
Computational and Algorithmic
Solutions for

Large Scale Combined Finite-Discrete
Elements Simulations

by

Guillermo Gonzalo Schiava D’Albano

A thesis submitted in fulfilment of the requirements for the degree

of Doctor of Philosophy of Queen Mary University Of London

School of Engineering And Material Science

2013



I dedicate this thesis to my grandfather Pocho (i still miss you), My granny Lila, mum

Dora (I am because of you), my father Guille, my brother Seba, my sister Lore and my

uncle Beto.

1



Declaration of originality

The material presented in this thesis is entirely the result of my own independent
research under the supervision of Professor Antonio Munjiza. All published or unpub-
lished material used in this thesis has been given full acknowledgement.

Name: Guillermo Gonzalo Schiava D’Albano Date: 24th April 2014

Signature:

List of Publications

Journal Papers:
MUNJIZA, A. ; XIANG, J. ; GARCIA, X. ; LATHAM, J. P. ; SCHIAVA D’ALBANO,

G. G. ; JOHN, N.W.M. : The Virtual Geoscience Workbench, VGW: Open Source
tools for discontinuous systems. In: Particuology 8 (2010), S. 100–105

Conference Proceedings:
SCHIAVA D’ALBANO, G. G. ; MUNJIZA, A. LUKAS, T.: Novel MS (MunjizaS-
chiava) contact detection algorithm for multi-core architectures. In: ECCOMAS Stut-
tgart, 2013
SCHIAVA D’ALBANO, G. G. ; MUNJIZA, A.: FEM/DEM simulations on Multicore
PC. In: 6th International Conference on DEM Colorado, 2013
BARGIACCHI, M.; SCHIAVA D’ALBANO, G. G. ; REVELL, A. ; SMITH, K.:
Towards Electrospray Modelling using Lattice Boltzmann Method. In: ICMMES Ox-
ford, 2013
SCHIAVA D’ALBANO, G. G. ; MUNJIZA, A. ; ROUGIER, E. ; LATHAM, J. P.
; JOHN, N.W.M. : Fluid driven fracture process in FEM/DEM analysis. In: DEM
Beijin, 2008, S. 242–248
MUNJIZA, A. ; XIANG, J. ; GARCIA, X. ; LATHAM, J. P. ; SCHIAVA D’ALBANO,
G. G. ; JOHN, N.W.M. : The Virtual Geoscience Workbench, VGW: Open Source
tools for discontinuous systems. In: DEM Beijin, 2008, S. 113–121

2



Abstract

In this PhD some key computational and algorithmic aspects of the Combined Fi-
nite Discrete Element Method (FDEM) are critically evaluated and either alternative
novel or improved solutions have been proposed, developed and tested. In particular,
two novel algorithms for contact detection have been developed. Also a comparat-
ive study of different contact detection algorithms has been made. The scope of this
work also included large and grand scale FDEM problems that require intensive use of
CPU; thus, novel parallelization solutions for grand scale FDEM problems have been
developed and implemented using the MPI (Message Passing Interface) based domain
decomposition. In this context a special attention is paid to the rapidly developing
multi-core desktop architectures. The proposed novel solutions have been intensively
validated and verified and demonstrated using various problems from literature.
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Chapter 1

SCOPE AND LAYOUT OF THE THESIS

1.1 Scope of the thesis

The Combined Finite-Discrete Method (FDEM) was developed in the mid ’90s by
Munjiza. In this formulation each body, entity, particle is discretized into N =1, 2,
3, ..., m finite elements (FEs) such as triangles and tetrahedra among others. Finite
elements are “glued” together using joints; there is no need to build a global system
of equations as for the case of a traditional FEM method or as the case of the Discon-
tinuous Deformation Analysis (DDA). Instead all the equations to be solved are local,
facilitating the development of parallel solutions.

One of the key aspects in any DEM software is the contact detection (CD) al-
gorithm. There are many algorithms previously developed in the literature, however
deciding which to use for a particular simulation among them is a challenging task. In
this context a detail comparison of two of the well known linear algorithms for bod-
ies of similar size Non Binary Search (NBS) and Munjiza Rougier (MR) alongside
a flavour of the MR algorithm developed in this work denominated MR-Schiava and
novel binary tree (BT) algorithm Balance Binary Tree Schiava (BBTS) is presented.

Interaction between particles, bodies and entities defines the type of CD that will
be employed. Interactions are not, however, always between bodies of similar size.
When a CD algorithm optimized for discrete elements of the same size is employed
for a system with a wide range of sizes the performance measure in CPU time will
suffer. To simplify interaction (tetrahedra/line, tetrahedra/surface, tetrahedra/triangle,
tetrahedra/tetrahedra, etc) and the CD algorithm associated with it in this work all in-
teractions are point/body, regardless of where the point is or who the point belongs to
(surface, triangle, tetrahedra, etc). A novel algorithm for point/body CD has been de-
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1.2 Layout of the thesis 20

veloped in this work denominated MunjizaSchiava (MS). This algorithm is described
and tested in sequential and parallel simulations.

FDEM simulations ran on desktop PCs are generally limited by the CPU power of
current processors. The increase in clock speed in the last 5 years has reached a barrier
due to thermal constraints in the dissipation of heat energy. The industry is gradually
moving towards the use of more processors with slower clock speeds; nowadays almost
all commercial off-the-shelf PCs are Multicore.

Conventional sequential programs cannot take advantage of the extra power avail-
able in multicore systems, as they can only use one processor at a time. The only
alternative for the industry and research community is to embrace parallelization on a
scale never seen before. To this end a novel algorithm using MPI (Message Passing
Interface) has been developed and tested using Multicore PC.

1.2 Layout of the thesis

This thesis is divided into several chapters detailing the various algorithms and test
undertaken. The contents of each chapter are as follows:

• Chapter 2 shows the different methods of discontinua.

• Chapter 3 introduces the FDEM method alongside different aspects of parallel
programming.

• Chapter 4 provides a detailed description of the novel BBTS CD algorithm for
bodies of similar size.

• Chapter 5 presents a short description of NBS, MR and the new MR-Schiava
algorithms.

• Chapter 6 explains and tests a novel CD algorithm for point/body.

• Chapter 7 presents comparisons between NBS, MR, MR-S and BBTS

• Chapter 8 features an algorithm for non-elastic normal interaction.

• Chapter 9 details and tests a novel parallel solution for the FDEM.

• Chapter 10 presents some application examples.

• Chapter 12 presents the conclusions and makes suggestions for further research.



Chapter 2

METHODS OF DISCONTINUA IN

GENERAL

2.1 Introduction

Methods of Discontinua are a relatively new set of tools revolutionising the scientific
community. The core of these methods is the intrinsic discontinuity present in nature,
where complex phenomena are the result of independent entities interacting with each
other. For example the local interaction of grains forming a metal bar, influences the
macroscopic properties of it, such as ultimate strength, fracture strength, etc. The
first part of this chapter contains a brief account of the development of the Methods
of Discontinua. Following on from this, the second part provides a summary of the
different Computational Methods for Discontinua:

• Discrete Element Method (DEM)

– Spherical particles

– Oblique and super quadratic particles

– Polygon model

– Real shape particles

• Combined Finite-Discrete Method (FDEM)

• Discontinuous Deform Analysis (DDA)

• Molecular Dynamics (MD)

21



2.1 Introduction 22

• Smoothed Particle Hydrodynamics (SPH)

Science and Engineering disciplines have experienced a significant advance during
the past forty years. Nano-devices57 and nano-structures192 are being used for in-
formation technology, Micro-Electro-Mechanical Systems69, 68, 43 (MEMS) have been
implemented in sensors, heat pumps, engines, etc. Smarter materials (such as carbon-
fibre) are being used in automobiles62, 26 and airplanes, changing the paradigm of what
it is possible to build.

These wide ranges of sizes and physical characteristics have produced a similar
wide range of tools to solve each particular case. In the case of fluid dynamics, the two
main groups69 are:

• Molecular Models

• Continuum Models

Each of the method has its limitations and a universal tool, which can be used to per-
form fluid dynamic simulations across the entire spectrum of engineering problems,
has yet to be created (i.e. from nano-devices175 to human scale engineering).

A standard tool to discretise continuum systems is the Finite Element Method32, 211

(FEM). In FEM the domain is subdivided into a “finite” set of smaller domains where a
series of partial differential equations are solved considering the boundary conditions.
Each of these subdomains has the same continuum properties as their main domain.

Not all systems can be simulated using FEM as there is not always guarantee of
continuity throughout the entire domain. A common feature in mountains is called
fault.87 Fault presents a distinctive “jump” in the continuity of the rocks. This discon-
tinuity poses a difficult problem for FEM.82, 129 It is possible to think that a mountain is
made of independent yet interacting bodies with the fault being the boundary between
them, where there is not one domain but a series of interacting smaller domains.

Another area in which classical FEM is not well suited is the calculation of granular
flows205 where the intrinsic discrete nature of the flow makes the continuum assump-
tion an impossibility. These flows have great importance in industrial applications such
as mills28 and pharmaceutical industries.197

The so called Methods of Discontinua were developed to deal with the discontinu-
ities of the domain: problems in which the interaction of atoms,175 particles,184, 36, 101, 56

bodies,133, 209, 149 rock joints,130 granular flows,28, 30 rock cutting174 and rock brak-
ing127, 126 play an influential role in the behaviour of the system. An important char-
acteristic of these methods is the capacity of dealing with continuous changes in the
interfaces solid/solid131 and solid/fluid.143
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In 1971, Cundall34 developed the Distinct Element Method to analyse rock me-
chanics problems of which the main characteristic was the discontinuity in the do-
main. From Cundall and his early application on rocks mechanics there were further
developments in other areas of engineering and science during the 1970s and early
1980s. In 1977, Lucy, Gingld and Monaghan, developed Smooth Particle Hydrody-
namics (SPH) to solve “astrophysical problems”.106 The first industrial application
was in particle flows in 197935 with further developments by Campbell in 198523 and
Haff and Werner in 1986.66 At the end of the ’80s, Shi182 developed the Discontin-
uous Deformation Analysis (DDA) in his PhD thesis. In the mid ’90s Munjiza intro-
duced the FDEM (FEM/DEM)145 method with further progress in contact detection in
1998136 and 2006.148

The complete list of developments during this important period of the Methods of
Discontinua is out of the scope of this thesis. Further reading can be found in the
review papers by Campbell,22, 21 Goldhirsh,58 Maclaughlin116 and the books, by Jing
and Stephansson82 and Munjiza et al.141

As stated by Cundall36, 130 the characteristics of the DEM method, which can also
be applied to any Method of Discontinua are:

• “Allows finite displacements and rotations of discrete bodies, including complete
detachment”36

• “Recognizes new contacts automatically as the calculation progresses”36

These two characteristics and the necessity of running simulations with a high num-
ber of elements, implies a high computational cost.201, 212, 49, 81 This constraint in the
simulations it is possible to run, has produced the development of new algorithmic so-
lutions called parallel algorithms.160 Depending on the hardware architecture, there are
different application programing interfaces (API), that can be used. On clusters85, 152 it
is possible to produce code using MPI,159, 61 OpenMP,25 in multicore MPI, OpenMP,
port base techniques76, 202 and in Graphics Processing Units (GPU), CUDA91, 153 and
the new developed OpenCL.24, 59

The use of GPU processors not only to compute graphics but also to solve DEM
problems presents great computational potential. For example one of the latest Nvidia
GPU hardware, the TESLA C2070, has 448 CUDA cores.
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2.2 Computational Methods of Discontinua

The expression “Computational Methods of Discontinua” is the general term used to
define any kind of numerical method dealing with a distinct, independent population
of objects that represent the domain.82 This general term is applied to:

• Discrete Element Method (DEM)

• The Combined Finite-Discrete Element Method (FDEM)

• Discontinuous Deformation Analysis (DDA)

• Molecular Dynamics (MD)

• Smoothed Particle Hydrodynamics (SPH)

One of the most important characteristics is the concept of emerging properties147, 172

resulting from Virtual Experimentations. Each entity poses a particular law of inter-
action with other entities and physical quantities such as pressure, temperature and
density will arise as a consequence of the Virtual Experimentation; as is in the case
of MD, where droplets of fluids175 are formed without any kind of model for surface
tension, or in the case proteins95 where new chemical compounds are emerging from
the simulations.

The mathematical roots82 of these methods are the Finite Difference Method100

(FDM), the Finite Element Method211 (FEM) and the solution of the equation of solid
mechanics.204, 144 The integration scheme depends generally on the kind of prob-
lem to be solved and can be explicit for the cases of rigid body systems82, 133 and
FDEM,133, 141 or implicit for DDA.82

This wide range of methods156 and applications, has only been possible with the
development of numerical algorithms and hardware capable of dealing with the kind
of intensive (in terms of CPU time) methods that were only dreamed of a few decades
ago. There are some overlapping algorithmic solutions between the different methods
as is the case with contact detection (CD) algorithms that can be used in DEM, MD,
etc. The remainder of this section describes each one of these methods.

2.2.1 Discrete Element Method

There are two main areas in DEM: one is the contact detection and the other is the con-
tact interaction.144 Contact detection is the search for all the possible contacts between
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all the entities in the same domain. For contact detection, a wide range of algorithms
have been proposed such as Alternating Digital Tree (ADT),18 3D-DDA,16 MR,148

NBS136 and many others. For contact interaction there are two major approaches:75

one is the so-called “soft particle” and the other one is the so-called “hard particle”.
In the soft particle algorithms a small overlap between the different entities is allowed
and the forces are calculated from this overlap.134 The hard particle approach does not
allow for any overlap. Usually the “soft particles” are applied for mechanical problems
while the “hard particles” are used in Molecular Dynamics.

There is a large volume of published studies describing the role of particle shapes
in the behaviour97, 48, 64 of the system. Properties such as inter-grain forces, veloci-
ties,131 breakage rate,133, 75 packing density65, 28, 64, 121 and permeability54 are particle
shape dependent.38 In the case of shear flows,29 the importance of the shape cannot
be relegated as final values of flow rates, flow temperature and boundary interaction
varies dramatically. These changes can be observed in real and virtual experiments.123

The some of the most common particle shapes for the DEM are:

• Spherical particles

• Oblique and super quadratic particles

• Polygon model

• Real shape particles

For a more complete list please refer to the book by Munjiza et al.141 and the review
paper of Dziugus and Peters.40

2.2.1.1 Spherical particles

The first particles used in the Distinct Element Method (Discrete Element Method)
were circular particles in 2D. The typical spherical particle141 shown in Figure 2.1 a is
described only by its position, radius, velocity, radial velocity, mass and inertia.

Simulations of tens of thousands and more of these particles175 are possible as their
computational cost (contact detection, interaction, etc) is small compared with other
kinds of particles. The biggest restriction is what physical problems can be addressed.
An intermediate solution between a spherical particle and a more complex particle
is the use of “virtual vertex” to take into account the rotational resistance.207 The
difference between this model and the 2D disc is in the calculation of the momentum;
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when two particles are in contact the calculated force is applied to the nearest virtual
vertex, as shown in Figure 2.1b.

a)

vi

ri

ωi

y

x b)

f
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y

x

Figure 2.1: Circular particles a)Description. b)Contact with virtual vertex. Figure
modified from Yamada et al.207

2.2.1.2 Oblique, super quadratic particles

In 1991, Williams et al. published a paper203 in which they described a new kind
of particle for DEM. These particles were still rigid but their shapes were not longer
limited to circles in 2D or spheres in 3D.

The equation to produce them in 2D141 is

(x
a

)m
+
(y

b

)m
= 1 (2.1)

where m is a positive number, a is the size in the x axis and b is the size in the y axis.
In 3D the equation to define them is

[(x
a

) 2
m
+
(y

b

) 2
m
]m

n

+
( z

c

) 2
n
= 1 (2.2)

Some examples of 3D super-quadric particles are shown in Figure 2.2.

New applications of super-quadric particles are coming to light as they are applied
to solve comminution processes (industrial particle breakage). Delaney et al.38 define
the super-quadric particles as

(x
a

)m
+
(y

b

)m
+
( z

c

)m
= 1 (2.3)

Their novel technique consists in the way that they treat the particles once they
break. When the algorithm detects the breaking of a particle, it will exchange it with
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a set of smaller super-quadric particles that occupy the same volume. The size and
the distribution of these new particles can be modified, depending of the particular
material and problem to solve.

a) b) c)

Figure 2.2: 3D quadric particles. a)a = 1.0, b = 1.0, c = 1.0, m = 1.0, n = 1.0
b)a = 1.0, b = 0.2, c = 0.5, m = 1.0, n = 1.0 c)a = 1.0, b = 1.0, c = 0.5, m = 0.5,
n = 0.5

2.2.1.3 Polygon model

Fraige et al.51 developed this particle model to simulate vibration flow in hoppers. The
polygon is made of vertices in which the outer angle is always >180 degrees. The
union between the vertexes is made with a disk as shown in Figure 2.3. This rounded
vertex helps the calculus of the DEM problem, as real particles “do not contain perfect
vertices”.51 The particles are rigid and cannot be deformed.197

O

Figure 2.3: Polygon DEM particle of 3 edges. The point of reference O will not
always coincide with the centre of gravity. Figure modified from Fraige et al.51

2.2.1.4 Real shape particles

In recent years, there has been an increasing amount of literature on the use of more
realistic particle shapes. As the computational power becomes available, working with
these kinds of particles is becoming less prohibitive in CPU and RAM terms. It is
possible to categorize real shape particles into:

• Super-quadric194 shape particle

• Pseudo5, 123, 51 shape particle
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• Real179, 97, 37, 48 shape particles

Super-quadric. It is one of simple particles. To create a super-quadric object from a
real particle is necessary to:

1. Get an equivalent super-quadric object

2. Set the same mass, and moments of inertia194

Even these quasi-real particles share some characteristics with the original particle,
their lack of similar morphology affects the final results.
Pseudo shape particles. Real particles are approximated as a series of N non-intersecting
spheres, grouped together.5, 123 This has the advantage of simplicity for the contact de-
tection and interacting algorithms, as spheres are simple to calculate. Limiting the
amount of different particle shapes for a determinate size distribution simplifies the
process of extracting properties. Two of these particles are shown in Figure 2.4

a) b)

Figure 2.4: Different particles shapes. Figure modified from Abou-Chakra et al.5

Real shape particles. These are the next logical step in the DEM simulations. The
general steps to obtain real shape particles are:

1. Analyse specimen (laser scan, X-Ray, tomography, etc)

2. Obtain the principal characteristics (shape, moments of inertia, mass)

3. Build DEM model

Non-destructive methods such as image analysis in 3D,5 laser scan97, 96 and X-Ray
tomography,194, 120 can be applied depending of the kind of sample to be analysed.
Principal moments of inertia can be obtained from the computational surface model
for uniform density samples.97
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Other parameters are not as simple to obtain. Even for a well-known property such
as Young’s modulus, the relationship between micro-parameters and macro-parameters
will depend on the particle size, the contact modulus and the stiffness ratio.208 If the
particles are allowed to break,128 other considerations must be taken into account.
Extracting fracture properties from samples is far from simple though inverse analy-
sis90, 89 has been applied in the past with some promising results.

How to represent and build a 2D or a 3D real particle depends on the method.
For non-deformable discrete bodies the simplest way to build a particle is to assemble
disks in 2D. Asamawy et al.179, 11 developed an algorithm called Overlapping Discrete
Element Cluster (ODEC). The ODEC algorithm in 2D creates a series of overlapping
rigid discs (discrete elements), that fill the void of a real particle’s “outline shell”, as
shown in Figure 2.5. By combining the ODEC with PFC2D1 Asamawy et al.,179, 11

were able to simulate real soil particles2.
The extension of ODEC37 into 3D overlaps rigid spheres. To optimize the calcu-

lation time once the particle has been modeled with spheres, the algorithm replaces
groups of smaller spheres with bigger ones.

a) b)

Figure 2.5: Fraser river sand a) Particle shell. b)DEM model using ODEC. Figures
modified from Sallam179

A new method to simulate real shape bodies using rigid spheres was proposed by
Ferellec et al.48 In this method all the masses of all the spheres are set to the same value
regardless of their size to reproduce the particle inertia. Some errors will still occur,
but they are smaller than the ones produced if all the spheres have the same density.

2.2.2 The Combined Finite-Discrete Element Method

FDEM was developed in the mid 90’s by Munjiza145 who wrote the first comprehensive
book in this area in 2004,133 followed by a second book in 2011.141 In this formulation,
each entity is discretized into N = 1,2,3, ..,m finite elements (FEs) such as triangles
in 2D, tetrahedron in 3D, etc. This allows the calculus of deformations, fracture and
other properties.

1Commercial DEM software from Itasca
2The PFC2D software has an option to consider a group of circles as a rigid body do not performing

contact detection or interaction between them
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There is no need to build a global system of equations as for FEM and DDA. In
FDEM there is no integration of the equation of motion for the continuum medium
because there is no continuous medium. Instead the position, velocity, rotation, etc.
are calculated using the equation of motion of each FE. Independent FEs are “glued”
together using joints, as shown in Figure 2.6.

a) b) c)

Figure 2.6: Two FEs glued forming a complex FDEM entity. a)Joint forces equal to
zero. b)Joints in compression. c)Joints in extension.

If the particles are modelled using FDEM, and the elements are triangles or tetra-
hedra, there is the advantage to use standard open source/commercial codes (such as
GID-Cimne, etc.) to generate the mesh. This makes the creation of real particles libraries

simpler97.

2.2.3 Discontinuous Deformation Analysis (DDA)

The Discontinuous Deformation Analysis (DDA) was developed at the end of the
80’s.182, 82 It is used to simulate rocks systems,182 rock blasting,63 stability of rocks
slopes,74 stability on tunnels,12 fluid solid interaction on breakwaters,84 etc. Validating
a new solution for DDA is not trivial, and some of the challenges faced are similar to
the ones encountered during FDEM validations. MacLaughlin et al. wrote a compre-
hensive review on the different validations cases for DDA.116

DDA is an implicit method, similar in some aspects to FEM method, as the sys-
tem to solve is the “so-called energy minimization principle”.82 If total energy in the
system, ∏ is calculated as

∏ = ∑(Ui)+K+W (2.4)

where Ui is the is potential energy, K the kinetic energy, and W the dissipated energy.
If ∏ is differentiated respect the displacements d as

∂ ∏

∂d
=
[
∑∂ (Ui)+∂K+∂W

]
/∂ {d}= 0 (2.5)
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it will produce the system of equations to be solved.82 The assembly of the system’s
matrix is a non-trivial algorithmic task. The equations change as the simulation
progresses and new contacts are produced, new fractures are created etc. Once the
system of equation has been assembled, it is solved implicitly in the same way as
many FEM methods.

2.2.4 Molecular Dynamics

Molecular simulations are performed using two methods,7 one is the “Monte Carlo”
(MC) method8, 178 and the other is the Molecular Dynamics Method (MD)178, 171. In
1953, Metropolis et al125 made the first Monte Carlo simulation.

Monte Carlo simulations calculate the properties of the system by evaluating the
equations at random positions r. For this reason, it is denominated “Monte Carlo”.67 It
is a stochastic method and there is no need to calculate the properties of all molecules
in the system.178 The integrals evaluated are of the form67

〈A〉= 1
Z

∫
. . .
∫

exp [−βU (r1,r2, ...,rN)]A(r1,r2, ...,rN)dr1 . . .drN (2.6)

Z=
∫

. . .
∫

exp [−βU (r1,r2, ...,rN)]dr1 . . .drN (2.7)

where 〈A〉 is the property to be evaluated, dr1 = dx1 dx2 dx3, β = 1/kT , k is the
Boltzmann’s constant and Z is the configurational integral. This produces great
savings in terms of RAM and CPU power, compared with MD.

Molecular dynamics98 is the study of the interaction between the atoms and/or
molecules on an atomic scale. The scale and length of the simulations that can be
achieved nowadays with the computational power available is too limited to simulate
any kind of real-life problem in engineering.109 However, there are some kinds of
problems where MD represents a good tool and sometimes the only tool, for the cal-
culus of thermo-physical properties like shear viscosity, etc.

If the potential energy of the system is a derivative of the molecular coordinates, the
‘emerging’ properties such as pressure, temperature, etc, can be obtained147 utilizing
MD simulations.

