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Abstract

Industrial experimental design is an important area under design of

experiments and factorial design hold a firm place in industrial experi-

ments. The generalization of factorial designs results in split-plot type

designs when complete randomization of runs is not possible. More

specifically, hard-to-set factors lead naturally to split-plot type designs

and mixed models. Mixed models are used to analyze multi-stratum

designs as each stratum may have a random effect on the responses.

The study of random effects in mixed models might be difficult using

likelihood methods because of small number of groups or whole plots in

multi-stratum and split-plot designs. Also, zero estimates of variance

components could be due to estimating multiple variance components

in a hierarchical model. Therefore, likelihood-based inference is often

unreliable with the variance components being particularly difficult to

estimate for small samples. A Bayesian method considering some non-

informative or weakly informative priors for variance components could

be a useful tool to solve the problem.

Fuel economy experiments, conducted by Shell Global Solutions UK,

fall under small sample trap during variance components estimation.

Using SAS procedure MIXED, experimenters estimated the variance

components to be zero which were unrealistic. Also, the experimenters

were unsure about the parameter estimates obtained by likelihood method

from linear mixed models. Therefore, we looked for an alternative to

compare and found the Bayesian platform to be appropriate. Bayesian

methods assuming some non-informative and weakly informative priors

enable us to compare the parameter estimates and the variance com-

ponents. Profile likelihood and bootstrap based methods verified that

Bayesian point and interval estimates are not absurd. Also, simulation

studies have assessed the quality of likelihood and Bayesian estimates

in this study.



A polypropylene experiment was conducted by four Belgian automo-

bile industries to look for economical plasma treatments which lead

to a good adhesion to various coatings. The effects of several ad-

ditives were also studied in addition to the plasma treatments. The

likelihood-based estimates were not reliable completely due to the ex-

istence of moderate number of whole-plots. Also, some of the variance

components due to batch were zero for some coatings. Assuming non-

informative priors for fixed effects and some weakly informative priors

for variance components we have obtained more sensible estimates of

variance components which were inestimable or poorly estimated by

the likelihood-based method using SAS procedure GLIMMIX. In this

study, the Bayesian methods appeared to give comparable results with

classical methods.

One response variable in the polypropylene experiment was categorical

which was converted to binary to see the effects of additives on the

outcome of interest. Unfortunately for binary responses we failed to

obtain estimates of the logistic parameters for some of the coatings as

the system did not converge. One of the reasons for this was due to

having the separation problem in the data. When one or more explana-

tory variables completely separate the responses, the problem is known

as separation. This problem causes the non-existence of likelihood es-

timates of logistic regression parameters.

We have done some novel methodological works on the separation is-

sue to minimize the problem in the light of optimal design techniques.

Though the information based D-optimality criterion is widely used in

practice, it fails to handle the separation problem appropriately. We

have proposed new probability-based optimality criteria to handle the

separation problem at the design stage of a study. Our proposed criteria

Ps- and DPs- might be worthwhile to take into account reduction of the

separation problem. However, Ps-criterion alone is not suitable to deal

with separation problem as it produces worse designs in terms of preci-

sion of the parameter estimates, i.e. with respect to D-optimality. On



the other hand the compound DPs-criterion makes a balance between

D- and Ps-optimality and produces better designs. To make designs less

sensitive to parameter misspecification, pseudo-Bayesian design crite-

rion DPSB- has been proposed. Simulation studies have verified that

Bayesian designs perform better than non-Bayesian designs by provid-

ing less bias, less median squared errors and above all less probability

of separation. Thus, newly devised Bayesian and non-Bayesian design

criteria could be useful in practice to control separation problem at the

design stage of a study.
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Chapter 1

Introduction

1.1 Preface

Undertaking experiments is a natural way to realize the best way to do things. It

is a common phenomenon to do experiments in any scientific discipline for striving

towards perfection. Statistical experimental designs attempt to answer how, with

a minimum of effort, one can discover which factors do what to which responses.

In other words, experimental design or design of experiments is a structured and

organized way to conduct and analyze controlled tests for evaluating the factors

that affect response variables.

Design of experiments was pioneered by Ronald A. Fisher in the 1920s and early

1930s at Rothamsted Experimental Station, an agricultural research station 25

miles north of London. Fisher recognized that flaws in the way in which the exper-

iment that generated the data had been performed often hampered the analysis of

data from agricultural systems. With the interactions of scientists and researchers

in various fields, he developed the insights that led to the three basic principles

of experimental design: randomization, replication, and blocking. Randomization

means random assignment of experimental units to the levels of a treatment. It

helps distributing the unusual characteristics of experimental units over the treat-

ment levels so that they do not selectively bias the outcome of the experiment.

Random assignment also allows the computation of an unbiased estimate of error

effects which are not attributable to the manipulation of the independent variable

and it makes sure that the errors are statistically independent. Replication is the
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observation of two or more experimental units under the same conditions. Replica-

tion is needed to estimate the variance of errors and obtain a more precise estimate

of treatment effects. Blocking is an experimental procedure for isolating variation

attributable to an extraneous factor. Blocking helps to remove the influence of

extraneous factors as extraneous factors are undesired sources of variation that can

affect the response variable [Montgomery, 2008].

Although the experimental design technique was first used in an agricultural con-

text, the technique has been extended successfully in industry since the 1940s. The

industrial experimental era was catalyzed by the introduction of response surface

methodology (RSM) by Box and Wilson in 1951. They identified the fundamental

differences between agricultural and industrial experiments. In industrial exper-

iments, the response variable can be observed shortly after the experiment and

experimenter can learn quickly important information from a small group of runs

that might be utilized to plan the next experiment. The RSM technique was widely

used in the chemical and process industries, particularly in research and develop-

ment works. Taguchi et al. [1987] advocated for robust parameter designs specif-

ically in making processes insensitive to environmental or other factors, obtaining

products insensitive to variation transmitted by factors, and finding levels of the

process variables that force the mean to a desired value while simultaneously reduc-

ing variability around this value [Montgomery, 1999]. However, Taguchi’s methods

were criticized widely as his methods were advocated primarily by entrepreneurs

in the West and as the underlying statistical science had not been adequately peer

reviewed [Montgomery, 2008]. Though Taguchi’s methods were criticized, his ef-

forts appeared to have positive impacts by instigating designed experiments in

the discrete part industries including automotive and aerospace manufacturing,

electronics and semiconductors, and many other industries that had little use of

experimental design techniques.

Applications of designed experiments have grown substantially in industries. More

or less industrial experimental design techniques have some common approaches to

follow. The following steps are useful while one may be performing an industrial

experiment.

1. Identification and statement of the problem.

2. Selection of the response variable.
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3. Selection of the process variables, noise factors and the interactions among

the process variables of interest.

4. Determination of factor levels and range of factor settings.

5. Choice of appropriate experimental design.

6. Experimental planning and performing the experiment.

7. Statistical data analysis, interpretation and recommendations.

The above points are self explanatory and yet further details on these are also

available in Antony and Capon [1998] and Montgomery [2008].

Though experimental design techniques are very powerful but there are some prob-

lems associated to implementation of the techniques to industries. In many situ-

ations, there is lack of communication between the industrial and the academic

worlds, therefore it limits the use of experimental design in many manufacturing

industries. There is also lack of adequate skills and expertise required by engineers

in manufacturing to define and formulate problems. Thus many engineers face dif-

ficulties in analysing a particular process quality problem and then converting the

engineering problem into statistical terms from which appropriate solutions can be

chosen. Further, even after accomplishing experiments, problems may arise from a

statistical point of view, e.g. parameter estimates may not exist due to censoring in

lifetesting experiments particularly connected to small experiments [Hamada and

Tse, 1992]. Due to small number of units often estimates of some parameters, e.g.

variance components in mixed models, might not be estimable reliably. Further,

due to the nature of the data, computational obstacles may arise, for instance,

maximum likelihood estimates (MLEs) may not exist for particular types of mod-

els under designed experiments. However, despite these deficiencies, experimental

designs are increasingly advancing in industrial experiments as they catalyze sci-

entific methods and greatly increase efficiency in industrial production in terms of

less cost, less time and better quality.

In the field of industrial experimental designs factorial designs hold a firm place. A

researcher selects a fixed number of levels of each of the factors in a factorial design

and then runs the experiment with all possible combinations. If the researcher is

unable to randomize completely the order of runs that results in generalizations
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of the factorial design called split-plot designs, strip-split plot designs etc. Split-

plot designs are widely used in industrial experiments. Complete randomization is

not possible often in industrial experiments because some factors may have levels

that are difficult to set. If hard-to-set factors are considered at the design stage,

they lead naturally to multi-stratum structures, with different factors applied in

different strata through restricted randomization, as in split-plot designs [Goos and

Gilmour, 2012]. Further, many split-plot designs yield categorical response data.

The combination of categorical data and restricted randomization necessitates the

use of generalized linear mixed models as each stratum under multi-stratum de-

signs may have random effects on the responses.

The study of random effects in mixed models is often difficult because of small

number of groups (number of strata or whole plots in multi-stratum and split-plot

designs), particularly difficulties with the estimation of variance components and

consequently with the statistical inference. To avoid these difficulties of estimation,

Bayesian analysis is suggested by earlier researchers for normal responses assum-

ing some non-informative or weakly informative priors for the relevant parameters.

This is extended to discrete responses in this Thesis.

During logistic regression analysis of binary or categorical response data in exper-

iments, researchers often face convergence difficulties due to a problem known as

‘separation’. It is an undesirable problem in models for dichotomous dependent

variables. It occurs when one or more model covariates perfectly predicts some

binary outcome. Current literature suggests that researchers need to compromise

with separation either by undertaking post hoc data adjustment or by estimation

corrections. However, apart from these solutions, the separation issue could be

handled by using newly developed optimality criteria at the design stage of an

experiment.

1.2 Problems Addressed in the Thesis

There are two main issues in this Thesis. Firstly, estimation of variance compo-

nents that were poorly estimated or estimated as zero in multi-stratum industrial

experiments. Secondly, handling separation problem that causes infinite estimates
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or non-existence of maximum likelihood estimates (MLEs) of parameters in logistic

regression model. For estimating the variance components we have implemented

Bayesian techniques as an alternative to likelihood based methods and for separa-

tion problem we have used an optimal design technique to avoid separation at the

design stage of a study. However, the two things - non-existence of MLE (or infinite

estimates) of parameters and zero estimates of variance components should not be

confused and should be treated as two separate issues- former is about random

effects and latter is about fixed effects. Bayesian methods implemented here are

not to show outright domination over frequentist methods, rather we consider as

complementary to each other and where frequentist (likelihood) methods fail then

Bayesian methods appeared to assist or vice versa.

Increasingly analysis becomes cumbersome for complex models. Often researchers

want to compare results by applying several methods. The likelihood estimates of

variance components were zero in fuel economy and polypropylene industrial exper-

iments. The main reason of having zero estimates is small to moderate number of

experimental units. Also Bayarri and Berger [2004] have clarified that maximum

likelihood estimates of variance components in hierarchical models (or variance

components models) can easily be zero, especially when there are several variance

components in the model that are being estimated. It is also quite common in

problems with numerous variance components to have at least one MLE variance

estimate equal to zero. Therefore, as the likelihood (frequentist) method fails we

consider Bayesian method as an alternative to obtain realistic estimates of vari-

ance components. But appropriate choice of priors is crucial in Bayesian analysis.

Bayarri and Berger [2004] noted that frequentists are usually not interested in

subjective, informative priors, and on the other hand Bayesians are less likely to

be interested in frequentist evaluations when using subjective, highly informative

priors. Again the most common scenarios of useful connections between frequen-

tists and Bayesians are when no external information (other than the data and

the model itself) are introduced into the analysis - in the Bayesian context, when

“objective prior distributions” are used. As we do not have firm basis to consider

any informative priors, we have implemented non-informative or weakly informa-

tive priors throughout our analysis of fuel economy and polypropylene experiments

to keep things close to frequentist ideas. However, performance of the Bayesian

and the likelihood based estimates has been assessed through simulation studies.
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We have conducted a Bayesian analysis of data from a multi-stratum design with

discrete responses in polypropylene experiment. The originality of the work is to

adapt the methodology to a new application area. On the basis of this experi-

ence from the Bayesian study of polypropylene experiment, we had an opportunity

to work for Shell Global Solutions UK, an energy consultant and technology in-

novator, through a knowledge transfer project called ‘ImpactQM Shell Transfer

Project’ that produces the second chapter in the Thesis. This is a pioneering re-

search where we have applied Bayesian methods in the fuel efficiency field, which

has also a particular feature of using very small experiments. This method is now

recommended in the Shell industrial guidelines. Finally, a statistical computational

problem known as ‘separation’ arises during binary response analysis under logis-

tic regression that leads us do some novel methodological works on optimal design

of experiments considering separation issues. The rest of this section elaborates

slightly on the topics that we studied.

In a fuel economy experiment, researchers wanted to analyze data in different

ways as they were unsure which methods to adopt in practice. This experiment

was run as a multi-stratum design as there were several strata (sessions-morning

vs afternoon, days nested under weeks) in the experiment. Initially they applied

likelihood-based methods, particularly linear mixed models to model the continu-

ous responses. The purpose was to compare performances of car fuels. However,

variance components due to random effects were estimated as 0 which was unreal-

istic. In their further investigation, they found the Bayesian method as a possible

alternative described in Gilmour and Goos [2009] to estimate the variance compo-

nents. Assuming some weakly informative priors on the variance components, the

problem can be resolved, thus estimating the parameters and their standard errors

more precisely. Simulation studies were accomplished to determine which method

likelihood or Bayesian produces better estimates and further which set of priors

produces the best estimates. The quality of point estimates was assessed by bias,

relative bias, mean and median square errors and quality of interval estimates was

measured by the coverage probabilities, average and median widths of the confi-

dence/credible intervals.

Generalized linear models (GLMs) are widely used to analyze categorical response

data, including in factorial designs. The combination of categorical data and re-
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stricted randomization in multi-stratum designs necessitates the use of generalized

linear mixed models. The successful estimation of parameters and variance com-

ponents of a mixed model depends on the number of whole plots in a split-plot

design. An inadequate number of whole plots is a hindrance in the proper esti-

mation of variance components. In the polypropylene industrial experiment, the

number of whole plots (batches) was moderate, therefore, the experimenters could

not estimate a variance component accurately [Goos and Gilmour, 2012]. However,

a Bayesian method assuming some weakly informative priors for variance compo-

nents was suggested to overcome the hurdle. In this study, we have implemented

the Bayesian techniques to estimate the variance components that were inestimable

or poorly estimated in likelihood-based methods.

When responses are binary, then often it might be impossible to obtain maximum

likelihood estimates (MLEs) of the logistic model parameters due to convergence

difficulties. This happens due to a problem known as ‘separation’ that occurs due

to the perfect prediction of outcome of interest by one or more covariates. It is a

phenomenon associated with models including logistic and probit models for binary

or categorical outcomes. We have carried out a study on the separation issue in

the context of optimal design theory.

1.3 Literature Review

In this section, some literature have been reviewed that will help understanding

the background of this study.

1.3.1 Bayesian Analysis of Data from Multi-Stratum and

Split-plot Designs

In some multi-factor experiments complete randomization is not feasible. This of-

ten results in a generalization of the factorial design called the split-plot designs. A

split-plot design is a blocked experiment, where blocks themselves serve as experi-

mental units for a subset of the factors. The blocks are referred to as whole plots,

while the experimental units within blocks are called split plots, split units or sub-

plots [Jones and Nachtsheim, 2009]. Hard-to-set factors in split-plot designs lead
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naturally to multi-stratum structures if they are taken into account at the design

stage. Mixed models are used to analyze multi-stratum designs as each stratum

may have random effects on the responses.

Letsinger et al. [1996] pointed out that the results from data analysis of split-plot

response surface designs could be misleading if experimenters ignore the multi-

stratum structure. For normal responses, they recommended the use of a linear

mixed model with variance component parameters estimated by residual maxi-

mum likelihood (REML) and fixed effect parameters by empirical generalized least

squares (GLS). This has become the standard way of analysing data from indus-

trial multi-stratum experiments and is usually successful if there are ample residual

degrees of freedom in each stratum.

A disadvantage of REML-GLS estimation is that it can give highly undesirable and

misleading conclusions in non-orthogonal split-plot designs with few main plots.

This proved to be true in a freeze-drying coffee experiment reported by Gilmour

et al. [2000] where the main plot variance component was estimated to be 0 using

REML-GLS methods. Experience suggested that this was implausible, but infer-

ences and estimated standard errors for fixed effects use this estimate. Gilmour and

Goos [2009] implemented a Bayesian method using informative priors for the main

plot variance components in linear mixed models (LMMs) for the freeze-drying

coffee experiments where the responses were normal.

Industrial experiments frequently involve non-normal response data as in other ar-

eas of application. Examples of non-normal response could be a binary response

e.g. defective or non-defective, success or failure and so on, the response of inter-

est can be a count, e.g. the number of faults in an item or number of success in

an experiment. Goos and Gilmour [2012] analyzed binary and categorical data in

a multi-stratum polypropylene experiment using generalized linear mixed models

and a likelihood-based estimation and inference approach implemented in the SAS

procedure GLIMMIX. Some of the variance components were estimated to be 0,

perhaps due to the small number of plots in the higher strata or due to estimat-

ing several variance components simultaneously as clarified by Bayarri and Berger

[2004]. Therefore, they suggested the possibility of performing a Bayesian analy-

sis assuming weakly informative priors for the variance components corresponding
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to the higher strata. Fong et al. [2010] also mention that likelihood-based in-

ferences can be unreliable, with variance components being particularly difficult

to estimate for small samples. In this study, we have implemented the Bayesian

methods assuming some informative and weakly informative priors for the variance

components and obtained reasonable estimates of variance components that were

inestimable or poorly estimated by likelihood-based methods.

1.3.2 Non-existence of Maximum Likelihood Estimates and

Separation Problem in Logistic Regression

During analysis of categorical data under various models, for instance, Poisson,

binomial, multinomial, log-linear models including logit models, often maximum

likelihood estimates (MLEs) do not exist. Fienberg and Rinaldo [2007] used the

wording “non-existence of the MLE” to signify lack of solutions for the maximum

likelihood optimization problem. The reason behind this is the existence of the

sampling zeros in the contingency tables. The non-existence of MLE is not only

dependent on zeros in contingency table but also the position of zeros in the ta-

ble. Being caused by the presence of sampling zeros, non-existence of the MLE

is more likely to occur in sparse tables with small counts, a setting in which the

traditional χ2- asymptotic approximation to various measures of goodness of fit is

known to be unreliable. Specific examples how sampling zeros, where separation is

a special case, causes non-existence of MLEs have been given in Chapter 4. Also

further details on the non-existence of MLE and the position of sampling zeros in

the contingency table are given in Fienberg and Rinaldo [2007]. Haberman [1974]

discusses MLE non-existence for log-linear models where logistic model is a spe-

cial case. In his terminology, MLE existence means finiteness of the solution. He

proves a very general theorem on necessary and sufficient conditions for the maxi-

mum likelihood estimate to exist and also he demonstrates that for most models, if

the maximum likelihood solution exists, it is unique, as a result of the concavity of

the likelihood function. Necessary and sufficient conditions for existence constitute

a linear programme, which is typically hard to solve in practice. Silvapulle and

Burridge [1986] and Hamada and Tse [1988] showed that for popular reliability

models, such as log-normal, Weibull, and exponential regression models, the ques-

tion of the MLEs existence reduces to solving a LP problem. For simple linear

regression, Hamada and Tse [1988] described how the LP problem can be reduced

to checking a few data configurations. However, for small industrial factorial ex-
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periments Hamada and Tse [1992] shows that a simple linear programming (LP)

problem can be solved by a standard LP algorithm.

All problems of non-existence of the MLE depend on the positions of the sam-

pling zeros in the contingency table. It is observed that not all possible sampling

zeros are causing non-existence problem. Even with the existence of positive mar-

gins there can occur MLE non-existence problem due to having some zeros inside

contingency table. Although non-existence of the MLE arises most frequently in

sparse tables, it can very well occur in tables with large counts and very few zero

cells [Fienberg and Rinaldo, 2007].

Fienberg and Rinaldo [2007] describes the implications of sampling zeros for the

existence of maximum likelihood estimates for log-linear models. Understanding

the problem of non-existence is crucial to the analysis of large sparse contingency

tables. Gloneck et al. [1988] proved that positivity of the margins is a necessary

conditions for existence of the MLE if and only if the model is decomposable.

Specific examples on how sampling zeros in the contingency table can cause MLE

non-existence are have been given in Section 4.2 of Chapter 4. One special case

of sampling zeros in the contingency table is separation problem where response

is completely separated into two parts. Separation causes numerical problem of

non-existence of MLE for logistic model.

Haberman [1977] discusses likelihood equations and necessary and sufficient con-

ditions in exponential models, where exponential response models are the gener-

alization of logit models for quantal responses. He also explores the asymptotic

properties of MLEs.

As mentioned before, although Haberman [1974] gave necessary and sufficient con-

ditions for the existence of the MLE in log-linear models including logistic model,

his characterization is non-constructive in the sense that it does not directly lead

to implementable numerical procedures and also fail to suggest alternative meth-

ods of inference in case of an undefined MLE. Despite these deficiencies, Haber-

man’s (1974) results have remained all that exist in the published statistical liter-

ature [Fienberg and Rinaldo, 2007]. Perhaps this is the main reason that surpris-

ingly the authors, for instance, Heinze and Schemper [2002], Bryson and Johnson
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[1981], Santner and Duffy [1986], Silvapulle [1981], Zorn [2005], Clarkson and Jen-

nrich [1991], Jacobsen [1989], Altman et al. [2004], Allison [2008], Agresti and Yang

[1987], Lamotte [2005] who deal with separation issue, did not mention Haberman

[1974]’s work in their literature. Again, Albert and Anderson [1984] terms that

Haberman [1974]’s works rather theoretical and has not been useful in solving real

life problems related to non-existence of MLE. Therefore, it is not astonishing that

virtually all implemented computational algorithms for fitting log-linear models

are incapable of handling these cases stated by Haberman [1974]. For example, in

SAS, the presence of sampling zero is dealt with by adding small positive quantities

to the zero cells to facilitate the convergence of numerical procedures. However,

this common practice can be misleading as clarified by Fienberg and Rinaldo [2007].

Furthermore, no one has presented yet a numerical procedure specially designed

to check the existence of the MLE and the only indication of non-existence is lack

of convergence of whether algorithm is used to compute the MLE. As a result, the

possibility of non-existence of the MLE, even though well known, is rarely concern

for the practitioners. Moreover, even for those cases in which the non-existence is

easily detectable e.g. when the observed table exhibits zero margins, there do not

exist appropriate inferential procedures for dealing with such situations [Fienberg

and Rinaldo, 2007].

The event of separation is observed during the fitting process of logistic models

where at least one parameter estimate diverges to ±∞. Separation primarily oc-

curs in small samples with several unbalanced and highly predictive covariates.

The name ‘separation’ is given by Albert and Anderson [1984] as responses and

non-responses are perfectly separated by a single factor or by a non-trivial linear

combination of factors [Heinze and Schemper, 2002]. The phenomenon of sepa-

ration is also known as ‘monotone likelihood’ [Bryson and Johnson, 1981]. The

problem of separation is by no means negligible and may occur even if the under-

lying model parameters are low in absolute value. Substantively, separation often

forces researchers to make difficult, consequential, and largely arbitrary choices

about data, measurement, and model specification [Zorn, 2005].

Logistic regression data sets were classified by Albert and Anderson [1984] into

three mutually exclusive and exhaustive categories namely complete separation,
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quasi-complete separation, and overlap. To check whether the data is of type

complete, quasi-complete, or overlapped Santner and Duffy [1986] developed a lin-

ear programme. They verified that the maximum likelihood estimates exists only

for the overlapped data. Clarkson and Jennrich [1991] also developed similar al-

gorithms to compute extended maximum likelihood estimates when one or more

parameter estimates are infinite at the supremum of the likelihood.

Often in medical and other research, the outcome is binary and parameter estimates

of logistic regression are not available (see examples in Heinze and Schemper [2002]

and Silvapulle [1981]). In general, one does not assume infinite parameter values in

underlying populations. The problem of separation is rather one of non-existence

of the maximum likelihood estimate under special conditions in a sample [Jacob-

sen, 1989]. An infinite estimate can also be regarded as extremely inaccurate, the

inaccuracy resulting in Wald confidence intervals of infinite width [Lesaffre and

Marx, 1993].

Altman et al. [2004] and Allison [2008] explained how and why numerical algorithms

for maximum likelihood estimation of the logistic regression model sometimes fail

to converge due to separation. Heinze and Schemper [2002] have shown how the

probability of separation depends on sample size, on the number of dichotomous

covariates, the magnitude of the odds ratios associated with them and on the de-

gree of balance in their distribution.

The solutions of separations are addressed in many ways in the literature. The

naive method is the deletion of the variable(s) causing separation. Omission of the

problem variable(s) is strongly discouraged as no information remains available on

it though it might be an important factor. Deleting variables with strong effects

will certainly obscure the effects of those varibles and is likely to bias the coeffi-

cients for the other variables in the model Allison [2008].

Ad hoc adjustment (data manipulation) prior to a standard analysis may produce

finite estimates. However, simple adjustment of cell frequencies can have unde-

sirable properties [Agresti and Yang, 1987]. Researchers often choose a different

model instead of the logistic regression model to fit the available data. Changing to

a different model might help to avoid the problem, but models whose parameters
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have different interpretations that are not relevant to the logistic model may be

less appealing.

Hirji et al. [1989] demonstrated that the use of exact logistic regression allows

replacement of unsuitable maximum likelihood estimates by a median unbiased es-

timate. However, this method may be unsuitable with the existence of a continuous

covariate or multiple dichotomous covariates [Heinze and Schemper, 2002].

Firth [1993] developed penalized maximum likelihood estimation (PMLE) by a

modification of the score function of logistic regression to reduce the bias of MLEs.

However, Wald tests based on the standard errors for variables causing separation

can be highly inaccurate similar to other conventional ML methods.

Lamotte [2005] bypasses the issue of separation by finding the supremum of like-

lihood function of the response variable and thereby computed exact conditional

p-values based on the likelihood ratio statistic in logistic regression. However, there

is no indication how to find intermediate probabilities of outcome variables given

the covariates by his method.

In all of these studies discussed above, the emphasis is mainly on distinguishing

whether MLEs exist for a single outcome or, when they do not, finding reason-

able substitutes, or adjusting other things to bypass separation issues. None of

these studies addresses the problem in the light of optimal design of experiments.

The problem can be controlled at the design stage of an experiment to reduce the

risk of facing the problem of separation at the estimation stage. We propose new

probability-based optimality criteria that will be minimized to generate optimal

design values that will reduce the probability of separation during analysis of ex-

periments and thus enable estimation of MLEs appropriately. Neither forcefully

omitting of any covarite or post hoc adjustment will be required when applying the

method of probability-based optimal designs.
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1.4 Structure of Thesis

The rest of thesis is organized as follows. In Chapter 2, the Bayesian analyses of

fuel economy experiments are described under multi-stratum designs. The Bayesian

analyses of data from multi-stratum and split-plot designs with discrete responses

are discussed in Chapter 3. Some novel methodological works have been accom-

plished concerning optimal design of experiments with separation under logistic re-

gression in Chapter 4. Finally, some discussions and conclusions have been drawn

in Chapter 5. A sample of computer codes written in WinBUGS and the R statis-

tical programming language is found in an Appendix.
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Chapter 2

Analysis of Fuel Economy

Experiments Using Bayesian

Methods

2.1 Introduction

In the context of transport, fuel economy refers to the fuel efficiency relationship

between the distance travelled by an automobile and the amount of fuel consumed.

Fuel economy is expressed in miles per gallon (mpg) or kilometres per litre (km/L).

Fuel efficiency is dependent on many aspects of a vehicle, for instance, engine pa-

rameters, aerodynamic drag, weight, rolling resistance. To improve economic usage

of fuel, many types of experiment are being done in automobile laboratories.

Shell Global Solutions UK, a leading-edge energy consultant and technology in-

novator, has conducted many experiments to distinguish performances of different

fuels. The data from one of the fuel economy experiments were analyzed by Shell

using classical methods. As the experiment was expensive, the experimenters were

interested to analyze the data using some other statistical methods for comparison

purposes. However, more specifically, this work was motivated by the estimation

problems of variance components in fuel economy and round robin experiments.

The classical methods estimated variance components to be zero which was not

realistic. A Bayesian approach may resolve the problem associated with the zero

estimates of variance components by introducing a certain amount of prior in-
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2. Fuel Economy Experiments

formation on the parameters. Therefore, a Bayesian method was implemented

to compare with the outputs obtained from the likelihood method as well as to

overcome the difficulties related to the variance component estimation. Further,

simulation studies were carried out to assess, and to compare the quality of point

and interval estimates obtained from likelihood and Bayesian methods.

This study was a part of a knowledge transfer project known as ‘ImpactQM-Shell

Transfer Project’ where I have implemented Bayesian methods under joint super-

vision of my PhD adviser and experts based at Shell Technology Centre, Thornton,

Chester, UK.

2.2 Bayesian Models

A statistical model describes the relationship between variables in the form of

mathematical equations. Let us, for example, consider a simple linear regression

model

Yi = β0 + β1Xi + εi (2.1)

where Yi ∼ N(µi, σ
2), with µi = β0 + β1Xi and τ = 1/σ2 (a precision parame-

ter), β1 is the rate of change in E(Y ) due to change in X and ε is an error term.

In classical method the parameters (i.e. β0 and β1) are assumed to be fixed. In

Bayesian analysis β0 and β1 also follow some distributions. This means that some

prior information is available on β0 and β1. The prior distributions of β0 and β1

are subjective. In Bayesian models we change the form of normal distributions

from N(µ, σ2) to N(µ, τ), where τ = 1/σ2. Therefore, from now onwards, we will

use the precision parameter (τ) instead of variance parameter (σ2) in the Bayesian

models. The estimates obtained combining prior belief and available data are called

posterior estimates.

Bayesian inference determines the posterior distribution of the parameter using
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2. Fuel Economy Experiments

Bayes’ theorem. A Bayesian version of model (2.1), for example, can be written as

Yi ∼ N (µi, τ) (2.2)

β0 ∼ N (0, 0.0001) (2.3)

β1 ∼ N (0, 0.0001) (2.4)

τ ∼ Gamma (0.0001, 0.0001) . (2.5)

It is found in classical methods that the estimates of β0 and β1 follow normal

distributions for large samples. However, the estimates of β0 and β1 follow normal

distributions even with small samples as long as the normality assumption holds for

the residuals (ε) [Searle, 2012]. β0 ∼ N (0, 0.0001) means that β0 follows a normal

distribution with mean 0 and variance 10000. Often gamma priors are assumed

for precision parameters. τ ∼ Gamma (0.0001, 0.0001) means that τ follows a

gamma distribution with mean 1 and variance 10000. In equations (2.3), (2.4)

and (2.5) we have used noninformative priors for β0 , β1 and τ . The rationale for

using noninformative prior distributions is often said to be to let the data speak for

themselves, so that inferences are unaffected by information external to the current

data [Palta, 2003].

2.3 Bayesian Inference

Let D denote observed data, and θ denote model parameters. The joint distribution

of D and θ is P (D, θ) which can be expressed as

P (D, θ) = P (D|θ)P (θ), (2.6)

where P (D|θ) is a likelihood and P (θ) is a prior.

Having observed D, Bayes theorem is used to determine the distribution of θ con-

ditional on D

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

. (2.7)

P (θ|D) is called the posterior distribution of θ, and is the object of all Bayesian
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2. Fuel Economy Experiments

inference. P (D) is called the marginal distribution of D.
∫
P (D|θ)P (θ)dθ is

called the normalizing constant. The posterior expectation of θ is

E [θ|D] =

∫
θP (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

. (2.8)

Until recently the integrations in (2.7) and (2.8) have been the source of most

of the practical difficulties in Bayesian inference, especially in high dimensions.

In most applications, analytic evaluation of the expectation (population mean)

E [θ|D] is impossible. Alternative approaches of evaluations are numerical ap-

proximation, Laplace approximation, and Markov chain Monte Carlo (MCMC)

integration. There is no doubt that the introduction of Markov chain Monte Carlo

methods has revolutionized Bayesian statistics [Besag, 2001].

2.4 Markov Chain Monte Carlo (MCMC)

2.4.1 Why MCMC in Bayesian Methods?

The ability to integrate complex and high dimensional functions is extremely im-

portant in Bayesian statistics, whether it is for calculating the normalizing constant,

the marginal distribution, or the expectation. Often, an explicit evaluation of the

integrals, for instance the integrals defined in (2.7) and (2.8), is not possible for

higher dimensions and, traditionally, we would be forced to use numerical inte-

gration or analytic approximation techniques [Brooks, 1998]. The Markov chain

Monte Carlo (MCMC) method provides an alternative whereby we sample from

the posterior directly, and obtain sample estimates of the quantities of interest,

thereby performing the integration implicitly.

2.4.2 Three Related Terms

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for

sampling from probability distributions based on constructing a Markov chain.

The Metropolis-Hastings algorithm is a MCMC technique for obtaining a se-

quence of random samples from probability distributions for which direct sampling
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2. Fuel Economy Experiments

is difficult. This sequence can be used to approximate the distribution (i.e. to gen-

erate a histogram) or, to compute an integral (such as an expected value).

Gibbs Sampling is a special case of the Metropolis-Hastings algorithm which

is usually faster and easier to use but is less generally applicable. This algorithm

is used to generate a sequence of samples from a joint distribution of two or more

random variables.

2.4.3 Gibbs Sampling

The technique of Gibbs sampling has been applied through a widely used Bayesian

platform WinBUGS in all analyses of the current thesis. Gibbs sampling is one of

the MCMC methods. The basic idea of MCMC methods is to simulate from the

distribution we are interested in and then use the simulated sample to estimate

parameters.

Suppose we have a problem with parameters, say β0, β1, and β2. Gibbs sampling

works by iteratively drawing samples from the full conditional distributions of

unobserved nodes. The algorithm proceeds according to the following steps:

Step 1: Choose initial estimates β
(0)
0 , β

(0)
1 , and β

(0)
2 . Let j = 0.

Step 2: Given current estimates β
(j)
0 , β

(j)
1 , and β

(j)
2 simulate new values

β
(j+1)
0 from P

(
β0|β(j)

1 , β
(j)
2 , D

)
β
(j+1)
1 from P

(
β1|β(j+1)

0 , β
(j)
2 , D

)
β
(j+1)
2 from P

(
β2|β(j+1)

0 , β
(j+1)
1 , D

)

Step 3: Put j = j + 1 and return to Step 2.
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Posterior Estimates

The posterior means of β0, β1, and β2 can be estimated as follows

β̂0 ≈
1

N

N∑
j=1

β
(j)
0 , β̂1 ≈

1

N

N∑
j=1

β
(j)
1 , β̂2 ≈

1

N

N∑
j=1

β
(j)
2 ,

where N is the sample size, i.e. the number of MCMC samples used. It is essential to

throw away some iterations at the beginning of an MCMC run as in the early time

steps the probability distribution is not straight away like the target distribution.

The influence of the arbitrary starting points is not desired. The early period that

is excluded is known as the ‘burn-in’ period [Kruschke, 2011]. If the burn-in period

has length M then estimates will be as follows

β̂0 ≈
1

N −M

N∑
j=M+1

β
(j)
0 , β̂1 ≈

1

N −M

N∑
j=M+1

β
(j)
1 ,

β̂2 ≈
1

N −M

N∑
j=M+1

β
(j)
2 .

In the burn-in period the first M iterations are removed from the sample in order

to avoid the influence of the initial values. If the generated sample is large enough,

the effect of this period on the posterior estimates is minimal [Ntzoufras, 2009].

2.4.4 Software to Implement MCMC

Though MCMC methods are used widely in the Bayesian statistical community,

interestingly few programmes are available for their implementation. This is partly

because algorithms are generally fairly problem specific and there is no automatic

mechanism for choosing the best implementation procedure for any particular prob-

lem [Brooks, 1998]. However, BUGS (Bayesian inference Using Gibbs Sampling)

has appeared to solve some of these problems and is widely used by statistical

practitioners. The Windows version of the BUGS programme is known as Win-

BUGS which is a freeware package (see http://www.mrc-bsu.cam.ac.uk/bugs/ and

Lunn et al. [2000]). In addition to this, recently available other open source soft-

wares are Bayesian Filtering Library (BFL), Just another Gibbs sampler (JAGS),

LaplacesDemon, GNU MCSim, and Stan. However, we will use two freeware soft-
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ware namely WinBUGS and R throughout our studies.

WinBUGS is a programming language based software that is used to generate a

random sample from the posterior distribution of the parameters of a Bayesian

model [Ntzoufras, 2009]. The user only needs to specify data, the structure of the

model under consideration, and some initial values for the model parameters.

2.5 Case Studies

We have investigated two anonymous fuels - test (T) and base (B). The data was

anonymised by Shell as they are commercially important and artificially manipu-

lated keeping them as realistic as possible. We have compared the performances of

T and B including several contrasts. Nested models were studied to see the effect

of factors under nesting. Round robin programmes were implemented in order to

understand and quantify variation in test methods.

2.5.1 Fuel Economy Experiments

Fuels B (Base) and T (Test) are tested in order to assess which gives the better fuel

economy in a vehicle. The experiment was run on three separate cars for two weeks

each of which had three days. There were two sessions-morning and afternoon in

each day. However, we will present analysis for one car only in this chapter. The

response variable, measured on a continuous scale, was distance crossed by a car

per gallon of fuel burned.

Underlying Design

Out of three cars, we consider the experiment with one car to explain the underly-

ing design. Both the test and base fuels were tested in the car for two weeks each

of which has three days (see Table 2.1). Each of the cars had two test sessions-

morning and afternoon in a day. Once B or T is treated in a car, it is difficult

to remove it from the fuel tank. The car had to undergo three back-to-back tests

(BBB or TTT) in a session. In the morning (AM) of day 1 under week 1, there

were three back-to-back tests on the base fuel (BBB) and similarly there were five
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2. Fuel Economy Experiments

Table 2.1: Underlying design in the fuel economy experiment

more series of back-to-back tests on fuel B in the first week. At the end of first

week, there was an interval of 4-5 days before starting second round of the tests on

the same car. In the meantime there was cleaning of treatments in the vehicle to

remove previous fuel effects (if there were any) in the experiment. In the second

week, the last three series of tests were on fuel T.

In the design B-T means that change of treatment from base fuel to test fuel and

B-B or T-T means dummy change of treatment, implying actually no change of

treatment. Some vehicles have a control week followed by a test week and others

have a test week followed by a control week. We assume that the three back-to-
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2. Fuel Economy Experiments

back tests in each half-day session have been averaged. We thus have two results

per car per day, one from the morning and one from the afternoon. Variance

components are considered for a treatment change, day to day variation or week

to week variation subject to full clear out of treatment and break of 4-5 days.

2.5.1.1 Example Data Set

The fuel economy raw data set is presented in Table 2.2. The experiment was

conducted in two weeks shown in the first column. Days were numbered as 1, 2, 3 for

the first week and 4, 5, 6 for the second week. There were two sessions- morning and

afternoon containing three trials each (e.g. BBB or TTT). The response variable

Y on a continuous scale represents miles crossed by a vehicle given a unit gallon of

fuel.

For simplicity, we assume that the three back-to-back tests in each half-day session

have been averaged. We thus have two results per car per day, one from the morning

and one from the afternoon. In Table 2.2 we treat half-day averages from all six

days as single data point and calculate pooled estimates of between and within

day variation. After manipulation, Table 2.2 has been summarized in Table 2.3 to

study different contrasts and nested models.

The objective is to estimate the mean for each fuel and the difference in means and

to find the median, 25th percentile, and 75th percentile of the posterior distribu-

tions of base fuel, test fuel, fuel difference, and day to day variance component.

2.5.1.2 Contrast: T-B

We extract data of week 2 from Table 2.3 to prepare Table 2.4 and on days 1-3 we

compare fuels B and T combining between day and within day information.

Model

The mixed model (2.9) has been considered to analyze contrast T-B.

Yjkm = α + βj + δk + εjkm (2.9)

where Yjkm ∼ N(µjk, τ) is the response corresponding to the m-th test (m = 1 or
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Table 2.2: Data before averaging over back-to-back tests

Week Day Session Treatment Y
1 1 am B 31.90993
1 1 am B 31.61670
1 1 am B 32.07328
1 1 pm B 32.38294
1 1 pm B 32.35951
1 1 pm B 32.51994
1 2 am B 31.92975
1 2 am B 32.32851
1 2 am B 31.67399
1 2 pm B 31.79294
1 2 pm B 31.49287
1 2 pm B 31.44593
1 3 am B 31.76795
1 3 am B 31.36462
1 3 am B 31.82962
1 3 pm B 31.87879
1 3 pm B 32.04046
1 3 pm B 31.89035
2 4 am B 32.11118
2 4 am B 32.41172
2 4 am B 32.43854
2 4 pm B 32.08281
2 4 pm B 32.60450
2 4 pm B 32.17017
2 5 am B 32.08908
2 5 am B 32.15086
2 5 am B 31.69741
2 5 pm T 33.87101
2 5 pm T 33.24747
2 5 pm T 33.71225
2 6 am T 33.08393
2 6 am T 33.62343
2 6 am T 33.31008
2 6 pm T 33.86173
2 6 pm T 33.89393
2 6 pm T 33.14460
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Table 2.3: Data averaged over back-to-back repeats

Week Day Session Treatment Y
1 1 am B 31.86663
1 1 pm B 32.42080
1 2 am B 31.97741
1 2 pm B 31.57725
1 3 am B 31.65406
1 3 pm B 31.93653
2 1 am B 32.32048
2 1 pm B 32.28583
2 2 am B 31.97912
2 2 pm T 33.61024
2 3 am T 33.33915
2 3 pm T 33.63342

2) on day k (k = 1, 2, 3) corresponding to the test fuel j (j = 1 or 2) with mean

µjk = E(Yjkm|δk) = α + βj + δk and precision τ = 1/σ2, βj is the fixed effect due

to the jth fuel with the constraint β1 = 0, δk is the day-to-day error term (i.e.

random effects due to kth day) which follows a normal distribution with mean zero

and variance σ2
b , and εjkm is the within-day error term with mean zero and variance

σ2. We can define within-day correlation by ρ =
σ2
b

σ2
b+σ

2 or equivalently ρ = τ
η+τ

which can be also be expressed as η = (1−ρ)×τ
ρ

, where η = 1/σ2
b .

