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ABSTRACT 

The purpose of Medium Secure Services (MSS) is to provide accommodation, support and treatment to individuals 

with enduring mental health problems who usually come into contact with the criminal justice system. These 

individuals are, therefore, believed to pose a risk of violence to themselves as well as to other individuals. 

Assessing and managing the risk of violence is considered to be a critical component for discharged decision 

making in MSS. Methods for violence risk assessment in this area of research are typically based on regression 

models or checklists with no statistical composition and which naturally demonstrate mediocre predictive 

performance and, more importantly, without providing genuine decision support. While Bayesian networks have 

become popular tools for decision support in the medical field over the last couple of decades, they have not been 

extensively studied in forensic psychiatry. In this paper we describe a decision support system using Bayesian 

networks, which is mainly parameterised based on questionnaire, interviewing and clinical assessment data, for 

violence risk assessment and risk management in patients discharged from MSS. The results demonstrate 

moderate to significant improvements in forecasting capability. More importantly, we demonstrate how decision 

support is improved over the well-established approaches in this area of research, primarily by incorporating 

causal interventions and taking advantage of the model's ability in answering complex probabilistic queries for 

unobserved variables. 

 

Keywords: Bayesian networks, belief networks, causal interventions, criminology, forensic psychiatry, mental 

health, risk management. 
 
 

1 INTRODUCTION 

Adequate management of offenders released from Medium Secure Services (MSS) is crucial in 

preventing violent crime and ensuring efficient allocation of resources. To this end, many MSS 

in the UK and elsewhere make use of risk assessment tools in the ongoing management of 

patients. However, in this application domain, the current state-of-the-art is represented by 

regression-based models and checklists with no statistical composition. Forensic medical 

practitioners have remained unimpressed by the decision support offered by the current state-

of-the-art in managing patients with serious mental illness problems, and have identified the 

need to examine new ways of modelling (Coid et al., 2015). 

Bayesian networks (BNs), which are probabilistic graphical models based on causal 

relationships, are especially well-suited for decision making scenarios that require as to 

consider multiple pieces of uncertain evidence. Over the last couple of decades there has been 

a renewed interest in Bayesian inference, especially for real-world applications. This is because 

Bayesian inference, which used to be computationally intractable, now allow us to develop 

large-scale BN models using specialised software that takes advantage of efficient BN 

inference propagation algorithms (Pearl, 1988; Heckerman et al., 1995).  

Since then, successful applications of BNs for decision support have been witnessed in 

various application domains. These include: 

 

a) Law and forensics: Fenton and Neil (2011) proposed the use of BNs as a tool for avoiding 

probabilistic fallacies in legal practice, which continue to occur despite that many of the 

fallacies have been well documented. Horman et al. (2014) used BNs as part of a novel 

approach to triage for digital forensics for collecting and reusing past digital forensic 

investigation information in order to highlight likely evidential areas on a suspect operating 

system. 

 

b) Medical and biomedical informatics: Yet et al. (2013a) presented a methodology for 

developing BN models that predict and reason with latent variables, in order to provide 

information that is useful for clinical decision makers, using a combination of expert 

knowledge and data, and in (Yet et al., 2013b) the authors described a decision support BN 
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system for assisting clinicians in making better decisions in Warfarin therapy management. 

Numerous other applications in biomedicine are covered in (Heckerman et al., 1992; 

Friedman et al., 2000; Lucas et al., 2000; 2004). 

 

c) Safety: Naderpour et al. (2014) presented a decision support system to help with the 

management of abnormal situations in safety-critical environments and demonstrated, 

based on a case taken from US Chemical Safety reports, how the system provided support 

for operators in maintaining the risk of dynamic situations at acceptable levels. Qiu et al. 

(2014) proposed a BN for cascading crisis events, such as typhoons, rainstorms and floods, 

that provides the capability to analyse the chain reaction path of such an event and potential 

losses, with experimental results indicating that this BN-based method improved 

forecasting accuracy compared to existing classical methods. 

 

d) Software development, Project Management, and Information Technology: Lauria and 

Duchessi (2006) developed a BN based on Information Technology implementations and 

demonstrated how the BN model can be incorporated into a decision support system to 

support what-if analysis. Hu et al. (2013) demonstrated how a BN model, that was learned 

from data but which considered expert causality constraints, was able to perform better, in 

terms of predicting project management risks, than many previously proposed well known 

algorithms and models. Yet et al. (2015) proposed a dynamic BN modelling framework for 

calculating the costs and benefits of a project over a specified time period, allowing for 

changing circumstances and trade-offs. 

 

e) Sports prediction, betting and psychology: Constantinou et al. (2012; 2013) demonstrated 

how an expert constructed BN model, that combined both data and expert knowledge, was 

able to outperform purely data-driven statistical models and generate profit against the 

gambling market. In sports psychology, Constantinou et al. (2014) employed a BN to infer 

referee bias diagnostically by examining whether relevant causal factors during a football 

match could explain referee decisions. 

 

Decision support benefits from the use of Bayesian models have also been reported in other 

more specialised applications. For instance, Wang et al. (2011) proposed a hierarchical naïve 

Bayes model that improves existing identity matching techniques in terms of searching 

effectiveness, and Wu et al. (2015) developed a BN, as part of a framework for model 

integration and holistic modelling of socio-technical systems, and demonstrated decision 

support benefits based on an airport inbound passenger facilitation case study. Fenton and Neil 

(2012) illustrate how BNs can be applied to model knowledge in many more diverse fields. 

 However, there have been limited previous attempts in developing decision support 

systems using BNs in forensic psychiatry, as well as from questionnaire and interviewing data 

in general. Salini and Kenett (2009) acknowledged this by stating that BNs have been rarely 

used to analyse customer survey data. More specifically, these previous relevant attempts 

focused on analysing survey data for customer complaints and satisfaction (Blodgett & 

Anderson, 2000; Ronald et al., 2004; Salini & Kenett, 2009) and for marketing purposes 

(Ishino, 2014). Sebastiani and Ramoni (2001) also used survey data to extract general 

information from the British general household survey, which provides a continuous 

information on a range of social fields such as population, housing, education, employment, 

health and income. All of these previous studies have reported a number of advantages in using 

BNs for analysing this kind of data. Most notably, these include that BNs a) offer a rich and 

descriptive overview of the broader customer behaviour by providing insights into 

determinants and subsequent behavioural, b) provide a causal explanation using observable 
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variables within a single nonlinear multivariate model, c) provide the ability to conduct 

probabilistic inference for both prediction and diagnosis, and d) provide a graphical 

representation and outputs that be easily understood by professionals.  

Despite the significant benefits demonstrated, BNs are still under-exploited in forensic 

psychiatry. Therefore, it was felt that causal BNs could improve on the current state-of-the-art. 

In (Constantinou et al., 2015b) we presented the first BN model for preventing violent re-

offence in released prisoners with serious history of violence. This paper is an extension of that 

study, but which focuses on mentally ill patients and provides decision support for discharged 

decision making from MSS. The paper is organised as follows: Section 2 describes the data 

and methodology, Section 3 describes model validation and discusses the results, and Section 

4 provides our concluding remarks and directions for future work. 

