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Abstract

This thesis exhibits a range of applications of combinatoric methods to string theory.

The concepts and techniques used in the counting of ribbon graphs, the theory of finite

groups, and the construction of cell complexes can give powerful methods and inter-

esting insights into the nature of gauge-string duality, the limits of CFT factorisation,

and the topology of worldsheet moduli space.

The first part presents a candidate space-time theory of the Belyi string with

a holographic extension to three-dimensional Euclidean gravity. This is a model of

gauge-string duality in which the correlators of the Gaussian Hermitian matrix model

are identified with sums over worldsheet embeddings onto the 2-sphere target space.

We show that the matrix model can be reformulated on the sphere by using su(2)

representation couplings, and that the analogues of Feynman diagrams in this model

can be holographically extended to 3-manifolds within the Ponzano-Regge model.

The second part explores the limits of large N factorisation in conformal field

theory and the dual interpretation in supergravity. By considering exact finite N

correlators of single and multi-trace half-BPS operators in N = 4 super Yang-Mills

theory in four dimensions, we can explicitly find the exact threshold of the operator

dimensions at which the correlators fail to factorise. In the dual supergravity, this is

the energy regime at which quantum correlations between distinct gravitons become

non-vanishing.

The third part develops a cell decomposition of the moduli space of punctured

Riemann surfaces. The cells are specified by a particular family of ribbon graphs, and

we show that these graphs correspond to equivalence classes of permutation tuples

arising from branched coverings of the Riemann sphere. This description yields efficient

computational approaches for understanding the topology of moduli space.
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Chapter 0

Introduction

The discovery of the AdS/CFT correspondence has strongly influenced the last eigh-

teen years of research in high energy physics. Since then, many other related types of

gauge-string dualities for critical string theories have been discovered, and AdS/CFT

has been scrutinised and used prolifically as a tool for calculations in string theory and

in gauge theory, but the origins and mechanisms of the duality are still mysterious. A

deeper understanding of the gauge-string correspondence is of great importance, as it

can provide more insight into non-perturbative string theory and bring us closer to a

complete theory of quantum gravity.

The primary aim of this thesis is to investigate the nature of gauge-string duality

by considering two tractable examples. In the first example, we consider a candi-

date for the simplest example of a gauge-string duality, and build on this theory by

proposing and developing a spacetime theory which matches the worldsheet theory. In

the second example, we consider the original AdS5/CFT4 correspondence and investi-

gate the limits at which energetic CFT operators can be matched to local excitations

within the bulk. For these investigations, we employ a wide range of discrete tools

and mathematical frameworks including Hurwitz theory, matrix models, Belyi maps,

dessins d’enfants, spin networks, simplicial complexes, Ponzano-Regge calculus, Pach-

ner moves, and Schur polynomials.

The secondary aim of this thesis is to develop new ways of investigating the topology

of the moduli space of Riemann surfaces. Moduli space is a fundamentally important

object of study within worldsheet bosonic string theory and in many branches of

mathematics, but is highly non-trivial to describe explicitly in all but the simplest

cases. We develop a cell decomposition of moduli space specified via ribbon graphs

which leads to powerful computational methods of finding topological invariants of

moduli space. While these two aims of the thesis are quite different, the discrete

methods used in both cases are very similar, and both contribute towards a greater

8



0. Introduction 9

understanding of fundamental aspects of string theory.

This thesis is divided into three parts, with the first two parts concentrating on

gauge-string duality and the third part focusing on moduli space. In the first chapter

of this thesis we consider “the simplest gauge-string duality” and find an extension

to a spacetime theory and a gravitational theory. The gauge theory considered is

the Gaussian Hermitian matrix model, which is a zero-dimensional quantum field

theory where the field is a single Hermitian matrix, the action is a Gaussian, and the

observables of the theory are the correlators of products of traces of the matrix. The

combinatorics of the Wick contractions of these correlators can be expressed in terms

of conjugacy classes of finite permutation groups. These correlators are equal to sums

over triples of permutations which multiply to the identity [1, 2].

Each triple of permutations corresponds to a holomorphic branched covering from

a Riemann surface onto the Riemann sphere with three branch points, known as a

Belyi map. The sum over permutation triples corresponds to a sum over Riemann

surface embeddings onto the sphere, weighted by genus. In [3], the domain Riemann

surfaces were interpreted as worldsheets, and the Riemann sphere as the target space,

giving a stringy interpretation of the sum over Belyi maps which we call the Belyi

string. This idea was developed in [4, 5, 6] by noting that the (planar) correlators of

the topological A-model string on the 2-sphere match the matrix model correlators.

This suggests that the topological string on S2 is the worldsheet string theory dual of

the Gaussian Hermitian matrix model, and equivalent to the Belyi string.

We develop another approach for arguing in favour of S2 as the target space of the

dual string theory of the Hermitian matrix model. The algebra of N ×N matrices is

generated by the representation matrices {J1, J2, J3} of the N -dimensional irreducible

representation of su(2). This algebra has a geometric interpretation via the fuzzy

sphere [7], in which the representation matrices are viewed as noncommutative defor-

mations of a set of continuous coordinate functions {x1, x2, x3}. The quadratic Casimir

equation J2
1 + J2

2 + J2
3 = j(j + 1), with N = (2j + 1), is the matrix version of the

equation x2
1 +x2

2 +x2
3 = R2 defining the 2-sphere via an embeddeding in R3. Standard

continuous field theories on the sphere can be deformed into noncommutative theories

by replacing the continuous coordinate functions with the fuzzy sphere generators in

such a way that the commuting theories are recovered in the large N limit. Using the

fuzzy sphere algebra, we show in the following that the Gaussian Hermitian matrix

model is a cut-off version of a simple topological scalar field theory on the sphere. We

interpret this scalar theory as the spacetime theory of the Belyi string.

The fuzzy spherical harmonics provide an alternate basis for the fuzzy sphere al-
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gebra of N × N matrices, which share many of the properties of the conventional

spherical harmonics on the 2-sphere. By reformulating the matrix model in terms of

the fuzzy spherical harmonics, we can express the matrix model correlators in terms of

Wigner 3j and 6j symbols, which are the coupling coefficients of su(2) representations.

We show that the correlators can be expressed exclusively in terms of sums over rep-

resentations weighted by 6j symbols. This result is an adaptation of arguments from

the spin networks literature [8, 9]. For convenience, we mainly restrict our attention

to matrix model correlators of cubic traces, which are generated by matrix actions

with a perturbative trX3 term. In this case, the matrix model correlators evaluate to

sums over trivalent ribbon graphs where every vertex has valency three. Each trivalent

ribbon graph has an associated 6j sum, determined by the spin network evaluation of

the graph, which evaluates to a power of N .

We find an interpretation of the trivalent ribbon graphs and their associated 6j

sums within a three-dimensional theory of gravity. Gravity in three dimensions is a

topological theory with no propagating degrees of freedom, and has been shown to be

equivalent to Chern-Simons theory with gauge group depending on the signature of

the spacetime and the sign of the cosmological constant [10]. Euclidean gravity with

zero cosmological constant is equivalent to Chern-Simons with gauge group ISO(3),

the three-dimensional Euclidean group. This theory has been identified with the the

Ponzano-Regge model [11, 12, 13], which assigns a partition function to any trian-

gulated three-dimensional manifold with edges labelled by su(2) representations and

tetrahedra labelled by Wigner 6j symbols. The Ponzano-Regge partition function of

a manifold depends on the topology of the manifold and the choice of labelled tri-

angulation on the boundary, but is independent of the choice of triangulation of the

manifold interior.

Each trivalent ribbon graph of the Hermitian matrix model is dual to a triangu-

lation of a surface, and planar graphs are dual to triangulations of the sphere. For a

general trivalent ribbon graph, we can generate a particular triangulation of a three-

dimensional handlebody which contains a copy of the graph within the boundary tri-

angulation. On assigning a particular choice of su(2) representations to the boundary

edges, the partition function of this manifold matches the evaluation of its associated

ribbon graph. For planar graphs, we can find triangulations of the solid ball with par-

tition functions matching the 6j sum exactly. This gives us an interpretation of the

handlebody triangulations as providing the holographic extension to a gravitational

theory of the spacetime field theory of the Belyi string.

In the second chapter of this thesis, we use exact results for gauge theory correlators
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to uncover the threshold energies at which large N conformal field theory factorisation

breaks down within gauge-string duality. In the seminal AdS/CFT correspondence

of Maldacena, type IIB string theory on an AdS5 × S5 background is matched with

four-dimensional N = 4 super Yang-Mills theory with SU(N) gauge group in the

large N limit [14, 15, 16]. An early successful verification of this correspondence was

the explicit large N calculation and matching of the three-point correlators of gauge

theory operators with their associated graviton correlators in supergravity [17]. On

the gauge theory side, chiral primary operators are symmetric traceless combinations

of the six adjoint scalar fields of super Yang-Mills, and their three-point correlators

can be calculated at zero gauge coupling. On the supergravity side, the corresponding

dual fields arise from the Kaluza-Klein reduction along the 5-sphere of excitations of

the metric and the self-dual 5-form field strength. The agreement between the three-

point correlators on both sides of the correspondence is possible because three-point

functions of chiral primary operators are not renormalised [18, 19, 20, 21, 22, 23].

The half-BPS sector of chiral primary operators is described by a single holomor-

phic matrix Z = Φ5 + iΦ6, formed from the complex combination of two adjoint

Hermitian scalars of SYM [24, 25, 26]. Single trace operators consisting of a small

number of Z matrices can be matched to single particle bulk graviton states, and

multi-trace operators can be matched to multi-graviton states. The number of ma-

trices J in a single trace operator corresponds to the angular momentum of the dual

Kaluza-Klein graviton in the S5 directions. For a three-point extremal correlator of

the form

〈trZJ1(x1)trZJ2(x2)trZ†J1+J2(y)〉, (0.0.1)

the conformal symmetry ofN = 4 super Yang-Mills theory allows the spacetime depen-

dence of the correlator to be factored out completely. The remaining factor is purely

combinatoric, and can be calculated exactly at finite N by considering the combina-

torics of the Wick contractions [27, 28]. This combinatoric factor is the conformal field

theory inner product of N = 4 SYM, which is also called the Zamolodchikov metric

[29]. With an appropriate choice of normalisation, this free-field correlator goes to zero

in the large N limit, when the operator dimensions Ji (i = 1, 2) are kept fixed. This

is an example of a general property of large N physics called large N factorisation.

Single-trace and multi-trace operators form a complete basis of the half-BPS sector

of N = 4 SYM, and this basis is orthogonal at large N . Orthogonality of these

operators allows us to identify the single-traces and multi-traces as 1-graviton and
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2-graviton states respectively, leading to a Fock space description of the dual bulk

theory. The single trace operators can be matched with a set of graviton oscillators

trZJ ↔ αJ , (0.0.2)

with the commutation relations [αJ1 , α
†
J2

] = δJ1,J2 , which annihilate the AdS vacuum

state αJ |0〉 = 0. The excitations of the vacuum state form a Fock space, and correlators

of states with different numbers of excitations are orthogonal [17],

〈0|αJ1αJ2α
†
J1+J2

|0〉 = 0, (0.0.3)

which is in agreement with the CFT correlator at large N .

We undertake a careful investigation of the required growth of the operator di-

mensions Ji which leads to the failure of factorisation. If the Ji are constant, or grow

slowly with N , then large N factorisation holds. If the Ji grow sufficiently rapidly

with N , then the normalised correlator diverges in the large N limit. We study the

factorisation threshold, defined to be the submanifold of the space of parameters (the

dimensions of the operators Ji and the gauge group rank N) on which the normal-

ized correlator is equal to a constant. By using the known exact evaluation of the

correlator for finite N and some careful asymptotic analysis at large N , we find that

the threshold occurs when the product of the holomorphic operator dimensions is of

order N logN . We also investigate some other free field correlators with known exact

evaluations, and deduce a similar threshold behaviour in all cases. As the Fock space

bulk picture is valid below the threshold and cannot be valid above the threshold, we

interpret this factorisation threshold as the energy scale at which a new spacetime

theory is emerging in the bulk.

In the third and final chapter of this thesis we find and develop a useful description

of the light-cone cell decomposition of moduli space in terms of equivalence classes

of permutation tuples. In bosonic light-cone string theory, the computation of string

amplitudes uses light-cone diagrams parametrised by string lengths and twist parame-

ters along with interaction times. The light-cone gauge in string theory involves only

physical degrees of freedom and leads to a manifestly unitary S-matrix, while Lorentz

invariance appears non-trivially [32, 33]. The covariant gauge has manifest Lorentz

invariance, but unitarity is non-trivial. String amplitudes are calculated by integra-

tion over Mg,n, the moduli space of inequivalent Riemann surfaces of genus g with n

labelled punctures.