In Molecular Dynamics, the evolution of the system is calculated by integrating the
Newton’s equations of motion over all the particles.189 There are two suppositions:
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• The atoms are described as interacting points

• There is no mass change in the system

The interaction between atoms is calculated by a general potential function109 as

U (r1,r2, ...,rN) = ∑
i

V1 (ri)+ ∑
i, j>i

V2
(
ri,r j

)
+ ∑

i, j>i,k> j
V3
(
ri,r j,rk

)
+ ... (2.8)

where U is the potential, rn are the position vector of the nth particle, and the function
Vm is the m-body potential. The V1 is the potential from external sources (i.e. gravity,
etc), V2 is the pair-wise interaction between the atoms i, j. V3 is the interaction
between the atoms i, j, K etc. The use of functions of order bigger than two will be
expensive in terms of CPU time. Moreover, any complex interaction between atoms
or molecules is incorporated inside V2. In general, the external potentials are not
considered.

Usually the potential U is decomposed into the classical intermolecular and in-
tramolecular potential189 as

U =Uint +Uext (2.9)

When MD is applied to fluids, Uext is decomposed as

Uext =Ud−r +Uel +Upol (2.10)

where Ud−r is the dispersion-repulsion interaction, Uel is the electrostatic interaction,
and Upol is the polarized interaction between molecules.

One of the most popular mathematical models for Ud−r (V2) is the Lennard-Jones
potential. This potential is the dominant for low polarity systems, like alkanes,189 and
it is calculated as

V (r1,r2) =V (r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
,r =

∣∣ri j
∣∣= ∣∣ri− r j

∣∣ (2.11)

where ε and σ are constants and the first term accounts for the repulsive potential and
the second term accounts for the attractive potential. This potential force is given by
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f (r) =−
∂ep

∂ r
=

24ε

σ

[
2
(

σ

r

)13
−
(

σ

r

)7
]

(2.12)

This means that all the atoms are interacting with each other. To compute all the
iterations among atoms using the Lennard-Jones potential will imply quadratic calcu-
lations. There are several methods67 to truncate the potential function52 and limit the
amount of contact couples. The most common methods are:

• Simple truncation

• Truncation and shift

• Minimum image convection

Simple Truncation Implements a cut-off distance.67

eps (r) =

 ep (r)− ep (rc)

0

: r ≤ rc

: r > rc

(2.13)

The typical value of rc = 2.5σ and the value of ep (rc) =−0.0163168911360000ε

and the force fs (r) =−0.0389994774528000 ε/σ . This cut-off will influence proper-
ties such as pressure and internal energy. Some compensation formulas are proposed
by Haile67 to correct the long range interactions. The total energy will not be constant
as the simple truncation produces a “jump” in the potential energy.

Truncation and shift. To avoid the jump in the potential energy175, 67, 60 the cut is
applied to the force and from that to the potential energy. This potential preserves the
total energy3.

fs (r) =

 f (r)− f (rc)

0

: r ≤ rc

: r > rc

(2.14)

If the force is integrated, then the shifted potential67 with the cut-off radius is given
by

eps (r) =

 ep (r)− ep (rc)+ f (rc) [r− rc]

0

: r ≤ rc

: r > rc

(2.15)

3This is a good tool to debug a MD code.175
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where rc is the cut-off distance.

This potential still presents a discontinuity in the force and may produce some
“instabilities”.52

Smoothing function. Frenkel and Smit52 presented an alternative model for the
Truncation and Shift potential where a smoothing function S (r) is defined in order to
decrease linearly the potential from rl ≤ r ≤ rc where rl is the distance where the
smoothing function starts and rc is the truncation distance. The new potential is given
by

ep (r) = 4ε S (r)
[(

σ

r

)12
−
(

σ

r

)6
]

(2.16)

and

S (r) =


1

1− (r− rl)
2 (3rc− rl−2r)/(rc− rl)

3

0

: r ≤ rl

: rl < r < rc

: r > rc

(2.17)

Molecules present a greater challenge, as their potential cannot be evaluated using
the equation 2.11. There are different models that can be used to simplify the molecular
potential:

• All atoms

• United atoms

• Anisotropic atoms

If each one of the different atoms are considered as a force centre the model is called
“All Atoms”. This form of potential is CPU expensive, and other alternatives have
been proposed. If the molecule is treated as a single unique point, it will become a
single “atom”. Depending on the position of this point the model is called “United
Atoms”. If the point is in the centre of the molecule, and if the centre is located in an
intermediate position, the model is called “Anisotropic United Atoms”189 as shown in
Figure 2.7.
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a)

 

 

b)

 
 
 
 

 
 
 
  c) 

Figure 2.7: Force centre model. a)All atoms. b)United atoms. c)Anisotropic United
Atoms

Molecules also present an intramolecular potential Uint . As the atoms inside a
molecule change their relative position, there will be changes in the stretching, bend-
ing, torsion and dispersion-repulsion potentials. The intramolecular potential contri-
butions are neglected if the molecule is considered rigid.

2.2.5 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) was developed at the end of the 1970s, in
order to simulate astrophysical problems.106 The use of mesh methods was not suitable
to solve this kind of phenomenon where the mass of the system is located in specific
points and the rest of the system is empty. Basically, SPH is a Lagrangian grid-less
method in which all the information is located in some defined points, these points
will move according to the conservation of energy equations.

Latter SPH was developed to solve different kinds of problems and nowadays
is used in diverse areas of science and engineering such as; fluid dynamics,191 im-
pacts190, 124 explosions,183, 107, 169, 108 and granular media.31, 103

SPH is becoming one of the most popular mesh-less methods for fluid dynamics,103

commonly applied to real free-surface flows.108 The most important characteristic of
SPH is the capacity of adaptability to an arbitrary bulk set of particles at each time step.
This converts SPH in a natural method to solve problems with important deformations
like impacts, and explosions.

SPH presents an harmonic combination of the Lagrangian formulation and particle
approximation. SPH particles move according to internal and external forces carrying
material properties.108 All of these quantities evolve according to governing equations,
which are written in term of fluxes between particles.108, 45

A function f (r) where r is the position in the domain can be written as
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f (r) =
∫
Ω

f
(
r′
)

δ
(
r− r′

)
dr′ (2.18)

In Smoothed Particle Hydrodynamics any function f can be written as a convolu-
tion product with an interpolation kernel function ω (r,h) where h is the smoothing
length

f (r) =
∫
Ω

f
(
r′
)

ω
(
r− r′,h

)
dr′+O

(
h2) (2.19)

The approximation of the equation 2.19 can be written as

f (r) = ∑
b

mb

ρb
f (rb)ω

(
r− r′,h

)
dr′+O

(
h2) (2.20)

where b is referring to each particle in the present domain, and dr′ has been replaced
by the volume mb/ρb of the particle b. If the error is dropped, and considering the
case of a spherical kernel (i.e. ω (r,h) only depends on the distance between particle
pair) a typical 2D Kernel function in 2D looks like the one shown in Figure 2.8.

 

Figure 2.8: 2D Kernel function.

The Figure 2.9 shows a particle a and the nearest particles within a radius hr that
contributes to the kernel of a.
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Figure 2.9: Particle a and all the nearest particles that contribute to the kernel of a.



Chapter 3

INTRODUCTION TO THE COMBINED

FINITE-DISCRETE ELEMENT

METHOD

3.1 Introduction

In this chapter different aspects of the FDEM method are introduced, such as; contact
detection, deformation, joints and parallelization. DEM is one of the most signific-
ant current developments142 in computational mechanics. During the past 40 years
this method has been adapted to solve increasingly complex problems. From its hum-
ble beginnings where the particles were simple rigid bodies34, 8282, to more complex
algorithms able to deal with deformable particles.133, 141, 129 There are a variety of
methods, where the particles are allowed to deform under internal and external forces.
The simplest of them rely on 2D circles that can deform/overlap depending on the
loads.92, 157 Rattanadit92 investigated the “Dynamic Analysis of Granular System In
Bending” coupling DEM particles with FEM to simulate an elastic container.1 One of
the limitations of this method is the absence of complex behaviour on the particles.

If a more complex behaviour of each particle is required, the natural thing to do
is to discretise them into smaller finite elements, and then “glue” them together to
simulate the original particle. The method that allows this is called The Combined
Finite-Discrete Element Method. It was developed in the mid 90s145 by Ante Munjiza.

For the FDEM method different finite elements (FEs) have previously been pro-
posed such as beam element,13, 137 linear triangle, tetrahedra,133 quadratic tetrahedra,206

1Do not confuse with FDEM method

38
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shell,150 etc. All these FEs, share the same main issues157, 206, 141 that have to be solved
in order to simulate physical problems:

1. Particle deformation

2. Contact interaction

3. Contact detection

4. “Joints” between particles / Fracture

5. CPU time / parallelization

Some of this issues are shown in Figure 3.1.

a) Undef. Def.

F F

b) Contact

c)
Joint

FF

d) Failing Joint 

FF

Figure 3.1: Some typical issues in FDEM. a)Deform. b)Contact. c)Transmission of
forces between independent entities (FEs). d)Fracture

3.2 Equations for the Discrete Element Method

The governing equation194, 53 for a rigid discrete element is:

Mü+Cu̇−Fext−Fcon = 0 (3.1)

where ü is the acceleration, u̇ is the velocity, M is the mass matrix, C is the damping
matrix, Fext is the external force vector and Fcon is the contact (interaction) force
vector. If the particle is not rigid a new term has to be added to the previous equation

Mü+Cu̇+Fint−Fext−Fcon = 0 (3.2)
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where Fint is the internal force vector. The equation 3.2 can be applied to a variety of
situations, however is not enough to describe more complex phenomena. For the
FDEM method it is necessary to add one more term to the equation 3.2, as the
particles are “glued” between each other through joints, as shown in Figure 3.1c. The
resulting equation is calculated as

Mü+Cu̇+Fint−Fext−Fcon−Fjnt = 0 (3.3)

where the new term F jnt is the joint force vector.

3.3 Contact detection

Contact detection (CD) is one of the most important aspects of the DEM Method. It
is the process of finding all interaction couples i, j at a particular time and in some
cases could take more than 60% of the total CPU time.133 These couples can be made
of objects that are currently interacting or that may interact in nCD steps as shown in
Figure 3.2.

robj

rCD

Figure 3.2: Two discrete elements that may interact in n steps.

If the RAM memory is not a limitation, the contact couples can be saved on a data
base (arrays, list, binary tree, etc.), avoiding the need for performing contact detection
at each time step, as shown in Figure 3.3. There is always a trade-off when the con-
tacting couples are saved as more couples will increase the interaction time (computing
false contacts).

The size of each element, for the purpose of CD, is increased by the maximum
distance that any object can travel in nCD steps. This distance is defined as 4bu f and
takes into account all the possible positions where the element can travel. The value of
rCD is calculated as
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rCD = rob j +4bu f (3.4)

and4bu f is given by

4bu f = nCD vmax4t (3.5)

where rob j is the radius of the object, nCD represents the number of steps between
contact detection, vmax is the maximum velocity of any object, and4t is delta time.
The value of nCD is obtained basically by trial and error. On the limit of nCD→ ∞ the
buffer4bu f → ∞ and the data base is no more than a quadratic interaction, of
everybody interacting with everybody.

Figure 3.3: Flow diagram CD and interaction using a database of contact couples.

The Direct Search (DS), also known as quadratic search, is shown on the Algorithm
3.1. As its name states, the time increases quadratically with the number of elements
as
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T ∝ N2 (3.6)

where T is the time, and N the total number of elements. In general this algorithm is
impractical for dynamic simulations with any significant amount of elements. On the
other hand, for semi-static simulations with few searches are performed and contact
couples stored it could be an alternative, avoiding the need to implement a more
sophisticated algorithm.

Algorithm 3.1 Direct search (DS)
1: integer iLv_N . Total number of elements
2: integer iLv_i, iLv_ j . Element i, element j
3: boolean qLv_con . Contact
4: for (iLv_i = 0; iLv_i < iMv_N;++ iLv_i) do
5: for (iLv_ j = iLv_i+1; iLv_ j < iMv_N;++ iLv_ j) do
6: qLv_con = qS_ConDet (iLv_i, iLv_ j)
7: if qLv_con then
8: vS_Interaction(iLv_i, iLv_ j)
9: end if

10: end for
11: end for

For general DEM simulations, the quadratic search imposes a limitation on the
number of objects that can be simulated. Different algorithms have been proposed in
the past to improve the CPU time of the quadratic search, namely Alternating Digi-
tal Tree(ADT),18 3D-DDA,16 MR148. The main improvements in CD were made by
Munjiza136 in the mid 90s, who developed the first linear CD algorithm. It was called
Non Binary Search-Munjiza (NBS), where the time is given by

T ∝ N (3.7)

In the Chapters 4, 5, 6 and 7, different issues related to CD are explained in detail.

3.4 Deformation 3D

An object subject to external forces will experience internal forces.162 Each small
volume of this body will experience in general a combination of normal stresses σi

and shear stresses τi j as shown in Figure 3.4
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To describe the stress at a point inside the body, it is necessary to know three normal
stresses σx, σy, σz and six shear stresses τxy, τyz, τzx, τyx, τzy, τzy. These form the stress
tensor matrix T115, 80

T =

∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣≡
∣∣∣∣∣∣∣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

∣∣∣∣∣∣∣≡
∣∣∣∣∣∣∣

σ1 τ12 τ13

τ21 σ2 τ23

τ31 τ32 σ3

∣∣∣∣∣∣∣ (3.8)
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Figure 3.4: a)General body and the external forces acting on it. b)General stresses act-
ing on a small region of the body, with volume =dxdydz. Figure adapted from Parker162

and Collins33

The Cauchy’s Stress Theorem, states that the stress vector t on a point with a nor-
mal n is obtain by80

t =T ·n (3.9)

Forces on a Tetrahedron for FDEM. One of the most simple and well documented
finite element (FE) for the Finite Element Method (FEM) is the tetrahedron.110

Countless open source (OpenFoam, Code-Aster, etc.) and commercially (Ansys,
ABAQUS, etc.) programs already work with tetrahedra. This is a great advantage
when complex 3D objects have to be meshed and boundary conditions set.

The capacity of simulating complex and non-trivial phenomena in FDEM demands
robust yet not intensive algorithms. In his book Munjiza133 developed a formulation for
the constant strain tetrahedron finite element. The detailed explanation of the method
is beyond the scope of this work.

The solution proposed by Munjiza, is for small strains. It is based on the Green-St
Venant tensor, with the Hook’s law for the relationship between stress and strain. The
stress tensor T in global coordinates is given by
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T =
E

(1+ν)

1

(|detF|)2/3
Ẽd +

E
(1−2ν)

1

(|detF|)2/3
Ẽs +

2µ

(|detF|)
D (3.10)

where E is the elastic modulus, ν is the Poisson’s ratio, F is the deformation gradient
matrix, Ẽd is the Green-St Venant matrix due to shape change, Ẽs is the Green-St
Venant matrix due to volume change, µ̄ dissipative damping of the material and D is
the velocity gradient matrix .

The stress on each face of the tetrahedron can be calculated using the equation 3.9.
Replacing the normal n by m (half of the cross product of the triangle that form the
surface), the force on the surface is

fsrf = Tmsr f (3.11)

Finally the force to add to each of the nodes of the surface is

fnod =
fsr f

3
(3.12)

3.5 Fracture 3D

The joints shown in Figure 3.1c and Figure 3.1d, transmit the load from one finite
element to its neighbours. In FDEM formulations fractures are only produced at joints
as the finite elements cannot fracture. Fracture is an open fill in constant development
where new materials impose the need of new solutions55 such as multiscale fracture.83

The solution employed in this work is based on the smeared fracture model, devel-
oped by Munjiza.133, 143, 140, 99, 135 The model takes into account fractures of Mode I
and Mode II, shown in Figure 3.5.

The fracture model is based on the rock fracture under tension from which a typical
stress-displacement curve is shown in Figure 3.7. For any stress less than the tensile
strength ft there is no damage and all the energy stored as potential energy is restored
to the system. This is hightailed in Figure 3.7a. For any stress bigger than the tensile
strength a fracture will be produced, and the joint will start to fail on the softening
branch, as shown in Figure 3.7b. The area under the softening branch is equal to the
energy release rate G f

135. In FDEM this is “implemented through the single crack
model”133 shown in Figure 3.6.
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a) b) c)

Figure 3.5: Fracture Modes. a)Mode I. b)Mode II. c)Mode II. Figure adapted from
Collings33

x

y

δc
fc

fc

σ

σ

Figure 3.6: Crack model: colour represents the bounding stress. Figure adapted from
Munjiza133

In theory should be no separation before the tension ft is reached. In the single
crack model there is always a small separation even before ft is reached. This separa-
tion and the displacement δt depends on the penalty of the joint.

In this work joints cannot fail in pure tensile compression. The relationship be-
tween the compression displacement and the force is linearly proportional to the joint’s
penalty as shown in Figure 3.8a

a)

σ

δδt δc

ft

b)

σ

δδt δc

ft

Figure 3.7: Stress curve defined as function of displacements. a)Hardening arm high-
lighted. b)Softening arm highlighted. The area under the curve is hightailed in light
green, and is equal to the fracture energy G f . Figure adapted from Munjiza133
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In general the fracture process will be produced in steps, with the displacements
positive and negative. One such process is shown schematically in Figure 3.8b. Where
the curve is walked in A, B, C, C, D order: at the end of the curve A (δ = δt), the pick
stress ft is reached, and any further displacement will produce permanent damage.
At the end of B, the displacement is lowered to zero on the curve C. It is worth to
mentioning, that for any displacement on the curve C δ ≤ δCB there is no further loss
of energy. Finally the displacements are increased on C, until δ = δCB is reached. As
the displacement increases the joint fails on the curve D.

a)

σ

δδt δc

ft

b)

σ

δδt δc

ft A
B

C D

δCB

Figure 3.8: Stress curve defined as function of displacements. a) Compression arm is
highlighted. b)The curve is “walked” in A, B, C, D order.

The value of the stress σ in the softening branch for any displacement δ > δt is
calculated as

σ = z ft (3.13)

where z is a mathematical model based on experimental data for concrete failure
under tension133 and is calculated as

z =
[

1− a+b−1
a+b

eD(a+cb/((a+b)(1−a−b)))

]
[a(1−D)+b(1−D)c] (3.14)

where a, b, c are parameters chosen to fit a particular material and D is the damage
given by

D =


0 if δ ≤ δt

1 if δ > δc

δ−δt
δc−δt

otherwise

(3.15)
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The next example illustrates the main attributes of the joint where two regular tet-
rahedra, shown in Figure 3.9, have their position imposed function of time. The left
tetrahedron is fixed throughout all the simulation, while the right tetrahedron moves in
different directions to simulate pure tensile fracture, pure shear fracture, and a com-
bination between tensile and shear failure.

xz

y

Figure 3.9: Two regular tetrahedron, of A=173.205 mm2

The material properties of the joint are ft = fs = 5 MPa, fracture energy G f =

Gt =30.0291 N/m, joint penalty 26.6 GPa. The parameters for the curve z are a= 0.63,
b = 1.8 and c=6. The area under the softening branch z is given by

Aso f =
∫ D=1

D=0
z(a,b,c,D) dD = 0.387974 (3.16)

and the displacement in the softening branch are

4t = δc−δt =
G f

Aso f ft
= 15.48µm (3.17)

4s = δc−δs =
G f

Aso f fs
= 15.48µm (3.18)

and the maximum forces are given by

Ft = A ft = 866.025N (3.19)

Fs = A fs = 866.025N (3.20)

The forces for the Mode I, Mode II and the combined Modes I and II are shown in
Figure 3.10. The comparison between expected results and the test are shown in table
3.1.



3.6 Parallelization 48

a)

-5

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70  80

Po
si

tio
n 

/(
µm

)

Time /(µs) b)

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

-5  0  5  10  15  20  25

Fo
rc

e 
t /

(N
)

Position x /(µm)

c)

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

-5  0  5  10  15  20  25

Fo
rc

e 
s 

/(
N

)

Position y /(µm) d)

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

-5  0  5  10  15  20  25
Fo

rc
e 

/(
N

)
Position /(µm)

Force t
Force s

Figure 3.10: Failure modes. All forces are scaled by -1. a)Position function of time.
For mode I is position x, for mode II is position y, and for the last case is position x and
y. b)Mode I, total force x. c)Mode II, total force y. d)Mode I and Mode II, total force
x (normal) and y (tangential)

Case Expected Test
Mode I: Ft (N) 866.03 866.40
Mode I:4t (µm) 15.48 15.45
Mode II: Fs (N) 866.03 866.02
Mode II:4s (µm) 15.48 15.56
Mode I & II: Ft (N) 866.03 866.02
Mode I & II: Fs (N) 866.03 866.02

Table 3.1: Joint test

3.6 Parallelization

The modern definition of Computational Mechanics started with the creation of the
transistor in the earlier 70’s, and relied upon a continuous growth of performance. The
three pillars of the transistor speed have been:19

• Scaling: By scaling the transistor, the performance increases, and the demand
of energy is reduced.
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• Micro-architecture: By rearranging the transistors, “pipelining”,19 “branch pre-
diction”,19 etc.

• Memory: Using more than one level of cache memory, reducing the delay time
between the processor and the memory.

These advances in processor speed have not been matched in the memory architecture.
Differences between processor and the Dynamic Random Access Memory (DRAM)
are substantial as shown in Figure 3.11. This has led to the use of more than one level
of cache to compensate for the DRAM velocity.19
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Figure 3.11: Relative comparison of velocities between CPU and DRAM. Figure adapted
from Borkar et al.19 .

CPU velocities have not changed significantly in the past few years and will not
change that much in the near future.1 There is not a single reason for this, but a
series of complex factors acting together. Reducing the size of the transistor, is not
the simplest method for increasing the velocity, as was the case until the early 21st
century. As the size decreases the voltage at which the transistor start to conduct (the
threshold voltage) decrease as well. This decrease in the threshold voltage increases
exponentially the amount of leakage on it, increasing the power consumption.19 The
main operating voltage of the transistor is also “not expected to change in the near
future”.15

Another of the reasons for this slowdown in the velocity, is the amount of power
consumption. Simply adding more cores and making then work at the maximum fre-
quency will produce high power demanding processors.19 The total power that can be
economically dissipated per die is around 100+ watts.15 Once that has been reached
another way to reduce the power is to slow down the clock speed.
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3.6.1 Hardware processors

As previously mentioned, we are facing a time where it is no longer possible to ex-
pect the next generation of processors to outperform the previous generation in clock
speed. Demand for more computational power has led to hardware customisation of
big server centres in companies like Google, Facebook, HP and Dell. Even open hard-
ware projects are starting to gain momentum2. Servers are power demand structures,
and in some cases the kind of tasks that are performed are restricted. It makes sense to
customise the processors, switching off some of the capacities, and increasing others,
saving energy and increasing performance.4

Not all applications require extreme computational velocities and interconnected
servers. For applications that can be split into separate independent tasks such as
the SETI167 project, a “colossal amount of computing power could be assembled”,94

building what is in fact a “super computer” with desktop CPU velocities.
Regardless of the path chosen to obtain more computational power, all solutions

will rely upon one or more of the three main groups of hardware processors:

• Graphic Processor Unit (GPU)

• Central Processor Unit (CPU)

• Low power processors

In recent years, a new class of low power processors, such as ARM, have become more
important as their use in mobile devices becomes more and more common.

GPU. These processors have been used and driven mostly by the gaming industry and
its continuous demand for more powerful processors. Nowadays almost all desktop
computers have one GPU processor unit.158

Before the mid 2000s , the main applications of GPU processors have been for the
calculus of graphics. The classical “stream programming model”180 used by the GPU
is showed in Figure 3.12. In this model, each processing core, reads a well-defined area
in the memory and produces the same size output result. Other more complex models
have been propose in recent years with variable size input and non standardised size
output.180

2Projects like OpenCompute
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1 2 3 4Procesing Cores

Output

Input

Figure 3.12: GPU stream programming model. Figure modified from Sengupta et al.180

ControlArithmetic Control Unit
Cache DRAM

CPU GPU

Figure 3.13: GPU and CPU philosophy design. Figure modified from Nvidia155 .

