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Abstract

Gaze tracking technology is widely used in Human Computer Interaction applications

such as in interfaces for assisting people with disabilities and for driver attention monitor-

ing. However, commercially available gaze trackers are expensive and their performance

deteriorates if the user is not positioned in front of the camera and facing it. Also, head

motion or being far from the device degrades their accuracy.

This thesis focuses on the development of real-time time appearance based gaze

tracking algorithms using low cost devices, such as a webcam or Kinect. The proposed

algorithms are developed by considering accuracy, robustness to head pose variation and

the ability to generalise to different persons. In order to deal with head pose variation, we

propose to estimate the head pose and then compensate for the appearance change and

the bias to a gaze estimator that it introduces. Head pose is estimated by a novel method

that utilizes tensor-based regressors at the leaf nodes of a random forest. For a baseline

gaze estimator we use an SVM-based appearance-based regressor. For compensating

the appearance variation introduced by the head pose, we use a geometric model, and

for compensating for the bias we use a regression function that has been trained on a

training set. Our methods are evaluated on publicly available datasets.
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Chapter 1

Introduction

1.1 Motivation

Human beings are exploring space by fixing their eyes on their focus of attention. This

fixation causes subjective formation of visual space at the area of interest. Understanding

the subjective formation of space can be achieved by developing interfaces to capture

the subject’s eye movements, [19]. The interfaces can also be used in Human Computer

Interaction. For example, the method can be used in interfaces for computer input

and these interfaces can be used instead of the traditional keyboards and mouses. Eye

gaze direction might also reveal information about humans such as cognitive processes,

Figure 1.1: One of the gaze tracking system users who suffers from spinal cord injury, [1].

15
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Figure 1.2: One of the users who is playing a game with assistive gaze tracking system, [1].

emotional states and their focus of attention [20]. However, currently available gaze

tracking technologies have several constraints such as being person dependent, and work

under limited head pose variation. In this thesis, an appearance-based gaze tracking

method was developed to capture the subject’s eye movements.

1.2 Applications

There are many applications of gaze tracking technology. First, the gaze tracking tech-

nology can be used as assistive technology for people who are physically limited in their

activities. Specifically, it is very crucial for people who suffer from spinal cord injury [1].

For these people their eye movements are the only means of communication. Figure

1.1 shows one of the gaze tracking system for users who suffer from spinal cord injury.

Second, gaze estimation technology can also be used for gaming [1] where the game

environment changes according to the user’s gaze direction. Figure 1.2 shows a person

playing a game with an assistive gaze tracking system. Third, driver assistance sys-

tems [1,21], might also be based on gaze tracking systems. Gaze tracking for the driver

assistance systems are usually combined with head pose estimation [9,22–25]. The head

pose provides coarse gaze direction when the eye regions are occluded or not visible.

The driver’s focus of attention is detected using these systems in order to avoid possible

collisions. It is well known that driver inattention and distraction are the main causes
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Figure 1.3: One of the gaze driver assistance systems, [1].

of automotive collisions. Figure 1.3 shows one of the gaze driver assistance systems.

Furthermore, the estimation of the gaze direction can also be used in graphic render-

ing applications [26]. For example, the renderer adjusts the quality of rendering region

according to users region of attention. Moreover, gaze tracking technology can also be

used in behavioural studies [26]. The frequency of looking at the display and the time

period taken can be used for the analysis of efficiency of the display.

Gaze tracking technology might also be used for the development of algorithms which

allow recognition of daily activities [2]. Activity recognition has many application areas

such as human-computer interaction, and elderly care. One of the recent studies, [2],

focused on daily activity recognition on egocentric videos. The study proposed to de-

velop an algorithm which allows recognition of actions on egocentric videos using gaze

estimates. In their study, a wearable gaze tracking system is used to relate actions and

gaze locations on videos in order to learn activities. The learned models provide auto-

matic estimation of an action region on videos. Figure 1.4 demonstrates the relationship

between gaze location and the activity. Gaze location is defined by red circle on the

video which is pouring milk into a cup. Finally, gaze tracking technology might be

useful for estimating a strabismus angle of a person [5]. Strabismus is a condition where

a person can not look at a fix point with both eyes. The occurrence of this condition

is 2-5% in the populations. The misaligned focus of sight can be corrected by surgery,

with a success rate of about 20-50%. The success rate of the surgery depends on: (i)

accurate measurement of strabismus angle (20%), (ii) the surgical approach and success
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Figure 1.4: Gaze location is defined by red circle on the action video which is pouring mike
into cup [2]

of surgery (20%). Therefore, the estimation of the strabismus angle is a crucial factor

for the successful correction of the focus of attention. A recent study, [5], proposed a

method to obtain an estimate of strabismus angle accurately.

1.3 Challenges

However, automatic detection and estimation of eye movements is very challenging due

to variation of human eyes, lighting conditions, occlusions and head pose variation.

Figure 1.5 shows variation in the appearance of the eye regions. Advanced algorithms

need to be developed for gaze estimation since the current methods are limited. One

of the main limitations of current gaze estimation methods is that several cameras are

required for estimating user‘s eye gaze [3, 4, 27–29]. Figure 1.6 shows a gaze tracking

system consisting of several devices (three IR light sources and two video cameras). A

several camera set-up is not easy to use since the calibration process has to be performed

when the locations of cameras change. Methods which allow accurate gaze estimation

from low cost single equipment (for example webcam, Kinect) need to be developed.

Another limitation of current gaze estimation methods is that gaze estimation methods

do not allow accurate gaze estimation while users move their heads naturally in front

of the camera. Usually, the user has to keep their head still while using such gaze

estimation systems. Although, previously proposed 3D gaze tracking methods allow
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Figure 1.5: Variation in the appearance of eye regions.

more accurate gaze direction estimates under free head pose, the range of the user‘s

head pose is limited. On the other hand, appearance based methods are not robust

under the free head pose. The study in [29] has demonstrated that the gaze accuracy

degrades when the head pose changes. The methods should be investigated more for eye

gaze estimation under natural head pose. A brief overview of the approaches proposed

for eye gaze estimation can be found in [20].

One of the limitations of appearance-based gaze tracking methods is that their per-

formances degrade when a user moves with respect to a camera. The motion of a user

might occur as a result of rotating his/her head. The rotation of the head causes changes

in 2D eye images. Since regression methods are used to map eye images to the eye gaze

points, the regression models can not deal with these changes efficiently. As a result, the

user’s head orientation can be calculated and the orientation parameters can be used to

eliminate these changes on 2D eye images for more accurate gaze estimates. There are

several head pose estimation methods: those that employ 2D images and others that

employ 3D depth data. The methods that employ 3D data can be used for head pose

parameter estimation using the recently developed RGB-D camera (Kinect). There are
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Figure 1.6: One of the multi device gaze tracking system which is proposed in [3].

several advantages of Kinect. First, this camera provides intensity and depth data in

real-time. The gaze estimation methods which employ 2D images can be used for gaze

tracking and the head pose estimation methods which employs 3D data can be used for

head pose estimation. As a result, a unified system using one piece of hardware can be

achieved. Although, there has been a lot of research on 3D head pose estimation, accu-

rate 3D head pose estimation in real-time needs to be investigated more. The majority

of research on head pose estimation has been performed on databases containing few

head position variations and limited work on head pose estimation has been conducted

on data containing large head movements. A brief overview of the approaches proposed

for 3D head pose estimation in the past few years can be found in [9].

1.4 Objectives and Overall Project Description

The objective of this research is the development of methods for appearance-based gaze

tracking. Appearance of eyes is the way of a user eyes’ looks to other humans. The

appearance-based gaze tracking is the method which is based on imaging users’ faces by

a camera and then mapping eye regions on the image to the locations of their focus of

attention. However, the accuracy of appearance-based methods degrades when a user
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moves away from the initial calibration position. The user’s head pose can be used

to compensate eye appearance distortion for more accurate estimation of the focus of

attention. Therefore, another objective of this research is to estimate the users’ head

pose with respect to the camera in real-time.

First objective is to develop a method which allows the user’s head pose parameter

estimation from 3D data of a RGB-D camera (Kinect). Real-time head pose estimation

methods are investigated. In particular, methods that employ 2D images and 3D depth

data are studied. Random regression forests are studied together with other regression

methods for parameter estimation. Random regression forests provide fast computation

which is crucial for real-time performance. The objective is to combine random forests

and other regression methods in order to achieve a more accurate head parameter cal-

culation. Another objective is to extend the random forest methods to employ 3D data

and 2D intensity images from the Kinect camera for accuracy and robustness.

Second objective is to develop an appearance-based gaze estimation method which

allows gaze estimates when users moves with respect to the camera. This can be achieved

by using the proposed head pose estimation methods in conjunction with the gaze esti-

mation methods. First, methods should be developed to estimate gaze in frontal pose.

Then these methods should provide gaze estimates when users move away from initial

calibration point. Furthermore, incremental learning methods should be investigated

and a new incremental based technique should be proposed to achieve appearance-based

gaze estimation. The motivation behind incremental appearance-based gaze estimation

is as follows. Both training and test samples can be used during the model generation

for obtaining more accurate gaze parameter estimates. Users positions with respect to

camera or alignment of the eye patches during cropping leads the models to provide less

accurate estimates. The incremental model update is expected to reduce these prob-

lems. The incremental model update during online gaze estimation might also be used

to adapt to different users online without a recalibration process. Furthermore, the

methods proposed above should be extended in order to achieve gaze tracking under

free head pose. In particular, head pose estimates should be used to compensate for

head pose variation during gaze estimation.

1.5 Contributions

The contributions of the thesis can be summarized as follows.



Introduction 22

Recently, low cost RGB-D cameras provide RGB images and 3D depth data. Since

these sensors provide RGB images and depth, the fusion of RGB and depth data can

be employed for accurate head pose estimation. It is well know that random regression

forests provide accurate estimates and fast computation time. Therefore, random forests

can further be developed for head pose estimation. In this thesis, a method which is

based on a random forest and tensor models is proposed. In particular, a random forest

is further extended in three ways: (i) by using tensor-based regression at each leaf node,

(ii) by fusing depth and intensity data using tensor regression at each leaf node and (iii)

fusing RGB and depth data using random forest. As a result, a new method based on

multi-modal random forests and tensor models is proposed for more accurate and robust

head pose estimation. The random forests allow modeling large head pose while tensor

models provide accurate results.

One of the problems of appearance-based methods is that their accuracy degrades

when users move from a initial calibration position to a new position. Two novel methods

are proposed to addressed this problem. First, the proposed methods for head pose

estimation are used in conjunction with the proposed appearance-based gaze estimation

method. The distortion due to head pose on eye images is eliminated using perspective

projection. After, the gaze estimates are further improved by eliminating bias between

gaze estimates and the actual values of gaze parameters. The bias are learned using a

regression model. Second, a novel method which allows gaze direction parameter learning

online is introduced. The motivation of online learning is to update models to deal

with new eye image appearances. The novel proposed method is based on generating

a Gaussian Mixture model (GMM) of the training data and online Support Vector

Regression (OSVR). The training data is also modeled using eigenspace decomposition

for computational purposes. The GMM model enables the detection of any changes on

eye image appearances and OSVR models are updated for these new appearances online.

In this way, a recalibration process is not required when a user moves from an initial

calibration position to a new position.

1.6 Thesis Organization

The following chapters of the thesis can be organized as follows.

In Chapter 2, a review of related work regarding head pose and gaze estimation is

given. First, 3D and the appearance-based gaze estimation approach are presented. The
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theory of gaze estimation is also described by giving a graphical representation of the

eyeball structure and screen coordinate system. After, conclusions are reported related

to the strengths and weakness of the 3D and appearance-based approaches. One of the

weaknesses of the appearance-based methods is that their accuracy degrades when a

user moves from the initial calibration point. This problem can be addressed by making

use of head orientation and position parameters when mapping 2D eye images to gaze

points. Since, head pose parameters are necessary when estimating gaze under free head

pose, the head pose estimation approaches are also reviewed and their strengths and

weaknesses are reported. In particular, the methods that employ 3D depth data, 2D

images and combinations of these two are discussed.

In Chapter 3, an overview of the proposed gaze estimation method which is based

on the proposed head pose estimation methods is described. First, an overview of the

proposed online gaze estimation system is introduced. Second, random forests are pre-

sented. Since the proposed head pose estimation methods are based on the combination

of a random forest and tensor regressors, the strengths of these methods are described.

Tensor learning which is an extension of Support Vector Regression (SVR), is also ex-

plained together with SVR. Second, more details of the proposed online gaze estimation

system which is based on a Gaussian Mixture Model (GMM) and online Support Vector

Regression OSVR are given. After, the detailed explanation of GMM and OSVR are

provided. The main advantages and disadvantages of these methods are discussed. In

particular, the main strengths of OSVR over SVR are discussed. Furthermore, eignspace

representation of data is also explained.

In Chapter 4, a proposed method, called multi modal random forest based tensor

regression, for real-time head pose estimation using both depth and intensity data is

introduced. We address the problem of head pose estimation by extending previous

methods on random forest based head pose estimation in three ways: i) by using tensor-

based regression at each leaf node, ii) by fusing depth and intensity data using tensor

regression at each leaf node, and iii) by fusing depth and intensity data using random

forest framework. The proposed method will be compared to current state of the art

approaches in terms of accuracy.

In Chapter 5, two proposed methodologies for appearance based gaze estimation

under free head pose are introduced. In the first approach, perspective projection is

employed using head pose parameters for head orientation compensation. Translation

compensation is also employed by learning gaze direction bias. Several regression models

are used for mapping eye images to gaze direction parameters and translation bias.
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Experimental results are provided for performance comparison of proposed methods

and other methods. In the second approach, a novel method which allows gaze direction

parameter learning online is introduced. The proposed method allows updating models

online to deal with new eye image appearances. The novel proposed method which is

based on generating Gaussian Mixture model (GMM) of the training data and online

Support Vector Regression (OSVR) is introduced. Experimental results are provided for

performance comparison of proposed methods and other methods.

In Chapter 6, the limitations of the previous gaze estimation methods were restated.

The proposed gaze estimation methods for addressing these limitations were summa-

rized. Since the proposed gaze estimation methods were combined with the proposed

head pose estimation methods, the proposed head pose estimation methods were also

summarized. In the conclusion section, the performances of proposed gaze estimation

methods have been assessed by considering the experimental result which were reported

in chapter 5. Furthermore, the performance comparisons of proposed gaze estimation

methods and the previous proposed gaze estimation methods were reported. Similarly,

the performances of the proposed head pose estimation methods have been assessed.

Moreover, the performance comparisons of the proposed head pose estimation methods

and the previous proposed head pose estimation methods have been given. Finally, possi-

ble future of the developed gaze estimation methods have been demonstrated. Similarly,

possible future of the developed head pose estimation methods have been demonstrated.

1.7 Publications

• S. Kaymak, I. Patras. ”Multimodal random forest based tensor regression”, IET

Computer Vision, vol. 8, no.6, pages. 650-657, 2014

• S. Kaymak, I. Patras. ”Exploiting depth and intensity information for head pose

estimation with random forests and tensor models”, Proc. Asian Conf. on Com-

puter Vision Workshops, page 160-170, 2012.



Chapter 2

Related Work

2.1 Introduction

In this chapter, we review the state-of-the-art related to head pose estimation, and gaze

estimation will be described. First, the methods which are based on 3D and appearance

based eye gaze estimation will be described and discussed. Second, the methods which

are based on 2D image and 3D data for head pose estimation will be discussed. Since

appearance based gaze estimation requires detection of eye regions on the face, 2D image

and 3D data based facial feature detection methods will also be reviewed.

2.2 Gaze Estimation

Gaze estimation methods can be divided into two groups: 3D gaze estimation methods

and appearance based methods. 3D gaze estimation methods are based on localizing 3D

eye features such as the corneal center, and the pupil center for eye gaze direction calcula-

tions. These methods allow better accuracy under free head pose than appearance-based

methods. Appearance based methods consider the eye region as a high dimensional fea-

ture vector and developed functions that allow mapping from this features to gaze points.

The main drawback of the appearance based gaze tracking is the head pose variation.

The accuracy of gaze estimates are degraded when the user’s head pose in front of a cam-

era change. The appearance mapping under head pose requires the head orientation in

3D space in order to eliminate the head pose variation. First, the description of the gaze

point in 3D space will be described by introducing the eye ball structure in the following

25
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section. Then, a brief overview of the 3D gaze estimation methods will be discussed.

Figure 2.1 shows a comparison of 3D and appearance based gaze tracking [30].

(a) (b)

Figure 2.1: Comparision of 3D and appearance based gaze tracking. (a) 3D based methods,
(b) Appearance based methods.

2.2.1 Introduction

The structure of the eyeball, can be seen in the Figure 2.2(a). This structure consists

of two spheres: eyeball and cornea. The optical axis is defined as a line passing through

the pupil and the center of the cornea. The visual axis passes through the corneal center

and the center of the fovea. The gaze point is defined as the intersection point between

the visual axis and the screen. The optical axis direction can be used to obtain the

visual axis using an angle (kappa). The value of kappa changes from person to person.