Table 2.4: Data to test contrast T-B

Week Day Session Treatment Y
2 1 am B 32.32048
2 1 pm B 32.28583
2 2 am B 31.97912
2 2 pm T 33.61024
2 3 am T 33.33915
2 3 pm T 33.63342

We perform Bayesian analysis for the contrast T-B assuming the following priors

and using WinBUGS 1.4 (see the Appendix for WinBUGS codes related to this

analysis).
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Priors and Results

We assume priors corresponding to model (2.9) as follows

α ∼ N(38, 0.1), βj ∼ N(0, 0.001)

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20)

The prior for α was centered at 38 to incorporate the notion of mean fuel effect

which might hover around 38 as believed by the Shell experimenters. Therefore,

we assume a weakly informative prior for α by taking α ∼ N(38, 0.1) and imple-

mented at the beginning. However, Congdon [2007] suggested that, in the absence

of prior information about the direction or magnitude of covariate effects, flat pri-

ors may be used by taking univariate normal distributions with mean zero and

large variance. The effect of using normal priors with means 0 and large vari-

ances is that parameter estimates are smoothed towards zero as large variances are

used [Galindo-Garre et al., 2004]. Therefore, we tried a non-informative prior for βj

by setting β2 ∼ N(0, 0.001) i.e. β2 follows a normal distribution with mean 0 and lit-

tle precision 0.001 or large variance 1000. Also, we assumed a non-informative prior

for σ by assuming log(σ) ∼ U(−20, 20). The prior for the intra-class correlation ρ

is non-informative which is used to compute the precision of the day-to-day error

term. The results are presented in Table 2.5 assuming the above set of priors. How-

ever, a completely non-informative prior for α, for instance α ∼ N(0, 0.001), and

weakly informative prior α ∼ N(38, 0.1) provide similar results to those presented

in Table 2.5 as the concept of non-informative is originated from the assumption

of very little precision.

There were some autocorrelation effects in the results before thinning (where thin-

ning refers to removal of some values from the chain). When data were thinned by

15 (i.e. instead of using every step in the chain, we only used every 15th step), then

the autocorrelation disappeared (see also the discussion in Section 2.6). Posterior

means were calculated on the basis of the sample with size 10000. First, 1000

samples were ignored to remove initial fluctuations of the chains. The effect of the

base fuel (B) is 32.17 mile/gallon and of the test fuel (T) is 33.59. The difference

of effects (β2) between test and base fuel is 1.421 with 95% Bayesian credible in-

terval (0.952 , 1.877). In the table P(2.5) and P(97.5) denote the 2.5th and 97.5th

percentiles of posterior estimates respectively. The variance between days (σ2
b ) is
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Table 2.5: Results for contrast T-B

Effect Mean SD MC Error P(2.5) Median P(97.5)
B (α) 32.170 0.205 0.002 31.780 32.170 32.580

Fuel Diff(β2) 1.421 0.240 0.002 0.952 1.420 1.877
T 33.590 0.209 0.002 33.190 33.580 34.040
µ11 32.250 0.139 0.002 31.980 32.250 32.530
µ21 32.250 0.139 0.002 31.980 32.250 32.530
µ12 32.120 0.178 0.002 31.780 32.120 32.480
µ22 33.540 0.168 0.002 33.200 33.540 33.870
µ13 33.520 0.138 0.002 33.250 33.520 33.800
µ23 33.520 0.138 0.002 33.250 33.520 33.800
σ2
b 0.059 0.181 0.003 0.001 0.021 0.362

0.059; µ12 is the mean effect due to fuel B on day 2; µ21 is the effect due to fuel T

on day 1 and so on. None of the credible intervals contain zero, which implies that

all the effects considered are important. However, the lower limit of 95% credible

interval of σ2
b is very close to zero. As the mean is larger than the median of the

distribution of σ2
b , it implies that the distribution of σ2

b is positively skewed which

will also be evident in the portrait of kernel density of σ2
b presented in Section 2.6.1.

2.5.1.3 Contrast: B2-B1

In Table 2.2 on days 1-3, we treat the first nine tests (day 1, day 2 am) as fuel B1

and the last nine tests (day 2 pm, day 3) as fuel B2 (although we know that both

B1 and B2 are actually B). We want to compare the performance of B2 and B1

and ultimately want to study the benefit of switching whether B to B or B to T is

better in Section 2.5.1.4.

Mixed Model

We consider the mixed linear model regarding contrast B2-B1.

Yjkm = α + βj + δk + εjkm, (2.10)

where Yjkm is the response corresponding to the mth test (m = 1 or 2) on day k

(k = 1, 2, 3) corresponding to the test fuel fuel j (j = 1 or 2), α is the intercept,

βj is the effect due to jth fuel, δk is the random effect due to kth day, εjkm is the
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error term corresponding to the mth test (m = 1 or 2) of fuel j (j = 1 or 2) on

day k (k = 1, 2, 3).

Priors and Results

We assume priors for the parameters in model (2.10).

α ∼ N(0, 0.001), β2 ∼ N(0, 0.001)

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20).

The priors for α , β2, ρ (intra-class correlation), and log(σ) are assumed to be

non-informative. Previously, the prior for α was considered as α ∼ N(38, 0.1). As

there is no substantial differences in the results either assuming α ∼ N(38, 0.1)

or α ∼ N(0, 0.001) i.e. non-informative prior for α, we use only non-informative

priors for α in the subsequent analysis. The results concerning the contrast B2-B1

are presented in Table 2.6. The programme related to this table is given in the

Appendix.

Table 2.6: Results for contrast B2-B1

Effect Mean SD MC Error P(2.5) Median P(97.5)
B1 32.140 0.311 0.003 31.600 32.120 32.770
B2 31.730 0.289 0.003 31.190 31.730 32.330
Fuel Diff β2 -0.411 0.361 0.004 -1.118 -0.403 0.257
σ2
b 0.115 0.454 0.005 0.005 0.047 0.562

2.5.1.4 Contrast: (T-B)-(B2-B1)

We want to see whether there is a benefit of changing fuels in the car i.e. switching B

to T or B to B has any extra benefit or not. Data regarding contrast (T-B)-(B2-B1)

is given in Table 2.7.

Mixed Model

We have created three dummy variables to present the mixed model (2.11).
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Table 2.7: Data for contrast(T-B)-(B2-B1)

Day Fuel Y
1 B1 31.8666
1 B1 32.4208
2 B1 31.9774
2 B2 31.5772
3 B2 31.6541
3 B2 31.9365
4 B 32.3205
4 B 32.2858
5 B 31.9791
5 T 33.6102
6 T 33.3391
6 T 33.6334

Yjk = α + β2D2k + β3D3k + β4D4k + δk + εjk (2.11)

where Yjk is the response corresponding to the test fuel j (j = 2, 3, 4) on day k (k

= 1, 2, . . . , 6), α is the intercept, βj is the effect due to the jth fuel (note that j=

2, 3, and 4 corresponds to fuel ‘B2’, ‘B’, and ‘T’ respectively), D2k is the dummy

variable corresponding to fuel B2, D3k is the dummy variable corresponding to fuel

B, D4k is the dummy variable corresponding to fuel T, δk is the random effect due

to kth day, εjk is the error term corresponding to the test fuel j (j = 2, 3, 4) on

day k (k = 1, 2, . . . , 6).

Thus, we have the mean effects α, α+β2, α+β3, and α+β4 corresponding to fuels

B1, B2, B and T respectively.

Priors and Results

We assume priors for the parameters in model (2.11):

α ∼ N(0, 0.0001), βj ∼ N(0, 0.0001), j = 2, 3, 4;

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20).
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Table 2.8: Results from contrast (T-B)-(B2-B1)

Effect Mean SD MC Error P 2.5 Median P 97.5
α (B1) 32.090 0.187 0.004 31.710 32.090 32.460
β2 -0.365 0.222 0.004 -0.802 -0.371 0.080
β3 1.411 0.232 0.006 0.968 1.409 1.912
β4 1.776 0.320 0.008 1.138 1.778 2.424
B2 31.720 0.173 0.003 31.380 31.720 32.070
B 32.150 0.179 0.004 31.790 32.160 32.500
T 33.560 0.180 0.005 33.210 33.560 33.940
B2-B1 -0.365 0.222 0.004 -0.802 -0.371 0.080
T-B 1.411 0.232 0.006 0.968 1.409 1.912
(T-B)-(B2-B1) 1.776 0.320 0.008 1.138 1.778 2.424
σ2
b 0.033 0.052 0.001 0.001 0.017 0.177

From Table 2.8 we see that the difference between B2 and B1 might be zero as the

95% credible interval for B2-B1 (-0.802, 0.080) includes zero. However, the credible

interval for (T-B)-(B2-B1) does not include zero which implies that there might be

a benefit of switching B to T rather than switching B1 to B2.

2.5.1.5 Nested Models

In this stage we will look at “fuel within week” as a fixed effect and “day within

week” as a random effect and the corresponding data were presented in Table 2.3.

Yijkm = α + ωi + φij + δik + εijkm (2.12)

where Yijkm is the response corresponding to the mth test (m = 1 or 2) of the jth

fuel (j = 1 or 2) on the kth day (k = 1, 2, 3) in the ith week, (i = 1, 2). α is the

mean fuel effect/ intercept, ωi is the effect due to week i, φij is the effect due to fuel

j in week i, and δik is the random effect due to kth day in week i. Also note that

m=1 or 2 corresponds to ‘am’ or ‘pm’ and j=1 or 2 corresponds to fuel ‘B’ or ‘T’

respectively in the model. For the model (2.12) we impose two corner constraints

for two set of parameters: ω1=0 is for identifying effect of week (we consider week

1 as reference category) and φi1=0, i = 1, 2 is for identifying effect of a fuel in i-th

week, where base fuel (fuel 1) is reference category.
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Priors

We assume the following priors for the model (2.12).

α ∼ N(0, 0.001), ω2 ∼ N(0, 0.001), φi2 ∼ N(0, 0.001)

ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20)

The prior for α has been set to be normal by specifying the mean centered at 0 and

a low precision i.e. a non-informative prior has been considered for α with mean

0 and variance 1000 . The priors for ω2, ρ, and log(σ) are also specified as non-

informative. The results concerning the contrast B2-B1 are presented in Table 2.9.

The programme related to this table is given in the Appendix.

Results

We present the results concerning model (2.12) in Table 2.9. The fixed effect due to

Table 2.9: Results from the nested model

Effect Mean SD MC Error P(2.5) Median P(97.5)
α 32.230 0.202 0.004 31.840 32.230 32.630
ω2 -0.106 0.285 0.006 -0.663 -0.107 0.435
φ12 -0.429 0.238 0.005 -0.910 -0.424 0.047
φ22 1.542 0.241 0.005 1.084 1.546 1.975
σ2
b 0.045 0.078 0.002 0.005 0.027 0.181

week 2 (ω2) might have no effect on the response variable as 95% credible interval

of ω2 includes zero. Also, the effect of fuel T (φ22) on week 2 has positive effect

on the response though week 1 does not seem to have similar effect as φ12 contains

zero in its 95% credible interval.

2.5.2 Round Robin Experiments

A round robin is a test programme in which a number of laboratories test identical

samples of a number of test materials primarily in order to determine the precision

(repeatability and reproducibility) of a test method.
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Round robin programmes are carried out to understand and quantify the variation

in a test method. They may also be used to measure the performances of particular

fluids or fluid batches and/or to investigate the strength of a test method.

Model

Let us consider, for example, a linear mixed model to interpret a round robin

analysis.

Yijk = α + δi + εijk (2.13)

where Yijk is the kth repeat on fuel j at lab i and Yijk|µij ∼ N(µij, τ) with µij =

α + δi which is the mean for ith lab corresponding to jth fuel, δi is the lab-to-lab

error term with mean zero and standard deviation σL, τ = 1/σ2 and εijk is the

within-lab error term with mean zero and standard deviation σ.

Repeatability and Reproducibility

The terms repeatability and reproducibility are defined mathematically as

r = 2.8× σ and R = 2.8×
√

(σ2
L + σ2) (2.14)

respectively. In words we can describe these terms as follows.

Repeatability (r): If two tests are conducted on the same sample at the same

lab, then we can be 95% confident they will differ by less than r.

Reproducibility (R): If two tests are conducted on the same sample at different

labs, then we can be 95% confident they will differ by less than R.

Example Data Set

Fuels A and B are tested at a number of labs in order to determine the precision

of the test method. Data for round robin analysis of fuels A and B are given

in Table 2.10. Both of the fuels are analyzed separately and, for each fuel, the

objective is to estimate the mean, repeatability r and reproducibility R.
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Table 2.10: Round Robin data

Lab A B
1 22.320 49.630
2 23.060 49.360
3 18.440 48.430
4 14.850 51.120
5 22.950 51.540
7 50.290
7 59.470
8 52.600
9 17.530
9 23.740
10 18.380
10 23.490
11 25.740 57.280
11 24.430 40.530
13 18.620 44.350
13 29.040 48.350
14 24.570 51.640
14 18.230 49.900
16 50.400

2.5.2.1 Round Robin Analysis for Fuel A

The general mixed model for round robin is given in equation (2.13). We assume

priors for the parameters relevant to model (2.13) as follows

α ∼ N(0, 0.0001), ρ ∼ beta(1, 1), log(σ) ∼ U(−20, 20)

We assume non-informative priors for ρ, α and log(σ) and the prior δi is derived

from available information. The results of round robin analysis on fuel A are given

in Table 2.11. The mean effect of fuel A is 21.610 and the repeatability is 10.660

which implies that if fuel A is tested in the same lab, then we are 95% confident

that tests will differ by less than 10.660. Further the reproducibility for the same

fuel is 12.190 which implies that if fuel A is tested in different labs we are 95% sure

that they will differ by less than 12.190.
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Table 2.11: Round Robin results of fuel A

Effect Mean SD MC Error P(2.5) Median P(97.5)
α 21.610 1.246 0.011 19.080 21.600 24.070
r 10.660 2.251 0.020 7.171 10.320 15.970
R 12.190 2.734 0.028 8.206 11.730 18.880
σ2 15.130 6.852 0.064 6.560 13.580 32.550
σ2
L 4.773 6.013 0.073 0.108 2.910 20.860

Table 2.12: Round Robin results of fuel B

Effect Mean SD MC Error P(2.5) Median P(97.5)
α 50.310 1.385 0.014 47.520 50.320 53.060
r 12.720 2.665 0.027 8.709 12.310 19.030
R 14.140 3.110 0.031 9.592 13.650 21.620
σ2 21.530 9.734 0.099 9.675 19.320 46.190
σ2
L 5.221 6.372 0.069 0.127 3.271 22.350

2.5.2.2 Round Robin Analysis for Fuel B

For the round robin analysis of fuel B we use model (2.13) and the priors, the same

as for fuel A, are given in Section 2.5.2.1. Round robin results obtained for fuel B

is presented in Table 2.12.

The mean effect of fuel B is 50.310 shown in Table 2.12. The repeatability is 12.720

which implies that if fuel B is tested in the same lab, then we are 95% confident

that tests will differ by less than 12.720. Further, the reproducibility for the same

fuel is 14.140 which implies that if fuel B is tested in different labs we can be 95%

sure that they will differ by less than 14.140.

2.6 Convergence and MCMC

Convergence is an important issue for the correct estimation of the posterior dis-

tributions of interest. Convergence refers to the situation when the Gibbs sampler

or other MCMC techniques eventually reach a stationary distribution. We need

to identify at which point convergence takes place and to determine the burn-in

period. It is also necessary to determine the number of iterations that would be

enough to summarize posterior distributions after reaching stationary distributions.

We have monitored convergence diagnostics for the parameters of the models in
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Figure 2.1: Kernel densities of parameters in fuel economy experiment; Base fuel
(B) (top left), Test fuel (T) (top right), Fuel Difference β2 (bottom left), Day to
day variability (σ2

b ) (bottom right).

the fuel economy and round robin experiments.

2.6.1 Convergence Diagnostics for Fuel Economy Experi-

ments

There are several ways to monitor convergence. We begin with the Monte Carlo

error (MC error) which measures the variability of each estimate due to the simu-

lation. MC error must be low in order to calculate the parameter of interest with

increased precision. A rule of thumb is that MC errors should be less than 5% of

the corresponding posterior standard deviations (SD). In Table 2.5 all of MC errors

of posteriors were less than 5% of the respective standard deviations.

A graphical presentation of the posterior density can be obtained by using a tech-

nique known as kernel density estimation. The idea is similar to drawing his-

tograms. Often non-convergence is reflected in multimodal distributions. In that

case the kernel density is not only multi-modal but also lumpy. We find in Fig-

ure 2.1 that kernel densities of posteriors corresponding to the parameters α, β2,

test fuel and σ2
b are approximately smooth and unimodal. There is no visible non-
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Figure 2.2: Autocorrelation of parameters in fuel economy experiment; Base fuel
(B) (top left), Test fuel (T) (top right), Fuel Difference β2 (bottom left), Day to
day variability (σ2

b ) (bottom right).

convergence problem in the kernel densities. If they would have lumpy posteriors,

we would let the algorithm run a bit longer to obtain a more reasonable summary

of the posteriors.

Autocorrelation refers to a pattern of serial correlation in the chain, where se-

quential draws of parameter from the conditional distribution are correlated. The

autocorrelation happens, because any MCMC method is a Markov chain, therefore,

every value in a sample is dependent on the previous values. Because of the auto-

correlation, the Gibbs sampler will explore the entire posterior distribution slowly.

Generally the level of autocorrelation declines with the increasing lags between

sample points in the chain. For example, if we do sub-sampling of every tenth

iterate (lag 10), the level of autocorrelation often declines. If this dampening does

not happen then we should think that there is a problem and it would be necessary

to re-parameterize the model. There was some evidence of sampling autocorrela-

tion in the parameters before thinning but autocorrelation effects disappeared when

we thinned the data by taking every 15th point and these are reflected in Figure 2.2.

Trace/history plot which is an intuitive and easily implemented convergence diag-
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Figure 2.3: History plot of parameters in fuel economy experiment; Base fuel (B)
(top left), Test fuel (T) (top right), Fuel Difference β2 (bottom left), Day to day
variability (σ2

b ) (bottom right).

nostic tool, plots the parameter value at time t against the iteration number. If

a model is converged the history plot will move around the mode of the distribu-

tion. If there is some trending in the sample space, this will be a clear sign of

non-convergence. If multiple chains are run, then all chains are visually separated

in the graph and there will be well mixing of chains in the event of reaching conver-

gence. In Figure 2.3 we find the well mixing of two chains which provides evidence

of convergence.

The Gelman-Rubin (GR) statistic [Gelman and Rubin, 1992] is available as a con-

vergence diagnostic, when two or more chains are generated in parallel, each one

starting from different initial values. This is an ANOVA-type diagnostic test which

is implemented by calculating and comparing the between-sample and the within-

sample variability (i.e., intersample and intrasample variability). The statistic GR

can be estimated by

GR =
V̂

WSV
=
Ś − 1

Ś
+

BSV/Ś

WSV

ν + 1

ν

where ν is the number of generated samples/chains, Ś is the number of iterations

kept in each sample/chain, BSV/Ś is the variance of the posterior mean values

over all generated samples/chains (between-sample variance), WSV is the mean of

the variances within each sample (within-sample variability), and

V̂ =
Ś − 1

Ś
WSV +

BSV

Ś

ν + 1

ν
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Figure 2.4: Gelman Rubin statistics of parameters in fuel economy experiment;
Base fuel (B) (top left), Test fuel (T) (top right), Fuel Difference β2 (bottom left),
Day to day variability (σ2

b ) (bottom right).

is the pooled posterior variance estimate. When convergence is achieved and the

size of the generated data is large, then Gelman-Rubin (GR) statistic should ap-

proximately be equal to 1. The drawback of this statistic is that its value depends

greatly on the choice of initial values.

Figure 2.4 displays the examples of Gelman-Rubin statistics (GR). We started

with two sets of initial values for all parameters. It seems that the GR statistics

are approximately equal to 1 for all the parameters except for the parameter due to

day to day variability (σ2
b ). Also, an unusual autocorrelation pattern was observed

with regard to σ2
b in Figure 2.2 which might be an indication of less accuracy of σ2

b

estimation. To sum up the idea we conclude that convergence is achieved for most

of the parameters though we are doubtful about σ2
b . However, simulation studies

would be useful to assess the accuracy of all the parameter estimation including

σ2
b .
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Figure 2.5: Kernel densities of parameters in round robin experiments; Repeata-
bility (r) (top left), Reproducibility (R) (top right), Within lab variability (σ2)
(bottom left), Between lab variability (σ2

L) (bottom right).

2.6.2 Convergence Diagnostics for Round Robin Experi-

ments

First, we examine the Monte Carlo (MC) errors for the parameters of the linear

mixed model (2.13) in the round robin experiment. In Table 2.11 all of MC errors

of posteriors were less than 5% of the respective standard deviations.

We find in Figure 2.5 that kernel densities of posteriors corresponding to the pa-

rameters r, R, σ2, σ2
L are approximately smooth and unimodal. There is no visible

non-convergence problem in the kernel densities.

There was some evidence of sampling autocorrelation in the parameters before thin-

ning (see Figure 2.6), but autocorrelation effects disappeared when we thinned the

data by taking every 20th point and these are reflected in Figure 2.7. In Figure 2.8

the history plots show that there is good mixing of two chains which provides evi-

dence of convergence.

The Figure 2.9 displays examples of Gelman-Rubin statistics (GR). We started
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Figure 2.6: Autocorrelation of parameters (before thinning) in round robin exper-
iments; Repeatability (r) (top left), Reproducibility (R) (top right), Within lab
variability (σ2) (bottom left), Between lab variability (σ2

L) (bottom right).

Figure 2.7: Autocorrelation of parameters (after thinning) in round robin exper-
iments; Repeatability (r) (top left), Reproducibility (R) (top right), Within lab
variability (σ2) (bottom left), Between lab variability (σ2

L) (bottom right).
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Figure 2.8: History plot of parameters in round robin experiments; Repeatability
(r) (top left), Reproducibility (R) (top right), Within lab variability (σ2) (bottom
left), Between lab variability (σ2

L) (bottom right).

Figure 2.9: Gelman Rubin (GR) statistics of parameters in round robin exper-
iments; Repeatability (r) (top left), Reproducibility (R) (top right), Within lab
variability (σ2) (bottom left), Between lab variability (σ2

L) (bottom right).
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Table 2.13: Robustness of estimates with different priors

Priors Posterior Estimates

Between Within α̂ σ̂2 σ̂2
L Repeatability Reproducibility

Lab Lab (r) (R)
ρ ∼ Beta(1, 1) log(σ) ∼U(-20, 20) 21.61 15.13 4.773 10.66 12.19
ρ ∼ Beta(1.5, 1.5) log(σ) ∼U(-20, 20) 21.59 14.52 5.780 10.43 12.31
ρ ∼ Beta(2.5, 2.5) log(σ) ∼U(-20, 20) 21.54 14.05 7.355 10.27 12.64
σL ∼ U(0, 100) log(σ) ∼U(-20, 20) 21.61 16.97 4.404 11.26 12.58
τL ∼ Gamma(0.1, 0.1) log(σ) ∼U(-20, 20) 21.63 16.87 1.879 11.24 11.86

with two sets of initial values for all parameters. It seems that the GR statistics

are approximately equal to 1 for all the parameters. Therefore, we may conclude

that there is no evidence against the convergence for all parameters.

In our study we find that the parameters of the round robin model for fuel A passed

the convergence criteria. However, the convergence diagnostics work like “alarms”

that detect certain problems concerning the convergence of the chain. Since the

focus of each diagnostic is different, to ensure convergence all tests must be passed,

not rejected [Ntzoufras, 2009].

2.7 Robustness of Posterior Distributions in Round

Robin Experiments

Robustness of the posterior distribution is an important issue in Bayesian mod-

elling. We can assess how robust the posterior distributions are to the selection of

the prior distributions via sensitivity analysis. When prior information is available,

sensitivity analysis focuses on the structure of the prior distribution; when non-

informative priors are used, it focuses on how different choices of prior parameters

(prior mean or variance) influence the posterior inference.

We consider round robin analysis of fuel A as a test example to see how choice

of prior parameters influences the posterior estimates. We have monitored the

robustness of posterior distributions assuming different values of the prior mean

and variance and also assuming different families of priors as shown in Table 2.13.

Different priors have negligible impact on the posterior estimates, specifically pos-

terior estimates of intercept (α) is unaffected by the choice of different priors. Esti-
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mates of repeatability (r) and reproducibility (R) slightly varying when we consider

slightly informative gamma priors for the precision of between lab variability. In

this case, though the estimate of within lab variability (σ̂2) is uninfluenced but

between lab variability (σ̂2
L) is greatly influenced by the chosen informative gamma

prior. Thus, the posterior estimates of the intercept, within lab variability, repeata-

bility and reproducibility are not varying too much with different choices of priors.

However, robustness of posterior distributions will be explored more in simulation

studies given in Section 2.10.

2.8 Likelihood Methods in Fuel Economy Exper-

iments

The objective of this chapter was to analyze fuel economy experimental data by

Bayesian methods as likelihood-based methods were not enough to deal with the

estimation of variance component parameters. However, to have some idea about

likelihood-based methods we have presented analyses by giving two examples, par-

ticularly by likelihood analysis of contrasts T-B and (T-B)-(B2-B1).

2.8.1 Contrast: T-B

We have fitted linear mixed-effect models for contrast T-B by residual maximum

likelihood (REML) and maximum likelihood (ML) methods using the statistical

software R. The methods of REML and ML for linear mixed effects are described

in Pinheiro and Bates [2000]. The results from likelihood-based methods for con-

trast T-B are presented in Table 2.14 and Table 2.15.

Table 2.14: Linear Mixed-effects model fit for (T-B) by REML method

Effect Value SE DF t-value p-value
α (B) 32.195 0.102 2 316.537 0.000
β2 1.332 0.144 2 9.264 0.012
σ̂b 1.683734× 10−6

The likelihood estimates of fixed effects presented in Tables 2.14 and 2.15 and the

corresponding Bayesian estimates in Table 2.5 are similar. For example, mean ef-

fects of fuels B and T are almost the same in both methods. However, the Bayesian
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Table 2.15: Linear Mixed-effects model fit for (T-B) by ML method

Effect Value SE DF t-value p-value
α (B) 32.195 0.102 2 316.537 0.000
β2 1.332 0.144 2 9.264 0.012
σ̂b 1.849246× 10−6

and likelihood estimates of variance components, particularly the variance of ran-

dom effects due to day differs substantially. The between day standard deviations

obtained by REML and maximum likelihood methods are 1.683734 × 10−6 and

1.849246 × 10−6 respectively. It should be noted that by default ML or REML

method in R forces the estimate of variance components to be nonzero. Though we

obtained the positive estimates of variance components in likelihood based methods

but truly it is zero or very close to zero which is unrealistic. However, the corre-

sponding Bayesian estimate of the variance component (σ̂2
b ) found in Table 2.5 is

0.059. Thus, a poorly estimated variance component in likelihood-based methods

becomes estimable in the Bayesian method assuming some priors. However, the

quality of the Bayesian credible interval for σ̂2
b will be compared and examined with

the profile likelihood and bootstrap based confidence intervals in Section 2.9 and

through simulation studies in Section 2.10.

2.8.2 Contrast: (T-B)-(B2-B1)

The likelihood and Bayesian estimates of fixed effects corresponding to contrast

(T-B)-(B2-B1) are similar shown in Table 2.16, Table 2.17 and Table 2.8 respec-

tively. The estimates for between days standard deviations (σ̂b) are 1.50999× 10−6

and 2.312336 × 10−6 in REML and ML method respectively, implying that each

of the between days variance component is approximately 0 which is unrealistic.

The Bayesian method provides a reasonable estimate of the between days variance

component (σ̂2
b ) as 0.035 shown in Table 2.8.

Table 2.16: Linear Mixed-effects model fit for (T-B)-(B2-B1) by REML method

Effect Value SE DF t-value p-value
α (B1) 32.088 0.124 5 259.225 0.000
β2 -0.366 0.175 3 -2.089 0.128
β3 0.107 0.175 3 0.610 0.585
β4 1.439 0.175 3 8.222 0.004
σ̂b 1.50999× 10−6
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Table 2.17: Linear Mixed-effects model fit for (T-B)-(B2-B1) by ML method

Effect Value SE DF t-value p-value
α (B1) 32.088 0.124 5 259.225 0.000
β2 -0.366 0.175 3 -2.089 0.128
β3 0.107 0.175 3 0.610 0.585
β4 1.439 0.175 3 8.222 0.004
σ̂b 2.312336× 10−6

2.9 Profile Likelihood and Confidence Intervals

The standard method of calculating a confidence interval (CI) is the so-called Wald

procedure, which relies on the asymptotic normality of θ̂, the MLE of θ. However,

Wald-type intervals can perform badly for small to moderate sample sizes due to

poor estimates of sampling variance, bias in the MLE, and/or asymmetry in the

sampling distribution of the MLE [Donaldson and Schnabel, 1987; Gimenez et al.,

2005]. A construction of a confidence interval that is likely to be more robust in

small samples may be derived from the asymptotic χ2 distribution of the likeli-

hood ratio test statistic. This likelihood-ratio based method is known as ‘profile

likelihood’. Profile likelihood confidence intervals do not assume normality of the

estimates and appear to perform better for small sample sizes than Wald-type confi-

dence intervals. They are, nonetheless, still based on an asymptotic approximation

to the chi-square distribution of the log likelihood ratio test statistic.

Let us consider a model with parameters β1, β2, . . . , βj, . . . , βp. Suppose that θ = βj

is of our parameter of interest and δ, where δ = c(β1, β2, . . . , βj−1, βj+1, . . . , βp), is

the vector of additional parameter(s). We define the log-likelihood function as

l(θ, δ). The profile likelihood function for θ is

l(θ) = max
δ
l(θ, δ). (2.15)

For each value of δ, l(θ) is the maximum of the likelihood function over the remain-

ing parameters. Therefore, the profile likelihood function is not a real likelihood

function; each point on the profile likelihood function is the maximum value of a

likelihood function. The idea of a profile likelihood confidence interval is to invert

a likelihood-ratio test to obtain a confidence interval for the parameter of interest.

The likelihood ratio test statistic of the hypothesis H0 : θ = θ0 equals the difference

between 2l for the “full” model and 2l for the “reduced” model which has θ fixed
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at θ0, i.e. 2
[
l(θ̂, δ̂)− l(θ0, δ̂0)

]
, where θ̂ and δ̂ are MLEs for the full model and δ̂0

is the MLE of δ for the reduced model with θ = θ0. A 100(1 − α)% confidence

interval for θ is the set of all values θ0 such that two-sided test of null hypothesis

H0 : θ = θ0 would not be rejected at the α level of significance if and only if

2
[
l(θ̂, δ̂)− l(θ0, δ̂0)

]
< χ2

1−α(1) (2.16)

where χ2
1−α(1) is the 1− α quantile of a χ2 distribution with 1 degrees of freedom.

Further details on profile likelihood can be found in Venzon and Moolgavkar [1988]

and Royston [2007].

The statistical package lme4 in R has impressive facility to provide profile likeli-

hood confidence intervals of parameters under generalized linear models including

models with normal responses. This package also enables bootstrap based confi-

dence intervals for the same parameters and thereby facilitates more comparison

with Wald-type confidence intervals. Bootstrap methods are computer-intensive

method of statistical analysis that use simulation to calculate standard errors, con-

fidence intervals, and significance tests [Davison, 1997; Efron and Tibshirani, 1994].

However, it should be noted that lme4 does not have the option to provide Wald-

type confidence intervals for variance components as the sampling distribution of a

variance component estimator is skewed, whereas the basis of Wald-type confidence

intervals is asymptotic normality.

We have implemented Wald, profile likelihood and bootstrap based methods for

computing confidence intervals for the parameters under model (2.9). Then the

likelihood based confidence intervals have been compared with the Bayesian cred-

ible intervals shown in Table 2.18 (note that the Bayesian estimates in Table 2.18

are originally from Table 2.5). The point and interval estimates of base fuel are

similar in likelihood and Bayesian methods. The Bayesian estimate of fuel differ-

ence β2 is 1.421 which differs from classical counterpart. Also, the Bayesian credible

interval for β2 is slightly conservative (wider) in comparison to profile likelihood

or bootstrap confidence intervals. The main idea behind the implementation of

profile likelihood, bootstrap based methods, along with the Bayesian technique is

to see the differences in point and interval estimates of the variance component, σ2
b .

The point estimate of the day to day variance component (σ2
b ) is zero in classical

method which is assumed unrealistic, whereas the Bayesian estimate is nonzero
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(0.059). The profile and bootstrap methods show that lower limit of 95% confi-

dence intervals is zero, whereas lower limit of 95% Bayesian credible interval shows

that it is nonzero, but close to zero. However, Lambert et al. [2005] notice that

if the variance parameter is close to the boundary at zero, MCMC results tend

to produce upwardly biased estimates of variance parameters while inferences are

based on the posterior mean. Therefore, considering all figures either point or in-

terval estimates we conclude that day to day variance component (σ2
b ) might be

nonzero but in between likelihood and Bayesian point estimates in the fuel econ-

omy experiment. Yet, a simulation study will examine the performance of classical

and Bayesian methods in estimating the variance component (σ2
b ) in Section 2.10.3.

Table 2.18: Likelihood and Bayesian estimates with 95% confidence/credible inter-
vals under different methods in fuel economy experiment

Likelihood Method Bayesian Method
Parameter 95% CI 95% CI

Estimate Wald Profile Bootstrap Estimate
α 32.195 (32.032, 32.358) (31.915, 32.388) (32.019, 32.365) 32.170 (31.780, 32.580)
β2 1.332 (1.102, 1.563) (1.060, 1.713) (1.067, 1.598) 1.421 (0.952, 1.877)
σ2
b 0.000 - (0.000, 0.099) (0.000, 0.026) 0.059 (0.001, 0.362)

In round robin real experiment, fuel A was administered once in each of the first

five laboratories. To implement linear mixed effect analysis, we need at least two

replicates of fuel A in each of the laboratories. So we exclude first five laboratories

in the likelihood analysis of the mixed model as well as in profile likelihood and

bootstrap based analysis. In Bayesian analysis priors have been assumed as before

given in Section 2.5.2.1 and Bayesian results in Table 2.19 will not be same as in

Table 2.11 as the number of laboratories are not same in two situations. Table 2.19

shows that the fixed effect estimates are approximately similar though the Bayesian

interval estimates are little wider than the classical based intervals. The MLE of

σ2
L is reported as 0 with a profile likelihood based CI of (0.000, 13.587) and a

bootstrap based CI of (0.000, 16.064). The point estimate of σ2
L is 0 which is

unrealistic, whereas the Bayesian point estimate is reported as 11.517 with 95%

credible interval (1.099, 50.313). Therefore, it is seen that there are substantial

differences between the likelihood and Bayesian estimates of variance component

due to lab (σ2
L) both in point and interval estimates. Though the Bayesian point

estimate seems inflated but note that it lies still within the profile likelihood and

bootstrap based confidence intervals. The wider credible interval in the Bayesian

analysis is perhaps due to using non-informative priors for σ2
L in this small sample
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study. However, non-informative priors should not be used when the sample size is

low, as suggested by Galindo-Garre et al. [2004], which will be verified in simulation

studies also.

Table 2.19: Likelihood and Bayesian estimates with 95% confidence/credible inter-
vals under different methods in round robin experiment for fuel A

Likelihood Method Bayesian Method
Parameter 95% CI 95% CI

Estimate Wald Profile Bootstrap Estimate
α 22.376 (19.944, 24.807) (19.829, 24.922) (19.766, 24.865) 22.339 (18.329, 26.073)
σ2 15.39 - (6.445, 38.626) (2.283, 29.866) 17.307 (6.359, 43.770)
σ2
L 0.000 - (0.000, 13.587) (0.000, 16.064) 11.517 (1.099, 50.313)

To conclude this section we summarize that the point estimates of fixed effects do

not differ substantially, but Bayesian intervals are slightly wider than correspond-

ing likelihood intervals. The estimate of the variance component might not be

zero, but could lie between 0 and the Bayesian point estimate 11.517. The compar-

atively larger width of the Bayesian 95% credible intervals could be minimized with

appropriate choice of priors as noninformative priors might entail wider credible

intervals.

2.10 Simulation Studies

As Bayesian methods are commonly used in applied research, more investigation is

essential to verify whether Bayesian estimates have better properties than ML esti-

mates and also whether some priors enable better estimates than others [Galindo-

Garre et al., 2004]. This investigation and verification can be carried out through

simulation studies. These techniques provide empirical estimation of the sampling

distribution of the parameters of interest, that cannot be achieved from a single

study [Burton et al., 2006].

2.10.1 Performance Measures in Simulation Studies

It is essential to consider the criteria for measuring the performance of the results

obtained from different methods or scenarios in simulation studies. The commonly

used performance measures are bias, accuracy, and coverage of the parameter es-

timates. However, Collins et al. [2001] suggested examining more than one per-
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formance measure such as mean squared error (MSE) and width of the confidence

intervals (e.g. average and median width of 95% confidence/credible intervals) as

results may vary across criteria. The main interest in simulation studies is to

recognize the sampling distributions of the simulated estimates and therefore the

average and variance of all the estimates over all simulations is used to calculate

the accuracy measures such as the bias and MSE. A brief description of commonly

used performance measures can be provided in the following.

Assessment of Bias

The bias is the deviation of an estimate from the true value which can be obtained

by taking the difference of average of an estimate and the true parameter value.

For example, the bias of an estimator β̂ of β is estimated by

Bias(β̂) =
S∑
s=1

(β̂s − β)

S
=

¯̂
β − β (2.17)

where β̂s is the estimate of β obtained from the sth simulated data set,
¯̂
β =∑S

s=1 β̂s/S is an estimate of the true parameter β and S is the number of accom-

plished simulations. Another approach of bias assessment is to compute the bias

as a percentage of the true value, called percentage relative bias, as

Bias(β̂)

β
× 100. (2.18)

As true values of the parameters in simulations might be different in magnitude

relative bias can be more representative than the absolute bias during comparison

of biases if parameters are on a common scale. One more method of bias assessment

is standardized bias which is the bias as a percentage of SE(β̂), that is

Bias(β̂)

SE(β̂)
× 100 (2.19)

which can be more informative as the consequence of the bias depends on the size of

the uncertainty in the parameter estimate. A standardized bias greater than 10%

in either direction can have noticeable adverse effects on the efficiency, coverage

and error rates [Collins et al., 2001].
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Assessment of Accuracy and Precision

Overall accuracy and precision of an estimator can be assessed by mean squared

error (MSE), the average squared difference between the estimate and its target.

The MSE of β̂ is estimated by

MSE(β̂) =
(

¯̂
β − β

)2
+
(

SE(β̂)
)2
, (2.20)

where (
¯̂
β − β) is the bias, SE(β̂) is the empirical SE of the estimate of interest

over all simulations. The MSE enables a useful measure of overall accuracy as it

takes into account both measures of bias and variability. For easier interpretation,

square root of MSE (RMSE) that transforms MSE back onto the same scale as the

parameter can be reported [Collins et al., 2001]

Assessment of Coverage

The coverage of a confidence interval is the proportion of times that the obtained

confidence interval includes the true parameter value i.e. the proportion of times

the 100(1−α)% confidence interval β̂s±Z1−α/2SE(β̂s) includes β, for s = 1, 2, . . . , S.

The empirical coverage probability can be obtained from

CP(β̂) =
1

S

S∑
s=1

I
{
|β̂s − β| ≤ Z1−α/2 × SE(β̂s)

}
(2.21)

where I{} is an indicator variable. The coverage should approximately be equal

to the nominal coverage rate. For example, if the nominal coverage rate is 95%,

over-coverage, where coverage rates are above 95%, suggests that the results are

too conservative. In practice, so we will not find significant results in many cases

when there is a true effect thus leading to a loss of statistical power with too many

type II errors. On the other hand, under-coverage, where coverage rates are below

95%, is unacceptable as it indicates over-confidence in the estimates since many

real situations will incorrectly detect a significant result, which leads to higher than

expected type I errors. A possible criterion for acceptability of the coverage is that

the coverage should not fall outside of approximately two SEs of the nominal cov-

erage probability (p), SE(p) =
√
p(1− p)/S [Tang et al., 2005]. For example, if

95% confidence intervals are calculated using 2000 independent simulations then

SE(p̂) is 0.0048734 and hence between 94.02% and 95.98% of the confidence inter-
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vals should include the true parameter value.

In the Bayesian case, the coverage probabilities are calculated on the basis of 95%

credible intervals that can be calculated in several ways. Credible intervals are

not unique on a posterior distribution. A method for defining a suitable credible

interval would be to choose the narrowest interval, which for a unimodal distribu-

tion might involve choosing those values of highest probability density including

the mode. A credible interval might based on the interval where the probability of

being below the interval is as likely as being above it. This interval will include the

median. Assuming the mean exists, a credible interval might choose the interval for

which the mean is the central point. However, in the context of decision theory, an

optimal credible interval will always be a highest probability density set [OHagan,

1994]. For simplicity, we restrict our calculation of credible intervals based on the

second definition discussed above i.e. on the basis of the α/2-th and (1 − α/2)-th

posterior quantiles. If β∗L, β∗U are the α/2th and (1 − α/2)-th posterior quantiles

for β respectively, then (β∗L, β
∗
U) is a 100(1 − α)% credible interval for β, where

P[β < β∗L] = α/2 and P[β > β∗U ] = α/2.

The average width of 100(1−α)% confidence interval is often used as an evaluation

criterion in simulation studies, particularly when one method has a similar or higher

rate of coverage than another but yields substantially shorter intervals. Shorter

intervals translate into greater accuracy and higher power [Collins et al., 2001].