Giddings and Wolpert showed in [30] that each closed string light-cone diagram
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corresponds to a punctured Riemann surface with a uniquely-determined meromorphic

one-form, later called the Giddings-Wolpert differential. This correspondence was used

to argue that the light-cone string diagrams lead to a single cover of moduli space,

which is necessary for the light-cone and covariant formulations of string theory to

be equivalent. However, this approach had some issues involving the overcounting of

discrete factors, analogous to the symmetry factors appearing in Feynman diagram

expansions. In addition, the higher order string interactions are tricky to describe in

the light-cone picture.

These issues were addressed by Nakamura in [31] with the introduction of a par-

ticular type of ribbon graph on each punctured Riemann surface determined by the

Giddings-Wolpert differential. Every Riemann surface has a uniquely-determined em-

bedded graph of this type, which we call the Nakamura graph of the surface. Inequiv-

alent Riemann surfaces can have the same Nakamura graph, and so the set of distinct

Nakamura graphs partitions moduli space into disjoint subsets, with each subset cor-

responding to a graph. It was demonstrated in [31] that these graphs specify a cell

decomposition of moduli space by counting the distinct graphs for low genus and few

punctures, evaluating the orbifold Euler characteristic of the decomposition, and com-

paring this to known exact formulae from [34]. This is highly non-trivial evidence for

the consistency of the light-cone cell decomposition, as a very large number of graphs

were counted to confirm the orbifold Euler characteristic.

The use of graphs in the light-cone cell decomposition is analogous to the graphs

in the Kontsevich-Penner cell decomposition of decorated moduli space [35, 36]. In-

deed, the Kontsevich-Penner cell decomposition has been used to compute homology

groups and intersection numbers of Mumford-Morita classes on moduli space. This

cell decomposition is well studied in mathematics and has also been used recently in

describing the link between string theory integrals and Feynman integrals [37]. The

light-cone and Kontsevich-Penner cell decompositions both involve ribbon graphs em-

bedded on surfaces. However, the Nakamura graphs are much more restricted because

of certain causality relations controlling the connectivity of the vertices. As a result

the light-cone cell decomposition requires fewer cells, and so is the more economical

of the cell decompositions.

We initiate a systematic study of the light-cone cell decomposition via Nakamura

graphs. The graphs can be described in terms of equivalence classes of permutation

tuples in a similar way to Grothendieck’s dessins d’enfants [38], which are also con-

sidered in this thesis in the description of the Belyi string. Such a permutation tuple

is enough to reconstruct the Nakamura graph, and so the counting and classification
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of light-cone cells in moduli space can be reduced to a problem of counting Hurwitz

classes satisfying certain criteria.

The description of Nakamura graphs in terms of permutation tuples has several

advantages. The basic structure of the cell associated to a graph can be read off from

the tuple, including the boundaries of the cell and its orbifold quotienting group. We

can also use the tuples description to build links between the correlators of Hermitian

and complex matrix models and the counting of the higher-dimensional cells in moduli

space. In addition, the tuples description allows for efficient computational methods

of counting the graphs, which we use to confirm the orbifold Euler characteristic

of more elaborate moduli spaces. This suggests that Nakamura graphs, described

by permutation tuples, provide a powerful calculational tool for understanding the

topology of moduli space.



Chapter 1

The spacetime theories of the Belyi string

A convincing candidate for the simplest version of a gauge-string duality is the ma-

trix model/Belyi maps correspondence [3, 4, 5]. On the gauge side, the quantum field

theory is a zero-dimensional matrix model with a Gaussian action, in which the observ-

ables of the theory are correlators of traces of a single Hermitian matrix. On the string

theory side, the worldsheets are Riemann surfaces, the target space is a 2-sphere, and

the worldsheets cover the target space with Belyi maps, which are holomorphic maps

branched at three points. Planar correlators of the matrix model can be matched to

the topological A-model string theory on the sphere [40, 41], which suggests that the

topological A-string is the worldsheet theory of the Belyi maps string theory.

In this chapter, we expand upon this simple exact model of gauge-string duality,

with a view to providing insight into the fundamental nature of gauge-string duality

to future researchers. The main results of this chapter are the construction of two

related spacetime theories that match the Belyi maps string theory. We use the fuzzy

sphere construction [7] to derive a topological field theory on the 2-sphere target which

reproduces the correlators of the matrix model. By taking the ribbon graphs of this

matrix model and extending them to triangulations of 3-manifolds, we find a three-

dimensional theory of gravity which matches the terms in the matrix model correlators.

These 3-manifolds contain the data of the two-dimensional theory on their boundaries,

which suggests that the gravitational theory is a holographic lift of the target space

theory into three dimensions.

This chapter is organised as follows. Section 1.1 reviews the construction of the Be-

lyi string model from the Hermitian matrix model correlators and permutation triples.

Tensor space notation is introduced as a tool for describing the Wick contractions and

multi-trace operators in the Hermitian matrix model, and the equivalent cyclically-

ordered graphs associated to these terms are discussed. The link between branched

coverings of the sphere and tuples of permutations is established, and used to give a

15
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stringy interpretation of the matrix model.

The fuzzy sphere is reviewed in Section 1.2, paying particular attention to the

fuzzy spherical harmonic basis and its relation to the continuous spherical harmonics

on the 2-sphere. We show that switching from the conventional Hermitian matrix

model measure to the fuzzy spherical harmonic modes measure gives a trivial Jacobian,

allowing the identification of the topological fuzzy sphere theory as a matrix model.

We conclude the section by discussing how to interpret the fuzzy sphere matrix model

as the spacetime theory of the Belyi string. The fuzzy sphere can be viewed as the

means of truncating the momentum modes of the spacetime theory on the 2-sphere,

and as an actual noncommutative deformation of the target space. The size N of the

matrix is the genus-counting parameter for the Belyi string theory with a classical

sphere target, and also measures the non-commutativity of the fuzzy sphere in the

spacetime field theory.

In Section 1.3 we consider the ribbon graphs of the Hermitian matrix model ex-

pressed in terms of the fuzzy sphere variables. The graphs evaluate to sums involving

Wigner 3j and 6j symbols, which contain the spin network evaluation of the graph.

We show that the 3js can be summed out to give expressions in terms of 6j symbols

only. An extension to non-trivalent ribbon graphs is also discussed.

In Section 1.4 we introduce the Ponzano-Regge model and its quantum deforma-

tion, the Turaev-Viro model, which serves as a regulator. These models assign partition

functions to triangulations of 3-manifolds with edges labelled by su(2) representations

and tetrahedra labelled by 6j symbols. We look for triangulations of three-dimensional

manifolds which encode the data of the ribbon graph, with the aim of matching their

partition functions with the ribbon graph 6j sums. We introduce two types of trian-

gulations of surfaces generated from the Belyi maps associated to ribbon graphs called

Belyi triangulations. The inner Belyi triangulation is the dual of the trivalent ribbon

graph. The outer Belyi triangulation contains the ribbon graph itself, in addition to

extra vertices and edges added according to specified rules.

In Section 1.5, we give a prescription for generating a labelled triangulation of

the 3-ball for a planar ribbon graph. Labelled triangulations of the ball can be con-

structed with inner Belyi triangulations on their boundary, which we call inner Belyi

3-complexes. This was shown to have a Ponzano-Regge partition function equal to

its spin network evaluation in [8], and we present another proof of this result. By

appending tetrahedra to the exterior of the inner Belyi 3-complex, we can construct

a labelled triangulation of the ball with an outer Belyi triangulation on its boundary,

which we call a complete Belyi 3-complex. The Ponzano-Regge partition function of
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this complex matches the 6j sum of its associated ribbon graph.

In Section 1.6 we extend our construction of complete Belyi 3-complexes to non-

planar ribbon graphs. Trivalent non-planar ribbon graphs are dual to triangulations

of higher genus surfaces, which can be extended to three-dimensional triangulations

of handlebodies with outer Belyi triangulations on their boundary. We prove that

the evaluation of a ribbon graph of any genus matches the Ponzano-Regge partition

function of the complex constructed from the graph. We conclude this chapter with

some discussion in Section 1.7 of the links between the two spacetime theories, the

differences between the planar and non-planar cases, and possible embeddings of this

three-dimensional manifold within more conventional constructs in string theory.

1.1 Strings from Belyi maps

In this section we review the construction, originally from [3], of an exact analogue

of gauge-string duality using Belyi maps. We introduce tensor space notation as a

means to understand the Feynman graphs of the Hermitian matrix model correla-

tors, which can be described by permutation sums. We outline the relation between

branched holomorphic coverings of the Riemann sphere and their associated combi-

natoric descriptions in terms of equivalence classes of permutation triples, and then

summarise the evidence that this leads to a basic form of gauge-string duality between

the topological A-string and the Hermitian matrix model.

1.1.1 Tensor space notation and the Gaussian Hermitian ma-

trix model

We start by reviewing some techniques and methods of tensor spaces. Let V be an

N -dimensional vector space with a basis |ei〉. The linear operator X associated to a

matrix X i
j is

X|ej〉 = X i
j|ei〉. (1.1.1)

The space V ⊗2n, formed from taking the tensor product of 2n copies of V , has a basis

|ej1ej2 . . . ej2n〉 := |ej1〉 ⊗ |ej2〉 ⊗ . . . |ej2n〉. (1.1.2)
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The multilinear action of X on vectors in V ⊗2n is

X ⊗X ⊗ . . .⊗X|ej1ej2 . . . ej2n〉 = X i1
j1
X i2

j2
. . . X i2n

j2n
|ei1ei2 . . . ei2n〉, (1.1.3)

and by introducing the dual vectors in V ∗⊗2n, we can write

X i1
j1
X i2

j2
. . . X i2n

j2n
= 〈ei1ei2 . . . ei2n|X|ej1ej2 . . . ej2n〉, (1.1.4)

where we have introduced the notation X = X ⊗ X ⊗ . . . ⊗ X for the operator on

V ⊗2n formed from the tensor product of 2n copies of X. Contracting all the indices of

a matrix product (1.1.4) gives a product of traces of X. For example, we could write

trXtr(X3) as

trXtr(X3) = X i1
i1
X i2

i3
X i3

i4
X i4

i2
= 〈ei1ei2ei3ei4|X|ei1ei3ei4ei2〉. (1.1.5)

Any product of traces of a single matrix can be written in terms of a permutation

acting on the tensor space V ⊗2n and the multilinear operator X. Defining the linear

action of a permutation σ ∈ S2n on V ⊗2n by the action on the basis vectors

σ|ej1ej2 . . . ej2n〉 = |ejσ(1)
ejσ(2)

. . . ejσ(2n)
〉, (1.1.6)

then the trace product corresponding to a permutation σ is

tr2n(Xσ) := 〈ei1ei2 . . . ei2n|Xσ|ei1ei2 . . . ei2n〉

= 〈ei1ei2 . . . ei2n|X|eiσ(1)
eiσ(2)

. . . eiσ(2n)
〉. (1.1.7)

For example, the permutation σ = (1)(234) specifies the trace product

tr4(X(1)(234)) = 〈ei1ei2ei3ei4|X(1)(234)|ei1ei2ei3ei4〉

= 〈ei1ei2ei3ei4|X|ei1ei3ei4ei2〉

= trXtr(X3). (1.1.8)

Each permutation σ ∈ S2n determines a trace product with 2n matrices, but there can

be many permutations corresponding to the same trace product. Two permutations

σ, σ̃ ∈ S2n give the same multi-trace correlator if and only if they are conjugate,

i.e. σ̃ = γσγ−1 for some γ ∈ S2n. The conjugacy classes of S2n are in one-to-one

correspondence with the trace products, or multi-trace operators, of 2n copies of a

single matrix.
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The Gaussian Hermitian matrix is a zero-dimensional quantum field theory where

the field is a single Hermitian matrix, the action is a Gaussian, and the observables of

the theory are the correlators of products of traces of the matrix. The path-integral

expression for a normalised correlator is

〈· · ·〉 =

∫
DXe−

1
2

trX2
(· · · )∫

DXe−
1
2

trX2
(1.1.9)

with the integration measure

DX =
N∏
k=1

dXk
k

∏
1≤i<j≤N

d(ReX i
j)d(ImX i

j). (1.1.10)

This integral is performed over a finite number of variables weighted by an exponentially-

decaying factor, and so the correlators are well-defined and convergent. The propagator

of the Hermitian matrix model is

〈X i1
j1
X i2
j2
〉 = δi1j2δ

i2
j1

(1.1.11)

which gives, via Wick’s theorem, the general correlator of 2n matrices

〈X i1
j1
X i2

j2
. . . X i2n

j2n
〉 =

∑
τ∈[2n]

δi1jτ(1)
δi2jτ(2)

. . . δi2njτ(2n)
. (1.1.12)

