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Abstract 

 

Reliable biomarkers of axonal damage are urgently needed in neurological diseases. 

Neurofilaments (Nf) are specific structural elements of neurons composed of at least 

three subunits:  Nf light chain (NfL), Nf medium and Nf heavy chain (NfH). 

This PhD aimed to characterise NfL levels and their correlation with clinical features in 

patients with neurological diseases with a different rate of progression and following 

and under different treatment regimes. An important aim was also to develop a 

bioassay for NfL measurements in blood. 

Cerebrospinal fluid (CSF) NfL levels discriminated patients with a clinically isolated 

syndrome (CIS) (p=0.001) or multiple sclerosis (MS) (p=0.035) from healthy controls 

more efficiently, and was more sensitive to change after natalizumab therapy 

(p<0.0001) than CSF NfH (p=0.002). Further, CSF NfL levels decreased in fingolimod-

treated MS patients (p=0.001), but not in those receiving placebo (p=0.433). Based on 

these findings, a sensitive method for the detection of NfL in serum was developed and 

validated. Patients with neurological diseases had higher serum NfL values than 

controls. In acute spinal cord injury (SCI), serum NfL levels correlated with injury 

severity and long-term motor outcome, and Minocycline treatment was associated with 

decreased NfL levels in complete SCI patients compared to placebo. Finally, I found 

that serum NfL levels were higher in CIS patients than in healthy controls but did not 

predict conversion to clinically definite MS (CDMS). Independent predictors of CDMS 

were instead oligoclonal bands, number of T2 lesions and age at CIS. Lower 25-OH-

vitamin D levels were associated with CDMS in univariate analysis, but this was 

attenuated in the multivariate model. 

In conclusion, NfL proved to be an analytically stable protein which is an important 

prerequisite for biomarkers. The role of NfL quantification as a surrogate measure of 

neuroaxonal damage is corroborated by my findings and further supports the 

usefulness of NfL as a putative biomarker of axonal damage in various neurological 

diseases. 
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1. Introduction 

 

 

1.1. Intermediate filaments 

The neuronal cytoskeleton is composed of three interconnected structures: 

microfilaments, microtubules, and intermediate filaments (IF). The diameter of IF (10 

nm) is “intermediate” between the microfilaments (6-8 nm, mostly actin) and 

microtubules (24 nm, mostly tubulin). Based on molecular structural homology, five 

types of IF have been identified, and neurofilaments (Nf) belong to type IV (type I: acid 

keratins, type II: basic keratins, type III: desmin, GFAP, peripherin/vimentin, type V: 

nuclear lamins) (1). Neurons differentially express several IF proteins depending on 

their developing stage and their localisation in the nervous system: for example nestin 

(200 kDa), three Nf subunits (Nf light chain, NfL, 68 kDa; Nf medium chain, NfM, 160 

kDa and Nf heavy chain, NfH, 205 kDa), α-internexin (66 kDa), peripherin (57 kDa) and 

synemin (41 kDa) (2).  

 

1.2. Neurofilament function and structure 

Nf are highly specific to the neuro-axonal compartment. Their main role is to increase 

axon calibre of myelinated axons and consequently their conduction velocity. 

Numerous rodent studies have shown that both number of Nf and a precise 

stoichiometry of their subunits are essential in the expansion of the axonal diameter 

(2). Nf account for approximately 13% of total and 54% of Triton-insoluble proteins in 

some neurons, representing the most abundant structures in large myelinated axons 

(3, 4). Their number relative to axonal cross-sectional area does not change during 

development or after axonal injury, leading to the proposal that Nf density is essential 

in determining axonal diameter (5). This has also been demonstrated in genetically 

engineered animals that either contain enhanced levels or lack axonal Nf (6). Despite 

being present also in perikarya and dendrites, Nf are particularly abundant in the 

axons. They have exceptionally long half-lives and their elastic fibrous properties 

enable them to maintain the shape of neurons (7). 

 

All Nf subunits share a common structure, with non-helical amino and carboxy-terminal 

regions (the head and tail domains) flanking a central α-helical rod domain of about 

310 amino acids (figure 1.1 ) (2, 8). The central rod domains, including regions 1a, 1b, 

and 2, contain highly conserved motifs and every seventh residue is hydrophobic 

facilitating the formation of coiled-coil parallel dimers. The tail domain is the distinctive 

feature of the Nf and contains numerous repeats of the phosphorylation sites Lys-Ser-

Pro (KSP) in both NfM and NfH. These sites are called KSP repeats: 51 are present in 
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mice NfH, 7 in mice NfM and 43-44 in human NfH. Most of the serines in the KSP 

repeats are phosphorylated and it is suspected that phosphorylation contributes to Nf 

spacing by inducing charge repulsion and prevention of protease degradation during 

the long lifespan of these proteins (9, 10).  

 

 

Figure 1.1.  Mouse, rat and human Nf subunits and predicted molecular weights from 

the DNA sequences. The three subunits share a highly conserved central α-helical 

domain of approximately 310 amino acids that is flanked by the amino and carboxy-

terminal head and tail regions. The tail domains are of variable size and in case of NfM 

and NfH contain multiple KSP repeats (orange) which can be heavily phosphorylated 

(arrow-heads) (2). 

 

1.3. Nf assembly, transportation and degradation 

It was originally thought that Nf were composed only by NfL, NfM and NfH, but later 

studies indicated that other proteins such as α-internexin and peripherin are also co-

assembled with Nf (2, 11, 12). Nf are obligate heteropolymers requiring NfL with either 

NfM or NfH (13, 14); the exact mechanisms leading to Nf assembly are not known yet. 

The first step of Nf formation is the dimerisation of NfL with either NfM or NfH to form 

parallel head-to-tail coiled coil dimers (13-15). Two dimers line up forming half-

staggered anti-parallel tetramers. These tetramers form protofilaments, which finally 

assemble to constitute the 10 nm filament (16) (Figure 1.2. ). The C-termini of NfM and 

NfH are not in the coils, but they form the side arms of Nf (1). NfL is known to be able 
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to self-assemble, while NfM and NfH cannot perform self-assembly, but only co-

polymerize with assembled NfL (14, 17) with a stoichiometry of 4 (NfL):2 (NfM):1 (NfH) 

(14, 18, 19). In vivo, these partly understood processes are strongly influenced by 

phosphorylation of several Ser residues in the KSP repeats. 

In numerous animal studies only mice overexpressing >3-fold NfL and NfM/NfH double 

knockout mice showed severe phenotypes. From these experiments it was concluded 

that NfL is responsible for Nf assembly, and NfM/NfH subunits are also required, 

whereas NfM is more critical for axonal growth than NfH (1). 

 

Nf are the most extensively phosphorylated proteins in neurons, and the 

phosphorylation state in different neuronal compartments depends on a dynamic 

balance between the activities of a complex network of kinases and phosphatases (2). 

It is assumed that phosphorylation also plays an important role in regulating Nf 

transport, formation and function. Most phosphorylation sites are in KSP motifs of the 

tail domains of NfM and NfH and myelination promotes Nf phosphorylation and radial 

growth of axons, while demyelination of motor neurons causes loss of phosphorylation 

of NfM and NfH (20, 21). Interestingly, phosphorylation also plays a critical role in 

inhibiting Nf assembly in the perikaryon, which explains why Nf only form filaments in 

axons, and in protecting the neuron from abnormal accumulation of phosphorylated Nf 

aggregates in cell bodies (1, 4, 22-24). Abnormally phosphorylated Nf in the cell bodies 

represent a characteristic pathological finding in several neurodegenerative diseases 

such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Lewy bodies in 

Parkinson’s disease (PD), progressive supranuclear palsy (PSP), Charcot-Marie-Tooth 

disease (CMT), diabetic neuropathy and giant axonal neuropathy (25-29). 

Whereas phosphorylation has been intensely studied, the role of another common 

modification, the attachment of O-linked N-acetylglucosamine (GlcNAc) to individual 

serine and threonine residues, is hardly understood. O-linked glycosilation regulates 

signaling events related to nutrient sensing and stress responses, among other 

functions (30). It has been shown that the amount of glycosilated NfM, which is highest 

in axons of human neurons, is decreased in brains from patients with Alzheimer’s 

disease (AD) (31), similarly in a rat model of ALS (32). The functional significance of Nf 

glycosilation awaits further investigation; this also needs to take into account potential 

technical artefacts like altered glycosylation in post-mortem tissue (32). 
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Figure 1.2.  Model of Nf assembly. Two Nf subunits (NfL, and either NfH or NfM) form 

head-to-tail coiled-coil dimers, anti-parallel half-staggered tetramers, protofilaments, 

and 10-nm Nf. Side arms formed by the C-termini of NfH and NFM stick out of the stem 

of NF (1). 

 

 

After their assembly in the perikaryon, NFs are transported by the slow axonal 

transport (0.2-1 mm/day) towards the nerve terminal where they are degraded by non-

specific proteases such as lysosomal cathepsin D, trypsin and α-chymotrypsin (33). 

The mechanism by which Nf are transported has been under debate for many years. It 

is also not clear whether assembled Nf or subunits are transported (34). 

Many neurons in humans extend their axons up to one meter. During the passage 

through the axon, the cytoskeletal proteins are metabolically stable and do not undergo 

degradation. Therefore, it is believed that Nf degradation takes place mainly at the level 

of synapses (35). This process is preceded by Nf dephosphorylation by phosphatases, 

further suggesting that phosphorylation has a protective function (10). 

 

 

1.4. Neurological diseases studied in this thesis 

In this thesis I studied CSF and serum samples from patients with neurological 

diseases with a different rate of progression and following and under different 

treatments. The main focus of the work is multiple sclerosis (MS) (chapters 2., 3., and 
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6.), but I also investigated samples from patients with AD, Guillain-Barré-syndrome 

(GBS), ALS (chapter 4) and acute spinal cord injury (SCI, chapter 5). 

 

1.4.1. Multiple Sclerosis (MS) 

MS is a disseminated, chronic, inflammatory demyelinating disease of the CNS with 

progressive neuroaxonal degeneration. The phenotype is very heterogeneous and the 

course unpredictable. MS is the most frequent cause of nontraumatic neurological 

disability in young adults (36).  

Approximately 85% of MS patients show a relapsing-remitting course, in which acute 

exacerbations are followed by periods of remission of symptoms (relapsing-remitting 

MS (RRMS)). The first clinical episode of RRMS patients is often referred to as 

clinically isolated syndrome (CIS). Most of RRMS cases will enter in the long term the 

secondary progressive phase of MS (SPMS), which is characterized by progressive 

deterioration of neurological function, independent of relapses (37). In approximately 

15% of MS patients, disability progression occurs from onset of first symptoms. This is 

called primary progressive MS (PPMS) and up to approximately 10% can also have 

relapses (also termed progressive relapsing MS) (38). Importantly, these categories 

are based on subjective views of MS experts, lack objective biological support and 

have recently been revised (39-41). Interestingly, while the length of the relapsing 

remitting phase is very variable, the rate of neurological decline at some stage of the 

disease course appears less heterogeneous, regardless of the preceding disease 

course and severity (42, 43). These findings suggested that the underlying 

neurodegenerative process in MS depends more on the patient’s age and not on 

number of relapses which have previously occurred (44). This led to the hypothesis 

that MS could be a two-stage disease, starting with an inflammatory phase and later 

entering a distinct neurodegenerative phase. However, more recent imaging and 

neuropathology studies in early MS have shown that axonal injury and 

neurodegeneration start since the very early phases of the disease, and that the 

transition from RRMS to SPMS is likely to be a point at which compensatory 

mechanisms of neuronal injury fail (45).  

Highly efficacious immunomodulatory treatments for RRMS have been developed; 

however, no effective treatment has been identified for the progressive forms of MS 

(PPMS; SPMS). This is a significant unmet need as the accrual of disability, loss of 

quality of life and socioeconomic costs predominate in the progressive stage of the 

disease. 

MS is unsurpassed for patient variability in terms of disease progression. However, no 

robust prognostic markers regarding the individual disease course have been 

established. Optic neuritis (ON), isolated sensory symptoms, long interval to second 
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relapse, no disability after 5 years (46, 47) and a normal initial brain MRI (48-51) 

predict a good prognosis in CIS. Whereas a multifocal CIS (52), involvement of efferent 

systems (47), a high relapse rate in the first 2 - 5 years (53), disability after 5 years (47) 

and an abnormal MRI with large lesion load (49-51, 54-56) all have been associated 

with a poor prognosis (57). Early motor, cognitive, cerebellar and sphincter dysfunction 

and cigarette smoking have been described as additional factors predicting an 

unfavorable course (58, 59). Progressive disease (SPMS and PPMS) has a worse 

prognosis than RRMS, and in RRMS, incomplete recovery from relapses is associated 

with a worse outcome (60). 

 

1.4.2. Alzheimer’s dementia (AD) 

AD is the most common form of dementia, accounting for 50 - 60% of all cases. The 

prevalence of AD among people aged 85 years or older ranges between 24 and 33% in 

the Western world (61). Slowly progressive impairment of episodic memory is the key 

feature, accompanied by aphasia, apraxia and agnosia, together with more general 

symptoms such as impaired judgment, decision-making and orientation. 

The differential diagnosis of dementia is broad and the diagnostic criteria keep evolving 

in order to improve sensitivity and specificity (62-66). Mild cognitive impairment (MCI) 

describes an intermediate stage between normal ageing and dementia. The conversion 

rate of MCI to dementia is 10 - 15% per year and approximately 80% at 6 years of 

follow-up (67). 

 

1.4.3. Guillain-Barré Syndrome (GBS) 

The diagnosis of GBS is mainly clinical, based on a combination of progressive 

symmetrical weakness and areflexia. Acute inflammatory demyelinating 

polyradiculoneuropathy (AIDP) is the most common subtype in western countries, 

whereas forms primarily affecting the axons are less frequent (acute 

motor axonal neuropathy [AMAN] and acute motor and sensory 

axonal neuropathy [AMSAN]) (68, 69). Cerebrospinal fluid (CSF) findings are 

characterized by a normal cell count and 

increased protein concentration (i.e. ‘albuminocytological dissociation’). Most patients 

reach their maximum weakness within 2 weeks; by definition this should be reached 

within 4 weeks followed by a variable plateau phase from days to several months (70, 

71). Up to 20% of the most severe GBS cases remain wheelchair-bound after 6 months 

despite treatment with intravenous immunoglobulin (IVIg) or plasma exchange (72). 

Older 
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age at onset, longer time to nadir, necessity for ventilator support, preceding diarrhea 

or axonal degeneration in electrophysiological examinations are related with poor 

outcome (73-75). 

 

1.4.4. Amyotrophic Lateral Sclerosis (ALS) 

ALS, the most common (> 80%) and most severe form of motor neuron disease, is a 

fatal neurodegenerative disorder of large motor neurons of unknown etiology. 

Approximately 10% of ALS cases are familial with mutations in the gene encoding 

cytosolic copper-zinc superoxide dismutase 1 (SOD1) in about 15 - 25% of these 

cases (approximately 1.5 - 2% of all ALS patients) (76). ALS has a considerable 

variability in outcome. The median age of onset is 55 years, and the median survival 

from onset to death in ALS is reported to vary from 20 to 48 months (77-79). 

Importantly, 5 - 10% of the patients are consistently reported to survive more than 10 

years; nevertheless, 50% die within 3 years and approximately 90% within 5 years 

(80). 

 

1.4.5. Acute spinal cord injury 

See chapter 5.1. 

 

 

1.5. Pathophysiological mechanisms of axonal degene ration in MS 

The exact mechanisms driving MS pathogenesis are currently unknown. However, 

current knowledge indicates that environmental exposures in genetically susceptible 

individuals lead to an immune mediated demyelination process within the central 

nervous system. It is thought that the immune cell invasion across the blood-brain 

barrier leads to continuous activation of CNS-homing and CNS-resident innate immune 

cells (macrophages and microglia) in the brain and spinal cord with resulting 

demyelination and neurodegeneration (45, 81). Axonal loss is thought to be the 

pathological substrate that results in the acquisition of irreversible disability in MS and 

appears to occur by at least two principle mechanisms. Firstly, as a result of axonal 

transection in acutely inflamed focal lesions (82). For example, the inflammatory 

process in acute optic neuritis leads to axonal transection in the optic nerve and to 

retinal nerve fiber layer thinning, that can be detected using optical coherence 

tomography (83). Secondly, axonal loss can occur as a delayed consequence of earlier 

and chronic damage that renders axons vulnerable to degeneration when 

compensatory mechanisms fail (84). In comparison to axonal loss in acute focal 

lesions, this process is less understood. Focal inflammation occurring early in the 

course of the disease could prime the damaged, but surviving, axons for degeneration 
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in the future (85). Several additional mechanisms have been proposed to cause this 

delayed axonal loss and include persistent demyelination (despite axonal injury also 

occurs without demyelination) (86-89), oxidative stress, free radical damage, 

mitochondrial dysfunction, microglial activation, hypoxia, ageing and energy deficits 

secondary to excessive sodium loading of axons (90). 

 

 

1.6. Overview of NfL findings in different neurolog ical diseases 

Nf subunits are among the most abundant proteins of the nervous system and are 

concentrated in neurons and axons. 

NfL is the most abundant and also most soluble Nf subunit. Therefore, it is expected 

that NfL would be released in relatively large amounts from damaged neurons and 

particularly their dying axons. I thought that this could eventually provide a unique 

opportunity to reliably measure axonal degeneration in the peripheral blood 

compartment of neurological patients. In this chapter I summarize findings from 

previous studies on NfL levels in neurological diseases. Noteworthy, these have so far 

been performed exclusively in CSF.



 

 
 

Table 1.1. Studies describing NfL assays. 

Ref. no.  Healthy 
control 
groups 
studied (n): 
NfL: [median 
(IQR), pg/ml] 

Investigated 
compartment 
(CSF/serum/ 
plasma) 

Type of disease 
studied (n): 
NfL [median (IQR), 
pg/ml] 

[NfL] in disease 
different to 
controls 

Correlations of [NfL] 
with clinical or 
laboratory measures 

Assay 
characteristics 
NfL: [median 
(IQR), pg/ml] 

Special features: 
e.g. longitudinal 
design 

1.) 
Rosengren et 
al., 1996 (91) 

Neurologically 
healthy 
individuals 
(34): 138 

CSF (mean levels) 
AD (11): 346 
RRMS (5): 463 
NPH (6): 582 
VD (6): 597 
OPCA (2): 892 
CI (5): 958 
ALS (12): 1743 

- all patient 
groups higher 
than controls 

- higher levels in ALS 
with upper motor 
neuron involvement 
than lower (<0.05) 
- age in controls (0.41, 
<0.05) 

“Gothenburg 
assay” 
- sensitivity 85 

 

2.) 
Norgren et al., 
2003 (92) 

(mean levels) 
Neurologically 
healthy 
individuals 
(11): 2 above 
detection 
limit: 31  

CSF (mean levels) 
PD (5): 200 
AD (5): 300 
VD (5): 1400 
PSP (3): 1900 
RRMS (5): 2500 
ALS (5): 3600 
CI (6): 19800 
MSA (2): - 

- all patient 
groups higher 
than controls 

- “Umea assay” 
(mAb 47:3 and 
mAb 2:1) 
- sensitivity 60 
pg/ml 

 

3.) 
van Geel et al., 
2005 (93) 

No 
neurological 
disease (110): 
<15 y (39): 8 
(5-17) 
15-50y (40): 5 
(0-6) 
>50y (31): 9 
(0-25) 
(no signif. 
correlation 

CSF Mild TBI (3): 5 
TIA (2): 30 
SAH (13): 67 (32-
136) 
CVA (13): 142 (7-
276) 
Severe TBI (3): 470 
(n.a.)  
 
 

Higher levels in 
SAH, severe TBI 
and CVA (no 
statistical 
analysis) 

- 
 

“Nijmegen 
assay” 
- detection limit: 
5 
- two overnight 
incubation 
steps 
- 76/110 
controls 
measurable 

- Commercially 
available 
antibodies 
- compared with 
(91) levels by 
factor 34.4 higher 



 

 
 

with age) 
4.) 
Gaiottino et al., 
2013 (94) 
(see chapter 4) 

(geometric 
means) 
Serum/CSF: 
HC (67): 3/- 
CP (68): 4/324 
(median age 
35y) 

CSF and 
serum 

(geometric means) 
Serum/CSF: 
ALS: 95/5513 
GBS: 79/1361 
AD: 31/1396 
 

- serum levels 
higher in ALS 
(<0.0001) and 
GBS (<0.0001) 
versus HC and 
CP 
- CSF levels 
higher in ALS 
(<0.0001) and 
GBS (<0.0001) 
versus CP 
- higher CSF 
levels in ALS 
(<0.0001) than 
AD and GBS 

- CSF levels in CP and 
age (0.68, <0.0001) 
 

 - CSF levels 97-
fold higher than 
serum levels 
- CSF/serum 
correlations: 
AD (0.48, 0.033), 
GBS (0.79, 
<0.0001), ALS 
(0.7, <0.0001) 

For correlations the coefficient r and p-values are given (r, p-value). 

AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; CI: cerebral infarction; CP: control patients; CVA: cerebrovascular accident; HC: healthy 

controls; NPH: normal pressure hydrocephalus; OPCA: olivopontocerebellar atrophy; SAH: subarachnoid hemorrhage; TBI: traumatic brain injury; 

TIA: transient ischemic attack; VD: Vascular dementia; y: year; -: not done. 

 

Three different ELISAs for NfL in CSF have been developed previously. The “Umea assay” has been used most widely. Chapter 4 describes the 

development and validation of an ECL-based NfL assay for measurements in human serum samples employing the identical monoclonal antibodies 

(mAb) used in Norgren et al., 2003 (“Umea assay”: mAb 47:3 and mAb 2:1) (92, 94, 95). 

 



 

 
 

Table 1.2. Overview of studies on NfL in multiple sclerosis (MS) or neuromyelitis optica.  

Ref. no.  Healthy 
control 
groups 
studied (n): 
NfL: [median 
(IQR), pg/ml] 

Type of disease 
studied (n): 
NfL [median (IQR), 
pg/ml] 

[NfL] in disease 
different to 
controls 

Correlations of [NfL] 
with clinical or 
laboratory measures 

Assay  Special features: 
e.g. longitudinal 
design 

1.) 
Lycke et al., 
1998 (96) 

Healthy 
subjects (11): 
below 
detection 
limit in all  

RRMS (60): 265 - higher in RRMS 
than controls 

- EDSS (0.27, <0.05) 
- exacerbation rate 
during the 2-year trial 
(0.38, <0.01) 
- time of lumbar 
puncture (-0.48, 
<0.001) 

(91) - 2-year acyclovir 
trial with two CSF 
samplings, no 
influence of 
acyclovir on NfL 
levels 

2.) 
Malmeström et 
al., 2003 (97) 

Healthy blood 
donors (50): 
measurable 
in n=4 ; (mean 
age: 35y) 

RRMS relapse (23): 
91% detectable 
RRMS remission 
(18): 44% 
detectable 
SPMS (25): 48% 
detectable 

- higher in all 
stages (<0.001) 
- RRMS relapse 
higher than 
RRMS remission 
and SPMS 
(<0.001) 

- no relationship with 
age or gender, EDSS, 
disease duration 

(91)  

3.) 
Norgren et al., 
2004 (98) 

Thunderclap 
headache 
(25): 
detectable in 
one  

(means) 
PRMS (5): 0 
PPMS (15): 240 
RRMS (58): 248 
SPMS (21): 367 
(partially 
extrapolated from 
figure 2a) 

- (stable) RRMS 
(<0.01), SPMS 
(<0.001) and 
PPMS (0.04) 
higher than 
controls 
- trend for SPMS 
higher than 
(stable RRMS) 

- higher in relapse (3 
months, n=39) than 
stable (n=60): mean 
754 versus 266, 0.004 
- after 14 years: 
correlation with MSSS 
(0.3, 0.005), higher 
levels predictive of 
SPMS (=0.01) and 
higher MSSS score 
(OR=3.2) (99) 

(92) - NfL (relapse 
patients excluded) 
correlated with 
EDSS at clinical 
FU examination 
(r=0.28, p=0.03) 
and progression 
index: stable 
patients: r=0.29, 
p=0.023; relapse 
patients: r=0.49, 
p=0.002 
- CSF cell count 
(patients in 



 

 
 

relapse): r=0.52, 
p=0.001 

4.) 
Teunissen et 
al., 2009 (100) 

NIND 
(18):1000 
(mean age: 
47y) 
IND (40): 1300 
(mean age: 
53y) 
ND (28): 800 
(mean age: 
40) 
(extrapolated 
from figure 3) 

CIS (38): 1000 
PPMS (6): 1200 
SPMS (28): 1400 
RRMS (42): 1800 
(extrapolated from 
figure 3) 

- NIND (<0.006) 
and IND 
(<0.0001) higher 
than ND 
- ND vs CIS: 
<0.001 
- ND vs RRMS: 
<0.0001 
- CIS vs RRMS: 
<0.04 
- ND vs SPMS: 
<0.0001 
- ND vs PPMS: 
<0.004  

- number of T2 lesions 
(0.35, 0.024) 
- number of Gd+ 
lesions (0.50, <0.001) 
- EDSS (0.19, <0.05) 
- higher in CIS and MS 
with OCB (<0.01) or in 
relapse (<0.05) 
- higher in CIS with 
conversion to RRMS 
(<0.05) 
- NfL with NfH (0.49, 
<0.0001) 

Uman 
Diagnostics NF-
light (only 
reagents 
provided) 

 

5.) 
Gunnarsson et 
al., 2010 (101) 

(mean) 
Controls (28, 
blood donors, 
university 
students): 350 
(mean age 
43y) 

(means) 
RRMS (92): 1300 
(after NTZ: 400) 
RRMS relapse (30): 
2300 (after NTZ: 
350) 
RRMS stable (62): 
860 (after NTZ: 430) 
SPMS with relapses 
(9): 1600 (after NTZ: 
630) 
(partly extrapolated 
from figures 1 and 
2) 

 - higher levels in 
MS (<0.001) than 
in controls 
- reduced levels 
after NTZ 
(<0.001), no 
difference to 
controls after 
NTZ 

- Uman 
Diagnostics NF-
light 

- longitudinal 
sampling before 
and after NTZ 

6.) 
Khalil et al., 
2013 (102) 

NIND (15): 
500 (mean 
age 35y) 
(extrapolated 
from figure 1) 

CIS (47): 1200 
(extrapolated from 
figure 1) 

- higher in CIS 
(<0.001) than 
controls 

- no difference between 
relapse and remission 
- age (0.93, <0.001) 
- no difference between 
converters to CDMS 
and non-converters 

Uman 
Diagnostics NF-
light 

- clinical follow-up 
in 46, follow-up 
MRI in 28 patients 
available 



 

 
 

- NfL with NfH (0.55, 
<0.001) 
- CSF cell count (0.65, 
<0.001), IgG index 
(0.46, <0.001) and qAlb 
(0.35, <0.01) 

7.) 
Romme et al., 
2013 (103) 

