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Abstract

One of the hardest challenges in building a realistic Bayesian network (BN) model is

to construct the node probability tables (NPTs). Even with a fixed predefined model

structure and very large amounts of relevant data, machine learning methods do not

consistently achieve great accuracy compared to the ground truth when learning the

NPT entries (parameters). Hence, it is widely believed that incorporating expert judg-

ment or related domain knowledge can improve the parameter learning accuracy. This

is especially true in the sparse data situation. Expert judgments come in many forms.

In this thesis we focus on expert judgment that specifies inequality or equality relation-

ships among variables. Related domain knowledge is data that comes from a different

but related problem.

By exploiting expert judgment and related knowledge, this thesis makes novel

contributions to improve the BN parameter learning performance, including:

• The multinomial parameter learning model with interior constraints (MPL-C)

and exterior constraints (MPL-EC). This model itself is an auxiliary BN, which

encodes the multinomial parameter learning process and constraints elicited from

the expert judgments.

• The BN parameter transfer learning (BNPTL) algorithm. Given some potentially

related (source) BNs, this algorithm automatically explores the most relevant

source BN and BN fragments, and fuses the selected source and target parameters

in a robust way.

• A generic BN parameter learning framework. This framework uses both expert

judgments and transferred knowledge to improve the learning accuracy. This

framework transfers the mined data statistics from the source network as the pa-

rameter priors of the target network.



Abstract IV

Experiments based on the BNs from a well-known repository as well as two real-

world case studies using different data sample sizes demonstrate that the proposed new

approaches can achieve much greater learning accuracy compared to other state-of-the-

art methods with relatively sparse data.
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Chapter 1

Introduction

Bayesian networks (BNs) (Pearl, 1988; Fenton and Neil, 2012) have become increas-

ingly popular in the AI field during the last two decades because of their ability to

model probabilistic causal relationships among variables describing many real-world

problems; these include: medical diagnosis (Velikova et al., 2014), stock market pre-

diction (Al Nasseri et al., 2014), fraud detection (Sá et al., 2014), neuron classification

(López-Cruz et al., 2014), anomaly detection in vessel tracks (Mascaro et al., 2014)

etc. BNs constitute a widely accepted formalism for representing knowledge with un-

certainty and efficient reasoning. Moreover, unlike other machine learning techniques

such as Neural Networks or Support Vector Machines, BNs are relatively easy to inter-

pret by a non-expert.

A BN consists of a directed acyclic graph (DAG) that represents the dependencies

among related nodes (variables), together with a set of local probability distributions at-

tached to each node (called a node probability table – NPT – in this thesis) that quantify

the strengths of these dependencies.

Constructing a BN from data is widely accepted as a major challenge in real-

world applications. For many critical problems, there is little or no direct historical

data to draw upon. The challenge is especially acute when the problem involves novel

or rare systems and events (Fenton and Neil, 2012) (e.g., think of novel project plan-

ning (Khodakarami et al., 2007), predicting events like accidents (Ancel et al., 2014),

terrorist attacks (Ezell et al., 2010), digital forensic investigation (Overill et al., 2012),

and cataclysmic weather events (Ban et al., 2014)).

There are two typical categories of challenges in learning BNs: one is structure

learning, where the BN structure is unknown; and the other is parameter learning given
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a fixed graphical structure of the BN. The problem of BN learning has been studied in

depth over the last two decades, and a considerable number of learning algorithms have

been developed. Ideally, with sufficient data, these learning algorithms like the score-

based algorithms, constraint-based algorithms or hybrids of them can learn a good BN

that fits the data accurately (according to certain criteria). During the learning, two

tasks are performed:

• Learning the graphical structure. This involves determining the (in)dependencies

between nodes, and how well a candidate DAG fits the data.

• Table learning (also called parameter learning). This involves estimating the

NPT entries for each node (i.e., the prior and conditional probabilities).

In this thesis, we are only interested in algorithms for learning the parameters of

BNs. Many previously developed parameter learning algorithms fail in real-world BN

learning problems where only scarce data are provided. The challenge is to develop

more accurate algorithms where only scarce data are provided, by exploiting expert

knowledge and knowledge from related domains. Related domains are also referred to

as source domains in transfer learning (Torrey and Shavlik, 2009), and used to improve

learning in the original problem domain (target domain). Expert judgments are widely

available in some real-world applications. For example, a doctor may say: “all the

other risk factors can be ignored (have little additional influence) when deciding on a

diagnosis of lung cancer given that the patient is a smoker with a long smoking history”.

Knowledge coming from medical books may state: smoking increases the risk of lung

cancer. Related knowledge is, for example, a medical diagnosis model trained in a big

inner-city hospital in England that might be used or help train a similar model in a small

country hospital in Ireland.

1.1 Research Hypothesis and Objectives
The major research hypothesis in this thesis is that, by incorporating small amounts of

expert judgments and/or related data it is possible to learn more accurate BN models

than is possible with current state-of-the-art methods. In other words, this thesis pro-

poses new BN learning algorithms which overcome previous limitations. The research

hypothesis involves the following research objectives:
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I Review and analyse previously proposed algorithms for BN learning in general

and parameter learning with both data and knowledge in particular.

II Incorporate natural qualitative expert judgments or domain knowledge such that

when combined with data, more accurate BN models can be built.

III Investigate the way to reduce the burden of eliciting expert judgments, and pro-

pose new or updated models that are more appropriate for parameter learning

with these judgments.

IV Propose new algorithms to find the most relevant source BN or BN fragments to

transfer, and to fuse source and target knowledge in a robust way.

V Propose extended algorithms for generic parameter learning with both expert

judgments and transferred knowledge, which leverages the benefits of both

constraint-based and transfer-based parameter learning algorithms.

1.2 Research Methodology
In order to address the research hypothesis and objectives stated in Section 1.1, we

adopt a number of different research methods.

Starting with objective I, we perform two literature reviews and literature analy-

ses. The first is focused on algorithms for BN learning in general, while the second is

focused on algorithms for parameter learning with scarce data and additional domain

knowledge.

For objectives II, III and IV, we investigate the existence of expert judgments and

related knowledge in real-world problems (namely a case study from software develop-

ment and a medical case study on trauma care). Then, we develop the new parameter

learning models and algorithms to integrate expert judgments or related knowledge.

The models and algorithms implemented in JavaT M and MATLAB are largely based

on functions and subroutines from the AgenaRisk1 Java application program interface

(API) by Agena and the MATLAB toolbox BNT2 by Kevin Murphy.

For objective V, no relevant work has exploited this before. In order to develop

a reasonable framework to address this objective, we analyse many papers about other
1http://www.agenarisk.com/
2https://code.google.com/p/bnt/

http://www.agenarisk.com/
https://code.google.com/p/bnt/
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types of fusion algorithms and integration methods (from premier conferences and jour-

nals in this field, i.e. UAI, AAAI, IJCAI, AIJ, JMLR, IJAR, etc.). Hence our generic

parameter learning approach is based on existing conventions where appropriate.

In order to evaluate the proposed algorithms according to the identified perfor-

mance measures, we perform a series of experiments using the implementations of the

corresponding algorithms and publicly available BNs3. However, public availability

of real-world BN data is very limited due to confidentiality and proprietary rights. An

alternative to real-world data is to simulate data, which has the advantages that the re-

producibility of experiments is enhanced, under the assumption that the data can more

easily be made publicly available (downloaded) or accurately re-created given the pa-

rameters and details of the simulation process.

The main drawback of using simulated data is that validity or generalisability may

be questioned. This is especially relevant in the transfer learning setting, as the simu-

lated similarities between target and source domains may not reflect the actual similar-

ities encountered in a real BN application. In this thesis, we evaluate the performance

of the proposed algorithms using both real and simulated judgments and related prob-

lem domains. Moreover, we reproduce a number of previously published algorithms

on these datasets.

1.3 Scientific Contributions and Work Already Pub-

lished
In real-world BN learning, there is typically limited data. Therefore, most of the net-

work structures are handcrafted by domain experts, and their parameters are estimated

with both data and domain knowledge to avoid empty or unreliable estimations for

some subsets of parameters. In this thesis, the major concern is developing new algo-

rithms for BN parameter learning4 with limited data. The contributions of this thesis

are as follows:

• We present a multinomial parameter learning method, which can easily incor-

porate both expert judgments and data in the parameter learning process in a

3http://www.bnlearn.com/bnrepository/
4Ideally, with sufficient data, classical learning algorithms like maximum likelihood estimation

(MLE) can produce accurate estimation.

http://www.bnlearn.com/bnrepository/
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much richer and less constrained way than the current state-of-the-art modelling

and tools. This method uses an auxiliary BN model to learn the parameters of

a given BN. The auxiliary BN contains continuous variables and the parameter

estimation amounts to updating these variables using an iterative discretization

technique.

• The expert judgments are provided in the form of constraints on parameters di-

vided into two categories: interior and exterior constraints that constrain param-

eters under the same or different parent state configurations respectively.

For interior constraints, we discuss the linear inequality constraints and approxi-

mate equality constraints. We propose a guideline to help identify those parame-

ters where expert judgment should be most focused. Also, we discuss some com-

mon verbal expressions of judgments and their associated approximate equality

constraints.

For exterior constraints, we explore the way of automatically generating such

constraints from monotonic causalities in a BN. We also discuss the overall mar-

gins in these constraints. Moreover, we present an extended multinomial pa-

rameter learning method to deal with the parameter learning with these exterior

constraints.

• We present a novel transfer learning algorithm. This algorithm involves split-

ting the target and source BNs into fragments and then reasoning explicitly about

both network-level and fragment-level relatedness. We achieve this via an Expec-

tation Maximization (EM) style algorithm that alternates between (i) performing

a Bayesian model comparison to infer per fragment relatedness and (ii) updating

a source network relatedness prior. Finally, the actual transfer is performed per-

fragment using Bayesian model averaging to robustly fuse the source and target

fragments.

• We present a novel generic framework that improves the BN parameter learn-

ing accuracy with both qualitative constraints and transferred knowledge. The

new parameter learning paradigm converts the transferred source parameters as

the prior distributions which are encoded in the auxiliary multinomial parameter
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learning model of the target domain.

• To validate our approach, we perform experiments on both synthetic and real-

world BNs. We compare our models with standard well-known baseline models

(such as Asia, Alarm, Hailfinder, etc.) using the standard K-L divergence mea-

surement. Additionally, the method is evaluated in a real-world software defects

prediction BN model and a real-world Trauma Care medical case study. Experi-

mental results demonstrate the superiority of our method at various data sparsity

and source relevance levels compared to conventional learning algorithms and

other state-of-the-art parameter transfer methods.

Much of the work in this thesis is based on articles that have already been pub-

lished and papers currently under revision (with Yun Zhou being the main author in

each case). The following list provides a summary of the peer-reviewed publications

and how they contribute to the thesis (see Table 1.1).

Table 1.1: List of publications with references to the research objectives and the thesis chapters.

Publication Referred objective Referred chapter

(1) I, II Chapter 1, 2
(2) I, II Chapter 2, 3
(3) I, III Chapter 4
(4) I, IV Chapter 5
(5) II, III Chapter 4
(6) V Chapter 6

(1) Yun Zhou, Norman Fenton, Martin Neil, and Cheng Zhu. “Incorporating Ex-

pert Judgment into Bayesian Network Machine Learning.” In Proceedings of

the Twenty-Third international joint conference on Artificial Intelligence, AAAI

Press, 2013: 3249-3250.

This paper was the first to present the idea of using an auxiliary model to deal

with parameter learning with constraints. Some preliminary experiments are car-

ried out to show the plausibility of incorporating expert provided constraints in

parameter learning. This paper contributes to objectives I and II.

(2) Yun Zhou, Norman Fenton, and Martin Neil. “Bayesian Network Approach to
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Multinomial Parameter Learning using Data and Expert Judgments.” Interna-

tional Journal of Approximate Reasoning, 55.5, 2014: 1252-1268.

This paper presents the detailed description of a multinomial parameter learning

method, which can easily incorporate both expert judgments and data during the

parameter learning process. This method uses an auxiliary BN model to learn

the parameters of a given BN. The auxiliary BN is referred to as MPL-C model,

which contains continuous variables and the parameter estimation amounts to

updating these variables using an iterative discretization technique. The expert

judgments are provided in the form of constraints on parameters divided into two

categories: linear inequality constraints and approximate equality constraints. A

number of well-known sample BNs are evaluated in the experiments, which show

the benefits of this approach in real-world applications. Similar to Publication

(1), the main contribution of this paper is the development, implementation and

evaluation of the MPL-C model.

(3) Yun Zhou, Norman Fenton, and Martin Neil. “An Extended MPL-C Model for

Bayesian Network Parameter Learning with Exterior Constraints.” Probabilistic

Graphical Models, Springer International Publishing, 2014: 581-596.

In this paper, we extend our initial work on parameter learning with expert judg-

ments (Publication (2)) and introduce the exterior constraints generated from

monotonic causalities. Analogously to the MPL-C model, the model in this paper

also is a hybrid Bayesian network, and the learning is achieved by the inference

in the auxiliary model. We outline the difference between interior constraints and

exterior constraints. The results from some preliminary empirical investigations

on standard small BNs and an empirical software defects prediction BN illustrate

the benefits of using such exterior constraints in parameter learning. This paper

contributes to the objective III.

(4) Yun Zhou, Timothy Hospedales, and Norman Fenton. “When and Where to

Transfer for Bayes Net Parameter Learning.” Machine Learning Journal, under

revision, 2015.

This paper is concerned with the problem of BN parameter transfer learning.
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The main contributions of the article are two-fold. The first is the proposal and

analysis of a Bayesian model comparison fitness function, which can be used

to measure the relatedness of different BN domains. The second contribution

of this paper concerns the robust fusion of the target and source BN fragments.

The results from both synthetic and empirical investigations on a wide collection

of BNs illustrate the potential benefits of using our parameter transfer learning

algorithm. This paper contributes to objectives I and IV.

(5) Yun Zhou, and Norman Fenton. “An Empirical Study of Bayesian Network

Parameter Learning with Exterior Constraints.” International Journal of Approx-

imate Reasoning, under revision, 2015.

One of the main objectives of this paper is to empirically investigate whether

the monotonic causalities exist in real-world BNs. To this end, we investigate

12 BNs from a publicly available repository. Results from empirical investiga-

tions confirm the hypothesis that the monotonic causalities are fully or partially

present in these BNs. Moreover, experiment results show that incorporating exte-

rior constraints generated from monotonic causalities can improve the parameter

learning performance in scarce data situation. Hence, it is concluded that incor-

porating such constraints is non-trivial in real-world BN applications. The paper

mainly contributes to objectives II and III.

(6) Yun Zhou, Norman Fenton, Timothy Hospedales, and Martin Neil. “Proba-

bilistic Graphical Models Parameter Learning with Transferred Prior and Con-

straints” 31st Conference on Uncertainty in Artificial Intelligence, AUAI, 2015:

972-981. (Oral Presentation.)

This is the first paper to present a generic framework that combines both ap-

proaches (introducing expert judgments and transferring knowledge from related

domains) to improve BN parameter learning. In this approach, we generalise

the state-of-the-art MPL-C model (Publication (2)) for learning with expert con-

straints to also exploit knowledge from related source domains via a bootstrap ap-

proach. The new model called MPL-TC (Multinomial Parameter Learning model

with Transferred prior and Constraints) synergistically exploits both forms of ex-

ternal knowledge to improve learning performance in the target BN. This paper
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mainly contributes to research objective V.

1.4 Thesis Outline
The thesis is structured as follows:

Chapter 2 describes the background and start-of-the-art of BN learning and pa-

rameter learning with data and expert judgments/source domain knowledge. It also

discusses the current research gap and identifies the key properties in this research

topic.

Chapter 3 describes the auxiliary model of parameter learning with interior con-

straints. For the constraints, this chapter shows their categories, and how to elicit them

from expert judgments. It also shows how to compute the estimators based on the dy-

namic discretization junction tree algorithm. In particular, we show two examples to

estimate their parameters given data and related expert judgments.

Chapter 4 presents the auxiliary model of parameter learning with exterior con-

straints. This chapter also presents the method of generating such exterior constraints

from monotonic causalities. Moreover, this chapter investigates the existence of the

monotonic causalities in real-world BNs based on a publicly available repository.

Chapter 5 presents the parameter transfer learning algorithm which includes the

definition of target and source BNs and fragments, and the fitness/fusion functions.

Synthetic experiments are performed to validate the potential benefits of using this

algorithm.

Chapter 6 presents a unified model for parameter learning with both constraints

and transferred information. Both synthetic and empirical experiments are performed

to show the benefits of this unified model.

Chapter 7 presents the final conclusions and contributions of this thesis and how

they contribute to the research hypothesis and objectives. This chapter also highlights

future ideas for extending and improving the research on BN parameter learning with

scarce data.



Chapter 2

Related Work

In this chapter, we provide an overview of the concepts which are fundamental to this

thesis. We explain the theory and definitions behind BNs, and give a brief introduction

to BN learning from both a frequentist and a Bayesian point of view. We present several

models for learning with scarce data and domain knowledge and report the standard

learning performance measurement methods. Finally, we identify the research gap in

the state-of-the-art that we seek to address in the rest of the thesis.

2.1 Bayesian Networks – The Basics

2.1.1 Informal Definition and Overview of BNs

Figure 2.1 shows the DAG of a BN (Pearl, 2011) that can be used for probabilistic anal-

ysis. Factors like “Rain” (whether or not it rains) and “Sprinkler” (whether or not the

sprinkler is on) can determine the presence of ‘Wet’ (the wet pavement), and the con-

sequence of it “Slippery” (whether or not the pavement is slippery). For instance, if the

sprinkler is on, then the pavement is probably wet; if someone slips on the pavement,

that also provides evidence that it is wet. On the other hand, if we see that the pavement

is wet, that makes it more likely that the sprinkler is on or that it is raining; but if we

then observe that the sprinkler is on, that reduces the likelihood that it is raining (this

is called “explaining away”). Once this BN has been built with fully specified NPTs, it

is an efficient tool for performing inferences. For example, we can compute the prob-

ability that the pavement will be slippery given that it has rained, and this is called

“top down” reasoning (prediction). If we had evidence of an effect (pavement wet),

we can also infer the most likely cause, which is regarded as “bottom up” reasoning
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(diagnosis).

Figure 2.1: The directed acyclic graph of the wet pavement BN. The variables are: “Season”,
“Rain”, “Sprinkler”, “Wet” and “Slippery”.

Table 2.1 shows the NPT of the “Wet” node in the BN example. The NPT has 8

probability values since the variable has 2 parents, and the node and both its parents

have 2 states each. Given the historical data of “Wet” node under all state combinations

(there are 4 in total) of its parent nodes, parameter learning is to fill every entry in this

NPT.

Table 2.1: NPT of the “Wet” node in the example Bayesian network.

Sprinkler true false
Rain true false true false

Wet
true 0.99 0.90 0.80 0.00
false 0.01 0.10 0.20 1.00

2.1.2 Formal Definition of A BN

Let θ denote a set of numerical parameters of the categorical random variables in

some set V , and let G represent a Directed Acyclic Graph (DAG), whose nodes

X1,X2,X3, ...,Xn correspond to the random variables in V , and whose arcs represent

the direct dependencies between these variables. Here θ = {θi jk}, and θi jk = p(Xi =

k|πi = j) represents a parameter for which Xi takes its k-th value and its parent set πi

takes its j-th value. As there is a one-to-one correspondence between nodes and vari-

ables, the terms ‘node’ and ‘variable’ are used interchangeably in this thesis. The Node
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Probability Table (NPT) associated with every variable contains the (conditional) prob-

ability of each value of the variable given each instantiation of its parents in G, which

is also referred to as an NPT parameter θi jk. An NPT column1 p(Xi|πi = j) denotes the

discrete probability distribution of Xi given the j-th state configuration of its parents

(πi = j).

Property 2.1.1. Local Markov Condition: a variable Xi is conditionally independent

of its non-descendants given its parent set πi.

We call (V,G,θ) a Bayesian network (BN) if it satisfies the Local Markov Con-

dition. Taking advantage of this property, one can obtain a factor representation of the

joint probability distribution over all the random variables. That means a BN encodes

a simplified joint probability distribution over V given by:

p(X1,X2, ...,Xn) =
n

∏
i=1

p(Xi|πi) (2.1)

2.1.3 BN Inference Algorithms

Given a BN, inference is the process of computing the updated distribution of variables

of interest, given that other variables are set to certain values.

The computational complexity of performing exact inference in a BN is known

to be NP-hard (Cooper, 1990). However, in the late 1980s a major breakthrough was

achieved with the development of exact inference algorithms that computed efficiently

for a large class of real-world BNs. The most commonly used of these exact inference

algorithms for discrete BNs is the junction tree algorithm (Lauritzen and Spiegelhalter,

1988), which propagates the evidence along the moralized and triangulated graph.

Graph moralization includes connecting nodes that have a common child and mak-

ing all edges undirected. The triangulation step identifies subsets of nodes of the moral

graph called “supernodes”. After removing the supernode that is a subset of another

supernode, we can insert edges between supernodes to create the tree structure called

junction tree. Passing the messages between supernodes in the junction tree involves

doing exact marginalization over the non-observed non-query variables in supernodes,

which is inefficient for junction trees of large treewidth (the size of largest supernode

1Note in some other works, e.g., Netica BN software, each NPT row represents a discrete probability
distribution given a parent configuration.
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minus one). Therefore, many algorithms have been developed for building optimal

junction trees. For a good survey of the literature, see the paper by Daly et al. (2011).

One of the fundamental weaknesses of popular BN inference algorithms is that

they require all the variables to be discrete. But many real-world BNs involve continu-

ous nodes as well as discrete nodes. Such BNs are referred to as hybrid BNs(Murphy,

1998), and they require special ways to handle inference.

In hybrid BNs, exact inference can only be performed when the network treewidth

is small and the continuous nodes are assumed to be conditional Gaussian distributions

(Lauritzen and Jensen, 2001) — a highly unrealistic assumptions in almost all real-

world situations, which typically involve non-standard statistical distributions. There-

fore, approximate inference is in general needed for hybrid BNs, and the most com-

monly used approach is to use static discretization whereby each continuous variable

is converted to a discrete variable using pre-defined discretization intervals (Langseth

et al., 2009). This is the only way to handle arbitrary continuous variables in popu-

lar BN software tools such as Hugin2, and Netica3. However, there are severe prob-

lems with such an approach. Most notably, reasonable accuracy can only be achieved

when the discretization is ‘finest’ in the highest density probability regions; but such

regions change when inference is performed with different observations. Since the dis-

cretization has to be fixed in advance, reasonable accuracy can only be achieved by

defining multiple intervals across the whole range, which results in a heavy cost of

computational complexity. Fortunately, a dynamic discretization junction tree algo-

rithm (DDJT) has been developed (Neil et al., 2007) and implemented in AgenaRisk4

meaning that there is no need for any pre-defined discretization of continuous nodes

in hybrid BNs. This dynamic discretization process (which we will describe in detail

in Chapter 3) uses the relative entropy error to iteratively adjust the discretization in

response to new evidence, and so achieves more accuracy in the zones of high posterior

density. This algorithm provides a good balance between achieving high accuracy in

the approximations and maintaining a reasonable computation cost to get the results.

Because this thesis introduces auxiliary BNs (to support parameter learning) that are

hybrid BNs, we use the DDJT algorithm for inference in order to achieve highly accu-

2http://www.hugin.com/
3https://www.norsys.com/
4http://www.agenarisk.com/

http://www.hugin.com/
https://www.norsys.com/
http://www.agenarisk.com/
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rate results.

2.2 Bayesian Network Learning
There are two typical categories of problems in BN learning: one is structure learning to

identify the (in)dependencies between BN nodes; and the other is parameter learning

to show the frequency of correlated events induced by the BN structure. Parameter

learning is to fully specify the discrete probability distribution for each NPT column.

Here we assume the NPTs can be parameterised, so the “parameters” of an NPT is a

set of discrete probability NPT entries. Because the space of plausible DAGs in a BN

is super-exponential in the number of variables, purely data-based structure learning is

a challenging task.

2.2.1 Structure Learning

Over the years, there has been a great deal of work on different algorithms for improv-

ing BN structure learning accuracy and efficiency. Algorithms for estimating the DAG

for a single BN generally fall into two broad classes5:

• Score-based algorithms. These search over the entire structure space to find an

optimal one that best describes the observed data. The searching problem has

been proven NP-hard by Chickering (1996).

• Constraint-based algorithms. These qualify the dependence and independence

relationships between the variables, and reconstruct the structure that represents

these relationships as far as possible.

Because the local score calculation is related to parameter learning, this thesis

mainly discusses the class of score-based algorithms. Most of these algorithms (local

search methods) take the following steps:

1. Randomly generate initial structures.

2. Defines metric which can be used to measure the quality of candidate network

structures that reflect the extent to how the structure would fit the dataset. Most

common metrics are: AIC metric (Akaike, 1998), MDL metric (Bouckaert,
5For detailed discussions we direct the reader to the books (Koller and Friedman, 2009; Barber,

2012).
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1993), BIC metric (Schwarz et al., 1978), K2 metric (Cooper and Herskovits,

1992), BDe metric (Heckerman et al., 1995). A good scoring criterion should

reward both a better match of the data to the structure, and a simpler structure.

3. Score candidate structures.

4. Identify the structure with maximal score. Search algorithms like K2 (Cooper

and Herskovits, 1992), Hill climbing (Buntine, 1996), Repeated hill climbing,

Max-Min hill climbing (Tsamardinos et al., 2006), Simulated annealing (Heck-

erman et al., 1995), Tabu search, Genetic search (Larrañaga et al., 1996), A*

search (Yuan et al., 2011) and BFBnB search (Malone et al., 2011) are applied.

A detailed discussion and recent findings (which encode BN structure learning

problems as an integer program (IP)) on structure learning can be found in (Cussens,

2011; Nie et al., 2014; Bartlett and Cussens, 2015).

Next, we present the basic formulation of score-based BN learning. We use the

following notation:

• ri represents the cardinality of random variable Xi in a BN.

• |πi| represents the number of state configurations of πi. Thus, |πi| = ∏X j∈πi r j

with |πi|= 1 implying πi = /0.

• D = {d1,d2, ...,d|D|} is a dataset with |D| data instances that are independently,

and randomly sampled from some underlying distribution.

• dl is a complete case of D, which is a vector of values of each variable.

• Ni jk (1 ≤ i ≤ n, 1 ≤ j ≤ |πi| and 1 ≤ k ≤ ri) is the number of data instances in

sample D for which Xi takes its k-th value and its parent set πi takes its j-th value,

which satisfies the equation:

Ni jk =
|D|
∑
l=1

I(Xi=k and πi= j in dl) (2.2)

where I(·) is the indicator function whose value equal to 1 if the condition in (·)
is satisfied, otherwise its value equal to 0.
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• Ni j = ∑
ri
k=1 Ni jk, which is the total number of instances in dataset D for which πi

takes its j-th value.

The log-likelihood score of a BN structure G is related to the compression that can

be achieved over the dataset D with an optimal DAG induced by G:

`(G,D) =
n

∑
i=1

|πi|
∑
j=1

ri

∑
k=1

Ni jk log
Ni jk

Ni j
(2.3)

This log-likelihood score has the decomposability property - the score of a particular

structure can be obtained by the score for each node given its parents:

Property 2.2.1. Decomposability of log-likelihood: the log-likelihood function can be

written as the sum of n components, one for each variable in the BN. The component

corresponding to variable Xi can be decomposed further into a sum of |πi| subcompo-

nents, one for each instantiation of the parents of Xi. If there are no constraints between

NPT columns describing different subcomponents, then this decomposability will allow

us to efficiently perform log-likelihood calculation by solving a collection of smaller

optimization problems, one for each subcomponent.

Conventional score-based algorithms for structure learning make use of certain

heuristics to find the optimal DAG that best describes the observed data D over the

entire space. We define

Ĝ = argmax
G∈Ω

`(G,D) (2.4)

`(G,D) is the log-likelihood score, which is the logarithm of the likelihood func-

tion of the data that measuring the fitness of a DAG G to the data D.

Ω is a set of adjacent matrices Ω = {A ∈ Zn×n} to encode set of the candidate

DAGs, e.g. an arc Ai j = 1 in A represents a dependence relationship between Xi and X j

(Xi→ X j).

Unfortunately, maximizing the log-likelihood will most often result in a complete

graph , which states that every pair of nodes is conditionally dependent. The major

scope of structure learning studies focus on how to avoid this problem from the maxi-

mum likelihood estimation and infer, instead, a sparse graph structure. Specifically, an

additional term is introduced, namely the total number of parameter values encoded in

a DAG,
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PG = ∑
n
i=1(ri−1)|πi|.

Thus, the resulting adjacent matrix has some zero entries owing to the effect of

this regularization term. Now, this estimation problem is defined as:

max
G∈Ω

`(G,D)−η (2.5)

where η is the penalty term, and

• η = PG (in the AIC metric),

• η = PG
2 log |D| (in the BIC/MDL metric).

Some newer scoring criteria for BNs include MML score (minimum message

length metric (Wallace et al., 1996)), mutual information tests metric (Campos, 2007),

SparsityBoost score (Brenner and Sontag, 2013), Min-BDeu and Max-BDeu metric

(Scanagatta et al., 2014), etc.

Assume prior probability of the DAG G is uniform over DAGs, and the asso-

ciated NPT column’s prior p(Xi|πi = j) is a Dirichlet distribution with parameters

α = {αi jk|1 ≤ i ≤ n,1 ≤ j ≤ |πi|,1 ≤ k ≤ ri}. Thus, we can have the most commonly

used Bayesian Dirichlet score metric (BD):

SBD(G,D) =
n

∑
i=1

|πi|
∑
j=1

(log
Γ(αi j)

Γ(αi j +Ni j)
+

ri

∑
k=1

log
Γ(αi jk +Ni jk)

Γ(αi jk)
) (2.6)

where Γ(·) is the Gamma function, and Γ(n) = (n−1)! if n is an integer.