 

 

2 DATA & METHODOLOGY 

We make use of a dataset referred to as VoRAMSS (The Validation of New Risk Assessment 

Instruments for Use with Patients Discharged from Medium Secure Services; Doyle et al., 

2014). The dataset consists of questionnaire, interviewing and assessment data from 386 

patients, out of whom 343 are males and 43 are females. Interviews were performed at 6 and 

12 months post-discharge. At 6 months post-discharge, the occurrences for general violence† 

and violent convictions are 13.73% and 2.33% respectively, while at 12 months (i.e. between 

6 and 12 months after release) the respective occurrence rates are 11.40% and 3.12%. The 

cumulative rates (i.e. 0 to 12 months) for general violence and violent convictions are 22.28% 

and 5.18% respectively. 

 In addition to the VoRAMSS dataset mentioned above, we have also made use a small 

part of a second dataset which is referred to as the Prisoner Cohort Study (PCS) (Coid et al, 

2009). This is because the PCS dataset provided information for a small number of model 

parameters that were considered important for decision analysis, but which the VoRAMSS 

dataset failed to capture (details in Section 2.2). However, the PCS dataset is somewhat 

different to the VoRAMSS dataset in the sense that it involves released prisoners, rather than 

patients discharged from MSS. However, many of those released prisoners also suffered from 

mental health problems (i.e. severe depression, anxiety, psychotic disorder). In an attempt to 

maintain relevant to the VoRAMSS dataset, we have restricted the cases considered by this 

second dataset to mentally ill individuals. The PCS dataset consists of questionnaire, 

interviewing and assessment data from 953 prisoners (before and after release), 778 males and 

175 females, with a reconviction rate of 25.18% over a ~5 year period post-release. There were 

594 cases of mentally ill individuals, and which were used to learn the causal relationships for 

the following model factors: a) anger management, b) drug misuse treatment, c) alcohol misuse 

treatment, d) cocaine dependence, e) cannabis dependence, f) stimulants dependence, and g) 

alcohol dependence. 

 All of this data that had been extracted from questionnaires, interviews and assessments 

of patients with a specialist was then combined with relevant patient data retrieved by the Police 

National Computer (PNC), which mainly consisted of criminal records. As a result, we were 

presented with a set of unstructured patient data that had been collected independently of the 

requirements of a BN model, with a large number of variables consisting of repetitive, 

                                                           
† The definition of General violence in this paper is identical to that of violence as defined in (Doyle et al., 2014) 

for the VoRAMSS dataset, which includes sexual assaults, assaultive acts that involved the use of a weapon; or 

threats that made with a weapon in hand as well as all the acts of battery, regardless of whether or not have resulted 

in injury. 
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redundant, and in many cases contradictory information. This meant that the initial format of 

the data was inappropriate for causal analysis. In order to make the data adequate for causal 

inference, we had to restructure the dataset.  

 Figure 1 presents a diagram which demonstrates the practices we had to use in order to 

move from the unstructured data into a BN model capable of simulating interventions for risk 

management decisions, indicating that expert knowledge played a crucial role at every step of 

the process. Expert knowledge was provided by two clinically active experts in forensic 

psychiatry (JC) and forensic psychology (MF), each with at least 8 years’ experience in forensic 

mental health research, having published widely on: criminal justice outcomes (Fox & 

Freestone, 2008; Coid et al., 2011; Coid et al., 2013), psychopathy and personality disorder 

(Coid et al., 2012; Freestone et al., 2013), and mental illness (Coid et al., 2013). We discuss 

these development stages in turn in the subsections that follow. 

 

 

 
 

Figure 1. The process of developing the DSVM-MSS. 

 

 

2.1. Constructing the Bayesian network structure 
 

 The causal structure of the BN model is solely based on expert knowledge. While the 

provisional BN structure was first drawn by hand, at the conceptual level, it was finalised only 

after all of the data management issues involving composite variables and synthetic nodes had 

been properly dealt with. We discuss each of them in turn below. 

 

2.1.1. Composite variables 

 

 The first problem we had to deal with involves the formulation of composite 

information, based on a set of data variables and expert knowledge, that would deal with 

repetitive, redundant and contradictory information. For example, the model factor General 

violence represents a composite variable. It does not represent a single data variable, but rather 

a set of data variables and clinical judgments (i.e. violence reported by the clinician based on 

information mainly accounting to minor violent incidences) that, when combined, can provide 

a generalised indication with regards to General violence. Another example is Personal 
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resources‡, which is a composite variable based on various sources of information including 

Stable and suitable work, Effective coping skills and other relevant data observations. 

 The challenge at this step primarily involves which sources of information to choose in 

order to inform a particular model factor, but also how to translate those sources into a unified 

single model factor. As an example, in informing Personal Resources we based the learning 

on five binary factors and introduced the following combinatorial rule: 

 

 if less than four of the selected factors indicate "No", then "Personal   

  Resources="No", otherwise "Yes". 

 

Whereas for Disinhibition, which is based on four factors, we introduce an OR relationship 

between those four factor where Disinhibition would be true if any of those factors were true, 

otherwise false. This information is provided in Table B.4. 

 As shown above, the sources of information may include both data but also information 

that reflects the clinician's assessment. As a result, we found it impractical to derive a clear-cut 

method in determining how to inform the particular composite model variable and we, 

therefore, focused on expert judgments in determining the necessary data sources and ways of 

combining them into a unified model factor. The key idea from this part of the process is that, 

while it is far from perfect, it is certainly an improvement over throwing hundreds of variables 

into the network and expecting to form some sort of causal chain between them. 
 

2.1.2. Synthetic nodes 
 

We also made use of expert knowledge in introducing synthetic (or definitional) nodes within 

the causal structure. The synthetic variables are introduced for the purposes of a) reducing 

model dimensionality by combining different nodes together to reduce effects of combinatorial 

explosion (e.g. divorcing), and b) improving causal relationship between model variables. 

 Figure 2 presents, as an example, the elicitation of dependencies from experts for 

violence risk analysis in the first part of the diagram, whereas the second part demonstrates 

how the resulting complexity is managed by introducing three sensible synthetic variables 

(circled dashed nodes). Specifically, for this part of the model the experts suggested that the 

use of specific drugs (i.e. cannabis, cocaine, stimulants, and hazardous drinking) in conjunction 

with violent ideation and aggressive attitude (i.e. anger, hostility) that cannot be controlled (i.e. 

self-control) are believed to serve as causal risk factors for violence. However, if we were to 

model these 8 variables (variable states are presented in Table A.1) with direct links to violence 

(i.e. without introducing synthetic nodes) this would have resulted in a conditional probability 

table (CPT) for node Violence with (32 × 27) = 1152 possible state combinations. Clearly, 

this would have been problematic given that the dataset considered for parameter learning only 

consists of just 386 data instances.  

