
Decision making in uncertain times: what can cognitive and decision

sciences say about or learn from economic crises?
Meder, B; Le Lec, F; Osman, M

 

 

 

 

 

2016 Elsevier B.V. or its licensors or contributors

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10356

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10356


Decision making in uncertain times: what can
cognitive and decision sciences say about or learn from
economic crises?

Bjö rn Meder1, Fabrice Le Lec2, and Magda Osman3

1 Max Planck Institute for Human Development, Center for Adaptive Behavior and Cognition, Lentzeallee 94, 14195 Berlin, Germany
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Economic crises bring to the fore deep issues for the
economic profession and their models. Given that cog-
nitive science shares with economics many theoretical
frameworks and research tools designed to understand
decision-making behavior, should economists be the
only ones re-examining their conceptual ideas and em-
pirical methods? We argue that economic crises demon-
strate different forms of uncertainty, which remind
cognitive scientists of a pervasive problem: how best
to conceptualize and study decision making under un-
certainty.

The challenge: uncertainty in various (dis)guises
Economic crises illustrate various types of real-world deci-
sion making under uncertainty within dynamic environ-
ments. These decisions involve dependencies in time and
interdependencies amongst multiple agents [1] For in-
stance, investors need to decide whether to provide loans
to governments and banks without knowing how markets
will develop and what policy makers will decide to do.
Politicians weigh up the decision to bail out fragile banks
and countries, while at the same time trying to appease the
interests of their electorate. Here we can see that uncer-
tainty is an inherent feature of the decision environment
and of the agent (e.g., limitations in knowledge and infor-
mation-processing capacities, conflicting goals). Uncer-
tainty permeates all aspects of real-world decision
problems, from constructing the action and outcome space
to inferring the probabilities and values of outcomes and
predicting the behavior of others. The question is, how can
we best conceptualize decision making under uncertainty

in all these various (dis)guises? More to the point, how can
we characterize the many forms of uncertainty with which
people have to cope in the real world?

Taking stock of the canonical framework for decision
making
The canonical approach for conceptualizing decision mak-
ing builds on the idea that possible states of the world can
be associated with subjective probabilities and values
(Box 1). In this view, all forms of decision making conform
to two fundamental principles: (i) a trade-off between
outcome probabilities and values, used to derive the
expected utility of alternative actions; and (ii) decision
makers act as if they maximize subjective expected utility
(SEU) [2]. Although empirical research has revealed sev-
eral departures from SEU theory, enriched variants try to
take into account the peculiarities of human decision
making, while preserving the core principle of utility
maximization [3].

So, to what extent can this approach be used for under-
standing decision making in real-world contexts? Let us
take the problem of investors deciding on whether to buy
bonds from a struggling eurozone country. SEU would
propose that investors consider the probability and value
of future events, such as the risk of default. However, we
already face a stumbling block: where do the probabilities
come from? Unpacking this question involves turning to
an economically informed distinction between different
types of decision situations based on the agent’s sources of
knowledge regarding outcomes and probabilities. Knight
[4] distinguished between: (i) a priori probabilities, which
can be logically deduced, as in games of chance; (ii) sta-
tistical probabilities, derived from data; and (iii) esti-
mates, arising from situations in which ‘there is no
valid basis of any kind for classifying instances’ ([4], p.
225). Here, then, decision making under risk refers to
situations in which probabilities are known (or knowable),
whereas situations of uncertainty are characterized as
cases where probabilities are neither logically deducible
nor can be inferred from data. For instance, investors
cannot refer to data to assign probabilities and value
estimates to the consequences for the eurozone if a mem-
ber defaults; therefore, decisions will only ever be based
on (Knightian) estimates.
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‘The essence of the situation is action according to
opinion, of greater or less foundation and value,
neither entire ignorance nor complete and perfect
information, but partial knowledge. If we are to
understand the workings of the economic system
we must examine the meaning and significance of
uncertainty; and to this end some inquiry into the
nature and function of knowledge itself is necessary’

Frank H. Knight, Risk, Uncertainty, and Profit, 1921
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Although the distinction between risk and uncertainty
is intuitively plausible, defenders of SEU have dismissed
the risk/uncertainty distinction, arguing that the canoni-
cal framework assumes that decision makers act ‘as if they
assigned numerical probabilities to every conceivable
event’ ([5], p. 282). Thus, the claim is that people act
rationally, given their subjective – not necessarily veridi-
cal – beliefs, with subjective probabilities and utility
functions serving as building blocks for modeling decision
making.

