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a b s t r a c t

We present a Bayesian network (BN) model for forecasting Association Football match outcomes. Both
objective and subjective information are considered for prediction, and we demonstrate how probabili-
ties transform at each level of model component, whereby predictive distributions follow hierarchical
levels of Bayesian inference. The model was used to generate forecasts for each match of the 2011/
2012 English Premier League (EPL) season, and forecasts were published online prior to the start of each
match. Profitability, risk and uncertainty are evaluated by considering various unit-based betting proce-
dures against published market odds. Compared to a previously published successful BN model, the
model presented in this paper is less complex and is able to generate even more profitable returns.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Association Football (hereafter referred to as simply football) is
the most popular sport internationally [10,27,11], and attracts an
increasing share of the multi-billion dollar gambling industry; par-
ticularly after its introduction online [6]. This is one of the primary
reasons why we currently observe extensive attention paid to foot-
ball odds by both academic research groups and industrial organ-
isations who look to profit from potential market inefficiencies.
While numerous academic papers exist which focus on football
match forecasts, only a few of them appear to consider profitability
as an assessment tool for determining a model’s forecasting
capability.

Pope and Peel [30] evaluated a simulation of bets against pub-
lished market odds in accordance with the recommendations of a
panel of newspapers experts. They showed that even though there
was no evidence of abnormal returns, there was some indication
that the expert opinions were more valuable towards the end of
the football season. Dixon and Coles [8] were the first to evaluate
the strength of football teams for the purpose of generating profit
against published market odds with the use of a time-dependent

Poisson regression model based on Maher’s [26] model. They
formed a simple betting strategy for which the model was profit-
able at sufficiently high levels of discrepancy between the model
and the bookmakers’ probabilities. However, these high discrep-
ancy levels returns were based on as low as 10 sample values; at
lower discrepancy levels and with a larger sample size the model
was unprofitable. The authors suggested that for a football forecast
model to generate profit against bookmakers’ odds without elimi-
nating the in-built profit margin, ‘‘it requires a determination of
probabilities that is sufficiently more accurate from those obtained
by published odds’’. A similar paper by Dixon and Pope [9] was also
published on the basis of 1993–1996 data and reported similar re-
sults. Rue and Salvesen [32] suggested a Bayesian dynamic gener-
alised linear model to estimate the time-dependent skills of all the
teams in the English Premier League (EPL) and English Division 1.
They assessed the model against the odds provided by Intertops,
a firm which is located in Antigua in the West Indies, and demon-
strated profits of 39.6% after winning 15 bets out of a total of 48 for
EPL matches, and 54% after winning 27 bets out of a total of 64 for
Division 1 matches.

In an attempt to exploit the favourite-longshot bias for profit-
able opportunities, Poisson and Negative Binomial models have
been used to estimate the number of goals scored by a team [3].
The conclusion was that even though the fixed odds offered against
particular score outcomes did seem to offer profitable betting
opportunities in some cases, these were few in number. Goddard
and Asimakopoulos [17] proposed an ordered probit regression
model to forecast EPL match results in an attempt to test the
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weak-form efficiency of prices in the fixed-odds betting market. To
evaluate the model they considered seasons 1999 and 2000. Even
though they reported a loss of �10.5% for overall performance,
the model appeared to be profitable (on a pre-tax gross basis) at
the start and at the end of every season.1 Using a benchmark statis-
tical model with a large number of quantifiable variables relevant to
match outcomes Forrest et al. [15] examined the effectiveness of
forecasts based on published odds and forecasts generated. They
considered five different bookmaking firms for five consecutive sea-
sons (1998–2003) and demonstrated that the model generated neg-
ative returns ranging from �10% to �12% depending on the
bookmaking firm, but the loss was reduced to �6.6% when using
the best available odds by exploiting arbitrage between bookmaking
firms.

[19] attempted to investigate the rationality of bookmakers’
odds using an ordered probit model to generate predictions for
EPL matches. By considering William Hill odds, they followed the
betting strategy introduced in [8,9] and reported negative returns
ranging from �2.5% to �15% for all discrepancy levels during sea-
sons 2004–2006. In the absence of any consistently successful
model against market odds, the authors claimed that ‘‘if it was suc-
cessful, it would not have been published’’. [21] considered the ELO
rating system for football match prediction, although it was ini-
tially developed by [12] for assessing the strength of international
chess players. Even though the ratings appeared to be useful in
encoding the information of past results for measuring the
strength of a team, resulting forecasts reported negative expected
returns against numerous seasons of published odds using

various betting strategies. However, Constantinou and Fenton [5]
later developed a novel rating technique (called pi-rating) that
outperformed considerably the two ELO rating variants of [21], in
terms of profitability, over a period of five EPL season.

[7] recently presented a Bayesian network model that was used
to generate forecasts about the EPL matches during season 2010/
2011, by considering both objective and subjective information
for prediction. Forecasts were published online [29] prior to the
start of each match, and this was the first academic study to dem-
onstrate profitability that was consistent against published market
odds over a sufficiently high number of betting trials without elim-
inating the bookmakers’ profit margin.

In this paper we present a Bayesian network model for forecast-
ing football outcomes that is based on the approach in [7], but with
reduced complexity and higher forecasting capability (which we
explain in detail in Sections 2–4). The paper is organised as fol-
lows: Section 2 describes the model; Section 3 presents the various
betting procedures along with a Bayesian network component for
assessing the risks involved under each of the procedures; Section
4 discusses the results; Section 5 provides our concluding remarks.

2. The model

In this section we first provide a brief overview of the model
summarising the main differences to the approach in [7]. We then
describe the technical components of the model in subsections.

As in [7] we have used the AgenaRisk Bayesian network tool to
build the model. The most important differentiator between
AgenaRisk and other Bayesian network tools is its ability to prop-
erly incorporate continuous variables, without any constraint,
and without the need for static discretisation. It does this through

Table 1
How S ? SR is defined in 14 predetermined ranks, based on [7].

S >89 85–89 80–84 75–79 70–74 . . .(intervals of 5 points) 25–29 20–24 <20

SR 1 2 3 4 5 . . . 12 13 14

Fig. 1. Simplified model topology of the overall Bayesian network.

1 Gross pre-taxed returns of +3.1% and +1.5% for respective seasons beginning 1999
and 2000, and gross returns of +8% for respective seasons ending 1999 and 2000.
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its revolutionary dynamic discretisation algorithm that produces
results with far greater accuracy than is possible otherwise. The
dynamic discretisation algorithm [28] uses entropy error as the ba-
sis for approximation. In outline, the algorithm follows these steps:

1. Convert the BN to a Junction Tree (JT) and choose an initial dis-
cretisation for all continuous variables.

2. Calculate the Node Probability Table (NPT) of each node given
the current discretisation.

3. Enter evidence and perform global propagation on the JT, using
standard JT algorithms.

4. Query the BN to get posterior marginals for each node, compute
the approximate relative entropy error, and check if it satisfies
the convergence criteria.

5. If not, create a new discretisation for the node by splitting those
intervals with highest entropy error.

6. Repeat the process by recalculating the NPTs and propagating
the BN, and then querying to get the marginals and then split
intervals with highest entropy error.

7. Continue to iterate until the model converges to an acceptable
level of accuracy.

This dynamic discretisation approach allows more accuracy in
the regions that matter and incurs less storage space over static
discretisations. In the implementation of the algorithm the user
can select the number of iterations and convergence criteria, and

hence can go for arbitrarily high precision (at the expense of in-
creased computation times). Details about the role of qualitative
judgments and how inference is done are provided in [13,28].

The model is constructed on the basis of three generic factors:
team strength, form, and fatigue with motivation. There are model
components corresponding to each of the three factors. The com-
ponents are inferred hierarchically and at each level of hierarchy
a match forecast is generated. This helps us understand how the
probabilities transform at each level and determine the effective-
ness of each model component by assessing the probability distri-
butions generated at each level. Specifically:

1. At level 1, match forecasts of type {p(H), p(D), p(A)}2 are gener-
ated based on each team’s strength (S), where an S prior is formu-
lated according to observed and expected results (P) of relevant
match instances of the current season, and team inconsistencies
(I) given relevant final league point totals from the five most
recent seasons;

2. At level 2, posterior predictive distributions of S (from level 1)
are formulated based on team form (F);

3. At level 3, posterior predictive distributions of S (from level 2)
are formulated based on team fatigue and motivation (M).