 Reconstructing this part of the network, with the expertly defined synthetic nodes 

presented in Figure 2, not only reduced the combinatorial explosion by more than 97% (i.e. 

from 1152 down to (3 × 23) = 24), and therefore allowed the formulation of more accurate 

CPTs, but also improved the causal relationship between factors for violence risk analysis. The 

expertly defined CPTs of all the synthetic variables introduced in this model are provided in 

Appendix B.  

 
 

                                                           
‡ The node Personal resources is also modelled as a synthetic node into the BN. We cover synthetic nodes later 

in Section 2.1.3. 
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Figure 2. Synthetic nodes (circled dashed nodes) introduced for both reducing model dimensionality and 

improving the causal relationship between variables. This is a simplified model topology following the expert 

elicitation of dependencies for violence risk analysis. 

 

 

2.2. Observational decision analysis 
 

In this section we discuss the process of parameterising the model for observational decision 

analysis. The observational BN model is can be used to assess the risk of violence for a given 

mentally ill individual in the case of discharge. Most of the model parameters were learned 

from data, and just two model variables were learned with expert knowledge (excluding 

synthetic nodes).  

 These expert-driven variables are Opiates dependence and Heroin dependence, and 

which were considered to be important for violence risk analysis, but which data failed to 

capture. The expertly defined CPTs for these variables are provided in Appendix B. Various 

methods exist for expert probability elicitation, though most of them are not very different. For 

this task, we made use of probability scales and/or verbal anchors similar to those proposed in 

(van der Gaag et al., 1999; Renooij, 2001; van der Gaag et al., 2002). The experts were 

presented with the conditional probability tables of the other four substances (as learnt from 

the PCS dataset) in an attempt to assist them in providing rational conditional probabilistic 

judgments for heroin and opiates dependences. 

 All of the residual model factors (excluding synthetic nodes) were learned from data. 

In parameterising the CPTs of the data-driven factors, we had to rely on data which included a 

lot of missing value. As a result, we made use of the Expectation Maximisation (EM) 

algorithm, which is an iterative method for finding maximum likelihood estimates of 

parameters in models with unobserved latent variables (Lauritzen, 1995), and which represents 

the standard method for learning BN models from data with missing values.  

 

 

2.3. Interventional decision analysis 

 

In this section we demonstrate how we modified the resulting interventional BN from Section 

2.2, into an interventional BN. The interventional BN is capable of performing for risk 

assessment, as in the observational BN, but also risk management by simulating interventions 

and examining their impact.  



Accepted for publication in Decision Support Systems, version 2.1, 29 October 2015. 

 

8 
 

 An intervention is an action which can be performed to manipulate the effect of some 

desirable future outcome which we would like to manage. In medical informatics, an 

intervention is represented by some treatment which can affect a patient's health outcome. In 

DSVM-MSS, Anger management, Drug treatment and Alcohol treatment represent uncertain 

(or imperfect) interventions. Much of the previous work, however, is focused on certain (or 

perfect) interventions (Pearl, 2000); implying that the intervention induces a specific state, 

rather than a distribution of states as in our case. Specifically, in DSVM-MSS an intervention 

answers questions such as: "If a patient received his treatment/medication, what are the 

chances of him getting well?". 

 An intervention is formulated as p(E|I), where E is the effect post-treatment and I is the 

intervention (Koller & Friedman, 2009). The intervention itself does not have parent nodes 

since we do not seek to explain the observation for treatment and hence, we must not reason 

backwards diagnostically. In order to satisfy this requirement under all circumstances, graph 

surgery (Pearl, 2000) must be performed on the observational BN, following parameter 

learning. By performing graph surgery, we modify the BN model such so that it becomes 

suitable for simulating interventional actions for the purposes of risk management and hence, 

the modified BN is described as the Interventional BN. Figure 3 demonstrates the process of 

introducing uncertain interventions in DSVM-MSS. Specifically, in the interventional case, a) 

any ancestor links entering the intervention (i.e. treatment) are removed, b) symptoms are 

manipulated by some intervention, and c) since we are dealing with uncertain interventions, 

the effectiveness of the interventions is determined by factors such as Responsiveness to 

treatment and Motivation for treatment. For more details on modelling interventions in 

Bayesian networks, including examples, see (Hagmayer et al., 2007). The intervention 

effectiveness rates have been taken by the model presented in Constantinou et al (2015b) and 

which are based on the PCS dataset. 

 

 

 
 

Figure 3. The process of introducing uncertain interventions in DSVM-MSS, and transforming the observational 

BN (left) into an interventional BN (right).  
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Figure 4. The complete Bayesian network model. Circled solid nodes are the variables learned with the main 

dataset, circled dashed nodes are the synthetic variables, circled solid dark nodes are the variables learned with 

the second dataset, and circled dashed dark nodes are the expertly defined variables, and square solid nodes are 

interventions. 
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 The complete BN model is presented in Figure 4; the model variables which have been 

learned based on the main dataset (i.e. VoRAMSS) are represented by circled solid nodes, the 

variables which have been learned based on the second dataset (i.e. PCS) are represented by 

circled solid shaded nodes (excluding interventions), the variables whose CPTs are based on 

expert knowledge are represented by circled dashed shaded nodes, the synthetic variables are 

represented with circled dashed nodes, and interventions are represented by squared solid 

nodes. Figure 4 and Appendices A and B provide all the expert information required for 

someone to develop the model presented in this paper, with the VoRAMSS and PCS datasets. 

 

 

3 MODEL VALIDATION & RESULTS 

We provide two types of model validation, one which is data-driven and one which is expert-

driven. Specifically, Section 3.1 assesses the forecasting capability of DSVM-MSS, in terms 

of predictive accuracy, by comparing the predictions generated by DSVM-MSS against those 

generated by models that are considered well-established in this application domain and thus, 

represent the current state-of-the-art. Further, Section 3.2 presents an expert-driven structural 

validation and assesses the capability of the model as a decision support tool, in comparison to 

the current state-of-the-art, for professionals who work in these areas. 

 

 

3.1. Data-driven validation: Predictive accuracy 

 

In assessing the predictive accuracy of the DSVM-MSS model we made use of the area under 

the curve (AUC) of a receiver operating characteristic (ROC). This is because the AUC of ROC 

is the preferred§ measure of predictive or diagnostic accuracy in forensic psychology and 

psychiatry (Rice & Harris, 2005), and more than half of violence risk assessment validation 

studies report only the AUC (Singh, 2013). As a result, this allowed us to make direct 

comparisons of predictive accuracy against the current state-of-the-art. 

The AUC is an evaluation metric for binary classification problems. The basic 

interpretation of this metric is that, given a random positive observation and a random negative 

observation, the AUC represents the proportion of the time the model correctly predicts the 

class. This independence of both base rate and selection ratio is appreciated in this application 

domain (Hanley & McNeil, 1982a, 1982b; Rice & Harris, 1995). The AUC score ranges from 

0 to 1. A score of 0.5 indicates predictive capability no better than chance, whereas a score of 

1 corresponds to a perfect predictive model (and vice versa). 