This sum is performed over [2n], the S2n conjugacy class consisting of all the permu-

tations which are products of n disjoint 2-cycles. This sum can be written in tensor

space notation as

〈X i1
j1
X i2

j2
. . . X i2n

j2n
〉 =

∑
τ∈[2n]

〈ei1ei2 . . . ei2n|τ |ej1ej2 . . . ej2n〉 (1.1.13)

or, more fundamentally, as the operator equation

〈X〉 =
∑
τ∈[2n]

τ. (1.1.14)

This gives a general expression for a multi-trace correlator as a sum over Wick con-
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tractions,

〈tr2n(Xσ)〉 =
∑
τ∈[2n]

tr2n(τσ) = tr2n(στ)

=
∑
τ∈[2n]

NCστ , (1.1.15)

where we have used the conjugacy-invariance of σ in the trace to commute σ and τ ,

and where Cστ is the number of disjoint cycles in the product permutation στ . The

delta function on a permutation group is defined to be non-zero only for the identity

permutation:

δ(σ) =

{
1 σ = (1)(2) . . . (2n)

0 σ 6= (1)(2) . . . (2n).
(1.1.16)

Since Cγ = Cγ−1 , this allows us to express the multi-trace correlator as

〈tr2n(Xσ)〉 =
∑
γ∈S2n

∑
τ∈[2n]

δ(στγ)NCγ . (1.1.17)

Finally, by the conjugacy-invariance of a multi-trace under σ 7→ ασα−1 for any α ∈ S2n,

we can replace σ in the delta function with any σ′ in the conjugacy class of σ (denoted

[σ]) and perform the sum over the conjugacy class weighted by its size |[σ]|,

〈tr2n(Xσ)〉 =
1

|[σ]|
∑
σ′∈[σ]

∑
γ∈S2n

∑
τ∈[2n]

δ(σ′τγ)NCγ . (1.1.18)

In summary, the observables in the (free Gaussian) Hermitian matrix model have a

purely group-theoretic description as sums over triples of permutations that multiply

to the identity. We remark that these observables are invariant under the adjoint

action X 7→ UXU † for unitary U , as traces and the integration measure (1.1.10) are

both preserved under this action [42].

1.1.2 Ribbon graphs and dessins d’enfants

The Feynman graphs of the matrix model correlators can be formulated in several

equivalent ways. The traditional physics way is to use double-line diagrams [43] and

the closely related ribbon graphs and Grothendieck’s dessins d’enfants [38]. Each Wick

contraction of a correlator 〈tr2n(Xσ)〉 can be described by a permutation τ ∈ [2n], and
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a b c

Figure 1.1: The double-line graph, ribbon graph, and dessin d’enfant associated with
a non-planar Wick contraction of tr(X4).

contributes a factor of

tr2n(στ) = 〈ei1ei2 . . . ein|eiστ(1)
eiστ(2)

. . . eiστ(n)
〉 = NCστ (1.1.19)

to the correlator sum. To construct the double-line graph for this correlator contri-

bution (Wick contraction), we can associate to each disjoint k-cycle in σ a double-line

vertex of valency k, with each connecting half-edge labelled by the numbers in the

cycle. We then connect these vertices together with the edges corresponding to the

disjoint 2-cycles in τ . The closed loops formed by the double line graph now corre-

spond to the permutation γ such that στγ = 1. The correlator contribution associated

to this graph is N to the power of the number of closed loops in the graph. The same

information of a double-line diagram can be represented by a ribbon graph, which

is constructed by shrinking the double-lines to single-lines and keeping track of the

cyclic orientation at each vertex. The faces of a ribbon graph correspond to the loops

of the double-line graph.

A dessin d’enfant is a bipartite ribbon graph in which there are two types of

vertices, coloured black and white, with the edges linking only black vertices to white

vertices and vice versa. If all the vertices of one colour have valency two, then the

dessin is called clean. Any ribbon graph can be made into a dessin by colouring the

original vertices of the ribbon graph in black and introducing a white vertex of valency

two into each edge of the ribbon graph. For a correlator contribution corresponding

to (σ, τ), the associated dessin has edges labelled from 1 to 2n, with the cycles of

σ corresponding to the cyclic ordering of the edges about the black vertices and τ

corresponding to the cyclic ordering of the edges about the white vertices.

An example of such a double-line graph is given in Figure 1.1a, arising from the

permutations σ = (1234) and τ = (13)(24). The permutation γ = τ−1σ−1 = (1234)
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corresponds to the single loop of the double-line. The equivalent ribbon graph is given

in Figure 1.1b with the half-edges labelled, and the associated dessin d’enfant is given

in Figure 1.1c with the labelled edges.

Each connected ribbon graph and dessin d’enfant has a well-defined genus, which

is the lowest possible genus of a surface into which it is possible to embed the graph

without self-intersection. A connected ribbon graph embedded into a surface parti-

tions the surface into contractible faces. The faces of a dessin d’enfant with vertices

determined by σ and τ correspond to cycles in the permutation γ such that στγ = 1.

Each triple of permutations (σ, τ, γ) multiplying to the identity determines a ribbon

graph. There will in general be many triples of permutations (σ̃, τ̃ , γ̃) which determine

the same ribbon graph, up to relabellings of the edges. Two triples of permutations

describe the same ribbon graph if and only if they are conjugate: that is, there exists

some α ∈ S2n such that

(σ̃, τ̃ , γ̃) = (α−1σα, α−1τα, α−1γα). (1.1.20)

The conjugacy equivalence classes of permutation triples (σ, τ, γ) satisfying στγ = 1

are called Hurwitz classes. There is a unique Hurwitz class associated to each dessin

d’enfant.

Dessins can also be used to describe Belyi maps, which are holomorphic maps from

Riemann surfaces onto the sphere branched at three points. The counting of Belyi

maps is equivalent to the counting of Hurwitz classes of permutation triples. In the

following section, we review this construction and its interpretation as a string theory.

1.1.3 Branched coverings and Belyi maps

We recall some facts about holomorphic branched coverings of the Riemann sphere,

and their relation to symmetric groups. A continuous holomorphic surjective map

f : Σ → S2 from a Riemann surface Σ onto the sphere S2 is a branched cover if

every point Q on S2 has some open neighbourhood UQ such that f−1(UQ) is a collection

of disjoint open sets, and there exist local complex coordinates w on UQ and zi on each

preimage of UQ such that f maps zi 7→ w = zrii for some positive integer ri. For most

points on the sphere, there are d preimages on the surface Σ, where d is the degree of

the map. About these points, there exist complex coordinate patches z and w such

that such that f maps z 7→ w = z. There is a finite set of m points on the target

space S2 which each have fewer than d preimages. These are the branch points of

the map f . For a given branch point Q with local coordinates w, each preimage Pi of
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Figure 1.2: The preimages of a cut disc on S2 are a set of cut discs, whose gluing is
specified by a permutation σi.

the branch point with local coordinates zi has an associated unique positive integer ri

such that f maps z 7→ w = zri about that point. If ri ≥ 2, then this preimage Pi is a

ramification point of the map f .

The neighbourhoods of ramification points can be described in terms of a gluing

construction. Take a disc with coordinates |w| < 1 around a branch point Q located

at w = 0, and cut the disc along the real interval w ∈ [0, 1). The preimages of the cut

disc on the surface Σ are d identical copies of the cut disc. The cuts along the intervals

can be identified to recover the neighbourhoods on Σ around the ramification points.

If we choose a labelling of the cut discs with the integers {1, 2, . . . , d}, then the gluing

of the cut discs corresponds to a mapping from the set {1, 2, . . . , d} to itself, which is

a permutation σ ∈ Sd. The lower edge of the cut on disc i is glued to the upper edge

of the cut on disc σ(i), as shown by example on the left of Figure 1.2. Each cut disc

is holomorphic to a ‘wedge’ of a disc subtending an angle 2π/r for some r, as can be

seen on the right of Figure 1.2.

There is another way of arriving at the permutation description of branch points

by considering the preimages of loops on the target space S2. Choose an unbranched

base point on the sphere, and label its preimages with integers from 1 to d. For each

of the m branch points on the sphere, draw a directed closed path starting and ending

on the base point, which can be contracted to a neighbourhood of the branch point

without passing through a branch point. The preimages of each of the m directed

loops on the sphere are directed closed paths on the Riemann surface Σ which connect

the d distinct labelled preimages of the base point. Each branch point gives a bijective

mapping from the set {1, . . . d} to itself which we obtain by following the paths of
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Figure 1.3: The target space S2 is drawn on the right and the d preimages on the
surface Σ of a disc about a marked unbranched point on the sphere are drawn on the
left. The preimages of a loop drawn around one of the branch points on the sphere
are a set of trajectories connecting the d labelled preimages of the marked point on Σ,
specifying a permutation in Sd.

the preimages of the loops. We associate a permutation σi ∈ Sd, i = 1, . . .m to each

branch point of the map f . On the sphere, the path constructed by following all m

loops around is contractible. Hence, the permutations σ1, . . . , σm multiply together to

give the identity,

σ1σ2 . . . σm = 1. (1.1.21)

The permutation tuple (σ1, σ2, . . . σm) describes the branching of a cover f from a

Riemann surface Σ on to the sphere S2. The ramification points correspond to the

disjoint cycles of the permutations σi. This loop construction is demonstrated in

Figure 1.3.

There is an arbitrariness in the way we label the preimages of the marked point

from 1 to d: any relabelling of these points yields the same branching profile. We

consider two permutation tuples to be equivalent if there is a permutation γ ∈ Sd which

conjugates one sequence to the other, i.e. the tuples (σ1, . . . , σm) and (σ′1, . . . , σ
′
m) are

equivalent if

(σ′1, . . . , σ
′
m) = (γσ1γ

−1, . . . , γσmγ
−1). (1.1.22)

The equivalence classes of these tuples are Hurwitz classes. Each branched cover of

the sphere determines a Hurwitz class.
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0

1

Figure 1.4: Any dessin d’enfant on a Riemann surface can be realised as the preimage
of [0, 1] on some branched covering of the sphere.

There is also a notion of equivalence of branched coverings in terms of bijective

holomorphic maps (or biholomorphisms). Two branched covers of the sphere f and

f ′ are equivalent if there exists some biholomorphism φ : Σ→ Σ such that f ′ = f ◦ φ.

Equivalent branched covers of a Riemann surface have the same Hurwitz class. The

converse is also true by the Riemann existence theorem [44, 45]: if we have a Hurwitz

class of m permutations in Sd, and choose m labelled points on the sphere, then there

exists a Riemann surface Σ and a mapping f : Σ → S2, with branching at the m

labelled points corresponding to the Hurwitz class. The surface Σ and mapping f is

unique up to biholomorphism equivalence. The notions of biholomorphism equivalence

of branched covers and Sd conjugation equivalence of Hurwitz classes coincide.

Dessins d’enfants can be realised as branched coverings of the sphere. We specialise

to the case when there are three branch points on the sphere, which we can choose

to be located at w = 0, 1,∞. Consider the real interval [0, 1] on the target sphere.

The preimage of this interval is an embedded ribbon graph on Σ. By colouring the

preimages of the point w = 0 in black and the preimages of w = 1 in white, this

embedded ribbon graph becomes a dessin d’enfant embedded on Σ. If we choose a

labelling of the d preimages of the real interval, then we can read off the Hurwitz class

defining the dessin d’enfant, which coincides with the defining equivalence class of the

branched covering. A branched covering f of the sphere with three branch points is

called a Belyi map, and a representative triple (σ, τ, γ) of its associated Hurwitz class,

which satisfies στγ = 1, is a Belyi triple. The pair (Σ, f) consisting of a Riemann

surface and a branched covering is a Belyi pair.

1.1.4 The Belyi string

The Riemann-Hurwitz relation gives us a means to interpret sums over triples of

permutations as sums over holomorphic maps from worldsheets onto a target space. If
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Σ is a surface containing several connected components with respective genera gj, then

the Riemann-Hurwitz relation states that a Belyi pair (Σ, f) with branching given by

(σ, τ, γ) satisfies∑
j

(2− 2gj) = 2d− (d− Cσ)− (d− Cτ )− (d− Cγ). (1.1.23)

Considering the case when the degree of the map is d = 2n for some n, and τ is a

product of n 2-cycles, this formula becomes∑
j

(2− 2gj) = Cσ + Cγ − n. (1.1.24)

With a judicious choice of normalisation, the matrix model correlator (1.1.18) can be

written as

|[σ]|
(2n)!

NCσ−n〈tr2n(Xσ)〉 =
1

2n!

∑
σ′∈[σ]

∑
γ∈S2n

∑
τ∈[2n]

δ(σ′τγ)NCγ+Cσ−n, (1.1.25)

Splitting the sum over triples into a sum over Hurwitz classes, and using the the orbit-

stabiliser theorem and the fact that Cγ and Cσ are invariant under conjugation, we

have

1

(2n)!