The average 100(1 − α)% confidence interval width for a likelihood estimate is

calculated as ∑S
s=1 2Z1−α/2SE(β̂s)

S
. (2.22)

The corresponding average 100(1− α)% credible interval width of a Bayesian esti-

mate is calculated as ∑S
s=1 (β∗Us − β∗Ls)

S
. (2.23)

where β∗Ls and β∗Us are the α/2-th and (1 − α/2)-th posterior quantiles for β re-

spectively at s-th simulation.
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2.10.2 Determination of Simulation Size

There are some issues that should be addressed before starting any simulation

studies. For instance, the number of simulations to be performed in a study is

one of the vital issues. There was no precise justification of choosing the number

of simulations in many studies. The number of simulations can vary from 100 to

100000 replications with the most common choices being 1000 and 10000 replica-

tions as reported by Burton et al. [2006]. The current practice regarding choice

of the number of simulations is based on expected standard error of β̂, power to

detect differences of a specified level of from true value as statistically significant.

However, we will adopt the number of simulations on the basis of accuracy of an

estimate of interest. The number of simulations (S) can be obtained using the

following formula:

S =

(
Z1−α/2σβ̂

δ

)2

(2.24)

where δ is the specified level of accuracy of the estimate, that is the acceptable

difference from the true value β, Z1−α/2 is the (1−α/2)-th quantile of the standard

normal distribution and σ2
β̂

is the variance for the parameter of interest (β).

A realistic estimate of the variance may be obtained from the real data if the

simulations are based on a real data set and trying to maintain the same amount

of variability. If the variance is unknown or cannot be estimated reliably then it may

be possible to perform an identical simulation study to obtain realistic estimates

for the variance or consider the measure of accuracy as a percentage of the standard

error of the β̂. The size of simulations to perform is thus dependent on the true

value of the estimate of interest, the variability of the estimate of interest, and the

required accuracy [Burton et al., 2006].

2.10.3 Simulation Studies on Fuel Economy Experiments

In this section we present the results of simulation studies on fuel economy ex-

periments to observe the performance of point estimators and confidence/credible

intervals under likelihood and Bayesian methods.
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2. Fuel Economy Experiments

The real fuel economy experiment was conducted in three days with two sessions

each to compare test and base fuels and thus the sample size was 6. A simulation

study has been implemented taking a sample of 6 to realize the differences of results

from a single study and from the simulation study.

In simulation studies we generated data from a normal distribution whose param-

eters are from the model (2.9) by setting arbitrarily the parameters as α = 32,

β2=1.4, and σ2
b=0.05 which might be close to reality as indicated in the Bayesian

analysis of real data (see Table 2.5). The number of simulations for the fuel econ-

omy experiments was determined using the formula (2.24). We considered three

parameters separately to decide about simulation size. Generally the bias in the

fixed effects are small if the variation of random effect distribution is small. How-

ever, the estimate of the variability of the random effect is always severely biased

as observed by Litière et al. [2008]. If we consider fixed effects for calculation of

simulation size, it will be very small as bias is very low for the parameter of fixed

effects. Therefore, we take into account the random effects during calculation of

simulation size and allow bias as 15%. Assuming σ2
b=0.05 , Z1−α/2=1.78, standard

deviation of estimate σβ̂=0.175, where β̂ = σ̂2
b , and δ = 0.05× 0.15, the simulation

size would be 1725. However, also for practical reasons, for example, results are

not changing substantially with higher number of simulations (see Table 2.22) and

as each set of the runs takes more than 13 hours to implement 5000 simulations,

we fix the number of simulations at 2000 which takes approximately 6-7 hours to

terminate in the Bayesian analysis. However, for likelihood analysis 2000 simula-

tions take only a few minutes to terminate.

The lme function in the nlme package of R provides facilities to calculate the esti-

mates of all parameters relevant to fixed and random effects including their 95%

confidence intervals in likelihood-based methods. In Table 2.20 the first column de-

notes the parameters, second column presents the bias of the parameter estimates,

the third column is for percent relative bias, the fourth column is for root mean

squared error (RMSE), the seventh column represents root median squared error

(RMdSE) and rest of the columns are self explanatory. In the table, the first set

of results (first three rows) is for likelihood estimates, obtained through restricted

maximum likelihood (REML) procedures, corresponding to parameters α, β2, and

σ2
b computed from 2000 simulations. We see the bias and relative bias based on the
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mean are larger than the median based bias and relative bias for all parameters.

This happens because mean estimates are affected by unusual (extreme) estimates

that arose during simulations. The estimation of the random effects are not of our

primary interest, the main concern being to estimate fixed effects, particularly, the

difference of the effects of test and base fuels (β2). The coverage probability is

0.929 which is significantly below the acceptable range, because, by definition, a

95% confidence interval should have coverage probability of at least 0.95. However,

even if the true coverage probability equals 95%, the coverage probability obtained

from a simulation study might not be exactly equal to 0.95 because of the MC error

[Galindo-Garre et al., 2004]. This error tends to zero when number of simulations

tend to infinity. As we implemented 2000 simulations, the MC error was equal to(
0.95×0.05

2000

) 1
2 = 0.00487 which means that coverage probabilities between 0.9451 and

0.9549 are in agreement with the nominal level of 95%. Therefore, the coverage

probability 0.929, corresponding to β2 in likelihood method, is clearly beyond the

range above.

Though mean based bias and relative bias for the random effect estimate seems

less in the likelihood method than in the corresponding Bayesian estimates, it is

unacceptable as the average width of the 95% confidence interval (CI) is infinity

due to upper CI limit being infinity at some simulations. However, the median

width of 95% confidence intervals seems reasonable though higher than some of

the Bayesian counterparts. Further, the likelihood-based method fails quite often

when we want to estimate a 95% CI for the variance component σ2
b as this is not

obtainable due to a non-positive definite covariance matrix. The intervals are not

obtainable due to lack of estimated SEs which are equal to zero frequently in sim-

ulations with small sample (say n=6) particularly in likelihood methods. Thus,

we excluded those problematic simulations during estimation of parameters under

the likelihood method. This trouble also leads us to choose the Bayesian method

assuming non-informative and slightly informative priors for the variance compo-

nents.

It is relevant to discuss how we have chosen priors in this study. During selection of

non-informative priors we followed Lambert et al. [2005] who used 13 different non-

informative priors in a simulation study that demonstrates the potential influence

of using prior distributions believed to be vague. A few of their non-informative or
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weakly informative priors resemble ours. For fixed effects, we used non-informative

normal priors as before in our real single study. However, all of their priors are

not suitable for studying variance components in our study, for example, Pareto,

half normal, uniform or normal priors as they produced highly biased estimates and

had also low coverage probabilities and, therefore, these were excluded in our study.

Congdon [2007] suggests using normal priors with mean zero and large variance

i.e. non-informative priors in the absence of prior knowledge. However, this might

not be ideal when the sample size is small [Galindo-Garre et al., 2004]. In our

case, simulation studies show that non-informative normal priors did not affect our

coefficients relevant to fixed effects.

The use of non-informative priors for random effects are affected by having biased

estimates. This is not unusual as clarified by Litière et al. [2008] that the estimate

of the variability of random effects are always biased though the bias induced in the

fixed effect parameters are small as long as the variability underlying the random

effects distribution is small.

The results summarized in Table 2.20 are obtained using different non-informative

and weakly informative priors. The number of Bayesian iterations was 5000 in each

simulation where thinning was 10, burn-in period 2000, and number of chains was 4.

Bias and MSE were computed with the formula as defined earlier in Section 2.10.1.

For the width of Bayesian credible intervals, we simply average the width of 95%

credible intervals obtained from S simulations. Median width is the median of re-

spective widths of 95% CI both in likelihood and Bayesian methods. Median square

error (MdSE) was calculated as the median of (β̂−β)2 [Galindo-Garre et al., 2004].

For confidence/credible intervals, we report coverage probabilities which represent

the proportion of times that the true parameter lies within the 95% confidence in-

tervals in likelihood method whereas in Bayesian case it is the proportion of times

that the true parameter lies within 95% Bayesian credible intervals.

Table 2.20 shows that the estimates of fixed effects are fairly close to the true

parameter values both in likelihood and Bayesian methods as bias or relative bias
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are very little. It is noted that the mean-based estimate of the day to day variation

(σ2
b ) is relatively biased whereas median based estimates have less bias or rela-

tive bias in likelihood and Bayesian methods. When the priors ρ ∼ Beta(1, 1),

ρ ∼ Beta(1.5, 1.5), ρ ∼ Beta(2.5, 2.5), and ρ ∼ Beta(3, 3) are considered the

Bayesian median widths for all parameters are always less than average width

of likelihood estimates. Particularly, the width of the likelihood based 95% CI is

infinity because of having the upper bound infinity in some trials of the simulation

process. ρ ∼ Beta(1,1) which is equivalent to ρ ∼ U(0,1) should not be used to

estimate variance component σ2
b as simulation results shows that the relative bias

is approximately 243.87% , while bias is less in the case of a weakly informative

prior ρ ∼ Beta(2.5, 2.5) or ρ ∼ Beta(3, 3). However, relative bias corresponding

to σ2
b is minimal if we consider median based estimates. The gamma priors are not

suitable for estimating fixed effects as well as variance components as they produce

severely biased estimates for the variance component and high coverage probabil-

ities for all parameters, particularly when sample size is small, for instance, n=6.

Coverage probabilities are acceptable for fixed effects as these are close to nominal

coverage, however for the variance component σ2
b , they appeared as over coverage

which might lead to erroneous conclusions about σ2
b .

In Table 2.21, the sample size has been increased to 40. Now results are improved

in the indices of bias, root mean squared error (RMSE) or root median squared

error (RMdSE), coverage probability, average and median widths. It seems that

both MLE and Bayesian methods, particularly with priors ρ ∼Beta(1, 1) or ρ ∼
Beta(1.5, 1.5), produce good results in terms of relative bias. However, the Bayesian

estimates, particularly with priors ρ ∼Beta(1, 1) to ρ ∼Beta(3, 3), performed

better than MLE in terms of average and median width of 95% CIs. All of these

sets provide precise fixed effect estimates. Though the variance component (σ2
b ) is

estimated well in the ML method its average width of 95% CI is extreme, whereas

median width in Bayesian method is reasonable. Further, in the likelihood method

there were 17.58% cases in the iterations where SE estimate of σ2
b was 0 and many

cases it was infinity, therefore, average width of 95% CI was infinity. The cases

where SE estimate of σ2
b were not available has been excluded from the sample

during estimation.
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2.10.4 Robustness of Likelihood and Bayesian Estimators

Table 2.20 and Table 2.21 show that bias and relative bias are small and similar

for relative to the estimates of fixed effects. However, bias and relative bias are

reduced greatly for both likelihood and Bayesian methods when we increase the

sample size from 6 to 40.

Performance of likelihood and Bayesian estimates are observed in all tables with

respect to estimation methods or priors. It is essential to see how estimates vary

with respect to various parameters, for instance, with respect to simulation sizes

(S), sample sizes (n), with different settings of σ2 and σ2
b . The estimates are im-

proved by having less bias or relative bias with the increasing sample sizes. For

example, we see that the bias or relative bias is more in Table 2.20 with sample

size 6 and less in Table 2.21 with sample size 40. Table 2.22 shows that fixed and

random effects are not varying much with respect to the number of simulations.

If we run 5000 simulations instead of 2000, there are no substantial changes in

estimated bias, relative bias, RMSE, coverage probabilities and 95% widths of CIs.

So, we choose simulation size as 2000 for all successive trials in this chapter.

Table 2.23 describes the robustness of likelihood and Bayesian estimates under

different choices of σ2 and σ2
b . The likelihood and Bayesian estimates perform well

except the choice of σ2 = 1 and σ2
b = 0.05. Again, the performance of mean or

median based likelihood estimates are good except for σ2
b as corresponding average

width of 95% CI could be infinity which indicates that upper limit of 95% CI is

infinity in some simulations. However, corresponding Bayesian estimate of σ2
b is

more robust as none of the choices of σ2 and σ2
b results average width of 95% CI

being infinity.

2.10.5 Simulation Studies on Round Robin Experiments

There were 16 laboratories in the real round robin experiments and the Bayesian

estimates corresponding to fuel A and fuel B were acceptable as supported by

convergence diagnostics. Though the pattern of estimates corresponding to fuel A

and fuel B were different (see Table 2.11 and Table 2.12), they were usual in their

own scale. In the first simulation study, we take the number of laboratories as
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2. Fuel Economy Experiments

20, true parameters as α=22, σ2=16 and σ2
L=5 that determine r=11.2 and R=12.831

using formula (2.14) and the number of simulations as 2000. The prior for α was

non-informative normal and for ρ a range of beta priors was used and also we

tested non-informative, weakly informative gamma priors for the precision param-

eter 1/σ2
L, corresponding to lab-to-lab variability.

We see in Table 2.24 that the mean-based bias, relative bias and RMSE or RMdSE

are more or less similar both in likelihood and Bayesian methods. Though bias,

relative bias and RMSE seem better in median based likelihood estimates, the qual-

ity of interval estimates are not better than those of their Bayesian counterparts.

Particularly repeatability (r) has under coverage 0.918 and reproducibility (R) has

over-coverage at 1 which means that 100% of the 95% confidence intervals include

the true value. Also, the average width of σ2
L is infinity and hence the average

width of R is infinity. Average and median width of 95% CIs are higher than their

Bayesian analogues. Among the Bayesian estimates the set with prior ρ ∼Beta(1,

1) or 1/σ2
L ∼ Gamma(0.1, 0.1) could be a better option because these produce

minimum bias, RMSE or RMdSE, small width of 95% CIs along with reasonable

coverage probabilities.

We have increased the number of laboratories from 20 to 40 to see the improve-

ment of likelihood and Bayesian estimates which are presented in Table 2.25. The

true parameter values were as in Table 2.24. We notice that parameter estimates

both in likelihood and Bayesian methods have been improved in all indices. Bias,

relative bias and RMSE are less in Table 2.25 with the increase of sample size in

comparison to Table 2.24. In the likelihood method still the average width is infin-

ity due to having some upper limits of 95% CIs of σ2
L as infinity. Among Bayesian

estimators the sets with ρ ∼ Beta(1, 1) and with 1/σ2
L ∼ Gamma(0.1, 0.1) per-

formed better than others by providing less bias along with less RMSE, minimum

width of credible intervals and with sensible coverage probabilities as particularly

the likelihood method yield coverage probabilities lower than the 95% nominal level

in round robin experiments.
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2. Fuel Economy Experiments

2.10.6 Kernel Density of Simulated Estimates

Kernel density can be used to visualize the sampling distribution of simulated esti-

mates. It is a non-parametric method to estimate the probability density function

of a random variable. Kernel density estimates are similar to histograms, but can

be endowed with properties such as smoothness or continuity by using a suitable

kernel.

Figure 2.10 shows the kernel densities of the estimates from the simulated fuel

economy experiments. During generation of samples true parameter values were

α = 32, β2 = 1.4, σ2
b = 0.05, sample size was 40 and the priors in the Bayesian

analysis were α ∼ N(0, 0.001), β2 ∼ N(0, 0.001), and ρ ∼Beta(1, 1). In the figure,

the shapes of kernel densities corresponding to base fuel (α) and fuel difference

(β2) are approximately normal both in likelihood and Bayesian methods. The ker-

nel densities indicate that the distributions of day to day variability (σ2
b ) under

likelihood and Bayesian methods are positively skewed. There could have been

more zero estimates for day to day variability in the case of the likelihood method

than the Bayesian method. Therefore, it is understandable that there could have

been many zero estimates of day to day variation in real fuel economy experiments.

To have a better sense of why the density plots have higher bumps at certain places,

we look at rug plots (see below the kernel density plots in Figure 2.11). A rug plot

is a plot of tick marks along the horizontal axis indicating where the data are lo-

cated. Clearly, there are more data in the neighbourhood between 31.5 and 32.5

where highest ‘bump’ is located for base fuel (α) both in likelihood and Bayesian

simulation studies. The kernel densities and rug plots for fuel difference (β2) also

have the same pattern in both methods. However, day to day variability (σ2
b ) has

different distributional patterns for likelihood and Bayesian estimates.

It seems that likelihood and Bayesian methods perform approximately equally well.

Yet, there were 1638 simulations out of 2000 that were successfully obtained like-

lihood estimates because of arising non-positive definite variance covariance ma-

trices in the likelihood method, whereas the Bayesian method did not encounter

such problems. This is the main advantage of using Bayesian methods in fuel

economy experiments. Also, in terms of coverage probabilities and width of 95%

confidence/credible intervals Bayesian methods are better than likelihood based
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Figure 2.10: Kernel density of simulated parameter estimates in fuel economy
experiments; base fuel (α)(top), fuel difference (β2) (middle), day to day variability
(σ2

b ) (bottom)
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Figure 2.11: Kernel density of simulated parameter estimates in fuel economy ex-
periments; Base fuel (α)(top), Fuel difference (β2) (middle), Day to day variability
(σ2

b ) (bottom)
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Figure 2.12: Kernel density of simulated parameter estimates in round robin ex-
periments; within lab variability (top left), between lab variability (top right),
repeatability (bottom left), reproducibility (bottom right)
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methods as they provide good coverage estimates which are close to the 95% nom-

inal confidence limit and have less width in comparison to likelihood method (see

Table 2.21).

The kernel densities of four parameters within lab variability (σ2), between lab

variability (σ2
L), repeatability (r) and reproducibility (R) in round robin experi-

ments are shown in Figure 2.12. The likelihood and Bayesian kernel density curves

are overlaid on each other. In the figure we see each set of kernel density curves are

similar both in likelihood and Bayesian methods except density curves for between

lab variability where the likelihood kernel density is wider than the Bayesian coun-

terpart. Thus Bayesian estimates are more stable than the likelihood estimates.

Though the kernel density of between lab variability was not usual, the repro-

ducibility which is function of σ2 and σ2
L was not abnormal. The kernel densities

for R nearly coincide for likelihood and Bayesian methods. However, again there

were 1797 simulations successful out of 2000 simulations as the rest of them failed

in the likelihood parameter estimation due to arising non-positive definite matrices

at some points of simulation in likelihood method. Figure 2.13 provides additional

information about raw estimates through rug plots under the kernel densities. It

is evident from this figure that the density plots of within lab variability (σ2) and

repeatability (r) are similar as repeatability is a function of within lab variability.

2.11 Conclusion

In this Chapter, we have applied Bayesian methods in the fuel efficiency experiment

which is a novel work in this field. This study has enabled variance components

estimation that was poorly estimable in classical methods due to small number

of strata (groups). Likelihood-based REML and ML methods have estimated the

variance component due to days approximately as zero which is unrealistic. There-

fore, we have implemented Bayesian techniques assuming some priors to determine

the day-to-day variance component. However, the Bayesian estimate of the vari-

ance component is inflated as evidenced by Lambert et al. [2005] who noted that

MCMC methods provide the estimate of variance parameter as upwardly biased.

Further, as the standard asymptotic theory breaks down in case of deriving con-

fidence interval for variance component in likelihood method, we have compared

the Bayesian 95% credible interval of variance component with the confidence in-

tervals based on profile likelihood and bootstrap methods. To evaluate the quality
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Figure 2.13: Kernel density of simulated parameter estimates in round robin ex-
periments; within lab variability (top), between lab variability (second from top),
repeatability (third from top), reproducibility (bottom)
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of Bayesian as well as likelihood estimates, we have performed simulation studies.

In this regard, the frequentist properties of bias, accuracy, and coverage of the

parameter estimates have been investigated.

The analysis of real fuel economy data shows that the fixed effect estimates are

similar both in classical and Bayesian methods. However, the estimates of variance

components differ substantially. For instance, day-to-day variation in the model

corresponding to contrast T-B was close to 0 in classical method, whereas the

Bayesian estimate was 0.059 (see Table 2.5, Table 2.14). Though Bayesian meth-

ods ensure that the variance component is not estimated to be 0, but the Bayesian

estimation is not free from criticism as it suffers from overestimation of the point

estimates. Therefore, the Bayesian estimate of the variance component has been

compared with profile likelihood and bootstrap based intervals which ensure that

the Bayesian estimate is not absurd because the Bayesian point estimate of day

to day variance was 0.059 which lies within the profile likelihood based interval

(0.000, 0.099) shown in Table 2.18.

In the analysis of nested model (2.12), ‘days’ were nested under ‘weeks’. The ex-

periment was conducted in two weeks containing an interval of 4-5 days between

them. As the Bayesian analysis has revealed that there is no effect of week on the

responses, it is not essential to keep a break in the middle of experiment. Therefore,

experimenters can save time by not keeping the provision of a 4-5 days gap during

the fuel economy experiments.

To verify the correct estimation of the posterior distributions we have used con-

vergence diagnostics namely MC error, kernel density estimation, autocorrelation,

trace-plot, history plot and Gelman-Rubin statistic. All the Bayesian models in

fuel economy and round robin experiments have passed the convergence diagnostics.

A simulation study was performed to evaluate which method - likelihood or Bayesian

produces the best estimates. The performance of the simulated point estimates

were assessed by bias or mean and median squared error and interval estimates

were assessed by the coverage probabilities and mean and median width of 95%

confidence or credible intervals. A good point estimator has small bias and small

mean/median squared error and a good confidence interval has small width under
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the condition that its coverage probability is at least 0.95 [Galindo-Garre et al.,

2004]. Keeping these criteria in mind, the simulation results on fuel economy and

round robin experiments can be summarised as follows.

In small fuel economy experiment, say n=6 in Table 2.20, it seems that fixed effect

estimates are reasonable in terms of bias, coverage probability and width both in

likelihood and Bayesian methods. However, the mean width of 95% is infinity as

at least one width in the simulated samples is infinity due to the upper limit of

that interval being infinity. Therefore, a mean based estimate of the variance com-

ponent (σ2
b ) is not acceptable. With respect to median based estimates a Bayesian

approach performed better, particularly the set of priors with ρ ∼Beta(1, 1) and

ρ ∼Beta(1.5, 1.5) performed better than the estimates of the likelihood method.

For fixed effects the main concern is to estimate fuel difference (β2). Though like-

lihood and Bayesian estimates of (β2) are fairly close, the corresponding coverage

probability in the likelihood method is slightly below the nominal level 0.95. How-

ever, for small samples, it seems that likelihood method underestimates the variance

component (σ2
b ) and Bayesian method overestimates it. From our intuition we con-

clude that none of the estimates of (σ2
b ) obtained in likelihood or Bayesian method

is accurate, rather perhaps it is in between likelihood and Bayesian estimates. The

mean or median width of the Bayesian credible intervals are smaller than the me-

dian width of the classical confidence intervals particularly when the set of priors

with ρ ∼Beta(1, 1) to ρ ∼Beta(3, 3). Among the priors the set with ρ ∼Beta(3,

3) performs the best for small sample in fuel economy experiment. When the sam-

ple size is increased from 6 to 40, the estimates get improved by providing less

bias, close to desired coverage probabilities, and smaller widths of intervals (see

Table 2.21). However, the likelihood and Bayesian methods perform fairly close to

each other except the pitfall in average width of 95% confidence interval of σ2
b in

likelihood method.

In round robin experiments, the estimates of fixed effects are similar for likeli-

hood and Bayesian methods, but the likelihood estimate of lab to lab variability

(σ2
L) is zero, whereas the Bayesian estimate of lab to lab variability is 11.517.

Though we understand that the Bayesian estimate is upwardly biased, but im-

pressively the Bayesian estimate is still within the profile likelihood and bootstrap

based confidence intervals (see Table 2.19). Yet, the quality of the likelihood and
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Bayesian estimates under round robin experiments have been assessed by a sim-

ulation study. The simulated performance of likelihood and Bayesian estimates

are shown in Table 2.24 and Table 2.25. The comparison indices are bias or rel-

ative bias, coverage probabilities, mean/median width of intervals. The coverage

probabilities are unusual in likelihood method i.e. either below or over coverage

than the nominal level 0.95. In the Bayesian case, with different sets of priors

the estimates seems reasonable with acceptable coverage probabilities. However, a

non-informative gamma prior e.g. 1/σ2
L ∼ Gamma(0.01, 0.001) is not suitable for

studying round robin experiments. We notice that there is little differences in re-

sults while priors ρ ∼Beta(1, 1), ρ ∼Beta(1.5, 1.5), and ρ ∼Beta(2.5, 2.5) are taken

into account. Perhaps we can recommend the prior sets with ρ ∼Beta(1.5, 1.5) or

ρ ∼Beta(2.5, 2.5) for Bayesian analysis of round robin experiments. The Bayesian

analysis would be more appropriate as the likelihood method has the shortcoming

of having infinite average width of confidence intervals.

Throughout the simulation studies a package R2WinBUGS has been used to call

WinBUGS from R. Basically R2WinBUGS makes use of batch mode feature and

provides tools to call WinBUGS directly after data manipulation in R. After the

WinBUGS process had finished, it was possible to work with the results importing

them back into R again, for example, essential posterior summaries were saved in

R for further processing and to prepare outputs for simulation studies.

At the end, we might conclude that the newly applied Bayesian methods in fuel

efficiency field appeared to be a strong competitor with usual classical basis of anal-

ysis for Shell statistical research unit. In the case of small experiments where there

is a chance of computational failure in classical methods, the Bayesian methods

can be used with the appropriate choice of priors. These techniques of analyzing

fuel efficiency can be replicated to other industrial experiments with small number

of groups.
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Chapter 3

Bayesian Analysis of Categorical

Data from Multi-Stratum

Experiments

3.1 Introduction

Residual maximum likelihood (REML) method is used to estimate random effects

and empirical generalized least squares (GLS) to estimate fixed effects in linear

mixed models. However, REML-GLS estimation can give misleading conclusions if

there are few main plots in a non-orthogonal split-plot design. Some of the variance

components were estimated to be 0, perhaps due to inadequate number of whole

plots during the analysis of data from a polypropylene experiment. To estimate the

variance components properly Goos and Gilmour [2012] suggested the possibility

of doing a Bayesian analysis assuming informative priors for the variance compo-

nents, though they did not implement this suggestion.

In this chapter, we have implemented Bayesian methods considering some informa-

tive priors for variance components and noninformative priors for the fixed effects

in multi-stratum and split-plot design settings with binary and ordered categorical

responses. The added value of the Bayesian approach is that it enables variance

components estimation when these are inestimable or poorly estimated in classical

methods, thus leading to more reasonable standard errors and inferences for the

fixed effects of the treatment factors. We illustrate our approach using the data

74



3. Polypropylene Experiments

from the polypropylene experiment described in Section 3.4 onwards.

3.2 Models to be Used in the Analysis

Mixed models are used to analyze multi-stratum and split-plot designs as each stra-

tum may have random effects on the responses [Letsinger et al., 1996]. We have

two types of models namely mixed binary logit and mixed cumulative logit models

for analyzing categorical data from the polypropylene experiment, depending on

how the responses are categorized.

If responses are binary then binary logit model is appropriate for analysis. When

some factors have random effects on the responses we use mixed binary logit model.

For example, the mixed binary logistic mixed model can be written as

Yij | δi, εij ∼ Bernoulli(Pij) (3.1)

logit(Pij) = β0 + x′ijβ + δi + εij

where Yij is a binary response corresponding to (i, j)th unit in the data with prob-

ability Pij , x′ij is a row of a design matrix; β0 is an intercept, β is a vector of

fixed effects, δi is a random effect with δi ∼ N(0, σ2
δ ) and εij is an error term with

εij ∼ N(0, σ2
ε ).

If responses are ordered categorical with a factor having random effect on the

responses, then a mixed cumulative logit model is more appropriate for modeling

such data. The cumulative logit model is also called proportional odds model

because of constant proportionality to each logit [Agresti, 2002]. For example, the

mixed cumulative logistic model can be written as

Yij | δi, εij ∼ Multinomial(1,Pij) (3.2)

logit[P (Yijk > c | x)] = log

(∑T
l=c+1 Pijl∑c
l=1 Pijl

)
= βc0 + x′ijβ + δi + εij

75



3. Polypropylene Experiments

where Yij is a ordered categorical response corresponding to (i, j)th unit with

probability Pij, i = 1, 2, . . . , b, j = 1, 2, . . . , ni, b is the number of units in the

higher stratum, ni is the number of sub-units in the ith stratum; βc is an intercept

corresponding to response category c, c = 1, 2, . . . , T − 1; the {βc} is decreasing in

c, because logit[P (Yijk > c | x)] decreases in c for fixed x and logit is a decreasing

function of P (Yijk > c | x), β is a vector of fixed effects, δi is a random effect

with δi ∼ N(0, σ2
δ ), εij is an error term with εij ∼ N(0, σ2

ε ). Further details on

cumulative logit are available in Agresti [2002].

3.3 Model Selection

Model selection is a process of estimating the performance of different models

in order to choose the best approximate one. We have competing models during

Bayesian model building stages in the current study where the models are compared

on the basis of Deviance Information Criterion (DIC). The DIC is based on trade-

off between the fit of the data to the model and the corresponding complexity of

the model [Spiegelhalter et al., 2002]. The DIC is defined as

DIC = deviance + complexity

The deviance is defined as D(θ) = −2 logL(y|θ) which quantifies the badness of fit;

the complexity is measured by an estimate of the effective number of parameters

pD = Eθ|y[D]−D(Eθ|y[θ]) = D−D(θ) i.e. posterior mean deviance minus deviance

evaluated at the posterior mean of the parameters. Then the DIC is defined analo-

gous to AIC as DIC = D(θ) + 2pD = D+ pD. Models with smaller DIC are better

supported by the data.

We follow stepwise manual forward selection process to choose a model starting

with no potential predictor variables. At each step, a predictor is added in such a

way that the resulting model has the lowest DIC value. The predictors concerning

fixed effects are considered first, then random effects are added in the model. The

process is stopped when there is no further decrease in DIC values by adding or

subtracting any predictor variables or their interactions or any random effects in

the model.
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3.4 The Polypropylene Industrial Experiment

3.4.1 What is Polypropylene?

Polypropylene is a type of thermoplastic polymer resin. It is used both in the

average household and in the commercial and industrial applications. The chemical

designation of polypropylene is C3H6. One of the benefits of using this type of

plastic is that it can be useful in numerous applications including as a structural

plastic or as a fiber-type plastic. The polypropylene experiment is of interest to

car manufacturers due to the frequent use of propylene in the car industry. This

is because polypropylene is inexpensive, light and environmentaly friendly [Jones

and Goos, 2007].

3.4.2 Underlying Design

The current study is motivated by a polypropylene industrial experiment where

responses are continuous and categorical. Four Belgian companies, namely Domo

Polypropylene Compounds (a producer of thermoplastic materials), Europlasma

(a developer of gas plasma systems), Structuplas ( a company that specializes in

the finishing of thermoplastic materials) and Techni-Coat International (a com-

pany that specializes in coatings) conducted the experiment to investigate the ef-

fect of several additives and a gas plasma treatment on the adhesive properties of

polypropylene.

An undesirable property of polypropylene is that glues and coatings do not adhere

well to its surface unless it undergoes a surface treatment, like a gas plasma treat-

ment. It was a matter of investigation to look for economical plasma treatments

which lead to good adhesion to various coatings. Four experimental factors related

to the plasma treatment, each at three levels, are the gas flow rate, the power, the

reaction time, and the type of gas used. Three types of gas, namely one etching

gas and two activation gases, were used in the experiment. As decided by the

plant engineers after some pilot tests, the gas flow rates used in the experiment

were between 1000 and 2000 sccm, power ranged from 500 to 2000 W and reaction

times lay between 2 and 15 min.
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Table 3.1: Levels of factors studied in the polypropylene experiment

Factor Units Levels
−1 0 1

EPDM (X1) % 0 15
Ethylene (X2) % 0 10
Talcum (X3) % 0 20
Mica (X4) % 0 20
Lubricant (X5) % 0 1.5
UV-stabilizer (X6) % 0 0.8
EVA (X7) % 0 1.5

Power (X8) Watts 500 1000 2000
Gas flow rate (X9) sccm 1000 1500 2000
Processing time (X10) min 2 8 15
Type of gas (X11) Etching Activation 1 Activation 2

The effects of several additives were studied in addition to the plasma treatments.

Polypropylene is often compounded with additives such as stabilizers against ul-

traviolet (UV) light, lubricants, talcum, mica and/or colour pigments to tailor the

plastic to a specific end use. It was strongly believed that some of the additives had

an effect on the adhesive properties. Eventually, seven additives, each at two levels,

namely ethylene diene monomer (EPDM) rubber, ethylene copolymer content of

the rubber, talc, mica, lubricant, UV stabilizer, and ethylene vinyle acetate, were

included in the study. The levels and units used for each of these eleven factors,

coded as X1 − X11, are shown in Table 3.1. In the study, seven factors namely

EPDM, ethylene, talcum, mica, lubricant, UV stabilizer, EVA are considered as

whole plot factors which are hard to change, and four sub-plot factors are power,

gas flow, processing time and type of gas.

The entire polypropylene experiment involves a complicated randomization which

is due to the fact that the complete experiment was carried out in several stages.

The sequence of events in polypropylene experiment is illustrated in Figure 3.1.

At the beginning, 20 batches of polypropylene plates were produced according to

the whole-plot design for the seven additives. Each of the batches consists of sev-

eral dozen polypropylene plates with the same settings for the seven additives.

Each of the plates was stored in identical conditions. For the subsequent stages,

the appropriate number of plates was removed from storage immediately prior to

further processing.
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Figure 3.1: Factors and stages in the polypropylene experiment

In the next stage, three to seven sets of three samples were randomly selected from

each of the 20 batches. The three samples in each set were processed together in

one oven run, using one gas plasma treatment according to the sub-plot design.

The sub-plot design consisted of 100 gas plasma treatments which were applied in

100 independent oven runs. A fixed number of days after the gas plasma treatment,

coating 1 was applied to each of three samples in a set (three repeats). A six-level

categorical response, related to the success of the coating’s adhesion to the plastic,

was measured as soon as the coating became dry. This stage was repeated four

more times for other four different types of coatings. Thus, in the experiment, there

were 100 runs each with 3 repeats, implies there were 300 measurements for each

of the coatings and therefore, the whole experiment was supposed to contain 1500

measurements in total for all 5 coatings. However, due to having some missing

values there were 1492 measurements in total and further details are available
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elsewhere, Goos and Gilmour [2012] and Jones and Goos [2007].

Table 3.2: Frequency distribution of ASTM scores in the polypropylene experiment

ASTM Coating 1 Coating 2 Coating 3 Coating 4 Coating 5

0 61 39 40 220 69
1 13 14 11 7 17
2 26 29 19 13 29
3 34 38 23 35 32
4 31 57 7 9 123
5 135 123 200 10 28
Total 300 300 300 294 298

The adhesion quality was assessed visually using the American Standard Test

Method (ASTM) score which is considered standard for adhesion testing. The test

method involves a six-point scale. A frequency distribution of the ASTM scores

obtained in the polypropylene experiment is presented in Table 3.2. For coat-

ings 1, 2, and 5 the outcome categories (ASTM scores) are approximately evenly

distributed. For coating 3, two thirds of the measurements resulted in an ASTM

score of 5, whereas for coating 4, more than 80% of the measurements resulted in

an ASTM score of 0. Also, there are small numbers of missing observations for

coatings 4 and 5.

3.5 Binary Response Data Analysis

In the test, a coating was considered acceptable if it resulted in an ASTM score of

at least three. Thus, success of a coating was defined as

Success of coating =

{
1 if ASTM ≥ 3

0 if ASTM ≤ 2

The success of a coating is a binary response variable for which a mixed binary

logit model is an appropriate choice. Following the model (3.1) the appropriate
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model for binary response analysis would be

Yijk | δi, εij ∼ Bernoulli(Pij) (3.3)

logit(Pij) = β0 + x′ijβ + δi + εij

where Yijk is the response from the kth test, k = 1, 2, 3, on the jth oven run,

j = 1, 2, . . . , ni, from the ith batch, i = 1, 2, . . . , 20, Pij is the probability of suc-

cess for the jth oven run from batch i, β0 is an intercept, x′ij is the transpose of

a row of the design matrix corresponding to ith batch and jth oven run, β is a

vector of fixed factor effects, δi ∼ N(0, σ2
δ ) is a random effect due to batch i, and

εij ∼ N(0, σ2
ε ) is random effect due to jth oven run from batch i.

Goos and Gilmour [2012] analyzed the polypropylene data by likelihood-based

methods using SAS procedure GLIMMIX. The GLIMMIX performs estimation

and statistical inference for generalized linear models (GLMMSs) [Schabenberger,

2005]. Restricted pseudo-likelihood (RPL) is the default estimation method in

PROC GLIMMIX for models containing random effects [Wolfinger and O’Connell,

1993]. However, the variance component estimates obtained by the GLIMMIX

were not accurate due to having insufficient number of whole plots (batches) in

the polypropylene experiment. The variance components due to batches (σ2
δ ) were

estimated to be zero for coating 3 and coating 4 in binary response analyses and

for coating 1, coating 4, and coating 5 in cumulative logit analyses. As the zero

variance-components are unrealistic, a Bayesian analysis was recommended to avoid

misleading inferences possibly arising in likelihood-based methods.

The unknown parameters in model (3.3) are β0, β, σ2
δ and σ2

ε for which we need to

specify priors for these parameters in Bayesian approach. Since the main objective

of the study is to estimate the fixed effects, it might be reasonable to use a non-

informative, or a weakly informative prior for the parameters corresponding to

fixed effects. We consider priors of the form βr ∼ N(0, τr) where βr is the effect

corresponding to rth factor or interaction and τr = 1/σ2
r). The prior for βr can

be non-informative by taking σ2
r very large. For variance components, we need

to consider priors carefully. The gamma family of priors is used for precision

parameter i.e. for the variance components. In our data, we have only two strata

batch and run, and the corresponding variance components are σ2
δ and σ2

ε . As σ2
ε
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will be well estimated with lots of degrees of freedom from the data its prior should

be less influential, thus we might use a non-informative prior. It is often easier

to express the prior information about intra-main plot correlation ρ =
σ2
δ

σ2
δ+σ

2
ε

or

equivalently ρ = τε
τε+τδ

, where τε = 1/σ2
ε , τδ = 1/σ2

δ . Often a beta distribution is

appropriate for the single parameter ρ. We have analyzed each of the five coatings

by Bayesian methods using WinBUGS 1.4.

3.5.1 Binary Response Analysis of Coating 1

We assume the priors concerning model (3.3) to analyze coating 1 in Bayesian

method. We consider slightly informative priors for factor coefficients and a mod-

est prior for batch effects, for instance, βi ∼ N(0, 0.01), τε ∼ Gamma(1, 1), and

ρ ∼ beta(5, 5), where τε = 1/σ2
ε , τδ = 1/σ2

δ and ρ = τε
τε+τδ

. The reason behind

considering this slightly informative prior for factor effects is that there arises con-

vergence problem if we use non-informative priors e.g. βi ∼ N(0, 0.0001) instead of

βi ∼ N(0, 0.01) during binary response analysis.

For the binary response data, we have obtained the Bayesian results for coat-

ing 1 displayed in Table 3.3 following the model simplified by Goos and Gilmour

[2012] who used a forward selection procedure, where a main-effects model was esti-

mated first and interaction effects among factors with significant main effects were

added one by one. We did not attempt to search the best models independently in

Bayesian approach because of severe convergence problems. At the beginning we

started with full model containing all main effects and two factor interactions and

wanted to implement backward elimination method. Due to convergence problem,

it was impossible to implement this technique. Then we started method of forward

selection starting with a single factor and gradually adding other factors and their

interactions in the model. In the selection process, models were compared with the

DIC values obtained at the end of fitting a model. A model with minimum DIC

ruled out a competing model with larger DIC value. During this process, while

adding some of the factors and interactions it becomes impossible to get estimates

due to convergence problem and therefore, left the idea of searching models in-

dependently in the Bayesian method. Thus, to compare Bayesian and likelihood

estimates, we were satisfied with the simplified models rather than ending up with

wrong models describing as the best. However, estimating the mixed binary logit
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Table 3.3: Classical and Bayesian estimates obtained from mixed binary logit model
for coating 1

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept 1.768 2.783
EPDM 0.989 0.011 1.573 0.669 (0.299 , 2.874)
Ethylene 0.765 0.034 1.330 0.661 (0.141 , 2.829)
Talcum 0.978 0.015 1.528 0.688 (0.271 , 2.962)
Time 1.473 0.000 2.256 0.511 (1.381 , 3.404)
Gas type 1.763 0.000 2.790 0.751 (1.397 , 4.449)
Batch (σ2

δ ) 0.517 4.387 2.976 (0.987 , 12.310)
Run (σ2

ε ) 2.295 6.188 3.014 (2.374 , 14.040)

model turned out to be a real challenge for Goos and Gilmour [2012] also when

they attempted to include certain interactions in the model. For instance, adding

the two factor interaction effect of EPDM and type of gas caused the convergence

to fail in their study.

The posterior estimates of coating 1 are displayed in Table 3.3 along with the

likelihood-based estimates that was obtained by Goos and Gilmour [2012]. In

Bayesian estimation regarding coating 1 sample size was 9000, highest feasible

number for coating 1, thinning was 10 to avoid autocorrelation effects in the pos-

terior estimates. A burn-in of 1000 was allowed and then samples of 800 were

used to calculate the estimates. The reason behind this unusual sample size is a

convergence problem. Perhaps, a sample with size 800 is reasonable to compute

posterior estimates as kernel densities relevant to the parameters were smooth and

unimodal. With the effort of taking large samples the WinBUGS programme stuck

at some points and failed to produce posterior estimates. Therefore, the sample

size was kept moderate across the coatings during Bayesian estimations of mixed

binary logit analysis. However, it is essential to give explanation why WinBUGS

software failed in the current situation. We know that Gibbs sampling works it-

eratively by drawing samples from the full conditional distributions of unobserved

nodes. From empirical studies, it is found that the Gibbs sampler cannot draw

sample from non-informative priors in particular situations, for instance, in case of

dealing with mixed models associated with binary responses and non-informative

priors. While convergence problem arises during analysis of mixed binary logit

models, WinBUGS provides error messages by labeling “Trap 66” which still re-
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Table 3.4: Classical and Bayesian estimates obtained from mixed binary logit model
for coating 2

Classical Method Bayesian Method
Effect Estimate SE P-value Mean SD 95% CI
Intercept 4.159 4.237
EPDM 1.196 0.602 0.075 1.240 0.637 (0.048, 2.558)
Ethylene 1.569 0.588 0.023 1.752 0.610 (0.674, 3.046)
Talcum 2.179 0.744 0.013 2.111 0.706 (0.730, 3.493)
Mica 1.332 0.684 0.083 0.941 0.562 (-0.181, 2.023)
Power 0.805 0.374 0.036 -0.735 0.390 (-1.512, 0.025)
Time 2.636 0.501 0.000 2.803 0.557 (1.798, 3.964)
Type of gas 2.987 0.689 0.000 2.341 0.567 (1.291, 3.480)
Act. gas -1.445 0.379 0.000 -1.743 0.465 (-2.768, -0.928)
Power×Act. gas 1.365 0.422 0.002 1.356 0.442 (0.497, 2.271)
Batch (σ2

δ ) 3.667 3.813 2.495 (0.915, 10.180)
Run (σ2

ε ) 1.115 3.390 2.109 (0.826, 8.874)

mains as a “black box” to the applied Bayesian practitioners. Perhaps for deeper

understanding of the problem in the current situation, it might be essential to work

closely with the WinBUGS developer team.