 First, we examine the predictive accuracy of the DSVM-MSS model. The AUCs are 

reported after performing Leave-one-out cross-validation (LOOCV), which involves using a 

single observation from the original sample as the test data, and the remaining observations as 

the training data over n iterations, such that every single data instance serves as out test data, 

where n is the total number of instances in the dataset. Table 1 presents the AUC scores 

achieved in predicting: 

 

a) General violence (i.e. violence reported by the clinician, mainly amounting to minor 

violent incidences), and  

 

                                                           
§ The AUC has also been subject to criticism on the basis that it provides an incomplete portrayal of predictive 

validity (Singh, 2013) and there is a debate in the literature on how the AUCs should be interpreted (Lobo et al., 

2007). However, there is no other agreed measure for assessing violence risk assessment in this domain (Singh, 

2013). 
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b) Violent convictions (obtained from a search of the Police National Computer).  

 

The predictive assessment is provided for both at 6 and 12 months post-discharge (the dataset 

makes this possible because it contains interviewing and assessment data obtained at these time 

intervals). Specifically, Table 1 provides the following information: 

 

a) Tests 1 and 2 provide the AUC scores at 6 months post-discharge, as predicted from 

relevant evidence up to the day of discharge, for general violence and violent 

convictions respectively. 

 

b) Tests 3 and 4 provide the AUC scores at 12 months post-discharge, as predicted from 

relevant evidence up to the interviews performed at 6 months post-discharge, for 

general violence and violent convictions respectively. 

 

c) Tests 5 and 6 simply represent the cumulative scores of the previous tests; i.e. the scores 

as generated throughout period 0 to 12 months post-discharge, for general violence and 

violent convictions respectively. 

 

 
Table 1. AUC scores in predicting general violence and violent convictions. 

 

Test Evidence period 

(i.e. training data) 
Prediction period 

(i.e. test data) 
Prediction AUC Lower 

95% CI 
Upper 

95% CI 

1 At release 0-6 months post-discharge General violence 0.691 0.619 0.764 

2 At release 0-6 months post-discharge Violent conviction 0.845 0.784 0.907 

3 6 months after discharge 6-12 months post-discharge General violence 0.730 0.655 0.805 

4 6 months after discharge 6-12 months post-discharge Violent conviction 0.774 0.591 0.957 

5 Cumulative (test 1 & 3) Cumulative (test 1 & 3) General violence 0.708 0.656 0.761 

6 Cumulative (test 2 & 4) Cumulative (test 2 & 4) Violent conviction 0.797 0.710 0.884 

  

 

 In both cases the model predicts violent convictions with higher accuracy than general 

violence. At 6 months, the model's capability in predicting violent convictions is considered to 

be significantly superior than predicting general violence (tests 1 and 2), given a p-value of 

0.002, whereas this is not the case at 12 months (tests 3 and 4), given a p-value of 0.662. The 

p-value between the cumulative scores for general violence and violent convictions (tests 5 and 

6) is 0.088. 

 Figure 5 examines the results for consistency by assessing whether significant 

discrepancies exist in predicting general violence and violent convictions between the two 

periods (i.e. 0 to 6 months against 6 to 12 months post-discharge). The ROC curves represent 

the true positive rate against the false positive, and provide measures for sensitivity (i.e. the 

proportion of positives which are correctly identified; in our case, correctly identifying 

violence) and specificity (the proportion of negative which are correctly identified; in our case, 

correctly identifying absence of violence). The diagonal line represents a random guess and 

hence, points above the line represent classification that is better than random, whereas points 

below the diagonal line represent classification that is worse than random. The light blue 

shaded area indicates 95% confidence interval AUC boundaries for the specified ROC curve. 

The results suggest that the model is rather consistent in predicting general violence with the 

AUC scores of 0.691 and 0.730 for the two specified periods, given that they demonstrate 

statistically insignificant difference in AUC assessment, with a p-value of 0.472. The same 

applies for violent convictions, with the AUC scores of 0.845 and 0.774 being statistically 

insignificant given a p-value of 0.469. 
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Figure 5. Resulting ROC curves based on tests 1 to 4 from Table 1. The light blue shaded area represents 95% 

confidence interval AUC boundaries. 

 

 

Further, Appendix C presents supplementary information with regards to the model’s 

capability in predicting self-control, hostility, anger, and violent ideation. These four factors 

were those elicited by the clinical experts as being causal for violent behaviour in our model**. 

When DSVM-MSS is employed with patients, this information will sometimes be unknown 

and therefore, it may be useful for clinicians to understand the capability of the model in 

predicting these four important factors. Table C.1 presents the AUC scores generated for each 

of these four factors, and Figure C.1 demonstrates the resulting ROC curves for each of the 

tests reported in Table C.1. 

 

3.1.1. Predictive comparison against other models 

 

In order to understand the predictive capability of the DSVM-MSS model, we need to compare 

the resulting AUC scores against those generated by models representing the current state-of-

the-art in this domain. The following three well-established models have already been validated 

with the VoRAMSS in Doyle et al (2014): 

 

1. HCR20 version 3 (Douglas et al, 2013): a 20-item SPJ assessment of violence risk 

comprising ten static Historical (H) factors, such as previous violence; five dynamic 

Clinical (C) Factors relating to risk within forensic setting, such as impulsivity; and five 

dynamic Risk (R) factors relating to violence risk post-discharge, such as the existence 

of a personal support network. Items are scored on a three-point scale (0, 1, 2) depending 

on whether item is fully present and relevant to the patient (2); partially present and 

relevant (1); or absent (0). 

 

2. SAPROF (de Vries Robbé et al, 2013): a 17-item checklist of static and dynamic 

protective factors; that is dynamic factors that are likely to ‘protect’ the patient from 

committing future violence. It includes items such as intelligence (static) and positive 

                                                           
** Anger, hostility and self-control serve as causal factors for violence, in our model, through the introduced 

synthetic nodes of Aggression and Uncontrolled aggression as presented earlier in Figure 2. 
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social network (dynamic), all of which are scored on the same trichotomous scale as the 

HCR20 above, and are grouped into Internal factors (relating to the patient’s mental 

state, such as self-control); Motivational factors (relating to the patient’s incentives to 

change, such as life goals); and External factors (relating to the patient’s environment 

and social milieu, such as living circumstances). 

 

3. Positive and Negative Symptom Scale (PANSS; Kay, Fiszbein & Opler, 1987) measures 

the severity of symptoms of mental illness. Symptoms can be positive (that is, outwardly 

displayed symptoms associated with psychosis, such as hallucinations or delusions); 

negative (relating to diminished volition and self-care in the patient); general (including 

non-specific symptoms such as depression); or relating to aggression in the patient.  

 

The AUCs of the DSVM-MSS are compared with those for the total scale and sub-scales 

of each of the three predictors described above, as reported in Shaw et al (2013). We provide a 

detailed breakdown of the results in Tables 2 and 3. Specifically, Tables 2 and 3 report the 

results in predicting general violence and violent convictions respectively, at periods†† 0 to 6 

months and 0 to 12 months (i.e. cumulative) post-discharge. The results are as follows:  

 

1. For general violence during 0 to 6 months post-discharge (Table 2), the DSVM-MSS 

is ranked 6th, out of 14 available predictions, in AUC score and performed significantly 

better against one model (out of 13; i.e. during test 11). No significant discrepancies 

between AUC scores had been observed for the residual tests. It is worth mentioning 

that the DSVM-MSS model demonstrated close to significant increase in performance 

against the model during test 2 (i.e. p-value 0.056). 