What differentiates between CPU and GPU, or we could say between Multicore
and Many-Core processors are the problems they are designed to solve. On one hand
Multicore processors are expected to perform well while running legacy sequential
codes but, more importantly, these multicore processors possess non-simple controls,
that “allow single thread to execute in parallel or even out of order while maintain-
ing the appearance of sequential execution”.91 Meanwhile, Many-Core processors are
designed to run simple parallel applications.91 They are “single-instruction-issue”196

and posses “simpler memory models”.91 This different philosophy is shown in Figure
3.13.

With the development of program tools like CUDA91, 153 and OpenCL,155, 151, 24

the scientific community is taking advantage of these powerful processors.170

The simplicity of GPU with respect to CPU, ensures relative speed-ups but at the
same time increases the complexity of code, as the program has to be structured into
calculus blocks158, 19 to take advantage of this power.
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CPU. The time we were expecting each generation of processor to be faster than the
previous one, doubling the clock speed every 24 months, stopped almost decade
ago.15 The Moore law, establishes that the increase in the number of transistors/area,
will continue to happen in the future,15 but does not have a relationship with the
velocity of the chips.
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Figure 3.14: Arrangement of cores. a)6 equal cores. b)30 smaller cores. c)A mix of the
previous solutions. Figure modified from Borkar et al.19

“Energy-proportional computing”19 is the last aim of chip designers. One big
single core is energy inefficient, and the evolution of processors is moving into mul-
ticore. Non-parallel programs cannot benefit from multicore processors, but parallel
programs can. In theory a parallel program running in 2 processors should increase
its velocity by 2x, and so son. Borkar et al.19 proposed three different homogeneous
arrangements for an hypothetical 150 million transistor. A six large cores, really good

for single thread applications with an theoretical 6x increase in parallel is shown on Figure
3.14a. 30 smaller cores, better for parallel applications is shown in Figure 3.14b. Two larges

cores and 20 smaller cores are a combination of the previous cases is shown in Figure 3.14c.
In a new era where the power used is defined by features in chip design, new

revolutionary solutions have to be implemented in order to speed up applications. Par-
allelization is the most commonly solution proposed but alone it will be not enough.
The traditional approach of 90/10, which designs the chip for the 90% of the cases, is
facing power barriers.

Chien et al.27 proposed a new approach. In their 10x10 design proposal, the most
common tasks should be packed into 10 different groups. For these groups a custom
design micro-engine on the chip will run the specific task. The main advantage is there
will be about 10x saving in energy for each domain. This proposal is taking what is
already happening in the silicon industry one step further, as the interaction of these
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micro engines are made in a way that the data is shared in the L1 cache, speeding up
the access to the memory. The idea is that a particular application may use one or more
engines at the same time, saving energy by using only what is needed, therefore using
particular engines efficiently. This is shown schematically in Figure 3.15.

90/10 Chip 10x10 Chip

Application Application

eng eng eng

eng eng eng

Figure 3.15: Schematic view of a traditional 90/10 chip (right), and the proposed the 10x10
chip (left).

Low Power Chips. The key for the future may be in low power chips such as the
ARM and the Epiphany3. The most common of these are the ARM. ARM have been
designed from the beginning with power consumption as one of the main features.
Companies like Apple, Nokia, Samsung and many more are using ARM chips for
their flagship products.

The most interesting characteristic of the ARM is not in the type of products where
they can currently be found but the ones that are coming to the market. For the first
time one of the biggest companies in the server segments, HP, is using really low power
chips in its servers,77 using Calxeda flavour of ARM in its project Moonshot Servers78

which is expected to deliver

• 89% less energy

• 94% less space

• 63% less cost

Canonical with its product Ubuntu server is supporting ARM technologies and in par-
ticular these servers from HP.10 These have implications not only for the Internet Pro-
viders, but for the scientific community who can benefit in the near future from running

3Epiphany (from Adapteva) chips have been designed with multiprocessing as their main character-
istic.



3.6 Parallelization 54

simulations on less expensive servers. A small step in this direction demonstrated by
a cluster3 made by Cox in the university of Southampton using 64 RaspberryPi (ARM
computer) computers to run MPI simulations.

3.6.2 The computer as heterogeneous system

Today, computers can be analysed as an heterogeneous mix of different systems,151 as
shown in Figure 3.16

CPU-B

GPU Graphic/Memory
 Controler

DRAM

Input/Ouput 
Controler Hub

CPU-A

Figure 3.16: Heterogeneous system, with two CPU units, that may be different, and one GPU
unit. Figure modified from Munshi et al.151 .

It is expected that in the future, applications will take advantage of these two par-
ticular design processors, running part of the application on the CPU and other parts
on the GPU.91 CUDA91, 153 and OpenCL24, 39, 155, 151 allow for the develop of software
that seamlessly uses CPU and GPU.

This heterogeneity is becoming a common word in todays computers. There are
already some chips that introduce “heterogeneity” in their design such as the Intel
Sandy Bridge. Future developments have to take them into account.

3.6.3 Hardware memory

Today’s computers can be divided in two main groups from a memory point of view.160

These groups are shown in Figure 3.17.
The first group, called is called “Share Memory”, is encountered in Multicore Com-

puters. In this group each processor has the ability to read and write all the memory.
OpenMP provides tools to code for these systems.
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The second group is called “Distributed Memory”, and is the typical encounter in
a High Performance Computing (HPC)-Cluster. Nowadays clusters have nodes with
more than one processor, making them hybrid systems.160 Each node can only ac-
cess other node’s memories through the network. A typical language to program for
Distributed Memory is MPI.
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Figure 3.17: Memory distributions. a)Share Memory System b)Distribute Memory System
with 4 processors (each processor could be a multicore processor). Figure modified from
Pacheco160

3.6.4 Software: parallel language programming

As the increase in transistor speed of single processors, is slowing down19 with each
new generation, the development of new software is shifting to parallel methods.

Different solutions have been proposed and implemented160, 71 to speed up the cal-
culus of scientific and engineering programs. With the revolution of the last 30 years
in hardware more and more programs are being developed taking into account this new
CPU power, and legacy codes are been adapted to take it. Depending on the hardware
architecture there are different options to implement these solutions. On clusters85, 152

it is possible to code using MPI,159, 61 in Multicore computers OpenMP25, 168 and MPI,
finally in many cores computers (GPU), CUDA91, 153 and OpenCL.

New tools have been developed in the last 5 years, such as the Open Computing
Language24, 39, 155, 151 (OpenCL). Capable of compiling and running independently of
the processor and platform. OpenCL was developed by Apple and NVidia and was
presented to the non profit group Khronos in 2008. OpenCL allows a program to take
the power of the CPU (single core, multicore) and GPU processors individually or as
an interacting team.59

As multicore computers become more and more common, tailor-made solutions are
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needed. Holmes et al.76, 202 have developed a new port base technique for Multicores.
The new algorithm is called H-Dispatch. The size of the domain is much smaller than
that the traditionally used in MPI. These smaller domains and the careful use of the
shared memory allows the distribution of workloads in a much more efficient way. Not
based on the the spatial distribution of objects into domains (classical parallel method),
but on the workload of the processors, as shown in Figure 3.18.

a) b)

Figure 3.18: Each colour represent the domain analysed by a particular processor. a)Classical,
domain decomposition. b)Fine domain decomposition. Figure modified from Holmes et al.76

All these different solutions, called explicit-parallel, share the same intrinsic set of
problems, as the amount of effort and knowledge needed by the programmer is great.
The programmer not only needs to understand the physics of the problem to solve, but
how a particular hardware operates. The time and money that needs to be invested in
developing new solutions can be prohibitive.

The cost to develop and debug a parallel solution for FDEM (to this author’s know-
ledge) is at least three to four times higher when is compared to similar sequential solu-
tion. The main question is where the future lies and as the programs become more and
more complex the amount of resources and money required increases. Usually porting
one parallel application from one kind of hardware to other one is not a straightforward
task, and some of the optimisations have to be painstakingly repeated. As the programs
increase in complexity and cost, the future may lay in Implicit Parallel Programming.
This hides most of the complexities from the programmer, allowing the development
of more complex programming, as well as reducing the test and debugging times.79, 196

All the different parallel programming languages could be grouped into three main
categories:187

• Explicit: Has the advantage of tailor-made solutions, as the programmer takes
full control of the software and the hardware that will be running the application.
For example MPI, OpenMP, etc

• Implicit: Hides the complicity “inside libraries or APIs”,187 for the programmer.
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• Automatic parallelization: This works by reading a non parallel application
written for example in Fortran, and transforming it into a parallel application. It
is not yet really working.

3.6.5 Some parallel general considerations.

Speed-Up. The most common factor, utilised to measure the performance of a
parallel program, is called the “speed-up factor”. It is equal to

S =
tseq

tpar
(3.21)

where tseq, is the total time employed by the the best sequential algorithm,160, 198, 188

and tpar is the total time used by the parallel algorithm. In the practice, tseq usually is
the algorithm upon which the parallelization was made.160

The total time tpar is equal to

tpar = texe + tcom + tupd (3.22)

where texe is the execution time, tcom is the communication time between processes4

and tupd is the update time of the objects affected by the parallelization. Replacing
tpar in the equation 3.21with the equation 3.22 then

S =
tseq

texe + tcom + tupd
(3.23)

if texe ≈ tseq/nproc , where nproc is the number of processes then

S =
tseq

tseq/nprc + tcom + tupd
(3.24)

For an ideal parallelization algorithm tcom = 0 and tupd = 0 and tpar is equal to

tpar = tparIdeal =
tseq

npro
(3.25)

4Depending on the library more than one process may reside in one processor
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Replacing the equation 3.25 into the equation 3.21, leads to the maximum speed up
factor equal to

Smax =
tseq

tparIdeal
=

tseq
tseq/npro

= nproc (3.26)

This means that the maximum speed-up factor is linear and equal to the number
of processes. For some cases S could be bigger than Smax these cases are defined as
“superlinear”198 . This may be due to, poor sequential algorithms, hardware issues, or
a particular behaviour of the algorithm.198

One important characteristic of S is its dependence on the number of objects that are
simulated. This is best illustrated by the algorithm 3.2 where this algorithm is applied
to two processes. In this simple algorithm there are two instances of communications,
between the processes and in each of them updates have to be made to the system’s
data archive. As the total amount of objects N increases usually the communication
ratio

Rcom =
Ncom

N
(3.27)

where Ncom is the total amount of objects to communicate, decreases. This implies
that the ratio

Rcom_t =
tcom

tpar
(3.28)

decrease as well. As most of the time is spent doing calculations and not
communicating between different processes.

Algorithm 3.2 Simple parallel DEM algorithm for rigid bodies. “
” are operations
performed with communication between processes.

while stp < numStp do
Set zero f orces
Do contact detection & interaction

 Update contact forces
U pdate positions

 Send originals & proxies

end while

In the case of OpenMP, the communication between processors is faster than MPI
as it takes advantage of the share memory architecture of the system, not having to
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copy, and delete data from the RAM. Nevertheless there have to be updates of the
objects in the system. For a small number of objects the over-burn of the paralleliz-
ation could be so high, that the parallel solution could end up being slower than the
sequential, as

tcom + tupd >
tseq

nprc
(3.29)

Amdahl’s Law. Parallelize a code is a costly and difficult task, that requires complete
knowledge of how the sequential code operates. As not all the routines in a code are
equally demanding in terms of CPU it would be really tempting, to identify the
subroutine or the group of subroutines that are more demanding and decide to only
parallelize just a portion of the code, leaving the rest to run sequentially. For an
FDEM general code, it will make sense to parallelized the contact detection and
interaction routines. The Figure 3.19 shows schematically how such an algorithm will
look like for the algorithm 3.2.

One question that needs to be asked, however, is whether this new algorithm will
improve the CPU times or not. Modifying the equation 3.24, to take into account the
partial parallelization of the algorithm, leads to the equation:160

S =
tseq

α tseq
nproc

+(1−α) tSeq + tcom + tupd
(3.30)

where α is the percentage of the algorithm that has been parallelized, and 0≤ α ≤ 1.
For an ideal parallelization

S =
tseq

α tseq
nproc

+(1−α) tSeq
=

1
(1−α)+ α

nproc

(3.31)

and for infinite processes

Snproc→∞ =
1

1−α
(3.32)

Even if 50% of an algorithm is parallelized and is run on a cluster of 1000 cores,
the S = 1.998 and for an ideal cluster with infinite machines S = 2.0. Amdahl’s Law160

says that for a partial palletised code there is a limit to the amount of speed-up that can
be obtained.
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Figure 3.19: Partial parallelized algorithm.

Rounding Error (the evil of real numbers). It would be expected to obtain the same
results in a sequential program, compared to a parallel version of the same program,
as both programs use the same equations to solve the unknowns in the system.112 And
only the objects, that are on the boundary5 between processes are affected by the
updates of forces, positions, etc.

As is common in engineering, the results are not as expected. One of the reasons
for this discrepancy, between sequential and parallel codes, lies in a well-known com-
putational error called “rounding error”. The representation of a real number in the
computer is limited by the amount of memory dedicated to it. Just to represent the

5In the case of a parallelization with domain decomposition
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number π would need infinite memory, as is for the representation of 1.0/3.0. The error
in the representation of a real number is limited by machine epsilon εM.

It would be tempting just to use the biggest precision possible for a particular com-
bination of hardware-software. But more precision does not always means better res-
ults. One well documented example is the Rump’s function177

f = 333.75b6 +a2
(

11a2b2−b6−121b4−2
)
+5.5b8 +

a
2b

(3.33)

where a = 77617.0 and b = 33096.0. The only errors in this functions are the
rounding errors. It would be expected that as the precision increases the final result
should approach the exact solution f = −0.827396059946823

4.177 The results
computed on a Intel workstation132 are shown on the table 3.2.

Precision f
Single 2.0317×1029

Double 5.960604×1020

Double-extended −9.38724×10−323

Table 3.2: Rump’s function results. Reproduced from Muller et al.132

The intensive use of 64-bit and 128-bit slows down the solver,44 and may not lead
to a more accurate solution. This became more appealing, when coding in CUDA, as
the majority of the GPU hardware only works efficiently44 in 32-bit.

If a computer complies with the IEEE standards, the machine epsilon188 is εM ≈
1.11× 10−16. There are many routines and classes to compute the εM, amount them
MACHAR.2 A simple way to calculate εM is shown in the algorithm 3.3.

Algorithm 3.3 Calculate Machine Epsilon. Algorithm reproduced from Karniadakis
et al.86

double dLv_eps . Machine epsilon
double dLv_tst . Test
dLv_eps = 1.0
dLv_tst = 1.0+dLv_eps
while 1.0 6= dLv_tst do

dLv_eps = dLv_eps/2.0
dLv_tst = dLv_tst +dLv_eps

end while

The effect of εM in the discrepancies between parallel and sequential solutions, is
better illustrated by a simple example of 4 atoms. The same calculus is performed for a
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sequential code shown in Figure 3.20a, and for the parallel code shown in Figure3.20b
and Figure3.20c. For simplicity only forces in the x direction are considered.

Adding the forces of process 0 and process 1

FApar = FAproc0 +FAproc1

FApar=(1.0+ε)−1.0
(3.34)

Taking into account the rounding error, both forces are not equal as shown in the
next equation

FAseq 6= FApar

(1.0−1.0)+ ε 6= (1.0+ ε)−1.0
ε 6= 0.0

(3.35)

For simulations involving Discrete Elements, these small changes can generate a
different behaviour of the system.138 These discrepancies are not in any way only
concerning to parallel calculus. As Munjiza82 pointed out small differences in the
initial conditions of a sequential FDEM simulation can lead to different results.
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b)

B
A

Proc 0 Proc 1

D

c)

A

Proc 0 Proc 1

C

FAseq = FB +FC +FD
FAseq = (1.0−1.0)+ ε

FAproc0 = FB +FD
FAproc0 = 1.0+ ε

FAproc1 = FC
FAproc1 =−1.0

Figure 3.20: Calculus of the force in the atom A. All the forces are added in alphabetic order
of the atom’s id. a)Sequential calculus. b)Parallel calculus in the process 0. Is important to
notice the absence of the atom C, as no part of it is in the process 0 c)Parallel calculus in the
process 1. Only The proxy of atom A and atom C are in the process 1.



Chapter 4

NOVEL CD ALGORITHM FOR

BODIES OF SIMILAR SIZE

4.1 Introduction

Large-scale DEM simulations involve contact between millions of different entities,
usually called atoms, molecules, particles, bodies, discrete elements, etc. In dynamics
problems where most of the particles are in movement, the CPU time required to search
for all the contacting couples (which ones are in contact with each other) can be over
60% of the CPU time in many cases.133

There are different algorithms proposed to perform searches for these couples,
namely Direct Search(DS), Quick Sort,165 Balanced Binary Tree(BBT),93 Munjiza-No
Binary Search (NBS),136 Munjiza-Rougier(MR),148 Williams C-grid,163 Alternating
Digital Tree(ADT),18 Augmented Spatial Digital Tree (ASDT),47 3D-DDA,16 Discrete
Function Representation,200 SMB102 as well as many others.

The simplest algorithm called Direct Search (DS) shown in Algorithm 3.1, per-
forms a direct search between each of the elements in the domain. The contact detec-
tion time is given by136, 133

T ∝ N2 (4.1)

The Balanced Binary Tree is a logarithmic search algorithm, i.e. the contact detec-
tion (CD) time needed to find a matching item is given by93

T ∝ log(N) (4.2)

63
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and the contact detection time needed to find N items is given by93

T ∝ N log(N) (4.3)

In the case of the MR and NBS algorithms, the CD time increase proportionally
with the amount of DEs.133, 148 The CD time for these algorithms is given by

T ∝ N (4.4)

The MR,148 NBS,136 and Balanced Binary Tree (BBT)93 algorithms, have been
studied previously as independent algorithms. The decision of which algorithm to
apply to a particular case is not obvious as there is not enough evidence or tests of
these algorithms in the literature.

This work aims to identify the algorithm that best suits a particular problem (i.e.
1D, 2D, 3D Discrete Elements simulations) for bodies of similar size. Most of the
work was written in the form of C++ object oriented programming.104 There is a
special variation of the original MR algorithm also using formatting more suitable for
languages such as C88 and Fortran166 i.e. using arrays instead of objects and pointers.
This algorithm is called MR-S (MunjizaRougier-Schiava).

In this chapter the modification to the BBT for use in contact detection is presented.
This novel algorithm, which has been named BBTS (Balanced Binary Tree Schiava),
has as its main algorithms: BBTS-load and BBTS-search. Modifications have been
included to make it suitable for contact search in 1D, 2D and 3D, combining the BBT
with space cell decomposition.148, 136, 133 Also, a novel “binary bush” visualization has
been exploited as originally proposed by Munjiza.139 In this visualization the Binary Tree

is shown without its root, placing the first node of the tree in the centre, with its sons
placed concentrically as shown in Figure 4.1.

In chapter 5 short descriptions of the Munjiza-NBS, MR and MR-S are presented,
while the comparison of performance between MR, MR-S, NBS and BBTS for struc-
tured distributions and random distributions in 1D, 2D and 3D is presented in Chapter
7.

4.2 Balanced Binary Tree

The processes involving the storage and retrieval of data in a balanced binary tree are
described in depth by Gary D.Knott.93 One of the differences between Knott93 and
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this method is the way in which nodes are considered. In this formulation the nodes
are objects; this means that there is no necessity to include an array which points from
one node to another. This information is stored in each node instead of an array.

In a binary tree each node a is a right son of b only if a < b, and a is a left son of b

only if a > b. For a tree that complies with these two rules and in “which the items are
randomly-received”,93 the search time required to find a matching item is generally a
logarithmic function of N. However, this only occurs when the tree is balanced, which
occurs when “no excessively short or long path exists”93 . Such paths tend to increase
the average number of comparisons required.
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Figure 4.1: Binary Bush139. a)Unbalanced tree B7 =−2. b)Balanced tree B30 = 0.

A binary tree is balanced only if all its nodes are balanced. The balance93 B of a
given node i is given by equation 4.5

Bi = h(Rsi)−h(Lsi) (4.5)

where h(Rsi) and h(Lsi)are the numbers of nodes in the longest paths of the sub-trees
located to the right and left of node i respectively. A given node i is said to be
balanced if

−1≤ Bi ≤ 1 (4.6)

The balance of the node 7 in the tree shown in Figure 4.1a is given by

h(Rs7) = 1
h(Ls7) = 3
B7 =−2

(4.7)
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which means the tree is unbalance. An example of a balanced tree is shown in Figure
4.1b where the balance of node 30 is given by

h(Rs30) = 3
h(Ls30) = 3

B30 = 0

(4.8)

Space decomposition. There are many ways to tackle the Contact Detection problem
using BBT. The most common technique is to bisect the domain into regions and later
to bisect these regions further.47 The division of the domain is the key for the
performance of the algorithm. A well-known technique is the quadtree.161, 181 A
simple example of which is shown in Figure 4.2.

a)

 

A 

 

b)

 

B0 B1 

B2 B3 

 

c)

 

A 

B2 B3 

B0 B1 

 Figure 4.2: Space decomposition. a)Original region A b)Subdivision of the region A c) Tree
representation

To avoid this subdivision in the BBTS algorithm all DEs are simplified as a spher-
ical object.136 The diameter of this object d is equal to the biggest sphere that can
contain the biggest DE in the system136 as shown in Figure 4.3a. These objects are
mapped onto a rectangular domain made of cubical subdomains or size d,133 as shown
in Figure 4.3b.

The numbers of subdomains in the x, y and z direction are given by

nx = Int
(xmax−xmin

d

)
+1

ny = Int
(ymax−ymin

d

)
+1

nz = Int
( zmax−zmin

d

)
+1

(4.9)

where xmax, ymax and zmax are the maximum x, y and z coordinates, xmin, ymin and zmin

are the minimum x, y and z coordinates and d is the size of the cells.

The advantage of this space decomposition is its simplicity as there is no need to
subdivide the space at running time. Only a simple mapping of objects into subdo-
mains (cells) is performed at running time. Also the algorithm is independent of the
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packing density, in terms of velocity (the velocity for loose packages only depends on
the number of elements) and RAM memory (each element is represented by an unique
node on the tree).

a)
d

b)

x

z
(nx ,ny ,nz)

(0,0,0)

(nx ,ny ,0)
y

Figure 4.3: Space Decomposition. b)Spherical bounding box. b)Cubical sudbomains (cells).
Figures adapted from Rougier.175

Mapping of discrete elements into cells. Each DE has only one set of coordinates
corresponding to the cell where it is mapped,148 thus simplifying the contact detection
algorithm. The formulae for the mapping are given by

ix = Int
(x−xmin

d

)
iy = Int

(y−ymin
d

)
iz = Int

( z−zmin
d

) (4.10)

where x, y and z are coordinates of the centre of the spherical bounding box, xmin, ymin

and zmin are the minimum x, y and z coordinates of the system, d is the cell size and ix,
iy and iz are the x, y and z integerised coordinates respectively.

4.2.1 Basic structure of the BBTS

In the implementation of the BBTS used in this work, each subdomain (cell) is repre-
sented by a node, and the root of the entire tree is formed by an empty node and has
only one son to the left as shown in Figure 4.4 .
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Figure 4.4: Root of the entire tree and its son. Figure adapted from Knott93

The information stored inside each node is listed in Table 4.1

Variable Name Variable Description
Ls Pointer to the left son of the node
Rs Pointer to the right son of the node
V Key Value of the node
B Balance of the node
O Void pointer to any object (or it could be a integer id)

Table 4.1: Information stored inside each node

The key value of a node is given by

V = [ix, iy, iz] (4.11)

where ix, iy and iz are the integerised coordinates of the bounding box. The
relationship between a given node i and its left son is given by

VLsi >Vi (4.12)

where VLsi is the key value of the left son of node i and Vi is the key value of the node
i. In a similar way, the relationship between a given node i and its right son is given by

VRsi <Vi (4.13)
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where VRsi is the key value of the right son of node i and Vi is the key value of the
node i. To establish the relationship shown in equations 4.12 and 4.13 a spatial
ordering criterion is needed.148 In this work the spatial ordering criterion adopted is
the same criterion used in the MR algorithm, and it “states that a bounding box i is
greater than a bounding box j if”:148

{[(
izi > iz j

)]
or
[(

izi = iz j
)

and
(
iyi > iy j

)]}
or
{[(

izi = iz j
)

and
(
iyi = iy j

)
and

(
ixi > ix j

)]} (4.14)

A simple example of the use of this criterium is shown in Figure 4.5
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Figure 4.5: Spatial ordering criterium. a)VA<VB. b)VC>VD.

