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A concordance index for matched case-control
studies with applications in cancer risk
Adam R. Brentnalla∗, Jack Cuzicka, John Fieldb, Stephen W. Duffya

In unmatched case-control studies the area under the receiver operating characteristic (ROC) curve (AUC) may
be used to measure how well a variable discriminates between cases and controls. The AUC is sometimes used
in matched case-control studies by ignoring matching, but it lacks interpretation because it is not based on an
estimate of the ROC for the population of interest. We introduce an alternative measure of discrimination that is
the concordance of risk factors conditional on the matching factors. Parametric and non-parametric estimators are
given for different matching scenarios, and applied to real data from breast and lung cancer case-control studies.
Diagnostic plots to verify the constancy of discrimination over matching factors are demonstrated. The proposed
simple measure is easy to use, interpret, more efficient than unmatched AUC statistics, and may be applied to
compare the conditional discrimination performance of risk factors. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. Introduction

In matched case-control studies the primary aim is sometimes to assess whether a quantitative variable predicts a binary
reponse, and a secondary objective is to measure its discriminatory power on a scale that is not sample dependent. It is
recommended that the primary analysis should take account of the matching, commonly via conditional logistic regression
[1, 2]. It is less clear what methodology to use in order to measure the rank ordering performance of a marker in a matched
design. In this article we develop a simple concordance index for matched data, and show how it may be estimated and
used in the analysis of case-control studies.

Determining how well a variable discriminates between cases and controls in a matched study has a lot in common with
adjusting for covariates in regression. In that context, it is well known that if the variable of interest x is independent of
another covariate z, then including both in the regression against response y can be more efficient than just using x (e.g.
[3]). Further, when x and z are correlated then the conditional effect of x on y given z will be different than the marginal
effect when z is ignored. In a matched context z is used to match cases (y = 0) and controls (y = 1) and we seek a measure
of how well x discriminates between them.
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The utility of an odds ratio, C-index or other performance measures from a case-control study depends on the context.
In many circumstances the odds ratio is more relevant than a change in AUC. For example, mutations in the BRCA1 and
BRCA2 genes are known to confer substantially higher risks of breast and ovarian cancer [4]. Testing women with high
familial risk for these mutations is beneficial because they may then consider preventive options; but the change in the
population AUC from a model that incorporates BRCA status will be very small because they are rare. On the other hand,
an odds ratio may be less helpful to assess the rank ordering by markers or combination of markers for cancer screening
strategies, such as possible triage tests for cervical cancer screening [5]. There is a clear need for methods to estimate both
relative risks and measures of discrimination.

The next section introduces our measure of rank ordering performance for matched studies, and then methods for
estimation are considered. The approach is demonstrated through three examples from cancer risk, before conclusions are
drawn.

2. A matched concordance index

The concordance index and also known as Kendall’s τ [6], is the probability τ = P (y1 > y2, x1 > x2) + P (y1 < y2, x1 <

x2) that differences between two continuous random variables variables y and x are in the same direction for two randomly
sampled individuals 1 and 2; pairs of random variables (x1, y1) and (x2, y2) are independent and identically distributed
(iid). When y is a binary indicator for case-control status and x is a predictor variable, then it is equal to the area under the
receiver operating characteristic curve (AUC) [7]. An issue for matched studies is that estimating the C-index by ignoring
matching is equivalent to analysing the data by an unconditional logistic regression model. Despite this, the approach is
sometimes used, including in evaluating mammographic density as a breast-cancer risk factor in case-control studies (e.g.
[8, 9]). However, this approach is biased for assessment of variable performance in combination with others, and to assess
the incremental increase in AUC, because by design the sample is balanced for the matching risk factors [10]. We propose
to side-step these issues by targeting a conditional C-index instead, defined as