 

2. For general violence during 0 to 12 months post-discharge (Table 2), the DSVM-MSS 

is ranked 1st in AUC score, and performed significantly better against three models (i.e. 

tests 2, 8 and 11). No significant discrepancies between AUC scores had been observed 

for the residual tests. It is worth mentioning that the DSVM-MSS model demonstrated 

close to significant increase in performance against the models during tests 4 and 12 

(i.e. p-values of 0.053 and 0.065). 

 

3. For violent convictions during 0 to 6 months post-discharge (Table 3), the DSVM-MSS 

is ranked 2nd in AUC score, and performed significantly better against five models (i.e. 

tests 6, 9, 10, 11 and 12). No significant discrepancies between AUC scores had been 

observed for the residual tests. 

 

4. For violent convictions during 0 to 12 months post-discharge (Table 3), the DSVM-

MSS is ranked 1st in AUC score, and performed significantly better against four models 

(i.e. tests 2, 6, 10 and 11). No significant discrepancies had been observed for the 

residual tests. It is worth mentioning that the DSVM-MSS model demonstrated close 

to significant increase in performance against the models during tests 3, 7, 9 and 12 (i.e. 

p-values of 0.063, 0.056, 0.056 and 0.065). 

 

It is interesting to note that for all significant discrepancies in AUC score, the results were in 

favour of the DSVM-MSS model. While the AUC scores based on predictions for violent 

convictions look very promising, it should be noted that there is some uncertainty surrounding 

the results due to the low occurrence rate of violent convictions in the dataset. This concern is 

                                                           
†† The previous published studies did not examine AUC scores in the period of 6 to 12 months post-discharge. 
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best illustrated by the respective confidence intervals, in AUC assessment, and resulting 

significance tests demonstrated above. Overall, however, the BN model appears to demonstrate 

moderate to significant improvements in violence risk assessment against the established 

clinical or regression-based models reported above, when employed with the same dataset. 

 
Table 2. Significance tests between the DSVM-MSS and the regression models reported in (Shaw, 2013), which 

were also trained with the VoRAMSS dataset, for general violence at 6 and 12 months (cumulative) post-

discharge. 

 
Test Model AUC  

(0-6 

months) 

Lower 

95% 

CI 

Upper 

95% 

CI 

Significance AUC  

(0-12 

months) 

Lower 

95% 

CI 

Upper 

95% 

CI 

Significance 

1 HCRv3 Total 0.728 0.658 0.797 0.667 0.701 0.638 0.765 0.863 

2 HCRv3 Historical 0.620 0.546 0.694 0.056 0.622 0.558 0.685 0.040 

3 HCRv3 Clinical 0.746 0.679 0.813 0.390 0.705 0.644 0.767 0.942 

4 HCRv3 Risk 0.663 0.589 0.738 0.331 0.626 0.561 0.691 0.053 

5 SAPROF Total 0.764 0.705 0.823 0.169 0.692 0.631 0.753 0.700 

6 SAPROF Internal 0.690 0.614 0.766 0.980 0.647 0.582 0.712 0.155 

7 SAPROF 

Motivational 

0.743 0.681 0.806 0.227 0.674 0.614 0.734 0.394 

8 SAPROF External 0.658 0.587 0.729 0.516 0.621 0.555 0.686 0.040 

9 PANSS Total 0.675 0.592 0.757 0.500 0.640 0.571 0.709 0.105 

10 PANNS Positive 0.678 0.600 0.756 0.530 0.653 0.589 0.718 0.193 

11 PANSS Negative 0.562 0.472 0.653 0.006 0.549 0.478 0.620 0.000 

12 PANSS General 0.676 0.598 0.754 0.500 0.628 0.560 0.695 0.065 

13 PANSS Aggression 0.716 0.634 0.798 0.877 0.680 0.613 0.747 0.514 

- BN model 0.691 0.619 0.764 N/A 0.708 0.656 0.761 N/A 

 

 
Table 3. Significance tests between the DSVM-MSS and the regression models reported in (Shaw, 2013) which 

were also trained with the VoRAMSS dataset, for violent convictions at 6 and 12 months (cumulative) post-

discharge. 

 
Test Model AUC  

(0-6 

months) 

Lower 

95% 

CI 

Upper 

95% 

CI 

Significance AUC  

(0-12 

months) 

Lower 

95% 

CI 

Upper 

95% 

CI 

Significance 

1 HCRv3 Total 0.878 0.817 0.939 0.401 0.685 0.519 0.850 0.240 

2 HCRv3 Historical 0.740 0.607 0.873 0.095 0.614 0.473 0.755 0.031 

3 HCRv3 Clinical 0.768 0.686 0.850 0.174 0.659 0.543 0.775 0.063 

4 HCRv3 Risk 0.835 0.735 0.934 0.834 0.656 0.478 0.834 0.164 

5 SAPROF Total 0.814 0.704 0.923 0.548 0.674 0.517 0.832 0.178 

6 SAPROF Internal 0.668 0.505 0.832 0.036 0.594 0.433 0.754 0.022 

7 SAPROF 

Motivational 

0.768 0.627 0.908 0.218 0.633 0.477 0.790 0.056 

8 SAPROF External 0.826 0.724 0.929 0.728 0.685 0.528 0.842 0.193 

9 PANSS Total 0.625 0.417 0.833 0.019 0.622 0.465 0.778 0.056 

10 PANNS Positive 0.623 0.445 0.800 0.007 0.581 0.434 0.727 0.013 

11 PANSS Negative 0.517 0.298 0.737 0.001 0.527 0.348 0.706 0.008 

12 PANSS General 0.613 0.426 0.801 0.007 0.648 0.516 0.780 0.065 

13 PANSS Aggression 0.716 0.518 0.915 0.139 0.659 0.493 0.824 0.149 

- BN model 0.845 0.784 0.907 N/A 0.797 0.710 0.884 N/A 

 

 

3.2. Expert-driven validation: Causal structure & Decision support 
 

This subsection covers two aspects of expert-driven model validation: a) examining that the 

causal structure of the model behaves rationally, and b) justifying the decision support provided 

by DSVM-MSS. We discuss these two expert-driven model validations in turn. 
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3.2.1. Structural validation with sensitivity analysis 

 

Sensitivity analysis (SA) in BNs is a simple, but very useful, technique that analyses the impact 

of different model variables to a specified output variable. In our case, SA was used for rapid 

evaluation of the overall robustness of the BN model, as suggested in (Coupe & van der Gaag, 

2000; van der Gaag & Renooij, 2001). 