NIND (7, lower 
back pain, 
headache, 
psychosomatic 
complaints): 
250 (mean 
age 53) 
(extrapolated 
from figure 1) 

SPMS (40): 500 
PPMS (21): 500 
RRMS in relapse 
(36): 1100 
(extrapolated from 
figure 1) 

- RRMS (0.002), 
SPMS (0.04), 
PPMS (0.001) 
higher than 
controls 

- osteopontin (0.49, 
<0.0001) 
- CXCL 13 (0.35, 
0.007) 
- MMP9 (0.15, 0.25) 

Uman 
Diagnostics NF-
light 

- repeat sampling 
in 22 SPMS after 
1 year: no change 
in NfL (p=0.08) 

8.) 
Kuhle et al., 
2013 (104) (see 
chapter 2) 

(geometric 
mean) 
No objective 
clinical or 
paraclinical 
finding (72): 
272; (median 
age: 38y) 

(geometric means) 
CIS (62): 766 
SPMS (25): 785 
PPMS (23): 1007 
RRMS (38): 1201 

- CIS (<0.0001), 
RRMS (<0.0001), 
SPMS (0.001), 
PPMS (<0.0001) 
higher than 
controls 
- RRMS (0.025) 
higher than 
SPMS 

- age in controls (0.61, 
<0.0001) 
- CSF cell count in CIS 
(0.27,0.016) and 
RRMS (0.43, 0.01) 
- qAlb in CIS (0.28, 
0.025), RRMS (0.49, 
0.002) and SPMS 
(0.67, <0.0001) 
- EDSS in CIS and 
RRMS (0.31, 0.002) 
- relapse higher than 
remission (1070 versus 
734, p=0.054) 

Uman 
Diagnostics NF-
light 

- differences larger 
than for NfH 
- correlation with 
NfH (after age 
correction): 
controls (0.058, 
0.627), CIS (0.46, 
<0.0001), RRMS 
(0.56, <0.0001), 
SPMS (0.31, 
0.128), PPMS 
(0.41, 0.054) 

9.) 
Modvig et al., 
2013 (105) 

Healthy 
controls (27): 
414 (262-630) 
(median age 
33y) 

CIS (optic neuritis, 
56): 1476 (1024-
3036) 

- higher in CIS 
(<0.0001) than 
controls 

- age in controls (-, 
<0.0001) 
- dissemination in 
space in MRI (-, 
0.0512) 
- time from onset to 
CSF sampling (0.46, 

Uman 
Diagnostics NF-
light 

- no correlation 
with severity of 
visual function, or 
Gd+ lesions on 
MRI 



 

 
 

0.0024) 
- CHI3L1 (0.39, 0.073) 
- osteopontin (0.5, 
0.0023) 

10.) 
Wang et al., 
2013 (106) 

(mean) 
OND (18, 
schizophrenia, 
sciatica, 
cervical 
spondylosis): 
703 (mean 
age 38y) 

(means) 
RRMS (25): 991 
NMO (32): 1570 
 

- higher in NMO 
than RRMS 
(0.001) and OND 
(<0.0001) 
- higher in RRMS 
(0.0003) than 
OND 

- EDSS in NMO (0.48, 
0.006) and RRMS 
(0.47, 0.017) 

Uman 
Diagnostics NF-
light 

- sampling during 
relapse 

11.) 
Axelsson et 
al., 2014 (107) 

(mean) 
Healthy 
controls (14, 
blood donors): 
577 (mean 
age 42y) 

(mean) 
PPMS (5) and 
SPMS (30): 1780 
(after treatment: 
870) 

- higher levels in 
MS than controls 
(<0.001)   

- reduced levels (0.007) 
after treatment 
- higher levels after 
treatment than controls 
(0.045) 
- higher levels in 
previously untreated 
(2462) than treated 
patients (874, 0.019) 
- higher baseline levels 
in Gd+ patients (2925, 
n=12) versus non Gd+ 
patients 1184 (0.013) 
- CXCL 13 (0.53, 
<0.01) 
- GFAP (0.47, <0.01)  
- no correlation with 
EDSS or MSSS 

Uman 
Diagnostics NF-
light 

- patients treated 
with mitoxantrone 
(29) or rituximab 
(5) 
- repeat sampling 
after 12-24 
months 
- clinical measures 
unchanged over 
follow-up 

12.) 
Burman et al., 
2014 (108) 

Controls (15, 
other non-
inflammatory 
neurological 
diseases: e.g. 
thunderclap 

RRMS Gd+ (25): 
1700 
RRMS Gd- (19): 400 
SPMS Gd+ (3): 
1950 
SPMS Gd- (17): 900 

- Gd+ RRMS 
higher than 
controls (<0.001) 
- Gd+ RRMS 
higher than Gd- 
RRMS (<0.01) 

- increased in patients 
with Gd+ lesions 
- 2 controls with iih 
above reference: after 
exclusion: Gd- SPMS 
versus controls: <0.01 

Uman 
Diagnostics NF-
light (normal 
values 
established by 
this group: 

  



 

 
 

headache, 
idiopathic 
intracranial 
hypertension 
(iih) or no 
objective signs 
of MS): 300 
(mean age: 
40y) 

(extrapolated from 
figure 2) 

- number Gd+ lesions 
(0.51, <0.0001) 
- number T1 lesions 
(0.31, 0.013) 
- number T2 lesions 
(0.27, 0.033) 
- age in controls (0.83, 
0.0004) 

<30y: <380; 30-
39y: <560; 40-
59y: <890; > 
59y: <1850)  

13.) 
Trentini et al., 
2014 (109) 

NIND (15, 
headache, 
vertigo, 
hydrocephalus 
secondary to 
tumor, 
trigeminal 
neuropathy, 
polyradiculopa
thy, epilepsy): 
532 (273-812) 

SPMS (10): 697 
(495-1380) 
PPMS (21): 839 
(723-1514)  

- higher in PPMS 
than NIND 
(0.003) 

- NfL predictor of EDSS 
annual increase (0.44, 
<0.05) 
- NfH in patients (0.71, 
<0.01), in controls 
(0.54, <0.01) 

Uman 
Diagnostics NF-
light 

- 23 patients 
followed-up for a 
median of 9 years 

14.) 
Romme et al., 
2014 (110) 

- (mean) 
SPMS (12) : - 
PPMS (12) : - 
SPMS and PPMS : 
657 

- - MTR in NAWM (-0.73, 
0.003) 
- MTR in grey matter (-
0.66, 0.01) 

Uman 
Diagnostics NF-
light 

- mean decrease 
by 243 pg/ml after 
1 year of 
natalizumab 
treatment (p=0.03) 

15.) 
Villar et al., 
2014 (111) 

NIND (37, 
headache, 
benign 
intracranial 
hypertension, 
cranial nerve 
palsy, 
epilepsy, 
vitamin B1 
deficiency): 
335 

RRMS (127): - - (55 patients 
with <900 and 72 
>900) 

- higher levels in 
relapse/Gd+ lesions 
(0.03) 
- not age in patients or 
controls 
- T2 lesions (0.44, 
<0.0001) 
- Gd+ lesions (0.50, 
<0.0001) 
- MSSS (0.54, 
<0.0001) 

Uman 
Diagnostics NF-
light 

- more lipid 
specific IgM bands 
in patients with 
high NfL (<0.0001) 



 

 
 

- T1 black holes (0.47, 
<0.0001)  
- CD4+ cells (0.33, 
0.002), CD8+ (0.42, 
0.0007), CD19+ (0.48, 
<0.0001) 

Summary  457 (292-672) (only studies using 
Uman Diagnostics 
NF-light assay): 
CIS: 1100 (825-
1407) 
RRMS: 1200 (461-
1675) 
SPMS: 950 (400-
1550) 
PPMS: 754 (305-
1152) 

    

For correlations the coefficient r and p-values are given (r, p-value). 

CIS: Clinically isolated syndrome; CHI3L1: chitinase-3-like-1; EDSS: Expanded disability status scale; GBS: Guillain-Barré syndrome; Gd+: 

gadolinium enhancing MRI lesions; IND: Inflammatory neurological disease; MSSS: Multiple Sclerosis severity score; NAWM: normal appearing white 

matter; ND: normal donors; NIND: non-inflammatory neurologic diseases; NMO: neuromyelitis optica; NTZ: natalizumab; OCB: oligoclonal bands in 

CSF; PPMS: primary progressive MS; RRMS: relapsing remitting MS; SPMS: secondary progressive MS; T2 lesions: T2 hyperintense lesions; -: not 

done. 

 

Most of the studies in CIS/MS were done using the Uman Diagnostics NF-light ELISA (12/15 studies and all published after 2004). I also used the 

Uman Diagnostics NF-light ELISA (chapters 2 and 3) and the mAB it is based upon (chapters 4-6). 



 

 
 

NfL levels in controls showed considerable variation (250 pg/ml to 800 pg/ml) between the different studies and this clearly complicates their 

comparison. Different criteria have been used to define control groups (healthy controls versus patients without objective clinical or paraclinical 

findings versus patients with “other” neurological diseases) (112) and variability in assay performance between different sites (113) probably adds to 

this complexity. In summary all stages of MS showed increased CSF NfL levels, with CIS and RRMS patients having slightly higher concentrations 

than SPMS and PPMS. Also, levels correlated with clinical and paraclinical measures of disease activity to a variable extent. Three studies showed 

CSF NfL responds to immunomodulatory treatment in RRMS (101) and in progressive MS (107, 110), (chapter 3) and no studies on blood NfL levels 

in CIS or MS have been published so far. 

  

 

 

 

 

 

 

 

 



 

 
 

Table 1.3. Overview of NfL studies in different forms of dementia. 

Ref. no.  Healthy 
control 
groups 
studied (n): 
NfL: [median 
(IQR), pg/ml] 

Type of disease 
studied (n): 
NfL [median (IQR), 
pg/ml] 

[NfL] in disease 
different to 
controls 

Correlations of [NfL] 
with clinical or 
laboratory measures 

Assay 
characteristics 
NfL: [median 
(IQR), pg/ml] 

Special features: 
e.g. longitudinal 
design 

1.) 
Rosengren et 
al., 1999 (114) 

(mean) 
Control 
subjects 
(minor 
surgery, spinal 
anesthesia, 
39): 156 
(mean age: 
72y) 

(means) 
AD (37): 348 
VAD (20): 674 
FTD (5): 997 

- higher in all 
patient groups 
than controls 
(<0.001) 

- age in controls (0.41, 
<0.05), but not patients 
(0.18, ns) 
- no difference between 
mild and moderate 
dementia (455 vs. 559) 

(91)  

2.) 
Sjögren et al., 
2000 (115) 

Control 
subjects (18): 
241 (mean 
age 71y) 

FTD (18): 1442 
EAD (21): 498 
LAD (21): 1006 

- higher in FTD 
(<0.05) and LAD 
(<0.001) than 
controls 
- higher in LAD 
(<0.05) than EAD 

- tau in EAD (0.58, 
<0.01) and in controls 
(0.71, <0.01) 
- degree of cognitive 
impairment in FTD 
(0.59, <0.05) and LAD 
(0.61, <0.01) 

(91)  

3.) 
Wallin et al., 
2001 (116) 

Healthy 
controls (18): 
241 (median 
age 71y) 

SWD (25): 1316 - higher in SWD 
(<0.001) than 
controls 

- no difference for CSF 
tau 

(91)  

4.) 
Andreasen et 
al., 2001 (117) 

(mean) 
Subjects 
without 
symptoms or 
signs of brain 
disorders (19): 
295 (mean 
age 71) 

(mean) 
AD (35): 615 

- higher in AD 
than controls 
(0.002) 

- little additional value 
as diagnostic 
biochemical marker for 
AD 

(91)  



 

 
 

5.) 
Sjögren et al., 
2001 (118) 

Healthy 
volunteers 
(20): 156 
(mean age: 
66y) 

(means) 
AD (22): 569 
SVD (9): 1977 
Insignificant WMC 
(37): 394 
Extensive WMC 
(14): 1347 

- higher in AD 
(<0.001) and 
SVD (<0.001) 
than controls 

- higher in extensive 
WMC than insignificant 
WMC (<0.001) 
- higher in SVD than 
AD (<0.05) 

(91) Study on “white 
matter changes” 

6.) 
Pijnenburg et 
al., 2006 (119) 

(mean) 
Nondemented 
controls (19 
nonprogressiv
e subjective 
memory 
complaints, 3 
cognitively 
healthy 
spouses, 3 
other, 25): 390 
(mean age: 
59y) 

(means) 
BvFTD (17): 510 
EAD (20): 950 

- higher in EAD 
than controls 
(<0.001) (not 
seen for NfH) 

- age in controls (0.68, 
<0.001) 
- NfH (FTD: 0.71, 
0.001; controls: 0.83, 
0.001) 
- Tau (AD: 0.73, 
<0.001) 

Uman 
Diagnostics NF-
light 

- large variation in 
patients with FTD 

7.) 
Petzold et al., 
2007 (120) 

  - higher levels in 
AD than controls 
(OR 1.27, 95% 
CI 1.03-1.51) 
- higher in FTD 
than controls 
- higher in SVD 
than controls 
- higher in FTD 
than AD 

  Meta-analysis 

8.) 
De Jong et al., 
2007 (121) 

Controls 
(underwent 
CSF 
examination 
for various 
reasons, no 

EAD (37): 6.1 
LAD (33): 15.2 
DLB (18): 10.4 
FTD (28): 16.9 

- higher in FTD 
than EAD (<0.01) 
and controls 
(<0.001) 

- no correlation with 
MMS, duration, age 

(93)  



 

 
 

neurological 
disorder, 26): 
5.0; (median 
age 60y) 

9.) 
Mattson et al., 
2008 (122) 

- Rapidly progressing 
FTD (13): 410 
Slowly progressing 
FTD (11): 125 

- no difference 
between rapid 
and slow 
progressors 
(p=0.186) 

- no correlation with 
CDR or MMS 

(91)  

10.) 
Bjerke et al., 
2009 (123) 

Healthy 
controls 
(senior 
citizen’s 
organizations, 
spouses, 51): 
250 (250-250) 
(median age: 
66y) 

MCI - SVD (8): 424 
(255-1414) 
MCI - MCI (113): 
250 (250-250) 
MCI – AD (18): 250 
(250-406) 
MCI – MD (15): 250 
(250-406) 

- MCI – SVD 
higher than 
controls (<0.001) 
and MCI-MCI 
(<0.001) 
- MCI – MD 
higher than 
controls (<0.01) 
and MCI – MCI 
(<0.001) 
- MCI – AD 
higher than 
controls (<0.05) 
and MCI – MCI 
(<0.001) 

- for separation 
between MCI – SVD 
and stable MCI, NfL 
was the most influential 
marker, while Aß42, T-
tau and P-tau provided 
more discriminating 
power for the other 
comparisons 

(91) (detection 
limit: 250) 

- 4-year 
longitudinal study 
-large number of 
samples below 
detection limit 
 

11.) 
Van Eijk et al., 
2010 (124) 

Non-demented 
controls (no 
neurological 
disease, 23): 5 
(0-20); 
(mean age 
58y) 

sCJD (21): 78 (33-
123) 
AD (55): 7 (6-18) 

- sCJD higher 
than AD 
(<0.0001) 
- sCJD higher 
than controls 
(<0.0001) 
- higher in AD 
than controls 
(0.044) 

(- 14-3-3 present in 20 
sCJD and 5 AD) 
- Age (AD: 0.30, 0.022) 
- NfH (0.47, <0.001) 
- GFAP (0.45, <0.0001) 

(93)  

12.) 
Bjerke et al., 
2011 (125) 

Healthy 
controls (30): 
600 (median 

AD (30): 1000 
SVD (9) + MD (17): 
1700 

- higher in SVD 
than controls 
(<0.0001) and 

- Age in controls (0.60, 
0.001) 
- contributing most to 

Uman 
Diagnostics NF-
light 

 



 

 
 

age 68y) 
(extrapolated 
from figure 1) 

(extrapolated from 
figure 1) 

AD (<0.05) 
- higher in AD 
than controls 
(<0.0005) 

SVD versus controls 
- contributed third most 
for AD versus controls 
(1. Aß1-42, 2. T-tau) 

13.) 
Skillbäck et al., 
2013 (126) 

- Overall study 
population (clinical 
routine samples, 
5542): 1530 

 - T-tau (0.42, <0.001) 
- P-tau (0.23, <0.001) 
- Aß42 (-0.13, <0.001) 
- age (<0.001), sex 
(<0.001) and AD 
biomarker profile 
(0.001) predict NfL 
- only 29% with positive 
AD biomarker profile 
had normal NfL levels 

Uman 
Diagnostics NF-
light 

- defined threshold 
value for 
subcortical axonal 
degeneration: 108 
healthy volunteers 
(median age 38y): 
95th percentile: 
1400 

14.) 
Landqvist et 
al., 2013 (127) 

Healthy 
controls (26): 
250 
(median age 
70y) 

FTD (34): 
BvFTD (23): 770 
SD (7): 1340 
PNFA (7): 455 
Post mortem verified 
FTD (10): higher in 
tau neg. cases than 
tau-positive cases 
(1620 vs. 665, 
0.017)  
AD (20): 415 

- higher in FTD 
than AD (<0.001) 
and controls 
(<0.001) 
- SD higher than 
AD (<0.001) 
- bvFTD higher 
than AD (<0.001) 

- no correlation with 
neuropathological 
severity of 
degeneration or brain 
weight 

(91) (17 healthy 
controls below 
detection limit) 

 

15.) 
Scherling et 
al., 2013 (128) 

(mean) 
NC (29/17): 
1197/1107 
 
(mean age 
66y/65y) 

(means) 
BvFTD (22/22): 
6227/4267 
PNFA (8/10): 
4304/6347 
SD (10/6): 
6726/6405 
AD (31/17): 
2828/2972 
probable or possible 
PSP (11/10): 

- all FTD higher 
than NC (<0.001; 
validation: 
<0.001) and AD 
(<0.03; 
validation: SD 
and PNFA: 
<0.001, not 
bvFTD: 0.795) 
- SD higher than 
PSP (<0.003; 

- CDRsb (all FTD: 0.41, 
0.008 and 0.36 and 
0.002) 
- MMS (-0.33, 0.039 
and -0.55, 0.002) 
- CDRsb (bvFTD: 0.41, 
0.008; SD:0.64, 0.019; 
PNFA: 0.63, 0.011) not 
in AD and PSP 
- backward digit span (-
0.47, 0.005) 

Uman 
Diagnostics NF-
light 

- included 
validation cohort 
- CSF NfL levels 
correlated with 
disease severity in 
FTD 
- tendency for 
higher levels in SD 
versus other FTD 
phenotypes 



 

 
 

1899/2843 
CBS (9/7): 
5524/3950 

<0.007) 
- higher in AD, 
PSP, and CBS 
than NC (<0.001; 
<0.001) 

- phonemic fluency (-
0.54, 0.002/-0.44, 
0.019) 
- category fluency (-
0.56, 0.001/-0.65, 
0.001) 
- stroop color naming (-
0.41, 0.038/-0.53, 
0.012) 
- interference (-0.49, 
0.016/-0.55, 0.01) 
- gray matter density (-
0.35, <0.05) 

16.) 
Skillbäck et al., 
2014  (129) 

Clinically 
ascertained 
healthy (107): 
275 
 
(mean age 69) 

EAD (223): 360 
LAD (1194): 510 
FTD (146): 855 
DLB (114): 436 
AD+VAD (517): 660 
PDD (45): 360 
CVD (465): 701 

- all groups 
except DLB and 
PDD had 
significantly 
higher values 
than controls 
- FTD 
significantly 
higher than all 
other groups 

- age (LAD 0.28, 
<0.001; DLB 0.26, 
0.05; PDD 0.45, 0.002; 
VAD 0.19, <0.001; 
controls 0.6, <0.001 
- MMS (all <0.001; LAD 
<0.001; VAD 0.018; not 
FTD) 
- survival (<0.001) 

3 methods for 
CSF NfL 
measurements: 
(91), adapted 
version from 
(91), Uman 
Diagnostics NF-
light 

 

For correlations the coefficient r and p-values are given (r, p-value). 

AD: Alzheimer’s disease; BvFTD: behavioural variant frontotemporal dementia; CBS/D: Corticobasal syndrome/degeneration; CDRsb: Clinical 

dementia rating; DLB: dementia with Lewy bodies; EAD: early onset AD; FTD: frontotemporal dementia; LAD: late onset AD; MCI:  Mild cognitive 

impairement; MD: mixed type dementia; MMS: Mini mental status; NC: normal controls; PD: Parkinson’s disease; PDD: Parkinson’s disease with 

dementia; PNFA: Progressive nonfluent aphasia; PSP: Progressive supranuclear palsy; sCJD: sporadic Creutzfeld-Jakob disease; SD: Semantic 

dementia; SVD: Subcortical vascular dementia; SWD: subcortical white matter dementia; VAD: vascular dementia; WMC: white matter changes.  



 

 
 

 

There is variability in the assays used to quantify NfL in patients with different forms of dementia. Noteworthy, there are no studies published on 

measurements in the blood compartment so far in this condition. Nf show particularly high expression in large myelinated axons. In line with this 

observation, high CSF NfL levels were primarily found in disorders with subcortical pathology such as vascular dementia, while less increased levels 

were typically found in more cortical pathologies such as AD. Nevertheless, CSF NfL levels in AD were in general higher than in the various control 

groups and correlated with MMS in LAD and VAD. Also, NfL levels correlated with white matter lesion load and were particularly high in FTD. 

It is generally thought that tau protein (reflecting neuronal degeneration) and Aß42 (reflecting disturbances in Aß metabolism and possibly Aß 

deposition in the senile plaque) are more sensitive and specific biomarkers for differentiating AD from controls than Nf. However, the specificity of 

these molecules in dementias other than AD is not optimal. It is still unclear whether blood NfL measurements can add to the diagnosis and the 

assessment of treatment effects in patients with dementia. 

 

 

 

 

 

 



 

 
 

Table 1.4. Overview of NfL studies in amyotrophic lateral sclerosis. 

Ref. no.  Healthy 
control 
groups 
studied (n): 
NfL: [median 
(IQR), pg/ml] 

Type of disease 
studied (n): 
NfL [median (IQR), 
pg/ml] 

[NfL] in disease 
different to 
controls 

Correlations of [NfL] 
with clinical or 
laboratory measures 

Assay 
characteristics 
NfL: [median 
(IQR), pg/ml] 

Special features: 
e.g. longitudinal 
design 

1.) 
Zetterberg et 
al., 2007  (130) 

Healthy control 
individuals 
(40): 175 
(mean age: 
63) 
Unrelated 
patients with 
other 
neurological 
disorders 
(206): 277 
(mean age 63) 

ALS (79): 2110 - higher in ALS 
than healthy 
controls (<0.001) 
and reference 
patients (<0.001) 

- age in reference 
(0.022) and control 
(<0.001) group 
- sensitivity 93%, 
specificity 91% for 
diagnosis ALS versus 
healthy controls 
- survival time (-0.52, 
0.001) 
- shorter survival with 
levels above median 
(0.002) 

(91) - lower in patients 
with SOD1 
mutation (0.001) 

2.) 
Reijn et al., 
2009 (131) 

- (means) 
ALS (32): 62 
ALS-mimic 
disorders (26): 24 

- ALS higher than 
ALS-mimics 
(0.005) 

- disease duration 
(0.74, -) 

(93)  

3.) 
Tortelli et al., 
2012 (132) 

Other 
neurological 
disorders: 
CIDP (25): 
1000; (mean 
age: 61) 
OND (21, eg 
AD, MCI): 
1800; (mean 
age: 62) 
(extrapolated 

ALS (37): 5500 
(extrapolated from 
figure 1) 

- higher in ALS 
than in CIDP 
(<0.0001) or 
OND (<0.0001) 
- no difference 
between CIDP 
and OND 

- no correlation with 
age 
- higher in rapidly 
progressive patients 
(<0.006) 
- diagnostic delay (-
0.55, <0.0001) 
- ALSFRS-r score (-
0.41, 0.014) 
- progression rate 
(0.65, <0.0001) 

Uman 
Diagnostics NF-
light 

 



 

 
 

from figure 1) 
For correlations the coefficient r and p-value is given (r, p-value). 

OND: other neurological disease; AD: Alzheimer’s disease; MCI: Mild cognitive impairment; ALSFRS-r: Amyotrophic Lateral Sclerosis Functional 

Rating Scale 

 

CSF NfL levels were found consistently higher in ALS than in controls in three studies (all using different assays). CSF NfL levels also correlated with 

measures of disease activity and disease progression. The high CSF NfL levels in ALS may be related to the higher content of axonal proteins in 

large myelinated motor neurons compared to other neuronal populations. In conclusion, NfL appears a sensitive biomarker of disease severity, 

progression and potentially treatment response in ALS that clearly deserves further investigation. 

 

 

 

 

 

 

 



 

 
 

 Table 1.5. Overview of NfL studies in vascular diseases. 

Ref. no.  Healthy 
control 
groups 
studied (n): 
NfL: [median 
(IQR), pg/ml] 

Type of disease 
studied (n): 
NfL [median (IQR), 
pg/ml] 

[NfL] in disease 
different to 
controls 

Correlations of [NfL] 
with clinical or 
laboratory measures 

Assay 
characteristics 
NfL: [median 
(IQR), pg/ml] 

Special features: 
e.g. longitudinal 
design 

1.) 
Nylen et al., 
2002 (133) 

CNS vasculitis 
unlikely (40): 
855 

(means) 
CNS vasculitis (32): 
1639 

- - higher levels in 
patients with CNS 
injury than without 
(<0.001) 
- higher in patients with 
>5/ul CSF cells (<0.01) 
and increased IgG 
index (<0.01) 

(91)  

2.) 
Nylen et al., 
2006 (134) 

- SAH (44): 9035 
pg/ml 

- - no difference between 
neurosurgical clipping 
and endovascular 
coiling 
- higher in surgical 
versus no intervention 
group (<0.01), 
unfavorable versus 
favorable outcome 
(<0.01), 
parenchymatous 
versus no parench. 
lesion (<0.001) 
- long-term outcome (-
0.56, <0.001), MMS (-
0.52, 0.001), and 
NIHSS (0.50, <0.001) 

(91) - CSF sampling 
10-14 days after 
SAH 

3.) 
Jonsson et al., 
2010 (135) 

- Mild WML (15): 250 
Moderate WML (23): 
300 

- - volume of WML (0.48, 
<0.001) 

(91)  



 

 
 

Severe WML (15): 
630  

4.) 
Zanier et al., 
2011 (136) 

Non-
neurological 
patients (13): 
undetectable 

SAH (35): 643 - - higher in patients with 
cerebral ischemia than 
without (<0.01) 
- no significant 
difference regarding 
outcome 

adapted from 
(93) 

 

For correlations the coefficient r and p-value is given (r, p-value). 