Cz = P (y1 > y2, x1 > x2 | z1 = z2 = z) + P (y1 < y2, x1 < x2 | z1 = z2 = z) (1)

which is simply the concordance probability for two randomly sampled individuals with the same values for matching
factors or sets z1 and z2. The matching factors might be about each individual such as their age and gender, or they might
be less quantitative so that, for example, individuals are matched 1:1 with a doctor’s surgeries and each practice only
contributes a single pair. Cz is a generalisation of Kendall’s τ to the case of matching with another variable. An overall
matched C-index is defined

C =

∫
Czp(z)dz (2)

where p(.) is a probability mass function. In this article we focus on the case where Cz is constant over z, and so the
distribution of z is not required. This generalisation of Kendall’s τ only includes pairs with equal values of z; we argue
that it is of greater validity and more intuitive for a matched case-control study than an AUC statistic obtained by ignoring
the matching.

A hypothetical example is used in Figure 1 to help further introduce the measure, and to show the difference from the
classical concordance index. The figure shows a case-control study with two matching groups (young and old), where
the mean response differs between the groups. The setup is motivated by experience with biomarkers that are correlated
with age, such as mammographic breast density and DNA methylation [11]. Because there is very little overlap between
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Figure 1. An example to show a difference between matched and unmatched concordance indices. There are two matching groups ‘young’ and ‘old’, and a biomarker that is
correlated with age. Plot (a) shows the density of the biomarker in young and old groups, split by case (– – –) and control (—) status. Plot (b) shows the corresponding ROCs,
where in the example the conditional AUC is the same in young and old groups.

the two matching age groups, the unconditional ROC has a turning point at 0.5 on the x-axis. This makes interpretation
of AUC difficult, partly because it depends on the age sampling ratio. The example is designed so that the conditional
ROCs for the two groups are identical, and so is the average ROC regardless of the age sampling ratio. Then the matched
C-index obtained as the mean of both matching groups is interpreted as the concordance probability for two individuals
of the same age class. If there were n groups matched 1:1, then it would be interpreted as the concordance probability for
a matched pair of individuals.

Figure 1 may be also be used to show a duality between the matched C-index and logistic regression odds ratios. The
figure is based on a normal distribution for p(x | y, z), the probability distribution of x given case-control status y and
match z, with mean shift δ between cases (y = 1) and controls (y = 0) that is the same for all matched groups. In the
following we take equal unit variance for simplicity. Following Bayes’ rule

P (y = 1 | x, z)
P (y = 0 | x, z)

=
p(x | y = 1, z)P (y = 1 | z)
p(x | y = 0, z)P (y = 0 | z)

= exp(a+ δx) (3)

where a = ln{P (y = 1 | z)/P (y = 0 | z)} − δ2/2. Equation (3) is of the same form as the odds ratio for x from a
conditional logisitic regression, i.e. the odds ratio for a unit change in x is exp(δ) and the logistic regression model
holds, see also [12]. Further, the C-index for each value of the matching variable z is Φ(δ/

√
2), where Φ is a standard

normal cumulative distribution function [13]. Thus under this model, the odds ratio and matched C-index are dual because
both are functions of the same parameter δ. An obvious consequence is that under this simple model the odds ratio exp(δ)

is constant over matching groups z, and so is the matched C-index C = Φ(δ/
√

2).
A disadvantage of the odds ratio is that when the aim is to use a variable or combination of variables to dichotomise

a prediction into good vs bad, the odds ratio depends on the cutpoint. An advantage of the concordance index is its
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interpretation as mean sensitivity over all possible cutpoints, although this may sometimes be a weakness [14].
The proposed measure follows a similar approach to [15, 16], where covariate-adjusted ROC curves were estimated

from which AUC statistics may be obtained. Using the example in Figure 1, the covariate-specific ROCs for the two
age groups are both the matched ROC, as is the covariate-adjusted ROC (AROC, their vertical average). AROCs do not
require that the ROC given covariate z is constant; the AROC is defined as a weighted average of covariate-specific ROCs
regardless. However, interpretation is more difficult when the assumption does not hold because the AROC will depend
on the sampling distribution of z. An assumption of constant covariate-specific ROCs might be seen to be a stronger
assumption than constant Cz , since in theory Cz could be constant even if the covariate-specific ROCs are not. However,
the main difference between the approach in this paper and AROC estimation is that we use an assumption about the
constancy of Cz to estimate the matched C-index, without modelling the matching factors. This is particularly relavent
when it is not possible to model the matching covariates, such as for example 1:1 matching based on individual doctor’s
surgeries.