 Specifically, this is done by assessing the impact selected model factors can have on a 

desired output variable. For example, Figure 6 demonstrates the sensitivity analysis for general 

violence between 0-6 months, and on the basis of the specified sensitivity variables. Since 

sensitivity analysis heavily depends on the causal structure of the BN, as well as on which 

model variables have been instantiated prior to performing the analysis, our experts were able 

to swiftly evaluate various such tornado graphs in an attempt to validate the structural integrity 

of the model. This was done by answering a series of simple questions, such as (examples from 

questions based on Figure 6): 

 

a) “From the nine influential factors considered, Age comes on top in terms of impact on 

General Violence, for the average mentally ill patient (e.g. Figure 5 assumes no 

instantiations and thus, represents the priors for the average individual). Is this 

reasonable?”. 

 

b) “When the average mentally ill patient is diagnosed with violent ideation or intend 

(VII), the patient’s risk of becoming violent increases from 13.73% to 31.5% when 

VII=“true”, and decreases from 13.73% to 9.8% when VII=“false”. Is this 

reasonable?”. 

 

If, for any reason, the experts identify some of the sensitivity values to be unreasonable, then 

this can be considered as an indication that there might be an error in one or more of the CPTs, 

or that part of the model’s causal structure is inadequate.  
 

 
 
Figure 6. Sensitivity analysis for general violence, between 0 and 6 months after release, on the basis of the 9 

specified sensitivity nodes and assuming no variable instantiations; where A is age, ANG is anger, G is gender, 

HST is hostility, LSI is length of stay as inpatient, PSO is prior serious offences, SC is self-control, SPV is serious 

problems with violence, and VII is violent ideation or intent. Probabilities next to the bars represent fluctuations 

for target node, whereas probabilities outside of the graph represent the prior probabilities for the specified state 

and variable. 
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Furthermore, in the same way SA can also be used to validate the inferences 

diagnostically. While diagnostic inference is harder for the experts to comprehend, compared 

to causal inference, it can still be useful for validating interventions. This is because in order 

to assess multiple factors against an intervention, the intervention has to be selected as the 

target node. However, the intervention always serves as a cause (i.e. treats symptom S) and 

hence, any inferences generated by the multiple sensitivity factors against the intervention only 

demonstrate diagnostic inference and not the actual effectiveness of the intervention. Figure 7, 

however, demonstrates why this can be useful for validation purposes.  

Specifically, the target node here is Drug treatment against the eight predefined 

sensitivity factors. In this example, we have intentionally chosen some of the sensitivity factors 

to represent relevant symptoms (i.e. grandiosity, hallucinations, and delusions), relevant port-

treatment effects (i.e. excessive substance use, disinhibition, cocaine post-treatment and 

cocaine dependence), and the risk for general violence which represents one of the outcomes 

for decision analysis. Figure 7 clearly demonstrates that all of the post-treatment effects share 

greater dependence against the intervention, in comparison to the relevant symptoms (which in 

also depend on other factors), whereas the risk for general violence hovers somewhere in the 

middle. Since this is the real-life behaviour one would expect, under the specified assumptions, 

we can conclude that Drug treatment, as well as the resulting structure between Drug treatment 

and the eight sensitivity factors considered, adequately simulate real-life expectations.  

This process can be repeated for any factor of the model, for any set of sensitivity 

factors, and for any set of instantiations within the model. While the effort increases with large-

scale BNs (as in our case; the BN consist of 80 factors), we found to be an extremely useful 

tool for this purpose. 

  

 

 
 

Figure 7. Sensitivity analysis‡‡ for drug treatment, between 6 and 12 months after release, on the basis of the 8 

specified sensitivity nodes and assuming no variable instantiations; where CUPT is cocaine use post-treatment, 

CD is cocaine dependence, ESU is excessive substance use, DIS is disinhibition, GVIO is general violence, DEL 

is delusions, HAL is hallucinations, and GRA is grandiosity. Probabilities next to the bars represent fluctuations 

for target node, whereas probabilities outside of the graph represent the prior probabilities for the specified state 

and variable. 

                                                           
‡‡  Note that the results demonstrated here must assume that the intervention is uncertain (i.e. with prior 

probabilities as from learned data).   
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3.2.1 Decision support 

 

Compared to the well-established predictors in this application domain, the DSVM-MSS model 

provides improved decision support that goes beyond predictive accuracy. Specifically, and as 

identified by the clinical experts and decision scientists, these decision support benefits are:  

 

a) Risk management: One of the most important decision support features provided by 

the DSVM-MSS is its ability to simulate interventions for risk management. Unlike the 

other relevant predictors mentioned in this article, DSVM-MSS enables risk 

management professionals to prioritise interventions in an evidence-based fashion. 

Existing risk assessments such as the HCR20 or SAPROF may highlight individual risk 

factors, but provide no indication of the relative importance of individual factors to 

enable prioritisation of treatment or management. On the other hand, the BN model can 

not only illustrate the impact of each intervention on the desired output variable, but 

can also demonstrate visually how and at what degree an intervention influences the 

specified output for each individual, and this process can also be performed over 

combinations of interventions. 

 In terms of decision support for the application domain, the BN model does this 

by examining whether the risk of an undesirable behaviour of a mentally ill patient can 

be managed to acceptable levels, as a result of one or more interventions, prior to 

determining discharge from MSS. This allows for analysis that answers complex 

clinical questions based on unobserved evidence; that is, “how much could we expect 

to reduce the risk of violence for patient with profile A given intervention B?”. None of 

the current state-of-the-art models in this area of research are capable of simulating 

causal interventions. 

 

b) Diagnostic inference: While current predictors are only capable of generating 

predictions from cause to effect, the BN model is also capable of inferring from 

observable effects to unobservable causes. In terms of decision support, this unique 

capability provides radically improved decision support since it enables extensive what-

if analysis, in addition to explaining away unobserved variables. DSVM-MSS provides 

decision makers with the ability to investigate, for example, the reasons as to why a 

particular mentally ill patient behaved violently when the model was indicating 

otherwise, by inserting the relevant evidence into the model and allowing diagnostic 

inference to backpropagate to potential unobservable causes.   

 

c) Management of missing information: The predictors which are currently established 

in this area require most, if not all, of their inputs to be entered in order to be accurate. 

In the case of DSVM-MSS, any such missing inputs are not ignored but rather inferred 

with revised beliefs based on the set of inputs which are known and thus, diminishing 

the limitation of not having a complete set of inputs.  

 Moreover, in an extended version of this study we have demonstrated how the 

underlying principle of the game-theoretic technique Value of Information can be 

incorporated into these models to enhanced decision support by indicating whether a 

decision could be subject to amendments on the basis of some incomplete information 

within the model (i.e. when some inputs are missing in assessing a particular patient), 

and whether it would be worthwhile for the decision maker to seek further information 

prior to suggesting a decision (Constantinou et al., 2015a). 

 



Accepted for publication in Decision Support Systems, version 2.1, 29 October 2015. 

 

18 
 

d) Expert knowledge and structural integrity: The current state-of-the-art predictors rely 

on classical methods and, in some cases, methods with no statistical composition. 

Hence, they typically only consider what data is available and assume linearity between 

risk factors since there is no causal or influential structure in place.  