Others take the Knightian distinction between risk and
uncertainty as a starting point for considering alternative
ways to conceptualize decision making. They start from the
view that many real-world problems are ill-structured and
not easily formalized and that humans are cognitively
constrained in their ability to process the informational
complexities that arise (i.e., real-world agents are bound-
edly rational) [6]. As a consequence, heuristics and approx-
imate strategies are used in decision making under
uncertainty [7,8]. For instance, when dealing with dynamic
decision problems and the need to achieve long-term goals,
an aspiration level-based strategy may be used that does
not require precise quantitative knowledge of the decision
environment [9].

Rethinking decision making under uncertainty
Although there is considerable dispute about both the
general usefulness of the risk versus uncertainty distinc-
tion and the ways by which decision making is modeled,
these differences are not necessarily reflected in the
empirical tools. Typically, researchers use decontextua-
lized situations with well-defined probabilities and out-
comes, such as lotteries and experimental games.
Presenting participants with the probabilities and pay-
offs enables researchers to control the epistemological
states of the decision maker, which in turn allows her to
use SEU-like models as the normative benchmark. How-
ever, this approach limits the insights that can be gained
for understanding decision making under (Knightian)

uncertainty. If probabilities and values are given, there
is no possibility of examining important predecisional
processes. For instance, when it comes to applying SEU-
like decision strategies, researchers cannot explore how
people come up with probability estimates and outcome
values. Alternatively, if we assume that people might use
strategies other than SEU-like ones, there is no way of
examining which pieces of information (other than prob-
abilities and outcome values) people use to reach a deci-
sion. The upshot here is that the empirical tools are often
too constrained to examine whether decision making
under uncertainty is qualitatively different from decision
making under risk. The implication is that, if there is a
qualitative difference, there is a fundamental limit to
any generalization of current models of decision making
beyond the laboratory to real-world decision-making
situations.

Although these problems are often recognized, empiri-
cally studying decision making in uncertain environments
that approximate those in the real world is anything but
trivial. However, some steps have been taken in this
direction; for instance, by using dynamic decision-making
tasks that set up microworlds, with various interdepen-
dencies of decisions in time and between multiple variables
or agents [1,9]. Moreover, in economics too there is a
growing trend to move away from traditional risk-based
paradigms (i.e., lottery-type tasks) by employing a richer
combination of tools [10,11] or by conducting field studies
to examine decision making under out-of-the-laboratory
conditions [12].

A major stumbling block for broadening the empirical
scope is the lack of a clear framework for conceptualizing
uncertainty in all its various forms. Knight’s uncertainty
category is essentially a negatively defined concept; name-
ly, the absence of an objective basis for inferring probabili-
ties. This is a helpful starting point, but refinement is
needed. Some researchers have recently expanded on
Knight’s formulation and proposed different levels of un-
certainty that consider the relationships that uncertainty

Box 1. The canonical framework for decision-making research

Rational choice theory. The canonical framework of decision making

is based on two assumptions. First, the agent can order all possible

situations according to her preferences; second, she always acts in

accordance with them. Under some mild assumptions, this is

equivalent to maximizing expected utility. In practice, however,

specifications are required about what matters in such preferences,

such as monetary or social welfare (e.g., Mother Theresa can be

conceptualized as a perfectly rational agent by assuming that her

utility function is based on the interests of the poor and sick).

Subjective expected utility (SEU) theory. The goal of SEU theory [2] is

to give content to such preferences in the case of uncertainty. Agents

are assumed to have preferences between actions, a 2 A, from which

the decision maker can choose. These preferences depend on

possible states of the world, s 2 S, which are beyond the agent’s

control, and ‘consequences’ or outcomes that she will eventually face.

Savage showed that, under some arguably reasonable conditions,

agents would choose acts as if they ascribed probabilities to states of

the world and utilities u to consequences and maximized the

corresponding expected utility, given by:

SEUðaÞ ¼
X

s 2 S

pðsÞuðaðsÞÞ [1]

Fundamental to this framework is the result that act a is preferred to

act a0 iff and only if the expected utility of a is larger than that of a0;

that is, a > a0 iff SEU(a) > SEU(a0).

Expected utility and subjective expected utility. SEU can be seen as a

generalization of expected utility theory as formalized by von

Neumann and Morgenstern in 1944. This is decision making under

risk, because the objective probabilities are known. Formally and

operationally, the results have similar implications (i.e., the max-

imization of expected utility). However, at the conceptual level,

Savage’s theory is often interpreted as the origin of the applicability

of expected utility theory for decision making under uncertainty,

because it derives the existence of subjective probabilities from

conditions on an agent’s preferences.