SAH: Subarachnoid hemorrhage, MMS: Mini mental status; NIHSS: NIH stroke scale; WML: white matter lesions 

 

Few studies have investigated CSF NfL levels in patients with cerebrovascular ischemia. An obvious reason for this is the fact that lumbar punctures 

are not indicated in patients with stroke or transient ischemic attacks (TIA). No studies in blood samples have been performed. Interestingly, none of 

the mentioned investigations used the Uman Diagnostics NF-light assay. Two studies demonstrated increased CSF NfL levels in patients with SAH, 

partly also associated with clinical outcome. 
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1.7. Types of biomarkers and surrogate endpoints 

An expert working group convened by the National Instutute of Health defined a  

biological marker (biomarker) as a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic response to a therapeutic intervention (137). 

Biomarker applications include the following: 

1. Use as a diagnostic tool for the identification of those patients with a disease or 

abnormal condition (eg, blood glucose levels in diabetes mellitus). 

2. Use as a tool for staging of disease or classification of the extent of disease (eg, 

prostate-specific antigen concentration in prostate cancer). 

3. Use as an indicator of disease prognosis. 

4. Use for prediction and monitoring of clinical response to an intervention (137). 

The expert working group also proposed important definitions for “clinical endpoint”: a 

characteristic or variable that reflects how a patient feels, functions, or survives; and 

“surrogate endpoint”: a biomarker that is intended to substitute for a clinical endpoint. A 

surrogate endpoint is expected to predict clinical benefit (or harm or lack of benefit or 

harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific 

evidence (137). Although all surrogate endpoints can be considered biomarkers, it is 

likely that only a few biomarkers will achieve surrogate endpoint status  (137). For a 

surrogate endpoint to be used in a clinical trial, it needs to be shown that the effect of 

the intervention on the surrogate end point predicts the effect on the clinical outcome 

(138). Prentice developed criteria to validate surrogate endpoints in phase 3 clinical 

trials: 

1. The treatment must have an effect on the surrogate 

2. Treatment must have an effect on the clinical outcome 

3. The surrogate and the clinical outcome must be correlated 

4. Intervention effect on the true clinical outcome must disappear when adjusting for 

the surrogate (139). 

Several factors may explain the potential failure of surrogate endpoints: 

a) the surrogate may not be in the causal pathway of the disease process. 

b) of several causal pathways of disease, the intervention affects only the pathway 

mediated through the surrogate. 

c) the surrogate is not in the pathway of the intervention’s effect or is insensitive to its 

effect. 

d) the intervention has mechanisms of action independent of the disease process 

(138). 

These factors explain why effects on surrogate endpoints often do not predict the true 

clinical effects of an intervention (140-142). Nevertheless, the successful use of a 
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surrogate endpoint in a clinical trial could allow reduction in sample size or trial duration 

(139).  

 

 

1.8. Preliminary work of the student leading to the  experiments detailed in the 

thesis 

Electrochemiluminescence (ECL) based assays are known to be highly sensitive, 

exhibit a broad dynamic range and require small sample volume; the technology has 

demonstrated the ability to quantify levels of nucleic acids, recombinant proteins and 

bacterial and viral components in the sub-picogram range with increased precision 

compared to conventional enzyme-linked immunosorbent assay (ELISA) (143-148). 

 

Highly sensitive methods for detecting soluble biomarkers for neuro-axonal damage 

are needed in neurodegenerative diseases. I have previously developed an ECL solid-

phase sandwich immunoassay on the Meso Scale Discovery (MSD, Gaithersburg, MD, 

USA) to measure the soluble fraction of neurofilament heavy chain (NfHSMI35) in 

cerebrospinal fluid (CSF) employing the same commercially available antibodies used 

in a conventional ELISA (cELISA) (149-151). Adhering to a previously proposed 

nomenclature, the soluble fraction of NfH measured is indicated with the capture 

antibody in the superscript (149). 

The NfHSMI35 assay protocol was optimised and validated for reproducibility, precision, 

accuracy and parallelism. The analytical sensitivity (background plus three standard 

deviation (SD)) of this assay was 2.4 pg/ml. The mean intra-assay coefficient of 

variation (CV) was 4.8% and the inter-assay CV 8.4% (151). Patients with ALS (160.1 

pg/ml, n=50), mild cognitive impairment (MCI)/AD (65.6 pg/ml, n=20), GBS (91.0 pg/ml, 

n=20) or subarachnoid haemorrhage (SAH) (345.0 pg/ml, n=20) had higher CSF 

NfHSMI35 values than the reference cohort (27.1 pg/ml, n=73, p<0.0001 for each 

comparison). The reference cohort included patients who, based on extensive 

diagnostic evaluation, had no objective clinical or paraclinical signs of a neurological 

disease: tension type headache (n=17), lower back pain (n=5), psychiatric disorders 

(n=30) or miscellaneous diseases for which no neurological explanation could be found 

(n=21) (151). 

 

In a next step, employing this ECL-based immunoassay, we measured levels of the 

NfHSMI35 protein in the CSF of healthy controls (HC) and in patients with a clinically 

isolated syndrome (CIS) or Multiple Sclerosis (MS) (151, 152). In particular, we 

examined whether NfHSMI35 levels differ between MS patients and controls and between 

specific stages (relapsing-remitting versus progressive forms) or states (relapsing 
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versus stable) of disease. The main findings of this study were that CSF levels of 

NfHSMI35 increase in the course of disease evolution from CIS to definite MS and 

correlate with the Expanded Disability Status Scale score (EDSS) as clinical measure 

of disability in CIS and relapsing remitting MS (RRMS), but not in progressive stages 

(secondary progressive MS (SPMS) and primary progressive MS (PPMS)). In contrast, 

none of the CSF measures related to the immune response (CSF cell count, intrathecal 

IgG, IgM or IgA production, CSF total protein or albumin quotient as measures of the 

blood CSF barrier integrity) correlated with EDSS at any time point of MS evolution. 

In summary our results supported the utility of NfHSMI35 as a specific biomarker for on-

going neuroaxonal damage that can be quantified with high sensitivity and a broad 

dynamic measuring range, a pre-requisite for use in clinical practice (153).  

 

These findings were important, because we anticipated that further development of the 

assay in serum/plasma samples could have provided tools to measure longitudinally 

NfHSMI35 levels during disease progression as well as in clinical trials of potential 

neuroprotective drugs in diseases like MS and ALS. 

 

To date there are only very few studies on NfH in the blood compartment (154-156). 

These results await validation and I and others have previously experienced analytical 

difficulties with reliable and reproducible quantification of NfH levels in blood samples 

(characterised by the so called “hook effect” or other matrix interferences and thus lack 

of parallelism between plasma samples and standards in serial dilutions). This effect is 

most likely based on either the formation of aggregates or endogenous binding of Nf by 

antibodies and poses an important pre-analytical problem for a quantitative 

immunoassay of Nf levels (157, 158). A method for solubilising Nf aggregates by urea 

preincubation of samples has been recently proposed (159).  

 

Unfortunately, during the following months in 2011 we were not able to adapt the 

NfHSMI35 ECL immunoassay to measurements in serum or plasma samples due to 

insufficient recovery and lack of dilutional linearity. Despite several attempts to reach 

acceptable analytical performance, I finally decided not to follow this development for 

NfHSMI35 further. 

 

Nevertheless, an assay including the benefits of the ECL technology seemed a 

promising approach forNf measurements in the blood compartment. Such an assay 

could potentially provide a sufficiently sensitive tool for blood measurements in several 

chronic neurodegenerative diseases. 

 



 

45 
 

 

1.9. Specific aims 

Chapter 2 aims to compare CSF levels of NfL (UmanDiagnostics NF-light® assay) with 

those of (previously determined) NfHSMI35 in a well characterised group of 148 CIS/MS 

patients and 72 controls (152). Second, I evaluated the analytical and clinical 

performance of the UmanDiagnostics NF-light® assay and stability of its analyte (160). 

 

In chapter 3A, I aimed to determine CSF NfHSMI35 levels using the  NfHSMI35 assay I 

have developed in a subset of MS patients who had previously shown reduced NfL 

(UmanDiagnostics NF-light®) levels after natalizumab treatment (101). 

 

In chapter 3B, I aimed to assess the ability of CSF NfL (by UmanDiagnostics NF-light®) 

as a therapeutic biomarker in RRMS, by comparing levels in fingolimod-treated patients 

versus placebo, and correlating NfL levels with clinical and MRI outcomes. 

 

In chapter 4 I aimed to develop and validate a sensitive ECL-based NfL assay suitable 

for the quantification of NfL in serum at concentrations relevant to clinical settings. 

 

In chapter 5, I aimed to analyse NfL levels in longitudinally collected serum samples 

from subjects enrolled in a phase II clinical trial investigating the utility of minocycline to 

attenuate neurological deficits after spinal cord injury (SCI)  (161). I report the 

correlation of serum NfL with acute and long-term clinical outcome in these patients. 

Further, I investigated the potential of serum NfL as drug response marker of the 

therapeutic effect of minocycline in SCI. 

 

Finally, in chapter 6, my objective was to assess the ability of serum NfL to predict the 

risk of conversion from adult CIS to CDMS (defined by occurrence of a second clinical 

attack) using the largest cohort of adult CIS cases ever studied to date (n=1,047). I 

decided to use a two steps strategy by initially measuring serum NfL in the 100 patients 

with the shortest time to conversion to CDMS (fast converters (FC)), the 100 patients 

with the longest follow-up time in the absence of conversion to CDMS (non converters 

(NC)) and 100 healthy controls. I decided that only if I saw a difference in serum NfL 

levels between FC and NC serum NfL, I would have measured serum NfL in the rest of 

the cohort. 
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2. A comparative study of CSF NfL and NfH protein i n MS (104) 

 

 

2.1. Introduction 

In this chapter, I first evaluated the analytical and clinical performance of the 

UmanDiagnostics NF-light® assay and the stability of its analyte (160). Second, I 

compared the ability to discriminate between MS patients and controls of CSF levels of 

NfL (as measured with the UmanDiagnostics NF-light® assay) with previously 

determined CSF NfHSMI35 levels in a well characterized group of 148 CIS/MS patients 

and 72 controls (152). 

 

2.2. Patients and Methods 

2.2.1. Patients and CSF samples 

Samples were collected in the Department of Neurology, University Hospital Basel in 

the course of routine diagnostic measures as indicated by the treating physicians and 

after patient informed consent. The sample collection procedure, clinical measurement 

methodology and immunomodulatory treatment have been described in reference: 

(152). Eighty six patients with MS and 62 patients with a CIS were included. Patients 

were classified as having clinically definite RRMS (n=38), SPMS (n=25), or PPMS 

(n=23) by a trained neurologist (152, 162). 

The control group consisted of 72 patients who, based on extensive diagnostic 

evaluation, had no objective clinical or paraclinical signs of a neurological disease. Due 

to lack of CSF, samples from one CIS, one RRMS and one control used in NFHSMI35 

could not be assayed for NfL (table 2.1 ) (152).



 

 
 

Table 2.1. Demographic and clinical characteristics of patients and controls. 

 Controls  CIS RRMS SPMS PPMS All  

N 72 62 38 25 23 220 

Females  

(n [%])a 
44 (61.6) 50 (80.6) 25 (65.8) 13 (52.0) 10 (43.5) 142 (64.5) 

Age [years, 

median (IQR)]b  
38.2 

(26.6-46.4) 

34.2 

(26.3-43.0) 

34.3 

(28.8-46.2) 

52.8 

(46.0-58.4) 

57.8 

(40.5-64.6) 

39.8 

(29.5-49.0) 

Disease 

duration [years, 

median (IQR)]b  

- 
0.1 

(0.0-0.2) 

2.3 

(1.0-7.0) 

14.9 

(10.0-22.8) 

3.0 

(1.0-6.0) 

1.0 

(0.1-7.0) 

EDSS 

[median, IQR]c 
- 2 (1.5-2.5) 2 (1.5-3) 4 (3.5-5.75) 3 (2.5-4.5) 2.5 (2-3.5) 

Relapse at LP (n 

[%])d 
- 33 (53.2) 20 (52.6) 8 (32.0) - 61 (48.8) 

 
a There were more female CIS patients compared to controls (p=0.015), SPMS (p=0.015) and PPMS patients (p=0.002). 
b Controls, CIS and RRMS were younger and had a shorter disease duration compared to SPMS (p<0.0001 for each) and PPMS (p<0.0001 for each 

comparison). PPMS had a shorter disease duration compared to SPMS (p<0.0001). 

c Lower EDSS in CIS versus SPMS (p<0.0001) and PPMS (p<0.0001). Lower EDSS in RRMS compared with SPMS (p<0.0001) and 

PPMS (p<0.0001) and in PPMS compared with SPMS (p=0.022). 

d chi-square test: ns 
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2.2.2. UmanDiagnostics NF-light® ELISA and ECL-NfHSMI35 assay 

The UmanDiagnostics NF-light® ELISA was performed at room temperature. CSF 

samples were diluted 1:1 with sample dilution buffer to a total volume of 100µl and 

incubated with agitation (800rpm) for 1 hour in precoated anti-NFL ELISA plates. 

Thereafter, a 100 µl solution of tracer antibody (biotin anti-NfL) was added to each well 

and incubated for 45 minutes. Washing cycles were performed after all incubations. 

Detection was performed using 100µl of streptavidin-HRP incubated for 30 minutes, 

followed by another incubation with 100µl 3,3’,5,5’-tetramethylbenzidine for 15 minutes. 

A volume of 50µl stop solution (8% v/v sulphuric acid) was added to each well, and 

absorbance was read at λ490nm. The sensitivity of the NfL assay was 31pg/ml. 

The ECL-NfHSMI35 assay and basic CSF analysis has been described in my published 

work on developing a sensitive ECL based immunoassay for NfHSMI35 (151). Baseline 

demographics, disease and CSF characteristics were not significantly influenced by 

omission of one control, one CIS and one RRMS samples due to lack of material (table 

2.1., and table 2.2. ). 

 

 



 

 
 

Table 2.2. Distribution of CSF parameters in patients and healthy controls. 

 Controls CIS RRMS SPMS PPMS 

N 72 62 38 25 23 

cell count  a 

(n/mm3) ¶  

ref: ≤5 

1.0 

(0.6-1.7) 

 

4.0 

(2.3-8.9) 

* 

6.2 

(3.0-12.5) 

* 

2.0 

(0.9-5.4) 

p=0.015 

1.6 

(0.7-3.3) 

ns 

Qalb 
b 

ref: age 

adjusted¶# 

4.5 

(3.5-5.6) 

4.8 

(3.8-6.0) 

ns 

5.7 

(4.3-8.5)  

p=0.002 

5.9 

(4.6-7.5) 

p=0.01 

6.0 

(4.1-7.9) 

p=0.012 

IgG-Index ¶ 

ref: <0.7 

0.48 

(0.45-0.5) 

0.87 

(0.6-1.3) 

* 

0.92 

(0.6-1.4) 

* 

0.86 

(0.6-1.2) 

* 

0.87 

(0.7-1.1) 

* 

IgG IF 

(%)¶ 
<10% 

19.0 

(0.0-46.9) 

* 

22.2 

(0.0-49.6) 

* 

22.0 

(0.0-39.3) 

* 

20.5 

(0.0-33.0) 

* 

IgA IF 

(%)¶ 
<10% 

0.0 

(0.0-0.0) 

p=0.008 

0.0 

(0.0-0.0) 

* 

0.0 

(0.0-0.0) 

p=0.001 

0.0 

(0.0-0.0) 

p=0.012 

IgM IF 

(%)¶ 
<10% 

0.0 

(0.0-0.0) 

ns 

0.0 

(0.0-0.0) 

* 

0.0 

(0.0-0.0) 

p=0.001 

0.0 

(0.0-0.0) 

p=0.015 



 

 
 

OCB+ c 

(n (%)) 
0 (0) 

48 (77.4) 

* 

35 (92.1) 

* 

18 (72.0) 

* 

18 (78.3) 

* 

 

¶ Values represent median (IQR), p values versus controls are displayed, * denotes p<0.0001; ns: not significant 

Cell count: white cell count in CSF, Ref: upper reference value. OCB+: oligoclonal bands in CSF, evidence for intrathecal IgG synthesis. 
# age-dependent upper limit of Qalb calculated by the formula: Qalb ref: (age/15+4) x10-3. 
a Higher CSF cell count in CIS versus SPMS and PPMS (p=0.003 and <0.0001). Higher cell count in RRMS versus SPMS and PPMS (p<0.0001 for 

both). 
b Lower Qalb in CIS versus RRMS and SPMS (p=0.025 and 0.021). Lower Qalb in stable RRMS (5.7 (3.2) versus RRMS in relapse (7.8 (3.7), p=0.009). 
c OCB were less frequently detected in SPMS compared to RRMS (p=0.042).
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2.2.3. Precision of the NF-light® ELISA and stability of NfL 

I evaluated reproducibility (intra-assay variability) and repeatability (inter-assay 

variability) of the NF-light® ELISA using 4 native CSF samples in 5 consecutive assays 

on independent days. I tested the stability of NfL at room temperature (RT), 4°C and 

compared this to samples stored at -80°C. Three aliquoted CSF samples were frozen 

at -80°C. The aliquots were thawed on day 0, 3 hours, 1, 4 and 8 days in advance of 

measurement and stored at RT or 4°C until analysis. I normalized the measured 

signals to the signal of the day 0. I analyzed three CSF samples for stability during 

freeze-thawing cycles (151). The samples underwent 1, 2, 3, or 4 freeze-thawing 

cycles and I normalized the signal to the sample freeze-thawed once. Samples were 

refrozen for 24 hours after each thawing step. Due to limited volume, samples for these 

experiments were chosen based on their CSF NfL levels (high, medium and low NfL 

levels) from patients with other diagnoses than CIS, MS or control patients. 

 

2.2.4. Statistical evaluation 

Continuous variables were described by their median and interquartile range (IQR), 

and categorical variables by numbers and percentages. Comparison of basic 

quantitative CSF parameters across groups was performed using the Kruskal-Wallis 

test, and pair wise post-hoc comparisons using the Mann-Whitney U test. Comparisons 

of categorical variables were done using the chi-square test. CSF levels of NfL, Qalb 

and other basic CSF parameters were log-transformed to achieve a normal distribution 

for subsequent analyses. Yet, for simplicity of notation, I used the original terms of CSF 

parameters when reporting and discussing results. To control for age as a potential 

confounding factor an analysis of covariance with age as a covariate and disease stage 

group as a fixed factor was performed. Group-specific levels of NfL and other 

biomarkers were expressed as geometric means with 95%-confidence intervals. For 

log-normal variables, the geometric mean equals the median. Partial correlations 

adjusted for age were computed by first regressing the two variables on age and then 

determining the Spearman rank correlation coefficient (rs) of the respective residuals. 

Receiver operating characteristic (ROC) curves were derived from logistic regression 

(with age as a covariate) to compare the discriminatory power of NfL and NfHSMI35 

between CIS/different stages of MS and healthy controls. The area under the curve 

(AUC) was calculated for NfL and NfHSMI35 and compared using the method of DeLong 

et al (163). A two-sided p-value < 0.05 was considered as significant. P-values of post 

hoc comparisons were adjusted using a Bonferroni correction. All statistical analyses 

and graphs were prepared using SPSS (Version 15.0 SPSS, Chicago, IL) and Graph 

Pad Prism 5.02 for Windows (GraphPad Software, San Diego, CA). 
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2.3. Results 

2.3.1. Analytical performance of the NfL assay and stability of the analyte 

The mean coefficients of variation (CV) of duplicates within given assays were 5.6% 

(5680 pg/ml), 3.1% (564 pg/ml), 5.5% (242 pg/ml) and 3.0% (156 pg/ml). In-between-

assay variation was 8.9% (5680 pg/ml), 7.3% (564 pg/ml), 11.3% (242 pg/ml) and 

13.5% (156 pg/ml). 

Then, I tested the stability of the NfL protein at room temperature (RT) and 4°C as 

compared to reference aliquots stored at -80°C. There was no significant change in 

measured concentration in samples stored at RT and at 4°C for up to 8 days (RT: day 

8: 1.04±0.053 (mean normalized ratio between day 0 and day 8±SD), p=1.0 and 4°C: 

day 8: 1.05±0.051, p=0.5) (figure 2.1. ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Stability of the NfL protein at RT (left) and 4°C (right). 

Three CSF samples (S. 1-3) were thawed on day 0 (0 hours, reference), 3 hours in 

advance of measurement (3 hours), and 1 (1 Day), 4 (4 Days) and 8 days (8 Days) 

before the experiment and stored at RT and 4°C. There was no significant change in 

measured concentration in samples stored at RT and at 4°C up to 8 days (RT: day 8: 

1.04±0.053 (mean normalized ratio between day 0 and day 8±SD), p=1.0 and 4°C: day 

8: 1.05±0.051, p=0.5). Mean calculated pg/ml of duplicates (SD) are displayed 

 

 

Next, I analyzed three CSF samples for stability during freeze-thawing cycles. There 

was again no significant effect of freeze-thawing up to 4 times on the measured 

concentrations in three CSF samples (4 freeze-thawing cycles: 1.03±0.026, p=0.25) 

(figure 2.2. ). 
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Figure 2.2.  Stability of CSF NfL during freeze-thawing cycles. 

Three CSF samples (S. 1-3) underwent 1, 2, 3 or 4 thawing cycles and the measured 

concentrations were normalized to the sample freeze-thawed once, without any 

relevant effect of freeze-thawing (4 freeze-thawing cycles: 1.03±0.026, p=0.25). Mean 

calculated pg/ml of duplicates (SD) are displayed. 

 

 

2.3.2. NfL levels in CSF as a  function of clinical features and age 

CSF NfL levels were increased (F4, 215=26.89, p<0.0001) in all forms and stages of MS 

compared to controls (p<0.0001 for all comparisons). Levels of CSF NfL were 2.8, 4.4, 

2.9 and 3.7 fold higher in CIS, RRMS, SPMS and PPMS, respectively, compared with 

controls. A strong correlation with age was seen for NfL in controls (r=0.61, p<0.0001), 

while this association was absent in CIS (r=0.06, p=0.778), RRMS (r=0.11, p=0.417), 

SPMS (r=0.13, p=0.444) and PPMS (r=-0.08, p=0.694). 

Subsequent analysis of covariance with age confirmed the previous highly significant 

group differences between CIS and all stages of MS in comparison to controls (F4, 

214=26.05, p<0.0001; p=0.001 for SPMS, p<0.0001 for CIS, RRMS and PPMS). 

Moreover, this analysis also revealed a difference between RRMS and SPMS 

(p=0.025) (figure 2.3. ). 
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Figure 2.3.  NfL levels in the controls, patients with CIS, and patients with MS. 

Geometric mean and 95% confidence interval are displayed (and box and whiskers: 

median and 10-90% percentile). CIS (765.8 pg/ml), RRMS (1200.8 pg/ml), SPMS 

(784.6 pg/ml), and PPMS (1007.0 pg/ml) showed higher CSF NfL levels than controls 

(271.9 pg/ml) and RRMS higher values than SPMS (p=0.025). Dots represent 

individual samples. P Values are adjusted for age and corrected by Bonferroni method. 

 

 

2.3.3. Correlations of NfL with CSF markers of inflammation 

In CIS and RRMS levels of NfL correlated with CSF cell count (rs=0.27, p=0.016 and 

rs=0.43, p=0.01) and albumin quotient (qAlb) in CIS, RRMS and SPMS (rs=0.28, 

p=0.025, rs=0.49, p=0.002 and rs=0.67, p<0.0001). CIS and RRMS patients with a CSF 

cell count >5 cells/mm3 showed almost twice higher NfL concentrations as compared to 

those with normal CSF cytosis (>5 cells/mm3, n=47: 1252 pg/ml [899-1744] versus ≤5 

cells/mm3, n=53: 684 pg/ml [544-859]; p=0.0078). In contrast, no such correlation could 

be observed in progressive MS.  
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IgG index, and intrathecal fractions of the immunoglobulin subclasses were not related 

to CSF NfL levels. Similarly, levels of NfL were not influenced by presence or absence 

of OCB in CIS/MS (OCB+, n=119: 908.3 pg/ml [770.1-1097.9]; OCB- , n=29: 869.5 

pg/ml [604.7-1250.6], p=0.983).  

 

2.3.4. Correlations of NfL with disability and disease activity 

Age-corrected NfL levels correlated with EDSS score in patients with relapsing disease 

(CIS and RRMS: rs=0.31, p=0.002), but not in progressive stages of MS (SPMS and 

PPMS: rs=-0.18, p=0.218). There was no significant correlation between any of the 

inflammation-related CSF markers (Qalb, CSF cell count, OCB positivity, IgG index, 

IgGIF, IgAIF, IgMIF) and EDSS (data not shown). 

Patients with a relapse at the time of lumbar puncture tended to have higher NfL values 

(n=61: 1070 pg/ml [818-1401]) than those in remission (n=64: 734 pg/ml, [598-900]) 

(p=0.054). Similarly, the levels of NfL in patients with relapses due to spinal cord 

pathology was nearly double the levels seen in patients with relapses due to cerebral 

lesions (n=16: 1728 pg/ml [924-3229] vs. n=45: 906 pg/ml [674-1217], p=0.037). As 

previously reported, Qalb levels were higher during relapses (7.0) than in stable disease 

(5.2) (p=0.012) only in RRMS, while  all other inflammation-related CSF markers were 

not influenced by the presence of relapses at the time of spinal tap (152).  

 

2.3.5. Discriminatory power of NfL and NfHSMI35 between CIS/MS and controls and 

relationship of NfL and NfHSMI35 

Figure 2.4 shows ROC plots of NfL and NfHSMI35 in CIS and MS (RRMS, SPMS and 

PPMS) patients. The discriminatory power of NfL was greater than that of NfHSMI35 in 

CIS patients (figure 2.4. , left)  and RRMS, SPMS and PPMS together (figure 2.4., 

right) (CIS: AUC 0.83 versus 0.67, p=0.001; all MS patients (RRMS, SPMS, PPMS): 

AUC 0.91 versus 0.85, p=0.035). In separate analyses for RRMS, SPMS and PPMS, 

the differences between NfL and NfHSMI35 did not reach significance (RRMS: p=0.273, 

SPMS: p=0.480 and PPMS: p=0.308). 
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Figure 2.4. ROC plots of NfL and NfHSMI35 in CIS and MS patients versus controls. The 

discriminatory power of NfL was greater than that of NfHSMI35 in CIS patients (AUC 0.83 

versus 0.67, p=0.001) and in all MS patients (RRMS, SPMS, PPMS) grouped together 

(AUC 0.91 versus 0.85, p=0.035). 

 

There was a highly significant correlation of NfHSMI35 and NfL in controls (r=0.40, 

p<0.0001), CIS (r=0.44, p<0.0001), RRMS (r=0.57, p<0.0001) but not SPMS (r=0.23, 

p=0.163) or PPMS (r=0.40, p=0.061). After age correction, this relationship was no 

longer observed in controls (rs=0.058, p=0.627), persisted in CIS (rs=0.46, p<0.0001) 

and RRMS (rs=0.56, p<0.0001)  and was still absent in SPMS (rs=0.31, p=0.128) and 

PPMS (rs=0.41, p=0.054). 

