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Abstract 

Terahertz frequency domain constitutes the least explored part of electromagnetic 

spectrum. At the same time plenty of physical phenomena occurs on picoseconds to 

nanosecond time-scale and have and can be monitored/controlled/studied by THz and 

sub-THz waves. Since the advent of photo-conductive generation followed by invention 

of the first THz-TDS system, research in this field made a huge progress, although still 

possess a considerable potential for growth. Alongside advances in generation and 

detection of THz radiation simulation tools are becoming increasingly important and 

facilitate interpretation of the experimental results. 

Thesis comprises three related subjects, namely the processing of THz-TDS raw data, 

analysis of protein solvation dynamics by simulations and experimental investigation of 

water-protein solution at different concentrations. Experimental works in this thesis is 

performed using THz-TDS (normally covers 0.1-4 THz domain) and quasi-optical 

bench which covers the 75-325 GHz frequency bands. Molecular dynamics simulations 

were conducted in Gromacs package with a purely mechanical force field.  

The thesis is organized in the following way: chapter 1 introduces THz frequency 

domain to the reader, by describing its location in the electromagnetic spectrum, the 

physical phenomena that falls to THz domain, the main applications of THz radiation 

and overview of the mechanism of interaction between THz waves and bio-molecules. 

Second chapter outlines the principles of operation, physical processes and areas of 

application of THz-TDS. It is completed with a detailed description of the THz-TDS 

available in our laboratory. Third chapter gives a general picture of data processing 

related to material parameter extraction from time-domain response of the sample 

recorded by THz-TDS. Then it goes into details of associated error analysis, introducing 

the uncertainty caused by utilization of approximated transfer function. The application 

of the accurate algorithm for sample thickness determination based on its THz response 

is also presented in the third chapter. The fourth chapter discusses the application of 

Gromacs molecular dynamics simulations for the study of solvation dynamics of four 

selected proteins, namely TRP-tail, TRP-cage, BPTI and lysozyme proteins. All the 

water molecules solvating protein are divided into buried in the protein interior structure 

and the ‘on-surface’ water molecules. The later is shown to have similar properties for 

all proteins, while the former serve as the origin for the differences in solvation 

dynamics of proteins. Further in this chapter the radius of hydration shell and its 
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dependence on the protein structure is investigated using vibrational density of states of 

solvating water molecules. The experimental investigation of the lysozyme, myoglobin 

and BSA proteins solutions performed over 0.22-0.325 THz domain using the PNA-

driven quasi-optical bench is described in chapter 5. The relative absorption of protein 

molecules in solution and the hydration shell depth is also estimated. The last chapter 

concludes the thesis and outlines some future prospects. 
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Chapter 1. Terahertz radiation 

 

1.1 THz range of electromagnetic spectrum 

The first occurrence of the term terahertz (THz) was roughly in the middle 1970s 

[Fleming’74], where THz was used to describe the spectral lines between 0.33 – 1.4 

THz of gases such as H2O, N2O and SO2. This designation has been also used by 

Ashley and Palka [Ashley’73] to address the resonant frequency of water lasers. 

However, spectroscopy in the far-infrared (IR) has been attempted since the early 

1950s, driven by advances in Fourier-transform IR spectroscopy as described in a 

review by Loewenstein [Loewenstein’66]. Progress in THz technology has been largely 

limited mostly due to high atmospheric propagation losses and lack of efficient 

generation techniques [Kemp’06]. During the early stages THz technology found 

primary application in space sciences, where rich information of thermal emission lines 

of many light-weight molecules can be mapped by heterodyne and Fourier transform 

techniques [Siegel’02]. With the advent of ultrafast femtosecond lasers in the 1980s, 

THz spectroscopy gained the new functionality of coherent detection. This technique, 

called THz time-domain spectroscopy (THz-TDS), was based on optical excitation of 

voltage-biased semiconductors and was first demonstrated by Grischkowsky et al. 

[Exeter’89]. The progress and development of THz technology have been broadly 

described in a number of review papers [Siegel’02, Siegel’04, Tonochi’07] showing that 

nowadays this multi-disciplinary area is expanding its applications rapidly. 

Today the term THz is used to describe the rather broad spectral domain between 

microwave and IR with a commonly used, but not strict definition, from 0.1 – 30 THz. 

An illustration of the THz frequency domain within the electromagnetic spectrum is 

shown in Fig. 1-1. 

 

Figure 1-1. A brief illustration of the THz frequency domain 

[http://thz.phys.rpi.edu/images/thz_gap.png] 

http://thz.phys.rpi.edu/images/thz_gap.png
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THz waves have many attractive properties and have been receiving increasing 

interest since the 1980s. A number of physical and chemical processes with lifetimes of 

the order of picoseconds can be probed by THz radiation. These include carrier-lifetime 

in semiconductors [Baxter’09], hydration dynamics of bio-molecules [Leitner’08], 

function-relevant motions in proteins [Cao’04], hydrogen bond fluctuations 

[Chakraborty’07], intermolecular vibrations in crystalline solids [Jin’10] and transient 

molecular dipole moments [Beard’02], etc. (Fig.1-2, 1-3). 

 

Figure 1-2. Molecular processes in different frequency domains [Davies’11]. THz/far-IR band 

spans the collective vibrations of bio-molecules that are responsible for their functions; also the 

vibrations of hydrogen-bonded molecules that represents lattice vibrations and drive solvation 

dynamics.  

 

Figure 1-3. Characteristic infrared absorption frequencies of chemical compounds [Ueno’08].  
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Photon energy in the THz spectral domain is much lower than that of X-Rays, 

and so does not cause ionization effects in biological systems. This low (meV) energy 

level gives THz waves the advantage of non-destructive inspection of fragile biological 

samples such as protein and DNA. THz waves can also penetrate through a wide variety 

of materials without causing damage, enabling circuitry testing, explosive inspection, 

luggage and concealed weapons detection at airports. Short THz wavelength (0.1 – 1 

mm) allows for a high resolution imaging [Federici’05]. Special techniques for THz 

near-field microscopy can reach 14 μm resolution at 0.7 THz [Blanchard’11] and even 

down to extreme sub-wavelength resolution of 150 nm [Kersting’08] achieved with 

few-cycle THz pulses of 3 THz bandwidth. Table 1-1 contains a summary on the wide 

applications of THz technologies that take advantage of the useful properties of THz 

radiation. 

 

Table 1-1. Applications of THz Technologies [Jepsen’11]. 

Application Fields  Tasks and Challenges  

Bio/Medical  

Medicine  

Infrastructure  

Bio molecular, on-site THz imaging system, cancer 

diagnosis, medical services.  

Security  Inspection system from hazardous materials/prohibited 

drugs, THz sensors and cameras.  

Basic Science, 

Astronomy  

Functional THz-TDS/Imaging systems, bio-molecular 

structure analysis, extraction of material properties in 

THz range, analysis of the space radiation at THz 

energies 

Information  

Communication  

Tb/s communication, THz wireless communication, THz 

sensor network, satellite communication, electromagnetic 

compatibility.  

Industry  

Standards  

THz-TDS/imaging system for industry applications, 

evaluation systems for nanomaterials, systems for 

controlling the quality of the product 

 

Despite its many useful properties, the user of THz radiation must confront the 

major disadvantage it suffers – atmospheric absorption [Armstrong’12]. The attenuation 
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of electromagnetic (EM) waves at THz frequencies by the atmosphere under normal 

temperature and pressure (NTP) conditions is plotted at Fig. 1-4. Atmospheric 

attenuation is particularly high beyond 1 THz, reaching 10 dB/m.  

 

 

Figure 1-4. Atmospheric attenuation of THz radiation at ground level. 

 

1.2 Application of THz technologies in biochemistry 

THz waves have been applied to study a wide range of bio-samples covering 

everything from amino acids through cells and up to tissue. THz energies are being 

increasingly widely applied in bio-molecular studies. They are tuned to dipolar 

processes associated with hydration, molecular binding, temperature and conformational 

action. The progress in this field has been comprehensively reviewed by Siegel 

[Siegel’04], Markelz [Markelz’08] and more recently by Jepsen et al. [Jepsen’11]. As 

mentioned earlier THz response also clearly tracks inter- and intra-molecular vibrations 

of a small bio-molecules in the dry state. For instance, THz study of amino acids can 

provide information on chirality and crystallization [Yamaguchi’05]. THz absorption 

spectra of moderate to large sized bio-molecules (peptides containing 5 and more amino 

acids), do not resolve any features due to their dense overlapping and temperature 
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broadening. Instead, a continuously increasing THz absorption of protein powders has 

been observed and can be interpreted by a mode density function, obtained from 

classical MD simulations [Cao’04]. Cooling the sample to cryogenic temperatures can 

help to reveal sharp absorption signatures of molecular vibrations. The resonance 

frequencies of torsions, collective vibrations, H-bond vibrational modes that lie in the 

THz spectral domain represent a medium for sensing molecular structure and 

arrangement. This is potentially useful for identification of specific chemical 

components, in particular, in the detection of explosives and illicit drugs and for quality-

control of pharmaceutical products. This information has been used in semi-empirical 

force fields and to refine the molecular mechanical force field that governs the atomic 

motion in molecular dynamics (MD) simulators. MD simulations often accompany 

experimental studies providing means for the assigning of absorption peaks, close 

analysis of hydration effects, folding events and interactions between the molecules. 

Temperature-dependent studies have shown that proteins undergo a dynamical 

transition at around 220 K [He’08], the so-called glass temperature. Above this 

temperature proteins are dynamically activated and exhibit an increased atomic 

mobility. Ding et al. have determined the size of the solvation shell upon freezing 

peptide solutions by liquid nitrogen [Ding’10]. They rely on the fact that water 

molecules next to peptides have a suppressed ice-forming ability; therefore, when bulk 

water freezes, the water in a solvation shell still remains liquid. 

The sensitivity of the THz radiation to the conformational state of a protein was 

demonstrated by Castro-Camus et al. [Castro-Camus’08]. The authors observed a 

distinct increase in absorption over 0.25 – 2 THz in photoactive yellow protein after 

illumination with blue light at 450 nm, which stimulates the protein to partly unfold. 

Higher absorption was then related to an increase in the density of delocalized 

vibrational modes in the partially unfolded state computed by normal mode analysis. 

Heyden et al. has investigated the 2.4 THz absorption of native and denatured ubiquitin 

and λ-repressor proteins by a p-Germanium laser [Heyden’10a] (achieved by varying 

pH of a solution). For both, native conformations clearly exhibited a higher THz 

response attributed to the modified water dynamics in the hydration shell of the 

unfolded state. 

Apart from the crystalline or condensed state of bio-molecules, where they 

normally exhibit absorption features (dependent on molecule size), great effort has been 

made to study bio-molecules in their natural environment – i.e. dissolved. In this case 

all the low frequency intermolecular vibrations vanish (as molecules are not bounded to 
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each other in solution), while intra-molecular vibrational modes are masked by a strong 

water absorption in THz spectral domain (monotonically increasing from 90 cm
-1

 at 0.1 

THz to 600 cm
-1

 at 3 THz). For this reason the layers of the solutions investigated are 

often reduced to a thickness of about 100 μm. It was established by many that hydration 

water around bio-molecules has different properties in comparison to bulk water. Based 

on this fact the solutions can be treated as three-component models consisting of: 

protein, bulk water and hydration water [Leitner’08]. Some studies [Heyden’08] have 

used this approach to determine the size and absorption of the hydration shell; others to 

extract the molar absorption of a protein [Zhang’06]. Niehus at al. [Niehues’11] have 

measured a concentration-dependent THz absorption of amino acids in solution. A firm 

correlation was found between THz response and such properties of a solute as polarity 

and hydrophobicity. The authors believe that THz spectroscopy (2.1 – 2.7 THz) can 

serve as a simple non-invasive test of hydrophobicity with no need for introducing 

additional markers. THz-TDS was also applied to detection of bio-molecules in solution 

by Arora et al. [Arora’12]. They have demonstrated quantitative detection of DNA with 

697 and 133 base-pairs with a minimum detectable volume of 0.1 ng/μl. High 

sensitivity to hydration and water content results in potential applications of THz 

spectroscopy for detection of skin cancer and tooth imaging [Woodward’03]. The 

challenge of creating the compact THz imaging system suitable for the above 

applications still remains. The cross-checking of THz-TDS results with adopted 

orthogonal techniques is required, but often omitted [Falconer’12]. 

 

1.3 Interactions between THz Waves and Bio-molecules  

Biological molecules interact with radiation of different frequencies with 

characteristic differences. Certain energies in the visible and ultraviolet region can cause 

electrons to be excited to higher energy orbitals. If the energy of a photon is sufficient, 

e.g. X-rays, molecule may be dissociated or ionized. Ionization is particularly harmful 

for organic molecules, since it creates chemically-active radicals, which can result in 

damage to other molecules. The most significant property of THz waves, with regard to 

interaction with bio-molecules, is that THz photons, being comparatively less energetic, 

(of the order of meV) are unable to cause ionization of a molecule. Photons in the 

THz/far infrared region carry less energy than that in the visible or ultraviolet region 

and can only excite vibrations in molecules. Microwave radiation is even less energetic 

and consequently can only cause rotations of molecules. 
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While new and brighter THz sources are emerging, the need is growing for 

detailed studies on the influence of THz electromagnetic radiation upon bio-molecules 

and living cells. This interaction is determined by the parameters of a THz beam 

(frequency, size, power, exposure time), and the properties of the exposed sample 

(refractive index, composition, absorption and scattering properties).  The general 

mechanisms of interaction can be divided into absorption, scattering, thermal effects 

and so-called ‘micro-thermal’ or resonance influences [Wilmink’11]. The penetration-

depth has often to be considered, which is approximately 100s of micrometers at lower 

THz frequencies and 10s of micrometers at higher THz frequencies (2-3 THz). 

It is generally accepted that THz absorption by materials is an indication of the 

fluctuations of the system dipole moment [Heyden’10b]. In solution the rotational 

relaxation time of an average-sized protein is of the order of nanoseconds, in the dry 

state it is even slower. A THz wave has a period of oscillation of 1 picosecond. This is 

three orders of magnitude faster than the typical relaxation time of a protein. Therefore, 

as outlined by Heyden et al. [Heyden’12a], the alignment of its dipole moment lags the 

phase of the driving field and each individual dipole moment of a protein is effectively 

made stationary at THz frequencies.  Most of solute-induced absorption changes, apart 

from the expulsion of water, are caused by the interfacial water (the first few water 

layers immediately adjacent to protein surface that have properties different from bulk 

water); also the contribution of protein electronic polarizabily is significant [Zhang’06]. 

In terms of absorption, the interaction of protein with THz radiation is realized mainly 

through the dipoles of separate internal group-vibrations, which densely populate the 

THz frequency domain. Special techniques like normal modes analysis (NMA) or 

principal component analysis (PCA) allow calculating the dipole derivatives and to 

estimate the absorption contribution of each internal vibration [He’08].  

Once absorbed by a given medium, the electromagnetic energy is partially 

converted to heat, assuming no photochemical processes are involved. Changes in the 

temperature of a sample can in turn introduce uncertainties to the probed sample 

properties. Since most bio-tissues contain a high percentage of water, and considering 

that water is a dominant absorber at THz frequencies with respect to the bio-molecules 

themselves, it is useful to estimate the heating effect of THz radiation on water. 

Kristensen et al. have applied Kirchhoff’s heat equation to model the influence of a 

terahertz beam on a sample of water [Torben’10]. The authors have shown that for a 

focused continuous wave (CW) beam of 0.5 mm diameter, the steady-state temperature 

increase is 1.8 K/mW, and that the frequency has a relatively large effect with 1.4 
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K/mW at 0.1 THz and 2 K/mW at 10 THz. They also discuss the application of their 

model to THz-TDS. Microwatts of pulsed THz power (typical for conventional THz-

TDS setups), was argued to introduce at most, a negligible temperature rise of 1.8 mK, 

and only after the temperature reaches a steady-state value. Another approach of 

estimating the thermal effect of THz radiation has been suggested by Wilmink and 

Grundt [Wilmink’11]. According to them the temperature increment is proportional to 

irradiance, tissue absorption and exposure time and inversely proportional to the tissue 

density and specific heat capacity. 

Along with absorption, scattering also weakens the THz response of the sample. 

Incident photons are scattered most strongly when the wavelength of the incident 

electromagnetic wave is comparable with the particle size. Proteins are normally much 

smaller than THz wavelengths. For this reason scattering often can be ignored in 

solutions of bio-molecules, where the response is dominated by highly-absorbing water. 

However for dry-state samples it is non-negligible. Mixing the powder of bio-molecules 

with polyethylene before forming pellets is a common technique in the characterization 

of dry-state chemicals. Under such circumstances scattering in the sample originates 

from mismatch of the refractive index among constituents of the sample. Therefore, it is 

usually well pronounced for inhomogeneous samples where two materials with different 

properties are mixed or where voids are present in the sample. Scattering is the reason 

for asymmetric peaks profile in THz absorption curves as discussed by Franz et al. 

[Franz’08]. Based on information of frequency, particle size and the contrast in 

refractive index of mixed materials, the authors proposed a procedure for eliminating 

the scattering component from absorption spectra. Kaushik et al. suggested an iterative 

multilevel wavelet transformation for estimation of scattering baseline from THz-TDS 

measurements [Kaushik’12a]. Alternatively, a practical method for mitigating the 

scattering effects without the need for any a priori information about the material 

properties was introduced [Kaushik’12b]. This method assumes that the material under 

test has sharp features in THz domain. Scattering effects can be minimized in several 

ways: by using finely-milled samples ensuring that powders are well mixed to 

maximize homogeneous distribution of absorbing particles; compressing powders to 

form compact pellets, thus reducing porosity; and averaging over several measurements 

taken for different sample positions [Shen’08]. 