∑
σ′∈[σ]

∑
γ∈S2n

∑
τ∈[2n]

δ(σ′τγ)NCγ+Cσ−n =
∑

Hurwitz
classes

1

|Aut(σ, τ, γ)|
NCγ+Cσ−n, (1.1.26)

where the sum is taken over all Hurwitz classes [(σ′, τ, γ)] with σ′ ∈ [σ] and τ ∈ [2n],

and where Aut(σ, τ, γ) is the automorphism group of permutations which preserve

each of σ, τ , and γ separately under conjugation.

By the Riemann existence theorem, this sum over triples of permutations corre-

sponds to a sum over Riemann surfaces and branched coverings of the sphere. The

automorphism group of branched coverings corresponds to the automorphism group

of a Hurwitz class (which is well-defined up to isomorphism). The Hermitian matrix

model correlator can be expressed as a sum over Belyi pairs (Σ, f) with branching [σ]

and [2n] at two points on the target S2, and arbitrary branching at the third point:

|[σ]|
(2n)!

NCσ−n〈tr2n(Xσ)〉 =
∑
(Σ,f)

1

|Aut(f)|
∏
i

N2−2gi . (1.1.27)
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We can give a stringy interpretation to this sum over Belyi maps by thinking of the

Riemann surfaces Σ as worldsheets, and the target space S2 as the background space.

With this interpretation, the identification of Hermitian matrix model correlators with

sums over worldsheet mappings gives an exact realisation of the gauge-string corre-

spondence for a simple, combinatoric theory. The only free parameter of the theory is

N , the order of the matrix field X, which appears in the sum over Belyi maps along

with the Euler characteristic of the worldsheet. This suggests an interpretation of the

parameter as the string coupling constant g−1
s ↔ N , as in conventional string pertur-

bation theory. Unlike in the more conventional examples of gauge-string duality, this

correspondence is exact and does not require a large N limit for explicit comparison.

It was conjectured in [4] that the worldsheet theory of the Belyi string is the topo-

logical A-model with an S2 target. Evidence for this conjecture was given in [4, 5, 6]

by comparing the planar connected correlators of the topological A-string to the Her-

mitian matrix model via the Eguchi-Yang matrix model [46]. In this thesis, instead of

exploring the worldsheet theory, we work on a candidate spacetime theory of the Belyi

string, which exactly matches the matrix model correlators and so also matches the

planar topological A-string correlators. From the two-dimensional spacetime theory,

we are able to find a three-dimensional gravitational theory that reproduces the corre-

lator terms of the spacetime theory. This lifting to a three-dimensional theory can be

interpreted as an analogue of a membrane for the Belyi string which holographically

reduces down to the two-dimensional spacetime theory.

1.2 The matrix model on the fuzzy sphere

In the previous section we have introduced a discrete analogue of a string theory. Each

observable in the matrix model determines a sum over equivalence classes of triples of

permutations (Hurwitz classes), which is equivalent to a sum over equivalence classes

of Belyi maps. The only parameter of the free theory is N , the size of the matrix X,

which appears as the inverse string coupling g−1
s in the sum over Belyi maps. This

string/QFT duality is an exact duality, as the string theory interpretation is defined

directly in terms of the quantum field theory. The target space of the Belyi string

theory is S2, and the matrix model is a zero-dimensional field theory.

We seek a way of linking the two-dimensional geometry of the target space to the

matrix model. Our approach to creating this link is to use the matrix algebra of the

fuzzy sphere. This is the canonical example of a noncommutative geometry, which

is a deformation of a smooth space with the fundamental object of study being a
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noncommuting algebra approximating the algebra of functions on the smooth space.

The fuzzy sphere is formulated by deforming the algebra of smooth square-integrable

functions on the sphere to be noncommuting in such a way that the SO(3) symmetry of

the sphere is preserved. The algebra depends on some discrete parameter N , which can

be interpreted as either a short distance cutoff or as the quantum mechnical parameter

~ = 1/N , depending on the formalism. The commutative algebra of functions on the

sphere is recovered in the limit N →∞.

The algebra of functions of the fuzzy sphere with parameter N is isomorphic to

the matrix algebra of N × N matrices. This allows us to reformulate the Gaussian

Hermitian matrix model in terms of the degrees of freedom of the fuzzy sphere, which

are the spherical harmonic modes cut off by the parameter N . Rephrasing the degrees

of freedom of the matrix model in terms of the fuzzy sphere, which is manifestly SO(3)

covariant, leads to a formulation of the matrix model in terms of the representation

theory of SO(3). The combinatorics of equivalence classes of permutations in the

conventional matrix model is essentially replaced by the combinatorics of the couplings

of irreducible representations of su(2).

Writing the Gaussian Hermitian matrix model as a theory on the fuzzy sphere

gives us a way to reproduce the string theory correlators on the (cutoff) target space.

One possible interpretation of this approach is that reformulating the field theory from

the worldsheet theory to the target space theory is equivalent to creating a spacetime

action for the string theory, in analogy to the low energy effective actions that can

be constructed on the spacetimes of ten-dimensional string theories. The parameter

N is analogous to the high-energy cutoff of the spacetime theory; a local divergent

spacetime action is recovered as the cutoff is taken to infinity. (An alternative earlier

interpretation of the fuzzy sphere matrix model was as an extension of the Belyi string

theory to a string field theory, as string field theory is a field theory on the target

space.) Regardless of its spacetime interpretation, the fuzzy sphere formulation of the

matrix model leads to an equivalent matrix model determined by the combinatorics of

su(2) representation couplings, which can be extended to a three-dimensional model

with gravity.

In this section, we first review some facts about the spherical harmonics on the

smooth sphere, which form a basis for the commutative algebra of functions on S2.

We then discuss how to generalise this algebra to the noncommutative algebra of

fuzzy spherical harmonics, which form a basis of the fuzzy sphere algebra of N × N
matrices. Each spherical harmonic is labelled by a pair of quantum numbers (j,m),

where j is a half-integer corresponding to an irreducible representation of su(2), and
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m determines a state in this representation. We refer to the labels j and m as a spin

label and a state label respectively. In the following, we adopt the convention of

using j and ji to refer to spin labels taking half-integer values, and li for labels which

are constrained to be integers. We reformulate the matrix model on the fuzzy sphere,

and show by matching the observables of the matrix model in the two pictures that

the Jacobian of the change of basis is trivial. We conclude this section by discussing

how the fuzzy sphere matrix model can be thought of as a cutoff scalar field theory

on the S2 spacetime.

1.2.1 Spherical harmonics on S2

We review some facts about the conventional algebra of functions on the smooth sphere

S2, before abstracting to the noncommutative algebra. The spherical harmonics

Ỹl,m(θ, φ) are the eigenfunctions of the operators L2 = LiLi and L3, where L = −ir×∇
is the orbital angular momentum operator on the sphere. They satisfy

L2Ỹl,m(θ, φ) = l(l + 1)Ỹl,m(θ, φ), (1.2.1)

L3Ỹl,m(θ, φ) = mỸl,m(θ, φ), (1.2.2)

where l ∈ {0, 1, 2, . . .} and m ∈ {−l,−l+ 1, . . . , l}. With respect to the inner product

(f̃ , g̃) =
1

4π

∫
dΩ f̃(θ, φ)∗g̃(θ, φ), (1.2.3)

the spherical harmonics are orthonormal: (Ỹl,m, Ỹl′,m′) = δl,l′δm,m′ . The complex con-

jugate of a spherical harmonic is

Ỹl,m(θ, φ)∗ = (−)mỸl,−m(θ, φ). (1.2.4)

The space of square-integrable functions on the sphere is a Hilbert space, and the set

of spherical harmonics forms a complete orthonormal basis of this space. In partic-

ular, the product of two spherical harmonics can be expanded in terms of spherical

harmonics:

Ỹl1,m1(θ, φ)Ỹl2,m2(θ, φ) =
∞∑
l3=0

l3∑
m3=−l3

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

×

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 −m3

)
(−)m3Ỹl3,m3(θ, φ). (1.2.5)
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The symbols in the brackets are the Wigner 3j symbols, which are essentially more

symmetric versions of the Clebsch-Gordan coefficients of su(2). Some properties and

relations of 3j symbols are given in Appendix A. The symmetry properties of the 3j

symbols ensure that this coefficient is invariant under the interchanging of the pair of

variables (l1,m1) and (l2,m2).

1.2.2 Fuzzy spherical harmonics

All of the properties of spherical harmonics in the previous subsection can be gen-

eralised to the fuzzy sphere algebra. In the commutative sphere, the orbital angular

momentum operators Li form a representation of the Lie algebra su(2), acting on the

infinite-dimensional space of functions on the sphere. Consider the N -dimensional

irreducible representation V of the Lie algebra su(2), which has the N × N Hermi-

tian matrix generators Ji. The N -dimensional irreducible representation of su(2) is

conventionally labelled by the half-integer j, where

j =
1

2
(N − 1), N = 2j + 1. (1.2.6)

In the following we will freely interchange between describing su(2) representations

with the spin label j and their dimension N . The fuzzy spherical harmonics Yl,m

are a set of N × N matrices which are the eigenvectors of the Lie algebra operators

under the adjoint action of the matrix generators J3 and J2. They satisfy

[Ji, [Ji, Yl,m]] = adJi(adJi(Yl,m)) = l(l + 1)Yl,m,

[J3, Yl,m] = adJ3(Yl,m) = mYl,m. (1.2.7)

where l ∈ {0, 1, . . . , 2j}, m ∈ {−l,−l + 1, . . . , l}. The inner product on the fuzzy

spherical harmonics is the matrix trace

(f, g) =
1

N
tr(f †g), (1.2.8)

in which the fuzzy spherical harmonics are orthonormal: (Yl1,m1 , Yl2,m2) = δl1,l2δm1,m2 .

The Hermitian conjugate of a fuzzy spherical harmonic is

Y †l,m = (−)mYl,−m. (1.2.9)

Unlike the continuous spherical harmonics, there are only finitely many fuzzy spher-

ical harmonics within the algebra of N ×N matrices for any given N . The parameter
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N acts like a cutoff: all the fuzzy spherical harmonics have l ≤ 2j = N − 1. Within

the algebra AN of N × N matrices, the fuzzy spherical harmonics form a complete

orthonormal basis. In particular, we can expand the product of two fuzzy spherical

harmonics:

Yl1,m1Yl2,m2 =

2j∑
l3=0

l3∑
m3=−l3

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

× (−)3j
√

2j + 1

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
(

l1 l2 l3

m1 m2 −m3

)
(−)m3Yl3,m3 . (1.2.10)

The symbol in the straight brackets is the Wigner 6j symbol, which corresponds to

the coupling of six irreducible representations of su(2) into a singlet. The definition and

some properties of 6j symbols are given in Appendix A. This expression shows that the

fuzzy spherical harmonics do not commute, as a phase is introduced on interchanging

the pairs (l1,m1) and (l2,m2) in (1.2.10). In the limit as N = 2j + 1 tends to infinity,

the 6j symbol asymptotes to

lim
j→∞

(−)3j
√

2j + 1

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ =

(
l1 l2 l3

0 0 0

)
, (1.2.11)

which shows that the fuzzy spherical harmonics algebra reproduces the spherical har-

monics algebra (1.2.5) in the large N limit. A more symmetric coefficient of the N×N
fuzzy spherical harmonics algebra is

Al1,m1,l2,m2,l3,m3 = N−1tr(Yl1,m1Yl2,m2Yl3,m3)

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)(−)3j
√

2j + 1

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
(

l1 l2 l3

m1 m2 m3

)
,

(1.2.12)

which allows us to write a product of fuzzy spherical harmonics as

Yl1,m1Yl2,m2 =
∑
l3,m3

Al1,m1,l2,m2,l3,m3Y
†
l3,m3

(1.2.13)

where the factor of N has been introduced in this definition for later convenience. This

coefficient is invariant under the cyclic interchange of the pairs (li,mi), but changes

by a phase under the transposition of any two pairs. The parameter j (or equivalently

N) is the noncommutativity parameter of the fuzzy sphere. An exact expression for
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fuzzy spherical harmonics is given in [47]:

Yl,m =
√

(2l + 1)(2j + 1)
∑
µ,ν

(−)j−l+µ

(
j j l

−µ ν m

)
|j, µ〉〈j, ν|. (1.2.14)

The state vectors |j, µ〉, where µ ∈ {−j,−j + 1, . . . , j}, are an orthonormal basis of

the N -dimensional su(2) representation V .

1.2.3 Scalar field theory on the fuzzy sphere

Scalar field theories can be constructed on the fuzzy sphere by analogy with those on

the commutative sphere [48, 49, 50]. On the commutative sphere, any function can

be expanded in terms of the spherical harmonics, and the degrees of freedom of the

function are a discrete set of expansion coefficients. The path integral of a field on the

sphere is performed by integrating over these modes.