 

2.4. Discussion 

The primary findings of this comparative study were that NfL proved to be a stable 

analyte, and its assay system used here is more sensitive than that for NfHSMI35. NfL is 

considered to represent the most abundant and also most soluble subunit, but there 

have been concerns about its susceptibility to proteases, especially in the protease-rich 

CSF or blood (160). Several groups, have therefore previously concentrated on NfH, as 

a biomarker for axonal damage, as its phosphorylated state is assumed to be more 

stable (149, 164-166). In the present study, CSF NfL levels were demonstrated to be 

stable up to eight days at room temperature and for up to four freeze-thawing steps 

(93, 132). These results are well in line with my previous findings of NfHSMI35 levels in 

CSF being stable over prolonged storage times and repeated freeze-thawing steps 

(151). We conclude that there is no basis to prefer NfH over NfL as biomarker of axonal 

damage due to concerns of sample stability. 

 

Persisting neurological deficits in MS likely emerge as a consequence of accumulating 

nerve injury starting in the very early phase of the disease. Confirming my previous 
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NfHSMI35 results, levels of NfL were increased already in CIS and in all other stages of 

the disease as compared with controls. Interestingly, differences between CIS and MS 

patients and controls were more pronounced for NfL than for NfHSMI35 (figure 2.3. ) 

(152). The increased discriminatory power of the commercial NfL ELISA as compared 

with the ECL-NfHSMI35 assay, especially in CIS stages, was also reflected by the results 

of the ROC curve analyses. The higher abundance of NfL and/or better performance of 

the two monoclonal antibodies (versus the polyclonal detection antibody in the ECL-

NfHSMI35 assay) included in the UmanDiagnostics NF-light® assay seem to outweigh the 

known high sensitivity and higher dynamic range of the ECL technology used in the 

NfHSMI35 assay (95) (see also chapter 1). 

In my previous study, NfHSMI35 showed a strong correlation with age in controls (rs=0.5, 

p<0.0001) and in patients with a CIS (rs=0.5, p<0.0001); the correlation was weaker in 

RRMS (rs=0.35, p=0.027) and absent in SPMS and PPMS (152). In this study, the 

correlation between age and NfL was even more pronounced in controls (rs=0.61, 

p<0.0001), but absent in all other stages of disease. Both NfHSMI35 and NfL findings are 

well in line with a recent report on CSF NfH and NfL levels showing that  NfH (r=0.71, 

p<0.005) and NfL (r=0.93, p<0.001) were strongly correlated with age in controls. In 

patients with CIS, this correlation was less strong for NfH (r=0.33, p<0.01) and absent 

for NfL levels (r=0.15, p>0.05) (102) (see chapter 1). I therefore hypothesize that 

disease related neurodegenerative processes outweigh physiologic, age-related 

changes of NfL clearance even in the earliest stages of MS and that this effect is more 

evident in NfL given the higher sensitivity of this assay compared to the NfHSMI35. 

In the above mentioned recent work by Khalil et al., NfH and NfL levels in CSF of CIS 

patients significantly correlated with CSF cell count, IgG index and Qalb. Therefore, my 

results suggest that CSF NfL levels not only reflect chronic neurodegenerative 

processes but also are linked to more acute inflammatory processes (102). NfL levels 

correlated with the extent of blood-CSF barrier damage in CIS, RRMS and SPMS, and 

with CSF inflammatory cell counts in CIS and RRMS. Further, NfL levels determined at 

the time of a relapse, especially during spinal cord related relapses were highly 

increased. This further supports the concept that  Nf release in MS reflects two parallel 

neurodegenerative processes: 1) a chronic brain-diffuse neuroinflammation; 2) an 

acute focal inflammatory activity in the course of plaque formation.  

 

Similarly to  my findings on NfHSMI35, NfL levels correlated with disability in earlier (CIS 

and RRMS) but not in progressive (SPMS and PPMS) stages (152). Conversely, none 

of the other inflammatory CSF markers correlated with the EDSS. Likewise NfL and 

NfHSMI35 concentrations in CIS and RRMS (but not controls) showed a robust 

correlation, whereas this was not seen in progressive disease. It remains speculative, if 
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the relatively small sample number of patients in progressive MS, the difficulty in 

quantifying neurological deficits by the EDSS, or a dissociation of liberation of different 

Nf subunits in progressive MS have contributed to these findings. In addition, a number 

of biological mechanisms may act over time to change Nf bioavailability and 

disproportionally distort correlations between different Nf isoforms or clinical measures. 

These include: 1) the formation of aggregates which may reduce Nf detection and 2) 

the raising levels of autoantibodies against NfL which may have a clearing effect of 

circulating proteins (157-159).     

 

NfL levels in CSF have been reported to be higher in different stages of MS compared 

to healthy controls and in relapse versus remission (92, 97) (see chapter 1). Previous 

studies also reported relatively weak correlations of NfL levels with the EDSS (96, 98, 

167) and, in fewer studies, with age in controls (91). Teunissen and colleagues 

performed the only study so far investigating NfL and NfH levels in all stages of MS and 

control groups. NfL was determined by the Uman-Diagnostics NF-light® ELISA 

(reagents) and NfH by a modified conventional ELISA assay (100, 149). Similarly to my 

findings, NfL was increased in CIS and all stages of MS and, after age correction, 

correlated weakly with the EDSS in CIS and MS (r=0.192, p<0.05). Patients in relapse 

also displayed higher levels than those in remission (p=0.04). Differences for NfH were 

less pronounced than previously reported by our group. Information regarding 

correlation of NfL and NfH and/or age in controls and separate stages of MS were not 

given and performance of the NfL versus the NfH assay was not described (100, 152). 

 

Limitations of this study include the relatively small number of patients (especially 

SPMS and PPMS) and lack of follow-up data and samples. Furthermore, I did not have 

access to CSF samples from healthy controls, but only to samples from individuals who 

did not have any objective clinical or paraclinical findings, but anyway needed to 

perform a lumbar puncture. Also I was not able to choose age matched controls and 

had to apply statistical correction for age. Finally, conventional and advanced MRI data 

were not available. 

Taken together my results confirm and expand on previous findings of Nf as 

quantitative markers of neurodegeneration in CSF. NfL and NfHSMI35 are both stable 

proteins, an important prerequisite for biomarkers. It is important to note, that based on 

my findings, we cannot conclude that NfL is a superior analyte over NfH in general. 

Some of my results are likely to reflect the properties of the assays used and not wholly 

the properties of the proteins. Rather, in comparison to the very sensitive ECL-NfHSMI35 

assay, the NF-light® ELISA differentiates better between health and disease, especially 

in the CIS stage. All my analyses were performed in CSF, conversely, serum Nf 
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measurements would be the most relevant for clinical practice, an aim so far reached 

more frequently for analyses of NfH (154, 159, 168, 169) as compared to serum NfL 

(170). Based on this, further development of an NfL assay including the benefits of the 

ECL technology seemed a promising approach towards NfL measurements also in 

serum/plasma samples. These findings support the role of Nf as a useful measure of 

neurodegeneration and their potential usefulness as surrogate measure for treatment 

studies in MS.  
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3. CSF NfL and NfH as therapy response biomarkers i n multiple sclerosis 

 

 

3A. NfL and NfH as therapy response markers to nata lizumab (171) 

3.1. Introduction  

Increased NfL and NfH levels have been found in all stages of MS with the highest 

levels observed during relapses and in the presence of Gd+ lesions on MRI (96, 97, 

100, 152). Natalizumab binds to α4β1-integrin, preventing lymphocyte transmigration 

into the CNS and is approved as monotherapy for RRMS (172). 

The UmanDiagnostics NF-light® assay uses two highly specific non-competing 

monoclonal antibodies to quantify NfL in human body fluids (95). A recent study 

employed this assay in patients with RRMS showed that natalizumab treatment 

normalized CSF NfL levels (101). As pointed out in the introduction, we had developed 

a sensitive ECL-based solid-phase sandwich immunoassay for NfHSMI35 in CSF (151).  

The aim of this study was to measure CSF NfHSMI35 levels using our ECL based assay 

and compare these with CSF NfL levels in a subset of the patients who had previously 

shown significantly reduced NfL levels after natalizumab treatment (101).   

 

3.2. Patients and Methods 

3.2.1. Patients, CSF samples and Nf assays 

CSF was consecutively collected from 30 patients by lumbar spinal taps before 

(preNat) and after (postNat) 12 months of natalizumab treatment (all samples from the 

Sahlgrenska Academy, University of Gothenburg that were included in (101)). All 

patients (median age 35.0 (IQR 28.8-40.5) years; disease duration 6.5 (4.0-9.3) years, 

EDSS 3.5 (2.0-6.0)) were in the RRMS stage of the disease. CSF NfHSMI35 levels were 

determined by ECL-based solid-phase sandwich immunoassay (151). CSF NfL levels 

were measured with the UmanDiagnostics NF-light® ELISA as described in (101). The 

investigator who conducted the NfHSMI35 measurements had no access to the clinical 

data.  

 

3.2.2. Standard Protocol Approvals, Registrations, and Patient Consents  

Samples were collected after written patient informed consent and the study was 

approved by the regional ethical board of Uppsala University, Sweden. 

 

3.2.3. Statistical evaluation 

Nf levels are described by median and IQR and compared by Wilcoxon matched pairs 

test or Mann-Whitney U test. Correlation analysis was done by Spearman rank 
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correlation coefficient (r). Partial correlations adjusted for age were computed by first 

regressing the two variables on age and then determining the Spearman rank 

correlation coefficient (rs) of the respective residuals. A two-sided p-value < 0.05 was 

considered as significant. All statistical analyses and graphs were prepared using 

SPSS (Version 15.0 SPSS, Chicago, IL) and Graph Pad Prism 5.02 for Windows 

(GraphPad Software, San Diego, CA). 

 

3.3. Results 

3.3.1. Effect of natalizumab treatment 

22/30 patients (73.3%) had lower NfHSMI35 levels in postNat compared with preNat 

(median 32.4 (IQR 22.5-44.8) pg/ml vs. 27.4 (21.0-34.7) pg/ml, p=0.002, figure 3.1. ). 

In comparison 27/30 (90%) patients had lower NfL levels in postNat compared with 

preNat (820 (405-2130) pg/ml vs. 375 (293-575) pg/ml, p<0.0001, figure 3.1. ).  

 

 

Figure 3.1.  CSF NfHSMI35 (left) and NfL (right) levels before (PreNat) and after 

natalizumab treatment (PostNat). 

22/30 patients (73.3%) had lower NfHSMI35 levels in postNat compared with preNat 

(median 32.4 (IQR 22.5-44.8) pg/ml vs. 27.4 (21.0-34.7) pg/ml, p=0.002) (left). In 

comparison 27/30 (90%) patients had lower NfL levels in postNat compared with 

preNat (820 (405-2130) pg/ml vs. 375 (293-575) pg/ml, p<0.0001) (right).  

 

3.3.2. Age association 

NfHSMI35 showed a moderate correlation with age at both time points (preNat: r=0.38, 

p=0.038; postNat: r=0.399, p=0.029). Conversely, this was not seen for NfL (preNat: 

r=-0.07, p=0.73; postNat: r=0.20, p=0.299). 

 

3.3.3. Disability and disease activity 
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NfHSMI35 and NfL did not correlate with EDSS score after age correction at either of the 

two time points (NfHSMI35: preNat: rs=0.29, p=0.123; postNat: rs=0.05, p=0.794; NfL: 

preNat: rs=0.001, p=0.997; postNat: rs=0.058, p=0.761). 

Eight of the 30 patients experienced a relapse within 3 months prior to preNat and 3 

patients had a relapse whilst receiving natalizumab prior to sampling (postNat) (one 

patient experienced a relapse prior to both samplings). NfHSMI35 levels were significantly 

higher in preNat patients experiencing a relapse (47.7 pg/ml, n=8) versus those in 

remission (27.6 pg/ml, n=22, p=0.001), whereas this difference was not significant for 

NfL (relapse: 1055 pg/ml, remission: 725 pg/ml, p=0.256). The duration since onset of 

relapse and NfHSMI35 correlated (R=0.73, p=0.04); this was less clear for NfL (R=0.64, 

p=0.091). 

After exclusion of the 10 patients experiencing a relapse in the 3 months prior to or 

after starting natalizumab, median NfL levels dropped from 830 pg/ml to 365 pg/ml 

(p=0.0002) after natalizumab treatment. This was less clear for NfHSMI35 levels (preNat: 

28.3 pg/ml; postNat: 26.9 pg/ml, p=0.086), i.e. 90% of the patients experienced a 

reduction of NfL, whereas this was only seen in 65% of the patients for NfHSMI35. Both 

NfL and NfHSMI35 levels in the 10 patients experiencing a relapse were clearly lower in 

postNat compared with preNat (775 pg/ml versus 550 pg/ml, p=0.013 and 45.6 pg/ml 

versus 32.2 pg/ml, p=0.013). 

 

3.3.4. Relationship of NfL and NfH SMI35 in preNat and postNat 

NfL levels in preNat correlated with NfL levels in postNat (r=0.59, p=0.001). This 

relationship was more pronounced for NfHSMI35 (r=0.73, p<0.0001). After age 

correction, NfL and NfHSMI35 levels in preNat correlated (rs=0.38, p=0.037) while this 

was not seen in postNat (rs=0.25, p=0.179). 

 

3.4. Discussion 

Persisting neurological deficits in MS likely emerge as a consequence of accumulating 

axonal injury starting in the very early phase of the disease. Due to the lack of reliable, 

quantitative biomarkers, the effect of immunomodulatory treatments on neuro-axonal 

damage and degeneration has been difficult to assess. Increased CSF levels of Nf 

reflect on-going axonal deterioration, the culprit of disability development in MS. 

Several other body fluid biomarkers mirror different parts of the actual immune activity 

in MS. In comparison with these inflammatory biomarkers, the therapeutic impact of 

immunomodulatory drugs on Nf levels adds essential information about the effects on 

neuro-axonal damage. 
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A recent study in 92 patients with RRMS showed that natalizumab treatment for 6-12 

months reduced NfL levels from a mean of 1300 pg/ml to 400 pg/ml (p<0.0001). Post 

natalizumab treatment values were similar to levels from healthy subjects (350 pg/ml) 

(101). In this study the mean NfL concentration in patients with a recent relapse was 

2300pg/ml (n=30), as compared to 860pg/ml in patients in remission (n=62, p<0.038). 

Importantly, when analyzing exclusively the patients in remission, NfL levels were still 

significantly reduced following natalizumab treatment (p<0.001). I confirmed the 

reduction in CSF Nf levels after natalizumab treatment by independently measuring 

CSF NfHSMI35 in a subset of 30 patients from this cohort (p=0.002). Despite losing 

significance for the reduction of NfHSMI35 after excluding 10 of the 30 patients that 

experienced a relapse within 3 months of sampling, these results support and confirm 

mitigation of neuro-axonal damage or degeneration by natalizumab treatment. 

Of note, the NfL measurements seemed to be more treatment responsive than 

NfHSMI35: the mean post-treatment reduction of NfL was 45% as opposed to 11% for 

NfHSMI35. This suggests that measurements of NfL could be superior over NfHSMI35 to 

detect treatment effects in the CSF of MS patients. 

Previous studies have reported relatively weak correlations of NfL with the EDSS (98) 

and with age in controls (91). Similar findings have been reported for NfH in CSF of MS 

patients (152). Sample access in this study was limited to 30 CSF pairs and the follow-

up was limited to 12 months. Furthermore, we need to remember that measured Nf 

values likely reflect the rate of on-going axonal destruction rather than established 

cumulative damage, and this may well represent a possible explanation for the lack of 

correlation between the investigated Nf proteins and EDSS scores. 

Limitations of this work include availability of only a relatively small subfraction of 

samples from the original study (101) and the lack of imaging data. Because high 

disease activity is the main indication for treating patients with natalizumab and a 

parallel placebo group was missing, regression to the mean cannot be excluded as an 

additional effect. 

Taken together, I confirmed CSF Nf as promising candidates to measure neuro-axonal 

damage or degeneration in MS treatment trials. In comparison to the ECL-NfHSMI35  

assay, the responsiveness of the NF-light ELISA to natalizumab treatment was more 

pronounced, suggesting that the UmanDiagnostics NF-light® assay should be 

considered the preferred assay for future investigations. 
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3B. Fingolimod reduces CSF NfL levels in relapsing multiple   

 sclerosis (173) 

 

3.5. Introduction 

The effect of immunomodulatory treatments on neuroaxonal damage and degeneration 

in MS has been difficult to assess, in part, due to the lack of reliable, quantitative 

biomarkers. 

Fingolimod (Gilenya™, Novartis Pharma AG), a sphingosine-1-phosphate receptor 

modulator, is the first oral therapy approved for the treatment of RRMS. Preclinical 

findings  (174) and consistent effects on brain atrophy observed in MS clinical trials 

(175-177) suggest fingolimod has potential neuroprotective properties.  

In this study I assessed the reliability of CSF NfL, as a therapeutic biomarker in RRMS, 

by comparing levels in fingolimod-treated patients versus placebo, and correlating NfL 

levels with clinical and MRI outcomes. 

 

3.6. Methods 

This was a post-hoc investigation of NfL in CSF samples collected at baseline and 

Month-12 in a subgroup of RRMS patients participating in the 2-year, placebo-

controlled, phase III FREEDOMS study (ClinicalTrials.gov number, NCT00289978), 

that evaluated fingolimod at the doses of 0.5mg and 1.25mg, once-daily (176). 

Provision of CSF samples was an optional component of the FREEDOMS study 

protocol. Definitions and methodologies of clinical and MRI assessments, protocol 

approvals and registration details, have been previously described (176). The study 

was approved by the local Institutional review Boards. All patients provided written 

informed consent. 

CSF samples were available from 36 consenting patients (0.5mg, n=9; 1.25mg, n=15; 

placebo, n=12). I measured CSF NfL levels using the Uman Diagnostics NF-light® 

ELISA kit (Umeå, Sweden). The assay was conducted blinded to the clinical data and 

treatment allocation (101, 104, 171). Inter- and intra assay variability (CV) in three 

longitudinal control samples were below 15%. 

 

Statistical analysis 

Variables are described as medians (interquartile range) or numbers and percentages. 

The Mann-Whitney test was used for between group comparisons (0.5mg, 1.25mg and 

pooled fingolimod-treated [0.5mg and 1.25mg] versus placebo). The Wilcoxon matched 

pairs test was used to evaluate longitudinal comparisons. Correlations were analyzed 

using the Spearman correlation methodology on the pooled fingolimod-treated (0.5mg 

or 1.25mg) patient group. A two-sided p-value <0.05 was considered significant. All 
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analyses were conducted using SPSS (version 20, Chicago, IL) and GraphPad Prism 

5.04 (GraphPad Software, San Diego, CA). 

One patient discontinued from the fingolimod 1.25mg group due to an adverse event 

(increased liver enzymes) after 6.4 months on treatment. Although month-12 CSF 

sample was available from this patient, considering the short duration on treatment, the 

data of this patient was included only in the primary but not the correlation analyses. 

 

3.7. Results 

Baseline and on study characteristics for the 36 patients evaluated in this study, are 

presented in Table 3.1 (A-G) . The median time since onset-of-the-last relapse to 

baseline was 159 days (122-277). During the study, three patients on placebo 

experienced a total of five relapses. Two patients in the fingolimod groups reported one 

confirmed relapse each, and one patient in the fingolimod 1.25mg group experienced 

two confirmed relapses. One patient in the placebo group had a relapse with onset 13 

days prior to CSF sampling at Month-12. Fingolimod-treated patients had better clinical 

and MRI outcomes versus placebo at Month-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 
 

Table 3.1. Baseline and month 12 results 

 Fingolimod 

0.5 mg 

N=9 

Fingolimod 

1.25 mg 

N=15 

Placebo 

N=12 

A] Demographics  

Age, years   29.0 (25.5 – 39.0) 40.0 (32.0 – 42.0) 37.5 (27.8 –50.0) 

Gender: females,  

n (%) 

7 (77.8%) 8 (53.3%) 6 (50.0%) 

B] Relapses # 

Previous 2 years   2.0 (1.0 –2.5) 2.0 (1.0 – 2.0) 2.0 (1.0 –3.0) 

BL to M12 (n)* 1 3 5** 

C] T2 volume (mm 3) 

BL 
1966  

(582 – 3754) 

1957  

(1170 – 5153) 

1858  

(479 – 6438) 

M12 
2040 

 (635 – 3554) 

1828 

 (1127 – 5159) 

2352  

(830 – 6885) 

Change 
-52  

(-210 – 53) 

6  

(-89 – 60) 

318  

(-30 – 1213) 

D] new enlarging T2 lesion count  

M12 0 (0 – 3) 0 (0 – 1.0) 4.5 (0.3 – 11.0) 

E] Gd+ T1 lesion count  

BL 0 (0 – 1.0) 0 (0 – 1.0) 0 (0 – 1.8) 

M12 0 (0 – 0) 0 (0 - 0) 0 (0 – 1) 

Change 0 (-1 – 0) 0 (-1.0 – 0) 0  (-0.8 -0.8) 

F] Brain volume  

BL normalized  

brain volume (mm3) 

1596 (1507 – 1634) 1538 (1481 – 1585) 1522 (1481 – 1569) 

PBVC (%): BL-M12 -0.6 (-0.8 – 0.5) 0.04 (-1.1 – 0.2) -0.4 (-0.7 – -0.1) 

PBVC (%): BL-M24  

 

-0.3 (-1.1 – -0.2) -0.2 (-1.3 – -0.1) -0.8 (-1.6 – -0.0) 

Values are median (interquartile range, IQR) unless indicated otherwise. BL: Baseline;; 

Gd+:gadolinium enhancing; M12: month 12; PBVC: Percentage brain volume change; * 

Confirmed relapses; ** Two patients experienced two relapses and one patient one 

relapse.# Acute relapses were defined as those starting within 30 days before CSF 

sampling 
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3.7.1. Effect of fingolimod treatment on NfL levels (Figure 3.2. ) 

NfL levels at baseline were comparable across the treatment groups (0.5mg: 644pg/ml; 

1.25mg: 659pg/ml; pooled fingolimod 0.5/1.25mg: 652pg/ml; placebo: 886pg/ml, p-

value [fingolimod vs. placebo] =0.619, 0.495 and 0.481 respectively). By Month-12, 

median NfL levels had decreased significantly, as compared to baseline in the 

fingolimod treated groups (0.5mg: 401pg/ml [37.7% reduction], p=0.028; 1.25mg: 

321pg/ml [51.3% reduction], p=0.017; pooled fingolimod 0.5/1.25mg: 335pg/ml [48.6% 

reduction], p=0.001), while the reduction in the placebo group between baseline and 

month 12 was not significant (738pg/ml [16.7% reduction], p=0.433). At month-12, NfL 

levels were lower in the pooled fingolimod group than placebo (p=0.022). 

 

 

 

Figure 3.2. NfL levels at baseline and after 12-months, cross-sectional analysis. 

NfL levels at baseline; pooled fingolimod 0.5/1.25mg: 652pg/ml; placebo: 886pg/ml, 

p=0.481. At 12 months, NfL levels pooled fingolimod group: 335pg/ml; placebo: 738 

pg/ml, p=0.022.                          
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NfL: neurofilament light chain in CSF; * Mann-Whitney test; # Wilcoxon matched pairs 

test: baseline versus month-12. Dots represent individual samples. Box and whiskers 

plotted according to the Tukey method. 

 

3.7.2. Evaluation of NfL outliers (Figure 3.3. A-C ) 

Four patients, one patient each in the 

placebo and fingolimod 0.5mg groups 

and two patients in the fingolimod 

1.25mg group, showed extreme 

changes in NfL levels at Month-12 

compared with baseline. The overall 

results were not affected by inclusion 

or exclusion of these outlier patients in 

the analysis.  

Patients W (Figure 3A ) and X (Figure 

3B) in the fingolimod groups showed a 

marked reduction in NfL levels at 

Month-12 versus baseline. These were 

paralleled by clinical and paraclinical 

improvements over the 12-month 

observation period. Patient Y (Figure 

3B) experienced a marked increase in 

NfL levels, paralleled by two relapses, 

an increase in Expanded Disability 

Status Scale (EDSS) score and T2 

lesion volume. This patient 

subsequently discontinued from the 

study drug after 6.4 months due to an 

adverse event. Patient Z (placebo; 

Figure 3C ) experienced an increase in 

NfL levels at Month-12 compared with 

baseline and a corresponding increase 

in EDSS.  
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3.7.3. Correlation analysis (n=35 patients) 

Baseline CSF NfL levels did not correlate with age (r=-0.08, p=0.63) or gender 

although trending to higher values in males (female: 576pg/ml [426-920], male: 

1023pg/ml [634-1238], p=0.106). 

Month-12 NfL levels were higher in patients who experienced relapses during the study 

(1398pg/ml [428-1826]) versus those who did not (384pg/ml [285-698], p=0.048). In 

patients receiving placebo, Month-12 NfL correlated with Month-12 EDSS (r=0.65, 

p=0.021, n=12) as well as EDSS change from baseline to Month-12 (r=0.58, p=0.047, 

n=12). Similar correlations did not reach statistical significance in the entire cohort or in 

patients treated with fingolimod.Across all groups, baseline NfL levels positively 

correlated with T2 lesion volume at baseline (r=0.37, p=0.027). Month-12 NfL levels 

and new/enlarging T2 lesions count (r=0.54, p=0.001) were also positively correlated. 

Reductions in NfL levels were associated with reductions in gadolinium enhancing 

(Gd+) T1 lesion count (r=0.44, p=0.008) and Gd+ lesion volume (r=0.44, p=0.008). 

NfL levels inversely correlated with normalized brain volume (nBV) (r=−0.38, p=0.025) 

across all groups at baseline. Correlations of percentage brain volume change from 

baseline to months (M)-12 and -24 with baseline NfL levels in both fingolimod 

(rM12=−0.17, p=0.602; rM24=−0.32, p=0.137) and placebo (rM12=−0.17, p=0.602; 

rM24=−0.47, p=0.124) groups did not reach statistical significance.  

 

3.8. Discussion 

The results of this study supported the premise that CSF NfL levels suitably indicate 

the treatment effect due to immunomodulatory drugs on ongoing neuroaxonal damage 

in MS. My data demonstrates that CSF NfL levels decrease markedly in fingolimod-

treated patients, whereas a similar change is not seen in patients on placebo. The 

reduction in NfL levels correlated with the absence of any worsening in clinical and MRI 

measures of disease activity in treated patients, consistent with outcomes observed in 

the fingolimod trials (175, 176). Additionally, extreme changes in CSF NfL levels were 

reflected by the clinical and paraclinical disease course even in individual patients.  

These results are consistent with those of chapter 3A which showed that natalizumab 

treatment also considerably decreases CSF NfL levels in RRMS patients to levels 

observed in healthy controls. It is important to note that the methodology used by 

myself and Gunnarson et al to measure CSF NfL levels is the same (101).  