Thus, the model follows hierarchical levels of Bayesian infer-
ence such that S1 ? S2 ? S3, where S1 = p(SjP, I), S2 = p(SjS1, F),
and S3 = p(SjS2, M).

The variable S is a �TNormal (l, r, 0, 114)3 probability density
function and at each level of hierarchy represents a prediction of
the team’s strength which is measured in total league points. The
distribution of S is summarised in 14 predetermined ranks (SR) as
presented in Table 1, whereby the granularity of the 14 ranks en-
sures that, for any match combination of parameters SR, sufficient
data points exist for a reasonably well informed match forecast prior.
In particular, match forecasts given SR are formulated on the basis of
relevant historical match outcomes.4 Hence, the underlying

Fig. 2. Level 1 Component (P): formulating the S prior. Fig. G.2 presents an example
of this component with different scenarios. Dashed nodes indicate latent variables.
The variables Current Points, Number of matches played and Number of residual
matches are definitional variables.

Fig. 3. Level 1 Component (I): measuring a team’s Inconsistency (Variance) (V) based
on league point totals over the five most recent seasons. Fig. G.3 presents an
example of this component with different scenarios. Dashed nodes indicate latent
variables.

2 Corresponding to home win, draw, and away win.
3 Truncated Normal where the endpoints are the respective minimum and

maximum number of points a team can accumulate in an EPL season (38 games
with three points for a win).

4 The database consists of the home, draw and away results of all the EPL matches
from season 1993/1994 to 2010/2011 inclusive (a total of 6624 occurrences). This
information is available online at [14].
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approach generates forecasts that are ‘anonymous’ in the sense that
historical outcomes are not restricted by the name of the team. For
example, given a match between Manchester United and Newcastle
United, and assuming their respective S values are 85(SR = 2) and
62(SR = 7), the resulting forecasts will represent: ‘‘a team with a prob-
ability density function S(SR) and a maximum likelihood estimation of
85(2) plays against a team with a probability density function S(SR)
and a maximum likelihood estimation of 62(7)’’ instead of: ‘‘Man Uni-
ted plays against Newcastle’’. Accordingly, a team’s S distribution var-
ies throughout the season, and it is possible for teams to share
similar such distributions at certain periods throughout the season.

Fig. 1 illustrates a simplified model topology of the overall
Bayesian network model. Fig. G.1 presents the actual outcomes of
the Arsenal vs. Liverpool match as forecasted on August 20th 2011
and demonstrates how match forecasts transform on the basis of
hierarchical posterior predictive distributions of S beliefs. The ob-
served outcome was A (score was 0–2). Table G.1 provides a brief
description of all the model parameters.

The primary differences with the BN model proposed in [7] are:

1. P, which formulates the prior predictive distribution of S, is now
measured using a straightforward Beta � Binomial approach
(which we describe in detail in Section 2.1 below), rather than
the complex non-symmetric Bayesian parameter learning
approach;

2. Model components which correspond to each of the generic fac-
tors have been both decreased in number and simplified in an
attempt to reduce model complexity. Specifically:

(a) The number of variables in component F has decreased from
21 (10 for each team plus one representing discrepancy) to
10 (5 for each team). In particular, instead of providing dis-
tinct subjective beliefs about the availability of the Primary
Key Player, the Secondary Key Player, the Tertiary Key Player,
and the Remaining First Team Players, we now introduce a
single subjective variable called Availability of players who
resulted in current form. Further, there is no Home Form
and Away Form, but rather a single variable called Form
which represents the most recent (and overall) form of a
team. This variable is taken into consideration when playing
both home and away. As we demonstrate in Section 4.2
below, this modification not only simplified the model,
but also resulted in notably increased profitability.

(b) The two previously proposed model components of Fatigue
and Psychological Impact have been merged into the single
component M, and the number of variables (which corre-
spond to each of the two competing teams) has been
decreased from a total of 28 to 18 (9 for each team). In par-
ticular, instead of requiring indications about the number of
first team players rested during the last match in an attempt
to measure Restness, which is later used to diminish tired-
ness, we now directly provide this information in a single
subjective variable called Toughness of previous match (i.e.
the subjective indication of toughness will be lower if we
already know that some first team players were rested).
Further, the beliefs regarding managerial impact, team
spirit, motivation, and the expert’s degree of certainty with
regards to their subjective indications are now replaced by a
single subjective variable called Motivation (this follows the
same rational as with the toughness of previous match).

3. In the previous model, the subjective components were used to
directly revise the probability distribution of match forecasts in
an ordinal manner (i.e. a function was used to skew the predic-
tive distribution of a match forecast towards a home win or an
away win based on subjective proximity). Instead of modifying
the match forecast directly, we now let the subjective compo-
nents modify each team’s distribution S, which serve as parents
for formulating match forecasts. Thus, match forecasts are now
always formulated based on relevant historical data (i.e. no
skewness), but given modified distributions of S as a
consequence of one or more positive or negative subjective
indications. This change does not necessarily reduce model
complexity, but rather improves model sophistication and thus,
forecasting capability.

4. In the previous model, the values of each of the subjective
components (i.e. form, fatigue and psychological impact) were
compared between the two teams, and a revision in predic-
tion was only made on the basis of discrepancies between
the components (e.g. the team with better form received an

Fig. 4. Level 2 Component (F): measuring expected form ULR. Fig. G.4 presents an example of this component with different scenarios. Dashed nodes indicate latent variables.

Fig. 5. Component 3 (M): measuring expected fatigue and motivation G. Fig. G.5
presents an example of this component with different scenarios. Dashed nodes
indicate latent variables.
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increased probability to win). This implies that match fore-
casts are not revised if both teams have high (or low) levels
of form (i.e. no discrepancy). The problem with this is that,
if we assume that high levels of form increase a team’s distri-
bution S by 20 points, there is still a difference between the
match SHOME = 60 versus SAWAY = 30, and another SHOME = 80
versus SAWAY = 50. Consequently, in the new model we do
not perform comparisons when it comes to subjective compo-
nents, but we instead allow each of the components to have a
direct impact on each team’s distribution S. Again, this
change does not necessarily reduce model complexity but
rather improves model sophistication.

5. The impact of each model component is now inferred hierar-
chically; implying that model components now follow a non-
linear weighting when revising distribution S (i.e. model com-
ponents computed first have less impact); in contrast to the
previous model, where the three subjective components had
identical impact on match forecasts. The hierarchical compu-
tation also decreases the time required to calculate posterior
probabilities.

2.1. Level 1 component: team performance (P) and inconsistency (I)

At level 1, P is modelled using the Beta � Binomial approach. The
Beta distributions serve as conjugate distributions of the Binomial
distributions, formulating a compound distribution such that the
p parameter of the Binomial distribution is being randomly drawn
from the Beta distribution. In our model, the Beta distributions
p(Win), p(Draw) and p(Lose) (with hyperparameters a and b priors
based on relevant historical data), serve as the p parameters of the
Binomial distributions Number of Wins, Number of Draws, and Num-
ber of Loses respectively.5

The posterior Beta distributions are then used to estimate team
expectations for the residual match instances of the current sea-
son. These team expectations allow expert modifications based
on subjective beliefs regarding the difficulty of residual opponents
(this indication allows the expert to diminish the bias in cases
where the results are formulated on the basis of mostly poor/high
quality opponents). Observed and expected cumulative match
points are then considered for formulating the prior distributions
of S. This is the first part (out of two) of level 1. The Bayesian net-
work component P is illustrated in Fig. 2, where:

(a) the variables p(Win), p(Draw) and p(Lose) are the Beta distri-
butions. For example, in the case of p(Win) the hyperparam-
eters are �Beta (w + 1, d + l + 2),6 where w is the number of
previous season’s wins, d is the number of draws, l is the num-
ber of losses, and values 1 and 2 are introduced for minimal
Laplacian smoothing so that we avoid overfitting by ensuring
that posterior parameters alpha and beta are positive for all
teams;

(b) the variables Number of Wins, Number of Draws and Number
of Loses are �Binomial (n, p). For example in the case of Num-
ber of Wins, n is the number of matches played during the
current season and p is the probability of success for each
trial (for this example p is the Beta distribution p(win));

(c) the variable Expected Residual Points(pp) represents the
points a team expects to accumulate over the current sea-
son’s residual match instances and hence, pp is dependent
on the Number of residual matches and the posterior Beta
beliefs of p(Win), p(Draw) and p(Lose)7;

(d) the variable ERP given opponent difficulty (pe) is a pp pos-
terior given the Difficulty of residual opponents(w), whereby
pe may receive adjustments for up to ±10% based on a 7-
level subjective belief, and it is defined as the case func-
tion of:

Table 2
Hypothetical betting performance on the basis of profitability between two models.