In the early 1970s Frolich raised the question of the possibility of non-ionizing, 

THz/sub-mm waves being employed to interfere with bio-molecules in a destructive but 

non-thermal manner [Frohlich’75]. This interaction has been referred as ‘micro-thermal’ 
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or ‘resonance’ and is little studied due to lack of experimental apparatus to probe 

electromagnetic fields and dynamics at the molecular level. It is stimulated by the 

experimental evidence on a macroscopic level that cannot be readily interpreted only in 

terms of temperature increase [Swanson’11, Bock’10]. This “non-thermal” interaction is 

thought to result from resonant phenomena driven by external EM fields. Several recent 

studies have aimed at developing a theoretical background for these effects on DNA 

[Swanson’11, Alexandrov’10]. They confirm, with some caveats, that under certain 

conditions THz radiation might be able to destabilize DNA breathing modes. 
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Chapter 2. THz Time Domain Spectroscopy 
 

2.1 Principles of operation 

The conventional setup of THz-TDS was first introduced by Grischkowsky and 

co-workers. Due to its coherent nature it provides information of complex refractive 

index of measured samples (that can be correspondingly converted to complex dielectric 

function and conductivity). Nowadays THz-TDS systems are more technologically 

mature, namely: laser beams are fiber-coupled directly to an emitter; faster scanning 

time; emitters integrated with special plasmonic grating to enhance THz output; lenses 

are integrated on both emitter and detector; the decrease of noise floor is achieved by 

cooling the emitter and new materials used, etc. However, the basic principles of 

operation remain the same. The main technological pursuit at present is to make THz-

TDS a table-top, compact and more affordable instrument. A schematic illustration of 

the setup of a THz-TDS in transmission mode is shown in Fig. 2-2. The pulsed 

titanium-Sapphire laser produces femto-second pulses, which are then redirected into 

separate optical paths by a beam-splitter.  

The pump-beam illuminates a biased photoconductive antenna (PCA) to induce 

free-carriers. Due to the fact that electrons are more mobile than holes, usually the laser 

is incident on the photoconductor near the anode. A bias voltage applied between two 

parallel-strip plate-electrodes accelerates the carriers to produce a transient current that 

is proportional to the time-derivative of the dipole moment induced in the emitter, i.e.: 

 ⃗( )  
  ⃗( )

  
. 

The bias voltage is modulated at a rate of a few kHz to enhance SNR and 

facilitate lock-in reading. Alternatively a mechanical chopper in the pump beam path 

can be used for the same purposes. According to basic antenna theory, accelerated 

current gives rise to the radiation of an electromagnetic wave with electric field 

governed by [Zhang’09]: 

 ⃗⃗( )  
 

     
   
 ⃗  ( ⃗  

  ⃗( )

  
). 

In some cases a dielectric lens is mounted on top of an antenna to confine most 

of the THz waves in a certain solid angle. The lens also enhances efficiency by 

providing better coupling between emitter-material and free-space. 

An interesting analogy can be provided here to enhance understanding of origin 

of THz radiation. Effectively, the PCA can be treated as a small capacitor charged by a 



28 
 

bias voltage and accumulating energy equivalent to 0.5CV
2
. The capacitor is then 

discharged by a laser-induced conductivity and part of the energy is radiated; 

accordingly the THz energy originates from the power supply recharging the capacitor.  

Off-axis parabolic mirrors are used to direct the THz beam and to focus radiation 

onto a sample. A sample is usually positioned at the focus of the second parabolic 

mirror (OM2), or, if the sample is extensive, in the collimated beam between OM3 and 

OM4. After propagating through the sample, the THz wave is again refocused by off-

axis parabolic mirrors to an electro-optic (EO) ZnTe detecting crystal. The pump beam 

travels through a time-delay stage so that arrival of the THz radiation to the ZnTe is 

delayed by Δt relative to the probe beam. This allows a step-by-step recording of THz 

wave intensity (Fig. 2-3). THz radiation induces birefringence in the nonlinear ZnTe 

due to the Pockel effect [Chen’08], characteristic of EO crystals. As a result, a cross-

polarization component will be produced in the ZnTe plate that changes the balance of 

2-port photo-detector (without THz wave two orthogonal polarizations of laser beam are 

balanced) (Fig. 2-4). ZnTe is often used for EO detection due to the small group 

velocity mismatch between the THz wave and the laser pulse in the crystal (0.4 ps/mm 

(15 ps/mm for GaAs)). After propagating through a quarter wave plate, the EM wave 

acquires elliptical polarization. A birefringence crystal (Wollaston prism) resolves the 

two orthogonal wave components. Balanced photo-detectors measure the intensity 

difference between these (ordinary and extraordinary rays) of the probe pulse, which is 

proportional to the applied THz field amplitude, (Fig. 2-4) and can be evaluated as 

[Winnewisser’97]: 

                    
         , 

where   is the optical probe-beam frequency;   and  are respectively the refractive 

index and thickness of the detecting crystal;    is a component of electro-optic tensor. 

As a result of a single scan, a discrete THz waveform is obtained due to step-like 

motion of a delay-stage. A discrete Fourier transform is then applied to the time-domain 

response to provide discrete amplitude and phase spectra. Alternatively, in some 

systems, a PCA can be used as a detector. In this case the receiving PCA is not biased 

and current is induced by an incident THz wave. Also, EO crystal can be used for THz 

generation instead of by a PCA. 

For measurements of highly absorbing materials, or even metals, THz-TDS in 

reflection mode is used [Jeon’98]. The same optical circuit is employed as in 

transmission mode, but the THz beam is reflected from the sample instead of 

propagating through it. Attenuated total reflection (ATR) mode is another modification 
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of THz-TDS that can be integrated into the system in transmission mode [Nagai’06]. It 

utilizes a special triangular prism (Fig. 2-1) that focuses the THz beam onto the sample 

with the ensuing reflected beam propagating collinearly with initial beam. Appropriate 

extraction procedures for estimating material properties accompany each THz-TDS 

configuration. 

 
Figure 2-1. Schematic of the focusing prism used in attenuated total reflection spectroscopy 

(picture adopted from [Nagai’06])  

 

 
Figure 2-2. Schematic diagram of a THz-TDS system operating in transmission mode as 

configured in our THz laboratory. L, P, B stand for flat reflecting mirrors, M – flat mirrors of 

delay stage, LS – focusing lenses, A – attenuators, BS – beam splitter, QWP – quarter-wave 

plate, OM – off-axis parabolic mirrors. The THz beam path is marked in blue. An enclosing box 

for controlling atmosphere about the sample under test, is shown by the bold black line. 
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Figure 2-3. The overlap of THz wave and a probe beam at the ZnTe crystal at different positions 

of delay-stage. THz radiation induces birefringence of ZnTe that is probed by the laser beam.  

 

 
Figure 2-4. The detection of THz wave using electro-optic crystal [Davies’11].  
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Figure 2-5. Left: time-domain response of an empty (free-path) system (blue) and for lactose 

pellet (red). Right: absorption coefficient and real part of refractive index of lactose extracted 

from the time-domain response.  

 

In order to extract the spectral information of the sample, a reference 

measurement with the sample removed is first performed and a Fourier transform then 

applied to retrieve the spectra. The same procedure is performed with the sample in 

place. The ratio of these spectra reveals the interaction between electromagnetic waves 

with the sample in the THz spectral domain. Fig. 2-5 shows time-domain responses of 

an empty sample-holder (reference measurement) and lactose pellet and material 

dispersion parameters of lactose. The lactose absorption spectrum exhibits well-defined 

peaks corresponding to the intermolecular vibrations in the lactose crystals. Refractive 

index of lactose is on average 1.85 over 0.1 – 3 THz and has a phase jumps at the 

positions of the absorption peaks (since real and imaginary parts of refractive index are 

related via Kramers-Kronig formulae). 

Again we emphasize a useful feature of THz-TDS is that it affords coherent 

measurement. This means a recorded response contains both amplitude and phase 

information of signal-beam interaction with a sample. These, in turn, allow extracting 

both real and imaginary parts of the refractive index. 

 

2.2 Application of THz-TDS 

 During last decade THz-TDS has become a widely used technique for 

experimental investigation of bio-molecules, polymers and semiconductors. The main 
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interests of research groups regarding bio-molecules lies in this field of discrimination 

between conformational states of molecules [Ebbinghaus’08]; investigation of internal 

motions of molecules and assignment of absorption peaks to these [Ding’11]; study of 

the lowest frequency vibrational modes of molecules which are related to their function 

[Markelz’02, Kawaguchi’10]. Polymer characterization by THz-TDS is often used to 

provide accurate information on materials properties for applications in THz optics as 

sample-holders, beam-splitters, lenses, etc. [Naftaly’05, Jin’06]. Semiconductors are 

investigated mainly to characterize carrier mobility and emission properties [Shan’04]. 

In addition to the general applications of THz radiation described in Chapter 1, the most 

wide-spread and diverse THz-TDS applications are outlined below.  

THz spectroscopy has high potential for detection and identification of 

intermolecular hydrogen bonds in unknown mixture samples (e.g. lactose α 

monohydrate, acetylsalicylic acid, sucrose and tartaric acid compressed pellets) 

[Ueno’08]. These studies showed that THz-TDS is a sensitive probe for detection of 

hydrogen bond vibrations that form crystalline or quasi-crystalline structures in such 

material. THz-TDS can also be used to characterize crystalline properties of drugs and 

excipients. Different polymorphic forms of a drug can be readily distinguished and 

quantified [Zeitler’07]. It was also shown that structural changes introduced by 

chemical reactions and molecule associations can strongly affect terahertz spectra, 

causing significant changes in absorption peak intensities and shifts in peak positions 

[Bykhovski’10]. 

THz-TDS studies are often complemented with corresponding molecular 

dynamics simulation to interpret spectra. Study by King et al. [King’11] demonstrates 

the capabilities of solid-state density functional theory (DFT) to assign observed THz 

absorption features and to uncover the underlying nature of the vibrational motions 

contributing to absorptions in the THz regime. The overall correlations of the simulated 

(S)-(+) ibuprofen (RS)-ibuprofen spectra with the experimental THz spectra are of high 

quality. Despite the apparent difficulties in the calculation of accurate relative 

intensities, all experimental peaks can be confidently assigned to calculated vibrational 

modes. Yunfen He et al. proved the possibility of investigating the presence of 

structural collective motions, as a function of oxidation and hydration, on a picosecond 

time scale for the proteins, using THz-TDS and molecular dynamics simulations 

[He’10].  

Many bio-molecules have been studied in water or salt solutions environments 

[Choi’12, Yamamoto’12]. Based on frequency- and concentration-resolved THz 
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measurements, the information on bio-molecule molar absorption [Xu’06b], hydration 

shell size [Ebbinghaus’07] and of protein water interaction can be obtained. In 

[Xu’06a], molar extinction of solvated protein lysozyme (1001 atoms) between 0.075 

and 3.72 THz (2.5-124 cm
-1

), was measured and direct comparison to several published 

theoretical models based on molecular dynamics simulations and normal-mode analysis 

was made. The existence of dense, overlapping normal modes in the terahertz frequency 

domain was confirmed. The measured spectrum, while in rough, qualitative agreement 

with these models, differs in detail. The ability to discriminate between different 

functional states of proteins using spectra recorded by THz-TDS has been shown. 

Protein solutions at different pH ranging from 2 to 7 have been seen to exhibit distinct 

absorption due to the protein being in a folded or unfolded state [Ebbinghaus’08]. 

Separately, the unfolding event of a photo-active protein in solution has been stimulated 

by a diode-light and respective changes in the THz absorption detected [Castro-

Camus’08].   

An attempt to apply THz spectroscopy to identify the diseased tissue of brain 

grain matter is described in Gretel et. al. [Gretel’09]. A clear distinction between the 

absorption coefficients of diseased and healthy tissue is evident. However, it is not 

possible to conclude that this distinction is due to protein plaques in the diseased 

samples. Observed differences may be caused by tissue atrophy resulting in less dense 

sample for diseased tissue. 

THz-TDS was also successfully used to study glasses, lubricating oils, and 

polymers. Relationships were observed between the composition and structure of the 

materials studied and their THz absorption spectra and refractive indices. THz-TDS was 

therefore shown to be a valuable tool in the study of materials [Naftaly’07]. 

Among other materials, semiconductors have been investigated extensively 

owing to their unique properties in THz frequency domain. Carrier mobility and density 

have been particularly studied [Exeter’90a,b]. THz-TDS spectrometry of thin films of 

semiconductors gives access to both thickness (due to Fabry-Perot reflections) and 

doping properties [Jeon’97]. 

Some groups have extended their conventional THz-TDS setup for imaging 

purposes by combining the system with 2D in-plane motor stages [Federici’05, 

Zeitler’07]. This is used for hydration measurements, identification of hidden object, 

investigation of pellet coatings and differentiation between different powders, etc. 

In this thesis, the main focus of experimental studies is solutions of bio-

molecules and semiconductors.  
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2.3 Measurement facilities in the QML laboratory 

 For experimental measurement we use the THz-TDS installed at QML with the 

assistance of National Physics Laboratory (NPL) scientists. A photo of it is shown in 

Fig. 2-6. The schematic diagram of the system was shown earlier in Fig. 2-2. Primarily 

the system as operated here is in transmission mode, whilst additional parabolic mirrors 

and flat-reflectors (not shown in the diagram) are installed to operate reflection-mode 

measurements if necessary. This complementary extension is used to characterize 

highly absorbing samples like doped semiconductors, metal films, polar liquids, etc. 

The main features and characteristics of this spectrometer are: 

- Typical operating frequency domain: 0.1 – 4.0 THz; 

- Maximum dynamic range (DR) is 25-30 dB (based on field spectral amplitude), 

SNR is normally around 25 dB.  

- Typical resolution is 14 GHz (scan size 10.24 mm, step 10 m), maximum 

achievable is 1-2 GHz; 

- Laser source – class 4 Ti:Sapphire femtosecond pulsed laser with adjustable 

wavelength in the range 750-850 nm; pulse repetition rate is 80 MHz; average 

power is about 1 W; 

- Motorized delay stage – maximum traveled distance is 15 cm. 

- THz emitter – biased LT-GaAs photoconductive antenna, biased voltage 

typically 200V, 0.5 mm thickness. The gap size is approximately 0.5 mm which 

makes the laser beam positioning easier, compared to common 20-50 m gaps. 

- ZnTe (2 mm thickness, (110) crystallographic orientation) crystal is used as THz 

electro-optic detector. Such a thickness is chosen to allow enough interaction 

length of probe beam and THz wave in the crystal. 

- The probe beam is directed to the ZnTe crystal using a TPX plate with a small 

reflecting prism on top of it (see Fig. 2-2). THz radiation can easily penetrate 

through TPX plate due to its extremely low absorption coefficient in the THz 

frequency domain. 

- Overall, the system includes 17 flat mirrors, 5 parabolic mirrors and 3 lenses in 

the current setup; 

- The THz table is floated/air-cushioned to avoid mechanical vibration from the 

floor during measurements; 

- A THz box envelops experiments and can be purged with nitrogen or dry air to 

mitigate water vapor influence on the sample spectrum. Water vapor causes 

sharp absorption peaks in the THz frequency domain as shown at Fig. 1-4; 



35 
 

- A balanced Nirvana photo-receiver (model 2007) is utilized for recording of the 

time-domain response (the specifications of this photo-receiver can be found 

online via the link: http://assets.newport.com/webDocuments-

EN/images/2007_And_2017_User_Manual_RevC.pdf); 

- Data reading from the Nirvana detector is realized via a lock-in amplifier and is 

delivered to the PC through a LabVIEW interface. Special functionalities in 

LabVIEW provide means for signal averaging on points and scans. 

- Material properties’ extraction is performed in a Mathcad simulation package. 

 
Figure 2-6. THz-TDS system in our laboratory. 

 

Another experimental tool used to acquire THz/sub-THz properties of the materials is a 

quasi-optical (QO) bench driven by a vector network analyzer (VNA
1
). Figure 2-7 

shows a photo of a QO bench in transmission geometry and its respective schematics. 

The VNA has a 10 MHz to 43.5 GHz operating frequency domain. Special millimetre-

wave frequency extension heads (shown in blue in the picture), cover the following 

waveguide bands: 50-75 GHz; 75-110 GHz; 110-170 GHz and 220-325 GHz. 

Rectangular waveguide outputs of the extension-heads are terminated with high-gain 

corrugated horns. Two off-axis, ellipsoidal mirrors are used to focus source radiation at 

the sample location. A further two ellipsoidal mirrors direct the radiation to the 

receiving horn. In reflection mode only one extension head and the first two ellipsoidal 

mirrors are required. The system enables acquisition of a full set of complex S-

parameters of the sample in the above frequency bands. Furthermore, with appropriate 

data processing techniques, the complex dielectric properties of the sample can be 

                                                            
1 model HP N5244A 
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estimated. This setup offers low noise performance (typically 0.01 dB) and high 

dynamic range (>70 dB, depends on the frequency domain). 

  

Figure 2-7. Left: Picture of the physical quasi-optical bench in a transmission mode and right:  a 

schematic of the 98% power-level envelope of the fundamental Guassian beam-mode 

propagating through the circuit. 

