumer biomass (b), primary producer 222 

biomass (d), and CO2 flux (f) in food webs containing fish. Dotted lines in graphs (e) and (f) 223 

represent CO2 source/sink boundaries. Means ± 95 % C.I.s represent fixed effects and were 224 

approximated using the “predictSE.lme()” function in the “AICcmodavg” package in R. 225 

226 
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Tables 227 

Table 1 Summary statistics of linear mixed-effects models for individual and interactive 228 

effects of warming (W), nutrient additions (N), and predators (P) on consumer biomass, 229 

primary producer biomass, and CO2 flux of mesocosms. P-values in bold are statistically 230 

significant. 231 

  

Consumer 

biomass 

Primary producer 

biomass CO2 flux 

 F1,32 P F1,32 P F1,32 P 

N 55.796 < 0.001 148.673 < 0.001 31.950 <0.001 

P 26.756 < 0.001 28.483 < 0.001 44.814 <0.001 

W 3.218 0.081 32.620 < 0.001 77.174 < 0.001 

N:P 1.775 0.191 3.815 0.060 0.061 0.807 

W:N 0.102 0.751 18.839 < 0.001 6.712 0.014 

W:P 0.035 0.852 2.378 0.133 13.024 0.001 

W:P:N 0.072 0.790 11.901 0.002 11.744 0.002 

 232 

 233 
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