This angle is determined through the calibration process.

The orientation of the optic axis can be seen in Figure 2.2(b). The direction of this

axis is defined by horizontal, θeye, and vertical ϕeye angles. The unit vector of the optic
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(a) (b)

Figure 2.2: Description of visual axis in the world coordinate system, [4], (a) the eyeball
structure, (b) the optical axis angles.

axis is defined as [4, 31,32]

vo =


cos(ϕ)sin(θ)

sin(ϕ)

cos(ϕ)cos(θ)

 (2.1)

The visual axis can be estimated from the optic axis by adding κ = (α, β) to the

optic axis

vg =


cos(ϕ+ β)sin(θ + α)

sin(ϕ+ β)

cos(ϕ+ β)cos(θ + α)

 (2.2)

The kappa (κ) angle can be seen in Figure 2.2(a). The unit vector in the direction of

visual axis with respect to World Coordinate System (WCS) is represented as

v(θ, ϕ) = Rvg(θ, ϕ) (2.3)

where R is the rotation matrix from eye coordinate system to WCS. This matrix is

calculated using the orientation of the optic axis of the eye and the Listing’s Law. The
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Figure 2.3: The desctiption of the strabismus angle. [5]

gaze point can be calculated by

Ψ(θ, ϕ) = c + k(θ, ϕ)v(θ, ϕ) = c + k(θ, ϕ)Rvg(θ, ϕ) (2.4)

where c is the cornea center and o is the optic axis. k is a constant value defined by

the intersection of the visual axis with the observation surface. If plane (display surface)

is defined by {x\n � x + h = 0}, then k(θ, ϕ) is given by

k(θ, ϕ) = − h+ n � c
n � v(θ, ϕ)

(2.5)

where n is the normal to the plane surface.

2.2.2 Strabismus Angle

As stated in Section 1.1, strabismus angle is a condition where a person can not look at

a fix point with both eyes, [5]. In [5], a method is proposed to estimate strabismus angle

of a person. Figure 2.3 demonstrates the strabismus angle of a subject. As it can be
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seen in the figure, the visual axis of the left eye intersects with the fix point; however,

the right eye’s visual axis does not intersect with this point. The angle between visual

axis and visual axis in orthotropic is called strabismus angle.

2.2.3 3D Gaze Estimation Methods

A number of 3D gaze estimation methods have been proposed. Several methods have

been proposed to estimate eye gaze using stereo cameras [33], [34] [32], and [35]. A

method [32] was also proposed to estimate the eye gaze using multiple light sources

and a single camera. Chen and Ji [4] presented an incremental probabilistic 3D gaze

estimation method which allowed free head movement without explicit calibration.

Figure 2.4: One of the experimental set-up using a large screen, [6].

Recently proposed gaze tracking methods allows gaze point estimation on large

screens (3.2 x 2.4 m) [6, 36, 37]. These methods are based on wearable devices such
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as a helmet or a pair of glasses. The main advantage of these methods is that the head

pose is not required to be know or estimated. In [6], the user’s eye image is captured

by a camera using NIR illuminator. The pupil center is detected in a captured image.

Then the user is instructed to look at the four corners of the screen. The corresponding

eight feature values of four pupil centers are used as inputs to a multilayer perceptron

in order to generate five additional points. Finally, first order polynomials, [38, 39], are

used to map pupil centers to screen coordinates.

2.2.4 Appearance-based Gaze Estimation Methods

Baluja and Pomerleau [40] proposed a neural network method to obtain a mapping func-

tion from eye appearance to gaze points. 2000 training samples were used to obtain this

function. Xu et al. [41] proposed a similar approach. Tan et al. [26] proposed to repre-

sent eye appearance using local linearity of the eye appearance. These representations

provided the mapping from features to gaze point. Williams et al. [42] proposed a semi-

supervised method based on Gaussian Process Regression in order to obtain a mapping

function. In both approaches, the rotation and translation values were calculated using

a computer vision-based head tracker.

The limitation of the above approaches was that they were developed using eye ap-

pearance under a fix head pose. There is limited work reported for gaze estimation in

the presence of head pose. Sugano et al. [43] proposed an incremental learning method

for unconstrained gaze estimation. Their approach was based on non-linear dimension-

ality reduction by locally linear embedding [44]. Eye appearances were extracted and

represented with weight vectors that were clustered according to head pose. The num-

ber of clusters were created while subjects were clicking points on the screen. In the

gaze estimation stage, head pose was estimated and given the head pose parameters,

the corresponding cluster was selected. The selected cluster provided the estimated gaze

vector. Lu et al. [45] proposed a head pose-free approach for appearance-based esti-

mation. Their method was based on three stages of gaze estimation. First, gaze was

estimated using an interpolation approach by assuming a fix head pose. Second, an es-

timated 3D norm of gaze vector was rotated according to estimated head pose. Finally,

the distortion of appearance was compensated using a transformation matrix which was

learned from regression. Recently proposed gaze tracking methods, [30, 46] proposed to

estimate gaze direction by generating a 3D face of a user. In [46], eight images were cap-

tured from eight cameras and a 3D face was formed. Using a 3D face, synthetic images
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are generated and used as input to a random regression forest for training. Synthetic

image generation creates a training set for a regression model and avoids long calibration

process. Similarly, authors, [30], propose to use a Kinect camera in order to make use

of depth image of a person. The intensity image is mapped onto the depth data. In this

way, the distortion of the appearance of the eye regions are eliminated by re-rendering

the face to frontal pose. In their study, the geometric models are formulated in a prob-

abilistic framework. In this way, they both introduce synthetic image generation and

estimate gaze direction under free head pose.

Figure 2.5: Images and fixations of seven subjects [7].

2.2.5 Gaze Estimation without Personal Calibration

Recently, gaze estimation methods which do not require calibration have been pro-

posed. Model and Eizenman [31] obtained estimated eye gaze direction parameters

using pyramid observation surface or large screen. Their proposed method depends on

the availability of the large screen or pyramid surface.

The saliency of the images for predicting human attention was first proposed by

Koch and Ullman [47]. After Koch’s study, a number of approaches, [48–51], were

introduced to exploit the saliency of images for predicting human attention. Saliency

map generation can be divided in two main categories: those that generate saliency

maps using a mathematical model and those that learn saliency maps from datasets of
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Figure 2.6: Judd study showed that subjects gaze at specific parts of faces in images. These
parts includes eye, nose and mouth regions [8].

eye gaze data. Bruce and Tsotsos, [52], introduced an information theoretic approach.

Avaramham and Lindenbaum proposed a stochastic model to estimate most saliency

maps . Itti et al. [53] present a method to combine low level features, color, intensity, and

orientation, in order to generate saliency maps. Cerf et. al. [7] presented a method which

makes use of low level features and a face detection method to obtain more accurate

saliency maps than the Itti method. Saliency map modelling using Graph-based saliency

map with Viola-Jones face detector provided better saliency maps. Their dataset consists

of 250 images and gaze points of seven subjects. Figure 2.5 shows several images and gaze

points. Kienzel et al. [51] proposed to learn saliency maps using gaze dataset. Patches

were extracted on gaze points and used as salient patches. Patches were also extracted

around gaze points and used as non-salient patches. Low level features were calculated

using these patches in the mapping process. Their eye movement dataset consisted of

200 grayscale natural scene images. A similar method was proposed by Judd et. al. [8].

The saliency maps are learned from a larger dataset which consisted of 1003 images with

associated eye gaze data from fifteen users. In addition to low level features, low level,

mid-level and high-level features were learned for saliency map generation. Figure 2.6

shows several images and gaze points. The works from Chen and Li [4], and Sugano et.

al., [54] describe eye gaze estimators from saliency maps. The saliency of the images has

been used for automatic generation of models that enables mapping from eye features to

eye gaze points on the screen. The method proposed by [4] is an incremental probabilistic
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3D gaze estimation under natural head pose without active calibration. Their proposed

method is based on the combination of 3D eye gaze and the saliency map [48]. The

saliency map provided estimated eye gaze points and the parameters of 3D eye gaze

direction was learned using these estimated points. In contrast, Sugana proposed an

appearance based gaze estimation without active calibration. Subjects watched a video.

Estimated gaze points were retrieved and eye images were mapped to gaze points using

Gaussian Process Regression. The conclusions of this section are given in Section 2.2.6.

2.2.6 Discussions and Conclusions

In this section, the-state-of-the-art 3D and appearance-based gaze estimation methods

were reviewed. First, the proposed 3d calibrated and uncalibrated methods were re-

viewed. 3D calibrated methods were based on displaying several points on the screen

and instructing a user to look at these points. About nine calibration points were used

to estimate a user’s gaze direction parameters. 3D uncalibrated gaze estimation meth-

ods [4] were based on displaying several images on the screen and then learning a user

gaze direction parameters. Saliency maps of displayed images were calculated and pos-

sible locations of gaze points were obtained for calibration. Second, the calibrated and

uncalibrated appearance-based methods were also proposed. The appearance-based cal-

ibrated methods [26, 45] were also based on displaying several points on the screen and

instruction a user to look at these points. Between nine and thirty-three calibration

points were used to estimate a user’s gaze direction parameters. The number of cali-

bration points used for the appearance-based methods were higher than the number of

calibration points used for 3d methods. Uncalibrated appearance-based methods [54]

were performed by displaying several images on the screen and then instructing a user

to watch these images. The calibration of process was performed by calculating saliency

maps of displayed images and calculating probable focus of attention points. Then eye

image features were map to these locations. The-state-of-the-art showed the uncali-

brated appearance-based methods reqired more images to be displayed on the screen to

achied the same performance as the uncalibrated 3d methods. Although calibration is

less boring and more enjoyable for the 3d and appearance based uncelebrated methods,

the calibration time became longer.
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2.3 Real-time Head Pose Estimation

Formally, the head pose estimation is the problem of estimating the head orientation

angles, usually in the camera coordinate system [9]. These orientation angles of an

average adult male in the forward and backward direction range from -60.5 to 69.6

degrees, in right and left bending of the neck range from -40.9 to 36.3 degrees, and

in horizontal axis rotation ranges from -79.8 to 75.3 degrees. The head rotation has

three DOF, sometimes called pitch, yaw and roll as shown in Figure 2.7. Head pose

is directly related with the gaze direction [9, 55] and can provide coarse gaze estimates

during occlusions of the eyes, e.g. in the presence of eye glasses.

Head pose estimation approaches can be divided in three main categories: those that

employ 2D images, those that employ 3D depth data and those that combine 2D images

and 3D depth data.

Figure 2.7: A human head pose can be described by three rotation angle which are pitch,
yaw and roll [9].
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2.3.1 2D Data based Methods for Head Pose Estimation

Head pose estimation approaches that employ 2D images can be further divided into

two groups: 2D appearance based methods and 2D feature based methods. The 2D ap-

pearance based techniques analyse the entire head region. Osadchy et al. [56] proposed

a Convolutional Neural Network based large head pose estimation system which allowed

mapping face images to head pose parameters and achieved a near real-time performance

(5fps). The modelling of facial regions was also used for tracking using statistical tech-

niques such as Active Appearance Models (AAMs) [57], multi-view AAMs [58], and 3D

Morphable Models [59], [60] and Constrained Local Models [61]. In [62], tensor-based

regression is compared to Support Vector Regression specifically for the problem of head

pose estimation in the IDIAP [63], Boston University dataset [64] and Pointing4 , [65],

datasets. The reported results on these datasets showed that tensor based regression

(higher rank Support Tensor Regression ) performed better than other regression al-

gorithms for the head pose estimation. 2D feature based methods are based on facial

feature detection for the head orientation calculation. Vatahska et al. [66] proposed

detecting facial features and estimating head orientation using the detected locations

of the points in three stages. First, the head pose was classified as frontal, left and

right profile using a face detector. Then the facial features were detected by training

AdaBoost classifiers with Haar-like features. Finally, the locations of detected features

were mapped to head orientation parameters using neural networks. Whitehill et al. [67]

proposed a method in which the orientation of a head was calculated using locations of

the node tip and both eyes.

2.3.2 3D Data based Methods for Head Pose Estimation

The second category of head pose estimation systems uses 3D depth data. The system

proposed by Breitenstein et al. [68] allowed head pose estimation from depth data in

real time. The real time performance has been achieved using a GPU. Large 3D face

depth data in different head poses was stored into the GPU memory and a unknown

depth data was recognized by comparing with the stored data. Real-time head pose

estimation techniques also employed Random Regression Forests, [12], [18]. In [12] the

authors generated large 3D synthetic faces and trained Random Forests for continuous

head pose estimation. They also extended this technique and achieved joint classification

and regression for head pose estimation in [18]. This system allowed extracting patches

from the upper body region of a person from depth data and only patches which belonged
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Figure 2.8: Localized facial features on test 2D images [10].

to the head region were used to estimate the head pose in real time. The estimation was

performed using low resolution data captured by Microsoft Kinect Camera.

2.3.3 2D and 3D Data based Methods for Head Pose

Estimation

The third category involves the combination of 2D and 3D data. Seemann et al. [69]

presented a head pose estimation system based on neural networks. Grayscale and depth

data were used as inputs to the neural networks to calculate the head pose. Morency

et al. [70] calculated a prior model of the face using intensity and depth images. This

model was used to calculate the absolute difference in pose for each new image.

2.4 Real-time Facial Feature Localization

Facial feature localization can be divided in three main categories: those that employ

2D images and those that employ 3D depth data.

2.4.1 2D Data based Methods for Facial Feature Localization

Dantone et al. [10] proposed conditional random regression forests in order to localize fa-

cial parts on 2D images. In their study, head pose variation in the z-axis was represented

with 5 subsets and a forest was trained for each subset. In the testing, the forest was
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Figure 2.9: Localized facial features on test 3D depth data [11].

determined by localized head pose and then used to detect facial parts. Facial features

locations can be seen in Figure 2.8.

2.4.2 3D Data based Methods for Facial Feature Localization

Available methods for facial feature localization in real-time can be divided into two

categories: those that employ entire face information and local information. Wiese et.

al. [71] proposed a method in order to track face motion in real-time using person specific

templates. They extended their work to estimate head pose and facial deformation by

employing RGB image and depth data captured by Kinect data [72]. A number of

approaches also exists for localization of feature points using local information. Mehryar

et. al [73] achieved facial point localization by clustering surface curvature values which

were calculated on 3D depth data. Wang et al. [74] presented a method which allowed

the facial point detection on 3D data and 2D image. The point signatures and Gabor

filters were calculated and used to detect the landmark locations. Fanelli et al. [11]

presented a random forest based facial feature localization in real-time. Their approach

was based on voting. Fixed size patches were extracted from face regions and these

extracted patches voted for facial point locations. Their approach was robust in terms

of large head pose, partial occlusions, and noisy depth data. Facial feature locations can

be seen in Figure 2.9.
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2.5 Discussion and Conclusion

The related work of gaze estimation methods was described in this chapter. Two main

approaches, 3D and appearance-based, have been explained. After considering all related

work, several conclusions can be drawn. First, the appearance-based gaze estimation

methods were combined with head pose estimation methods. The 2D eye image features

change while the head moves away from the calibration position. Changes of feature

values degrades the gaze estimates. This degradation was eliminated using head pose

estimates. Second, 3D and appearance-based uncalibrated gaze estimation methods were

introduced to avoid calibration process. However, these uncalibrated methods required

longer time to allow for a similar performance as the calibrated methods. In conclusion,

two new methods are proposed to address the existing problems of the appearance-based

methods. First, a new head pose estimation method will be introduced and combined

with a new appearance-based gaze estimation method in a unified system. The aim is

to achieve accurate gaze estimation which gives a better performance than the previous

methods. Second, an online gaze estimation method based on the proposed head pose

estimation method is proposed in chapter 5 to achieve gaze estimates with less calibration

time and more accurate gaze estimation.

The related work of head pose estimation methods was described in this chapter.

2D, 3D and 2D and 3D methos have been explained. After considering all related work,

several conclusions can be drawn. There have been a number of approaches to the head

pose estimation. However there are several problems which need to be addressed. The

majority of the previous work reported the accuracy of head pose estimation only without

indicating computational complexity for real-time implementations. Accuracy has been

improved however the improvements are still not adequate for some applications. In

addition, few studies reported the combination of several cameras such as color and

depth camera. Furthermore, the majority of the studies perform head pose estimation

based on images where the face is near frontal. Head pose estimation from profile

images needs to be addressed in terms of accuracy. Finally, the majority of algorithms

have been developed for sequential implementation on Central Processing Units such

as Intel CPU. Novel head pose algorithms which allow combination of several methods

(appearance and model based) can be proposed. However, sequential implementation of

these algorithms might be problematic for real-time implementation. On the other hand,

two recent works by Breitenstein et al. [68] and Fanelli et al. [12, 18] allowed head pose

estimation under large head variation in read-time. First, the work [68] makes use of
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parallel processing units of a GPU. A number of face templates are stored into the GPUs

memory and then these face templetes are rendered according to the nose location in

captured range data. This method is sensitive to occlusions. This method can also not

to be used for several applications since the GPUs requires high power. Second, Fanelli

et. al. [12, 18], proposes a robust head pose estimation method which allows real time

performance under large head pose variation and occlusion. This method is based on

Random forests which allows large head pose estimation and fast computations without

the need of a GPUs. In conclusion, Random forests allow modelling large head pose in

real-time. They also allow head pose parameter estimation under occlusion. Therefore,

these methods will further be extended and improved to obtain more accurate head pose

estimates. In chapter 3, the description of Random forests will be given. Combination

of random forests with Tensor models will be introduced in Chapter 4.