 

A note has to be made here with regard to the calculation of DR and SNR for both 

systems. A pertinent paper by M. Naftaly et. al. has been devoted to the topic of 

methodologies for determination of DR and SNR for THz-TDS [Naftaly’09]. First of 

all, these two parameters can be determined in both time and frequency domains. If the 

quantity of interest can be extracted directly from time-domain traces, then SNR and 

DR have to be determined from these data; and if the user utilizes spectroscopic 

information then SNR and DR have to be calculated from the FT amplitude spectrum. 

Since our measurements mainly concern frequency-domain information, the SNR and 

DR has been estimated as follows [Naftaly’09]: 

    
                 

                               
 

   
                 

           
 

Since amplitude is dispersive, the SNR and DR were determined at maximum 

amplitude, i. e. around 1 THz. So the DR defines the maximum attenuation of the 

sample that can be characterized, and SNR – how accurately it can be done. On the 

other hand DR from VNA readings has the same nature as DR for TDS, but the RMS of 

the noise is used instead of SNR for TDS. Noise RMS values can be converted to SNR, 

as defined for TDS, but only for particular measurement and not for the system in 

general. For instance, for a 100 µm thick water layer the SNR at 0.3 THz is 25 dB and 

55 dB for TDS and VNA respectively. Also VNA measurements have a superior DR by 

a few orders of magnitude (typically 70-80 dB in 0.22-0.325 THz band).     
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Several sample holders provide specialized handling for liquid and solid spectrometry. 

For liquids, a TPX (poly-4-methyl pentene-1) is used as a window material due its 

unique properties in THz spectral domain. Its absorption is very low, less than 1 cm
-1

 

and index of refraction is 1.46 and both are non-dispersive in over 0.1 – 4 THz. Also 

TPX is easily mechanically-shaped (processed). The picture of the liquid sample holder 

purchased from Bruker is shown in Fig. 2-8. Several rotational and translational holders 

allow investigation of a set of rotation angles (360° in elevation and in-plane of the 

sample; +/-20° zenith angle measured from vertical), as required for emission 

ellipsometry of semiconductors. 

 

 
Figure 2-8. The picture and schematics of commercial liquid sample holder from Bruker 

company, PTFE spacers of different thickness are available, ranging from 25 µm to 1mm. 
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Chapter 3. Signal processing in relation to THz-TDS 
 

The whole measurement procedure of material characterisation using THz-TDS is 

complex by virtue of sensitivity to attendant environmental conditions and optical 

alignment. The chief aim in most TDS applications then, is to obtain the complex 

refractive index of a given material in the most accurate manner possible over a broad 

frequency domain. For this, advanced signal processing techniques [Pupeza’07] and a 

thorough error analysis [Withayachumnankul'08a] are required. With appropriate data 

processing it is possible to: decrease signal noise; precisely identify sample-thickness 

numerically [Duvillaret’99, Duvillaret’00]; and acquire more accurate estimate of the 

complex refractive index. 

Improving procedure and refining data-analysis are ongoing, as there is no generally 

accepted standard of optical constants determination. This chapter will focus on data 

analysis procedures in an attempt to perform a thorough analysis of time-domain (TD) 

response of a sample and maximize the accuracy of THz-TDS measurements overall. 

The dependence of final parameter estimates on initial guesses required for the iterative-

fitting procedure is outlined. The instances when the usual algorithms fail to predict 

correct values of parameters due to poly-root behaviour of the TF are discussed, and a 

way is presented to overcome this drawback. Another issue addressed in this chapter is 

the undertaking of a comprehensive error analysis. Procedures are outlined to 

minimize/trace most sources of error. In particular, the uncertainty of final parameters, 

resulting from misinterpretation of the Fabry-Perot term in the TF, is pointed out and 

quantified for the first time. 

3.1 Simple material parameters extraction procedure 

The conventional approach for determination of the complex refractive index 

 ̃( )   ( )    ( ) of a material is based on the ratio comparison of spectra of the 

sample with respect to a reference – which for transmission is served by the absence of 

a sample. This ratio constitutes a transfer function (TF): 

 ̃   ( )  
 ̃ ( )

 ̃ ( )
  (3.1) 

where  ̃ ( ) and  ̃ ( ) are the complex spectra of sample and reference, obtained by 

FT of respective TD responses. Considering that propagation of an electromagnetic 

wave through a medium is described by [Born’99]: 
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 ̃( )      (
      ̃( ) 

 
)  

the analytical TF is augmented to be: 

 ̃( )     ( )   ( )    (
     ( ̃( )      )

 
)  (3.2) 

where    ( ) and    ( ) are the Fresnel transmission coefficients associated with the 

front and back boundary interfaces between sample and host medium to sample;  , is 

the usual free-space phase velocity of light; d, is the sample depth;  ̃( ) is the complex 

refractive index of the sample under test and      is a refractive index of air. 

Determination of a sample’s complex refractive index can be obtained by matching 

experimental and analytical TFs at corresponding discrete values of frequency. The 

resulting well-known formulae for refractive index   and extinction coefficient   are:  

 ( )    
 

    
(  ( )    ( )) (3.3) 

 ( )   
 

    
  [
| ̃ ( )|

| ̃ ( )|

(   ( )) 

  ( )
]   (3.4) 

where   ( ) and   ( ) are the unwrapped phase of a sample and reference spectra. 

Historically, the property of radiation absorption by a sample is characterized by an 

absorption coefficient   which is related to   by         . Equations (3.3) & (3.4) 

are often used to obtain the optical properties of a material using THz-TDS [Jepsen’05, 

Naftaly’07a, Xie’12]. These expressions however do not take into account the multiple 

internal reflections within a sample, akin to the Fabry-Perot (FP) effect. These second 

and higher order internal reflections of the main beam pulse are simply ignored and 

various signal conditioning, such as zero-padding, signal windowing, etc. are applied to 

the time-domain response before evaluating of   and  . A further assumption here is 

that in equation (3.2) the Fresnel coefficients are taken as purely real. The relative 

uncertainty of this approach varies in the range of a few percent (shown below). Such 

accuracy is insufficient for analytical purposes in materials’ characterization and 

identification or for deployment of such material in precision quasi-optical systems. 

While eqn. (3.3) shows   to depend on the phase difference for a signal beam 

propagating through a sample-depth relative to an equivalent free-space depth,   is 
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more complex. It is itself a function of   and, importantly, of relative spectral 

amplitudes, that are prone to noise (see eqn. (3.4)). The extinction coefficient, therefore, 

is more sensitive to measurement procedure, instrument alignment, environmental 

conditions, etc. that have a direct effect on signal strength. Performing short-scan
2
 

measurements in an attempt to lessen the FP effect and/or applying signal processing 

techniques (e.g., zero padding, signal truncations, windowing), can lead to significant 

errors. This is especially accentuated when sharp absorption peaks are present such as 

those in lactose, amino acids, etc. (as shown below). 

3.2 A procedure for more accurate determination of  ̃  

The way forward is to account for the presence of internal reflections and complex 

Fresnel coefficients. A more advanced analysis, therefore, is based on regression 

methods where FP-like effects are incorporated [Pupeza’07,  Dorney’01]. In this case 

the modified TF is: 

 ̃  ( )   ̃  ( ) ̃  ( )   ( 
     ( ̃( )      )

 
)

 ∑[ ̃ ( )   ( 
      ̃( )

 
)]

 

 

 

   

 

 

 

 

(3.5) 

where  ̃( )  
 ̃( )     

 ̃( )     
,  ̃  ( )  

     

 ̃( )     
 and  ̃  ( )  

  ̃( )

 ̃( )     
are the complex 

Fresnel coefficients at normal incidence;   is the order of reflection in the time-domain 

(TD) response and can be derived through:      
 

 
 (    ), with      being the 

signal duration in TD (normally of the order of 10s of ps). 

Due to the nature of the TF (eqn. 3.5), a non-linear regression algorithm must be 

adopted to estimate  ̃ . The recursive fitting procedure involved requires initial (or 

‘seed’) guesses to be made for   and  . Regression fitting iteratively refines until the 

experimental TF approaches to within a pre-defined threshold of identity with the model 

or theoretical TF. 

3.3 Dependence of estimates of   and   on initial guesses 

The difference between theoretical and experimental TFs will serve as an objective 

function (OF): 
                                                            
2 A short scan is considered to be shorter than the time of flight for the first internal reflection. 
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  ̃( )   ̃  ( )   ̃   ( ) (3.6) 

Roots of this function will represent the actual optical constants of the sample. 

Considering that both TFs are complex, the equality-condition of two complex numbers 

results in two equivalent pairs of equations. One concerns the equality of real and 

imaginary parts of both TFs and the second for the modulus and argument. Let us 

consider first the simpler case of equating real and imaginary parts of the TFs. This 

approach shows that the roots of the OF exhibit oscillatory and poly-root behaviour 

when calculating optical constants. Consequently regression analysis may converge to 

different roots depending on the initial guesses made. The periodicity of the possible 

roots of the OF is governed by the following relation (derived from complex TF of eqn. 

(3.5)): 

     
 

  
  (3.7) 

  again is the depth of the sample. 

The period      is dimensionless; it is used to describe the function of dimensionless 

argument, i.e. refractive index. In order for the iteration procedure to converge to the 

right root, the starting point has to be specified within the range 

             ⁄ . (3.8) 

In most cases initial-guess values for   and   are respectively derived from the delay 

in the sample-response and the attenuation in response amplitude [Pupeza’07,  

Krüger’11]; thus 

              ⁄  (3.9) 

and  

      
 

    
  (

      
      

(   ) 

  
)  

(3.10) 

   is the delay of the main–pulse transmitted through the sample with respect to 

reference pulse;        and        are the maximum amplitudes of sample and 

reference spectra.   

Estimation of   and   based on a discrete initial guess for each frequency point is 

problematic when investigating dispersive media. An example demonstrating the failure 

of an advanced algorithm to correctly estimate optical constants is illustrated using a 3 

mm thick sample of z-cut quartz. The refractive index of this material is slightly 
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dispersive in the THz frequency domain. It ranges from 2.11 to 2.15 between 0.1 and 

3.8 THz (Fig. 3-1). The curve obtained from the advanced method is smoother and 

consequently more physically significant, but regression analysis converges to a false 

root of the OF at around 2.8 THz. This cut-off frequency can be validated from eqn. 

(3.7) and equal to        , which in this case is 0.018. This corresponds to the 

difference between the initial guess and the actual value of   at the cut-off frequency. 

These artefacts can be mistakenly attributed to the dynamic range limitation of the 

system. 

 

Figure 3-1. Refractive index calculation for a 3 mm thick z-cut quartz sample. The graph shows 

estimation of   using the simple transfer function (eqn. 3.2) and the more rigorous transfer 

function (eqn. 3.5). The initial guess for estimating   by eqn. (3.5) is shown as a straight line. 

 

 

Figure 3-2. Possible values of   are shown (gray circles) for a 3 mm thick sample of z-cut 

quartz when real and imaginary parts of    ( ) and     ( ) are respectively equated. 
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The dependence of   ( ) roots on   and   can be analysed separately. For the 3 mm 

thick z-cut quartz, Fig. 3-2 shows the possible roots when real and imaginary parts of 

   ( ) and     ( ) are respectively equated. 

However, when the modulus and argument of both TFs are respectively equated, the 

poly-root problem is avoided. The modulus of OF still provides multiple roots but the 

unwrapped phase of the OF limits it to a single possible root (Fig. 3-3). This condition 

forces the iterative procedure to converge to the correct value of refractive index.  

 

Figure 3-3. For a 3 mm thick z-cut sample of quartz: dependence of the objective function 

modulus (oscillatory trace) (scaled by 50 times for clarity), and unwrapped phase (straight line) 

of refractive index. Both traces were generated at 1 THz. 

 

The validity of the procedure for estimating  , based on the modulus and unwrapped 

phase of the transfer functions, is demonstrated on the highly dispersive material – 

lithium niobate (LiNbO3). The estimation of optical constants by the three different 

approaches is shown in Fig.3-4. Values obtained by using real and imaginary parts of 

the TF (eqn. 3.5) have a cut-off at around 1.3 THz, while the modulus and argument 

approach predicts valid results over the considered frequency domain. Accounting for 

internal reflections yields smoother dispersion curves in plots of   and  . Fig. 3-4B 

demonstrates that at lower frequencies the estimates of   can be several times different 

when using simple and enhanced TF.  
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Figure 3-4. A: shows estimates of  for LiNbO3 using: 1) the simplistic approach (eqn. 3.2); 2) 

the more rigorous approach of eqn. (3.5) that accounts for multiple internal reflections, the black 

trace by equating modulus and argument between theory and experiment and the light grey, by 

equating real and imaginary parts; 3) The grey dotted trace shows the initial guess used during 

the rigorous approach. A LiNbO3 sample of 0.5 mm thickness was used for these measurements. 

B shows the same but for  .   

 

The differing uses of the same OF yield different results. Exploiting real and 

imaginary parts of TFs fails at high frequency even for weakly dispersive materials like 

z-cut quartz. But by using modulus and argument instead, the global minimum is found 

(i.e. correct root of the OF), even for high-dispersive materials like LiNbO3. Again the 

phase of the TF have to be unwrapped in order to result in a single-root behavior of the 

OF (Fig. 3-3).  

Similarly the dependence of the OF roots on the initial guess can be overcome by 

introducing a step-dependent initial guess. Meaning that initial guess for each frequency 
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point is the actual parameter value obtained for previous step. The algorithm has to start 

from the lowest operating frequency where the period of OF is the highest. However 

this approach requires additional programming effort and is not described in detail here.  

3.4 Fabry-Perot Effect 

The main difference between the simplistic and advanced methods of estimating  ̃ is 

based on how multiple internal Fabry-Perot (FP)-like reflections are formulated. 

Approaches for interpreting this effect vary. The approach of Naftaly et al. was simply 

to removing spurious oscillations in the THz spectra [Naftaly'07b]. It does so by treating 

the FP oscillations as a primary peak convolved with delta functions. The constraints of 

this algorithm are that samples must have low absorption and dispersion and must be 

sufficiently thick to avoid overlapping of main and secondary peaks. Duvillaret et al. 

otherwise seek to eliminate the FP or etalon effect [Duvillaret’96]. It starts from 

approximate values for   and   to estimate the FP optical ‘ringing’. The complex TF is 

then divided by this term and after several iterations the ringing is significantly reduced. 

The drawback of this method is that it requires a formulation to approximate the 

ringing. This approximation introduces additional error to the final material parameters 

and will be described later. 

A general analysis [Born’99], allows for multiple reflections within a material slab 

enveloped in a medium of differing wave impedance; thus, 

  ̃( )  {   ̃ ( ) ̃ ( )   ̃ ( ) ̃ ( )   }  ∑[ ̃ ( ) ̃ ( )]
 

 

   

 [   ̃ ( ) ̃ ( )]
  
  

(3.11) 

Eqn. (3.11) represents the approximation for the infinite number of multiple internal 

reflections. The TF (eqn. 3.5), incorporating eqn. (3.11) now becomes: 

 ̃       ( )  
 ̃  ( ) ̃  ( )    ( 

     ( ̃( )      )
 )

   ̃ ( )   ( 
      ̃( )

 )
  (3.12) 

A lot of research groups [Kruger’11, Duvillaret’96, Duvillaret’99, 

Withayachumnankul’05] use this type of TF in estimating  ̃. Although eqn. (3.12) is 

readily used, it introduces an additional error to estimates of  ̃ due to the assumption of 

there being an infinite number of internal reflections. 
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In practice, however, the ringing is limited due to the finite energy of the primary 

incident electric field. As such, eqn. (3.11) takes the form of: 

   ( )  ∑[  ( )  ( )]  

 

   

 (3.13) 

where   represents the order of internal reflection. 

The number of copies of the primary incident pulse due to ringing is 1 to 3 in the 

majority of THz-TDS measurements. This varies with the optical thickness and 

absorption of a sample. In this case analysis using eqn. (3.12) introduces noticeable 

errors. For accuracy, then, the order of internal reflection should be determined (even if 

not evident in the TD response), accompanied by application of the TF of eqn. (3.5).  

We now quantify these errors and account for them in the total uncertainty associated 

with an estimate of  ̃. A 1 mm thick silicon plate is employed for this. Reference and 

sample responses are shown in Fig. 3-5. The figure circles two near-copies of the 

primary (incident) pulse. 

 

Figure 3-5. Time domain response of the reference path (black trace) and the path when filled 

with a 1mm thick plate of silicon plate (grey trace). Silicon values are offset by +0.025 for 

clarity. Measurements were done under normal conditions of atmosphere and temperature. Two 

internal reflections are circled. 

 

Fig. 3-6 shows the uncertainties introduced by using the approximated TF (eqn. 3.12). 

The dark grey curve corresponds to additional uncertainty when no ringing is present in 

the time-domain response of the sample. This was achieved by taking a scan-time of 35 

ps. It then shows the additional uncertainty when one reflection is present in the time-
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domain response (scan-time 58 ps). The light grey curve accounts for two internal 

reflections (i.e. the whole scan). The approximate treatment of eqn. (3.12) can be seen 

to be best suited to measurements with multiple reflections (i.e. >2), this holds for 

optically thin samples.  

 

Figure 3-6. The additional errors in estimation of   resulting from the analysis procedure of eqn. 

(3.12) when the sample response contains: 1) no ringing (dark grey); 2) one reflection (grey); 3) 

two internal reflections (light grey). The black solid-curve represents uncertainty in the 

refractive index when eqn. 3.5 is used for analysis. 

 

Figure 3-7. The additional errors in estimation of   resulting from the analysis procedure of eqn. 