We find in classical method that the main effects of EPDM, ethylene, talcum,

time and gas type (etching gas versus activation gas) are significant at 5% level

for coating 1 shown in Table 3.3. All the factors just mentioned also appeared to

be important in Bayesian method as all of the estimates were within 95% central

Bayesian credible intervals. The estimates of the variance components in classical

methods were σ̂2
δ = 0.5170 , and σ̂2

ε = 2.2950 which are differing with the cor-

responding Bayesian estimates. This could be due to the priors assumed for the

parameters.

Both likelihood and Bayesian approaches show that the estimates of σ2
δ are positive

which is an indication of having batch to batch variability. On the other hand, the

estimates of σ2
ε confirms that the three observational units (i.e. tests) within every

experimental unit (i.e. runs) are dependent.
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3.5.2 Binary Response Analysis of Coating 2

We find that the main effects of ethylene, talcum, power and time are significant

at 5% level in Table 3.4. The type of gas, the type of activation gas (activation

gas 1 versus 2) and an interaction terms are also significant. However, the effects

of EPDM and mica are borderline significant.

For coating 2, we assumed slightly informative priors for factor coefficients βr ∼
N(0, 0.01) and a modest prior for batch effects τε ∼ Gamma(1, 1), and ρ ∼
beta(5, 5), where τε = 1/σ2

ε , τδ = 1/σ2
δ and ρ = τε

τε+τδ
. For the binary response

data we have obtained the posterior estimates displayed in Table 3.4 following the

model simplified by Goos and Gilmour [2012]. The sample size was 11000, thinning

was 20 to avoid autocorrelation effects in the posterior estimates. A burn-in of 1000

was allowed and then samples of 500 were used to calculate the estimates. The

estimates of the variance components in classical methods were σ̂2
δ = 3.667 , and

σ̂2
ε = 1.1154 which are slightly differing with the corresponding Bayesian estimates

shown in Table 3.4. This could be due to the priors assumed for the parameters.

Both likelihood and Bayesian methods produce similar output for coating 2. Ta-

ble 3.4 shows that factors effects did not include 0 in their 95% credible intervals

except mica and power. However, the effect of power on responses appeared to

have the reverse sign in Bayesian method for coating 2. Perhaps power effect is

negligible for coating 2 responses as in Bayesian method the estimate correspond-

ing to power contains zero in its 95% Bayesian credible interval. Both likelihood

and Bayesian approaches show that the estimates of σ2
δ are positive which is an

indication of having batch to batch variability. On the other hand, the estimates of

σ2
ε confirms that the three observational units (i.e. tests) within every experimental

unit (i.e. runs) are dependent.

3.5.3 Binary Response Analysis of Coating 3

The posterior results obtained from binary analysis of coating 3 following the sim-

plified model by Goos and Gilmour [2012] are presented in Table 3.5. The main

effects EPDM, ethylene, time and type of gas appeared to be important in Bayesian
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Table 3.5: Classical and Bayesian estimates obtained from mixed binary logit model
for coating 3

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept 4.268 4.811
EPDM 1.773 0.000 2.055 0.574 (1.021 , 3.256)
Ethylene 1.666 0.001 1.896 0.587 (0.765 , 3.195)
Talcum 0.928 0.055 0.788 0.602 (-0.442 , 1.969)
Mica 0.812 0.100 0.658 0.550 (-0.444 , 1.703)
Lubricant 0.869 0.038 0.790 0.502 (-0.234 , 1.795)
Time 2.601 0.000 2.556 0.503 (1.662 , 3.563)
Gas type 3.365 0.002 3.714 1.023 (1.900 , 5.956)
Batch (σ2

δ ) 0.000 1.521 1.855 (0.033 , 7.358)
Run (σ2

ε ) 3.782 6.402 3.342 (1.947 , 14.430)

analysis as all of the effects do not include 0 in their 95% credible intervals, though

in classical method lubricant was significant at 5% level and talcum and mica were

borderline significant, they were found not to be important in Bayesian analysis.

The batch to batch variation was estimated to be 0 for coating 3 in classical method,

however, it was non-zero in Bayesian analysis.

3.5.4 Binary Response Analysis of Coating 4

The coating 4 had troublesome behaviour as we faced severe convergence problem

during the binary response analysis. Perhaps the reason is that we have more than

three quarters of the measurements of coating 4 resulting in an ASTM score of 0.

The results of coating 4 from mixed binary logit are presented in Table 3.6. Only

the effect gas type was significant and time was borderline significant in classical

analysis. Though the variance component estimates were either 0 or moderate in

classical analysis, however, in Bayesian analysis these point estimates were unrea-

sonably high. As the credible intervals of these estimates are also wide, the main

problem might not be in the estimation method rather than data of coating 4 itself.

3.5.5 Binary Response Analysis of Coating 5

The results obtained from binary analysis of coating 5 are given in Table 3.7. The

main effects EPDM, talcum, mica, power, type of gas and interactions Power×Gas
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Table 3.6: Classical and Bayesian estimates obtained from mixed binary logit model
for coating 4

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept -2.108 -2.473
Time 0.690 0.052 1.064 0.658 (-0.244 , 2.331)
Gas type 1.186 0.005 1.402 0.692 (0.172 , 2.864)
Batch (σ2

δ ) 0.000 17.300 15.920 (2.236 , 59.310)
Run (σ2

ε ) 3.778 22.800 14.350 (5.645 , 58.820)

Table 3.7: Classical and Bayesian estimates obtained from mixed binary logit model
for coating 5

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept 2.264 2.784
EPDM 1.293 0.004 1.762 0.527 (0.824 , 2.917)
Ethylene 0.724 0.061 1.108 0.488 (0.248 , 2.174)
Talcum 1.985 0.001 2.634 0.644 (1.476 , 4.027)
Mica 1.350 0.009 1.596 0.572 (0.484 , 2.750)
Power 1.068 0.001 1.232 0.363 (0.556 , 1.972)
Time 1.559 0.307 1.888 0.401 (1.165 , 2.752)
Gas type 1.658 0.001 1.862 0.507 (0.949 , 2.904)
Act. Gas -0.098 0.670 -0.210 0.295 (-0.790 , 0.349)
Power × Gas type 1.765 0.003 1.864 0.632 (0.715 , 3.167)
Power × Act. Gas 0.499 0.076 0.639 0.368 (-0.034 , 1.426)
Time × Gas type 0.935 0.041 0.945 0.548 (-0.096 , 2.047)
Batch (σ2

δ ) 1.349 2.303 1.511 (0.572 , 6.445)
Run (σ2

ε ) 0.542 1.839 1.075 (0.493 , 4.738)

type, Time×Gas type were significant at 5% level and ethylene, time, activation gas

and the interaction Power×Act. gas were borderline significant in likelihood-based

analysis. All the factors and an interaction but Time×Gas type and Power×Act.

gas were found to be important in the Bayesian analysis.

3.5.6 Remarks on Mixed Binary Logit Analysis of Coatings

With classical methods, analyzing the data for coating 3 and 4 led to several dif-

ferences with the results obtained for coatings 1, 2, and 5. For both coatings 3 and

4, σ2
δ were estimated to be zero which implied that there was no batch-to-batch
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variation. Actually zero variability of a variance component is unrealistic. The

Bayesian method ensures that none of the estimates of σ2
δ can be zero. The batch-

to-batch variation was similar for all coatings except coating 4. However, perhaps

the batch-to-batch variability could not be measured properly for coating 4 due to

convergence problems in the mixed binary analysis. The variability due to runs

were more or less similar for all coatings except for coating 4. The estimates of fixed

effects for all coatings were similar to the estimates in classical methods both in

magnitude and direction except for the coefficient of power which is reversed in sign.

The analysis of binary data frequently presents problems for which there are no

standard solutions, as pointed out by Collett and Stepniewska [1999]. This ap-

peared to be true in our whole binary data analysis. Identification of subsets of

significant explanatory variables and their interactions was difficult for all coatings,

as we encountered many problems similar to Goos and Gilmour [2012] in fitting

mixed models for binary data. This is not unusual to have severe problems with

fitting GLM for categorical data as mentioned by Chipman and Hamada [1996]

also. Perhaps these are due to separation problems arising in binary regression

model [Goos and Gilmour, 2012]. The main aim of this study was to estimate the

main effects of each of the factors as well as all relevant interactions in Bayesian

method overcoming the limitations of classical methods and thereby to compare

two approaches. However, for binary data possibly it was an ambitious goal be-

cause of convergence problems while including several interactions. We followed

manual forward selection, where we fit a model with main effects first, and then

added interactions involving important main effects one by one. Slightly infor-

mative priors for factor coefficients and more accurate set of initial values often

improve convergence problems in mixed binary logit model analysis.

3.6 Ordinal Response Data Analysis

We expect that analyzing actual ASTM scores would provide more information

than binary analyses. The cumulative logit model [Agresti, 2002] is a better tool

to analyze naturally ordered ASTM scores. A suitable model for ASTM scores
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seems to be

Yijk | δi, εij ∼ Multinomial(1,Pij) (3.4)

logit[P (Yijk > c)] = log

(∑6
l=c+1 Pijl∑c
l=1 Pijl

)
= βc0 + x′ijβ + δi + εij

where Yijk is the response from kth test on the jth run from the ith batch,

Pijl is the probability for the ASTM score l, in the jth oven run from batch i,

P′ij = [Pij1, Pij2, . . . , Pij6, ], βc0 is an intercept corresponding to response category

c, xij is a design matrix corresponding to ith batch and jth oven run, β is a vector

of fixed effects due to factors, δi ∼ N(0, σ2
δ ) is a random effect due to batch i,

εij ∼ N(0, σ2
ε ) is random effect due to jth oven run from batch i, and all random

variables are independent. The intercepts are the only parameters which depend

on the comparison of categories being made. The model has the same effects β for

each logit. Thus, we assumed the proportionality of odds in the analysis. How-

ever, it is difficult to test the deviation of assumption of proportionality in such a

complex model in classical approach, and the same is true for the Bayesian analyses.

The ordered ASTM scores were analyzed for the five coatings using general model (3.4)

in classical methods by Goos and Gilmour [2012] and in Bayesian methods in this

study. The following sections will describe Bayesian investigation of all the coat-

ings.

3.6.1 Ordinal Response Analysis of Coating 1

The unknown parameters in model (3.4) are βc0, β, σ2
δ , and σ2

ε . Priors were as-

sumed for intercepts (βc0), fixed effects of factors (β), and for the elements of

random effects. We used normal priors for fixed effects (β) and ordered normal

priors for βc0. The priors for the intercept βc0 is ordered normal because logits

are either increasing or decreasing with the ordered categories of responses. Infor-

mative priors were assumed for process variation σ2
δ but non-informative or vague

priors for factor parameters as no substantial information was available for them.

To analyze data of coating 1 the priors assumed corresponding to model (3.4) are

βc0 ∼ N(0, 0.0001), βr ∼ N(0, 0.0001), τε ∼ Gamma(1, 1), ρ ∼ Beta(5, 5), where

ρ = τε
τε+τδ

, τε = 1/σ2
ε , and τδ = 1/σ2

δ .

89



3. Polypropylene Experiments

We did independent search of Bayesian models applying manual forward selection

method and the models were compared on the basis of DIC values for coating 1.

However, we ended up with the same model as obtained by Goos and Gilmour

[2012] for coating 1. The results from the likelihood estimation and the posteriors

obtained from the fitted Bayesian model are presented in Table 3.8. In classical

method, the main effects of the factors EPDM, ethylene, talcum, mica, time, gas

type and activation gas are clearly highly significant. Also, the interaction of

EPDM and ethylene appeared to be significant. However, Time2, EPDM×Act. gas

are borderline significant. In the Bayesian analysis the factors EPDM, ethylene,

talcum, and time are remarkably important as 95% Bayesian credible intervals

include the estimates of these factor effects. However, mica and all the interactions

were found not to be important in Bayesian analysis. In classical method, the

batch-to-batch variation was inestimable, on the other hand, Bayesian techniques

provide the estimate of batch-to-batch variation (σ2
δ ) as 3.6190. In classical and

Bayesian methods the variance component due to runs (σ2
ε ) were 3.8584 and 6.8210

respectively.

Table 3.8: Classical and Bayesian estimates obtained from mixed cumulative logit
model for coating 1

Classical Method Bayesian Method
Effect Estimate P-value Mean SD 95% CI
Intercept 1 4.947 6.396
Intercept 2 4.283 5.602
Intercept 3 3.188 4.317
Intercept 4 1.945 2.867
Intercept 5 0.825 1.568
EPDM 0.918 0.001 1.235 0.575 (0.143, 2.413)
Ethylene 0.853 0.001 1.224 0.569 (0.143, 2.385)
Talcum 1.116 0.001 1.590 0.671 (0.336, 2.961)
Mica 0.751 0.019 1.280 0.718 (-0.075, 2.750)
Time 1.788 0.000 2.629 0.462 (1.809, 3.602)
Gas Type 2.102 <.000 2.995 0.598 (1.899, 4.229)
Act. gas -0.778 0.009 -1.149 0.403 (-1.973, -0.386)
EPDM×Ethylene 0.752 0.004 1.074 0.556 (-0.016, 2.196)
Time2 -1.153 0.057 -1.494 0.844 (-3.193, 0.124)
EPDM×Act.gas 0.549 0.061 0.732 0.394 (-0.017, 1.522)
Batch (σ2

δ ) 0.000 3.619 2.203 (0.899 , 9.157)
Run (σ2

ε ) 3.858 6.821 2.252 (3.482 , 12.340)

90



3. Polypropylene Experiments

3.6.2 Ordinal Response Analysis for Coating 2

We assume the priors corresponding to model (3.4) with a view to analyzing coat-

ing 2 as βc0 ∼ N(0, 0.0001), βr ∼ N(0, 0.0001), τε ∼ Gamma(1, 1), ρ ∼ Beta(5, 5),

where ρ = τε
τε+τδ

, τε = 1/σ2
ε , and τδ = 1/σ2

δ .

The likelihood estimates of coating 2 by Goos and Gilmour [2012] and the Bayesian

estimates are presented in Table 3.9. The main effects of the factors EPDM, ethy-

lene, talcum and time are clearly highly significant. Also, the type of gas (etching

gas versus activation gas) and type of activation gas (activation gas 1 versus 2)

have significant effects. The factor power does not have a significant main effect,

but its interactions with the type of gas and the type of activation gas are highly

significant. There is also some indication that the interaction between mica and

the type of activation gas has an effect on the ASTM score. In likelihood-based

analysis, nonsignificant main effects talcum and mica were included in the model

due to marginality restriction. The principle of marginality refers to the fact that

the main effects should be included in the model when one or more interactions

involving them found to be important even though individual effects are negligible.

Mixed cumulative logit analysis detects more effects than mixed binary logit anal-

ysis. Comparing Table 3.4 and Table 3.9 we find the effects EPDM×Ethylene,

EPDM×Talcum , Power×Gas type, Power×Time, Ethylene×Power, Mica×Act.gas

were not detected in binary analysis under likelihood method. Further, we find

more important effects using mixed cumulative logit model for ASTM scores with

the Bayesian method than with the likelihood-based method for coating 2 shown

in Table 3.9. In Bayesian approach the newly identified factors that are influencing

ASTM scores are EPDM×Ethylene, EPDM×Talcum, and Power×Time for coat-

ing 2.

The two variance components in the model σ2
δ and σ2

ε are estimated to be 1.2507 and

3.7213 respectively in the likelihood method while their counterparts in Bayesian

methods are 4.1310 and 5.0500 respectively. The variance components being posi-

tive in both methods suggest the existence of substantial batch-to-batch variation

as well as dependence between the three observational units (i.e. tests) within every

experimental unit (i.e. within every oven run).
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Table 3.9: Classical and Bayesian estimates obtained from mixed cumulative logit
model for coating 2

Classical Method Bayesian Method
Effect Estimate P-value Mean SD 95% CI
Intercept 1 6.209 7.546
Intercept 2 4.916 5.920
Intercept 3 3.117 3.740
Intercept 4 1.404 1.698
Intercept 5 -0.499 -0.478
EPDM 0.741 0.065 0.803 0.578 ( -0.314 , 1.996)
Ethylene 1.315 0.003 2.063 0.590 (0.988 , 3.310)
Talcum 1.487 0.005 2.083 0.697 (0.766 , 3.510)
Mica 0.757 0.121 1.199 0.706 (-0.137 , 2.633)
Power -0.313 0.295 -0.340 0.352 (-1.033 , 0.345)
Time 1.931 0.000 2.585 0.410 (1.829 , 3.437)
Gas type 2.383 0.000 3.321 0.567 (2.303 , 4.499)
Act. gas -0.593 0.060 -0.775 0.362 (-1.516 , -0.080)
EPDM×Ethylene -0.702 0.563 ( -1.860 , 0.381 )
EPDM×Talcum -1.049 0.583 (-2.254 , 0.100)
Power×Gas type 1.212 0.013 1.853 0.582 (0.742 , 3.059)
Power×Act. gas 0.843 0.014 0.970 0.401 (0.178 , 1.770)
Power×Time 1.334 0.442 (0.506 , 2.258)
Ethylene × Power -0.576 0.051 -0.644 0.351 (-1.357 , 0.044)
Mica × Act. gas 0.573 0.065 0.744 0.354 (0.068 , 1.448)
Batch (σ2

δ ) 1.251 4.131 2.216 (1.313 , 9.563)
Run (σ2

ε ) 3.721 5.050 1.707 (2.497 , 9.073)

3.6.3 Ordinal Response Analysis of Coating 3

The classical and Bayesian results of cumulative logit analysis of coating 3 are

presented in Table 3.10. The factors EPDM, ethylene, time, gas type are highly

significant in classical method. Though power is not significant, the interaction

term Power×Gas type is significant at 5% level. In the selected Bayesian model

EPDM, ethylene, time, gas type, activation gas found to be important. On the

other hand, the factors talcum, lubricant and the interaction terms Talcum×Time

and Lubricant×Power could be slightly important as 95% credible interval of mean

effects corresponding to these factors include 0 marginally. The factor activa-

tion gas was not significant in classical method, however, it was not negligible in

Bayesian method.
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Table 3.10: Classical and Bayesian estimates obtained from mixed cumulative logit
model for coating 3

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept 1 6.418 10.450
Intercept 2 5.490 9.252
Intercept 3 4.179 7.546
Intercept 4 2.745 5.714
Intercept 5 2.328 5.159
EPDM 1.622 0.008 3.252 1.022 (1.392 , 5.496)
Ethylene 2.065 0.002 3.795 1.078 (1.954 , 6.256)
Talcum 1.661 1.001 (-0.296 , 3.710)
Lubricant 1.642 0.941 (-0.164 , 3.624)
Power 0.392 0.439
Time 2.8145 0.000 5.602 1.099 (3.693 , 8.006 )
Gas Type 3.550 0.000 5.254 1.285 (3.012 , 8.067)
Act. gas -0.887 0.175 -1.615 0.643 (-2.963 , -0.450)
Talcum×Time 1.506 0.873 (-0.133 , 3.345)
Power×Gas Type 1.822 0.046
Lubricant×Power -0.890 0.670 (-2.221 , 0.4208)
Batch (σ2

δ ) 2.452 8.288 5.438 (2.011 , 22.250)
Run (σ2

ε ) 4.272 12.780 5.439 (5.388 , 26.400)

3.6.4 Ordinal Response Analysis of Coating 4

The results obtained from cumulative logit analysis of coating 4 are presented in

Table 3.11. The main effects time and gas type were significant at 5% level in

classical method and these were reflected in Bayesian estimates as well by being

within the 95% credible intervals. On the other hand, talcum was not significant

at 5% level which was reflected in Bayesian analysis by including 0 in 95% credible

interval. However, the results of coating 4 unusual as variance components due to

batch (σ̂2
δ ) is zero, while the Bayesian counterpart is 55.76 and the component due

to runs is 114.8 which seems to be quite unusual.

3.6.5 Ordinal Response Analysis of Coating 5

The classical and Bayesian estimates from cululative logit analysis of coating 5 are

displayed in Table 3.12. The factors EPDM, ethylene, talcum, mica, lubricant,

UV, power, time, gas type are highly significant in likelihood analysis. Though
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Table 3.11: Classical and Bayesian estimates obtained from mixed cumulative logit
model for coating 4

Classical Method Bayesian Method
Effect Estimate P-value Mean SD (95% CI)
Intercept 1 -1.240 -7.861
Intercept 2 -1.906 -9.725
Intercept 3 -3.011 -11.950
Intercept 4 -5.884 -16.900
Intercept 5 -7.371 -19.460
Talcum 0.720 0.096 3.005 2.379 ( -1.370 , 7.888)
Time 1.105 0.040 3.637 1.772 ( 0.385 , 7.345)
Gas type 1.521 0.012 5.001 2.108 (1.170 , 9.433)
Batch (σ2

δ ) 0.000 55.760 37.430 (12.810 , 154.100)
Run (σ2

ε ) 11.153 114.800 50.390 (42.130 , 243.900)

activation gas is not significant, however, its interaction with power appeared to

be significant at 5% level. In Bayesian analysis the factors EPDM, ethylene, mica,

lubricant, UV, power, time, gas type are found to be important as none of the

credible intervals of these estimates include zero in their 95% credible intervals.

The interactions ‘Power×Gas type’, ‘Power×Act. gas’, ‘EPDM×Ethylene’ found

to be important both in classical and Bayesian methods. Though the estimate of

variance component due to batch (σ̂2
δ ) was zero in likelihood-based method, it was

estimated as 2.047 in Bayesian method.

3.6.6 Remarks on Mixed Cumulative Logit Analysis of Coat-

ings

The results from the cumulative logit analysis of ASTM scores by classical and

Bayesian methods for all coatings are displayed in Table 3.8, 3.9 , 3.10, 3.11, and

3.12. The factor EPDM has positive impact on four out of five coatings. The type

of gas appeared to be important for all coatings. This was also confirmed in earlier

classical and Bayesian analyses of binary response data. Some of the interactions

appeared not be important in Bayesian analysis, for instance, Power×Type of Gas

for coating 3. On the contrary some of the interactions were not detected in likeli-

hood methods, for example, Power×Time, EPDM×Ethylene, EPDM×Talcum for

coating 2.
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Table 3.12: Classical and Bayesian estimates obtained from mixed cumulative logit
model for coating 5

Classical Method Bayesian Method
Effect Estimate P-value Mean SD 95% CI
Intercept1 5.090 5.395
Intercept2 4.206 4.400
Intercept3 3.039 3.101
Intercept4 1.918 1.845
Intercept5 -2.705 -4.024
EPDM 1.236 0.000 0.588 0.451 (0.734, 2.543)
Ethylene 0.886 0.000 1.087 0.437 (0.226, 2.006)
Talcum 1.721 0.000 2.194 0.555 (1.125, 3.321)
Mica 1.146 0.000 1.513 0.552 (0.462, 2.631)
Lubricant 0.753 0.001 0.988 0.431 (0.147, 1.904)
UV -0.924 0.000 -1.131 0.427 (-2.024, -0.331)
Power 0.923 0.001 1.214 0.331 (0.576, 1.895)
Time 1.612 0.000 2.120 0.354 (1.464, 2.818)
Gas Type 1.641 0.000 0.920 0.437 (1.117, 2.855)
Act. gas -0.010 0.970 -0.093 0.323 (-0.729, 0.529)
Power×Gas Type 1.137 0.005 1.466 0.506 (0.500, 2.474)
Power×Act. Gas 0.715 0.019 0.929 0.380 (0.191, 1.701)
EPDM×Ethylene 0.537 0.019 -0.836 0.440 (-1.730, -0.027)
Power2 -1.300 0.028 -0.991 0.639 (-2.246, 0.232)
Batch (σ2

δ ) 0.000 2.047 1.369 (0.457, 5.432)
Run (σ2

ε ) 2.753 4. 1.459 (2.179, 7.887)

One of the objectives of this Bayesian study was to obtain more reasonable esti-

mates of the variance components. In classical method, the estimates of σ2
δ were

zero for some coatings. However, the variance components measured in Bayesian

techniques are positive and are often more inflated than those of classical counter-

parts. One of the reasons could be due to the assumed priors for variance compo-

nents in Bayesian approach. Perhaps assumed gamma prior is not suitable for the

current study. Gelman [2006] identified serious problems with inverse-gamma fam-

ily. Instead of gamma priors he suggested to use a uniform prior on the hierarchical

standard deviation, using the half-t family when the number of groups is small and

in other settings where a weakly informative prior is desired. In case of having

multiple variance parameters in hierarchical modeling the half-t family was recom-

mended. For the variance component corresponding to runs we used Gamma(1,

1) prior. Though the number of groups is not small, but due to the existence of

multiple variance parameters the use of half-t family is justified. Later we will try
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this half-t family during investigation of variance components with different priors

in Section 3.8.

The models were selected on the basis of the deviance information criterion (DIC),

a widely used criterion in Bayesian paradigm, which was discussed briefly in Sec-

tion 3.3. The selected best model which produces Table 3.9 for coating 2 had the

minimum DIC value 603.92 in comparison to other models.

Remarkably in the cumulative logit analyses under Bayesian method, we encoun-

tered no convergence problems except for coating 4. The unusual output for coating

4 also support this conclusion. The output is unusual in a sense that Bayesian es-

timates are widely differing with respect to classical estimates for coating 4 shown

in Table 3.11. Also, all the intercepts are negative both in likelihood and Bayesian

methods. The reason could be the failure to select the best model independently

due to convergence problem in coating 4.

3.7 Combined Analysis of Coatings

One of the main goals of the polypropylene experiment was to compare the fac-

tor effects across the different coatings. This leads us to a combined analysis of

all five coatings. Previously, we analyzed the data for each coatings separately in

which case there are 11 factors and now the coating will act as a twelfth experi-

mental factor. Though there was no formal randomization of coatings to occasions,

the sequence in which they were run can be considered as being essentially random.

A Hasse diagram shown in Figure 3.2 can be used to understand and visualize the

unit structure of multistratum design concerning the combined analysis.

A Hasse diagram is a simple graph, with nodes representing blocking factors and

edges representing nesting relationships between blocking factors. The rules for

constructing Hasse diagrams are described in Bailey [2008]. The Hasse diagram

have two numbers adjacent to every node: the number of levels of the correspond-

ing blocking factor and the corresponding degrees of freedom (in brackets). The
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U                            1                    (1) 

Occasions         5                (4) 

Batches  Occasions                   100              (76) 

Batches        20              (19) 

      Orders          100         (80) 

    Runs          500              (320) 

   Tests          1500           (1000) 

Figure 3.2: Hasse diagram for combined analysis
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degrees of freedom corresponding to a node is obtained by subtracting the degrees

of freedom for higher factors from the number of levels of the factor under con-

sideration. In Figure 3.2, U denotes the universe that represents a fixed intercept

parameter. The node U stands at the top of all nodes. Each node in the Hasse

diagram represents a stratum in the analysis. The lowest stratum generally rep-

resents the observational units. In the combined analysis, there are 1500 tests,

which belongs to the lowest stratum ‘Tests’, are the observational units shown in

the Figure 3.2.

In the individual coating analyses, the random effects were due to batches and runs.

The 100 oven runs were performed in the same order on each of the five occasions,

which means that orders and occasions are crossed in the combined analysis. The

combinations of orders and occasions define a stratum which correspond to the

500 oven runs in the Hasse diagram. Thus, there appears a random effect due to

combinations of batches and occasions. Also, another random effect exists due to

the stratum ‘order’ within batches.

Considering four random effects in the combined analysis of coatings, an appropri-

ate model, as in Goos and Gilmour [2012], is

Yijks | δi, γij, λik, εijk ∼ Multinomial (1, Pijk) (3.5)

logit [P (Yijks > c)] = log

(∑6
l=c+1 Pijkl∑c
l=1 Pijkl

)
= βc0 + x′ijkβ + δi + γij + λik + εijk

where Yijks is the response from the sth test at the jth run from the ith batch at the

kth occasion, δi ∼ N(0, σ2
δ ), i = 1, . . . , 20, is a random batch effect, γij ∼ N(0, σ2

γ),

j = 1, . . . , ni, is a random effect for the orders within batch i, λik ∼ N(0, σ2
λ),

k = 1, . . . , 5, is a random effect for the combinations of batches and occasions,

εijk ∼ N(0, σ2
ε ) is a random oven run effect, s = 1, 2, 3 denotes the test and all

random variables are independent.

For Bayesian analysis we redefine the notations of random effects corresponding to

model (3.5) as δi ∼ N(0, τδ), γij ∼ N(0, τγ), λik ∼ N(0, τλ), and εijk ∼ N(0, τε),

where τδ = 1/σ2
δ , τγ = 1/σ2

γ, τλ = 1/σ2
λ, and τε = 1/σ2

ε are the precision pa-
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rameters. We can define intra-class correlations as ργ =
σ2
γ

σ2
γ+σ

2
ε
, ρλ =

σ2
λ

σ2
λ+σ

2
ε

and

ρδ =
σ2
δ

σ2
δ+σ

2
γ+σ

2
λ+σ

2
ε

or equivalently in terms of precision parameters as ργ = τε
τγ+τε

,

ρλ = τε
τλ+τε

, and ρδ = τγτε
τγτε+τγτδ

respectively. We use the same prior distributions

for the intercepts and the fixed effects as before. The prior for the batch variance

component σ2
δ is assumed to be σδ ∼ Half-Cauchy (where small number of units

involved, for instance, as number of batches is moderate, Half-Cauchy works better

[Gelman, 2006]) and other variance components are taken into account through

intra-class correlations, for instance, ρt ∼ beta(2.5, 2.5), t = γ, λ, δ.

We used four different contrasts to capture the effects of categorical factor ‘Coat-

ing’. The first contrast was ‘Solvent-based coating 1 vs 2’ (C1), the second one was

‘Water vs solvent-based’, i.e. coating 3 vs coating 1 and 2 (C2), the third one was

‘UV coat vs traditional’, i.e. coating 5 vs coatings 1, 2, and 3 (C3), and the last

one was ‘Low end coat vs rest’ which compares the low-end coating 4 with other

high-end coatings (C4).

The final model was obtained by using a manual stepwise forward selection starting

from an initial model involving the main effects of 12 factors. Gradually, we in-

creased the complexity by including interaction terms in the model and compared

the models with DIC values.

We included interactions of the additives to the polypropylene and the gas plasma

treatment factors with coatings to quantify the extent to which the main effects

differ across different types of coating. The results from final model appears in

Table 3.13.

The combined analysis confirms many of the conclusions drawn from the separate

analyses of the coatings. The outputs were more or less similar to those obtained

in classical analyses. Most main effects and contrasts appeared to be important.

The interaction of UV with other terms was ignorable in the Bayesian analysis

though it was significant in the classical analysis. However, the main effect lubri-

cant and many interaction terms, e.g. Ethylene×Power, C2×Ethylene, C2×EPDM,

C2×Time and C4×Time were newly detected by the Bayesian analysis.
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3. Polypropylene Experiments

The variance component estimates for the final model are shown at the bottom

of the Table 3.13. The Bayesian estimates differ substantially from the classical

estimates. Perhaps reasons are hidden in the SAS estimation procedures and we

will discuss this briefly in Section 3.8. Yet, both methods indicate that there is

some batch to batch variation and the estimate for σ2
λ implies that the batch to

batch variation was slightly different between occasions. By far the highest vari-

ance component estimate (σ2
ε ) is due to runs, which provides strong evidence that

the three repeated observations are strongly correlated. This was also revealed by

the separate analyses of coatings.

In the combined analysis, there is no hidden assumption that there is no inter-main

plot variance as all of the variance components could be estimated in the classical

methods. Yet, the added value of the Bayesian analysis is that it circumvents some

of the technical problems of the REML-GLS method. In classical methods, it is

necessary to decide which optimization method to use, whether or not to use the

Kenward-Roger method for estimating the standard errors of the fixed effects and

which method to use for calculating degrees of freedom for the hypothesis tests

[Gilmour and Goos, 2009]. Another advantage of the Bayesian analysis could be if

we are unsure about the parameter estimates, at least Bayesian analysis would be a

basis to compare the estimates with their classical counterparts and thereby enable

the researchers to identify the important factors for the polypropylene experiment.

The main advantage of the combined analysis is that it helps the experimenters to

see whether the factor effects differ from coating to coating. If the interaction effects

between factors and coatings would all have been insignificant, the information

in the data could have been pooled across the different coatings to acquire more

precise conclusions about the remaining factors. Some of the interactions of factors

and coatings appeared to be important, e.g. C2×EPDM, C3×Power, C3×Time,

C4×Ethylene, in the combined analysis. These implied that the effect of EPDM

differs between water-based and solvent-base coatings; Power and Time vary from

‘UV coat vs traditional’ and Ethylene varies with ‘Low end coat vs rest’.
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3. Polypropylene Experiments

3.8 Investigation of Variance Components with

Different Priors

The choice of non-informative prior distribution for variance parameters can a have

a great effect on inferences, especially when the number of groups is small or the

group-level variance, e.g. σ2
δ , is close to zero. The inverse-gamma(θ, θ) model does

not have any proper limiting posterior distribution. As a result, posterior infer-

ences are sensitive to θ – it cannot simply be comfortably set to a low value such

as 0.001 [Gelman, 2006].

The uniform(0, B) model yields a proper limiting density as B −→ ∞ as long

as the number of groups is at least 3. Thus, for a finite but sufficiently large B,

inferences are not sensitive to the choice of B. For our problems, the number of

batches or the other groups, e.g. due to runs, orders, Batch×Occasion, are at least

20. Therefore, we tried uniform priors for hierarchical standard deviations e.g.

log(σi) ∼ U(−20, 20) or simply σi ∼ U(0, 25).

Half-t prior distributions are more flexible and have better behaviour near 0 (i.e if

variance components are near to 0) compared to inverse-gamma family [Gelman,

2006]. As in classical methods some of the variance components were estimated to

be zero (e.g. for coating 4, coating 5 in mixed cumulative logit analyses) we assume

the half-Cauchy prior, which is special case of half-t family of prior distributions,

for the standard deviation parameter. For coating 2 the classical estimates of σ2
δ

and σ2
ε are estimated to be 1.2507 and 3.7213 respectively and their Bayesian coun-

terparts obtained by assuming different prior distributions for variance components

are presented in Table 3.14.

All the sets of variance component estimates are more or less similar except the

first one shown in Table 3.14. The first one differs from others due to assumed

prior for batches. The estimates of variance components are quite stable for mod-

els 4-8. It is difficult to say which set of Bayesian estimates are precise than others.

Even when we used all non-informative priors for both of the variance components

ρ ∼ beta(1, 1) and log σ ∼ U(-20, 20), we found almost similar estimated variance

components. However, our assumption is that classical estimates are deviated from
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3. Polypropylene Experiments

Table 3.14: Investigation of variance components with different priors

Priors Estimated Vari-
ance Components

Model ρ Batch Run σ2δ σ2ε
1 - τ2 ∼ gamma(5, 5) τ1 ∼ gamma(1, 1) 1.512 5.477
2 beta(5.0, 5.0) - τ1 ∼ gamma(1, 1) 4.131 5.050
3 beta(2.5, 2.5) - τ1 ∼ gamma(1, 1) 3.805 5.141
4 beta(2.5, 2.5) - log(σ) ∼ U(−20, 20) 3.933 5.670
5 beta(2.5, 2.5) - log(σ) ∼ U(−5, 5) 4.043 5.677
6 beta(2.5, 2.5) - σ ∼ U(0, 25) 4.070 5.964
7 beta(2.5, 2.5) - σ ∼ Half-Cauchy 4.025 5.919
8 beta(1.0, 1.0) - log σ ∼ U(−20, 20) 3.482 5.752
9 beta(1.0, 4.0) - log σ ∼ U(−20, 20) 2.398 6.295

the true situations. Perhaps some reasons are explored by Zhang et al. [2011]. They

evaluated performances of different methods/procedures in SAS and R packages.

Unlike special cases of mixed models, computation of MLE is difficult and approx-

imate methods have been proposed and implemented in various packages including

SAS. That is why we are unsure whether the estimates, particularly variance com-

ponents estimates, computed by SAS or by other packages are precise. We found

the estimates in Bayesian methods are similar assuming weakly informative or even

non-informative priors for variance components. Therefore, from our intuition and

evidence we conclude that estimate of batch-to-batch variation is not less than 3

and the estimate of variation due to runs is around 5 or more for coating 2. Pettit

[1986] indicated how much effects of other priors have can be assessed comparing

with a reference prior. If we consider priors of variance components in model 8 as

reference priors, since both are noninformative, we can see how much deviations of

other variance components have.

3.9 Convergence Diagnostics

We used the convergence diagnostics for the parameters of all the selected models

for the five coatings, however present results, as an example, only for coating 2.

To monitor convergence, we begin with the Monte Carlo error (MC error) for some

of the parameters from the best cumulative logit model for coating 2. A rule of

thumb regarding convergence is that MC errors should be less than 5% of the cor-
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3. Polypropylene Experiments

responding posterior standard deviations (SD). In coating 2 analysis, all of MC

errors were less than 5% of the respective SDs (see Table 3.15).

Table 3.15: Standard deviation and Monte Carlo error (MC Error) in Bayesian
analysis of coating 2

Effect Mean SD MC Error

Intercept 1 7.5460 0.9648 0.0204
Intercept 2 5.9200 0.8565 0.0175
Intercept 3 3.7400 0.7548 0.0165
Intercept 4 1.6980 0.7044 0.0158
Intercept 5 -0.4783 0.6893 0.0142
EPDM 0.8028 0.5776 0.0085
Ethylene 2.0630 0.5898 0.0087
Talcum 2.0830 0.6970 0.0145
Mica 1.1990 0.7062 0.0152
Power -0.3401 0.3520 0.0046
Time 2.5850 0.4100 0.0058
Gas Type 3.3210 0.5668 0.0089
Act. gas -0.7751 0.3615 0.0051
EPDM×Ethylene -0.7023 0.5633 0.0092
EPDM×Talcum -1.0490 0.5833 0.0088
Power×Gas Type 1.8530 0.5824 0.0088
Power×Act. gas 0.9698 0.4010 0.0051
Power×Time 1.3340 0.4420 0.0065
Ethylene×Power -0.6436 0.3507 0.0051
Mica×Act.gas 0.7440 0.3543 0.0052

Batch (σ2δ ) 4.1310 2.2160 0.0328
Run (σ2ε ) 5.0500 1.7070 0.0278

We find in Figure 3.3 that kernel densities of posteriors corresponding to the factors

EPDM, ethylene, batch and run are approximately smooth and unimodal. There

is no visible non-convergence problem in the kernel densities.

The plots in Figure 3.4 are examples of multiple chains for which convergence looks

reasonable for all the factors. However, for a parameter of interest if the level of

autocorrelation is strong then a traceplot will be poor diagnostic for for conver-

gence.

There were some evidence of autocorrelation in the data before thinning, however,

autocorrelation effects disappeared when we thinned the data as 20th and these
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Figure 3.3: Kernel density of few a parameters of the best model for coating 2;
EPDM (top left), Ethylene (top right), Batch (bottom left), Run (bottom right).

Figure 3.4: Trace plots of a few parameters of the best model for coating 2; EPDM
(top left), Ethylene (top right), Batch (bottom left), Run (bottom right).
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Figure 3.5: Autocorrelation status of few parameters after thinned as 20th for
coating 2; EPDM (top left), Ethylene (top right), Batch (bottom left), Run (bottom
right).

are reflected in Figure 3.5. In Figure 3.6 we also find the well mixing of chains

which provides evidence of convergence.

The Figure 3.7 displays the examples of Gelman-Rubin statistics (R). We started

with two sets of initial values for all parameters. It seems that the R statistics are

approximately equal to 1 for all the parameters. Therefore, we may conclude that

convergence is achieved for all parameters.

Figure 3.6: History plot of few parameters of the best model corresponding to
coating 2; EPDM (top left), Ethylene (top right), Batch (bottom left), Run (bottom
right).
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Figure 3.7: Gelman-Rubin statistic of few parameters of the best model corre-
sponding to coating 2; EPDM (top left), Ethylene (top right), Batch (bottom left),
Run (bottom right).

In our study we find that the parameters of the selected models passed the conver-

gence criteria for all the coatings in cumulative logit analysis.

3.10 Profile Likelihood, Confidence Intervals and

Simulation Studies

Likelihood based confidence intervals (CIs) have been computed from Wald statis-

tic, profile likelihood and bootstrap based methods in the binary logit analysis of

polypropylene experiment. These confidence intervals have been compared with

the Bayesian credible intervals which are shown in Table 3.16. The model that

is concerned with the computation of likelihood based CIs and Bayesian credible

intervals is similar to model (3.3) which has five fixed effects EPDM, ethylene,

talcum, time and gas type and two random effects batch and run under coating 2

data. To reduce complexity and to save computational time we did not consider any

interaction terms in the current model. The priors assumed during computation of

Bayesian credible intervals are βi ∼ N(0.001, 0.1), i = 1, 2, . . . , 5, τε ∼ Gamma(5, 5)

and ρ ∼ U(0.001, 0.9), where τε = 1/σ2
ε , τδ = 1/σ2

δ and ρ = τε
τε+τδ

. It is found in

Table 3.16 that the fixed effect estimates in likelihood and Bayesian methods are
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3. Polypropylene Experiments

similar. Interestingly, all likelihood based point estimates except variance compo-

nent due to runs (σ2
ε ) are within Bayesian credible intervals and all Bayesian point

estimates are within Wald, profile likelihood and bootstrap based confidence in-

tervals (CIs). However, Bayesian credible intervals have less width than likelihood

based CIs.