Chapter 3

Background Theory

3.1 Introduction

A review of the previous gaze estimation methods is given in the previous chapter. The

existing limitations of these gaze estimation methods were also discussed. Since the

appearance based methods are combined with the head pose estimation methods for

eliminating distortion on eye images for accuracy, the head pose estimation methods are

also reviewed. A number of methods are described and compared. In this chapter, the

proposed methods for addressing these problems are overviewed

One of the limitations of appearance-based gaze estimation methods is that their

accuracy degrades when a user moves from the initial calibration position. This results

in different eye appearances of a user and regression models can not deal with this.

An online gaze estimation method is proposed to address this problem. This system

is also combined with the proposed head pose estimation method which is based on

random forests and tensor regressors. The proposed head pose estimation method is

used to eliminate the distortion on eye images due to head pose variation. An overview

of this system which is based on a Gaussian Mixture Model (GMM) and online Support

Vector Regression (OSVR) is as follows. The GMM model allows selecting test eye

patches online for OSVR mode update. The selection of eye patches online is achieved

by modeling the training eye patches using the GMM. The GMM consists of a number

of Gaussian models which allow accurate modeling of the training eye patches. After

OSVR models are updated using selected eye patches. Fast computation is also achieved

by representing the eye patches in eignspace. Eignspace representation allows modeling

eye patch by GMM and rapid updating of the OSVR models. The main advantage of

40
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Figure 3.1: The proposed online learning method.

OSVR is that training is performed by adding or removing a sample from the training

set without retraining the models from scratch for each new sample. This is very a

crucial strength in our proposed method because updating models is achieved in real-

time. OSVR is different than SVR because SVR requires models to be trained from

the beginning for every new eye patch. This causes more computation time and SVR

might not lead to real time computation. Figure 3.1 shows the proposed online learning

method. Table 3.1 provides the summery of functions of each method which are used in

the proposed online gaze parameter learning system.

The proposed head pose estimation method which is stated above is based on ran-

dom forests and Tensor regression. The previous work shows that random forests have

several advantages over other regression methods. First, the method allows easy imple-

mentation and fast computation time. Second, random forests allow for the combining of

classification and regression methods in a unified method. Combining classification and

regression methods in a unified system allows detecting face regions on depth data using

the classification method and then mapping these regions to head pose parameters using

the regression method. Furthermore, since random forests are based on extracting fixed

size patches on the intensity images and depth data, the occluded face regions can be

discarded and unoccluded patches are used for head pose estimation. Therefore, a new

method which is based on random forests and Tensor learning for regression is proposed

in this thesis. This method has several advantages over classic random forests. First,

tensor regressors are trained to map patch data to head pose parameters for more ac-

curate head pose parameters. Second, the proposed method employs both intensity and

depth data for more a robust and accurate head pose parameter estimation. Since the

proposed method is based on random forests and tensor models, ransom forests and ten-

sor regression for learning is described together with Support Vector Regression. Figure

3.1 shows the combined head pose and appearance-based gaze estimation methods.
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METHOD DESCRIPTION

PCA Allows low dimensional representations.
This has two advantages. First, modeling the
eye images using a Gaussian Model resulted
in less computation time. Second, updating
online Support Vector Regression models on-
line resulted in less computation time.

GMM Allows accurate data modeling. It also
provides supervision during updating online
Support Vector Regression models.

OSVR Allows fast mapping from projection vectors
to gaze direction parameters online.

Random forests based
tensor regression Allows head pose parameter estimates in

real-time from intensity and depth data cap-
tured from RGB-D camera.

Table 3.1: Descriptions of proposed methods for Online adaptive gaze estimation.

The remainder of this chapter is as follows. Random forests are described in Section

3.2. The related work related to random forests is given in Section 3.3. Then offline

and online SVR methods are discussed in Sections 3.4 and 3.5 respectively. Finally, the

principal component imagery is described in Section 3.6 and a Gaussian mixture model

is described in Section 3.7.

3.2 Random Forests

Decision trees, [75, 76] can be used for classification and regression. These trees allow

grouping input data into clusters and then models are generated to map data in clusters

to discrete or continuous outputs. A tree consists of non-leaf nodes and leaf nodes. Non-

leaf nodes contain binary tests which guides the input data at parent node to the left

or right child node. These binary tests are determined during tree training. Then, the

splitting of data at non-leaf nodes continues until a stopping criteria is met. Each leaf

node then contains part of the data that is modeled by predictors to give the mapping

to the output parameters.
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Figure 3.2: Regression forest for head pose estimation. Input samples travel through the
forest according the stored information at each non leaf node. Multivariate dis-
tribution of models at leaf nodes provide estimates of head pose parameters [12]

Decision trees were further extended by Breiman, [75], to a collation of trees called

random forests. These ensembles of trees are trained separately using data samples that

are randomly extracted from the training set. The main advantage of random forests is

that overfitting is reduced when compared to a single tree.

One of the examples of random forest related to head pose estimation can be seen in

Figure 3.2. Random patches are extracted from the face region of a depth data. These

patches are passed through the forest. Patches are guided at non-leaf nodes until they

reach leaf nodes. The predictors model head orientations at lead nodes. An overview

of a random forest training can be described as follows. A random forest, a collation

of trees, can be denoted by, T = {Tt}, where Tt is a tree in the forest. Trees in the

forest are trained using randomly extracted patches, P = {Pi}, from the images. The

appearance of the patch can also be denoted by Ii. A set of patches is passed to a

tree starting from the root node. These patches pass trough the tree and split at each

non-leaf node according to binary test, φ(I) → {0, 1}. The binary tests at non-leaf

nodes are calculated by generating a pool of tests and selecting one which maximizes

the information gain. The information gain is defined by

φ = arg max
φ

IG(φ) (3.1)
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IG(φ) = H(P )−
∑
i∈L,R

wiH(Pi)(φ) (3.2)

where wi = |Pi(φ)|/|P | is the ratio of patches sent to each child node and H(P ) is the

entropy of the clusters’ labels. H(P ) is defined according to classification and regression

tasks. The splitting process continues until the patches reaches the leaf nodes. Leaf

nodes are created when the maximum tree depth is reached or the number of training

samples are less than a minimum number training samples.

Figure 3.3: Description of the patch voting in Hough space, a) three example patches. b)
vote information obtained from Hough forests. c) votes are aggregated in Hough
space. d) the pedestrian detected in this image, [13].
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3.3 Related Works based on Random Forests

Random forests, [75, 77] allow fast computations for real time applications. Random

forests have become a popular method in computer vision given their capability to

handle large training datasets, high generalization power, fast computation, and ease of

implementation. Recent works further extended random forests to create Hough forests

[78–80] for detection, tracking and action recognition of people. A number of related

works regarding detection using Hough forest can be found in [81–85]. Furthermore, the

tracking method based on Hough forest can be found in [86–88]. and applications to

action recognition in a number of studies, [89–91].

A Hough forest is a set of decision trees and each tree provides a mapping from local

appearance of an image to the Hough space, H. Local appearance can be denoted by

I, I1(y), ...IF (y). The center of the local appearance or local patch is denoted by y.

Each of If is a feature channel and F is the number of feature cahnnels. The Hough

space describes an object of action position in scale, space and class. After training, the

leaves of the random forests L provides a mapping from local patches to the probabilistic

Hough votes.

L : (y, I)→ p(h|L(y)) (3.3)

where p(h|L(y)) is the distribution of the Hough votes within the Hough space H. The

detection process is illustrated in Figure 3.3.

Regression forests have been used for body part detection and tracking of humans on

the Kinect depth data [14]. This is achieved by employing classification trees which will

be summarized below. Human tracking using classification trees is based on a modeling

a large number of body parts on depth data using decision trees. Figure 3.4(a) shows the

captured depth data of a person from Kinect. Figure 3.4(b) describes the different body

regions on the depth data. Figure 3.4(c) demonstrates the body part representations

using depth features.

The goal is to determine the class of each depth pixel p in the depth data captured

by Kinect. The classes are the different body parts, denoted by c ∈ { left hand, right

hand, head, left shoulder, right shoulder,... }

Visual features are defined by depth comparisons between pairs of pixel locations.

For each reference point p, feature vector v = (x1, ........, xd) is calculated by using the
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Figure 3.4: The body parts detection of a human on a captured Kinect depth data. (a)
Acquired Kinect depth data. (b) Ground-truth labelling of 31 different body
parts. (c) The description of a feature vector [14].

formulation which is defined in [14] and given by

xi = J(p− J(p +
ri

J(p)
)) (3.4)

where the depth value (distance from camera) is denoted by J(.). The 2D position of

the depth value is denoted by p. The displacement from reference point p is denoted

by 2D vector r.

Forest Training Each tree in the forest is trained by randomly selecting 2000 example

pixels. These pixels are passed through a set of trees. At each non leaf node, splitting

candidates θ = (r, τ) are selected by maximizing the information gain and the pixels

Q(I, x) at each non leaf node are split into left Ql and right node Qr. The displacement

vector r is randomly selected and the learned threshold is denoted by τ .

Left set can be defined by

Ql(θ) = {(I,x)fθ(I,x) < τ} (3.5)

Right set can be defined by

Qr(θ) = Q \Ql(θ) (3.6)

The determination of splitting candidates is based on randomly generating a number

of values for these parameters and then selecting the ones that result in maximum
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information gain [14].

θ∗ = argmaxG(θ) (3.7)

G(θ) = H(Q)−
∑
s∈{l,r}

|Qs(θ)|
|Q|

H(Qs(θ)) (3.8)

where

H(Q) =
∑
c∈C

p(c)logp(c) (3.9)

G(θ) is the information gain. H(Q) is the Shannon entropy and it is calculated using

the normalized histogram of body parts.

Forest Testing The aim is to classify pixel x in image I. This can be achieved by

passing the depth data through each tree. The tests at each non leaf node is evaluated.

When the leaf node is reached, the prediction of the body part class is calculated using

stored distribution. Other predictions are also obtained from other trees and the final

prediction is calculated, [14], by

P (c|I,x) =
1

T

T∑
t=1

Pt(c)|I,x) (3.10)

Recent studies by Fanelli et al. [11,12,18] proposed a method which allowed head pose

estimation from 3D scans of the faces using a random regression forest. The proposed

method was an adaptation of the work by Criminisi et al [15] for head pose estimation.

The work has been proposed for organ detection and localization in 3D computed to-

mography scans (CT) using random regression forests. Fanelli et al. achieved continues

head pose parameter predictions from 3D face scans. Similarly, Criminisi et al. achieved

detecting and obtaining bounding boxes of unknown organs within CT scans. In [15], a

tree in the regression forest was created by passing a subset of 3D CT scans together with

3D bounding boxes of organs. The tests were defined to guide 3D locations of organs

to a left or right leaf node. The tests at each leaf node were defined in equation 3.11.

These tests at each leaf node were determined by maximizing the information gain which

was based on differential entropy. Similarly, a tree in a regression forest was created by
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Figure 3.5: Organ variability in CT scans. (a,b,c) Appearance variation. (d) Image geom-
etry variation due to acquisition parameters. (e) Different renderings of liver.
(f,g) Several scans of mid-coronal views of liver and spleen, [15].

passing a subset of 3D face scans together with head pose parameters. The tests were

defined to guide fixed sized 3D face patches to a left or a right leaf node. The tests at

each leaf node were defied in equation 3.11. The feature responses in 3.11 were defined

by mean intensities of over 2D regions within the patches. The test parameters were

determined by maximizing the information gain which was based on differential entropy.

As a result, the studies have shown that regression forests have provided accurate map-

ping from 3D data (face/organ) to the continues parameters (3D bounding box or head

pose parameters). The more details of a regression forest for detection and localization

of anatomic structures on tree-dimensional computed tomography (CT) scans [15] can

be given as follows. These structures were heart, liver, spleen, left lung, right lung, left

kidney, right kidney, gall bladder, left pelvis and right pelvis. The variations of organs

in terms of size, position, shape and appearance can be seen in Figure 3.5. These

organs are defined by a tree dimensional bounding box and this bounding box is defined

by bc = {bLc , bRc , bAc , bPc , bHc , bFc } where each value defines the position (in mm) of the

corresponding axis-aligned wall. One of the bounding box which defines a left kidney

on CT scan can be seen in Figure 3.6.
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Forest Training The construction of each tree in the forest is performed by passing a

subset of organs and corresponding bounding boxes through the tree. The binary tests

ξ > f(v; θj > τ) are determined at each non leaf node. The feature response is denoted

by f(.) which is computed at a voxel v = (vx, vy, vz). The voxel represents the 3D

location of a CT scan. The tests allow dividing a set into left and right non leaf node.

The visual feature at jth non leaf node is denoted by θj. The feature response is defined

by

f(v; θj) = |F1|−1
∑
q∈F1

q− |F2|−1
∑
q∈F2

I(q) (3.11)

The voxels v and the corresponding offsets dc are determined. The offset is defined

by dc = dLc , d
R
c , d

A
c , d

P
c , d

H
c , d

F
c . The calculation of offset vectors can be performed by

bc = v̂ − dcv where v̂ = (vx, vx, vy, vy, vz, vz).

The test parameters at non leaf nodes of the trees are calculated by generating ran-

dom values of these parameters and then selecting the values which provides maximum

information gain. The information gain IG is defined by

IG = H(S)−
∑

i={L,R}

wiH(Si) (3.12)

where H(S) denotes entropy of the set S. The distribution of vectors at each node is

modelled by a multivariate Gaussian, p(d) = N(dc). The differential entropy of this can

be defined by

H(S) =
n

2
(1 + log(2π)) +

1

2
log|Λ(S)| (3.13)

and information gain is defined by

IG = log|ΛcS| −
∑

i={L,R}

wilog|Λ(Si)| (3.14)

The above information gain is reformulated in order to model six classes of organs. This

new information gain is denoted by

IG(φ) = log|Γ(S)| −
∑

i={L,R}

wilog|Γ(S)|, with Γ(S) = diag(Λ1, ...,Λc, ...Λ|C|) (3.15)
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Figure 3.6: Representation of a organ in three dimensional CT scans. (a) A coronal view of
a left kidney and the corresponding bounding box. (b,c) The location of voxel
vi and 6 displacemnts from v to boundaries of bounding box, [15].

Maximizing this IG gain allows more accurate casting of probabilistic votes for the

positions of a bounding box. After, the parameters are stored at each non leaf nodes.

The mean and covariance are also stored at leaf nodes.

Forest Testing Anatomy detection and localization is performed as follows. Each

voxel b ∈ V is sent through each tree. The stored tests at each leaf node guides this voxel

towards a leaf node. When the voxel reaches the leaf node, a probabilistic prediction is

obtained from the stored distribution p(dc|l) = N (dc; d̄c,Λc). The posterior probability

for bc is defined by,

p(bc) =
∑
l∈L̄

p(bc|l)p(l) (3.16)

where L̄ denotes a subset of all forest leaves and p(l) = 1/|L̂|. The organ class is

determined if p(bc = b̄c) > β and the position of the organ b̄c which belongs to the cth

class is calculated by expectation
∫
bc

bcp(bc)dbc.

3.4 Offline Support Vector Regression

One of the well known batch learning techniques is the Support Vector Regression (SVR),

[92, 93]. SVR allows continuous data modeling and closely related to Support Vector

Machines. Training is carried out by using a set of training samples. When a new training

sample is available, the SVR model is re-trained using all available training samples.
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Support vector regressions are further extended to Tensor based approaches [62, 94–

97]. Tensor based learning approaches, are known as more powerful than vector-based

approaches. The use of vector representations results in several problems. The structure

information is lost and the high dimensional data might cause over fitting problems to

appear. In [96], supervised tensor learning which models the projection vectors in each

mode independently is proposed. However, this approach might not provide adequate

discriminate information in some case. As a result, this approach is further extended

in studies, [62, 94–96]. In [62], tensor learning for regression is proposed. Two mapping

functions are learned using Canonical (CANDECOMP)/Parallel factors (PARAFAC)

decomposition, [98]. The square loss and e-sensitive loss functions are studied together

with Frobenius norm. In [62], tensor-based regression is compared to Support Vector

Regression specifically for the problem of head pose estimation in the IDIAP [99], Boston

University dataset, [64] and Pointing4 [65] datasets. The results on these datasets shows

that tensor based regression (higher rank Support Tensor Regression ) performed better

than other regression algorithms for head pose estimation.

The brief overview of the SVR is given here. Further details can be found in [92]. A

linear regression function can be defined by

f(x) = WTΦ(x) + b (3.17)

where x is the input vector, Φ(x) is a mapping function maps x to a vector, W is

the vector weights, b is the bias, and f(x) is the regression output. The equation is

determined by calculating an optimization problem:

min
W,b

P =
1

2
WTW + C

l∑
i=1

(ξi + ξ∗i )

s.t. yi − (WTΦ(x) + b) ≤ ε+ ξi (3.18)

(WTΦ(x) + b)− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1...l.