Match instance a b

Stake Return Profit/loss Profit rate Stake Return Profit/loss Profit rate

M1 £0 £0 – – £100 £200 +£100 100%
M2 £100 £200 +£100 100% £100 £200 +£100 100%
M3 £0 £0 – – £100 £0 -£100 �100%
M4 £0 £0 – – £100 £200 +£100 100%
M5 £100 £200 +£100 100% £100 £200 +£100 100%
Total £200 £400 +£200 100%a £500 £800 +£300 60%a

a Profit rate based on total stakes.

Fig. 6. Bayesian network component for assessing the risks, of accumulating
returns below n units, for each of the betting procedures. An example of how the
risk of ending with U 6 0 can be measured given BP1 at discrepancy levels of 0%.

5 Effectively a Dirichlet �multinomial distribution, where p(Win) + p(Draw) +
p(Lose) = 1.

6 Hyperparameters are provided as node-inputs and are not shown in Fig. 2.
7 We do not perform convolution but we instead perform aggregation of averages

(which means that the variance might be overestimated) in order to keep the
complexity of the model at significantly lower levels.
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pe ¼

minð114;pp � 1:1Þ; pp;w ¼ Lowest
minð114;pp � 1:0666Þ; pp;w ¼ Very Low
minð114;pp � 1:0333Þ; pp;w ¼ Low
minð114;ppÞ; pp;w ¼ Normal
minð114;pp � 0:9666Þ; pp;w ¼ High
minð114;pp � 0:9333Þ; pp;w ¼ Very High
minð114;pp � 0:9Þ; pp;w ¼ Highest

8>>>>>>>>>>><
>>>>>>>>>>>:

(e) the variable Current Points simply represents the total num-
ber of points accumulated over the current season and
hence, it is dependent on the relevant Binomial observations
(see Table G.1 for details);

(f) Team Strength(S) is then simply the sum of Current Points and
pe.

The component inconsistency (I) approximates a team’s incon-
sistency based on respective league point totals over the five most
recent seasons, and the resulting variance is added to the prior pre-
dictive distribution of S and together formulate SL1. Fig. 3 presents
a naive parameter learning procedure for approximating a team’s
inconsistency, where:

(a) the variables Season Y1 to Y5 are �TNormal (l, r2, 0, 114);
(b) the variable Inconsistency (Variance) (V) is a �Uniform (0,

150)8 and serves as the input r2 for the TNormal distributions
of (a) above;

(c) the variable Overall Performance is a �Uniform (0, 114) and
serves as the input l for the TNormal distributions of (a)
above.

Moreover, the variable Confidence in Historical Inconsistency (C),
presented in Figs. 1 and G.1, gives the option to the expert to
diminish the additional variance V if the expert feels that the team
is not currently as inconsistent as it used to be over the period of
the last five seasons. The case function below shows how V, which
serves as an input for SL1, can diminish in value based on the sub-
jective indication of C:

SL1 ¼
TNormal S; V

3 ;0;114
� �

; S;C ¼ Low
TNormal S; V

2 ;0;114
� �

; S;C ¼Medium
TNormalðS;V ;0;114Þ; S;C ¼ High

8><
>:

2.2. Level 2 component: team form (F)

At level 2 posterior predictive distributions of SL2 are formu-
lated given SL1 and a posterior team-form (U), as presented in Figs.
4 and G.4, where U is a continuous variable on a scale that goes
from 0 to 1. A value close to 0.5 suggests that the team is perform-
ing as expected, whereas a higher value indicates that the team is
performing better than expected (and vice versa). The expectations
are determined by the forecasts generated by this model, and U is
measured on the basis of the five most recent gameweeks.9

The U posterior is formulated hierarchically based on the Avail-
ability of players who resulted in current form (LA) and the Important
players return (LR), where both variables follow ordinal scale distri-
butions with subjective indications as illustrated in Figs. 4 and G.4
and the case functions below. The variable Expected Form given
player availability (ULA) is the case function:

ULA ¼

TNormalðU;0:0001;0;1Þ; U; LA ¼ VeryHigh
TNormalððU� 0:8Þ;0:001;0;1Þ; U; LA ¼ High
TNormalððU� 0:6Þ;0:005;0;1Þ; U; LA ¼Medium
TNormalððU� 0:4Þ;0:01;0;1Þ; U; LA ¼ Low
TNormalððU� 0:2Þ;0:05;0;1Þ; U; LA ¼ Very Low

8>>>>>><
>>>>>>:

and the variable Expected form given further important players
(ULA) is the case function:

Table 3
Unit based profit and profitability rates based on BP1 and BP2.

Discrep. levels (%) Betting Procedure 1 (BP1) Betting Procedure 2 (BP2)

Bets/trials Win rate (%) P/L (Units) Profit rate (%) Bets/trials Win rate (%) P/L (Units) Profit rate (%)

0 379 34.30 15.25 4.02 575 31.83 47.71 8.30
1 359 34.54 17.34 4.83 495 32.53 47.13 9.52
2 316 34.49 15.52 4.91 403 32.75 36.95 9.17
3 272 34.19 5.09 1.87 319 31.97 7.63 2.39
4 227 35.24 13.03 5.74 257 33.85 24.74 9.63
5 193 35.23 11.53 5.97 211 34.12 20.87 9.89
6 168 35.71 17.45 10.39 179 34.64 23.74 13.26
7 144 37.50 8.6 5.97 150 36.67 15.84 10.56
8 129 38.76 15.22 11.80 131 38.17 13.22 10.09
9 107 37.38 �3.67 �3.43 108 37.04 �4.67 �4.32

10 97 39.18 3.31 3.41 97 39.18 3.31 3.41
11 84 35.71 �2.77 �3.30 84 35.71 �2.77 �3.30
12 67 34.33 �6.42 �9.58 67 34.33 �6.42 �9.58
13 53 30.19 �17.02 �32.11 53 30.19 �17.02 �32.11
14 38 34.21 �6.88 �18.11 38 34.21 �6.88 �18.11
15 33 36.36 �6.28 �19.03 33 36.36 �6.28 �19.03

Fig. 7. Unit-based returns based on BP1 and BP2, and according to the specified level
of discrepancy.

8 Upper bound is 150 rather than 114 to account for the limited number of
parameters learned. 9 A complete EPL season consists of 38 gameweeks.
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ULR ¼

TNormalðULA;0:01;0;1Þ; ULA;LR ¼ None
TNormalððULA þ ðð1�ULAÞ � 0:1ÞÞ;0:01;0;1Þ; ULA;LR ¼ Low
TNormalððULA þ ðð1�ULAÞ � 0:2ÞÞ;0:01;0;1Þ; ULA;LR ¼Medium
TNormalððULA þ ðð1�ULAÞ � 0:3ÞÞ;0:01;0;1Þ; ULA;LR ¼High

8>>><
>>>:

2.3. Level 3 component: fatigue and motivation (M)

At level 3 posterior predictive distributions of SL3 are formu-
lated given SL2 and ULR as presented in Fig. 5. A Prior Fatigue(Gp)
is first measured given EU match Involvement(E) (which represents
team involvement in European tournaments) and Toughness of pre-
vious match(T), where E and T follow ordinal scale distributions
with subjective indications as illustrated in Figs. 5 and G.5, and
the case function of Gp below:

Gp ¼

TNormalðT;0:001; 0;1Þ; T; E ¼ None
TNormal T þ ð1� TÞ � 1

6

� �
;0:001; 0;1

� �
; T; E ¼ Very Low

TNormal T þ ð1� TÞ � 2
6

� �
;0:001; 0;1

� �
; T; E ¼ Low

TNormal T þ ð1� TÞ � 3
6

� �
;0:001; 0;1

� �
; T; E ¼Medium

TNormal T þ ð1� TÞ � 4
6

� �
;0:001; 0;1

� �
; T; E ¼ High

TNormal T þ ð1� TÞ � 5
6

� �
;0:001; 0;1

� �
; T; E ¼ Very High

8>>>>>>>><
>>>>>>>>:

The Expected Fatigue(Ge) is a posterior Gp value which diminishes on
the basis of Days Gap since previous match(d), and increases with
National Team Involvement(k), where d and k are ordinal scale

Fig. 8. Cumulative unit-based returns based on BP3.

