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 Solving the problem of inadequate scoring rules for assessing 
 probabilistic football forecast models 

 
 Anthony Constantinou*†and Norman E. Fenton 
 
 Risk Assessment and Decision Analysis Research Group (RADAR), Department of Electronic 
 Engineering and Computer Science, Queen Mary, University of London, London, UK 
 
 [Submitted for publication in the Journal of the Royal Statistical Society, Series C: Applied Statistics, August 2011] 
 
 Summary. Despite the massive popularity of probabilistic (association) football forecasting models, and the relative 
 simplicity of the outcome of such forecasts (they require only three probability values corresponding to home win, 
 draw, and away win) there is no agreed scoring rule to determine their forecast accuracy. Moreover, the various 
 scoring rules used for validation in previous studies are inadequate since they fail to recognise that football outcomes 
 represent a ranked (ordinal) scale. This raises severe concerns about the validity of conclusions from previous 
 studies.  There is a well-established generic scoring rule, the Rank Probability Score (RPS), which has been missed 
 by previous researchers, but which properly assesses football forecasting models.  
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1. Introduction 

 
If a problem has a fixed set of possible outcomes (such as a football match where the 

outcomes are �, �, � corresponding to Home win, Draw, Away win), a probabilistic forecast model is 
one that provides predicted probabilities (such as �� , �� , �� in the case of football) corresponding to 
the outcomes. Probabilistic forecasting has become routine in domains as diverse as finance, 
macroeconomics, sports, medical diagnosis, climate and weather. Some forecasts are conceptually 
simple (involving a single binary outcome variable) while others are complex (involving multiple 
possibly related numeric variables). To determine the accuracy of forecast models we use so-called 
scoring rules, which assign a numerical score to each prediction based on how ‘close’ the 
probabilities are to the (actual) observed outcome.  For a detailed review on the theory of scoring 
rules and probability assessment in general see (Jolliffe & Stephenson, 2003; Gneiting & Raftery, 
2007)  

Defining suitable scoring rules has proven to be extremely difficult, (Murphy & Winkler, 1987; 
Garthwaite, Kadane, & O'Hagan, 2005), even for apparently ‘simple’ binary forecasts (Jolliffe & 
Stephenson, 2003), or even when restricted to a specific application domain. For example, in 
macroeconomics serious concerns over the various scoring rules have been exposed, (Leitch & 
Tanner, 1991; Armstrong & Collopy, 1992; Hendry, 1997; Fildes & Stekler, 2002). As a result, many 
have suggested the use of more than one rule in an attempt to obtain an informed picture of the 
relative merits of the forecasts (Jolliffe & Stephenson, 2003).  

The work in (Gneiting & Raftery, 2007) addresses many of the above problems, by 
recognising that the underlying measurement scale type of the outcomes for a specific problem 
should drive the type of scoring rule used. For example, if the problem is to predict a winning lottery 
number then although the possible outcomes appear to be an ordered set {1,2, … ,49} the relevant 
scale type is only nominal; if the winning number is 10 then a prediction of 9 is no ‘closer’ than a 
prediction of 49 – they are both equally wrong and any scoring rule should capture this. On the other 
hand, if the problem is to predict tomorrow’s temperature in degrees centigrade the relevant scale 
type is (at least) ordinal (ranked) since if the actual temperature is 10 then a prediction of 9 must be 
considered closer than a prediction of 49, and any scoring rule should capture this.   

The crucial observation we make about football forecasting is that the set of outcomes {�, �, �} must be considered as an ordinal scale and not a nominal scale. The outcome � is closer to � than � is to �;  if the home team is leading by a single goal then it requires only one goal by the 
away team to move from � to �. A second goal by the away team is required to move the result on to 
an �. It follows that if the result is � any scoring rule should penalise the probability assigned to � 
more heavily than that assigned to �. It turns out that, as obvious as this observation appears, we will 
show in Section 2 that it has been missed in every previous study of football forecasting systems. To 
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demonstrate this we introduce some simple benchmark scenarios along with the result required of 
any valid scoring rule and show that none of the previously used scoring rules satisfies all of the 
benchmarks. It follows that all of the previous studies on football forecast models have used 
inadequate scoring rules. In Section 3 we show that there is a well established standard scoring rule 
for ordinal scale outcomes, called The Rank Probability Score (RPS), which satisfies all the 
benchmark examples for football forecast models. The implications of this are discussed in Section 4. 
  