Background Theory 52

The above optimization can also be calculated using dual optimization by introducing

Lagrange multipliers α, α∗, n and n∗. Lagrangian is given by

Lp =
1

2
WTW + C

l∑
i=1

(ξi + ξ∗i )−
l∑

i=1

(niξi + n∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi + yi −WTΦ(xi)− b) (3.19)

−
l∑

i=1

α∗i (ε+ ξ∗i − yi + WTΦ(xi) + b)

s.t. αi, α
∗
i , ni, n

∗
i ≥ 0.

The dual optimization is given by

min
α,α∗

D =
1

2

l∑
i=1

l∑
j=1

Qij(αi − α∗i )(αj − α∗j ) + ε
l∑

i=1

(αi + α∗i )

−
l∑

i=1

yi(αi − α∗i )

s.t 0 ≤ αi, α
∗
i ≤ C i = 1, ......l, (3.20)

l∑
i=1

(αi − α∗i ) = 0

where Qij = Φ(xi)
TΦ(xj) = K(xi, xj). K(xi, xj) is a kernel function.

3.5 Online Support Vector Regression

The above stated offline learning or batch implementation of the learning algorithms

might not be convenient for some applications. The main reason is that for each new

batch of training data, the models need to be retrained. Therefore, incremental learning

techniques are proposed to address the problems caused by offline methods. The initial

online version of SVMs are introduced in [100]. Following [100], [17, 101, 102] studies

propose an online versions of the work, [92]. These incremental versions of the methods

update the models as the new training samples become available. A successful applica-

tion of the online support vector regression is reported in [103]. Other online learning

based methods have also been developed and are available such as online discriminative

kernel density estimation, [104] on-line random forests, [105] and incremental support
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Figure 3.7: An example of incremental face tracking on images under occlusion and pose
variation, [16].

vector machines [106], [107]. The main advantage of incremental methods like other

online methods is that training is performed by adding or removing a sample from the

training set without retraining the models from scratch for each new sample. PCA based

incremental learning methods are proposed in the previous studies [16,108,109]. Figure

3.7 shows tracking results under occlusions and pose variation.

With the SVM framework, the above offline (batch) learning methods can further be

extended to online learning methods. More specifically, the regression function can be

written as

f(x) =
l∑

i=1

(αi − α∗i )K(xi,x) + b (3.21)

The Lagrange formulation can also be redefined by

LD =
1

2

l∑
i=1

(αi − α∗i (αj − α∗j ) + ε
l∑

i=1

(α + α∗i )−
l∑

i=1

yi(αi − α∗i )

−
l∑

i=1

(δiαi + δ∗i α
∗
i ) +

l∑
i=1

[ui(αi − C) + u∗i (α
∗
i − C)] (3.22)

+ζ
l∑

i=1

(αi − α∗i )
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where δ
(∗)
i , u∗i , and Optimizing Lagrange multipliers lead to

LD
αi

=
∑
j=1

lQij(αj − α∗j ) + ε− yi + ζ + δ + ui = 0

LD
α∗i

= −
∑
j=1

lQij(αj − α∗j ) + ε− yi − ζ − δ + u∗i (3.23)

δ∗i ,≥ 0, δ∗i α
∗
i = 0

u
(
i∗) ≥ 0, u∗i (α

∗
i − C) = 0

KKT conditions allows defining a coefficient which is defined by

θi = αi − α∗i , (3.24)

A margin function can be defined for the ith sample xi and defined by

h((xi) = f(xi)− yi =
l∑

j=1

Qijθj − yi + b (3.25)

Then, the above equations can be used to obtain

h(xi) ≥ ε, θi = −C

h(xi) = ε, −C < θi < 0

−ε ≤ h(xi) ≤ ε, θi = 0 (3.26)

h(xi) ≥ ε, 0 < θi = C

h(xi) ≤ −ε, θi = C

The above five conditions can be used to define three subsets which are support,

error and remaining set. The partitioning of the these sets is performed by satisfying

the Karush Kuhn Tucker (KKT) condition. The KKT condition can be defined by

θi, hi(xi), ε, C. θ is defined in terms of dual variables. C is used to control the penaliza-

tion on the norm of weights. The margin function is defined by hi(xi) as the difference

f(xi)− y for all training samples. Training data is partitioned into three sets results in
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support, remaining and error sets. These sets are defined by

Error support vectors: E = {i| |θi| = C} (3.27)

Margin support vectors: S = {i| 0 < |θ| < C} (3.28)

Remaining samples: R = {i| θi = 0} (3.29)

Incremental update of the SVR function is carried out when a new sample is available.

The values of θ are changed incrementally until the KKT conditions are satisfied.

A decremental (unlearning) algorithm is also possible with this online SVR. If the

training sample removed from the training set, this is called decremental step. The

decremental process is only carried out for training samples which are in the remaining

set. This is performed by setting the value of coefficient x to zero then adjusting the

KKT conditions for all other samples. Figure 3.8 shows the support, remaining and error

sets. The yellow circles are support samples, the green circles are remaining samples and

the red circles are error samples.

Figure 3.8: The online Support Vector Regression model. The support, remaining and error
sets. The yellow circles are support samples, the green circles are remaining
samples and the red circles are error samples, [17].
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3.6 Principal Component Imagery

In the proposed approach, eye images were represented in eignspace. Representing the

eye images in eignspace allowed defining eye images in low dimensional vectors. Low

dimensional vector representations have two advantages in the proposed method. First,

modeling the eye images using a Gaussian Model (GMM) required less computation

time. Second, updating online Support Vector Regression (OSVR) models online also

resulted in less computation time. As a result, the unified system which made use of a

GMM and OSVR models allowed online learning of gaze parameters in real-time.

Let I1, I2, .....IL be a set of images. Given this set of images, a set of vectors, x1, ...xL

can be obtained by reordering pixel values of these images, [110]. PCA allows modelling

the distribution of a set of vectors using a set of L orthonormal vectors, ΦL, and their

corresponding eigenvalues, ΛL. The calculation of these set of L orthonormal vectors is

as follows. The mean and covariance matrix of the vectors are calculated. Then, the

eigenvalue problem is solved. The eigenvalue problem is defined by

Λ = ΦTΣΦ (3.30)

where Σ is the covariance matrix of the data, Φ is the eigenvectors, and Λ is the eigen-

values. N vectors with high eigenvalues are selected. Then, principal component feature

vectors are calculated by y = ΦT
N x̂ where x̂ = x − x̄ mean normalized image vector.

The mean vector of the training data denoted by x̄.

3.7 Gaussian Mixture Models

The Gaussian mixture model is a weighed sum of M component Gaussian densities and

defined by

p(y|Θ) =
M∑
i=1

αipi(y|θi) =
M∑
i=1

αipi(y|µi,Σi) (3.31)

where θi = (µi,Σi) is the set of parameters of the i-th mixture component, and αi is the

weight of the mixture component. Θ = {αi..., αM , θ1, ....θM} is the set of all parameters

in the mixture. The number of mixture components is denoted by M. In Gaussian
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mixture model, each Gaussian density is denoted by

p(y|θi) = p(y|µi,Σi)

=
1

(2π)D/2|Σ|1/2
exp{−1

2
(y − µ)Σ−1

i (y − µi)}
(3.32)

Assuming that the given projection vectors Y = {yi, ....yN} are independent and iden-

tically distributed, the joint density of the vectors can be defined by

p(Y|Θ) =
M∏
j=0

αipi(y|θi) = L(Θ|Y) (3.33)

where L(Θ) is the likelihood function. Similarly, logL(Θ|X) is called log likelihood

function and defined by

log(L(Θ|Y )) =
N∑
i=0

log

( M∑
j=0

αipi(x|θi)
)

(3.34)

The aim is to find the Gaussian mixture parameters, Θ = {αi..., αM, θ1, ....θM},
which models the joint density of the samples. This is achieved by the maximizing

log-likelihood expression of the training set. The parameter calculation, maximizing log

likelihood function, is achieved using Expectation-Maximization algorithm, [111, 112].

The EM algorithm calculates parameters in two steps which are E-step and M-step. In

E-step, the expected value of complete data is calculated and defined by

Q(Θ,Θi−1) = E log p(X ,Y)|X ,Θ(i−1)) (3.35)

In the M-step, the Gaussian mixture model’s parameters are optimized

Θ(i) = arg max
Θ

Q(Θ,Θi−1) (3.36)

The most probable mixture component of each projection vector is calculated using

a posteriori probability of each mixture component and then selecting the one which has

maximum probability. A posteriori probability of one mixture component is defined by

p(i|yt, α) =
wip(yt|µ,Σ))∑M

k=1 wkp(yt|µk,Σk)
(3.37)
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3.8 Conclusions

The proposed online gaze estimation method for updating models for more accurate gaze

estimates was introduced. The proposed method was based on modeling eye images by a

Gaussian Mixture Model for test eye patch modeling. The new test eye patches were also

used to update Support Vector Regressions. The advantages of online Support Vector

Regression over Support Vector regression was described in detail. The main advantage

of online Support Vector Regression was that it allowed for fast model update and result

in real time gaze estimates. Finally, representing eye images in lower dimensional data

resulted in fast data modeling and model updates using OSVR. All methods which were

used in a unified method was also summarized in a Table. In chapter 5, the proposed

methods based on online gaze estimation were introduced.

The proposed head pose estimation method was also combined with the proposed

gaze estimation system. The proposed random forests and tensor regression based sys-

tem was also compared with classic random forests. The advantages of the method

over random forests were reported. The proposed head pose estimation method allowed

eliminating the distortion on eye images due to head pose variation. The new head

pose estimation method which was based on random forests and Tensor regressors at

each leaf node will be described in the next chapter. Therefore, an overview of random

forests and their related work was provided in this chapter. Furthermore, Support Vec-

tor Regressions (SVR) and Tensor learning for regression were described. As a result,

this chapter provided an overview of the methods which were used in the proposed gaze

estimation and head pose estimation.



Chapter 4

Real-time Head Pose Estimation

4.1 Introduction

In this chapter, we introduce a novel method called random forest based tensor re-

gression, for real-time head pose estimation using both depth and intensity data. The

method builds on random forests and proposes to train and use tensor regressors at each

leaf node of the trees of the forest. The tensor regressors are trained using both intensity

and depth data and their votes are fused. The proposed method is shown to outperform

current state of the art approaches in terms of accuracy when applied to the publicly

available Biwi Kinect head pose dataset.

We address the problem of head pose estimation by extending previous methods of

random forest based head pose estimation in three ways: i) by using tensor-based re-

gression at each leaf node, ii) by fusing depth and intensity data using tensor regression

at each leaf node, and iii) by fusing depth and intensity data using a random forest

framework. This approach differs to classical random forests in which the prediction

models at each leaf node disregard the data of the sample that arrives at the leaf in

question. Indeed, typical random forest methods employ leaf node prediction models

that rely on the statistics of the training samples that arrive at the leaf in question.

Typically the mean, and sometimes also the covariance matrix are used. Here, we pro-

pose to use stronger regression models in order to estimate parameters more accurately.

We specifically propose to use Tensor regression models as they have shown good gener-

alisation properties when the availability of data is sparse. This is often the case in our

work, where the number of the samples that arrive at several leaf nodes can be small.

In Figure 4.1, we give an outline of the proposed method. First, a regression forest is

59
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Figure 4.1: Multimodal Random Forest based Tensor Regression. Fixed size patches are ex-
tracted from depth and intensity patches and passed through the forest. The
patches which reach the leaf nodes are used as inputs to the tensor based regres-
sion models to obtain the estimates of the head angles.

learned by passing randomly extracted depth patches with head pose parameters into

the tree. At each non-leaf node each patch is sent either to the left or to the right

branch according to the result of a test on features extracted from the patch in question.

The test is chosen at training time as the one that maximises the information gain on

the head pose parameters that will be achieved if the test in question is applied on the

training patches that arrive at the internal node in question. Once a test is chosen, it

is applied to the training patches that arrive at that internal node. This is repeated

recursively until a stopping criterion is met. In this Chapter, we propose to learn a ten-

sor regression model at each leaf node, and report results on three variations of tensor

regression models. The first one, termed RF-TR-D, uses patches extracted from depth

images. The second one, termed RF-TR-I, uses patches extracted from grayscale im-

ages, and the third one, termed RF-TR-ID, fuses the information from RF-TR-D and

RF-TR-I. In addition, integration of intensity and depth data in a random forest frame-

work is exploited. Integration allows usage of both intensity and depth information for

more accurate parameter estimation. The robustness and accuracy of this method is

proven over random forest based regression technique employing only depth data for the

Real-time large head pose estimation experiments.
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In summary, this Chapter contributes two novel approaches to the problem of real-

time head pose estimation. First, a new regression method based on random forests

and tensor models is proposed. The proposed method instead of modelling the votes at

each leaf node with a Gaussian, employs a tensor-based regression model. Second, we

proposed fusion of depth and intensity data in the random forest regression framework.

The remainder of this Chapter is as follows. In Section 4.2, we introduce the Mul-

timodal Random Forest based Tensor Regression method. In Section 4.3, we show how

the proposed method is applied to the problem of head pose estimation. Results are

given in Section 4.4 and conclusions are drawn in Section 4.5.

(a) (b)

Figure 4.2: Aligned depth data and gray scale images. (a) Captured depth data. The green
bounding box shows head/face region in which fixed size depth patches are ex-
tracted. The yellow bounding box shows the extracted fixed size depth patch.
(b) Corresponding gray scale image. The green bounding box shows head/face
region in which fixed size gray scale patches are extracted. The yellow bounding
box shows the extracted fixed size gray scale patch.

4.2 Multimodal Random Forest Based Tensor

Regression

First, a random forest based tensor regression employing only depth data (RF-TR-D)

is described. Second, integration of intensity and depth at each leaf node of a random

forest using tensor models (RF-TR-ID) is introduced.
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A number of aligned grey scale images and depth data with head location and orien-

tation parameters are used for the construction of a forest. An example of the aligned

grayscale images and depth data is given in Figure 4.2. For the construction of each tree,

a subset of aligned intensity and depth data is selected and several fixed size patches

belonging to head/face region are extracted from both the intensity image and the depth

data. Fixed size patches (red) are also extracted from the other image areas depicting

the torso, the arms and the hair.

We assume that images are annotated in terms of the face bounding box. Given

that, we proceed in building a classification and regression forest. The classification of

the patches in terms of whether they belong to the background or the face region is

performed at the leaf nods of the forest. The ratio of positive (i.e. belonging to the

face area) and negative (i.e. not belonging to the face area) patches that arrive at each

leaf node during testing is calculated and stored. During testing, when a patch reaches

the leaf note, it is classified as positive or negative, depending on whether this ratio is

greater than one or not.

4.2.1 Tree Construction

Let us denote a random forest by T={Tt}, where a tree in the forest is denoted by Tt.

Each tree, Tt, is built using a set of patches, {Pi} , which are randomly chosen from the

training data. A patch is denoted by Pi = (Ifi , ci, θi) where Ifi are the extracted features,

ci is a class label that reveals whether the patch belongs to the face/head region (ci = 1)

or not (ci = 0) and θ = {θx, θy, θz, θyaw, θpitch, θroll} is a vector which contains the head

pose parameters. The values θx, θy, θz are offsets between the patch center and the head

center in 3D and θyaw, θpitch, θroll are the Euler angles of the head pose parameters.

The tree is constructed using the method proposed in [12], [18]. The parameters of

a tree in each internal node are selected by generating a number of binary tests and

by selecting the best test according to the optimization criterion. In this work, we use

stumps tests with parameters tF1,F2,τ . That is:

1

| F1 |
∑
qεF1

If (q)− 1

| F2 |
∑
qεF2

If (q) > τ (4.1)

where If is a feature channel and F1 and F2 are rectangular regions determined randomly

within the depth patch. τ denotes the threshold. Similarly to [12, 15], our tests use the
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differences between the average values of rectangular regions. The optimization function

is defined using both classification and regression measure. The function is optimized

by randomly choosing between a measure based on the classification performance (face

/ not face) and a measure based on the regression performance (i.e. related to the

estimation of the head pose) at each non-leaf node.

More specifically, the classification measure is defined as

UC(P \ tk) =
∑

i∈{L,R}

wiH(P \ tk) (4.2)

where

H(P \ tk) = p(c|P )ln(p(c|P )) (4.3)

The set of patches at the parent node i is denoted by Piε{L,R} and the sets of patches at

the child nodes are denoted by PL and PR. The ratio of patches is denoted by wi = |Pi|
|P | .

The regression measure is defined as the differential entropy of the set of patches P

at the internal node minus the weighted sum of differential entropies at the left child

node PL and the right child node PR, which are defined after the splitting process. That

is:

UR(P \ tk) = H(P )− (wLH(PL) + wRH(PR)). (4.4)

where H(P) is the differential entropy of the set Pi∈{L,R} and wi=L,R is the ratio of patches

sent to each child node. The equation then becomes:

UR(P \ tk) = log(Σv + Σa)−
∑

i={L,R}

wilog(Σv
i + Σa

i ) (4.5)

where Σv and Σa are the covariance matrices of the offset vectors and rotation angles.