Fig. 9. Cumulative unit-based returns based on BP4.

Table 4
Risk probability values for the specified concluding returns per betting procedure. Results assume no discrepancy restrictions (set to 0%) for BP1, BP2, BP5.1, BP5.2, and an initialised
bankroll of 10,000 for the betting procedures of series 5.

BP Expected profit/loss (less than)

U1000 (%) U500 (%) U100 (%) U50 (%) U0 (%) �U50 (%) �U100 (%) �U500 (%) �U1000 (%)

1 100.00 100.00 99.69 87.80 30.91 1.36 0.03 0.00 0.00
2 100.00 100.00 94.27 53.01 7.61 0.23 0.02 0.00 0.00
3 99.98 95.13 34.16 25.16 17.53 11.60 7.22 0.08 0.01
4 53.95 32.70 18.63 17.19 15.76 14.49 13.24 5.95 1.72
5.1 100.00 81.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.2 100.00 66.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.3 97.80 16.32 0.08 0.05 0.02 0.01 0.01 0.00 0.00
5.4 61.56 31.19 13.20 11.65 10.10 8.86 7.65 2.06 0.27

Fig. 10. Cumulative unit-based returns based on BP1 and BP2, for component levels
1, 2 and 3.
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distributions with subjective indications as illustrated in Figs. 5 and
G.5, and the case function of Ge below:

Fig. 11. Cumulative unit-based returns based on BP3, for component levels 1, 2 and 3.

Fig. 12. Cumulative unit-based returns based on BP4, for component levels 1, 2 and 3.

Table 5
Team-based returns relative to overall returns for the specified betting procedure.

Rank Team Betting procedure Average

1 (%) 2 (%) 3 (%) 4 (%) 5.1 (%) 5.2 (%) 5.3 (%) 5.4 (%)

1 Man City �28.00 �21.59 �17.96 �36.49 9.88 9.75 8.93 3.65 �8.98
2 Man Utd �37.57 �14.46 21.83 �24.01 6.35 6.34 8.05 6.47 �3.37
3 Arsenal 111.74 49.49 68.91 59.98 4.82 4.93 7.18 16.71 40.47
4 Tottenham �25.84 15.97 32.22 8.78 12.14 12.07 12.39 9.77 9.69
5 Newcastle 76.20 19.77 83.19 39.44 10.43 10.33 13.22 19.25 33.98
6 Chelsea �97.38 �9.16 �108.64 �112.74 11.51 11.80 9.60 3.11 �36.49
7 Everton �32.39 �12.66 �27.98 �30.82 13.82 13.82 12.75 9.55 �6.74
8 Liverpool 175.87 76.32 192.25 237.84 27.83 27.69 29.59 36.40 100.47
9 Fulham �25.18 17.84 �10.08 7.17 5.66 5.94 5.30 7.18 1.73

10 West Brom 62.23 �8.55 23.44 31.22 14.67 14.38 14.67 15.96 21.00
11 Swansea 59.54 2.68 �7.67 7.64 7.29 7.09 6.31 6.29 11.15
12 Norwich �55.93 2.45 �47.79 �32.66 7.72 7.65 6.92 4.51 �13.39
13 Sunderland �15.61 9.47 �24.50 �24.76 4.52 4.52 4.42 3.06 �4.86
14 Stoke 16.79 36.62 15.39 �12.31 6.88 7.24 7.41 5.75 10.47
15 Wigan �121.84 4.38 3.66 95.50 9.06 9.22 7.78 8.09 1.98
16 Aston Villa �70.95 20.29 �25.35 �20.34 7.23 7.73 6.39 4.33 �8.83
17 QPR 128.59 17.80 59.61 91.06 4.88 4.69 6.01 19.33 41.50
18 Bolton 29.70 2.62 5.47 �2.27 7.36 7.25 7.65 9.16 8.37
19 Blackburn �9.84 �24.90 �33.66 �52.58 11.20 10.95 9.99 3.39 �10.68
20 Wolves 59.87 15.64 �2.34 �29.65 16.73 16.62 15.45 8.03 12.55

Ge ¼

TNormalððGp � Gp � dÞ;0:001; 0;1Þ; Gp; d; k ¼ None
TNormalðððGp � Gp � dÞ þ ð1� ðGp � Gp � dÞÞ � 0:1Þ;0:001;0;1Þ; Gp; d; k ¼ Low
TNormalðððGp � Gp � dÞ þ ð1� ðGp � Gp � dÞÞ � 0:2Þ;0:001;0;1Þ; Gp; d; k ¼ Medium
TNormalðððGp � Gp � dÞ þ ð1� ðGp � Gp � dÞÞ � 0:3Þ;0:001;0;1Þ; Gp; d; k ¼ High
TNormalðððGp � Gp � dÞ þ ð1� ðGp � Gp � dÞÞ � 0:4Þ;0:001;0;1Þ; Gp; d; k ¼ Very High

8>>>>>><
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Finally, Ge is revised into Fatigue and Motivation (G) given Motivation
(j) and Head-to-Head Bias(x), where j and x follow ordinal scale
distributions that go from 0 to 1 with subjective indications as illus-
trated in Figs. 5 and G.5, and the case function of G below:

G ¼

TNormal jþx
2

� �
;0:01;0;1

� �
; j;x;Ge ¼ Very Rested

TNormal jþx
2

� �
� 0:9

� �
;0:01;0;1

� �
; j;x;Ge ¼ Rested

TNormal jþx
2

� �
� 0:8

� �
;0:01;0;1

� �
; j;x;Ge ¼ Normal

TNormal jþx
2

� �
� 0:7

� �
;0:01;0;1

� �
; j;x;Ge ¼ Tired

TNormal jþx
2

� �
� 0:6

� �
;0:01;0;1

� �
; j;x;Ge ¼ Very Tired

8>>>>>><
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3. Forecast performance based on profitability and risk

In this section we describe how the forecasting capability of the
model was assessed on the basis of profitability and relevant risks
involved. Profitability is measured on the basis of a set of predeter-
mined betting procedures. For market odds we have considered
the odds with the highest payoff as recorded by [14] for the
matches of the EPL season 2011/2012. The number of bookmaking
firms considered for recording maximums ranged from 26 to 49
per match instance.10

Naturally, the performance of a football forecast model is deter-
mined by its ability to generate profit against market odds. How-
ever, many researchers also consider (or solely focus) on various
scoring rules for this purpose in an attempt to determine the accu-
racy of the forecasts against the observed results [8,32,20,16,24,16,
15,22,19,21]. Forecast assessments based on scoring rules have
been heavily criticised because different rules may provide differ-
ent conclusions about the forecasting capability of football forecast
models [4]. Furthermore, in financial domains researchers have al-
ready demonstrated a weak relationship between various accuracy
and profit measures [25], whereas [40] suggested that it might be
best to combine accuracy and profit measures for a more informa-
tive picture.