The matched C-index for the variable of interest (x) relates theoretically to the AUC from the population ROC as
follows. If C = 1.0 then x provides perfect discrimination after allowing for the matching factors z, and so in the
population the AUC for a model that includes z (e.g. age) and x would also be 1.0; but the AUC for an unmatched
comparison from a matched study would not necessarily be 1.0. If C = 0.5 then the rank ordering of x is no better than
random after allowing for the matching factors z, and so the change in AUC in the population when adding x to a model
that includes the matching variables z (e.g. age) would be zero. In general when 0.5 < C < 1.0 it is not possible to relate
the matched C-index to the incremental benefit of x over z, as described by [15]. However, the matched and unmatched
C-indicies for x alone will coincide when Cz is constant and x is not correlated to z, but the matched C-index will be
more efficient for statistical inference. Although the population ROC and associated AUC cannot be directly calculated
from a matched study, some work has been undertaken to use matched studies to estimate the AUC statistic that would be
observed in the population, by using extra information on the distribution of matching risk factors in controls [10].

3. Estimation

We turn next to methods to estimate the matched C-index. Let xjik be measured in matching group i = 1, . . . , n for
controls and cases (j = 0, 1) and replicate k = 1, . . . , nij , and define

Ci = P (x1i > x0i) + 1/2P (x1i = x0i), (4)

where the second term in the definition allows for ties, and ensures that Ci = 0.5 if the variable is no better than random
discrimination. The methods in this section to form an overall matched C-index estimate take that Ci is constant over
i = 1, . . . , n. Some diagnostic methods to assess the assumption will be discussed.

3.1. One to m matching

Two methods for when there is one case per matched group are next introduced.

3.1.1. Non-parametric estimator Use

Ti = m−1
m∑

k=1

{I(x1i > x0ik) + 1/2I(x1i = x0ik)} (5)
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to estimate Ci for i = 1, . . . , n, where I(.) is the indicator function and x1i = x1i1 to simplify notation. The average of Ti
over the sample provides an overall estimate of the matched C-index

C1 = n−1
n∑

i=1

Ti. (6)

3.1.2. A parametric estimator Suppose that xjik has mean µji and variance σ2
j , so that the mean is potentially linked with

matching variable i and case-control status j, but the variance is constant over the matching variables i. Define

Si = m−1
m∑

k=1

x1i − x0ik (7)

for i = 1, . . . , n and

S = n−1
n∑

i=1

Si. (8)

Denoting the variance over Si by σ2
S , a z-test statistic is

TZ =
√
nS/σ̂S (9)

where σ̂S is the sample standard deviation. For large enough n the hypothesis that the mean differs between cases and
controls may be tested because it is asymptotically standard normal from the central limit theorem. Another reason
for considering this approach is that it may be converted to an estimate of the matched C-index under the following
assumptions.

• E(x0i − x1i | zi) = ∆, so that the conditional mean difference between cases and controls is constant over the
matching variables.
• xji is normally distributed.

The matched C-index for this so-called binormal model is [13]

C2 = Φ{∆/σ∆} (10)

where Φ(.) is a standard normal cumulative distribution function and σ∆ = (σ2
0 + σ2

1)1/2 is the total standard deviation in
cases and controls. The numerator ∆ may be estimated by S, and the denominator from variance σ2

∆ as follows. Define
sm = m(m− 1)/2, then because cov(x1i − x0ik, x1i − x0il) = σ2

0 ,

σ2
S = m−2{m(σ2

0 + σ2
1) + 2sm(σ2

0)}. (11)

If we take σ2
0 = σ2

1 then

σ2
∆ = σ2

Sm
2(m+ sm)−1, (12)

plugging in σ̂2
S to provide an estimator.