(3.12) when the sample response contains: 1) no ringing (dark grey curve); 2) one reflection 

(grey); 3) two internal reflections (light grey). The black solid-curve represents uncertainty in 

the refractive index when eqn. 3.5 is used for analysis. 
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For cases where the number of internal reflections in a time-domain response are no 

more than 2 this approach is no longer reliable, since the uncertainty increases at some 

frequencies by one-to-two orders of magnitude, as compared to the exact procedure of 

eqn. (3.5), where a finite number of reflections is considered (black curve of Fig. 3-6).   

Fig. 3-7 further shows additional uncertainties as in Fig.3-6, but for   instead. Notice 

the additional uncertainty, due to the FP approximation of the TF of eqn. (3.12), is 

relatively greater here than for  . This additional term needs to be introduced to 

uncertainty calculations, and can be evaluated as follows [Withayachumnankul’08a]:   

  ( )  
 

    
|    ( )| 

(3.14) 

and  

  ( )  
 

    
[|    ( )|  

 

 ( )

 ( )     

 ( )     
|  ( )|], 

(3.15) 

where  

    ( )     (       ( ))     (      ( )) 
(3.16) 

and  

    ( )    |       ( )|    |      ( )| (3.17) 

 

3.5 Error analysis for the extraction procedure 

An uncertainty analysis has utility in identifying and controlling sources of systematic 

and random error in estimating complex refractive index. Gaussian error propagation 

models have been used here. The accuracy of the optical constants is an essential 

supplement to material parameter extraction. It states how accurate the final results are 

and usually helps to identify ways of minimizing the errors from different sources. 

Starting from variance in the real and imaginary part of the sample and reference spectra 

the uncertainties of material parameters are derived [Pupeza’07, Krüger’11]. A 

substantial analysis of uncertainties introduced by random errors was done by Duvillaret 

et al. [Duvillaret’00]. The most comprehensive and well-grounded study of material 

parameters’ uncertainty was made by Withayachumnankul et al. 

[Withayachumnankul’05,08a]. They quantify a wide range of sources of error: random 

and systematic variance of signal amplitude; influence of errors in sample thickness; 

approximations made in constructing TFs; sample alignment and even systematic errors 

in physical constants such as the refractive index of air. Following such a procedure, my 

aim is to eliminate or reduce the influence of as many sources of error as identifiable in 
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order to achieve highest accuracy, and this will also include, and appropriately account 

for, signal ringing within the sample.  

The basic approach to evaluating the measurement error is just based on the estimation 

of standard deviation of the final quantity. However, this method ignores the systematic 

errors that are normally present in any measurement, and cannot distinguish between 

different sources of uncertainties. 

There is significant variation across groups in treating errors. The majority of THz 

groups [Pupeza’07, Krüger’11] use Gaussian error propagation modelling in order to 

estimate the uncertainty of material parameters. They employ: 

    ( )  √         
          

  (3.18) 

where     ( ) is the uncertainty of   or  ;          
 ,         

  are respectively variances 

in   and   due to variances in the sample and reference measurements. Knowing the 

variances of signals in TD assumes that repeated measurements of sample are available 

and the averaged trace is used for extraction. Withayachumnankul et al. 

[Withayachumnankul'08a] however follows the GUM
3
 guidelines on error propagation 

modelling by further dividing the variances in sample and reference responses with the 

number of measurements performed. This leads to a smaller uncertainty interval and 

allows localizing the mathematical expectation of   and   if the number of 

measurements tends to infinity. According to this model, the final uncertainty is 

formulated as: 

    ( )  √
         
 

     
 
        
 

    
 (3.19) 

where N  is number of measurements performed. 

This discrepancy in how errors are treated results in misinterpretation on levels of 

uncertainty of   and  . For instance, the difference in uncertainty levels resulting from 

time-domain amplitude variances can be one order of magnitude if a hundred 

measurements are considered. 

                                                            
3
Recommendation by the International Organisation of Standards (ISO) known as “Guide to the Expression of 

Uncertainty in Measurements” (GUM). 
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Following the guidelines of Withayachumnankul et al. [Withayachumnankul’05,08a] 

seven sources of errors are analysed and listed below where the last one is the unique 

addition of this chapter. 

1. Random and systematic variance of        amplitude (incorporating emitter noise, 

detector noise and random fluctuations in laser amplitude). 

2. Sample thickness   

2a. Error due to resolution limit of thickness measuring device (micrometre). 

3. Approximations of the TF due to using only the real part of the refractive index in 

Fresnel formulae. 

4. Sample alignment
4
 (sample tilt leading to off-normal incidence of the THz beam). 

5. Systematic errors in the refractive index of air. 

6. Neglecting appropriate treatment of multiple internal reflections within the sample 

(using eqn. (3.3, 3.4)). 

7. Using eqn. (3.12) instead of eqn. (3.5) when dealing with high-order ringing. 

Parts 6 and 7 in the list contribute to the final uncertainty only when using the 

simplified extraction procedure. For optical constant estimation using the TF of eqn. 

(3.12) – part 6 can be omitted. Terms 6 and 7 can be calculated using eqn. (3.13), (3.14), 

other terms is calculated according to [Withayachumnankul'08a]. 

The parts in a Gaussian error propagation model for uncertainty, sum as follows:  

    ( )  √
    
 

     
 (

     
 

  
      

 )                                             (3.20) 

 

The use of these separate parts, however, depends on measurement procedure and 

parameter estimation method. When the general simplistic solution of eqns. (3.3) and 

(3.4) are used, all terms have to be considered in the calculation of the final uncertainty. 

This would compute the highest level of uncertainty in   and  , as shown in Fig. 3.8. 

When an enhanced extraction procedure is performed using eqn. (3.5), combined with 

numerical thickness determination, then only parts 1, 2 and 4 should be considered for 

evaluating the total uncertainty. In the case of numerical thickness determination, as in 

the algorithm employed by Pupeza et al. [Pupeza’07], the 2a uncertainty term is 

                                                            
4
Alignment is calculated with a  2o accuracy of normal incidence of THz beam on the sample.  

1 
2 2a 3 4 5 6 7 
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omitted. Finally, when eqn. (3.12) is used, parts 1, 2, 4 and 7 need to be considered in 

estimating uncertainty since part 7 represents the additional error from approximation of 

ringing. This part however becomes negligible when more than five internal reflections 

are present in the time domain response of the sample under test. Table 3-1 summarizes 

the usage of error terms for different extraction procedures.  

Table 3-1.The use of error terms 

 Using TF eqn. 3.2 Using TF eqn. 3.12 Using TF eqn. 3.5 

Error terms to 

be considered 
All 1, 2, 4, 7 1, 2, 4 

 

 

 

Figure 3-8. A: shows the contribution of each error part to the total uncertainty in   for the 

simplified extraction procedure. B shows the same for  . 

 

Fig. 3-8 shows the contribution of each constituent error term to the total uncertainty 

in   and   of silicon when eqns. (3.3) and (3.4) are used as an analysis procedure.  
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The level of random and systematic error in        (1
st
 error term for   and  ) is 

almost the same for both n and k, but   itself is usually several orders of magnitude less 

than    so, relatively, it is more sensitive to   
 . Fig. 3-8 further shows that ringing (6

th
 

and 7
th

 error terms) has about equal contribution towards the total uncertainty in   and 

 . Note that the error caused by the ignoring of ringing (       ) is even higher than the 

estimate of   itself, throughout the considered frequency domain. 

From this one can conclude that the dominant factor in the uncertainty of   and   are 

the     
  variances and the ringing (         and         ), while   is also heavily 

influenced by sample thickness and sample alignment errors. 

The contribution of other error terms considered in Fig. 3-8 to the total uncertainty in 

  and   is lower by more than two orders of magnitude compared to their respective 

optical constants. The least contribution to the total uncertainty is presented by the 3
rd

 

term (assuming purely real Fresnel coefficients instead of complex) due to low 

imaginary part of refractive index. For strongly absorbing materials this term becomes 

more dominant. 

 

 

Figure 3-9. A: shows the contribution of each error term to the total uncertainty in   for the 

advanced extraction procedure. B shows the same for  . 
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Fig. 3-9 shows the error terms contributing to uncertainty when eqn. (3.5) is used for 

evaluating   and  . Recall this enhanced extraction procedure excludes some error 

terms (refer to Table 1). Only     
  variances, thickness and sample alignment errors, 

need be considered. Since the         and          terms no longer affect the accuracy of 

the optical constants, the        variance (  
 ), is shown to have the most significant 

effect on  . The values of errors resulting from   
  are about two orders of magnitude 

less than those of   through most of the considered frequency domain. For   the 

alignment of the sample (          ) has the highest impact on the final uncertainty (Fig. 

3-9A). Alignment is calculated as in [Withayachumnankul'08a] with the assumption of 

a  2
o
 accuracy of normal incidence of THz beam on the sample. Fig. 3-9 also provides 

insights into the frequency distribution of the signal noise (trace 1). The noise curve is 

in fact proportional to the inverse of the sample spectrum, i. e. 1–2 THz domain 

corresponds to the minimum of the noise and at the same time to the maximum of 

spectral amplitude; above 2 THz the spectrum starts to decay while the noise increases. 

On the other hand in the time-domain the distribution of noise is less uniform. The 

highest signal fluctuations are concentrated at the position of the primary THz pulse (it 

can be even 3-4 orders higher compared to the rest of the trace), which can be seen by 

calculating the standard deviation of the time-domain response of the sample. 

Another source of error in the material parameters is pseudocoherence – the 

interferometric variation in received amplitude as a function of surface roughness and 

frequency [Hadjiloucas’99]. Different beams propagating through the sample can travel 

slightly different path-lengths that can lead to a destructive interference and reduction in 

the observed signal. The contribution of pseudocoherence is proportional to frequency 

and inversely proportional to sample thickness. This error is considered to be negligibly 

small in our study since the surface roughness of most samples investigated is much less 

than the operational wavelength. 
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Figure 3-10. This graph shows the total uncertainty in   for general (fig. 3-8A) and enhanced 

(fig. 3-9A) analyses. The same applies for   (fig. 3-8B and fig. 3-9B respectively). The black 

heavy curve shows values of   for comparison purposes. 

Fig. 3-10 shows the difference in total uncertainty for the simplistic evaluation 

procedure of complex refractive index eqns. (3.3) and (3.4), and the advanced of eqn. 

(3.5). Uncertainties in   following eqn. (3.3) and (3.4) are generally one-to-two orders 

of magnitude higher than for eqn. (3.5). For   the absolute difference in uncertainty 

between two methods is quite high (one order of magnitude), but relatively the 

improvement is not so significant – from 1% to 0.06%. But for   the difference between 

the two approaches is striking. A simplistic analysis yields a total uncertainty    on the 

order of   itself. Advanced analysis reduces it to 3-5 % of  . This holds for silicon plate 

studied here and other materials that have well-pronounced FP-echoes in TD response. 

This is a significant improvement in accuracy, as absorption properties are of particular 

interest in bio-molecular studies. The extinction coefficient, therefore, is a parameter 

limiting the viability of the simpler approach. There is little additional computational 

expense in employing the advanced analysis and it is ultimately preferred for correctly 

accounting for multiple internal reflections. 

3.6 Potential issues that influence optical constants extraction 

3.6.1 Sample preparation 

Sample preparation is a critical step in measurement repeatability. THz-TDS is sensitive 

to structural changes of material or to fillers/impurities introduced in preparation. 

Choice and amount of fillers are critical to optimum measurement. In terms of reducing 
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scattering effects it is better to use a filler material whose refractive index is as close as 

possible to that of the sample and particle size as small as possible [Federici’05].  

    The main materials which are often used as fillers for THz spectroscopy are 

polyethylene (PE) and Teflon (PTFE). Both absorption and index of refraction will 

differ from the intrinsic sample parameters; which should be properly taken into account 

during data analysis [Franz’08]. 

    For accurate parameter extraction the purity and humidity of both sample and filler 

have to be considered. Sample thickness too is significant. A thick sample (thickness is 

greater than 10 times the wavelength at 1 THz) will cause higher signal attenuation and 

will result in a limited frequency range for absorption coefficient determination. On the 

other hand, a thin sample behaves as a Fabry-Perot cell [Pupeza’07].     

3.6.2 Alignment 

Fine alignment of THz-TDS optical and THz paths is crucial for quantitative 

measurements. Alignment is most critical for the first optical components in the beam-

path. A small error in beam-angle at the first mirror can lead to several millimeters 

down-beam misalignment. For example, rotating the first plane mirror in our THz-TDS 

system around its axis by only 0.5 mrad (which corresponds to a 5 µm shift of the 

mirror edge) can cause 1 mm beam displacement at the photoconductive antenna. This 

can cause significant signal drop and decrease in operational bandwidth, up to complete 

signal losing. Fig. 3-11 illustrates the measured signal drop on the detector output 

depending on the displacement of the GaAs antenna off focus from the first off-axis 

parabolic mirror collecting THz radiation.  

 

Figure 3-11. Dependence of signal level on photoconductive antenna displacement. 
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3.6.3 DR limitations and resolution of the system 

This section intends to illustrate the potential limitations in absorption coefficient 

measurements. Neglecting the Fabry-Perot effect, the simplest formula for the sample 

absorption coefficient can be derived from Beer-Lambert law [Jepsen’05]: 

   
 

 
  [

       
          

(   ) 

  
] 

(3.21) 

where         and            are spectral amplitudes for sample and background 

respectively. Inspection of (3.21) shows that the absorption coefficient mainly depends 

on the relation                  ⁄  which is proportional to dynamic range (DR). 

Thickness   is constant and refractive index changes are not strong enough to make a 

significant contribution to absorption coefficient (3.21) for most materials in the THz 

frequency range. As a result, the operating frequency domain for THz-TDS normally 

extends up to 4 THz, but for measuring highly absorbing or thick samples the upper 

limit for absorption occurs below this. This is demonstrated by the measurement of two 

glycine pellets of different thickness on our TDS. As expected, significant values of 

absorption for thinner sample can be measured over a broader frequency domain– up to 

1.25 THz, while for 2.5 mm thick glycine pellet – only up to 0.9 THz (Fig. 3-12). The 

same effect was observed by Jepsen et al. [Jepsen’05]. So, for every type of material 

under test there exists a maximum measurable absorption coefficient which directly 

depends on the DR of the system. 

 

Figure 3-12. Absorption coefficient of glycine pellets of 1.4 mm and 2.5 mm thicknesses 
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way to enhance the frequency resolution is to increase the scanning length of the delay 

stage. The penalty, however, is reduction in dynamic range, simply because a longer 

time domain accrues more noise. There is a tradeoff between resolution and dynamic 

range of the system [Mickan’04]. 

 

3.6.4 Humidity 

    An important factor to be considered in THz-TDS measurements is water vapor 

absorption within the sample chamber. Among other gases, water vapor exhibits a very 

strong rotational absorption spectrum in the terahertz range [Zeitler’07]. Background 

measurements performed in our THz laboratory under NTP (50% humidity) and with 

the THz box purged with nitrogen (to bring about a 3% humidity) are shown in Fig. 3-

13. The water vapor absorption peaks can be easily seen, as well as their decreasing for 

lower humidity. It is important to know the resonance frequency of these peaks in order 

to avoid confusion with sample absorption features. These sharp absorption peaks can 

also lead to discontinuities in the phase of the sample, further resulting in sharp features 

in rather flat curves of material optical properties.   To minimize the contribution of 

water vapor to the sample spectrum, the sample chamber is either purged with dry air, 

nitrogen or evacuated throughout the measurements. If these options are not available, 

the algorithm for elimination of water vapour absorption was developed by 

Withayachumnankul et. al. [Withayachumnankul’08b]. They study a computational 

means for addressing the problem arising from water vapour absorption. Initially, the 

complex frequency response of water vapour is modelled from a spectroscopic 

catalogue. Using a deconvolution technique, together with fine tuning of the strength of 

each resonance, parts of the water vapour response are removed from a measured THz 

beam signal, with minimal signal distortion, thus providing an alternative for purging 

the measurement box. 
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Figure 3-13. Absorption spectrum for air at different humidity 

 

3.7 Numerical thickness determination algorithm 

Thickness of the sample is known to be the major source of error in THz-TDS 

[Duvillaret’99], however accurate mechanical thickness determination is not always 

possible. Therefore the first step to maximize the accuracy of the refractive index is to 

determine the effective thickness of the material under test in a precise manner. 

Various methods have been employed for optical (read also, ‘numerical’), thickness 

determination. Kruger et al. [Krüger’11] used two measurements of the same material 

but having different thicknesses. After extracting all possible solutions via TF 

regression analysis, coincidence of the two curves corresponded to the actual thickness. 

The disadvantage of this method is a necessity to reproduce identical conditions for both 

measurements. It also has a relatively high computational cost. The approach has been 

developed for determination of thickness for sub-100-µm samples [Scheller’09a]. Its 

algorithm relies on an additional Fourier transform of the frequency-dependent material 

parameters to a quasi-space domain. Other methods [Scheller’09b] are based on time-

domain reconstruction of the THz response, but they too suffer from high computational 

requirements. Here a TV method is adopted as a simple and reliable approach for 

numerical thickness determination [Dorney’01]. This method employs the complex 

nature of an advanced TF (eqn. 3.5), that is fortuitous in assisting estimation of optical 

thickness in a very accurate manner. The principle of TV is based on the fact that in 

most cases the dispersive curves of material properties are smooth, so that an incorrect 

determination of thickness manifests itself as spurious oscillations (Fig. 3-14). 
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Figure 3-14. Refractive index of Silicon plate, plotted for different thickness values in mm. 