4.3 BBTS-load

In the case that a new object (triangle, tetrahedra, etc) with a key value Vnew needs to
be added to the tree, a new node is created; its key value set to Vnew and its pointer O

set to the object to add. The remaining question is: where is this new node to be placed
inside the BBTS structure? To answer this question the BBTS is parsed starting from
the left son of the root.

Algorithm 4.1 Simple add procedure. Add object with key Vnew. “→” has the C++
meaning

1: Nodcur = BT → GetFrs() . Get first node on tree. i.e. the left son of the root
2: while (Nodcur! = Null) do
3: if BT → IsGreT han(Nodcur,Vnew) then . IsGreaterThan i.e. (Vcur >Vnew)
4: Nodcur = BT → GetRigSon(Nodcur) . goto therigthson(Rs)
5: else if BT → IsLesT han(Nodcur,Vnew) then . IsLessThan i.e. (Vcur <Vnew)
6: Nodcur = BT → GetLe f Son(Nodcur) . goto the left son(Ls)
7: end if
8: end while
9: Addelement to theemptyposition
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The key value Vnew of the new node is compared to Vcur which is the key value of
the current node. If the Vnew is less than Vcur then the next node to be checked is set
to be the right son of the current node. On the other hand if the Vnew is greater than
Vcur then the next node to be checked is set to be the left son of the current node. The
process described above is repeated until an empty position is found.93 When this is
achieved the new node is placed on that empty position. This is best illustrated by the
Algorithm 4.1.

For example, if the node d is to be added to the BBTS shown in Figure 4.6a, and
the key value of the node d is such that

Vd <Vc (4.15)

then, the node d would be positioned to the right of node c as shown in Figure 4.6b.
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Figure 4.6: a) Search for the leaf node position for x = d < c b) Add new node.

In the original algorithm93 when a new element with the same key value as one
of the existing nodes of the tree is added the same procedure described above is per-
formed. In this way for example, if an element is added to the BBTS shown in Figure
4.7a with key value V = 30, then the tree shown in Figure 4.7b would be obtained. In
this case, the tree would be balance on terms of height but the search time will not be
bounded by a logarithmic function of N.
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Figure 4.7: Binary Bush a)Before adding “30” b) After adding “30”

This situation would be catastrophic in terms of CPU time spent in searching for
an element with a particular key value, because one search procedure would not be
enough to find all the elements with a particular key value. Instead an uncertain number
of searches would be necessary to perform the contact detection process.

To overcome this problem a new pointer is introduced to each node, as shown in
Figure 4.8a. Now in the case that three nodes share the same key value they would be
arranged one next to one another as shown in Figure 4.8b while only one of them “is”
in the tree structure. This would make the tree structure to look as shown in Figure
4.8a.
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Figure 4.8: Node a)New node with pointer to nodes with same key value V . b)More than one
node with the same value V

The new algorithm that takes into account elements that share the same key value;
is given by the Algorithm 4.2.

The amount of RAM used by the BBTS algorithm does not depend on the packing
density, as each object in the domain is represented by an unique node. The amount of
RAM is given by the equation 4.16.

When a new node is added93 to the tree the B values of each of the nodes must be
updated, i.e. the balance of each of the nodes must be recalculated. This is done with
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the help of two vectors. The first vector contains the pointers to all the elements of the
branch of the tree where the new object has been added starting from the root tree. For
the case shown in Figure 4.6b this vector is shown in Table 4.2a.

V = 3short integernumbers = 6bytes
B = 1short integernumber = 2bytes
Ls = 1pointers = 8bytes
Rs = 1pointers = 8bytes
P = 1pointers = 8bytes
O = 1pointers = 8bytes
M =V +B+Ls +Rs +P+O = 40bytes

(4.16)

Algorithm 4.2 Add procedure, elements with the same key value. “→” has the C++
meaning

1: Nodcur = BT → GetFrs() . Get first node on tree. i.e. the left son of the root
2: while (Nodcur! = Null) do
3: if BT → IsGreT han(Nodcur,Vnew) then . IsGreaterThan i.e. (Vcur >Vnew)
4: Nodcur = BT → GetRigSon(Nodcur) . goto therigthson(Rs)
5: else if BT → IsLesT han(Nodcur,Vnew) then . IsLessThan i.e. (Vcur <Vnew)
6: Nodcur = BT → GetLe f Son(Nodcur) . goto the left son(Ls)
7: else
8: addnewnodetoPe ofNodcur
9: end if

10: end while
11: Addelement to theemptyposition

Component Pointer to Component Exit direction
0 Root 0 -1
1 a 1 -1
2 b 2 1

a) 3 c b) 3 1

Table 4.2: Path of the vector. a)Pointers to each element in the branch. b) Exiting
direction from each of the elements of the branch

The second vector contains a flag that denotes the direction from which each of the
elements of the branch of the tree under consideration are exited. For the case shown
in Figure 4.6b this vector is shown in Table 4.2b. If an element is exited from the left
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then the flag is equal to −1 and if the element is exited from the right then the flag is
equal to 1.

The whole branch is now parsed starting from the element located immediately
before the new element that has just been added to the BBTS. This can be seen in the
case shown in Figure 4.6 where starting point is the element c.

The values of the node balance variables are updated according to the exiting di-
rection from each node. For example in the case of node c shown in Figure 4.6b the
node balance variable is given by Equation 4.17

Bcnew = Bcold +∆Bc (4.17)

where Bcold and Bcnew are the old and new values of the balance variable for node c,
and4Bc is the change in the balance of node c due to the addition of node d to the
tree. In this case4Bc is given by Equation 4.18

∆Bc =+1 (4.18)

because node c is exited from the right, i.e. theVc is greater than Vd

Depending on the updated value of Bi, three cases can arise

• Case 1: Bi = 0 no further updating of balancing variables is needed because the
height of the branches that have node i as a root has not changed.

• Case 2: |Bi|= 1 the root of node i needs to have its balance variable updated, i.e.
the updating process must continue towards the root of this sub-tree.

• Case 3: |Bi| = 2 the sub-tree starting in the node i is unbalanced, and therefore
needs to be balanced. This is shown in Figure 4.9a for the node b

4.3.1 Balancing procedure

As was mentioned earlier it is essential to have a BBTS balanced to have bounded
search times. For each unbalanced value of the node given by

Bi = 2
Bi =−2

(4.19)
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will be a right or left son j of the node i with balance B j as

−1≤ B j ≤ 1 (4.20)
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Figure 4.9: a) Retraced of the search path b) Final Balance of the tree. Figures adapted from
Knott93

Thus there are four possible cases,93 depending on the position of the nodes, for
the balancing procedure as shown in Table 4.3. The basic idea, in each of them is to
“rotate” the sub-tree to be balanced in the “direction” of its “shorter side”.93

Case Bi B j
1 2 ≥ 0
2 -2 0≤
3 2 -1
4 -2 1

Table 4.3: List of possible cases when balancing a sub-tree

Case 1. In this case, the balance of node j can have the following values

B jold = 0
B jold = 1

(4.21)

where B jold is the balance of the balance for node j before the balancing of the
sub-tree. The unbalanced sub-tree with root in node h is pivoted around node h to
balance it. This is shown for the most general case in Figure 4.10, the possible
balance values are listed in Table 4.4.
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Figure 4.10: Balancing of node i from the tree. a) Initial configuration. b) Necessary rear-
rangements, c) Final configuration. Figures adapted from Knott93 .

Balance Variable Possible Values
Bh −1,0,1
Biold 2
B jold 0,1
Bk −1,0,1
Binew 0,1
B jnew −1,0

Table 4.4: Case 1: possible balance values

The new balance for nodes i and j are given by

Binew =−B jold +1 (4.22)

B jnew = B jold−1 (4.23)

where Binew and B jnew are the balance for nodes i and j after the balancing is
performed.

A particular case where Biold = 2, B jold = 1, Ba = 0 is shown in Figure 4.11a. The
values of the balance variables after balancing are given by

Binew =−B jold +1 = 0 (4.24)



4.3 BBTS-load 76

B jnew = B jold−1 (4.25)

this is illustrated in Figure 4.11c.
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Figure 4.11: Example of balancing of node i with node B jold =1. Figures adapted from
Knott93

Case 2. In this case the balance of node j can have the following values

B jold = 0
B jold =−1

(4.26)

where B jold is the balance of node j before the balancing of the sub-tree. The most
general case is illustrated in Figure 4.12.
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Figure 4.12: Balancing of node i from the tree. a) Initial configuration. b) Necessary rear-
rangements. c) Final configuration. Figures adapted from Knott93 .
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The new values of the balance variables for nodes i and j are given by

Binew =−B jold−1 (4.27)

B jnew = B jold +1 (4.28)

The possible balance values are listed in Table 4.5.

Balance Variable Possible Values
Bh −1,0,1
Biold −2
B jold −1,0
Bk −1,0,1
Binew −1,0
B jnew 0,1

Table 4.5: Case 2: possible balance values

A particular case where B jold = −2, B jold = −1, Ba = 0 is shown in Figure 4.13
The balance values after the balancing is performed are given by

Binew =−B jold−1 = 0 (4.29)

B jnew = B jold +1 = 0 (4.30)

a)

 
 

     h 
   Bh 

     i 
  Biold 

     j 
  Bjold 

    a 
   Ba 

 b)

 
 

     h 
   Bh 

     i 
  Biold 

     j 
  Bjold 

    a 
   Ba 

 c)

 
 

     h 
   Bh 

    a 
   Ba    

     j 
  Bjnew 

    i 
  Binew 

 

Figure 4.13: Example of balancing of node i with node B jold = −1. Figures adapted from
Knott93 .

Case 3. In this case the new values of the balance variables for nodes i, j and k are
given by
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Binew =

{
0 f or Bkold = 0

−
(

1+Bkold
2

)
f or Bkold =±1

(4.31)

B jnew =

{
0 f or Bkold = 0(

1−Bkold
2

)
f or Bkold =±1

(4.32)

Bknew = 0 (4.33)

The balancing of node i is described in Figure 4.14.
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Figure 4.14: Balancing of node i from the tree. a) Initial configuration. b) Necessary rear-
rangements. c) Final configuration. Figures adapted from Knott93 .

The the possible balance values are given in Table 4.6.

Balance Variable Possible Values
Ba −1,0,1
Bb −1,0,1
Biold 2
B jold −1
Bkold −1,0
Binew 0,1
B jnew 0

Table 4.6: Case 3: possible balance values

Case 4. The new balance values for nodes i, j and k are given by

Binew =

{
0 f or Bkold = 0(

1−Bkold
2

)
f or Bkold =±1

(4.34)
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B jnew =

{
0 f or Bkold = 0

−
(

1+Bkold
2

)
f or Bkold =±1

(4.35)

Bknew = 0 (4.36)

The balancing process for the most general case is shown in Figure 4.15.
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Figure 4.15: Balancing of node i from the tree. a) Initial configuration. b) Necessary rear-
rangements. c) Final configuration. Figures adapted from Knott93

The possible balance values are given in Table 4.7.

Balance Variable Possible Values
Ba −1,0,1
Bb −1,0,1
Biold -2
B jold 1
Bkold −1,0,1
Binew 0,1
B jnew -1,0
Bknew 0

Table 4.7: Case 4: possible balance values

4.4 BBTS-search

When dealing with systems in which all the particles change their coordinates at every
time step, it is faster to build the whole tree from the root at each time step than to
rearrange a pre-existing binary tree. This is the reason why, in this work, the whole
binary tree is built from the root when CD is performed.
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Search procedure. The search procedure is started by setting the current node to the
left son of the root of the tree. The key value to be searched Vs is compared to the key
value of the current node Vc. If the Vc is greater than Vs then the right son of the
current node is selected. In a similar way, if Vc is smaller than the Vs then the left son
of the current node is selected. This process is repeated until either a node with a key
value equals to the searched key value is found or the end of the tree is reached, i.e.
there is no element stored in the tree with a key value equals to the searched key
value. This process is best illustrated by the Algorithm 4.3.

Algorithm 4.3 Search procedure
1: Nodcur = BT → GetFrs() . Get first node on tree. i.e. the left son of the root
2: while (Nodcur! = Null) do
3: if BT → IsGreT han(Nodcur,Vsearch) then . IsGreaterThan i.e. (Vcur >Vsea)
4: Nodcur = BT → GetRigSon(Nodcur) . goto therigthson(Rs)
5: else if BT → IsLesT han(Nodcur,Vsearch) then . IsLessThan i.e. (Vcur <Vsea)
6: Nodcur = BT → GetLe f Son(Nodcur) . goto the left son(Ls)
7: else
8: returnNodcur
9: end if

10: end while
11: returnNull
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Figure 4.16: Contact mask in 3D. Figure modified from Munjiza and Rougier148

Finding contacting couples. As it was mentioned before, a particular discrete
element has only one set of coordinates corresponding to the subdomain where it is
mapped.148 Thus, a given DE can be in contact only with those DEs mapped either to
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the same cell or to any of the neighbouring cells. To avoid repetition of contacting
couples a contact checking mask148, 136, 133 is adopted, as shown in Figure 4.16.

To find all the contacting couples for a given DE mapped to the cell i, j, k all the
DEs with integerised coordinates

i−1, j+1,k−1 i, j+1,k−1 i+1, j+1,k−1
i−1, j,k−1 i, j,k−1 i+1, j,k−1

i−1, j−1,k−1 i, j−1,k−1 i+1, j−1,k−1
i−1, j,k i, j,k

i−1, j−1,k i, j−1,k i+1, j−1,k

(4.37)

must be found. This is done by selecting one by one the cells of the contact checking
mask, and parsing the tree from its root to find the elements mapped to that particular
cell. In total 14 searches have to be perform.



Chapter 5

MR-S ALGORITHM

5.1 Introduction

In this chapter a description of the MR-S (MunjizaRougier-Schiava) algorithm is pre-
sented. The MR-S algorithm is a flavour of the MR (MunjizaRougier) algorithm im-
plemented with arrays instead of objects. This modification makes MR-S more suitable
for languages such as C and Fortran.

To explain the MR algorithm it is necessary to describe its roots in the so-called
Munjiza-NBS (Non Binary Search) algorithm. A short description of NBS is presented
in section 2. In section 3 the MR algorithm is described. Finally, in the last section the
MR-S algorithm is explained.

5.2 NBS algorithm

This algorithm was one of the first to present a proportional CD time with respect to
the number of DEs136 N.

T ∝ N (5.1)

It is based on the space decomposition into subdomains (cells), as shown in Figure
5.1a. The size of the square subdomains is defined by the diameter of the biggest
spherical bounding box in the domain. The entire domain is represented using arrays
of integers. A detailed explanation of this algorithm is given in Munjiza’s book.133 In
this section NBS is explained using a simple 2D example.133

The first stage of this algorithm is a loop over the entire set of elements, calculate
their integerised coordinate in iy using Equation 4.10, and place the elements into the

82
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corresponding single connected list of yi row, as shown schematically in Figure 5.1b.
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Figure 5.1: a) Discrete elements time step t. Each DE is tagged as id‘(ix, iy) b) Single
connected lists rows. Figures modified from Munjiza.133
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Figure 5.2: Arrays B and Y. Figure modified from Munjiza.133

This list is stored in two 1D arrays, the first “array B size ny, where ny is the number
of cells in the y direction”.136 An empty row is tagged with -1 otherwise the digit is
equal to the id of the last element added on the row. The second array Y of size N,136

is used to point to the next element on the single connected list. If an element is the last
on the list, its position on the array Y will be a negative number equal to -1 to indicate
the end of the list. These two arrays are shown in Figure 5.2 for the particles in Figure
5.1a representing the list shown in Figure 5.1b.
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Travelling on the arrays B and Y, the element four is the first element on the list of
the fifth row, and points to the element 1 in the array Y because this is the next element
on the list as shown in Figure 5.1b and Figure 5.2. On the other hand, the element one
is the last element on the list and in its position there is a -1, to indicate this.

In the second stage, the mapping of the all elements into the ix cells is performed,
for each row, as it is shown for row 5 in Figure 5.3.

 1  2  3  4  5  6  7  8  9 

1 4

   x

 

Figure 5.3: Single connected lists of columns for the 5th row. Figure modified from
Munjiza133

Only cells with at least one DE are checked for interaction. If the row i (element i

in the array B) is marked as ‘new’ a loop is performed over all the elements in it and the
list is marked as ‘old’. For each of the elements in the row, two 1D arrays are written:
the “array A size nx, where nx is the number of cells in the x direction, and the array X
size N”.136 These arrays are complementary of the B and Y arrays, and the same role
applies to them for empty elements as is shown in Figure 5.4 for the 5th row.

-1  1 -1 -1 -1  4 -1 -1 -1 

 1  2  3  4  5  6  7  8  9 
Array A 

-1 -1 -1 -1 -1 -1 

 1  2  3  4  5  6 
Array X 

 

Figure 5.4: Arrays A (for the 5th row) and array X. Figures modified from Munjiza133

The NBS contact search algorithm utilizes a contact checking mask to avoid repe-
tition in the contact search. For an element in column xi and row yi only two rows (in
2D) are necessary to perform the search yi and yi−1 as shown in Figure 5.12. The main
disadvantage of NBS compared with MR, is the need to rebuild the arrays database
every time CD is performed.
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5.3 MR algorithm

The contact detection time for the MR148 algorithm is proportional to the number of
DEs and is given by

T ∝ N (5.2)

It comprises of three algorithms a) Quick Sort (QS) b) MR-Sort, c) MR-Search. QS is
not a linear algorithm and its CPU time is given by

T ∝ N log2 (N) (5.3)

This does not affect the linearity of MR as it is used to sort out the list only during
the first time step. The MR algorithm is explained in depth in the boo.k by Munjiza et
al.141 In this section a short description of these algorithms is presented.

The MR domain is subdivided in a similar way to the NBS domain, into cubical
cells,148 as shown in Figure 5.6, in which the integerised coordinate of the elements is
calculated using the equation 4.10. Each DE is approximated by a spherical container
as was shown in Figure 4.3. The diameter of the biggest spherical container defines
the size of the subdomains (cells). Once the elements are mapped they are added to the
MR double connected list.

MR was originally implemented in C++ using objects. All the MR-objects in the
system are arranged in a closed double connected list. Each one of these MR-objects
has a pointer to the next MR-object in the list, a pointer to the preceding MR-object in
the list, a pointer to a discrete element (it could also be an integer id) and its integerised
position V using three integerised coordinates, as shown in Figure 5.5.

ix 

iy 

iz 

id 

preceding element 

next element 

 

Figure 5.5: MR-object shown with id. Figure adapted from Munjiza et al.148

All the MR-objects are sorted148 according to the same criteria mentioned in the
previous chapter and given in equation 5.4{[(

izi > iz j
)]

or
[(

izi = iz j
)

and
(
iyi > iy j

)]}
or
{[(

izi = iz j
)

and
(
iyi = iy j

)
and

(
ixi > ix j

)]} (5.4)
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where ixi, iyi and izi are the integerised coordinates of the DE i and ix j, iy j and iz j are
the integerised coordinates of the DE j.
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Figure 5.6: System at initial time t. Figure modified from Munjiza et al.148
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Figure 5.7: System at time t +h. Figure modified from Munjiza et al.148

The list has one element, List Head, that never changes its position. It is an MR-
object whose integerised coordinates are equal to zero. A simple 2D example illustrates
better the MR-list where the Figure 5.6 shows the system at time t and Figure 5.7
represents the system at time t +h. Initially the double connected list is not sorted as
shown in Figure 5.8.
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Quick Sort. Quick Sort148 algorithm is applied in the first step to sort the entire list.
The Quick Sort algorithm first identifies the biggest (Bbig) and the smallest box
(Bsmall) as shown in Figure 5.8. Following this, the middle box (Bmid) is calculated.
Then traveling the double connecting MR-list from the beginning and the end
simultaneously, each box is compared with the Bmid . If the box that is parsed from the
beginning is bigger than Bmid , and the box that is parsed from the end is smaller than
.the Bmid , these two cells are swapped. This first iteration ends when these two boxes
are the same.

At this point the list is divided into two lists and the process starts again, “recur-
sively until the size of the list”148 after the division is one, the sorted list is shown in
Figure 5.9. The total sorting time is given by

T ∝ N log2 N (5.5)
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Figure 5.8: Double connected list, not sorted, time step t. Figure modified from Munjiza et
al.148
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Figure 5.9: Double connected list, after applied Quick Sort algorithm, time step t. Figure
modified from Munjiza et al.148

MR-Sort. It is based in the stability criteria present in discrete element simulations133

to avoid unnecessary comparisons148 in the MR-list. As the list in the time step t +h

is nearly sorted as shown in Figure 5.10. For example, element 5 has to swap positions
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with element 3 because it is smaller than element 3. The sorted list is shown in Figure
5.11. The list is parsed element by element until there is no MR-objects to swap.
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Figure 5.10: Unsorted list in the time step t +h. Figure modified from Munjiza et al.148
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Figure 5.11: Sorted list in the time step t +h. Figure modified from Munjiza et al.148

MR-Search. “To avoid repetition in the contact detection”148 MR-Search utilizes a
contact checking mask as shown in Figure 4.16. To find the contacting couples
between a particular target element, the list is parsed from the beginning until the
smallest element in each particular row is found. The last element is the one that is
bigger than the last element in the contact row as shown in Figure 5.12 for a 2D mask.
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Figure 5.12: 2D contact mask. Figure adapted from Munjiza et al.148



5.4 MR-S algorithm 89

The contact interaction will be calculated between the contactor and each one of the
rows of the contact checking mask calculated from their beginning element, until the
ending element.

beginning≤ target < ending (5.6)

If the integerised coordinates are short integers numbers then, the total amount of
RAM memory used per object is given by:

V = 3short integernumbers = 6bytes
Pprv = 1pointer = 8bytes
Pnxt = 1pointer = 8bytes
O = 1pointer = 8bytes
M =V +Pprv +Pnxt +O = 30bytes

(5.7)

If the pointer O to a discrete object is replaced by an integer id then the total RAM
memory is M = 26 bytes.

5.4 MR-S algorithm

The principal difference between MR-Schiava (MR-S) and MR is the use of arrays
instead of objects. This has the advantage of reducing the amount of RAM memory
utilized by the algorithm. The main algorithms used by MR: Quick Sort, MR-Sort
and MR-Search are utilized without great changes. In this implementation the data
corresponding to the whole set of DEs is rearranged into five one-dimensional arrays
of sizes equal to N plus one as shown in Figure 5.13.

id LH id1 …  id2   idN 

ix0 ix1 ix2 …    ixN 

0 iy1 iy2 …     

0 iz1 iz2 …     

iy

iz

iyN 

izN 

p1 p2 p3 …    pN p 
 

Figure 5.13: Data structure for the implementation of MR algorithms with arrays.
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The first array could either be an array of integers corresponding to the id of each
discrete element or it could be an array of pointers O to each discrete element.

If the integerised coordinates are short integer numbers the total amount of memory
per element used is given by

V = 3short integernumbers = 6bytes
O = 1pointer = 8bytes
p = 1integer = 4bytes
M =V +O+ p = 18bytes

(5.8)

If the pointer O to a discrete object is replaced by an integer id then M = 14 bytes.
The percentage of reduction for the case of using a pointer O of MR-S respect of MR
is 40%.

Quick Sort. The pointer to the preceding MR-object in the MR algorithm shown in
Figure 5.5 is only unitised in the first time step when the list is ordered using QS.
Using arrays, there is no need to record the previous or the next element. For ordering
the arrays using Quick Sort,l only the array corresponding to the id (or O) and the
three arrays corresponding to V are used as shown in Figure 5.14.
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Figure 5.14: Arrays used by Quick Sort. a) Before ordering b) After ordering

After the Quick Sort Algorithm is implemented, all the objects on MR-S are spa-
tially ordered. For MR-Sort and MR-search only a pointer to the object with V equal
or bigger to the current element is needed. This is achieved using an array of pointers
p which is initialised after the list is ordered as shown in Figure 5.15.

If the elements change their coordinates the values of V are updated to ix, iy and iz
arrays. As the list is no longer in order, it has to be updated.