2. Scoring rules used in previous football forecast studies 
 
We have reviewed all of the previously published studies in which one or more explicit scoring 

rule was used to evaluate the accuracy of one or more probabilistic football forecasting model. There 
were nine such studies. The various scoring rules are defined in the Appendix. They fall into two 
categories:  

 
a) Those which consider only the prediction of the observed outcome (also known as local 

scoring rules).  They are: Geometric Mean, Information Loss, and Maximum Log-Likelihood 
b) Those which consider the prediction of the observed as well as the unobserved outcomes. 

They are: Brier Score, Quadratic Loss function, and Binary decision 
 

At least one of the category (a) scoring rules was used in (Dixon & Coles, 1997; Rue & Salvesen, 
2000; Hirotsu & Wright, 2003; Goddard, 2005; Karlis & Ntzoufras, 2003; Goddard, 2005; Forrest, 
Goddard, & Simmons, 2005; Joseph, Fenton, & Neil, 2006; Graham & Stott, 2008; Hvattum & 
Arntzen, 2010). At least one of the category (b) scoring rules was in (Forrest et al., 2005; Joseph et 
al., 2006; Hvattum & Arntzen, 2010).  

In addition to the above scoring rules, some researchers have proposed and applied different 
‘ranking’ methods of validation, such as the error in cumulative points expected for a team after a 
number of matches, the RMS and Relative Rank Error of the final football league tables, and pair-wise 
comparisons between probabilities. At least one of these types of methods has been found in (Pope & 
Peel, 1988; Dixon & Pope, 2004; Min et al., 2008; Baio & Blangiardo, 2010). However, these methods 
are beyond the scope of this paper; they do not represent an actual scoring rule, since they cannot 
provide a measure of accuracy for the prediction of a particular game.  
 The work in (Gneiting & Raftery, 2007) demonstrates that none of the above scoring rules are 
suitable for a problem whose outcomes are on a ranked scale, and hence they are unsuitable for 
assessing football forecast models. We demonstrate this informally by introducing five ‘benchmark’ 
scenarios (Table 1) in each of which we have a match which has two ‘competing’ prediction models α 
and β together with an actual outcome. In each case it is clear intuitively which of the predictions 
should be scored higher. 
 

Table 1. Hypothetical forecasts by models α and β, and results for matches 1 to 5. 
 

Match 

 

 

Model 

 �(�) 

 �(�) 

 �(�) 

 

Result 

‘Best 

model’ 

1 � 1 0 0 � � � 0.9 0.1 0 2 � 0.8 0.1 0.1 � � � 0.5 0.25 0.25 3 � 0.35 0.3 0.35 � � � 0.6 0.3 0.1 4 � 0.6 0.3 0.1 � � � 0.6 0.1 0.3 5 � 0.5 0.45 0.05 � � � 0.55 0.10 0.35 
 
This is because: 
 

a) Match 1: (Taking account of perfect accuracy):  Model α predicts the actual outcome with total 
certainty and hence must score better than any other, less perfect, predicted outcome.  

b) Match 2: (Taking account of predicted value of the observed outcome) Both models � and � 
assign the highest probability to the winning outcome �, with the remaining two outcomes 
evenly distributed. Since the observed value of � is higher than that of �, it must score higher.  

c) Match 3: (Taking account of distribution of the unobserved outcomes) Given that the 
observed outcome here is �, both of the unobserved outcomes are equally distanced from 



 

the observed one. Hence, the ordering concern here is eliminated. Still, a scoring rule must 
identify that model � is more accurate since its overall distribution of probabilities is more 
indicative of a draw than that of � (which strongly predicts a home win).  

d) Match 4: (Taking account of ordering when the set of unobserved outcomes are equal) Both 
models α and β assign the same probability to the winning outcome �. This time, however, 
they also assign the same probability values (but in a different order) to the unobserved 
outcomes (0.30 and 0.10). But, a scoring rule must identify that model � is more accurate 
since its overall distribution of probabilities is more indicative of a home win.  

e) Match 5: (Taking account of overall distribution) Although α predicts the actual outcome H 
with a lower probability than β  the distribution of � is more indicative of a home win than �. 
This match is the most controversial, but it is easily explained by considering a gambler who 
is confident that the home team will not lose, and so seeks a lay bet (meaning explicitly that 
the bet wins if the outcome is � or �). Assuming that α and β are  forecasts presented by two 
different bookmakers, bookmaker � will pay much less for the winning bet (this bookmaker 
considers that there is only 5% probability the home team will lose, as opposed to bookmaker � who considers it a 35% probability). 