3.1.3. Inference With 1 : 1 matching a binomial sample is obtained for the non-parametric estimate, and standard
techniques may be used such as profile likelihood. For 1 : m matching in each group, var(C1) depends on the distribution
of xji. Under the parametric model introduced a confidence interval may be obtained by estimating a confidence interval
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on the term inside (10), and then applying the transformation. A bootstrap may also be applied by resampling with
replacement from the matched groups or pairs. Some demonstration code for the statistical software R [17] is provided in
an online appendix.

3.2. Matched groups of variable size

Consider where there is n0i : n1i matching, so that each group i = 1, . . . , n may have n0i > 0 controls and n1i > 0 cases.
Initially in each group the target is the matched C-index for that group alone. We focus on a non-parametric estimate for
each matching group i = 1, . . . , n

C3i = (n0in1i)
−1

n0i∑
k=1

n1i∑
l=1

ψ(x1il, x0ik), (13)

where

ψ(x1il, x0ik) =


1 x1il > x0ik

1/2 x1il = x0ik

0 x1il < x0ik

which generalises (5). If Ril denotes the rank of the xjik in the combined sample for j = 0, 1 and k = 1, . . . , nji

with the ranks of tied observations averaged, then the Wilcoxon ranksum test statistic given by Wi =
∑ni

l=1Ril is
n0in1iC3i + ni0(ni0 + 1)/2, and may be used to calculate C3i.

We are interested in the overall matched C-index over the n groups, where the number of cases and controls may be
different in each. If the matching groups are independent, then a weighting factor based on the inverse variance σ2

Ci from
each group will minimise the variance of a weighted average, i.e.

wi = σ−2
Ci /

n∑
i=1

σ−2
Ci , (14)

so that

C3 =

n∑
i=1

wiC3i. (15)

One choice is to use the weights under the null hypothesis that C3i = 0.5 [18]:

σ2
1Ci =

n0i + n1i + 1

12n0in1i
. (16)

An alternative is to estimate the variance of C3i using one of the methods described by [19], including [20]. Let
Qijk = ψ(x1ij , x0ik), so that the column means are Q̄ij. = n−1

0i

∑n0i

k=1Qijk and row means Q̄i.k, then

σ̂2
2Ci = n−1

0i v̂ar(Q̄ij.) + n−1
1i v̂ar(Q̄i.k) + (n0in1i)

−1C3i(1− C3i) (17)

where v̂ar(.) are sample variance estimators.

3.2.1. Inference It is easy to see that

var(C3) = (

n∑
j=1

σ−2
Cj )−2

n∑
i=1

σ−2
Ci , (18)
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substituting σ2
1Ci or σ̂2

2Ci for σ2
Ci, where in theory the former might be used to test the null hypothesis that C3 = 0.5, and

the latter to form a confidence interval. In practice, for case-control studies where the number of samples in each group
(n0i + n1i) is not large, or n0i or n1i = 1, then weights from σ2

1Ci are preferable because σ̂2
2Ci is less stable and may be

zero. For this reason we also recommend using a bootstrap for confidence intervals, rather than rely on an asymptotic
approximation.

3.3. Checking assumption of constancy over matching groups

In the above an overall matched C-index was obtained under an assumption that it is constant over the matched groups. A
number of approaches might be used to verify this assumption, based on inspection of Ti from (5) and matching factor zi.
In an example that follows we plot Ti vs zi, and fit a line using a local regression smoother [21].

3.4. Relative efficiency

It is well established that matched tests are more efficient than unmatched tests, and the same applies to the matched
C-index. To demonstrate consider 1:1 matching when the variable of interest is independent of matching, there are no ties
and the aim is to reject the null hypothesis that C = 0.5. The sample propotion estimator of a binomial parameter q has
variance q(1− q)/n. Since (6) is of the same form as a binomial estimator, under the null that C = 0.5 it has variance
(4n)−1. The variance of an unmatched estimator of C from a Wilcoxon statistic with n/2 in both groups is (3n)−1, as
seen by plugging in n0 = n1 = n/2 into (16). Thus the matched approach is more efficient because its variance is 3/4 of
the unmatched estimator. When the matching variable is correlated to the predictor of interest, the matched approach will
be even more powerful because the unmatched approach is a conservative estimator of C with asymptotic bias towards
0.5, as shown more generally for ROCs by [15].