In this paper we are interested in the profitability of the model
relative to market odds. For this to happen, market odds have to be
sufficiently less accurate (or inefficient) relative to those generated
by our model so that the bookmakers’ profit margin, where pres-

ent, can be overcome. The bookmakers’ profit margin, sometimes
also called ‘over-round’, refers to the margin by which the sum
of published market probabilities of the total outcomes exceeds
1. For example, if the true (i.e. the initially measured) probabilities
for a match instance are p(Win) = 0.50, p(Draw) = 0.25 and
p(Lose) = 0.25, a bookmaker’s published probabilities might be
p(Win) = 0.52, p(Draw) = 0.26 and p(Lose) = 0.26 (which result in
lower odds for payoff) and hence, the sum of published probabili-
ties exceeds 1. The bookmaker’s profit margin here is simply
(p(Win) + p(Draw) + p(Lose)) � 1; which in this case would be 4%.

Since profitability is not only dependent on the forecasting
capability of a model relative to market odds but also on the
specified betting methodology, we have introduced an array of
such betting procedures. For each procedure, we introduce sensi-
ble modifications relative to the standard betting strategy that
was proposed and considered by the vast majority of the previ-
ous relevant published papers, whereby a bet is placed when
expectations exceed a predetermined level [30,8,32,9,17,15,
19,21,7].

3.1. Defining profitability

We measure the profitability on the basis of the quantity of
profit (or net profit which is stated as unit-based returns), rather
than on the basis of percentage returns relative to respective
stakes. The example below illustrates the rationale behind our
preference.

Example: Suppose we have two football forecast models a and
b. We want to compare their performance on the basis of profit-
ability given the set of five match instances {M1, M2, M3, M4, M5}.
Table 2 presents a hypothetical betting performance between the
two models over those match instances.

After considering the five match instances we observe the fol-
lowing results11:

� Model a suggested two bets and both were successful (100%
winning rate), returning a net profit of £200 which represents
a profit rate of 100% relative to total stakes.
� Model b suggested five bets and four of them were successful

(80% winning rate), returning a net profit of £ 300 which repre-
sents a profit rate of 60% relative to total stakes.

Table 6
Previous model’s profitability based on BP1 and BP2 (for season 2010–2011).

Discrep. levels (%) Betting procedure 1 (BP1) Betting procedure 2 (BP2)

Bets/trials Win rate (%) P/L (Units) Profit rate (%) Bets/trials Win rate (%) P/L (Units) Profit rate (%)

0 378 34.66 5.70 1.51 571 31.87 15.55 2.72
1 358 33.52 �1.76 �0.49 485 31.34 �5.55 �1.14
2 325 32.92 �4.79 �1.47 407 31.20 �10.67 �2.62
3 275 33.09 2.85 1.04 324 31.17 �11.19 �3.45
4 225 33.78 11.87 5.28 254 31.89 2.30 0.91
5 169 33.73 14.19 8.40 186 32.80 13.07 7.03
6 131 35.11 17.40 13.28 141 34.75 19.61 13.91
7 107 35.51 12.92 12.07 111 35.14 14.07 12.68
8 84 33.33 8.43 10.04 87 33.33 10.58 12.16
9 71 33.80 11.36 16.00 74 33.78 13.51 18.26

10 52 34.62 10.61 20.40 53 35.85 14.76 27.85
11 41 36.59 14.61 35.63 41 36.59 14.61 35.63
12 25 24.00 �6.95 �27.80 25 24.00 �6.95 �27.80
13 15 26.67 �4.61 �30.73 15 26.67 �4.61 �30.73
14 12 25.00 �3.70 �30.83 12 25.00 �3.70 �30.83
15 10 30.00 �1.70 �17.00 10 30.00 �1.70 �17.00

10 Betfair odds are not considered within the dataset since Betfair is a betting
exchange company whereby published odds constantly fluctuate. These odds are
normally the best possible odds (i.e. with the highest payoff) a bettor can find online.
However, unlike traditional bookmakers Betfair will deduct a fixed % from your
winnings which ranges from 2% to 6% depending on membership status [2].

11 For simplification we assume identical stakes (£100) and odds for payoff (evens;
or 2.00 in decimal form).
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An evaluation based on the percentage profit rates would have
erroneously considered model b as being inferior at picking
winners than model a. But, such an evaluation fails to consider
the possibility that model a might have failed to discover potential
advantages against the market for all of the match instances. The
reality is that model b managed to simulate riskier bets that re-
duced the percentage rates of winning and profit, but increased
net profit due to the larger number of successful bets.

We have to choose which model is best to follow; model a
with a higher winning rate on bets and a higher profit rate be-
tween stakes and returns, or model b with a higher (33.33%) net
profit? If the ultimate aim is to make money, then every bettor
would have preferred model b over model a for betting against
the market. Therefore, we suggest that a bettor should be
increasing net profit rather than establishing good winning
percentage rates, and for this to happen a bettor is expected to
consider all of his advantages presented at every match instance
rather than choosing the ‘best’ of his advantages that occasion-
ally arise.

Consequently, in this paper we measure profitability on unit-
based returns (net profit) over n match instances (in our case
n = 380, the total number of matches played in the EPL season of
2011/2012). The betting procedures are defined in the following
section.

3.2. Defining the betting procedures

We define the following set of betting procedures for evaluating
the profitability of the model against the market:

1. (BP1): For each match instance, place a fixed bet equal to a sin-
gle unit on the outcome with the highest absolute percentage
discrepancy, where the model predicts the higher probability,
if and only if the discrepancy is Pn% (where n is an integer
0 6 n 6 15);

2. (BP2): For each match instance, place a fixed bet equal to a sin-
gle unit on every outcome the model predicts with higher prob-
ability, if and only if the absolute discrepancy is Pn%;

3. (BP3): For each match instance, place a bet equal to U units for
each outcome the model predicts with higher probability,
where the stake of the bet is a real number equal to the absolute
discrepancy percentage between outcomes multiplied by U (e.g.
if an absolute discrepancy of 4.45% and 1.17% is observed for
outcomes H and D respectively while U = 1, then bets of
£4.45 and £1.17 are simulated for a home win and a draw
respectively);

4. (BP4): For each match instance, place a bet equal to U units for
each outcome the model predicts with higher probability,
where the stake of the bet is a real number equal to the relative
discrepancy percentage between outcomes multiplied by U (e.g.
if a relative discrepancy of 4.45% and 1.17% is observed for out-
comes H and D respectively while U = 1, then bets of £4.45 and
£1.17 are simulated for a home win and a draw respectively);

5. (BP5.1, BP5.2, BP5.3, BP5.4,): These apply only to match instances

where arbitrage12 opportunities are discovered. Repeat 1, 2, 3
and 4 but substitute the betting procedure with arbitrage bets
whereby the total amount of the three bets is equal to the bank-

roll available at that time (a bankroll specification is required
prior to initialising the betting simulation, and tests are per-
formed for different bankroll values).

If a betting procedure A indicates higher profitability than an-
other B over a fixed number of match instances, it does not neces-
sarily suggest that we should always choose A over B. This is true if
we are also interested in the risks involved and the level of uncer-
tainty over the posterior predicted distribution of unit-based re-
turns (i.e. the magnitude of potential losses and winnings as well
as the probability associated with such events). Accordingly, we
have constructed a simple Bayesian network component (Fig. 6)
that measures the risk of ending with less than, or equal to, a spec-
ified number of units over a specified number of match instances.
Fig. 6 illustrates, as an example, the risk of ending with U 6 0 after
bets are simulated (given BP1 at discrepancy levels of 0%) on the
380 match instances. This assumes relevant model performances
as demonstrated in Section 4 below. In particular,

(a) the variable Match Instances represents the number of match
instances over which the risk is measured;

(b) the variables p (profitable) and p (unprofitable) are Beta dis-
tributions with alpha and beta hyperparameters represent-
ing the probability to profit (and not to profit) for each
match instance simulated;

(c) the variables Estimated Unprofitable Instances and Estimated
Profitable Instances are Binomial distributions with n number
of trials equal to (a) above, where input p is the respective
Beta distribution of (b) above;

(d) the variables Profit Rate and Loss Rate are averaged values
associated with observed profit and loss for respective
match instances;

(e) the variables Expected Loss and Expected Profit are posterior
predictive density functions which represent the overall
loss/profit given (c) and (d) above;

(f) the variable Estimated Profit & Loss is the summary probabil-
ity density function given (e);

(g) the variable Less than, or Equal to 0 Units is the probability
of ending at, or below the specified value of U given (f)
above.