It is possible to avoid using the array p to update the list by moving data stored
in id, ix, iy and iz arrays from the old position to a new position. This would be CPU
inefficient. It is more CPU time-efficient to update only one array p than to update 4
arrays id, ix, iy and iz.
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 Figure 5.15: a) Arrays at time step t b) Schematic view of the elements order at time t.

MR-sort. MR-sort updates the array p as shown in Figure 5.16a, every time CD is
performed. All the other arrays remain unchanged.
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 Figure 5.16: a) Arrays at time step t +h b) Schematic view of the elements order at time step
t +h.

MR-search. MR-search is applied in the same way as for the previous algorithm
using the contact mask shown in Figure 5.12 on the array p.



Chapter 6

NOVEL CONTACT DETECTION

ALGORITHM FOR BODY-POINT

6.1 Introduction

The algorithms covered in the previous chapters are designed to work with bodies of
similar size. BBTS, NBS and MR are heavily penalised by the size of the biggest
element (size of the biggest boundary box) related to the size of the smallest element,
resulting in them not being suited to performing body-point contact. In this chapter
a Novel algorithm based on the BBTS, NBS and the MR is introduced. This Novel
algorithm is denominated as MS MunjizaSchiava.

Parallelization while present the advantage of discretise the domain into smaller
subdomains1 , the amount of objects in each domain changes function of time. As the
objects move from one process to its neighbours, it is not possible to build an MR-array
and keep it throughout the simulation.

The basic flow diagram of CD is shown in Figure 3.3 in chapter 3, reproduced here
in Figure 6.1 for clarity. In this work, CD is not performed each time step, it is only
performed when:

• the number of steps since the last CD (n4CD) is equal to the number of steps
chosen by the user (nCD) i.e. n4CD = nCD

• there is a change in the number of objects in the processor. This event is usually
triggered by the parallelization algorithm.

1In the case of the MPI parallelization employed in this work. For other types of parallelization
please refer to chapter 3

92
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Figure 6.1: Flow diagram CD and interaction using database of contact couples.

Δbuf

Figure 6.2: FE with its dimensions increased by4bu f .
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The search performed during CD has to find all elements that are in contact, and the
ones that may be in contact in nCD steps. To this aim the dimensions of any contactor
(FE) are increased by4bu f as shown in Figure 6.2.

In the second section of this chapter, a short description of this novel algorithm is
presented, followed by the improvements on the BT necessary to perform MS. Then
the complete implementation is presented in 2D and 3D. Finally, a sequential (one
process) and parallel numerical test is presented.

6.2 Novel CD algorithm

This algorithm is based on the space decomposition of R into squares in 2D and boxes
in 3D, denominated Rs. The size s of the space decomposition does not depend on the
biggest element, but is a parameter chosen by the user, usually proportional to 4bu f

where4bu f is given by

4bu f = 2nCD vmax4t (6.1)

where nCD represents the number of steps between contact detection, vmax is the
maximum velocity of any object and4t is delta time. While the size of the space
decomposition s is

s ∝4bu f (6.2)

The mapping of R into Rs is performed using simplified formulae based on the
equation 4.10 and is given by

ix = Int
(x

s

)
iy = Int

(y
s

)
iz = Int

( z
s

) (6.3)

where x, y and z are the coordinates in R, s is the subdomain (cell) size and ix, iy and
iz are the x, y and z integerised coordinates respectively.

The key idea is to map all interaction points (targets) shown in Figure 6.3a, into Rs

as shown in Figure 6.3b.
Then each of the bodies (contactors) is mapped/transformed into a rectangle in 2D

or a rectangular cuboid in 3D. This abstraction from the original shape of the contactor
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simplifies the algorithm. In 3D only six integerised numbers are required to define
any contactor, regardless of its shape. The minimum integerised coordinate and the
maximum integerised coordinates are calculated as

ixmin = Int
(

xmin−4bu f
s

)
iymin = Int

(
ymin−4bu f

s

)
izmin = Int

(
zmin−4bu f

s

) (6.4)

ixmax = Int
(

xmax+4bu f
s

)
iymax = Int

(
ymax+4bu f

s

)
izmax = Int

(
zmax−4bu f

s

) (6.5)

The area in 2D, or volume in 3D, created by these limits is denominated as Rs_CD

shown in Figure 6.4a. It is worth noticing that in no other way are the bodies mapped
into Rs apart from the min and max integerised coordinates. Searching for contacting
couples requires finding the non-empty cells shown in Figure 6.4b and performing
interaction tests between each target (point) and the contactor (FE).

6.3 Implementation using BBTS

Different data bases can be used to store and retrieve interaction points. Arrays and
matrices are the most efficient method, in terms of memory and velocity, of storing
data2 . Yet their lack of flexibility make them ill-suited for object-oriented code. Even
when it is possible to allocate memory during simulation time3, it is not possible to
add more memory to an existing array. On the other hand, the binary tree coded using
objects is flexible, as it is possible to add objects on the fly, providing the benefit of
sequential storage.

Each target (contact point) on the tree is added using the spatial ordering crite-
rion.148 previously introduced in chapter 4. A node i is greater than a node j i.e.
Vi >Vj if: {[(

izi > iz j
)]

or
[(

izi = iz j
)

and
(
iyi > iy j

)]}
or
{[(

izi = iz j
)

and
(
iyi = iy j

)
and

(
ixi > ix j

)]} (6.6)

2In a similar way to the implementation used in NBS
3Using malloc/new function in C/C++, and deleting it using free/delete. It is never a good idea to

continuously retrieve memory from the system, only to return it later. This could lead to fragmentation
memory problems.
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a) b)

s

Figure 6.3: From R into Rsa)Different 2D FEs, with different combinations of contact points.
The contact points, are the circles on the border of the FEs b)Mapping of the contact points
into Rs
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ay

by
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ey

Figure 6.4: Contact detection subdomain Rs_CD. a)Area on Rs relevant to the FE. b)Zoomed
area. Points belonging to the same FE are skip by the interaction routine.

Using an unmodified BBTS to perform CD-search would lead to the algorithm 6.1.
For each contactor, it would be necessary to perform N operations equal to

N = NxNy (6.7)

Nx = ixmax− ixmin +1 (6.8)
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Ny = iymax− iymin +1 (6.9)

where Nx is the number of subdomains (cells) in the x direction, Ny is the number of
subdomains in y direction. The extension into 3D is trivial. As was previously
discussed the time T to retrieve N objects on a binary tree is

T ∝ N log(N) (6.10)

Algorithm 6.1 Contact search body/point on Rs using an unmodified BT. “→” has the
C++ meaning

1: integer iLv_xmin, iLv_ymin . Min integerised coordinate of contactor ConCur on Rs
2: integer iLv_xmax, iLv_ymax. Max integerised coordinate of contactor Concur on Rs
3: for (iLv_ycur = iLv_ymin; iLv_ycur < (iLv_ymax +1) ;++ iLv_ycur) do
4: for (iLv_xcur = iLv_xmin; iLv_xcur < (iLv_xmax +1) ;++ iLv_xcur) do
5: Tarcur = BT → FndEqY X (iLv_ycur, iLv_xcur) . FindEqual. Target:list of

pnts
6: vS_Interaction(Concur,Tarcur) . Interaction (add to database)
7: end for
8: end for

Figure 6.5: Hierarchy of contact points on domain Rs. Starting from bottom to top and
left to right, the hierarchy increases.

This algorithm would be highly inefficient and impractical. As the spatial ordering
criterion is used, there is a 1D hierarchy of points on Rs depending on their spatial
position in a similar way to the objects on an MR list. This is best illustrated by the
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Figure 6.5 where each node i points to the node j greater than or equal to itself in terms
of V .

The exploitation of the hierarchy list on the subdomain Rs_CD, thereby avoiding
operations on empty cells is the key idea behind this novel algorithm.

6.3.1 Modifications to the BBTS

The natural hierarchy created by the spatial ordering criterion cannot be exploited by
a standard BBTS. The modification to the BBTS aims to:

• Reduce the amount of operations required to find the smallest greater node of
any node i.e. the next node

• Avoid searching for, or operating on, empty cells

In a standard BBTS, finding the smallest greater node t of a node d, implies a binary
parse from the tree’s root as shown in Figure 6.6, and in algorithm 6.2.

Algorithm 6.2 Search smallest greater than Vsearch procedure. “→” has the C++ mean-
ing

1: Nodcur = Null . Pointer to current node
2: NodsmaGre = Null . Pointer to smallest greater node
3: Nodcur = BT→ GetFrs() . GetFirstNode
4: while (Nodcur! = Null) do
5: if BT → IsGreT han(Nodcur,Vsearch) then . i.e. (Vcur >Vsearch)
6: NodsmaGre = Nodcur
7: Nodcur = BT → GetRigSon(Nodcur) . goto therigthson(Rs)
8: else
9: Nodcur = BT → GetLe f Son(Nodcur) . goto the left son(Ls)

10: end if
11: end while
12: returnpointer toNodsmaGre

It is necessary to transform the binary tree into a 1D list, avoiding any kind of parse
to find the next object. To achieve this a new pointer Cn is added to the smallest greater
object (next node) as shown in Figure 6.7. The binary tree built using this new node is
denominated as the MS-tree.
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Figure 6.6: Parsing (light blue path) of a binary tree, to find the smallest greater node
(green) than node d (red).

Ls (Left son)

V
B

Rs (Right son)

F (father)

Cn (Close next) O (void to any obj)

Figure 6.7: New node structures (in black) are highlighted pointers necessary to add, delete
and balance the BT. The pointer to the next object Cn is highlighted in blue and a general pointer
to a void* object O (in C/C++ void pointers can be casted into other objects) is highlighted in
red.

Updating the pointer Cn, when a new object is added to the MS-tree, does not imply
a heavy over-burn of CPU time. Actually, it is a simple procedure that takes advantage
of the BS-tree logic. The modification to the previous add algorithm 4.1 is shown in
the algorithm 6.3.

This is similar to the case when an object is deleted and the Cn pointer has to be
updated in the remaining nodes on the tree, while the balancing algorithms remains
without changes.

The BTTS algorithm, presented in Chapter 4, does not allow two or more nodes
with the same key V , adding nodes with the same key to the same node as shown in
Algorithm 4.2. The reason for this is the way in which a BBTS-search is performed,
searching one at a time, for all possible boxes on the contacting mask shown in Figure
4.16. This search implies searching for nodes that may not exist.
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This novel algorithm, departs from the BBTS as there is no search for particular
nodes in MS-search. In the MS-tree there is no limitation for one or more nodes to have
the same key value V . Nodes with the same key added using algorithm 6.3 coexist on
the MS-tree, building what is in fact a binary tree and at the same time an organised
1D list. The MS-tree is best described by the Figure 6.8.

Algorithm 6.3 Add procedure modifications to set pointer to Cs. Nodes with the same
V coexist on the tree. “→” has the C++ meaning

1: NodsmaGre = Null . Pointer smallest greater node
2: NodbigSma = Null . Pointer biggest smaller node
3: Nodprv = Null . Pointer node previous
4: Nodcur = BT → GetFrs() . Get first node on tree
5: while (Nodcur! = Null) do
6: Nodprv = Nodcur
7: if BT → IsGreT han(Nodcur,Vnew) then . IsGreaterThan i.e. (Vcur >Vnew)
8: NodsmaGre = Nodcur
9: Nodcur = BT → GetRigSon(Nodcur) . goto therigthson(Rs)

10: else . i.e. equal or less than Vnew
11: NodbigSma = Nodcur
12: Nodcur = BT → GetLe f Son(Nodcur) . goto the left son(Ls)
13: end if
14: end while
15: Nodcur = Nodprv
16: createNodnew setvariablesonnode
17: if

(
NodbigSma! = Null

)
then

18: NodbigSma→ AddNxt (Nodnew)
19: else
20: Nodnew→ AddNxt (NodsmaGre)
21: end if

6.4 CD-MS

The CD-MS general procedure to perform Contact Detection is:

1. Clean database (contact couples)

2. MS-load: Load all targets (interaction points) into MS-tree

3. For each contactor (FE) perform MS-search. Add to database

4. Clean MS-tree
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Figure 6.8: MS-tree: pointers to the next object are highlighted in light blue,

MS-load. After the contact interaction data base is cleaned, all interaction points are
loaded into the MS-tree (algorithm 6.3) using integerised coordinates (equation 6.3)
and the spatial ordering criterion (equation 6.6). As the interaction points are loaded
the MS-tree is balanced using the balancing procedure described in chapter 4.

Algorithm 6.4 MS-search 2D.
1: integer iLv_xmin, iLv_ymin . Min integerised coordinate of contactor ConCur on Rs
2: integer iLv_xmax, iLv_ymax. Max integerised coordinate of contactor Concur on Rs
3: integer iLv_xcur, iLv_ycur . Current integerised coordinates
4: Concur . Pointer to contactor (finite element) current
5: Nodcur = Null . Pointer to current node
6: Nodlst = Null . Pointer to last node
7: Nodcur = BT → FndSmaGreY (iLv_ymin−1) . FindSmallestGreater_Y
8: iLv_ycur = BT → GetY (Nodcur) . GetYcoordiante of node current
9: while (iLv_ycur < iLv_ymax) do

10: Nodcur = BT → FndSmaGreY X (iLv_ycur,(iLv_xmin−1))
11: Nodlst = BT → FndSmaGreY X (iLv_ycur, iLv_xmax)
12: while (Nodcur! = Nodlst) do
13: vS_Interaction(Concur,Nodcur) . If there is contact add to data base
14: Nodcur = BT → GetNxt (Nodcur) . GetNextNodeOfCurrentNode
15: end while
16: Nodcur = BT → FndSmaGreY (iLv_ycur) . FindSmallestGreater_Y
17: iLv_ycur = BT → GetY (Nodcur) . GetYcoordiante of node current
18: end while
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Figure 6.9: Interaction points, belonging to different finite elements. a)In Rs, each arrow
points to the next next node. The subdomain Rs_CD of a generic contactor is highlighted in
green. b)1D sorted “list” produced by BT
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Figure 6.10: First step MS-search. a)Only nodes that will be “travelled” have arrows pointing
to the next element. b)The first node to perform an interaction is highlighted in blue, while the
first node to be skipped is highlighted in yellow.
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Figure 6.11: Last step MS-search. a)Only nodes that will be “travelled” have arrows pointing
to the next element. b)The first node to perform an interaction is highlighted in blue, while the
first node to be skipped is highlighted in yellow.
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Algorithm 6.5 MS-search 3D.
1: integer iLv_xmin, iLv_ymin, iLv_zmin . Min integerised coordinate of ConCur on Rs
2: integer iLv_xmax, iLv_ymax, iLv_zmax. Max integerised coordinate of Concur on Rs
3: integer iLv_xcur, iLv_ycur, iLv_zcur . Current integerised coordinates
4: integer iLv_Z . Current PlaneZ
5: Concur . Pointer to contactor (finite element) current
6: Nodcur = Null . Pointer to current node
7: Nodlst = Null . Pointer to last node
8: Nodcur = BT → FndSmaGreZ (izmin−1) . FindSmallestGreater_Z
9: iLv_izcur = BT → GetZ (Nodcur) . GetZcoordiante of node current

10: while (iLv_izcur < iLv_izmax) do
11: Nodcur = BT → FndSmaGreZY (iLv_izcur ,(iLv_iymin−1))
12: iLv_izcur = BT → GetZ (Nodcur) . GetZcoordiante of node current
13: iLv_iycur = BT → GetY (Nodcur) . GetYcoordiante of node current
14: iLv_Z = iLv_izcur . Save current plane Z
15: while ((iLv_ycur < iLv_ymax)&&(iLv_zcur == iLv_Z)&&(iLv_zcur <= iLv_zmax))

do
16: Nodcur = BT → FndSmaGreZY X (iLv_izcur , iLv_iycur ,(iLv_ixmin−1))
17: Nodlst = BT → FndSmaGreZY X (iLv_izcur , iLv_iycur , iLv_ixmax)
18: while (Nodcur! = Nodlst) do
19: vS_Interaction(Concur,Nodcur) . If there is contact add to data base
20: Nodcur = BT → GetNxt (Nodcur) . GetNextNodeOfCurrentNode
21: end while
22: Nodcur = BT → FndSmaGreZY (iLv_zcur, iLv_ycur)
23: iLv_zcur = BT → GetZ (Nodcur)
24: iLv_ycur = BT → GetY (Nodcur)
25: end while
26: Nodcur = BT → FndSmaGreZ (iLv_Z)
27: iLv_zcur = BT → GetZ (Nodcur)
28: end while

MS-search. The MS contact search between contactor and target is explained in 2D
in the rest of the section and is shown in algorithm 6.4. While the 3D algorithm is
presented at the end of the section.

Only one BT function “search smallest greater than” shown in algorithm 6.2 is
employed. The advantage of this is that all searches are on existing nodes and not
on specific cells. If there are no nodes in a particular row or column, no operation is
performed on them.

For each contactor, the first step in algorithm 6.4 is to find the first non-empty row
y that is between the limits of Rs_CD. In the generic example shown in Figure 6.9, this
means finding the first node of any row bigger than 0 (red square in Figure 6.9a). Then
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the first node in that particular row that belongs to the subdomain Rs_CD is found and
skipped as shown in Figure 6.10.

This procedure is repeated as shown in Figure 6.11 until there are no more nodes
in Rs_CD. All contact couples are stored using an MS-tree4 to be retrieved later when
contact interaction is calculated.

As all contact nodes in the MS-tree are in order forming, a 1D list, only the first
and the last nodes are binary searched. Following this, a linear walk on the 1D list is
performed.

The 3D algorithm is shown in Algorithm 6.5. It follows the same principles as
for the 2D algorithm performing “one” more search for the z component. For each
non-empty z plane a 2D search is performed.

6.5 Test

This new algorithm is tested in sequential (one core) and in parallel (two and four
cores) on a Multicore PC DELL Precision T5400 with one processor of four cores and
32 GB of RAM. The parallel domain decomposition into four processes is shown in
Figure 6.12.

Figure 6.12: Raster 1000 DEs domain decomposition into four processes.

The test consists of a raster of simple discrete elements (DEs) made of one finite el-
ement (FE), each with elastic modulus E=4 MPa, Poisson’s ratio ν = 0.45 and penalty

4Also a simple connected list could be used
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σp = 400 MPa. Each FE has one interaction point centred on each of its faces. Ran-
dom velocities are assigned at a time equal to zero from 0 m/s to 137 m/s. A spherical
boundary with penalty σp = 400 MPa is imposed to keep all FEs interacting with each
other. The development of the simulation for the raster of 1000 elements is shown in
Figure 6.14.

The total time CD-MS (clean data base, MS-load, MS-search, add contact couples
to database, clean MS-tree) is shown in Figure 6.13 for the sequential and parallel
numerical test. The excellent qualities of the CD-MS algorithm were tested up to
1.331 million of DEs and 5.324 million of interaction points.
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Figure 6.13: Total CD-MS time. The continuous lines are linear regressions.

CD-MS is not a linear algorithm, but still presents quasi-linear behaviour in the
tested range. The non-linearity can also be appreciated as well in table 6.1 where
values are less than the theoretical expected values of 45% for two processors and
25% for four processors.

Number of elements (M) 2 processors 4 processors
0.001 46.3% 23.4%
0.111 48.0% 24.3%
0.512 47.9% 24.4%
1.331 48.1% 24.6%

Table 6.1: Average total CD-MS time percentage of sequential time
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a) b)

c) d)

Figure 6.14: Raster 1000 DEs (parallel four processors). The colours represent the
magnitude of the velocities. From 0m/s to 137m/s a)Time 0.0ms. b)Time 0.32ms.
c)Time 0.60ms. d)Time 1.01ms.

6.6 Conclusions

A novel algorithm for contact detection was developed and tested for body-point inter-
actions using algorithms suitable for a modern object oriented environment.

Further improvements to the algorithm can be made by reducing the area (in 2D) of
the subdomain Rs_CD from a rectangle containing the finite element (FE) as shown in Figure

6.15a into a series of smaller rectangles as shown in Figure6.15b, thereby avoiding unnecessary

search operations. This requires the modification of algorithms 6.4 and 6.5.
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Figure 6.15: Schematic contact detection subdomain Rs_CD. a)Implemented in MS.
b)Proposed improvement, not implemented in this work.



Chapter 7

DETAIL COMPARISONS OF MR,
MR-S, NBS AND BBTS
ALGORITHMS

7.1 Introduction

For developers working in DEM, FDEM, MD, etc., it is important to be able to decide
which search algorithm to use in a particular situation. None of the searches in the liter-
ature are perfect and they may underperform in some situations. Thus, in this analysis,
an extensive comparative study of different search algorithms MR(MunjizaRougier),
MR-S(MunjizaRougier-Schiava), NBS (No Binary Search) and BBTS (Binary Bal-
anced Tree Schiava) for bodies of similar size has been conducted.

7.2 Numerical experiments, comparison between MR,
MR-S, NBS and BBTS

As mentioned before, the BBTS is a logarithmic CD algorithm, i.e. the time needed to
find a matching item is given by

T ∝ log(K) (7.1)

where K are the number of elementes loaded on the BBTS and the time needed to find
N items is given by

108
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T ∝ N log(K) (7.2)

In the case of the MR, MR-S and NBS linear CD algorithms the time needed to
find all the contacting couples increases linearly with the number of DEs. Thus, the
total contact detection time is given by

T ∝ N (7.3)

The performance of each one of these algorithms is compared under the same con-
ditions by six numerical experiments. These numerical experiments are explained in
detail and are easy to implement and repeat. Experiments I and II are performed
on a regular cluster of DEs. These are based on tests performed separately on the
NBS136, 133 and MR148 algorithms. Experiments III, V and VI are performed on irreg-
ular clusters in three, two and one dimension. Experiment IV consist in one single cell
where all the discrete elements are placed, this correspond to the extreme case where
the largest DE is various order of magnitude bigger than the smallest DE.

All the discrete elements employed are spherical of diameter d to simplify the
calculus of contact detection. All the experiments were carried on a DELL 4700 (Intel
2.8 GHz / 4G RAM) running on Fedora Core 4.0. To save RAM memory pointers O to
objects in BBTS, MR, MR-S and NBS are replaced by an integer. The search tests are
performed on ghost discrete elements with their integerised position as the only data
store. There is no calculus of interaction and no calculus of deformation.

At the beginning of the experiments de positions of each DE are defined on dif-
ferent package shapes and package ordering. As there is no interaction new positions
of the discrete elements are calculated using a random number generator. In order
to make the experiments close as possible to real FDEM simulations the cumulative
contact detection times are measured after 10 cycles of :

1. Perform contact detection

2. Move DEs

Example I. The discrete elements are placed at equidistant distance d forming a
cuboid shape cluster as shown in Figure 7.1.
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Figure 7.1: Example I cluster. Figure modified from Munjiza and Rougier148

The order into which the elements of the uniform raster are introduced is given by

(ixmin, iymin, izmin) (ixmin, iymin, izmin +1) (ixmin, iymin, izmin +2)
... (ixmin, iymin, izmax) ...

(ixmin, iymax, izmax) ... (ixmax, iymax, izmax)

(7.4)

where ixmin, iymin, izmin are the minimum initial x, y, z integerised coordinates and
ixmax, iymax, izmax are the maximum initial x, y, z integerised coordinates.

At each time step, each particle (DE) is moved randomly along the three axes. The
randomness is obtained by using a random number generator routine called Genera-

tor based on a subroutine called rand2.199 The generator produces a random number
between 0.0 and 1.0, exclusive of the endpoint values.

rx =−ix + iniRan

ry =−iy + iniRan

rz =−iz + iniRan

(7.5)

where ix, iy, iz are the integerised coordinates and

iniRandt =−1 t = 0
iniRandt = iniRandt−1−10 t = 1,2,3, ...,9

(7.6)

and t is the time step. Each random number is obtained as

αx = Generator(rx)

αy = Generator(ry)

αz = Generator(rz)

(7.7)
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and each new coordinate is calculated by

ix = ix (int)(αx +αx)

iy = iy (int)(αy +αy)

iz = iz (int)(αz +αz)

(7.8)
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The cumulative contact detection times for the different algorithms are shown in
Figure 7.2. The cumulative times of contact detection, sort and search times for the
BBTS are shown in Figure 7.3.