The splitting process stops and a leaf node is declared when the number of patches

is below a threshold or when the tree reaches a predefined depth level.

In this study, fixed sized patches (60x60) are extracted from the input data. Scale

variation is not considered since we assume that the subjects are approximately at

the same distance to the camera. This is a valid assumption in the Biwi Head pose
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Figure 4.3: RGB images and depth data from the Biwi Kinect Head Pose Database, [18].

dataset, [18] which we use for performance evaluation. Some example images from this

dataset can be seen in Figure 4.3.

4.2.2 Tensor Regression at the Leaf Nodes

Typically, in random regression forests, a multivariate Gaussian distribution models the

distribution of the head pose parameters that corresponds to the patches that arrive at

the leaf in question. The parameters of each Gaussian are then stored at each leaf node.

In this study, we propose to use tensor regression modes [62] instead of a multivariate

Gaussian distribution for regression. Tensor regression is the extension of Support Vec-

tor Regression (SVR), [92, 93]. The SVR is performed in the vector space while tensor

regression is performed in the tensor space. A tensor can be defined by a multidimen-

sional or N-way array. For example, gray scale image is a 2-way array while rgb image

is a 3-way tensor.

The linear regressor in the vector scape can be defied by

y = f(x; w, b) = 〈x,w〉+ b, (4.6)

where x is the input data in a vector formant, w is the weight vector, b is the bias, and

y is the estimated scalar output value.

In the tensor space,

y = f(X ;W , b) = 〈X ,W〉+ b, (4.7)
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(a)

Figure 4.4: The CANDECOMP/PARAFAC decomposition of a two-way array.

where in our case X ∈ RM×N denotes the feature channel patch tensor and W is the

weight tensor. M and N are the dimensions of the patches. The scalar b denotes the

bias. The tensor learning for regression algorithm can be seen seen in Algorithm 1, [62].

The tensor learning for regression is based on CANDECOMP/PARAFAC decompos-

tion, [62, 98]. The decomposition allows weight tensor to be represented by the sum of

R rank-one tensors, that is:

W =
R∑
r=1

~u(1)
r ◦ ~u(2)

r ◦ · · · ◦ ~u(M)
r , [[~U (1), ~U (2), · · · , ~U (M)]], (4.8)

where ~U (j) = [~u
(j)
1 , · · · , ~u(j)

R ].. The CANDECOMP/PARAFAC decomposition of a two-

way array can be seen in Figure 4.4.

The equation 4.8 can be substituted in equation 4.7 and the new equation can be

defined by

y = 〈X ,W〉+ b

= 〈X ,
R∑
r=1

u(1)
r ◦ ... ◦ u(M)

r 〉+ b

=
R∑
r=1

〈X ,u(1)
r ◦ ... ◦ u(M)

r 〉+ b

=
R∑
r=1

X
M∏
k=1

×kukr + b (4.9)

In equation 4.9, the input 2D patch is projected onto R directions for each mode

k. The projection of input 2-way tensor onto R directions allows feature selection or

dimensionality reduction before regression process. After, the model parameters (Θ =
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Algorithm 1 TENSOR LEARNING FOR REGRESSION, [62]

Input: The set of training tensors and their corresponding targets, i.e. {Xi, yi}|Ni=1

Output: Weights {U1, .....,UM} and the bias term b ∈ IR that minimize the objec-

tive function

1: Randomly initialize {U1, .....,UM}(0)

2: repeat

for k=1 to M do

3: t ← t+1

4: Solve with respect to Uk|(t) the equation 4.13

end for

5: until ‖W(t) −W(t−1)‖/‖W(t−1)‖ 6 ε or t > Tmax

{~U (1), ~U (2), · · · , ~(U)
M
, b}) at each leaf node are learned by minimizing the regularized

empirical risk function. This function is minimized by using a set of labelled 2-mode

feature channel patch tensors {Xi, yi}Ni=1 and the associated pose angles, yi. The risk

function is given by:

L (Θ) =
1

2

N∑
i=1

l(yi, f(Xi; Θ)) +
λ

2
ψ(Θ) (4.10)

where l(·) is the ε-insensitive loss function and ψ(·) is the Frobenius norm regularization

term. We select the rank R of the tensor by performing cross validation on the data at

each leaf node.

At each leaf node of a forest two tensor regression models are trained. One using

depth information, and the second using intensity information.

The optimization methodology of SVR is modified for the tenser learning and it can

be defined by

min
W,b,ξ,ξ̂

1

2
‖W‖2

Fro + C
N∑
i=1

(ξi + ξ̂i)

s.t. − yi + 〈X i,W〉+ b ≥ ε+ ξ̂i (4.11)

yi − 〈X i,W〉 − b ≤ ε+ ξi

ε ≥ 0, ξi ≥ 0, ξ̂i ≥ 0, ∀i = 1, 2, ..., N.
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The above optimization function can be solved by keeping all U k values fix and then

solving U j, k 6= j

min
Uj ,b,ξ,ξ̂

1

2
Tr(U (j)U (−j)TU (−j)U (j)T ) + C

N∑
i=1

(ξi + ξ̂i)

s.t. − yi + Tr(U (j)U (−j)TXT
i(j)) + b ≥ ε+ ξ̂i, (4.12)

yi − Tr(U (j)U (−j)TXT
i(j))− b ≤ ε+ ξi,

ε ≥ 0, ξi ≥ 0, ξ̂ ≥ 0, ∀i = 1, 2, ..., N.

The above optimization function can be rewritten by denoting B = U (−j)TU (−j), Ũ
j

=

U jB
1
2 , and X̃ i(j) = X i(j)U

(−j)B
1
2 . The new optimization function can be defined by

min
U (j),b,ξ,ξ̂

1

2
Tr(Ũ

(j)
Ũ

(j)T
) + C

N∑
i=1

(ξi + ξ̂i)

s.t. − yi + Tr(Ũ
(j)
X̃

T

i(j)) + b ≥ ε+ ξ̃i (4.13)

yi − Tr(Ũ
(j)
X̃

T

i(j))− b ≤ ε+ ξ̃i

ε ≥ 0, ξi ≥ 0, ξ̂ ≥ 0, ∀i = 1, 2, ..., N.

The parameters can be vectorize Ũ and ˜X i(j) using the following relations

Tr(Ũ
(j)
Ũ

(j)T
) = ‖vec(Ũ

(j)
)‖2

Tr(Ũ
(j)
X̃

T

i(j)) = [vec(Ũ
(j)

)]T [vec(X̃ i(j))] (4.14)

After, the optimization function in equation can be solved using SVR optimizer. First,

U is solved and then U is calculated by

Uj = ŨjB−
1
2

4.2.3 Integrating Intensity and Depth Cues using Random

Forests

A unified random forest that allows integration of intensity and depth data is generated.

Instead of using only depth values as a feature channel, a number of feature channels

with head location and orientation parameters are used for the construction of a forest.

The construction of a forest is given in Section 4.2.1. These feature channels are obtained
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by extracting features from intensity images and combining them with the depth data.

Feature channels are generated after aligning intensity and depth data. An example of

aligned depth data and gray scale image can be seen in Figure 4.2. Extracted feature

channels from intensity images contain raw gray scale values and nine HoG like feature

channels. Gray values are used as a feature channel as extra computation to obtain them

is not required. HoG like features are used in the fusion process as they provide good

estimates for head pose parameters [22]. Depth values are used as one of the feature

channels in the fusion process as their values provide accurate estimates with random

regression forests [18].

Head pose estimation from integrated intensity images and depth data was performed

as described in Section 4.2.2. Instead of densely extracting fixed size patches from depth

data, fixed size patches are extracted from feature channels and passed through the

forest. The patches which reach the leaf nodes are used as inputs to the Gaussian

models to obtain the estimates of Euler angles.

4.3 Head Pose Estimation

During testing, fixed size patches are densely extracted from the depth data and passed

through the forest. Each extracted patch is directed via binary tests performed at the

internal nodes towards leaf nodes.

When a test patch reaches a leaf node, the patch is classified according to whether

it comes from the area depicting the head or other body parts. The classification is

made by examining the ratio of head to non-head patches that reach the leaf in question

during training (p(c = 1|P )). At leaves for which the ratio is greater than one, the

trained regressor is applied, an estimate for the head pose parameters is obtained and a

vote is cast in the corresponding Hough space. Leaf nodes with high variance (Σv > 800)

do not cast votes. Then, the mean shift algorithm is applied in order to remove outliers.

For head center estimation, an approach similar to that proposed in [18] is followed.

At each leaf node a vote is cast at the mean of a Gaussian estimated at training time.

First, the votes are grouped together. Then, a mean shift with a sphere radius equal to

the average face model of [113] is applied in order to remove outliers. Then the votes

are averaged to obtain the final head center estimate.
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As stated above, the fix-sized patches are densely extracted from the depth data

and passed to a forest. Each patch reaches a leaf node of a forest and an estimate

of head pose parameters is obtained. However, each patch provides different estimates

of head pose parameters. A majority of estimates are expected to be the estimates

of actual values of head pose parameters. A small number of estimates might not

be accurate estimates of the actual values of head pose parameters. The inaccurate

estimates might be obtained from the patches which were extracted from the occluded

parts of the face. These inaccurate estimates can be avoided. The actual values of

head pose parameters are assumed to be the mean of all estimates obtained from all

patches. Then the radius can be defined on the center of the estimated mean head pose

parameters. The estimates which are within this radius are average to obtained the

estimate of head pose parameters. The patches which are outside of this radius do no

considered in the averaging process. The patches which provide head pose estimates

outside this radius might be occluded patches and they are called outliers. Defining

radius around the mean head pose parameters and removing outliers is the mean shift

algorithm. Other methods can also be used to remove outliers instead of the mean shift

algorithm. In this work, the mean sift algorithm is used because it is easy to implement

and it provides fast computation which is crucial for real-time parameter estimation.

4.4 Experimental Results

We evaluate the proposed method by conducting experiments on the publicly available

Biwi Kinect head pose database [18] and the ICT-3DHP [114]. We report the perfor-

mance of the variants of the random forest tensor regression, that is, a) using only depth

data (RF-TR-D) and b) by fusing depth and intensity data (RF-TR-ID). For comparison

we provide results obtained with a baseline Random Forest.

4.4.1 Biwi Kinect Database

Biwi kinect database was created using a Kinect sensor. It consists of depth data and

RGB images of upper body region of 20 different people (14 men and 6 women) that

turn their heads in different directions. 24 sequences were generated while some people

were recorded twice. All images are annotated with head center locations and rotation

angles. The rotation angles range is approximately between ±75 ◦ for yaw, ±60 ◦ for
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pitch and ±50 ◦ for roll. The approximate rotation and translation errors of this dataset

is reported about 1 mm and 1 degree.

The dataset was partitioned into 18 sequences of 18 subjects as a training set and 2

sequences of 2 subjects as a test set. Two methods were trained using the training set.

A random forest was constructed by generating 7 trees. Each tree was generated using

3000 sample images.

4.4.2 ICT-3DHP dataset

The ICT-3DHP dataset also contains both depth data and RGB images of the upper

body region of different people that turn their heads in different directions. The data

were captured by a Kinect sensor. 10 sequences were generated, each containing approx-

imately 1400 frames. All images are annotated with the location of the head center and

with the head rotation angles using Polhemus FASTRAK folck of birs tracker.

4.4.3 Parameter Setting

For our evaluation, we partitioned the Biwi dataset and used 18 sequences of 18 subjects

as training set and 2 sequences of 2 subjects as test set. Each forest contained 7 trees.

Each tree was generated using 3000 sample images. The values of the parameters used

to train the random forest were set as follows: the sizes of the patches were set to 60x60,

and the maximum size of sub patches to 30x30 pixels; the maximum tree depth was set

to 15; the minimum number of patches that arrived at an internal node during training

was set to 20 and the number of tests at each internal node was set to 10000. The stride

was set equal to 5 and the maximum variance to 500. The tensor model’s training is

performed for each leaf node after the random forest is constructed. Their performance

depends on the rank (R) and the regularization parameters (C) used. Their values were

selected by cross validation. Figure 4.5 shows head pose parameter computation cost

for an average frame in millisecond for the proposed methods, RF-TR-D and RF-TR-

ID. Head pose parameter computation time of a given depth data in milliseconds for a

random forest with Gaussian models at each leaf nodes are also provided. Figure 4.5(a)

depicts the average run time as a function of the stride value. Figure 4.5(b) depicts the

average run time as a function of the number of trees when the stride value is 15. As can

be seen in Figure 4.5, the proposed method RF-TR-D processes 26 frames per second or

higher when the stride value is set to 12 or higher. Similarly, the proposed method RF-
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Figure 4.5: Head pose parameter computation time of a given depth and intensity data in
milliseconds for the proposed methods, RF-TR-D and RF-TR-ID. Head pose
parameter computation time of a given depth data in milliseconds for a random
forest with Gaussian models at each leaf nodes are also provided. a) Computation
time using 7 trees as a function of the stride parameter. b) Computation time
as a function of the number of the trees when the stride value is set to 15.

TR-ID also processes 19 frames per second or higher when the stride value is set to 12

or higher. Although the proposed intensity and depth fusion at each leaf node (RF-TR-

ID) results in a slightly higher computation cost than the proposed RF-TR-D method,

both methods work in real-time. For the evaluation of the proposed methods on the

ICT-3DHP dataset, we used the forest which was generated using the Biwi dataset. The

parameter setting which was used during the forest training is described in Section4.4.3.

4.4.4 Random Forest with Tensor Models

In this section, we compare the performance of the proposed method with plain random

forests. The results can be seen in Figure 4.6. Figure 4.6(a) and (b) reports the per-

centage of correctly estimated head poses on depth images for different thresholds for

head center localization and angular error. In Figure 4.6(c), we report the Mean Angle

error (MAE) against the percentage of leaves.

As can be seen in the Figure 4.6(b), the proposed intensity and depth fusion at each

leaf node perform similarly for different thresholds. The proposed method, RF-TR-D is
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Figure 4.6: The performance of the proposed methods, RF-TR-D and RF-TR-ID. (a) Accu-
racy of head center estimation against different angle thresholds. (b) Accuracy of
head orientation estimation against different angle thresholds. (c) Mean Angular
Error against different angle thresholds.

slightly more accurate than the RF-TR-ID. However, the proposed method RF-TR-ID

resulted in lower mean angle errors for different angle thresholds. (Figure 4.6(c)).

Table 4.1 presents mean and standard errors calculated using 2-fold cross validation.

The mean and standard errors are given for RF-TR-D and RF-TR-ID. In Figure 4.7

estimates of head pose parameters using the proposed methods can be seen on the

subject’s data. The cylinder shows the estimate head pose parameters.
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Table 4.1: Mean and standard deviation of the head orientation error.

METHOD Pitch (◦) Yaw (◦) Roll (◦) Stride

RF-TR-D 5.15±0.59 7.8±0.70 4.8±0.48 5

RF-TR-ID 5.08±0.46 7.83±0.41 5.07±0.19 5

RF-TR-I 4.67±0.46 8.52±0.41 5.57±0.19 5

RF-TR-D 5.08±0.14 8.2±0.14 4.77±0.10 10

RF-TR-ID 4.97±0.01 8.17±0.18 4.49±0.28 10

Table 4.2: Comparison of head estimation results on the Biwi Kinect dataset. We report the
Mean Absolute Error.

METHOD Pitch Yaw Roll Mean

RF-TR-D 5.15 7.8 4.8 5.91

RF-TR-ID 5.08 7.83 5.07 5.99

RF-TR-I 4.67 8.52 5.57 6.25

Random Forests 6.71 7.95 5.67 6.78

Random Forests [18] 8.5 9.2 8.0 8.6

CLM [115] 18.30 28.30 28.49 25.21

CLM-Z [114] 12.03 14.80 23.26 16.69

CLM with
GAVAM [114] 5.10 6.29 11.29 7.56

4.4.5 Discussions

The performance of the proposed methods was compared with the performance of the

Constrained Local Model (CLM) [115], the CLM that employs both depth and intensity

data (CLM-Z) [114] and the CLM-Z with a Generalized Adaptive View-based Appear-

ance Model (GAVAM) [116]. Results are reported in Table 4.2 and in Table 4.3. In

Table 4.2, the results for (RF-TR-D and RF-TR-ID) are obtained as the average values
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Table 4.3: Comparison of head estimation results on the ICT-3DHP dataset. We report the
Mean Absolute Error.