The noncommutative version of a field on the fuzzy sphere is an N ×N matrix in

the fuzzy sphere algebra AN . Any N × N matrix can be expanded in terms of the

fuzzy spherical harmonics

X =
1√
N

N−1∑
l=0

l∑
m=−l

al,mYl,m, (1.2.15)

where the N2 coefficients al,m are the coefficients of the fuzzy spherical harmonic

expansion. As the fuzzy spherical harmonics satisfy Y †l,m = (−)mYl,−m, we can set the

matrix X to be Hermitian by demanding that the complex conjugate of each mode

al,m satisfies

a∗l,m = (−)mal,−m. (1.2.16)

For a one-field theory with an action S[X], the partition function is

Z =

∫
Da e−S[X], (1.2.17)

where the path integral is performed over the N2 real degrees of freedom with the

measure

Da =
N−1∏
l=0

[
dal,0

l∏
m=1

dal,mda
∗
l,m

]
. (1.2.18)
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In [48, 49, 50], the scalar field theories considered on the fuzzy sphere have the action

S[X] = tr

(
1

2
X[Ji, [Ji, X]] +

1

2
µ2X2 + V (X)

)
, (1.2.19)

which includes a Laplacian, a mass term, and a general potential term. The propagator

of this theory is

〈a∗l,mal′,m′〉 :=

∫
Da e−Sa∗l,mal′,m′∫

Da e−S
=

δl,l′δm,m′

l(l + 1) + µ2
. (1.2.20)

In this thesis, we will constrain our attention to topological theories on the fuzzy

sphere with vanishing Laplacian. We drop the Laplacian from the action and for now

we set the potential term to zero, leaving just a mass term. Setting µ2 = 1 and using

the fact that the trace of two matrices can be expanded into fuzzy spherical harmonic

modes as

tr(X2) =
1

N

N−1∑
l,l′=0

l∑
m=−l

l′∑
m′=−l′

al,mal′,m′tr(Yl,mYl′,m′)

=
N−1∑
l=0

l∑
m=−l

a∗l,mal,m, (1.2.21)

we arrive at the partition function for the topological scalar theory on the fuzzy sphere

Z =

∫
Da e−

1
2

trX2

=

∫
Da exp

(
−1

2

N−1∑
l=0

l∑
m=−l

a∗l,mal,m

)
. (1.2.22)

This is a Gaussian Hermitian matrix model like the one discussed in Section 1.1,

but with the N2 real degrees of freedom rewritten in the su(2)-covariant form al,m

instead of the U(N)-covariant form X i
j. We will prove in this subsection that the

matrix models are equivalent by comparing the correlators of arbitrary products of

traces in the two pictures. This will implicitly show that the Jacobian generated from

changing the measure DX → Da is trivial. The propagator in the topological theory

is

〈a∗l,mal′,m′〉 :=

∫
Da e−

1
2(

∑
l,m a∗l,mal,m)a∗l,mal′,m′∫

Da e−
1
2(

∑
l,m a∗l,mal,m)

= δl,l′δm,m′ . (1.2.23)
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By Wick’s theorem, the correlator of a set of 2n Fourier modes is

〈al1,m1 . . . al2n,m2n〉 =
∑
τ∈[2n]

∏
disjoint cycles

(ik) in τ

〈ali,mialk,mk〉 (1.2.24)

=
∑
τ∈[2n]

∏
(ik)∈τ

(−)miδli,lkδmi,−mk . (1.2.25)

As in the conventional Gaussian Hermitian matrix model, the traces and products

of traces of a matrix are invariant under the adjoint action of U(N). The observables

of this topological fuzzy sphere theory can also be taken to be the correlators of multi-

traces. The correlator of a trace trX2n separates out into the modes and the trace of

the fuzzy spherical harmonics:

〈trX2n〉 =
1

Nn
〈al1,m1 . . . al2n,m2n〉tr(Yl1,m1 . . . Yl2n,m2n). (1.2.26)

and similiarly a product of traces separates out in this manner into a Fourier modes

correlator and a product traces of fuzzy spherical harmonics. The traces over fuzzy

spherical harmonics can be expanded out by using the fuzzy spherical harmonics al-

gebra

tr(Yl1,m1Yl2,m2Yl3,m3) = NAl1,m1,l2,m2,l3,m3 , (1.2.27)

tr(Yl1,m1Yl2,m2) = N(−)m1δl1,l2δm1,−m2 . (1.2.28)

This allows us to express any correlator in the fuzzy sphere theory as a sum over spin

labels and the fuzzy sphere algebra coefficients Al1,m1..., which becomes a sum over

spin labels weighted by Wigner 3j and 6j symbols. Unsurprisingly, we will find that

the evaluation of any product of traces of a matrix in the conventional matrix model

picture agrees with its evaluation in the fuzzy sphere theory. The Jacobian associated

to the transformation between the matrix model measure (1.1.10) and the fuzzy sphere

measure (1.2.18) is trivial. We show this at the level of the observables by showing that

the fuzzy sphere correlators satisfy the relation (1.1.15) of the conventionally-defined

matrix model,

〈tr2n(Xσ)〉 =
∑
τ∈[2n]

NCστ . (1.2.29)

Firstly, we recall that the fuzzy spherical harmonics act on an N -dimensional su(2)

representation |j, µ〉, where µ ∈ {−j,−j + 1, . . . , j} and N = 2j + 1. We abbreviate
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these state vectors to |µ〉 in the following. In the tensor space notation, a general

product of traces can be expressed by a permutation σ ∈ S2n acting on a product of

states

tr2n(Xσ) =
∑

µ1,...,µ2n

〈µ1µ2 . . . µ2n|Xσ|µ1µ2 . . . µ2n〉

:=
∑

µ1,...,µ2n

〈µ1µ2 . . . µ2n|X|µσ(1)µσ(2) . . . µσ(2n)〉 (1.2.30)

where X = X ⊗ . . . ⊗ X is the operator formed from 2n copies of X. This tensor

product can be decomposed into the fuzzy spherical harmonic modes and a tensor

product of fuzzy spherical harmonics,

X =
1

Nn

∑
l1...l2n

∑
m1...m2n

al1,m1al2,m2 . . . al2n,m2nYl1,m1 ⊗ Yl2,m2 ⊗ . . .⊗ Yl2n,m2n . (1.2.31)

From (1.2.25), the fuzzy sphere correlator of this operator evaluates to a sum running

over the conjugacy class of disjoint products of 2-cycles [2n]. For a given τ ∈ [2n], the

weight associated to each 2-cycle (ik) ∈ τ is

(−)miδli,lkδmi,−mk . (1.2.32)

A tensor product of fuzzy spherical harmonics Yli,mi⊗Ylk,mk is an operator acting on the

tensor product space V ⊗ V . We can evaluate the operator formed from contracting

the fuzzy spherical harmonics with (1.2.32) by using the explicit expression for the

fuzzy spherical harmonics (1.2.14), and the orthogonality relations of the Wigner 3j

symbols: ∑
li,mi
lk,mk

(−)miδli,lkδmi,−mkYli,mi ⊗ Ylk,mk (1.2.33)
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=
∑
limi
lk,mk

∑
µi,νi
µk,νk

(2j + 1)
√

(2li + 1)(2lk + 1)(−)mi+2j−li+µi−lk+µkδli,lkδmi,−mk

×

(
j j li

−µi νi mi

)(
j j lk

−µk νk −mk

)
|µi〉〈νi| ⊗ |µk〉〈νk|

= N
∑
li,mi

∑
µi,νi
µk,νk

(−)2j+µi+νk(2li+1)

(
j j li

−µi νi mi

)(
j j li

−νk µk mi

)
|µi〉〈νi|⊗|µk〉〈νk|

= N
∑
µi,νi
µk,νk

(−)2j+µi+νkδµi,νkδνi,µkmi|µi〉〈νi| ⊗ |µk〉〈νk|

= N
∑
µi,µk

|µi〉〈µk| ⊗ |µk〉〈µi|. (1.2.34)

This operator acts on V ⊗V by interchanging the basis elements |µi〉 from the first copy

of V with the basis elements |µk〉 in the second copy of V . We see from the defining

equation (1.1.6) for the action of permutations on tensor space that the contracted

spherical harmonics pair acts on the basis vectors in the same way as a transposition.

We can therefore write the following operator equation, valid when acting on tensor

product space V ⊗2n,

1

N

∑
li,mi
lk,mk

(−)miδli,lkδmi,−mkYli,mi ⊗ Ylk,mk = (i, k). (1.2.35)

By applying Wick’s theorem (1.2.25), the fuzzy sphere correlator of a tensor product

of 2n operators is

〈X〉 =
1

Nn

∑
l1,l2,...
m1,m2,...

〈al1,m1al2,m2 . . . al2n,m2n〉Yl1,m1 ⊗ Yl2,m2 ⊗ . . .⊗ Yl2n,m2n

=
1

Nn

∑
l1,l2,...
m1,m2,...

∑
τ∈[2n]

∏
(ik)∈τ

(−)miδli,lkδmi,−mk

Yl1,m1 ⊗ Yl2,m2 ⊗ . . .⊗ Yl2n,m2n

=
∑
τ∈[2n]

τ. (1.2.36)

The matrix model on the fuzzy sphere exactly reproduces the operator equation

(1.1.14). The correlator in the fuzzy sphere matrix model of a general product of
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traces specified by a permutation σ ∈ S2n is

〈tr2n(Xσ)〉 =
∑
τ∈[2n]

tr2n(στ). (1.2.37)

We conclude by direct comparison of the observables of the two formulations of the

matrix models the Jacobian of the path integral under the change of variables X i
j →

al,m is trivial.

While the topological fuzzy sphere can be thought of as a theory of matrices, the

above partition functions can be rephrased into theories of continuous functions on the

sphere with an angular momentum cutoff and a modified multiplication of the fields.

The partition function of the matrix model on a fuzzy sphere with a trivalent potential

is written

Z =

∫
Da exp

(
−1

2
trX2 + λ

√
NtrX3

)

=

∫
Da exp

−1

2

N−1∑
l=0

l∑
m=−l

a∗l,mal,m + λ
∑
l1,l2,l3

m1,m2,m3

Al1,m1,l2,m2,l3,m3al1,m1al2,m2al3,m3

 .

(1.2.38)

For a given N = 2j+1, the star product on a pair of continuous spherical harmonics

Ỹl1,m1 , Ỹl2,m2 with angular momenta l1, l2 < N reproduces the fuzzy spherical harmonics

algebra (1.2.12),

Ỹl1,m1 ? Ỹl2,m2 =
N−1∑
l3=0

l3∑
m3=−l3

Al1,m1,l2,m2,l3,m3Ỹ
†
l3,m3

. (1.2.39)

A scalar field on the sphere consisting of only low-energy modes can be expanded as

X̃ =
N−1∑
l=0

l∑
m=−l

ãl,mỸl,m, (1.2.40)

which allows the matrix model partition function (1.2.38) to be equivalently written

as

Z =

∫
Dã|l<N exp

(
− 1

4π

∫
dΩ

(
1

2
X̃2 − λX̃ ? X̃ ? X̃

))
. (1.2.41)

Here, the partition function integration is performed only over the low-energy modes



1. The spacetime theories of the Belyi string 38

al,m with l < N . The large N limit of this partition function is the topological theory

on the continuous sphere,

Z̃ =

∫
Dã exp

(
− 1

4π

∫
dΩ

(
1

2
X̃2 − λX̃3

))
. (1.2.42)

It seems natural to interpret (1.2.41) as the low energy cutoff version of this topological

field theory on the continuous sphere. This makes manifest the fact that the fuzzy

sphere matrix model is a theory on the S2 target space, and so gives a convincing

candidate for the spacetime theory of the Belyi string.

1.3 Ribbon graphs in the fuzzy sphere matrix model

In the previous section, we reformulated the matrix model on the fuzzy sphere, showed

that it was equivalent to the conventionally-defined matrix model, and proposed that

this is the spacetime theory of the Belyi string. In this section, we investigate the

matrix model on the fuzzy sphere by studying the ribbon graphs of the correlators.

For a product of traces determined by a permutation σ, the matrix model correlator

of this trace product evaluates to a sum over the Wick contractions, ranging over the

conjugacy class τ ∈ [2n]. Each pair (σ, τ) determines a ribbon graph G(σ, τ) of the

correlator. The contribution to the correlator coming from the Wick contraction τ is

〈tr2n(Xσ)〉|τ = tr2n(στ) = NCστ , (1.3.1)

where στ is the permutation describing the faces of the ribbon graph. The number of

cycles in the product permutation στ is the number of faces of the ribbon graph G.