4. Results and discussion

In this section we demonstrate and discuss the resulting perfor-
mance of the model. In Section 4.1 we demonstrate the profitabil-
ity of the model along with the relevant risks involved with each of
the betting procedures; in Section 4.2 we evaluate the effective-
ness of the model components based on the transitions of profit-
ability at each hierarchical component level; in Section 4.3 we
provide evidence of market inefficiency based on specific football
teams; finally, in Section 4.4 we compare the performance of the
model against the model presented in [7].

4.1. Model performance

Table 3 presents the amount of bets simulated and unit-based
returns (along with the frequency rates of successful bets and prof-
it rate relative to stakes for procedures BP1 and BP2) at the specified
discrepancy levels. Fig. 7 illustrates a summary comparison be-
tween the two betting procedures. In general, under both proce-
dures the model appears to be profitable at discrepancy levels up
to 10%, but unprofitable thereafter. In particular, for BP1 the profit-
ability appears to be consistent up to that point, with the highest
returns of U17.45 and U17.34 observed at discrepancy levels of
6% and 1% respectively. In contrast, BP2 generated maximum re-
turns that are substantially higher relative to BP1; returns of

12 ’’An arbitrage opportunity is simply an opportunity whereby profit is guaranteed on
the basis of a negative profit margin which results by combining the odds published by the
various bookmaking firms. In particular, arbitrage opportunities depend on two factors:
(a) the divergence in outcome probabilities between bookmaking firms and (b) the profit
margin by each bookmaker. Negative profit margin is simply a scenario where a set of
HDA probabilities is found (for a single match instance) in which the sum of the
probabilities within that set is < 1. Hence, profit for the bettor can be guaranteed if the bets
are placed such that the return is identical whatever the outcome.’’ [6].
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U47.71 and U47.13 at discrepancy levels of 0% and 1% respectively.
Figs. A.1 and A.2 compare the cumulative returns over the season
between the two betting procedures; the results show that BP2

consistently generates higher returns than BP1 throughout the per-
iod and at almost every discrepancy level.

At discrepancy levels of P11% BP2 essentially mimics the bet-
ting simulation of BP1 since it becomes unlikely for probabilities
of paired match instances (model and market) to encompass more
than one outcome at such high discrepancy levels. At discrepancy
levels of P10% the model appears to be unprofitable, with betting
trials in the range of 33 and 84. However, it would not be safe to
formulate conclusions on the basis of model performances at such
high discrepancy levels. We explain why next.

For BP1 and BP2, it is important to note that we are much more
confident about results generated at lower discrepancy levels,
since at those levels the number of bets simulated is sufficiently
high for us to formulate safe conclusions. As the discrepancy levels
increase, the number of betting trials inevitably decreases. Yet, at
higher discrepancy levels we actually require more betting trials
to formulate conclusions that are as safe as those at the lower lev-
els. To understand why, assume that we have simulated 50 bets at
discrepancy levels of P11%. Among the 50 there will be lots of in-
stances of the following:

(a) Team A plays B and A is a strong favourite, but not as
strong as the bookies think. Consequently, the bookies
offer a probability of just 5% that team B wins. The model,
however rates the probability as 17% and so we bet on
team B to win (if we consider discrepancy levels of
P12%). If the model is ‘correct’ we would still only win
about once every eight match instances of this ‘type’.
Therefore, 50 trials is not a sufficiently high number to
formulate conclusions. For instance, Fig. 7 shows that an
additional successful bet at decimal odds of approximately
15.00 would lead to profitable returns at almost all of the
discrepancy levels above 10%, which demonstrates the
high level of uncertainty.

(b) Team A plays B and A is a strong favourite, but stronger
than the bookies think. The bookies offer a probability of
70% that team A wins, while the model rates the proba-
bility as 82%. So we bet on team A to win (again, if we
consider discrepancy levels of P 12%). If the model is
‘correct’ we would win about four times for every five
bets simulated. In this case, most bets win. However,
when they periodically occur the returns from winning
match instances are too small to compensate for the
high uncertainty generated on the basis of numerous
instances of (a).

It should also be noted that the occurrence rate of the above two
cases is likely to be affected by the well known phenomenon of the
favourite longshot-bias observed by the markets.13

Figs. 8 and 9 demonstrate the cumulative unit-based returns gi-
ven BP3 and BP4 respectively. In both cases, considerably higher re-
turns are generated relative to BP1 and BP2. In particular, the
conlcuding balance of BP3 at match instance 380 is U180.34,
whereas for BP4 it is U922.97. Since BP4 is a replicative version of
BP3 (with the difference that stakes generated are based on the rel-
ative, rather than the absolute, discrepancy of model to market

probabilities), it is normal for BP4 to generate cumulative returns
that are excessive versions of those of BP3. The cumulative distribu-
tions in Figs. 8 and 9 show that BP3 experienced a maximum loss of
�U43.65 (81.63% less relative to its maximum profit of U237.57),
whereas BP4 experienced a maximum loss of �U1066.33 (14.54%
less relative to its maximum profit of U1247.86). Further, BP4 re-
mained at a state of loss for a longer period throughout the season,
whereas BP3 remained at a state of loss for only a period of 11
match instances (out of 380). Table 4 presents the risk probability
values for ending up with less than, or equal to, the specified con-
cluding profit/loss balances according to the specified betting
procedure, and Fig. B.1 presents the respective predicted probabil-
ity density risk distributions.

4.1.1. Arbitrage opportunities and risk assessment
There are various ways to reduce our exposure to risk. In our

case, a straightforward solution would be to take advantage of
existing arbitrage opportunities and replace the betting proce-
dure with arbitrage bets when such risk free match instances
are exposed. In fact, 70 match instances (out of the 380) allowed
for risk free returns for the season under study, where arbitrage
betting guaranteed an average profit of 0.57% per such match in-
stance with minimum and maximum risk free returns at 0.03%
and 1.94% respectively. Figs. C.1, C.2, C.3 and C.4 demonstrate
how the profit rate converges relative to an initialised bankroll
on the basis of BP5.1, BP5.2, BP5.3, and BP5.4 (as described in
Section 3.2). Table 4 and Fig. B.1 demonstrate the reduction
in risk and uncertainty, when taking advantage of arbitrage
instances, relative to the respective procedures of BP1, BP2, BP3,
and BP4 which do not take advantage of such opportunities. As
expected, due to the relatively high number of arbitrage
instances the profitability is heavily dependent on the initialised
bankroll. When an arbitrage opportunity is discovered the bet is
equal to the value of the bankroll at that specific time. Bankrolls
with sufficiently high initialised values (i.e. P1000 or P10,000
in this case) eventually overshadow the predictive performance
of the model since generated returns converge towards the
arbitrage profit rate.

4.2. Effectiveness of model components

Figs. 10–12 demonstrate the transitions of profitability at com-
ponent levels 1, 2 and 3 given BP1, BP2, BP3 and BP4. We observe
that the model component at level 2 (team form) generates profit-
ability that is substantially superior to that of level 1, for all of the
betting procedures. However, profitability is reduced at level 3
(team fatigue and motivation). We have therefore analysed the
sub-parameters of that component in an attempt to investigate
how they have negatively affected the performance of the model
relative to market odds. Figs. D.1, D.2, D.3 and D.4 demonstrate
the profitability of the model over procedures BP1, BP2, BP3 and
BP4 when:

(a) we only consider match instances with evidence of fatigue
(but no evidence of motivation);

(b) we only consider match instances with evidence of motiva-
tion (but no evidence of fatigue);

(c) we only consider match instances with evidence of both fati-
gue and motivation;

(d) we only consider match instances where neither evidence of
fatigue nor evidence of motivation exist.

Assuming that we rank profitability-based performances from
1 to 4 (1 being best), the results suggest that evidence of fatigue
provided the worse overall performance with resulting ranks of
3, 4, 4 and 4 under procedures BP1, BP2, BP3 and BP4 respectively.