The approximation curves were obtained by applying the least square method to
the function

t = α N log(N) (7.9)

Example II. A total of 1,000,000 discrete elements are placed at equidistant distance
s as shown in Figure 7.4.
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Figure 7.4: Example II cluster. Figure modified from Munjiza and Rougier148

The order into which the elements are introduced is given by

(ixmin, iymin, izmin) (ixmin, iymin, izmin + s)

(ixmin, iymin, izmin +2s) ...

(ixmin, iymin, izmin + js) ...

(ixmin, iymin + js, izmin + js) ...

... (ixmin + js, iymin + js, izmin + js)

(7.10)

where ixmin, iymin, izmin are the minimum initial x, y, z integerised coordinates and j is
the number of particles per axis. This order is called xyz.

The “density changes with spacing s as”148

ρ ∝
1
s3 (7.11)

At each time step, each particle is moved randomly along the three axes as shown
in Equation 7.8. As different values of s are chossen the packing density varies as148
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1≤ ρ ≤ 1
8000000

(7.12)

The cumulative contact detection times are shown in Figure 7.4.
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Figure 7.5: Example II: cumulative contact detection times.

A detail of the total cumulative contact detection times for the NBS, MR and MR-S
algorithms are shown in Figure 7.6.
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Figure 7.6: Example II: MR and NBS cumulative contact detection times.
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Example III. The discrete elements are placed randomly in x, y and z directions
inside a cube as shown in Figure 7.7.

 
 y 

z 

x 

 
Figure 7.7: Example III cluster

The order into which the elements are introduced is also random. The randomness
is obtained by using the Generator routine. The constants to initialize the random
generator are

rx =−1
ry =−2000
rz =−500000

(7.13)

each coordinate is calculated as

ix = (int)(δGenerator (rx))+ ixmin

iy = (int)(δGenerator (ry))+ iymin

iz = (int)(δGenerator (rz))+ izmin

(7.14)

where

δ = js (7.15)

and j is equal to the number of elements per axis, in the case of the uniformly packed
examples. The variable s controls the packing density of the system and in this case is
set to
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s = 3 (7.16)

The total number133 of DEs is given by

N = j3 (7.17)

The process of calculating the random integerised coordinates for each one of the
elements is illustrated in the Algorithm 7.1.

Algorithm 7.1 3D: random integerised coordinates.
1: i = 0
2: for (i1 = 0; i1 < j;++ i1) do
3: for (i2 = 0; i2 < j;++ i2) do
4: for (i3 = 0; i3 < j;++ i3) do
5: x [i] = (int)(δGenerator (rx))+ ixmin
6: y [i] = (int)(δGenerator (ry))+ iymin
7: z [i] = (int)(δGenerator (rz))+ izmin
8: end for
9: end for

10: end for

At each time step, each particle is moved randomly along the three axes using the
Equation 7.8. The cumulatives contact detection times are shown in Figure 7.8.
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Figure 7.8: Example III: cumulative contact detection times.
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In the case of the BBTS, a detail of the total cumulative times for sort, search and
contact detection are shown in Figure 7.9.
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Figure 7.9: Example III: cumulative times for BBTS.

Example IV. All discrete elements are placed in the same cell. During the whole
simulation the elements cannot move away from the box. Basically each algorithm
solves a quadratic search.

The total cumulative times are shown in Figure 7.10. The approximation curves
shown in Figure 7.10 are obtained by fitting the experimental data to the following
function

f (N) = aN2 +bN + c (7.18)

The value of the coefficients a, b and c are determined through the least square
method.

The behaviour for all the algorithms in terms of cumulative contact detection time
is quadratic. This shows the disadvantage in contact detection time, when the size of
the cell is excessively big, relative to the size of the objects. These algorithms are not
designed to work with objects with large variances in their sizes.
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Figure 7.10: Example IV same cell: cumulative contact detection times.

Example V. All discrete elements are placed randomly in x direction and keeping y

and z constants, i.e.

iy = iymin

iz = izmin
(7.19)

as shown in Figure 7.11.
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Figure 7.11: Example V cluster.

The order into which the elements are introduced is also random. The density for
each value of N is constant and equal to 4.
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ρ =
N
L
= 4 (7.20)

The constant used initialize the random generator is

rx =−1 (7.21)

The process of calculating the random integerised coordinates for each one of the
elements is illustrated in Algorithm 7.2.

Algorithm 7.2 1D: Random integerised coordinates.
1: i = 0
2: for (i1 = 0; i1 < j;++ i1) do
3: for (i2 = 0; i2 < j;++ i2) do
4: for (i3 = 0; i3 < j;++ i3) do
5: x [i] = (int)(δGenerator (rx))+ ixmin
6: y [i] = iymin
7: z [i] = izmin
8: i = i+1
9: end for

10: end for
11: end for
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Figure 7.12: Example V (1D): cumulative contact detection times.
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At each time step, each particle is only moved along the x axis. This movement is
done randomly. The cumulative contact detection times are shown in Figure 7.12 and
in Figure 7.13.
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Figure 7.13: Example V (1D): cumulative contact detection times.

Example VI. All discrete elemntes are placed at randomly in x and y and z = zmin as
shown in Figure 7.14.

 

 
 y 

x 

 
Figure 7.14: Example VI cluster.

The order into which the elements are introduced is also random. The density for
each value of N is constant and equal to 0.33333.

ρ =
N
A
= 0.33333 (7.22)
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The constants used to initialize the random generator are

rx =−1
ry =−1

(7.23)

The process of calculating the random integerised coordinates for each one of the
elements is illustrated in Algorithm 7.3.

Algorithm 7.3 2D: Random integerised coordinates.
1: i = 0
2: for (i1 = 0; i1 < j;++ i1) do
3: for (i2 = 0; i2 < j;++ i2) do
4: for (i3 = 0; i3 < j;++ i3) do
5: x [i] = (int)(δGenerator (rx))+ ixmin
6: y [i] = (int)(δGenerator (ry))+ iymin
7: z [i] = izmin
8: i = i+1
9: end for

10: end for
11: end for

At each time step, each particle is moved randomly along the x and y axes only, i.e.
during the simulation all the particles remain in the plane defined by

z = zmin (7.24)

The cumulative contact detection times are shown in Figure 7.15 and Figure 7.16.
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Figure 7.15: Example VI (2D): cumulative contact detection times.
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Figure 7.16: Example VI (2D): cumulative contact detection times.

Memory speed travelled test. In Example I (Figure 7.2) and in the Example II
(Figure 7.5) the NBS algorithm outperforms any other algorithm. However in
example III (Figure 7.8) the MR outperforms the other algorithms as expected. This
difference in the speed between NBS and MR, occurs when the elements are
introduced in a different order. A simple test is performed to demonstrate that the
differences in time may be due to the internal use of memory. This test cannot be

taken as a general behaviour of an x86 computer, and may be particular to the
OS/Machine employed in this work.

1 2 3 -1 5 6 7 -1

0 1 2 3 4 5 6 7

  Heads

 

Figure 7.17: Case A.

Position Array First Path Pointers Second Path Pointers
0 1
1 2
2 3
3 -1
4 5
5 6
6 7
7 -1

Table 7.1: Case A.
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The velocity to traverse a 1D vector with two heads is tested. In Case A the vector
is ordered in such a way that each of its values is equal to the number of the next
position, as shown in Figure 7.17. and in Table 7.1.

In the second test (Case B), the vector is ordered in such a way that each value of
the vector is equal to the number of the next position plus 1 as shown in Figure 7.18
and in Table 7.2.

2 3 4 5 6 7 -1 -1

0 1 2 3 4 5 6 7

 Heads

 

Figure 7.18: Case A.

In theory there should be no difference in the time expended to “travel” through
this array. However, as is shown in Figure 7.19 and Figure 7.20, there is a notable
difference in the time of around 10%.

Position Array First Path Pointers Second Path Pointers
0 2
1 3
2 4
3 5
4 6
5 7
6 -1
7 -1

Table 7.2: Case B.

7.3 Conclusions

Different tests were performed comprising up to 0.12 billon particles. The linear be-
haviour of the NBS, MR as well as the new MR-S algorithms were shown. This ex-
haustive experiment can be used as a tool to choose the best algorithm to be imple-
mented in various cases.

The BBTS was the slowest algorithm. However the main objective of these sim-
ulations was to compare different algorithms in different real situations. On the other
hand, for researchers who are already working with BT or who need to implement a
BT for other reasons (i.e. for a data base) a simple modification to the structure of the
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BT will allow them to use it as a CD-search algorithm without the difficulty associated
with complex discretization of the space.
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Figure 7.19: CPU time as a function of the size of the arrays.
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Figure 7.20: Percentage difference as a function of the size of the arrays.

It was also shown that, for vector algorithms, the way in which the elements are
introduced can affect their velocity (Example I and Example III).

Example IV shows the problem encountered when a relatively large cell size is
used. There is practically no difference in the search time, as all algorithms have
quadratic behaviour.

In Example V and Example VI, the BBTS algorithm underperforms and the varia-
tion in CPU time for the MR, MR-S and NBS, is negligible.
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In most of the Discrete Elements Simulations the particles are randomly allocated
to the space (Example III). For these situations the MR and MR-S algorithms were the
fastest.

If the code is written in an object oriented environment the original MR should
be implemented. On the other hand if the code is written in a non-object oriented
environment MR-S should be implemented.



Chapter 8

NON ELASTIC NORMAL

INTERACTIONS

8.1 Non elastic interaction in 3D

The normal contact interaction between rocks, concrete blocks, etc. presents a com-
ponent that is not elastic1. As cracks are produced, part of the energy is dissipated.206

This dissipation during contact is different to other dissipative mechanisms such as
those produced during deformation by the damping.146 As the interaction affects the
final trajectory of a discrete element, not only is the final energy is affected, but also
the spatial distribution of the different entities on the domain.

For applications like coastal defence where hundreds of concrete blocks are used,
with typical dimensions to an order of magnitude in metres, the use of such small
discretisation to capture micro cracks is impractical. A similar situation arises in sim-
ulations of rock landslides.9 A more suitable option is to modify the interacting al-
gorithm making it able to produce non elastic interactions, where part of the energy is
dissipated.

In this work, a model previously developed by An and Tannant9 for the 2D DEM
code PFC2D2, and later imported into 2D-Ycode by Lisjak,105, 119 is further imple-
mented into 3D. A modification in the behaviour of the uploading/downloading curves
is implemented to avoid abrupt energy changes due to jumps in the interaction force.

The algorithm is divided into two stages depending on the current overlapping
distance dcur and the previous overlapping distance dprv

1Do not confuse with frictional tangential interaction
2Commercial DEM software from Itasca

125
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• Uploading curve for dcur > dprv

• Downloading curve dcur < dprv

Depending on the interacting algorithm d could be a real penetration distance dreal or
a distance calculated using a contact potential φ where dφ 6= dreal . Even so, the model
proposed in this chapter should work.

8.1.1 Uploading curve

The upload curve follows the traditional spring-like behaviour of any stress below the
ceiling/top stress σT as shown in Figure 8.1a. When the maximum stress σT is reached,
a further increase in the distance d does not produce changes in the contact stress σ as
shown in Figure 8.1b. The equation for the stress on the upload curve is σ = σp dcur

σ = σT

i f σ < σT

i f σ ≥ σT

(8.1)

where σp is the penalty stress and dcur is the current distance overlap. The top stress
σT affects the amount of energy removed from the system.
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Figure 8.1: Schematic plot of contact stress. a)Stress below σT .b)Stress greater than
σT . Figure modified from An et al.9

8.1.2 Downloading curve

An and Tannant9 chose an exponential function to be used for the downloading curve3,
equal to

3Their original implementation is with forces not with stresses
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σ = a (dcur)
b (8.2)

where σp is the penalty, a is a parameter to be determined automatically by the
algorithm to fit the curve, dcur is the distance, and b is the exponent that regulates with
σT the energy to be lost during interaction.

The parameter a fits the curve from the point of maximum overlapping to zero and
is calculated as

a =
σmax

(dmax)
b (8.3)

where σmax is the value of the stress at the maximum overlap distance dmax. If the
exponent b = 1 and the stress is lower than σT there will be no loss in energy as all
the kinetic energy Ke is returned as shown in Figure 8.2a where the loading and
downloading path coincide. On the contrary if the limit of σT is passed the path does
not coincide and there will be a loss of energy as shown in Figure 8.2b. The loss in
the amount of kinetic energy is proportional to the area highlighted in grey and the
kinetic energy returned is proportional to the area highlighted in blue.
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Figure 8.2: Schematic plot of contact stress. a)Elastic contact b = 1.0 and σ < σT .
b)Inelastic contact b = 1 and σT is reached. Figure modified from An et al.9

Any value of b > 1 will produce an inelastic contact regardless of the stress σT as
shown in Figure 8.3a and Figure 8.3b
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Figure 8.3: Schematic plot of contact stress. Inelastic contact. a)σT > σD and b > 1.0.
b)σT < σD and b > 1.0. Figure modified from An et al.9

8.2 Modification on the non-elastic model

In simulations involving more than 2 discrete elements it is possible to have complex
contact interactions, in which the contact distance during a rebound does not decrease
but increases. Neither An and Tannant9 nor Lisjak105, 119 explicitly explain the beha-
viour of the model for complex interactions. They mention only two curves loading
and downloading.
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Figure 8.4: Schematic plot of contact stress in case of overlapping distance increase
after decrease. a)Increasing contact stress on the uploading curve. b)Increasing contact
stress on the downloading curve.

There are two possibilities

1. Go back to the uploading curve as shown in Figure 8.4a.

2. Go back on the downloading curve shown in Figure 8.4b.
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If the first option is applied it will produce an increase in kinetic energy as there is an
abrupt change in the interaction force. In this work the second path is chosen to avoid
that increase.

8.3 Test

The inelastic normal interaction used in this work is tested in three different cases. For
the first two cases the position of all the discrete elements is imposed to reproduce the
three types of contact described in this chapter:

• Case A: Elastic.

• Case B: Inelastic stresses below σT .

• Case C: Inelastic stresses reaching σT .

while in the last test a concrete coastal defence block is dropped with initial velocity
of 0.5 m/s.

8.3.1 Test A

This test consists of two discrete elements shown in Figure 8.5. The left tetrahedra is
fixed, while the position of the moving right tetrahedra function of time is shown in
Figure 8.6 reproducing a simple interaction. The A = 173.2mm2 with penalty σp = 90
MPa.

The interaction forces are shown in Figure 8.7 , where the curves reproduce the
theoretical behaviour.

xz

y

Figure 8.5: Simple discrete elements: the left tetrahedra is fixed, while the red tetrahe-
dra moves.



8.3 Test 130

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  100  200  300  400  500  600  700  800

Po
si

tio
n 

x
 /(

µm
)

Step

Figure 8.6: Imposed position on right tetrahedra.
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Figure 8.7: Interaction between two discrete elements. Case A: σT =60MPa, b = 1.
Case B: σT =60MPa, b =2. Case C: σT = 450 Pa, b =2.

8.3.2 Test B

This test is similar to the previous test A. The only difference is the imposed position on
the right tetrahedra shown in Figure 8.8. Contact forces are shown in Figure 8.9 with
no fluctuations in the interaction stresses as expected after the modification previously
discussed.
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Figure 8.8: Imposed positions on right tetrahedra.
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Figure 8.9: Interaction between two discrete elements. Case A: σT =60MPa, b = 1.
Case B: σT =60MPa, b =2. Case C: σT = 450 Pa, b =2.

8.3.3 Test C

This test simulates the drop of a coastal defence block, different values of σT and b are
tested. The dimensions206 of the coastal block are shown in Figure 8.10a.

The material of the block is concrete with elastic modulus E=26.6 MPa, Poisson’s
ratio ν =0.205, density ρ =2340kg/m3, while the damping is set to zero. The only
dissipation on the system is the one produced during contact interaction. The discrete
elements used to simulate the floor have an imposed velocity equal to zero during the
whole simulation, while the defence block has an initial velocity equal to 0.5 m/s.
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The kinetic energy of the block function of time is shown in Figure 8.11 where for
σT =100 MPa and b =1 there is no loss of kinetic energy. For all the other cases the
amount of kinetic energy removed increases as σT decreases and b increases.
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Figure 8.10: Concrete coastal defence. a)Dimensions (m). b)Mesh.
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Figure 8.11: Kinetic energy of the coastal block.



Chapter 9

NOVEL PARALLEL SOLUTIONS FOR

THE COMBINED FINITE-DISCRETE

ELEMENT METHOD

In this chapter a novel parallel solution for the FDEM is presented. This solution is
built upon previous developments in this work: binary tree (Chapters 4 and 6), contact
detection (Chapter 6) and non-elastic interaction (Chapter 8).

In Chapter 3 an extensive description of different hardware and library/software
were presented. There is no simple answer to the question of which is the best com-
bination of hardware/library/programming language.
Ideally, it should be possible to develop a new sequential solution and leave the hard
parallelization work to the compiler. Automatic parallel79 compilers which take a
sequential code and transform it into a parallel code are not yet developed enough
to be used on CPU demanding applications such as those created via FDEM.

Many libraries are available for usage in parallelization of code, including OpenMP,
CUDA, OpenCL, MPI, etc. The Message Passing Interface (MPI) is quite wide spread
and supported by many companies and universities. It must be noted that MPI is “not
a language, it is a specification of a library of routines that can be called from pro-
grams”.42

It is possible to use MPI from Python, Fortran, C, C++, C#, among other lan-
guages. It can be used on multicore and cluster computers. In this work, an explicit
parallelization using MPI and the C++ language is the chosen path.

A code that relies heavily on a particular library (such as MPI) and uses most,
if not all, of its available resources has the advantage of some of the “tailor made”

133
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speed up functions. Libraries change with time, and their development is sometimes
discontinued. In either case, changes in external libraries incur great programming
efforts to adapt to a new library that fulfils the characteristics of the old one. Therefore
in this work, the functions used from the MPI package are kept at a minimum.

The chapter is divided into 3 sections. Section 9.1 introduces important concepts
and operations used in MPI. Section 9.2 explains the algorithm developed in this work
and finally the section 9.3 presents different test cases.

9.1 Message Passing Interface

In general, it is possible to divide computer memory into two main groups160

• Shared Memory: nowadays common multicore computers. Each processor can
access all the memory available.

• Distributed Memory: HPC (High Performance Computing) each processor can
only access their own local memory.

OpenMP25, 168 provides coding tools for shared memory systems. The advantage of
OpenMP is the speed up in the communication as there is no need to “move” memory
from one processor to another. All processors can “see” all the memory. Message
Passing61 on the other hand, produces an exchange of messages between processors,
moving data across the network. The message is copied from the sender to a buffer on
the receiver.42

When MPI is used on a multicore computer, there is no memory access between pro-
cessors, thus isolating1 the operations in each processor. The advantage in this case
lies in the firewall imposed on the memory,61 facilitating the debugging process. At
the same time, there is a price to pay in CPU time, since memory has to be passed
around.

It is important to note that some concepts of MPI can be easily misinterpreted. MPI
operates on a per-process basis and, for a given implementation, more than one process
may reside in the same processor61 i.e. it is possible to run two processes on a single
core PC. This means that

nprcocessors ≥ nprocesses (9.1)

1MPI-2 allows the access of memory from processor to processor explicitly61 thus copying from or
acceding the memory of the other processor. Still this could be seen as a message delivered straight
to/from the other processor memory. Is not sharing memory as is the case of OpenMP.
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where nprocessors is the number of processors and nprocesses is the number of processes,
is a condition that is not always satisfied. Unless a parallel program has a strong
nonlinear2 dependency with the size of the problem, in terms of CPU time, having
more processes than processors will always reduce the parallel efficiency.

The complete description of MPI and its usage is out of the scope of this thesis.
The books by Pacheco,159, 160 Gropp et, al61 and by the Message Passing Interface
Forum,50 provide an in-depth description of MPI. In the rest of the section some key
aspects of MPI are explained.

9.1.1 Topology

There are two classes of topology in parallel computing. One is built with processors
and switches as shown in Figure 9.1a and Figure 9.1b. This is known as hardware
topology.

a)

2 3

4 5

0 1

6 7

b)
2 3 4 50 1 6 7

Figure 9.1: Hardware topology (network) processors are highlighted in yellow and switches
are highlighted in brown. a)Simple 2D network b)Binary tree network. Figure modified from
Quinn and Michael168

The second type is process topology, which is shown in Figure 9.2 where arrows
signal communications between processes. Process topology is independent of the
topology of the processors (hardware), hence, for instance, MPI is normally unaware
of nearby processors in terms of communication velocity. Thus, the same code running
the same problem on different HPC clusters will normally perform differently.

Process topology is built between processes sender-to-receiver, each one addressed
by a unique id called “rank”, assigned automatically by the implementation of MPI.

2i.e. Quadratic search.
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Depending on the problem to be solved, different process topologies can be arranged.
MPI gives total freedom to link processes in any shape (square, cubical, etc) regardless
of the hardware topology. The process topology in general is kept fixed during the
simulation, however there is no restriction from MPI on this and it could be changed
(within the same MPI_COMM_WORLD) during running time.

40 62

51 73

Figure 9.2: MPI 2D processes topology. Integer number correspond to the rank of each
process.

9.1.2 Moving data

Buffer use in send/receive. One important concept is that of the buffer. MPI sends
and receives a buffer of data during a communication between different processes.
Buffers are made of different kinds of data such as integer, double, char, amongst
other types, and the simplest buffer is made of a continuous agglomeration of data in
the RAM memory, divided into nbu f objects of size sizeType. An example is shown in
Figure 9.3.

sizeType

begBuf  

13251.2 5013.3 0.0002

endBuf  

Figure 9.3: Buffer with nbu f =4, total size =4sizeType. Only the first 3 elements of the buffer
have data.

There is no imposition in MPI to send a complete buffer. The process that receives
the message must have its own buffer (where the data is going to be copied) big enough
to accommodate the biggest possible message.

To send these simple buffers only the memory address at the beginning of the buffer
and the amount of data to send are needed. For the example as shown in Figure 9.3 the
address=&begBu f 3 and the amount of data to send =3.

3& in C/C++ gets the memory address of an entity.
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Objects in C++ are “made” of different kinds of data, such as double numbers,
integers, string of chars, etc. When an object has to migrate from one process to
another, or when it needs to copy itself as a proxy to a particular process, it may be
necessary to send all or part of its data. An example of this is shown in Figure 9.4 where
3 different data types are on non-continuous positions on the memory. Pacheco159

presents two options to deal with this issue:

• Send a message for each data type.

• Implement one of the MPI derived type constructors.

In any case MPI needs a way to know the address of each data type (char, double, etc.)
to be sent, their type, and their quantity.

13251.2 13 13256.324 y e s

begDbl  begChr  begInt  

Figure 9.4: Different data types to be sent are highlighted in blue, yellow and grey. Figure
modified from Pacheco.159

MPI_Bcast. Broadcast is an operation that sends a message from the process rank as
a root to all other processes. The root process is defined by the user and can be any
integer number from 0 to nprocesses-1. A common practice is to define process zero as
root. Usually processor zero reads the input file and distributes data to all remaining
processes.

MPI_Send, MPI_Recv, MPI_Sendrecv. These are operations between two different
processes. For a process i to send a buffer to a process j both processes have to reach
their functions send/receive at the same time. Otherwise one of them will wait until
the other is available to establish the communication. Not only is information
exchanged at this point but the program is synchronised between processes.

Usually, the sender process i needs to obtain information from the receiver process
j. It makes sense then to send and receive at the same time, only establishing the
communication between the involved processes once.112 In MPI this is done using
MPI_Sendrecv.

To synchronize processes there is no need to send or receive a buffer. MPI has a
communicator function called MPI_Barrier that pauses the execution of the program
in a process and waits for others to reach the same point.
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Asynchronous messages. Moving data from one processor to another is
computationally and relatively expensive. The delay produced is called latency and is
hardware dependent. It is possible to send a message and, while the message is being
sent, allow for the continuation of other calculations without waiting for the receiver
to receive it. This is called “asynchronous communications”.41

Operation on data been moved. MPI gives the flexibility of operating on data been
copy between processes, however the order in which the data is operated on is not
specified. Only operations that are order independent can be realized i.e. sum, max,
min, etc. using function MPI_Reduce.61, 118 An example is shown in Figure 9.5,
where the values of different processes are added and the result is collected on
process zero.