METHOD Pitch Yaw Roll Mean

RF-TR-D 5.85 8.53 7.64 7.34

RF-TR-ID 5.85 9.32 7.76 7.64

RF-TR-I 5.73 9.81 7.80 7.78

Random Forests 6.27 9.81 7.81 7.96

Random Forests [18] 9.40 7.17 7.53 8.03

GAVAM [116] 3.50 3.00 3.50 3.34

CLM [115] 9.92 11.10 7.30 9.44

CLM-Z [114] 7.06 6.90 10.48 8.15

CLM-Z with
GAVAM [114] 3.14 2.90 3.17 3.07

(a) (b) (c) (d)

Figure 4.7: Several examples of head orientation estimation results on the depth data of two
subjects from the Biwi Kinect Dataset.

of two runs on the Biwi Dataset. In Table 4.3, the results for (RF-TR-D and RF-TR-

ID) are obtained from the ICT-3DHP Dataset. The results of the other methods are

reported in [114]. The random forest with Gaussian models is also implemented and the

results are provided in the fourth column of Table 4.2 and Table 4.3 for both Biwi and
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ICT-3DHP dataset, respectively. We can conclude that the proposed models perform

better than the other methods.

As can be seen in Table 4.3 the GAVAM and CLM-Z with GAVAM methods clearly

outperform the proposed methods. GAVAM is an integration of differential tracking

and keyframe based approaches. This approach is strengthened by using keyframes to

avoid drifting. The keyframes depict the face of a certain subject in different poses and

scales. These keyframes are acquired and adapted online during testing time. As a

tracking method, the performance of the CLM-Z method depends on the initialization

of the pose parameters. Once good head pose parameter estimates can be provided

by GAVAM, accurate landmark positions could be obtained for the CLM-Z method.

Then the tracking provides high precision during parameter estimation. In contrast, the

proposed methods estimate the head pose at each frame independently.

The tracking based methods result in accurate parameter estimation on the ICT-

3DHP dataset. In this dataset, the subjects move their head slowly in front of a Kinect

camera and all frames are captured and stored. However, as can be seen in Table 4.2,

the performance of the proposed methods are higher than the tracking based approaches

when the Biwi data is used. In this dataset, the subjects move their head fast in front

of a Kinect camera. There are also some cases when the frames are lost during the

recording of this dataset. To conclude, fast motion and missing frames lead tracking

based algorithms to fail. Therefore, the proposed method can be more useful in ap-

plication where the available data is similar so Biwi dataset, such as that in the Biwi

dataset. Estimating accurate head pose on depth data is challenging in the following

cases. First, the depth data contains the subject’s large head pose. Second, the captured

range data might contain some missing data. This causes the extracted patches to be

less informative in terms of head orientation. As a result, the estimation accuracy is less

accurate.

The pros and cons of tensor model over Gaussian model can be stated as follows.

Regression models at the leaf nodes take the data of the test sample into consideration.

By contrast, the Gaussian models provide an estimate as the mean of a Gaussian fitted

to the training data that arrived at the leaf. That is, they disregard the data/appearance

of the test sample (once it arrives at the leaf node of course). There is a (small) compu-

tation cost since the parameter prediction using tensor model requires one inner product

calculation. On the other hand, the parameter prediction using Gaussian models requires

only two 3 dimensional vector additions. The detailed comparisons of the computation

times is provided in Figure 4.5
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Figure 4.8: The performance of typical random forests and random forests combined with
tensor regression. (a) Accuracy against the percentage of selected votes. (b)
Average angular error against the percentage of retained votes. (c) Accuracy of
head orientation estimation for different angle thresholds. The accuracy values
were calculated when 50 % votes were selected.

4.4.6 Data Fusion using Random Forest

In this section, we study the performance of each type of information (intensity and

depth data). More precisely, for intensity data we created ten feature channels, with the

first one containing the raw gray values and the remaining 9 channels containing HoG

descriptors. For depth data we considered one channel that contained raw depth values.
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Figure 4.9: The performance for different types of information. Depth data, depth data
combined with gray values and depth data, combined with gray values and HoG
descriptors. (a) Accuracy against the percentage of selected votes. (b) Corre-
sponding average angular error against the percentage of retained votes.

The acquired results are reported in Figure 4.8. As can be seen, both higher accuracy

and lower MAE were achieved when different sources of information and more than 80

% of the retained votes were used.

Table 4.4 presents mean and standard errors calculated using 2-fold cross validation.

In the first row we report mean and standard errors using only depth values while in the

second row we report mean and standard errors using depth values, gray scale values

and HOG features. A forest is generated using 3000 depth data for the construction of

each of seven trees for each fold. As can be seen in Table 4.4, the fusion of different

sources of information provided lower mean angular error.

MAE Pitch Error Yaw Error Roll error

Depth 12.7 4.8 ± 5.3 8.1 ± 9.1 6.5 ± 7.4

Depth+Grayscale+HOG 12.3 5.0 ± 5.3 7.4 ± 7.9 6.6 ± 7.4

Table 4.4: Errors of head orientation in terms of mean and standard deviation. Errors are
computed using a 2-fold cross validation.
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4.5 Conclusion

In this chapter, a novel framework for head pose estimation, called Multimodal Random

Forest based Tensor Regression was presented. The techniques were proposed to achieve

the head pose estimation using the Kinect. A proposed method allowed employing

RGB images and depth data for estimating head pose parameters accurately. The novel

method has been developed by extending random forests in three ways: (i) by using

tensor-based regression at each leaf node, (ii) by fusing depth and intensity data using

tensor regression at each leaf node and (iii) fusing RGB and depth data using random

forest. As a result, a new method based on multi-modal random forests and tensor

models is proposed for more accurate and robust head pose estimation. The proposed

method allows modeling of large head pose while tensor models provide accurate results.

Experimental evaluations of the proposed methods were given in Tables 4.2 and 4.3

respectively. The efficacy of our method was demonstrated on the publicly available

Biwi and ICT-3DHP databases. The results proved that the proposed methods have

several advantages over classic random forests. First, tensor regressors were trained

to map patch data to head pose parameters for more accurate head pose parameters.

Second, the proposed method employed both intensity and depth data for more robust

and accurate head pose parameter estimation. Furthermore, the efficacy of our method

was demonstrated on the publicly available ICT-3DHP databases, Table 4.3. In this

dataset, the tracking based methods GAVAM and CLM-Z with GAVAM provided better

accuracy than the proposed methods. These methods provided the head pose parameter

prediction based on previous prediction parameters. Estimating parameters by making

use of previous frames resulted in better accuracy than the proposed methods. If the

previous frame is not available or missing during head pose estimation on the current

frame, the accuracy of the tracking methods degraded. Since the Biwi dataset contained

missing frames during recordings, tracking methods resulted in less accurate results in

Table 4.2.



Chapter 5

Gaze Estimation

5.1 Introduction

This chapter introduces an online learning method for appearance based gaze estima-

tion. The proposed method allows gaze estimation under both frontal and free head

pose. Motivation of the proposed online learning is to improve gaze estimation. The

state of the art appearance based gaze estimation methods are based on initial personal

calibration stage. During this calibration stage, the eye patches of a user are mapped

to gaze estimates using a regression model. The proposed online learning method is

based on generating models in the calibration stage and then updating these models

using both training and testing samples for more accurate gaze estimation. During real-

time appearance based gaze estimation, obtaining test eye patches might be different to

training samples due to misalignment. This misalignment might result in different eye

appearance and the different eye appearance leads to slight changes in actual values of

estimates. Furthermore, slight head pose also results in eye appearance variation which

affects the gaze estimation accuracy. The proposed online method allows using these

samples for gaze estimation in order to improve accuracy. Another advantage of the pro-

posed online method is that when the models are trained for one user, these models can

be adapted to another user during online process. Adapting models to another user dur-

ing online process has several advantages. First, the training samples are substantially

decreased. Second, a long calibration time for each subject is avoided.

This chapter also presents appearance based gaze estimation under free head pose

from a single device, e.g. a webcam or Kinect. A number of state-of-the art methods are

based on several device set-up. It is stated in the introduction section that a system set-

79
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up consisting of several devices is problematic. The proposed method allows estimation

of head pose parameters using Kinect depth data and gaze parameters using intensity

image. The method also allows head pose parameter estimate from the intensity images.

Performance evaluation of the proposed methods for appearance based gaze estima-

tion are evaluated under slight head pose and free head pose variation. The evaluation

of methods are performed using data captured from a singe device, e.g. a webcam or

Kinect.

5.1.1 Problem Definition

Appearance based gaze estimation is problematic under free head motion. Models

trained for gaze direction parameters under frontal head position do not reliably provide

accurate estimates under different head translation and orientation. The main reason is

that the appearance of eye patches change, therefore models which deal with appearance

variation should be considered. The appearance based gaze tracking systems also require

a number of training samples and this may lead to a long calibration time. The number

of training samples and calibration time increase when these systems are used under free

head motion. Therefore, methods which allow fewer training samples are needed to be

investigated more.

5.1.2 Overview of the Approach

An overview of the proposed method can be seen in Figure 5.1. First, input data,

eye patches and head pose parameters, are obtained. The eye corners are detected on

intensity image and cropped. The head pose of a user is crucial for appearance based

gaze estimation since the pose is used for eye appearance compensation under free head

pose. The head pose parameter calculation can be performed in two different ways

on the captured intensity images and depth data of the RGB-D camera. Head pose

parameter calculations can be carried out on only depth data. The proposed methods

are described in the previous chapter. Head pose parameters can also be estimated

from estimated facial landmarks. In this case, estimated landmarks and the mean face

landmarks are used to estimate the head rotation and translation with respect to mean

face. A regression model is learned in order to map eye appearance to gaze direction

parameters which allows to obtain gaze point estimates on the screen. In the proposed

approach, regression models are generated while the head is in frontal pose. During
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Figure 5.1: Proposed method pipeline. a) Landmark points are detected on intensity im-
age. b) Head pose parameters are calculated. c) Eye images are cropped using
landmark points. d) Eye gaze parameters are estimated using these cropped
eye patches and a regression model. e) Finally, gaze direction parameters are
geometrically corrected according to head pose variation.

gaze estimation under free head pose, the captured eye patches are projected to frontal

pose and the regression model is used to estimate gaze direction parameters. Estimates

are further geometrically corrected to compensate for translation variation. Another

recently proposed approach [45] is based on training data collated while the head pose

is presented in different directions. However, this approach results in large training

data, time and insufficient accuracy. Our approach has the lowest training samples for

estimating the gaze direction user free head pose. Furthermore, these estimates are

geometrically compensated and final estimates are obtained.
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Finally, models are also adapted online using both training and testing eye patches.

The model update is based on modeling the training data. Then, the captured test eye

patches are selected according to their similarity of training eye patches. The selected

eye patches are then used to update the models online. The appearance of the training

data is represented using Principal Component Analysis and modeled using a mixture

of Gaussian model. The online model update is based on online linear Support Vector

Regression (OSVR). OSVR is the online version of the Support Vector Machines (SVR).

SVR depend on retraining the models for every new test eye path, however OSVR

depends on updating the model for every available eye patch. Therefore, OSVR allows

fast computation and real-time model update for gaze estimation. The description of

SVR and OSVR can be found in sections 2.4 and 2.5.

5.2 Eye Gaze Direction Estimation

In our system set-up, the coordinate system is defined before the mathematical descrip-

tion of the proposed method, Figure 5.2. The World Coordinate System (WCS) is a

right-handed 3-D Cartesian coordinate system where XY-plane represents the screen

plane. The Kinect camera is placed below the screen and the location of this camera is

defined by the camera center or the center of the WCS. A point on the screen is defined

by a 3D point, s = (sx, sy, sz). The center of the eye surface is defined by another 3D

point, c = (cx, cy, cz). c = (cx, cy, cz) is calculated using the Kinect’s camera depth

data and facial landmark locations on the intensity image. The visual axis defined by a

line which passes from c = (cx, cy, cz) and intersects the screen plane at s = (sx, sy, sz).

The landmark detection on intensity images is performed using the method proposed

in [117]. These estimated points can be seen in Figure 5.3. The corners of left and right

eye are selected and the left and right eye patches are determined using these locations

on the eye region. The left and right eye center points are also calculated using esti-

mated landmark locations. Figure 5.3 shows detected landmarks (green color), regions

of left and right eye patches (blue color) and center points (red color). Several cropped

eye patches using this technique are also shown in Figure 5.4. As can be seen in the eye

images, the resolution of the images is not very good. Low resolution images result in

less accurate gaze direction estimation.

The goal of the proposed approach is to learn a regression function which allows

mapping between eye patches {e1, ., eN}, and visual axis angles, {δ1, ., δN} where δ =
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Figure 5.2: Mapping eye patches and the orientation of visual axis angles.

(θ, ϕ) and θ and ϕ are horizontal and vertical angles of the visual axis respectively.

During online gaze estimation, the eye patches are used as inputs to the regression

model in order to obtain estimates of visual axis angles, δ̇ = (θ̇, ϕ̇). These angle estimates

and the center of the eye patch (e) are then used to obtain the corresponding screen

point. The descriptions of the eyeball structure and the visual axis are given in Section

2 Figure 2.2. The section also provides the relation between visual axis parameters

and the screen point. However, the estimation of these angels by regression methods

provide inaccurate estimates under free head pose. Inaccuracies are expected since the

eye appearance of patch varies. The proposed approach, compensates head orientation

distortion on the patch by projecting eye appearance, e, to frontal pose, ê. Compensated

eye patch is then used as input to a regression model in order to obtain gaze direction

estimates, δ̇ = (θ̇, ϕ̇). These angle estimates and the center of the eye patch (e) are then

used to obtain the corresponding screen point. Using this method, the distortion on

eye patch then becomes less severe and estimates of angles are more accurate. Although

compensating by distortion allows more accurate results, the head translation also results

in eye appearance distortion. The compensation of distortion due to head translation
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(a) (b)

Figure 5.3: Captured intensity image and depth data. a) shows detected landmarks (green
color), regions of left and right eye patches (blue color) and center points (red
color) b) corresponding aligned depth data.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Several examples of captured left and right eye images using Kinect camera.

is also achieved using geometric correction of angle estimates, δ̇ = (θ̇, ϕ̇). We define

another set of angles, ϕ = (α, β) which rotates δ̇ = (θ̇, ϕ̇) to the actual/ground truth

angles, δ = (θ, ϕ). Another regression function is learned to map eye patches to this

rotation angles, φ = (α, β). The detailed description is given in Section 5.2.2.

5.2.1 Head Orientation Compensation

Eliminating distortion due to head orientation on the appearance of eye patch is achieved

in two steps. In the first approach, the perspective projection is used to project the cap-

tured eye patch under free head pose to the frontal pose. The estimated head orientation
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parameters are used to transfer the pixel values to the frontal pose. The planar perspec-

tive projection describes the transformation between two images which share the same

optic center, [118, 119]. Figure 5.5 shows the captured image and the projected image.

In the second approach, the captured intensity data is mapped onto the captured depth

data of the Kinect camera. Then, the texture mapped data is rotated to the frontal po-

sition using inverse head orientation parameters. Figure 5.6 shows the captured image

and the projected image to the frontal pose.

The first step is carried out as follows. A pair of captured eye patches, e under

free head pose is projected to the frontal pose. Let ê be the patch. Then, this pair of

patches is used as input to a regression function. Estimates of visual axis angles are also

corrected according to the head orientation in order to eliminate the eye appearance

distortion caused by head pose changes.

Let p̃ be the eye image point in the frontal pose (head is not rotated) and p be the

eye image point after the head is rotated. Let Π̃ = [H̃ − H̃C] and Π = [H−HC] be

3x4 homogeneous projection matrices of p̃ and p. C represents the Euclidean position

of the camera’s center. H is a 3x3 matrix describing the position and orientation of

the eye patch with respect to the world coordinate system. The projection matrix

can be decomposed into two parts. First, the camera intrinsic parameters, K, which

are calculated during calibration process. Second, the camera extrinsic parameters, R

which describes head rotation around the camera. Euler angles are described by rotation

matrices, RX, RY and RZ. As a result, the rotation of a head can be described by a

rotation matrix R which is product of three matrices, RX, RY and RZ

R = RXRYRZ (5.1)

The reprojection of image point p to frontal pose when the head is rotated is per-

formed using the planar projective transformation which is defined by

p̃ = H̃H−1p (5.2)

p̃ = K̃R̃R−1K−1p (5.3)

After this transformation, the reprojected eye image point ẽ can be obtained. As a

result, the head pose appearance variation is eliminated.

The second approach is carried out as follows. The captured depth data is repre-

sented as a textured 3D mesh. A 3D mesh is calculated by using depth values of the
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(a) (b) (c) (d)

Figure 5.5: Description of eye appearence compensation, (a) captured RGB image, (b) frontal
RGB image, c) eye patches d) Projected eye patches.

(a) (b) (c) (d)

Figure 5.6: Description of eye appearence compensation, (a) captured RGB image, (b) frontal
RGB image, c) Cropped eye patches, (d) subregions of eye patches on cropped
eye patches.

captured depth data. Then, the textured 3D mesh is rendered to frontal position using

the estimated head orientation parameters, (rx, ry, rz). Head orientation parameters are

estimated in the World Coordinate System. Figure 5.6(a) shows an example of a cap-

tured face image and Figure 5.6(b) shows rotated image to the frontal pose. Figure 5.6

c) shows cropped patches from the rotated image. In Figure d) representing eye patches

as a one dimensional vector is described.
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5.2.2 Head Translation Compensation

Distortion occurs on the appearance of an eye patch while the head moves relative to the

camera center. This causes the visual axis angle estimates to deviate from their actual

values.