13 The phenomenon whereby bettors have a preference in backing risky outcomes
and hence, bookmakers offer more-than-fair odds to ‘safe’ outcomes, and less-than-
fair odds to ‘risky’ outcomes. This phenomenon is not only observed in football but
also in many different markets [1,31,38,33,35,34,41,39,18,23,6]. Various theories
exist, such as risk-loving behaviour, on why people are willing to bet on such
uncertain propositions [37,36].
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This suggests that we have, most likely, overestimated the neg-
ative impact of fatigue for a team (i.e. the number of days gap
since last competing match, the toughness of previous match,
the involvement in European competitions, and player participa-
tion with their national team). On the other hand, motivation
(whereby the quality of the input is predominantly dependent
on the expert) provided performances with resulting ranks of
4, 1, 3 and 1 under the four respective betting procedures, and
signs of improvement (relative to test (d)) in forecasting
capability are observed only under two of the four betting
procedures.

4.3. Team-based market inefficiency

The results reported in this section add further evidence of mar-
ket inefficiency to an already extensive list, particularly in the pres-
ence of regular predetermined biases, arbitrage opportunities, as
well as conflicting daily adjustments in published odds between
firms [6]. We also considered a team-based profitability assessment
(see Table 5), where the percentage values represent the returns U
of a team relative to the returns over all teams based on the spec-
ified betting procedure.14

Our results demonstrate notable differences in profitability for
five out of the twenty teams. In particular, for match instances
involving Liverpool, QPR, Arsenal and Newcastle our model gener-
ated notably higher returns relative to the overall team, whereas
for match instances involving Chelsea our model generated notably
lower returns. Fig. E.1 illustrates the team-based explicit returns
throughout the season against market odds for the above five
teams. Results show that:

(a) market odds overestimated the performances of Liverpool
at a consistent rate, and particularly over the final third
of the season (during which Liverpool accumulated only
10 points during their last 10 matches). This allowed our
model to generate profitable returns during the specified
period;

(b) as in (a), the same applies to Arsenal but to a lower extent.
This allowed our model to generate profitable returns during
the specified period;

(c) market odds underestimated the performances of Newcas-
tle at a consistent rate, and particularly over the first half
of the season. It is important to note that Newcastle fin-
ished at position 5 with 65 points after being promoted
to the EPL only a season earlier. This allowed our
model to generate profitable returns during the specified
period;

(d) we do not consider that market odds underestimated perfor-
mances of QPR at the absence of consistency and high uncer-
tainty in returns; profit was generated due to a pair of match
instances with excessive returns;

(e) our model overestimated the performances of Chelsea, par-
ticularly over the first two thirds of the season, at a consis-
tent rate. This is highly likely to be due to Chelsea’s erratic
performances under a new manager who was eventually
sacked during that period. This led our model to generate
unprofitable returns during the specified period. The returns
over the final third of the season, during which Chelsea pro-
vided more consistent performances under a new manager,
appear to be evened.

4.4. Performance comparison against the previously published BN
model

Figs. F.1, F.2 and F.3 compare the unit-based cumulative returns
over a period of 380 match instances (but for different seasons15)
between the two models. The results show that the new model gen-
erates superior returns under all of the betting procedures.16 In par-
ticular, for BP1 and BP2 the new model generated increased net-profit
of 33.67% and 210.98% respectively. An interesting distinction be-
tween the two models (according to the first two betting proce-
dures) is that the previous model provides higher profit rates but
lower net-profit due to the significantly lower number of bets simu-
lated (as discussed in Section 3.1, and Tables 3 and 6 verify this
behaviour). Further, for scenarios BP3 and BP4 the new model gener-
ates respective net-profit that is 158.43% and 49.68% higher relative
to respective returns from the previous model.

5. Concluding remarks

We have presented a Bayesian network (BN) model for forecast-
ing football match outcomes that not only simplifies a previously
publish BN model, but also provides improved forecasting capabil-
ity. The model considers both objective and subjective information
for prediction. The subjective information is important for predic-
tion but is not captured in historical data. The model was used to
generate the match forecasts for the EPL season 2011/2012, and
forecasts were published online [29] prior to the start of each
match.

For assessing the forecast capability of our model, we have
introduced an array of betting procedures. These are variants of a
standard betting methodology previously considered for assessing
profitability by relevant published football forecast studies. A unit-
based profitability assessment over all betting procedures demon-
strates that:

(a) at level 2 (team form) the model component provided
inferred match forecasts that were substantially superior
to those generated at level 1 (which were solely based on
historical performances);

(b) at level 3 (team fatigue and motivation) the model compo-
nent failed to provide inferred match forecasts that were
superior to those generated at level 2. This resulted in con-
cluding match forecasts with inferior profitability relative
to that of level 2, but still superior relative to that of level 1;

(c) a sub-component evaluation at level 3 revealed that we have
overestimated the negative impact introduced by evidence
of fatigue, and this should serve as a lesson-learned for rele-
vant future models;

(d) despite the consequences of (b), the concluding profitability
of our model was even superior to that generated by the pre-
vious successful and profitable model under all of the bet-
ting procedures;

(e) the predictive probability density distributions of unit-based
returns showed that a bettor’s exposure to risk increases
together with the substantial profitable returns that BP3,
and BP4 provide over BP1 and BP2. However, we showed that
one way a bettor may reduce his exposure to risk is by
exploiting arbitrage opportunities which occur relatively
frequently (70 out of the 380 match instances);

14 If for the specified betting procedure a team generates returns A which are equal
to the returns B generated by all of the teams (overall), then team A is 100% related to
set B.

15 We compare the forecasting capability between the two models relative to
market odds, where the old version was assessed over the EPL season 2010–2011, and
the new version (presented in this paper) over the EPL season 2011–2012.

16 Following the discussion in Section 4.1, we have ignored the scenarios whereby
the discrepancy levels of BP1 and BP2 are set to P11%.
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(f) a team-based profitability assessment revealed further mar-
ket inefficiencies (to the already extensive list) whereby
published odds are consistently biased towards the trade-
mark rather than the performance of a team.

Evidently, the results of our study are critically dependent on
the knowledge of the expert. Given that the subjective model in-
puts were provided by a member of the research team (who is a
football fan but definitely not an expert of the EPL), it suggests that
(a) subjective inputs can improve the forecasting capability of a
model even if they are not submitted by a genuine expert who is
a professional for the specified domain, and (b) if the model were
to be used by genuine experts we would expect that the more in-
formed expert inputs would lead to posterior beliefs that are even
higher in both precision and confidence.

The results of this paper have demonstrated a number of bene-
fits of using Bayesian networks: in particular they enable us to
incorporate crucial subjective information easily and enhance our
understanding of uncertainty and our exposure to the relevant
risks involved.
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Appendix A. Cumulative Returns based on BP1 and BP2

Figs. A.1 and A.2.

Fig. A.1. Cumulative unit-based returns based on BP1 and BP2 according to the specified discrepancy level.
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Fig. A.2. Cumulative unit-based returns based on BP1 and BP2 according to the specified discrepancy level.
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Fig. B.1. Risk assessment of expected returns for each of the betting procedures.

Appendix B. Risk Assessment of Profit and Loss based on the specified betting procedure

Fig. B.1.
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Fig. C.1. Cumulative unit-based returns based on BP5.1 assuming no discrepancy restrictions (set to 0%) and according to the specified bankrolls prior to initialising the betting
simulation.

Fig. C.2. Cumulative unit-based returns based on BP5.2 assuming no discrepancy restrictions (set to 0%) and according to the specified bankrolls prior to initialising the betting
simulation.

Fig. C.3. Cumulative unit-based returns based on BP5.3 and according to the specified bankrolls prior to initialising the betting simulation.

Appendix C. Model performance when considering arbitrage opportunities

Figs. C.1,C.2,C.3 and C.4.
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Fig. C.4. Cumulative unit-based returns based on BP5.4 and according to the specified bankrolls prior to initialising the betting simulation.

Fig. D.2. Cumulative unit-based returns based on BP2 for match instances with the specified evidence.

Fig. D.1. Cumulative unit-based returns based on BP1 for match instances with the specified evidence.

Appendix D. Performance based on parameters of component level 3

Figs. D.1,D.2,D.3 and D.4.
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Fig. D.4. Cumulative unit-based returns based on BP4 for match instances with the specified evidence.

Fig. D.3. Cumulative unit-based returns based on BP3 for match instances with the specified evidence.