Generalization of (subjective) expected utility theory. The descriptive

accuracy of expected utility theory has been challenged by several

empirical studies (e.g., the Allais and the Ellsberg paradox). The

framework has been adapted to account for these findings through

‘generalized’ expected utility, which assumes the maximization of

uncertainty-weighted expected utility (e.g., with a transformation of

probabilities) and the separate representation of uncertainty and

consequences of actions through probabilities and utility [3].

Forum: Science & Society Trends in Cognitive Sciences June 2013, Vol. 17, No. 6

258



has to risk (e.g., whether we can reduce uncertainty to risk
by sufficient amounts of data or whether even an infinite
amount of data would be insufficient, because the data-
generating process changes in unpredictable ways) [13].
Other authors have discussed variants of uncertainty from
the perspective of inductive inference. They elaborate on
problems arising from a misspecification of the hypothesis
space (i.e., when the model used to derive predictions does
not match the structure of the decision environment); this
highlights breakdowns when applying models for situa-
tions of risk (‘small worlds’) to situations of uncertainty
(‘large worlds’) [8,14].

We argue that real-world problems are a useful basis
for characterizing variants of uncertainty and the types
of uncertain environments with which decision makers
(and cognitive systems in general) have to cope (Figure
1). For instance, economic crises illustrate uncertainty
about the underlying dynamics of the conditions under
which the decisions are being made, uncertainty in the
feedback from decisions, uncertainty from interpreting
the decisions and actions of multiple agents, and uncer-
tainty in resolving conflicts between competing goals
[1,9]. One may dispute whether the ultimate goal for
theoretical and empirical research is to explain how
decisions are made in complex real-world situations,
where all of these uncertainties prevail, or whether
the goal is to pinpoint characteristics of environmental
structures to explain adaptive behavior and cognition. In
any case, a first and necessary step is to identify types of

uncertainty that can guide and expand theoretical and
empirical practices.

Concluding remarks: coping theoretically and
empirically with uncertainty
Our starting point was the claim that real-world problems
like economic crises highlight the potential limitations in
the way decision-making behavior is usually conceptualized
in both economics and the cognitive sciences, particularly
with respect to the many forms of uncertainty that people
face outside the laboratory. In our view, the major challenge
for developing a more comprehensive theory of decision
making is the lack of a classification system that captures
key elements of uncertainty and uncertain environments. If
serious attempts are made to extend Knight’s original for-
mulation of uncertainty and develop a taxonomy of uncer-
tainty to which researchers could adhere, perhaps this may
shift the focus away from questions concerning the forms of
rationality (or optimality) that decision-making behavior
takes and onto questions about how best to conceptualize
uncertainty in its many forms. This will not only provide a
better foundation for modeling and studying decision mak-
ing, but also set the stage for developing ways to aid decision
makers when faced with real-world uncertainty [Haldane,
A. (2012) The dog and the frisbee. Speech given at the
Federal Reserve Bank of Kansas City’s 36th economic policy
symposium ‘The Changing Policy Landscape’, Jackson Hole,
Wyoming. (http://www.bankofengland.co.uk/publications/
Pages/speeches/2012/596.aspx)].

(B)  Dynamic environments: Types of change  
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Figure 1. Uncertainty in its various guises. Illustrating sources of uncertainty and situations of decision making under uncertainty, using an urn model. (A) Uncertainty

can reside in the mind of the boundedly rational agent. Uncertainty can also result from the decisions of and influences from other agents and from genuine randomness

in the external environment (i.e., the data-generating process). (B) Examples of dynamic environments that involve changes in the decision-making situation over time.

Left: The proportion of balls changes in unpredictable (or unknown) ways over time; therefore, probability estimates obtained at t1 are of little use at t2. Right: The

outcomes themselves change over time, requiring a reformulation of the decision situation. (C) Examples of decision-making scenarios. From left to right: In situations

of certainty and risk, the outcomes and their probabilities are known. In a ‘black swan’ situation, the urn contains a rare but highly consequential event (a ‘bomb’ or, in the

case of a positive event, a ‘diamond’) that is either unknown to the decision maker or ignored in the representation of the decision situation. In a situation of Knightian

uncertainty, the outcomes are known but not their probabilities. The right-most example is a situation of radical uncertainty, in which both the outcomes and their

probabilities are unknown.
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