 

By iteratively varying thickness, the algorithm selects the best-behaved curve, and this 

corresponds to the most accurate thickness estimate. The value of TV is calculated for 

each thickness as [Pupeza’07]: 

   ∑(|       |  |       |

  

  

)  
 

(3.22) 

where    to    defines the frequency domain where material parameter curves are 

smoothest (this typically excludes lower and higher limits of the operating frequency 

domain). Mathematically, a plot of TV shows the degree of fluctuation in the curves of 

refractive index and extinction coefficient for each separate thickness value. 

Figure 3-15 shows an example of depth determination for a 1mm-thick silicon plate. 

The TV plot clearly shows the minimum that corresponds to the actual value of 

thickness (the smoothest curve). Figure 3-15B is a high resolution about the inflection 

in figure 3-15A. It estimates the actual thickness of the plate to be 1.0319(1) mm. This 

is one order of accuracy above the ability of standard micrometer gauges. Multiple 

micrometer gauge measurements give the thickness of the Si plate to be 1.031±0.001 

mm. Note that the sample thickness found numerically corresponds to the effective 

thickness (taking into account surface roughness and non-uniformity), of the material in 

the area where the THz beam illumines the sample. 
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Figure 3-15. Total variation of material parameter curves, plotted for coarse (A) and denser (B) 

thickness ranges. The data is shown for a silicon plate of approximately 1 mm thickness. The 

same time-domain traces as in Fig. 5 with two distinct Fabry Perot (FP)-reflections have been 

used here. Note, that the first FP-reflection contributes most significantly to accurate 

determination of thickness. 

 

Successful application of the TV method requires two important conditions to be met: 

FP-like ringing needs to exist and to be above the noise floor of the system. In fact, 

ringing of the THz pulse within the sample provides the physical means for accurate 

optical determination of the sample depth. If no internal reflections are detectable in the 

sample response, the TV algorithm does not work efficiently. In this case, instead of a 

sharp minimum in the TV curve, a broad, flat minimum extends for 10s of m. 

Examination of equation (3.5) underscores this, where the FP term collapses to unity if 

no internal reflection is present. Spurious oscillations are consequently absent in 

parameter dispersion curves. The absence of optical ringing in the sample response can 

be for several reasons. In measurements of optically-thick samples employing a 

relatively short scan-length (           ), application of n
th

 order transmission allied 

to the n
th

 order back-face reflection, arrive at the detector after scanning has finished. 

Interestingly, high absorption by a sample (e.g. LiNbO3), does not lead to a significant 

decrease in the amplitude of FP-reflections. The feature most responsible for attenuating 

the n
th

 order internal reflection amplitude is scattering of THz radiation both within, and 

at the surfaces (i.e. impedance boundaries), of the sample and in the sample itself. It is 

principally this feature that limits the application of the TV methodology to study of 

bio-material samples like proteins, amino acids, sugars, etc. We have conducted a series 

of measurements on lysozyme, glycine and lactose pellets; and for all these there is no 

detectable ringing, while system dynamic range remains sufficiently high to distinguish 

THz pulse ringing within a 0.5 mm thick high-absorbing plate of lithium niobate. 
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Another significant factor influencing the performance of the TV method is sample 

alignment. The ideal case (as per the assumption of normal incidence in the use of 

Fresnel coefficients in (3.5)), is to set the sample-face-normal in-line with the THz 

beam axis. But this is not always possible, so a series of measurements have been 

performed to investigate the effect of face-normal deviation. Sample-tilt corresponds to 

an effective (secant) increase in sample thickness.  

                 ( ) (3.23) 

Figure 3-16 shows the results of thickness determination of the tilted sample by the TV 

method and that calculated by (3.23). Sample thickness calculated by the TV method 

closely follows prediction (within the angle determination inaccuracy), proving the 

capability of the method to extract thickness correctly. For a sample tilt of 1˚ the sample 

depth changes by 0.3 m as determined by both TV and equation 3.23. According to 

this analysis, in order to ensure thickness-error to be less than 0.1 m due to sample 

misalignment, the sample normal needs to be set to within ±0.6˚ deviation off from the 

beam-axis.  

 

Figure 3-16. Changes in silicon plate thickness determined from measurements using the TV 

method, and from equation (3.23). 
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be characterized. The core of the method is also a complex transfer function which 

incorporates all possible reflections of a THz signal beam in each layer. As previously 

described, the theoretical TF is matched against the experimental one to result in an 

estimate of the complex refractive index of the sample. The algorithm was tested on our 

design of a liquid sample holder having TPX windows (Fig. 2-7), to extract the 

properties of a 100 m thick water layer. TPX was chosen as the window material 

because of its transparency to THz radiation. Water, and any water-based solution, 

exhibits strong absorption of THz energy; therefore the thickness of the water layer has 

to be in the range of 100 m. For thinner sample it is hard to control the thickness 

precisely and so the sample can be too thin for THz radiation to probe (via extended 

interaction), its properties. Water samples of even 200 m lead to a dramatic dynamic 

range limitation and absorb the major portion of THz radiation available. 

The extracted absorption coefficient and refractive index of a 100 m water layer, 

spaced between two TPX plates are shown at Fig. 3-17 (upper plots).  Our analysis 

estimates for the properties of water are consistent with published data [Bertie’96]. 

Above 3.5 THz the signal is below the noise floor for our current system setup. 

Successful estimation of water properties proves the possibility of doing concentration 

studies of a bio-molecule solution. 

Fig. 3-18 shows the absolute errors associated with water properties extracted in fig. 3-

17. The same notation of error terms is adopted here as in Fig. 3-9, with ‘1’ – standing 

for error due to variance in time-domain response; ‘2’ – being the error due to thickness 

uncertainty (± 2 µm); and ‘4’ – shows the alignment error (± 2 degrees). All other 

sources of uncertainty in the water parameters are eliminated as a result of a) using the 

exact transfer function (eqn. 3.5) and b) the fact that the FP-reflections are negligibly 

small due to high water absorption. In contrast to silicon measurements, the main source 

of error for water is thickness uncertainty, since there are no means to accurately 

determine thickness numerically.
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Figure 3-17. Upper plots – refractive index and absorption coefficient of water extracted from 

our measurements using a 3-layer extraction procedure. Lower plot: same properties of water 

taken from [Bertie’96]. 

 

   

Figure 3-18. The absolute errors in absorption coefficient (left) and refractive index (right) of 

distilled water, estimated using the exact transfer function (3.5). 
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3.9 Brief summary for the chapter 

The majority of groups active in THz spectrometry when undertaking an uncertainty 

analysis, if at all, primarily consider noise contributed from mechanical, optical and 

electronic components. Other sources of random and systematic errors introduced from 

various   and   estimation procedures are often not reported. Here, however, the effects 

of all sources of error are considered. The multiple internal reflections within the sample 

under test are found to be the dominant source of error if the advanced evaluating 

procedure is not used. A clear distinction has been set out between the best and worst 

case scenarios in terms of consideration of errors in determination of  ̃ for silicon. 

Different analysis procedures for estimation of    and   were also assessed. A study 

of the effect of supplying seed values for    and   in regression analysis routines was 

conducted and illustrated through physical measurements on high-purity silicon, quartz 

and highly dispersive lithium niobate. A guideline is consequently provided as to when 

certain parameter extraction procedures can be used and the affect that each has on the 

accuracy of estimating   and  .  

A key emphasis of this chapter is the fact that relative errors of   are much higher than 

for   for silicon and low-absorbing materials. So choices on which extraction procedure 

to use should be carefully considered, especially when high-order reflection are present 

in time domain. 

The main technical issues regarding THz-TDS parameter extraction and interpretation 

were discussed. Some experimental results are shown to illustrate the most important 

aspects concerning material characterization in THz domain. Discussion of the 

influence of alignment, sample preparation, scattering and humidity on the measured 

data was performed. Also material parameter extraction from multilayered structures 

was described. 

   The governing requirements have been discussed for accurate estimation of material 

optical properties by THz-TDS. The applicability and performance of numerical 

thickness determination using the total variation (TV) technique has been assessed. 

Accurate information on sample-depth, being the major source of uncertainty, is 

necessary for reliable material parameter (i.e. optical constants) determination. The 

accuracy of the TV method is shown to reach ±0.1 m if FP-like multiple-order internal 

reflection response is present in the sample and alignment of the sample-normal is 

within ±0.6˚of the beam-axis. 
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Chapter 4. Terahertz Spectral Domain Computational 

Analysis of Hydration Shell of Proteins with 

Increasingly Complex Tertiary Structure 
 

 

4.1 Overview 

Water plays a key role in structural organization of bio-molecules and is a driving 

force that stimulates proteins to obtain their folded, functional state [Chaplin’06]. Over 

the last decade, studies of water solutions of different molecules in the THz and sub-

THz domain have attracted growing interest by many [Matvejev’12, Arikawa’08, 

Leitner’08, Castro-Camus’08, Vinh’11, Heyden’10a, 12, Zhang’06, Kambara’10, 

Ebbinghaus’07]. They are stimulated by the fact that any molecule dissolved in water 

alters the dynamics of the surrounding water molecules to adopt quasi-coherent or 

organized character. This happens primarily via a re-organized, loose hydrogen-bond 

network. Much effort has been made to study the modified dynamics and dielectric 

properties of ‘bio-water’ (i.e. the solvation layer), by different experimental techniques 

such as: neutron scattering, nuclear magnetic resonance and x-ray crystallography, 

dielectric relaxation spectroscopy, etc. [Leitner’08] and by molecular dynamics 

simulations [Rocchi’98, Marchi’02, Sengupta’08,11,12a,12b, Sinha’08, 

Chakraborty’07, Pal’13, Bandyopadhyay’06, Xu’12, Ding’11, Heyden’10b,12b]. These 

techniques sense over a wide range of time-scales of bio-molecular dynamics, 

accordingly the probed-size of the hydration shell also varies. THz/far-IR time-domain 

spectroscopy (TDS) in particular possesses a unique ability to probe molecular-motion 

events of 100s of femtoseconds to 10s of picoseconds duration. The spectral vibration 

signatures of hydrogen bonds and of collective motion by globular proteins relevant to 

their function fall into this timing. THz radiation is also sensitive to coupling dynamics 

between protein and water and thereby serves as a probe of molecular structure and 

arrangement.  

 THz spectroscopy of water-based systems is challenging due to high absorption 

by water in the THz spectral domain. Thick samples therefore need to be reduced to 

100s μm or less. The most recent approach is to treat a bio-molecular solution as a 

three-component system comprising protein, bulk water and hydration water 

[Ebbinghaus’07]. A complete frequency-resolved absorption for each component over 

the THz domain has not yet been established. A number of studies exist where THz 

absorption measurements were conducted as a function of a solution-concentration or 
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absorption of different functional states of proteins [Castro-Camus’08, Vinh’11]. It was 

shown that structural arrangements of ubiquitin and λ-repressor proteins 

(folded/partially-folded/unfolded) exhibit different absorption at THz energies 

[Heyden’10a]. These differences are thought to be attributed to changed hydration-

water dynamics around the protein, as well as to structural flexibility of the protein.  

Concentration studies of protein solutions reveal non-linear changes in absorption 

coefficient [Heyden’10a]. This is usually explained by the onset of overlapping 

hydration shells of adjacent proteins. However the THz-absorption by hydration-water 

is still a point of controversy in the literature; some report its increased absorption to be 

related to bulk water [Heyden’10a, Ebbinghaus’07], others claim that hydration-water 

absorbs less than bulk [Arikawa’08, Zhang’06]. In part, these differences can be 

explained by the frequency domains or concentrations considered. An interesting THz 

study of myoglobin molar absorption was performed by Durbin et al. [Zhang’06]. 

According to their model, molar THz-absorption by myoglobin in solution is increased 

by more than one order of magnitude compared to a dry sample. The most rapid growth 

in absorption occurs towards the dilution limit. In another study by Heyden et al 

[Heyden’12a], protein is not considered as an absorbing particle in the THz domain, as 

its dynamics are much slower than the alternating THz field. THz absorption (0.1 – 3 

THz, as accessible by most THz-TDS systems), of a protein solution is a complex 

phenomenon, where several key processes have to be considered. Firstly, the protein 

molar absorption due to its changed (compared to dry state) dynamics in a solution has 

to be taken into account. Secondly, the absorption coefficient of hydration water is 

different from bulk. And finally, accurate information on hydration shell extent into the 

bulk is needed, especially considering that the estimated depth varies with technique of 

determination. For instance, THz absorption measurements of the λ-repressor 

[Heyden’10a] suggest that a protein influences water dynamics out to 20 Å, while 

simulations are not able to detect any differences from bulk beyond 10 Å. While this 

probe-depth is more extended compared with NMR studies [Mattea’08, Qvist’09], that 

suggests that intracellular water that is not in direct contact with a bio-molecule, has 

essentially the same dynamics as bulk water. X-ray diffraction studies also reveal 

existence of 1-2 layers of water molecules around bio-molecule with properties different 

from bulk [Svergun’98]. Neutron scattering studies of hydration water can sense mainly 

the water molecules immediately adjacent to protein (not the extended hydration shell) 

and often at low temperatures [Frolich’08]. For instance, it has been shown that 
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hydrophobic amino acid side chains has a higher ordering of adjacent water molecules 

[Pertsemlidis’96]. 

 Interpretation of THz absorption spectra of protein solutions has been facilitated 

by an increasing number of MD-based computational studies [Rocchi’98, Marchi’02, 

Sengupta’08,11,12a,12b, Sinha’08, Chakraborty’07, Pal’13, Bandyopadhyay’06, 

Xu’12, Ding’11, Heyden’10b,12b]. Molecular dynamics provide atomistic-level 

information on the interactions of molecules in solutions. Most of the studies reveal that 

solutes heterogeneously perturb surrounding water molecules, therefore water in the 

hydration shell shows anomalous dynamics compared to bulk water [Rocchi’98, 

Marchi’02, Sengupta’08, Sinha’08, Xu’12]. Rocchi et al. [Rocchi’98] have performed 

an MD simulation study of the dynamical properties of water at the plastocyanin 

interface. It unravels the sub-linear trend with time for the mean-square displacement 

(MSD) of hydration-water, resulting in anomalous diffusion. It was also shown that the 

rotational relaxation of water in the vicinity of lysozyme is 3 – 7 times slower than that 

in the bulk water, depending on the definition of hydration shell in the calculation 

[Marchi’02]. Sengupta et al. [Sengupta’08] investigated the hydration dynamics in a 

partially denatured human α-lactalbumin and discovered that denatured conformers are 

less uniformly solvated and have an enhanced water molecule dynamics. A considerable 

amount of simulation studies on the hydration of proteins have been done by the Group 

of Bandyopadhyay [Sengupta’08,11,12a,12b, Sinha’08, Chakraborty’07, Pal’13, 

Bandyopadhyay’06]. For instance, the thickness of the hydration shell of the villin 

headpiece sub-domain HP-36 was investigated by different methods including MSD, re-

orientational correlation function analysis, H-bond time correlation function analysis 

and velocity autocorrelation function analysis of water molecules. Simulation results 

demonstrated that an heterogeneous influence of different helical segments on the 

dynamics of water around them is limited to the first hydration layer [Sinha’08]. Similar 

results have been obtained by Xu et al [Xu’12], where it was shown that power spectra 

(VDOS) for the water molecules hydrogen-bonded to different planes of the antifreeze 

protein, exhibit distinct spectra in the 1–4 THz spectral domain. In another study the 

vibrational spectrum of water in the hydration shell has been addressed 

[Chakraborty’07]. There it was shown that the O-O-O bending mode experiences a clear 

blue-shift in the first hydration layer, which is especially pronounced for water 

molecules hydrogen-bonded to protein. It was reported that structural flexibility of 

protein can be also studied. It was found that the overall flexibility of lysozyme is 

primarily controlled by a few large-amplitude bi-stable motions exhibited by two coils 
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[Sinha’11]. Ding et al. have used VDOS to analyze the contribution and make 

assignment of different structural elements of alanine-rich peptides to vibrational bands 

observed in the experimental spectrum [Ding’11]. The most rigorous approach to 

calculate the THz spectrum of water is quantum mechanically. Extensive study of water 

from first principles, resolved in time and space, have been performed by Heyden et al 

[Heyden’10b]. Their findings indicate that the contribution to spectral intensities around 

2.4 THz is dominated by group motion of H-bonded molecules  within the second 

solvation shell, indicating also the presence of non-negligible, third-shell effects. The 

topic was further developed by Heyden et al [Heyden’12b], showing that non-

polarizable water models, as employed in this chapter, are very capable in reproducing 

the low-frequency, intermolecular vibrations of water, since the static molecular dipoles 

dominates over electronic polarization. However there is no systematic study 

concerning the depth of the hydration shell, especially as dependent on protein size. My 

methodology to estimate the hydration shell depth is based on its component 

contribution to the THz vibrational spectrum, i.e. as based on the VDOS. My 

calculations focus mainly on THz-domain spectral properties of solutions. 

 

4.2 Gromacs simulation details 

All molecular dynamics simulations were performed using the Gromacs package 

[Pronk’13]. It is based on numerically integrating Newton’s equations of motion for 

atoms at discrete time-steps. The Amber99 force field was applied to characterize 

molecular interactions for all bio-molecules studied. Each protein was then solvated in a 

cubic cell with a TIP3P water-model, leaving 1 nm gap between the protein to the edges 

of the box. Boxes respectively contained 2239, 2683, 7026 and 11713 water molecules 

for TRP tail, TRP-cage, BPTI and lysozyme. To neutralize the non-zero charge of 

protein, chlorine ions were used (1 for TRP tail and TRP-cage proteins, 6 – for BPTI 

and 8 – for lysozyme). Energy minimization was performed using a steepest-descent 

algorithm to avoid any poor contacts between protein and water molecules. Further, a 

100 ps equilibration was run to allow water molecules to fully envelope the protein. 