A.C. Constantinou et al. / Knowledge-Based Systems 50 (2013) 60–86 77



Appendix E. Team-based efficiency

Fig. E.1.

Appendix F. Unit-based performance relative to the old model

Figs. F.1,F.2 and F.3.

Fig. E.1. Team-based explicit returns against market odds throughout the EPL season.

Fig. F.1. Cumulative unit-based returns based on BP1 and BP2; a comparison between the new and the old model.
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Fig. F.3. Cumulative unit-based returns based on BP4; a comparison between the new and the old model.

Fig. F.2. Cumulative unit-based returns based on BP3; a comparison between the new and the old model.

Table G.1
Brief description of model variables.

Model
component

Variable (node)
name

Variable type Observable/
latent

Definition Comments

Level 1P Number of Wins Integer
Interval
(�Binomial
(n,p))

Observable � Binomial NumberOfMatchesPlayed:
pðWinÞ

� �
Used for inferring p(Win). Same applies to
‘‘Number of Draws’’ and ‘‘Number of Loses’’

Level 1P Number of
matches played

Integer
interval
(Arithmetic)

Definitional Serves as hyperparameter n for the variables:
number of wins, draws, loses, and as a
hyperparameter for number of residual
matches

Represents the summation of wins, draws and
loses. Similarly, the definition of ‘‘Number of
residual matches’’ is 38 minus ‘‘Number of matches
played’’

Level 1P Current Points Integer
interval
(Arithmetic)

Definitional
min 114;3� NumberOfWinsþ

NumberOfDraws

� �

Level 1P p (Win) Continuous
Interval �Beta
(a,b)

Latent � Beta 1þ NumberOfWins;
1þ 38� NumberOfWins

� �
Assumes prior �Beta (1,1). Same applies to ‘‘p
(Draw)’’ and ‘‘p (Lose)’’

Level 1P Expected Residual
Points

Continuous
(Arithmetic)

Latent
min 114; "NumberOfResidualMatches

�ð3� pðWinÞ þ pðDrawÞÞ

� �

Level 1P Difficulty of
residual
opponents

Continuous
Interval
(Ranked)

Observable 7 ordered states from ‘‘Lowest’’ to ‘‘Highest’’ Represents subjective indications

Level 1P ERP given
opponent
difficulty

Continuous
Interval
(Arithmetic)

Latent pe as defined in Section 2.1

Level 1P Team Strength (S)
L

Continuous
Interval
(Arithmetic)

Latent min (114,ERPgivenOpponentDifficulty + ’’
CurrentPoints‘‘)

(continued on next page)

Appendix G. Description of model variables and actual examples of the BN model

Table G.1 and Figs. G.1,G.2,G.3,G.4 and G.5.
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Table G.1 (continued)

Model
component

Variable (node)
name

Variable type Observable/
latent

Definition Comments

Level 1I Inconsistency
(Variance)

Continuous
Interval
(�Uniform
(a,b))

Latent �Uniform (0,150)

Level 1I Overall
Performance
(mean points)

Continuous
Interval
(�Uniform
(a,b))

Latent �Uniform (0,114)

Level 1I Season y1 Integer
Interval
(�TNormal
(l,r2,a,b))

Observable � TNormal OverallPerformance;
Inconsistency:001;0;1

� �
The same applies to Seasons y2 to y5

Level 2 Form (F) Continuous
Interval
(�TNormal
(l,r2,a,b))

Observable �TNormal(U,0.001,0,1) U is measured outside of the BN (see Section 2.2)

Level 2 Availability of
players who
resulted in current
form (LA)

Continuous
Interval
(Ranked)

Observable 5 Ordered states from ‘‘Very Low’’ to ‘‘Very
High’’

Represents subjective indications

Level 2 Important players
return (or new
transfers) (LR)

Continuous
Interval
(Ranked)

Observable 4 Ordered states from ‘‘None’’ to ‘‘High’’ Represents subjective indications

Level 2 Expected Form
given player
availability

Continuous
Interval
(�TNormal
(l,r2,a,b))

Latent ULA as defined in Section 2.2

Level 2 Expected form
given further
important players

Continuous
Interval
(�TNormal
(l,r2,a,b))

Latent ULR as defined in Section 2.2

Level 3 Toughness of
previous match

Continuous
Interval
(Ranked)

Observable 5 Ordered states from ‘‘Very Low’’ to ‘‘Very
High’’

Represents subjective indications

Level 3 EU Match
Involvement

Continuous
Interval
(Ranked)

Observable 6 Ordered states from ‘‘None’’ to ‘‘Very High’’ Represents subjective indications

Level 3 National Team
Involvement

Continuous
Interval
(Ranked)

Observable 5 Ordered states from ‘‘None’’ to ‘‘Very High’’ Represents subjective indications

Level 3 Days Gap Continuous
Interval
(�TNormal
(l,r2,a, b))

Observable 5 Ordered states from ‘‘1–2’’ to ‘‘6+’’ Represents subjective indications

Level 3 Motivation Continuous
Interval
(Ranked)

Observable 5 ordered states from ‘‘Very Low’’ to ‘‘Very
High’’

Represents subjective indications

Level 3 Head To Head Bias Continuous
Interval
(Ranked)

Observable 5 states: ‘‘HT Advantage’’ and ‘‘AT
Advantage’’

Represents subjective indications

Level 3 Prior Fatigue Continuous
Interval
(Ranked)

Latent Gp as defined in Section 2.3

Level 3 Expected Fatigue Continuous
Interval
(Ranked)

Latent Ge as defined in Section 2.3

Level 3 Fatigue and
Motivation

Continuous
Interval
(�TNormal
(l,r2,a,b))

Latent G as defined in Section 2.3

Topology Confidence in
historical
inconsistency

3 ordered states from ‘‘Low’’ to ‘‘High’’ Represents subjective indications

Topology Team Strength (S)
L1

Continuous
Interval
(�TNormal
(l,r2,a,b))

Latent SL1 as defined in Section 2.1

Topology Team Strength (S)
L2

Continuous
Interval
(�TNormal
(l,r2,a,b))

Latent l = if (U < 0.5) then: The same applies to: ‘‘Team Strength (S) L3’’, where
SL1 is replaced by SL2, and U is replaced by G

SL1 + ((114 � SL1) � (0.5 �U)), else:
SL1 � (SL1 � (U � 0.5)),
r2 = 1 + ABS(U � 0.5) � 10,
a = 0, b = 114
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Table G.1 (continued)

Model
component

Variable (node)
name

Variable type Observable/
latent

Definition Comments

Topology Ranked Quality
(Level 1)

Integer
Interval
(�TNormal
(l,r2,a,b))

Latent l = if (SL1 > 89) then: The same applies to: ‘‘Ranked Quality (Level 2)’’
and ‘‘Ranked Quality (Level 3)’’, where SL1 is
replaced by SL2 and SL3 respectively

1, else:
if (SL1 < 20) then:
14, else:

15- ðSL1�19Þ
5

� �
r2 = 0.01, a = 0, b = 114

Topology Level 1 Forecast Labelled Latent Estimated given historical database (i.e.
results of match instances which correspond
to the two SL1 parent nodes)

The same applies to: ‘‘Level 2 Forecast’’ and ‘‘Final
Forecast’’, whereby SL1 is replaced by SL2 and SL3

respectively

Fig. G.1. A simplified representation of the overall Bayesian network model. An example based on the actual scenarios of the Arsenal vs. Liverpool EPL match, August 20th
2011. The observed outcome was A (0–2).
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Fig. G.2. Level 1 Component (P): formulating S prior. An example with four actual scenarios based on Fulham, Man City, Wigan, and Man United data, as retrieved at
gameweek 37 during season 2011/2012.
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Fig. G.3. Level 1 Component (I): measuring a team’s historical inconsistency (V) based on league point totals of the five most recent seasons. An example with four actual
scenarios based on Fulham, Man City, Wigan and Man United data for the five seasons preceding EPL 2011/2012.
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Fig. G.4. Level 2 Component (F): measuring team form. An example with four scenarios (scenario 4 represents uncertain inputs whereby values follow predetermined
subjective prior probabilities).
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