The hyperparameter αi jk satisfies the restriction that αi j = ∑
ri
k=1 αi jk.

The K2 score assumes the αi jk = 1, thus αi j = ri.

The BDe score introduced in (Heckerman et al., 1995) is a likelihood-equivalent

specialization of the BD score, which assumes

αi jk = α∗p(Xi|πi = j)

where α∗ is the Equivalent Sample Size (ESS), and p(Xi|πi = j) conveys the prior

beliefs about the occurrences of configuration {Xi = k,πi = j}. If the distribution

p(Xi|πi = j) is uniform, then we can get the BDeu score,

αi jk =
α∗
|πi|ri

(∀i, j,k).

The series of Bayesian Dirichlet scores aims at maximizing the posterior prob-

ability of the candidate structure G given D. However, the discovered optimal DAG
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is highly sensitive to the chosen α∗ (Steck and Jaakkola, 2002; Silander et al., 2012).

Thus, recent research also focuses on developing new extensions of BDeu and choosing

the right score in different BN learning scenarios (Scanagatta et al., 2014).

Recently, domain knowledge or multiple datasets have been introduced to help BN

structure learning. For example, de Campos et al. (2009a) and de Campos and Ji (2011)

apply domain knowledge such as different structure constraints to restrict the searching

space of score-based algorithms. It is also shown that BDeu score has good properties

to prune the search space (de Campos and Ji, 2010).

Cano et al. (2011) and Masegosa and Moral (2013) proposed an interactive struc-

ture learning approach that iteratively queries the domain expert about the reliability of

learnt edges. This paradigm uses expert knowledge to boost the reliability of the learnt

structure, especially in the limited data situation.

In some BN structure learning studies (Niculescu-mizil and Caruana, 2007; Oyen

and Lane, 2012; Oates et al., 2014), multiple datasets are exploited to learn robust BN

structures. For example, in group lung cancer studies, they learn functional BNs based

on the search-and-score approach for several age groups and treat the data from each

group as a task. They assume the tasks that are close in age should have similar network

structures. The shared information between tasks helps the BN structure learning in

situations with scarce data. These recent findings show both domain knowledge and

additional datasets can improve BN structure learning.

2.2.2 Parameter Learning

2.2.2.1 Generative Learning

Given a fixed BN structure G, we are more interested in the generative parameter learn-

ing (Su et al., 2008), which is efficient and maximizes the data log-likelihood. The

frequency estimation approach is a widely used generative learning technique, which

determines parameters by computing their associated frequencies in the dataset. This

approach is also referred to as maximum likelihood estimation (MLE). Based on the

above definitions, the parameters in the BN can be represented as:

θ = {θi jk|i = 1, ...,n; j = 1, ..., |πi|; k = 1, ...,ri}
The MLE method tries to estimate the set of parameters θ that best describe the

dataset. In general, this translates into finding the set of parameters that maximize the
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data log-likelihood:

`(θ ,D) = log p(D|θ).
Given the equation (2.3) and decomposability property of log-likelihood (Property

2.2.1), the estimation of θ can be represented as:

argmax
θ

`(θ ,D) = argmax
θi jk

n

∑
i=1

|πi|
∑
j=1

ri

∑
k=1

Ni jk logθi jk (2.7)

We can see the estimation process is divided into a set of local calculations. Specif-

ically, the local calculation (MLE) for θi jk is:

θ̂i jk =
Ni jk

Ni j
(2.8)

Previously, we have discussed the Dirichlet prior of an NPT column θi j. Intu-

itively, one can think of a Dirichlet distribution as an expert’s guess of an NPT column.

Parameters αi jk can be thought of as how many times the expert believes he/she will

observe Xi = k in a sample of αi j examples drawn independently at random from θi j.

The Dirichlet distribution can be applied to represent the prior distribution for NPT

column θi j in the BN, which has the following equation:

p(θi j) =
1

Zi j

ri

∏
k=1

θ
(αi jk+1)−1
i jk (∑

k
θi jk = 1, θi jk ≥ 0, ∀k) (2.9)

where Zi j is a normalization constant to enforce that
∫

∞

−∞ ∏
ri
k=1 θ

(αi jk+1)−1
i jk dθi jk = 1.

Property 2.2.2. Dirichlet multinomial conjugacy: assume p(θ) is a Dirichlet prior

distribution, and D a dataset of fully observable cases drawn independently at ran-

dom from the probability distribution represented by a BN, the posterior distribution

p(θ |D) ∝ p(D|θ)p(θ) is also a Dirichlet distribution.

Based on the above discussion and Property 2.2.2, we can introduce another clas-

sical parameter learning approach called Maximum a Posteriori (MAP) estimation:

p(θ |D) ∝ p(D|θ)p(θ) ∝

n

∏
i=1

|πi|
∏
j=1

ri

∏
k=1

θ
Ni jk+αi jk
i jk (2.10)

As a result, the MAP for θi jk is:
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θ̂i jk =
Ni jk +αi jk

Ni j +αi j
(2.11)

Intuitively, one can think of the hyperparameter αi jk in the Dirichlet prior as an

expert’s guess of the virtual data counts of the parameter θi jk. When there is no related

expert judgment, people usually use:

• K2 prior αi jk = 1,

• BDeu prior αi jk =
1
|πi|ri

(Bayesian Dirichlet likelihood equivalent uniform prior

(Heckerman et al., 1995)).

2.2.2.2 Learning with Missing Data

When D is incomplete, the Expectation Maximization (EM) algorithm is typically em-

ployed. For each data vector dl =
{

zl1, . . . ,zlo,?l1, . . . ,?lh|zl j ∈ Zl,?l j ∈ Yl
}

, where Zl

and Yl represent the set of observed and unobserved variables in the l-th data vector, and

o+h= n (the total number of variables in a BN), EM starts with some initial parameters

θ (0), and includes two main steps performed alternatively until convergence:

• E-step: calculate the expected value of the log-likelihood function, with respect

to the conditional distribution of Yl given Zl under the current estimate of param-

eters θ (t):

`(θ |θ (t)) = ∑l ∑yl1,. . . ,ylh∈{Yl=#} p(yl1, . . . ,ylh|Zl,θ
(t)) log p(Zl,yl1, . . . ,ylh|θ (t))

where yl1, . . . ,ylh represents an instantiation of unobserved variables Yl in the dl .

And the set of possible instantiations of Yl is denoted by {Yl = #}.

• M-step: compute the next estimate of parameters θ (t+1) by maximizing the ex-

pected log-likelihood function in the first step:

θ (t+1) = argmaxθ `(θ |θ (t))

More discussions and extensions of this algorithm can be found in text books

(Darwiche, 2009; Koller and Friedman, 2009; Murphy, 2012; Barber, 2012). Recently,

Broeck et al. (2014) proposed an inference-free, closed-form method for consistently
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learning BN parameters from MCAR (missing completely at random) and MAR (miss-

ing at random) datasets. This method is based on the idea of a ‘missingness graph’

which is an augmented BN to represent the causal relationships for missingness (Mo-

han et al., 2013), and has significant computational advantages over EM.

2.2.2.3 Learning as Inference in Auxiliary Graphical Models

Given data, parameter learning is to estimate their distributions. This process can be

represented as auxiliary BN models, whose nodes encode the parameter distributions

and data observations. Let us start with a simple coin tossing problem:

t i = true if on i-th toss the coin comes up heads, t i = f alse if it is tails.

The parameter learning target is to estimate the probability θ that the coin will be

a head. If the coin is fair, the probability prior satisfies:

θ ′ = p(t i = true|θ) = p(t i = f alse|θ) = 0.5

Let us assume N independent tosses of the coin are made, and each toss is identi-

cally and independently distributed (i.i.d. assumption). Thus, we can have the auxiliary

BN model (as shown in Figure 2.2 (a)) for this.

θ

. . .t 2t 1 tN

(a) The original representation

������(0, 1) 

��������( , ) 

�������(0, 1) 

θN

θ

N

B

(b) The compact representation

Figure 2.2: Graphical model representations for coin tossing problem.

Therefore, the parameter learning process is to infer the posterior distribution of

probability θ :

p(θ |t1, t2, ..., tN) ∝ p(θ)∏
N
i=1 p(t i|θ) = p(θ)∏

N
i=1 θ

∑ I(ti=true)(1−θ
∑ I(ti= f alse))

here ∑ I(t i=true) represents the total number of occurrences of heads.

As we can see, the number of required nodes increases with the number of tosses,

leading to an unrealistically large BN model. Fortunately, using the AgenaRisk toolset

we can model this problem in a very compact way using the Binomial distribution (each
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toss of the coin is treated as a Bernoulli trial). The compact representation is shown in

Figure 2.2 (b).

The node B encodes the Binomial distribution with two hyperparameters:

(i) θ – the success probability (the probability of the coin will be a head) in each

trial/toss, and

(ii) N – the total number of trials/tosses, which is represented by a Normal distribu-

tion6 and has an infinite range.

Therefore, after setting the total number of tosses and occurrences of heads in

nodes N and B in the compact model, the posterior probability θ can be inferred.

(a) Updated distribution of parameter θ after observing 55 heads
in 100 tosses

(b) Updated distribution of parameter θ after observing 550 heads
in 1000 tosses

Figure 2.3: Updating the learnt value of parameter θ for different number of tosses and obser-
vations in AgenaRisk.

6This can be replaced with Poisson distribution to only allow positive integers. Because this root
node is always observed with a valid number of trials during the inference, using Normal or Poisson
distribution will produce the same results.
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As discussed above, conventional BN inference algorithms cannot be applied ac-

curately here due to the fact that the θ node is continuous and the other two nodes are

potentially infinite integer nodes. Thus, the dynamic discretization junction tree algo-

rithm is employed to update such BNs in the thesis. For example, Figure 2.3 shows

the results in AgenaRisk of the updated distribution of the probability of tossing a head

parameter in two different scenarios (the first when 55 heads are observed after 100

tosses and the second after 550 heads are observed after 1000 tosses). In each case we

assume the prior distribution is Uniform(0,1).

2.3 Parameter Learning with Scarce Data and Domain

Knowledge
In real-world problems that we wish to model as a BN, there is typically limited or no

relevant data to learn either the structure or the parameters (Fenton and Neil, 2012).

Therefore, the structure is usually hand-crafted by domain experts, and the parameters

are estimated with both scarce data and domain knowledge to avoid empty or unreliable

estimations for some subsets of parameters.

2.3.1 Active Parameter Learning

When training data is scarce, a straightforward BN parameter learning goal is to achieve

greater accuracy with fewer training data instances. This goal can be realized by the

active learning algorithm (Settles, 2010), which is also known as optimal experimental

design in the statistics literature.

The first BN active learning algorithm was presented in previous work (Tong and

Koller, 2001a,b). This algorithm assumes that some variables in V are controllable.

This means the algorithm can select a subset of variables Q ⊂ V and their particular

instantiations q. We call Q = q a query, and its result is a randomly sampled data

instance dl+1 conditioned on Q = q. The sampled data instance will be integrated into

the former data D to update the parameters in the BN.

The key step in the active learning algorithm is the mechanism to update the pa-

rameters and select the proper query based on the prior distribution p(θ). The update

rule is very simple – the randomly sampled instances are only used to update variables,

which are not in Q or their children in Q. The select rule is to find the query that would
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most improve the correctness of the current estimations (Tong and Koller, 2001a). The

measurement is carried out by Kullback-Leibler divergence (K-L divergence) (Kull-

back and Leibler, 1951) that will be discussed in depth in the next section.

As discussed above, active learning needs a good prior distribution of parameters

to guide the query selection and affect the final learning results. However, such a prior

is rarely available in many real-world applications, especially in scarce data situation.

Thus, we next discuss the alternatives for parameter learning in this situation.

2.3.2 ICI Based Parameter Learning

In real-world applications of BN parameter learning, if it is difficult to collect more re-

lated data or elicited numerical assessment about the estimated parameters, an alterna-

tive way to improve the overall learning accuracy is to reduce the number of estimated

parameters by introducing domain assumptions about the NPT.

The Independence of Causal Influences (ICI) models (see (Diez and Druzdzel,

2006) for a comprehensive review), provide a solution by assuming that parent variables

contribute independently of each other to the child node. The benefit of this assumption

is such that the number of required parameters is linear, rather than exponential, in the

number of parent variables.

Pearl (1988) built the first ICI model, referred to as Noisy-OR model, which is a

probabilistic extension of the logical OR relation. The variables in this model are all

binary, e.g., the variable Xi can be either true or false. Based on the ICI assumption,

each true parent event can independently produce the child effect, i.e.,

p(X1 = true|X2 = f alse, ...,Xi = true, ...,Xn = f alse) = zi

If none of the parent variables X2, ...,Xn are true, then neither is the child variable

X1, i.e., p(X1 = f alse|X2 = f alse, ...,Xn = f alse) = 1. Given the parameter values

z2, ...,zn, we can derive all the other parameters in the original NPT of X1 (Noisy-OR’s

amechanistic property):

p(X1 = true|X2, ...,Xn) = 1− ∏
Xi=true

(1− zi) (2.12)

To allow the unmodelled parents of X1, Henrion (1988) extended the Noisy-OR

model by introducing a leak probability zL. Thus even if X2, ...,Xn are all false, the X1
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still has zL probability in true state. The equation (2.12) can be rewritten as:

p(X1 = true|X2, ...,Xn) = 1− (1− zL) ∏
Xi=true

(1− zi) (2.13)

To generalize the binary restriction of variable states, Henrion (1988) and Diez

(1993) developed the Noisy-MAX model. The usage of the Noisy-OR and Noisy-

MAX in practice was discussed in the work (Zagorecki and Druzdzel, 2013). Moreover,

recent work (Woudenberg and van der Gaag, 2015) also shows that inappropriate use

of these models can harm the BN’s performance.

In recent years, renowned extensions of the ICI model include the Ranked Node

(Fenton et al., 2007) and NIN-AND tree (Xiang and Jia, 2007; Xiang and Truong, 2014)

models. Although these models could greatly reduce the number of estimated parame-

ters, when the training data is extremely scarce, we still need numerical assessment of

parameters in these models. Thus we are still using quantitative domain knowledge.

Previous work has shown that elicited qualitative domain knowledge is more re-

liable than quantitative knowledge (Feelders and van der Gaag, 2006). Next, we will

discuss the parameter learning with such qualitative knowledge.

2.3.3 Constrained Parameter Learning

A widely used type of qualitative knowledge is the expert provided parameter constraint

(Druzdzel and van der Gaag, 1995). A simple example of such a statement could be:

”the probability of people getting cancer is smaller than 0.01”. Such easily elicited

constraints can greatly improve the learning accuracy, especially in scarce data situa-

tion. Because of such benefits, there is an increasing research interest in incorporating

constraints into parameter learning.

The constrained convex optimization (CO) formulation (Niculescu et al., 2006;

de Campos and Ji, 2008; de Campos et al., 2008, 2009a; Liao and Ji, 2009) is the most

popular way to estimate the constrained parameters. In this setting, the algorithm seeks

the global optimal estimation (maximal data log-likelihood) with respect to the param-

eter constraints. The parameters also can be estimated by the Monte Carlo method

(Chang et al., 2008), where only the samples that are consistent with the constraints are

kept. Recently, our own work on auxiliary BN models (Zhou et al., 2013, 2014a,b) has

been developed for solving this problem. In this approach, the target parameters, data
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observations and elicited constraints are all modelled as nodes in the auxiliary BNs.

Thus, the parameters are estimated via the inference in the auxiliary BN. The thesis is

mainly based on this method whose detail will be given in Chapter 3.

To further reduce the burden of expert elicitation, researchers (Wellman, 1990)

find the monotonic influence property in some BNs, which can be used to generate ex-

terior constraints. For example, a positive monotonic influence between two variables

could be: “people who smoke have a higher chance of lung cancer”. If a BN is fully

constrained by such monotonic influences, this BN is referred to as a qualitative prob-

abilistic network (QPN). If a BN is partially constrained by such monotonic influences

(which means there also exists unconstrained parameters), this BN is referred to as a

semi-qualitative probabilistic networks (SQPN). The learning and inference in these

models has been studied in previous works (Renooij and van der Gaag, 2002; Renooij

et al., 2002; de Campos and Cozman, 2005).

Of course, constraints can be generated from these monotonic influences, and also

can be applied to improve the learning accuracy (Altendorf et al., 2005; Feelders and

van der Gaag, 2006; van der Gaag et al., 2006). Thus, experts are only required to

identify which edge in the BN has such a property. More recent discussions of such

exterior constraints can be found in (van der Gaag et al., 2009; Liao and Ji, 2009; Yang

and Natarajan, 2013; Zhou et al., 2014b). An empirical analysis of parameter learning

with these constraints can be found in our own work (Zhou and Fenton, 2015) which is

the subject of Chapter 4.

Next we outline the CO formulation for parameter learning. Based on the previ-

ous definition, a convex parameter constraint can be defined as f (θi jk) ≤ µi jk, where

f : Ωθi jk→R is a convex function over θi jk. Regarding parameter constraints, the scores

are computed using a constrained optimization problem, i.e. maximize the score func-

tion subject to simplex equality constraints and all parameter constraints defined by the

user.

argmaxθ `(θ ,D)

s.t. ∀i, j,k g(θi jk) = 0

∀i, j,k f (θi jk)≤ µi jk

(2.14)

where g(θi jk) = −1 + ∑
ri
k=1 θi jk imposes that distributions defined for each variable
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given a parent configuration sum to one over all variable states.

To allow constraint violations, a penalty term is introduced in the objective func-

tion. Following equation (2.14), suppose f (θi jk) = θi jk, then the penalty term is defined

as

penalty(θi jk) =
[
µi jk−θi jk

]−, where [x]− = max(0,−x).

The strength of the penalty term is controlled by its weight. Moreover, to model

uncertainty of qualitative constraints, Liao and Ji (2009) introduced an extra confidence

level λi jk term. Therefore, the equation (2.14) can be rewritten as follows:

argmaxθ (`(θ ,D)− w
2 ∑i jk λi jk penalty(θi jk)

2)

s.t. ∀i, j,k g(θi jk) = 0
(2.15)

where w is the penalty weight, which is chosen empirically. Obviously, the overall

penalty varies with the confidence level for each constraint λi jk.

As discussed in previous work (Liao and Ji, 2009), ∆θi jk`(θ ,D) can be derived as:

∆θi jk`(θ ,D) = ∑l
p(Xi=k,πi= j|dl ,θ)

θi jk
.

Because θi jk satisfies the constraint ∑
ri
k=1 θi jk = 1, which can be eliminated by

reparameterizing θi jk, so that the introduced new parameters βi jk automatically respect

the constraint on θi jk no matter what their values are. The new parameter satisfies the

equation:

θi jk =
eβi jk

∑
ri
k=1 eβi jk

(2.16)

Therefore, based on the chain rule,

∆βi jk
`(θ ,D) = ∂`(θ ,D)

∂θi jk

∂θi jk
∂βi jk

= ∆θi jk`(θ ,D)(θi jk− (θi jk)
2)

= ∑l p(Xi = k,πi = j|dl,θ)(1−θi jk)
(2.17)

Similarly, for penalty(θi jk), the derivative is as follows:

∆βi jk
penalty(θi jk) =

(θi jk)
2−θi jk i f θi jk ≤ µi jk

0 otherwise
(2.18)

Therefore, a gradient-based update approach can be applied to force the parameter

estimation move towards the direction of reducing constraint violations. The detail of
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INPUT : Data D
OUTPUT: Set of parameters θ

1 Randomly generate a set of parameters θ t , and map θ t to β t (equation
(2.16))

2 repeat
3 ∆θ t = 0;
4 for each node i = 1 to n do
5 for each parent configuration j = 1 to |πi| do
6 for each state k = 1 to ri do
7 for data instance dl = 1 to D do
8 ∆

θ
t+1
i jk

= ∆θ t
i jk
+ p(Xi = k,πi = j|dl,θ

t);

9 end
10 if θi jk ≤ µi jk then
11 ∆

β
t+1
i jk

= ∆
θ

t+1
i jk

(1−θ t
i jk)+(θ t

i jk)
2−θ t

i jk;

12 else
13 ∆

β
t+1
i jk

= ∆
θ

t+1
i jk

(1−θ t
i jk);

14 end
15 β

t+1
i jk = β t

i jk +∆
β

t+1
i jk

;

16 end
17 end
18 end
19 until ∆β ≤ 1×10−4;

20 for each node i = 1 to n do
21 for each parent configuration j = 1 to |πi| do
22 for each state k = 1 to ri do

23 θ
t+1
i jk = e

β
t+1
i jk

∑
ri
k=1 e

β
t+1
i jk

;

24 end
25 end
26 end
27 return θ =

{
θ

t+1
i jk

}
Algorithm 2.1: Constrained parameter learning algorithm (CO)

the constrained parameter learning algorithm is shown in Algorithm 2.1. To ensure the

solution is the global maximum, the objective function must be convex, which limits the

usage of constraints. Meanwhile, because the starting points are randomly generated in

gradient descent, this may cause unacceptably poor parameter estimation results when

learning with zero or limited data counts Ni jk.
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2.3.4 Multi–task or Parameter Transfer Learning

Previously, we have discussed BN parameter learning within a single problem domain.

However, in many real-world applications, there may exist more than one problem do-

main. For example, suppose a specific medical diagnosis BN has been developed using

minimal data from, say, one small country. Then it may be possible to exploit data from

a similar medical diagnosis BN from a different country. Thus, multi-task or transfer

learning algorithms are needed to exploit related domain knowledge to help learn the

target domain with scarce data. The key difference between multi-task and transfer is

the final learnt domains. In the multi-task setting, the learning accuracies are expected

to be jointly improved by exploiting the shared information across all domains. In the

transfer learning setting, only the learning accuracy of the target domain (domain of

interest) is expected to be improved by exploiting other correlated domains (source do-

mains). In this thesis, we are more interested in the transfer learning setting of BN

parameters.

Transfer learning in general is now a well-studied area, with a good survey pro-

vided by (Torrey and Shavlik, 2009; Pan and Yang, 2010). Extensive work has been

done on transfer and domain adaptation for machine learning models, including unsu-

pervised transfer and analysis of relatedness (Duan et al., 2009; Seah et al., 2013b,a;

Eaton et al., 2008). However, these studies have generally not addressed one or more of

the important conditions that arise in the BN context addressed here, notably: transfer

with heterogeneous state space, piece-wise transfer from multiple sources (a different

subset of variables/dimensions in each source may be relevant), and scarce unlabeled

target data (thus precluding conventional strategies that assume ample unlabeled target

data, such as MMD (Huang et al., 2007; Seah et al., 2013b)).

In comparison to the single domain BN learning, few works have been designed

for the BN transfer learning. Niculescu-mizil and Caruana (2007) developed the first

multi-task framework of BN structure transfer. However, it assumes that all sources

are equally related and simply learns the parameters for each task independently. The

transfer framework of (Luis et al., 2010) proposes a K-L divergence method to mea-

sure the relatedness of tasks, and employs the heuristic weighted sum model for fusing

target and selected source parameters. The weight w represents how much the target

parameters will be used in the fusion. This weight is only proportional to the number
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of target training samples and the number of all state configurations |πi| for the parents

of Xi:

w =


1−

log |D|2|πi|
|D|

2|πi|
i f |D|2|πi| ≥ 3

1−
|D|

2|πi|
log3

3 i f |D|2|πi| < 3

(2.19)

As we can see, this method does not take the sources into consideration and does

not systematically address when, from where, and how much to transfer (indeed we will

show in Chapter 5 this method significantly underperforms ours). Finally, the study

(Oyen and Lane, 2012) considers multi-task structure learning, again with indepen-

dently learned parameters. They investigate network/task-level relatedness, showing

transfer performs poorly without knowledge of relatedness. However, they address this

by manually specified relatedness. Finally, a recent study (Oates et al., 2014) improves

this by automatically inferring the network/task-level relatedness. However, they do

not consider information sharing of parameters. A related area to BN transfer is trans-

fer in Markov Logic Networks (MLNs) (Mihalkova et al., 2007; Davis and Domingos,

2009; Mihalkova and Mooney, 2009).

This thesis proposes the first BN parameter transfer learning (BNPTL) algorithm

to reason about both network and fragment relatedness. In contrast to these prior stud-

ies, the proposed approach has the following benefits: it can employ multiple fragments

from different source networks to help the transfer; it automatically quantifies source

relevance and is robust to some or all irrelevant sources (rather than assuming a single

relevant source). The detail of this method will be discussed in Chapter 5.

2.4 Estimating Learning Performance
Previous sections discussed how to perform parameter estimation in BNs. However,

we provided no way of assessing the quality of the learnt parameters. This section

describes ways to estimate the performance of a BN.

Let θ̂i j and θi j represent the learnt parameter distribution and true parameter dis-

tribution respectively. The standard way to measure the distance between two distribu-

tions over the same values is to compute their K-L divergence:

KL(θi j, θ̂i j) =
ri

∑
k=1

θi jk log
θi jk

θ̂i j
= H(θi j, θ̂i j)−H(θi j) (2.20)
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here H(θi j) stands for the entropy of a probability distribution θi j, and H(θi j, θ̂i j) stands

for the cross-entropy between two probability distributions θi j and θ̂i j over the same

values. The smaller the K-L divergence is, the closer the estimated parameters θ̂i j to

the true parameters θi j.

Because the standard K-L divergence is not symmetric, i.e.,

KL(θi j, θ̂i j) 6= KL(θ̂i j,θi j).

we will use the symmetric extension of K-L divergence in the thesis, which is also

referred to as Jensen-Shannon divergence (JSD):

KLs(θi j, θ̂i j) =
KL(θi j, θ̂i j)+KL(θ̂i j,θi j)

2
(2.21)

Using K-L divergence to compute the performance of our learnt distribution as-

sumes we can access the true distribution of the data. In the real-world applications,

such underlying distribution is not provided. In this case, we convert it into a fore-

cast/classification problem (set evidence for random variables X j (X j ∈V, j 6= i) based

on the existing learnt model to predict the posterior of interested variable Xi in different

real-world applications), and chose the state/value with the maximal predicted proba-

bility. If the predicted value is equal to the original value in dataset, then this prediction

is correct.

In the machine learning community, the most widely used classification perfor-

mance measurement is the Area Under the Receiver Operating Characteristic Curve

(ROC-AUC) (Bradley, 1997). Considering the simplest binary classification of Xi, if

we are provided with the number of truly positive and negative values of Xi in the N

testing data instances – Cp and Cn. After the BN inference, we have the number of

predicted positive and negative values of Xi – Rp and Rn. Thus

N =Cp +Cn and N = Rp +Rn.

Let Tp and Tn represent the number of true positives and true negatives respec-

tively. Then we can have the following meaningful measurement about the classifier’s

performance:
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Accuracy = Tp+Tn
Cp+Cn

Sensitivity = Tp
Cp

Speci f icity = Tn
Cn

Positive predictive value = Tp
Rp

Negative predictive value = Tn
Rn

(2.22)

All of these measurements are valid only for one particular operating point, which

may introduce ambiguity. Thus, there is a need for a measurement that is invariant

to the decision criterion selected, which is abbreviated AUC. Hand and Till (2001)

presented a simple approach to calculating the AUC of a given classifier.

AUC =
2Sp−Cp(Cp +1)

2CpCn
(2.23)

Here Sp = ∑rai, where rai is the rank of i-th positive values in the ranked list. The

ranked list is ordered by the posterior values of Xi, where the smallest posterior value

corresponds to the lowest rank.

2.5 The Research Gap
In this section we focus on the limitations of previous algorithms for BN parameter

learning with scarce data and identify a set of key properties that need to be addressed

by new or updated algorithms for BN parameter estimation. These properties motivate

the proposal of MPL-C and MPL-EC in Chapter 3 and 4, BNPTL in Chapter 5 and

MPL-TC in Chapter 6, respectively.

2.5.1 Parameter Learning with Constraints

The constrained convex optimization (CO) parameter learning method is attractive be-

cause of its efficiency; it applies fast iterative algorithms and provides globally optimal

solutions for several important types of parameter constraints. However, when the con-

straints are nonlinear and non-convex, the best estimation of constrained parameter

might not be found in polynomial time.

In addition, this method cannot handle the zero data situation and its parame-

ter estimation performance is highly dependent on the choice of penalty function and

weights of soft constraints, which need to be fine tuned. For example, in estimating the
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Figure 2.4: The estimated values of CO method under different constraint weights range from
100 to 107.

probability of smoker getting cancer, suppose there is a constraint

“p(cancer = true|smoker = true)> 0.01”

and 0 out of 10 data records is observed with cancer symptom. Intuitively, the MLE

result for this parameter is 0 with equation (2.8), which conflicts with the domain con-

straints.

Given the equation (2.15), the CO will produce different estimation results under

different constraint weight settings. This problem is illustrated by Figure 2.4.

As we can see from Figure 2.4, the CO can return a non-zero result for the pa-

rameter of interest, which improves the final learning results. However, this result is

sensitive to the choice of the constraint weight. Thus, extra effort is needed to find the

appropriate weight.

2.5.2 Parameter Transfer Learning

Previous transfer learning algorithms use the K-L divergence to measure the relatedness

between different learning tasks. They transfer the closest whole source BN to the

target. This transfer is based on the assumption that the node order is the same in both

target and source BNs, which means the correspondence is known before the transfer

(Figure 2.5).