This scenario of Bayesian credible intervals in polypropylene experiment is slightly

different than the credible intervals shown in Table 2.18 and 2.19 of Chapter 2

where Bayesian credible intervals were slightly wider than likelihood based CIs.

In polypropylene experiment, Bayesian intervals have less width than that of like-

lihood based CIs, because perhaps comparatively polypropylene experiment has

larger data and outcomes are therefore influenced by data as non-informative or

weakly informative priors have been used. On the other hand in fuel economy ex-

periment data could not play the leading role alone as the experiment had smaller

data. Further, lower limits of profile likelihood and bootstrap based intervals in

Table 3.16 show that variance component due to batch (σ2
δ ) could be zero, whereas

Bayesian method enables non-zero estimates of (σ2
δ ). Therefore, implementation of

Bayesian methods might ensure non-zero estimates of variance components and it

is evident that Bayesian point estimates are performing at least as well as likelihood

based estimates.

Table 3.16: Likelihood and Bayesian estimates with 95% intervals under different
methods

Likelihood Method Bayesian Method
Parameter 95% CI 95% CI

Estimate Wald Profile Bootstrap Estimate

α 5.45 (2.43, 8.46) (3.21, 9.81) (3.91, 12.72) 3.69 (2.28, 5.38)
β1 1.60 (-0.07, 3.27) (0.09, 4.14) (0.13, 5.84) 1.10 (0.00, 2.25)
β2 2.53 (0.66, 4.40) (1.02, 5.14) (1.14, 7.54) 1.75 (0.51, 3.18)
β3 2.62 (0.50, 4.75) (0.91, 5.69) (1.01, 7.25) 1.69 (0.45, 3.19)
β4 3.36 (1.25, 5.47) (1.74, 6.32) (1.95, 7.80) 2.36 (1.39, 3.58)
β5 4.54 (1.43, 7.65) (2.18, 9.14) (2.60, 11.43) 3.32 (1.89, 5.17)
σ2δ 2.64 - (0.00, 19.89) (0.00, 15.13) 3.63 (0.28, 11.34)
σ2ε 16.09 - (4.97, 62.88) (7.08, 128.56) 5.39 (1.75, 12.38)

Simulation studies under mixed binary logit models have been performed at a lim-

ited scale as simulation with a mixed model and bigger data is very time consuming.

For instance, simulation studies with profile likelihood and bootstrap based
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methods took several weeks to accomplish only 100 simulations. As before, a mixed

model with five fixed effects corresponding to factors namely EPDM, ethylene, tal-

cum, time and gas type and two random effects batch and run has been considered

for simulation studies. In simulation studies true parameters were β0 = 3.6, β1 = 1,

β2 = 1.7, β3 = 1.5, β4 = 2.3, β5 = 3.2, σ2
δ = 3, and σ2

ε = 4.2 which were conjectured

from individual studies of likelihood and Bayesian methods for coating 2 with five

fixed and two random effects.

Table 3.17 shows that all likelihood estimates are upwardly biased whereas Bayesian

estimates have downward bias. Thus likelihood methods over estimate the param-

eters and Bayesian method under estimates the parameters. In case of Wald based

computations, we do not have coverage probabilities for σ2
δ and σ2

ε as no confidence

intervals are available for the variance components in Wald based method because

sampling distribution of variance components will be a normal distribution whereas

the assumption of Wald based computation is the asymptotic normality of parame-

ter estimates. Mean and median based estimates have similar pattern in the results

of bias and relative bias. Wald and profile likelihood based methods have coverage

lower than 95% nominal coverage probabilities. However, bootstrap based method

shows over coverage as all equal to 1 which is not acceptable as over coverage

consequences type II errors more. For Bayesian cases, coverage probabilities are

acceptable except α and β5 which have under and over coverages respectively. For

some of the parameters, for example α, σ2
δ and σ2

ε average widths of 95% CIs are

∞ in the profile likelihood based method. This happens as in some simulations

upper limit of the CI were ∞. However, it seems that simulation results under

bootstrap based and Bayesian methods are close though bootstrap based estimates

are unreliable because of having over coverage. Yet, considering all aspects we

may end up with the notion that Bayesian techniques with appropriate choice of

priors might enable comparatively better estimates in polypropylene experiment

particularly for variance components.

3.11 Conclusion

In this study we have investigated Bayesian models for the data from the polypropy-

lene experiment and compared Bayesian and classical estimates obtained from split-
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plot and multi-stratum industrial experiments. We tried mixed binary logit models

when responses were dichotomous and mixed cumulative logit models when re-

sponses were naturally ordered categorical. For all coatings, we have used deviance

information criterion (DIC) to select the best models in Bayesian methods.

In binary logit analysis of polypropylene experiment, the factors time and gas type

appeared to be important for all coatings. EPDM and ethylene found to be impor-

tant for all coatings except coating 4. There were convergence problems while we

were including certain interaction terms in the model both in classical and Bayesian

approaches. Undoubtedly a large part was due to the nature of categorical more

specifically binary responses. The variance component due to batch was estimated

as zero for coating 3 and coating 4 in classical method. However, Bayesian method

assuming some weakly informative priors enables non-zero estimation of variance

component due to batch. In cumulative logit analysis of ordered responses time

and gas type were important for all coatings both in classical and Bayesian meth-

ods and a few of interactions e.g. power×act.gas and power×gas type were found

non-negligible in some coatings. Further, the variance component due to batch was

estimated as zero in cumulative logit analysis for coatings 1, 4 and 5. However, zero

variance component is not unusual for likelihood based methods as shown in a brief

analysis under profile likelihood and bootstrap based methods (see Table 3.16). On

the other hand, Bayesian methods provide non-zero estimates of variance compo-

nents due to batch for cumulative logit analysis of all coatings.

In our analysis we followed the stepwise manual forward selection procedures. Chip-

man and Hamada [1996] used manual backward elimination method to select the

variables. We could not start backward elimination for two reasons. Firstly, it was

not feasible for binary responses due to having convergence problems because of

the existence of certain interactions in the model. Secondly, we did not attempt for

ordered categorical response data analysis due to consuming longer time to termi-

nate or even sometimes impossible for some coatings (e.g. coating 4) probably for

the same reasons as before in binary data analysis. Our model selection approach

was rather informal and other approaches could be automated Bayesian variable se-

lection [George and McCulloch, 1993] or predictive approach [Box, 1980]. Further,

recently Tan and Wu [2013] proposed a global and local search (GLS) algorithm

to find models with high posterior probabilities and to estimate posterior model

112



3. Polypropylene Experiments

probabilities in fractionated split plot experiments.

We have compared interval estimates of parameters under likelihood and Bayesian

methods for coating 2 shown in Table 3.16. In likelihood based approach Wald

statistic, profile likelihood and bootstrap based methods have been considered to

construct confidence intervals. Bayesian credible intervals appeared to perform

better than likelihood based CIs in terms of less wide intervals and non-zero lower

limit of the variance components. Simulation under binary logit analysis have been

performed at a limited scale due to time constraints. Also, the nature of binary

data and non-informative priors does not allow experimenters much to do trial and

errors in simulation studies under binary logit analysis. Simulation studies under

cumulative logit models will be investigated later in future studies.

One limitation of the current study is that we did not test the proportionality as-

sumptions in Bayesian approach, as the methods are yet to be developed. However,

one way of getting round this issue could be fitting separate logistic models across

the categories of an outcome variable assuming priors for coefficients corresponding

to different levels of outcome categories. The comparison of the separate logistic

fits for a model can provide supportive information regarding the plausibility of

parallelism for the data. However, it was also difficult in classical method to de-

tect departures from proportional odds which could not be fixed by changing some

other aspect of the model.

In this chapter, we have shown Bayesian methods implemented by MCMC tech-

niques through WinBUGS for binary and ordered categorical responses. Our in-

tention was not to establish Bayesian methods as superior to classical methods,

rather to explore the gap left by either classical or Bayesian methods during anal-

ysis of binary and cumulative logit models in polypropylene data. To sum up the

discussion, perhaps Bayesian method give better results for analyzing polypropy-

lene data, particularly in case of variance component estimation. This Bayesian

techniques implemented here could be very useful for industrial and biomedical

researches where binary and ordered categorical responses arise naturally.
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Chapter 4

Optimal Design for Categorical

Data Minimizing the Probability

of Separation

4.1 Optimal Design in Statistics

Optimal design of experiments is an important subfield in statistics. Optimal de-

sign ideas are widely used in many disciplines and continually applications are

increasing in new fields. One of the reasons behind this driving force is the ever-

increasing cost of running experiments or field projects [Berger and Wong, 2005].

In design of experiments, an optimal design is an experimental design that is opti-

mal with respect to a statistical criterion. Optimal design is also called an optimum

design in literature. For estimating statistical models, optimal designs allow pa-

rameters to be estimated with minimum variance. A non-optimal design requires

a greater number of experimental runs to estimate the parameters with the same

precision as an optimal design. Thus, an optimal design can reduce the costs of

experimentation.

Statistical experimental designs are judged using optimality criteria. The most im-
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portant design criterion in applications is that of D-optimality criterion, in which

generalized variance (where generalized variance is the inverse of the determinant

of information matrix) of the parameter estimates is minimized [Atkinson et al.,

2007]. The generalized variance or variance covariance matrix of parameters deter-

mines the shape and form of the confidence ellipsoid of the parameters. Again the

volume of the confidence ellipsoid is inversely proportional to the square root of the

information matrix. Thus, the shape as well as the volume of the confidence region

depends on the information matrix. Designs which maximize determinant of infor-

mation matrix or minimize the determinant of covariance matrix of parameters are

called D-optimal. The popular optimality criteria including D-optimality are dis-

cussed extensively in Atkinson et al. [2007]. In this Chapter D-optimality criterion

will be compared with the newly developed probability criteria namely Ps- and

DPs-optimality which have been proposed to minimize a statistical computational

annoyance known as separation.

4.2 Separation Problem in Categorical Data Anal-

ysis and Non-existence of Maximum Likeli-

hood Estimates

Categorical data consists of variables with a finite number of discrete values. They

arise in a number of ways, for instance, by simple counts; binary variables-yes, no;

unordered multinomial- christian, jew, muslim, atheist; ordered variable-Likert’s

five-point scale.

Categorical data can be analyzed by numerous statistical methods. During analysis

of categorical data often parameter estimates are not available due to a problem

known as separation which is considered as a somewhat incomprehensible com-

putational annoyance. In separation, a response variable is separated into two

categories at a point of a covariate or a linear combination of covariates. For ex-

ample, Y is a binary response variable and X is an independent variable, then if

Y is separated at X=0, more specifically Y=0 for X≤0 and Y=1 for X>0 then

this is considered as a separation problem. The separation problem causes the

non-existence of maximum likelihood estimates (MLEs) of parameters in logistic
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regression. The same is true for related models including probit and many other

similar models for binary and multinomial regression. In some context, separation

is often quite good at classifying observations, but inferences about parameters are

not reliable always. For example, in biostatistics, if we can determine exactly at

which level of a risk factor (X) the patient become diseased (Y=1) or not diseased

(Y=0), then it is useful in medical research though Y could be separated at that

level of X. Separation occurs primarily in small samples. With increasing sample

size, the probability of observing a set of separated data points tends to zero, no

matter what the sampling design.

4.2.1 Types of Separation

Albert and Anderson [1984] classify logistic regression data sets into three mutually

exclusive and exhaustive categories: complete separation, quasi-complete separa-

tion, and overlap. The maximum likelihood estimates exists only for overlapped

data. Let us define a response variable Y, a vector of covariates X and correspond-

ing vector of coefficients α. Then we can define two frequently used terms as follows

Complete separation occurs whenever there exists some vector of coefficients

α such that Yi = 1 if α
′
Xi > 0 and Yi = 0 if α

′
Xi ≤ 0. In other words,

complete separation occurs whenever a linear function of X can generate

perfect predictions of Y

Quasi-complete separation occurs when there exists some coefficient vector α
′

such that Yi = 1 if α
′
Xi ≥ 0 and Yi = 0 if α

′
Xi ≤ 0, and equality holds

for at least one case in each category of the dependent variable.

Data which are neither completely or quasi-completely separated are called over-

lapped. Given a non-singularX
′
X matrix a certain degree of overlap is a necessary

and sufficient condition for the existence of maximum likelihood estimates in logis-

tic link function for the binomial response. [Silvapulle, 1981].
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Table 4.1: Hypothetical examples of separation problem

(a) Data
exhibiting
complete
separation

Y X
0 -6
0 -5
0 -4
0 -3
0 -2
0 -1
1 1
1 2
1 3
1 4
1 5
1 6

(b) Data
exhibiting
quasi-
complete
separation

Y X
0 -6
0 -5
0 -4
0 -3
0 -2
0 -1
0 0
1 0
1 1
1 2
1 3
1 4
1 5
1 6

4.2.2 Hypothetical Example of Separation

We consider two hypothetical examples of separation in Table 4.1. The complete

separation is shown in Table 4.1a and Table 4.1b displays a data set regarding

quasi-complete separation. What distinguishes the data set in Table 4.1b is that

there are two additional observations, each with x values of 0 but having different

values of y.

4.2.3 Separation Problem in the Current Study

We have faced convergence problems during binary data analysis of the polypropy-

lene experiment. One of the reasons could be separation in the data. Allison

[2008] gives several small data-sets to explain how complete and quasi-complete

separation lead to the non-existence of the maximum likelihood estimator. The

separation can be detected by inspecting contingency tables formed by a discrete

variable and the response variable. Whenever a cell in such a contingency table

contains a zero, the maximum likelihood estimator of the corresponding parameter

does not exist.

In the polypropylene experiment, adding the two-factor interaction effect of EPDM

and type of gas caused the convergence to fail when analyzing the success of coat-

117



4. Separation problem

Table 4.2: Existence of separation problem in the current study

Success of coating
EPDM Type of gas 0 1 Total

0% Etching 27 21 48
0% Activation 1 13 38 51
0% Activation 2 6 36 42
10% Etching 0 42 42
10% Activation 1 14 43 57
10% Activation 2 22 38 60

Total 82 218 300

ing 2. The contingency table displayed in Table 4.2 does indeed have a zero cell and

is evidence of separation in the polypropylene experiment when trying to fit the

interaction EPDM×Type of gas [Goos and Gilmour, 2012]. However, the problem

of MLE non-existence relevant to logistic models will be explored further in the

next section.

4.2.4 Non-existence of Maximum Likelihood Estimates

The log-likelihood under logistic model is globally concave, meaning that the func-

tion has at most one maximum. Unfortunately, there are many situations in which

the likelihood function has no maximum, in which cases we say that the max-

imum likelihood estimate of at least one parameter does not exist. According

to Albert and Anderson [1984] nonexistence of the maximum likelihood estimate

means absence of a finite maximum. Fienberg and Rinaldo [2007] used the wording

“non-existence of the MLE” to signify lack of solutions for the maximum likelihood

optimization problem. To illustrate the non-existence of MLE we consider the logit

model as logit(πi) = β0 + β1Xi and take the data sets similar to Allison [2008],

presented in Table 4.1. For these data sets, it can be shown that the maximum

likelihood estimate of intercept (β0) is 0. Suppose that X is a dichotomous variable

(e.g. X is converted to 0 when X < 0 and to 1 when X ≥ 0) so that the data can be

arrayed in a 2×2 table, with observed cell frequencies n11, n12, n21, and n22 shown

in Table 4.3a. Then maximum likelihood estimate of β1 is given by the logarithm

of the “cross-product” ratio:

β̂1 = ln

(
n11 × n22

n12 × n21

)
(4.1)
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Table 4.3: Hypothetical examples of overlapped and separated data

(a) Over-
lapped
data

x
0 1

y
0n11 n12

1n21 n22

(b) Data
with
complete
separation

x
0 1

y
0 10 0
1 0 5

(c) Data
with quasi-
complete
separation

x
0 1

y
0 5 0
1 15 10

The likelihood estimate is obtainable for overlapped data, for example, shown in

Table 4.3a when cell frequencies n11, n12, n21, and n22 are non-zero. Fienberg and

Rinaldo [2007] demonstrated various aspects of the patterns of zeros that lead to

non-existence of MLE and various practical considerations that follow from non-

existence. However, contingency table with sampling zeros i.e. with having some

cell frequencies as zeros, for instance, in complete separation shown in Table 4.3b

and in quasi-complete separation shown in Table 4.3c, MLE does not exist. Because

for Table 4.3b by using (4.1) we obtain the slope parameter:

β̂1 = ln

(
10× 5

0× 0

)
=∞. (4.2)

Again for Table 4.3c by using 4.1 we obtain the slope parameter:

β̂1 = ln

(
5× 10

15× 0

)
=∞. (4.3)

In both of the cases, the estimate of slope parameter is undefined because the de-

nominator is zero. The same problem would happen if there were a zero in the

numerator because logarithm of zero is also undefined. Thus, in general whenever

there is a zero cell frequency in a 2×2 table, the MLE of β1 under logistic regression

does not exist. This is by far the most common reason for convergence failure in

logistic regression [Allison, 2008]. To illustrate why MLE does not exist, we can

also sketch a graph of log-likelihood function against the slope parameter as in Fig-

ure 4.1. It is evident from the figure that log-likelihood does not reach a maximum

as β1 increases. It is bounded above by 0. The log-likelihood can be close to 0 by

making β1 sufficiently large. Therefore, there is no maximum likelihood estimate

of β1.
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Figure 4.1: Log-likelihood as a function of the slope under separation

Though separation is more likely to occur in small sample, it can occur even in

large sample when there are extreme splits on the frequency distribution of either

dependent or independent variables. This was also evidenced in simulation studies

of binary response model in the polypropylene experiment where a few of complete

separations were happened in a large sample.

The non-existence of MLEs has been illustrated under various situations of contin-

gency tables by Haberman [1974] and Fienberg and Rinaldo [2007], but mostly on

log-linear models where logistic model is considered under this log-linear family of

models.

Haberman [1974] studied extensively the problem of existence, finiteness and unique-

ness of maximum likelihood estimates in log linear models, including quantal-

response models. He proves a very general theorem (Haberman, 1974, p. 37)

on necessary and sufficient conditions for the maximum likelihood estimate to ex-

ist. In his terminology, MLE existence means finiteness of the solution. He also

demonstrates that for most models, if the maximum likelihood solution exists, it

is unique, as a result of the concavity of the likelihood function. Wedderburn

[1976] presents a series of sufficient, but not necessary, conditions for the existence,

uniqueness and location, on the boundary or not, of maximum likelihood estimates

for the parameters of the generalized linear model. Albert and Anderson [1984]
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noted that for multinomial logistic regression these conditions are not satisfied in

many practically important cases, such as completely and quasi-completely sepa-

rated data configurations. Though powerful, both Haberman’s and Wedderburn’s

results fall short of providing conditions for nonexistence of maximum likelihood

estimates and general practical procedures for identifying infinite parameter values,

except in problems with a special structure [Albert and Anderson, 1984]. Thus,

although Haberman [1974] gave necessary and sufficient conditions for the exis-

tence of MLE, his characterization is non-constructive in the sense that it does

not directly lead to implementable numerical procedures and also fail to suggest

alternative methods of inference for the case of undefined MLE. Despite these de-

ficiencies, Haberman (1974)’s results have remained all that exist in the published

literature [Fienberg and Rinaldo, 2007].

As authors noted that Haberman (1974)’s works are rather theoretical and has

not been useful in solving real life problems relevant to non-existence of MLE,

it is not surprising that virtually all implemented computational algorithms do

not take into account the Haberman’s non-constructive characterization of MLE

non-existence while dealing with sampling zeros in the contingency tables. For

example, in SAS, by default PROC FREQ does not process observations that have

zero weights, because these observations do not contribute to the total frequency

count, and because any resulting zero-weight row or column causes many of the

tests and measures of association to be undefined. The presence of sampling ze-

ros is dealt with by adding small positive quantities to the zero cells to facilitate

the convergence of the underlying numerical procedure. However, Fienberg and

Rinaldo [2007] illustrate various issues and dangers associated to the usage of very

common computational procedures for obtaining the MLE with artificially con-

structed tables and with a simple real-life example of a non-sparse contingency

table (Fienberg and Rinaldo, 2007 p. 3440).

4.3 Existing Ways of Dealing with the Separation

Problem

In practice, the researchers handle separation problem separately for the complete

and quasi-complete cases.
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4.3.1 Solutions for Quasi-complete Separation

In many cases the problem of quasi-complete separation is handled simply by delet-

ing the problem variable whose coefficient did not converge. However, deleting

method is not well recommended as deleting variables with strong effects will def-

initely obscure the effect of those variables, and is likely to bias the coefficients

for other variables in the model Allison [2008]. In case of large number of cat-

egories for some variables, combining categories might be useful to minimize the

cells with zero frequencies and thereby reducing the problem of separation. How-

ever, if the dummy or categorical variable represents an irreducible dichotomy, for

instance sex, then this solution is not feasible. Allison [2008] demonstrated that

a non-informative prior does not work satisfactorily in dealing with separation in

Bayesian method. We also found this true having difficulties in convergence during

binary analysis of data from polypropylene experiment while we were assuming

non-informative priors for fixed effects in the models.

Penalized maximum likelihood estimation (PMLE) proposed by Firth [1993] is

widely used to deal with separation problem in small samples. However, Wald

tests based on the standard errors for variables causing separation can be highly

inaccurate similar to conventional maximum likelihood method. Again, for small

sample problems, exact methods can be used for some basic analysis of contingency

table rather than using large-sample approximations when their adequacy is in

doubt [Agresti, 1992]. As separation is largely a small sample problem, exact

logistic regression which was proposed by Cox [1970] may be used for analysis.

The coefficient estimates reported with the exact logistic regression method are

usually conditional maximum likelihood estimates, even these may not exist when

there is separation [Allison, 2008]. Though utility of exact methods diminishes

with the increase of sample size, yet we have a plan to make use of exact methods

while dealing with separation in future studies.

4.3.2 Solutions for Complete Separation

The complete separation is considerably more difficult to deal with. It is impossible

to obtain the likelihood estimates keeping the variable that causes separation in

the model. Combining categories might not be useful to solve the problem either.

Exact logistic regression might be useful for small samples but not computationally
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feasible for large samples [Allison, 2008]. Bayesian estimation may be suitable, but

it requires informative prior for the parameter associated with the problem variable,

and also results may be sensitive to the choice of that prior distribution. Further

as noted earlier, non-informative prior does not work satisfactorily to deal with

separation. In practice, the problem of complete separation is handled by deleting

the problem variable from the model. That enables one to obtain estimates for the

remaining variables, however, the exclusion of the problem variable might lead to

biased estimates for the remaining variables.

Considering these pitfalls in the existing methods, we propose optimal design tech-

niques to minimize the probability of separation problem as well as precise param-

eter estimation in this study.

4.4 Probability of Separation

The maximum likelihood estimate does not exist for the logistic regression data

with complete or quasi-complete separation. We want to maximize the probability

of the maximum likelihood estimates existence through optimal design techniques,

that implies the minimization of the probability of separation. Now we describe

the notations to be used for separation probability.

Let Yi be a response corresponding to ith observation and the associated covariate

be Xi , i = 1, 2, . . . , n. The distribution of Yi is Bernoulli with probability of success

πi. In matrix notation

Y =


Y1

Y2
...

Yn

 , X =


1 X1

1 X2

...
...

1 Xn

 , β =

[
β0

β1

]

For simplicity in defining the separation probability, let us describe Table 4.4 with

Yi and Xi values arranged in order from the smallest to the largest. In the Xi

column there is a cut off point X∗ which separates the outcome Y into two groups

namely ‘success’ (Si) defined by Yi = 1|Xi and ‘failure’ (Fi) defined by Yi = 0|Xi.
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Table 4.4: Data and design matrix

Yi Xi

Y1 X1

Y2 X2
...

...
Yk Xk

Yk+1 Xk+1
...

...
Yn Xn

Yi =

{
0 if Xi ≤ X∗, i=1, 2, . . . k

1 if Xi > X∗, i=k+1, k+2, . . . n
(4.4)

or

Yi =

{
1 if Xi ≤ X∗, i=1, 2, . . . k

0 if Xi > X∗, i=k+1, k+2, . . . n
(4.5)

The success of Yi is a binary response variable which is conditionally independent

given Xi. The model can be written as

Yi | Xi ∼ Bernoulli(πi), (4.6)

logit(πi) = β0 + β1Xi ,

where the probability of success is

πi = P(Si) = P(Yi = 1|Xi) =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
(4.7)

and

P(Fi) = 1− P(Si)

124



4. Separation problem

4.4.1 Probability of Complete Separation

The probability of complete separation at Xk for the criterion described in equa-

tion (4.4) and (4.5) may be defined as

P(Complete Separation at Xk) = P
[(
F1

⋂
F2

⋂
. . .
⋂

Fk
⋂

Sk+1

⋂
. . .
⋂

Sn

)
⋃(

S1

⋂
S2

⋂
. . .
⋂

Sk
⋂

Fk+1

⋂
. . .
⋂

Fn

)]
=

k∏
i=1

P (Fi)
n∏

i=k+1

P (Si) +
k∏
i=1

P (Si)
n∏

i=k+1

P (Fi)

(4.8)

Now k can be any value between 1 and n-1. Therefore, the probability of complete

separation will be

P(Complete Separation) =
n∏
i=1

P (Fi) +
n−1∑
k=1

[
k∏
i=1

P (Fi)
n∏

i=k+1

P (Si)

+
k∏
i=1

P (Si)
n∏

i=k+1

P (Fi)

]
+

n∏
i=1

P (Si) (4.9)

4.4.2 Probability of Quasi-complete Separation

For quasi-complete separation the criterion described in (4.4) should be modified

slightly. In the criterion of equality holds for at least one for each of the categories

i.e.

Yi =


0 if Xi < X∗, i=1, 2, . . . k-1

0 or 1 if Xi = X∗, i=k, k+1

1 if Xi > X∗, i=k+2, k+3, . . . n

(4.10)

or

Yi =


1 if Xi < X∗, i=1, 2, . . . k-1

1 or 0 if Xi = X∗, i=k, k+1

0 if Xi > X∗, i=k+2, k+3, . . . n

(4.11)
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Now we define the probability of quasi-complete separation (QCS)at Xk as

P(QCS at Xk) = P
[(
F1

⋂
F2

⋂
. . .
⋂

Fk
⋂

Sk+1

⋂
. . .
⋂

Sn

)⋃
(
F1

⋂
F2

⋂
. . .
⋂

Sk
⋂

Fk+1

⋂
Sk+2

⋂
. . .
⋂

Sn

)⋃
(
S1

⋂
S2

⋂
. . .
⋂

Sk−1
⋂

Fk
⋂

Sk+1

⋂
Fk+2

⋂
. . .
⋂

Fn

)
⋃ (

S1

⋂
S2

⋂
. . .
⋂

Sk
⋂

Fk+1

⋂
. . .
⋂

Fn

)]
(4.12)

=
k∏
i=1

P (Fi)
n∏

i=k+1

P (Si) +
k−1∏
i=1

P (Fi)P (Sk)P (Fk+1)

n∏
i=k+2

P (Si) +
k−1∏
i=1

P (Si)P (Fk)P (Sk+1)
n∏

i=k+2

P (Fi)

+
k∏
i=1

P (Si)
n∏

i=k+1

P (Fi) (4.13)

= {P (Fk)P (Sk+1) + P (Sk)P (Fk+1)}{
k−1∏
i=1

P (Fi)
n∏

i=k+2

P (Si) +
k−1∏
i=1

P (Si)
n∏

i=k+2

P (Fi)

}
(4.14)

As k can take any value between 1 and n−1 the probability of complete separation

would be

P(QCS) =

[
{P (F1)P (S2) + P (S1)P (F2)}

{
n∏
i=3

P (Si) +
n∏
i=3

P (Fi)

}]

+
n−2∑
k=2

[{P (Fk)P (Sk+1) + P (Sk)P (Fk+1)}{
k−1∏
i=1

P (Fi)
n∏

i=k+2

P (Si) +
k−1∏
i=1

P (Si)
n∏

i=k+2

P (Fi)

}]
+ [{P (Fn−1)P (Sn) + P (Sn−1)P (Fn)}{
n−2∏
i=3

P (Fi) +
n−2∏
i=3

P (Si)

}]
(4.15)

4.4.3 Theorem

In this section we introduce a theorem that will be useful in the context of de-

vising an optimality criterion to handle separation problem at the design stage.
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Already we know that separation causes non-existence of likelihood estimates in

logit models. We want to minimize probability of separation and thereby maximize

the probability of existence of likelihood estimates in the experiments. We will de-

vise probability-based optimality criteria that will handle the separation problem.

Probabilities of complete and quasi-complete separations are two distinct but re-

lated terms. To minimize probability of separation, it is sufficient to deal with

complete separation only rather than considering quasi-complete separately. Also,

we will deal with complete separation as it is difficult to handle if it happens in real

life. The following theorem will prove that if separation occurs at a point where

two values of a covariate are equal, then a small changes from that point in either

directions (positive or negative) will reduce the probability of separation.

Theorem 4.4.1. Given a design X1 ≤ X2 ≤ . . . ≤ Xn with Xk = Xk+1 = X∗ for

some k, the probability of separation under logistic model is reduced by changing Xk

and Xk+1 to Xk
∗ = X∗ − δ and X∗k+1 = Xk+1 + δ for a small δ > 0

Proof. If separation happens at Xk it could belong to either complete or quasi-

complete separation. Therefore, we consider both complete and quasi-complete

separations separately with regard to this proof.

Complete Separation

We consider the ith response as before

Yi =

{
0 if Xi ≤ X∗, i = 1, 2, . . . k + 1

1 if Xi > X∗, i = k + 2, . . . n
(4.16)

or

Yi =

{
1 if Xi ≤ X∗, i = 1, 2, . . . k + 1

0 if Xi > X∗, i = k + 2, . . . n
(4.17)

The corresponding probability of separation is obtained from equation (4.8) as
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P(Complete Separation at Xk) =
k+1∏
i=1

P (Fi)
n∏

i=k+2

P (Si) +

k+1∏
i=1

P (Si)
n∏

i=k+2

P (Fi) (4.18)

where

P(Si|Xi) =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)

=
1

1 + exp[−(β0 + β1Xi)]
; i = 1, 2, . . . , n (4.19)

and

P(Fi|Xi) = 1− P(Si|Xi)

=
1

1 + exp(β0 + β1Xi)
; i = 1, 2, . . . , n (4.20)

We illustrate the notations in terms of logistic regression but most of the results

should apply to the probit and many other similar models for binary or multino-

mial regressions as hinted by Albert and Anderson [1984].

Assume 1 + exp[−(β0 + β1Xi)] = ai and 1 + exp(β0 + β1Xi) = bi. Then (4.18)

becomes

P(Complete Separation at Xk) =
1

b1b2 . . . bkbk+1ak+2 . . . an

+
1

a1a2 . . . akak+1bk+2 . . . bn
(4.21)

The expressions for ak, bk, ak+1, and bk+1 are ak = 1 + exp[−(β0 + β1Xk)], bk =

1+exp(β0+β1Xk), ak+1 = 1+exp[−(β0+β1Xk+1)], and bk+1 = 1+exp(β0+β1Xk+1)

respectively. Now asXk andXk+1 are changed toXk
∗ = Xk−δ andX∗k+1 = Xk+1+δ

the new expressions will be as follows

a∗k = 1 + exp[−(β0 + β1(Xk − δ))], b∗k = 1 + exp(β0 + β1(Xk − δ)), a∗k+1 =

1 + exp[−(β0 + β1(Xk + δ))], and b∗k+1 = 1 + exp(β0 + β1(Xk + δ))
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Therefore, the separation probability of (4.21) becomes

P(Complete Separation at Xk)
∗ =

1

b1b2 . . . b∗kb
∗
k+1ak+2 . . . an

+
1

a1a2 . . . a∗ka
∗
k+1bk+2 . . . bn

(4.22)

Further, akak+1 = 1 + 2 exp[−(β0 + β1xk)] + exp[−2(β0 + β1xk)] and a∗ka
∗
k+1 =

1+exp[−(β0+β1xk)][exp(β1δ)+exp(−β1δ)]+exp[−2(β0+β1xk)]. Since [exp(β1δ)+

exp(−β1δ)] > 2 for any β0, β1 and δ > 0, akak+1 < a∗ka
∗
k+1 and similarly bkbk+1 <

b∗kb
∗
k+1. Therefore, 1

akak+1
> 1

a∗ka
∗
k+1

and 1
bkbk+1

> 1
b∗kb
∗
k+1

which leads to the con-

clusion from (4.21) and (4.22) that P(Complete Separation at Xk)>P(Complete

Separation at X∗k).

Quasi-complete Separation

Complete separation is a special case of quasi-complete separation with the vanish-

ing middle terms of (4.13). Comparing equations (4.8) and (4.13) we find the ad-

ditional terms
∏k−1

i=1 P (Fi)P (Sk)P (Fk+1)
∏n

i=k+2 P (Si) +
∏k−1

i=1 P (Si)P (Fk)P (Sk+1)∏n
i=k+2 P (Fi) in (4.13). Therefore, it is evident that probability of complete sep-

aration is less than the probability of quasi-complete separation for a particular

design. When Xk and Xk+1 changes to Xk
∗ = X∗ − δ and X∗k+1 = Xk+1 + δ for

a small δ > 0 the problem of quasi-complete separation turns to a complete sepa-

ration problem. Thus the probability of separation is reduced for quasi-separation

problem when Xk and Xk+1 changes to Xk
∗ = X∗ − δ and X∗k+1 = Xk+1 + δ for a

small δ > 0. Numerical illustrations in this regard are given in section 4.4.4.

4.4.4 Numerical Example: Reduction of Probability of Sep-

aration with the Minor Changes in Design Points

This section explains the theorem proved in Section 4.4.3 by numerical examples.

Consider Tables 4.5 and 4.6 as illustrations. In Table 4.5 we find that the proba-

bility of complete separation is reduced to 0.11213 from 0.11220 when Xi = 0 is

changed a bit in both directions by 0.05 unit. Whereas the Table 4.6 shows that

the probability of separation reduced from 0.20783 to 0.10495 with a minor change

of Xi by 0.01 unit in both directions. Small R programme given in the Appendix
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Table 4.5: Probability of complete separation at X3 = X∗

Yi Xi X∗i .
0 -1 -1
0 0 -0.05
0 0 0.05
1 1 1
1 2 2
1 3 3

P(CS)0.112200.11213

Table 4.6: Probability complete and quasi-complete separations at X3 = X∗

Yi Xi X∗i .
0 -2 -2
0 -1 -1
0 0 -0.01
1 0 0.01
1 1 1
1 2 2

P(CS) - 0.10495
P(QCS)0.20783 -

are used to compute probabilities of complete and quasi-complete separations.

4.5 Probability of Quasi-complete Separation with

Two or Three Equal Design Points Succes-

sively

We have derived the expression to compute probability of quasi-complete separation

when there are two equal successive design points in Section 4.4.2. Therefore,

we can extract the formula for quasi-complete separation probability with two

equal design points from (4.14). Now we define the probability of quasi-complete
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Table 4.7: Separation with two equal successive design points

Y X
0 -3
0 -2
0 -1
0 0
1 0
1 1
1 2
1 3

separation at Xk as

P(Quasi-complete Separation at Xk) = {P (Fk)P (Sk+1) + P (Sk)P (Fk+1)}{
k−1∏
i=1

P (Fi)
n∏

i=k+2

P (Si) +
k−1∏
i=1

P (Si)

n∏
i=k+2

P (Fi)

}
(4.23)

We consider a hypothetical example with a sample size 8 and a response variable

Y given in Table 4.7. In this example, there are two equal design points (X=0) for

which the response can be 0 or 1.

We can compute probability of separation for the data set given in Table 4.7 using

formula (4.23). If separation happens between X4 and X5 this will lead to quasi-

complete separation, but all other pairs will lead to complete separation problem.

There may have some data sets with three or more equal design points. For in-

stance, if xk = xk+1 = xk+2 = x∗, then probability of quasi-complete separation at

xk is

P(QCS at xk) = {[P (Fk)P (Fk+1)P (Sk+2) + P (Fk)P (Sk+1)P (Fk+2) + P (Fk)P (Sk+1)P (Sk+2)]

+ [P (Sk)P (Sk+1)P (Fk+2) + P (Sk)P (Fk+1)P (Fk+2) + P (Sk)P (Fk+1)P (Sk+2)]}{
k−2∏
i=1

P (Fi)
n∏

i=k+3

P (Si) +
k−1∏
i=1

P (Si)
n∏

i=k+3

P (Fi)

}
(4.24)
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4.6 Sequential Method to Compute Probability

of Separation

In a data set all design points may not be distinct. There may have several sets of

two or more equal design points. In that case, the probability formula for complete

or quasi-complete separation would not be useful individually. We propose a se-

quential compound method to compute probability of separation. The formulas of

complete and quasi-complete separation probability would be used simultaneously

for a single data set.

As an illustration we refer to the Table 4.8 where first column represents assumption

on cut off points regarding separation i.e. where cut off points, those might separate

responses, may lie. The second column represents the probability of complete or

quasi-complete separation on the basis of the assumption described in the first

column

Table 4.8: Compound method to compute separation probability

Assumption Component in the current stage
x1 < x∗ < x2 Z1 = P(CS)
x2 < x∗ < x3 Z2 = P(CS)
x3 < x∗ < x4 Z3 = P(CS)
x5 = x6 = x∗ Z4 = P(QCS)
x6 < x∗ < x7 Z5 = P(CS)
x8 = x9 = x10 = x∗ Z6 = P(QCS)
. . . . . .
xr = xr+1 = xr+2 = x∗Z(r+2)−

∑
ai−1 = P(QCS)

. . . . . .
xn−1 < x∗ < xn Zn−

∑
ai−1 = P(CS)

We have described the components in a sequential method to compute probability

of separation in Table 4.8 where Z1 stores the result of probability of complete

separation if x∗ lies between x1 and x2, Z4 stores the result of probability of quasi-

complete separation if x∗ = x5 = x6, n is the total number of design points, for

distinct or equality cases each row should contain two design points, thus we define

ai = di − 2 is the number of additional design points in ith row, di is the number

of design points in di is the number of design points in ith row. Then adding Z1 ,
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Z2 . . . , Zn−∑ ai−1 , we have the probability of separation as in equation (4.25).

P(Separation) = Z1 + Z2 + Z3 + . . .+ Zn−∑ ai−1 (4.25)

4.7 Probability-based Optimality Criteria

All criteria namely D-, G-, E-, A- and so on have been developed either for estimat-

ing parameters precisely, or predicting outcome variables efficiently, or minimizing

squared length of the largest axis of confidence ellipsoid but not increasing or de-

creasing the probability of any events. Only probability-based optimality criterion

considers a particular aspect of increasing or decreasing an event probability. Mc-

Gree and Eccleston [2008] have developed a probability-based optimality criterion

that considers increasing probability of success of a particular event. As the separa-

tion leads to non-existence of maximum likelihood estimates, we want to minimize

the probability of separation in the studies to increase the possibility of maximum

likelihood estimates. Therefore, we propose a probability-based criterion that will

be used to choose such designs which will reduce the probability of separation in the

experimental studies and thereby increasing the probability of the ML parameters

being estimable.

4.7.1 Ps-optimality Criterion

The general form of the proposed probability-based optimality criterion may be

expressed as

ψPs = f (P(CS) and/or P(QCS)) (4.26)

= f (P(F1),P(F2), . . . ,P(Fn)P(S1),P(S2), . . . ,P(Sn)) (4.27)

where

P(Si) = P(Yi = 1|Xi) =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
and P(Fi) = 1− P(Si) (4.28)
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4.7.2 Compound Criteria and DPs-optimality

A single purpose design may be quite inefficient for handling a real-life problem.

Therefore, we often need to incorporate more than one design criterion and a com-

mon approach is simply to construct a weighted average, which may depend upon

different information matrices. Designs based upon this method have been termed

compound designs [Müller and Stehĺık, 2010]. However, the concept of compound

designs has been described in earlier literature, for instance, Biedermann et al.

[2007] implemented (local) compound optimal designs for estimating multiple per-

centiles on the dose response curve where the design space was restricted due to

ethical concerns over drug toxicity and/or efficacy. Atkinson [2008] has combined

the notions of parameter estimation (i.e. D-optimality criterion) and model dis-

crimination (i.e. T-optimality criterion which oppose the D-optimality) through

a compound criterion DT-optimality to form designs efficient under both crite-

ria. McGree et al. [2008] devise a new class of compound criteria for generalized

linear models that offer a method of achieving designs that posses the proper-

ties of efficient parameter estimation and high probability of a desired outcome.

They formed the probability based compound optimality criterion by maximizing

a weighted product of efficiencies.

In our study, it is necessary to estimate parameters precisely along with minimal

separation problem. To achieve the dual goals, a compound criterion has been

developed considering both D- and Ps- optimality. The proposed compound crite-

rion may be expressed as a ratio of D- to Ps-optimality, weighted by a pre-defined

mixing constant 0 ≤ α ≤ 1. Thus we define

DPs(ξ) =
[P (S|X)](1−α)

[|X ′WX|]α/q
(4.29)

where P (S|X) ≡ Ps-optimality which may be considered here as P(Complete Sep-

aration) defined in (4.9); W is diag (w1S1(1−S1), . . . , wnSn(1−Sn) and
∑
wi = 1.

The mixing constant α balances between D- and Ps-optimalities and q is the num-

ber of parameters in the model.

We want to minimize (4.29) by choosing optimal design points given some specified

values of the parameters. DPs(ξ) will be minimum when the probability of separa-
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tion is minimum (i.e. Ps-optimality is close to zero) and [|X ′WX|]α/q is maximum

(i.e. D-criterion is low). The simultaneous effect of D- and Ps-optimality criteria

will determine the value of DPs-optimality criterion.