 On the other hand, the BN framework is the most widely accepted modelling 

technique for incorporating expert knowledge along with relevant data. This has 

allowed us to incorporate expert knowledge for factors that are considered to be 

important for decision support but which historical data failed to capture, as well as to 

construct a structure with non-linear relationships between the variables of interest. The 

causal structure is intuitive and, by attempting to overcome the issues imposed by the 

unstructured data generated by the various questionnaires, interviews and clinical 

assessments, the model considers what information we actually require, rather than 

what data we have available. The model can retain its structure for future relevant 

studies, regardless how limited the new training dataset might be in terms of the number 

of variables.  
 

 

4 CONCLUDING REMARKS & FUTURE WORK 

The paper demonstrates a BN model, which we call DSVM-MSS, that can provide decision 

support to medical practitioners and professionals whose job involves determining whether a 

mentally ill patient is suitable for discharge from MSS. The motivation to develop DSVM-

MSS arose from forensic psychiatrists and psychologists who have remained unimpressed by 

the decision support offered by the current state-of-the-art, which is represented by classical 

statistical methods and checklists with no statistical composition, and have, therefore, 

identified the need examine causal inference and the simulation of causal interventions. This 

paper is an extension of a recent study which focuses on the prevention of violent reoffending 

in released prisoners with serious background of violence (Constantinou et al., 2015b).  

 The results are based on both data-driven and expert-driven validations. In terms of the 

data-driven validation, DSVM-MSS demonstrates moderate to significant improvements in 

predictive accuracy when compared to the well-established models, that are employed with the 

same dataset, within this area of research. More importantly, however, and in terms of expert-

driven validations, it is suggested that the DSVM-MSS is capable of improving decision 

support in a number of ways. These include the ability of the model to a) simulate causal 

interventions in an attempt to perform risk management for discharged decision making, b) 

perform diagnostic inference, c) manage missing information, and d) allow the incorporation 

of expert knowledge that allows the information to flow in a causally structured manner that is 

easily understood and appreciated by clinical experts. These benefits on predictive accuracy 

and decision support are discussed in greater detail in Section 3. 

 We have attempted to provide an adequate causal framework that captures the 

important properties of various aspects which could affect violent behaviour, such as mental 

illnesses, substance misuse, socioeconomic factors and personality disorder. As a result, the 

implications of this paper expand to both research domains; the forensic medical sciences and 

decision support systems. Specifically, when it comes to forensic medical sciences the paper 

attempts to direct medical practitioners and professionals into new ways of reasoning since the 

previous generation of models and predictors fail to deliver the decision support benefits that 

DSVM-MSS offers. In the case of decision support systems, the paper demonstrates how we 

managed to overcome the challenge of moving from a set of unstructured interviewing and 

clinical assessment data, which included repetitive, redundant and contradictory information, 

into a well-defined BN model that considers both data and expert knowledge for decision 



Accepted for publication in Decision Support Systems, version 2.1, 29 October 2015. 

 

19 
 

support. This was achieved by focusing on what information we really require, rather than 

focusing on what data we have available, in order to meet the decision support objectives as 

identified by our domain experts. This adds to the limited previous attempts in developing 

decision support systems using BNs in forensic psychiatry, as well as from questionnaire, 

interviewing, assessment, and survey data in general. 

 While the process of BN model development requires an extensive iterative process 

between domain experts and decision scientists when modelling such highly complex real-

world problems, BNs offer potential for transformative improvements. We believe that this 

type of modelling provides an important step forward for decision support within violence 

prevention research for individuals with enduring mental health problems. Further research and 

development should move beyond assessments of predictive accuracy, and into an evaluation 

of the efficacy of risk management decisions supported by the BN in ‘real world’ situations.  

 The problem addressed in this paper is typical of many critical real-world scenarios 

where decision makers require systems that go beyond regression and classification 

frameworks, especially in cases with limited or poorly structured data, and into improving 

decision support. The model presented in this paper will help in describing a method to 

systemise the development of BNs when the available information is based on questionnaire, 

interviewing or survey data, as well as to systemise the development of effective BNs for 

decision analysis in situations where there is limited data but access to expert knowledge. Both 

of these problems are being addressed in the BAYES-KNOWLEDGE project (Fenton, 2014). 
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APPENDIX A: The variables considered by the DSVM-MSS model. 

 

Table A.1. Description of the model variables. 

 

Variable 
No. 

Node name Node states Dataset 

1 IQ Low average/Average/High average VoRAMSS 
2 Structured leisure activities No/Yes VoRAMSS 
3 Stable and suitable work No/Yes VoRAMSS 
4 Effective coping skills No/Yes VoRAMSS 
5 Steady income No/Yes VoRAMSS 
6 Positive life goals No/Yes VoRAMSS 
7 Pro-social and supportive 

network 
No/Yes VoRAMSS 

8 Professionally supervised living No/Yes VoRAMSS 
9 Problems with intimate 

relationships 
No/Yes VoRAMSS 

10 Problems with other 
relationships 

No/Yes VoRAMSS 

11 Problems with employment No/Yes VoRAMSS 
12 Social avoidance No/Partly/Yes VoRAMSS 
13 Self-control No/Yes VoRAMSS 
14 Inadequate planning No/Yes VoRAMSS 
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15 Personal resources Low/High Expert (Synthetic) 
16 Delusions No/Partly/Yes VoRAMSS 
17 Hallucinations No/Partly/Yes VoRAMSS 
18 Anxiety No/Partly/Yes VoRAMSS 
19 Depression No/Partly/Yes VoRAMSS 
20 Grandiosity No/Partly/Yes VoRAMSS 
21 Psychotic illness No/Yes VoRAMSS 
22 Cannabis use No/Yes VoRAMSS 
23 Cannabis use post treatment No/Yes VoRAMSS & PCS 
24 Cocaine use No/Yes VoRAMSS 
25 Cocaine use post treatment No/Yes VoRAMSS & PCS 
26 Heroin use No/Yes VoRAMSS 
27 Stimulants use No/Yes VoRAMSS 
28 Stimulants use post treatment No/Yes VoRAMSS & PCS 
29 Opiates use No/Yes VoRAMSS 
30 Hazardous drinking No/Yes VoRAMSS 
31 Alcohol treatment No/Yes PCS 
32 Hazardous drinking post 