The transfer with known node correspondence is a strong assumption, which could

greatly reduce the computation cost. However, this setting limits its usage in real-world

applications, where the nodes in the source BN may not follow the target node order
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Figure 2.5: The conventional BN transfer paradigm with known node correspondence. The
dash arrows represent the transfer from the node in source BN to its corresponding
node in target BN.

(e.g. the nodes X2 and X3 in Figure 2.5 source BN can swap their positions). Moreover,

this known node correspondence assumption does not allow the piece-wise transfer,

which supports the transferred source nodes coming from different source BNs.

After finding the right transfer correspondence, another challenge in transfer learn-

ing is to combine the target and selected source parameters. Luis et al. (2010) discuss

several cases of transforming the source substructure to consist with a target substruc-

ture, i.e., add/delete parents in the source substructure. However, after that, they employ

a heuristic weighted sum model for aggregating target and selected source parameters,

the weight is only proportional to the number of training samples and the number of

parameters in an NPT (as shown in equation (2.19)).

We continue with the example in Section 2.5.1 (“smoker”→“cancer”), where all

the nodes are binary, and none of the 10 smokers is observed with cancer symptom.

Therefore, the |D|= 10, |πi|= 2, and MLE of target parameter is:

θ
target
i = p(cancer = true|smoker = true) = 0

If the transferred source parameter is θ source
i , the final parameter θ̂i is estimated as

below:

θ̂i = wθ
target
i +(1−w)θ source

i

According to the definition of equation (2.19), the weight w is calculated without

any knowledge from the sources: w = 1−
|D|

2|πi|
log3

3 = 0.602.
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2.5.3 Identification of Key Properties

The limitations discussed above can be translated into a set of requirements that should

be fulfilled by an algorithm for BN parameter learning in a real-world scarce data situ-

ation. Specifically, we identify the following key properties:

• Multiple data sparsity: the algorithm should be robust to different amount of

data, especially the scarce data situation.

• Parameter prior: the algorithm should use the parameter prior (either informa-

tive or non-informative) in the parameter estimation with constraints.

• Multiple types of constraints: the algorithm should support a wide range of pa-

rameter constraints, i.e., convex or non-convex constraints, and constraints within

or across NPT columns.

• Robust parameter transfer: the algorithm should support the piece-wise trans-

fer, and robustly find the right source parameter without known node correspon-

dence, and fuse it to the target.

• Generalization: the algorithm should support the parameter learning with both

target parameter constraints and source data samples.

Considering previous work, we argue that there is no single algorithm for BN

parameter learning that fulfils all of the above requirements. Hence, there is a clear

research gap, which we aim to bridge in the following chapters.



Chapter 3

Parameter Learning with Constraints

In this chapter, we present a multinomial parameter learning method, which can easily

incorporate both expert judgments and data during the parameter learning process. This

method uses an auxiliary BN model to learn the parameters of a given BN. The auxiliary

BN contains continuous variables that model data statistics and probability distributions

of parameters. The auxiliary BN is updated by an iterative discretization technique.

The expert judgments are provided in the form of constraints on parameters divided

into two categories: linear inequality constraints and approximate equality constraints.

The method is evaluated with experiments based on a number of well-known sample

BN models as well as a real-world software defects prediction BN model.

3.1 Multinomial Parameter Learning
In this thesis, we mainly focus on learning NPTs for nodes with a finite set of discrete

states. For a node with ri states and no parents, its NPT is a single column whose

ri cells correspond to the unconditioned probabilities of ri states. Hence, each NPT

entry can be viewed as a parameter representing a probability value of a discrete dis-

tribution. For a node with parents, the NPT will have |πi| columns corresponding to

each of the πi instantiations of the parent node states. Hence, such an NPT will have

|πi| different ri-value parameter probability distributions to define or learn. Each such

ri-value parameter probability distribution can be learnt via the auxiliary Multinomial

Parameter Learning model (MPL) (Ogunsanya, 2012). This method models the Multi-

nomial distribution, which is a generalization of the Binomial distribution, and gives

the probability of each combination of outcomes in a sequence of independent trials of

an ri-outcome process.
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3.1.1 Model Construction

We use the estimation of probability distribution p(Xi|πi = j) (i.e., the j-th column

of the NPT associated with the variable Xi) to illustrate the construction of the MPL

model. Suppose there are ri states, (i.e., ri cell entries), and the goal is to learn the

ri probability parameters θi j1, ...,θi jri corresponding to these states. Assume we have

Ni jk data observations of the k-th state (1 ≤ k ≤ ri) and the total number of observa-

tions is Ni j = ∑
ri
k=1 Ni jk. Then we can create a multinomial parameter learning BN

model for each NPT column (shown schematically in Figure 3.1) to estimate parame-

ters θi j1, ...,θi jri .

Nij1

sum

������(0, 1) 

��������( , ) 

��������( , )  

�������(0, 1) 

�������(0, 1) 

 + +...

Nij

Nijri θ ijri

Nij

θ ij1Nij

θ ij1

θ ij1  θ ij2 θ ijri

θ ijri

Figure 3.1: Graphical model representation for the MPL model. The associated prior probabil-
ity distributions for each node are shown on their sides: p(Ni j) = Normal(0,1),
p(Ni jk) = Binomial(N,θi jk), p(θi jk) = Uni f orm(0,1), and p(sum) = ∑

ri
k=1 θi jk.

The grey nodes are observed during the inference.

Specifically, we start by creating an integer node named Ni jk (corresponding to

Ni jk as defined above) for each k that is Binomial distributed. This node has two parents

Ni j and θi jk to model the total number of trials and success probability in the Binomial

distribution. The Ni j has a Normal distribution, which provides an infinite range for the

total number of trials. The prior distribution of each θi jk is uniform between 0 and 1.

Finally, there is an integer node sum, which is a shared child of θi jk (k = 1, ...,ri). This

node models the normalization constraint for the success probabilities, i.e., that they

should sum to 1.
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3.2 Incorporating Expert Judgments
With the exception of NPTs that involve logical certainty1 (i.e., where cell entries must

be either 0 or 1 as would be the case if the node represented “A OR B” for parent

nodes A, B), it is known that experts find it extremely difficult to provide accurate and

consistent exact values for NPTs (Fenton et al., 2007). They are more reliable when

providing qualitative judgments like constraints (Feelders and van der Gaag, 2006).

3.2.1 Commonly Used Constraints

Previous work (Niculescu et al., 2006) has discussed a wide variety of parameter con-

straints elicited from expert judgments. However, in real-world applications, most ex-

pert judgments can be described with two important types of parameter constraints:

linear inequality constraints and approximate equality constraints. Since in this chapter

we focus purely on constraints that can be made about the parameters θi j1, ...,θi jri of a

single NPT column, these constraints can be defined formally as follows:

Definition 3.2.1. A linear inequality constraint is an expression about parameters con-

strained by a linear function, which has the following format:

β0 +
ri

∑
k=1

βkθi jk ≤ 0 (3.1)

where the coefficients β0,βk (1≤ k ≤ ri) are real numbers.

Linear constraints are simple and can easily be formalized from expert judgments.

For example, in the computer vision domain, recognizing facial expressions from a

library of several thousand facial images, can be modelled by a BN where each node

encodes a facial expression Action Unit (AU). Some intuitive judgments are easy to

elicit, i.e., the AU “Mouth stretch” is not usual, therefore p(Mouth stretch = true) ≤
0.5 (de Campos et al., 2009b). In real-world applications, such constraints are common,

especially between two parameters, or between a parameter and a constant. Most of

them have one of the following even simpler formats:

θi jk ≥ θi jk′

1Where an NPT value genuinely is 0 or 1 because of logical certainty, no amount of data will ‘learn’
these values. If the expert can identify such entries then it is assumed they are ‘facts’ and are not
incorporated in the learning process.
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θi jk ≥ βθi jk′

θi jk ≥ β0

where β ∈ RRR, k 6= k′, and β0 ∈ [0,1].

Definition 3.2.2. An approximate equality constraint (represented by the symbol ≈)

is an assertion that one parameter value is similar to another value.

In real-world applications, such constraints correspond to one of the following

formats:

θi jk ≈ θi jk′

θi jk ≈ βθi jk′

θi jk ≈ β0

where β ∈ RRR, k 6= k′, and β0 ∈ [0,1].

In each case, θi jk ≈ θi jk′ assumes there is some ε (0 < ε < 1) for which

|θi jk−θi jk′| ≤ ε (3.2)

Note that (with the exception of 0 and 1 probabilities in the case of logical certainty

as discussed above) the approximation (as opposed to equality) is generally needed not

just because it matches the way experts think, but it also avoids the problem whereby

exact continuous values have zero probability. Therefore, instead of specifying that θi jk

is exactly equal to θi jk′ , the expert selects an appropriate (small) positive value ε such

that θi jk ≈ θi jk′ as is captured in the equation (3.2).

3.2.2 Constraints Elicitation

Eliciting constraints from experts is clearly infeasible if it has to be done for every

single parameter. Therefore, people usually investigate constraints for a subset of BN

parameters. Research in finding the best subset of parameters falls into the scope of

active learning (Tong and Koller, 2001a), where the best eliciting scheme is investi-

gated via maximal information gain. In this thesis, we do not focus on improving such

elicitation processes. However, as a rule of thumb, when experts are able to provide
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Table 3.1: The types of BN nodes for domain experts to focus their attention when providing
the judgments.

Type Feature

Logical connective or conditionally
deterministic nodes

Nodes that represent logical expressions (like OR, AND,
and NOR) or conditionally deterministic functions
(arithmetical) of the parents.

‘Confidence’ nodes Nodes for which experts are confident to provide
constraints. For example, nodes for which they know
certain conditional probability values are very low or
very high.

‘Known empirical’ nodes Nodes for which extensive data is available. Usually root
nodes.

Table 3.2: Details of 9 commonly elicited verbal expressions and their associated approximate
equality constraints (Mosteller et al., 1990).

Index Verbal Expression Approximate Equality Constraints

1 Very high probability θi jk ≈ 0.93 (ε = 0.03)
2 High probability θi jk ≈ 0.82 (ε = 0.05)
3 Moderate probability θi jk ≈ 0.52 (ε = 0.09)
4 Very likely θi jk ≈ 0.90 (ε = 0.05)
5 Likely θi jk ≈ 0.71 (ε = 0.08)
6 Unlikely θi jk ≈ 0.17 (ε = 0.07)
7 Very unlikely θi jk ≈ 0.03 (ε = 0.04)
8 Rarely θi jk ≈ 0.07 (ε = 0.03)
9 Very rarely θi jk ≈ 0.03 (ε = 0.02)

judgments about node parameters they should focus on and distinguish between the

three types of nodes as shown in Table 3.1.

After finding the right parameter, experts are required to provide parameter con-

straints, e.g. “the probability of people getting cancer is smaller than 0.01”. How-

ever, sometimes experts may provide verbal descriptions about such constraints, e.g.

“the probability of people getting cancer is very rare”. In this situation, the challenge

is to understand the quantitative meanings of such verbal descriptions, and eliciting

associate numerical parameter constraints from them. This challenge has been well

addressed in previous works called ‘quantifying probabilistic expressions’ (Druzdzel,

1989; Mosteller et al., 1990), where empirical studies (survey research conducted via

mail questionnaire) had been done to show the variability of numerical estimations for

different verbal expressions. For example, according to previous results in (Mosteller
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et al., 1990), the verbal expression ‘very rarely’ corresponds to a probability between

0.01 and 0.05. Such uncertainty can be modelled by approximate equality constraints

discussed in last section, e.g. “the probability of people getting cancer is approximately

equal to 0.03 with ε = 0.02”. We list the commonly elicited verbal expressions and their

associated approximate equality constraints in Table 3.2.

3.3 Multinomial Parameter Learning Model with Con-

straints
Given that an expert has identified a number of constraints as defined above within a

NPT column, then these constraints can be integrated as additional observed constraint

nodes within the MPL model to generate a new model called Multinomial Parameter

Learning model with Constraints (MPL-C) as shown in Figure 3.2.
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Figure 3.2: Graphical model representation for the MPL-C model with M constraints. For the
node with constraints, their equations follow the representations in equation (3.1)
and (3.2). The grey nodes are observed during the inference.

Here, each constraint node Cm is a deterministic binary (true/false) node with ex-

pressions that specify2 the constraint relationships between its parents:

if (β0 +∑
ri
k=1 βkθi jk ≤ 0, true, false)

2Using the syntax of Conditional expressions in AgenaRisk.
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if (abs(θi jk−θi jk′)≤ ε , true, false)

When the constraint is between a single parameter and a constant (i.e., β0+βkθi jk ≤ 0),

the constraint node will only have a single parent. The following is a very simple

example to demonstrate how to create the MPL-C model.

Example 3.3.1. Suppose we have a single node F having just two states a and b (So

ri = 2). There are two probability parameters θ1 and θ2 corresponding to p(F = a) and

p(F = b) respectively. The expert judgment consists of a single inequality constraint

C1 namely θ1 ≥ θ2. The MPL-C model for this simple example is shown in Figure 3.3.
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Figure 3.3: An illustrated MPL-C model for a 2-parameter learning problem: (a) The graphical
representation of the MPL-C model. (b) The grey area represents the constraining
parameter space.

After observing the data statistics (Ni j,Ni j1, ...,Ni jri) and available constraints (the

constraint nodes C1, ...,CM are all observed with true values), we can update these

auxiliary models to get the parameter posteriors:

p(θ̂i j1, ..., θ̂i jrt |Ni j,Ni j1, ...,Ni jri,C1, ...,CM,sum)

Although the MPL-C model is a conceptually simple BN, it has certain features

that make accurate and efficient computation very challenging. First note that it con-

tains both discrete and continuous nodes, i.e., it is a hybrid BN (Murphy, 1998). There

are two well-known problems when dealing with continuous nodes in BNs. On the one

hand if the underlying variable is non-Normally distributed (and here we certainly can-

not assume Normality) then there is no known way of performing exact probabilistic
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inference. As explained in Chapter 2, we need to use the DDJT inference algorithm to

handle this kind of model. In the next section we explain the details of the inference

algorithm.

3.4 Inference with Constraints
Inference in DDJT3 refers to the process of computing the discretized posterior

marginals of each of the unknown nodes (these are the nodes without evidence). Each

of these nodes is continuous. For any such node suppose the range is Ω, and the prob-

ability density function (PDF) is f . The idea of discretization is to approximate f by,

first, partitioning Ω into a set of intervals ψ = {ωi} and, second, defining a locally

constant function fv on the partitioning intervals.

The dynamic discretization approach involves searching Ω for the most accurate

specification of the high-density regions, given the model and the evidence, calculating

a sequence of discretization intervals in Ω iteratively. At each stage in the iterative

process a candidate discretization, ψ , is tested to determine whether the resulting dis-

cretized probability density fv has converged to the true probability density f within

an acceptable degree of precision.

At convergence or when the bound of maximal number of iterations is reached

(the default is 25), f is then approximated by fv. Here we consider two stopping con-

vergence criteria: 1) stable entropy error and 2) low entropy error (Line 8, Algorithm

3.1). Finally, the mean value of fv will be assigned as the parameter estimation (i.e.,

the corresponding NPT cell value). Full details can be found in Algorithm 3.1.

Now we describe how we have adapted the Algorithm 3.1 to perform inference in

the simple MPL-C model introduced in Example 3.3.1 to learn the parameters θ1 and

θ2.

First consider the model in Example 3.3.1 but without the constraint. So there are

just 2 parameters with no data observations or constraints. The auxiliary BN will be a

5-node MPL model without constraints (i.e., in this case we are using just MPL and not

MPL-C). Because the priors of the nodes θ1 and θ2 are uniform, the perfect parameter

estimation should be (0.5, 0.5); this estimation also can be achieved by MAP. The

3The time complexity of inference in MPL-C is determined by the iterations of dynamic discretization
I and the largest clique size S of the junction tree, which is O(I · e(S−1)).
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INPUT : A set of random variables V
Observed variables E
Query variables Q

OUTPUT: Posteriors of parameters p̂(Q|E)
1 Initialize the discretization θ to get ψ

(0)
m for each continuous variable

Xm ∈V . Build a junction tree structure for the MPL-C model to determine
the cliques, Φ, and sepsets.

2 for l = 1 to max num iterations do
3 Compute the NPTs for parameters, p(l)(Xm|pa(Xm)), on ψ

(l−1)
m for all

nodes Xm ∈ Q (query variables) that have new discretization or that are
children of parent nodes that have a new discretization.

4 Initialise the junction tree by multiplying the NPTs for all nodes into
the relevant members of Φ. Enter evidence, Xn = en, Xn ∈ E (observed
variables), into the junction tree. Perform global propagation on the
junction tree.

5 for all nodes Xm ∈ Q do
6 Marginalize/normalise to get the discretized posterior marginals

p(l)(Xm|Xn = en).
7 Compute the approximate relative entropy error S(l)Xm

= ∑ωmn Errmn,

for p(l)(Xm|Xn = en) over all intervals ωmn in ψ
(l−1)
m .

8 if (1− ε ≤ S(l−c)
Xm

/S(l−c+1)
Xm

≤ 1+ ε for c = 1,2,3) or (S(l)Xm
< σ)

where the ε,σ = 1×10−4.
9 then

10 Stop discretization for node Xm, p̂(Xm|E) = p(l)(Xm|Xn = en).
11 else
12 Create a new discretization ψ

(l)
m for node Xm. Split it into two

halves the interval ωmn in ψ
(l−1)
m with the highest entropy error

Errmn; Merge those consecutive intervals in ψ
(l−1)
m with the

lowest entropy error or that have zero mass and zero entropy
error.

13 end
14 end
15 end
16 return p̂(Q|E) = ∏Xm∈Q p̂(Xm|E)

Algorithm 3.1: Dynamic discretization junction tree algorithm (DDJT)

results of inference for node θ1 via our method are listed in Table 3.3 (the value of θ2

is, of course just (1−θ1)).

Using the default maximal number of iterations (25), the result of our algorithm

has 0.0008 deviation from the ‘correct’ result. At 150 iterations there is no significant

difference between these two results (at 4 decimal places).

After creating the MPL-C model, we perform moralization, triangulation and in-
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Table 3.3: The evaluation of inference accuracy with different maximal number of iterations.

Maximal number of iterations 25 50 100 150

Probability values 0.5008 0.5003 0.5001 0.5000

tersection checking steps of the DDJT algorithm (3.4). Then, we set evidence into

certain nodes as follows:

Cm = true (m = 1, ...,M),

Ni jk = actual number of observations of the k-th state in the data set,

sum = 1.
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Figure 3.4: The moralization, triangulation, and intersection checking steps of the DDJT algo-
rithm in a 2-parameter MPL-C model. The constraint is considered as evidence in
this MPL-C model, as is the mutual consistency assumption (the sum of θ1 and θ2
is equal to one). Meanwhile, the observations of trials in the Binomial distributions
are also regarded as evidence.

Next, we use another example (Example 3.4.1) to illustrate the evidence propaga-

tion in DDJT and present the final learning results of Example 3.3.1.

Example 3.4.1. In this example, we use the same assumptions as in Example 3.3.1 that

there is a single inequality constraint C1: θ1 ≥ θ2 and 10 data observations: 4 for state

a and 6 for state b. Note that the relative empirical-frequencies of the parameters (MLE

results) with the sample do not satisfy the constraint, so there is clear added value

in being able to combine the expert judgment and data. Suppose that the “ground

truth” of the discrete probability distribution is given as (0.58, 0.42), i.e., θ1 = 0.58

and θ2 = 0.42. Figure 3.4 shows how the inference procedure works. The figure also
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shows the evidence assumptions in this case. Therefore, the problem is treated as using

the junction tree algorithm to calculate the posterior probabilities of θ1 and θ2 given

the evidence. In the DDJT algorithm, the posteriors of query nodes can be calculated

given the initialized discretizations and evidence. After that, this algorithm continues to

split those intervals with highest entropy error in each node until the model converges

to an acceptable level of accuracy or reach the maximal number of iterations. The

shadow area in Figure 3.3 represents the posterior ranges of θ1 and θ2. After inference,

the mean values of these posteriors are finally used to fill the NPT column of target

parameters. For this example, the final probabilities learned by MPL-C are (0.55,

0.45). So, in contrast to MLE, despite the observations which suggest θ2 is greater

than θ1, the expert constraint has ensured that the final learned parameters are still

quite close to the ground truth.

3.5 Experiments
The goal of the experiments is to evaluate the benefits of our method that uses expert

judgment in parameter learning. We test the method against the pure machine learning

techniques as well as against the competing method that incorporates expert judgment

(i.e., the constraint optimization method CO) in 6 standard models from the BN repos-

itory4. Details and descriptions of these BNs can be found in Table 3.4. Section 3.5.1

focuses on parameter learning in the Asia BN with both real and synthetic expert judg-

ment. Section 3.5.2 investigates the algorithm performance on the other 5 BNs with

synthetic expert judgment.

In all cases, we assume that the structure of the model is known and that the

‘true’ NPTs that we are trying to learn are those that are provided as standard with

the models. In each experiment we are given a number of sample observations which

are randomly generated based on the true NPTs. The experiments consider a range

of sample sizes. In all cases the resulting learnt NPTs are evaluated against the true

NPTs by the average K-L divergence (equation (2.21)) between learnt and ‘true’ NPT

columns5. The smaller the average K-L divergence is, the closer the estimated NPT is

4http://www.bnlearn.com/bnrepository/
5Usually the K-L divergence between the joint distributions should be used, however a good recon-

structed model should close to the ground truth piece-by-piece. Thus the K-L divergence is locally
measured for each NPT column, and we use the average K-L divergence in this thesis.

http://www.bnlearn.com/bnrepository/
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Table 3.4: Descriptions of Asia, Weather, Cancer, Insurance, Alarm and Hailfinder BNs

Name Nodes Arcs Paras† M-ind‡ Descriptions

Asia 8 8 18 2 Used for a patient entering a chest clinic to
diagnose his/her most likely condition given
the symptoms and risk factors (Lauritzen and
Spiegelhalter, 1988).

Weather 4 4 9 2 Models the risk factors like rain and sprinkler,
which can be affected by the weather
condition and can all detemince the presence
of wet grass (Russell and Norvig, 2009).

Cancer 5 5 10 2 Models the interaction between risk factors
and symptoms for the purpose of diagnosing
the most likely condition for a patient getting
lung cancer (Korb and Nicholson, 2010).

Insurance 27 52 984 3 Used for estimating the expected claim costs
for a car insurance policyholder (Binder et al.,
1997).

Alarm 37 46 509 4 Is an acronym for “A Logical Alarm
Reduction Mechanism”. This network is a
medical diagnostic application used to
explore probabilistic reasoning techniques in
belief networks, and is used for patient
monitoring (Beinlich et al., 1989).

Hailfinder 56 66 2656 4 Is used for predicting risk of hails in northern
Colorado (Abramson et al., 1996).

† Total number of parameters in each BN.
‡ The maximum edge in-degree, the maximum number of node parents in each BN.

to the true NPT. If frequency estimated values are zero, they are replaced by a tiny real

value (1×10−7) to guarantee they can be computed by the K-L measure.

3.5.1 Asia BN Experiments

The Asia BN, which models the interaction between risk factors, diseases and symp-

toms for the purpose of diagnosing the most likely condition for a patient entering a

chest clinic, is shown in Figure 3.5. All 8 nodes are binary so each NPT column has

just 2 NPT entries to learn; since the values of 2 entries sum to 1, each column has only

one independent parameter. Hence there are 18 independent parameters to learn in the

model (1 each for nodes VA and S, 2 each for nodes TB, LC, B, PX, and 4 each for nodes

LCTB and D). Here the data samples are generated from the ‘true’ NPTs specified in

previous work (Lauritzen and Spiegelhalter, 1988). For example, the ‘true’ probability

of “VA=true” is 0.01, so its data will be randomly sampled based on this probability.

Eliciting real expert judgments As discussed in Table 3.1, it is not hard to see that,

the logical connective node “LCTB: Lung cancer or tuberculosis” gets the first priority
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Figure 3.5: The directed acyclic graph of the Asia BN.

to be constrained by its logical output shown in Figure 3.6. This kind of constraint is ab-

solutely certain, and the constraining NPTs are specified with point values. Therefore,

the CO and MPL-C approach will directly use these values without learning.

Lung cancer or

tuberculosis?

Tuberculosis? Lung cancer?

Tuberculosis?

Lung cancer?

Lung cancer

        or

tuberculosis?

T

T

T

T

F

T

F

T

T

F

F

F

Figure 3.6: The logical OR connective node and its output in Asia BN, which constrains the
parameters P(LCT B|T B,LC).

Next, based on discussions in (Lauritzen and Spiegelhalter, 1988) and with medi-

cal experts, we discovered widespread agreement and confidence in experts’ ability to

provide inequality constraints for some of the parameters relating to conditional prob-

abilities of the signs and symptoms given a specific disease. Specifically, this refers

to parameters associated with node “PX: Positive X-ray?” and node “D: Dyspnea?”

(marked grey in Figure 3.5).

For the parameter p(PX = true|LCT B = true) (i.e., the probability of a positive6

6A positive X-ray means that the X-ray shows an abnormality.
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X-ray given lung cancer or tuberculosis) experts were confident (based on experience)

that this probability is very likely and were happy to provide the inequality constraint

p(PX = true|LCT B = true)≥ 0.90 (the ‘ground truth’ in (Lauritzen and Spiegelhalter,

1988) is actually 0.98). Similarly, for parameter p(D = true|LCT B = true,B = true)

(the probability of dyspnea given tuberculosis or cancer and also bronchitis) experts

were happy to assert the inequality constraint greater than 0.80 (the ground truth is

0.90). These very simple and basic expert elicited judgments (which are summarized

in Table 3.5) are all that were used.

Table 3.5: Details of 3 elicited judgments for the Asia BN and their corresponding 6 con-
straints.

Node
Name

Elicited Judgments
Elicitation
Precedence

Constraint
Type

LCTB

p(LCT B = true|T B = true,LC = true) = 1

1 Logical
p(LCT B = true|T B = true,LC = f alse) = 1
p(LCT B = true|T B = f alse,LC = true) = 1

p(LCT B = f alse|T B = f alse,LC = f alse) = 0
PX p(PX = true|LCT B = true)≥ 0.9 2 Inequality
D p(D = true|LCT B = true,B = true)≥ 0.8 2 Inequality

Learning with real expert judgments After introducing these simple constraints,

along with data samples of varying sizes (from 10 to 110) we get the estimated pa-

rameters. The results for this are shown in Figure 3.7, where we perform all learning

approaches (i.e., MLE, MAP, CO and MPL-C).

In Figure 3.7, the x-coordinate denotes the data sample size from 10 to 110, and

the y-coordinate denotes the average K-L divergence. For each data sample size, the ex-

periments are repeated 10 times, and the results are presented with their mean and stan-

dard deviation. The results show the extent to which the MPL-C method outperforms

the MLE and MAP approaches. More importantly, note that MPL-C also outperforms

the directly competing CO approach. Specifically, MPL-C achieves very good learning

performance with just 10 data samples, where the average K-L divergence is 0.12±0.02

(95% confidence interval using the observed standard deviation), which is much smaller

than the results of MLE (1.76±0.52), MAP (0.60±0.05) and CO (0.99±0.36). Of most

interest is the observation that the competing methods require vastly more data before

they approach the accuracy that MPL-C achieves with very small data samples.
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Figure 3.7: Learning results of MLE, MAP, CO and MPL-C for Asia BN with different training
data sizes.

Learning with synthetic expert judgments This experiment investigates the learn-

ing performance of our algorithm with synthetic expert judgments. Specifically, the

number of constraints chosen varies in different experiment settings (we consider the

cases of 20%, 50%, and 80% parameters are constrained respectively). In each case

the parameters are chosen at random. For each chosen parameter we introduce an ap-

proximate equality constraint generated with ε = 0.1. In other words, if the ‘true’ value

for a parameter θi jk is 0.8, then the constraint will be |θi jk−0.8| ≤ 0.1 The results are

illustrated in Figure 3.8.
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(a) 20 % (b) 50 % (c) 80 %

Figure 3.8: Learning results vs. different number of constraints for Asia BN: (a) shows the
comparisons for different learning algorithm under 20% constraints ratio; (b) shows
the same comparisons under 50% constraints ratio; (c) shows the experiments with
80% constraints ratio, i.e., where most of the parameters are constrained.

As shown in Figure 3.8, for all parameter learning methods, the average K-L di-
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vergence shows a decreasing trend with increasing sample sizes, where the small vari-

ations are due to randomly select constrained parameters in each sample size. For

parameter learning with constraints (CO and MPL-C), the average K-L divergence de-

creases along with number of constrained parameters’ increase. However, the CO fails

to outperform the baseline MAP algorithm when small subsets of parameters (i.e., 20%

and 50%) are constrained, while the MPL-C method always outperforms the other three

learning methods in all three different constrained ratios of parameters.

3.5.2 Different Standard BNs Experiments

In the second set of experiments, we continue the experiments on another 5 standard

models (Weather, Cancer, Alarm, Insurance, Hailfinder) that have been widely used

for evaluating different learning algorithms. The details of these BNs are listed in

Table 3.4. For each BN, the sample sizes are fixed at 10 and 50 with 10 repetitions

in each case to get the average learning performance. For the constraints we use the

synthetic expert judgment approach (described above as part of the Asia BN experiment

in Section 3.5.1). Since it is not usually feasible to get large numbers of real constraints

for large BNs with thousands parameters, the ratio of constrained parameters is fixed at

20% for all BNs here.

Table 3.6: Results for MLE, MAP, CO and MPL-C in 5 standard BN parameter learning prob-
lems.