During such runs a Berendsen temperature-coupling was used to rescale the atomic 

velocities and let the solutions reach 300 K. A Parrinello-Rahman pressure coupling 

was simultaneously adopted to stabilize the system pressure at 1 atm. Electrostatic 

interactions were treated by the Particle-mesh Ewald algorithm, employing a 1 nm cut-

off radius. Three dimensional periodic boundary conditions were applied. Pressure and 

temperature in the system were monitored at each step to ensure convergence towards 
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set-point values. The resulting system configuration was used to start 200 ps production 

runs employing the same parameter settings. An integration time-step of 2 fs was used 

while atomic positions and velocities were recorded at every second step. Bulk (i.e. 

pure) water properties were extracted from the simulation of 1026 water molecules, also 

employing the above same parameter settings. 

The contribution of each hydration-water layer to the vibrational spectrum is 

estimated based on a normalized VDOS, i.e. the Fourier transform (FT) of the ACF of 

atomic velocities: 

VDOS(f) ∫
〈v⃗⃗(0)v⃗⃗(t)〉

〈v⃗⃗(0)v⃗⃗(0)〉
exp(i2 ft)dt. (4.1) 

The normalized velocity ACF of the selected atoms is calculated using the post-

processing tools of Gromacs. The motion of the atoms is of an oscillatory nature 

(atomic velocities self-correlate in a periodic manner), so the VDOS characterizes the 

oscillation as an energy-band in the frequency domain. The VDOS spectrum shows the 

vibrational bands of covalently-bonded and H-bonded atoms (for instance O-O-O 

bending, O-O stretching, O-H stretching), including anharmonic effects. Note, that the 

vibrational spectrum estimated by VDOS does not directly correspond to the 

experimentally measured absorption, which is calculated as an integral of the total 

dipole ACF and requires a quantum dynamical approach [Heyden’10b]. Although the 

VDOS does not determine the exact molar absorption of the solution, it shows the 

relative intensity and spectral shifts in the vibrational peak positions. By comparing the 

VDOS of water molecules in successive layers around a protein to that of bulk water, 

we determine the size (or depth), of the hydration shell. The VDOS curves were 

calculated for stratified 3Å layers of water molecules (0-3 Å, 3-6 Å, 6-9 Å, 9-12 Å) over 

10 ps intervals over the whole trajectory. These integral characteristics of each layer are 

in fact slightly different from instantaneous values due to molecular diffusion. However 

the maximum distance any molecule travels from the layer for 10 ps is less than 1 Å; 

moreover molecules diffuse in both directions evenly (i.e. both towards and away from 

the protein), which to a significant extent is mutually compensatory and lessens the 

error caused by diffusion. All VDOS curves in figures below are averaged over 10 

trajectories. One of the useful outcomes of calculating the VDOS spectrum is access to 

the diffusion coefficient (D), evaluated by the Green-Kubo relation [Liu’04]: 

D 
1

3
∫
〈v⃗⃗(0)v⃗⃗(t)〉

〈v⃗⃗(0)v⃗⃗(0)〉
dt. (4.2) 

However, calculation of diffusion coefficients for interfaces, or inhomogeneous 

regions like the hydration shell, proves to be problematic [Liu’04]. The appropriate 
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corrections for limited box-size and simulation time have not been taken into account 

here. Therefore the value of D is referred to as a perturbation coefficient. It reflects a 

measure of disorder in water dynamics caused by protein. Its values are proportional to 

the actual diffusion coefficient and are used later as an additional criterion to determine 

the depth of the hydration shell. 

 

4.3 The structure of selected proteins 

Four different bio-molecules, with increasingly complex tertiary structure 

(corresponding to an increased number of secondary structure elements), were selected 

for the analysis of their hydration shell, namely: TRP-cage13-20 peptide, TRP-cage, BPTI 

and lysozyme. Proteins were chosen purely based on an increased structural complexity, 

starting from a single peptide chain to lysozyme, a globular protein. Both molecular 

weight and residue numbers scale up approximately 2-3 times successively larger 

proteins, starting from TRP-tail. An increasing variety of tertiary structure of proteins 

can be seen in Fig. 4-1 (D-A). BPTI contains fewer helical elements than TRP-cage 

protein, however a prolonged β-sheet and peptide chain provide the required structural 

complexity. Brief information on the secondary structure of these is given in Table 4-1 

and shown in Figure 4-1. PDB files of lysozyme and BPTI do not contain disulfide 

bridges, which have only a minor effect on the present study. 

 

Table 4-1. Description of considered proteins 

Bio-molecule/property Molecular 

weight, g/mole 

Residue 

number 

(amino acids) 

Secondary structure 

elements 

Lysozyme (PDB: 2LYZ) 14313,3 129 16 helix turns + 2 β-

sheets 

BPTI (PDB: 4PTI) 6517,6 58 2 helix turns + 1 β-

sheet 

TRP-cage (PDB: 1L2Y) 2169,4 20 4 helix turns 

TRP-cage tail (13 to 20 

residues) 

784,9 8 none 
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A B 

 

C D 

Figure 4-1. 3D structure of (from left to right): (A) lysozyme, (B) BPTI, (C) TRP-cage and (D) 

TRP13-20 tail. Helices are shown in pink, β-sheets – in yellow, peptide chains with no secondary 

structure elements – in grey. 

 

4.4 Hydration shell: buried vs surface water molecules 

The aim here is to investigate how dynamically different the hydration shell of each 

of the chosen proteins is, and what is the depth of the hydration shell. Figure 4-2 shows 

the velocity ACF and VDOS curves calculated separately for oxygen and hydrogen 

atoms in bulk water and in the first hydration layer of lysozyme (contains all water 

molecules within 3 Å of protein atoms). As expected, the dynamics of hydrogen atoms 

becomes uncorrelated at approximately 0.15 ps and is much faster that oxygen 

dynamics, having a correlation time of 1 ps. Both curves for oxygen VACF have a small 

extremum (bump) after initial descent which is a characteristic signature of the ‘caging’ 

effect (i.e. where oxygen molecules collide with neighbour-molecules, enveloping 

them). For oxygen atoms of the first solvating layer, this bump is smaller, indicating 

their more restricted motion. The VACF of hydrogen atoms in the first hydration layer 

show only minor differences from bulk-water hydrogen, which is reflected in a slight 

decrease of their perturbation coefficient. VDOS curves were obtained by integrating 

VACF only in the correlated domain. Bulk-water oxygen exhibits a well-defined band 

centered at 1.1 THz. This peak is attributed to the bending motion of triplets of H-

bonded oxygen atoms [Sinha’08]. It has a strong Raman band but is a quiet IR 

absorption mode. For water molecules bound to protein, the peak is blue-shifted by 0.4 

THz and its amplitude lowered. The lower peak amplitude indicates the vibrational 

mode to be less pronounced due to influence of the protein. The frequency shift 

corresponds to the strengthening of the H-bonds between oxygen atoms in the solvating 

layer. In fact the peak also broadens by 9%, which means that this mode became less 

harmonic. Note that above 2.4 THz, hydration water exhibit a larger VDOS compared 

with bulk.  While the VDOS of hydrogen atoms is rather flat in THz domain and 

changes in it due to protein proximity are much less pronounced. The dynamics of 

oxygen atoms are therefore seen to chiefly govern the THz vibrational spectrum of 
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hydration water. For this reason we study the properties of the solvating water shell 

based on the VDOS of oxygen atoms only. This assumption is valid only in THz 

frequency domain (below 10 THz).
 

 

Figure 4-2. (Left) Comparison of the VACF and (Right) VDOS of oxygen and hydrogen atoms 

for bulk water and for the first 3 Å solvating layer of lysozyme containing 353 water molecules. 

‘ox’ stands for oxygen atoms, ‘h’ – for hydrogen atoms. 

 

Solvation dynamics have been studied for only a limited number of molecules, 

primarily small and fast-folding proteins [Lindorff-Larsen’11, Kubelka’04]. Mainly 

single proteins were considered, and a systematic comparative analysis of solvation 

dynamics for the different complexity of protein tertiary structure is not available.  

 

Figure 4-3. (Left) Velocity auto-correlation function and, (right) vibrational density of states 

of oxygen atoms in the first 3 Å hydration layer around associated proteins 

 

Figure 4-3 depicts the VACF and VDOS of water oxygen atoms in the 3Å shell 

within the four bio-molecules selected for study. A clear trend is observed of oxygen 
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atoms being more constrained at the interface of the protein with more complex tertiary 

structure. The difference between curves is well above the error which is approximately 

the same for each trace and is equal to 10
-4

, estimated from the standard deviation of the 

VACF over 10 simulations. For bio-water in close proximity to the protein, these results 

show different features in the vibrational spectrum of the solvating layer in accord with 

the diversity of 3D protein-shape. Note that the perturbation coefficient has dropped in 

line with the complexity of the tertiary structure. 

Note also that the 3 Å hydration layer considered above includes the molecules buried 

in the protein-interior as well as those immediately bound to the outer-surface of the 

protein. To unravel the physics behind the systematic differences in the first hydration 

layer among proteins we separated the contributions from those waters buried deep 

within the protein-interior and those solvating the protein surface. An envelope defined 

by the locus of points 3 Å normally-distant from the protein surface, forms a boundary 

for deciding which waters are surface and which are buried. Positive distance (d) from 

the boundary is directed back into the volume of the envelope. Surface waters are 

defined by 30  d Å; buried waters are 3d Å. The results of this analysis are 

shown in figure 4-4. It depicts the VACF and VDOS of the buried and surface waters 

for the four considered bio-molecules.     

 

Figure 4-4. (A) Velocity auto-correlation function and (B) vibrational density of states of 

buried and on-surface water molecules for the bio-molecules studied. There are no buried water 

molecules for TRP-cage and TRP-cage13-20 tail (all molecules solvate the surface). The 

corresponding properties of bulk water are also shown for comparison. Note, that in both plots, 

curves for surface water molecules of TRP-cage, BPTI and lysozyme closely overlap. 
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The difference in solvation dynamics for the proteins studied is clearly shown to 

originate primarily from highly-constrained buried water molecules (figure 4-4). The 

caging effect appeared to be more pronounced for buried molecules (figure 4-4A), 

resulting in a more pronounced frequency-shift of the O-O-O bending mode (figure 4-

4B). Due to the simple structure of the TRP-cage and TRP-cage13-20 tail, their solvation 

layers consist only of ‘surface’ molecules. Water molecules bound to each of the 

proteins’ surfaces show similar dynamical behavior. Only the solvation-layer dynamics 

of the TRP-cage tail differs due to higher mobility of water molecules bonded to the 

peptide, caused by the absence of crevices and clefts on its surface. These findings are 

key for understanding the dynamics of protein hydration. It is safe to predict that similar 

effects take place for proteins of arbitrary size, since the relative numbers of hydrophilic 

and hydrophobic residues are comparable for most of globular proteins. However this 

assumption needs additional verification by simulations. The average number of buried 

molecules is 95 and 41 for lysozyme and BPTI respectively. These water molecules, 

tightly bound to protein, can be regarded as a part of the structure of the protein, and 

accompany its global motions. Therefore, the contribution of these molecules to the 

THz absorption spectrum is much weaker than that of bulk water [Vinh’11]. 

Hydration dynamics is better understood if one interprets consecutive layers of the 

hydration shell as ‘matching’ layers between relatively slow protein motion and fast 

water dynamics. The layers matching protein and bulk water dynamics have less 

retarded motion compared to the layers between protein and another layer of 

constrained waters. In this later group, molecules are confined within more than one 

protein residue, or are trapped in the interior of the protein and accordingly have slower 

dynamics. It is worth noting that hydration-water beyond the first shell exhibits minor 

differences in dynamical behavior with the proteins selected here for study.  

The VDOS of water oxygen atoms in stratified layers of 3 Å thickness (which is 

approximately equal to a single-molecule layer) within the lysozyme protein is plotted 

in Figure 4-5. The trend of steady increase in perturbation coefficient with distance from 

the protein is clearly observed here. The presence of protein blue-shifts the O-O-O 

bending peak, while beyond 6Å it regains the spectral position for bulk-like response. 

The same spatial extent of 6 Å is observed for the hydration water, having an increased 

spectral intensity compared to the bulk above 2.4 THz. The same effect is present 

among the other proteins, though less pronounced. This characteristic frequency shifts 

slightly lower for smaller proteins, reaching 2.1 THz for TRP-cage tail peptide. 
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Figure 4-5. The vibrational density of states of oxygen atoms in water at 300 K and 280 K and 

in successive hydration-shell bands of 3 Å thickness each for lysozyme. 

 

Additionally, the similarity has been analyzed between retarded-water dynamics in 

the protein shell and water dynamics resulting from temperature decrease. The cubic 

water box, containing 1026 water molecules, is simulated at 280 K with other 

conditions identical to previous runs for bulk water at 300 K. The nature of retardation 

of water that is solvating a protein is found to be different to the low-temperature water 

dynamics. Similar behavior is seen up to a characteristic frequency, with spectral peak-

position blue-shifted and attenuated. Above this frequency, hydration-shell water has a 

higher VDOS, and 280 K water has a lower VDOS compared to bulk water at 300 K. 

Such behavior is characteristic of the first and partially of the second hydration layers, 

but not of a third. So an increased VDOS of hydration-shell over bulk-water, above 

characteristic frequency, can be thought of as the specific signature of protein-water H-

bond dynamics.  This may be a result of the coupling with protein, having a typically 

high density of normal modes in this range. This behaviour is claimed to interpret some 

features of THz absorption spectra in protein solutions. For instance, it has been related 

to an increased absorption by ubiquitin solution over the buffer, above 70 cm
-1

 (2.1 

THz) [Heyden’10a]. Similar features of VDOS have been shown for the hydration shell 

of villin headpiece protein by Chakraborty et al [Chakraborty’07]. 

 

4.5 Determination of hydration shell size from MD simulations 

The estimation of hydration shell depth has been a question of debate recently. In this 

computational study we have estimated the size of a hydration shell based on its spectral 
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characteristics. Two complementary methods are used: one is investigation of the 

evolution of the perturbation coefficient with increasing distance from a protein; the 

other being the total difference of the VDOS spectrum between bulk and hydration 

water, evaluated as a sum of absolute differences at each frequency point over the 0-5 

THz spectral domain. These two sets of curves are plotted against distance from the 

protein in figure 4-6.  

 

Figure 4-6. Plots of perturbation coefficient for the four selected proteins (A), and total 

difference in vibrational density of states between the hydration layers and water over 0-5 THz 

spectral domain (B), depending on the distance from the protein surface. Both plots were 

calculated for a successive overlapping 3 Å layer thicknesses, i.e. 0-3 Å, 2-5 Å, 3-6 Å … 13-16 

Å. Note: buried molecules were also included in the calculation of properties of hydration 

shells. 

 

Both approaches suggest that the dynamical hydration shell, whose spectral properties 

differ from bulk, extends out to 10 Å for all bio-molecules considered. Since the 

differences in surface water dynamics are negligible for the proteins and a TRP13-20 

peptide, the hydration shell size is approximately the same for all. Note, that surface 

water molecules have slightly faster dynamics for TRP13-20 peptide (figure 4-4). This 

however does not affect the depth of the hydration shell in a measurable way. 

Interestingly, the total difference curves are more flat towards the end of the hydration 

shell compared to perturbation coefficient curves. This feature is explained by the fact 

that for hydration water beyond 6 Å the difference in VDOS compared to bulk water is 

pronounced only at low-THz frequencies (see figure 4-5, 6-9 Å curve) and is therefore 

well captured by the perturbation coefficient, but not by the total difference, where this 

low-frequency distinction is averaged (or diluted) over the whole 0-5 THz spectral 

domain. 
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The main property of interest however is the total integral characteristics of the whole 

hydration shell. The perturbation coefficient of oxygen atoms, averaged over the whole 

hydration shell, is lower than that of water respectively by 9%, 12%, 14% and 16% for 

TRP-cage tail, TRP-cage, BPTI and lysozyme. Furthermore, the overall shape of the 

hydration shell VDOS is similar to that of the first hydration layer (figure 4-6), with the 

characteristic frequency in the range of 2.1 – 2.4 THz. Based on the distinction in the 

perturbation coefficient, it is save to predict that the absorption coefficient of the 

hydration-shell water molecules is different from bulk water molecules and varies in 

relation to the shape of a protein.  

 

4.6 Concluding remarks 

Water in the hydration shell of proteins with different tertiary structure will respond to 

THz radiation with characteristic differences. According to molecular dynamics 

simulations, hydration shell thickness, as estimated by its total difference in VDOS and 

by its perturbation coefficient of water solvating protein, is shown to extend out to 10Å 

from the surface of a protein and does not depend on the size of a protein. Furthermore 

the integral perturbation coefficient of the whole solvation layer is found to be increased 

for larger proteins due to a higher retardation rate of water molecules in their shells. The 

THz vibrational signature of the solution depends on the amount of highly-retarded 

water molecules buried in the interior of a protein. The immediately-bound water 

molecules to the surface of the proteins were shown to have similar dynamical 

properties for the selected three proteins and a TRP-cage13-20 peptide. However, the 

number and degree of constraint of internal (i.e. buried) waters, proved to be the 

dominating source of differences in solvation dynamics. The hydration shell of larger 

proteins tends to have lower vibrational density than smaller proteins below a 

characteristic frequency (2.4 THz for lysozyme), and higher above. These 

computational studies are to be verified by corresponding experimental THz time-

domain spectrometry. Note particularly, that the VDOS vibrational spectrum cannot be 

directly related to THz-TDS that probes dipole moment fluctuations. However, the 

dependence of the characteristic frequency on protein size, as found from the VDOS 

(2.1, 2.25, 2.35, and 2.4 THz), for TRP-tail, TRP-cage, BPTI and lysozyme 

respectively, can be verified with corresponding THz absorption measurements. 
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Chapter 5. Investigation of hydration shell thickness 

and electromagnetic field absorbance of solvated 

protein molecules in the sub-THz frequency domain. 