 
 Table 2 presents the results of the previously used football scoring rules for the benchmark 
scenarios and determines the extent to which they satisfy the benchmark for each of those forecasts 
presented in Table 1. A tick means that the scoring rule correctly scores model � higher than �. A 
double cross means that the scoring rule incorrectly scores model β  higher than α. A single cross 
means that the scoring rule returns the same value for both models. Where necessary, the score is 
rounded to 4 decimal points. For the rules Binary Decision, Geometric Mean and MLLE, a higher 
score indicates a better forecast; whereas for the rules Brier Score and the Information Loss a lower 
score indicates a better forecast.  

 
Table 2. Applying the specified scoring rules to each benchmark presented in table 1 

Match 

(Model) 

 

 

Binary  

Decision 

Score 

Brier  

Score 

Geometric  

Mean 

Score 

Information  

Loss  

Score 

MLLE  

Score 

1 (�) (�) 

����    1 0 
����    0 0.02 

����    1 0.9 

����    0 0.152 

����    0 −0.1054 
 2 (�) (�) 

����    1 1 
����    0.06 0.375 

 

����    0.8 0.5 
 

����    0.3219 1 

����    −0.2231  −0.6931 
 3 (�) (�) 

����    0 0 

����    0.735 0.86 
 

����    0.3 0.3 

����    1.7369 1.7369 

����    −1.2039 −1.2039 
4 (�) (�) 

����    1 1 

����    0.26 0.26 

����    0.6 0.6 

����    0.7369 0.7369 
 

����    −0.5108 −0.5108 
 5 (�) (�) 

����    1 1 

���� ����    
 0.455  0.335 

���� ����    0. 5 0.55 

���� ����    1 0.8625 

���� ����    − 0.6931− 0.5978 
 

 None of the scoring rules returns the ‘correct’ outcome for all 5 scenarios. Indeed, all of the 
scoring rules fail to correctly identify model α as superior for scenarios 4 and 5. 

 
3. The Rank Probability Score (RPS) 

 
The RPS was introduced in 1969 (Epstein, 1969). It is both strictly proper (Murphy, 1969) and 

sensitive to distance (Murphy, 1970). The RPS has been described as a particularly appropriate 
scoring rule for evaluating probability forecasts of ordered variables (Murphy, 1970). In general the 
RPS for a single problem instance is defined as:  

 



 

#$% = 1' − 1 ( )( �*
+

*,- − ( .*
+

*,- /
01

+,-  

 
where ' is the number of potential outcomes, and �* and .* are the forecasts and observed outcomes 
at position 2. The RPS represents the difference between the cumulative distributions of forecasts and 
observations, and the score is subject to a negative bias that is strongest for small ensemble size 
(Jolliffe & Stephenson, 2003). Since the scoring rule is sensitive to distance, the score penalty 
increases the more the cumulative distribution forecasted differs from the actual outcome (Wilks, 
1995). For a detailed analysis on the RPS see (Epstein, 1969).  
 

Table 3. Score generated by the RPS for each hypothetical forecast presented in table 1, 
 along with the respective cumulative distributions (forecasted and observed).  

 
Match 

 
 

 

 
Model ( �*

+,-,0,3
*,-  ( .*

+,-,0,3
*,-  

 
RPS 

 

1 � 1,1,1 1,1,1 (0.0000) � 0.90,1,1 1,1,1 0.0050 2 � 0.80, 0.90, 1 1, 1, 1 (0.0250) � 0.50, 0.75, 1 1, 1, 1 0.1562 3 � 0.35, 0.65, 1 0, 1, 1 (0.1225) � 0.60, 0.90, 1 0, 1, 1 0.1850 4 � 0.60, 0.90, 1 1, 1,1 (0.0850) � 0.60, 0.70, 1 1, 1, 1 0.1250 5 � 0.50,0.95,1 1, 1, 1 (0.1262) � 0.55,0.65,1 1, 1, 1 0.1625 
 
Table 3 presents the generated score for each of the scenarios presented in table 1, along 

with the respective cumulative distributions (forecasted and observed). A lower score (rounded to 4 
decimal points) indicates a better forecast. Unlike the previous metrics the RPS correctly scores � as 
‘best’ for all 5 matches. 
 