Name Data MLE MAP CO MPL-C

Weather
10 0.82±0.57* 0.28±0.03* 0.61±0.67* 0.23±0.05
50 0.32±0.26 0.70±0.18* 0.31±0.24 0.42±0.17

Cancer
10 1.70±0.49* 0.10±0.03 1.51±0.50* 0.07±0.03
50 0.24±0.05* 0.02±0.01* 0.21±0.01* 0.02±0.01

Alarm
10 3.95±0.16* 0.92±0.01* 3.20±0.13* 0.78±0.02
50 2.80±0.18* 0.73±0.03* 2.28±0.22* 0.60±0.03

Insurance
10 4.10±0.06* 1.80±0.01* 3.44±0.09* 1.54±0.03
50 2.39±0.21* 1.38±0.03* 2.03±0.14* 1.14±0.02

Hailfinder
10 4.54±0.04* 0.77±0.01* 3.73±0.07* 0.66±0.01
50 3.38±0.04* 0.57±0.01* 2.81±0.09* 0.46±0.01

Table 3.6 shows the average K-L divergence over NPT columns for different learn-

ing methods in each BN. The lowest average K-L divergence (best result) in each setting

is presented in bold text format. Statistically significant improvements of the best result

over competitors are indicated with asterisks * (p≤ 0.05). We can see that the MPL-C
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method returns the best learning results in all experimental settings except one insignif-

icant exception: in the Weather BN with 50 data samples, the CO algorithm achieves a

slightly lower average K-L divergence 0.31±0.24 compared with 0.42±0.17 of MPL-

C. However, due to the large standard deviations in these results (this is caused by the

heavily unbalanced ‘true’ probabilities), it is not statistically significant to claim that

CO outperforms MPL-C even in this case. In all the other cases in the table, the MPL-C

result is statistically significant. Again, the improved performance of MPL-C against

the other methods is especially pronounced when the number of samples is small (i.e.,

10 in this case).

3.6 A Case Study

Component

 complexity

Defects insertedTesting quality

Residual defects

Defects found in

     operation
Operational usage

Defects found in

        testing

(DQ)

(T) (DI)

(C)

(DT) (R)

(DO)(O)

Figure 3.9: The directed acyclic graph of the software defects prediction BN.

This section describes experiments applied to a real software defects prediction

BN (Fenton and Neil, 1999; Fenton et al., 2008) in which we incorporate real expert

judgments. The software defects prediction BN is used to predict the quality of software

in terms of defects found in operation based on observations that may be possible during

the software development (such as component complexity and defects found in testing).



3.6. A Case Study 53

The basic version of this BN contains 8 nodes, and its structure is shown in Figure 3.9.

The ground truth for the NPTs are presented in (Fenton and Neil, 2012), where each

node has 3 states ‘low’, ‘medium’, and ‘high’. There are therefore 80 independent

parameters in the model.

This model structure presented in Figure 3.9 is considered valid for multiple types

of organization. While some of the NPTs will always be organization-specific others

need to be ‘tailored’ to each particular organization. That makes this BN a particularly

relevant test case for our method, especially as in practice it is known to be extremely

difficult to obtain any more than a small number of relevant data samples.

We elicited 10 constraints from real software project experts and these are sum-

marized in Table 3.7. Here, in order to simplify the notation we will use ‘l’, ‘m’ and ‘h’

to represent variable states ‘low’, ‘medium’, and ‘high’.
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Figure 3.10: Learning results of MLE, MAP, CO and MPL-C for software defects prediction
BN with different training data sizes.

Dependence on data sparsity After introducing these real constraints, along with

data samples of varying sizes (from 10 to 110) we have the parameter learning results

shown in Figure 3.10. Four lines are presented in this chart, where the blue and purple

lines represent the learning results of baseline MLE and MAP approaches, green line

denotes the results of the CO approach, and the red line shows the learning results of

the MPL-C method.
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Table 3.7: Details of 10 real expert judgments for the software defects prediction BN and their
corresponding 19 constraints.

Index Description of real expert judgments Corresponding constraints

1
If design process quality is ‘high’ and component
complexity is ‘low’ then the probability that
defects inserted is ‘low’ is ≥ 80%.

p(DI = l|DQ = h,C = l)≥ 0.80

2
If design process quality is ‘low’ and component
complexity is ‘high’ then the probability that
defects inserted is ‘low’ is ≤ 5%.

p(DI = l|DQ = l,C = h)≤ 0.05

3
If defects inserted is ‘low’ then the probability
that defects found is ‘low’ is ≥ 99% (irrespective
of testing quality).

p(DT = l|DI = l,T = h)≥ 0.99
p(DT = l|DI = l,T = m)≥
0.99
p(DT = l|DI = l,T = l)≥ 0.99

4
When testing quality is ‘high’ and defects
inserted is ‘high’ there is a≤ 10% probability
defects found is ‘low’.

p(DT = l|DI = h,T = h)≤ 0.10

5
When testing quality is ‘low’ then the probability
that defects found is ‘high’ is ≤ 5% (irrespective
of defects inserted).

p(DT = h|DI = h,T = l)≤ 0.05
p(DT = h|DI = m,T = l)≤
0.05
p(DT = h|DI = l,T = l)≤ 0.05

6
If defects inserted is ‘low’ then the probability
that residual defects is ‘low’ is ≥ 99%
(irrespective of defects found).

p(R = l|DI = l,DT = h)≥ 0.99
p(R= l|DI = l,DT =m)≥ 0.99
p(R = l|DI = l,DT = l)≥ 0.99

7
If defects inserted is ‘high’ and defects found is
‘low’ then the probability that residual defects is
‘low’ is ≤ 1%.

p(R = l|DI = h,DT = l)≤ 0.01

8

If defects inserted is ‘medium’ and defects found
is ‘high’ then the probability of residual defects is
‘low’ is greater than the probability of ‘medium’,
and the probability of ‘medium’ is greater than
probability of ‘high’.

p(R = l|DI = m,DT = h)≥
p(R = m|DI = m,DT = h)

p(R = m|DI = m,DT = h)≥
p(R = h|DI = m,DT = h)

9
If operational usage is ‘high’ and residual defects
is ‘high’ then the probability that number of
defects found in operation is ‘high’ is ≥ 99%.

p(DO = h|O = h,R = h)≥ 0.99

10
If operational usage is ‘low’ then the probability
that number of defects found in operation is
‘high’ is ≤ 20%.

p(DO = h|O = l,R = h)≤ 0.20
p(DO = h|O = l,R = m)≤ 0.20
p(DO = h|O = l,R = l)≤ 0.20

As we can see from Figure 3.10, it is clear that the average K-L divergence of

all learning algorithms decreases with increasing sample sizes. As expected, when

the sample sizes increase, the performance gap between the algorithms decreases dra-

matically, which means the learning performance of all algorithms will converge with

enough training samples. Moreover, the results show again that the MPL-C method
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still achieves the best learning performance in the whole data range. Specifically, at

10 data samples, the average K-L divergence for MPL-C is 0.53±0.03, which is much

smaller than the results of MLE (3.20±0.26), MAP (1.39±0.03) and CO (0.88±0.12).

Saved data samples To get a better idea of how the learning performance can be

improved by MPL-C, we can examine the number of data samples that MLE, MAP

and CO require in order to achieve the same average K-L divergence as MPL-C at a

specific small sample size. The results for such a comparison are shown in Table 3.8.

The results indicate MPL-C requires much less samples to achieve good learning

results than other learning algorithms. For example, MLE, MAP and CO need 250,

160 and 75 data samples respectively to achieve the same average K-L divergence as

MPL-C at 10 data samples. Even for 20 data samples, the additional number required

for the other methods is large (320, 230 and 105 respectively). This is a very important

result because in a typical software development organization having 20 relevant data

samples for this problem is considered a large data set and difficult to collect.

Table 3.8: Equivalent data sample size so that MLE, MAP and CO achieve the same perfor-
mance as MPL-C in the software defects prediction BN.

Data
Samples

K-L
divergence
(MPL-C)

Samples
needed by

MLE

Samples
needed by

MAP

Samples
needed by

CO

10 0.53±0.03 250 160 75
20 0.43±0.04 320 230 105
30 0.36±0.04 405 315 142
40 0.33±0.04 410 370 150
50 0.31±0.04 470 405 160

3.7 Summary
Purely data driven techniques (such as MLE and MAP) for learning the NPTs in BNs

often provide inaccurate results even when the datasets are very large. That is why it is

widely accepted that expert judgment should be used whenever it is available in order

to supplement and improve the learning accuracy. However, reliable expert judgment is

not only difficult to elicit, but also difficult to incorporate with existing data. We have

described an automated method that addresses both of these concerns. It focuses on

constraints that are easily described by experts and are incorporated into an extended
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version of a multinomial parameter learning model. This model is an auxiliary BN

associated with each node whose NPT we wish to learn. The auxiliary BN, which

we called MPL-C (multinomial parameter learning with constraints) was implemented

(the sample code using AgenaRisk API can be found in Appendix A) and evaluated

experimentally against both pure data learning methods (namely MLE and MAP) as

well as against the only relevant competing method that incorporates expert judgments

with data (namely CO).

We have conducted experiments on 6 standard BN models as well as a real-world

BN model that has been used by many technology companies worldwide (for predict-

ing software defects). In all cases, we considered the impact of adding real expert con-

straints. The experiments demonstrate that, whereas the CO method clearly improves

performance compared with conventional MLE and MAP algorithms when enough

constraints are added, our MPL-C method achieves the best learning results in almost

all experiment settings. MPL-C is especially accurate in comparison to the other meth-

ods in situations where the datasets are relatively small. Indeed, MPL-C needs much

smaller datasets to achieve accurate learning results. Moreover, even a very small num-

ber of expert constraints dramatically improves accuracy under MPL-C.

The practical implications of these results are very important: in most real-world

situations (such as that in which the software defects prediction BN is used) the avail-

ability of relevant data is extremely limited; even when it is possible to get relevant

data it may be too expensive or time consuming to do so. Our results show that in these

very common situations a small dataset, together with even a small number of expert

judgment constraints, can result in accurate models using MPL-C. Indeed the accuracy

can be much greater than what is achievable with a very large dataset and no expert

constraints. Hence, the experimental results suggest that our MPL-C method may rep-

resent a significant step forward in parameter learning of BNs in the very common

situation where there is sparse data but a small amount of expert judgment.

While the experimental results are extremely promising, there is an obvious area

for improvement – incorporating constraints across NPT columns. In this chapter we

have considered only constraints that affect a single column of NPT values. However,

experts may be able to provide constraints between parameters in different columns,

for example, in the software defects prediction BN, an expert could assert that “the
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probability of defects inserted is ‘high’ given ‘high’ component complexity is greater

than the probability of it is ‘high’ given ‘low’ component complexity”. Given the re-

markable boost in accuracy achieved by incorporating the limited types of constraints

considered in this chapter, it is reasonable to conclude that incorporating these other

types would also lead to greatly improved learning accuracy. This will be investigated

in the next chapter.



Chapter 4

Parameter Learning with Exterior

Constraints

Chapter 3 showed that incorporating parameter constraints can improve learning per-

formance of BNs in real-world applications with limited data. However, the expert

constraints were restricted to what we called ‘interior’ constraints, which apply only to

constraints between entries in the same NPT column. But experts are often typically

able to provide constraints that apply to entries of different columns. We call these

exterior constraints. In this chapter we extend the auxiliary BN method (discussed in

Chapter 3) to tackle parameter learning with exterior constraints. This extended model

also addresses (i) how to estimate target parameters with both data and constraints, and

(ii) how to fuse the weights from different causal relationships in a robust way. Fi-

nally, we demonstrate the successful applications to learn the 6 standard BN models

described in Table 3.4 as well as the real-world software defects prediction BN (intro-

duced in Section 3.6) with scarce data.

4.1 Interior and Exterior Constraints
In Chapter 3, we mainly discussed the parameter constraints restricted to a single prob-

ability table column; for example:

“p(cancer = true|smoker = true) ≥ 0.01)” or

“p(cancer = true|smoker = true) ≥ p(cancer = false|smoker = true)”

In this chapter we extend this to exterior parameter constraints (across NPT

columns) such as:

“p(cancer = true|smoker = true) ≥ p(cancer = true|smoker = false)”
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These two constraints are different according to the constrained parameters’ parent

state configurations.

Definition 4.1.1. For any variable Xi in a BN, if the two associated parameters θi jk and

θi jk′ (k 6= k′) in Xi share the same parent state configuration πi = j, we call θi jk ≥ θi jk′

or θi jk < θi jk′ an interior constraint.

We showed in chapter 3 that significant improvements to NPT learning can be

achieved from a set of expert provided interior constraints. However, in many BNs, the

available expert judgments are about constraining parameters with different parent state

configurations. These constraints are referred to as exterior constraints, and defined as

follows:

Definition 4.1.2. For any variable Xi in a BN, if the two associated parameters θi jk and

θi j′k in Xi have different parent state configurations πi = j or πi = j′ ( j 6= j′), we call

θi jk ≥ θi j′k or θi jk < θi j′k an exterior constraint.

This kind of constraint is encoded in monotonic effects of DAGs which can greatly

reduce the burden of expert judgment elicitation. Before examining exterior constraints

in detail, we firstly discuss the monotonic effects in the next section.

4.2 Monotonic Effects
Definition 4.2.1. For any dependent relationship X j → Xi in a BN with ordered cate-

gorical variables, if an increase in X j leads to an increase in Xi no matter the values of

other variables in πi \{X j}, we call this positive monotonic effect X j
+→ Xi. Otherwise,

if an increase in X j leads to a decrease in Xi no matter the values of other variables in

πi \{X j}, we call this negative monotonic effect X j
−→ Xi.

A zero effect, denoted by arc sign X j
0→ Xi is defined analogously that an increase

in X j will not change the value of Xi. However, this effect is rare in real-world BNs and

will not be discussed in this thesis. Finally, if there is no positive or negative monotonic

effect between X j and Xi, we call this ambiguous monotonic effect X j
?→ Xi.

Positive and negative monotonic effects are widely seen in real-world BN applica-

tions. For example, smoking increases the risk of getting cancer, while medical treat-

ment will reduce the cancer rate. Let cd f (·) denote the cumulative distribution func-
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tion. Thus, the two kinds of monotonic effects can be formulated as exterior constraints

as follows:

X j
+→ Xi: cd f kc(θi jk)≥ cd f kc(θi j′k)

X j
−→ Xi: cd f kc(θi jk)≤ cd f kc(θi j′k)

(4.1)

where 1≤ i≤ n, 1≤ j ≤ |πi|, 1≤ j′ ≤ |πi|, 1≤ k ≤ kc.

Here both X j and Xi are ordered categorical variables, j and j′ are parent state

indices satisfying the inequality relationships 1≤ j < j′ ≤ |πi|. The kc is the state index

for which the cumulative distribution function is evaluated, and satisfies the condition

1≤ kc < ri. The arc signs ( +→ and −→) specify the types of the monotonic effect.

As we can see, the negative effect represents the opposite monotonic influence

compared with the positive effect. A renown extension of monotonic effects is the “en-

hanced” formalism (Renooij and van der Gaag, 1999; Renooij and Van der Gaag, 2008),

which adds the cut-off value α (0 ≤ α ≤ 1) in these inequality parameter constraints.

On this formalism, the extension of equation (4.1) can represent,

• strongly positive monotonic effect, cd f kc(θi jk)− cd f kc(θi j′k)≥ α , and

• weakly positive monotonic effect, 0≤ cd f kc(θi jk)− cd f kc(θi j′k)≤ α .

The equation for strongly negative monotonic effect and weakly negative monotonic

effect are defined analogously.

Models that are fully specified by qualitative monotonic effects ( +→,
−→,

?→) are

referred to as Qualitative Probabilistic Networks (QPNs) (Wellman, 1990). An efficient

sign-propagation algorithm is achieved by restricting the maximal number of node-

sign changes during the inference (Druzdzel and Henrion, 1993; Renooij and Van der

Gaag, 2008). The inference results answer the question of how the observation of

some variables changes the probability of other variables. The combination of QPNs

and BNs is referred to as Semi-Qualitative Probabilistic Networks (SQPNs) (Renooij

and van der Gaag, 2002), which means parts of the variables are represented by joint

probability tables rather than qualitative constraints. Inference and learning in SQPNs

is discussed in later work (de Campos and Cozman, 2005).

Same as previous work (Altendorf et al., 2005; Feelders and van der Gaag, 2006),

in this thesis, we only use signs of qualitative probabilistic networks and their generated
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exterior constraints (as shown in equation (4.1)) to constrain the probabilities in the

standard BN parameter learning. The challenge here is dealing with the synergies of

the monotonic effects – the interactions among monotonic effects. For example, the

values of Y can be jointly influenced by the values of two parent nodes X1 and X2 in the

local structure X1→ Y ← X2.

Assume all nodes are binary (‘T’ and ‘F’), previous work (de Campos and Coz-

man, 2005) has defined different kinds of synergies for X2 and X3 on their common

effect Y , that is:

• Positive Additive synergy

p(yT |x1T ,x2T )+ p(yT |x1F ,x2F)≥ p(yT |x1T ,x2F)+ p(yT |x1F ,x2T )

• Negative Additive synergy

p(yT |x1T ,x2T )+ p(yT |x1F ,x2F)≤ p(yT |x1T ,x2F)+ p(yT |x1F ,x2T )

• Positive Product synergy

p(yT |x1T ,x2T )p(yT |x1F ,x2F)≥ p(yT |x1T ,x2F)p(yT |x1F ,x2T )

• Negative Product synergy

p(yT |x1T ,x2T )p(yT |x1F ,x2F)≤ p(yT |x1T ,x2F)p(yT |x1F ,x2T )

Recent work (Yang and Natarajan, 2013) has shown that synergies could improve

the BN parameter learning performance with limited data. However, same as syner-

gies discussed above, the synergies used in their work are homogeneous – that the

involved monotonic effects either are positive or negative, i.e., in positive additive syn-

ergy, the monotonic effects encoded in two arcs (X1→Y and X2→Y ) are both positive.

Real-world BNs usually contain nodes whose parents provide a mixture of positive and

negative effects, which is also referred to as heterogeneous synergies.

The challenges of learning with these synergies are two-fold:

(i) The interactions of heterogeneous monotonic effects may produce ambiguous

effect, i.e., the additive synery of one positive monotonic effect and one negative

monotonic effect.

(ii) Increasing the number of node states would exponentially increase the number

of generated constraints, which is computationally intractable.
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To mediate this challenge, we introduce some assumptions to restrict constraint sizes

and propose a model for generic synergy of monotonic effects in the next section.

4.3 A Generic Synergy of Monotonic Effects
In this section, we introduce a generative form of the exterior constraint equation, which

supports homogeneous/heterogeneous synergies with different weights. This model is

inspired by the previous “enhanced” formalism for QPNs (Renooij and van der Gaag,

1999; Renooij and Van der Gaag, 2008) via introducing an overall margin of the syner-

gies.

Assume we have a BN with variables V = {Y,X1,X2, . . . ,Xn} and the simple in-

verted naive structure, which means the variable Y is the shared child of X1,X2, . . . ,Xn.

Then our generative exterior constraint is:

cd f (p(Y |πY = j))− cd f (p(Y |πY = j′))≥M j j′ i f M j j′ > 0

cd f (p(Y |πY = j))− cd f (p(Y |πY = j′))≤M j j′ i f M j j′ < 0
(4.2)

where M j j′ = ∑
n
i=1 Mi

j j′ = ∑
n
i=1 wi · cli · ε i

j j′ and 1≤ j < j′ ≤ |πY |.
M j j′ represents the overall margin of the synergies, which is the summation of

each single margin Mi
j j′ . The Mi

j j′ contains three terms:

• wi ≥ 1 represents the global weight (the subjective confidence) of the dependent

relationship Xi→ Y , its default value wi = 1 indicates there is no subjective con-

fidence on the influence. This term easily explains that some parent nodes could

have higher effect on the child node, e.g., smoking behaviour has a higher effect

on the risk of people getting tuberculosis than the factor that people has recently

visited Asia.

• cl is the effect label (cli = 1 indicates the positive effect Xi
+→ Y ; cli = −1 rep-

resents the negative effect Xi
−→ Y ). This term is derived from the definition of

monotonic effect (Definition 4.2.1).

• ε i
j j′ is a local term that describes the confidence of the inequality introduced by

state configuration gap in the synergy of monotonic effects. For example, in a

single monotonic effect, ε i
j j′ is a small positive value proportional to the state

configuration distance in Xi under two indices j and j′ in πY = {X1,X2, . . . ,Xn}.
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The term ε i
j j′ denotes the strength of the monotonic effect introduced by the difference

between two parent state configurations. For a simple example1, a company’s customer

loss rate is affected by four binary risk factors. The presence of any one risk factor

increases the probability of the loss of a customer. Thus, all the dependent relation-

ships encode positive monotonic effects. According to the statistic results, compared

with the configuration that only one risk factor is presented, the customer loss rate is

much higher in the configuration when four risk factors are present. Such difference is

proportional to the difference between two state configurations, and can be modelled

by ε i
j j′ .

To calculate ε i
j j′ , we need to introduce a function called ind2sub( j, i), which con-

verts the variable Y ’s parent configuration index j into the associated sub-index of

its i-th parent. If Y only has one parent, the sub-index is same as the overall index,

ind2sub( j, i) = j. Here we have:

ε
i
j j′ =−

(
ind2sub( j, i)− ind2sub( j′, i)

λ |Xi|

)
(4.3)

Here λ > 1 is the trade-off parameter that controls the effect of the confidence

introduced by the state configuration gap. Note, in this thesis and many real-world

BN applications, lower variable state index corresponds to higher verbal value (more

positive meaning), e.g., the true and false states of a event correspond to state index 1

and 2 respectively.

As shown in equation (4.2), the type (≥ or ≤) of the exterior constraint is decided

by the value of the margin. The margin is equal to zero (M = 0) only in the situation

where the influences of different monotonic effects are intermediate in the shared child

node. Thus, there is no associated exterior constraints.

Next, we present a simple example of our model: we assume the target variable Y

is binary, and it has two binary parents X1 and X2 with ‘T’ and ‘F’ states. Thus we have

four state configurations of πY = {X1,X2}:
πY = 1 : X1 = x1T , X2 = x2T

πY = 2 : X1 = x1T , X2 = x2F

πY = 3 : X1 = x1F , X2 = x2T

1https://www.eecs.qmul.ac.uk/norman/papers/the-problems-with-big-data.pdf
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πY = 4 : X1 = x1F , X2 = x2F

Assume the first monotonic effect is positive X1
+→ Y , and the second monotonic

effect is negative X2
−→ Y . Therefore, we have 6 combinations of two indices in |πY |.

These combinations and their generated exterior constraints are listed as below:

cd f (p(Y |πY = 1))− cd f (p(Y |πY = 4))≥ w1 · ε1
14−w2 · ε2

14 =
w1
2λ
− w2

2λ

cd f (p(Y |πY = 1))− cd f (p(Y |πY = 3))≥ w1 · ε1
13−w2 · ε2

13 =
w1
2λ

cd f (p(Y |πY = 1))− cd f (p(Y |πY = 2))≤ w1 · ε1
12−w2 · ε2

12 =−w2
2λ

cd f (p(Y |πY = 2))− cd f (p(Y |πY = 4))≥ w1 · ε1
24−w2 · ε2

24 =
w1
2λ

cd f (p(Y |πY = 2))− cd f (p(Y |πY = 3))≥ w1 · ε1
23−w2 · ε2

23 =
w1
2λ

+ w2
2λ

cd f (p(Y |πY = 3))− cd f (p(Y |πY = 4))≤ w1 · ε1
34−w2 · ε2

34 =−w2
2λ

In addition, there is no subjective judgments on their weights, i.e. w1 = w2 = 1.

Thus, the margin of the first equation above equals to zero ( w1
2λ
− w2

2λ
= 0), and this

equation is discarded. Also, because Y is binary, this means Y = {yT ,yF}. Therefore,

each of above equation could be expanded into two exterior constraints, for example,

the fifth equation above could be expanded as:

p(yT |x1T ,x2F)− p(yT |x1F ,x2T )≥ 1
λ

p(yT |x1T ,x2F)+ p(yF |x1T ,x2F)− p(yT |x1F ,x2T )− p(yF |x1F ,x2T ) = 0

Note the equality only happens when y reaches the full range (the biggest) value

in cd f (p(y)).

As we know, the size of total parent configurations |πY | = ∏
n
i=1 |Xi| increases ex-

ponentially with an increase of parent nodes, thus we have many combinations of two

indices in |πY | and large computational complexity. A detailed computational analysis

is provided in the next section.

4.4 The MPL-EC Model
In this section, we present the extended MPL-C model (Multinomial Parameter Learn-

ing with Exterior Constraints, MPL-EC) to encode the constraints in equation (4.2).

4.4.1 Model Construction

For any monotonic effect, we need to introduce a set of shared children nodes to model

the introduced constraints C1,C2, . . . ,Cr (see Figure 4.1). The size of the constraints set

is equal to the number of states (ranges from 1 to r) in variable Y . In order to simplify
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the notation, we use θ jk and θ j′k (k = 1 to r) to represent parameters in Y under two

different state configurations of Xi ( j and j′). Therefore, for a single positive monotonic

effect Xi
+→ Y , we have the following arithmetic constraints encoded in the MPL-EC

model to constrain the parameters under two state configurations of Xi:



C1 : θ j1−θ j′1 ≥ wi · cli · ε i
j j′

C2 : θ j1 +θ j2−θ j′1−θ j′2 ≥ wi · cli · ε i
j j′

C3 : θ j1 +θ j2 +θ j3−θ j′1−θ j′2−θ j′3 ≥ wi · cli · ε i
j j′

...

Cr : ∑
r
k=1(θ jk−θ j′k) = 0

(4.4)

In the last exterior constraint equation Cr, two sides of the relative relationship are

equal to each other. As we can see there are an additional (1+ n)n edges when we

introduce n constraint nodes. To reduce the model complexity it must be replaced by

an equivalent model whose structure has a restricted number of parents.

Previous work has proposed a binary factorization algorithm Neil et al. (2012)

to improve the efficiency of the DDJT algorithm. This idea can also be applied here

to produce an alternative model of the straightforward MPL-EC. The new model is

called binary summation model, which introduces an additional 2(n− 1) auxiliary

nodes (S1,S1′, ...,Sr−1,Sr−1′) that only encode the simple sum arithmetic equations to

model the summations of its parents. This model has the same number of edges as the

straightforward model, but the maximal number of parents is fixed as two in this model.

This avoids the parent state combination explosion problem. The detail of its structure

can be found in Figure 4.1 (b).

After inference in MPL-EC models (Figure 4.1 (b)) with the observed data statis-

tics, we can get the updated parameters θ jk and θ j′k. However, because there are multi-

ple parent configurations of j and j′, we have more than one estimation of θ jk and θ j′k.

Thus, weighted average is applied to all estimations of θ jk/θ j′k with greater weight

given to those estimations produced by greater constraint margin |M j j′|.
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C 2

C 3

Cr

C 1

(a) The  straightforward model of introducing exterior constraints 

C 2

C 3

Cr

C 1S 1

S 2

S r-1

S 1'

S 2'

S r-1'

(b) The binary summation model of introducing exterior constraints

θ j1 θ j2 θ j3 θ jr θ j1' θ j2' θ j3' θ jr'

θ j1 θ j2 θ j3 θ jr θ j1' θ j2' θ j3' θ jr'

Figure 4.1: The straightforward MPL-EC model and its alternative binary summation model.
Due to the space limitation, the MPL-EC model presented here only display the
part for modeling introduced constraints, the left part for modeling multinomial
parameter learning is not displayed, which is the same as MPL-C in Chapter 3.

4.4.2 Computational Complexity Analysis

The bounded number of parents ensures the MPL-EC model has the same treewidth

as the MPL-C model. Therefore, the bottleneck in terms of efficiency of the MPL-EC

learning lies in the total number of exterior constraints generated from the monotonic

effects. Assume there are n nodes in a BN (each node has r states), and n−1 positive

monotonic effects. The total number of generated exterior constraints e satisfies:

1
2
(r3− r2)(n−1) =

r!
2!(r−2)!

r(N−1)≤ e≤ r(n−1)!
2!(r(n−1)−2)!

r =
1
2
(r(n

2−2n+2)− rn)

(4.5)
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The total number of exterior constraints e equals to the product of total number

of parent configurations and the number of child node states. The lower bound and

upper bound of e correspond to two network structures in Figure 4.2 (a) and 4.2 (b)

respectively.

XN

X3

X2

X1

+

+

+

(a) The lower bound structure representation

. . . XN

X1

X2 X3

+ + +

(b) The upper bound structure representation

Figure 4.2: BN representations for generating lower and upper bound number of constraints.

As we can see from the equation (4.5), the increase of n would greatly increase the

generated exterior constraints, and make the MPL-EC learning problem hard to solve.

We will demonstrate this empirically in the experiments.

4.4.3 An Illustrative Example of MPL-EC

In this subsection, we use another simple example to demonstrate the exterior con-

straints and its generated MPL-EC model. This example encodes the simplest single

positive causal connection: X +→ Y , where two nodes involved are both binary with

‘T’ and ‘F’ states. Therefore, we have two parameter columns under two parent state

instantiations to estimate in Y , which are p(Y |xT ) and p(Y |xF). Its MPL-EC model is

shown in Figure 4.3.