Again D- and P-efficiencies can be defined as

Deff(ξ) =
(
|M(ξ)|
|M(ξ∗D)|

)1/q
and Pseff(ξ) =

(
P (ξ∗Ps )

P (ξ)

)
(4.30)

where |M(ξ∗D)| is the determinant of the information matrix of a D-optimal design

and |M(ξ)| is a determinant of any other design with the same size. P (ξ∗Ps) is

the probability of separation for a Ps-optimal design with the same size. How-

ever, McGree and Eccleston [2008] derived combined criterion on the basis of D-

and P-efficiencies, whereas our criterion is different than theirs in the context that

ours should be minimized while their’s was maximized. They motivated their

DP-optimality approach through an application to a potato packaging experiment.

DP-optimality was applied to this application to decrease the probability of observ-

ing liquid in the potato pack. Simple D-optimal designs is quite likely to produce

potato packs with liquid in them. However, DP-optimality criterion enables de-

signs that satisfy dual goals- parameter estimation and low probability of observing

liquid in the potato packs.

In our case, we propose compound DPs- criterion that enables precise parameter

estimation and low probability of separation. Our criterion differs with the criterion

of McGree and Eccleston [2008] with respect to the probability component where

they minimize the probability of having liquid in the potato packages whereas

we minimize the probability of separation. The algebraic forms of probability

calculation in two cases are also different. The model of McGree and Eccleston

[2008] was derived from a central composite design given in Woods et al. [2006]:

logit(πi) = β0 + β1x1 + β2x2 + β3x3 + β4x2x3 + β5x
2
1 + β6x

2
2 + β7x

2
3 (4.31)

where x1, x2, and x3 denote the vitamin concentration in the pre-packing dip

and the levels of two gases in the packing atmosphere respectively. However, our

criterion is based on the probability of separation given in equation (4.9) which is

combined with D-criterion. Further discussions on compound designs are available
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in many papers, for example, Biedermann et al. [2007], Atkinson [2008], McGree

et al. [2008], Müller and Stehĺık [2010], and McGree et al. [2012].

4.8 Local Optimization of DPs-optimality Crite-

rion

The equivalence theorem is used to check D-optimality, however, for probability

based optimality criterion equivalence theorem is not appropriate. Because the

idea of equivalence theorem is based on information matrix which is independent

of sample size whereas DPs-criterion varies with the sample size/design size. There-

fore, we look for exact optimal designs for particular sample sizes.

Our proposed compound DPs-optimal design is a constrained optimal design as

values in design should be ordered to make easier the identification of separa-

tion. We will deal with constrained optimization of the objective function (4.29)

as unconstrained optimization leads to a wrong design with respect to separa-

tion problem. For example, Nelder-Mead or simulated annealing method is not

suitable for optimization of our DPs-criterion as Nelder-Mead’s simplex or simu-

lated annealing method produces such unordered designs, after ordering the re-

sultant designs give high probability of separation. For example, let us consider

a design with size 8. The optimization of DPs-criterion by Nelder-Mead algo-

rithm provides the design as X = c( 32.4999, -5.2183, -9.4666, -58.2227, 17.8507,

42.0957, 16.7786, -12.9247) which after ordering is X = c(-58.2227, -12.9247, -

9.4666, -5.2183, 16.7786, 17.8507, 32.4999, 42.0957) and the probability of sep-

aration is 0.9999206. Again the optimization by simulated annealing method

gives the design as X = c(-9.4397, 4.9031, 7.2938, 3.3207, 0.7459, -7.5615, -

14.4906, -7.3740) which after ordering is X = c(-14.4906, -9.4396, -7.5616, -7.3740,

0.7459, 3.3207, 4.9031, 7.2938) and the probability of separation is 0.9677993.

However, constrained optimization of DPs-criterion with α = 0.5 gives the de-

sign X = c(−0.1885,−0.1884,−0.1883,−0.1882,−0.1881,−0.1880, 1.6633, 1.6634)

which provides the probability of separation as 0.0884. By constrained optimiza-

tion we mean that during optimization we put restriction in the codes in such a

way that enables the values of the resultant design to be ordered. Thus, uncon-

strained optimizations (algorithm that provides unordered values in the design) are
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not much useful to find optimal designs to have minimal separation problem.

We have used a R package optim to find the optimal designs. The optim is

concerned with the general-purpose optimization which is based on Nelder-Mead,

quasi-Newton, simulated annealing, L-BFGS-B, and conjugate-gradient algorithms.

We have used box-constrained optimization algorithm L-BFGS-B for local opti-

mization of our criteria as unconstrained or other algorithms provides such de-

signs that lead to high probability of separation. Further, the designs we obtained

through optimization by using the R package optim are considered optimal as with

different set of starting values in optim we ended up with the same designs.

4.9 DPs-optimal Designs for Models with More

Than One Factor

The complete and quasi-complete separation were defined for one factor in Sec-

tion 4.4. If there are (p − 1) factors X1, X2, . . . , Xp−1 and the parameters in the

logistic model are β0, β1, β2, β3, . . . , βp−1. For a set of coefficients c0, c1, c2, . . . , cp−1

complete separation is defined as

Yi =

{
0 if c0 + c1Xi1 + c2Xi2 + . . .+ cp−1Xip−1 ≤M, i = 1, 2, . . . k

1 if c0 + c1Xi1 + c2Xi2 + . . .+ cp−1Xip−1 > M, i = k + 1, k + 2, . . . n
(4.32)

or

Yi =

{
1 if c0 + c1Xi1 + c2Xi2 + . . .+ cp−1Xip−1 ≤M, i = 1, 2, . . . k

0 if c0 + c1Xi1 + c2Xi2 + . . .+ cp−1Xip−1 > M, i = k + 1, k + 2, . . . n
(4.33)

where M is a cut-off point that separates the responses into two categories. We
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can express the design matrix as

X =



1 X11 X12 . . . X1(p−1)

1 X21 X22 . . . X2(p−1)
...

...
... . . .

...

1 Xi1 Xi2 . . . Xi(p−1)
...

...
... . . .

...

1 Xn1 Xn2 . . . Xn(p−1)


(4.34)

Now following (4.29) the DPs-criterion for (p− 1) factors can be defined as

DPs(ξ) = [P (S|X,β)](1−α)

[|X′WX|]α/p
(4.35)

For the given values of β0, β1, β2, β3, . . . , βp−1 we need to choose design matrix X

shown in (4.34) in such a way that the quantity in (4.35) is minimum i.e. we need

to optimize (4.35). There are several challenges in the phase of optimization of

DPs-criterion for more than one factor. Firstly, it is essential to identify M and

all possible linear combinations that characterizes separation problem. Secondly,

the optimization itself is challenging as optimization algorithm is needed to be

developed to optimize the criterion in case of multi-factor experiment. However,

this interesting further extension can be done in future studies.

4.10 Comparing Results from Various Designs

4.10.1 Comparing D- and Ps-optimality from D-, Ps, DPs-

optimal designs

D-optimal designs are widely used in practice. It has particular feature of precise

parameter estimation. Table 4.9 compares D- and Ps-optimality along with D- and

P-efficiencies from D-optimal designs. About half of the design points are negative

and rest of the points are positive in D-optimal designs shown in Table 4.9. D-

criterion remains unaltered as expected with even or odd number of sample sizes.
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4. Separation problem

Thus, it is evident that sample size does not matter for D-optimal designs. Prob-

ability of separation (Ps-criterion) decreases with the increase of sample size. D-

optimal designs with adequate size are acceptable for reducing probability of sep-

aration. However, small samples in D-optimal designs might cause substantial

separation problem in experiments. Experimenters having adequate resources can

choose D-optimal designs with a large sample. For instance, if the experimenter has

a sample of only 4 units, their design will have chance of 70.99% to have separation

problem i.e. it is likely not to have maximum likelihood estimates of the parameters.

However, the probability of separation goes below to 5% if he/she chooses sample

size of 18. Further in D-optimal designs, say, there are 10 points on the left (i.e.

negative values) and 10 points on the right to zero. Now if we spread the points out

slightly, then there would be a little damage to D-optimality but would reduce the

probability of separation to a certain amount. For example, if we have the design

points as X1=[-1.54,-1.54,1.54,1.54] then probability of separation is 0.7092589 and

if we change the points by small amounts e.g. X2=[-1.539,-1.538,1.538,1.539] then

probability of separation becomes 0.7090707 which is slightly lower than before.

However, the corresponding D-criterions are 53.16049 and 53.16248 for X1 and X2

respectively.

Table 4.10 compares D- and Ps-optimality from Ps-optimal designs. Ps-optimality

criterion takes care of only minimizing separation problem but not the precision

of the parameter estimation. Though Ps-optimal designs provide low probability

of separation, generally these have high values of D-criterion thus leading to less

precise parameter estimation. That is why sole consideration of Ps-optimal designs

might not be good choice of designs. However, the Ps-criterion is a basic compo-

nent in developing DPs-optimality criterion. With the small number of points in

Ps-optimal design we can avoid separation problem to a substantial proportion.

When sample size is 8 the probability of separation is about 6.25%, it reduces

below 1% with sample size 12 (see Table 4.10 where Ps-criterion corresponds the

probability of separation).

Table 4.11 compares D- and Ps-optimality from DPs-optimal designs with mixing

constant α = 0.5. DPs-optimal design balances between D- and Ps-optimality.

It is expected that the designs obtained on the basis of DPs-optimality might be

ideal designs that take into account both precise parameter estimation and low
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4. Separation problem

probability of separation. In Table 4.11 we consider α = 0.5, that implies equal

importance on D- and Ps-optimality. If we are happy with 5% chances of separation

then the design size 10 would be enough for an experiment. However, in terms of

relative Ps-efficiencies, this is not a good design as it is only 0.06% of effective with

respect to local Ps-optimal design. Nevertheless, this design performs well as it has

the probability of avoiding separation of 97.22%.

4.10.2 Size of D-, Ps-, and DPs-optimal designs

In general increasing number of sample points in any design (D-, Ps-, and DPs-

optimal) keeps decreasing the probability of separation. Heinze and Schemper

[2002] have also mentioned that probability of separation depends on sample size.

However, the reduction of probability of separation in D-optimal design is slower

than that of others with the increasing number of sample points (see Figure 4.2).

The reduction of probability of separation is faster in Ps-optimal designs, however,

these designs are the worst in terms of precision of parameter estimation as the

magnitude of the D-criterion is unreasonably high (see Table 4.10). DPs-optimal

designs balance both probability of separation and precision of parameter esti-

mates. If experimenters have adequate resources, they should choose a D-optimal

design with large number of sample points, otherwise DPs-optimal designs would

be the best choice, no need to mention that solely Ps-optimal designs are the least

favourite choice as there is no guarantee about inference of parameter estimates.

It is evident from the Figure 4.2 that Ps-optimal designs perform better among the

comparing optimal designs. However, if the number of sample points exceed 10 both

Ps-, and DPs-optimal designs produce similar probability of separation. Therefore,

it is ideal to choose DPs-optimal designs if the experimenter has resources to afford

the number of sample points more than 10.

The magnitude of D-criterion is unrealistically high for Ps-optimal designs shown

in Figure 4.3. D-optimal designs produce the minimum values of D-criterion. How-

ever, DPs-optimal designs provide moderate values of D-criterion.
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Figure 4.2: Probability of separation in D-, Ps-, and DPs-optimal designs
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4.10.3 D-and P-efficiencies of D-, Ps, and DPs-optimal de-

signs

Figure 4.4 compares D- and P-efficiencies together with probability of separation

for D-optimal designs. D-efficiency is constant for all D-optimal designs, though

probability of separation is not same for all D-optimal designs. Probability of

separation decreases with the increased size of D-optimal designs. However, P-

efficiency goes down with increasing sample size.
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Figure 4.4: D-and P-efficiencies in D-optimal designs with various sizes

As we have seen in Figure 4.3 that the D-criterion was unrealistically high for

Ps-optimal design, this leads D-efficiency to be close to zero in Figure 4.5. The

probability of separation is in decreasing trend as usual with the rise of number of

points. P-efficiency remains constant for any design size.

Figure 4.6 compares D- and P-efficiencies along with probability of separation for

DPs-optimal designs. D-efficiency gradually declines with the higher number of

points though P-efficiency remains stable relatively from points 5 up to points 20.

Figure 4.7 compares D-efficiencies in three categories of designs. D-efficiencies

remain constant to 1 for D-optimal designs. Ps-optimal designs are completely

inefficient in terms of D-efficiency, whereas DPs-optimal designs maintain a balance

between D- and Ps-optimal designs. D-efficiency is reduced approximately to 50%

when the number of points reaches to 20 for a DPs-optimal design.
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Figure 4.5: D-and P-efficiencies in Ps-optimal designs with various sizes
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Figure 4.7: D-efficiencies in D-,Ps, and DPs-optimal designs

P-efficiency for Ps-optimal design is 1 which is ideal. P-efficiencies are decreasing

until points of 4 for DPs-optimal designs shown in Figure 4.8. Then P-efficiencies

are decreasing steadily to reach 0.70 around number of points 20. Though at

the beginning P-efficiencies are high for D-optimal designs, however, they are not

worthwhile for practical use as with low number of design points, the probability of

separation is quite high in D-optimal designs. Therefore, higher P-efficiencies in D-

optimal designs are not useful information as they are not indicating any reduction

of separation problem.

4.10.4 DPs-optimal designs with different choice of mixing

constant α

In Table 4.12 we consider designs with size 8 and 16 to distinguish the results of D-

and Ps-optimality. Here α=0 and 1 implies DPs-optimal design is nothing but Ps-

and D-optimal design respectively. With α=0.75 or 1 the designs are D-efficient,

however not Ps-efficient and the corresponding probability of separation is around

at least 20% and with the minimal probability of separation the designs are not

D-efficient. Though the relative Ps-efficiency of the design corresponding to size 16

and α=0.75 is 0.2558, but it could be a desirable design as it provides the chances

of separation as low as desired (0.19%), whereas the parameter estimation might

be precise also. However, the designs of size 8 with any α might not be a desired
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Figure 4.8: P-efficiencies in D-,Ps, and DPs-optimal designs

one. Nevertheless, with the scarcity of resources the design of size 8 with α=0.5

might be an optimal choice if any experimenter is happy to take the risk of 8.84%

separation probability.

From our empirical experience we see often α=0.90 provides better design (shown

in Table 4.12) in terms of Ps-optimality, of course, with this choice there should

have little compromise with D-optimal condition. In Table 4.12 with the choice of

α = 0.90 and sample size 16, probability of separation is reduced by roughly 66%

while experimenter loses D-efficiency by 11.88%. Thus, experimenter does not lose

much as the resultant DPs-optimal design with α = 0.90 is slightly D-suboptimal.

The probability of separation goes down with increasing number of sample points.

Figure 4.9 shows the change of probability of separation with size of a design for

various α. Initially the probability of separation is high for DPs-optimal designs.

DPs-optimal designs corresponding to α equal 0 and 1 are nothing but Ps- and D-

optimal designs respectively. The probability is higher always for DPs- designs with

α=1 i.e. for D-optimal designs. However, the probability of separation becomes

very small for all designs around the number of sample points 15.

P-efficiencies are high when α is close to zero. The Figure 4.10 shows that P-

efficiency is low for the designs with α=1 i.e. for D-optimal designs. P-efficiencies

are decreasing with increasing the magnitude of α. P-efficiency is reduced with
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Figure 4.9: Probability of separation Vs size of DPs-optimal designs with various
α

increased number of design points except the designs corresponding to α equal to

0 and 0.25. However, the comparison solely based on P-efficiency without consid-

ering probability of separation is not understandable.
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Figure 4.10: P-efficiencies Vs size of DPs-optimal designs with various α

The values of D-criterion increases with an increase of number of design points

shown in Figure 4.11. When there are two design points the D-criterion has the
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minimum value for all designs. The value of D-criterion is unrealistically high for

the designs with α=0; therefore, were not shown in the figure.
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Figure 4.11: D-criterion Vs size of DPs-optimal designs with various α

D-efficiencies are remained almost constant for DPs-optimal designs with α=0 or

α=1 shown in Figure 4.12. D-efficiency is the highest for DPs- designs with α=1

i.e. for for D-optimal designs. D-efficiency is the worst for DPs- designs with α=0

i.e. for Ps-optimal designs. In general higher the value of α, the higher the value

of D-efficiency for a DPs-optimal design. However, D-efficiency decreases with the

increase of number of design points.

4.10.5 DPs-optimal designs with different sizes

The Figure 4.13 shows that the probability of separation rises slowly with the

increase of mixing constant α though it is roughly stable for designs of all sizes until

mixing constant reaches around 0.5. Data is completely separated with design size

2. The probability of separation remains low around α=0.75 for designs with size

12 or more.

The Figure 4.14 portrays D-criterion vs mixing constant for designs with various

sizes. It is mentioned earlier that α equal to zero implies a Ps-optimal design. The

magnitude of D-criterion is unrealistically high for Ps-optimal designs; therefore
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Figure 4.12: D-efficiencies Vs size of DPs-optimal designs with various α
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ignored in Figure 4.14. The values of D-criterion are reduced with the rise of

mixing constant. Actually the more tendency towards D-optimal designs, the more

reduction in the values of D-criterion. D-criterion is low for a design with size 2

and higher for a design with size 20.
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Figure 4.14: D-criterion Vs mixing constant (α) from DPs-optimal designs with
different sizes

From Figure 4.15 it seems that the designs with size 2 are P-efficient, however,

information is not much useful as probability of separation is high for any designs

with size 2 (see Figure 4.13). P-efficiency is reduced steeply for designs of all

sizes and is low with mixing constant at 1 i.e. when DPs-optimal designs turns to

D-optimal designs.

D-efficiency increases with the rise of mixing constant shown in Figure 4.16. It

is close to zero for all designs with α equal to 0 i.e. for Ps-optimal designs. On

the other hand, D-efficiency is highest for DPs- designs with α equal to 1 i.e. for

D-optimal designs.

4.11 Sensitivity Analysis

The importance of sensitivity analysis (SA) of optimality criteria is well recognized

as it indicates whether designs will differ radically with modest changes to initial

parameter values. It becomes an integral part of the modelling process starting
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Figure 4.15: P-efficiency Vs mixing constant (α) from DPs-optimal designs with
different sizes
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Figure 4.16: D-efficiency Vs mixing constant (α) from DPs-optimal designs with
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from model specification through the analysis and optimization, up to the valida-

tion phase [Nestorov, 1999]. The SA is used to quantify the effects of the change of

magnitude of model parameters to the outputs of interest (for instance, optimum

value of the criterion or change in the probability of separation). Nobody knows

the true value of the model structure and/or parameters, however, we use approxi-

mations and estimates the latter usually drawn from the small experiment sample.

Therefore, it is essential to study how the system will behave if its parameters are

not exactly similar as they were assumed.

Let DPs(ξ; β0, β1) be our optimality criterion. We have found optimal design by

minimizing DPs(ξ; β0, β1). We call this design as ξ∗β0,β1 . The parameter β0 is

changed deliberately a bit by δ and defined in a new position as β∗0 = β0 − δ.

Now again we find optimal design by minimizing DPs(ξ; β
∗
0 , β1). We call this as

ξ∗β∗0 ,β1 . Now we evaluate

S =
DPs(ξ

∗
β∗0 ,β1

; β∗0 , β1)

DPs(ξ∗β0,β1 ; β
∗
0 , β1)

(4.36)

The quantity S in (4.36) can never exceed 1 as DPs(ξ
∗
β∗0 ,β1

; β∗0 , β1) is the lowest value

with the optimum design ξ∗β∗0 ,β1 . Because no other design can be better than ξ∗β∗0 ,β1
given the parameters β∗0 and β1, Therefore, DPs(ξ

∗
β0,β1

; β∗0 , β1) will be greater than

DPs(ξ
∗
β∗0 ,β1

; β∗0 , β1). However, sensitivity index can be defined as

SI =
|DPs(ξ

∗
β0,β1

; β∗0 , β1)−DPs(ξ
∗
β∗0 ,β1

; β∗0 , β1)|
DPs(ξ∗β0,β1 ; β

∗
0 , β1)

× 100 (4.37)

The greater the value of SI, the greater the sensitivity of DPs-optimal due to a

change in β0 parameter value. The indices for the change of β1 can be defined in

the same manner.

Initially the parameter values are considered as β0=0 and β1=1. Changes of the

order ∆βi = ∓0.5 are considered, thus the new values of the parameters become

β∗0=-0.5, 0.5 and β∗1=0.5, 1.5.
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4. Separation problem

Two examples are given in Tables 4.13 and 4.14 with design sizes 16 and 20 respec-

tively. In both Tables α=0 corresponds to the Ps-optimal and α=1 corresponds

the D-optimal designs. In both the table it is found that design is affected less for

β1 parameter in Ps-optimal designs and the design is affected less for β0 parameter

in D-optimal designs. We have to be cautious to choose the value of α to obtain

a robust design. In Tables 4.13 and 4.14 it is found when α = 0, changes in β1

parameter have little effect on the optimal value of the DPs-criterion. On the other

hand, with greater value of α, say α=0.90, the optimal value of DPs-criterion is

less affected with a minor change in β0 . When α=0.75 the design is robust for a

small change in β1, however, there is maximum of 28.57% change in the optimum

value of the objective function due to small change in the β0 parameter.

Table 4.13: Sensitivity index of DPs-optimal designs with design size 16

∆β0 ∆β1
α -0.5 0.5 -0.5 0.5

0.00 76.44 76.44 0.01 0.01
0.25 65.58 67.39 6.53 3.32
0.50 46.23 40.97 10.55 4.43
0.75 17.10 28.57 13.93 6.77
0.90 2.30 2.26 18.23 9.65
1.00 3.57 3.57 25.48 15.41

Table 4.14: Sensitivity index of DPs-optimal designs with design size 20

∆β0 ∆β1
α -0.5 0.5 -0.5 0.5

0.00 87.78 87.63 0.02 0.04
0.25 78.82 80.10 6.53 3.31
0.50 60.65 52.48 10.46 4.34
0.75 27.80 40.62 13.51 06.50
0.90 2.75 8.21 17.76 09.23
1.00 3.57 3.57 25.48 15.41

In some situations, little may be known about the parameters before the experiment

is conducted; therefore, initial parameter estimates might not be accurate. In this

case, optimality criteria that are sensitive to inaccurate initial parameter estimates

may come up with less accurate designs that will have limited practical value.
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4. Separation problem

4.12 Simulation Studies on DPs-optimal Designs

The design performance has been assessed through efficiencies and the sensitiv-

ity index in Section 4.11. It is essential to see how robust these designs with the

parameter misspecification. The study on robustness with respect to parameter

misspecification can be carried out by a simulation study. The simulation study

would enable comparison of DPs-designs for different values of α, different sample

sizes, and different values of model parameters in a variety of scenarios.

Table 4.15 shows the mean simulated performance of estimates from DPs-designs.

The number of simulations has been considered arbitrarily as 10,000 since it was

feasible in terms of computing time. The sample size was 8 and 16 and only β0

varied for these mean based outputs. The summary results that are investigated

are bias, standard error (SE) and mean squared error (MSE) of estimates. The

bias, SE and MSE are very high in mean based simulated estimates. The main

reason is the existence of complete separation or quasi-complete separation in the

simulated data set. The quasi- complete or complete separation in some simulation

stage causes extreme values of the estimates. Therefore, all the mean based sum-

mary measures are unusual i.e. bias, SE, and MSE are very large given various set

of true values with different sample sizes. However, in the simulated data set the

percentage of separation occurs as expected theoretically. As an illustration, we

see that the percentage of complete separation that happens during the simulation

studies corresponding to α equals 0.25, 0.5, 0.75, 0.8, 0.9 and 1 are 0.03, 0.05, 0.24,

0.26, 2.57, and 6.95 respectively given that n = 8, β0=0 and β1=1. The results

are similar to the results obtained in theoretical studies (see Ps-criterion column in

Table 4.12). It is evident that gradually complete separation increases when design

moves from Ps-optimal designs towards D-optimal designs. However, mean based

estimates are not interpretable well because of being very high values of bias, SE,

and MSE. Therefore, we will compare and interpret accuracy measures later on the

basis of median based information.

Table 4.16 presents the median estimates in the simulated performance of esti-

mators from DPs-designs with sample size 8 and 10,000 simulations. Evidently

the medians of point estimates have less biases than previously found mean based

estimates (see Table 4.15).
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4. Separation problem

The median estimates indicate that bias and MdMSE would be more precise than

that of the estimates based on point estimate mean. The inter-quartile range (IQR)

in Table 4.16 describes the difference between 25th and 75th percentiles of the es-

timates. Under different set of β0 and β1 values bias, IQR, and MdSE are roughly

minimum given α between 0.75 and 1. This establishes our belief that was claimed

in theoretical studies about DPs-optimal designs on choosing a particular value of

α in the experimental studies. Usually IQR declines for β̂1 with increase of α and

is minimum when α lies between 0.75 and 0.80. Probability of complete separation

declines with the reduction of the value of α. MdSE reduces while α increases i.e.

when the DPs-designs tend to D-optimal designs.

Table 4.17 describes the same features in the same pattern as presented in Ta-

ble 4.16 but all parameters are much lower than that of Table 4.16, that is, bias,

IQR, and MdSE (median squared error) are reduced much with the increase of

sample size 8 to 16. Probability of complete separation is much lower in compar-

ison to Table 4.16 for all given set of parameter values. It seems that the bias,

IQR, and MdSE are minimum when α is around 0.90 for all given set of parameter

values. Therefore, a DPs-design with α = 0.90 can be recommended for any study

which has problems with separation.

In Table 4.16 and Table 4.17 the true parameters β0 and β1 are fixed, but now in

Table 4.18 and Table 4.19 the parameter values are coming from some distributions

e.g. β0 ∼ N(0, 0.25), β1 ∼ N(1, 0.25). Table 4.18 and Table 4.19 show the results of

simulated performance of median estimates from DPs-optimal designs with 10000

simulations taking sample sizes 8 and 16. Usually bias reduces with the increase

of mixing constant i.e. the more towards D-optimality, the more accuracy of the

parameter estimates. This supports the theoretical claims about precise parameter

estimability of D-optimal designs. Probability of separation increases with the

increase of the value of α i.e. the more towards D-optimality the more probability

of separation and probability of separation decreases with the increase of sample

size e.g. probability of complete separation is less in Table 4.17 than separation in

Table 4.16. For the designs with sample size equal to 16, probability of separation

and other indices are better when mixing constant is in between 0.75 and 0.80 i.e.

with the designs that are generated by compromising between Ps- and D-optimality.
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4. Separation problem

Table 4.16: Simulated performance of estimates from DPs designs with 10,000
simulations, n=8

True Parameter Bias IQR MdSE

β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

0.25 1.052 2.796 238.353 3073.581 1.372 9.074 6.33
0.50 1.146 2.714 997.121 2650.233 2.090 7.367 9.45

0 0.5 0.75 -0.0002.105 1.099 10.997 0.302 4.712 20.64
0.80 0.000 2.181 1.099 10.018 0.302 4.759 22.43
0.90 -0.0002.037 2.197 8.442 1.207 4.148 28.03
1.00 0.001 1.801 2.197 7.602 1.207 3.245 33.26

0.25 1.041 5.094 119.436 3071.835 1.327 30.403 6.88
0.50 1.028 5.052 498.256 2650.046 2.090 25.546 9.00

0 1 0.75 0.000 3.892 1.099 21.995 0.302 16.189 20.77
0.80 0.000 4.074 1.099 19.578 0.302 16.595 23.28
0.90 -0.0003.824 2.197 16.883 1.207 14.621 28.01
1.00 -0.0053.368 2.197 15.205 1.207 11.341 33.20

0.25 2.996 2.796 3311.8163073.581 11.891 9.074 6.67
0.50 3.588 2.714 3647.1032649.986 15.399 7.367 9.49

0.50.5 0.75 0.003 2.105 9.509 10.998 8.185 4.431 19.97
0.80 -0.0422.181 11.026 9.789 16.360 4.759 22.91
0.90 -0.1052.037 9.189 8.442 52.461 4.148 29.16
1.00 0.227 1.801 9.057 7.602 55.631 3.245 32.70

0.25 2.721 5.094 1655.2273071.835 10.07730.404 7.13
0.50 3.259 5.052 1823.0332650.046 13.43625.524 9.72

0.5 1 0.75 0.003 3.892 9.003 21.995 8.824 15.670 20.73
0.80 -0.0424.074 9.076 20.036 13.25716.595 22.69
0.90 -0.1053.824 9.935 16.883 45.85714.621 29.11
1.00 0.227 3.378 11.057 15.205 53.99011.412 33.32

0.25 5.166 5.094 3191.0313071.835 33.85030.404 7.12
0.50 5.501 4.680 3148.4272650.046 31.54925.524 9.15

1 1 0.75 0.006 3.892 11.561 21.995 1.095 15.150 20.32
0.80 -0.0834.074 11.336 19.578 4.404 16.595 24.06
0.90 -0.2103.824 18.302 16.883 72.01514.621 29.15
1.00 -0.0953.378 17.004 15.205 81.66611.412 34.19

0.25 4.880 7.508 2126.3733070.198 30.52861.524 6.63
0.50 5.240 6.692 2098.6682649.859 28.68752.546 8.82

1 1.5 0.75 0.006 5.757 11.173 32.992 1.095 36.427 20.45
0.80 -0.0835.857 10.783 29.366 4.404 34.301 23.31
0.90 -0.2105.516 18.245 25.325 66.21730.432 28.55
1.00 -0.0954.870 16.933 22.807 75.73023.716 33.56
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4. Separation problem

Table 4.17: Simulated performance of estimates from DPs-designs with 10,000
simulations, n=16

True Parameter Bias IQR MdSE

β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

0.25 0.720 1.770 13.868 877.539 1.089 6.818 0.04
0.50 0.479 2.314 45.678 653.065 0.554 5.714 0.03

0 0.5 0.75 0.424 1.976 39.390 143.616 0.507 3.903 0.15
0.80 0.322 0.009 1.699 2.898 0.500 0.195 0.24
0.90 -0.0280.039 0.971 0.491 0.300 0.026 1.80
1.00 0.000 0.130 0.847 1.975 0.179 0.034 6.95

0.25 0.715 3.248 6.503 815.701 0.967 22.097 0.03
0.50 0.457 4.218 19.669 541.977 0.517 18.673 0.05

0 1 0.75 0.392 3.663 2.403 7.707 0.449 13.416 0.24
0.80 0.533 3.548 48.047 279.571 0.529 12.587 0.26
0.90 -0.0000.067 0.847 0.991 0.179 0.104 2.57
1.00 0.000 0.260 0.847 5.265 0.180 0.136 6.95

0.25 2.094 1.726 765.741754.158 7.182 6.364 0.03
0.50 2.514 2.306 664.827620.942 6.841 5.561 0.08

0.50.5 0.75 2.312 2.017 182.916143.616 5.363 4.068 0.27
0.80 0.137 0.120 4.348 2.913 0.834 0.195 0.38
0.90 -0.0230.033 1.029 0.496 0.342 0.026 2.49
1.00 0.130 0.130 1.149 1.975 0.379 0.034 6.83

0.25 1.951 3.250 415.144815.694 7.064 22.402 0.05
0.50 2.340 4.233 332.222620.775 6.064 19.219 0.06

0.5 1 0.75 2.198 3.668 91.824 143.323 4.830 13.452 0.17
0.80 0.264 0.239 4.238 5.657 0.833 0.780 0.27
0.90 0.072 0.078 1.116 3.572 0.205 0.110 1.99
1.00 0.130 0.261 1.149 3.725 0.379 0.137 7.02

0.25 3.344 3.248 882.848876.028 23.66222.380 0.05
0.50 4.373 4.233 642.944620.775 19.89019.219 0.08

1 1 0.75 4.313 3.668 162.793143.323 18.60313.492 0.16
0.80 -0.0480.239 6.505 5.601 0.889 0.780 0.32
0.90 -0.0460.067 1.341 0.991 0.476 0.104 2.15
1.00 -0.0950.261 1.286 3.725 0.364 0.137 7.06

0.25 3.131 4.615 587.551874.610 20.70843.931 0.05
0.50 4.133 6.002 374.448541.809 17.46538.763 0.09

1 1.5 0.75 3.901 4.939 8.351 40.056 15.29324.397 0.20
0.80 3.988 5.097 218.178279.302 15.92225.980 0.21
0.90 -0.0460.100 1.341 1.487 0.476 0.234 2.43
1.00 -0.0950.391 1.286 5.391 0.448 0.308 7.32
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4. Separation problem

Table 4.18: Simulated performance of estimates from DPs designs with 10,000
simulations, n=8

True Parameter Bias IQR MdSE

β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

0.25 0.751 5.094 118.814 3071.835 2.267 30.403 7.92
0.50 1.017 4.681 498.256 2650.046 2.090 25.546 11.37

∼ N(0, 0.25) ∼ N(1, 0.25)0.75 0.000 3.892 1.099 21.995 0.302 16.189 21.92
0.80 0.000 4.074 1.648 20.036 1.207 16.595 24.90
0.90 -0.0003.824 1.648 16.883 1.207 14.621 29.73
1.00 -0.0053.368 1.648 15.205 1.207 11.341 33.26

0.25 2.721 5.094 1655.2273071.835 10.077 30.404 7.73
0.50 3.259 5.052 1823.4682650.046 13.436 25.546 11.33

∼ N(0.5, 0.25)∼ N(1, 0.25)0.75 0.003 4.024 9.301 21.995 8.824 17.721 21.41
0.80 -0.0424.074 11.346 20.036 17.524 16.595 25.11
0.90 -0.1053.824 9.584 16.883 45.857 14.621 27.90
1.00 0.227 3.378 9.057 15.205 53.990 11.412 33.38

0.25 0.531 3.278 68.864 1784.795 4.094 30.403 32.64
0.50 0.976 4.186 25.508 1149.196 5.868 30.889 35.05

∼ N(0, 1) ∼ N(1, 1) 0.75 0.000 4.024 9.873 22.498 24.370 20.494 47.75
0.80 0.000 3.785 9.967 20.494 24.834 20.533 46.44
0.90 -0.0003.429 10.115 17.673 25.577 26.826 48.48
1.00 -0.0053.023 2.197 15.561 1.207 23.570 49.79

0.25 2.257 3.564 961.769 1781.809 198.44033.860 28.77
0.50 2.974 4.461 25.002 26.534 27.778 28.418 33.22

∼ N(0.5, 1) ∼ N(1, 1) 0.75 0.003 4.024 13.422 22.498 51.841 20.494 39.04
0.80 0.278 3.785 12.693 20.494 58.685 20.533 39.83
0.90 0.599 3.429 11.680 17.673 69.502 25.335 46.16
1.00 3.463 3.378 11.057 15.561 55.625 25.628 45.94
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4. Separation problem

Table 4.19: Simulated performance of estimates DPs-designs with 10,000 simula-
tions, n=16

True Parameter Bias IQR MdSE

β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

0.25 0.717 3.248 6.892 815.702 1.074 23.745 0.10
0.50 0.475 4.218 22.193 620.775 0.567 19.219 0.11

∼ N(0, 0.25) ∼ N(1, 0.25)0.75 0.392 3.328 2.004 7.303 0.519 11.204 0.29
0.80 0.512 3.503 25.153 143.372 0.535 12.357 0.23
0.90 -0.0000.067 0.847 0.991 0.180 0.142 2.93
1.00 0.000 0.261 0.973 15.769 0.261 0.229 8.17

0.25 1.951 3.204 382.837752.634 7.083 22.402 0.26
0.50 2.303 4.218 290.313561.676 5.825 19.137 0.27

∼ N(0.5, 0.25)∼ N(1, 0.25)0.75 2.152 3.608 91.221 143.323 4.687 13.110 0.26
0.80 0.264 0.239 4.086 5.583 0.833 0.845 0.57
0.90 0.072 0.078 1.116 4.149 0.235 0.256 2.51
1.00 0.130 0.261 1.288 4.080 0.452 0.229 8.25

0.25 0.717 2.814 6.430 623.468 3.589 24.129 11.67
0.50 0.576 3.765 17.217 393.242 2.497 22.623 12.09

∼ N(0, 1) ∼ N(1, 1) 0.75 0.558 0.866 3.737 7.709 1.991 14.129 9.77
0.80 0.561 2.912 24.850 24.821 1.912 12.826 8.51
0.90 -0.0000.067 1.946 6.153 0.947 2.182 14.59
1.00 0.001 0.261 2.072 16.290 0.947 5.764 23.83

0.25 2.007 3.048 345.802676.431 20.10328.454 11.30
0.50 2.149 3.946 232.731441.468 9.119 23.334 10.48

∼ N(0.5, 1) ∼ N(1, 1) 0.75 1.456 3.174 9.114 27.073 6.042 14.520 7.88
0.80 0.410 0.513 5.269 7.299 4.910 6.316 8.79
0.90 0.139 0.300 5.866 7.265 2.406 2.784 13.89
1.00 0.158 2.392 9.278 16.209 15.486 9.134 19.21
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4. Separation problem

4.13 Pseudo Bayesian Designs

The optimal designs with respect to the common optimality criteria depend on the

unknown parameter(s). To address the problem Chernoff [1953] suggested to adopt

a best guess for the unknown parameter(s), say θ, and termed the resultant designs

locally optimal. The main disadvantage of to such an approach is that if unknown

parameters are misspecified the resulting optimal designs can be highly inefficient

wihin the true setting [Dette et al., 2003]. An alternative robust way is to assume

sufficient knowledge about θ to specify a prior distribution for the parameter(s) and

to average the respective optimality criteria over the plausible values of θ defined

by the prior. This leads to so-called (pseudo) Bayesian optimality criteria [Bieder-

mann et al., 2004]. The reason for naming it pseudo Bayesian as there will be no

real data at hand similar to likelihood analysis while designing an experiment. The

designs obtained by using the Bayesian criterion are called robust Bayesian designs

which are expected to be more robust on parameter misspecification.

We have defined previously DPs-optimality criterion in equation (4.29) which is a

function of β0 and β1. Let us define a Bayesian version of the DPs- criterion such

that

DPSB =

∫
R2

DPS P(β0, β1) dβ0 dβ1 (4.38)

where P(β0, β1) is the joint prior distribution of β0 and β1. The equation (4.38) is

evaluated over the region of R2. The analytical form of DPs may not be tractable

easily. However, by using MCMC techniques, the Bayesian criterion DPSB can be

approximated as

DPSB =
1

T

T∑
t=1

DPst (4.39)

DPst =
P (S|X, β0t, β1t)α[

X́WX
]α/q (4.40)

where DPst is the DPS- criterion at simulation t, P (S|X, β0t, β1t) is the probability

of separation with the design matrix X given the coefficients β0t and β1t of β0 and

β1 at simulation t and relevant priors are β0 ∼ N(µ0, σ
2
β0

) and β1t ∼ N(µ1, σ
2
β1

)
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4. Separation problem

respectively.

The package optim in R can be used to optimize DPSB-criterion and thereby to ob-

tain the Bayesian designs. A few set of pseudo Bayesian designs have been obtained

assuming different set of normal priors, for example assuming β0t ∼ N(0, 0.25) and

β1t ∼ N(1, 0.25) for β0 and β1 respectively and the results are presented in Ta-

ble 4.20.

Usually the range of the values in the Bayesian design is small (when variabil-

ity in the priors are small) over the design regions than the range of the designs

obtained using classical DPs-criterion and the Bayesian designs are wider than

non-Bayesian designs when the variability of priors are comparatively larger with

respect to its location. For example, the designs with sizes 8 or 16 with α = 1 and

priors β0 ∼ N(0, 0.25) and β1 ∼ N(1, 0.25) have smaller range than the range in

non-Bayesian designs (see Table 4.12 and Table 4.20. In general, when the variabil-

ity in the prior is comparatively large, then the Bayesian designs points are more

scattered. The performance of these Bayesian designs will be examined through a

simulation study.

A simulation study has been conducted to see the performances of the pseudo

Bayesian designs. Table 4.21 shows the simulated performance of median esti-

mates assuming true parameters β0 = 0 and β1 = 1. The two sets of priors

β0 ∼ N(0, 0.25), β1 ∼ N(1, 0.25) and β0 ∼ N(0, 1), β1 ∼ N(1, 1) with sample sizes

8 and 16 have been considered. The simulated performance of median estimates

reveals that usually the bias, IQR, MdSE and probability of complete separation

is less in the Bayesian designs than the DPs-based non-Bayesian designs. For ex-

ample, in Table 4.18 when n = 8, α = 0.80 and β0 ∼ N(0, 1), β1 ∼ N(1, 1) the

proportion of separation is 46.44% whereas in Table 4.21 the corresponding proba-

bility of separation is 17.86% with α = 0.80 and priors β0 ∼ N(0, 1), β1 ∼ N(1, 1).

The same rows in Tables 4.18 and 4.21 show that bias is less, particularly for β1,

in the Bayesian designs than that of classical designs.