Figure 9.5: MPI_REDUCE add. Figure modified from Madron and Remigton118

9.2 Parallel algorithm

The FDEM method presents a higher level of complexity than other DEM meth-
ods. Contact forces have to be distributed between all finite elements (FEs) sharing
a node.133 Joint forces and failures (fractures) extending between neighbouring pro-
cesses impose extra communications when compared with simple DEM paralleliza-
tion.

On the other hand, the equations to be solved are localised. There is no global
matrix to be shared across processes as is the case for a typical FEM parallelization.

After point, surface and volume forces have been exchanged the equation of motion
Equation 3.3 (reproduced here for clarity reasons) is solved for each FE independently
as

Mü+Cu̇+Fint−Fext−Fcon−Fjnt = 0 (9.2)
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where ü is the acceleration, u̇ is the velocity, M is the mass matrix, C is the damping
matrix, Fint is the internal force vector, Fext is the external force vector, Fcon is the
contact (interaction) force vector and F jnt is the joint force vector.

In this section the solution methodology employed in this work is explained, start-
ing from domain decomposition and topology, followed by the communication func-
tion for send/receive messaging. Finally the algorithm for parallel simulations for
FDEM is presented.

9.2.1 Domain decomposition and topology

Domain decomposition is based on the spatial distribution of entities on the geometric-
physical domain.112 The domain is divided into n volumes, where each is assigned a
processor. In this work, it should be noted that only one process is assigned to each
processor.

In a sequential code there is only one process with one domain and all entities are
able to interact between each other as shown in Figure 9.6a. If the same problem is
solved in parallel using two processes then the domain is divided as shown in Figure
9.6b where the discrete element D lies in process zero, C lies in process one, and the
discrete elements A and B are in the buffer zone between the processes. Each process
can only act on entities that reside on it, meaning that some entities may need to reside
in more than one process at the same time, as is the case for entities A and B shown in
Figure 9.6c and Figure 9.6d.

Entities reside on a process in one of these two categories:

• as originals: all the data of the entity is stored here.

• as proxies: copies of the original, with all or part of the original’s data.

An entity can have none, one or more than one proxy, but it can only have one origi-
nal. Originals and proxies need to exchange data (positions, forces, flags) during the
simulation. Originals act as a master, while the proxies act as slaves, meaning that
any original entity needs to know where all its proxies reside i.e. the rank of the pro-
cesses. Furthermore, each proxy needs to know the rank of the original process. This
dependency between originals and proxies defines the processes topology.
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Figure 9.6: Original and proxies a)Sequential simulation, all discrete elements are original.
b)Buffer zones of processes zero and one. c)Process zero domain (blue) and its buffer zone
(light blue). All DEs are original d)Process one domain (orange) and its buffer zone (light
orange). Discrete element C is original while DEs A and B are proxies (copies).

To simplify the calculus of originals and proxies and to minimise the amount of
communications between processes, the shape of the volumes is limited to rectangular
cuboids as shown in Figure 9.7a, while their size is related to the size of the biggest
FE.

a)

10

2 3

b)
0 1

2 3

Figure 9.7: Domain decomposition. a)Volumes. b)Processes topology.

If the minimum edge of the smallest domain is greater than the maximum edge of
the biggest FE then each domain needs only to communicate with its closest neigh-
bours, as shown in Figure 9.8a. It must be considered that no FE cannot have proxies
in any other process except the neighbors’ processes where the original FE resides.
Otherwise each process will need to communicate with an indeterminate amount of
processes as shown in Figure 9.8b, where there is a proxy in a non-boundary process.
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Figure 9.8: Original and proxies processes for the blue highlighted FE. a)The original rank
process is 6, while the proxies processes are 3, 4 and 7. b)The original rank process is 6, and
the proxies processes are 3, 4, 7 and 5.

Algorithm 9.1 Contact detection between processes. The function MkComCouples is
based on the communication engine developed by Munjiza et al.141

1: for (iLv_i = 0, iLv_i < nprocesses,++ iLv_i) do
2: oPrci = GetProcessor (iLv_i)
3: oPrci→ SetComArrayEmpty() . Set all components to -1
4: end for
5: for (iLv_i = 0, iLv_i < nprocesses,++ iLv_i) do
6: oPrci = GetProcessor (iLv_i)
7: iLv_ jIni = iLv_i+1
8: for (iLv_ j = iLv_ jIni, iLv_ j < nproceses,++ iLv_ j) do
9: oPrc j = GetProcessor (iLv_ j)

10: if
(
oPrci→ IsInContac

(
Pro j

))
then

11: MkComCouples
(
oPrci,oPrc j

)
12: end if
13: end for
14: end for

In general, each process has to communicate with more than one process as shown
in Figure 9.7b. This could lead to a communication bottle neck as only one communic-
ation can be established at any one time. This would force the other processes to wait
idly until they are allowed to communicate. The communication has to be organised
into communication couples, where any process is allowed to communicate either with
just one process at a time, or with none at all.

The communication couples are set automatically by performing a simple contact
detection between all oPrc objects as shown in the Algorithm 9.1. The object oPrc

stores the geometric properties and the communication couples of each domain.
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Figure 9.9: Create communications couples. a)All communications couples are empty in-
dicated by -1. b)Set communication between process zero and one at step sA b)Set com-
munication between process zero and process two at step sB. c)Final distribution of
communications
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Figure 9.10: Communications between processes, split into three steps. a)Step sA. b)Step sB.
c)Step sC.

The above mentioned algorithm is better explained using the domain decomposi-
tion shown in Figure9.7a where all processes are in contact with each other. At the
beginning of the algorithm all communications are set to null (-1) as shown in Figure
9.9a. As the “interaction” between processes is detected by performing a quadratic
contact detection search, the communication couple between a process i and a process
j will be created on the first communication step where both processes are available
for communication i.e. where both have their communication flags equal to -1.

The first interaction detected is between process zero and process one. The com-
munication couple is set on step sA where both are free to communicate as shown in
Figure 9.9b. Then, once the interaction between process zero and process two is de-
tected, the algorithm will try to find a communication step where both processes have
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their communication flags equal to -1. Since process zero is busy at step sA, the com-
munication couple is set at step sB as shown in Figure 9.9c. This procedure is repeated
until there are no more processes to check. The final configuration of the communic-
ation couples is split into three steps as shown in Figure 9.9d, Figure 9.10a, Figure
9.10b and Figure 9.10c.

Read and write. Input files are read by process zero and broadcast to all processes
where each of the processes only creates its own objects. While reading is centralised
and only performed at the first step, the writing of data is not.

It does not make sense to spend time collecting data (output buffer) between pro-
cesses to then only write it on a single process (usually process zero). It is far simpler to
allow each process to write onto the hard-drive independently (especially on HPC) and
to analyse the data from the simulation after it is finished. In this work the open source
software ParaView is used to combine different output files into one visualisation.

9.2.2 Send receive send/recv

Objects in C++ are complex entities, containing different kinds of data. Sending an
object or part of it in an MPI message is not an easy task. One alternative possibil-
ity is to build custom made data types on MPI.61 This would mean that for any new
object/class that has to be sent/received a new data type has to be built.

In this work only three fundamental data types are employed

• MPI_LONG

• MPI_DOUBLE

• MPI_CHAR

Each message to be sent/received has these three types. Dividing the data in this man-
ner means that a message has to be sent/received for each data type to be sent. This
small price (more messages instead of one in the case of MPI data types) in CPU time,
is compensated by the simplicity of the MPI implementation.

The operation of mapping an object to the buffer is shown schematically in Figure
9.11, where different “engines” are employed in the transformation. For example, if
only contact forces are exchanged, there is no need to map deform forces.

To speed up the transfer operation, send and receive is carried out at the same
communication time using MPI_Sendrecv.
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a) b)

Figure 9.11: Mapping of an object to buffer. a)Send. b)Receive

9.2.3 Set originals and proxies

Objects are divided in this work into two main categories, depending on the type of
data required to perform the task assigned to them:

• Independent: Does not need any object other than itself to perform its task.

• Manipulator: Points to one or more independent objects and/or one or more
manipulators, from which it extracts data and/or modifies to perform its task.

In the FDEM each DE is made of a series of FEs (i.e. a triangle, tetrahedra) glued
together using joints, as it was explained in Chapter 3. Each finite element is categor-
ised as independent and needs only to “know” of coordinates, current velocities and
current forces, without any details regarding materials properties or joints. Following
along this line of thinking, for each FE there is one object called deform of the type
manipulator pointing to it. The object deform has all the material properties and laws
of deformation, which allows the implementation of different materials, only changing
one object and not all of the code. Similarly, joints are categorised as manipulators as
they need to get information from two FEs to calculate joint forces.

The setting of originals and proxies has to be organised hierarchically. Firstly,
independent objects have their processor rank set, then manipulator objects that only
depend on one object have their processor rank set, and subsequently manipulator

objects pointing to two objects have their processor rank set and so on.
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Set originals. Objects that require setting their original process rank can be divided
into two groups:

• Set original by the spatial position of the object.

• Set original by other criteria, i.e. by function. Object A operating on an object
B.

The first group is made of FEs, interaction points, where the original position is cal-
culated using the Algorithm 9.2 and where the function IsOriPntInsDom is shown in
Algorithm 9.3. This is the classic criteria for setting original rank.

The second group consists of objects that do not necessarily have a spatial position.
The criteria to set the original rank depends on each particular object. For example,
the object deform has its original rank defined by the FE that it manipulates, for these
kinds of objects the original rank is set using the Algorithm 9.4.

Algorithm 9.2 Set original by spatial position.
1: ob j2setOri . Object to set original
2: ListBouPro . List boundary processes. Single connected list element
3: ListBouPro = GetAllBouPro(ob j2setOri→ GetProOriRank ()). The first one is

OriPro, and the rest of the element in the list are all the processes neighbours to it
4: ob j2setOri→ SetProOriRank (−1)
5: while ((ob j2setOri→ GetProOriRank () ==−1)&&(ListBouPro! = Null)) do
6: if ListBouPro−> IsOriPntInsDom(ob j2setOri→ GetCentre()) then
7: ob j2setOri→ SetProOriRank (ListBouPro→ GetRank ())
8: end if
9: ListBouPro = ListBouPro→ GetNext ()

10: end while
11: if (ob j2setOri→ GetProOriRank () ==−1) then
12: WriteErrorOb jWithOutOriginalProcess()
13: end if

Set proxies. Proxies can be defined in a similar way as “set original” by their
position, or by other criteria. When a proxy object is defined by its position, then
algorithm 9.3 is modified to take into account4prc shown in Figure 9.10b and Figure
9.10c, where4prc is given by

4prc = nmov_ori 2vmax4t (9.3)
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where nmov_ori is the number of steps (frequency) to move originals and proxies, vmax

maximum velocity of any object and4t delta time. The modified algorithm is shown
in Algorithm 9.5 for a point proxy. The increase in the dimensions of the domain by
4prc is to account for possible displacements of entities (in other border processes)
that may be in contact with objects inside the domain between calls to move originals
and proxies.

Algorithm 9.3 Check if original point is inside domain. Where xmin, ymin, zmin are the
minimum coordinates of the domain and xmax ,ymax, zmax are the maximum coordinates
of the domain. To account for numerical rounding errors all domain dimensions are
increased by ε .

1: function IsOriPntInsDom(point) . point object with 3 coordinates.
2: if ((point→ x < (xmin− ε)) ||(point→ x > (xmax + ε))) then
3: returnno
4: end if
5: if ((point→ y < (ymin− ε)) ||(point→ y > (ymax + ε))) then
6: returnno
7: end if
8: if ((point→ z < (zmin− ε)) ||(point→ z > (zmax + ε))) then
9: returnno

10: end if
11: returnyes
12: end function

Algorithm 9.4 Set original by manipulated object.
1: ob jA . In example a finite element
2: ob jB . In example a deform operator
3: ob jB→ SetProOriRank (ob jA→ GetProOriRank ())

Move originals and proxies. Developing parallel solutions using C/C++ presents a
particular problem with data types called “pointers”. Pointers are used to speed up
access to different data/objects. If an object is using a pointer, it is moved from one
process to another will “expect” to have its pointer set in the new process. If a pointer
is not initialised (pointing to a random address of the memory) it will usually cause
the program to crash.

It is not possible to send a pointer as such (address to a block in the RAM memory) in
MPI. What is needed is a way to map a pointer to a different kind of data. The most
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intuitive data type to use is an integer. If all objects that are going to be moved are
assigned a unique id4 then it is possible to refer to a pointer not by its memory
address, but by the unique id of the object being pointed to.

Algorithm 9.5 Check if proxy point is inside domain. Where xmin, ymin, zmin are the
minimum coordinates of the domain and xmax ,ymax, zmax are the maximum coordinates
of the domain.

1: function IsProPntInsDom(point) . point object with 3 coordinates.
2: if

((
point→ x <

(
xmin +4prc

))
||
(

point→ x >
(
xmax +4prc

)))
then

3: returnno
4: end if
5: if

((
point→ y <

(
ymin +4prc

))
||
(

point→ y >
(
ymax +4prc

)))
then

6: returnno
7: end if
8: if

((
point→ z <

(
zmin +4prc

))
||
(

point→ z >
(
zmax +4prc

)))
then

9: returnno
10: end if
11: returnyes
12: end function

Different strategies can be applied to deal with pointers in MPI:

• Keep strict order of arrival to each process. Therefore, the first objects that do
not depend on other objects arrive first, and so on. Pointers are set as soon as the
object is created.

• Set pointers to NULL and have rules to deal with NULL pointers.

• Do not use pointers on objects that are going to be moved between processes.

• Set pointers after all objects have been moved.

• A combination of the previous rules.

To set pointers on objects that have been received, it is necessary to have a database
where one can find an object by its id. It is possible to use a binary tree (Chapter
6) to build such a database of objects. This database can be used to set pointers as
objects that are arriving, or to set pointers after all objects have been moved. There is
no simple answer or a silver bullet to solve this problem. In this work a mix of these
strategies has been implemented.

4It could be a vector id i.e. made of two integers (processRank,objectNum)
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9.2.4 Algorithm

The golden rule in any parallel code is to avoid unnecessary communications. It is less
expensive in CPU terms to repeat the same operation in all processes than to perform
it in one and communicate the results to the rest of processes. A good example of this
philosophy is the zero operation in which FEs have their forces set to zero. Finally the
complete procedure is shown in Algorithm 9.6.

Algorithm 9.6 Parallel algorithm for FDEM.”
” means sendReceive operations
(communication between processes), “ori” means original and “prx”proxy.

1: IniMPI . Ini MPI and set processes communication topology
2: ⇀ ReadInput . Process zero reads input, broadcast to all processes
3: while (iLv_i < iMv_numSt p) do
4: FeZero . FE(ori) calc contact pos. FE(ori) and FE(prx) set forces to zero.
5: 
 o2p_pvCon . FE ori2prx send position and velocity contact
6: if (doMov_ori) then
7: 
MovOriPrx . All objects, calc and move ori and prx.
8: end if
9: JointForces . Joint calculate forces on ori joints

10: if ( f racturePar) then
11: 
 FracturePar . Fracture
12: else if ( f ractureSeq) then
13: FractureSeq . Fracture
14: end if
15: PntZero . Interaction point (ori and prx) calculate position, set forces to zero
16: FeDe f . FE(ori) calculate forces deform
17: FeConFor . FE(ori) apply force conditions
18: if ((doCD) || (doMov_ori) || ( f ractureAny)) then
19: DeleteDataBaseInteraction
20: CD_search . CD_search, build interaction database. Chapter 6
21: end if
22: Interaction . Perform interaction on interaction database
23: PntPassFor2Fe . Interaction point (ori) pass force to FE
24: 
 p2o_ fConDe f . FEs prx2ori send force contact and deform
25: 
 o2p_ fCon . FE ori2prx send force contact
26: FeAvConFor . FE(ori) average contact force
27: FemConVel . FE(ori) apply velocity conditions
28: WriteOut put . Write output
29: FeMov . FE(ori) move. Calculate new position using central difference
30: 
 o2p_pvDe f . FE ori2prx send position velocity deform
31: end while
32: EndMPI
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9.3 Test cases

Three different cases are employed to test the performance of this parallel algorithm. In
Chapter 6 simple discrete elements (DEs) and up to 1.331 million finite elements (FEs)
were tested. Here, more complex DEs are tested. All the simulations were performed
on a Multicore PC DELL Precision T5400 with one processor of four cores and 32 G
of RAM. Each of the tests were performed sequentially (one core) and in parallel with
two cores and with four cores.

Generally, in dynamic simulations there is always some type of unbalance between
different processes. In this work, to obtain the time to perform of a particular operation,
i.e. contact detection, the total time is averaged between all processes namely

tpar =
∑

nprc
i=0 ti
nprc

(9.4)

where tpar is the parallel time, ti is the time of process i and nprc is the number of
processes.

As the amount of simulated objects increase, the communication time relative to the
total simulation time decreases. The decrease is related to the ratio between the total
number of objects N given by

N ∝ Vdom (9.5)

where Vdom is the volume of the domain, and the total the total number of objects to
communicate Ncom given by

Ncom ∝ Abou (9.6)

where Abou is the boundary area between processes. Ncom does not normally increase
as fast as N. The efficiency of a parallel solution is related to the relationship between
these two numbers.

The speed up was explained in Chapter 3, and is reproduced here for clarification
reasons. The relationship between the sequential and parallel runs is given by

S =
tseq

tpar
(9.7)
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where tseq is the sequential time and tpar is the parallel time. While the standard ratio
R% is given by

R% =
tpar

tseq
100 (9.8)

Times are measured without taking into account the time spent writing output files
to the hard-drive. Usually, in multicore systems a program will attempt to write into
the same hard-drive regardless of the particular process (0,1,..,nprocesses). As more than
one process tries to access the hard-drive, the writing times increase. This idle time is
not taken into account.

9.3.1 MPI test A

The test consists of a raster of DEs (boxes) made of 24 FEs each. Random velocities
are assigned to each box at time equal to zero from 0.0 m/s to 137 m/s. The mechanical
properties are: elastic modulus E=4 MPa Poisson’s ratio ν = 0.45 and penalty σp =

400 MPa. DEs are not allowed to break.
Each FE has one interaction point centre on each one of its faces. A spherical

boundary with penalty σp = 400 MPa is imposed to keep all DEs interacting with each
other.

Initial and final configurations for the raster of 4066 boxes are shown in Figure
9.12 for two and four processes.

FEs DE (Boxes) 2 prs: S 4 prs: S 2 prs: R% 4 prs: R%
1536 64 1.87 2.92 53.46 34.29
12288 512 1.93 3.67 51.83 27.23
98304 4096 1.98 3.87 50.63 25.82
526848 21952 1.99 3.93 50.33 25.42

Table 9.1: Total simulation time S and R%.

FEs DEs (Boxes) 2 prs: S 4 prs: S 2 prs: R% 4 prs: R%
1536 64 2.01 4.12 49.71 24.26
12288 512 2.03 4.12 49.36 24.26
98304 4096 2.05 4.18 48.86 23.93
526848 21952 2.05 4.19 48.86 23.87

Table 9.2: Total CD-MR time S and R%
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a) b)

c) d)

Figure 9.12: Geometric domains two and four processes. The colours scheme rep-
resents different processes. a)Time 0.0ms. b)Time 0.36ms. c)Time 0.0ms. d)Time
0.36ms, in light blue the proxies of process zero (blue) are shown.

The total simulation times S and R% are shown in table 9.1, where R% values gradu-
ally convert to the ideal values of 50% for two processes and 25% for four processes.
And S converges to the theoretical values of 2.0 for two processes and 4.0 for four
processes.

CD-MS (clean database, MS-load, MS-search, add to database of contact couples,
clean MS-tree) times are shown in table 9.2, where S values exceed the maximum the-
oretical value of 2.0 for two processes and 4.0 for four processes. The small discrepan-
cies from the theoretical values are due to the non-linearity of the CD-MS algorithm.
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The total time is shown in Figure 9.13 while the total time for CD-MS is shown in
Figure 9.14.

Finally the kinetic energy for each of the rasters is shown in Figure 9.15, where
there is an excellent agreement between sequential and parallel solutions.
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Figure 9.13: Total simulation time. The continuous lines are linear regressions.
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Figure 9.14: Total CD-MR time. The continuous lines are linear regressions.

9.3.2 MPI test B

All conditions are identical to the previous test, with the difference that DEs objects
are allowed to fracture. The development of the simulation for the raster of 4066 boxes
is shown in Figure 9.16.
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Fracture procedure changes the geometry of a DE object. FEs that were deeply
embedded inside a DE can become boundary FEs. If a fracture is produced then CD
has to be performed.
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Figure 9.15: Kinetic energy. a)64 boxes. b)512 boxes. c)4096 boxes. d)21952 boxes.

In this test there is a fracture in almost every step of the simulation. This is reflected
on the CD time shown in Figure 9.18. Not only is CD performed more often but
contacts that may theoretically occur in n4CD are calculated and added to the database
of contact couples, just to be deleted and recalculated in the next step.

The CD-MS and the parallel algorithm perform as expected (minus the increase in
the CD time) with the total time shown in Figure 9.17.

S and R% are shown in table 9.3 for the total time and in table 9.4 for the contact
detection time. Finally, the kinetic energy for each of the rasters is shown in Figure
9.19, where there is a good agreement between sequential and parallel simulations.
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a) b)

c) d)

Figure 9.16: Simulation four processes with 4096 boxes. The colours represent the
magnitude of the velocities. a)Time 0.0ms. b)Time 0.12ms. c)Time 0.24ms. d)Time
0.36ms.

FEs DEs (Boxes) 2 prs: S 4 prs: S 2 prs: S% 4 prs: S%
1536 64 1.85 2.92 53.91 34.24
12288 512 1.98 3.80 50.61 26.31
98304 4096 2.01 3.94 49.75 25.37
526848 21952 2.02 4.03 49.60 24.84

Table 9.3: Total simulation time S and R%.
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FEs DEs (Boxes) 2 prs: S 4 prs: S 2 prs: R% 4 prs: R%
1536 64 2.11 4.27 47.47 23.41
12288 512 2.03 4.07 49.16 24.56
98304 4096 2.04 4.08 48.99 24.49
526848 21952 2.04 4.13 49.05 24.22

Table 9.4: Total CD-MR time S and R%
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Figure 9.17: Total simulation time. The continuous lines are linear regressions.
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Figure 9.18: Total CD-MR time. The continuous lines are linear regressions.
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Figure 9.19: Kinetic energy. a)64 boxes. b)512 boxes. c)4096 boxes. d)21952 boxes.

9.3.3 MPI test C

The test140 consists in a rectangular discrete element, with a discontinuity into which
pressure is applied as shown in Figure 9.20a. The domain decomposition topology for
the mesh with 442368 FEs is shown in Figure 9.20b for two processes and in Figure
9.20c for four processes.

The pressure is gradually increased via the function as

σt = 20 t [GPa/s] (9.9)

where t is time, the elastic modulus E = 26.6 GPa and Poisson’s ratio is 0.205.
Interaction points are only created on the discontinuity. To test the performance under
static conditions only the first 2000 steps are run.

The CD-MS time as expected is almost null ≈ 0.14 ks (for 442 kFEs) when com-
pared with the total time of≈ 58 ks. Contact detection times are not taken into account
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the analysis of this test. The speed up S and the ratio R% for the total time are shown
in table 9.5.

a)

σt

σt

30
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20
20

20

30

b) c)

Figure 9.20: Geometry definitions. a)Dimensions mm b)Domain topology two pro-
cesses. c)Domain topology four processes.

The speed up S for two and four processes shown in table 9.5 are below the ideal
theoretical values of 2.0 and 4.0 respectively as expected. Since the problem is semi-
planar, the ratio between the total amount of objects N (equation 9.5) and the amount of
objects to communicate Ncom (equation 9.6) does not change as fast as for the previous
two tests.

On the other hand as the CD-MS has a minor influence, these values can be used
to address the performance of the algorithm without CD.

Elements 2 prs: S 4 prs: S 2 prs: R% 4 prs: R%
264 1.85 3.29 54.11 30.43
6912 1.94 3.65 51.51 27.39
55296 1.94 3.67 51.45 27.28
442368 1.97 3.76 50.67 26.56

Table 9.5: Total simulation time S and R%.