The detail of the exterior constraints encoded in the constraint nodes of MPL-EC

is:
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Figure 4.3: The two-node BN and its training data in the simple example: (a) The DAG and
its associated NPTs. (b) The 6 data records for the two variables in the BN. (c)
The MPL-EC model for estimating the parameters in Y . The constraint nodes are
modelled as binary (true/false) nodes with expressions that specify the constraint
relationships between its parents. For example, the expression statement for C1 is:
i f (p(yT |xT )− p(yT |xF)≥ w · cl · ε, true, false).
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S1 : p(yT |xT )+ p(yF |xT )

S1′ : p(yT |xF)+ p(yF |xF)

C1 : p(yT |xT )− p(yT |xF)≥ w · cl · ε

C2 : S1−S1′ ≥ w · cl · ε

(4.6)

where cl = 1, ε = 1
2λ

. according to above definition, and w represents the subjec-

tive confidence whose value can be chosen empirically from the domain knowledge.

Based on the statistics on the dataset (Figure 4.3 (b)) and previous definition, we

have: NT = 5 (NT F = 2, NT T = 3) under the condition of X = xT , and NF = 1 (NFF = 0,

NFT = 1) in the state initiation of X = xF . Therefore, the MLE of Y are p(yT |xT ) =

0.6 and p(yT |xF) = 1. As we can see, the estimation of p(yT |xF) is far away from

the ground truth (0.6 and 0.4) due to the scarce data observations under the X = xF

condition.

With the above data observations, we now can set the evidence for certain nodes

including constraint nodes (all are set as ‘true’ observations), number of trials, total

numbers, and the summation of all the estimated parameters. Based on this evidence,

the inference in the MPL-EC is to compute the discretized posterior marginals of each

of the unknown nodes yF/T (these are the nodes without evidence) via the DDJT al-

gorithm described in Algorithm 3.1. This algorithm alternates between two steps: 1)

performing dynamic discretization, which searches and splits the regions with the high-

est relative entropy error determined by a bounded K-L divergence with the current

approximated estimates of the marginals; 2) performing junction tree inference, which

updates the posterior of the marginals. At convergence, the mean value of yF/T will be

assigned as the final corresponding NPT cell values. After inference with the model in

Figure 4.3 (c), we have p(yT |xT ) = 0.67 and p(yT |xF) = 0.50, which are more reason-

able than the MLE results.

4.5 Examples of Monotonic Effects in Some Well-

known BNs
Incorporating exterior constraints encoded in monotonic effects could help the BN pa-

rameter learning. Here, given the true NPTs in Asia, Weather, Cancer, Alarm, Insur-



4.5. Examples of Monotonic Effects in Some Well-known BNs 70

ance and Hailfinder BNs, we investigate the monotonic effect for each edge of these

BNs using Algorithm 4.1. The descriptions of these BNs are listed in Table 3.4.

Algorithm 4.1 describes the method of eliciting positive/negative monotonic ef-

fect labels from the BN with known NPTs. According to the definition 4.2.1, a posi-

tive/negative monotonic effect only shows the monotonic influence between two nodes

connect by the dependent edge. For the parents not connected by the edge in DAG,

their influences on the child will be marginalized. For example, p(Xi = k|Xi′ = j) and

p(Xi = k|Xi′ = j′) (Line 14 and 15, Algorithm 4.1) are marginalized conditional prob-

ability of p(Xi|Xi′), where the influences of variables in set πi \{Xi′} are marginalized.

After marginalizing out the influences of unrelated variables, the final monotonic effect

label for each edge is decided by the definition. In Algorithm 4.1, the numel function

(Line 33 and 36) is used to count the total number of elements in a set.

Table 4.1 summarises the elicited monotonic effects for the 6 standard BNs. As

we can see, monotonic effects exist in all of them. Specifically, all the edges in Asia,

Weather and Cancer BNs encode either positive or negative monotonic effects. In

the Alarm, Insurance and Haifinder BNs, the positive/negative monotonic effects are

partially existing, specifically there are 52.2%, 46.2% and 47.0% edges encode such

monotonic effects in each BN respectively. The details are shown in Figures 4.4–4.7.

Table 4.1: Monotonic effects in Asia, Weather, Cancer, Alarm, Insurance and Hailfinder BNs

Name Nodes Arcs +→ −→ ?→
Asia 8 8 8 0 0
Weather 4 4 3 1 0
Cancer 5 5 5 0 0
Alarm 37 46 17 7 22
Insurance 27 52 13 11 28
Hailfinder 56 66 26 5 35

+→, −→ and ?→ indicate positive, negative and ambiguous monotonic effect respectively.
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INPUT : Bayesian network {V,G}
OUTPUT: Monotonic effect labels Mii′

1 for each node i = 1 to n do
2 if πi = /0 then
3 root node;
4 else
5 for node i′ = i+1 to n do
6 if Xi′ → Xi /∈ G then
7 no such edge;
8 else
9 tmplabel = /0;

10 for each parent configuration j = 1 to |πi| in i′ do
11 for j′ = j+1 to |πi| do
12 cdf1 = 0, cdf2 = 0;
13 for each state k = 1 to ri−1 do
14 cdf1 = cdf1 + p(Xi = k|Xi′ = j), ;
15 cdf2 = cdf2 + p(Xi = k|Xi′ = j′);
16 if cdf1 ≥ cdf2 then
17 tmpindex(k) = 1;
18 else
19 tmpindex(k) = -1;
20 end
21 end
22 if sum(tmpindex) = ri−1 then
23 tmplabel = {tmplabel,1} ;
24 else
25 if sum(tmplabel) =−(ri−1) then
26 tmplabel = {tmplabel,−1};
27 else
28 tmplabel = {tmplabel,0};
29 end
30 end
31 end
32 end
33 if sum(tmplabel) = numel(tmplabel) then
34 Xi′

+→ Xi;
35 else
36 if sum(tmplabel)=−numel(tmplabel) then
37 Xi′

−→ Xi;
38 else
39 Xi′

?→ Xi;
40 end
41 end
42 end
43 end
44 end
45 end

46 return Mii′ =
{

Xi′
+,−,?→ Xi | i, i′ = 1,2, ...,n

}
;

Algorithm 4.1: The algorithm of eliciting monotonic effects from BNs
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Figure 4.4: The monotonic effect labels in the Asia BN (8 positive monotonic effects and 0
negative monotonic effect).
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Figure 4.5: The monotonic effect labels in the Weather BN (3 positive monotonic effects and
1 negative monotonic effect).
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Figure 4.6: The monotonic effect labels in the Cancer BN (5 positive monotonic effects and 0
negative monotonic effect).
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Figure 4.7: The monotonic effect labels in the Alarm BN (17 positive monotonic effects and 7
negative monotonic effects).
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Figure 4.8: The monotonic effect labels in the Insurance BN (13 positive monotonic effects
and 11 negative monotonic effects).
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Figure 4.9: The monotonic effect labels in the Hailfinder BN (26 positive monotonic effects
and 5 negative monotonic effects).

4.6 Experiments
In this section, we continue to use the 6 standard BNs (Table 3.4) to test the parameter

learning performance with exterior constraints. The structure and monotonic effects of

these BNs are analysed in Section 4.5. Based on the same experiment setting in Section

3.5, we introduce AUC measurement and consider the following experimental tasks:

• Investigate the effectiveness of the introduced margin in the generic synergy, es-

pecially the local term whose value is proportional to the state configuration gap

in the synergy.

• Compare the MPL-EC with the state-of-the-art CO algorithm and conventional

parameter learning algorithms. Especially, assume the ground truth is unknown,

and measure the performance via calculating AUC values (2.23) for different

classification tasks.
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• Investigate the effect of synthetic wrongly elicited constraints on the final learn-

ing results.

• Empirically analyse the computational complexity of the MPL-EC method.

In the following experiments, we will evaluate our MPL-EC method in each of these

cases.

4.6.1 The Performance of Introduced Margin

In the first set of experiments, we use the 6 standard BNs to show if the introduced mar-

gin in the generic synergy will affect the final learning results. By doing so, we com-

pare the performance of the original MPL-EC and MPL-EC (without margin). Each

experiment is repeated 10 times under two data sizes: 10 samples and 50 samples. The

distance between learnt BNs and ground truth are measured by average K-L divergence.

Thus, lower divergence indicates better learning performance.

In parameter learning, all the monotonic effects and their synergies (either homo-

geneous or heterogeneous) are converted into exterior constraints by equation (4.2).

The generated margin contains three terms: global weight, monotonic effect label and

local term. They are set as follows:

• Because the subjective confidence of monotonic effects are hard to acquire in

these 6 BNs, we do not consider the influence of these. Thus, the global weight

term wi = 1.

• The monotonic effect label term cl = {1,−1} has already been elicited in Figures

4.5–4.9, and can be directly used here.

• The local term ε i
j j′ that describes the confidence of the inequality introduced by

state configuration gap in the synergy is calculated by equation (4.3).

The results are presented in Figure 4.10, the height of bars show the average K-L

divergence between learnt BNs and true BNs. As we can see, the MPL-EC (without

margin) shows worse learning results in both of the data sample size settings. There-

fore, the estimates of MPL-EC(without margin) are far from the true values, (average

K-L divergence of 0.71 and 0.54 for sample sizes 10 and 50 respectively). However,

after introducing the margin terms in parameter learning in the MPL-EC model, the
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Figure 4.10: The parameter learning performance of MPL-EC (black bars) and MPL-EC with-
out introduced synergy margin (white bars).

MPL-EC reduces the average K-L divergence between the estimated values and true

values to 0.66 and 0.47 respectively. These results demonstrate the benefit of introduc-

ing margin terms in parameter learning, and show the correctness of our analysis on

local weight terms. Next, we will compare the performance of all parameter learning

algorithms in different BN parameter learning problems.

4.6.2 The Overall Performance

We continue to use the same experiment setting but considering two measurement

methods for the learning results: (i) the average K-L divergence (2.21) over NPT

columns in each BN, and (ii) the average AUC value (2.23) of the classification task in

each BN.

Table 4.2 shows the average K-L divergence over NPT columns for different learn-

ing methods in each BN. The lowest average K-L divergence (best result) in each setting

is presented in bold text format. Statistically significant improvements of the best result

over competitors are indicated with asterisks * (p≤ 0.05).
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Table 4.2: Results (average K-L divergence) for MLE, MAP, CO and MPL-EC in 6 standard
BN parameter learning problems.

Name Data MLE MAP CO MPL-EC

Weather
10 0.57±0.41* 0.27±0.06* 0.14±0.04 0.18±0.06
50 0.05±0.03 0.08±0.02* 0.04±0.02 0.05±0.01

Cancer
10 1.65±0.37* 0.11±0.04 0.12±0.06 0.10±0.04
50 0.50±0.23* 0.04±0.02 0.04±0.03 0.10±0.03*

Asia
10 1.93±0.73* 0.62±0.07* 0.84±0.30* 0.50±0.08
50 0.86±0.30* 0.41±0.05* 0.38±0.18 0.31±0.06

Alarm
10 3.94±0.19* 0.94±0.02* 1.59±0.08* 0.85±0.02
50 2.80±0.19* 0.75±0.02* 1.20±0.09* 0.66±0.03

Insurance
10 4.06±0.11* 1.80±0.01* 2.40±0.05* 1.65±0.01
50 2.52±0.09* 1.40±0.02* 1.76±0.04* 1.20±0.03

Hailfinder
10 4.53±0.03* 0.77±0.00* 1.32±0.03* 0.70±0.00
50 3.40±0.06* 0.57±0.01* 0.85±0.03* 0.50±0.01

Table 4.2 summarises the results, where our MPL-EC outperforms the conven-

tional MLE algorithm in all settings. Compared with the state-of-the-art CO algorithm,

MPL-EC also improves performance on 9 out of 12 experiments, with an average mar-

gin of 36.4% (the average reduction of K-L divergence). There are three insignifi-

cant exceptions in the Weather and Cancer BNs where the CO algorithm achieves a

slightly lower average K-L divergence compared with MPL-EC. These exceptions may

be caused by the bias parameter prior in MPL-EC in these BNs. In conclusion, the over-

all good results of MPL-EC show the potential benefit of using MPL-EC in parameter

learning with scarce data and provided monotonic effect labels.

AUC measurement Next, we use estimated BNs and 500 sampled testing data to

predict the state of a specific node given observing all other nodes in the BN. That is to

say, we now have 12 BN classifiers, 6 of them are learnt from 10 samples and 6 of them

are learnt from 50 samples. In each experiment repeat, one node is randomly selected

as the query node, and all other nodes are observed, standard junction tree algorithm is

performed to inference the final predictions.

Table 4.3 summarises the results, with higher AUC values indicating better classi-

fication performance. The AUC value around 0.5 indicates the classifier has the same

performance as completely random guessing. As we can see, the results still show

our MPL-EC outperforms the state-of-the-art CO algorithm (improvement on 10 out of

12 experiments, with an average increased AUC margin of 24.6%). However, in the
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Table 4.3: Results (AUC) for MLE, MAP, CO and MPL-EC in 6 standard BN parameter learn-
ing problems.

Name Data MLE MAP CO MPL-EC

Weather
10 0.80±0.08* 0.90±0.04 0.90±0.04 0.91±0.03
50 0.90±0.03 0.90±0.03 0.91±0.03 0.90±0.03

Cancer
10 0.46±0.13* 0.70±0.17 0.66±0.16 0.73±0.15
50 0.70±0.13 0.80±0.15 0.80±0.15 0.79±0.14

Asia
10 0.84±0.14 0.94±0.08 0.82±0.15 0.94±0.09
50 0.83±0.19 0.84±0.19 0.79±0.20 0.84±0.18

Alarm
10 0.51±0.02* 0.83±0.26 0.51±0.06* 0.92±0.08
50 0.59±0.07* 0.90±0.12 0.63±0.10* 0.91±0.09

Insurance
10 0.50±0.00* 0.74±0.12 0.51±0.02* 0.79±0.13
50 0.55±0.04* 0.82±0.13 0.62±0.08* 0.83±0.12

Hailfinder
10 0.50±0.00* 0.72±0.12 0.50±0.00* 0.73±0.13
50 0.50±0.00* 0.89±0.13 0.51±0.02* 0.89±0.13

AUC measurement, the MAP also gets good results. The average absolute difference

between MAP and MPL-EC results is just 0.02, which suggest these two approaches

have similar classification accuracy.

In a real-world classification task, the true BN is unknown and the specific query

node is provided. In this situation, we cannot use K-L divergence measurement. And

the AUC measurement is the best choice to measure the learning algorithm that returns

the best classification performance.

Running time analysis As discussed in Section 4.4, the computational complexity is

mainly decided by the total number of introduce exterior constraints. Here, we list the

average computational time of each learning task for different learning algorithms, the

details are presented in Table 4.4.

The results are shown in Table 4.4, from which we can make the following ob-

servations. (i) MLE and MAP are very efficient compared with CO and MPL-EC. (ii)

For learning algorithms with constraints, the computational time increases with the BN

sizes. This finding is consist with the theoretical analysis in Section 4.4. (iii) The dif-

ferent computational time between CO and MPL-EC is caused by different parameter

estimation methods. The gradient descent method used in CO is more efficient than the

DDJT inference method in MPL-EC. Specifically, according to the result, the average

running time of CO is 103.2 times faster than MPL-EC.
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Table 4.4: Running time (seconds) for MLE, MAP, CO and MPL-EC in 6 standard BN param-
eter learning problems.

Name Data MLE MAP CO MPL-EC

Weather
10 0.0 0.0 1.3 52.0
50 0.0 0.0 2.4 29.3

Cancer
10 0.0 0.0 1.4 74.9
50 0.0 0.0 2.6 99.6

Asia
10 0.0 0.0 2.0 178.8
50 0.0 0.0 4.0 157.7

Alarm
10 0.1 0.0 85.9 23791.3
50 0.4 0.0 205.2 23355.0

Insurance
10 0.0 0.0 210.9 39019.7
50 0.0 0.0 408.6 30426.6

Hailfinder
10 0.0 0.0 891.4 150786.6
50 0.0 0.0 2235.3 154008.0

4.6.3 The Influence of Error Labels

As shown in above experiments, incorporating exterior constraints generated from

monotonic effects can increase the learning performance. However, when such mono-

tonic effect labels are wrongly elicited (that is usually inevitable in real-world applica-

tions), their influences on the final learning performance should be further investigated.

To this end, we generate error labels for previously elicited monotonic effects. Specif-

ically, in each BN the elicited positive effect labels are converted into negative labels,

and elicited negative effect labels are converted into positive labels. The final results

are measured by average K-L divergence.

As we can see from the results (Table 4.5), the performance of CO and MPL-EC

are both worse than previous results that learnt with correct monotonic effect labels (Ta-

ble 4.2). For example, the average K-L divergence of MPL-EC for each BN increased

0.34 compared with the previous results. Now, the MAP achieves the best learning

performance, it beats other learning algorithms almost in all cases. Specifically, it

outperforms the MPL-EC with an average margin of 28.2%. These results show that

wrongly elicited monotonic effect labels and their generated exterior constraints could

harm the learning performance of MPL-EC. To this end, in real-world applications, the

elicited labels should be carefully checked before use.
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Table 4.5: Results for MLE, MAP, CO and MPL-EC with error monotonic effect labels in 6
standard BN parameter learning problems.

Name Data MLE MAP CO MPL-EC

Weather
10 0.57±0.41* 0.27±0.06 0.52±0.06* 0.80±0.09*
50 0.05±0.03 0.08±0.02 0.39±0.03* 0.83±0.29*

Cancer
10 1.65±0.37* 0.11±0.04 0.54±0.45* 0.35±0.04*
50 0.50±0.23* 0.04±0.02 0.30±0.25* 0.43±0.16*

Asia
10 1.93±0.73* 0.62±0.07 0.81±0.08* 0.97±0.05*
50 0.86±0.30* 0.41±0.05 0.72±0.06* 0.86±0.10*

Alarm
10 3.94±0.19* 0.94±0.02 2.72±0.12 1.04±0.02*
50 2.80±0.19* 0.75±0.02 2.33±0.06* 0.90±0.02*

Insurance
10 4.06±0.11* 1.79±0.01 2.46±0.04* 1.80±0.01*
50 2.52±0.09* 1.40±0.02 1.85±0.05* 1.39±0.03

Hailfinder
10 4.53±0.03* 0.77±0.00 1.37±0.04* 0.81±0.00*
50 3.40±0.06* 0.57±0.01 0.94±0.02* 0.65±0.01*

4.7 A Case Study
In this section, we continue to use the software defects prediction BN discussed in

Chapter 3 to test its learning performance now with exterior constraints. Compared to

the experiment settings in Chapter 3, the difference here is that the experts are only

required to identify the monotonic effect labels in this BN. Thus, the elicitation efforts

and expenses are greatly reduced in this setting.

Figure 4.11 represents the structure of the BN, the signs on the edges indicate

whether the associate monotonic effects are positive or negative. These monotonic

effects are elicited from real expert judgments, e.g., as design process quality (DQ)

goes from ‘low’ to ‘high’, the defects inserted (DI) go from ‘high’ to ‘low’, this encodes

a negative monotonic effect.

Figure 4.12 shows the learning results. As we can see, the MPL-EC outperforms

all other algorithms in every scenario. Compared with the state-of-art CO algorithm,

our MPL-EC significantly improves the parameter learning performance, i.e., the MPL-

EC outperforms the CO in all training sample sizes, with an overall 47.1% K-L diver-

gence reduction.

4.8 Summary
As discussed in previous chapters, when data is scarce, purely data driven BN learning

is inaccurate. Whereas Chapter 3 introduced the idea of interior constraints and the
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Figure 4.11: The monotonic effect labels in the software defects prediction BN (6 positive
monotonic effects and 2 negative monotonic effects).
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Figure 4.12: Learning results of MLE, MAP, CO and MPL-EC for software defects prediction
BN with different training data sample sizes.

MPL-C model to address this problem, in this chapter the MPL-EC method presented

tackles this problem by leveraging a set of exterior constraints elicited from experts.

This method is an auxiliary BN, which encodes all the information (i.e., data obser-

vations, parameters we wish to learn, and exterior constraints encoded in monotonic

effects) in parameter learning. By using the generic synergy model and converting the

parameter learning problem into a Bayesian inference problem, we are able to perform

robust and effective parameter learning even with heterogeneous monotonic effects and
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zero data observations in some cases. This MPL-EC method applies with categorical

variables, and is robust to very limited training data sizes.

Experiments with 6 standard BNs show that MPL-EC consistently outperforms

the MLE and MAP algorithms and former constrained parameter learning algorithm –

CO with respect to the K-L divergence measurement. With randomly selected query

variables, MPL-EC and MAP achieve similar AUC results, and greatly outperform the

results of MLE and CO. Moreover, the time complexity analysis suggests that large

number of monotonic effects would introduce great number of exterior constraints, and

require more computational cost in both CO and MPL-EC. The experimental results

show that MPL-EC is very slow compared to all other algorithms. Finally, experi-

ments with a real-world software defects prediction BN show the practical value of this

method.

So far we have assumed expert judgment is available to enhance parameter learn-

ing. However, if there is no expert judgment in the problem domain, both MPL-C and

MPL-EC would fail to learn a good model with limited data. Thus, we need to investi-

gate other sources of available information to help the parameter learning. We address

this in the following two chapters.



Chapter 5

Parameter Transfer Learning

When no expert judgments are available, learning BNs from scarce data is a major

challenge in real-world applications. Transfer learning techniques attempt to address

this by leveraging data from different, but related problems. The idea behind transfer

learning is to improve the accuracy of a target BN by making use of one or more related

source BNs. For example, the target BN may be a model for diagnosis of a particular

disease based on limited data in one district or country. If there are other (source) BNs

with similar variables and objectives but from a different district or country, then it

make senses to exploit such models to improve the accuracy of the target BN. Transfer

learning does this by providing methods for both determining suitability of the data in

the source and its transfer to the target.

In this chapter we introduce the first two-step general-purpose BN parameter trans-

fer learning framework to reason about both network and fragment relatedness. Our

framework addresses (i) how to find the most relevant source network and network

fragments to transfer, and (ii) how to fuse source and target parameters in a robust way.

In addition to improving target task performance, explicit reasoning allows us to diag-

nose network and sub-graph relatedness across BNs, even if latent variables are present,

or if their state space is heterogeneous. This is important in some applications where

relatedness itself is an output of interest. Experimental results demonstrate the superi-

ority of our framework at limited data and various source relevance levels compared to

single task learning and other state-of-the-art parameter transfer methods.
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5.1 Limitations
The obvious practical limitation of transfer learning – which limits the applicability of

all work in this area including this work – is that the relatedness is never truly known.

The necessary assumptions to overcome this introduce inevitable bias into the results.

In this thesis we assume there is at least one source domain or a subset of a domain that

is sampled from similar distributions as the target, and that this can be transferred to

help learn the target BN parameters. However, determining relatedness in a data driven

way means there is an inevitable confirmation bias in the sense that the source BNs

most likely to be selected are those that most closely match the current target estimate.

This limits the extent that the source can ‘change’ the target when it is more ‘correct’

than the current noisy target estimates.

If the chosen source and the target are not sampled from similar distributions,

directly applying parameters learned in another domain may be impossible or result

in negative transfer: the underlying tasks may have major quantitative or qualitative

differences (e.g., care procedures vary across hospitals). This limits the effectiveness

of existing methods such as that in (Luis et al., 2010) – referred to as CPTAgg in

this thesis. Our framework will address this by robustly measuring relatedness in a

piecewise way. Before giving the detail of our framework, we firstly introduce the

formal definitions used in parameter transfer learning.

5.2 Formal Definition of Parameter Transfer Learning
In Chapter 2, we have defined the BN parameter learning setting, which has data D

combined with V and G to form the problem domain D = {V,G,D}. Within a domain

D , the goal of parameter learning is to determine parameters for all p(Xi|πi). Given

data D, the estimation of NPT parameters θ is conventionally solved by the MLE,

θ̂ = argmaxθ log p(D|θ). We denote this setting Single Task Learning (STL).

In parameter transfer learning, we have one target domain D t , and a set of sources

{D s}S
s=1, S≥ 1. The target domain and each source domain have training data,

Dt =
{

dt
1,d

t
2, . . . ,d

t
N
}

and Ds =
{

ds
1,d

s
2, . . . ,d

s
N
}

.

In most cases the target domain is relatively scarce: 0 < Nt � Ns. Following the

definition of transfer learning in (Pan and Yang, 2010), we define the BN parameter

transfer learning:
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Definition 5.2.1. BN parameter transfer learning Given a set of source domains

{D s} and a target domain D t , BN parameter transfer learning aims to improve the

parameter learning accuracy of the BN in D t using the knowledge in {D s}.

This task corresponds to the problem of estimating the target domain NPTs θ t

given all the available domains:

θ̂
t = argmax

θ t
p(θ t |D t ,{D s}) (5.1)

If the networks correspond (V t = V s,Gt = Gs) and relatedness is assumed, then

this is trivially MLE with count-aggregation. But in general D s 6= D t due to different

training data sets with different statistics and thus varying relatedness; and potentially

heterogeneous state spaces V . We consider the case where dimensions/variables in each

domain do not correspond, i.e. Vs 6= Vt . They may be disjoint Vs∩Vt = /0, or partially

overlap Vs∩Vt 6= /0. However any correspondence between them is not assumed given

(variables names are not used). Then this parameter transfer learning problem is much

harder.

In order to learn a target domain D t leveraging sources {D s} with piecewise re-

latedness1, or heterogeneity V t 6=V s and Gt 6= Gs, we transfer at the level of BN frag-

ments.

Definition 5.2.2. BN fragments A BN of domain D can be divided into a set of sub-

networks (denoted fragments) D = {D i} by considering the graph G. Each fragment

D i = {Vi,Gi,Di} is a single root node or a node with its direct parents in the original

BN, and encodes a single NPT from the original BN. The number of fragments is the

number of variables in the original BN.

1Relatedness is typically computed at domain or instance level granularity. In contrast, here we
consider that relevance may vary within-domain – such that different subsets of features/variables may
be relevant to different source domains.
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5.3 A Two-step General-Purpose Parameter Transfer

Learning Framework
To realize flexible BN parameter transfer, the target domain and source domains are

all broken into fragments D t = {D t
j}, {D s} = {{D s

k}}. Assuming for now no la-

tent variables in the target domain, then each fragment j can be learned independently

θ̂ t
j = argmaxθ t

j
p(θ t

j|D t
j,{{D s

k}}). To leverage the bag of source domain fragments

{{D s
k}} in learning each θ t

j , we consider each source fragment D s
k as potentially rele-

vant. Then we propose a two-step general-purpose parameter transfer learning frame-

work. Specifically, in the first step, for each target fragment, every source fragment

is evaluated for relatedness and the best fragment mapping is chosen. Once the best

source fragment is chosen for each target, a domain/network-level relatedness prior is

re-estimated by summing the relatedness of its fragments to the target. We refer to this

step as the fitness step. In the second step, the knowledge from the best source fragment

for each target is then fused according to its estimated relatedness. We refer to this step

as the fusion step. To realize this strategy, four issues must be addressed:

(1) which source fragments are transferable?

(2) how to deal with variable name mapping?

(3) how to quantify the relatedness of each transferrable source fragment in order to

find the best one?

(4) how to fuse the chosen source fragment?

We next address these issues in the context of a deeper examination of the two steps.

5.3.1 The Fitness Step

The key processes of the fitness step are described in Figure 5.1. Next, we will discuss

their details in turn.

Fragment Compatibility For a target fragment j and putative source fragment k

with discrete and finite state space2, we say they are compatible if they have the same

2For fragments with continuous state spaces, we say they are compatible if they have the same struc-
ture.
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For each source fragment

Is it compatible 
with the target? 

Generate all possible mappings 
between target and source fragments

Measure the relevance 
of two fragments

Discard

Figure 5.1: The flowchart of the fitness step of the parameter transfer learning framework.

structure and state space. That is, the same number of states and parents’ states3, so

compatible(D t
j,D

s
k) =

1 i f Gt
j = Gs

k && dims(θ t
j) = dims(θ s

k)

0 otherwise
(5.2)

This definition of compatibility could be further relaxed quite straightforwardly (e.g.,

allowing target states to aggregate multiple source states) at the expense of additional

computational cost. For example, if the target variable contains two states (true and

false), and one source variable contains three states (low, medium and high), we can try

multiple aggregations of the source states to generate three mappings to the target:

(i) mapping low− true and {medium,high}− f alse,

(ii) mapping medium− true and {low,high}− f alse, and

3This assumes that the number of parameters is proportional to the number of rows in the node
probability table, and no parametric dimension reduction is used.
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(iii) mapping high− true and {low,medium}− f alse.

However, while relaxing the condition of compatibility would improve the range

of situations where transfer can be exploited, it would also increase the cost of the

algorithm by increasing the number of allowed permutations, as well as decreasing

robustness to negative transfer (by potentially allowing more ‘false positive’ transfers

from irrelevant sources). This is an example of pervasive trade-off between maximum

exploitable transfer and robustness to negative transfer (Torrey and Shavlik, 2009).

Fragment Permutation Mapping For two fragments j and k determined to be com-

patible, we still do not know the mapping between variable names. For example, if j

has parents [a,b] and k has parents [d,c], the correspondence could be a− d,b− c or

b− d,a− c. The function permutations(Gt
j,G

s
k) returns an exhaustive list of possible

mappings Pm that map states of k to states of j.

Here we provide an illustrative example of fragment-based parameter transfer: the

target is a three node BN shown in the left part of Figure 5.2 (a), and the source is a

eight node BN shown in the right part of Figure 5.2 (a). In Figure 5.2 (b), there are two

source fragments ({T s,Ls,Es} and {Es,Bs,Ss}) which are compatible with the target

fragment. Thus, there are four permutations of compatible source fragments (assuming

binary parent nodes). All four of these options are then evaluated for fitness, and the

best fragment and permutation is picked (shown with dashed triangle in Figure 5.2 (b)).

Relevance Measurement To measure the relevance/relatedness between compatible

target and source fragments D t
j and D s

k, we introduce a function f itness(D t
j,D

s
k, p(Hs)),

where p(Hs) is a domain-level relatedness prior4. In this section, for notational sim-

plicity we will use t and s to represent the j-th target and k-th source domain fragments

under consideration.