If we introduce the normalisation factor NCσ−n, then we can use the formula for the

Euler characteristic of a graph embedded on a surface, and the fact that the cycles of

σ correspond to the vertices of the ribbon graph, to state that

NCσ−n〈tr2n(Xσ)〉
∣∣
τ

=
∏
i

N2−2gi (1.3.2)

where the product is performed over all the connected components of the graph, and

gi is the genus of each connected component of the ribbon graph.

For a pair of permutations (σ, τ) determining a connected ribbon graph G of genus

g, we define the ribbon graph evaluation R of the graph to be the contribution to
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the correlator associated with this graph:

R(G) := 〈tr2n(Xσ)〉|τ = NCστ = N2−2g−Cσ+n. (1.3.3)

Fuzzy sphere correlator contributions can also be expanded as a sum over spin labels

and spin states:

R(G) = N−n
∑
l1,l2,...
m1,m2,...

〈al1,m1al2,m2 . . . al2n,m2n〉|τ tr2n(Yl1,m1⊗Yl2,m2⊗ . . .⊗Yl2n,m2nσ).

(1.3.4)

The contribution from τ to the correlator of modes is proportional to a product of n

Kronecker deltas relating the spin labels li, and n Kronecker deltas relating the spin

states mi. The trace of the product of fuzzy spherical harmonics is a product of factors

including 3j symbols, 6j symbols, and dimensions of su(2) representations. We will

show in this section that the structure of both of these factors can be read off from

the ribbon graph by deriving a set of Feynman rules. While it may seem superfluous

to expand a ribbon graph in terms of quite an involved product of su(2)-covariant

factors when the exact answer R(G) can be read off counting faces, this expanded spin

state sum is crucial for deriving a three-dimensional interpretation of the Belyi string

within the Ponzano-Regge spin foam model.

Each trivalent ribbon graph corresponds to a sum over spin labels lp and spin states

mp, weighted by 3j and 6j symbols. The sum over spin states mp with 3j weights

corresponds to the evaluation of a spin network found in the literature [51, 52, 53, 9].

We show in this section that any spin network state sum can be evaluated explicitly

to a product of 6j symbols and representation dimensions with a series of trivalent

graph moves.

Initially, we only consider correlators of trace triples, which generate trivalent rib-

bon graphs with V vertices and E edges, where 3V = 2E. These trace products

correspond to conjugacy classes of the form σ ∈ [3V ]:

〈tr2E(Xσ)〉 = 〈(trX3)V 〉 =
∑
τ∈[2E ]

tr2E(στ). (1.3.5)

Such correlators can be generated by adding a potential term to the action of the
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matrix model on the fuzzy sphere:

Z =

∫
Da e−

1
2

trX2+λ
√
NtrX3

=
∑
k≥0

λ2kNk

(2k)!
〈(trX3)2k〉. (1.3.6)

In such cases, the structure of the representation sum is particularly simple: there is a

spin label pair (lp,mp) for each of the 2E = 6k fuzzy spherical harmonic modes, a 3j

and a 6j symbol generated by each trace, and a Kronecker delta for each of the E Wick

contractions. Later in this section, we will show that any multi-trace correlator can

be ‘expanded’ into a partially-contracted correlator of trace triples, which corresponds

to a sum over trivalent ribbon graphs.

1.3.1 Trivalent ribbon graphs

In this section we adopt the short-hand notation of representing a spin label and spin

state pair (lp,mp) by a generalised index Lp, and abbreviate alp,mp → aLp , Ylp,mp → YLp ,

and Al1,m1,l2,m2,l3,m3 → AL1L2L3 . We introduce the eta symbol to describe the trace

of a pair of fuzzy spherical harmonics,

ηLpLq := (−)mpδlp,lqδmp,−mq . (1.3.7)

Consider a trivalent ribbon graph G with V vertices described by the cycles of

a permutation σ ∈ [3V ] and with edges described by the cycles of τ ∈ [2E], where

3V = 2E. The contribution to the matrix model correlator from this ribbon graph is

R(G) = N−E
∑
l1,l2,...
m1,m2,...

〈al1,m1al2,m2 . . . al2E ,m2E
〉|τ tr2n(Yl1,m1⊗Yl2,m2⊗. . .⊗Yl2E ,m2E

σ).

(1.3.8)

In this expression, we are only considering the Wick contraction corresponding to

the permutation τ . For example, if τ = (1, 2)(3, 4) . . . (2E − 1, 2E), then the Wick

contraction is

〈al1,m1al2,m2 . . . al2E ,m2E
〉|τ = 〈al1,m1al2,m2〉〈al3,m3al4,m4〉 . . . 〈al2E−1,m2E−1

al2E ,m2E
〉

= (−)m1+m3+...+m2E−1δl1,l2δm1,−m2 . . . δl2E−1,l2Eδm2E−1,−m2E
. (1.3.9)
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In terms of the eta symbols and short-hand indices, this can be written

〈aL1aL2 . . . aL2E〉
∣∣
τ

= ηL1L2ηL3L4 . . . ηL2E−1L2E . (1.3.10)

The tensor product trace of fuzzy spherical harmonics becomes a product of triples

of traces of fuzzy spherical harmonics determined by the permutation σ ∈ [3V ]. For

example, if σ = (1, 2, 3)(4, 5, 6) . . ., then the tensor product trace becomes

tr2E(Yl1,m1 ⊗ . . .⊗ Yl2E ,m2E
σ) = tr(Yl1,m1Yl2,m2Yl3,m3)tr(Yl4,m4Yl5,m5Yl6,m6) . . . . (1.3.11)

In terms of the coupling coefficients (1.2.12) corresponding to the trace of a product of

fuzzy spherical harmonics, this trace product can be written in the short-hand notation

tr2E(YL1 ⊗ YL2 ⊗ . . .⊗ YL2E
σ) = tr(YL1YL2YL3)tr(YL4YL5YL6) . . .

= NVAL1L2L3AL4L5L6 . . . . (1.3.12)

With the expression (1.3.10) for the Wick contractions, a general trivalent ribbon

graph sum will be of the form

R(G) = NV−E
∑

L1,L2,...

ηL1L2ηL3L4 . . . AL1L2L3AL4L5L6 . . . , (1.3.13)

where the sum runs over all spin label pairs. There is a spin label pair (lp,mp) assigned

to each half-edge of the ribbon graph (denoted by Lp), a factor of ALpLqLr associated

to each of the V vertices of the graph, and a factor of ηLpLq associated to each of the

E edges of the graph.

In writing ribbon graph evaluations in terms of the traces ηLpLq and ALpLqLr , we

have essentially hidden away the representation-dependent factors from the sums, such

as the Wigner 3j and 6j symbols, the representation dimensions, and various phases.

We can bring these factors back to write down the evaluation of a graph directly in

terms of the 3j and 6j symbols. There is a factor of

ηLpLq = (−)mpδlp,lqδmp,−mq (1.3.14)
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associated to each of the E edges of the graph, and a factor of

ALpLqLr =
√
N(−)3j

√
(2lp + 1)(2lq + 1)(2lr + 1)

(
lp lq lr

mp mq mr

)∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣
(1.3.15)

associated to each of the V vertices. Collating the powers of N arising from the

normalisation and the V factors of ALpLqLr , we have an overall factor of N3V/2−E.

Since we are working with a trivalent graph, we know that 3V = 2E, and so the

overall factor of N vanishes. Also noting that (−)3jV = (−)2jE, we can arrive at an

expression for R(G) by associating a factor of(
lp lq lr

mp mq mr

)∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣ (1.3.16)

to each vertex connecting the half-edges labelled p, q, and r; a factor of

(2lp + 1)(−)2j+mpδlp,lqδmp,−mq (1.3.17)

to each edge connecting the half-edges labelled p and q; and evaluating a sum over all

the spin labels lp and their associated spin states mp. We find that the Wigner 3j and

6j sum associated to the graph is

R(G) = (−)2jE
∑

l1,...l2E
m1,...,m2E

(∏
edges

(2lp + 1)(−)mpδlp,lqδmp,−mq

)

×

( ∏
vertices

(
lp lq lr

mp mq mr

)∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣
)
. (1.3.18)

This sum is performed over the 2E spin labels lp and the 2E state labels mp. As

each edge is associated to a pair of Kronecker deltas, we can immediately sum out half

of the spin labels. This results in a sum over E pairs of spin labels, with a single label

pair associated to each edge. Summing out the factors of δmp,−mq will result in each

spin state label mp appearing in two different Wigner 3j symbols with different signs.
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The evaluation of a trivalent ribbon graph becomes

R(G) = (−)2jE
∑
l1,...lE
m1,...mE

∏
edges

(−)mp(2lp+1)
∏

vertices

∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣
(

lp lq lr

±mp ±mq ±mr

)
.

(1.3.19)

We can partition the sum (1.3.19) into two parts by considering just the mp-

dependent factors, which are the 3js and phase factors (−)mp , and performing the

sums over the state labels mp. For a trivalent ribbon graph G with the spin labels

(lp,mp) assigned to each edge, we fix each spin label lp and allow the spin state labels

mp to run over the ranges {−lp,−lp + 1, . . . , lp} to get the 3j sum

S(G, {lp}) :=
∑

m1,...,mE

∏
edges

(−)mp
∏

vertices

(
lp lq lr

±mp ±mq ±mr

)
. (1.3.20)

Expressions of this form appear frequently in the literature [51, 52, 53, 9]. This sum

over 3j symbols corresponds to the evaluation of a spin network, which is a trivalent

graph labelled by su(2) representations with a particular set of weights assigned to

the edges and vertices. Hence we call S(G, {lp}) the spin network state sum, or the

3j sum, associated to a trivalent ribbon graph G with labelled edges lp. The ribbon

graph evaluation can now be written as a sum over purely the spin labels lp, weighted

by 6js, dimensions, and the spin network state sum,

R(G) = (−)2jE
∑
lp

S(G, {lp})
∏
edges

(2lp + 1)
∏

vertices

∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣ . (1.3.21)

This is the form of the ribbon graph sum that we will use in the next section to

build a link between the matrix model on the fuzzy sphere and the three-dimensional

Ponzano-Regge model.

We conclude this subsection with an example. The simplest non-trivial trivalent

ribbon graph correlator is

〈tr6(Xσ)〉 = 〈(trX3)2〉, (1.3.22)

where σ = (1, 2, 3)(4, 5, 6) ∈ [32] is a product of two 3-cycles. The Wick contractions
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Figure 1.5: The two-vertex trivalent ribbon graphs with labelled half-edges.

of this correlator generate three distinct graphs, given in Figure 1.5. In this diagram,

each half-edge label p corresponds to a spin label pair (lp,mp), abbreviated to the single

index Lp. The first graph corresponds to the Wick contraction τ = (1, 6)(2, 5)(3, 4),

and has the associated ribbon graph sum

R(G) = 〈(trX3)2〉
∣∣
τ

= N2−3ηL1L6ηL2L5ηL3L4AL1L2L3AL4L5L6 . (1.3.23)

The ηLpLq symbols, which are proportional to deltas, can be summed out to give a

sum over the three spin label pairs (l1,m1), (l2,m2), and (l3,m3). This corresponds to

dropping half of the integer labels on the ribbon graph and assigning a single label to

each edge, as in Figure 1.6. Using the formula (1.3.19), we find the ribbon graph sum

R(G) = (−)2j
∑
l1,l2,l3

m1,m2,m3

(−)m1+m2+m3(2l1 + 1)(2l2 + 1)(2l3 + 1)

×

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
(

l1 l2 l3

m1 m2 m3

)∣∣∣∣∣ l1 l3 l2

j j j

∣∣∣∣∣
(

l1 l3 l2

−m1 −m3 −m2

)
. (1.3.24)

The spin network part of this sum is

S (G, {l1, l2, l3}) =
∑

m1,m2,m3

(−)m1+m2+m3

(
l1 l3 l2

m1 m3 m2

)(
l1 l2 l3

−m1 −m2 −m3

)

=
∑

m1,m2,m3

(
l1 l2 l3

m1 m2 m3

)(
l1 l2 l3

m1 m2 m3

)

= ∆(l1, l2, l3), (1.3.25)

where this Delta function is equal to one when the spin labels l1, l2, l3 satisfy the tri-

angle constraint, and zero otherwise. The triangle constraint on a triple of integers
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Figure 1.6: The ‘theta’ ribbon graph with one spin label pair on each edge.

l1, l2, l3 is satisfied when (l1 + l2 + l3) is an integer and

|l2 − l3| ≤ l1 ≤ l2 + l3, |l3 − l1| ≤ l2 ≤ l3 + l1, |l1 − l2| ≤ l3 ≤ l1 + l2. (1.3.26)

These triangle constraints are imposed on the ribbon graph sums by the presence of

the 6j symbols. In general, a spin network configuration evaluates to zero unless the

spin labels assigned to the edges meeting at every vertex satisfy the triangle constraint.