4. Examples

In this section real examples from cancer risk studies are used to demonstrate how the matched C-indicies C1, C2 and C3

can be used to help plan and evaluate matched case-control studies.

4.1. Breast density

A case-control study of mammographic density was nested within the International Breast Cancer Intervention Study-I
(IBIS-I), a randomised trial of tamoxifen versus placebo in women at high-risk of developing breast cancer [22]. Crudely,
breast density is the amount of tissue of white appearance on a mammogram (breast x-ray), which corresponds to the
amount of fibroglandular rather than fatty tissue. It is one of the strongest risk factors for breast cancer. Various measures
of mammographic density have been developed, and in the following we use a visually-assessed percentage density
measurement that ranged between 0 and 100% in 5% intervals, and was described further by [22]. The focus here is
discrimination performance, and for this we use participants from the placebo arm in this study (72 cases, 486 controls),
where the median follow-up for controls was 11.6 years, and median time to diagnosis for cases was 5.1 years.

It is well known that percentage breast density is negatively correlated with age, but that both factors are positively
correlated with breast-cancer risk. In the case-control study the distribution of age was balanced between cases and
controls. Table 1 provides summary statistics of the distribution of percent density by age and case-control status. It
can be seen that a similar pattern to that introduced by Figure 1 is observed: cases have greater mammographic density
than controls by age group, but younger women have a larger percentage mammographic density than older women.

Applying a conditional logistic regression model to 22 matching age groups had a likelihood-ratio χ2
1 of 7.9. The AUC

obtained by calculating a ROC ignoring the matching on age was 0.54 (95% DeLong confidence interval 0.48-0.61). The
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Table 1. Summary of percentage mammographic density measurements in three age groups. The percentile points of
mammographic density and the AUC for each age group are given.

Age Status n 10% 25% 50% 75% 90% AUC 95% CI
>55 Control 94 0 5 20 45 75 0.63 0.42 - 0.83

Case 18 0 15 30 75 80
45-55 Control 332 5 15 45 75 85 0.61 0.52 - 0.70

Case 44 15 30 70 80 90
<45 Control 60 5 30 55 75 80 0.58 0.43 - 0.73

Case 10 20 40 65 85 90

matched C-index C3 from (15) with (16) for the weights was 0.60, with a 95% non-parametric bootstrap CI 0.53 - 0.67.
Inference from the matched C-index agrees with the conditional logistic regression model; the unmatched AUC does not.

4.2. Lung cancer

In the Liverpool lung project, [23] matched by age and gender 579 lung cancer cases from Liverpool to two controls,
and used conditional logistic regression to develop the Liverpool lung project risk score (LLP) based on five factors
(smoking, pneumonia, asbestos, previous tumour, family history). The unmatched AUC was estimated to be around 0.7
in the development data. Two validation data sets that were not matched for age had AUCs closer to 0.8 [24]. We next
explore the LLP score using the original development data and our matched C-index.

The matched C-index C1 from (6) was 0.80 (95% non-parametric bootstrap CI 0.78 - 0.83). Figure 2a shows the
unmatched ROC in comparison with two AROCs obtained using 5-yr strata either side of age 70, both weighted by the
number of matched groups in each strata. The reason that the estimate ofC was higher than the unmatched AUC was partly
because the matching variables were correlated with the LLP score: the Spearman coefficient with age was 0.59. All the
strata-specific ROCs for individuals younger than 70 years were above the unmatched ROC for individuals younger than
70 (342 (65%) cases). Figure 2b shows an estimate of C against age, where the LLP score appears to disciminate better
for younger age groups. Figure 2a shows the same pattern, where the AROC for those aged 70 or more are worse than the
younger individuals. This is of interest for the intended use of the model, to stratify risk for lung-cancer screening. It also
justifies presenting two estimates of C: for those aged 70 or more C1 was 0.74 (95% CI 0.69 - 0.78); for those younger
than 70 it was 0.84 (95% CI 0.81 - 0.87).