A systematic and robust way to compare source and target fragments for rele-

vance is to compute the probability that the source and target data share a common

NPT (hypothesis H1) versus having distinct NPTs (hypothesis H0). Consistent with the

simplification of fragment notation, here Hs
1 only refers to the dependent hypothesis

between D t
j and D s

k. The Bayes model comparison for hypotheses H ∈ {Hs
1,H

s
0} is:

4We consider a discrete random variable indexing the related source s among S possible sources. So
p(Hs) is a S-dimensional Multinomial distribution encoding the relatedness prior.
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Figure 5.2: A simple example to show the fragment compatibility measurement, and the per-
mutations of all possible parental nodes in a BN fragment. (a) The dashed triangle
represents source fragments {T s,Ls,Es} and {Es,Bs,Ss}, which are compatible
with the target fragment. (b) All the permutations of compatible source fragment,
and the most fit one {Ls,T s,Es}.

p(Hs
1|Ds,Dt) ∝

∫
p(Dt |θ)p(θ |Ds,Hs

1)p(Hs
1)dθ ,

p(Hs
0|Ds,Dt) ∝

∫
p(Dt |θ t)p(θ t |Hs

0)p(Hs
0)dθ

t .

(5.3)

where we have made the following conditional independence assumptions: Ds⊥Hs
1,

Dt⊥{Ds,Hs
1}|θ and θ t⊥Ds|Hs

0.
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For discrete likelihoods p(D|θ) and Dirichlet priors p(θ |H), integrating over the

unknown NPTs θ , the required marginal likelihood is the Dirichlet compound multino-

mial (DCM) or multi-variate Polya distribution:

p(Dt |Ds,Hs
1) =

Γ(AX s
)

Γ(NX t
+AX s

)

C

∏
c=1

Γ(nX t

c +αX s

c )

Γ(αX s
c )

(5.4)

where c = 1, . . . ,C index variable states, nX t

c is the number of observations of the c-

th target parameter value in data Dt , and NX t
= ∑c nX t

c ; αX s

c indicates the aggregate

counts from the source domain and distribution prior, and AX s
=∑c αX s

c . Assuming that

transfer is equally likely a priori within source domains, but not across source domains,

we set the prior for the shared-parameter hypothesis to the estimated domain similarity

p(Hs
1) (Algorithm 5.1) and independent-parameter hypothesis prior to its complement,

p(Hs
0) = 1− p(Hs

1).

Maximal f itness(·) is achieved when the target data are most likely to share the

same generating distribution as the source data. We call our proposed fitness function

BMC. The presentation thus far addresses discrete data with Dirichlet conjugate priors.

Analogous computations can be derived for continuous data with Gaussian likelihood

with Normal-Inverse-Gamma conjugate priors:

p(Dt |Ds,Hs
1) =

N

∏
i=1

 1√
π

Γ

(
2αm+1

2

)
Γ

(
2αm

2

) √ Λ

2αm

(
1+

Λ(dt
i −µm)

2

2αm

)−( 2αm+1
2 )

 (5.5)

where Λ = αmkm
βm(km+1) , the hyperparameters µm,km,αm and βm are updated based on the

source data Ds
k, which contains M samples with center at d̄s:



µm = k0µ0+Md̄s

k0+M

km = k0 +M

αm = α0 +
M
2

βm = β0 +
1
2 ∑

M
i=1(d

s
i − d̄s)2 + k0M(d̄s−µ0)

2

2(k0+M)

(5.6)

Transfer Prior The final outstanding component of BMC is how to define the trans-

fer prior p(Hs). We assume that transfer is equally likely a priori within a given source
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domain, but that different source domains may have different prior relatedness. Thus,

we set the transfer prior for a particular fragment pair to the prior for the correspond-

ing source network, i.e., p(Hs
jk1) = p(Hs). The fragment transfer prior p(Hs

jk) is then

normalised as p(Hs
jk0) = 1− p(Hs

jk1).

5.3.2 The Fusion Step

Once the best source fragment D s
k is found for a given target fragment D t

j, the next

challenge is how to optimally fuse them. Our solution (denoted BMA) is to infer the

target NPT, integrating over uncertainty about whether the selected source fragment is

indeed relevant or not (i.e., if they share parameters or not, corresponding to hypotheses

H1 and H0 in Section 5.3.1).

We perform Bayesian model averaging, summing over these possibilities. Specif-

ically, we ask p(θ t |Dt ,Ds) = ∑H p(θ t ,H|Dt ,Ds) which turns out to be:

p(θ t |Dt ,Ds) = p(H1|Dt ,Ds)Dir(θ ;α +NX t
+NX s

)

+p(H0|Dt ,Ds)Dir(θ ;α +NX t
) (5.7)

where p(H1|Dt ,Ds) and p(H0|Dt ,Ds) come from equation (5.3). This means the

strength of fusion is automatically calibrated by the estimated relevance. Since there

is no closed form solution for the sum of Dirichlets, we approximate equation (5.7) by

moment matching. For conditional Gaussian nodes, the weighted sum is also approxi-

mated by moment matching.

Moment matching (also known as Assumed Density Filtering (ADF)) is to approx-

imate a mixture such as equation (5.7) by a single distribution whose mean and variance

is set to the mean and variance of the weighted sum. The estimated relatedness provides

the weights w1 = p(H1|Dt ,Ds), w0 = p(H0|Dt ,Ds). Assuming the posterior mean and

variance of the parameters in the related and unrelated condition are u1,v1 and u0,v0

respectively. Then the approximate posterior mean is u = w1u1 +w0u0, and variance

is v = w1(v1 +(u1−u)2 +w0(u0−u)2 (Murphy, 2012). For Gaussian distributions we

can use this directly. For Dirichlet distributions with parameter vector α , the variance

parameter v = 1/∑α , and the mean parameter vector is u = vα .
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5.3.3 The Algorithm

The detail of our two-step general-purpose parameter transfer learning framework is

given in Algorithm 5.1. Each target fragment is compared to all permutations of com-

patible source fragments and evaluated for relevance using BMC fitness. The most

relevant source fragment and permutation is assigned to each target fragment. The

network-level relevance prior is re-estimated based on aggregating the inferred frag-

ment relevance for that source: p(Hs) ∝ ∑ jk p(Hs
jk|D t

j,D
s
k). This way of updating

the source network prior reflects the inductive bias that fragment should be transferred

from fewer distinct sources, or that a source network that has already produced many

relevant fragments is more likely to produce further relevant fragments and should be

preferred.

Finally, the most relevant source fragment for each target is fused using BMA. We

refer to our BMC+BMA framework as BNPTL (Bayesian network parameter transfer

learning) in this thesis. If there are missing or hidden data in the target domain, we

start by running the standard EM algorithm in the target domain, to infer the states of

each hidden variable. We use these expected counts to fill in Dt when applying our

framework.

Properties Our framework has a few favorable properties worth noting:

• If there is no related source fragment, then the most related source fragment

will have estimated relatedness approaching zero, and no transfer is performed

(p(H1|Dt ,Ds) ≈ 0 in equation (5.7)). The framework is thus robust to irrelevant

sources (as explored in Subsection 5.4.6 and 5.4.7).

• Although we rely on an EM procedure to estimate fragment and source related-

ness, starting from a uniform prior p(Hs), our algorithm is deterministic and we

use only one run to get results.

• Explicitly reasoning about both fragment and network level relatedness allows

the exploitation of heterogeneous relevance both within and across source do-

mains.
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INPUT : Target network D t , Sources {D s}
OUTPUT: θ t =

{
θ t

j

}
and p(Hs)

1 Initialize the domain-level relatedness p(Hs) (uniform);
2 repeat
3 for each target fragment j do
4 for each source network s and fragment k do
5 if compatible(D t

j,D
s
k) then

6 P = permutations(Gt
j,G

s
k);

7 for permutation m = 1 to M do
8 measure relatedness:

f itness(D t
j,P

sk
m (D s

k), p(Hs)) = p(Hs
jk1|Dt

j,P
sk
m (Ds

k));
9 end

10 end
11 end
12 end
13 for each source network s do
14 Re-estimate network relevance: p(Hs) ∝ ∑ jk p(Hs

jk|Dt
j,D

s
k);

15 end
16 until convergence ∆p(Hs)≤ 1×10−4;

17 for each target fragment j do
18 Find the best source and permutation:

k′,s′,m′ = argmaxk,s,m p(Hs
jk1|Dt

j,P
sk
m (Ds

k));

19 θ t
j = f usion(D t

j,P
s′k′
m′ (D

s′
k′));

20 end
21 return θ t =

{
θ t

j

}
and p(Hs)

Algorithm 5.1: A two-step general-purpose BN parameter transfer learning
framework (BNPTL)

5.4 Experiments
In this section, we compare against existing strategies for estimating relatedness and

fusing source and target data. For relatedness estimation, we introduce two alternatives

to BMC:

• Likelihood: The similarity between the fragments is the log-likelihood of the

target data under the ML source parameters θ̂ s, ∑l log p(dt
l |θ̂ s).

• MatchCPT: The dis-similarity between the fragments is the K-L divergence

(KLD) between their ML parameter estimates KL(θ̂ t , θ̂ s) (Dai et al., 2007; Selen

and Jaime, 2011; Luis et al., 2010).
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For fusing source and target knowledge, we introduce two competitors to our

BMA:

• Basic: Use the estimated source parameter directly θ̂ s
j . A reasonable strategy

if relevance is perfect and the source data volume is high, but does not exploit

target data and it is not robust to imperfect relevance.

• Aggregation: A weighted sum reflecting the relative volume of source and target

data (equation (12) in (Luis et al., 2010)), it exploits both source and target data,

but is less robust than BMC to varying relevance.

Neither Basic nor Aggregation is robust to varying relevance across and within sources

(they do not reflect the goodness of fit between source and target), or situations in

which no source node at all is relevant (e.g., given partial overlap of the source and

target domain).

5.4.1 Overview of Relatedness Contexts

Before presenting the experimental results, we first highlight the variety of possible

network-relatedness contexts that may occur. Of these, different relatedness scenarios

may be appropriate depending on the particular application area.

• Structure and Variable Correspondence In some applications, the source

and target networks may be known to correspond in structure, share the same

variable names, or have provided variable name mappings. In this case the only

ambiguity in transfer is which of multiple potential source networks is the most

relevant to a target. Alternatively, structure/variable name correspondence may

not be given. In this case there is also ambiguity about which fragment within

each source is relevant to a particular target NPT.

• Cross-network relevance heterogeneity There may be multiple potential

source networks, some of which may be relevant and others irrelevant. The most

relevant source should be identified for transfer, and irrelevant sources ignored.

• Continuous versus discontinuous relevance When there are multiple poten-

tial source networks, it may be that relevance to the target varies continuously

(e.g., if each network represents a slightly different segment of demographic of
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the population), or it may be that across all the sources some are fully relevant

and others totally irrelevant. In the latter case it is particularly important not to

select an irrelevant source, as significant negative transfer is then likely.

• Piecewise Relevance Relevance may vary piecewise within networks as well

as across networks. Consider a target network with two sub-graphs A and B: A

may be relevant to a fragment in source 1, and B may be relevant to a fragment

in source 2. For example, in the case of networks for hospital decision support,

different hospitals may share different subsets of procedures – so their BNs may

correspond in a piecewise way only. A target hospital network may then ideally

draw from multiple sources. Note that this may happen either because (i) sub-

graphs in the target are structurally compatible with different sub-graphs in the

multiple sources (which need not be structurally equivalent to each other), or (ii)

in terms of quantitative NPT fit, fragments in the target may each be better fit to

different sources.

Our BNPTL framework aims to be robust to all the identified variations in network

relatedness. In the following experiments, we will evaluate BN transfer in each of

these cases.

5.4.2 Transfer with Known Correspondences

In this section, we first evaluate transfer in the simplest setting, where structure/variable

name correspondence is assumed to be given. This setting is the same as (Luis et al.,

2010): the transfer only happens between target/source nodes with the same node index

X t
i = X s

i , where X t
i ∈ Vt , X s

i ∈ Vs and Vt = Vs, Gt = Gs. (In our framework this is

easily modelled by providing the prior p(Hs
jk1) = 0, and hence p(Hs

jk0) = 1, for non-

corresponding pairs j 6= k.) This setting has the least risk of negative transfer, because

there is no chance of transferring from an irrelevant source NPT.

We continue using six standard BNs (Table 3.4) to compare our approach (BMC

fitness with BMA (BNPTL)) to the state-of-art (MatchCPT fitness with Aggregation

fusion (CPTAgg) (Luis et al., 2010)). In this case we use “soft noise” to simulate con-

tinuously varying relatedness among a set of sources. For each reference BN three sets

of 200, 300 and 400 samples respectively are drawn. These sample sets are used to learn

three sources of increasing network-level relatedness to the true BN. Subsequently, 100
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samples of each source copy are drawn and used as the actual source data. Because

node correspondences are known in this experiment, another baseline is simply to ag-

gregate all target and source data. This method is referred to as ALL, and also will be

compared. Results are quantified by average K-L divergence between estimated and

true NPTs. In each experiment we run 10 trials with random data samples and report

the mean and standard deviation of the K-L divergence.

Table 5.1: Performance (known correspondences) of STL, ALL and transfer learning methods:
CPTAgg, BNPTLnp and BNPTL.

Name STL ALL CPTAgg BNPTLnp BNPTL

Weather 0.02±0.02* 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
Cancer 0.33±0.31* 0.01 ±0.00 0.12±0.09* 0.10±0.07* 0.10±0.05*
Asia 0.85±0.18* 0.36±0.04 0.68±0.27 0.30 ±0.12 0.24 ±0.14
Insurance 1.82±0.16* 1.05±0.09* 1.47±0.17* 0.77 ±0.05 0.76 ±0.04
Alarm 2.43±0.15* 1.70±0.10* 2.19±0.13* 0.64 ±0.02 0.63 ±0.02
Hailfinder 2.85±0.03* 1.98±0.02* 2.44±0.04* 0.97 ±0.07 0.97 ±0.04

Average 1.38±0.14 0.85±0.04 1.15±0.12 0.47 ±0.05 0.45 ±0.05

The results are presented in Table 5.1, with the best result in bold, and statistically

significant improvements of the best result over competitors indicated with asterisks

* (p ≤ 0.05). Compared with CPTAgg, BNPTL achieves 60.9% average reduction of

K-L divergence compared to the ground truth. These results verify the greater effec-

tiveness of BNPTL even in the known correspondence setting, where the assumptions

of CPTAgg are not violated. To demonstrate the value of our network-level relevance

prior p(Hs), we also evaluate our framework without this prior (denoted BNPTLnp).

The comparison between BNPTL and BNPTLnp demonstrates that the network-level

relevance does indeed improve transfer performance. In this case it helps the model

to focus on the higher quality/more relevant 400-sample source domain: even if for a

particular fragment a less relevant source domain may have seemed better from a local

perspective.

The ALL baseline also achieves good results in the Cancer and Weather networks.

We attribute this to these being smaller BNs (nodes ≤ 5), so all the source parameters

are reasonably well constrained by the source samples used to learn them, and aggregat-

ing them all is beneficial. However, in large BNs with more parameters, the difference

between the 200 and 400 sample source networks becomes more significant, and it be-

comes important to select a good source instead of aggregating everything including the
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noisier less related sources. In real-world settings, we may not have node/structure cor-

respondence. Thus we do not assume this information is available in all the following

sections.

5.4.3 Dependence on Target Network Data Sparsity

In this section, we explore the performance for varying number of target samples, fo-

cusing on the Asia network. Here the target and source domain are both generated from

the Asia network, and the relatedness of the source domain varies (soft noise). For re-

latedness, we consider 3 conditions for the source domains: (i) one 200-sample source

Asia network, (ii) one 200-sample source and one 300-sample source Asia network,

and (iii) one 200-sample source, one 300-sample source, and one 400-sample source

Asia network. This results in a varying number of source fragments (8, 16 and 24) in

each setting. The latter cases potentially contain stronger cues for transfer – if a good

decision is made about which source network to transfer from. To unpack the effective-

ness of our contributions, we investigate all combinations for different fitness methods

and fusion methods under these settings.

In each sub chart of Figure 5.3, the x-axis denotes the number of target domain

training instances, and the y-axis denotes the average K-L divergence between esti-

mated and true parameter values. The blue line represents standard MLE learning,

green denotes transfer by MatchCPT fitness, purple shows transfer with likelihood fit-

ness, and red line the results using our BMC fitness function. The columns represent

Basic (source only), Aggregation and BMA fusion. Comparing rows shows the per-

formance of all transfer methods (except MLE) improves with more source fragments.

Furthermore, algorithms with our BMC fitness function (red) achieve the best results

in almost all situations. Even the simple basic fusion method gets reasonable learn-

ing results (< 0.50) using the BMC fitness function to choose among the 24 source

fragments. Also, our BMA fusion (right column, Figure 5.3 (c,f,i)) significantly out-

performs other fusion methods. For instance, when there are 8 source fragments (top

row, Figure 5.3 (a,b,c)), the average performance of BMC fitness function in BMA

fusion increased 41.4% and 43.0% compared with the same fitness function in Basic

fusion and Aggregation fusion settings. Although these margins decrease with increas-

ing source fragments, our BNPTL (BMC+BMA) is generally best.
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Figure 5.3: Transfer performance of varying target data volume and source relatedness (soft
noise). Top, middle and bottom rows: transfer learning of 8, 16 and 24 source
fragments respectively. Columns: Basic, Aggregation and BMA fusion.

5.4.4 Illustration of Network and Fragment Relatedness Estima-

tion

To provide insight into how network and fragment relatedness is measured in BNPTL,

we continue to use the Asia network and its three sources (soft noise).

Network Relatedness Figure 5.4 shows the estimated relatedness prior p(Hs) for

each source s over EM iterations. As we can see the network-level relatedness con-

verges after about 10 iterations, with the relatedness estimates being in order of the
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actual source relevance.
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Figure 5.4: The estimated network relatedness p(Hs) between target Asia BN and its three
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Figure 5.5: The inferred fragment relatedness and final selected fragment in Asia BN.

Fragment Relatedness To visualize the inferred fragment relatedness, we record the

estimated relatedness between every fragment in the target and every fragment in source

3 of the Asia network. This is plotted as a heat map in Figure 5.5(a), where the y-axis

denotes the index of the target fragment, and x-axis denotes the index of the source

fragment. Darker color indicates higher estimated relatedness p(Hs
jk1|D t

j,D
s
k) between

two fragments j and k. Some incompatible source fragments have zero relatedness

automatically. For each target fragment, the most related (darkest) source fragment is
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selected for BMA fusion. Although there is some uncertainty in the estimated related-

ness (more than one dark cell per row), overall all but one target fragment selected the

correct corresponding source fragment (Figure 5.5(b).

5.4.5 Robustness to Hidden Variables

Table 5.2: Performance (unknown correspondences and hidden variables) of STL and transfer
learning methods: CPTAgg and BNPTL.

Name Hidden Vars STL CPTAgg BNPTL

Weather
None 0.03±0.02 0.02 ±0.02 0.02 ±0.02
1 0.55±0.07* 0.41 ±0.00 0.45±0.01*
2 0.59±0.00* 0.45 ±0.01 0.49±0.01*

Cancer
None 0.33±0.31 0.14±0.09 0.09 ±0.08
1 0.33±0.28 0.12±0.09 0.09 ±0.09
2 0.39±0.27 0.20±0.08 0.15 ±0.06

Asia
None 0.85±0.18* 0.73±0.22* 0.31 ±0.09
1 0.93±0.18* 0.87±0.27* 0.42 ±0.15
2 1.17±0.17* 0.93±0.27 0.63 ±0.26

Insurance
None 1.82±0.16* 1.51±0.13* 0.76 ±0.06
3 1.96±0.15* 1.56±0.11* 0.87 ±0.05
5 2.08±0.13* 1.66±0.11* 1.01 ±0.05

Alarm
None 2.43±0.15* 2.13±0.12* 0.66 ±0.06
3 2.48±0.14* 2.20±0.14* 0.64 ±0.01
5 2.47±0.14* 2.20±0.09* 0.79 ±0.06

Hailfinder
None 2.85±0.03* 2.47±0.02* 1.03 ±0.07
5 2.84±0.03* 2.47±0.02* 1.00 ±0.05
10 2.86±0.03* 2.49±0.03* 1.06 ±0.04

In this section, we use the same sampled target and sources as in Table 5.1, but we

introduce additional hidden variables in the target. We learn the target parameters by:

• conventional single task BN learning (STL),

• MatchCPT fitness with Aggregation fusion (CPTAgg) (Luis et al., 2010) (note

that CPTAgg does not apply to latent variables, but we use their fitness and fusion

functions in our framework), and

• our BNPTL.

Three conditions are considered:

(i) fully observed target data,

(ii) small number of hidden variables and

(iii) medium number of hidden variables.
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In the hidden data conditions, the specified number of target network nodes are

chosen uniformly at random on each trial, and considered to be unobserved, so the data

for these nodes are not used.

Table 5.2 summarises the average K-L divergence per parameter. In summary,

the transfer methods outperform conventional EM with MLE (STL) in all settings.

Compared with the state-of-the-art CPTAgg, BNPTL also improves performance on

15 out of 18 experiments (Table 5.2), with an average margin of 53.6% (the average

reduction of K-L divergence). That means, of the total set of individual target NPTs,

84.3% showed improvement in BNPTL over CPTAgg.

5.4.6 Exploiting Piecewise Source Relatedness

Thus far, we simulated source relevance varying smoothly at the network level – all

nodes within each source network were similarly relevant. So all fragments should

typically be drawn from the source estimated to be most relevant. In contrast, for this

experiment, we investigate the situation where relatedness varies in a piecewise fashion.

In this case, to effectively learn a target network, different fragments should be drawn

from different source networks. This is a setting where transfer in Bayesian networks is

significantly different from transfer in conventional flat machine learning models (Pan

and Yang (2010)).

To simulate this setting, we initialise a source network pool with three copies of the

network, before introducing piecewise “hard noise”, so that some compatible fragments

are related and others are totally unrelated. Specifically, we choose a proportion (25%

and 50%) of each source network’s NPTs uniformly at random and randomise them to

make them irrelevant (by drawing each entry uniformly from [0,1] and renormalizing).

This creates a different subset of compatible but (un)related fragments in each network.

Thus piecewise transfer - using different fragments from different sources is essential

to achieve good performance.

We consider two evaluation metrics here: the accuracy of the fragment selection

- whether each target fragment selects a (i) corresponding and (ii) non-corrupted frag-

ment in the source, and accuracy of the learned NPTs in the target domain.

Table 5.3 presents the results, where our model consistently outperforms CPTAgg

in Weather, Cancer and Asia networks. Although the fragment selection accuracy of
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Table 5.3: The fragment selection performance of CPTAgg and BNPTL. The numbers 25% and
50% indicate different proportions of irrelevant fragments in the sources. Note that
chance here is much lower than 75/50% due to unknown network correspondence.

Name
25% random NPTs

Fragment Accuracy KLD

CPTAgg BNPTL STL CPTAgg BNPTL

Weather 61.0%* 90.0 % 0.03±0.02* 0.01±0.00 0.01 ±0.00
Cancer 94.8% 96.0 % 0.33±0.31 0.14±0.09 0.07 ±0.05
Asia 78.0%* 97.5 % 0.85±0.18* 0.67±0.14* 0.18 ±0.00
Insurance 82.4 % 70.7%* 1.82±0.16* 1.01±0.04* 0.74 ±0.02
Alarm 61.7 % 58.8%* 2.43±0.15* 1.60±0.27* 0.57 ±0.02
Hailfinder 75.5 % 62.4%* 2.85±0.03* 2.04±0.03* 0.79 ±0.02

Average 75.6% 79.2 % 1.38±0.14 0.91±0.10 0.39 ±0.02

50% random NPTs

Weather 57.0%* 74.5 % 0.03±0.02* 0.01±0.00 0.01 ±0.00
Cancer 79.2% 82.4 % 0.33±0.31 0.13±0.07 0.08 ±0.04
Asia 61.5%* 80.8 % 0.85±0.18* 0.42±0.19 0.20 ±0.01
Insurance 65.9 % 51.9%* 1.82±0.16* 0.97±0.05 0.90 ±0.04
Alarm 51.0 % 46.4%* 2.43±0.15* 1.38±0.17* 0.63 ±0.04
Hailfinder 65.7 % 49.9%* 2.85±0.03* 2.07±0.03* 0.43 ±0.02

Average 63.4% 64.3 % 1.38±0.14 0.83±0.09 0.38 ±0.03

BNPTL failed to outperform the CPTAgg in Insurance, Alarm and Hailfinder networks

due to the greater data scarceness in their target networks, the general good performance

(K-L divergence) of BNPTL verifies that the framework still can exploit source do-

mains with piecewise relevance. Meanwhile the fragment selection accuracy of BNPTL

explains how this robustness is obtained (irrelevant fragments (equation (5.3)) are not

transferred (equation (5.7))). In addition to verifying that our transfer framework can

exploit different parts of different sources, this experiment demonstrates that it can fur-

ther be used for diagnosing which fragments correspond or not (equation (5.3)) across

a target and a source – which is itself of interest in many applications.

5.4.7 Robustness to Irrelevant Sources

The above experiments verify the effectiveness of our framework under conditions of

varying source relatedness, but with homogeneous networks Vt =Vs. In this section we

verify robustness to two extreme cases of partially and fully irrelevant heterogeneous

sources.

Partially irrelevant In this setting, we use the same six networks from the BN reposi-
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Table 5.4: Performance (domain-partially-irrelevant) of STL and transfer learning methods:
CPTAgg and BNPTL.

Name Domain Accuracy KLD

CPTAgg BNPTL STL CPTAgg BNPTL

Weather 80.0%* 100.0 % 0.03±0.02* 0.01 ±0.00 0.01 ±0.00
Cancer 80.0%* 92.0 % 0.33±0.31 0.11±0.07 0.07 ±0.04
Asia 77.5%* 85.0 % 0.85±0.18* 0.49±0.15* 0.18 ±0.01
Insurance 97.8 % 97.8 % 1.82±0.16* 0.82±0.03* 0.51 ±0.02
Alarm 94.1 % 82.7%* 2.43±0.15* 1.64±0.06* 0.70 ±0.03
Hailfinder 99.3%* 100.0 % 2.85±0.03* 1.74±0.01* 0.84 ±0.02

Average 88.1% 92.9 % 1.38±0.14 0.80±0.05 0.38 ±0.02

tory, and consider each in turn as the target, and copies of all six networks as the source

(thus five are irrelevant and one is relevant). Therefore the majority of the potential

source fragments come from 5 irrelevant domains. Table 5.4 presents the results of

transfer learning in these conditions. We evaluate performance with two metrics: (i)

percentage of fragments chosen from the correct source domain, and (ii) the usual K-L

divergence between the estimated and ground truth parameters in the target domain.

As shown in Table 5.4, our BNPTL clearly outperforms the previous state-of-the-

art CPTAgg in each case. This experiment verifies that our framework is robust even to

a majority of totally irrelevant source domains, and is achieved via explicit relatedness

estimation (p(Hs
1) in Algorithm 5.1 and equation (5.3)).

Fully irrelevant In this setting, we consider the extreme case where the source and

target networks are totally different Gt 6= Gs,Vt ∩Vs = /0. Note that since the source and

target are apparently unrelated, it is not expected that positive transfer should typically

be possible. The test is therefore primarily whether negative transfer (Pan and Yang,

2010) is successfully avoided in this situation where all source fragments may be irrel-

evant. Note that since the sources are totally heterogeneous, prior work CPTAgg (Luis

et al., 2010) does not support this experiment. We therefore compare our algorithm to

a variant using BMC fitness and Basic fusion function (denoted BMCBasic) and target

network only STL.

The results are shown in Table 5.5, from which we make the following observa-

tions. (i) BNPTL is never noticeably worse than STL. This verifies that our framework

is indeed robust to the extreme case of no relevant sources: p(Hs
0|Dt ,Ds) is correctly

inferred in equation (5.3), thus preventing negative transfer from taking place (equation
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Table 5.5: Performance (domain-fully-irrelevant) of STL and transfer learning methods: BM-
CBasic and BNPTL. The symbol� represents the transfer relationship: target�
source. Here ‘Other’ represents the six BN repository networks with the target re-
moved.

Transfer Setting STL BMCBasic BNPTL

Asia� Other 0.85±0.18* 0.34±0.02* 0.19 ±0.03
Weather� Other 0.03 ±0.02 0.21±0.01* 0.04±0.01
Cancer� Other 0.33±0.31 0.23±0.01* 0.08 ±0.02
Alarm� Other 2.43±0.15 2.59±0.11* 2.27 ±0.14
Insurance� Other 1.82 ±0.16 2.28±0.13* 1.82 ±0.15
Hail.� Other 2.85 ±0.03 3.12±0.03* 2.86±0.03

Average 1.38±0.14 1.46±0.05 1.21 ±0.06

(5.7)). (ii) In some cases, BNPTL noticeably outperforms STL, demonstrating that our

model is flexible enough to achieve positive transfer when there exists some randomly

matched distributions in the fully heterogeneous sources. (iii) In contrast, BMCBasic is

worse than STL overall demonstrating that these properties are unique to our approach.

5.5 Summary
In this chapter, we proposed a two-step general-purpose BN parameter learning transfer

framework, which tackles the scarce data problem by leveraging a set of source BNs.

By making an explicit inference about relatedness per domain and per fragment, we are

able to perform robust and effective transfer even with heterogeneous state spaces and

piecewise source relevance.