True parameters β0 and β1 were fixed in Table 4.21. Simulated performance of

median estimates in Bayesian designs have been investigated assuming true param-

eters coming from normal distributions and the corresponding results are shown
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Table 4.21: Simulated performance of estimates in Bayesian designs with 10,000
simulations, True parameters: β0 = 0, β1 = 1

Priors Bias IQR MdSE

n β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

0.25 0.735 5.151 134.2753071.800 1.40531.085 7.37
0.50 1.092 5.019 424.5852650.048 2.06125.209 9.99

8 ∼ N(0, 0.25)∼ N(1, 0.25)0.75 -0.0033.986 1.099 22.461 0.30315.891 20.66
0.80 -0.0033.929 1.101 20.701 0.30317.878 22.30
0.90 -0.0023.639 1.649 17.756 1.20713.239 26.54
1.00 -0.0023.636 2.197 16.172 1.20713.217 30.03

0.25 0.096 0.050 3.111 10.310 0.642 2.778 9.55
0.50 0.494 0.392 4.339 10.881 1.373 3.027 12.72

8 ∼ N(0, 1) ∼ N(1, 1) 0.75 -0.0990.313 3.405 11.061 1.218 1.206 15.16
0.80 -0.0790.383 2.527 13.058 0.715 0.413 17.86
0.90 -0.0570.241 2.138 17.183 0.831 0.694 21.37
1.00 0.020 0.358 1.875 14.924 1.206 0.704 24.13

0.25 1.276 2.458 0.752 0.688 1.909 6.633 0.03
0.50 0.544 4.229 32.236 652.725 0.62318.482 0.10

16∼ N(0, 0.25)∼ N(1, 0.25)0.75 0.414 0.468 1.986 7.403 0.539 2.547 0.19
0.80 0.366 0.043 1.892 5.412 0.471 0.612 0.26
0.90 0.004 0.109 0.847 1.031 0.184 0.141 2.25
1.00 0.005 0.047 0.847 3.441 0.183 0.115 5.61

0.25 -0.0130.057 0.689 1.568 0.131 0.576 0.14
0.50 -0.0170.021 0.687 1.485 0.141 0.640 0.29

16 ∼ N(0, 1) ∼ N(1, 1) 0.75 0.020 0.167 0.861 1.085 0.131 0.276 0.49
0.80 -0.0450.148 0.896 1.095 0.166 0.300 0.52
0.90 -0.0490.134 0.890 1.081 0.171 0.245 1.33
1.00 -0.0470.153 0.876 0.995 0.193 0.191 2.54

in Table 4.22. The main idea behind not taking fixed true values is to see how

summary measures e.g. bias, IQR and MdSE differ in comparison to measures ob-

tained assuming true fixed values. It is found in Table 4.22 that the bias, IQR, and

MdSE are unusual often as true parameters are not fixed and comes from normal

distributions. The problem is severe when prior variance is comparatively larger,

for example, when n = 8, α = 0.5, true parameters are from β0 ∼ N(0, 1) and

β1 ∼ N(1, 1), then bias, IQR and MdSE are unusual in comparison to neighbour-

ing values. Also, it is observed in Table 4.22 that the probability of separation does

not follow any increasing pattern with the increase of α while it was in increasing

pattern previously in Table 4.21 when true parameters were fixed. It should be

noted that as percentage of separation and summary measures were slightly less

stable when number of simulations was 10,000 particularly with β0 ∼ N(0, 0.25),

and β1 ∼ N(1, 0.25) and n = 8, we implemented 20,000 simulations instead of

167



4. Separation problem

10,000 simulations in each trial corresponding to Table 4.22.

Table 4.22: Simulated performance of estimates in Bayesian designs with 20,000
simulations

Priors Bias IQR MdSE

n β0 β1 α β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 % Sep

True parameters: β0 ∼ N(0, 0.25), β1 ∼ N(1, 0.25)

0.25 1.185 5.044 134.3383072.064 3.729 28.583 8.59
0.50 1.680 5.296 726.1593608.230 3.078 28.045 10.01

8 ∼ N(0, 0.25)∼ N(1, 0.25)0.75 -0.003 4.635 5.460 21.948 1.207 21.479 26.27
0.80 -0.003 3.631 5.503 20.701 0.303 14.094 20.36
0.90 0.548 3.639 9.234 17.756 25.20313.239 22.67
1.00 -0.042 3.636 5.638 16.172 25.68713.217 28.98

True parameters: β0 ∼ N(0, 1), β1 ∼ N(1, 1)

0.25 -0.096 0.053 2.525 10.034 0.641 1.629 10.78
0.50 2.146 6.993 5.575 31.572 12.93750.613 21.54

8 ∼ N(0, 1) ∼ N(1, 1) 0.75 -1.284 -0.710 8.344 0.925 1.649 1.200 76.44
0.80 -1.152 -1.000 5.953 1.205 1.495 1.000 73.32
0.90 0.637 -1.336 1.306 1.239 0.640 2.179 10.54
1.00 0.013 0.361 1.769 14.685 1.206 0.588 24.38

True parameters: β0 ∼ N(0, 0.25), β1 ∼ N(1, 0.25)

0.25 0.181 2.990 7.775 647.483 1.136 25.490 0.04
0.50 0.571 3.952 25.033 481.229 0.629 16.628 0.06

16∼ N(0, 0.25)∼ N(1, 0.25)0.75 1.099 3.828 59.620 314.848 1.207 15.041 0.27
0.80 0.366 -0.483 0.985 0.960 0.170 0.613 0.10
0.90 0.004 -0.273 0.802 0.648 0.175 0.141 0.70
1.00 0.003 -0.154 0.975 0.785 0.183 0.115 2.68

True parameters: β0 ∼ N(0, 1), β1 ∼ N(1, 1)

0.25 0.328 1.675 1.177 8.705 0.258 2.807 1.59
0.50 2.813 6.364 5.403 12.373 9.206 42.275 0.90

16 ∼ N(0, 1) ∼ N(1, 1) 0.75 -0.679 0.515 3.386 7.059 0.462 0.424 0.97
0.80 2.107 -2.629 5.679 13.021 4.439 6.911 5.75
0.90 -0.666 -0.193 0.799 0.808 0.482 0.245 1.33
1.00 0.322 0.319 0.904 1.097 0.296 0.228 3.46

In realistic scenario practitioners might face difficulties to specify prior distribu-

tion(s) for unknown parameter(s). This limits the applicability of the Bayesian

designs. Therefore, as an alternative to Bayesian designs and to cover uncertain-

ties in the parameter(s) specifications another robust approach that can be taken

into account is maximin optimality. In maximin optimality, the designs which

maximize the minimum of a real valued (standardized) function of the Fisher in-

formation matrix over a range of parameter values are sought [Dette, 1997; Dette

et al., 2003; Müller, 1995]. The aim of maximin optimality is to protect the design

of experiment against the worst possible case [Biedermann et al., 2004]. The use of
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4. Separation problem

maximin approach increases the efficiency of a design [Imhof, 2001]. A few exam-

ples of maximin designs can be found in linear models [Müller, 1995], in exponential

growth and heteroscadastic polynomial models [Imhof, 2001], in regression mod-

els [Dette et al., 2003], in compartmental model [Biedermann et al., 2004] and in

weighted polynomial regression models [Biedermann et al., 2004]. The applicability

of maximin approach on the DPs-optimality will be investigated in future.

4.14 Conclusions

Separation causes non-existence of maximum likelihood estimates during binary

logit analysis, particularly in small samples. In this chapter, we have proposed

new probability-based optimality criteria that will help minimizing the probability

of separation by devising values of a design variable and thereby increasing the

possibility of MLEs existence in the binary logit analysis. Further, Bayesian ver-

sion of the probability based compound optimality criterion brings added benefit

by having less bias, MdSE, and reduced probability of separations in comparison

to non-Bayesian designs. The simulation studies verifies the ability of probability

based Bayesian and non-Bayesian designs by testing the parameters of logit models.

D-optimality criterion is useful to obtain design values which enable precise pa-

rameter estimation. However, D-criterion cannot handle the issue of separation

appropriately when there are small number of sample points. We have proposed

new probability-based Ps-criterion that works well to minimize probability of sep-

aration. However, the relation between D- and Ps-criterion is inverse i.e. to em-

phasize separation issue experimenters need to compromise with the precision of

the parameter estimation. Therefore, we propose a compound criterion DPs- that

will balance between precision and the separation hazard.

We have derived a theorem that explains probability of separation is less when

all design values are distinct, implies that to minimize probability of separation

the consideration of complete separation is enough rather than considering quasi-

complete separation separately. This reduces our optimization task during the

generation of design values by minimizing probability-based optimality criteria.
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4. Separation problem

We have done local optimization in this study. D-optimal designs with a small

sample (say n = 4) are not good as they may show strong separation problem.

However, adequate sample size (say n = 18) will produce low probability of separa-

tion (e.g. separation probability lower than 0.05) (see Ps-criterion in Table 4.9). In

Ps-optimal designs the probability of separation is 6.25% with sample size 8. The

probability of separation reduces to 1% with 12 sample points (see Ps-criterion in

Table 4.10). However, Ps-criterion cares less about precision of parameter esti-

mates. The compound DPs-criterion takes into account precision and separation

probability simultaneously. In DPs-optimal designs the probability of separation

is less than 2.7% with 10 sample points (see Table 4.11).

Increasing number of sample points reduces the probability of separation for any

design. This reduction is faster in Ps-optimal designs. If an experimenter has ade-

quate resources he/she might think to choose D-optimal design with large number

of sample points, otherwise DPs-optimal would be the good choice for any experi-

ment where the concept of separation gets greater priority.

D-efficiency is quite low in Ps-optimal designs and conversely P-efficiency is lower

in D-optimal designs. D- and P-efficiency lines of DPs-optimal designs passes in

the middle of efficiency lines corresponding to D- and Ps-optimal designs (see Fig-

ures 4.7 and 4.8). The higher value of mixing constant in DPs-optimal designs

provides better designs that will enable good precision of parameter estimates as

well as less separation.

DPs-optimal designs with size n ≥ 16 and mixing constant in the range 0.75 ≤
α < 1 might be the good choice for any experiment as these will enable low proba-

bility of separation as well as moderate D-criterion i.e. moderately good precision

(see Table 4.12). However, we have looked for optimal designs using odds of the

Ps-criterion that did not provide us designs better than the designs obtained so far.

We did sensitivity analysis of the DPs-criterion to understand the effect of changes

in parameters to the magnitude of the criterion. The changes in β1 parameter have

little effect on the magnitude of DPs-criterion when mixing constant is close to

0. On the other hand the D-optimal designs (i.e. when mixing constant is 0) are

less affected by minor changes in intercept parameter β0 (see Tables 4.13 and 4.14).
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4. Separation problem

Simulation studies have been carried out to enable comparison of DPs- designs for

different values of α, different sample sizes and different values of model parameters.

The robustness of DPs- designs has been investigated to see the impact of parame-

ter misspecifications. The mean based summary estimates e.g. bias, standard error

(SE) and mean squared error (MSE) are very high because they are affected by

extreme values that were originated as consequence of complete or quasi-complete

separation in the simulated responses. Therefore, mean based estimates are not

suitable for assessing the simulated performance of parameter estimates.

Median of estimates in the simulation study indicate that findings support the re-

sults that were conjectured in theory of separation presented in earlier sections,

particularly probability of separation decreases with the increase of design size and

with the decrease of mixing constant α. That means separation increases with

the increase of the magnitude of α i.e. the more towards D-optimality, the more

severity of separation problem. (see Table 4.15 - Table 4.19)

Locally optimal designs can be affected by parameter misspecifications. An alter-

native way to make the designs more robust is to assume sufficient knowledge about

model parameters and thus obtain (pseudo) Bayesian designs by using Bayesian

criterion. Therefore, a Bayesian version of DPs-criterion has been developed and

thereby, Bayesian designs have been obtained. It is observed that the values in the

Bayesian designs are wider when priors have larger variability with respect to their

magnitude of location parameters and less wider than the values of non-Bayesian

designs when priors have smaller variability with respect to location parameter.

Simulation studies reveal that Bayesian designs perform better than non-Bayesian

designs, particularly by providing less bias, interquartile range (IQR), median

squared error (MdSE), and above all by percentage of separation problem lower

than that of non-Bayesian designs. However, Bayesian designs may be impractical

to practitioners wherever it becomes difficult to specify priors. As an alternative

to Bayesian designs, a maximin approach can be used to obtain designs that might

protect the designs from the worst possible scenario.
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4. Separation problem

The newly devised probability-based DPs-optimality criterion, either Bayesian or

non-Bayesian, might be useful for a small experimental design with binary responses

that might have a greater chance to have separation problem. The use of this

probability based criterion might enhance the chance of existence of maximum

likelihood estimates in designed experiments.

172



Chapter 5

Discussion and Conclusion

5.1 Introduction

As mentioned earlier, this study has dealt with two main issues: zero estimates

of variance components in mixed models and separation problem that causes non-

existence of maximum likelihood estimates in logit models. The zero estimates of

variance components have been handled by applying Bayesian methods assuming

some non-informative or weakly informative priors for relevant parameters. In ad-

dition to these, simulation studies have been carried out to assess the quality of

likelihood and Bayesian estimates. Separation problem has been addressed through

optimal design technique by devising probability-based non-Bayesian and pseudo

Bayesian optimality criteria.

In the fuel economy experiment, researchers were unsure about the results ob-

tained from the likelihood methods as some of the estimates of variance compo-

nents were zero which were unrealistic. These led us to reanalyze fuel economy

data in Bayesian methods and compare results with those from classical methods.

The polypropylene industrial experiments had similar problem as in fuel economy

experiments. The variance components due to batches under multi-stratum design

were estimated as zero that were not logical. The earlier researchers conjectured

that Bayesian analyses assuming some non-informative and weakly informative

priors for the variance components would sort out the problem. During binary

logit analysis of the polypropylene experiment there was convergence failure and

thus non-existence of MLEs in the analysis due to the separation problem in the
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5. Discussion and Conclusion

data. We proposed a probability-based optimal design technique to minimize the

problem of separation in experimental studies. A pseudo Bayesian version of prob-

ability based optimality criterion has also been proposed to obtain designs that is

comparatively less sensitive to parameter misspecifications.

5.2 Fuel Economy Experiment

In the Bayesian analysis of fuel economy experiment, the test fuel (T) performed

better than the base fuel (B) and the between day variance component estimate was

0.059 which was 0 in likelihood-based analysis. The reason for this zero variance

was small number of degrees of freedom available to compute the variance com-

ponent in the likelihood method. Profile likelihood and bootstrap based methods

in Section 2.9 illustrate that the likelihood estimate of variance components can

be zero as both of these methods have shown that lower limit of 95% confidence

interval is 0 whereas the Bayesian credible interval ensures non-zero estimates of

variance components (see Table 2.18). Further, Bayesian point estimates of vari-

ance component also lie impressively within the profile likelihood 95% confidence

intervals. Simulation studies shows that likelihood based and Bayesian point and

interval estimates perform well though average width of likelihood based 95% con-

fidence interval can be infinity which makes variance component estimation under

likelihood based methods slightly unreliable (e.g. see Table 2.20 and Table 2.21).

There might have been a benefit of switching fuel B to T than switching B1 to B2

i.e. switching from B to T impacts positively in the distance crossed by a vehicle

given per gallon of fuel. Actually this is natural as fuel T performs better than

fuel B. In the analysis of nested models it was revealed that there was no effect of

weeks in the responses implies that ignoring the provision of gap of 4-5 days will

reduce experimental duration and thereby the cost of experimentation.

The round robin experiment on fuel A shows that there is 95% guarantee that if

fuel A is tested on the same laboratory they will differ by less than 10.66 and by

less than 12.19 if A is tested in different laboratories (see Table 2.11). Similar

conclusions are found for fuel B also. Profile likelihood and bootstrap based meth-

ods (see Table 2.19) as well as simulation studies (see Table 2.24 and Table 2.25)
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5. Discussion and Conclusion

reassure that Bayesian method perform well in round robin experiments.

The parameters of all models in the fuel economy and round robin experiments

have passed the convergence diagnostic tests. Therefore, we may conclude that

the Bayesian models are fitted well in the fuel economy experiments. The Bayesian

method of analysis has enabled variance component estimation while the traditional

likelihood method fails.

5.3 Polypropylene Experiment

The residual maximum likelihood (REML) and generalized least square (GLS)

method gave misleading conclusions, particularly by providing estimates of vari-

ance components as zero during mixed cumulative logit analysis of data from the

polypropylene experiment due to having insufficient number of whole-plots. Goos

and Gilmour [2012] assumed that a Bayesian analysis considering some weakly in-

formative priors for the variance components would be useful for estimating those

inestimable variance components.

During binary logit analysis using Bayesian methods we faced severe convergence

difficulties while adding some of the interactions in the models. It is not unusual

to encounter convergence problems during binary or categorical data analysis as

indicated by Chipman and Hamada [1996], Collett and Stepniewska [1999], Goos

and Gilmour [2012]. The convergence problems led us to fit Bayesian models for bi-

nary data just by following the models simplified by Goos and Gilmour [2012]. The

Bayesian estimates of mixed binary logit models are similar to those of likelihood-

based estimates. For coating 3 and coating 4 the variance components due to batch

are estimated as 0 whereas their Bayesian counterparts are 1.521 and 17.300.

We did independent search of Bayesian models in cumulative logit analysis of or-

dered categorial responses and followed stepwise manual forward selection method

to select the models and compared them on the basis of deviance information crite-

rion (DIC) values. For coating 1 the selected factors and interactions were the same

both in classical and Bayesian methods. The variance component due to batch was

inestimable in the classical method, however, Bayesian analysis was useful to esti-
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mate the variance component which was 3.619. Similarly the variance components

of coating 4 and coating 5 were 0 which were not realistic. The Bayesian methods

provide these estimates as 53.760 and 2.047 respectively. The variance components

measured in Bayesian methods are positive and are often more inflated than their

classical counterparts. One of the reasons could be the assumed priors for variance

components in Bayesian analysis. However, Gelman [2006] discussed in details how

priors can affect inferences (see Section 3.6.6 and Section 3.8 for more discussion

on variance components).

There were some factors and interactions that were not identified in classical meth-

ods, for example, Power×Time, EPDM×Ethylene, EPDM×Talcum for coating 2;

Talcum, Lubricant, Talcum×Time, Lubricant×Power for coating 3.

The combined analysis of coatings enables us to compare factor effects across dif-

ferent coatings. The combined analysis reassures many of the conclusions drawn in

the separate analysis of coatings and also identifies newly the main effect Lubricant

and interaction effects, for instance, Ethylene×Power, C2×Ethylene, C2×EPDM,

C2×Time, C4×Time found to be important. The main benefit of doing the com-

bined analysis is to enable experimenters to examine whether the factor effects differ

from coating to coating. As some of the interactions e.g. C2×EPDM, C3×Power,

C3×Time, C4×Ethylene are found to be non-negligible, these imply that effects of

EPDM, Power, Time and Ethylene vary from coating to coating.

Apparently there was no convergence problem during the Bayesian analysis of cu-

mulative logit models except for coating 4. Perhaps the major reason could be the

response pattern in coating 4 (see Table 3.2). Approximately three quarters of re-

sponses are 0 and the rest of them fall under response categories categories 1-5 and

there is likely to be 0 cell frequencies in the contingency table regarding coating

4. Allison [2008] shows that contingency table with one or more cell frequencies

0 causes convergence problem and ultimately the non-existence of MLEs during

analysis.

All selected models passed the convergence diagnostics in cumulative logit analysis

of individual and combined analysis of coatings. One limitation of the Bayesian

analysis of the polypropylene experiment is that we did not test the proportionality
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assumptions of the coefficient of cumulative logit models though models were fitted

considering the proportionality assumption. However, separate logistic fits could

be compared to see the plausibility of parallelism for the data, though the test of

proportionality was equally difficult during fitting models in the classical methods

because of the complex nature of the models.

5.4 Optimal Design with Separation

When responses are binary, separation causes non-existence of parameter estimates

in logit models specially for data from small samples. To deal with separation

dilemma, the existing methods are deleting the problem variables or adjusting

data and so on, but not in the light of optimal design methods. In this study we

have proposed an optimal design technique to control separation at the design stage.

The newly proposed optimality criteria Ps- and DPs- handles the separation is-

sue well. Though Ps-criterion controls separation well at the design stage, its use

would be limited as Ps- criterion loses its credibility with respect to precision of

the parameter estimates. However, DPs-optimality defined in (4.29) balances both

precision and separation by considering simultaneously Ps- and D-optimality and

introducing a mixing constant in the criterion. The choice of values of mixing

constant (α) tends to 0 implies the emphasis is on the Ps-optimal design i.e. less

separation and tends to 1 implies the emphasis is on the D-optimal design i.e. more

precision of the parameter estimates.

We did local optimization in all cases using R-package optim. Initially we have

written codes for optimizing our criteria, later found that R-package optim pro-

vides better design than ours with respect to separation and precision. The default

method in optim is a derivative-free optimization routine called the Nelder-Mead

simplex algorithm. However, in optim we have used a bound constrained option

‘L-BFGS-B’ that is a limited memory algorithm (see Byrd et al. [1995] for fur-

ther details). We did not implement Nelder-Mead or other algorithms to choose

our probability-based optimal designs as ordered design values obtained by these

algorithms lead high probability of separation.
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D-optimal designs presented in Table 4.9 exactly matches with the results in Atkin-

son et al. [2007] because we know that half of the design values are negative

(-1.5434) and half of the values are positive (1.5434) as established for logistic

models. The probability of separation reduces with the increasing number of sam-

ple points in D-optimal designs. In case of Ps-optimality the design values are

tiny and roughly half of the values are negative and rest of them are positive (see

Table 4.10). In Ps-optimal designs D-efficiency is low. Therefore, we do not recom-

mend experimenters to use Ps-optimal designs as these will provide low precision

of parameter estimates.

DPs-optimal designs are better to handle separation and precision of parameter

estimation. If researchers are satisfied to accept maximum of 5% separation then

number of sample points equal to 9 or more is enough. Both P- and D-efficiencies

reduces with the increasing number of sample points. Actually this happens due to

comparing P-efficiency of D-optimal designs with that of Ps-optimal designs and

D-efficiencies of DPs-optimal designs with that of D-optimal designs. However,

without the picture of probability of separation D- and P-efficiencies are less in-

formative. With the increasing number of support points probability of separation

reduces for all D-, Ps- and DPs-optimal designs (see Figure 4.2).

Nobody knows the true values of model parameters before conducting an experi-

ment. The sensitivity analysis of DPs-criterion shows that β0 has less effect when

α → 1 i.e. in D-optimal designs and β1 has less effect when α → 0 i.e. in Ps-

optimal designs. The robustness of designs has also been assessed through simula-

tion studies which enable comparison of DPs-designs for different values of mixing

constant, different sample sizes, and different values of model parameters. In the

simulated data, percentage of separation occurs as was expected theoretically. It

is evident from simulation studies that gradually complete separation increases

when design moves from Ps-designs towards D-optimal designs (see Tables 4.16,

4.17, 4.18 and 4.19). Locally optimal designs can be affected by parameter mis-

specifications. Therefore, Bayesian version of DPs-criterion has been developed

and thereby, Bayesian designs have been obtained. Simulation studies reveal that

Bayesian designs perform better than non-Bayesian designs by providing less bias,

interquartile range (IQR), median squared error (MdSE), and above all by percent-

age of separation lower than that of non-Bayesian designs (see Tables 4.16, 4.17,
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and 2.21) .

5.5 Conclusions and Future Research

The Bayesian methods implemented in this study are not to show the outright

domination over classical methods. Rather Bayesian methods have been consid-

ered as complementary to classical methods where the latter failed in the analysis

of data from complex designed experiments. The profile likelihood and bootstrap

based confidence intervals ensures that Bayesian estimates are not absurd. Addi-

tional support comes from simulation studies which assessed the quality of point

and interval estimates in Bayesian and classical methods. Therefore, the Bayesian

methods that we applied in fuel efficiency experiments might be applicable in in-

dustrial experiments where there are continuous responses associated with mixed

models and nested models. The analysis of polypropylene experimental data would

be a good example to follow in industrial experiments involving ordered categorical

responses and mixed models. Our formulas for computing probability of separation

can be used before designing any study that has a binary response variable and

concern for separation problem. If there are many sets of equal number design

points then sequential method of computation of probability of separation can be

used. DPs-optimal designs can be used to minimize the probability of separation

together with precise parameter estimation. We suggest researchers to use DPs-

optimal designs with size n ≥ 16 and mixing constant 0.75 ≤ α < 1 if there is a

great concern simultaneously for separation and precision. However, if researchers

have adequate resources and precise parameter estimation is the top priority, he/she

can use D-optimal designs with size n > 16, that will lead probability of separa-

tion less than 5% (see Table 4.9). Nevertheless, if researchers spread the D-optimal

points out a bit, it will not hamper the D-optimality, however, certainly will reduce

the probability of separation. In addition to these, the pseudo Bayesian designs

have appeared to strengthen the probability based optimal designs by making them

more robust to parameter misspecifications.

We did not attempt to test the proportionality assumption of cumulative logit

models. The assumption of proportionality can be tested considering separate

logistic models and priors for each of the parameters. Simulation studies on ordered
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logit analysis under polypropylene experiment will be accomplished in future. The

MLEs existence can be compared under various traditional design criteria namely

D-, A-, G-, E- and so on when responses are binary or categorical. To solve the

problem of separation we have dealt with only one covariate. The research of

probability-based optimal designs can be extended for multiple covariates. Also

research involving separation can be extended for probit models in future, where

DPs-optimal design will be different.
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Appendix

The Appendix contains a sample of WinBUGS and R codes used throughout the

Thesis.

WinBUGS and R Codes in Fuel Economy and

Round Robin Experiments

Testing Contrast: T-B

model{
for (i in 1:6){
y[i]~ dnorm(mu[i],tau)
mu[i]<-base + fueldiff * fuel[i] + v[day[i]]
}
# J is the number of days
for (j in 1:3){
v[j]~dnorm(0, prec)
}

#priors
base~dnorm(38, 0.1)
fueldiff~dnorm(0,0.001)
prec<-(1-R)*tau/R
# weakly informative essentially uniform on (0,1)
R~dbeta(1,1)
tau<-1/sig2
sig2<-sig*sig
sig<-exp(logsig)
logsig~dunif(-20,20)
sigb2<-1/prec
add<-base+fueldiff
diffpct<-100*fueldiff/base
}

Testing Contrast:(T-B)-(B2-B1)

model{
for (i in 1:12 ){
mu[i]<-f[fuel[i]]+v[day[i]]
y[i]~ dnorm(mu[i], tau)
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for (k in 1:4) {
f[k] ~ dnorm(0,.0001)

}
# J is the number of days
for (j in 1:6) {
v[j]~dnorm(0,prec1)

}
#priors
prec1<-(1-R)*tau/R
R~dbeta(1,1)
tau<-1/sig2
sig2<-sig*sig
sig<-exp(logsig)
sigb2<-1/prec1
logsig~dunif(-20,20)

diff1<-f[2]-f[1]
diff2<-f[4]-f[3]
difff<-diff2-diff1
}

Codes for Nested Model

model {
for (i in 1:2){ # i denotes a week
for (j in 1: 2){ # j denotes a fuel

for (k in 1: 3) { # k denotes a day

y[i, j, k] ~ dnorm( mu[i, j, k], tau )
mu[i, j, k]<- mean +omega[i]+phi[i,j] + delta[i, k]
#phi[i,j] means effect due to fuel j in week i.
# delta[i, k] is the random effect due to kth day in week i

}
}

omega[i]~dnorm(0, 0.001)
phi[i, 2]~dnorm(0, 0.001)

}
for (k in 1:3) { delta[1, k]~dnorm(0, prec1)

delta[2, k]~dnorm(0, prec1) }
mean~dnorm(30, 0.001)
prec1<- (1-R)*tau/R
# highly informative with mean of 0.5
#R~dbeta(2.5,2.5)
R~dbeta(1,1) #weakly informative essentially uniform on (0,1)
tau<-1/sig2
sig2<-sig*sig
sig<-exp(logsig)
logsig~dunif(-20,20)
sigb2<-1/prec1
#Constraints:
omega[1]<- 0
phi[1,1]<- 0 #corner-point constraint
phi[2,1]<- 0 #corner-point constraint
}

#Inits:
list(delta=structure(.Data=c(0,0,0,1,1,1), .Dim = c(2, 3)), mean=30, logsig= -1, R=0.5)

#Scripts: Nested Model
display(’log’)
check(’C:/Lutfor/Shell/analysis/Nested_model/model5.odc’)
data(’C:/Lutfor/Shell/analysis/Nested_model/datanm1.txt’)
compile(1)
inits(1, ’C:/Lutfor/Shell/analysis/Nested_model/initial5.odc’)
gen.inits()
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update(1000)
thin.samples(15)
set(mean)
#set(mu)
set(mu[1,1,1])
set(mu[1,1,1])
set(mu[1,1,2])
set(mu[1,2,2])
set(mu[1,2,3] )

set(mu[1,2,3] )
set(mu[2,1,1])
set(mu[2,1,1])
set(mu[2,1,2])
set(mu[2,2,2])
set(mu[2,2,3])

set(mu[2,2,3])
set(omega)
set(tau)
set(phi)
set(sigb2)
set(delta)
set(R)
set(prec1)
dic.set()
beg(1000)
update(30000)
stats(*)
dic.stats()
density(*)
#trace(*)
autoC(*)
history(*)

Codes of Round Robin Analysis for Fuel A

model {
for (i in 1:15) {
mu[i]<-mean + u[lab[i]]
y[i]~ dnorm(mu[i], tau)
}
# J is the number of labs
for (j in 1:10) {
u[ j ]~dnorm(0,tauL)
}
#priors
logsig~dunif(-20,20)
sig<-exp(logsig)
sig2<-sig*sig
tau<-1/sig2
mean~dnorm(-6,0.0001)
# highly informative with mean of 0.5
#R~dbeta(2.5,2.5)
# weakly informative essentially uniform on (0,1)
R~dbeta(1,1)

tauL<-(1-R)*tau/R
sigL2<-1/tauL
sigL<-sqrt(sigL2)
reprodSD<-sqrt(sigL2+sig2)
reprod<-2.8*reprodSD
repeat<-2.8*sig
}
#Inits:
list(u=c(0,0,0,0,0,0,0,0,0,0), mean=20, R=0.5, logsig=-1)
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R Codes for Wald, Profile Likelihood and Bootstrap based
Confidence Intervals for Fuel A

library(MASS)
library(nlme) # will be loaded automatically if omitted
library(lme4)
data2<-read.table("data_T_B.txt",header=T)
data2=data.frame(data2)
data2
outputfuel<- glmer(y ~ fuel +(1 | day), data = data2, family=gaussian,REML=FALSE)
outputfuel
summary(outputfuel)
confint(outputfuel,method="profile")
confint(outputfuel,method="Wald")
confint(outputfuel,method="boot",nsim=500,oldNames=FALSE)

R Codes for Simulation Studies in Likelihood based Method
for Fuel A

NS=2000
nc1=3
CEsti=matrix(NA,nrow=NS,ncol=nc1)
CBias=matrix(NA,nrow=NS,ncol=nc1)
CBiasSq=matrix(NA,nrow=NS,ncol=nc1)
L=matrix(NA,nrow=NS,ncol=nc1)
U=matrix(NA,nrow=NS,ncol=nc1)
W=matrix(NA,nrow=NS,ncol=nc1)
CTF=matrix(NA,nrow=NS,ncol=nc1)
alpha=32
beta2=1.4
sigSq=0.05 #error variance
sigma=sqrt(sigSq) #error sd
sigSqB=0.05 #variance component due to random effect day
sigB=sqrt(sigSqB) #variance component due to random effect day in terms of sd
TP=c(alpha, beta2, sigSqB) #True parameters
nday=3 #number of days
day=rep(1:nday,each=2)
#creating data corresponding to fuel
fuel<-c(rep(0,nday),rep(1,nday)) #0 means B and 1 means T
stop.iter1<-0
stop.iter2<-0
for (s in 1:NS)
{
#creating random effects due to day
#set.seed(234+30*i)
del<-rnorm(nday,0,sigB)
delta<-rep(del,each=2)
delta
#assuming effect of treatment (fuel)
beta=c(rep(0,nday),rep(beta2,nday)) # 0 if for B and beta2 is for T
mu=alpha+beta+delta
y<-NULL #this should be kept out of the loop

for(k in 1:length(day)) {
y[k]<- rnorm(1,mu[k],sigma) #generating single random number from normal distribution with

#mean mu[k] and variance 0.05
}

data1=cbind(y,day,fuel)
data2=data.frame(data1) #making data frame for anlaysis in R

library(nlme)
simuTB.lme2=tryCatch(lme(y~fuel, random= ~1 | day,data=data2),error=function(e) e)
if(!inherits(simuTB.lme2,"error")) {
simuTB.lme3<-summary(simuTB.lme2)
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#Finding intervals inclding the estimates
hh=tryCatch(intervals(simuTB.lme3),error=function(e) e)
if(!inherits(hh,"error")) {
#Extracting fixed effecst from linear mixed model.
fixef=hh[[1]]
#Extracting random effect from linear mixed model.
ranef1=hh[[2]]$day
ranef=ranef1^2 #converting random effect estimate sd to variance
#Fixed and random effects with intervals
fixran=rbind(fixef, ranef)
fixran=as.matrix(fixran)
PEst=fixran[,2] #parameter estimates
CEsti[s,]=PEst #parameter estimates in ith simulation
LB=fixran[,1] #lower bound of estimates (from 95%intervals)
UP=fixran[,3] #upper bound of estimates (from 95%intervals)
L[s,]=LB #lower bound of estimates in ith simulation (from 95%intervals)
U[s,]=UP #upper bound of estimates in ith simulation (from 95%intervals)
B=PEst-TP #Bias of the estimates
CBias[s,]=B #Bias of the estimates in the ith simulations
CBiasSq[s,]=B^2 #Bias square of the estimates in the ith

#simulations to be used in MSE calculations
W[s,]=UP-LB #width in sth simulation
D=(TP>=LB & TP<=UP) #Determination of true false for coverage prob. calcluation
CTF[s,]=D #True false matrix for coverage prob. calcluation in ith simulation
} else{stop.iter1<-stop.iter1+1}
} else{stop.iter2<-stop.iter2+1}
}
#CEsti
CEstimates=apply(CEsti, 2, mean,na.rm=TRUE)
CEstimates
CEstSD=apply(CEsti,2,sd,na.rm=TRUE)
#CBias
CBiasEst=apply(CBias, 2, mean,na.rm=TRUE)
CBiasEst
CRelBias=(CBiasEst/TP)*100 #Relative bias in percetage
CRelBias
#CBiasSq
CMSE=apply(CBiasSq, 2, mean,na.rm=TRUE)
CMSE
CRMSE=sqrt(CMSE)
CRMSE
CL=apply(L, 2, mean,na.rm=TRUE) #mean of lower bounds in 95% CI
CU=apply(U, 2, mean,na.rm=TRUE) #mean of upper bounds in 95% CI
#***** Median based estimates ***************
CMdEst=apply(CEsti, 2, median,na.rm=TRUE)
CMdBias=apply(CBias, 2, median,na.rm=TRUE)
CMdSE=apply(CBiasSq, 2, median,na.rm=TRUE)
CRMdSE=sqrt(CMdSE)
CMdRelBias=(CMdBias/TP)*100
CMeanWidth=apply(W, 2, mean,na.rm=TRUE) #mean of width of 95% CI
CMdWidth=apply(W, 2, median,na.rm=TRUE) #median of width of 95% CI
CCP=apply(CTF, 2, mean,na.rm=TRUE) #coverage prob.
CMinEst=apply(CEsti, 2, min,na.rm=TRUE)
CMaxEst=apply(CEsti, 2, max,na.rm=TRUE)
CWidthEst=CMaxEst-CMinEst
library(xtable)
Cblank=rep(0,times=length(CMdEst))
CEstMatrix=cbind(CBiasEst,CRelBias,CRMSE,Cblank,CMdBias,CMdRelBias,CRMdSE,CCP,
CMeanWidth,CMdWidth)
library(xtable)
xtable(CEstMatrix,digit=c(1,3,2,3, 1, 3,2,3, 3,3,3))
stopping_rate1=stop.iter1/NS
stopping_rate1
stopping_rate2=stop.iter2/NS
stopping_rate2
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R Codes for Simulation Studies in Bayesian Method for Fuel
A

NS=2000
nc2=3
#***Bayesian initial matrices
BEst=matrix(0,nrow=NS,ncol=nc2)
BBias=matrix(0,nrow=NS,ncol=nc2)
BBiasSq=matrix(0,nrow=NS,ncol=nc2)
BTF=matrix(0,nrow=NS,ncol=nc2)
BEst2.5P=matrix(0,nrow=NS,ncol=nc2)
BEst97.5P=matrix(0,nrow=NS,ncol=nc2)
BMedEst=matrix(0,nrow=NS,ncol=nc2)
BMedBias=matrix(0,nrow=NS,ncol=nc2)
BMedBiasSq=matrix(0,nrow=NS,ncol=nc2)
varcomp=0.05
varcompsd=sqrt(varcomp)
for (s in 1:NS)
{
day=rep(1:3,each=2)
#creating data corresponding to fuel
fuel<-c(rep(0,3),rep(1,3)) #0 means B and 1 means T
#creating random effects due to day
#set.seed(234+30*i)
del<-rnorm(3,0,varcompsd)
delta<-rep(del,each=2)
#assuming effect of treatment (fuel)
#fuel effect due to B is 0 and effect due to T is 1.5
beta=c(rep(0,3),rep(1.4,3)) # 0 if for B and 1.5 is for T
#***estimated reponse/generating normal response
alpha=32
mu=alpha+beta+delta
y<-NULL #this should be kept out of the loop
for(k in 1:length(day)) {
y[k]<- rnorm(1,mu[k],varcompsd) #generating single random number from

normal distribution with
#mean mu[k] and variance 0.05

}
data1=cbind(y,day,fuel)
data2=data.frame(data1) #making data frame for anlaysis in R

#***********************Bayesian programme*******************
library(R2WinBUGS)
# Using the following cat(" ....model here....", file=".......")
#command we can include model in the R directory.
data2=data.frame(data1) #making data frame for anlaysis in R
y <- data2$y
day <- data2$day
fuel<- data2$fuel
data <- list ("y" , "day", "fuel")
cat("
model{
for (i in 1:6)
{
y[i]~ dnorm(mu[i],tau)
mu[i]<-base + fueldiff * fuel[i] + v[day[i]]
}
# J is the number of days
for (j in 1:3) {
v[j]~dnorm(0, prec)
}
#priors
base~dnorm(38, 0.1)
fueldiff~dnorm(0,0.001)
prec<-(1-R)*tau/R
# weakly informative essentially uniform on (0,1)
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R~dbeta(1,1)
tau<-1/sig2
sig2<-sig*sig
sig<-exp(logsig)
logsig~dunif(-20,20)
vcomday<- 1/prec
#vcSdBayes<-sqrt(vcomday)
}", file="ex5.bug")
###initial values for the chain:
inits <- list(base=38, fueldiff=0.1, R=0.5, logsig=-1)
#parameters = c("base", "fueldiff", "tau", "prec1", "vcomday", "vcSdBayes")
parameters = c("base", "fueldiff", "vcomday")
### To start the MCMC we have to write the following commands:
fuel.sim2 <- bugs(data, inits, parameters, model="ex5.bug",
n.chains = 4, n.iter = 5000, n.burnin=2000, n.thin=15,
bugs.directory = "C:/WinBUGS14/")
#See further commands to obtain some required output.
BO<- print(fuel.sim2) #Bayesian output (BO)
#to separte estimates from the above
BOMatrix1=BO[10]$summary
BOMatrix2=as.matrix(BOMatrix1)
BOMatrix=BOMatrix2[-4,]
BEstim1=BOMatrix[,1]
BEst[s,]=BEstim1
BE2.5P=BOMatrix[,3]
BEst2.5P[s,]=BE2.5P
BE97.5P=BOMatrix[,7]
BEst97.5P[s,]=BE97.5P
TP=c(alpha,1.4,varcomp)
TF1=(TP>=BE2.5P & TP<=BE97.5P)
BTF[s,]=TF1
BB=BEstim1-TP
BBSq1=BB^2
BBias[s,]=BB
BBiasSq[s,]=BBSq1
BMedEst1=BOMatrix[,5]
BMedEst[s,]=BMedEst1
BBMed=BMedEst1-TP
BBMedSq1=BBMed^2
BMedBias[s,]=BBMed
BMedBiasSq[s,]=BBMedSq1
}
BEstimates=apply(BEst, 2, mean)
BBiasEst=apply(BBias, 2, mean)
RelBBias=(BBiasEst/TP)*100 #Relative Bayes bias in percetage
BMSE=apply(BBiasSq, 2, mean)
BRMSE=sqrt(BMSE)
BCP=apply(BTF, 2, mean) #Bayesian est coverage prob.
BMinEst=apply(BEst, 2, min)
BMaxEst=apply(BEst, 2, max)
BWidthEst=BMaxEst-BMinEst
BWidthEst
BwidthCI=BEst97.5P-BEst2.5P
BAvewidthCI=apply(BwidthCI, 2, mean)
BMedwidthCI=apply(BwidthCI, 2, median)
#*******Median based estiamtes********
BMedEstimates=apply(BMedEst, 2, mean)
BMedBiasEst=apply(BMedBias, 2, mean)
RelBMedBias=(BMedBiasEst/TP)*100 #Relative Bayes Median bias in percetage
BMdMSE=apply(BMedBiasSq, 2, mean)
BMdRMSE=sqrt(BMdMSE)
#*******Final estiamtes in matrix ********
BEstMatrix1=cbind(BEstimates,BBiasEst,RelBBias,BMSE, BRMSE,BCP,BAvewidthCI,
BWidthEst)
BEstMatrix2=cbind(BBiasEst,RelBBias,BRMSE,BCP,BAvewidthCI)
BEstMatrix3=cbind(BMedEstimates,BMedBiasEst,RelBMedBias,BMdMSE, BMdRMSE,BCP,
BAvewidthCI, BWidthEst)
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BEstMatrix4=cbind(BMedBiasEst,RelBMedBias, BMdRMSE,BCP,BAvewidthCI)
library(xtable)
Bblank=rep(0,times=length(BMedBiasEst))
BEstMatrix5=cbind(BBiasEst,RelBBias,BRMSE, Bblank, BMedBiasEst,RelBMedBias,
BMdRMSE, BCP,BAvewidthCI,BMedwidthCI)
xtable(BEstMatrix5,digit=c(1,3,2,3, 1, 3,2,3, 3,3,3))