treatment 
No/Yes VoRAMSS & PCS 

33 Drug treatment No/Yes PCS 
34 Cannabis dependence No/Yes PCS 
35 Cocaine dependence No/Yes PCS 
36 Heroin dependence No/Yes Expert 
37 Stimulants dependence No/Yes PCS 
38 Opiates dependence No/Yes Expert 
39 Alcohol dependence No/Yes PCS 
40 Substance dependence No/Yes Expert (Synthetic) 
41 Disinhibition No/Yes Expert (Synthetic) 
42 Excessive substance use No/Medium/High Expert (Synthetic) 
43 Personality disorder No/Yes VoRAMSS 
44 PCLSV factor 1 Low/Medium/High VoRAMSS 
45 PCLSV factor 2 Low/Medium/High VoRAMSS 
46 PCLSV facet 3 Low/Medium/High VoRAMSS 
47 Poor parenting No/Yes VoRAMSS 
48 Secure attachment in childhood No/Yes VoRAMSS 
49 Instability No/Yes VoRAMSS 
50 Problems with ASB as adult No/Yes VoRAMSS 
51 Motivation for treatment No/Yes VoRAMSS 
52 Motivated to use medication No/Yes VoRAMSS 
53 Uncooperativeness No/Partly/Yes VoRAMSS 
54 Negative attitude No/Yes VoRAMSS 
55 Problems with responsiveness No/Yes VoRAMSS 
56 Lack of insight No/Yes VoRAMSS 
57 Medication at discharge No/Yes VoRAMSS 
58 Tension No/Partly/Yes VoRAMSS 
59 Guilt feelings No/Partly/Yes VoRAMSS 
60 Affective lability No/Partly/Yes VoRAMSS 
61 Anger No/Partly/Yes VoRAMSS 
62 Anger management No/Yes PCS 
63 Anger post treatment No/Partly/Yes VoRAMSS & PCS 
64 Excitement No/Partly/Yes VoRAMSS 
65 Suspiciousness No/Partly/Yes VoRAMSS 
66 Hostility No/Partly/Yes VoRAMSS 
67 Difficulty delaying gratification No/Partly/Yes VoRAMSS 
68 Emotional withdrawal No/Partly/Yes VoRAMSS 
69 Aggression Low/High/Very high Expert (Synthetic) 
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70 Uncontrolled aggression Low Aggression/High controlled/High 
uncontrolled 

Expert (Synthetic) 

71 Gender Female/Male VoRAMSS 
72 Age 18-21/22-25/26-29/30-34/35-39/40-

49/50-59/60+ 
VoRAMSS 

73 Length of stay as inpatient Up to 1 year/Up to 2 years/Up to 5 
years/5+ years 

VoRAMSS 

74 Pro-criminal attitude No/Yes VoRAMSS 
75 Victimisation No/Yes VoRAMSS 
76 Violent ideation or intend No/Yes VoRAMSS 
77 Serious problems with violence No/Yes VoRAMSS 
78 Prior serious offences None/One/2+ VoRAMSS 
79 General violence No/Yes VoRAMSS 
80 Violent convictions No/Yes VoRAMSS 

 

 

APPENDIX B: Expertly defined CPTs 
 

 

Table B.1. Expertly defined CPT for synthetic node Aggression. 
 

Anger No Partly Yes 

Hostility No Partly Yes No Partly Yes No Partly Yes 

Low 1 1/2 1/2 1/2 0 0 1/2 0 0 

High 0 1/2 0 1/2 1 1/2 0 1/2 0 

Very high 0 0 1/2 0 0 1/2 1/2 1/2 1 

 

 

Table B.2. Expertly defined CPT for synthetic node Uncontrolled aggression. 
 

Self-control No Yes 

Aggression No Partly Yes No Partly Yes 

Low 1 0 0 1 0 0 

High controlled 0 0 0 0 1 1 

High uncontrolled 0 1 1 0 0 0 

 

 

Table B.3. Expertly defined CPT for synthetic node Excessive substance use. 
 

Cocaine 

use 

No Yes 

Cannabis 

use 

No Yes No Yes 

Stimulant

s use 

No Yes No Yes No Yes No Yes 

Substance 

dep. 

N

o 

Ye

s 

No Ye

s 

No Ye

s 

No Ye

s 

No Ye

s 

No Ye

s 

No Ye

s 

No Ye

s 

Low 1 0 1/

2 

0 1/

2 
0 1/

3 

0 1/

2 
0 1/

3 

0 1/

3 

0 0 0 

Medium 0 0 1/

2 

0 1/

2 
0 2/

3 

0 1/

2 
0 2/

3 

0 2/

3 

0 1/

3 

0 

High 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2/

3 

1 
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Table B.4. Expertly defined CPTs for synthetic nodes Disinhibition, Substance dependence, and Personal 

resources. 
 

Variable Variable 

states 

Parent nodes Conditional definition 

Disinhibition No/Yes Cocaine use, Stimulants use, 

Hazardous drinking, Cannabis use. 

Disinhibition=No if all parent 

nodes=No, otherwise Yes (i.e. OR 

relationship between parent nodes) 

Substance 

dep. 

No/Yes Cocaine dep., Stimulants dep., 

Cannabis dep., Alcohol dep., 

Heroin dep., Opiates dep. 

Substance dep.=No if all parent 

nodes=No, otherwise Yes (i.e. OR 

relationship between parent nodes) 

Personal 

resources 

No/Yes Steady income, Stable and suitable 

work, Positive life goals, Effective 

coping skills, Structured leisure 

activities 

Personal resources=No if less than four 

parent nodes=No, otherwise Yes. 

 

 
Table B.5. Expertly defined CPT for node Opiates dependence, given Opiates use. 

 

Opiates use No Yes 

No 1 0.84 

Yes 0 0.16 

 

 
Table B.6. Expertly defined CPT for node Heroin dependence, given Heroin use. 

 

Heroin use No Yes 

No 1 0.77 

Yes 0 0.23 

 

 

APPENDIX C: Predictive assessment for causal factors for violence 
 

Table C.1 presents the AUC scores in predicting self-control, hostility, anger, and violent 

ideation. The results demonstrate that these factors are predicted with very high accuracy that 

is consistent over the two periods, in terms of AUC score. Self-control is the only factor which 

demonstrates some inconsistency between the AUC scores (i.e. without taking CIs into 

consideration) over the two periods. The high uncertainty generated at period 0-6 months in 

the AUC score for self-control might explain this inconsistency. Nevertheless, the p-values 

generated for each factor between periods do not demonstrate significant discrepancies 

between AUC scores and thus, the hypothesis for consistency for each factor between the two 

periods cannot be rejected; the p-values are: 0.172 for self-control, 0.469 for hostility, 0.090 

for anger and 0.643 for violent ideation. In fact, the consistency hypothesis is closest to 

rejection for anger. 
 

Table C.1. AUC scores in predicting self-control, hostility, anger, and violent ideation. 

 

Test Evidence period Prediction period Predicted outcome AUC  
(95% CI) 

Lower 

95% CI 
Upper 

95% CI 

1 At release 0-6 months after release Self-control 0.638 0.419 0.857 

2 At release 0-6 months after release Hostility 0.787 0.669 0.905 

3 At release 0-6 months after release Anger 0.973 0.945 1.000 

4 At release 0-6 months after release Violent ideation 0.833 0.766 0.905 

5 6 months after release 6-12 months after release Self-control 0.810 0.697 0.922 

6 6 months after release 6-12 months after release Hostility 0.840 0.759 0.920 

7 6 months after release 6-12 months after release Anger 0.824 0.655 0.994 

8 6 months after release 6-12 months after release Violent ideation 0.811 0.748 0.875 
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Figure C.1. Resulting ROC curves given the specified Tests 1 to 8, as reported in Table C.1. 
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