The design of the FREEDOMS trial (176) allowed me to analyze clinical and MRI data 

longitudinally and to include placebo-treated patients. A  reduction in CSF NfL levels 

was also observed in the placebo group, however this was not statistically significant 

and I believe this could potentially reflect a regression to the mean phenomenon for 
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CSF NfL. Indeed, all patients included in the study required a high level of disease 

activity to fulfill the inclusion criteria of the trial. However, changes in NfL levels were 

clearly more pronounced in both fingolimod groups than in placebo and this strongly 

suggests a valid fingolimod treatment effect, rather than spontaneous fluctuations in 

disease activity. 

The relationship between CSF NfL and MRI measures in RRMS has been rarely 

investigated. A correlation between CSF NfL levels and the number of T2 (r=0.35, 

p<0.024) and Gd+ (r=0.50, p<0.001) has been reported (100). In partial contrast, one 

study in patients with a CIS found no association between CSF NfL levels and T2 

lesion volume or nBV. However, higher CSF NfH levels correlated with brain volume 

loss over a median follow-up of one year (r=-0.518, p<0.01) (102). In my study, 

baseline CSF NfL levels and normalized brain volume showed an inverse correlation 

(r=-0.38, p=0.025). Further, in favour of NfL reflecting subclinical disease activity and 

ongoing axonal degeneration, I noted an association between M12 CSF NfL levels and 

MRI measures and confirmed relapses over the 12 months. In addition, baseline CSF 

NfL levels were associated with the PBVC over 24 months thus suggesting a potential 

of predicting future brain volume loss. 

Limitations of this study are the relatively small sample size, due to the difficulty in 

obtaining paired CSF samples and the short duration of follow-up. The main strength is 

represented by the longitudinal and placebo controlled design.   

 

To conclude, I present the first study evaluating the effect of fingolimod treatment on 

CSF NfL levels in RRMS patients. My results support CSF NfL quantification as a 

surrogate measure of subclinical disease activity related to ongoing CNS 

neurodegeneration and as a putative therapeutic biomarker in clinical trials of novel 

agents for MS therapy. In this context, it is foreseeable that CSF NfL levels could 

provide relevant information to facilitate treatment decisions in the future possibly also 

including tailored therapeutic regimens based on individual treatment response. 
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4. Increased NfL blood levels in neurodegenerative neurological  

 diseases (94)  

 

 

4.1. Introduction  

Blood Nf levels could be useful for both predicting and monitoring disease progression 

and for assessing the efficacy and/or toxicity of future neuroprotective treatment 

strategies. 

Several previous studies have demonstrated the presence of NfH and NfL in CSF, 

which has been assumed to reflect brain pathology more accurately than the peripheral 

blood compartment (92, 98, 100, 101, 149, 151-153, 178-180). However, obtaining 

longitudinal CSF samples is considered too invasive outside the clinical trial arena, 

precluding the broader clinical use of Nf. In contrast to CSF, serial blood samples can 

readily be collected, hence reliable quantification of NfL in blood would be a major 

stride towards a biomarker of the course of neurodegeneration. Several reports have 

suggested peripheral blood levels of NfH as a potential marker of neurodegeneration in 

ALS (168, 181), stroke (182, 183), subarachnoid hemorrhage (184), neurotoxicity after 

aggressive chemotherapy (169), or brain injury after cardiac arrest (185). In contrast, 

only one study has investigated serum NfL by examining its relation with neurological 

outcome following cardiac arrest (170). 

So far, only a few studies investigated NfH levels in blood samples from MS patients, 

while NfL concentrations in serum or plasma of MS patients had never been assessed. 

An initial study showed that plasma NfH concentrations were significantly higher in 

patients with an acute episode of optic neuritis (170 pg/ml, n=18) as compared to 

healthy controls (5 pg/ml, n=14). NfH levels were inversely correlated with visual acuity 

at presentation (r=0.67; p = 0.01) and were higher in patients with poor compared to 

good visual recovery (0.25ng/mL vs. 0.09 ng/mL; p=0.05) (154). A recent study found 

slightly higher serum NfH levels in SPMS compared to healthy controls (HC) (p=0.011), 

CIS (p=0.041), and RRMS (p=0.048). RRMS and SPMS patients with NfH levels above 

the cut-off had a higher median MSSS score than patients with normal NfH levels 

(p<0.05), but did not have higher serum NfH levels than HC (156). Similarly, to my 

knowledge only one study had reported correlations between serum and CSF NfH 

levels (CSF and plasma: n=20, r=0.47; CSF and serum: r=0.51) (186). 

The commercially available ELISA (UmanDiagnostics NF-light® assay) (see also 

previous chapters) uses two highly specific, non-competing monoclonal antibodies 

(47:3 and 2:1) to quantify soluble NfL in CSF samples but it cannot in its present form 

be used for analysis of blood samples (95).  
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The aim of this study was to develop and validate (both analytically and clinically) a 

sensitive ECL-based NfL assay suitable for the quantification of NfL in serum at 

concentrations relevant to clinical settings. 

 

4.2. Materials and Methods  

4.2.1. Antibodies and chemicals 

The following mouse antibodies were used: Capture monoclonal antibody (mAB) 47:3, 

and the biotinylated detector mAB 2:1 (92, 95). MSD SULFO-TAGTM labelled 

streptavidin was used as detection reagent to generate ECL (MSD, Gaithersburg, MD). 

Bovine serum albumin (BSA), NaCl, phosphate buffered saline, pH 7.5 (PBS), tris base 

and Tween 20 were of analytical grade (Sigma-Aldrich, Saint Louis, MO).  

 

4.2.2. Standards 

Bovine lyophilized NfL was obtained from UmanDiagnostics (N Norgren). Standards 

were diluted in tris buffered saline (TBS) containing 1% BSA, 0.1% Tween 20, pH 7.5 

and ranged from 0 to 10,000 pg/ml. Batch prepared standards were stored at -80°C. 

 

4.2.3. Patients and Controls 

Paired CSF and serum samples were collected during routine diagnostic investigations 

as indicated by the treating physicians. Samples were collected and processed at room 

temperature within two hours. Serum samples were spun at 2,000 g, CSF samples at 

400 g at room temperature for 10 minutes, aliquoted in polypropylene tubes and stored 

at -80°C.  

Serum samples from 67 healthy control subjects (HC) were included in the study. For 

ethical reasons CSF samples were not available from these subjects. The group of 

control patients (CP) (n=68) consisted of patients who, based on extensive diagnostic 

evaluation had no objective clinical, structural (cranial magnetic resonance imaging, 

MRI), laboratory (CSF analysis) or functional (electroencephalography, EEG) deficit. 

These patients suffered from tension type headache (n=21), lower back pain (n=7), 

psychiatric disorders (n=26) or miscellaneous non-specific symptoms for which no 

neurological explanation could be found (n=14). From two of these patients there was 

not enough CSF left for further analysis. In addition, 49 patients with probable or 

definite ALS (for three no serum and for one no CSF sample was available) (187), 

probable AD (63), or GBS (for one no serum sample was available) (n=20 each) were 

included (table 4.1. ). 
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Table 4.1. Demographic characteristics of healthy controls, control patients and 

patients. 

 HC CP AD GBS ALS  

N 67 68 20 20 49 

Females  

(n [%])a 
38 (56.7) 41 (60.3) 13 (65.0) 10 (50.0) 14 (28.6) 

Age [years, 

median 

(IQR)]b  

35.0 

(28.0-42.0) 

38.3 

(27.5-46.4) 

72.5 

(70.1-80.2) 

59.6 

(39.1-71.7) 

62.7 

(54.5-70.7) 

 
a There were less female ALS patients compared to HC (p=0.004), CP (p=0.001) and 

AD (p=0.007). 
b HC and  CP, were younger compared to AD, GBS and ALS (p<0.0001, respectively). 

HC: Healthy controls; CP: Control patients; AD: Alzheimer’s disease; GBS: Guillain-

Barré syndrome; ALS: Amyotrophic lateral sclerosis; IQR: Interquartile range. 

 

Samples for precision and accuracy experiments as well as for stability and parallelism 

were chosen based on their NfL levels (high, medium and low) irrespective of their 

diagnosis due to availability of limited sample volumes. 

 

4.2.4. Analytical procedure 

The 96-well plates (Multi-Array® plates, Meso Scale Discovery, Gaithersburg, MD) 

include integrated screen-printed carbon ink electrodes on the bottom of the wells. 

Coating was done overnight with 30 µl of capture antibody (mAB 47:3,1.25 µg/ml) 

diluted in PBS (pH 7.4) at 4ºC. All following incubation steps were done on a plate 

shaker (800 rpm) and were preceded by three wash steps with 200 µl of TBS, 

containing 0.1% Tween 20 (pH 7.5) per well. Non-specific binding sites were blocked 

with 100 µl of TBS, containing 3% BSA, per well for 1h. After washing, 25 µl of TBS 

containing 1% BSA and 0.1% Tween 20 was added as sample diluent to each well. 25 

µl of standard, control or serum/CSF sample was then added in duplicate and the plate 

incubated at RT for 2h. After washing, 25 µl of the secondary antibody (mAB 2:1, 0.5 

µg/ml) diluted in TBS containing 1% BSA and 0.1% Tween 20 was added to each well 

and the plate incubated for 1 h at RT. After washing, MSD SULFO-TAGTM labelled 

streptavidin (0.25 µg/ml), diluted in TBS containing 1% BSA and 0.1% Tween 20, was 

added and incubated for 1h at RT. Following a final wash, 150 µl of ECL read buffer 

(MSD) diluted 1:2 with distilled water was added and the ECL signal, detected by 

photodetectors, measured using the MSD Sector Imager 2400 plate reader. A four-

parameter weighted logistic fit curve was generated, sample concentrations 
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extrapolated and analysed using the Discovery Workbench 3.0 software (MSD). If 

required, samples were appropriately diluted to fall in the range of the standard curve. 

Non measurable NfL samples were reported as 0 pg/ml. 

 

4.2.5. Statistical analysis 

Continuous variables were described by their median and interquartile range (IQR), 

and categorical variables by numbers and percentages. Comparison of demographic 

data was performed using the Kruskal-Wallis test, and pairwise post-hoc comparisons 

using Dunn’s post-test or chi-square test as appropriate. Serum and CSF levels of NfL 

were log-transformed to achieve a normal distribution for subsequent analysis. To 

control for age as a potential confounding factor, an analysis of covariance with age as 

covariate and disease group as fixed factor, was performed (152). Group-specific 

levels of NfL were expressed as geometric means with 95%-confidence intervals. For 

log-normal variables, the geometric mean equals the median. Correlations were 

computed by determining the Spearman rank correlation coefficient (r). The cut-off 

(upper reference range of normal) providing optimal sensitivity and specificity in 

distinguishing ALS from HC by serum NfL was defined by ROC curve analysis (by 

maximizing the Youden index) (188). Proportions above and below this cut-off were 

compared with the Chi-Square test. A two-sided p-value < 0.05 was considered as 

significant. P-values of post-hoc comparisons were adjusted using a Bonferroni 

correction. All statistical analyses and graphs were performed using SPSS (Version 

15.0 SPSS, Chicago, IL) and Graph Pad Prism 5.02 for Windows (GraphPad Software, 

San Diego, CA). 

 

4.3. Results  

4.3.1. Reproducibility of the standard curve 

Figure 4.1.  shows the mean raw counts of 20 consecutive standard curves in the 

range of 0-1,000 pg/ml and the resulting regression line. Individual standard curves 

showed a high degree of linearity (R2 = 0.99) (figure 4.1. ). 
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Figure 4.1. Reproducibility of the standard curve. 

Reproducibility of 20 consecutive standard curves. The graph shows the mean counts 

(dots) ± SD (bars), linear regression line and 5% and 95% confidence interval curves 

(broken lines) (R2=0.99). 

 

 

4.3.2. Precision and accuracy 

Reproducibility (intra-assay variability) and repeatability (inter-assay variability) of the 

assay was evaluated with native serum samples in 10 consecutive assays on 

independent days. In four independent samples of native serum the mean coefficients 

of variation (CV) of duplicates (intra-assay precision) for NfLUmea47:3 were 4.9% (12.1 

pg/ml, sample 1), 5.5% (39.6 pg/ml, sample 2), 4.1% (83.1 pg/ml, sample 3) and 3.8% 

(103 pg/ml, sample 4, average: 4.6%). In CSF the mean intra-assay CVs were 6.0% 

(569 pg/ml, sample 1), 6.4% (3,645 pg/ml, sample 2), 2.7% (7,501 pg/ml, sample 3) 

and 6.8% (12,762 pg/ml, sample 4) averaging at 5.5%. Inter-assay CVs for serum were 

23.6% (sample 1), 16.9% (sample 2), 8.5% (sample 3), and 10.9% (sample 4, average: 

15.0%). In CSF inter-assay CVs were 10.3% (sample 1), 10.4% (sample 2), 6.7% 

(sample 3) and 11.7% (sample 4, average: 9.8%). 

Recovery rates were tested in 6 serum samples from healthy volunteers. Recovery of 

NfL (serum spiked with 50 pg/ml of HPLC purified bovine NfL) was 72% and 114%. For 

serum spiked with 100 pg/ml of NfL it was 81% and 96%, and for 1,000 pg/ml of NfL 

recovery was 82% and 116%. 

 

4.3.3. Analytical sensitivity and stability of the analyte 

Sensitivity (lowest standard above blank) was calculated as blank signal plus three SD 

from 32 assays. The mean blank signal was 138 counts (SD 20.9 counts). The mean 
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signal of the lowest standard (15.6 pg/ml) was 184.5 counts (SD 23.2): accordingly, 

analytical sensitivity was defined to be 15.6 pg/ml. We tested the stability of NfL at RT, 

4 °C and compared this to samples stored at -80 °C. Four aliquoted serum samples 

were frozen at -80 °C. The aliquots were thawed on days 0, 3 hours before 

measurement, days 1, 4 and 8 and stored at RT or 4 °C until analysis. The measured 

signals were normalised to the signal of the day 0. There was no significant change in 

signal in samples stored at RT and at 4 °C (RT: day 8: 1.06 ± 0.08 (mean ± SD), p = 

0.4063 and 4 °C: day 8: 1.01 ± 0.09, p = 0.1721). Four serum samples were analysed 

for stability during freeze-thawing cycles. The samples underwent 1, 2, 3, 4 or 5 freeze-

thawing cycles and the signal was normalised to the sample freeze-thawed once, 

without any relevant effect of freeze-thawing on the measured signals (5 freeze-

thawing cycles: 1.03 ± 0.03, p = 0.5076). 

 

3.3.4. Parallelism 

Parallelism between standards and samples was studied by reciprocal dilutions of 

three serum samples and three standard curves. The obtained signals were normalised 

to the highest value within this series (100%). The parallel relationship is demonstrated 

in figure 4.2 ., suggesting the absence of aggregate formation or endogenous binding 

between NfL and other blood substrates (159) (figure 4.2. ). 

 

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

NfL (normalised)

C
o

un
ts

 (
no

rm
al

is
ed

)

 

Figure 4.2.  Parallelism between standards and serum dilutions. 

Parallelism for NfL between standards (open line, open dots) and serum (closed line, 

black squares). The linear regression lines, mean (open dots or black squares) and 

±SD are shown. 
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4.3.5. Reference populations 

NfL was determined in serum of 67 HC (56.7% females, median age 35.0 years) and in 

serum of 68 and CSF of 66 CP (60.3% female, median age: 38.3 years) (table 4.1. ). 

Serum levels between HC (3.3 pg/ml, 2.0-5.3) and CP (4.4 pg/ml, 2.4-8.1) did not differ 

(p=1.0) and did not correlate with either age or gender. Conversely, CSF levels in CP 

correlated with age (r=0.68, p<0.0001).   

 

4.3.6. Neurological disease population 

A. Serum 

AD (30.8 pg/ml, 22.6-41.9), GBS (79.4 pg/ml, 24.3-259.6) and ALS (95.4 pg/ml, 57.9-

157.0) had higher serum NfL levels compared with HC and CP (AD versus CP: 

p=0.002 all other comparisons versus HC and CP: p<0.0001). NfL levels correlated 

with age in GBS (r=0.48, p=0.038) and ALS (r=0.30, p=0.04). In the age-corrected 

group comparisons versus HC and CP, differences remained significant for all diseases 

except AD (figure 4.3. ). 

 

HC CP AD
GBS

ALS
0

50

100

150
200
300

2000

p<0.0001

p<0.0001

p<0.0001

p=0.001

S
er

um
 N

fL
 (

pg
/m

l)

 

Figure 4.3. Serum NfL levels in the two reference groups (HC and CP) and 

neurological disease groups. 
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Patients with a GBS (79.4 pg/ml) or ALS (95.4 pg/ml) had higher values compared with 

HC (3.3 pg/ml; p<0.0001, respectively) and CP (4.4 pg/ml, p<0.0001 and p=0.001). 

Significances for comparisons between patients with AD and HC (p<0.0001) and AD 

and CP (p=0.002) were lost after age corrections. The horizontal dotted line represents 

the upper reference range (cut-off value) of 26.6 pg/ml. Geometric mean and 95% CI 

are displayed. Dots represent individual samples. P-values are adjusted for age and 

corrected by Bonferroni method. 

 

 

A cut-off level of 26.6 pg/ml (figure 4.3. ) for serum NfL resulted in a sensitivity of 91.3 

% and a specificity of 91.0 % for differentiating ALS versus HC. A higher proportion 

(p<0.0001 for all comparisons) of patients had serum NfL values above this cut-off: 

16/20 (80.0 %) in AD, 13/19 (68.4 %) in GBS, 42/46 (91.3 %) in ALS, compared to HC 

(6/67, 9.0%). 

 

B. CSF 

NfL levels in AD (1396 pg/ml, 1139-1711), GBS (1361 pg/ml, 726-2554) and ALS (5513 

pg/ml, 4151-7323) were higher than in CP (324 pg/ml, 282-372, p<0.0001 for all), and 

CSF NfL concentrations in ALS were higher than in AD and GBS (p<0.0001, 

respectively). 

Similar to the serum results, CSF levels of NfL correlated with age in GBS (r=0.65, 

p=0.002) and ALS (r=0.30, p=0.048). After correction for age, a significant difference 

remained between GBS (p=0.001) and ALS (p<0.0001), but not AD (p=1.0) versus CP. 

Similarly, I confirmed the higher levels in ALS as compared to AD and GBS (p<0.0001, 

for both comparisons) (figure 4.4. ). 
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Figure 4.4.  CSF NfL levels in the reference group (control patients, CP) and 

neurological disease cohorts. 

Patients with ALS (5513 pg/ml) or a GBS (1361 pg/ml) had higher levels than CP (324 

pg/ml, p<0.0001 and p=0.001). In addition ALS had higher levels than patients with AD 

(1361 pg/ml) and GBS (p<0.0001, respectively). Geometric mean and 95% CI are 

displayed. Dots represent individual samples. P-values are adjusted for age and 

corrected by Bonferroni method. 

 

C. CSF – serum relationship 

Overall geometric mean levels in CSF (1,142 pg/ml, 906-1,439) were 96.8-fold higher 

than in serum (11.8 pg/ml, 8.5-16.5, p<0.0001; fold-increase in CSF versus serum: CP: 

73.6, AD: 45.3, GBS: 17.1, ALS: 57.8, p<0.0001, respectively). 

Serum and CSF measurements of NfL correlated in the disease groups (figure 4.5.A ): 

AD (r=0.48, p=0.033), GBS (r=0.79, p<0.0001) and ALS (r=0.70, p<0.0001), conversely 

this was not seen in CP (r=0.11, p=0.3739) (figure 4.5.B ).  
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B. Control patients 
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Figure 4.5.  Correlation of serum and CSF NfL measurements. 

Serum and CSF measurements of NfL correlated in the disease groups (A): AD 

(r=0.48, p=0.033), GBS (r=0.79, p<0.0001) and ALS (r=0.70, p<0.0001): overall: 

r=0.68, p<0.001. Conversely this was not seen in the control patients (CP) (r=0.11, 

p=0.3739) (B). 

 

 

4.4. Discussion  
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A highly sensitive method for the detection of a clinically relevant biomarker of 

neurodegeneration has been developed. Importantly, this method allows us to make 

use of readily available longitudinal patient blood samples, instead of being restricted to 

CSF samples which are difficult to obtain because of ethical reasons. One potential 

clinical application for serum NfL levels is demonstrated by the diagnostic sensitivity of 

91.3% for ALS, a rapidly progressive neurodegenerative disease (189, 190). 

Notably, this is the first ECL based solid phase immunoassay for the NfL protein in 

blood based on two non-competitive, monoclonal antibodies. These antibodies have 

been widely used and validated in a commercial ELISA for CSF measurements of NfL 

(NF-light® assay) (95, 101, 191) (see chapter 1). NfL is considered to represent the 

most abundant and also most soluble Nf subunit (192).  

 

The optimised ECL-NfL assay protocol proved to be highly accurate (intra-assay CV < 

6%, inter-assay CV < 24%), sensitive (sensitivity 15.6 pg/ml) and demonstrated 

linearity and parallelism (figures 4.1.  and 4.2.) over a wide analytical range (15.6-

10,000 pg/ml). In addition I found NfLUmea47:3 to be stable in serum. This is relevant for a 

potential value to monitor drug effects by serum NfL in ALS where Nf aggregate 

formation is a key pathological finding (159). In contrast to NfHSMI34 and NfHSMI35, no 

such aggregates were found for NfLUmea47:3, essentially overcoming the limitations of 

the Nf “hook effect” (matrix effect) (159). In this context, a more than 20-fold elevation 

of serum NfLUmea47:3 levels in ALS compared to HC cannot be overestimated. 

Interestingly, the fold-differences between disease groups and CP for serum NfLUmea47:3 

was higher compared to the respective CSF levels (serum/CSF: ALS: 21.7/17.0; AD: 

7.0/4.3 and GBS: 18.0/4,2). 

CSF Nf measurements are increasingly accepted as measures of axonal injury (179, 

193). Importantly in this context we found strong correlations between CSF and serum 

NfL measurements in all disease groups (overall: r=0.68, p<0.001). The reason behind 

the lack of such correlation in controls is unclear. However, the presence of very low 

blood NfL levels and the fact that these may approach or fall below the analytical 

detection limit represent potential explanations. 

An important and unresolved question is whether or not there is a relevant correlation 

between Nf levels and age. If present, such a relationship would require age dependent 

cut-off values (152). A major limitation to all studies in this field to date (91, 100, 102, 

151, 152, 194) is that they have not been powered to investigate this potential 

correlation in the CSF, due to lack of samples from a sufficiently large healthy control 

group across all age categories. Again, the availability of the present method to 

investigate this in readily available serum samples is highly relevant. Importantly, I did 

not find a correlation between serum NfLUmea47:3 levels and age in either HC or CP. 
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Whether or not a possible relationship with age exists for ALS, GBS or AD is 

questionable, as older patients are often more severely affected and higher age is the 

most important prognostic factor in these conditions and therefore not independent of 

the neurodegeneration related release of NfLUmea47:3. 

 

The absence of the Nf hook-effect is an important analytical advantage for 

quantification of the ECL based serum NfLUmea47:3 assay compared to the serum 

NfHSMI34 and NfHSMI35 ELISA, as there is no necessity for a time-consuming pre-

incubation step with urea (159). Given the important prognostic information that NfH 

levels provide on a number of clinical conditions, I believe that NfLUmea47:3 will be 

relevant for future studies. Serum NfLUmea47:3 bears the potential for predicting disease 

progression in ALS (186, 195, 196) and MS (155), detecting particularly disabling acute 

episodes of optic neuritis or relapses in MS (154), identifying primary and secondary 

brain damage in stroke (182, 183), SAH (184), TBI (197) and in the emerging concept 

of chronic traumatic encephalopathy (CTE) (197, 198). Like serum NfHSMI35, serum 

NfLUmea47:3 may also be exploited as a safety biomarker for recognising neurotoxicity 

(169). There is already data that serum NfL levels are of comparable prognostic value 

to NfHSMI35 levels following cardiac arrest (170, 185). Of note there were no controls 

and no analytical validation data from the NfL assay that was performed in one study 

(170). 

Similar to our previous findings for NfHSMI35 in CSF, a bimodal distribution of serum NfL 

levels was seen in patients with GBS (151). There are no previous studies on Nf in 

blood from patients with GBS. Earlier studies have shown that CSF levels of NfH are 

higher in patients with evidence of axonal damage compared to those with purely 

demyelinating GBS, with CSF NfH levels predictive of outcome (180, 199). Future 

prospective studies incorporating detailed longitudinal clinical and electrophysiological 

assessments, and sampling are clearly warranted. These studies will also shed light on 

the role of proximal versus more distal axonotmesis and secondary axonal peripheral 

degeneration and the relationship of increased blood NfL levels (200).  

 

Blood levels of Nf have similarly not been investigated in patients with dementia. In this 

study the differences in serum and CSF NfL levels in AD compared to HC and CP 

(p<0.0001 and p=0.002) lost significance after age and Bonferroni correction. This is in 

line with previous investigations where CSF NfHSMI35 levels were increased, but 

diagnostic sensitivity, and hence potential for clinical use of NfH SMI35 was not superior 

to that of the benchmark biomarkers total tau, phospho tau, or amyloid beta 1-42 (120, 

201). To explore these questions further I am currently trying to obtain a larger and well 

characterised cohort of AD and control patients. 
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Unfortunately, cross sectional or longitudinal data on disease activity or disease 

severity were not available in this study. Also, due to lack of follow-up clinical 

information I could not investigate the potential prognostic role of NfL. An important 

limitation is also the fact that age between controls and all three patient groups was not 

balanced and this needed statistical correction. In summary, I developed and validated 

a sensitive and reliable assay for measurements of NfL in human blood samples. For 

the first time, I was able to demonstrate increased blood NfL levels in patients with ALS 

and GBS. These differences were more pronounced for the ECL-NfLUmea 47:3 assay than 

those reported in ALS for NfH in previous reports (168, 196). These data support 

further studies of serum NfL in well-defined longitudinal cohorts of neurodegenerative 

diseases. These studies will show if serum NfL measurements can be used as a 

biomarker for disease progression and as an outcome measure in clinical trials. 
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5. Serum NfL is a biomarker of human spinal cord in jury    

 severity and outcome (202)  

 

 

5.1. Introduction  

Acute spinal cord injuries (SCI) are one of the most devastating accidents affecting a 

young and active population. Mechanical injury of the spinal cord results in damage to 

neurons, axons, and glia at the area of impact (203). Over days to weeks several 

secondary injury cascades lead to further progressive tissue damage within and 

adjacent to the primary lesion, on top of the sequelae of exogenous trauma. Other than 

the trauma itself, secondary injury (204, 205) represents a window for therapeutic 

interventions to preserve axons and their support structures (206-208). A recent 

placebo-controlled trial suggested clinical improvement across several outcome 

measures in patients receiving the drug minocycline (161), using the American Spinal 

Injury Association (ASIA) exam (209). The ASIA exam can be used to determine the 

ASIA grade of injury severity. While this is a universally accepted classification, each 

grade represents a broad category of patients and the scale lacks sensitivity for 

longitudinal change making it insensitive as a drug response marker (210). A number 

of biomarkers have been evaluated for their capacity to be more sensitive and accurate 

tools to measure neuronal injury, but in part because these tests are restricted to 

cerebrospinal fluid (CSF) they have as yet provided limited clinical utility (211, 212). 