R Codes for Simulation Studies in Bayesian Method for
Round Robin Experiments

NS=2000
nc1=5
#***Bayesian initial matrices
BMeanEst=matrix(0,nrow=NS,ncol=nc1)
BiasEst=matrix(0,nrow=NS,ncol=nc1)
BiasSq=matrix(0,nrow=NS,ncol=nc1)
BMedEst=matrix(0,nrow=NS,ncol=nc1)
BSd=matrix(0,nrow=NS,ncol=nc1)
BMedBias=matrix(0,nrow=NS,ncol=nc1)
BMedBiasSq=matrix(0,nrow=NS,ncol=nc1)
BEst2.5P=matrix(0,nrow=NS,ncol=nc1)
BEst97.5P=matrix(0,nrow=NS,ncol=nc1)
BTF=matrix(0,nrow=NS,ncol=nc1)
BRhat=matrix(0,nrow=NS,ncol=nc1)
for (s in 1:NS){
lb=20 #number of labs
alpha=22
sigmaSq=16
sigma=sqrt(sigmaSq)
sigmaSqL=5
sigmaL=sqrt(sigmaSqL)
reprodSD<-sqrt(sigmaSq+sigmaSqL)
reprod<-2.8*reprodSD
repeat1<-2.8*sigma
TP=c(alpha,sigmaSq,sigmaSqL,repeat1,reprod) #true parameters
lab=rep(1:lb,each=2) #number of observations in labs
#creating random effects due to day
#set.seed(234)
rel<-rnorm(lb,0,sigmaL) #lb random effects for lb number of labs
relwrep<-rep(rel,each=2) #lb random effects for lb number of labs with 2 repeats
#***estimated reponse/generating normal response
rows=length(relwrep)
mu=alpha+relwrep
y<-NULL #this should be kept out of the loop
for(k in 1:rows) {
y[k]<- rnorm(1,mu[k],sigma) #generating single random number from

normal distribution with
#mean mu[k] and sd 0.05

}
data1=cbind(y,lab)
library(R2WinBUGS)
data2=data.frame(data1) #making data frame for anlaysis in R
y <- data2$y
lab <- data2$lab
data <- list ("y", "lab")
cat("
model { for (i in 1:40)
{
mu[i]<-mean + u[lab[i]]
y[i]~ dnorm(mu[i], tau)}
# J is the number of labs
for (j in 1:20) {
u[ j ]~dnorm(0,tauL)}
#priors
logsig~dunif(-20,20)
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sig<-exp(logsig)
sig2<-sig*sig
tau<-1/sig2
mean~dnorm(20,0.001)
R~dbeta(1.5,1.5)
tauL<-(1-R)*tau/R
sigL2<-1/tauL
sigL<-sqrt(sigL2)
reprodSD<-sqrt(sigL2+sig2)
reprod<-2.8*reprodSD
repeat<-2.8*sig
}", file="exRR.bug")
###initial values for the chain:
inits <- list(u=rep(0,lb), mean=20, R=0.5, logsig=-1)
parameters = c("mean", "sig2", "sigL2", "repeat", "reprod")
### To start the MCMC we have to write the following commands:
fuel.simRR <- bugs(data, inits, parameters, model="exRR.bug",
n.chains = 4, n.iter = 5000, n.burnin=2000, n.thin=10, bugs=TRUE,
bugs.directory = "C:/WinBUGS14/")

#See further commands to obtain some required output.
RRB<- print(fuel.simRR) #Bayesian output of Round Robin (RRB)
#to separte individual estimates from the above
RRBM1=RRB$summary #summary in matrix form
RRBM2=RRBM1[-6,] #deleting deviance
#RRBM3=RRBM1[c(-4,-5,-6),] #keeping the parameters that will be
assessed for bias and others
#Round robin robustness assessment:
RRBM=as.matrix(RRBM2)
BMeanEst1=RRBM[,1]
BMeanEst[s,]=BMeanEst1
BSdev=RRBM[,2]
BSd[s,]=BSdev
BE2.5P=RRBM[,3]
BEst2.5P[s,]=BE2.5P
BE97.5P=RRBM[,7]
BEst97.5P[s,]=BE97.5P
BRhat1=RRBM[,8]
BRhat[s,]=BRhat1
BB=BMeanEst1-TP
BBSq=BB^2
BiasEst[s,]=BB
BiasSq[s,]=BBSq
#median based
BMdEstim1=RRBM[,5]
BMedEst[s,]=BMdEstim1
BMdBias=BMdEstim1-TP
BMdBiasSq1=BMdBias^2
BMedBias[s,]=BMdBias
BMedBiasSq[s,]=BMdBiasSq1
TF1=(TP>=BE2.5P & TP<=BE97.5P)
BTF[s,]=TF1
}
#mean based estiamtes:
BMeanEst
BMeanEstimates=apply(BMeanEst,2,mean)
BSd
BSdEst=apply(BSd,2,mean)
BiasEst
BBiasEst=apply(BiasEst,2,mean)
RelBias=(BBiasEst/TP)*100
BiasSq
BMSE=apply(BiasSq,2,mean)
BRMSE=sqrt(BMSE)
#median based estimates
RRBMedEstimates=apply(BMedEst, 2, mean) #in futuer median instead of

mean can be considered
BMedBias
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BMedBiasEst=apply(BMedBias, 2, mean)
RelBMedBias=(BMedBiasEst/TP)*100 #Relative Bayes bias in percetage
BMedSE=apply(BMedBiasSq, 2, mean)
BRMedSE=sqrt(BMedSE)
BCP=apply(BTF, 2, mean) #Bayesian est coverage prob.
BWidth95CI=BEst97.5P-BEst2.5P
BAveWidth95CI=apply(BWidth95CI, 2, mean)
BMedwidthCI=apply(BWidth95CI, 2, median)
BMinMeanEst=apply(BMeanEst, 2, min)
BMaxMeanEst=apply(BMeanEst, 2, max)
BWidthMeanEst=BMaxMeanEst-BMinMeanEst
BWidthMeanEst #range of the mean estimates
BMinMdEst=apply(BMedEst, 2, min)
BMaxMdEst=apply(BMedEst, 2, max)
BWidthMdEst=BMaxMdEst-BMinMdEst
BWidthMdEst #range of the median estimates
BRhatEst=apply(BRhat, 2, mean)
RRBMeanEstMatrix1=cbind(BMeanEstimates,BSdEst,BBiasEst,RelBias, BMSE,
BRMSE,BCP,BAveWidth95CI, BWidthMeanEst,BRhatEst)
RRBMeanEstMatrix2=cbind(BBiasEst,RelBias, BRMSE,BCP,BAveWidth95CI,BRhatEst)
RRBMdEstMatrix3=cbind(RRBMedEstimates,BMedBiasEst,RelBMedBias,BMedSE, BRMedSE,
BCP,BMedwidthCI, BWidthMdEst,BRhatEst)
RRBMdEstMatrix4=cbind(BMedBiasEst,RelBMedBias, BRMedSE,BCP,BAveWidth95CI, BRhatEst)
library(xtable)
xtable(RRBMeanEstMatrix1,digit = c(1,3,3,3, 3,3,3, 3,3,3))
Bblank=rep(0,times=length(BMedBiasEst))
BEstMatrix5=cbind(BBiasEst,RelBias, BRMSE, Bblank, BMedBiasEst,RelBMedBias,
BRMedSE, BCP,BAveWidth95CI,BMedwidthCI)
xtable(BEstMatrix5,digit=c(1,3,2,3, 1, 3,2,3, 3,3,3))

WinBUGS Codes for Mixed Binary Logit Analysis
of Coating 2

.

model {
for(i in 1:300) {
y[i] ~dbern(p[i])

logit(p[i]) <- b0 + b1*epdm[i] + b2*ethln[i] + b3*talcum[i]+b4*mica[i]
+ b5 * power[i]+ b6 * time[i]+ b7*gastype[i]+ b8*actgas[i]
+ b9 * power[i]*actgas[i] + u[run[i]] + v[batch[i]]
}

# M groups of runs
for (j in 1:100) {

u[j] ~dnorm(0, tau1)
}

# L is the number of batches
for (k in 1:20) {
v[k] ~dnorm(0, tau2)

}
b0 ~ dnorm(0, .01)
b1 ~ dnorm(0, .01)
b2 ~ dnorm(0, .01)
b3 ~ dnorm(0, .01)
b4 ~ dnorm(0, .01)
b5 ~ dnorm(0, .01)
b6 ~ dnorm(0, .01)
b7 ~ dnorm(0, .01)
b8 ~ dnorm(0, .01)
b9 ~ dnorm(0, .01)

tau1~dgamma(1,1)
rho~dbeta(5, 5)
tau2<- (1-rho)* (tau1)/(rho)
sigsq1 <- 1 / (tau1)
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sigsq2 <- 1 /(tau2)
}

WinBUGS Codes for Mixed Cumulative Logit Anal-
ysis of Coating 2

model {
for (i in 1:300) {
for (k in 1:6) {
y[i, k]<- equals(astm[i], k) } }
for (i in 1:300) {
y[i, 1:6] ~dmulti(p[i, 1:6], 1)
p[i, 1]<- 1- q[i, 1]
p[i, 2]<- q[i, 1] - q[i, 2]
p[i, 3]<- q[i, 2] - q[i, 3]
p[i, 4]<- q[i, 3] - q[i, 4]
p[i, 5]<- q[i, 4] - q[i, 5]
p[i, 6]<- q[i, 5]
logit(q[i,1])<- (a1 + b[1] * epdm[i] + b[2] * ethln[i] + b[3] * talcum[i] + b[4] * mica[i]

+ b[5]* power[i] + b[6]* time[i] + b[7] * gastype[i] + b[8] * actgas[i]
+ b[9]* epdm[i]*ethln[i]+ b[10]*epdm[i]*talcum[i] + b[11]*power[i]*gastype[i]
+ b[12]*power[i]*actgas[i]+ b[13]*power[i]*time[i] + b[14]* ethln[i]*power[i]+
b[15]* mica[i]*actgas[i] + u[run[i]] + v[batch[i]] )

logit(q[i,2])<- (a2 + b[1] * epdm[i] + b[2] * ethln[i] + b[3] * talcum[i] + b[4] * mica[i]
+ b[5]* power[i] + b[6]* time[i] + b[7] * gastype[i] + b[8] * actgas[i]
+ b[9]* epdm[i]*ethln[i]+ b[10]*epdm[i]*talcum[i] + b[11]*power[i]*gastype[i]
+ b[12]*power[i]*actgas[i]+ b[13]*power[i]*time[i] + b[14]* ethln[i]*power[i]
+ b[15]* mica[i]*actgas[i] + u[run[i]] + v[batch[i]] )

logit(q[i,3])<- (a3 + b[1] * epdm[i] + b[2] * ethln[i] + b[3] * talcum[i] + b[4] * mica[i]
+ b[5]* power[i] + b[6]* time[i] + b[7] * gastype[i] + b[8] * actgas[i]
+ b[9]* epdm[i]*ethln[i]+ b[10]*epdm[i]*talcum[i] + b[11]*power[i]*gastype[i]
+ b[12]*power[i]*actgas[i]+ b[13]*power[i]*time[i] + b[14]* ethln[i]*power[i]
+ b[15]* mica[i]*actgas[i] + u[run[i]] + v[batch[i]] )

logit(q[i,4])<- (a4 + b[1] * epdm[i] + b[2] * ethln[i] + b[3] * talcum[i] + b[4] * mica[i]
+ b[5]* power[i] + b[6]* time[i] + b[7] * gastype[i] + b[8] * actgas[i]
+ b[9]* epdm[i]*ethln[i]+ b[10]*epdm[i]*talcum[i] + b[11]*power[i]*gastype[i]
+ b[12]*power[i]*actgas[i]+ b[13]*power[i]*time[i] + b[14]* ethln[i]*power[i]
+ b[15]* mica[i]*actgas[i] + u[run[i]] + v[batch[i]] )

logit(q[i,5])<- (a5 + b[1] * epdm[i] + b[2] * ethln[i] + b[3] * talcum[i] + b[4] * mica[i]
+ b[5]* power[i] + b[6]* time[i] + b[7] * gastype[i] + b[8] * actgas[i]
+ b[9]* epdm[i]*ethln[i]+ b[10]*epdm[i]*talcum[i] + b[11]*power[i]*gastype[i]
+ b[12]*power[i]*actgas[i]+ b[13]*power[i]*time[i] + b[14]* ethln[i]*power[i]
+ b[15]* mica[i]*actgas[i] + u[run[i]] + v[batch[i]] )

}

# M groups of runs
for (j in 1:100) {

u[j] ~dnorm(0, tau1)
}

# L is the number of batches
for (k in 1:20) {

v[k] ~dnorm(0, tau2)
}

a1 ~ dnorm(0, 1.0E-04)I(a2, )
a2 ~ dnorm(0, 1.0E-04)I(a3, a1)
a3 ~ dnorm(0, 1.0E-04)I(a4, a2)
a4 ~ dnorm(0, 1.0E-04)I(a5, a3)
a5 ~ dnorm(0, 1.0E-04)I( , a4)

for(m in 1:15) {
b[m] ~ dnorm(0, 1.0E-04)
}
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tau1~dgamma(1,1)
rho~dbeta(5, 5)
tau2<- (1-rho)* (tau1)/(rho)
sigsq1 <- 1 / (tau1)
sigsq2 <- 1 /(tau2)

}
#Initial values:
list(a1=0.05, a2 = 0.04, a3 = 0.03, a4 = 0.02, a5 = 0, b=c(0,0,0, 0,0,0,

0,0,0, 0,0,0, 0,0,0))

R Codes to Compute Complete Separation

function (x1, x2, x3, x4, x5, x6)
{

y <- c(0, 0, 0, 1, 1, 1)
x <- c(x1, x2, x3, x4, x5, x6)
yx <- cbind(y, x)
pf1 <- 1/(1 + exp(x1))
ps1 <- 1 - pf1
pf2 <- 1/(1 + exp(x2))
ps2 <- 1 - pf2
pf3 <- 1/(1 + exp(x3))
ps3 <- 1 - pf3
pf4 <- 1/(1 + exp(x4))
ps4 <- 1 - pf4
pf5 <- 1/(1 + exp(x5))
ps5 <- 1 - pf5
pf6 <- 1/(1 + exp(x6))
ps6 <- 1 - pf6
PCSP <- (pf1 * pf2 * pf3 * ps4 * ps5 * ps6 + ps1 * ps2 *

ps3 * pf4 * pf5 * pf6)
pf <- c(pf1, pf2, pf3, pf4, pf5, pf6)
ps <- c(ps1, ps2, ps3, ps4, ps5, ps6)
print(yx)
print(pf)
print(ps)
print(PCSP)

}

R Codes to Compute Quasi-complete Separation

function (x1, x2, x3, x4, x5, x6)
{

y <- c(0, 0, 0, 1, 1, 1)
x <- c(x1, x2, x3, x4, x5, x6)
yx <- cbind(y, x)
pf1 <- 1/(1 + exp(x1))
ps1 <- 1 - pf1
pf2 <- 1/(1 + exp(x2))
ps2 <- 1 - pf2
pf3 <- 1/(1 + exp(x3))
ps3 <- 1 - pf3
pf4 <- 1/(1 + exp(x4))
ps4 <- 1 - pf4
pf5 <- 1/(1 + exp(x5))
ps5 <- 1 - pf5
pf6 <- 1/(1 + exp(x6))
ps6 <- 1 - pf6
PCSP <- (pf1 * pf2 * pf3 * ps4 * ps5 * ps6 + pf1 * pf2 *

ps3 * pf4 * ps5 * ps6 + ps1 * ps2 * pf3 * ps4 * pf5 *
pf6 + ps1 * ps2 * ps3 * pf4 * pf5 * pf6)

pf <- c(pf1, pf2, pf3, pf4, pf5, pf6)
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ps <- c(ps1, ps2, ps3, ps4, ps5, ps6)
print(yx)
print(pf)
print(ps)
print(PCSP)

}

R Codes for Computation of DPs-optimality when
mixing constant α=0.50

> psdc.alpha
function(g, alpha){
##Programme # 70 #####
s <- NULL; f<- NULL; x<-NULL; d<-NULL; w<-NULL; pcs<- NULL
n<- length(g)
#alpha<- 0.75
x[1] <- g[1]
for(k in 1:(n-1)) {

x[k+1]<- x[k]+g[k+1]
}

for(i in 1:n) {
s[i]<- 1/(1+exp(-x[i]))
f[i]<- 1- s[i] }

#to see the results:
#print(s)
#print(f)
#Cumulative product of s
cps<-cumprod(s)
#Cumulative product of f
cpf<-cumprod(f)
#To see the results:
#print(cps)
#print(cpf)
for(k in 1:(n-1)) {

pcs[k]<- (cpf[k]*(cps[n]/cps[k]) + cps[k]*(cpf[n]/cpf[k]))
}

#to see the results:
#print(pcs)
#prob of separation:
ps<- cps[n]+sum(pcs)+cpf[n]
#to see the results:
#print(ps)
#***************************
##Finding D-optimal design with ordered x values.
#to see the results:
#print(s)
#print(f)
x11<-rep(1, n)
x12<-x
X<-cbind(x11,x12)
for(t in 1:n){

w[t]<-(1/n)
}

wp<-w*s*f
W<-diag(wp)
Xt<-t(X)
INF<-Xt %*% W %*% X
DINF<-det(INF)
DCO<-(1/DINF)^(alpha/2) # this 2 is for no. of parameters
PSO<-(ps)^(1-alpha)
#Combined criterion
DCPS<-(PSO)*(DCO)
DCPS
}
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#*******************************
#When alpha=0.5
#*******************************
#**Example1
t<-optim(c(-0.1,0.001), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 1)), alpha=0.5)
t1<-rv(t$par)
ps1<-ps(t1)
dc1<-DC1(t1)
r1<-c(t1, rep(0,(20-length(t1)))) #20 is the highest length of largest design
#**Example2
t<-optim(c(-0.1,rep(0.001, 2)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 2)), alpha=0.5)
t2<-rv(t$par)
ps2<-ps(t2)
dc2<-DC1(t2)
r2<-c(t2, rep(0,(20-length(t2))))

#**Example3
t<-optim(c(-0.1,rep(0.001, 3)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 3)), alpha=0.5)
t3<-rv(t$par)
ps3<-ps(t3)
dc3<-DC1(t3)
r3<-c(t3, rep(0,(20-length(t3))))

#**Example4
t<-optim(c(-0.1,rep(0.001, 4)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 4)), alpha=0.5)
t4<-rv(t$par)
ps4<-ps(t4)
dc4<-DC1(t4)
r4<-c(t4, rep(0,(20-length(t4))))
#**Example5
t<-optim(c(-0.1,rep(0.001, 5)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 5)), alpha=0.5)
t5<-rv(t$par)
ps5<-ps(t5)
dc5<-DC1(t5)
r5<-c(t5, rep(0,(20-length(t5))))

#**Example6
t<-optim(c(-0.1,rep(0.001, 6)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 6)), alpha=0.5)
t6<-rv(t$par)
ps6<-ps(t6)
dc6<-DC1(t6)
r6<-c(t6, rep(0,(20-length(t6))))

#**Example7
t<-optim(c(-0.1,rep(0.001, 7)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 7)), alpha=0.5)
t7<-rv(t$par)
ps7<-ps(t7)
dc7<-DC1(t7)
r7<-c(t7, rep(0,(20-length(t7))))

#**Example8
t<-optim(c(-0.1,rep(0.001, 8)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 8)), alpha=0.5)
t8<-rv(t$par)
ps8<-ps(t8)
dc8<-DC1(t8)
r8<-c(t8, rep(0,(20-length(t8))))

#**Example9
t<-optim(c(-0.1, rep(0.001, 9)), psdc.alpha, NULL, method="L-BFGS-B",
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lower=c(-20,rep(0.0001, 9)), alpha=0.5)
t9<-rv(t$par)
ps9<-ps(t9)
dc9<-DC1(t9)
r9<-c(t9, rep(0,(20-length(t9))))

#**Example10
t<-optim(c(-0.1,rep(0.001, 10)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 10)), alpha=0.5)
t10<-rv(t$par)
ps10<-ps(t10)
dc10<-DC1(t10)
r10<-c(t10, rep(0,(20-length(t10))))

#**Example11
t<-optim(c(-0.1,rep(0.001, 11)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 11)), alpha=0.5)
t11<-rv(t$par)
ps11<-ps(t11)
dc11<-DC1(t11)
r11<-c(t11, rep(0,(20-length(t11))))

#**Example12
t<-optim(c(-0.1,rep(0.001, 12)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 12)), alpha=0.5)
t12<-rv(t$par)
ps12<-ps(t12)
dc12<-DC1(t12)
r12<-c(t12, rep(0,(20-length(t12))))

#**Example13
t<-optim(c(-0.1,rep(0.001, 13)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 13)), alpha=0.5)
t13<-rv(t$par)
ps13<-ps(t13)
dc13<-DC1(t13)
r13<-c(t13, rep(0,(20-length(t13))))

#**Example14
t<-optim(c(-0.1, rep(0.001, 14)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 14)), alpha=0.5)
t14<-rv(t$par)
ps14<-ps(t14)
dc14<-DC1(t14)
r14<-c(t14, rep(0,(20-length(t14))))

#**Example15
t<-optim(c(-0.1, rep(0.001, 15)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 15)), alpha=0.5)
t15<-rv(t$par)
ps15<-ps(t15)
dc15<-DC1(t15)
r15<-c(t15, rep(0,(20-length(t15))))

#**Example 16
t<-optim(c(-0.1, rep(0.001, 16)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 16)), alpha=0.5)
t16<-rv(t$par)
ps16<-ps(t16)
dc16<-DC1(t16)
r16<-c(t16, rep(0,(20-length(t16))))

#**Example 17
t<-optim(c(-0.1, rep(0.001, 17)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 17)), alpha=0.5)
t17<-rv(t$par)
ps17<-ps(t17)
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dc17<-DC1(t17)
r17<-c(t17, rep(0,(20-length(t17))))

#**Example 18
t<-optim(c(-0.1, rep(0.001, 18)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 18)), alpha=0.5)
t18<-rv(t$par)
ps18<-ps(t18)
dc18<-DC1(t18)
r18<-c(t18, rep(0,(20-length(t18))))

#**Example 19
t<-optim(c(-0.1, rep(0.001, 19)), psdc.alpha, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 19)), alpha=0.5)
t19<-rv(t$par)
ps19<-ps(t19)
dc19<-DC1(t19)
r19<-c(t19, rep(0,(20-length(t19))))
size<-seq(2,20,1)
MDPs<-rbind(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19)
MDPs
psepDPs<-c(ps1,ps2,ps3,ps4,ps5,ps6,ps7,ps8,ps9,ps10,ps11,ps12,ps13,
ps14,ps15,ps16,ps17,ps18,ps19)
ps1DPs<-round(psepDPs,digits=4)
prsepDPs<-ps1DPs #This will be used to draw line graph
dcDPs<-c(dc1,dc2,dc3,dc4,dc5,dc6,dc7,dc8,dc9,dc10,dc11,dc12,dc13,dc14,
dc15,dc16,dc17,dc18,dc19)
dc1DPs<-format(dcDPs,digits=4,scientific=TRUE)
detinfoDPs<-1/dcDPs
detinfoDPs
dc1DPs0.5<-dcDPs
detinfoDPs0.5<-detinfoDPs

R Codes for Simulation Studies of non-Bayesian Designs

optsep3=function(NS,n,alpha,beta0,beta1){
OEsti=matrix(0,nrow=NS,ncol=2) #original estimates
Bias=matrix(0,nrow=NS,ncol=2)
BiasSq=matrix(0,nrow=NS,ncol=2)
sep=rep(0,times=NS)
CS=rep(0,times=NS)
resmatrix=matrix(0,nrow=NS,ncol=n)
t<-optim(c(-0.1, rep(0.001, (n-1))), psdc.beta, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, (n-1))), alpha, beta0,

beta1)
beta<-c(beta0,beta1) #coefficients
intercept=rep(1,n)
z=cbind(intercept,x1)
pred<- z%*%beta #Multiplication of a matrix with a column vector
p<- 1/(1+exp(-pred)) #calculation prob in logistic regression
for(s in 1:NS){
y=NULL
for(k in 1:n) {
y[k]<- rbinom(1,1,p[k])

}
resmatrix[s,]=y
CS1=rep(0,times=n)
for(k in 1:n){
if(sum(y[1:k])==n) {CS1[k]=1}
else if(sum(y[1:n])==0) {CS1[k]=1}
else if(sum(y[1:k])==0 & sum(y[(k+1):n])==(n-k)){CS1[k]=1}
else if(sum(y[1:k])==k & sum(y[(k+1):n])==0){CS1[k]=1}
else {CS1[k]=0} #counting number of complete separation

}
CS[s]=sum(CS1)
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#Generated data:
w1=cbind(y,x1)
results<- glm(y~x1,family=binomial)
k0=results$coefficients[1] #estimate of intercept
k1=results$coefficients[2] #estimate of the coefficient of x1
TP=beta #True parameters
OEsti1=c(k0,k1)
OEsti[s,]=OEsti1
B=OEsti1-TP #Bias of the estimates
Bias[s,]=B #Bias of the estimates in the ith simulations
BiasSq[s,]=B^2 #Bias square of the estimates in the ith

}
OEstimates=apply(OEsti,2,mean,na.rm=TRUE)
SEEst=apply(OEsti,2,sd,na.rm=TRUE) #Standard errors of estimates
BiasEst=apply(Bias, 2, mean,na.rm=TRUE)
RelBias=(BiasEst/TP)*100 #Relative bias in percetage
MSE=apply(BiasSq, 2, mean,na.rm=TRUE)
RMSE=sqrt(MSE)
#Estimates based on median
OMedEstimates=apply(OEsti,2,median,na.rm=TRUE)
BiasMd=OMedEstimates-TP
#Median square error
MdSE=apply(BiasSq,2,median,na.rm=TRUE)
IQRMd=apply(OEsti,2,IQR,na.rm=TRUE)
ComS=mean(CS)*100
#EstMatrix=cbind(OEstimates,SEEst, BiasEst,RelBias,MSE, RMSE)
Fresults=cbind(beta0,beta1,alpha,BiasEst[1],BiasEst[2], SEEst[1],
SEEst[2],MSE[1],MSE[2],ComS)
library(xtable)
FMdresults=cbind(beta0,beta1,alpha,BiasMd[1],BiasMd[2], IQRMd[1],
IQRMd[2],MdSE[1],MdSE[2],ComS)
xmedian=xtable(FMdresults,digit=c(1,2,2, 2,3,3,3, 3,3,3,2))
print(xmedian)
print(ComS)
}
optsep3(NS=10000,n=8,alpha=0.25,beta0=0,beta1=0.5)
optsep3(NS=10000,n=8,alpha=0.50,beta0=0,beta1=0.5)
optsep3(NS=10000,n=8,alpha=0.75,beta0=0,beta1=0.5)
optsep3(NS=10000,n=8,alpha=0.80,beta0=0,beta1=0.5)
optsep3(NS=10000,n=8,alpha=0.90,beta0=0,beta1=0.5)
optsep3(NS=10000,n=8,alpha=1.00,beta0=0,beta1=0.5)

R Codes for Computation of Pseudo Bayesian Designs

#Optimal Bayesian design
R=5000
meanb0=0
sdb0=0.25
meanb1=1
sdb1=0.25
beta0=rnorm(R,meanb0,sdb0)
beta1=rnorm(R,meanb1,sdb1)
TP=c(meanb0,meanb1)
psdc.SB=function(g, alpha,R){
for(m in 1:R){
s <- NULL; f<- NULL; x<-NULL; d<-NULL; w<-NULL; pcs<- NULL;
n<- length(g)
x[1] <- g[1]
for(k in 1:(n-1)){
x[k+1]<- x[k]+g[k+1]

}
for(i in 1:n) {
s[i]<- 1/(1+exp(-(beta0[m] + beta1[m]*(x[i]))))
f[i]<- 1- s[i] }
#Cumulative product of s
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cps<-cumprod(s)
#Cumulative product of f
cpf<-cumprod(f)
for(k in 1:(n-1)){
pcs[k]<- (cpf[k]*(cps[n]/cps[k]) + cps[k]*(cpf[n]/cpf[k]))

}
ps<- cps[n]+sum(pcs)+cpf[n]
x11<-rep(1, n)
x12<-x
X<-cbind(x11,x12)
for(t in 1:n){

w[t]<-(1/n)
}

wp<-w*s*f
W<-diag(wp)
Xt<-t(X)
INF<-Xt %*% W %*% X
DINF<-det(INF)
DCO<-(1/DINF)^(alpha/2) # this 2 is for no. of parameters
PSO<-(ps)^(1-alpha)
#Combined criterion
DCSB[m]<-(PSO)*(DCO)
DCSB1<-sum(DCSB,na.rm=TRUE)*(1/R)
}
cat("The value of DCSB1 criterion\n")
print(DCSB1)
}
t<-optim(c(-0.1, rep(0.001, 7)), psdc.SB, NULL, method="L-BFGS-B",
lower=c(-20,rep(0.0001, 7)), alpha=0.25,R=10000)
t2<-rv(t$par)
BDn8a25=t2
xtable(t(as.matrix(BDn8a25)),digits=4)

R Codes for Simulation Studies of Pseudo Bayesian Designs

optBayes8=function(x1,NS,n,alpha,beta0,beta1){
CEsti=matrix(0,nrow=NS,ncol=2)
OEsti=matrix(0,nrow=NS,ncol=2)
OBias=matrix(0,nrow=NS,ncol=2)
OBiasSq=matrix(0,nrow=NS,ncol=2)
Bias=matrix(0,nrow=NS,ncol=2)
BiasSq=matrix(0,nrow=NS,ncol=2)
CS=rep(0,times=NS)
resmatrix=matrix(0,nrow=NS,ncol=n)
beta<-c(beta0,beta1) #coefficients
intercept=rep(1,n)
z=cbind(intercept,x1)
pred<- z%*%beta
p<- 1/(1+exp(-pred))
for(s in 1:NS){
y=NULL
for(k in 1:n){
y[k]<- rbinom(1,1,p[k])

}
resmatrix[s,]=y
CS1=rep(0,times=n)
for(k in 1:n){
if(sum(y[1:k])==n) {CS1[k]=1}
else if(sum(y[1:n])==0) {CS1[k]=1}
else if(sum(y[1:k])==0 & sum(y[(k+1):n])==(n-k)){CS1[k]=1}
else if(sum(y[1:k])==k & sum(y[(k+1):n])==0){CS1[k]=1}
else {CS1[k]=0} #counting number of complete separation

}
CS[s]=sum(CS1, na.rm=TRUE)
w1=cbind(y,x1)
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k0=results$coefficients[1]
k1=results$coefficients[2]
g0=abs(k0)
g1=abs(k1)
Esti=c(0,0)
NOS=0
if (g1>20) {Esti=c(NA,NA) } else {Esti=c(k0,k1)}
CEsti[s,]=Esti #parameter estimates in sth simulation
B=Esti-TP #Bias of the estimates
Bias[s,]=B #Bias of the estimates in the ith simulations
BiasSq[s,]=B^2 #Bias square of the estimates in the ith

#simulations to be used in MSE calculations
OEsti[s,]=c(k0,k1)
OEstim=OEsti[s,]
OBias[s,]=OEstim-TP
OBiasSq[s,]=(OEstim-TP)^2
}
CEstimates=apply(CEsti,2,mean,na.rm=TRUE)
SEEst=apply(CEsti,2,sd,na.rm=TRUE) #Standard errors of estimates
BiasEst=apply(Bias, 2, mean,na.rm=TRUE)
RelBias=(BiasEst/TP)*100 #Relative bias in percetage
MSE=apply(BiasSq, 2, mean,na.rm=TRUE)
RMSE=sqrt(MSE)
OEstimates=apply(OEsti,2,mean,na.rm=TRUE)
OSEEst=apply(OEsti,2,sd,na.rm=TRUE) #Standard errors of estimates
OBiasEst=apply(OBias, 2, mean,na.rm=TRUE)
ORelBias=(OBiasEst/TP)*100 #Relative bias in percetage
OMSE=apply(OBiasSq, 2, mean,na.rm=TRUE)
ORMSE=sqrt(OMSE)
#Estimates based on median
OMedEstimates=apply(OEsti,2,median,na.rm=TRUE)
BiasMd=OMedEstimates-TP
#Median square error
MdSE=apply(OBiasSq,2,median,na.rm=TRUE)
IQRMd=apply(OEsti,2,IQR,na.rm=TRUE)
ComS=mean(CS)*100
EstMatrix=cbind(CEstimates,SEEst, BiasEst,RelBias,MSE, RMSE)
Fresults=cbind(beta0,beta1,alpha,BiasEst[1],BiasEst[2], SEEst[1],
SEEst[2],MSE[1],MSE[2],ComS)
FOresults=cbind(beta0,beta1,alpha,OBiasEst[1],OBiasEst[2], OSEEst[1],
OSEEst[2],OMSE[1],OMSE[2],ComS)
library(xtable)

FMdresults=cbind(beta0,beta1,alpha,BiasMd[1],BiasMd[2], IQRMd[1],
IQRMd[2],MdSE[1],MdSE[2],ComS)
xmedian=xtable(FMdresults,digit=c(1,2,2, 2,3,3,3, 3,3,3,2))
print(xmedian)
print(ComS)
}
optBayes8(x1=BDn8a25,NS=10000,n=8,alpha=0.25,beta0=0,beta1=1)
optBayes8(x1=BDn8a50,NS=10000,n=8,alpha=0.50,beta0=0,beta1=1)
optBayes8(x1=BDn8a75,NS=10000,n=8,alpha=0.75,beta0=0,beta1=1)
optBayes8(x1=BDn8a80,NS=10000,n=8,alpha=0.80,beta0=0,beta1=1)
optBayes8(x1=BDn8a90,NS=10000,n=8,alpha=0.90,beta0=0,beta1=1)
optBayes8(x1=BDn8a100,NS=10000,n=8,alpha=1,beta0=0,beta1=1)
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Müller, W. G. and Stehĺık, M. (2010). Compound optimal spatial designs. Envi-

ronmetrics, 21(3-4):354–364. 134, 136

Nestorov, I. A. (1999). Sensitivity analysis of pharmacokinetic and pharmacody-

namic systems: I. a structural approach to sensitivity analysis of physiologically

based pharmacokinetic models. Journal of Pharmacokinetics and Biopharma-

ceutics, 27:577–596. 155

Ntzoufras, I. (2009). Bayesian Modelling Using WinBUGS. John Wiley and Sons.

20, 21, 42

OHagan, A. (1994). Kendalls Advanced Theory of Statistics 2B, Bayesian Inference,

Section 2.51. 51

Palta, M. (2003). Quantitative Methods in Population Health: Extensions of Ordi-

nary Regression, volume 497. Wiley. 17

Pettit, L. I. (1986). Diagnostics in Bayesian model choice. Journal of the Royal

Statistical Society. Series D (The Statistician), 64:183–190. 104

Pinheiro, J. C. and Bates, D. M. (2000). Linear Mixed-Effects Models: Basic

Concepts and Examples. Springer. 43

207



REFERENCES

Royston, P. (2007). Profile likelihood for estimation and confidence intervals. Stata

Journal, 7(3):376–387. 46

Santner, T. J. and Duffy, D. E. (1986). A note on A. Albert and JA Anderson’s

conditions for the existence of maximum likelihood estimates in logistic regression

models. Biometrika, 73(3):755–758. 11, 12

Schabenberger, O. (2005). Introducing the glimmix procedure for generalized linear

mixed models. SUGI 30 Proceedings, pages 196–30. 81

Searle, S. R. (2012). Linear Models. John Wiley & Sons. 17

Silvapulle, M. J. (1981). On the existence of maximum likelihood estimates for

the binomial response models. Journal of Royal Statistical Society, Series B,

43:310–13. 11, 12, 116

Silvapulle, M. J. and Burridge, J. (1986). Existence of maximum likelihood es-

timates in regression models for grouped and ungrouped data. Journal of the

Royal Statistical Society. Series B (Methodological), pages 100–106. 9

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. (2002). Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 64:583–639. 76

Taguchi, G., Clausing, D., and Watanabe, L. T. (1987). System of Experimental

Design: Engineering Methods to Optimize Quality and Minimize Costs, volume 1.

UNIPUB/Kraus International Publications White Plains, NY. 2

Tan, M. H. and Wu, C. (2013). A Bayesian approach for model selection in frac-

tionated split plot experiments with applications in robust parameter design.

Technometrics, 55(3):359–372. 112

208



REFERENCES

Tang, L., Song, J., Belin, T. R., and Unützer, J. (2005). A comparison of imputa-

tion methods in a longitudinal randomized clinical trial. Statistics in Medicine,

24(14):2111–2128. 50

Venzon, D. and Moolgavkar, S. (1988). A method for computing profile-likelihood-

based confidence intervals. Applied Statistics, pages 87–94. 46

Wedderburn, R. (1976). On the existence and uniqueness of the maximum likeli-

hood estimates for certain generalized linear models. Biometrika, 63(1):27–32.

120

Wolfinger, R. and O’Connell, M. (1993). Generalized linear mixed models a pseudo-

likelihood approach. Journal of Statistical Computation and Simulation, 48(3-

4):233–243. 81

Woods, D., Lewis, S., Eccleston, J., and Russell, K. (2006). Designs for general-

ized linear models with several variables and model uncertainty. Technometrics,

48(2):284–292. 135

Zhang, H., Lu, N., Feng, C., Thurston, S. W., Xia, Y., Zhu, L., and Tu, X. M.

(2011). On fitting generalized linear mixed-effects models for binary responses

using different statistical packages. Statistics in Medicine. 104

Zorn, C. (2005). A solution to separation in binary response models. Political

Analysis, 13(2):157–170. 11

209


	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Preface
	1.2 Problems Addressed in the Thesis
	1.3 Literature Review
	1.3.1 Bayesian Analysis of Data from Multi-Stratum and Split-plot Designs
	1.3.2 Non-existence of Maximum Likelihood Estimates and Separation Problem in Logistic Regression

	1.4 Structure of Thesis

	2 Analysis of Fuel Economy Experiments Using Bayesian Methods
	2.1 Introduction
	2.2 Bayesian Models
	2.3 Bayesian Inference
	2.4 Markov Chain Monte Carlo (MCMC)
	2.4.1 Why MCMC in Bayesian Methods?
	2.4.2 Three Related Terms
	2.4.3 Gibbs Sampling
	2.4.4 Software to Implement MCMC

	2.5 Case Studies
	2.5.1 Fuel Economy Experiments
	2.5.1.1 Example Data Set
	2.5.1.2 Contrast: T-B
	2.5.1.3 Contrast: B2-B1
	2.5.1.4 Contrast: (T-B)-(B2-B1)
	2.5.1.5 Nested Models

	2.5.2 Round Robin Experiments
	2.5.2.1 Round Robin Analysis for Fuel A
	2.5.2.2 Round Robin Analysis for Fuel B


	2.6 Convergence and MCMC
	2.6.1 Convergence Diagnostics for Fuel Economy Experiments
	2.6.2 Convergence Diagnostics for Round Robin Experiments

	2.7 Robustness of Posterior Distributions in Round Robin Experiments
	2.8 Likelihood Methods in Fuel Economy Experiments
	2.8.1 Contrast: T-B
	2.8.2 Contrast: (T-B)-(B2-B1)

	2.9 Profile Likelihood and Confidence Intervals
	2.10 Simulation Studies
	2.10.1 Performance Measures in Simulation Studies
	2.10.2 Determination of Simulation Size
	2.10.3 Simulation Studies on Fuel Economy Experiments
	2.10.4 Robustness of Likelihood and Bayesian Estimators
	2.10.5 Simulation Studies on Round Robin Experiments
	2.10.6 Kernel Density of Simulated Estimates

	2.11 Conclusion

	3 Bayesian Analysis of Categorical Data from Multi-Stratum Experiments
	3.1 Introduction
	3.2 Models to be Used in the Analysis
	3.3 Model Selection
	3.4 The Polypropylene Industrial Experiment
	3.4.1 What is Polypropylene?
	3.4.2 Underlying Design

	3.5 Binary Response Data Analysis
	3.5.1 Binary Response Analysis of Coating 1
	3.5.2 Binary Response Analysis of Coating 2
	3.5.3 Binary Response Analysis of Coating 3
	3.5.4 Binary Response Analysis of Coating 4
	3.5.5 Binary Response Analysis of Coating 5
	3.5.6 Remarks on Mixed Binary Logit Analysis of Coatings

	3.6 Ordinal Response Data Analysis
	3.6.1 Ordinal Response Analysis of Coating 1
	3.6.2 Ordinal Response Analysis for Coating 2
	3.6.3 Ordinal Response Analysis of Coating 3
	3.6.4 Ordinal Response Analysis of Coating 4
	3.6.5 Ordinal Response Analysis of Coating 5
	3.6.6 Remarks on Mixed Cumulative Logit Analysis of Coatings

	3.7 Combined Analysis of Coatings
	3.8 Investigation of Variance Components with Different Priors
	3.9 Convergence Diagnostics
	3.10 Profile Likelihood, Confidence Intervals and Simulation Studies
	3.11 Conclusion

	4 Optimal Design for Categorical Data Minimizing the Probability of Separation
	4.1 Optimal Design in Statistics
	4.2 Separation Problem in Categorical Data Analysis and Non-existence of Maximum Likelihood Estimates
	4.2.1 Types of Separation
	4.2.2 Hypothetical Example of Separation
	4.2.3 Separation Problem in the Current Study
	4.2.4 Non-existence of Maximum Likelihood Estimates

	4.3 Existing Ways of Dealing with the Separation Problem
	4.3.1 Solutions for Quasi-complete Separation
	4.3.2 Solutions for Complete Separation

	4.4 Probability of Separation
	4.4.1 Probability of Complete Separation
	4.4.2 Probability of Quasi-complete Separation
	4.4.3 Theorem
	4.4.4 Numerical Example: Reduction of Probability of Separation with the Minor Changes in Design Points

	4.5 Probability of Quasi-complete Separation with Two or Three Equal Design Points Successively
	4.6 Sequential Method to Compute Probability of Separation
	4.7 Probability-based Optimality Criteria
	4.7.1 Ps-optimality Criterion
	4.7.2 Compound Criteria and DPs-optimality

	4.8 Local Optimization of DPs-optimality Criterion
	4.9 DPs-optimal Designs for Models with More Than One Factor 
	4.10 Comparing Results from Various Designs
	4.10.1 Comparing D- and Ps-optimality from D-, Ps, DPs-optimal designs
	4.10.2 Size of D-, Ps-, and DPs-optimal designs
	4.10.3 D-and P-efficiencies of D-, Ps, and DPs-optimal designs
	4.10.4 DPs-optimal designs with different choice of mixing constant 
	4.10.5 DPs-optimal designs with different sizes

	4.11 Sensitivity Analysis
	4.12 Simulation Studies on DPs-optimal Designs
	4.13 Pseudo Bayesian Designs
	4.14 Conclusions

	5 Discussion and Conclusion
	5.1 Introduction
	5.2 Fuel Economy Experiment
	5.3 Polypropylene Experiment
	5.4 Optimal Design with Separation
	5.5 Conclusions and Future Research

	Appendix
	References