 

5.1 Introduction 

In their native form proteins exist and perform their function in a solvated state 

[Chaplin’06]. Protein solutions have been studied by many experimental techniques and 

over a broad frequency domain from 10s of GHz up to few THz [Saha’12, Laurette’10, 

Leitner’08]. Compared to established FIR spectroscopies and NMR, THz (and sub-THz 

spectrometry, particularly), of protein solutions, is still in its infancy, but provides 

useful information of picosecond to sub-nanosecond process-dynamics of solutes 

[Heyden’12a]. THz spectrometry is commonly performed as Time Domain 

Spectrometry (TDS), driven by femto-second pulse-width lasers [Exeter’89]. Such 

ultra-short pulse-duration, constitutes an effective probe of collective vibrational modes 

of bio-molecules, long-range mutual coupling between solvent and solute and the 

bending and stretching of hydrogen bonds [Ebbinghaus’07, Heyden’12a]. An extensive 

review on the application of THz spectrometric analysis of bio-molecules has been 

published by Falconer and Markelz [Falconer’12]. It discusses the current progress in 

acceptance of THz radiation as a useful analysis tool in the biochemistry community 

and highlights the need for validation of THz spectroscopic results against an 

orthogonal experimental approach. The frequency domain of these studies spans from 

70 GHz to 3 THz and is limited mainly by the dynamic range of a given THz-TDS 

system and increasingly high water absorption at higher THz frequencies. High 

absorption of THz radiation by water initially limited the examination of solutions, 

resulting in THz radiation being mainly utilized for characterization of dry-state bio-

molecules [Jin’10; Whitmire’03; Markelz’00]. With THz sources and detectors 

becoming gradually more available and efficient, THz spectrometry promises to turn 

into a standard tool in biochemistry. Despite a large number of studies on hydration 

dynamics of bio-molecules the exact picture is still unclear. The trends in THz 

absorption of bio-solutions have not been studied consistently over the whole THz 

spectral domain and with respect to protein size and structure. Ideally, one would seek 

to obtain the complete frequency, concentration, and temperature-dependent 

information about the given complex dielectric properties of a solution. Often only part 
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of the above information is recorded and analyzed to provide some insight into bio-

molecular solvation dynamics. The dynamics of constituent components in bio-

solutions is attracting growing interest but is still not well understood, results even 

being sometimes highly controversial. For example BSA solution in water at 0.1% w/w 

concentration was shown clearly to have higher absorption compared to water in the 2-

2.5 THz spectral domain [Saha’12] (as judged by the higher imaginary part of dielectric 

constant), while the absorption of BSA in 50mM phosphate buffer at 101 mg/ml 

(effectively the same concentration as in [Saha’12]), was shown to have less absorption 

than the buffer by approximately 8% over the frequency domain from 0.5 to 2.5 THz 

[George’08]. The concentrations in these two studies differ by only 1%, but it is unclear 

whether a rather dilute phosphate buffer could cause such disparate results. These 

findings also do not completely agree with those of M. Heyden and coworkers 

[Heyden’10a], where the concentration-dependent study on the λ-repressor has been 

performed at 2.4 THz. The highest THz excess was detected at 6.5 mg/ml. At 13 mg/ml 

the absorption of the solution was the same as that of the buffer and decreasing. Even 

considering that the λ-repressor has a molecular weight eight times smaller than BSA, it 

is counter-intuitive that a 0.1 w/w BSA solution would exhibit excess absorption at 2.4 

THz. Importantly, none of the above studies have considered the influence of the 

intermolecular stretching mode in water, centered at 5.3 THz. It was shown [Yada’08] 

that energetic contribution from this mode constitutes third of the imaginary part of the 

dielectric constant at 2 THz. 

Increasing numbers of research groups around the world have studied bio-

molecules in a solvated state by means of THz radiation. Significant progress has been 

made in interpretation of complex dielectric spectra of solvated bio-molecules partially 

facilitated by molecular dynamics (MD) simulations [Gekle’12] and technological 

advances in THz spectrometry [Jepsen’11]. Studies by the Group of Havenith are 

focused mainly about 2.1-2.7 THz, with the probing radiation produced by a p-

germanium laser, and applied to the study of a wide range of bio-molecules e.g. DNA, 

proteins, peptides, amino acid and carbohydrates. Their findings show that the λ6-85-

repressorand solutions of ubiquitin proteins exhibit THz excess at specific low 

concentrations (of the order of 10mg/ml) [Heyden’10a]. Such behaviour is claimed to 

be caused by an increased absorption of hydration-water compared to bulk-water. These 

same studies also predict extended shell-size of up to 20 Å derived from the 

concentration of peak THz excess [Ebbinghaus’07] and not detectable by other 

techniques. Even more distant interaction between protein and solvent reaching 20-40 Å 
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has been predicted by Heyden et al. [Heyden’12a] based on the cross-correlation of 

solute and water dipoles. The possibility of peptides to perturb water dynamics beyond 

10 Å was also claimed by Ding et al [Ding’10], where the authors experimentally 

derived the hydration-shell size of alanin-rich peptides to be 11 to 17 Å. Another 

experimental study of nucleotides in solution proved hydration shells to extend out to 

the fourth layer of water molecules (≈ 10 Å) [Glancy’10]. The temperature-dependence 

of THz excess has been monitored both for the λ6-85-repressor [Ebbinghaus’07] and 

antifreeze glycoprotein (AFGP) [Ebbinghaus’10]. The THz excess peak for AFGP shifts 

towards lower concentration with decreasing temperature, indicating a more extended 

hydration shell; and retarded water dynamics in this larger shell does not favour 

freezing. It was also shown that the frequency domain of 2.1-2.8 THz is sensitive to 

both the functional state of protein and the amino acid sequence, with the native protein 

solutions showing the highest THz excess [Ebbinghaus’08]. At the moment the only 

group (to the best of my knowledge), that reported an increased THz absorption by 

water in the hydration shell of proteins, compared to bulk-water, at around 2.5 THz is 

the Group of Havenith [Heyden’10a]. The same study contains the only piece of 

evidence of both THz excess and defect recorded in the same measurement run (for 

ubiquitin solution showing a THz excess above 2.15 THz, and THz defect below). A 

number of studies [Arikawa’08, Zhang’06] have shown that a protein hydration-shell 

absorbs less than bulk-water in the frequency domain below 1.5 THz. 

MD simulations often assist in interpreting experimental spectra. For instance, 

experimental studies were complemented by appropriate MD simulations [Heyden’10a] 

that relate THz excess of proteins to an increased vibrational density of states of 

hydration-water over that of bulk-water in the frequency domain above 55 cm
-1

. Also in 

a combined experimental and MD study of aqueous peptides Ding et al. [Ding’11] used 

vibrational density of states to assign and analyze contributions of different structural 

elements to the absorption spectrum. The retarded dynamics of water molecules in a 

hydration-shell of protein [Heyden’10a, Niehus’11] was also studied by the 

autocorrelation function (ACF) of H-bonds, rotational ACF and mean square 

displacement (MSD). Generally in MD simulations of the protein hydration shell no 

differences between hydration-water and bulk were found beyond 10 Å. 

Along with proteins, the 2.1-2.7 THz absorption of amino acids and 

homogenous mono-, di-, and tri-peptides was investigated [Niehues’11]. At first the 

dynamics of water molecules were analyzed that were solvating model hydrophobic and 

hydrophilic particles. It was then shown that the slope of the plot of THz absorption 
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versus frequency is directly correlated with the hydrophobicity scale of amino acids, 

based on the non-polar accessible surface. Studies of carbohydrate solutions 

[Leitner’08, Heyden’08] reveal a non-linear THz absorption attributed to overlapping 

hydration shells of neighbouring molecules. Based on three-component absorption 

model (bio-molecule, bulk-water, hydration-water), the hydration-shells were 

determined to extend out to 3.7 Å, 5.7 Å, 6.5 Å for glucose, lactose and trehalose, 

respectively. One of the key findings was that the absorption coefficient of hydration-

water was on average 10 cm
-1

 higher compared to bulk-water in the frequency domain 

75-95 cm
-1

. This is explained in terms of coherent oscillations of hydration-water and 

solute [Heugen’06]. In agreement with Leitner et al [Leitner’08], Arikawa and 

coworkers [Arikawa’08] have found the hydration shell of sucrose to extend out to 7.4 

Å away from the solute. Absorption of water molecules in the hydration-shell of 

alcohols has been addressed by Matvejev et al [Matvejev’12]. They found that water 

absorption by the hydration-shell is on average 0.774 times that of bulk-water 

absorption at 0.28 THz. This is in contrast to the hydration-shell of saccharides (lactose, 

trehalose, glucose) that have higher absorption than bulk-water [Heyden’08] due to a 

higher density of hydrophilic groups in the molecule, resulting in the mobility of 

hydration-shell waters.  

The absorption spectrum of solvated bio-molecules over the THz spectral 

domain, as well as techniques to interpret it, has been extensively investigated by the 

Group of A. Markelz [Chen’07, Knab’07, He’11]. It was shown that THz radiation is 

sensitive to solution phase binding as demonstrated on triacetylglucosamine binding to 

lysozyme [Chen’07, Knab’07]. The recorded THz spectrum showed a clear decrease in 

absorption with binding. The influence of hydration levels on protein dynamics was also 

addressed [Knab’06]. A well-defined dynamical transition, revealed by a more rapid 

rise in complex refractive index, was observed at hydration levels when the first 

hydration shell is filled [Knab’06] or at hydration levels of approximately 0.27 grams of 

water per gram of bio-molecule [Kambara’10, Vinh’11]. Similarly, bio-molecules have 

been shown to have a dynamical transition at around 200 K [Yamamoto’12; 

Markelz’07], related to the onset of anharmonicity and is detectable in THz spectra. 

Another study [He’11] reveals the existence of structural collective modes for 

cytochrome c protein. These were confirmed by analyzing absorption spectra with 

quasi-harmonic vibrational modes’ density and the dipole-dipole ACF.  

The collective dynamics of lysozyme [Xu’06a] and BSA [Xu’06b] were 

investigated by Xu et al. using THz absorption spectrometry over a wide frequency 



82 
 

domain of 0.075-3.72 THz. It was shown that molar absorption of these proteins 

increases monotonically for BSA and saturates above 2 THz for lysozyme. It was found 

that molar absorption of BSA does not significantly depend on concentration, except for 

very dilute solutions where an uncertain growth of molar extinction was observed 

[Xu’06b]. A sharp increase in molar absorption towards the dilution limit was also 

detected for myoglobin protein [Zhang’06]. At concentrations of 70-98 (wt%), molar 

absorption of myoglobin was reported to be more than one order of magnitude higher 

compared to the dry state. 

Vinh and co-workers have performed a highly sensitive vector network 

analyzer-based spectroscopy on concentrated lysozyme solutions covering 65 to 700 

GHz [Vinh’11]. They discovered the presence of approximately 165±15 water 

molecules tightly bound to protein and behaving like an integral part of it. In the 

modeling of these results the authors introduced a 250 GHz cutoff frequency below 

which the density of vibrational modes is zero. This has significantly improved 

agreement of experimental and modeled dielectric spectra. The same proteins, along 

with alcohols, have been also studied at different concentrations by micro-fluidic 

system [Laurette’10,12] over 50-110 GHz. Such a system is based on a coplanar-

waveguide and is propounded to be a sensitive (5 mg/ml) tool for biological liquid 

metrology.  

A number of different approaches to the interpretation of recorded THz spectra 

have been used. Various studies sometimes do not agree in details, some missing the 

detailed description of experimental procedures and materials used. There exists, 

therefore, a need for additional systematic studies of different bio-molecules in a 

solvated state. 

 

5.2 Methods and simulation procedures 

The following proteins, ranging from low to high molecular weight, were chosen 

for this study: lysozyme, myoglobin and bovine serum albumin (BSA). All proteins 

were purchased from Sigma Aldrich in the form of lyophilized powder and used without 

further purification. The purity for lysozyme and BSA is ≥ 98%, for myoglobin 95-

100%, essentially salt-free. The properties and solvation dynamics of these proteins are 

well-studied by various experimental methods in the research community. The solutions 

are prepared using protein powder and distilled water with electrical resistivity of 13 

MΩ·m. Solutions are prepared in nine different concentrations for each protein, namely 
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2.5, 5, 7.5, 10, 15, 20, 25, 50, 100 mg/ml. The most concentrated solution was prepared 

first; others were diluted from it using distilled water.  

A Bruker liquid cell (A145) with TPX windows was utilized as a holder for the 

solutions. The thickness of the solutions was set to 100 μm by a polytetrafluoroethylene 

(PTFE) spacer. Since water is a strong absorber of sub-THz radiation, such thin samples 

allow measureable radiation through in the desired operating band while still being 

thick enough to provide sufficient beam-material interaction. Solutions are injected into 

the cell by a special pipette. The liquid cell is not opened while refilling. Instead it is 

firstly emptied with a syringe then washed with the next concentration, followed with 

injection of this concentration. This procedure is done to avoid any thickness deviation 

which is known to be a major source of uncertainty in absorption measurements 

[Sushko’13a, Duvillaret’99]. The temperature of the solutions is kept in the range 273-

277K in an ice box. Before the measurement, solutions are kept outside the ice-box to 

allow them to equilibrate to room temperature. 

 

Table 5-1: Protein properties that are exploited for interpretation of experimental data. 

 Molecular 

weight, 

g/mole 

Radius,
1
Å  Real protein 

dimensions, Å
3
 

Protein dipole 

moment,
2
 

Debye 

Surface 

ratio
3 

Lysozyme, 

PDB: 2LYZ 

14388 15.9 52x40x30 130 2.11 

Myoglobin, 

PDB: 1MBN 

17670 17.1 49x40x40 239 1.31 

BSA, 

 PDB: 4F5S 

66500 27.1 95x75x60 844 1.51 

1Computed from the partial specific volume and molar weight [Lee’83] 

2Calculated from http://dipole.weizmann.ac.il 

 3The ratio of hydrophilic to hydrophobic solvent accessible area, estimated by Gromacs. 

 

MD simulations were performed using the Gromacs package (version 4.5). 

Gromacs was utilized to accurately estimate the number of water molecules excluded by 

each protein and the number of water molecules in the protein interior. The simulation 

protocol is similar to that described in [Sushko’13b]. Proteins were solvated in a TIP3P 

water-box and allowed to equilibrate at 300 K before a production run of 100 ps. The 

required properties of protein and water were collected at the end of production run. 

http://dipole.weizmann.ac.il/
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The complex transmission coefficients S21 of the samples were collected using a VNA-

driven quasi-optical bench in the 220-325 GHz frequency domain. Two special 

frequency-extension heads, coupled to corrugated horns, were used as a receiver and 

transmitter. Two parabolic mirrors are used to focus emitted radiation on the sample. A 

further two parabolic mirrors direct the radiation to the receiving horn. Other details of 

the system can be found in [Yang’10]. The S21 amplitude, integrated over the whole 

investigated frequency band, is used as a measure of total transmittance or absorbance 

of the samples. The summed S21 amplitudes of solutions at each frequency point were 

normalized by those for water providing the relative changes. Only the relative 

absorbance of solutions with respect to buffer (water) is of interest in this study. 

The measured S-parameters of the sample under test, S21 in particular, would 

unavoidably contain multiple FP-like reflections within the sample. CW radiation in the 

investigated band creates an interference pattern in the sample and is clearly detectable 

by VNA. However, no efforts have been made during data processing to de-embed 

[Hadjiloucas’13] multiple reflections from transmission coefficient for several reasons. 

First of all the water is a strong absorber at sub-THz frequencies therefore FP-echoes 

are highly attenuated even within the thin water sample of 100 µm. Also the TPX 

windows have relatively high surface roughness that enhances scattering and attenuates 

multiple reflections of radiation between window interfaces. Secondly, relatively long-

range averaging has been applied to the readings that to some extent lessen the existing 

multiple reflections in the sample response. Finally the relative nature of the 

measurements (protein solution compared against water), compensates the effect of 

multiple reflections as well as effects of imperfect coupling, de-focusing of radiation, 

etc, since only the relative change in absorption and not the exact material properties of 

the sample is of interest in this study.   

 

5.3 Absorption of solvated lysozyme, myoglobin and BSA proteins in 220-325 GHz 

band 

The initial purpose of the experiments was to check whether all protein solutions 

consistently exhibit a decreased electromagnetic field absorption compared to a buffer 

(THz defect) over the considered sub-THz spectral domain. Fig. 1 shows the relative 

absorption of selected proteins at different concentrations. A nonlinear trend in 

absorption is immediately clear, especially at low concentration. Dashed lines represent 

the absorption of the solution excluding the absorption of water replaced by protein 

(two-component treatment, assuming protein absorption to be negligibly small). The 
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number of water molecules excluded by each protein has been estimated using the 

Gromacs MD package. The THz defect (i.e. the smaller absorption of solution 

compared to bulk water), was the expected scenario since protein molecules in the dry-

state are known to be less absorbing than water. However, all three protein solutions 

exhibit higher absorption as compared to water and to two-component treatment (Fig. 5-

1). Lysozyme is seen to have the largest additional absorption with respect to the 

simplified water-exclusion model. The absorption of BSA solution approaches the two-

component model at high concentrations, however, it is not correct to conclude that the 

contribution from the protein molecules in particular is small, since the absorption of 

the hydration shell has to be considered. The proteins solutions studied exhibit an initial 

rise in absorption (THz excess) at low concentrations. The maximum absorbance of 

solutions occurs at 5 mg/ml, 7.5 mg/ml and 10 mg/ml for BSA, myoglobin and 

lysozyme respectively.  