The total time is shown in Figure 9.21 where the non-linearities attributed to the
CD-MS are not present. The stresses ∑

∣∣σyy
∣∣ are shown in Figure 9.22, where it is

possible to appreciate the similarity between sequential and parallel tests.
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Figure 9.21: Total simulation time. The continuous lines are linear regressions.
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Figure 9.22: ∑

∣∣σyy
∣∣. a)264 FEs. b)6912 FEs. c)55296 FEs. d)442368 FEs.
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9.4 Conclusion

The performance of this novel MPI algorithm when compared with a sequential al-
gorithm, is good. Physical quantities such as Ke and stress are preserved during the
simulations.

Non-linear behaviours are observed in the total simulation times for test cases A
and B. These can be attributed to non-linearities of the CD-MS algorithm. If more
processes are used the parallel efficiency is expected to decrease, as each process has
to communicate with more neighbours increasing the total communication time.



Chapter 10

APPLICATION AND EXAMPLES

Any newly developed codes have to be tested against theoretical, empirical and com-
putational solutions.211, 164, 117, 195 To test this work a set of cases involving tension,
compression and fracture are chosen to determine the behaviour in different situations.
Structured and unstructured meshes are employed.

FDEM have to behave and reproduce results expected by the FEM method in the
absence of fracture. The first example is of a cantilever beam with a distributed load
test. The second example is a true FDEM where results in 3D fracture are compared
with a previously published 2D fracture numerical test. The third test involves the
interaction of a projectile against a rectangular glass; the obtained fracture patterns
are compared with published data. The final test simulates the collapse of a hyper-
boloid cooling tower structure with two different initial conditions, obtaining different
fracture patterns.

10.1 Cantilever beam under distributed load

This example is of the classic cantilever beam bending under its own weight. The
material is simulated as linear elastic with the following properties: elastic modulus
E = 2 MPa, Poisson’s ratio ν = 0.25 and density ρ = 2340 kg/m3. The dimensions
and boundary conditions are shown in Figure 10.1a. The gravity is increased gradually
from zero to the maximum value of 9.81 m/s2 at time equal to 2.4 s as shown in Figure
10.1b.

The maximum theoretical deflection of a cantilever beam under a distributed load
along the full length of the beam17 is given by the Equation 10.1

160
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ymax =
wL4

8EI
=

ρAgL4

8EI
= 5.756mm (10.1)

where , w is the load per unit length, L is the length of the beam, E is the elastic
modulus, I is the second moment of area, ρ is the density, g is the gravity acceleration
and A is the cross section area. The test is performed on two processes using three
different meshes, as shown in Figure 10.3.
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Figure 10.1: a)Dimensions (m) and boundary conditions. b)Gravity function of time
where g1=9.81 m/s2 and t1 = 2.4 s.

The maximum deflections are shown in Figure 10.2 and the final deflections in table
10.1. As expected as the number of FEs increase, the maximum deflection approaches
the theoretical value of 5.756 mm.
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Figure 10.2: Maximum deflections.
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Mesh Number of elements Maximum deflection mm
A 960 4.9
B 1920 5.1
C 6325 5.4

Table 10.1: Maximum deflections.

a)

b)

c)

Figure 10.3: Spatial distribution of elements between processors. The colour scheme
represents different processes. a)Mesh A, 960 FEs . b)Mesh B, 1920 FEs. c)Mesh C,
6325 FEs.

10.2 Fracture sensitivity

To capture the plastic zone in a fracture process it is necessary that the size of the mesh
(mesh discretization) should be smaller than that of the plastic zone. Where the lower
limit of the plastic zone for a short Mode I fracture, for an “infinite body under plane
stress conditions”140 is given by
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4low =
E

4 ft
4t (10.2)

where E is the elastic modulus, ft is the tensile strength and4t is the separation at
which the stress in the fracture is equal to zero. The lower limit of the plastic zone for
a long crack in Mode I is given by

4long =
πE
32 ft
4t (10.3)

The tensile separation 4t for the smeared crack model is given by the equation
3.17, reproduced here for clarity reasons

4t =
G f

Aso f ft
(10.4)

where G f is the fracture energy and Aso f is the area of the softening branch of the
stress-displacement curve. The equations 10.2 and 10.3 can be used as reference for
the biggest size hmax of an FE that can capture the plastic zone of the fracture as

hmax < Min
(
4low,4long

)
(10.5)

For sizes h > hmax the stress around the crack opening are not captured and the
resulting fracture is similar to the one obtained under “uniform stress distributions”140.
On the other hand, for finer meshes the stress is better captured and the plastic zone is
spread on more FEs.
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Figure 10.4: Geometry. a)Dimensions mm. b)Domain divided into 4 processes.
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Munjiza originally developed the fracture sensitivity test140 originally in 2D, but
here the test is extended to 3D, using the parallel algorithm developed in Chapter 10. It
is the same test presented in the previous chapter, but in this case the test is only run on
four processes until a fracture is produced. The test consists of a discrete rectangular
element with a discontinuity in the middle, as shown in Figure 10.4a.

A uniform pressure is gradually increased on this discontinuity as

σt = 20 t [GPa/s] (10.6)

where t is time. The material properties are: elastic modulus E = 26.6 GPa, Poisson’s
ratio is 0.205, tensile strength ft = 5 MPa, density ρ = 2340 kg/m3 and fracture energy
G f = 30 N/m.

a) b)

c) d)

Figure 10.5: Mesh topology. a)Mesh A, 864 FEs b)Mesh B, 6912 FEs. c)Mesh C,
55296 FEs. d)Mesh D, 442368 FEs.
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The parameters for the curve z (equation 3.14) are a = 0.63, b = 1.8 and c=6.
Therefore with these values, hmax should be

4t =
G f

Aso f ft
= 15.47 µm (10.7)

4low =
E

4 ft
4t = 20.6mm (10.8)

4long =
πE
32 ft
4t = 8.1mm (10.9)

hmax < 8mm (10.10)

Four different meshes are tested with hA = 10 mm, hB = 5 mm, hc = 2.5 mm,
and hD=1.25 mm as shown in Figure 10.5. The fracture initialisation and fracture
growth are shown in Figure 10.7 for mesh D, where it is possible to appreciate the
total separation between the top and bottom of the discrete element at the end of the
simulation.

The load value of the stress σt at the beginning of the fracture growth (first frac-
ture) is shown in Figure 10.6, presenting good agreements with the values obtained by
Munjiza in 2D. Comparing the sizes of the mesh with the theoretical limit140 given by
the equation 10.10, meshes C and D should give relatively good results as the plastic
zone is discretized on more than 3 FEs.
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Figure 10.6: Fracture. The continuous lines are linear regressions.
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a) b)

c) d)

Figure 10.7: Fracture growth. The colour scheme is the modulus of σyy. a)Time 0.000
ms. b)0.297 ms. c)0.308 ms. d)0.396 ms

10.3 Glass projectile impact

Dynamic impacts present challenging algorithm conditions (contact detection and frac-
ture propagation, among others) to the code’s solver, nevertheless have great impor-
tance in safety and security engineering problems. In this test, a rectangular piece of
glass150, held by four rectangular supports, as shown in Figure 10.8, is impacted by a
projectile with mass equal to 50 g traveling at -3 m/s on y direction. The four supports
have their velocities fixed vx=vy=vz=0 for the duration of the simulation.

The projectile is not allowed to brake and is modelled as an elastic material with
E=750 GPa and Poisson’s ratio ν=0.2. The glass is also modelled as an elastic material
with E=75.0 GPa, Poisson’s ratio ν=0.2, density ρ=2456 kg/m3, energy release rate
G f =10 N/m and tensile strength ft =10 MPa. The contact interactions between glass,
supports and the projectile are simulated as elastic interactions with penalty σp = 7500
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GPa.
Two domain topologies (two and four processes) and three different meshes (coarse,

semi-coarse and fine) are used in the test. The coarse mesh consists of 67597 elements
in two layers as shown in Figure 10.9a, the semi-coarse mesh with 105120 elements
in three layers, as shown in Figure 10.9b and finally the fine mesh consists of 212860
elements in four layers as shown in Figure 10.9c.

8

8
284

50

4.
76

5

y
xz

support projectile

Figure 10.8: Dimensions (mm). Figure adapted from Munjiza et al.150

a)

b)

c)

Figure 10.9: Mesh discretisation and domain topology. a)Coarse mesh 67597 FEs.
b)Semi-coarse mesh 105120 FEs. c)Fine mesh 212860 FEs.

The total kinetic energy is shown in Figure 10.10 where there is a slow conver-
gence as the number of elements increase. As the kinetic energy from the projectile
is transmitted to the glass through contact interaction, the glass starts to fail and the
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fracture pattern begins to emerge, as shown in Figure 10.11 for t = 10 µs. As more
energy is passed from the projectile to the glass the fracture grows, as shown in Figure
10.12 for t = 50 µs and in Figure 10.13 for t = 90 µs . Through the different images
it is possible to appreciate the convergence of the fracture patterns among the different
combinations of meshes and processes.
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Figure 10.11: Fracture pattern at 10 µs. a)Coarse mesh. b)Semi-coarse mesh. c)Fine
mesh.
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a)

b)

c)

Figure 10.12: Fracture pattern at 50 µs. a)Coarse mesh. b)Semi-coarse mesh. c)Fine
mesh.

a)

b)

c)

Figure 10.13: Fracture pattern at 90 µs. a)Coarse mesh. b)Semi-coarse mesh. c)Fine
mesh.
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Figure 10.14: Fracture pattern at 90 µs. Figure adapted from Munjiza et al.150

Figure 10.15: Semi-coarse mesh: the abrupt changes in the mesh topology are high-
lighted with two ellipses.

When the fractures shown in Figure 10.13 are compared to the 2.5D shell fracture
pattern obtained by Munjiza et al.150 shown in Figure 10.14, the main features of the
fracture are captured. Nevertheless, the simple model of joints described in Chapter 3
used in the present work is not able to fully capture the radial fracture patterns.

The fracture can only happen on the joints acting between FEs, this means that
for coarse meshes the topology of the mesh will greatly influence the fracture pattern.
There are chiefly two reasons for this to happen. Firstly, as was shown in the previous
example, in coarse meshes the plastic zone on the tip of the fracture is not well cap-
tured. The second reason is purely geometric as the topology guides the fracture. This
is shown in Figure 10.13b where, for the semi-coarse mesh, it is possible to observe
that a hook like end of the fracture emerged purely because of the mesh discretization
as highlighted in Figure 10.15.

10.4 Hyperboloid cooling tower collapse

Even the most efficient fossil-fuel power station wastes 55% of energy in the form
of heat that needs to be transferred to the environment.72 If this excess of heat is
transferred into rivers, lakes, etc., the surrounding area may experience a fluctuation
in the temperature, in turn affecting the natural life around the power station. On the
other hand, a hyperboloid cooling tower is an environmentally energy efficient way to
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dissipate heat energy as it takes advantage of the use of natural draft to move air from
the base to the top. Thus, it decreases the heat foot-print of the area around the power
station. Hyperboloid cooling towers are an important part of carbon, natural gas and
nuclear energy stations.

Cooling water

Heat 
exchange

Electricty
Generator

Clean flue gas

Cooling Tower

Figure 10.16: Schematic view of a cooling tower with a discharge pipe. Figure adapted
from Harte and Kratzing72

Environmental requirements in Germany have changed the previous symmetric
shape of the hyperboloid towers, as they are used not only for cooling, but for the
discharge of gases produced during the combustion of fossil fuels.72 Fuels have to be
filtered before they can be released into the atmosphere. In the process of cleaning
there is a decrease in the energy of the gas (pressure drop), therefore making the use of
standard chimneys impossible. A schematic view of a cooling tower with a discharge
pipe is shown in Figure 10.16.

When a power station has reached the end of its life it has to be decommissioned
and its cooling towers demolished. The collapse of the hyperboloid cooling tower
is a complex process involving the failure of a composite material called reinforce
concrete.154

The numerical experiment consists of a hyperboloid cooling tower with 0.5 m wide
walls with external dimensions73 shown in Figure 10.17a. The tower is discretized into
36295 FEs and the domain is broken down into four processes, as shown in Figure
10.17b. The tower lies on a floor with fixed velocities vx=vy=vz=0 during the entire
simulation.
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The tower’s material is simplified as elastic homogenous concrete, made up of the
following properties: elastic modulus E=35 GPa,20 strain energy release rate G f =147.5
N/m,176 tensile strength ft = 6.3 MPa,176 density ρ=2400 kg/m3,14 and Poisson’s ratio
ν=0.15.14

a) Foor
Base

Tower
10

16
3

116

12

b)

Figure 10.17: Tower geometric description. a)Dimensions (m). b)Mesh and process
topology (the floor is not shown).

The interactions between discrete elements are calculated using non elastic normal
interactions developed in Chapter 8. The values for the interaction between tower-
tower DEs and tower-floor DEs are shown in Table 10.2.

DEs Interaction Penalty σp TPa Maximum stress σT MPa Exponent b
Tower-Tower 1.8 500 6
Tower-Floor 1.8 5 4

Table 10.2: Non elastic normal interaction properties

The numerical experiment is split into two steps:

1. Gravity load: the tower is first allowed to deform and reach equilibrium with
negligible values of kinetic energy under the effect of gravity equal to 9.81m/s2,
while the bottom of the front and back base are fixed (vx=vy=vz=0), as shown in
Figure 10.18a.
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2. Tower collapse: taking the initial conditions from the previous step and main-
taining the same value of gravity, two different tests are run:

• Test A: the front of the base is fractured at t=0.0s and there are no restric-
tions on the base as shown in Figure 10.18b.

• Test B: the front of the base is fractured at t=0.0s and only the bottom of
the back base is fixed from t=0.0 s until t=0.5 s, as shown in Figure 10.18c.
For t>0.5s there are no more restrictions on the base.
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Figure 10.18: Boundary conditions. a)During gravity load. The base of the tower
is fixed. b)Test A. The front base is fractured at t = 0. c)Test B. The front base is
fractured at t=0, while he back base is fixed for t < 0.5.

The tower collapse sequence for Test A and Test B are shown in Figure 10.21,
Figure 10.22, Figure 10.23 and Figure 10.24. Upon scrutiny, it is possible to appreciate
the different dynamics between the tests and how complex fracture patterns started and
grew crossing boundaries between different processes.

The kinetic energy for Test A and Test B is shown in Figure 10.19, where there is
a shift in time in the kinetic energy produced by the boundary conditions on Test B.
After the towers collapsed, as shown in Figure 10.24a for Test A and in Figure 10.24b
for test B, there is a significant change in the slope of the kinetic energy in Figure
10.19, where the rate of dissipation of kinetic energy decreases. Mainly, this is due
to the absence of new fractures as the only dissipation mechanism left is the damping
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in the material and normal interactions: tower-tower and tower-floor. Simultaneously,
the decrease in vertical velocities implies that the relative importance of interactions
tower-floor (which dissipates more energy see table 10.2) decrease as well.

The material properties employed in these tests corresponded to those of a good
quality concrete. While this cannot be used to realistically simulate the collapse of a
cooling tower it is a good initial step of comparable relevance, as it shows the capac-
ity of the different algorithms developed in this work (contact detection, non elastic
interactions and parallel solutions) to deal with complex, dynamic boundary changes
and fracture patterns across different processes. However, further research must still
be carried out to take into account the properties of reinforced concrete regarding the
constitutive law of the material(Chapter 3) and the joints (Chapter 3).
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Figure 10.20: Tower collapse sequence t = 0 s.
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a)

Test A Test B

b)

Test A Test B

c)

Test A Test B

Figure 10.21: Tower collapse sequence. a)t = 0.2460 s. b)t=0.4928 s. c)t =0.9952 s.



10.4 Hyperboloid cooling tower collapse 176

a)

Test A Test B

b)

Test A Test B

c)

Test A Test B

Figure 10.22: Tower collapse sequence. a)t =1.9936 s. b)t=2.9952 s. c)t =3.9936 s.
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a)

Test A Test B

b)

Test A Test B

c)

Test A Test B

Figure 10.23: Tower collapse sequence. a)t =4.9952 s. b)t=5.9936 s. c)t =6.0909 s.
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a)

Test A Test B

b)

Test A Test B

Figure 10.24: Tower collapse sequence. a)t =6.4960 s. b)t=6.7904 s.



Chapter 11

CONCLUSIONS AND FURTHER

RESEARCH

New algorithmic solutions for the Combined Finite-Discrete Element Method have
been developed and tested. In this chapter a summary of this work is presented, and
some possible further research directions are suggested.

Summary. In Chapter 2 some limitations for the classic continuum methods such as
FEM were presented with the methods of Discontinua to overcome them. A compact
historical background of the different methods of discontinua was introduced, as well
as short descriptions of the following :

• DEM

• FDEM

• DDA

• MD

• SPH

Chapter 3 featured the introduction of different aspects of the FDEM. The radical con-
cept in FDEM of glued deformable particles (finite elements) through joints was intro-
duced here. The equations of motion to be applied to each finite element (FE) taking
into account deformations, interaction and joints were presented. Some aspects of con-
tact detection such as RAM memory limitation, and contacting couples were described.
The equations for small strains to calculate the deformation forces on a tetrahedra were
introduced here. Complex fracture processes (Mode I, Mode II, Mode III) in the joint

179
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using the stress-strain model developed by Munjiza, were presented and tested. Finally
a literature review of different hardware, software and libraries for parallelization, with
some important concepts such as speed-up, Amdahl’s law and rounding error were de-
scribed.

In chapter 4, a novel CD algorithm for bodies of similar size was explained in
detail. This algorithm denominated Balance Binary Tree Schiava (BBTS) is based on
the Binary Tree (BT), the spatial ordering criterion, and the contact mask in 3D. This
algorithm is suited to be used in any object oriented language (C++, Java, etc.,) and
should be easy to implement into any existing BT.

Chapter 5, presented a flavour of the MR algorithm denominated MR-Schiava that
does not use objects as the MR algorithm but rather makes use of arrays, and is so de-
scribed. This makes it suitable to be implemented in non-object oriented solutions. A
description of the Non Binary Search-Munjiza (NBS) and the MR were also presented.

Chapter 6 featured a novel algorithm based on the BBTS and the MR algorithm
for body-point interaction. The modifications on the BBTS-tree structure, and the
new search algorithm were described in detail. This new algorithm was denominated
MunjizaSchiava. A test of up to 1.331 M discrete elements (DEs) with 5.324 M inter-
action points was presented for sequential (one process) and parallel 2 and 4 processes.
The algorithm showed some non-linear behaviour as expected, yet in the range tested
there was a pseudo-linear behaviour. At the end of this chapter, a further improvement
of the algorithm was presented.

In chapter 7, detailed comparisons of different algorithms for bodies of similar size
were presented. The testing carried out on MR, MR-S, NBS and BBTS were described
in detail. These tests were only carried out sequentially, with ghost DEs that were not
able to deform and for which their positions were imposed at each time step. For
bodies of similar size the fastest algorithms were the MR and MR-S.

A model previously developed in 2D and implemented in a commercial software
PFC2D and later ported to the open source 2D-Y code was presented in chapter 8. The
original algorithm was modified to avoid jumps in the interaction forces and imple-
mented in 3D. The improved performance was shown in two tests at the end of the
chapter.

Chapter 9 described a novel parallel solution in 3D for the FDEM based on the
solutions developed in the present work. The Message Passing Interface (MPI) library
was also described. Three different tests to evaluate the performance of the proposed
solution using complex DEs (made of more than one FE) were presented. The speed
ups were near the expected values of 2 for two processes, and 4 for four processes.
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Some non-linearities attributed to the non-linear MS-CD algorithm were observed in
the first two tests, while in the last test the behaviour of the algorithm in the absence
of CD (CD time was almost zero) was shown with speed ups of almost 2 and 4 for two
and four processes.

The following applications and examples were presented in chapter 10:

• The first test was the well-known cantilever beam under distributed load, where
the performance of the algorithm was compared with the theoretical solution.
As expected, as the number of finite elements increased the final displacement
approached the theoretical value.

• The second test involved 3D fracture propagation on 4 processes. The perfor-
mance of fracture was compared with previously published results in 2D show-
ing a good agreement between the results.

• The third test involved the interaction between a projectile and a plain glass.
Here the fracture patterns were compared to published numerical results of thin
shell elements using FDEM. The algorithm developed in this work was able to
capture the main features of the fracture patterns in the glass however some of
the fractures near the impact point were not captured.

• The last example simulated the demolition of a Hyperboloid Cooling Tower.
While there is no published data to compare with, this example showed the ca-
pacity of the parallel algorithm to produce complex fracture patterns. The mate-
rial properties corresponded to the ones of a good quality concrete. While this
cannot be used to simulate reinforced concrete, it is a good first step of compa-
rable relevance.

Conclusions. The new algorithms developed in this work (Chapters 6, 8, 9) were
tested under static and dynamic conditions in sequential and parallel simulations.
Complex fracture structures emerged without any input from the user. The solutions
developed in this work, can be used to simulate elastic materials subject to fracture
processes without the presence of fluids on off-the-shelf Multicore PC’s taking
advantage of all the CPU power available.

Suggested further research directions. In the remainder of the chapter, some
suggestions for further research are presented.
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Fracture processes are still an open area of research. The single and smeared crack
model (Chapter 3) implemented present limitations, as the numerical integration of the
forces and crack opening are integrated on all the surfaces of the FEs.135 The rela-
tionship between micro-fracture processes and macro-scales can be simulated using
multiscale methods.83 Multiscale methods are CPU intensive when compared with the
implemented fracture algorithm. An intermediate solution may lie in the use of the
single and smeared crack models in the entire domain, with the multiscale fracture
method reserved for particular areas of interest.

The present work was only tested on Multicore PCs (hardware available during this
work), on WindowsOS. As the amount of RAM memory and CPU power is limited on
Multicore PCs, there is a need to port the present solution to LinuxOS environment to
further test and develop DEM solutions on High Performance Computing (HPC).

The static domain topology implemented (Chapter 9) is only well suited for static,
and semi-static simulations. In simulations of dynamic systems, discrete objects move
relatively fast, migrating from one process to another, producing some overloaded pro-
cesses, leaving the less loaded processes waiting idly between communications. A
dynamic domain topology should be implemented to improve the performance of the
solution. Lukas112, 114, 113 utilized a modified version of the Recurse Coordinate Bi-
section185 (RCB) on the 2D parallel FDEM Y-Code. The modified RCB algorithm
gradually modifies the topology of the domain, updating it to the current configuration
of the simulation, keeping a semi-structured topology.114 Different law balancing can
be used to modify the domain topology, the number of contact interactions, the number
of FEs and the number of fluid cells incase of fluid/FDEM interaction, among others.

Currently, fluid driven fracture is of great importance as the search for new sources
of energy, such as shale gas, is pushing the development of new numerical solutions.
Shale gas is an unconventional gas extracted by the fracturing soil using fluids. As the
prices of other conventional sources of energy increase, interest in this new source of
gas is gaining momentum.193

Several different methods have been applied in the past to simulate fluid driven
fracture.6 Munjiza utilized a simple flow model coupled with FDEM to simulate 2D
boreholes.133, 143 Zhou and Hou210 coupled a full Navier Stokes solver with a solid
solver (FLCAC3D-Itasca) to simulate borehole fracture processes with good agree-
ment between the numerical and empirical test. While classical fluid solid interaction
using finite volume (FVM) and finite elements (FEM) methods have demonstrated
their utility, parallelization of the methods presents difficult challenges, as the system
of equations to solve is fragmented in different processes. On the other hand Lattice
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Boltzmann (LB) is a relatively new method to solve the Navier Stokes equations that
is gaining momentum in the scientific community. LB is a method based on the so-
lution of the Boltzmann equations on a predefined lattice,186 with the advantage that
the equations to be solved are localised. There is no need to build large systems of
equations (to be shared across processes) that later have to be solved as is the case
with FVM and FEM, making LB the ideal solver in parallelization terms. LB has been
ported to HPC and GPU parallel hardwares with linear speed up velocities.

In recent years LB have been coupled with DE, Feng et al.46, 70 coupled LB with
simple DE using the Immersed Boundary Method (IBM) switching on and off cells on
the LB discretization. Lomine et al.111 applied a similar method switching on and off
nodes on the lattice but applying a simple Bounce Back boundary condition to simulate
piping erosion.

The possibilities of combining Lattice Boltzmann and FDEM techniques are promis-
ing, and since both methods solve their equations locally merging both onto the same
parallel code is the next logical step, solving FDEM on the CPU and LB on a CUDA
processor (GPU).122, 173

-
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