This leads us to the ribbon graph evaluation, or 6j sum, of the form given in (1.3.21)

R(G) = (−)2j
∑
l1,l2,l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ . (1.3.27)

1.3.2 Evaluating spin network state sums

In this section we describe how to evaluate the spin network sum (1.3.20) associated

to any trivalent graph G with a set of assigned spin labels {lp}. Spin network state

sums can always be evaluated by using the various identities relating the 3j and 6j

symbols. In the simplest cases, the spin network evaluation can be read off quite

easily. For example, as was discussed in the previous subsection, the spin network

sum corresponding to the ‘theta’ graph is

S

( )
= ∆(l1, l2, l3). (1.3.28)

Each integer p ∈ {1, 2, 3} in the diagram in (1.3.28) represents a fixed spin label

lp and a summed state label mp. Another simple example of a spin network is the

tetrahedral graph, consisting of a graph with four vertices and six edges. The spin
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network evaluation of this graph is a 6j symbol purely by its definition:

S


 =

∑
mi

(−)m1+m2+m3+m4+m5+m6

(
l1 l2 l3

m1 m2 m3

)(
l1 l5 l6

−m1 −m5 m6

)

×

(
l3 l4 l5

−m3 m4 m5

)(
l2 l6 l4

−m2 −m6 −m4

)
:=

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ . (1.3.29)

For more elaborate and non-planar trivalent graphs, we need to systematically

employ a series of relations on the 3j symbols to pull out the various dimension factors

and 6j symbols. Each of the relevant 3j identities has an interpretation as an operation

on the trivalent graph. We call these operations the trivalent graph moves. Using

some general properties of ribbon graphs, we can describe the series of moves that

reduces any graph down to a theta or tetrahedral graph.

Before describing these moves, it is convenient in the following to extend the eval-

uation of a spin network to include graphs with external edges. As well as the spin

label lp assigned to each edge of the graph, we assign a spin label mp to each external

edge, which is not summed over in the spin network evaluation. We also do not assign

a weight of (−)mp to the external edges, and choose the sign in front of the mp entry

in the associated 3j symbol to be positive. A pair of external edges with the same

spin label l and the respective spin labels m, m̃ can be contracted by summation and

a delta function:

∑
m,m̃

(−)mδm,−m̃S

  = S

  (1.3.30)

We also define an edge with no vertices to be proportional to a delta function:

S

( )
= (−)mδm,−m̃. (1.3.31)

In the following, we will only consider trivalent graphs labelled with integer spin labels,

as the ribbon graph sums constrain the lp to be integer. We will also denote spin label

pairs (lp,mp) in diagrams by an integer p.

There are four trivalent graph moves, which we call the orthogonality relation, the

‘2-2’ move, the ‘3-1’ move, and the parity move.
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1. The orthogonality relation between two 3js can be expressed as

S

( )
=

∑
m2,m3

(−)m2+m3

(
l1 l2 l3

m1 m2 m3

)(
l2 l4 l3

−m2 m4 −m3

)

=
(−)m1

(2l1 + 1)
δl1,l4δm1,−m4∆(l1, l2, l3). (1.3.32)

By interpreting the product of delta functions and phase factor (−)m1 as the spin

network evaluation of a straight line, we can write this orthogonality relation

diagrammatically as

S

( )
=

1

(2l1 + 1)
S

( )
δl1,l4∆(l1, l2, l3). (1.3.33)

2. The 3j symbols also satisfy an identity corresponding to the ‘2-2’ move

∑
m3

(−)m3

(
l1 l2 l3

m1 m2 −m3

)(
l4 l5 l3

m4 m5 m3

)
=

=
∑
l6,m6

(−)m6(2l6 + 1)

(
l5 l1 l6

m5 m1 m6

)(
l2 l4 l6

m2 m4 −m6

)∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ .
(1.3.34)

This can be expressed diagrammatically as

S

( )
=
∑
l6

(2l6 + 1)

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ S


 . (1.3.35)

3. The third 3j identity is associated to the ‘3-1’ move, which reduces three 3j

symbols to a single 3j and a 6j,

∑
m4,m5,m6

(−)m4+m5+m6

(
l5 l1 l6

m5 m1 −m6

)(
l4 l3 l5

m4 m3 −m5

)(
l6 l2 l4

m6 m2 −m4

)

=

(
l1 l2 l3

m1 m2 m3

)∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ , (1.3.36)
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which is expressed diagrammatically as

S


 =

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ S


 . (1.3.37)

The inverse of this move is called the ‘1-3’ move.

We note that the 3-1, 2-2 and orthogonality moves are not independent, as the

3-1 move could be deduced by using the 2-2 move and the orthogonality relation.

Alternatively, the orthogonality relation could be deduced from the 2-2 and 3-1

moves, provided the graph considered has more than two vertices.

4. The final trivalent graph move is the ‘parity’ move, which reverses the cyclic

ordering of the edges connecting to a vertex. This corresponds to transposing a

pair of spins (l1,m1) and (l2,m2) in a 3j symbol,(
l1 l2 l3

m1 m2 m3

)
= (−)l1+l2+l3

(
l2 l1 l3

m2 m1 m3

)
. (1.3.38)

Diagramatically, we write

S


 = (−)l1+l2+l3 S


 . (1.3.39)

Unlike the other moves, this trivalent graph move does not in general preserve

the genus of a graph. This move is necessary to reduce down a non-planar spin

network to a planar spin network.

The action of these moves on a labelled trivalent graph will generate in the spin

network state sum evaluation S(G) a string of factors of (2l+ 1), (−)l1+l2+l3 , and sums

over new labels, as well as the 6j symbols, which are the evaluations of tetrahedral

graph. The tetrahedral graph are irreducible under the trivalent graph moves, as any

application of the moves on them will generate the same 6j or an expression which

evaluates to the same 6j. Therefore, the evaluation of a general graph by reduction

must be a sum of a product of these factors. We show algorithmically that all trivalent

graphs can be reduced down in this manner.

A trivalent ribbon graph partitions a surface into vertices, edges, and faces. Each

vertex is incident to either one, two, or three faces, and each edge is incident to either
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Figure 1.7: The parity move produces a polygon from a face of a non-planar ribbon
graph.

one or two faces. We say that a face is a polygon if it is homeomorphic to a disc when

considered with its bounding edges and vertices. A necessary and sufficient condition

for a face to be a polygon is for each edge bounding the face to be incident to two

distinct faces.

The first step in the algorithm is to isolate a polygon of the ribbon graph. Not all

ribbon graphs possess a polygonal face, but it is always possible to generate such a

face from any ribbon graph by applying a single parity move. To see this, follow the

boundary of a face around until a vertex is visited twice, and apply the parity move at

this vertex, as demonstrated in Figure 1.7. This will always produce a polygon from

a non-polygonal face. A planar graph always has at least one polygonal face, so can

be reduced without applying the parity move.

Once a polygon has been isolated, we can use a combination of the remaining

trivalent moves to remove the polygon from the graph and reduce the number of

vertices by two, as in Figure 1.8. If the polygon is bounded by a single edge and

a single vertex, then it is a ‘tadpole’, and can be removed using the 2-2 move and

orthogonality relation. Applying the ‘2-2’ move on the edge that connects the vertex

to a different vertex, and then the orthogonality move, we have

S


 =

∑
l5

∣∣∣∣∣ l1 l2 l2

l5 l4 l3

∣∣∣∣∣ (2l5 + 1) S

( )

=
∑
l5

∣∣∣∣∣ l1 l2 l2

l5 l4 l3

∣∣∣∣∣
(

2l5 + 1

2l3 + 1

)
δl3,l4S

( )
. (1.3.40)
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Figure 1.8: The ‘2-2’ move on a polygon reduces the number of edges bounding the
polygon by one.

The sum over the spin label l5 can be removed by using the 6j identity

∑
l5

(
2l5 + 1

2l3 + 1

) ∣∣∣∣∣ l1 l2 l2

l5 l3 l3

∣∣∣∣∣ = (−)l2+l3δl1,0

√
2l2 + 1

2l3 + 1
, (1.3.41)

and so we can replace the tadpole from the trivalent graph with a factor:

S


 = δl3,l4δl1,0(−)l2+l3

√
2l2 + 1

2l3 + 1
S

( )
. (1.3.42)

If the polygon is bounded by two edges, then it can be removed using the orthog-

onality move. If the polygon has three edges, then it can be reduced to a vertex using

the 3-1 move. Otherwise, the polygon has four or more edges, and applying the 2-2

move on adjacent vertices of the face will reduce the number of edges (and vertices)

bounding the face by one. Performing this move repeatedly will eventually result in a

polygon with three edges, which can be reduced to a vertex using the 3-1 move. The

generation and reduction of a polygon will always reduce the number of vertices of the

graph by two. Therefore, this procedure will eventually reduce the graph down to a

trivial loop, which evaluates to a dimension factor (2l + 1). The string of factors and

sums that are produced in performing these moves gives the final evaluation of the

spin network state sum S(G) as a product of 6js, phases, and dimension factors. In

summary, the algorithm is:

1. Choose a face that is homeomorphic to a disc. If no face is homeomorphic to a

disc, then apply the parity move to construct such a face, as in Figure 1.7.

2. Apply the 3-1 and 2-2 moves and the orthogonality relation to remove the face,
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as in Figure 1.8.

3. Repeat these steps until the graph is reduced to a theta graph.

1.3.3 Examples of ribbon graph and spin network state sums

In this subsection we give a few examples of the ribbon graph and spin network evalua-

tions of some simple graphs. It can be shown directly from the orthogonality relations

on 6j symbols that these ribbon graph sums evaluate to NF .

The simplest graph that we can consider is the theta graph. For this graph, the 3j

(spin network) sum is trivial, and so the total 6j sum is

R

( )
= (−)2j

∑
l1l2l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ . (1.3.43)

Orthogonality of the 6js, and the contraint on the range of summation 0 ≤ li ≤ 2j,

give the expected final answer,

R(G) =
1

(2j + 1)

∑
l1l2

(2l1 + 1)(2l2 + 1) = N3. (1.3.44)

The tetrahedral network has the ribbon graph evaluation

R


 =

∑
l1...l6

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)

×

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l6 l4

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣ . (1.3.45)

The 6j sum can be evaluated explicitly by using the Biedenharn-Elliot identity (A.3.9),

given in the appendix, to elimate a spin label and a 6j. The remaining sums can be

performed by using the orthogonality relation, giving R(G) = N4.
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The following is an example of a more complicated non-planar ribbon graph,

R


 = N−2

∑
l1...l6

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)

× S


∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l3 l4

j j j

∣∣∣∣∣
∣∣∣∣∣ l4 l5 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣ . (1.3.46)

The spin network state sum of this labelled graph G is

S


 =

∑
m1...m6

(−)m1+m2+m3+m4+m5+m6

(
l1 l2 l3

m1 m2 m3

)

×

(
l2 l3 l4

−m2 −m3 −m4

)(
l4 l5 l6

m4 m5 m6

)(
l1 l5 l6

−m1 −m5 −m6

)
. (1.3.47)

We can apply the algorithm to evaluate S(G). This ribbon graph has no polygonal

faces, so we apply a parity move to one of the vertices to get

S(G, {li}) = S


 . (1.3.48)

We can now apply the orthogonality relation on the bubble,

S(G, {li}) =
(−)l4+l5+l6

(2l4 + 1)
δl1,l4∆(l4, l5, l6) S

( )
, (1.3.49)

and a second parity move on the graph will reduce the graph to a theta graph, which

evaluates to a Delta. We deduce that

S


 =

(−)l2+l3+l5+l6

(2l1 + 1)
δl1,l4∆(l1, l2, l3)∆(l1, l5, l6), (1.3.50)
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and that the ribbon graph sum is

R(G) =
∑

l1l2l3l5l6

(−)l2+l3+l5+l6(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l5 + 1)(2l6 + 1)

×

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣ . (1.3.51)

This expression can be evaluated to NF = N2 by using the identity (A.3.15).

1.3.4 General multi-trace correlators

So far, we have only considered the correlators of triples of traces in the fuzzy sphere

matrix model, which generate trivalent ribbon graphs. We can extend the above

analysis to more general correlators of the form 〈tr2n(Xσ)〉. A general permutation σ ∈
[1k12k2 . . . (2n)k2n ] consists of kp p-cycles for each p ∈ {1, 2, . . . , 2n}, where

∑
p pkp =

2n. The multi-trace operator associated with this conjugacy class is

tr2n(σX) =
2n∏
p=1

(trXp)kp . (1.3.52)

There is a trace of p matrices in this product for each p-cycle of σ. In this subsec-

tion, we outline a way of converting each trace in the trace product into a product

of Wick-contracted triples of traces. We do this by first writing any trace of fuzzy

spherical harmonics in terms of the coupling coefficients ALpLqLr and the Kronecker

deltas ηLpLq introduced earlier in this section, and then relating these expressions to

Wick-contracted operators of the form (trX3)V . This allows the methods of trivalent

ribbon graphs to be applied to any correlator in the fuzzy sphere matrix model.