4. Implications and conclusions 

Measuring the accuracy of any forecasting model is a critical part of its validation. In the 
absence of an agreed and appropriate type of scoring rule it might be difficult to reach a consensus 
about: a) whether a particular model is sufficiently accurate; and b) which of two or more competing 
models is ‘best’. In this paper, the fundamental concern is the inappropriate assessment of forecast 
accuracy in association football, which may lead in inconsistencies, whereby one scoring rule might 
conclude that model � is more accurate than model �, whereas another may conclude the opposite. 
In such situations the selection of the scoring rule can be as important as the development of the 
forecasting model itself, since the score generated practically judges the performance of that model. 
On the one hand, an outstanding model might be erroneously rejected while on the other hand a poor 
model might be erroneously judged as acceptable.  
 We have shown that, by failing to recognise that football outcomes are on an ordinal scale, all 
of the various scoring rules that have previously been used to assess the forecast accuracy of football 
models are inadequate. They fail to correctly determine the more accurate forecast in circumstances 
illustrated by the benchmark scenarios of Table 1. This failure raises serious concerns about the 
validity and conclusions from previous studies that have evaluated football forecasting models. What 
makes the failure of all previous studies to use a valid scoring rule especially surprising is that there 
was already available (before any of the studies were conducted) a well-established scoring rule, the 
RPS, that avoids the inconsistencies we have demonstrated.  
 With the relentless increase in interest in football forecasting it will become more important 
than ever that effective scoring rules for forecast models are used. Although we are not suggesting 
that the RPS is the only valid candidate for such a scoring rule, we have shown that (unlike the 
previous scoring rules used) it does satisfy the basic benchmark criteria expected.  

Given the massive surge in popularity of the sport and its increasing dominance in sport 
betting internationally, it is important to note that we have only considered the assessment of forecast 
accuracy and not profitability. We cannot claim that a forecasting model assessed as more accurate 
than a bookmaker by such a rule will necessarily indicate profitability. After all, profit is not only 
dependent on the accuracy of a model but also on the specified betting methodology. Other 



 

researchers have already concluded that it might be best to combine profitability methodologies with a 
proper forecast assessment rule for that matter (Wing et al., 2007).  Yet, it is evident that profitability 
is dependent on accuracy and not the other way around. Accordingly, higher forecast accuracy 
indicates a higher prospective profit which denotes the importance of propriety in forecast 
assessment. 
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Appendix:  Description of previously proposed scoring rules 

In what follows we assume that: 
 

a) In each instance (such as a single football match) there are '  possible outcomes (so ' = 3 for football matches) 
b) The model predictions for the outcomes are respective probabilities �-, �0, … , �4 
c) The respective actual observed outcomes are .-, .0, … , .4. So for football matches the .+s are either 1 or 0 and in such cases the index of the actual observed outcome will 

be denoted 5, so 	.+ = 	1 if 6 = 5 and 0 if 6 ≠ 5.   
 
A scoring rule is actually defined in terms of two components: 
 

1. A score for an individual instance given a forecast for that instance (e.g. a single football 
match) 

2. A method for defining the cumulative scores over a set of instances. With the exception of the 
geometric mean, method used is either the arithmetic mean of the individual scores or the 
total of the individual score over those instances. The geometric mean, in contrast uses a 
multiplicative function for the cumulative score; meaning that it punishes individual bad 
predictions heavier.  
 
For the purposes of this paper it is sufficient to consider only how the scoring rule is defined 

for individual instances. These definitions are: 
 

a) Binary Decision: The score is 1 if �8 > �+ for each 6 ≠ 5 and 0 otherwise. The 
Binary Decision rule takes into consideration all of the probabilistic values since it 
seeks the highest one for assessment. However, the rule does not generate a score 
based on the values. 
 

b) Brier Score: also known as Quadratic Loss, the Brier Score (Brier, 1950) is 
 

((�+ − .+)0
1

+,-
 

  
c) Geometric Mean For an individual instance the score is simply �8. 

  
d) Information Loss: For an individual instance this is defined as −log0 �8. In order to 

avoid the zero-frequency problem (whereby the informational loss is minus infinity 
when �8 is zero) it is expected that non-zero probabilities are assigned to every 
outcome.  
 

e) Maximum Log-Likelihood Estimation (MLLE): Maximum likelihood estimation is 
known as an approach to parameter estimation and inference in statistics, which 
states that the desired probability distribution is the one that makes the observed data 
'most likely'. Informational Loss and Maximum Log-Likelihood estimation differ in 
equation but generate identical forecast assessment. As in most cases, we present 
the MLLE over the MLE since it generates identical assessment while reducing the 
computational cost significantly (Myung, 2003). For a likelihood test, the Binomial 
distribution with parameters = (trials), and > (successes) could be used. However, 
since we only have one observation for every match prediction (= and > are equal to 
1), the Log-likelihood is ?=(�8). Therefore, in order to avoid unnecessary calculations 
in this paper, we simply define the MLLE to be ?=	(�8) for an individual match. 

 

 

 