Our approach applies when there are latent variables, and is robust to widely range

degrees of source network relevance, automatically adjusting the strength of fusion to

take this into account. Moreover, it is able to provide estimated domain and fragment-

level relatedness as an output, which is of interest in many applications (e.g., in the

medical domain to diagnose differences in procedures between hospitals). A variety

of experiments (considering different data scarceness and piecewise-relatedness) show

that BNPTL consistently outperforms single task STL and previous transfer learning

algorithms.

In transfer with totally irrelevant sources, the results of our approach are no worse

than the competitors, because the developed fitness and fusion function “fix” the se-

lected irrelevant sources. The transfer without relatedness information might work if

we can properly identify the related variables with the use of information coming not
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only from the target samples of a given variable or a parent configuration alone. For

example, because of the multiple distributions of a NPT, we can use the appearance to-

gether of apparently related distributions to identify relatedness. However, root nodes

would have only one distribution, and using its associated target data and learned dis-

tributions to decide relatedness is statistically impossible in general.



Chapter 6

A Generic Framework for Parameter

Learning with All Information

To address the challenge of learning accurate BNs when training data is scarce, we have

so far introduced two approaches that have been proven useful:

(i) introducing expert judgments (Chapter 3 and 4) and

(ii) transferring knowledge from related domains (Chapter 5).

In this chapter, we present the first generic framework that combines both approaches

to improve BN parameter learning. It serves to integrate both knowledge transfer and

expert constraints. Experimental results demonstrate improved accuracy of the new

method on a variety of benchmark BNs, showing its potential to benefit many real-

world problems.

6.1 MPL-TC Model
Chapters 3–5 discussed two methods (constrained parameter learning and parameter

transfer learning) to address the challenge of accurately learning BN parameters with

limited data or no relevant training data. While incorporating either parameter con-

straints or transfer learning from related data in source domains can improve parameter

estimation accuracy, there exists no generic learning framework to synergistically ex-

ploit the benefits of both approaches. Achieving this is non-trivial because typical ap-

proaches to transfer (Luis et al., 2010) and to constrained learning (Zhou et al., 2014a)
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use very different formalisations. Here we generalise the MPL-C model1 for learning

with expert constraints to also exploit knowledge from related source domains via a

bootstrap approach. The new model called MPL-TC (Multinomial Parameter Learning

model with Transferred prior and Constraints) synergistically exploits both forms of

external knowledge to improve learning performance in the target BN.

Assuming for now no latent variables in the target domain, then each target frag-

ment i can be learned independently:

θ̂
t
i = argmax

θ t
i

p(θ t
i |Ct

i ,D
t
i,{{D s

i′}}) (6.1)

where Ct
i denotes target constraints.

In Chapter 5, we proposed a two-step BN parameter transfer learning framework.

Based on that, we treat the selected source as the target parameter priors and then

introduce them into the MPL-C model. Thus, the fusion step is implemented in the

Bayesian way. The MPL-TC model contains three main steps:

(i) Compatibility and Permutation Mapping: for each BN fragment in the target

domain, find its closest source fragment and permutation in the source domain;

(ii) Bayesian Fusion Step: transfer the selected source fragment by converting the

source data statistics into prior distributions of parameters in the target MPL-C

model (see Chapter 3);

(iii) MPL-TC Inference: perform the inference in this auxiliary model (now called as

MPL-TC) to learn the target parameters.

The details can be found in Algorithm 6.1. Next, we will discuss these steps in turn.

Compatibility and Permutation Mapping As same as the transfer setting of

BNPTL, MPL-TC also transfers at fragment-level. Therefore, in MPL-TC, each source

fragment is firstly checked for compatibility with the target. Then the compatible frag-

ments are permuted to generate all the possibles mappings between the target and

source fragments. Finally, the relevance is measured for each valid mapping. How-

ever, because now we are provided with some target parameter constraints Ct
i , there are

1The MPL-EC model is simple extension of MPL-C which only address exterior constraints, as
shown in Chapter 4, introducing such constraints generated from monotonic causalities will introduce
heavy computation cost. Thus we mainly consider elicited interior constraints in this chapter.
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INPUT : Target domain D t , source domains {D s} and target constraints
Ct .

OUTPUT: The target parameters θ̂ t .

1 for each target fragment i do
2 for each source network s and fragment i′ do
3 if compatible(Ct

i ,D
t
i,D

s
i′) then

4 P = permutations(Gt
i,G

s
i′);

5 for permutation m = 1 to M do
6 measure relatedness:

f itness(D t
i,P

si′
m (D s

i′)) = p(Hs
ii′1|Dt

i,P
si′
m (Ds

i′));
7 end
8 end
9 end

10 end
11 for each target fragment i do
12 Find the best source fragment and permutation:

argmaxi′,s,m p(Hs
ii′1|Dt

i,P
si′
m (Ds

i′));

13 for each parent state configuration j do
14 for each state value k do
15

{
θ s

i′ jk

}
= bootstrap(100,@MLE,Pm(Ds

i′ j));

16 Fit the
{

θ s
i′ jk

}
with ζ s

i′ jk = T Normal(µi j′k,σi j′k,0,1);

17 end
18 Generate the auxiliary model in the target:

Ψt
i j = mplc(Dt

i j,C
t
i j,ζ

s
i′ jk);

19 Inference to get the parameters estimation: θ̂ t
i j = in f erence(Ψt

i j);
20 end
21 end
22 return θ̂ t =

{
θ̂ t

i j

}
Algorithm 6.1: Multinomial parameter learning with transferred prior and
constraints (MPL-TC)

some differences in the fragment compatibility check. Specifically, the source param-

eter θ s
i′ associated in compatible source fragment should fall in the constrained value

ranges ΩCt
i
.

Based on previous equation (5.2), we have the new compatible function (Line 3,

Algorithm 6.1) in MPL-TC:
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compatible(Ct
i ,D

t
i,D

s
i′) =


1 i f Gt

i = Gs
i′ && θ s

i′ ∈ΩCt
i

&& dims(θ t
i ) = dims(θ s

i′)

0 otherwise

(6.2)

where i and i′ index the fragments in target and source domain respectively.

Bayesian Fusion Step To fuse the selected source fragment with the target fragment

in the second step of our algorithm, we perform the bootstrap approach in the source to

generate the priors of target parameters. Bootstrap is a re-sampling method to measure

the quality of true samples (Duval, 1993). In this chapter, we are interested in the

quality of selected source parameters. We cannot access infinite training samples of

selected source; instead we only have a sample of it (the selected best mapping source

sample Ds
i′ j), which means the MLE of θ s

i′ jk is not accurate.

From a specific subset of source samples, i.e., Ds
i′ j, only one estimate of the MLE

for a parameter of interest θ s
i′ jk can be obtained. In order to reason about the popula-

tion, we need some sense of the variability of the estimated MLE. Thus, we apply the

simplest bootstrap method – sampling from the Ds
i′ j to form a new sample (called a “re-

sample” or bootstrap sample) that is also of size |Ds
i′ j|. The bootstrap sample is taken

from the original using sampling with replacement. This process is repeated multiple

times (100 or 1000), and for each of these bootstrap samples we compute the MLE

of θ s
i′ jk (each of these are called bootstrap estimates). We now have a set of bootstrap

estimates, which are used to fit a TNormal distribution2 to encode how much the source

MLE varies.

MPL-TC Inference In our MPL-TC approach, these TNormal distributions ({ζ s
i′ jk})

are used to replace the uniform parameter priors on θ t
i jk (Figure 3.2) of MPL-C models

in the target domain. Thus the transferred prior, target training samples and constraints

are now all encoded in the target MPL-TC models (Line 18, Algorithm 6.1). After

observing the sources, the target data statistics (Nt
i j,N

t
i j1, ...,N

t
i jri

) and available con-

straints (the constraint nodes are all observed with ‘true’ values), we can update (by

in f erence(·) function in Algorithm 6.1) these auxiliary models to get the target param-

eter posteriors:

2The abbreviation of Truncated Normal distribution.
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p(θ̂ t
i j1, ..., θ̂

t
i jrt
|Nt

i j,N
t
i j1, ...,N

t
i jri

,Ct
1, ...,C

t
M,ζ s

i′ jk, ...,ζ
s
i′ jri′

,sum)

Because the auxiliary BNs are hybrid models, the update/inference (Line 19, Al-

gorithm 6.1) uses the DDJT algorithm as discussed in Chapter 3. The time complexity

of the inference is exponential in model treewidth, which restricts the applicability at

some point. However, approximate inference could be used with dynamic discretiza-

tion to improve the time efficiency.

6.2 Illustrative Examples
Bootstrap Fitting of TNormal Priors Figure 6.1 demonstrates an example of fitted

TNormal distributions for MLE estimation θ s
i′ jk = 0.2 learned from sample sizes 10

and 100. As we can see, although the parameter estimations of two source samples

are the same, the estimation from the large sample are clearly more reliable than the

estimation from the small sample, where the fitted TNormal distribution in |Ds
i′ j| =

100 is much sharper than the distribution in |Ds
i′ j| = 10. Moreover, the number of

bootstrap replicates does not change the results much. Here we use 1000 replicates in

all subsequent experiments.

Fragment Transfer Here we provide an illustrative example of our framework for

fragment-based parameter transfer and the target parameter estimation: the target is

a three node BN shown in the left part of Figure 6.2 (a), and the source is an eight

node BN shown in the right part of Figure 6.2 (a). We aim to estimate the NPT of St ,

which has four parent state configurations – πt
1, πt

2, πt
3 and πt

4. As we can see, there

are two source fragments ({T s,Ls,Es} and {Es,Bs,Ss}) which are compatible with the

target fragment (shown with dashed triangle in Figure 6.2 (a)). Thus, there are four

permutations of compatible source fragments (assuming binary parent nodes). All four

of these options are then evaluated for fitness, and the best fragment and permutation

is picked ({Bs,Es,Ss}). In Figure 6.2 (b), we generate four auxiliary BNs (MPL-TC

model) for each target parameter column, the right part of Figure 6.2 (b) shows the

MPL-TC model of the first parameter column, which is used to estimate θ t
11 and θ t

12.

The constraints and data statistics in the target domain are modelled by grey nodes. The

parameter priors (white nodes) are TNormal distributions fitted from source bootstrap

samples. Finally, these priors are updated by observing the target data statistics and

constraints to get the posterior parameter estimates.
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Figure 6.1: The fitted TNormal distributions for a parameter of interest with different source
sample sizes 10 and 100. The original source MLE estimation of this parameter is
0.2, which means there are 2 and 20 appearances of this parameter in sample sizes
10 and 100 respectively. The bootstrap process in each case is repeated 100 and
1000 times.

6.3 Experiments
As same as previous experiment setting, in all cases, we assume that the structure of

the model is known and that the ‘true’ NPTs that we are trying to learn are those that

are provided as standard with the benchmark BN models. For the purpose of the ex-

periment we are not given these true NPTs but instead are given a limited number of

sample observations which are randomly generated based on the true target NPTs. To

introduce noise between the target and source for simulating varying relatedness, the

source datasets are also sampled from the true NPTs but with ‘soft’ and ‘hard’ noise

conditions:

(i) soft: for each BN, three sources are learnt from 200, 300 and 400 samples re-

spectively to simulate continuously varying relatedness among the sources;

(ii) hard: choose a proportion (20%) of each source’s fragments uniformly at random
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Figure 6.2: A simple example to show the framework of multinomial parameter learning with
transferred prior and constraints. (a) The dashed triangle represents source frag-
ments {T s,Ls,Es} and {Es,Bs,Ss}, which are compatible to the target fragment.
(b) The structure representation of the MPL-TC model for estimating θ t

11 and θ t
12

is in the first target parameter column, whose parameter priors (θ s
11 and θ s

12) are
converted form the most fit source fragment {Bs,Es,Ss} via bootstrap.

and randomise their data/NPTs to make them irrelevant.

This results in a different subset of compatible but (un)related fragments in each source.

Introducing these two types of sampling noise makes the sources similar but different

to the target, and hence simulates the kind of source-target relations that may exist in

practice.

The constraints are elicited from the true NPTs (so they are certainly correct) and

randomly assigned to parameters in the network. Following the method of constraints

generation in (Liao and Ji, 2009), for each true parameter θi jk, we create a constraint:
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min((1+ ε)θi jk,1)> θ t
i jk > max((1− ε)θi jk,0)

where the ε = 0.05 in the experiments. These elicited constraints are encoded in the

MPL-TC auxiliary models, which are built with BN software AgenaRisk.

We compare our MPL-TC+5 against the following algorithms and settings (the

upper right superscript value associated with learning algorithms represents the number

of constraints used in these algorithms):

• MLE and MAP, conventional BN parameter learning algorithms.

• MPL-C+5, state-of-the-art parameter learning algorithm with five constraints

(Zhou et al., 2014a).

• CPTAgg, state-of-the-art parameter transfer learning algorithm (Luis et al.,

2010).

• MPL-TC+0, our MPL-TC algorithm with zero constraints.

The resulting learned NPTs are evaluated against the true NPTs by the average

K-L divergence measure (equation (2.21)). The smaller the K-L divergence is, the

closer the estimated NPT is to the true NPT. Each experiment is repeated 10 times, and

the results are reported with the mean and standard deviation of the K-L divergences

between estimated and true NPTs.

6.3.1 Experiments on the Cancer BN

As explained in Table 3.4, there are 10 independent parameters to learn in the Cancer

model. In the target domain, training samples under different sparsity levels (10 to 100

samples) are drawn from the true Cancer BN.

Overall Results Figure 6.3 presents the results of all learning algorithms under vary-

ing data volumes in the target Cancer BN. It is clear that the average K-L divergence

of all learning algorithms decreases with increasing target sample size. With increas-

ing sample sizes, the performance gap between the algorithms decreases3. Moreover,

our MPL-TC+5 always outperforms all other the competitors, which demonstrates the

effectiveness of our framework.

3Given enough target training samples, the learning performance of all algorithms converge.
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Figure 6.3: Parameter learning performance in the Cancer BN under different levels of data
sparsity. Lower is better.

Considering models without parameter constraints (MLE, CPTAgg, MAP and

MPL-TC+0): MPL-TC+0 provides overall K-L divergence reductions (performance

improvements) of 93.4%, 84.1% and 52.3% compared with MLE, CPTAgg and MAP

respectively, thus demonstrating the efficacy of knowledge transfer.

After introducing 5 sampled constraints, MPL-TC+5 achieves even greater reduc-

tions in comparison with MLE, CPTAgg and MAP, which are 97.1%, 93.0% and 79.1%

respectively. Due to the benefit of introducing parameter constraints, MPL-C+5 algo-

rithm also outperforms MLE, CPTAgg and MAP. However, MPL-TC+5 still outper-

forms MPL-C+5 with 42.0% average K-L divergence reduction.

According to the results, the MPL-TC+5 greatly outperforms the conventional

MLE and MAP algorithms, and the CPTAgg and MPL-C+5 that only use transfer

or constraints alone. This demonstrates the complementarity of both constraints and

sources of external knowledge when learning with scarce target data.

Varying Number of Constraints To investigate how the number of introduced con-

straints affect the learning performance of MPL-C and MPL-TC, we vary the number

of sampled constraints in parameter learning (shown in Figure 6.4). As we can see,

K-L divergence decreases with more constraints for both MPL-C and MPL-TC in both

data sparsity settings. However, when the number of constraints is small, our MPL-TC
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greatly outperforms MPL-C due to the benefit of transferred parameter priors. When

the number of constraints increases to 10 (every parameter is constrained), the learning

results of MPL-C and MPL-TC both converge to zero in both settings.
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Figure 6.4: Performance of MPL-C and MPL-TC when varying the number of constraints (m=
1, ...,10).

Priors vs. Posteriors To provide insight into the mechanisms of our framework,

we investigate the differences between MPL-TC (Priors) (transferred TNormal mean

values) and MPL-TC+5 (Posteriors) (the updated parameter posteriors after inference

given the target data and parameter constraints) for each parameter in the Cancer BN.

The results are presented in Figure 6.5, where the heights of the bars represent the

absolute differences between estimated values and true NPT values.

As we can see, the MPL-TC (Priors) shows inaccurate transfer in both of two set-

tings: parameters 7–9 in Figure 6.5 (a) and parameters 3–7 and 9 in Figure 6.5 (b). This

is caused by the bias in target samples and noise in source domains. Therefore, the esti-

mates of MPL-TC (Priors) are far from the true values, (average K-L divergence of 0.65

and 0.40 for sample sizes 20 and 100 respectively). However, after performing MAP

learning in the MPL-TC+5 model, the MPL-TC+5 (Posteriors) reduces the average K-L

divergence between the estimated values and true values to 0.09 and 0.03 respectively.

These results demonstrate the robustness of the Bayesian learning in MPL-TC+5, and
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Figure 6.5: The differences between estimated probability values (MPL-TC(Priors) and MPL-
TC+5(Posteriors)) and ground truth for all parameters in the Cancer BN.

the importance of systematically inferring the new parameters given available data and

constraints. Next, we will compare the performance of all these algorithms in different

BN parameter learning problems.

6.3.2 Experiments on Standard BNs

To enrich the experiments, we evaluate the algorithms on 12 standard BNs4 (details in

Table 6.1). For each BN, 100 training samples and 5 constraints are drawn from the

true NPTs in the target domain.

Overall Table 5.2 summarises the average K-L divergence per parameter. The best

results are presented in bold, and the comparison is statistically significant at the 5%

significance level. In summary, the MPL-C+5 and MPL-TC+5 methods outperform

conventional MLE and MAP in 11 out of 12 settings, the only exception is the learning

performance in Weather BN, where the learning results of these methods converge with

enough training samples5. These results demonstrate the benefit of learning with both

sources of external knowledge. Compared with the state-of-the-art MPL-C+5, MPL-

TC+5 wins in every setting (including the Weather BN, where MPL-TC+5 achieves

4http://www.bnlearn.com/bnrepository/
5As shown in Table 5.2, the Weather BN only contains 9 parameters to learn, therefore 100 training

samples are already enough to train a good model.

http://www.bnlearn.com/bnrepository/
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Table 6.1: Parameter learning performance (average K-L divergence) in 12 standard Bayesian
networks.

Name Nodes Edges Para MLE MAP MPL-C+5 CPTAgg MPL-TC+0 MPL-TC+5

Alarm 37 46 509 2.36±0.10 0.66±0.01 0.61±0.02 1.61±0.08 0.42±0.02 0.42±0.01

Andes 223 338 1157 1.03±0.06 0.17±0.01 0.15±0.01 0.65±0.05 0.08±0.00 0.08±0.00

Asia 8 8 18 0.57±0.16 0.34±0.04 0.28±0.03 0.31±0.05 0.22±0.02 0.18±0.03

Cancer 5 5 10 0.86±0.35 0.09±0.04 0.07±0.05 0.54±0.11 0.05±0.01 0.03±0.01

Earthquake 5 4 10 1.50±0.82 0.15±0.04 0.13±0.03 0.35±0.22 0.11±0.01 0.10±0.01

Hailfinder 56 66 2656 2.85±0.01 0.46±0.00 0.41±0.00 1.98±0.01 0.31±0.01 0.31±0.01

Hepar2 70 123 1453 3.18±0.13 0.33±0.01 0.33±0.01 2.58±0.15 0.30±0.01 0.29±0.00

Insurance 27 52 984 1.95±0.18 1.17±0.03 1.07±0.03 0.93±0.06 0.75±0.03 0.75±0.02

Sachs 11 17 178 1.74±0.29 0.78±0.04 0.71±0.05 0.98±0.08 0.50±0.03 0.50±0.02

Survey 6 6 21 0.35±0.20 0.05±0.01 0.05±0.01 0.24±0.15 0.04±0.01 0.03±0.01

Weather 4 4 9 0.02±0.02 0.03±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00

Win95pts 76 112 574 3.59±0.07 0.81±0.01 0.78±0.02 3.20±0.10 0.67±0.02 0.64±0.01

even smaller average K-L divergence – 0.018 of MPL-TC+5 vs. 0.020 of MPL-C+5).

Over all BNs, MPL-TC+5 gets 83.2%, 33.5% and 26.9% average reduction of K-L

divergence compared with MLE, MAP and MPL-C+5 respectively.

Transfer vs. No Transfer Considering transfer learning only, both CPTAgg and

MPL-TC+0 outperform conventional MLE, which demonstrates the benefit of intro-

ducing source domain knowledge. However, due to a simplistic relatedness model and

NPT fusion heuristic, CPTAgg even fails to outperform MAP in some settings. In con-

trast, our MPL-TC+0 outperforms CPTAgg and MAP with 74.1% and 31.2% average

reduction of K-L divergence over all the settings. In addition, after introducing both

transferred parameter priors and target constraints, our MPL-TC+5 shows additional

improved learning performance over CPTAgg and MPL-TC+0 (75.0% and 3.5% aver-

age reduction of K-L divergence).

Importance of Transfer vs. Constraints As we can see, our MPL-TC+0 outper-

forms MPL-C+5, which indicates the transferred prior is more helpful than a moderate

number (i.e., 5) of constraints in improving parameter learning performance in these

experiments. Given the burden of constraint elicitation in the real world, we used a re-

alistic limited number of constraints. Of course if sufficient constraints were available,

MPL-C would perform better (cf Figure 6.4) and this result would be reversed. But in

this case, the transferred prior makes a greater contribution in improving performance

– despite the noise process between source and target domain, and the imperfect es-
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timation of relevance. This is especially true in the larger BNs, where the constraints

are scarcer relative to the number of parameters to learn. This also explains why MPL-

TC+0 and MPL-TC+5 have similar results in the Alarm, Andes, Hailfinder, Insurance

and Sachs BNs.

6.4 A Real Medical Case Study
The previous experiments demonstrated the effectiveness of our MPL-TC under con-

trolled data, constraints and relatedness conditions. In this section we explore its appli-

cation to learn BN parameters of a real medical network, where the “true” constraints

and relatedness are unknown, and data volume and relatedness reflect the conditions of

real-world medical tasks.
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Figure 6.6: The Trauma Care Bayesian network, which contains four main parts: “Injury”,
“Shock”, “Coagulopathy” and “Death”.

The Trauma Care (TC) dataset (Yet et al., 2014) derives from a BN structure

designed by trauma care specialists, and relates to procedures in hospital emergency
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rooms. The full details of the BN (whose graph is shown in Figure 6.6) and datasets are

proprietary to the hospitals involved. This BN contains 18 discrete variables (of which

3 are hidden) and 11 Gaussian variables6 that are grouped into 4 parts:

(i) the degree of overall tissue injury,

(ii) the degree of hypoperfusion resulting from blood loss for the patient,

(iii) the risk of developing acute traumatic coagulopathy, and

(iv) the risk of death for the patient.

Here, a well learnt BN is important because rapid and accurate identification of

hidden risk factors and conditions modelled by the network are important to support a

doctors’ decision making about treatments which reduce mortality rate (Karaolis et al.,

2010).

In this experiment, we are provided with both expert judgments elicited from real

experts in this field and two distinct datasets. Hence we are able, in a real-world setting,

to evaluate the MPL-TC method.

The expert judgments are shown in Table 6.3, which constrain the variables:

‘Death’, ‘ATC’, ‘Age’, ‘Hypoperfusion’, and ‘Head’ (their details can be found in Table

6.2).

Table 6.2: Details of constrained variables.

Variable Description States

Death The risk of patient’s death in 48 hours.
No
Yes

ATC Acute traumatic coagulopathy.
No
Yes

Age Patient’s age.
M: 45 < Age < 65
O: Age≥ 65
Y: Age≤ 45

Hypoperfusion The degree of decreased blood flow through an organ.
Compensated
None
Uncompensated

Head Severe head injury of patient.
No
Yes

One dataset is composed primarily of data from a large inner city hospital with ex-

tensive data (1022 instances) and the second dataset is composed of data from a smaller
6The details of these variables can be found in http://www.traumamodels.com/.

http://www.traumamodels.com/
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Table 6.3: The elicited expert judgments for the Trauma Care BN.

Judgment Description Constraints

1 ATC occurs will result in the death of
patient with very high probability.

p(Death = Yes|ATC = Yes)≈ 0.93

2 Old patient has higher risk of death than
young patient.

p(Death = Yes|Head = O)≥
p(Death = Yes|Age = Y )

3 Uncompensated hypoperfusion will very
likely result in the death of patient.

p(Death = Yes|Hypo.=U.)≈ 0.90

4 Severe head injury will likely result in the
death of patient.

p(Death = Yes|Head = Yes)≈ 0.71

Table 6.4: Prediction performance (AUC) for the Trauma Care BN. The query variable is
“Death”.

Algorithm STL ALL CPTAgg BNPTL MPL-C MPL-TC

AUC 0.77* 0.93 0.80* 0.94 0.91* 0.97

hospital and city in another country (30 instances). The smaller hospital would like an

effective decision support model. However, using their own data to learn the model

would be insufficient, and using the large dataset directly may be sub-optimal due to

(i) differences in statistics of injury types in and out of major cities city, (ii) differences

in procedural details across the hospitals and (iii) differences in demographic statis-

tics across the cities/countries. Therefore, the TC BN from the inner city hospital can

be used to generate the parameter priors of BN in the small hospital. Finally, elicited

constraints are used with data instances in the small hospital to train the target TC BN

model.

We perform cross-validation in the target domain of the small hospital, using half

the instances (15) to train the model, and half to evaluate the model. To evaluate the

model we instantiate the evidence variables in the target domain test set, select one of

the variables of interest (Death), and query this variable. AUC values are calculated for

the query variable. The results are presented in Table 6.4, with the best result in bold,

and statistically significant improvements of the best result over competitors indicated

with asterisks * (p≤ 0.05).

As shown in Table 6.4, all learning algorithms mentioned in this thesis have been

compared. Here STL denotes single task learning from the small hospital data, ALL

indicates the baseline of concatenating all the source and target data together before

STL. CPTAgg and BNPTL are two parameter transfer learning algorithms. MPL-C
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is the learning algorithm incorporating constraints for this TC BN. Because there is

one exterior constraint (Judgment 2, Table 6.3), the MPL-EC model is also used here.

However, its improvement on the classification is not significant, and its result is added

into the result of MPL-C.

As we can see from the results, transferring data from the large hospital (CP-

TAgg and BNPTL) or using domain expert judgments (MPL-C) both could improve the

learning results. Moreover, ALL also achieves good performance based on the strong

assumption of known node correspondence. Nevertheless, these learning algorithms

are still outperformed by the MPL-TC (0.97), which uses all the available information.

6.5 Summary
The broad goal of this chapter was to introduce a new method (MPL-TC) that is the first

attempt at BN parameter learning incorporating both transfer learning and qualitative

constraints in a complementary way. Using the public BN repository, we showed that

learning performance was greatly improved in MPL-TC across a range of networks. In

particular, we demonstrated that the MPL-TC worked well in every data and constraint

sparsity in the Cancer BN, and achieved the best performance in all BNs in the repos-

itory compared with other state-of-the-art algorithms. Most importantly, we showed

that MPL-TC outperformed all other approaches in the real-world Trauma Care medi-

cal case study.

We discussed the limitations of all BN transfer learning approaches with respect to

the fact that, in practice relatedness is hard to guarantee or estimate. Thus data-driven

transfer (source selection) may be biased by inaccurate target data (resulting in bad

choice of source and thus negative transfer) in extremely sparse settings. In the spirit

of synergistically combining source data and constraints, available target constraints

clearly provide an opportunity to guide and disambiguate transfer. In this chapter,

we only used target parameter constraints to exclude individual incompatible source

fragments. Richer models for guiding transfer with constraints including cross-node

constraints, source-domain constraints, and cross-domain constraints should be inves-

tigated in future.



Chapter 7

Conclusions

In this final chapter, we discuss the main conclusions and contributions of the thesis

(Section 7.1). This is followed by a discussion of future work (Section 7.2) and the

final remarks (Section 7.3).

7.1 Contributions
The experimental results in this thesis has shown that, by incorporating small amounts

of expert judgments and/or related data, the BNs parameter learning performance has

been greatly improved over conventional and previous state-of-the-art parameter learn-

ing methods. In this section, we will discuss the overall conclusions and contributions

in this thesis, which is organised according to the research hypothesis and objectives

that were defined in Section 1.1. We first discuss how each of the research objectives

I—V has been fulfilled.

Objective I: Review and analyse previously proposed algorithms for BN learning

in general and parameter learning with both data and knowledge in particular.

In this thesis, we have undertaken a literature study in which previously proposed

models and algorithms for BN learning in general (Section 2.2) and parameter learning

in particular (Section 2.3) have been reviewed. A substantial portion of the review is

based on recently published books (Koller and Friedman, 2009; Murphy, 2012; Fenton

and Neil, 2012; Barber, 2012). In addition to constituting an updated overview of the

research area, the literature study serves as a basis for the analysis of previous work,

which includes the identification and discussion of key limitations of previous algo-

rithms for parameter learning in general and parameter learning with scarce data and

additional knowledge in particular (Section 2.5). To summarise, previous algorithms
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typically suffer from one or more of the following limitations:

• The learning performance is more or less decided by setting the proper parame-

ters, which makes implementing and tuning the algorithms more difficult.

• The current transfer learning algorithms are designed for network-level transfer,

which may result in negative transfer in real-world applications.

• The fusion method in BN transfer learning is either a linear/logarithmic combi-

nation of the target and selected sources. However, the current method for getting

the coefficients/weights is heuristic, which reduces the generalizability of the ob-

tained results.

With the analysis of previous algorithms and their principal limitations, a number

of key properties (Section 2.5) of new or updated algorithms for BN parameter learning

with scarce data are identified. These properties constitute the research gap that is

addressed in the thesis.

Objective II: Incorporate natural qualitative expert judgments or domain knowl-

edge such that when combined with data, more accurate BN models can be built.