Regression models provide initial estimates of visual axis angles when the head po-

sition varies relative to camera. These estimates can be denoted by δd = (θd, ϕd). δd

represents the distorted angles since these angles are obtained by using distorted eye

patched as inputs to regression models. The ground truth of the visual axis angles can

be denoted by δ = (θ, ϕ) when the head position is in the front of the camera. The bias

of the visual axis angles can be denoted by ∆Ω = [δd−δ] = [(θd−θ), ϕd−ϕ)]. The bias,

∆Ω, is horizontal and vertical rotation angles which rotates distorted visual axis angles,

δd to actual values, δ. We trained a regression model to map left and right eye patches

to this bias. During testing, the estimates of visual axis angles, δ̇ = (θ̇, ϕ̇) are obtained

and the learned bias is used to rotate the distorted visual axis angles to actual values.

Finally, the point on the screen is obtained using these estimates and the distance from

screen.

The parameter bias is learned during the training and used to compensate the bias

during the testing. Learning of biases is performed by recording a short video clip. A

number of points are displayed at random locations on the screen. A user is instructed to

look at the point and move his/her head while looking at the point. Estimates of visual

axis angles, δd, are calculated and then bias is calculated as described above. Finally, a

regression function is learned to map an eye patch to the bias. The performance evalu-

ation of estimates of the translation bias obtained from a regression model is compared

with ground truth and results are given in the experimental section.

5.3 Adaptive Eye Gaze Direction Estimation

The method proposed above is further extended to become an online learning method

for appearance based gaze estimation. The method is based on the eigenspace repre-

sentation of the eye patches. During the initial calibration state, the eye patches are

represented with principal component features. Then, these features are mapped to

screen points using a regression function, namely online SVR that is trained on princi-

pal component features. The probability density of the features is also represented using
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a Gaussian Mixture model. During online gaze estimation process, the test eye patches

are captured and the likelihood that they are sampled from the same distribution as

the training samples is calculated using the Gaussian mixture model. The eye patches

with sufficiently high likelihood are then selected in order to update both the eigenspace

representation and the regression models for left and right eye. Figure 5.7 describes the

online learning and adaptation engine for the appearance based gaze estimation.

Figure 5.7: Initial calibration and online update stages. Initial calibration stage involves
generation of the eigenspace and the regression models. Online update stage
involves updating both the eigenspace and regression models.
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5.3.1 Training Data Modelling

The initial calibration stage is performed as follows. Capturing a set of eye patches of a

user is carried out by instructing him/her to follow a set of points on the screen during the

recording. Given a set of eye patches, {et}Nt=1, projections of these eye patches, {êt}Nt=1,

are generated as described in Section 5.2.1. Given a set of projected eye patches, {êt}Nt=1,

training vectors {xt}Nt=1, are generated. x contains the pixel values of ê in one column.

Given the set of vectors, {xt}Nt=1, we calculate corresponding principal component feature

vectors by solving the eigenvalue problem. As a result, we obtain y = {y1, ...., yN} and

the corresponding {δ1, ., δN}.

After, online SVR is trained in order to map projection vectors y = {y1, ...., yN}, to

visual axis angles, {δ1, ...δN}. Then, the visual axis horizontal and vertical angles can

be obtained using the linear SVR as follows:

f(y; w, b) = w · y + b, (5.4)

where y is the projection vector, w is the weight vector, and b is the bias. The output

f(y; w, b) is the estimate of a horizontal or vertical angle. In our study, we generate two

regression models. One of models allows mapping projection vectors to horizontal and

another one allows mapping projection vectors to vertical angles of the visual axis.

Our proposed online learning method is based on capturing a test eye patch and asso-

ciated visual axis angles (y∗, δ∗) and then updating online SVR models online. However

visual angles of captured test eye patch is not known. We achieve estimating these angles

by modelling the projection vectors using a Gaussian mixture model during training. A

number of screen points can be denoted by K and a number of associated projection

vectors for each screen point can be denoted by J. We also denote jth projection vector

of each eye patch corresponding to kth screen point by yjk. Since there are K sets of

projection vectors, we can model densities of sets P1(y), ....PK(y) using a parametric

mixture model. The model is defined by

P (y|Θ) =
M∑
i=1

αipi(y|µi,Σi) (5.5)

where µ is mean vector, Σ is covariance matrix and α is a mixing parameter of a

component,
∑
αi = 1. The mixture can be defined by a set of parameters, Θ =

{µ1,....M ,Σ1....M , α1....M}.
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These unknown parameters Θ = {µ1,....M ,Σ1....M , α1....M} need to be estimated. Our

approach is to maximize the joint likelihood P (y|Θ) of projection vectors {yt}N1

Θ∗ = arg max

[ N∏
t=1

P (yt|Θ)

]
(5.6)

Parameter estimation can be achieved using EM algorithm.

After generating the Gaussian Mixture model, we create M sets of visual axis pa-

rameters and calculate the average values for each set {δ̂j = θ̂j, ϕ̂j}Mj=1. For each yj, the

density estimate P (y|Θ) of projection vectors can be used to fine the representative set

by calculating

Sj = argmax p(j|y) (5.7)

where Sj denotes jth class and y is the projection vector. p(j|y) denotes the posterior

probability of the jth component of the Gaussian mixture component. In this way, jth

set is chosen for the given projection vector and the corresponding visual axis angles are

stored in this set.

During testing, projection vector y∗ is used to calculate posterior probability to find

the most probable mixture component (jth component). The mean value of visual axis

angles of jth component {δ̂j = θ̂j, ϕ̂j} is used as an estimate visual axis angles of captured

test eye patch.

5.3.2 Maximum Likelihood Detection

In this section, updating the models online will be described. Experiments were con-

ducted using all available test eye patches, however the accuracy did not improve the

parameter estimation. Removing outliers is crucial. Outliers might occur when captur-

ing a eye image of the corresponding calibration point, if the user is not looking at that

point. Outliers are also produced due to eye blinks. The eye blink results in occlusion

of the eye. For this reason, the proposed method selects test eye patches for model

update. This section includes several steps for online update of the regression models.

First, selecting a test eye patch for model update is described. Second, calculation of

the visual axis angle of the selected eye test patch is described. Finally, updating the

projection vectors and the online SVR are given.
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Algorithm 2 Online adaptive appearance based gaze estimation.

Representation: Projection vectors y = {y1, ...., yN} are calculated using PCA.

Modelling: The projection vectors, y = {y1, ...., yN}, are modelled by a Gaussian

mixture model.

Learning: Learning a regression model which maps projection vectors, y =

{y1, ...., yN}, to visual axis angles, {(δ1), ., (δN)}.
Clustering: Group projection vectors according to mixture components.

Detecting test eye patches and Updating online SVR model:

for each new eye patch do

Determine the most likely Gaussian mixture component of a test projection vector.

In other words, calculate a posteriori probabilities of each mixture component and

select the one which provides maximum value.

if Maximum a posteriori probability > τ1 and H(S) > τ2 then

Add test projection vector to the training set,

Calculate corresponding visual axis rotation of this projection vector and add to

the training set

Update PCA coefficients and

Retrain the online linear SVR

end if

Provide estimates of visual axis angles

end for

Selection of a test eye patch online is carried out as follows. The eye patch is projected

to eigenspace. Then, the most probable mixture component of this projection vector is

calculated. Determining the most probable mixture component is described in Section

?? and the posterior probability calculation is described by Equation 3.37. After, a

threshold is applied to this probability. Eye patches which have high likelihood value

(higher posterior probability) are selected. The threshold is selected using experimental

observations and denoted by τ1. The eye patches which have low likelihood values are

rejected. The corresponding visual axis angles, δ̇, of the selected eye patches are also

calculated online. The corresponding class of the most probable mixture component is

determined. Let Sc represent a set of visual axis parameters of class c. Then, we model

the distribution of the set of visual axis parameters as a multivariate Gaussian,

p(δ) = N (δ; δ̄c,Σc) (5.8)
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The differential entropy of this distribution is defined by

H(S) =
n

s
(1 + log(2π)) +

n

2
log|Σc| (5.9)

The test eye patch is then selected and the corresponding cluster is determined, the

corresponding visual axis angles are calculated by averaging the visual axis angles which

are in the cluster. The accuracy of the average value depends on the value of H(S).

The value of H(S) determines the similarity of visual axis angles in the class. A high

value of H(S) shows that the angles in a class are very similar in the cluster. Another

threshold is applied to H(S) in order to select or reject an eye test patch online. This

threshold is denoted by τ2. The threshold is selected using experimental observations.

In this way, the test eye patches are included in the training set which are different in

appearance than the other training eye patch. This allows us to better model the eye

appearance.

Finally, using the training samples and the selected test samples, a new Φ̂ is calcu-

lated. Similarly, new projections are calculated by ỹ = Φ̃T x̂. Finally, these projected

vectors are used as inputs to a online linear SVR to obtain more accurate estimates.

The performance evaluation the proposed method is done by comparing parameter

estimation using only training samples and parameter estimation using both training

and testing samples. Higher accuracy is achieved by using both training and testing

samples.

5.4 Experimental Results

In this section, the evaluation of the proposed method was performed by conducting a

number of experiments. The system set-up was done using a desktop PC and a Kinect

camera. A 22-inch LCD monitor was positioned about 70cm from the subject and the

Kinect camera placed under the screen.

In this section, the performance evaluations of the proposed methods for the appear-

ance based gaze tracking are evaluated. In section 5.4.1, the description of the dataset

creation using Kinect camera is described. Then, the performance comparison of the

commercial and the proposed appearance based gaze tracker is described in section 5.4.2.

After, the experimental results for gaze estimates under slight head motion are reported

in section 5.4.3. Moreover, the eye appearance variation due to head translation is ad-
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dressed in section 5.4.4. Furthermore, in section 5.4.5, the experimental results for gaze

estimates under free head pose head motion are reported. In this section, two differ-

ent evaluations are provided. First, the accuracy of gaze estimates is evaluated using

the head pose parameters which are calculated using Kinect depth data. Second, the

accuracy of gaze estimates is evaluated using the head pose parameters which are cal-

culated using detected landmarks detection on intensity image. Finally, the proposed

online learning method for appearance based gaze estimation for person independent

gaze tracking is introduced in section 5.4.7.

Figure 5.8: Calibration points which were displayed on the screen. The arrow shows the
order of the displayed points.

5.4.1 Data Collection

Training and two testing data were collected using the system set-up described above.

The chin rest has not been used during recordings since the aim is to develop a system

for practical applications. Figure 5.8 shows locations of 30 calibration points on screen.

These points were shown to each subject while training and testing sets were collected.

Figure 5.9 also shows examples of captured intensity images and depth data of subjects

involved in the experiments.

1. Training data collation under slight head motion. A subject was shown 30

points(6x5) sequentially on the display. While the subject was looking at these

points, his/her intensity images and depth data are captured.

2. Testing data collation under slight head motion. A subject was shown 100

random points on the display. While the subject was looking at these points under

slight head motion, his/her intensity images and depth data are captured.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Examples of captured intensity images and depth data of subjects who involved
in the experiments.

3. Testing data collation under free head motion. A subject was shown 100

random points on the display. While the subject was looking at these points under

free head motion, his/her intensity images and depth data are captured.

5.4.2 Comparison of commercial gaze estimator and the

proposed method

The performance comparison of a commercial gaze estimator and the proposed method

is provided in this section. The system set-up was done using a desktop PC and a Kinect

camera. The 17-inch LCD monitor was positioned 70cm from the subject and the Kinect

camera placed under the screen. The commercial gaze estimator ran in parallel with the

proposed method. The reference points 6x4 are shown to a user while training and

testing data are collected using Kinect. Leave-one-out experiments were conducted to

obtain the average error values of the method. The average errors of the consumer

tracker and the proposed method are 0.9 degrees and 1.8 degrees respectively.
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Method Error Training Samples

Proposed (Grayscale) 1.8 30

Lu et al. [45] 0.85 33

S3GP+edge+filter [42] 0.83 16 label and 75 unlabled

Tan et al. [26] 0.5 252

Baluja et al. [40] 1.5 2000

Xu et al. [41] 1.5 3000

Table 5.1: Comparison of gaze estimation performance under slight head motion. Leave one
results were reported in the table.

Figure 5.10: Distorted eye images due to translation variation.

5.4.3 Gaze Estimation under slight head motion

The performance of the proposed method was also evaluated by performing leave-one-

out experiments. The gaze estimation results were compared with other methods in

Table 5.1. The obtained accuracy is comparable to other appearance based methods,

[26,40–42,45]. Regression models were trained using a small number of training samples.
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Figure 5.11: Appearance distortion compensation for the second system. Estimates of trans-
lation angles and the actual angles are reported in the figure to evaluation of
the accuracy. a)Horizontal and b)vertical translation angle estimates obtained
from regression models.



Gaze Estimation 97

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Sample Number

E
s

ti
m

a
ti

o
n

 E
rr

o
r 

(d
e

g
re

e
s

)

FINAL RESULTS OF GAZE ESTIMATION

 

 

No. Comp.

Trans. Comp.

Figure 5.12: The experimental evaluation of with/without appearance distortion compensa-
tion.

5.4.4 Gaze Estimation under eye appearance variation

The proposed appearance distortion method in Section 5.2.2 was validated by conduct-

ing experiments. The user looked at a fixed point on the screen and move his head while

looking at the point. Eye patches were captured together with translation angles (hor-

izontal and vertical). The eye patches and corresponding translation angles were used

to train regression models. One regression model was trained for horizontal translation

angle and another one was trained for vertical translation angle. In Figure, 5.10, shows

a number of eyes which were captured under translation variation. In Figure, 5.11, the

estimates of translation angles which were obtained from regression models were given.

The performance of the appearance compensation method was evaluated by per-

forming leave-one-out experiments. Initial estimates were obtained from tensor models

which were trained under fix head pose and then estimated translation angles were used

for compensation. The average angular errors with and without translation variation

compensation were calculated as 6.5◦, 1.7◦ respectively. In Figure 5.12, we present the

experimental evaluation with/without appearance distortion compensation. The pro-

posed method for translation variation compensation results in higher accuracy.
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Figure 5.13: Performance of appearance
based gaze estimation under
free head pose. Angular error
values are reported in degrees
for different proposed compen-
sation methods. The head pose
parameters are calculated using
detected landmarks on intensity
image.

Range Value

X-trans. −244 ∼ 157 mm

Y-trans. −11 ∼ 143 mm

Z-trans. 489 ∼ 867 mm

Pitch −23◦ ∼ 10◦

Yaw −21◦ ∼ 22◦

Roll −18◦ ∼ 22◦

Table 5.2: Head pose Values and Ranges.

5.4.5 Gaze Estimation under free head pose

Four subjects were involved in the experiments in order to test the gaze direction esti-

mation under free head motion. Data collection was carried out as described in Section

5.4.1.

The overall performance evaluation is given in Table 5.3 showing rotation and dis-

tortion compensation results in higher accuracy. Table 5.3 also provides results of the

previous studies. Figure 5.13(a) shows with/without compensation results. The four

plots are reported for the proposed compensation methods. As can be seen on the

plots, the rotation and translation compensation provides higher success rate for the

gaze estimates. The range of translation and rotation values can be seen in Table 5.2
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METHOD
Rot. and Dist.

Comp.
Dist.
Comp.

Rot.
Comp.

No
Comp.

Training
Samples

Subject 1 4.05 10.42 7.88 8.72 133 training
samplesSubject 2 2.86 8.21 7.42 8.66

Subject 3 4.12 9.70 7.42 8.21

Subject 4 2.90 6.31 6.17 6.21

Average 3.40

Lu et al. [45, 120] ∼ 3
33 training samples and

5-second video clip

Sugano et al. [43] 4 ∼ 5 103

Table 5.3: The performance evaluation of the proposed method under free head motion. Av-
erage mean errors and mean angular errors for four subject, measured in degrees.
The head pose is calculated using landmark points.

Furthermore, the percentages of correct gaze estimates as a function of success are

reported in Figure 5.14. Lower error percentages with higher percentages occur when

rotation and translation compensation has been employed. The results shows that only

translation or orientation compensation does not provide accurate results.

The histograms of errors (millimeter and angular) is reported in Figue 5.16.
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Figure 5.14: The accuracy of the proposed methods. The thresholds define the success.
Average results are reported in degrees.
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METHOD
Rot. and Dist.

Comp.
Dist.
Comp.

Rot.
Comp.

No
Comp.

Training
Samples

Subject 1 5.17 13.0 8.2 7.6 133 training
samples

Subject 2 4.86 15.0 7.0 4.6

Subject 3 3.25 10.2 6.4 6.05

Subject 4 4.9 10.7 7.58 7.33

Average 4.5

Lu et al. [45, 120] ∼ 3
33 training samples and

5-second video clip

Sugano et al. [43] 4 ∼ 5 103

Table 5.4: The performance evaluation of the proposed method under free head motion. Av-
erage mean errors and mean angular errors for four subject, measured in degrees.
The head pose is calculated using Kinect depth data.