Gender was also investigated, but the model appeared to discriminate equally well for both male and female subjects.
The matched C-index for men younger than 70 was 0.84 (95% CI 0.81 - 0.89), and 70+ was 0.73 (95% CI 0.66 - 0.78);
for women it was respectively 0.82 (95% CI 0.77 - 0.87) and 0.75 (95% CI 0.67 - 0.82).

4.3. Planning a matched study

A further use of the matched C-index is to help plan studies, and to relate primary testing objectives to discrimination
performance. The test statistic in (9) may be used to calculate power for different matching scenarios via (11), and tied
to the matched C-index C2 in (10) through the binormal model. To demonstrate, consider a case-control study designed
to validate a polygenic single nucletide polymorphism (SNP) score to predict breast cancer risk. Suppose a maximum
400 cases are available, and the problem is to decide the sampling ratio of controls. Note that here the expected matched
and unmatched C-indicies will coincide because age is not correlated to the SNP score, but the matched C-index is more
efficient. Let the primary aim of the study be to validate the performance of a panel of 49 breast-cancer risk SNPs, that
have been reported following the first 18 by [25].
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Figure 2. Matched C-index performance of the LLP model in the development sample. Panel (a) shows age adjusted ROCs based on 5-yr age-band stratification, and when
matching is ignored. Panel (b) shows an estimate of C (—) plus and minus standard error (– – –) against age, where the data points (|) are Ti from (5).

The distribution of a relative risk SNP score in the target population was estimated from the relative risk estimates and
allele frequencies in [26] via simulation. From the central limit theorem it was approximately log normal with a mean
log score difference of 0.088, and standard deviation of 0.295 in both groups. Under the binormal model this corresponds
to an AUC of Φ(0.088/

√
(2× 0.2952)) = 0.58. However, because the relative risks are estimates it is likely that some

regression to the mean of the SNP score to risk will be observed, so we consider the alternative hypothesis that AUC
will be Φ(0.066/(

√
2× 0.2952)) = 0.56. With 400 cases, the power to reject the null that AUC = 0.5 from 1:1, 2:1 or 3:1

matching via equation (12), would be approximately 89%, 98% and 99% respectively at the 5% level. This suggests that
3:1 matching would not be needed.

5. Conclusion

In this article a concordance index for matched case-control studies was introduced. Non-parametric and parametric
estimators were developed for different matching scenarios by building on established methods. The measure was
demonstrated in the context of design, analysis and interpretation of case-control studies of cancer.

The estimators use an average over the matched groups because it was assumed that the concordance probability was
constant over them. One way to verify the assumption is to compare each matching factor zi with individual C-index
components. If distinct groups are observed, then it might be more useful to report the matched C-index in each stratum,
as was seen in a real data set for lung cancer risk.

The measure is straightforward to interpret, and can be used to compare the discriminatory power of different risk
factors. For example, the breast-cancer SNPs were expected to confer a matched C-index of 0.58 after allowing for age;
visually assessed breast density in the sample of high-risk women was estimated to confer a matched C-index of similar
magnitude after allowing for age.
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In conclusion, an important use of matched case-control studies is to develop risk or discrimination scores from analyses
allowing for matching factors. It therefore seems desirable to measure the discrimination performance of the risk factors
after allowing for matching variables; additional assumptions are required to recover unmatched AUC statistics [10].
Although more advanced analysis such as conditional ROC estimates [15, 16] might be used to estimate the same quantity,
the proposed estimators here are quite simple, easy to interpret, offer a good starting point for estimation, and lend
themselves to diagnostic tests such as the plot introduced. We recommend that matched C-indices be considered when
evaluating the discrimination performance of risk factors in matched case-control studies.
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Appendix

R code

The methods in this article are demonstrated using code for the statistical software R in an online supplement.
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