In this thesis, a novel auxiliary model for BN parameter learning with constraints

was proposed and analysed. This model described in Chapter 3, MPL-C, fulfills most

of the key properties identified in Section 3.3 for parameter learning with constraints

(i.e., it supports multiple data scarceness and multiple types of constraints, and includes

parameter priors). The data statistics and constraints converted from qualitative expert

judgments are all encoded as nodes in the MPL-C model. Thus, the parameter learning

process is achieved via the inference in the auxiliary model. In Section 3.2, commonly

used types of qualitative expert judgments and their elicitation barriers are presented.

The way to incorporate constraints converted from expert judgments are shown in Sec-

tion 3.3. In Section 3.4, the inference method is discussed. The experiments on 6

standard BNs (Section 3.5) and a real software defects prediction BN (Section 3.6)

demonstrate the benefits of using expert judgments in parameter learning.

Objective III: Investigate the way to reduce the burden of eliciting expert judg-

ments, and propose new or updated models that are more appropriate for param-

eter learning with these judgments.
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In Chapter 4, the burden of eliciting expert judgments was analysed and elimi-

nated via introducing the monotonic causalities in BNs. A key property of a monotonic

causality is that it enables the NPT values of the child node to monotonically increase

or decrease as the parent state configuration varies. This introduces a set of exterior pa-

rameter constraints after knowing the labels of the monotonic causalities. We proposed

a generative synergy model for monotonic causalities, which supports both homoge-

neous and heterogeneous synergies (Section 4.3). To learn with exterior constraint,

the MPL-C is extended in this chapter. The new model is called as MPL-EC and pre-

sented in Section 4.4. The existence of monotonic causalities in real-world BNs is also

investigated in Section 4.5.

Objective IV: Propose new algorithms to find the most relevant source Bayesian

network or network fragments to transfer, and to fuse source and target knowl-

edge in a robust way.

In Chapter 5, the parameter transfer learning algorithm is discussed which can be

used to address the scarce data challenge by leveraging data from different but related

problems. In Section 5.3, a two-step general-purpose BN parameter transfer learning

framework called BNPTL is presented. This framework fulfills the key properties iden-

tified in Section 2.5 for parameter transfer learning. For example, it can robustly find

the right source parameter and fuse it to the target. To verify this, we have also re-

produced a previously published parameter transfer learning algorithm (CPTAgg). The

experiments in Section 5.4 show that BNPTL consistently outperforms single task STL

and former transfer learning algorithms.

Objective V: Propose extended algorithms for the generic parameter learning with

both expert judgments and transferred knowledge, which leverages the benefits of

both constraint-based and transfer-based parameter learning algorithms.

In Chapter 6, a generic framework has been proposed for parameter learning with

both expert judgments and transferred knowledge. This framework is referred to as

MPL-TC, which fulfills all of the key properties identified in Section 2.5. In Section

6.1, the details of using both expert judgments and transferred knowledge in the MPL-

TC are discussed. Specifically, we create MPL-C models based on target data statis-

tics and constraints, and transfer the source information as the target parameter priors.

These priors are encoded in the target MPL-C models, and these models are updated
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to produce the parameter posteriors. The experimental results on synthetic datasets

demonstrate that the MPL-TC works well in every data and constraint scarceness.

7.2 Future Work
While the thesis has achieved its objectives of improved BN parameter learning with

scarce data, there is scope for extensions and further improvements. In particular we

identify the following:

• Current MPL-C, MPL-EC, and MPL-TC models actually learn the full posterior

distribution for each parameter of interest. However, because the parameter cor-

responds to a probability value in a discrete NPT of the original BN, we currently

simply take the mean of the posterior distribution as the NPT parameter value.

Hence, we are ‘throwing away’ all the other information in the learnt distribu-

tions (such as the variance and percentiles). Future work is needed to avoid this

loss of information.

• In the MPL-EC model, the generic synergy model support using the confidence

weight of each introduced monotonic constraint. However, due to the limitations

of current research resource, no real expert is involved to provide monotonic

causality labels and associated confidence weights. To this end, an interactive

tool should be developed to elicit such labels in real-world applications. And fur-

ther investigation is needed to check whether the confidence of expert judgments

has a significant impact on parameter learning performance.

• The current transfer fitness step only employs target constraints to exclude the

incompatible source fragments. Ideally, these expert provided target constraints

are correct and can be used to guide the transfer. Thus, we need to further in-

vestigate whether the target constraints can be used to help find more accurate

sources.

• Our current work focuses on BN parameter learning where the BN structure is

an input of our algorithms. However, in some empirical cases, the real structure

of the network can not be accessed. Thus, a new method is needed to address

both structure learning and parameter learning with constraints and transferred

knowledge.
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• Ideally, the proposed MPL-TC method in this thesis should be available as part of

a standard BN tool. In other words, it should be possible within a single BN tool

GUI to build a BN model, import both related datasets and a set of experts con-

straints relevant to the BN, and then have the NPTs in the BN automatically up-

dated according to the MPL-TC method calculations. Additional work is needed

to develop such tool.

7.3 Final Remarks
BNs are increasingly being used in critical risk assessment and decision support appli-

cations. There has been an over-reliance on the assumption that BNs can be learned

from data alone. Hence, various parameter learning algorithms have previously been

proposed to train the BNs. However, as discussed in the thesis, these algorithms typi-

cally suffer from scarce data limitations. In fact in most real-world applications the kind

of data required for such algorithms to be accurate is simply not available. Hence we

need to use domain knowledge like expert judgments and/or related datasets to boost

the reliability of BN learning methods.

In this thesis, we have developed a set of novel BN parameter learning algorithms

exploiting both data and domain knowledge. In particular, firstly, we have proposed

two constrained parameter learning models: MPL-C and MPL-EC. These two mod-

els can address the parameter learning with interior and exterior parameter constraints

respectively. These models are auxiliary BNs associated with each node whose NPT

we wish to learn. Because the auxiliary BN is a hybrid model, we have employed

a novel dynamic discretization junction tree algorithm for the inference. Secondly,

we have proposed the parameter transfer learning algorithm (BNPTL) which leverages

the source information at fragment-level. Finally, we have developed a first generic

framework that combines both expert judgments and related knowledge to improve BN

parameter learning. This framework is referred to as MPL-TC, since it based on both

constraint-oriented (MPL-C and MPL-EC) and transfer-oriented (BNPTL) methods.

In our experiments on the publicly available BN repository and a real-world med-

ical case study, MPL-TC achieves better performance in terms of average K-L diver-

gence and AUC than conventional algorithms (MLE and MAP), state-of-the-art learn-

ing algorithms with constraints (MPL-C), and state-of-the-art parameter transfer learn-
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ing algorithms (CPTAgg and BNPTL). We can summarize the comparison with other

algorithms as follows: if the problem domain only contains expert judgments, MPL-C

or MPL-EC is probably the best method to incorporate such judgments during the pa-

rameter learning; if the problem domain only contains source knowledge or datasets,

the BNPTL algorithm will achieve good results even when the target data is limited;

finally, if the problem domain contains both types of additional knowledge, the MPL-

TC will use both of them in an applicable way, and improve the BN parameter learning

results.



Appendix A

Java Code for Building MPL-C Model

package MPLC;
import java.util.*;
import uk.co.agena.minerva.model.*;
import uk.co.agena.minerva.model.extendedbn.*;
import uk.co.agena.minerva.model.scenario.Scenario;
import uk.co.agena.minerva.util.model.DataSet;
import uk.co.agena.minerva.util.nptgenerator.*;
/**
* @author Yun Zhou 20-10-2014
*/
public class MultinormialwithConstraints {

//This function can automatically create a MPL-C model
public ArrayList<Double> MultinormialwithConstraints(ArrayList<Integer> countList,
ArrayList<Constraint> constraintList, int numberiter) throws Exception {

ArrayList<Double> returnList = new ArrayList<Double>();
int np = countList.size();
double trailsum = 0.0;
for (int i = 0; i < np; i++) {
trailsum = trailsum + countList.get(i);
}
Model model = Model.createEmptyModel();
ExtendedBN ebn = model.getExtendedBNAtIndex(0);

//Step 1**********************************************************************
//Initial all the nodes
DataSet cidsp = new DataSet();
cidsp.addIntervalDataPoint(0.0, 1.0);

int upinfinity = Integer.MAX_VALUE;
DataSet cidsn = new DataSet();
cidsn.addIntervalDataPoint(0, upinfinity);

DataSet cidsc = new DataSet();
cidsc.addLabelledDataPoint("True");
cidsc.addLabelledDataPoint("False");

ArrayList<ContinuousIntervalEN> pnodelist = new ArrayList<ContinuousIntervalEN>();
ArrayList<BooleanEN> cnodelist = new ArrayList<BooleanEN>();



129

ArrayList<IntegerIntervalEN> snodelist = new ArrayList<IntegerIntervalEN>();
ContinuousIntervalEN psum = new ContinuousIntervalEN();
ContinuousIntervalEN nnode = new ContinuousIntervalEN();

//Initialize all the nodes -- name and id
for (int i = 0; i < np; i++) {
String id = "p"+i;
String name = "Probability"+i;
pnodelist.add(ebn.addContinuousIntervalNode(id, name));
pnodelist.get(i).createExtendedStates(cidsp);

String ids = "s"+i;
String names = "S"+i;
snodelist.add(ebn.addIntegerIntervalNode(ids, names));
snodelist.get(i).createExtendedStates(cidsn);
}

String id = "psum";
String name = "Sum";
psum = ebn.addContinuousIntervalNode(id, name);
psum.createExtendedStates(cidsp);

String idt = "n";
String namet = "Number of Trails";
nnode = ebn.addContinuousIntervalNode(idt, namet);
nnode.createExtendedStates(cidsn);

for (int i = 0; i < constraintList.size(); i++) {
String idc = "c"+i;
String namec = "Constraint"+i;
cnodelist.add(ebn.addBooleanNode(idc, namec));
cnodelist.get(i).createExtendedStates(cidsc);
}

//Step 2**********************************************************************
//Define all the edges
for (int i = 0; i < np; i++) {
pnodelist.get(i).addChild(psum);
pnodelist.get(i).addChild(snodelist.get(i));
nnode.addChild(snodelist.get(i));
}

for (int i = 0; i < cnodelist.size(); i++) {
Constraint tmp = constraintList.get(i);
if (tmp.type) { //single contraint
pnodelist.get(tmp.nodeindex).addChild(cnodelist.get(i));
} else {
pnodelist.get(tmp.nodeindex).addChild(cnodelist.get(i));
int index2 = (int)tmp.value;
pnodelist.get(index2).addChild(cnodelist.get(i));
}
}

//Step 3**********************************************************************
//Set simulation nodes
psum.setSimulationNode(true);
nnode.setSimulationNode(true);
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for (int i = 0; i < np; i++) {
pnodelist.get(i).setSimulationNode(true);
snodelist.get(i).setSimulationNode(true);
}

//Step 4**********************************************************************
//Set the distributions and relationships
//Create the probability nodes p0 p1 p2 p3 px....
for (int i = 0; i < np; i++) {
List parameters = new ArrayList();
parameters.add("0");//Lowerbound
parameters.add("1");//Upperbound
ExtendedNodeFunction uniform = new ExtendedNodeFunction(Uniform.displayName,
parameters);
pnodelist.get(i).setExpression(uniform);
ebn.regenerateNPT(pnodelist.get(i));
}
//Create the auxiliary nodes Sum
String arithstring = new String();
for (int i = 0; i < np; i++) {
String p = "p"+i;
if (i<(np-1)){
arithstring = arithstring + p + "+";
} else {
arithstring = arithstring + p;
}
}
List parameters2 = new ArrayList();
parameters2.add(arithstring);//Arithmatic
ExtendedNodeFunction arith3 = new ExtendedNodeFunction(Arithmetic.displayName,
parameters2);
psum.setExpression(arith3);
ebn.regenerateNPT(psum);

//Create the node N
List parameters = new ArrayList();
parameters.add("0");//Mean
parameters.add("100000000");//Variance
ExtendedNodeFunction normal = new ExtendedNodeFunction(Normal.displayName,
parameters);
nnode.setExpression(normal);
ebn.regenerateNPT(nnode);

//Create the binomial nodes s0 s1 s2 s3 sx....
for (int i = 0; i < np; i++) {
List s_parameters = new ArrayList();
s_parameters.add("n"); //Number of Trails
s_parameters.add("p"+i); //Probability
ExtendedNodeFunction binormal = new ExtendedNodeFunction(Binomial.displayName,
s_parameters);
snodelist.get(i).setExpression(binormal);
ebn.regenerateNPT(snodelist.get(i));
}

//Create the constraint node expression
for (int i = 0; i < cnodelist.size(); i++) {
Constraint tmp = constraintList.get(i);
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if (tmp.type) { //single contraint
String consexpress = new String();
String p = "p"+Integer.toString(tmp.nodeindex);
String v = Double.toString(tmp.value);
consexpress = p + tmp.relation + v;
consexpress = "if(" + consexpress + ",\"True\",\"False\")";

List parameter = new ArrayList();
parameter.add(consexpress);
ExtendedNodeFunction arith = new ExtendedNodeFunction(Comparative.
displayName, parameter);
cnodelist.get(i).setExpression(arith);
ebn.regenerateNPT(cnodelist.get(i));
} else {
String consexpress = new String();
String p = "p"+Integer.toString(tmp.nodeindex);
String p2 = "p"+Integer.toString((int)tmp.value);
consexpress = p + tmp.relation + p2;
consexpress = "if(" + consexpress + ",\"True\",\"False\")";

List parameter = new ArrayList();
parameter.add(consexpress);
ExtendedNodeFunction arith = new ExtendedNodeFunction(Comparative.
displayName, parameter);
cnodelist.get(i).setExpression(arith);
ebn.regenerateNPT(cnodelist.get(i));
}
}

//Step 5**********************************************************************
//Set evidences
Scenario s = model.getScenarioAtIndex(0);
s.addRealObservation(ebn.getId(), psum.getId(), 1.0);
s.addRealObservation(ebn.getId(), nnode.getId(), trailsum);
for (int i = 0; i < np; i++) {
s.addRealObservation(ebn.getId(), snodelist.get(i).getId(), countList.get(i));
}
for (int i = 0; i < cnodelist.size(); i++) {
s.addHardEvidenceObservation(ebn.getId(), cnodelist.get(i).getId(), cnodelist.
get(i).getExtendedStateAtIndex(0).getId());
}

//Step 6**********************************************************************
//Inference and save the results
long startTime = System.currentTimeMillis();
model.setSimulationNoOfIterations(numberiter);
model.calculate();
long endTime = System.currentTimeMillis();
long elapsedTime = endTime - startTime;
System.out.println("time"+elapsedTime);

for (int i = 0; i < np; i++) {
MarginalDataItemList mdil = model.getMarginalDataStore().
getMarginalDataItemListForNode(ebn, pnodelist.get(i));
MarginalDataItem mdi = mdil.getMarginalDataItemAtIndex(0);
double meanv = mdi.getMeanValue();
returnList.add(meanv);
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}
model.save("Multinormial.cmp");
return returnList;
}
}
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Abstract
We review the challenges of Bayesian network
learning, especially parameter learning, and spec-
ify the problem of learning with sparse data.We ex-
plain how it is possible to incorporate both quali-
tative knowledge and data with a multinomial pa-
rameter learning method to achieve more accurate
predictions with sparse data.

1 Review of Bayesian Network Learning
Constructing a Bayesian network (BN) from data is widely
accepted as a major challenge in decision-support systems.
For many critical risk analysis problems, decisions must be
made where there is sparse or no direct historical data to draw
upon, or where relevant data is difficult to identify. The chal-
lenge is especially acute when the risks involve novel or rare
systems and events [Fenton and Neil, 2012] (e.g. think of
novel project planning, predicting events like accidents, ter-
rorist attacks, and cataclysmic weather events).

There are two typical categories of problems in learning
BNs: one is parameter learning given a fixed graphical struc-
ture of the BN; and the other is structure learning, where the
BN structure is unknown. Ideally, with sufficient data, clas-
sical learning algorithms like BDeu+MLE, PC+MLE or hy-
brid+MLE [Campos, 2007] can learn BNs that fit the true
model in distribution and structure. However, these learning
algorithms do not work when there is sparse data. To mitigate
this problem, expert judgements are needed to supplement
learning.

In the absence of data, experts are usually required to pro-
vide strong information like causality between nodes in struc-
ture learning, and specific numerical probability values of
Node Probability Tables (NPTs) or Dirichlet priors in pa-
rameter learning. Such strong judgments can easily cause
bias. Studies show that experts are often overconfident in
providing qualitative knowledge rather than quantitative es-
timations [Druzdzel and van der Gaag, 2000]. Typical quali-
tative knowledge are constraints that limit the number of par-
ents of a node (in structure learning) and equality/inequality
relations among parameters in parameter learning; such con-
straints cut the search space significantly, and help escape lo-
cal maxima. Because of the potential benefits, there is an
increasing research interest in incorporating constraints into

structure/parameter learning. Recent reseach developments
have focused on triggering the necessary automated calcula-
tions and inferences to get more accurate BNs under these
constraints.

For parameter learning, some approaches formulate this
problem as a general constrained maximization problem, and
outline the details of the classification of parameter constraint
types ([Niculescu et al., 2006] and [Liao and Ji, 2009]). Un-
fortunately, these approaches can be extremely inefficient
for BNs with a large number of parameters. Nor can they
handle exterior constraints among parameters, as discussed
in [Feelders and van der Gaag, 2006] and [Tong and Ji,
2008]. The work of [Tong and Ji, 2008] has limited forms
of constraints, while and the work of [Feelders and van der
Gaag, 2006] can only learn the parameter for binary variables.
Hence, our research is focused on the development of an ex-
tended BN graphical notation, and associated algorithms, to
integrate judgements provided by domain experts in a much
richer and less constrained way than the current state-of-the-
art of modelling and tools supports.

2 Proposed Solution
For parameter learning, data statistics can be regarded as a
sequence of independent Bernoulli experiments on different
parameters. Given the number of Bernoulli experiments on
a parameter, and observed results, the success probability of
each value can be estimated by Bayesian inference. For each
parameter in the BN, an auxiliary BN model called multino-
mial parameter learning model (MPL) can be created [Zhou
et al., 2013]. Then constraints can be integrated as additional
nodes connected with this MPL.

Before inference, constraints and data observations are
transferred as evidence in the separate BN, which are used
to update the posterior distributions of target values. Infer-
ence refers to the process of computing the discretised pos-
terior marginals of constrained values after obtaining the ob-
servations of its constraint. Because the parameter values are
continuous, our approach requires the dynamic discretization
inference algorithm [Neil et al., 2007] to compute posteriors
in this hybrid BN model. This algorithm has been imple-
mented in the Agenarisk toolset [Agenarisk, 2013]. Any con-
tinuous node is implemented as a ‘simulation’ node mean-
ing that its discretization will be calculated dynamically by
the algorithm. The work presented here requires such an ac-
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One of the hardest challenges in building a realistic Bayesian Network (BN) model is to
construct the node probability tables (NPTs). Even with a fixed predefined model structure
and very large amounts of relevant data, machine learning methods do not consistently
achieve great accuracy compared to the ground truth when learning the NPT entries
(parameters). Hence, it is widely believed that incorporating expert judgments can improve
the learning process. We present a multinomial parameter learning method, which can
easily incorporate both expert judgments and data during the parameter learning process.
This method uses an auxiliary BN model to learn the parameters of a given BN. The
auxiliary BN contains continuous variables and the parameter estimation amounts to
updating these variables using an iterative discretization technique. The expert judgments
are provided in the form of constraints on parameters divided into two categories: linear
inequality constraints and approximate equality constraints. The method is evaluated with
experiments based on a number of well-known sample BN models (such as Asia, Alarm and
Hailfinder) as well as a real-world software defects prediction BN model. Empirically, the
new method achieves much greater learning accuracy (compared to both state-of-the-art
machine learning techniques and directly competing methods) with much less data. For
example, in the software defects BN for a sample size of 20 (which would be considered
difficult to collect in practice) when a small number of real expert constraints are provided,
our method achieves a level of accuracy in parameter estimation that can only be matched
by other methods with much larger sample sizes (320 samples required for the standard
machine learning method, and 105 for the directly competing method with constraints).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian Networks (BNs) [1,2] are the result of a marriage between graph theory and probability theory, which enable
us to model probabilistic and causal relationships for many types of decision-support problems. A BN consists of a directed
acyclic graph (DAG) that represents the dependencies among related nodes (variables), together with a set of local proba-
bility distributions attached to each node (called a node probability table – NPT – in this paper) that quantify the strengths
of these dependencies. BNs have been successfully applied to many real-world problems [3]. However, building realistic and
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Abstract. Lack of relevant data is a major challenge for learning Bayesi-
an networks (BNs) in real-world applications. Knowledge engineering
techniques attempt to address this by incorporating domain knowledge
from experts. The paper focuses on learning node probability tables using
both expert judgment and limited data. To reduce the massive burden
of eliciting individual probability table entries (parameters) it is often
easier to elicit constraints on the parameters from experts. Constraints
can be interior (between entries of the same probability table column)
or exterior (between entries of different columns). In this paper we intro-
duce the first auxiliary BN method (called MPL-EC) to tackle parameter
learning with exterior constraints. The MPL-EC itself is a BN, whose
nodes encode the data observations, exterior constraints and parameters
in the original BN. Also, MPL-EC addresses (i) how to estimate tar-
get parameters with both data and constraints, and (ii) how to fuse the
weights from different causal relationships in a robust way. Experimental
results demonstrate the superiority of MPL-EC at various sparsity lev-
els compared to conventional parameter learning algorithms and other
state-of-the-art parameter learning algorithms with constraints. More-
over, we demonstrate the successful application to learn a real-world
software defects BN with sparse data.

Keywords: BN parameter learning, Monotonic causality, Exterior con-
straints, MPL-EC model.

1 Introduction

Bayesian networks have proven valuable in modeling uncertainty and supporting
decision making in practice [1]. However, in many applications there is extremely

� The authors would like to thank the three anonymous reviewers for their valuable
comments and suggestions. This work was supported by European Research Coun-
cil (grant no. ERC-2013-AdG339182-BAYES-KNOWLEDGE). The first author was
supported by China Scholarship Council (CSC)/Queen Mary Joint PhD scholarships
and National Natural Science Foundation of China (grant no. 61273322).

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 581–596, 2014.
c© Springer International Publishing Switzerland 2014

136



Noname manuscript No.
(will be inserted by the editor)

When and Where to Transfer for Bayes Net
Parameter Learning

Yun Zhou · Timothy M. Hospedales ·
Norman Fenton

Received: date / Accepted: date

Abstract Learning Bayesian networks from sparse data is a major challenge in
real-world applications where data are hard to acquire. Transfer learning tech-
niques attempt to address this by leveraging data from different but related prob-
lems. For example, it may be possible to exploit medical diagnosis data from a
different country. A challenge with this approach is heterogeneous relatedness to
the target, both within and across source networks. In this paper we introduce
the first Bayesian network parameter transfer learning (BNPTL) algorithm to
reason about both network and fragment relatedness. BNPTL addresses (i) how
to find the most relevant source network and network fragments to transfer, and
(ii) how to fuse source and target parameters in a robust way. In addition to im-
proving target task performance, explicit reasoning allows us to diagnose network
and sub-graph relatedness across BNs, even if latent variables are present, or if
their state space is heterogeneous. This is important in some applications where
relatedness itself is an output of interest. Experimental results demonstrate the
superiority of BNPTL at various sparsity and source relevance levels compared to
single task learning and other state-of-the-art parameter transfer methods. More-
over, we demonstrate successful application to real-world medical case studies.
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model comparison · Bayesian model averaging
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Abstract

Learning accurate Bayesian networks (BNs) is a key challenge in real-world ap-

plications, especially when training data are hard to acquire. The conventional

way to mitigate this challenge in parameter learning is to introduce domain

knowledge/expert judgements. Recently, the idea of qualitative constraints has

been introduced to improve the BN parameter learning accuracy. In this ap-

proach, the exterior parameter constraints (between CPT entries of different

parent state configurations) are encoded in the edges/structures of BNs with

ordinary variables. However, no previous work has investigated the extent to

which such constraints exist in the standard BN repository. This paper ex-

amines such constraints in each edge of the BNs from the standard repository.

Experimental results indicate such constraints fully or partially exist in all these

BNs, and our slightly improved constrained optimization algorithm achieves ex-

cellent parameter learning performance, especially in large BNs. These results

can be used for guiding when to employ exterior constraints in parameter es-

timation. This has the potential to benefit many real-world case studies in

decision support and risk analysis.
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Abstract

Learning accurate Bayesian networks (BNs)
is a key challenge in real-world applications,
especially when training data are hard to ac-
quire. Two approaches have been used to
address this challenge: 1) introducing expert
judgements and 2) transferring knowledge
from related domains. This is the first pa-
per to present a generic framework that com-
bines both approaches to improve BN param-
eter learning. This framework is built upon
an extended multinomial parameter learn-
ing model, that itself is an auxiliary BN.
It serves to integrate both knowledge trans-
fer and expert constraints. Experimental re-
sults demonstrate improved accuracy of the
new method on a variety of benchmark BNs,
showing its potential to benefit many real-
world problems.

1 Introduction

Directed probabilistic graphical models, also known
as Bayesian networks (BNs), are a natural framework
for modelling causal relationships among variables in
many real-world problems, such as medical symptom
diagnosis (Velikova et al., 2014) and software defect
prediction (Fenton and Neil, 2014). However, in prob-
lem domains with limited or no relevant training data,
there are major challenges in accurately learning BN
parameters (Friedman et al., 1999).

There are several methods for handling parameter
learning with limited or no relevant data, described in
a rich literature of books, articles and software pack-
ages, which are briefly summarized in (Druzdel and
Van Der Gaag, 2000; Neapolitan, 2004; O’Hagan et al.,
2006). Without considering any domain knowledge,
the simplest learning approaches usually fail to accu-
rately estimate parameters in a sparse dataset. To

mitigate this problem, it may be possible to elicit nu-
merical assessments from expert judgements, but this
process is inefficient and error-prone.

Researchers have shown that experts tend to feel more
comfortable providing qualitative or semi-numerical
judgments (Feelders and van der Gaag, 2006) with
less cognitive effort. Such judgments expressed as
constraints between parameters of interest (e.g. “the
probability of people getting cancer is smaller than
1%”) are more reliable than numerical assessments,
and have drawn considerable attention recently. In the
work of (Zhou et al., 2014a), these kinds of constraints
are modelled as nodes in an auxiliary BN model called
MPL-C (Multinomial Parameter Learning model with
Constraints), which includes nodes modelling training
data statistics. The MPL-C improves parameter esti-
mation accuracy by constraining the estimation with
the expert constraints.

An alternative approach to improving BN learning in
sparse data situations is to transfer knowledge from
different but related BNs that may have more train-
ing data available (Luis et al., 2010). For example,
transferring knowledge from the same medical diagno-
sis network learned in a different country. This can
be effective if data for one or more sufficiently related
source domains is available. However, the practical
limitation is that transfer is contingent on availability
of suitable related sources, and the relatedness of each
source to the target task may not be known in advance.
Estimating relatedness is thus important but challeng-
ing in practice, particularly when there are multiple
potential sources of possibly varying relatedness.

While incorporating either parameter constraints or
transfer learning from related data in source domains
can improve parameter estimation accuracy, there ex-
ists no generic learning framework to synergistically
exploit the benefits of both approaches. Achieving this
is non-trivial because typical approaches to transfer
(Luis et al., 2010) and to constrained learning (Zhou
et al., 2014a) use very different formalisations. In this
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Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, Ł., Krause, P., 2008. On the effectiveness of early
life cycle defect prediction with Bayesian nets. Empirical Software Engineering 13, 499–537.

Fenton, N.E., Neil, M., 1999. A critique of software defect prediction models. Software Engineering,
IEEE Transactions on 25, 675–689.

van der Gaag, L.C., Renooij, S., Geenen, P.L., 2006. Lattices for studying monotonicity of Bayesian
networks, in: Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, pp.
99–106.

van der Gaag, L.C., Tabachneck-Schijf, H.J., Geenen, P.L., 2009. Verifying monotonicity of Bayesian
networks with domain experts. International Journal of Approximate Reasoning 50, 429 – 436.

Hand, D.J., Till, R.J., 2001. A simple generalisation of the area under the ROC curve for multiple class
classification problems. Machine learning 45, 171–186.

Heckerman, D., Geiger, D., Chickering, D.M., 1995. Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning 20, 197–243.

Henrion, M., 1988. Practical issues in constructing a Bayes belief network. International Journal of
Approximate Reasoning 2, 337.

Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Scholkopf, B., 2007. Correcting sample selection
bias by unlabeled data, in: Advances in Neural Information Processing Systems, pp. 601–608.

Karaolis, M., Moutiris, J., Hadjipanayi, D., Pattichis, C., 2010. Assessment of the risk factors of coronary
heart events based on data mining with decision trees. Information Technology in Biomedicine, IEEE
Transactions on 14, 559–566.

Khodakarami, V., Fenton, N., Neil, M., 2007. Project scheduling: Improved approach to incorporate
uncertainty using Bayesian networks. Project Management Journal 38, 1–39.

Koller, D., Friedman, N., 2009. Probabilistic graphical models: principles and techniques.



BIBLIOGRAPHY 143

Korb, K.B., Nicholson, A.E., 2010. Bayesian Artificial Intelligence. CRC Press, New York.

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. The Annals of Mathematical Statistics
, 79–86.

Langseth, H., Nielsen, T.D., Rumı́, R., Salmerón, A., 2009. Inference in hybrid Bayesian networks.
Reliability Engineering & System Safety 94, 1499–1509.
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