In the second experiment, the head pose parameter estimation was performed on the

captured depth from Kinect camera and then the estimated parameters were used to

eliminate eye appearance distortion on eye images. The overall performance evaluation

is given in Table 5.4 showing rotation and distortion compensated results in higher

accuracy. Table 5.4 also provides results of the previous studies. Figure 5.15 shows

with/without compensation results. The Table 5.5 also shows the head pose range of a

subject involved in the experiment.
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Figure 5.16: Gaze estimation under free head pose. (a) Histogram of distance error in mil-
limeter. (b) Histogram of angle error in degrees.

0 10 20 30 40 50 60

−15

−10

−5

0

5

10

15

20

25

FINAL RESULTS OF GAZE ESTIMATION

 

 

Not Compensated

Rot & Trans Compensated

Rot Compensated

Head Pose (YAW)

Figure 5.15: Performance of appearance
based gaze estimation under
free head pose. Angular error
values are reported in degrees
for different proposed compen-
sation methods. The head pose
parameters are calculated using
Kinect depth data.

Range Value

X-trans. −244 ∼ 157 mm

Y-trans. −11 ∼ 143 mm

Z-trans. 489 ∼ 867 mm

Pitch −23◦ ∼ 10◦

Yaw −21◦ ∼ 22◦

Roll −18◦ ∼ 22◦

Table 5.5: Head pose Values and Ranges.
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5.4.6 Online Gaze estimation

A performance comparison of the performance of the model learned in the initial cal-

ibration stage and the model that is learning gaze estimates online is given in Figure

5.17. In particular, regression models which were generated during initial calibration

stage were updated using test eye patches. These test eye patches were selected among

available test eye patches. Updating the regression models online using selected test eye

patches results in higher accuracy. Figure 5.17 provides total error of gaze estimates in

degrees for every 20 frames. There is a clear improvement in gaze direction estimation

errors. As it can be seen in Figure 5.17, the total error for 40 eye patches were low.

After this error is higher. The reason is that the test eye patches are more similar to

the training patches. In other words, the head pose of a user did not vary much for the

eye patches. Table 5.6 also shows the test head pose variation of the user.
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Figure 5.17: Performance comparison of
baseline model and the model
that is learning gaze estimates
online under slight head pose.

Range Value

X-Translation −60 ∼ 2 mm

Y-Translation 94 ∼ 122 mm

Z-Translation 808 ∼ 837mm

Pitch −11◦ ∼ 2◦

Yaw −9◦ ∼ 14◦

Roll −7◦ ∼ 11◦

Table 5.6: Head pose Values and Ranges.

The performance of initial calibration stage and online learning of gaze estimates for

other subjects is also given in Table 5.7. As can be seen in Table 5.7, the proposed

online method is performing better than the batch approach.

The comparison of baseline and online gaze direction parameter estimation under

free head pose were evaluated and are given in Figure 5.18. Online parameter estima-

tion using both training and testing samples results in higher accuracy. Figure provides
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total error of gaze estimates in degrees for every 20 frames. There is a clear improve-

ment in gaze direction estimation errors. This proves the robustness and more accurate

parameter estimates using the proposed method. The variation of head pose values are

also reported in Table 5.8. The head pose parameters were estimated using detected

landmarks on the face and then the distortion on eye appearance was eliminated using

these estimated pose parameters.
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Figure 5.18: Performance comparison of
baseline model and the model
that is learning gaze estimates
online under free head pose.

Range Value

X-translation −244 ∼ 157 mm

Y-translation −11 ∼ 143 mm

Z-translation 489 ∼ 867mm

Pitch −23◦ ∼ 10◦

Yaw −21◦ ∼ 22◦

Roll −18◦ ∼ 22◦

Table 5.8: Head pose Values and Ranges.

The performance of baseline and online models for other subjects is also given in

Table 5.9 showing the proposed online method is performing better than the batch

approach.

METHOD
Online

Linear SVR
Batch

Linear SVR

Training

Samples

Subject 1 3.91 3.95

60 training
samples.

Subject 2 3.0 2.98

Subject 3 4.50 4.81

Average 3.80 3.91

Table 5.7: Estimation accuracy under slight head motion. Average mean errors and mean
angular errors for four subject, measured in degrees.
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METHOD
Online

Linear SVR
Batch

Linear SVR

Training

Samples

Subject 1 8.03 8.7

60 training
samples.

Subject 2 6.29 6.48

Subject 3 7.68 7.84

Average 7.33 7.67

Table 5.9: Estimation accuracy under free head motion. Average mean errors and mean
angular errors for four subject, measured in degrees.

5.4.7 Adaptive Incremental learning for person independent

Gaze estimation

The performance of the proposed method is evaluated for person independent cases.

A model is generated for one subject and used for another subject. The aim of the

evaluation is to show that the model updates itself according to new user. It is expected

that the error of the gaze direction parameter estimates decreases. The performance

comparison of baseline and online gaze direction parameter estimation is given in Figure

5.19. It is clear that the model updates itself to the new user and error values decreases.

Pose values and ranges of a test subject are reported in Table 5.10. The head pose

variation of the samples can be seen in the histograms that are given in Figure 5.20.

Performance of online model update for other subjects is given in Table 5.11. The

model is generated for first subject and used for other subjects. The model is updated for

other subjects online. The results were reported with/without adapting models. Model

update results in high accuracy.
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Figure 5.19: Performance comparison of
baseline model and the model
adaptation for person indepen-
dent gaze estimation.

Range Value

X-trans. −60 ∼ 2 mm

Y-trans. 94 ∼ 122 mm

Z-trans. 808 ∼ 837mm

Pitch −11◦ ∼ 2◦

Yaw −9◦ ∼ 14◦

Roll −7◦ ∼ 11◦

Table 5.10: Head pose Values and Ranges.

The proposed person independent method is different than previously proposed meth-

ods. In [121], the authors proposed person independent gaze estimation using an RGB-D

camera. In their study, they propose three approaches for modeling the person indepen-

dent gaze estimation. First, they created several person specific models during training

and they selected the best models for a test person during evaluation. They also propose

to combined models and generate generic model for all users. However, their approaches

require calibration process for each person. On the other hand, our method is based

on model adaptation and allows less calibration time. In [46], large synthetic data is

generated and then the random forest based regression is used to map eye patches to

gaze direction parameters. This method required higher computation power than the

proposed method. Second, storing a large synthetic data in a memory might be problem-

Proposed Online
Learning Subject 1 Subject 2 Subject 3 Average

Without 5.31 9.05 10.07 8.14

With 5.08 5.90 8.65 6.54

Table 5.11: Performance of online model update for other subjects. The model is generated
for one subject and used for other subjects. The model is updated for other
subjects online.
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Figure 5.20: Head pose variation of test samples for person independent gaze tracking eval-
uation.

atic for some applications such as mobile applications. In contrast, our method allows

similar accuracy using less training samples.

5.4.8 Further Evaluation of Online Gaze Estimation

During the initial calibration stage, a set of calibration points was shown to a user.

During the online update stage, the calibration points which were not used for training

were shown randomly on the screen in order to capture the test eye patches. Locations

of calibration points were different than the locations of test points. The evaluation is

also performed on more test eye patches.

Figure 5.21 shows both locations of calibration points and the test points. Table

5.12 shows the performance evaluation of baseline and the proposed online method.

The accuracy is reported in terms of the angular error in degrees. The results were
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Figure 5.21: The locations of the calibration points on the left (blue color) and the locations
of test points on the right (red color).

Proposed Online
Learning Average

Without 4.01

With 3.48

Table 5.12: Performance comparison of baseline model and the model that is learning gaze
estimates online under slight head pose.

obtained using 9 calibration points and 60 eye patches during training. During testing,

245 test eye patches were used.

We also report average angular error for every 20 frames (20,40,60,...) in Figure 5.22

together with head pose variation of the user in Table 5.13.

We are providing locations of test and the estimated screen points in Figure 5.23.

The accurate estimation of gaze points can be seen on screen images containing the test

and the estimated points.
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Figure 5.22: Performance comparison of
baseline model and the model
adaptation.

Range Value

X-trans. −55 ∼ −29 mm

Y-trans. 77 ∼ 89 mm

Z-trans. 716 ∼ 735mm

Pitch −4◦ ∼ 5◦

Yaw −12◦ ∼ 2◦

Roll −3◦ ∼ 2◦

Table 5.13: Head pose Values and Ranges.

Figure 5.23: Estimation of gaze point on the screen. Blue point is the ground truth and the
red point is the estimated gaze point.
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5.4.9 Comparison with the state of the art

The extensive experimental evaluations of appearance based gaze tracking methods un-

der free head pose were conducted on data of several subjects. As it can be seen, we

achieved results that are comparable to state of the art methods. There are a number

of advantages of the proposed methods. First, the state of the art results, [45, 120] are

obtained using commercial gaze tracking machine, [1] for head pose estimation. The

system’s pose parameter estimation accuracy has not been reported in their evaluations.

The landmark based head pose parameter estimation might allow limited range of head

orientation and translation of the users. However, such issues are not discussed in their

reports. By contrast, the pose parameter estimation of this system is based on estimat-

ing landmarks or processing the depth data of the Kinect camera and then estimating

the head pose parameters (Section 5.1.2). On the other hand, the head pose estimation

methods proposed in this study allow the users to move freely in front of the camera

and perform well within a satisfactorily large head pose range. Second, in [45, 120] the

translation variation compensation is performed by learning the translational bias using

Gaussian regression. However, that regression method requires a substantial amount of

samples, 5 minutes video. In contrast, the translation bias is learned by using tensor

based regression which is known as a robust regression method for sparse data. This

regression method allowed fewer training samples, that is 133 samples. Finally, the pro-

posed methods also based on eye appearance normalization using texture mapping onto

the depth data. This allows to eliminate higher head orientation variation.

5.5 Discussion

The head pose parameter calculation can be performed in two different ways on the

captured intensity images and depth data of the RGB-D camera. First, head pose

parameter calculation can be carried out on only depth data. Such a method is described

in the previous chapter. The user should be approximately 0.9 meters away from the

screen when the head pose parameters are estimated using Kinect depth data. The

reason is that the training of the regression forest was performed on the training data

captured about 0.9 meter. As the resolution of the eye patches is decreasing, the gaze

estimates might not be accurate. Second, the head pose parameters can also be estimated

from the detected facial landmarks. In this case, estimated landmarks and the mean face

landmarks are used to estimated the head rotation and translation with respect to mean
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face. The main advantage of estimating parameters from landmarks is that the user can

approach closer to the screen, i.e 0.5 meter. This allows capturing higher resolution eye

patches. After experimental observations, head pose parameter estimation is carried out

using estimated landmarks and the mean face in our experiments.

The reported results above showed that accurate gaze estimates can be obtained by

the head orientation and translation compensation. In particular, gaze direction estima-

tion error reported 6.7◦ degrees without any compensation. This error is reduced to 5.1◦

when the head orientation compensation is applied. Angular error is further reduced to

∼ 3◦ when head orientation and translation compensation is applied. Although ∼ 3◦

has been achieved by employing compensation techniques, this accuracy might not be

sufficient for some applications. Further error reduction can be achieved by addressing

alignment problems which occur during head orientation and translation.

5.6 Conclusion

Estimates of gaze direction parameters are obtained under slight head pose and then the

proposed method used to learn and compensate gaze estimates online under head pose.

Furthermore, the proposed approach provides gaze estimates from images acquired from

a low cost device. The experimental results shows that the proposed online adaptive

learning using images acquired from a low cost device can achieve about three degrees

angle accuracy.

The proposed appearance based eye gaze estimation method and the consumer eye

gaze tracker were compared by conducting extensive experiments. The experimental

results showed that the appearance based system and the consumer based eye gaze

tracker resulted in similar performance results under fix head pose. Furthermore, the

performance of the eye gaze tracker was not affected natural head pose. However, by

the proposed appearance based method was also robust under natural head pose.



Chapter 6

Conclusions and Future Work

Gaze tracking technology has been studied for many years. Although progress has been

reported in previously published studies, robust and accurate identity invariant gaze

tracking technology under free head pose motion is still an unsolved problem. Another

disadvantage of the available gaze technologies is that the hardware is unaffordable for

many people and this causes limited usage of this technology. Therefore, the main focus

of the research is the development of gaze tracking methods using low cost available

sensors such as a webcam and Kinect.

This thesis has focused on developing methods for the real-time appearance-based

gaze estimation under free head pose using a low cost Kinect camera. The proposed

methods addressed the existing problems of the appearance-based gaze estimation. As

it has been reported in the previous chapters, the main problem was that the accuracy

of the appearance-based methods degrades when users move from an initial calibration

position to a new position. This problem has been addressed by combining the pro-

posed methods for the head pose estimation and the proposed the appearance-based

gaze estimation methods. First, a method was proposed to eliminate distortion due to

head pose variation on eye appearances and then these eye images were used as inputs

to regression models. Eliminating distortion due to head orientation has been achieved

using perspective projection. The perspective projection was calculated using the esti-

mated head pose parameters. Translation distortion was also eliminated by learning the

bias between actual values of gaze points and the estimated gaze points. The experi-

mental results have showed that eliminating distortion due to head pose variation and

translation resulted in the better estimates of the gaze points on the screen. Second, a

novel method which allows gaze direction parameter learning online has been proposed.

The proposed method allowed for updating models online to deal with new eye image

111
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appearances. The novel proposed method is based on generating the Gaussian Mix-

ture model (GMM) of the training data and online Support Vector Regression (OSVR).

The training data is also modelled using eigenspace decomposition for computational

purposes. a GMM model allows detecting any changes on eye image appearances and

updating OSVR models for these new appearances online. In this way, the recalibration

process has been eliminated when a user moves from an initial calibration position to a

new position.

The techniques were proposed to achieve the head pose estimation using Kinect. The

proposed method allowed employing RGB images and depth data for estimating head

pose parameters accurately. The proposed method was multimodal random forest based

tensor regression. This novel method has been developed by extending random forests

in three ways: (i) by using tensor-based regression at each leaf node, (ii) by fusing depth

and intensity data using tensor regression at each leaf node and (iii) fusing RGB and

depth data using random forests. As a result, a new method based on multi-modal

random forests and tensor models is proposed for more accurate and robust head pose

estimation. The random forests allow modeling large head pose while tensor models

provide accurate results.

6.1 Conclusions

Conclusions can be drawn by considering experimental evaluations of the proposed uni-

fied system. This unified system is based on the proposed appearance-based gaze and

head pose estimation methods.

The method which allows mapping eye images to gaze points provides good estimates

when a user positions himself or herself in the calibration position. If the user moves

away from the camera, the proposed method also allows for accurate estimates. The

performance of this method does not degrade very much since it allows elimination

of head orientation and translation distortion. However, the biases between estimated

gaze and the actual gaze points need to be learned to eliminate translation bias. This

requires additional calibration time. A long calibration time is not preferable for the

gaze tracking systems.

The second proposed method which is based on online gaze parameter learning allows

better gaze estimates in real-time. The proposed method is based on modeling the initial
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calibration data by a Gaussian Mixture Model (GMM) and then updating online Support

Vector Regression (OSVR). This system allows users to change their positions without

recalibration. This method requires less calibration time than the first proposed method.

The proposed head pose method which is used in conjunction with the proposed

gaze estimation methods has several advantages. First, the method provides head pose

parameters of a user under large head pose variation and occlusion. Second, the method

allows for fast head pose parameter computation (real-time) without the need of a GPU.

Furthermore, the method is user independent. The performance comparisons of the

proposed method and the other methods showed that the proposed method is robust

and accurate and that the proposed method was demonstrated on the available Biwi

Kinect Head Pose Database. The experiments showed that the proposed framework

that combines random forests and tensor regression outperforms typical random forests.

6.2 Future Work

Further extensions of the proposed appearance based gaze estimation methods in this

chapter while taking the research study presented in this thesis as a basis are outlined

in this section.

The methods described in chapter 4 can be extended in several ways. First, the

number of trees in the forest can be increased. More trees might model the data more

precisely for more accurate head pose parameter estimation. Second, the performance

of feature fusion might be investigated more by exploiting different features inside the

random regression forest framework. Furthermore, the performance of different feature

fusion can also be investigated at the leaf nodes of the random forest. Finally, new

regression techniques might be introduced instead of tensor based regression.

The proposed methods in chapter 5 can also be extended in several ways. The

appearance based eye gaze estimator without personal calibration under free head pose

can be studied. The gaze parameter learning can be achieved while the user is watching

a video. Since the user focuses on specific points, such as faces on the video, these

locations can be estimated using saliency. Saliency of an image is usually calculated

using image features on the image. Recent studies also showed that people’s attention is

around the faces. The estimator can be generated by capturing eye images of a person

while the person is looking at a number of images or watching a video. Enhancement
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of the saliency map can also be investigated by aggregating saliency maps according to

similarity of the captured eye images. These aggregated saliency maps can be used as the

probability distributions of the gaze points. Gaze probability maps provide approximate

estimates of gaze points which can be used to map onto eye images. A regression function

can be learned from eye images and estimated gaze points.
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