In this chapter I analysed levels of NfL longitudinally in serum samples derived from 

subjects enrolled in a phase II clinical trial investigating the utility of minocycline to 

attenuate neurological deficits after spinal injury (161). I investigated the correlation of 

serum NfL with acute and long-term clinical outcome. Further, I analyzed the potential 

of serum NfL as drug response marker of the therapeutic effect of minocycline in SCI. 

Among several activities, minocycline downregulates microglial activation, 

neuroinflammation and apoptosis, effects that may reduce neuronal injury reflected in 

lower serum levels of NfL in SCI (206). 

 

5.2. Methods 

The research protocol was approved by the University of Calgary Conjoint Health 

Research Ethics Board. All patients and healthy controls provided written informed 

consent. Serum samples from 67 healthy controls (HC) and 27 SCI patients (with 

sufficient amount of serum symples available (161)) were included: 13 patients with a 

motor-complete SCI (cSCI; ASIA A or B; due to lack of material no 96 and 108 hours 

(h) samples for two patients and no 84 and 120 h samples for one patient each), 10 

patients with a motor-incomplete SCI (iSCI; ASIA C or D; no 36 h sample for one 
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patient) and 4 patients with a central cord syndrome (CCS; ASIA C or D with more 

selective injury to the centrally located motor tracts and disproportionately greater 

motor impairment in the upper compared to lower extremities (mean lower extremity 

motor scores>upper extremity) (213)) (Table 5.1. ) (161).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 
 

Table 5.1. Baseline characteristics of healthy controls (HC) and spinal cord injury (SCI) 

patients. 

 HC CCS iSCI cSCI p-value 

n 67 4 10 13  

Gender (n 

females, %) 

38 (57) 1 (25) 3 (30) 5 (38) 0.254 

Age (years) 35 (28-42) 49 (39-62) 33 (22-43) 32 (22-45) 0.117 

Level of injury 

Cervical 

Thoracic 

 

na 

na 

 

4 

0 

 

9 

1 

 

11 

2 

0.999 

Injury mech-

anism (n, %)a 

Motor vehicle 

accident 

Work accident 

Sport injury 

Fall 

na  

 

 

1 (25) 

1 (25) 

- 

2 (50) 

 

 

 

7 (70) 

1 (10) 

2 (20) 

- 

 

 

 

10 (77) 

- 

3 (23) 

- 

0.034 

ASIA Score 

(n,%)b 

A 

B 

C 

D 

na  

 

- 

- 

2 (50) 

2 (50) 

 

 

- 

- 

7 (70) 

3 (30) 

 

 

12 (92) 

1 (8) 

- 

- 

<0.0001 

Motor score na 59 (18-83) 45 (23-63) 16 (9-29) 0.053 

Pinprick scorec na 65 (22-94) 81 (51-94) 24 (19-32) 0.020 

Light-touchd na 73 (25-106) 76 (37-97) 24 (19-32) 0.028 

Delay to 

surgery (hours) 

na 15 (10-200) 12 (8-16) 18 (12-22)* 0.285 

Treatment (n,%) 

Placebo 

Low dose** 

High dose 

na  

 

1 (25) 

1 (25) 

2 (50) 

 

 

5 (50) 

3 (30) 

2 (20) 

 

 

7 (53.8) 

1 (7.7) 

5 (38.5) 

0.499 

 

CCS: central cord syndrome; iSCI: Motor incomplete spinal cord injury; cSCI: Motor 

complete spinal cord injury; ASIA: American Spinal Injury Association standardized 

neurological examination; * one patient without surgical decompression; ** Low dose: 
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200 mg twice daily; high dose: 800 mg loading dose tapered to 200 mg twice daily. Na: 

not applicable. Medians and IQR are shown, if not specified otherwise. 
a More motor vehicle accidents in cSCI versus CCS (p<0.05). 
b higher ASIA score in cSCI versus iSCI (p<0.001) and CCS (p<0.01). 
c lower pinprick score in cSCI versus iSCI (p<0.05). 
d lower light-touch score in cSCI versus CCS (p<0.05). 

 

 

Surgical decompression and stabilization was performed within 24 h of injury and 

subjects were not treated with corticosteroids. Patients were randomized (1:1) to 

receive intravenous minocycline (Wyeth Pharmaceuticals either 200 mg of minocycline 

twice-daily (low dose) or a loading dose of 800 mg tapered by 100 mg every 12 h until 

400 mg was reached (high dose), or placebo. More detailed procedures and inclusion 

and exclusion criteria have been described previously (161).  

 

5.2.1. Clinical assessment and analytical procedure  

Neurological function was assessed using the ASIA standardized neurological 

examination, including the motor (score ranging from 0-100, with higher score 

representing better motor function) and sensory (pinprick and light-touch ranging from 

0-112 each, with higher score representing better sensory function) composites (209). 

These examinations were performed at days 1 (time of enrolment), 4, 5 and 7; weeks 

3, 6 and 12; and months 6 and 12. Motor function observed in the study population 

plateaued after 3 months (161). Motor and sensory outcome was defined as the mean 

of the motor or sensory scores at time points 3, 6 and 12 months (161). 

We examined blood samples drawn within 12 h of the SCI prior to treatment 

randomization and every 12 h thereafter for 7 days (15 time points, including the 

baseline sample). Samples were spun at 2,000 g for 10 minutes, aliquoted in 

polypropylene tubes and stored at -80°C within two hours (161). 

 

The immunoassay developed in-house for NfL (NfLUmea47:3) was used for quantification 

of NfL in serum (see chapter 4, (94)). The mean intra- and inter-assay coefficients of 

variation were 4.3% and 9.7% in these measurements respectively. 

 

5.2.2. Statistics 

Baseline characteristics were compared between groups using Kruskal Wallis test for 

continuous variables, or Fisher’s exact test for categorical variables. Continuous 

variables were described by their median and interquartile range (IQR), and categorical 

variables by numbers and percentages. The NfL area under the curve (AUC) for the 7 
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days sampling period was calculated using the trapezoidal rule. NfL values were log-

transformed to achieve a Gaussian distribution. The longitudinal data of the groups 

(twice daily NfL levels) were analysed using mixed effects linear regression, which 

allows for repeated measurements and missing values. One-way ANOVA with 

Bonferroni adjustment if significance was reached was used to compare log NfL 

between groups at individual time points. In addition, mixed effects linear regression 

was used to test for the effect of minocycline on log NfL, motor score, pin prick or light 

touch (baseline values were subtracted from all values at individual time points for this 

analysis). Since the number of patients per group was small, a pooled analysis 

(placebo versus both minocycline dosing schemes) was performed. Motor outcome 

was classified as “good” or “poor” considering the median value as cut-off. All 

correlation analyses were performed with Spearman’s R. A two-sided p-value < 0.05 

was considered as significant. All statistical analyses were performed using Stata 

version 12 (StataCorp, College Station, Texas) and Graph Pad Prism 5.02 for Windows 

(GraphPad Software, San Diego, CA). 

 

5.3. Results  

5.3.1. Disease characteristics 

Table 5.1.  shows baseline characteristics of the SCI subgroups and healthy controls. 

The vast majority (24/27) of patients had a cervical level of injury. Across all subgroups, 

motor vehicle accidents represented two thirds of causes of injury. cSCI, iSCI and CCS 

patients differed significantly for overall injury severity (ASIA score, p<0.0001), pinprick 

(p=0.020) and light-touch scores (p=0.028), while differences in motor scores were 

borderline significant (p=0.053), at baseline. Otherwise there were no significant 

differences with regard to gender, age, or delay to surgery.  

Fourteen patients (52%) were treated with either low dose (n=5) or high dose (n=9) 

minocycline, and 13 patients received placebo. 

 

5.3.2. Levels of NfL at baseline and during follow-up 

Baseline NfL levels were different between groups (F(3,90)=9.49, p<0.001); iSCI (21 

(15-90) pg/ml, p=0.006) and cSCI (70 (17-134) pg/ml, p<0.001) had higher levels of 

serum NfL than HC (5 (2-11) pg/ml). Similarly, serum NfL levels in iSCI and cSCI were 

higher than in CCS (6 (0.3-18) pg/ml, p=0.025 and p=0.010, respectively) (Figure 5.1. ).  
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Figure 5.1.  Baseline serum NfL levels in healthy controls and spinal cord injury 

patients. 

At baseline serum NfL levels were different between the groups (F(3,90)=9.49, 

p<0.0001); motor incomplete SCI (iSCI, p=0.006) and motor complete SCI (cSCI, 

p<0.001) had higher levels of serum NfL than healthy controls (HC). Similarly, serum 

NfL levels in iSCI and cSCI were higher than in patients with a central cord syndrome 

(CCS, p=0.025 and p=0.010, respectively). Median and IQR are displayed. Dots 

represent individual samples. 

 

 

There was an increase of serum NfL levels over time (p<0.001, mixed effects model). 

Levels increased in all three groups from baseline (p<0.001) and were higher in cSCI 

versus iSCI (p=0.011) and CCS (p<0.001) (p=0.045 for iSCI versus CCS). Differences 

for individual time points especially between cSCI and CCS were strong (Figure 5.2. , 

Table 5.2. ). Accordingly, the NfL AUC was significantly higher in cSCI (4,614 (3,486-

7,701)) versus CCS (1,260 (420-2,257), p=0.012; F(2,24)=5.9, p=0.008). 

 



 

90 
 

 

Figure 5.2.  Serum NfL levels over time in different groups of spinal cord injury patients. 

Serum NfL levels increased over time in the overall group (p<0.001, n=27) and in all 

three groups from baseline (p<0.001). Serum NfL was higher in motor complete SCI 

(cSCI, n=13) versus motor incomplete SCI (iSCI, n=10, p=0.011) and central cord 

syndrome patients (CCS, n=4, p<0.001). ISCI had higher serum NfL levels as 

compared to CCS (p=0.045). Differences for individual time points especially between 

cSCI and CCS were strong (see table 5.2.). Mean and standard error of the mean are 

displayed. 
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Table 5.2. Serum NfL levels in spinal cord injury patients over time. 

 CCS 

(NfL, 

pg/ml) 

iSCI 

(NfL, 

pg/ml) 

cSCI 

(NfL, 

pg/ml) 

p-values 

CCS 

vs. 

iSCI  

CCS 

vs. 

cSCI 

iSCI 

vs. 

cSCI 

Baseline 6 21 70 0.019 0.009 0.999 

12 h 18 48 85 0.174 0.048 0.999 

24 h 21 47 113 0.218 0.012 0.191 

36 h 21 58 114 0.023 0.001 0.267 

48 h 24 51 129 0.065 0.001 0.053 

60 h 34 70 163 0.136 0.002 0.062 

72 h 38 100 199 0.080 <0.001 0.084 

84 h 41 127 210 0.021 <0.001 0.166 

96 h 56 155 237 0.053 0.005 0.558 

108 h 88 184 303 0.027 0.002 0.434 

120 h 114 220 338 0.046 0.002 0.341 

132 h 153 278 558 0.087 0.001 0.095 

144 h 193 333 617 0.127 0.003 0.133 

156 h 194 384 710 0.138 0.003 0.120 

162 h 230 379 796 0.153 0.003 0.130 

 

Median NfL concentrations for the individual time points in pg/ml and p-values are 

displayed. CCS: Central cord syndrome; iSCI: motor incomplete spinal cord injury; 

cSCI: motor complete spinal cord injury; vs.: versus; h: hours post baseline. 

 

 

5.3.3. Baseline NfL and motor, pinprick and light-touch scores 

NfL levels were negatively correlated with the motor score at baseline (r=-0.53, 

p=0.004; Figure 5.3.a  and Table 5.3. ), but not with the pinprick or light-touch scores 

(Table 5.3. ). Levels also inversely correlated with several of the post baseline motor 

scores, less so with the sensory scales (Table 5.3. ). 

Interestingly, serum NfL levels determined after 24h showed a stronger association 

with the baseline motor score (r=-0.69, p<0.001) and throughout all other sampling time 

points, including also the sensory scores (Figure 5.3.a  and Table 5.3. ). These 

correlations were of similar frequency and strength for the NfL AUC (ASIA score: 

r=0.60, p=0.001, Figure 5.3.a  and Table 5.3. ). 
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Figure 5.3.  Correlation of NfL and NfL area under the curve (AUC) and motor score 

at baseline (A.) and motor outcome (B.). 

A. 

Left: Baseline serum NfL concentration and baseline motor score. Baseline NfL 

levels correlated with the motor score at baseline (r=-0.53, p=0.004; central cord 

syndrome patients, CCS: r=-0.40, p=0.6; motor incomplete SCI, iSCI: r=-0.46, 

p=0.184; motor complete SCI, cSCI: r=-0.63, p=0.022).  

Middle: 24H NfL concentration and baseline motor score. 24H NfL levels correlated 

with the motor score at baseline (r=-0.69, p<0.001; CCS: r=0.5, p=0.667; iSCI: r=-

0.78, p=0.008; cSCI: r=-0.64, p=0.017). 

Right: Serum NfL area under the curve and baseline motor score. 

The NfL AUC correlated with the baseline motor score (r=-0.74, p<0.0001, CCS: r=-

0.8, p=0.2; iSCI: r=-0.73, p=0.017; cSCI: r=-0.65, p=0.017). 

B. 

Left: NfL levels at baseline correlated with the motor outcome (r=-0.43, p=0.026, 

CCS: r=-0.40, p=0.600; iSCI: r=-0.44, p=0.206; cSCI: r=-0.29, p=0.334). 

Middle: 24H NfL concentration and motor outcome. 24H NfL levels correlated with 

the motor outcome (r=-0.75, p<0.0001; CCS: r=0.50, p=0.667; iSCI: r=-0.76, 

p=0.011; cSCI: r=-0.52, p=0.07). 

Right: Serum NfL area under the curve and motor outcome. 

The NfL AUC correlated with the motor outcome (r=-0.83, p<0.0001, CCS: r=-0.80, 

p=0.200; iSCI: r=-0.79, p=0.006; cSCI: r=-0.69, p=0.009). 

Filled triangles: cSCI; empty triangles: iSCI, open circles: CCS. AUC: Area under the 

curve; BL: baseline. The Spearman’s correlation coefficients of the ranks and p-

values are indicated. 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

Table 5.3. Correlations between baseline NfL concentration and NfL area under the 

curve and motor, pinprick and light touch scores at different time points. 

Day BL 4 7 21 42 90 182 365 

Motor Score  

n 27 22 23 23 23 25 24 24 

BL 

NfL 

-0.53 

0.004 

ns -0.49 

0.019 

ns -0.41 

0.049 

-0.44 

0.028 

-0.44 

0.031 

-0.42 

0.039 

24H 

NfL 

-0.69 

* 

-0.56 

0.007 

-0.64 

0.001 

-0.69 

* 

-0.68 

* 

-0.72 

* 

-0.69 

* 

-0.73 

* 

NfL 

AUC 

-0.74 

* 

-0.73 

* 

-0.68 

* 

-0.72 

* 

-0.80 

* 

-0.82 

* 

-0.79 

* 

-0.82 

* 

Pinprick  

n 27 20 23 22 22 25 24 24 

BL 

NfL 

ns ns -0.55 

0.007 

-0.43 

0.046 

ns ns ns Ns 

24H 

NfL 

-0.52 

0.001 

-0.57 

0.008 

-0.70 

* 

-0.71 

* 

-0.50 

0.022 

ns -0.47 

0.024 

Ns 

NfL 

AUC 

-0.65 

* 

-0.56 

0.011 

-0.69 

* 

-0.79 

* 

-0.60 

0.003 

-0.43 

0.033 

0.58 

0.003 

0.44 

0.032 

Light -touch  

n 27 21 22 22 22 25 24 24 

BL 

NfL 

ns ns -0.55 

0.008 

-0.55 

0.008 

ns ns ns Ns 

24H 

NfL 

-0.57 

0.002 

-0.46 

0.037 

-0.70 

* 

-0.80 

* 

-0.61 

0.003 

-0.46 

0.025 

-0.48 

0.022 

Ns 

NfL 

AUC 

-0.62 

0.001 

-0.51 

0.017 

-0.62 

0.002 

-0.85 

* 

-0.74 

* 

-0.58 

0.002 

-0.63 

0.001 

-0.49 

0.016 

 

BL: baseline examination; n: number of patients at each time point (in days post-

baseline); BL NfL: NfL measurement at baseline; 24H NfL: NfL measurement after 24 

hours; NfL AUC: NfL area under the curve over the 7 day sampling period; 

Spearman r and p values are displayed; *: p<0.001. 

 

5.3.4. Correlation of NfL with clinical outcomes 

Motor outcome plateaued at three months after SCI (median ASIA score: 60 points), 

regardless of whether the injury was motor-complete, motor-incomplete or of central 
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cord type. As expected, the motor outcome was better in CCS (89 points, p<0.05) 

and iSCI (86.0 points, p<0.01) versus cSCI (25 points), and correlated strongly with 

respective baseline motor score values (r=0.83, p<0.0001) (161). Similar correlations 

between baseline and outcome scores were seen for the pinprick and light-touch 

(r=0.63, p<0.001 and r=0.58, p=0.001). 

During the period of 24 to 168 hours after injury, NfL levels were increasingly higher 

(Figure 5.4. ) in patients with a poor outcome (as defined by below median motor 

score, n=13) compared to those with a better outcome (median motor score above 

median, n=14, p=0.001).  

 

 

Figure 5.4.  NfL over time depending on motor outcome. 

Patients with a better motor outcome (as defined by median, n=13) had lower NfL 

levels than patients with a poor outcome (n=14, p=0.001). For individual time points, 

patients with a poor outcome had higher serum NfL levels between serum sampling 

after 24 hours and throughout all samplings up to 168 hours. Mean, standard error of 

the mean and corresponding p-values (*: p<0.05; **: p<0.01; ***: p<0.001) for poor 

outcome versus good outcome group are displayed. 
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This was corroborated by an AUC analysis of NfL (better outcome: 1,878 (1,058-

3,464) versus worse outcome: 5,234 (3,017-8,584), p=0.002). In line with the 

correlation of clinical scores at baseline with those of outcome, NfL levels at baseline 

correlated with motor outcome (r=-0.43, p=0.026, Figure 5.3.b ). Again, this 

correlation became stronger over time for NfL measurements after 24h (12 h: r=-

0.56, p=0.003; 24 h: r=-0.72 (Figure 5.3.b ); 48 h: r=-0.82; 72 h: r=-0.81; 120 h: r=-

0.79; 144 h: r=-0.83; 168 h: r=-0.82, p<0.0001 for all) and for the AUC analysis 

(Figure 5.3.b ). Similar correlations were noted for the outcome of pinprick and light-

touch (data not shown). 

 

5.3.5 Correlation of NfL with Minocycline treatment 

Treatment was not evenly allocated across CCS, iSCI and cSCI (Table 5.1. ); the 

median motor score at baseline was 30 for patients receiving placebo (n=13, 54% 

cSCI patients), 46 for those receiving low dose (n=5, 20% cSCI patients), and 26 for 

those receiving high dose minocycline (n=9, 56% cSCI patients) (p=0.9050). 

Compared to placebo, treatment with low or high dose of minocycline (median 

baseline motor score: 27 points) versus placebo did not have a significant effect on 

the longitudinal profile of serum NfL levels in this group of patients (p=0.67, mixed 

effects model, Figure 5.5.a ). Likewise, minocycline treatment had no effect on the 

longitudinal profile of motor (p=0.495), pinprick (p=0.324) or light-touch scores 

(p=0.264) in an all patients analysis. A more comprehensive analysis of the effect of 

minocycline treatment on neurological outcome including these patients was 

previously published (161). 
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A. 

 

B. 

 

C. 

 

 

Figure 5.5.  Comparison of longitudinal serum NfL between minocycline and placebo 

treated patients. 
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A. In all patients (n=27) treatment with minocycline (n=14) versus placebo (n=13) did 

not have an effect on the longitudinal profile of serum NfL levels (p=0.671). 

B. In patients with a motor complete SCI (cSCI, n=13) patients on minocycline (n=6, 

5 high dose, 1 low dose) had lower longitudinal NfL levels than placebo (n=7) treated 

patients (p=0.048). 

C. In patients with a baseline motor score below the median of the baseline motor 

score of all patients (28 points, n=13) minocycline treated patients (n=7) showed a 

trend for lower NfL levels over time in comparison to the placebo treated group (n=6, 

p=0.85).  

Mean and standard error of the mean are displayed. 

 

 

In contrast, in cSCI (6 patients receiving minocycline, and 7 patients receiving 

placebo) minocycline treated patients showed lower longitudinal NfL levels than 

placebo (p=0.048) (Figure 5.5.b ). The effect of minocycline was more pronounced 

after removing the one patient on the low dose regimen (p=0.006), or the two 

patients with a thoracic level of the injury (p=0.030).  

This difference of NfL levels was not paralleled by clinical findings, as scores 

between treatment groups were not different (motor: p=0.234; after removing one 

patient on low dose minocycline: p=0.132, or the two patients with the thoracic injury 

level: p=0.686; pinprick: p=0.681, and p=0.827, p=0.417 or light-touch: p=0.185, and 

p=0.186, p=0.312) and failed to indicate a treatment effect of minocycline. 

Similarly, in the 13 patients who had a motor score below the median motor score 

(28) at baseline (1 patient with CCS, 3 with iSCI and 9 cSCI), minocycline treated 

patients (n=7) showed a trend for lower NfL levels over time in comparison to the 

placebo treated group (n=6, p=0.085, Figure 5.5.c , after removing 2 patients on low 

dose minocycline: p<0.001). Again, clinical scores were not different (motor: 

p=0.567, and p=0.972; pinprick: p=0.551, and p=0.656; light-touch: p=0.636, and 

p=0.320) between minocycline and placebo treated patients. 

 

5.4. Discussion 

This is the first study exploring the utility of NfL in serum as a marker of injury 

severity and outcome in patients with SCI, using a high-sensitivity ECL-immunoassay 

(94). NfL is the most abundant and also most soluble Nf subunit, factors that likely 

contribute to the superior sensitivity of NfL over neurofilament heavy chain (NfH) 

assays (192). The assay system is validated for CSF and serum, the latter allowing 

the acquisition of longitudinal measures in routine clinical settings. 
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In the course of acute and chronic neuronal damage, disruption to the axonal cell 

membrane releases Nf into the interstitial fluid, that eventually reaches the CSF and 

blood compartments (214, 215). In SCI, trauma causes direct acute neuronal 

necrosis, followed by secondary injury mechanisms that increase neuronal loss by 

apoptosis or necrosis, a process that may last from days to weeks (216, 217). 

At baseline, NfL levels in iSCI and cSCI were increased 4.2-fold and 14-fold 

compared to healthy controls, and 3.5-fold and 11.7-fold compared to CCS, 

respectively. Over the 7 day follow-up NfL levels steadily increased in all three 

disease groups, with maximum levels (CCS: 230 pg/ml, iSCI: 384 pg/ml, cSCI: 796 

pg/ml) being markedly higher than in more chronic diseases like Alzheimer’s disease 

(37 pg/ml), Guillain-Barré syndrome (102 pg/ml) or amyotrophic lateral sclerosis (120 

pg/ml) (94). Only limited human data is available beyond this time point: three of four 

ASIA A and one of two ASIA C patients reached their highest NfH plasma levels after 

10 days in a recent pilot study (218), leaving the question of peak and duration of 

release open. 

Only a few studies have investigated Nf in CSF or blood in SCI so far. First evidence 

for the usefulness of NfL as a marker of neuronal damage in SCI arose from a study 

investigating CSF in acute spinal cord disease: all 6 patients with SCI and 3 of the 17 

with whiplash injury showed increased concentrations of NfL (219). In a rat model of 

SCI, NfH levels in blood (195) were correlated with the extent of damage and were 

reduced by treatment with minocycline: this difference did not reach significance 

however (220). The same group of investigators performed the first study in humans 

with acute cervical SCI: NfH was detectable in plasma of 11 of the 14 included 

patients and ASIA A showed higher levels than ASIA C patients; however, correlation 

with clinical subscores, or outcome was not presented (218). 

The prognostic value of the ASIA grading system is limited by its lack of dynamic 

change over time on individual grounds, and its susceptibility to interference due to 

other injuries such as head or multi-system traumas, and drug effects (210). The 

consequence of these constraints for clinical studies are large patient numbers to 

achieve adequate statistical power, to observe differences in treatment regimens 

(221). The inclusion of motor and sensory subscores may increase the accuracy of 

the clinical grading (218). Our results show a high correlation between NfL and motor 

scores, both at baseline, during follow-up, and for long-term outcome, indicating that 

serum NfL may be a reliable quantitative biomarker of the degree of SCI. This may 

be of specific value in the context of clinical trials where inter-rater variability of 

clinical assessment may increase the threshold to detect treatment effects. 

Furthermore, serum NfL may also allow for better evaluation of injury severity than 
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the ASIA grade. In particular, it may allow further stratification and prognostication of 

the large population of ASIA A injuries. 

So far, no drug has been shown to ameliorate the course of SCI, despite several 

candidate compounds showing promising results in animal models (222-224). Apart 

from the larger heterogeneity of human disease when compared to experimental SCI 

(225), this failure may also be attributed in part to the lack of sensitive biomarkers 

with a broad dynamic measuring range.  

Minocycline is a tetracycline antibiotic that has shown neuroprotective properties in a 

variety of models of degenerative and acute neurological diseases, including SCI 

(226-230), by pathways unrelated to its antimicrobial activity (206). In the minocycline 

trial an intravenous loading and maintenance dose to achieve serum levels similar to 

those efficacious in animal models of SCI was used (161, 231). In the subgroups of 

cSCI, despite the small sample size, treated patients showed lower NfL levels at 

every time point beyond 24 hours post injury, whereas the clinical scales were 

insensitive to detect a difference between the treatment groups. This reduction of NfL 

levels was more pronounced after excluding the patients with a thoracic SCI or those 

on low dose minocycline. These findings are in line with the clinical scores of the 

core study (161) in which thoracic SCI patients did not benefit from minocycline 

treatment, and the comparison of the low- and high-dose minocycline groups 

suggested a greater effect with higher doses. 

The study is limited by the retrospective design and the fact that only a subfraction of 

participants in the original trial was available for serial serum NfL measurements 

(161). This may also have caused large heterogeneity in injury severity and 

mechanisms between minocycline treated and non-treated patients and, at least in 

part, precluded a potential minocycline treatment effect in the overall SCI cohort. 

In summary, this data provides new evidence that serum NfL may represent a useful 

indicator of acute severity and long-term outcome of neuronal injury, especially in 

cases where accurate clinical assessment is not possible. Further studies are 

warranted to increase the evidence for NfL as drug response marker in SCI.  
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6. Predicting multiple sclerosis: a large internati onal   

 multicentre study (232, 233)  

 

 

6.1. Introduction 

The cause of MS is unknown, but the disease appears to develop in genetically 

susceptible populations as a result of environmental exposures. Leading candidates 

for environmental factors associated with MS risk are vitamin D deficiency, Epstein-

Barr virus (EBV) infection and smoking (234). 