 

Figure 5-1. The relative concentration-resolved absorption of protein-water solutions at specific 

concentrations. Dashed lines represent the absorption of the solution excluding the absorption of 

water replaced by protein. 

 

Only limited information regarding this feature in absorption by solutions is 

present in literature, therefore it needs further investigation. A similar observation has 

been made by Bye et al. [Bye’14], where the BSA-water solutions initially showed a 

rise or a plateau at low concentrations followed by a decrease in absorption. Previously, 

these peaks were related to the onset of the hydration shell overlap [Heyden’10a] and 

the hydration shell size was extracted accordingly. However in my study this seems 

inappropriate, since the depth of the hydration shells estimated at these concentrations 

was exceeding 50 Å. One of the possible explanations for THz excess at low 
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concentrations might be the process of distant interaction between protein dipole and 

collective the dipole of water molecules. Heyden et. al. [Heyden’12a] claimed that 

spatial-correlation between protein and water dipoles can extend out to 40-50 Å into the 

bulk water according to their computational study. If this holds, it might appear to be a 

reason for the absorption peak at specific concentrations. Initially at dilute 

concentrations, proteins build up this extended interaction with water comfortably. Then 

with inter-protein distance getting smaller, dipole interactions become less distant, 

resulting in absorption decrease.  However this theory needs additional analysis in order 

to be proven. At present it remains challenging to unambiguously associate these peak 

positions with any physical processes. Instead we introduce a new approach towards 

extraction of the extent of the hydration water layer around protein, based on 

concentration-resolved absorption data of protein solutions. 

Here the solution is treated by a three-component model as in [Heugen’06], so that the 

total absorption is governed by: 

   (              )    (5.1) 

where   and   are the absorption coefficient and volume of solution. Subscripts s, p w, 

and h are respectively, solution, protein, bulk water and hydration water. Note that 

contribution from dynamic protein-water hydrogen bonds to the total absorption are 

considered to be negligibly small.   

The absorption by bulk water, and the solution, in the investigated frequency 

domain (220-325 GHz) is determined in our experimental setup. The volumes of 

components at each concentration are estimated using Gromacs. An initial assumption 

was made that the radius of the hydration shell is 10 Å. This initial guess does not 

influence in any way the calculation of the actual hydration shell radius suggested 

below. The relative absorption of hydration water is taken to constitute, on average, 

90% of the bulk water absorption. According to MD simulations [Sushko’13b], only the 

first two water layers are highly perturbed by the protein, and the average response of 

whole hydration shell is dominated by more distant waters. Again the 10% value has 

only minor effect on the protein absorption in solution and no effect on the 

determination of the hydration shell size from measurements.  

From (5.1) the absorption of protein    is determined. The concentration-

dependent protein absorption in solution for the three proteins is plotted in Fig. 5-2. The 

data is presented as a ratio of protein absorption to water absorption k. For instance, 

given that water absorption at 270 GHz is 132 cm
-1

, the absolute BSA absorption at the 

peak is 488 cm
-1

 (k=3.7). Errors were estimated as a combination of instrument noise 
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and the uncertainty of positioning of the liquid cell in the beam-line. Despite large 

errors at low concentrations, it is clear that he absorption of protein molecules 

experiences a sharp rise towards the dilution limit. These finding are in agreement with 

previously published results. For instance, Xu et al [Xu’06b] have determined the molar 

extinction of solvated BSA using a two-component model at 1.56 THz. They found that 

molar absorption reaches its steady-state at a protein concentration of around 4-5 % 

(approximately 40-50 mg/ml), in agreement with the findings here. Their data also 

shows a sharp rise in protein extinction at low concentrations; however the uncertainty 

is too high to make a firm conclusion. Zhang and Durbin did a similar analysis – 

determining the molar absorption coefficient of solvated myoglobin at different 

concentrations employing a three-component approach (accounting for bio-water) 

[Zhang’06]. The absorption curve also peaks at the dilution limit and reaches a plateau 

at a myoglobin concentration of approximately 7% at 0.35 THz.    

 

Figure 5-2. The absorbance of the solvated-protein molecules at different concentration with 

respective confidence bounds shown by dashed lines.  

 

Proteins, and bio-molecules in general, in the dry-state (often in the form of 

lyophilized powders), are known to be far less absorbing compared to water in the THz 

and sub-THz frequency bands. The absorption coefficient of solvated protein (fig. 5-2) 

is shown to be comparable and even higher than that of bulk water at low protein 

concentrations. Absorption of electromagnetic radiation in the sub-THz band originates 

from the collective-dipole reorientation dynamics. Protein molecules in water solution 

have rotational relaxation time of the order of nanoseconds. This means that protein 
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dipole moment continuously lags behind the alternating electromagnetic field, 

producing a weak response to radiation in the 220-325 GHz domain (duty cycle 3-4 ps). 

However, the charged and hydrophilic side chains of amino acids interact more strongly 

with incident radiation in this frequency domain [Zhang’06]. At low concentrations, 

when inter-protein interaction is weak, and most of the water is bulk-like, these side-

chains are especially dynamically active. This explains the underlying reasons for 

abnormally high absorption of proteins in solutions approaching the dilution limit. It is 

however challenging to estimate the proportion of side chains contributing to the total 

absorption in a solution, while seeing it has a noticeable effect. 

 

 

5.4 Determination of hydration shell radius 

At moderate protein concentrations of about 50 mg/ml, the average protein-to-

protein distance is getting smaller, and most of remaining water is hydration water. At 

this concentration, protein molecules start stronger to interact with each other and the 

average dynamics of water diminishes due an increasing amount of retarded water in the 

solvation shells of proteins. This leads to hindrance of rotational and translational 

motions of charged and hydrophilic side chains of amino acids. As a result, beyond 

specific concentration the absorption coefficient levels off and remains constant for all 

three proteins (at least until 350 mg/ml for BSA, data not shown). Further, this 

concentration is referred as the ‘critical’ concentration. Interestingly, the steady 

absorption at critical concentration (0.42 – for lysozyme, 0.24 – for BSA and 0.18 for 

myoglobin), of the proteins considered here, is in quantitative agreement with the 

hydrophilic properties of proteins. The ratio of hydrophilic to hydrophobic solvent 

accessible areas (given in Table 5-1), results in the fact that, at any specific 

concentration, lysozyme molecules possesses the highest total hydrophilic area among 

the considered proteins, followed by BSA and myoglobin. This chemical property of the 

protein surface is found to be correlated to the protein absorption in solution. The 

‘critical’ concentration marks the onset of overlapping of dynamic hydration shells of 

neighboring protein molecules in solution, and provides an alternative approach for the 

determination of hydration shell size. 

Firstly, the average inter-protein distance has to be determined. The Gromacs 

MD package has been used to estimate the volume and the number of molecules in a 

cubic cell at each concentration. Two factors have taken into account of importance for 

hydration shell determination, which have not been considered before (to the best of my 
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knowledge). Firstly the proteins were not treated as idealized spherical particles. Instead 

the actual size of proteins (Table 5-1) has been taken into account. Next, the water 

molecules buried in the protein interior [Sushko’13b] were not considered in the 

calculation of the hydration shell size. Only the on-surface water molecules belong to 

the hydration shell in its conventional meaning. According to my approach, the final 

expression for estimation of hydration shell-size is governed by: 

          ((      
  
  

(
 

 
  )      )   )

   

     

 

(5.2) 

where       is the number of water molecules replaced by a single protein molecule; 

  ,    are the molar weights of protein and water respectively;    is a concentration, 

expressed as a weight percentage of protein in solution;      is the number of water 

molecules that belong to a protein’s interior structure as estimated by Gromacs 

(generally approximately equal to the protein residue number);   is a water density 

expressed in terms of the number of molecules per nm
3
;    is a mean protein radius, 

calculated as an average of its x, y, z dimensions. The term in brackets is, effectively, 

the volume of a cubic box at a specific concentration. The cubic root of it respectively 

provides its side. The visual interpretation of the protein and its hydration shell is 

depicted in Fig. 5-3. 

 

Figure 5-3. The graphical representation of the radii of hydration shells and protein.   

 

The hydration shell radii calculated according to eqn. (5.2) are 16 Å, 19 Å and 

25 Å for lysozyme, myoglobin and BSA respectively. Such a depth of hydration water 
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around proteins proves that protein-water interactions are complex and extend beyond 

first two to three layers of water molecules as estimated by MD simulations 

[Sushko’13b]. Importantly, the working algorithm does not depend on the absorption of 

hydration layers   , since it only effects the relative absorption of solvated protein and 

not the absorption curve shape. The figures obtained are in reasonable agreement with 

previous findings [Ebbinghaus’07, Ding’10]. For instance, Ding et. al. have estimated 

the hydration shell size for alanin-rich peptides to range from 11 to 17 Å, based on their 

THz spectrum. The radius of bio-water around λ-repressor and ubiquitin were calculated 

to reach 22 and 14 Å thickness respectively [Heyden’10a]. The reasons for an 

increasing hydration shell thickness with protein molar weight in my study, might 

originate from different dipole moments of proteins (Table 5-1). BSA, with its dipole 

moment of 844 Debye, can alter water dynamics further from the surface compared with 

lysozyme, having 6.5 times a smaller dipole moment. These agree with the observation 

that correlation between water collective-dipole and protein electric field, slowly build 

up only for distant water layers [Heyden’12a].   

Applying the above analysis to the absorption data for BSA solutions from 

[Bye’14], leads to the interesting conclusion on the frequency-dependence of the 

hydration shell size. According to it, the hydration shell size is 12-14 Å (in close 

agreement with 15 Å as declared by authors [Bye’14]). The underlying reason for this 

difference in the hydration shell radius might be in the manner different frequencies 

sense the dipole perturbations in water caused by protein. It appears that 

electromagnetic radiation at 0.3 THz feels a more extended hydration shell compared to 

1 THz radiation. The reason for this lies in the fact that a 1 THz field alternates faster 

than a 0.3 THz AC field, allowing less time for the collective-water dipole to respond. 

Concomitantly, the absorption response of hydration water is weaker at 1 THz. Note, 

the extracted thickness of the hydration layer as discussed above does not account for 

the protein-protein interactions strength, which might be different for the three proteins 

considered here.   

 

5.5 Brief summary 

The concentration-resolved study of lysozyme, myoglobin and BSA proteins has 

been performed quasi-optically in the 220-325 GHz waveguide band. The absorption of 

solutions was subdivided into contributions from protein molecules, water in hydration 

shell and bulk water. Absorption by protein molecules is found to increase rapidly, 

approaching the dilution-limit and to level off at about 50 mg/ml concentration. This 
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concentration was then used in alternative approach to extract the thickness of the 

hydration shell surrounding the proteins. Importantly, this approach does not depend on 

the absorption by the hydration shell. Hydration shell radii were determined to be 16 Å, 

19 Å and 25 Å for lysozyme, myoglobin and BSA respectively, that, again, respectively 

corresponds to approximately 5, 6 and 8 water layers. This study suggests that protein-

water interactions are more extended than was previously determined by MD 

simulations and originates from collective dipole moment interactions. Other 

experimental techniques used to study hydration water (e. g. NMR, X-ray diffraction, 

neutron scattering) also do not sense an extended thickness of hydration shell (as 

mentioned in chapter 4, page 64).  A VNA-driven QO bench is able to monitor extended 

dipole interaction just as with THz-TDS, but with higher DR and SNR and being less 

complex in alignment and utilization. 
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Chapter 6. Conclusions and future work 

In this thesis insights have been provided into data processing related to THz-

TDS; molecular dynamics (MD) simulation tools for molecular-mechanical partial 

interpretation of experimental data that studied the solvation dynamics of a variety of 

bio-molecules whose selection spanned size and conformal complexity. The features of 

protein solvation dynamics (hydration shell radius, absorption of solvated proteins) are 

shown to correlate with its structural and chemical properties (surface hydrophobicity, 

dipole moment, size).  

Original contributions in this thesis are: 

- The introduction and quantifying of the errors in the materials parameters 

obtained from THz-TDS caused by utilization the approximated ‘transfer’ 

function in the extraction procedure. In addition all other sources of systematic 

and random of errors were rigorously treated; 

- The clear distinction made between modulus-argument and real-imaginary 

approach of handling complex amplitude data in extraction of optical dispersion 

curves of solid and condensed soft-matter materials; 

- The demonstration that the differences in solvation dynamics between 

considered proteins primarily originate from the constrained water molecules, 

buried in the interior of a protein;  while dynamics of on-surface waters are 

approximately invariant for the four bio-molecules considered; 

- According to MD simulations, the radius of the protein hydration shell is found 

to be 10 Å, and does not depend on the secondary structure of the protein (as 

judged by the vibrational density of states of the hydration layers); 

- The protein absorptivity in solution exhibits a sharp rise towards the so-called, 

‘dilution limit’. It can be a few times greater than water absorption itself. The 

protein absorption curve also plateaus after a specific critical concentration, and 

this marks the onset of hydration shells overlap; 

- Based on experimental absorption data in the 0.22-0.325 THz domain, the 

extracted hydration shell sizes are 16, 19 and 25 Å respectively for lysozyme, 

myoglobin and BSA proteins. It appears to be more extended compared to MD 
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simulation and other techniques, due to the apparent long-range interaction 

between dipoles belonging to the protein and those belonging to water. 

However, many important contributions are still to be made in this area; namely, the 

broadband concentration- and frequency-resolved THz dielectric properties of many 

bio-molecules. This can unravel the features of interaction between water and solute. 

Also, bio-molecules in living cells are solvated, not only in water, but in various salts 

that were shown to noticeably alter the solvation dynamics. Significantly, the role of 

THz dynamics of chaotropic and kosmotropic salts and their structuring effects on 

solutes and water are often overlooked [Kaun’05]. A detailed investigation is, therefore, 

needed for the salt solutions of bio-molecules, especially their influence on the extent of 

the hydration shell and the structural stability of a bio-molecule.  

Extra effort should be spent to further investigate over a wider frequency band the 

feature of THz excess of protein solutions, especially its dependence on the protein size 

and hydrophobicity. Previously, THz excess of protein solutions has been demonstrated 

only above 2 THz (groups of M. Havenith [Heyden’10a] and D. Cumming [Saha’12]), 

while our findings show solutions to exhibit an enhanced THz absorption with respect 

to bulk water in 0.22 – 0.325 THz frequency domain. Also, while a significant number 

of studies have been focused on the THz response of hydration water, the response of 

solvated proteins in the THz domain has not attracted as much attention. Only a few 

groups have attempted the analysis of the molar absorption of solvated proteins 

[Xu’06b, Zhang’06]. However as revealed their studies, as well as our analysis of 

protein activity, shows an abnormal behavior manifested in high THz absorption. This 

feature of protein dynamics has not yet been studied in detail. 

The importance of protein-water interactions that are more extended (5-8 water layers) 

than was previously determined by MD simulations and originates from dipole moment 

interactions cannot be underestimated. Other experimental techniques used to study 

hydration water (e. g. NMR, X-ray diffraction, neutron scattering) do not sense an 

extended thickness of the hydration shell. The existence of a broader hydration shell 

than previously detected may have an important influence on molecular recognition 

events such as substrate binding and the formation of macromolecular complexes as the 

effective capture radius may be extended. There is also the possibility of 

preorganization of the interacting molecules at a longer distance that previously known.    
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Another perspective direction of research in THz area, only partly mention in the thesis, 

is the investigation of the interaction of THz radiation with bio-matter, especially at 

high power levels, where non-linear response occurs. THz waves become more wide-

spread with consequence of living organism being more exposed to it. Only initial 

efforts have been made to determine the safe levels of exposure to THz radiation. 

Scientific community needs more evidence on whether THz waves can affect bio-

molecules via vibrational (or micro-thermal) means or just thermally.  

In regard to simulation, future work should include investigation of solvation dynamics 

of more complex proteins using the methodology presented in Chapter 4. While a 

quantum mechanical approach to the same problem is very computationally costly, it 

should benefit considerably, especially as regards interpretation of experimental results. 

A first step could combine quantum and molecular mechanical modelling, where some 

parts of a bio-molecule and water are treated by quantum mechanics and the rest by 

molecular mechanics. A separate attention should be paid to the methods of calculating 

the complex dielectric permittivity of bio-molecules and its solutions. Different 

approaches (for instance based on auto-correlation of total dipole moment, normal mode 

analysis, principal component analysis, vibrational density of states) need additional 

efforts to provide consistent results. 

The work presented in this thesis covers many aspects of the highly interdisciplinary 

field that is THz spectrometry and unveils its complexity and versatility. In addition, 

many bio-inspired applications of THz radiation also require a validation against an 

already established orthogonal approach like circular dichroism or nuclear magnetic 

resonance spectroscopy. Applications of THz radiation will widen as it resolves hurdles 

and pitfalls peculiar to it, i.e. strong atmospheric absorption and lack of affordable and 

bright sources. 
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