In approximately 85% of MS patients the disease starts as a single demyelinating 

episode known as CIS (42, 57). Prospective studies have shown that approximately 

60%-70% of CIS patients develop a second clinically evident demyelinating event 

separated in time and space within 20 years and will, therefore, be diagnosed with 

clinically definite MS (CDMS) (57, 235). The identification of factors influencing the 

risk of conversion to CDMS is relevant for prognosis, early intervention strategies 

and for the understanding of the biological mechanisms driving MS. Several studies 

have investigated which clinical and experimental variables can predict the onset of 

CDMS. The presence and number of MRI lesions in the CNS as well as that of 

oligoclonal bands (OCB) in the CSF of CIS patients have been independently 

associated with an increased risk of conversion (57, 235, 236). Other studies have 

focused on candidate environmental factors in MS and demonstrated that CIS 

patients with low vitamin D levels and high anti-EBV antibody titers are more 

susceptible to conversion to CDMS (237, 238). 

 

CSF Nf levels are abnormally high in CIS and MS patients and correlate with disease 

activity (100, 104, 239, 240). Unfortunately, obtaining CSF is a relatively invasive 

procedure and this has limited the potential use of Nf as biomarkers in MS, especially 

in longitudinal study designs with repetitive samplings. As pointed out in chapter 4, I 

recently developed a sensitive ECL based immunoassay for quantification of NfL in 

serum (94). 

Given the potential interdependence between risk factors, it is vital to assess all of 

them collectively and test their association with risk of conversion using a large 

population of CIS cases. To our knowledge, only one study has comprehensively 

analyzed a number of suggested factors in a cohort of patients experiencing a first 

demyelinating event. However, the cohort was relatively small (n=302) and only 

cases with pediatric onset were included (241). In this multicentre study we aimed to 

assess which clinical and environmental variables predict the risk of conversion from 
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adult CIS to CDMS using the largest cohort of adult CIS cases ever studied to date 

(n=1,047). 

For the serum NfL analysis I decided to follow a two staged process: In the initial 

step I selected 100 CIS with the shortest time to conversion to CDMS (fast 

converters (FC)) and 100 CIS with the longest follow-up time in the absence of 

conversion (non-converters (NC)) and serum samples from 92 HC. It was decided 

that only if I saw a difference in serum NfL levels between FC and NC serum NfL 

would be measured in the entire cohort of patients. 

 

6.2. Methods 

6.2.1. Participants and inclusion criteria 

This was an international collaborative study across 33 centres located in 17 different 

countries (table 6.1. ).  
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Table 6.1.  Participating centres and number of provided cases. 

Centre  Country 
Number of 

samples 

Amsterdam Netherlands 48 

Barcelona* Spain 26 

Barcelona** Spain 45 

Bari Italy 55 

Basel Switzerland 20 

Belgrade Serbia 11 

Bergen Norway 9 

Buenos Aires Argentina 4 

Copenhagen Denmark 15 

Düsseldorf Germany 25 

Genoa Italy 6 

Gothenburg Sweden 14 

Graz Austria 21 

Innsbruck Austria 46 

Istanbul Turkey 23 

Lublin Poland 14 

Lyon France 17 

Madrid Spain 32 

Marseille France 20 

Milan# Italy 8 

Milan## Italy 144 

Montpellier France 54 

Novara Italy 34 

Pavia Italy 22 

Prague Czech Republic 31 

Rome Italy 7 

Rotterdam Netherlands 81 

St Petersburg Russia 81 

Stockholm Sweden 44 

Szeged Hungary 25 

Toulouse France 20 

Ulm Germany 24 

Valencia Spain 21 
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Total 17 1047 

* Hospital Clinic of Barcelona; ** Vall d'Hebron Research Institute; # Ospedale 

Policlinico; ## San Raffaele Hospital. 

 

 

Each centre was asked to provide baseline clinical data and stored serum samples 

from CIS patients, on whom a minimum of 2 years of follow-up data were available. 

Inclusion criteria were: 1) the presence of a monophasic clinical episode suggestive 

of MS (CIS), not attributable to other diseases (for example infectious, neoplastic, 

congenital, metabolic or vascular disease) (242); 2) clinical follow-up of at least 2 

years; 3) available serum sample collected at time of CIS; 4) available basic 

demographic and clinical data (age at serum sampling or month and year of birth, 

gender, dates of CIS onset, serum sampling, CSF examination, MRI, conversion to 

CDMS (if present) and last follow-up visit); 5) information on presence or absence of 

OCB in CSF at time of CIS; 6) available data on T2 hyperintense lesions on cranial 

MRI at time of CIS.  

Patients with neuromyelitis optica (NMO), opticospinal MS in Asian populations or a 

history of a progressive course from onset were excluded. CDMS was diagnosed 

according to Poser criteria when new symptoms occurred after an interval of at least 

one month, and only when other diagnoses had been excluded (243). The study was 

approved by the corresponding local ethics committees and participants gave written 

informed consent. 

 

6.2.2. Data collection 

MRI, CSF and clinical assessments were performed in each participating centre as 

part of the diagnostic workup. The number of T2 hyperintense lesions on cranial MRI 

at time of CIS was used to group patients into three separate categories (0-1 lesions, 

2-9 lesions and >9 lesions). Grouping of lesion load was performed in order to control 

for variations in imaging protocol and individual analysis between centres. The 

presence of IgG OCB was determined by isoelectric focusing combined with 

immunoblotting of matched serum and CSF sample pairs in all patients (244). 

Additional clinical and CSF data were provided for a more limited number of patients 

(topography of CIS, CSF IgG index and CSF cell count) (245).   

Serum samples were aliquoted and stored at -80° C according international 

consensus guidelines (246). Liquid chromatography-tandem mass spectrometry 

(LCMS/MS) was used to measure 25-hydroxy-vitamin D3 levels (25-OH-D) (Royal 

London Hospital, Barts Health NHS Trust, London, UK). Daily internal quality 
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samples are measured by LCMS/MS and the institution follows an external quality 

assurance scheme (The International Vitamin D Quality Assessment Scheme, 

DEQAS). IgG titres against the EBV nuclear antigen 1 (EBNA1) and cytomegalovirus 

(CMV) were evaluated using commercially available ELISA (ETI-EBNA-G and ETI-

CYTOK-G PLUS Diasorin, Saluggia, Italy) following the manufacturers’ 

recommendations. Internal run validation criteria specified by the manufacturer and 

based on the calibrators were met for all ELISA plates measured. According to the 

manufacturer's instruction the cut-off for positivity was 20 arbitrary units (AU) for 

EBNA1 IgG and 0.4 international units (IU) for CMV IgG. Results were calculated by 

dividing the optical density (OD) of each sample by the OD of the 20 AU/0.4 IU 

calibrator on each ELISA plate. Serum cotinine levels were assessed using a 

commercially available ELISA (Calbiotech Inc., Spring Valley, USA) according to the 

manufacturer’s instructions and were used as a marker for smoking behaviour with 

levels > 14 ng/ml indicating a positive smoking status (247). Intra- and inter-assay 

variability for all ELISA and the NfL immunoassay measurements (see chapter 4, 

(94)) was below 15%. All the ELISA assays were performed a single center (Blizard 

Institute London, UK), with the analyst blinded to clinical data. 

 

6.2.3. Statistical analysis 

A. NfL analysis 

We selected 100 FC patients and 100 NC (two patients with insufficient sample 

volume). EDSS, number of T2 hyperintense and Gd+ lesions on cranial MRI and 

presence of OCB in the CSF at the time of CIS were assessed in each participating 

center as part of their diagnostic workup. EDSS and Gd+ lesion data were available 

on 170 and 146 CIS patients respectively. Patients were grouped in categories 

based on EDSS scores (0.0-1.0 vs 1.5-2.0 vs >2.0), number of T2 lesions (0-1 vs 2-9 

vs >9) and presence or absence of Gd+ lesions and OCB.  

Variables were described by median with IQR and counts with percentages. 

Normalized (log10) NfL levels were treated as a continuous variable and used for all 

analyses. Logistic regression models were used to assess the ability of NfL levels to 

predict disease status (FC vs HC, NC vs HC and FC vs NC). Similarly, we tested the 

association between NfL levels and markers of disease activity using logistic 

regression (NfL predicting OCB and Gd+ status) and ordinal regression models (NfL 

predicting increase in T2 and EDSS categories). In all models, results were corrected 

for both age and sex. All analyses were performed using R (http://www.r-

project.org/). 
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B. All other examined risk factors 

Variables were described by their median and IQR or by counts and percentages. 

Serum 25-OH-D varies according to season. In order to correct for this, raw 25-OH-D 

values were converted into deseasonalized 25-OH-D levels using the methods 

described by Mowry et al. (248).  Briefly, sine and cosine terms were generated to 

model the influence of the date of blood draw on vitamin D status; these were then 

included in a linear regression model providing the adjusted 25-OH-D levels (248). 

The impact of each variable on the cumulative risk of conversion to CDMS was 

assessed in both univariate (Kaplan-Meier survival curves and univariate Cox 

regression) and multivariate analyses (multivariate Cox regression with backward 

stepwise selection of variables). The assumption of proportional hazards was tested 

by including time-dependent covariates (interactions) in the model. Centre 

information was included in all Cox regression models by using a generalized 

estimating equation sandwich estimate of variance approach. Differences between 

groups of CIS patients according to their OCB and MRI status were also assessed 

using logistic and ordinal regression models. All statistical analyses were performed 

using STATA (http://www.stata.com/) and R (http://www.r-project.org/). 

 

6.3. Results  

6.3.1. Overall characteristics of CIS patients 

A total of 1,047 CIS patients were included in the study. These patients had 

presented to neurology services between November 1986 and December 2011; 

1,010 (96.5%) after 2000 and 794 (75.8%) after 2005. The median time between 

onset of neurological symptoms and serum sampling, CSF and MRI examination was 

33 (12-81), 28 (10-67) and 19 (4-59) days respectively. In 729 patients (69.6%) all 

evaluations were performed within three months since onset of symptoms. Patients 

were longitudinally followed up for a median time of 1,574 days (4.31 years). During 

this time 623 patients (59.5%) converted to CDMS (median survival time before 

conversion=1,096 days, 95% CI=973-1,267). 

The demographic and clinical features of CIS patients are shown in table 6.2. . CSF 

IgG index was available in 696 patients (66.5%) and CSF cell count in 513 patients 

(49.0%).13 CIS patients were more likely to be female than male (female/male 

ratio=2.1). The majority of patients had OCB in their CSF (74.3%) and had more than 

one CNS T2 lesion on MRI (2-9 T2 lesions=41.8%; >9 T2 lesions=43.7%).  

Clinical CIS information was available on 911 patients (87%). Of these patients, 288 

(31.6%) presented with optic neuritis (ON), 188 (20.6%) with a brainstem attack (BS), 
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257 (28.2%) with a spinal cord syndrome and the remaining 178 (19.5%) with other 

symptoms. 

 

 

 

 

 

 

 



 

 
 

Table 6.2. Demographic and clinical characteristics of the total CIS cohort, patients who converted and not converted to CDMS during follow-up 

  All CIS patients 
(n=1,047) 

Missing 
values 

Converted to CDMS  
(n=623, 59.5%) 

Missing 
values 

Not converted to 
CDMS (n=424, 40.5%) 

Missing 
values 

Age (years)  32.0 (26.0 - 39.0) 0 (0) 31.0 (25.2 - 38.1) 0 (0) 33.2 (27.1 - 39.7) 0 (0) 
Females  714 (68.2) 0 (0) 440 (70.6) 0 (0) 274 (64.7) 0 (0) 
Follow -up (days)  1,574 (1,042 - 2,330) 0 (0) 1,768 (1,110 - 2,558) 0 (0) 1,332 (965 - 1,971) 0 (0) 

Type of 
presentation 

ON=288 (31.6) 
BS=188 (20.6) 
Spinal=257 (28.2)  
Other=178 (19.5) 

136 (13) 

ON=160 (30.7) 
BS=103 (19.8) 
Spinal=151 (29.0)  
Other=107 (20.5) 

102 (16.4) 

ON=128 (32.8) 
BS=85 (21.8) 
Spinal=106 (27.2) 
Other=71 (18.2) 

34 (8.0) 

Days to 
conversion 
to CDMS 

NA NA 421 (212 - 853) 0 (0) NA NA 

Cotinine (> 14 
ng/ml) 350 (33.7) 10 (1.0) 205 (33.2) 5 (0.8) 145 (34.6) 5 (1.2) 

OCB positive  778 (74.3) 0 (0) 525 (84.3) 0 (0) 253 (59.7) 0 (0) 

MRI T2 lesions 
0-1=151 (14.4) 
2-9=438 (41.8) 
>9=458 (43.7) 

0 (0) 
0-1=48 (7.7) 
2-9=249 (40.0) 
>9=326 (52.3) 

0 (0) 
0-1=103 (24.3) 
2-9=189 (44.6) 
>9=132 (31.1) 

0 (0) 

25-OH-D (nmol/l)  49.3 (32.2 - 72.5) 6 (0.6) 47.9 (31.3 - 71.9) 4 (0.6) 50.5 (34.7 - 73.5) 2 (0.5) 
EBNA1 IgG  11.3 (6.7 - 14.7) 3 (0.3) 11.6 (6.7 - 15.0) 1 (0.2) 10.9 (6.7 - 14.2) 2 (0.5) 
CMV IgG 1.7 (0.2 - 3.3) 12 (1.1) 1.9 (0.2 - 3.3) 8 (1.3) 1.2 (0.2 - 3.4) 4 (0.9) 
CSF IgG index  0.7 (0.5 - 1.1) 351 (34) 0.8 (0.6 - 1.1) 231 (37.1) 0.6 (0.5 - 0.9) 120 (28.3) 
CSF cell count 
(n/µl) 5.0 (2.8 - 12.0) 534 (51) 5.8 (2.0 - 12.0) 315 (50.6) 5.0 (3.0 - 11.0) 219 (51.7) 

Median and interquartile range (IQR) or n (%). 
ON: optic neuritis; BS: brainstem syndrome; Spinal: spinal cord syndrome; NA: not applicable.
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6.3.2. Serum NfL analysis in FC versus NC and HC (n=290) 

The median time to conversion to CDMS in FC was 110 days (79-139), while the 

median follow-up time in NC was 6.5 years (5.3-7.9). The general characteristics of 

FC, NC and HC are provided in table 6.3..  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Table 6.3. General characteristics of CIS patients and healthy individuals included in the study. 

Variable Category FC (n=100) NC (n=98) HC (n=92) 

Age (years) - 30.6 (25.1-37.9) 31.6 (27.4-37.8) 35.0 (29.0-45.0) 

Sex F  67 (67%) 61 (62.2%) 58 (63.0%) 

OCB Positive 87 (87%) 60 (61.2%) - 

T2 lesion count 0 to 1 5 (5%) 21 (21.4%) - 
  2 to 9 38 (38%) 52 (53.1%) - 

  > 9 57 (57%) 25 (25.5%) - 

Gd+ lesions Positive 46 (58.2%) 25 (37.3%) - 

EDSS - 2.0 (1.5-3.0) 1.5 (1.0-2.0) - 

NfL (pg/ml) - 24.1 (13.5-51.8) 19.3 (13.6-35.2) 7.9 (5.6-17.2) 
FC: fast converters to CDMS; NC: non-converters to CDMS; HC: healthy controls; OCB: oligoclonal bands in CSF; T2: T2 hyperintense MRI 
lesions; Gd+: gadolinium enhancing MRI lesions; EDSS: Expanded Disability Status Scale; NfL: neurofilament light chain in serum. 
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The number of patients with OCB, Gd+ and >9 T2 lesions was higher in FC than NC 

(87% vs 61.2%, 58.2% vs 37.3% and 57% vs 25.5% respectively). EDSS scores 

were also overall higher in FC than NC (median EDSS=2.0 (1.5-3.0) vs 1.5 (1.0-2.0) 

respectively). 

There was no correlation between age and NfL in either CIS (Pearson’s r=-0.11, 

p=0.11) or HC (Pearson’s r=-0.02, p=0.83). 

NfL levels were higher in FC (24.1 pg/ml (13.5-51.8) and NC (19.3 pg/ml (13.6-35.2) 

than in HC (7.9 pg/ml (5.6-17.2)) (figure 6.1. ). Increasing NfL levels were 

significantly associated with an increased risk of being either FC (OR=5.85, 

95%CI=2.63-13.02, p=1.5x10-5) or NC (OR=7.03, 95%CI=2.85-17.34, p=2.3x10-5) 

compared to HC. When comparing FC vs NC, NfL levels were not associated with 

fast conversion. 

 

Figure 6.1.  Serum NfL concentrations across the three investigated groups (FC=fast 

converters to clinically definite MS (CDMS); NC=non-converters to CDMS; 
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HC=healthy controls). Each dot represents NfL concentration in a single individual. 

Boxplots indicate median and IQR with whiskers extending 1.5 times the IQR. 

 

 

However, presence of OCB, increasing number of T2 lesions, presence of Gd+ 

lesions and higher EDSS scores were all positively associated with FC status (table 

6.4. upper panel).  

 



 

 
 

Table 6.4. Upper panel: results of logistic regression models investigating serum NfL, OCB, T2, Gd+ and EDSS as predictors of disease status 
(adjusted by age and sex). 
Lower panel: results of logistic and ordinal regression models investigating NfL concentration as predictor of OCB, EDSS, T2 and Gd+ lesions 
(adjusted by age and sex). 

Comparison Predictor OR 95%CI p 

NC vs HC NfL 7.03 2.85 - 17.34 2.3 x 10-5 

FC vs HC NfL 5.85 2.63 - 13.02 1.5 x 10-5 

FC vs NC NfL 1.36 0.69 - 2.69 0.376 

FC vs NC OCB 4.13 2.02-8.45 9.9 x 10-5 
FC vs NC T2 (2-9 lesions) 3.11 1.07-9.06 0.037 
 T2 (>9 lesions) 9.63 3.25-28.58 4.4 x 10-5 

FC vs NC Gd+ 2.45 1.23-4.86 0.011 

FC vs NC EDSS (1.5-2.0) 1.40 0.67-2.94 0.374 
 EDSS (>2.0) 5.29 2.18-12.84 0.0002 
          
Predicted variable Predictor OR 95%CO p 

OCB NfL 1.66 0.75-3.70 0.214 

T2 NfL 2.36 1.21-4.59 0.011 

Gd+ NfL 2.69 1.13-6.41 0.026 

EDSS NfL 2.54 1.21-5.31 0.013 
OR: odds ratio; 95%CI: 95% confidence interval; SE: standard error; NC: non-converters to CDMS; HC: healthy controls; FC: fast converters to 
CDMS; NfL: neurofilament light chain in serum; OCB: oligoclonal bands in CSF; T2: T2 hyperintense lesions; Gd+: gadolinium enhancing 
lesions. 
 

 



 

114 

Finally, NfL concentration was positively associated with presence of Gd+ lesions 

(OR=2.69; 95%CI=1.13-6.41; p=0.026), increasing T2 lesion load (OR=2.36; 

95%CI=1.21-4.59; p=0.011), increasing EDSS category (OR=2.54; 95%CI=1.21-

5.31; p=0.013), but not OCB status (OR=1.66; 95%CI=0.75-3.70; p=0.214) (table 

6.4. lower panel, figure 6.2. ). 

 

 

Figure 6.2.  a) serum NfL levels across T2 lesion categories; b) serum NfL levels in 

patients with and without gadolinium enhancing MRI lesions (Gd+); c) serum NfL 

levels across EDSS categories; d) serum NfL levels in patients with and without 

oligoclonal bands (OCB). Each dot represents NfL concentration in a single 

individual. Boxplots indicate median and IQR with whiskers extending 1.5 times the 

IQR. 
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Since there was no significant difference in serum NfL concentrations between FC 

and NC, the a priori decision criterion to not measure serum NfL in the entire study 

cohort was fulfilled. 

 

 

6.3.3. Predictors of conversion to CDMS in the entire CIS cohort (n=1,047) 

Each variable was tested as a predictor of conversion from CIS to CDMS using a 

univariate Cox regression model (table 6.5. ). OCB positive CIS patients were more 

than twice as likely to convert to CDMS as OCB negative individuals (hazard ratio 

(HR)=2.49, 95%CI=1.91-3.23, p<0.001; figure 6.3.a ). Similarly, a higher IgG index 

was associated with conversion to CDMS (HR=1.22, 95%CI=1.10-1.36, p<0.001), 

whilst CSF cell count was not. A gradient of risk of conversion was observed with 

increasing numbers of T2 lesions (2-9 vs 0/1 lesions: HR=2.28, 95%CI=1.70-3.06, 

p<0.001; >9 vs 0/1 lesions: HR=3.26, 95%CI=2.28-4.65, p<0.001; >9 vs 2-9 lesions: 

HR=1.43, 95%CI=1.21-1.68, p<0.001; figure 6.3.b ). Females were at slightly higher 

risk of CDMS but this did not reach statistical significance (HR=1.17, 95%CI=0.94-

1.46, p=0.160; figure 6.4.a ). Age at CIS onset was inversely associated with risk of 

conversion (HR per year increase=0.98, 95%CI=0.976-0.99, p<0.001; figure 6.4.b ).  

 



 
 

 
 

Table 6.5. Univariate and multivariate stepwise Cox regression results for all variables investigated as predictors of conversion to CDMS. 

  Univariate    Multivariate   
Variable Category HR 95%CI p HR 95%CI p 
Age - 0.98 0.976 - 0.99 <0.001 0.98 0.98 - 0.99 <0.001 
Sex F vs M 1.17 0.94 - 1.46 0.160 - - - 

OCB Positive vs 
Negative 2.49 1.91 - 3.23 <0.001 2.18 1.71 - 2.77 <0.001 

CSF IgG index - 1.22 1.10 - 1.36 <0.001 - - - 
MRI T2 lesions 2-9 vs 0/1 2.28 1.70 - 3.06 <0.001 1.97 1.52 - 2.55 <0.001 
 > 9 vs 0/1 3.26 2.28 - 4.65 <0.001 2.74 2.04 - 3.68 <0.001 
25-OH-D (quartiles) 2nd vs 1st 0.76 0.60 - 0.95 0.016 0.82 0.70 - 0.97 0.019 
 3rd vs 1st 0.69 0.58 - 0.83 <0.001 0.76 0.63 - 0.91 0.003 
 4th vs 1st 0.76 0.62 - 0.94 0.010 0.85 0.68 - 1.07 0.167 
EBNA1 IgG 
(quartiles) 2nd vs 1st 0.85 0.69 - 1.05 0.127 0.75 0.60 - 0.94 0.014 

 3rd vs 1st 0.92 0.70 - 1.23 0.586 0.81 0.59 - 1.13 0.220 
 4th vs 1st 1.11 0.83 - 1.49 0.464 1.00 0.75 - 1.34 0.986 

CMV IgG (quartiles) 2nd vs 1st 1.13 0.92 - 1.38 0.238 1.22 0.98 - 1.52 0.075 
 3rd vs 1st 1.24 0.94 - 1.62 0.126 1.36 1.10 - 1.67 0.004 
 4th vs 1st 1.12 0.89 - 1.41 0.346 1.25 0.97 - 1.60 0.07 
Cotinine >14 vs <14 ng/ml 0.95 0.79 - 1.14 0.549 - - - 
CSF cell count - 1.00 0.99 - 1.01 0.988 - - - 
Type of CIS BS vs ON 1.04 0.74 - 1.46 0.831 - - - 
 Spinal vs ON 1.12 0.89 - 1.41 0.318 - - - 
 Other vs ON 1.22 0.93 - 1.59 0.155 - - - 

HR: hazard ratio; CI: confidence interval; F: female; M: male; vs: versus; CSF: cerebrospinal fluid; OCB: oligoclonal bands in CSF; 25-OH-D: 
25-hydroxyvitamin D3; EBNA1: Epstein-Barr nuclear antigen 1; CMV: cytomegalovirus; CIS: clinically isolated syndrome; BS: brainstem 
syndrome; ON: optic neuritis; Spinal: spinal cord syndrome.
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Figure 6.3.  Survival curves of conversion to CDMS and numbers of individuals at risk 

of conversion (below the x axis) stratified according to: a) OCB status; b) number of T2 

lesions on MRI; c) quartiles of 25-OH-D levels. 
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Figure 6.4.  Survival curves of conversion to CDMS and numbers of individuals at risk 

of conversion (below the x axis) stratified according to: a) gender; b) age. 

 

 

We attempted to make these statistical measures of risk more clinically relevant by 

estimating the risk of conversion to CDMS in different categories of CIS patients at 2 

and 5 years of follow-up. The risk of conversion varied widely across different exposure 

categories (table 6.6. ) and was high among individuals with evidence of OCB and 

more than 9 T2 lesions on MRI (57.0% and 85.5% at 2 and 5 years of follow-up 

respectively). Including 25-OH-D information did not considerably change these 

estimates. Notably, the risk of conversion among OCB negative CIS cases with either 0 

or 1 T2 lesions and higher vitamin D status was  low (6.8% and 21.4% at 2 and 5 years 

respectively). These estimates should however be interpreted with caution given the 

small number of patients lacking all risk factors for conversion and the correspondingly 

wide confidence intervals. 



 
 

 
 
 

Table 6.6. Risk of conversion to CDMS in different categories of CIS patients after 2 and 5 years of follow-up.  

 At 2 years of follow-up At 5 years of follow-up 

Category n % risk of conversion 
(95%CI) n % risk of conversion (95%CI) 

OCB positive 778 47.9 (44.4 - 51.5) 607 81.1 (77.6 - 84.0) 
OCB negative 269 22.7 (17.9 - 28.2) 154 58.4 (50.2 - 66.2) 

MRI > 9 T2 lesions 458 51.7 (47.1 - 56.4) 372 82.5 (78.2 - 86.2) 
MRI 2-9 T2 lesions 438 39.9 (35.4 - 44.7) 314 74.5 (69.3 - 79.2) 
MRI 0-1 T2 lesions 151 14.6 (9.5 - 21.4) 75 54.7 (42.8 - 66.0) 

25-OH-D 1st quartile 260 47.3 (41.1 - 53.6) 205 82.4 (76.4 - 87.2) 
25-OH-D 2nd quartile 260 41.5 (35.5 - 47.8) 182 76.4 (69.4 - 82.2) 
25-OH-D 3rd quartile 260 40.0 (34.0 - 46.3) 179 71.5 (64.2 - 77.9) 

25-OH-D 4th quartile 261 36.8 (31.0 - 43.0) 191 74.3 (67.4 - 80.2) 

OCB positive / > 9 T2 377 57.0 (51.8 - 62.1) 310 85.5 (80.9 - 89.1) 
OCB negative / > 9 T2 81 27.2 (18.1 - 38.4) 62 67.7 (54.5 - 78.7) 
OCB positive / 2-9 T2 328 43.9 (38.5 - 49.5) 251 77.7 (71.9 - 82.6) 
OCB negative / 2-9 T2 110 28.2 (20.2 - 37.7) 63 61.9 (48.8 - 73.6) 
OCB positive / 0-1 T2 73 19.2 (11.2 - 30.4) 46 69.6 (54.1 - 81.8) 
OCB negative / 0-1 T2 78 10.3 (4.8 - 19.7) 29 31.0 (16.0 - 51.0) 

OCB positive / >9 T2 / 25-OH-D < median 192 56.2 (48.9 - 63.3) 154 87.0 (80.4 - 91.7) 
OCB negative / 0-1 T2 / 25-OH-D > median 44 6.8 (1.8 - 19.7) 14 21.4 (5.7 - 51.2) 

CI: confidence interval; OCB: oligoclonal bands in CSF; 25-OH-D: 25-hydroxyvitamin D3. 
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6.3.4. Predictors of OCB and MRI lesions 

The clinical and biological parameters associated with the presence of OCB and T2 

hyperintense lesions at disease onset were assessed. The median age, sex ratio, 

vitamin D status, EBNA1 IgG and CMV IgG levels of OCB positive and OCB negative 

CIS patients are described in table  6.7.. OCB positive individuals were younger, more 

likely to be female, had more T2 lesions and lower 25-OH-D levels than those who 

were OCB negative. OCB positive patients also had higher EBNA1 but not CMV IgG 

levels compared to OCB negative patients. In a multivariate logistic regression model 

predicting OCB status, the number of T2 lesions (>9 vs 0/1 lesions: odds ratio 

(OR)=5.03, 95%CI=3.35-7.58, p<0.001), lower age at CIS onset (OR per year 

increase=0.98, 95%CI=0.97-0.997, p=0.019) and higher EBNA1 IgG levels (OR=1.08, 

95%CI=1.04-1.11, p<0.001) were significantly associated with OCB (table 6.7. ). 



 
 

 
 

Table 6.7. Association between demographic and clinical features of CIS patients with presence or absence of OCB.  

     Univariate    Multivariate   
Variable OCB positive OCB negative OR 95%CI p OR 95%CI p 
Age Median (IQR) 31.3 (25.4 - 39.0) 33.6 (27.7 - 38.8) 0.98 0.97 - 0.998 0.025 0.98 0.97 - 0.997 0.019 
T2 MRI 2 – 9 328 (42.2%) 110 (40.9%) 3.19 2.17 - 4.68 <0.001 3.16 2.13 - 4.70 <0.001 
 > 9 377 (48.5%) 81 (30.1%) 4.97 3.34 - 7.41 <0.001 5.03 3.35 - 7.58 <0.001 
EBNA1 IgG Median (IQR) 11.8 (7.6 - 14.9) 9.3 (4.2 - 14.1) 1.08 1.05 - 1.11 <0.001 1.08 1.04 - 1.11 <0.001 
25-OH-D Median (IQR) 49.0 (31.2 - 71.3) 50.1 (36.1 - 76.8) 0.995 0.99 - 0.999 0.035 - - - 
Sex Females 544 (69.9%) 170 (63.2%) 1.35 1.01 - 1.81 0.042 - - - 
CMV IgG Median (IQR) 1.5 (0.2 to 3.4) 2.2 (0.2 to 3.3) 1.03 0.98 - 1.09 0.225 - - - 

OCB: oligoclonal bands in CSF; OR: odds ratio; CI: confidence interval; IQR: interquartile range; EBNA1: Epstein-Barr nuclear antigen 1; 25-OH-D: 
25-hydroxyvitamin D3; CMV: cytomegalovirus. 
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The general features of CIS patients in the three different categories based on number 

of T2 lesions are shown in table 6.8. . We used a multivariate ordinal regression model 

to investigate which variables were independently associated with an increased 

number of T2 lesions. Only presence of OCB was significantly associated with an 

increased lesion load (OR=2.73, 95%CI=2.08-3.58, p<0.001) (table 6.8. ). 



 
 

 
 

Table 6.8. Demographic and clinical features of CIS patients associated with MRI status. 

      
Univariate  

  
Multivariate  

 
Variable 0-1 T2 2-9 T2 > 9 T2 OR 95%CI p OR 95%CI p 

OCB Positive 73 (48.3%) 328 (74.9%) 377 (82.3%) 2.73 2.08 - 3.58 <0.001 2.73 2.08 - 3.58 <0.001 

Age Median 31.2 (25.5-36.9) 32.3 (26.6 -39.1) 32.2 (26.0 - 39.3) 1.00 0.99 - 1.02 0.458 - - - 

Sex Females 104 (68.9%) 301 (68.7%) 309 (67.5%) 0.95 0.74 - 1.21 0.667 - - - 
EBNA1 
IgG Median 10.1 (5.3 -13.7) 11.8 (7.0 – 15.0) 11.3 (6.9 - 14.7) 1.02 0.99 - 1.04 0.206 - - - 

CMV IgG Median 
(IQR) 2.1 (0.2 - 3.5) 1.7 (0.2 - 3.6) 1.7 (0.2 - 3.2) 0.97 0.94 - 1.01 0.119 - - - 

25-OH-D Median 
(IQR) 50.2 (35 - 77) 50.0 (33 - 73) 48.0 (30 - 70) 1.00 0.99 - 1.00 0.132 - - - 

OR: odds ratio; CI: confidence interval; OCB: oligoclonal bands in CSF; IQR: interquartile range; EBNA1: Epstein-Barr nuclear antigen 1; CMV: 
cytomegalovirus; 25-OH-D: 25-hydroxyvitamin D3. 
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6.4. Discussion 

I report the largest study ever performed on CIS patients and aimed to elucidate the 

factors driving the onset of CDMS. This is also the first study investigating serum NfL in 

CIS patients. These were significantly higher in both FC and NC than in HC. This 

supports the presence of accumulating axonal injury starting in the very early phases of 

the disease and ongoing Wallerian degeneration from focal lesion(s) presenting as 

CIS. We noted some HC had higher NfL levels than CIS patients. To what extent these 

high NfL levels in HC represent minor neurological insults occuring in day-to-day life 

(e.g. minor head injuries or compression of peripheral nerves) rather than normal 

synaptic and neuronal turnover is unclear and needs further study. 

Interestingly, the difference in serum NfL between FC and NC was not statistically 

significant (and hence the decision to restrict this analyses to extreme outcome groups 

in this study). Therefore, while increased NfL levels appear a good indicator of axonal 

damage, this does not appear to be specific to CIS with a relatively rapid conversion to 

CDMS. Increased serum NfL and NfH levels have been found in neurological 

conditions other than MS such as ALS and GBS, and have been used as a marker of 

neurotoxicity after chemotherapy (94, 168, 169). Results from previous studies in CIS 

have been controversial with one study showing slightly higher CSF NfL levels in CIS 

patients converting to CDMS than in non-converters (100), while others have not (102, 

178). It should be noted that, even in this cohort, NfL levels were to some extent higher 

in FC than NC and it is plausible that by increasing the sample size the difference may 

become statistically significant. As compared to CSF, serum samples are more easily 

accessible but also more distant from the pathological process taking place in the CNS. 

This may affect the sensitivity of serum NfL to predict conversion to CDMS. 

Importantly, higher serum NfL concentration was associated with the presence of both 

T2 and Gd+ lesions; the former a burden of disease marker and the latter a marker of 

acute focal inflammation. Furthermore, NfL levels increased with increasing EDSS 

scores at the time of CIS. These results are in agreement with previous studies 

showing that Nf levels in the CSF are correlated with both MRI and clinical activity of 

MS (98, 100, 152, 240). It will be important to determine if raised serum NfL levels at 

presentation predict long-term disability outcomes similarly to CSF NfL levels (99). 

 

I confirmed a strong association between an increasing number of T2 hyperintense 

lesions on baseline MRI and risk of conversion in keeping with several previous studies 

(57, 235, 249). Similarly, CSF markers of B cell activity (OCB and a higher IgG index) 

were strongly and independently associated with conversion to CDMS (250-252). 

Notably, the risk of conversion appeared particularly high in those patients carrying 

both OCB and a high number of T2 lesions (57% and 86% risk of conversion after 2 
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and 5 years of follow-up respectively). As previously suggested, age at disease onset 

was also inversely associated with risk of conversion (253). 

Two recent studies have demonstrated a significant inverse relation between vitamin D 

status and risk of conversion (237, 254). Our study appears to confirm this finding, and 

indeed extends this in a heterogeneous sample of CIS patients from a variety of 

latitudes. It is noteworthy that our study included both a considerably larger number of 

patients (237) and also incorporated information on OCB (254). In the univariate model 

predicting conversion to CDMS the 2nd, 3rd and 4th quartiles versus the 1st (lowest) 

quartile of vitamin D levels were all significantly associated with a lower risk of 

converting to CDMS. Nevertheless, already in this analysis and more so in the 

multivariate approach no apparent dose-response relationship was visible. In addition, 

significance was lost in the multivariate model for comparing the 4th with the 1st quartile. 

Even if the effect of 25-OH-D levels on risk of conversion appears partially attenuated 

in the multivariate analysis, our overall results confirm that CIS patients with lower 25-

OH-D levels tend to convert to CDMS more rapidly. Studies outside the field of MS 

have reported that vitamin D levels may fall in the presence of systemic inflammation 

and this may happen to a greater extent in those CIS patients, who go on to convert to 

CDMS (255). Although reverse causation cannot be excluded, the increasing evidence 

for regulatory effects of vitamin D on the immune system support a potential causal link 

between vitamin D deficiency and conversion to CDMS (256, 257).  

Previous studies have suggested that individuals with higher antibody levels against 

EBV are at increased risk of conversion (238, 241). However, we did not see any 

association between IgG production against EBNA1 and CMV and conversion to 

CDMS in univariate analyses. Some quartiles appeared significantly associated in the 

multivariate model, but this was not consistent across quartiles. Given the lack of 

significance in univariate analyses and the known risk of false positive associations in 

stepwise models, we believe these data should be interpreted with caution. The 

difference in the methods used by previous studies could at least partly contribute to 

the discrepancy in these results. We only tested a single EBV antigen using an ELISA 

based kit, which is less accurate than immunofluorescence based methods (258). 

 

We were particularly interested in the relation between OCB and IgG against EBNA1, 

as previous studies have suggested a potential link between these markers of B cell 

activation in MS. A similarly large proportion of patients with MS have OCB in their CSF 

and antibodies against EBV in their serum (244, 259). In addition, both the presence of 

OCB and high antibody titres against EBV proteins are positively associated with the 

HLA-DRB1*1501 allele, the main genetic risk factor in MS (260-263). Our finding that 

EBNA1 but not CMV IgG levels are significantly associated with the presence of OCB 
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further strengthens the link between EBV and intrathecal B cell activation. This 

highlights a potential connection between exposure to this virus and the most 

consistent immunological finding in MS patients. 

OCB status was also positively associated with MRI T2 lesion load and lower age at 

onset. Notably, these variables were also associated with risk of conversion and this 

confirms the importance of OCB and B cell activation within the CNS in the pathology 

of this disease. 

Our multicentre approach enabled the retrospective collection of more than 1,000 CIS 

patients who have been followed up for several years, but this real-life clinical setting 

also inevitably leads to some limitations. Potential bias can arise from centre specific 

effects, despite adjusting for them in the regression models. This includes the potential 

consequences of various different clinical care protocols employed across the 

participating sites, and possible recall bias depending on the frequency of follow-up 

visits. Furthermore, we should remember that patients who participate in studies are 

those who fulfill the inclusion criteria, and differences may be present between these 

and the overall patient population. We did not include additional variables that could 

potentially act as confounders or independently influence the risk of conversion to 

CDMS such as the potential effect of disease modifying treatment, genetic factors, 

history of infectious mononucleosis, latitude, time spent outdoors, vitamin D intake and 

previous history of smoking in our analysis. Vitamin D levels were only measured at a 

single time-point, which may not appropriately reflect vitamin D status over the long 

term. Finally, MRI protocols and T2 lesion counting methods could not be pre-specified 

and hence not uniform across the different centres. We therefore chose not to use MRI 

as evidence of dissemination in time and space (as in the current diagnostic criteria 

(264)). We instead applied Poser criteria to define CDMS, which allow a more reliable 

evaluation of disease activity in multicentre studies such as this one. Nonetheless, the 

occurrence of new neurological symptoms represents an important and unequivocal 

clinical endpoint which is relevant for both patients and neurologists. Similarly, in order 

to reduce inter-rater variability in T2 lesion counts, we grouped patients in categories 

(0-1, 2-9 and >9 lesions) and used these rather than the original lesion counts for all 

analyses. 

In conclusion, despite not discriminating between fast and slow converting CIS 

patients, serum NfL levels are abnormally high in the earliest stages of MS, correlate 

with MRI activity and disability scores and represent a promising and easily accessible 

biomarker in this debilitating disease. These results strongly support future studies with 

longitudinal sampling and well conducted clinical and imaging follow-up to investigate 

serum NfL’s potential prognostic potential in CIS and also later disease stages. 
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Conversely, OCB status, number of T2 lesions and lower age at CIS onset are 

associated with an increased risk of conversion from CIS to CDMS. A role for lower 

vitamin D levels is also suggested. We confirm that patients with both OCB and several 

T2 lesions are highly likely to convert, with their risk of developing CDMS in 5 years at 

almost 90%. Given that MRI activity and OCB status are inextricably linked with 

immune activation, these data support targeting the immune system early in the 

disease in order to slow or prevent MS disease activity.  

The effect of vitamin D is intriguing and supports the need for large-scale clinical trials 

of vitamin D supplementation in order to conclusively answer the question as to 

whether this environmental factor is causal or consequential for disease activity. The 

future integration of additional parameters including genetic variants associated with 

the risk of MS will allow a more accurate assessment of risk of conversion and more 

targeted intervention strategies. 
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7. Summary and Conclusions  

 

The incidence of neurodegenerative diseases increases with age. At present about 

16% of the European population is older than 65 years with an estimated 30% by 2060. 

In contrast, neurodegeneration in children and young adults is more related to 

accidents such as traumatic brain or spinal cord injury. In addition, there are 

neurodegenerative diseases which affect adults at the prime of their active working life. 

Notably, neurodegeneration is now recognised as the key pathological feature driving 

disease progression in MS and other demyelinating syndromes, stroke and ALS. There 

is a lack of analytically and clinically validated in vitro diagnostic tests for assessment 

of neurodegeneration in this context. Until now, MRI findings have attracted most 

interest as measures and surrogates of axonal loss (265). While classical MRI 

measures (focal T2 hyperintense lesions, Gadolinium enhancement) have been 

disappointing in this regard, more elaborated quantitative outcomes including whole 

brain or regional brain atrophy were found to better depict the destructive process 

(266). Unfortunately, brain volume is a “mixed baggage” resulting from many different 

factors, pathological and physiological, not directly related to axonal loss such as fluid 

shifts, ageing, remyelination and astrogliosis, all of them affecting measures of brain 

atrophy in sometimes opposite directions (e.g. inflammation may increase water 

content and volume and its suppression – although beneficial in the long run – may 

result in volume reduction via reduction of edema (a phenomenon apostrophized as 

“treatment-induced pseudo-atrophy” (267))). Hence whole brain atrophy is a rather 

unspecific surrogate of neurodegeneration. Another significant problem of measuring 

brain atrophy relates to the delayed responsiveness of this outcome measure (268). To 

date, the best validated universal body fluid biomarkers for axonal damage are the Nf 

proteins. 

My findings support this view: NfL proved to be a stable analyte with respect to 

repeated freeze thawing cycles and prolonged exposure to room temperature. This 

does not support previous concerns about its susceptibility to proteases, especially in 

the protease-rich CSF or blood (160). It is important to conclude that there is no basis 

to prefer NfH over NfL as biomarker of axonal damage due to concerns of sample 

stability. 

My results demonstrated that CSF Nf levels are increased in the earliest stages of MS 

and correlate with signs of inflammation in CSF and relapses. Differences in CIS and 

MS were stronger for NfL than for NfHSMI35. The higher abundance of NfL and/or better 

performance of the UmanDiagnostics NF-light® assay may outweigh the known high 

sensitivity and higher dynamic range of the ECL technology used in our previously 

developed NfHSMI35 assay (95). 
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This is also supported by more pronounced reductions of CSF NfL levels as compared 

to NfHSMI35 after 12 months of natalizumab treatment in MS patients. However, it would 

be premature to generalize this to the assumption that NfL measurements would be 

universally superior to NfH. Rather these findings could reflect specific assay 

characteristics, and although both proteins originate from the same source, it is 

foreseeable that increased levels of one or the other bear differential information.  

I performed the first double-blind, placebo controlled evaluation of the effects of an 

approved MS therapy on CSF NfL levels. The data demonstrated that CSF NfL levels 

decrease substantially in fingolimod-treated patients, whereas a similar magnitude of 

change is not observed in patients on placebo. Importantly, the treatment effect on NfL 

levels was associated with improved clinical and MRI outcomes of disease activity. At 

the individual patient level, extreme changes in CSF NfL levels, irrespective of 

treatment, were reflected in the clinical and paraclinical findings. Consistent with these 

results, a recent uncontrolled study in RRMS patients with high disease activity also 

suggested an association of natalizumab treatment with a decrease in CSF NfL levels 

and corresponding improvements in clinical, MRI and other laboratory measures (101).  

 

A notable limitation of cross-sectional studies on biomarkers of neurodegeneration is 

that data are obtained almost exclusively from CSF samples. This invasive, potentially 

harmful procedure has to be performed under sterile conditions and is not well 

tolerated by all patients which explains the lack of large multi-centre longitudinal 

studies. Longitudinal data is essential for monitoring of progression of 

neurodegeneration and efficacy of neuroprotective treatment strategies. However, 

obtaining longitudinal CSF samples is considered too invasive outside the clinical trial 

arena, precluding the broader clinical use of Nf. 

Several reports have suggested peripheral blood levels of NfH as a potential marker of 

neurodegeneration (154, 155, 168, 182, 184, 185, 198, 269). In contrast to studies on 

NfH, there is only one recent report investigating NfL in serum; this work examined the 

relationship between serum NfL and neurological outcome following cardiac arrest 

(170). 

A commercially available ELISA (UmanDiagnostics NF-light® assay) uses two highly 

specific, non-competing monoclonal antibodies (47:3 and 2:1) to quantify soluble NfL in 

CSF samples. However,  this cannot be used in its present form for analysis of blood 

samples (95). In a collaborative effort with UmanDiagnostics I developed a highly 

sensitive ECL-based NfL assay (NfLUmea47:3) suitable for the quantification of NfL in 

serum at concentrations relevant to clinical settings (94). We applied this immunoassay 

to cohorts of patients with AD, GBS, ALS. All patient groups had higher serum NfL 

values than a CP and HC. Further strengthening these results, CSF and serum levels 
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correlated significantly in all disease groups and sensitivity and specificity of serum NfL 

for separating ALS from healthy controls was over 90%.  

 

To further my initial findings, I had access to a unique collection of longitudinally 

collected serum samples from well characterized patients with SCI. In SCI, the severity 

of disease is quantified exclusively by clinical measures that have limited sensitivity 

and reliability, and no blood-based biomarker has been established to further stratify 

the degree of injury. I investigated the role of serum NfL determined by NfLUmea47:3 as 

predictor of the clinical outcome in 27 SCI patients. I found that baseline NfL levels (in 

samples collected within 12 hours after the trauma) were significantly higher in iSCI 

and cSCI than in HC and patients with CCS, and levels increased over time. NfL levels 

correlated with ASIA motor score at baseline and after 24 hours and the long term 

motor outcome. Minocycline treatment showed decreased NfL levels in the subgroup of 

cSCI patients. 

These findings are important since they show for the first time that serum NfL 

concentrations in SCI patients are closely correlated with injury severity and functional 

outcome and provide evidence that serum NfL is of prognostic value in SCI patients. 

Further, blood NfL levels may qualify as drug response markers in SCI. 

Finally, I collected and studied the largest cohort of CIS patients to date in order to 

investigate serum NfL levels in CIS patients and which factors predict conversion from 

CIS to CDMS, defined by the occurrence of a second clinical relapse. 

NfL levels were higher in FC (24.1 pg/ml) and NC (19.3 pg/ml) than in HC (7.9 pg/ml, 

p=1.5x10-5 and p=2.3x10-5 respectively). In addition, increased serum NfL 

concentration was associated with increasing numbers of T2 hyperintense MRI lesions 

(p=0.011), Gd+ lesions (p=0.026) and higher EDSS scores (p=0.013) at CIS diagnosis. 

However, NfL levels were not associated with fast conversion to CDMS (p=0.37). 

Based on this I decided not to investigate serum NfL further in the entire cohort of CIS 

patients (n=1047). Predictors of conversion in multivariate analyses were OCB 

(p<0.001), number of T2 lesions (p<0.001) and age at CIS (p<0.001). Lower 25-OH-D 

levels were associated with CDMS in univariate analysis, but this was attenuated in the 

multivariate model. Strikingly, OCB positivity was associated with higher EBNA-1 IgG 

titres. In conclusion, I validated MRI lesion load, OCB and age at CIS as the strongest 

independent predictors of conversion to CDMS in this multicentre setting. A role for 

vitamin D is also suggested but requires further investigation.  

 

Neurodegeneration is now recognised as the key pathological feature driving disease 

progression in MS and other demyelinating syndromes, but also stroke and ALS. There 

is a significant unmet need for analytically and clinically validated in vitro diagnostic 
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tests for assessing of axonal injury; and in this context, assessing the efficacy of 

neuroprotective agents in the setting of delayed axonal loss is proving extremely 

problematic. Taken together, the results of my thesis confirm and expand on previous 

findings of Nf as quantitative markers of neurodegeneration in CSF. In particular, I 

showed that NfL is a stable molecule, can be measured in both CSF and serum, is 

increased in a wide range of neurodegenerative conditions, correlates with clinical 

features of disease activity and progression and is potentially responsive to disease 

treatment. Nf is a universal measure of axonal injury, therefore specificity is limited. 

According to the definitions set up by the biomarker expert working group (137), the 

greatest potential for Nf can be anticipated in their use as a tool for quantifying disease 

severity, prognosis and monitoring therapy response. Future studies will also have to 

show if NfL may qualify as surrogate endpoint in clinical trials. It will be important to 

have independent research groups being able to technically reproduce serum NfL 

measurements. The near past has shown several examples of relevant scientific 

findings that could not be independently validated  (270-272). Longitudinal samples are 

essential for monitoring of the progression of neurodegeneration. Medium-term 

longitudinal studies investigating serum NfL in MS will have to include large patient 

numbers with well conducted clinical and paraclinical follow-up examinations. Clinical 

follow-up will have to be long enough (ie 5-10 years) to draw conclusions on the 

relationship between NfL measurements and disease severity and prognosis. This 

should also include conventional and more advanced imaging measures. I propose 

samples that have already been collected in the framework of observational cohort 

studies or randomized-controlled trials could be well suited to fulfill these requirements. 

Depending on outcome, these retrospective projects will have to be followed by 

prospective trials investigating the potential of serum NfL measurements as a surrogate 

endpoint and to measure disease severity, treatment response and prognosis in 

individual patients further.  
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8. Publications in peer reviewed journals associate d with this thesis  

 

Chapter 2: 

1. Kuhle J, Plattner K, Bestwick JP, Lindberg RL, Ramagopalan S, Norgren N, 

Nissim A, Malspina A, Leppert D, Giovannoni G*, Kappos L*. *equal 

contribution. 

 A comparative study of CSF Neurofilament light and heavy chain protein in MS. 

 Mult Scler, 19(12):1597-1603, 2013. 

 

Chapter 3A: 

2. Kuhle J, Malmeström C, Axelsson M, Plattner K, Yaldizli O, Derfuss T, 

Giovannoni G, Kappos L, Lycke J. 

 Neurofilament light and heavy subunits compared as therapeutic biomarkers in 

multiple sclerosis. 

 Acta Neurol Scand, 128(6):e33-62013, 2013. 

 

Chapter 3B: 

3. Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, Francis G, 

Shrinivasan A, Radue E-W, Giovannoni G, Kappos L. 

 Fingolimod and CSF neurofilament light chain levels in relapsing-remitting 

multiple sclerosis. 

 Neurology, 84(16): 1639-1643, 2015. 

 

Chapter 4: 

4. Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick 

JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, 

Giovannoni G, Kuhle J. 

 Increased neurofilament light chain blood levels in neurodegenerative 

neurological diseases. 

 Plos One, 8(9):e75091, 2013. 

 

Chapter 5: 

5. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, Lu CH, 

Dobson R, Disanto G, Norgren N, Nissim A, Kappos L, Hurlbert J, Yong VW, 

Giovannoni G, Casha S. 

Serum neurofilament light chain is a biomarker of human spinal cord injury 

severity and outcome. 

J Neurol Neurosurg Psychiatry, 86(3):273-279, 2015. 
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Chapter 6: 

6. Kuhle J, Disanto G, Dobson R, Adiutori R, Bianchi L, Topping J, Bestwick JP, 

Meier U-C, Marta M, Dalla Costa G, Runia T, Evdoshenko E, Lazareva N, 

Thouvenot E, Iaffaldano P, Direnzo V, Khademi M, Piehl F, Comabella M, 

Sombekke M, Killestein J, Hegen H, Rauch S, D'Alfonso S, Alvarez-Cermeño 

JC, Kleinová P, Horáková D, Roesler R, Lauda F, Llufriu S, Avsar T, Uygunoglu 

U, Altintas A, Saip S, Menge T, Rajda C, Bergamaschi R, Moll N, Khalil M, 

Marignier R, Dujmovic I, Larsson H, Malmestrom C, Scarpini E, Fenoglio C, 

Wergeland S, Laroni A, Annibali V, Romano S, Martínez AD, Carra A, Salvetti 

M, Uccelli A, Torkildsen O, Myhr K-M, Galimberti D, Rejdak K, Lycke J, 

Frederiksen JL, Drulovic J, Confavreux C, Brassat D, Enzinger C, Fuchs S, 

Bosca I, Pelletier J, Picard C, Colombo E, Franciotta D, Derfuss T, Lindberg 

RLP, Yaldizli O, Vécsei L, Kieseier BC, Hartung HP, Villoslada P, Siva A, Saiz 

A, Tumani H, Havrdová E, Villar LM, Leone M, Barizzone N, Deisenhammer F, 

Teunissen C, Montalban X, Tintoré M, Olsson T, Trojano M, Lehmann S, 

Castelnovo G, Lapin S, Hintzen R, Kappos L, Furlan R, Martinelli V, Comi G, 

Ramagopalan SV, Giovannoni G. 

Conversion from clinically isolated syndrome to multiple sclerosis: a large 

multicentre study. 

Mult Scler, ahead of print, 2015. 

 

7. Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, Runia T, 

Evdoshenko E, Thouvenot E, Trojano M, Norgren N, Teunissen C, Kappos L, 

Giovannoni K, Kuhle J on behalf of the “International Clinically Isolated 

Syndrome Study Group”. 

Serum neurofilament light chain levels are increased in patients with a clinically 

isolated syndrome. 

J Neurol Neurosurg Psychiatry, ahead of print, 2015. 
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