Consider a trace of k matrices corresponding to a k-cycle of σ. This can be ex-

panded into modes and fuzzy spherical harmonics,

tr(Xk) = N−k/2
∑

L1,...Lk

aL1 . . . aLktr(YL1YL2 . . . YLk). (1.3.53)

If k = 2 or k = 3, then we can immediately write the trace of the fuzzy spherical

harmonics in terms of the symbol ηLpLq or ALpLqLr ,

tr(YL1YL2) = NηL1L2 , tr(YL1YL2YL3) = NAL1L2L3 . (1.3.54)

The fuzzy sphere algebra (1.2.12) and the hermiticity property (1.2.9) allow us to
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express any product of fuzzy spherical harmonics in terms of the coupling coefficients

ALpLqLr corresponding to the trace of a triple of fuzzy spherical harmonics:

YLpYLq =
∑
Lr

ALpLqLrY
†
Lr

=
∑
Lr,Ls

ALpLqLrη
LrLsYLs . (1.3.55)

By repeatedly applying (1.3.55), we can decompose any trace of four or more fuzzy

spherical harmonics into a sum over spin labels weighted by factors of ηLpLq and

ALpLqLr . For k ≥ 4, the trace of k fuzzy spherical harmonics tr(YL1 . . . YLk) is

N
∑

Lk+1,Lk+2...

AL1L2Lk+1
ηLk+1Lk+2ALk+2L3Lk+3

. . . ηL3k−7L3k−6AL3k−6Lk−1Lk . (1.3.56)

The trace of k fuzzy spherical harmonics decomposes into (k − 2) symbols ALpLqLr

and (k − 3) contractions ηLpLq , with summations over (2k − 6) new spin label pairs

Lp ∼ (lp,mp). For example, the trace of four fuzzy spherical harmonics is

tr(YL1YL2YL3YL4) =
∑
L5,L6

tr((AL1L2L5η
L5L6YL6)YL3YL4))

=
∑
L5,L6

AL1L2L5η
L5L6tr(YL6YL3YL4)

= N
∑
L5,L6

AL1L2L5η
L5L6AL6L3L4 . (1.3.57)

We can also derive an expression in terms of ALpLqLr and ηLpLq for a trace of a single

fuzzy spherical harmonic by using the identity derived in Section 1.2.3,

1

N

∑
Lp,Lq

ηLpLqYLp ⊗ YLq =
∑
µp,µq

|j, µp〉〈j, µq| ⊗ |j, µq〉〈j, µp|. (1.3.58)

The integers µp, µq run over the range −j,−j + 1, . . . , j. By considering the trace of

three fuzzy spherical harmonics with two of the fuzzy spherical harmonics contracted,

we have∑
L2,L3

ηL2L3tr(YL1YL2YL3) =
∑
L2L3

tr(YL1N
∑
µ2,µ3

|j, µ2〉〈j, µ3|j, µ3〉〈j, µ2|)

= N2tr(YL1), (1.3.59)
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which we can rephrase as

tr(YL1) =
1

N

∑
L2,L3

AL1L2L3η
L2L3 . (1.3.60)

The above expressions allow us to write any trace trXk as a partially Wick-

contracted operator (trX3)V . Recall that a Wick contraction in the fuzzy sphere

is proportional to the ηpq symbol,

〈aL1aL2〉 = ηL1L2 . (1.3.61)

The expression (1.3.60) allows us to write the trace of a single matrix as

tr(X) =
1√
N

∑
L1

aL1tr(YL1)

=
1

N3/2

∑
L1,L2,L3

aL1ηL2L3AL1L2L3

=
1

N5/2

∑
L1,L2,L3

aL1〈aL2aL3〉tr(YL1YL2YL3)

=
1

N
tr(XXX). (1.3.62)

The trace of two matrices can be written as a pair of contractions on a pair of trace

triples. By contracting a pair of fuzzy spherical harmonics, we can write

1

N

∑
L3,L4

ηL3L4tr(YL1YL2YL3)tr(YL4) =
∑
L3,L4

tr(YL1YL2|j, µ3〉〈j, µ4|)tr(|j, µ4〉〈j, µ3|)

= tr(YL1YL2), (1.3.63)

which, from the above, leads us to

tr(X2) =
1

N

∑
L1,L2

aL1aL2tr(YL1YL2)

=
1

N2

∑
L1,...L4

aL1aL2ηL3L4tr(YL1YL2YL3)tr(YL4)

= tr(XXX)tr(X)

=
1

N
tr(XXX)tr(XXX). (1.3.64)

We can use (1.3.56) to express a trace of k ≥ 4 matrices as a sequence of contractions
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a b c

Figure 1.9: The expansion of vertices of valency 1, 2, and k into trivalent vertices.

on (k − 2) triples of traces,

tr(Xk) = N−k/2
∑

L1,...Lk

aL1 . . . aLktr(YL1YL2 . . . YLk)

= N−k/2+1
∑

L1,L2,...

aL1 . . . aLkAL1L2Lk+1
ηLk+1Lk+2 . . . AL3k−6Lk−1Lk

= N−3k/2+3
∑
L1,L2

aL1 . . . aLktr(YL1YL2YLk+1
)〈aLk+1aLk+2〉 . . .

= tr(XXX)tr(XXX) . . . tr(XXX). (1.3.65)

This shows that every product of traces can be ‘expanded’ into a product of triples

of traces with some extra Wick contractions. We can interpret this expansion dia-

grammatically: each k-cycle in σ corresponds to a vertex of valency k. The edges

of the graphs correspond to the Wick contractions of the correlator. A vertex of va-

lency one corresponding to the trace of a single matrix is, via (1.3.62), equivalent to

a contracted trace triple (up to a factor of N). Diagrammatically, this corresponds to

adding a ‘tadpole’ to a valency one vertex, as in Figure 1.9a. From (1.3.64), a vertex of

valency two corresponding to a trace of two matrices is equivalent to a pair of vertices

with a ‘tadpole’, up to a factor of N , as demonstrated in Figure 1.9b. A vertex of

valency k ≥ 4 corresponds to k − 2 trivalent vertices contracted together in a series,

as in Figure 1.9c.

The correlator of an operator 〈tr2n(Xσ)〉 is a sum over Wick contractions τ ∈ [2n].

In expanding the correlator to a trace-triple correlator with 3V = 2E matrices, we

introduce (2E−2n) extra matrices, an inverse power of N for each 1-cycle and 2-cycle
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in σ, and fix some of the Wick contractions in the sum:

〈tr2n(Xσ)〉 = N−k1−k2 〈tr2E(Xσ̂)〉|part−contracted

= N−k1−k2

∑
τ∈[2n]×τ̂

tr2E(σ̂τ). (1.3.66)

Here, the permutation σ̂ ∈ [3V ] is a product of 3-cycles, the permutation τ̂ ∈ [2E−n]

encodes the Wick contractions generated in the expansion of the operator tr2n(Xσ)

into the product of trace triples tr2E(Xσ̂), and the sum runs over all the permutations

in [2E] which contain τ̂ . Each pair of permutations (σ̂, τ) corresponds to a trivalent

ribbon graph with an associated 3j spin network sum and a 6j spin label sum, which

evaluates to NF , the number of faces of the ribbon graph.
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1.4 A three-dimensional interpretation: The Ponzano-

Regge model

We have argued that the Hermitian matrix model is the target space theory of the Belyi

string. We can expand upon this idea by presenting a higher-dimensional theory of

gravity which reproduces the data of the spacetime theory, giving a possible membrane

interpretation to the Belyi string.

The Ponzano-Regge model assigns a partition function to any triangulated three-

dimensional manifold with boundary with spin labels lp assigned to the edges of the

triangulation and 6j symbols assigned to the tetrahedra [11, 54, 9]. The partition

function depends on the topology of the 3-manifold and the labelled triangulation

on the boundary, but is independent of the choice of triangulation of the interior

of the manifold. The model is known to correspond to Chern-Simons theory with

ISO(3) gauge group, which is equivalent to three-dimensional Euclidean quantum

gravity [12, 13]. It is also the first example of a spin foam model in loop quantum

gravity [52].

The Ponzano-Regge partition functions are sums over su(2) representations weighted

by 6j symbols and representation dimension factors. As the ribbon graphs generated

by the Hermitian matrix model on the fuzzy sphere are also of this form, we can at-

tempt to construct triangulated manifolds which reproduce the 6j sums generated by

the fuzzy sphere matrix model. We find that every trivalent ribbon graph generates

a triangulated 3-manifold whose Ponzano-Regge partition function corresponds to the

ribbon graph 6j sum, and with the graph itself embedded on the triangulation of the

boundary. A genus g ribbon graph corresponds to a triangulated handlebody of genus

g with particular boundary data.

We begin this section by reviewing the Ponzano-Regge model on a triangulated

manifold with boundary. The partition functions of this model diverge when the trian-

gulation has vertices in the interior of the manifold, so we also review the Turaev-Viro

model as a means to regularising the theory. This theory is formulated by replacing

the representations of su(2) and their 6j couplings in the Ponzano-Regge model with

the representations and couplings of the quantum algebra Uq(su(2)), where q is some

deformation parameter. For the manifolds with boundary that we consider in this

thesis, there will always be a well-defined limit q → 1, where the quantum algebra

becomes the original su(2) algebra, and so we use the q → 1 limit of the Turaev-Viro

model as our definition of the Ponzano-Regge model. We conclude this section by in-
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Figure 1.10: Each 6j symbol in the Ponzano-Regge state sum corresponds to a labelled
tetrahedron.

troducing some triangulations of surfaces generated by trivalent ribbon graphs, which

we will use in the next section to build the appropriate 3-complexes.

1.4.1 The Ponzano-Regge model

The Ponzano-Regge model is defined by assigning a partition function to any trian-

gulation of a 3-manifold, possibly with boundary, with a spin label ji assigned to each

edge, and a sum performed over all possible values of the spin labels corresponding to

internal edges. The sum is weighted by the function

W =
∏

interior edges

(−)2jp(2jp + 1)
∏

tetrahedra

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ , (1.4.1)

hence the Ponzano-Regge partition function

Z =
∑

interior edges

W (1.4.2)

is a function of the values of the spin labels on the boundary.

In the Hermitian matrix model, the range of summation of the spins is 0 ≤ lp ≤ 2j,

where lp ∈ Z, but in the Ponzano-Regge state sum exhibited above, the spin labels

in general range over all possible half-integer values up to infinity. However, there

are constraints on the ranges that these labels can take, which are imposed by the 6j

symbols. Recall that the 6j symbol∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ (1.4.3)

is zero unless the triples {j1, j2, j3}, {j1, j5, j6}, {j2, j4, j6}, {j3, j4, j5} all satisfy the
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triangle inequalities. These triples correspond to the four triangles in the cell complex

that border each tetrahedron1. This means that if two out of three edges in a triangle

are constrained to a finite range, then a triangle inequality constrains the third edge

to a finite range. As the labels on the boundary edges are fixed, there is a set of edges

in the complex whose labels span a finite range, which can be found iteratively. In

particular, if all the edges in the complex span a finite range, then the state sum must

converge, but if any labels are unconstrained then the state sum will in general diverge.

It can be shown that any triangulation with a vertex in the interior must possess spin

labels that diverge. The converse statement, that any triangulation with no internal

vertices must converge, is not true in general, but does hold for all the triangulations

that we consider in this thesis.

We wish to construct labelled tetrahedral complexes whose state sums reproduce

the ribbon graph sums in a systematic manner. While it is possible to do this without

introducing internal vertices, it is clearer and more systematic to use triangulations

with a single internal vertex, and to introduce a method of regularising these sums. In

the next section we introduce the Turaev-Viro partition function, which is a state sum

model similar to the Ponzano-Regge model, that naturally constrains all the ranges

of summation to be finite. We can use this model to recover the Ponzano-Regge state

sums, and hence the ribbon graph sums, in the ‘classical’ limit.

1.4.2 The Turaev-Viro model as a regulator

The Ponzano-Regge model assigns partition functions to complexes labelled by the

irreducible representations of su(2). The Turaev-Viro state sum model is defined

by replacing the representations of su(2) in the state sum with representations of

the quantum deformation of the universal enveloping algebra Uq(su(2)), where q is a

deformation parameter. The classical Lie algebra is recovered when q is set to one. This

deformed algebra has representations analagous to the irreducible representations of

su(2), labelled by half-integers j, and containing (2j+1) states, which can be recoupled

to generate quantum 3j and quantum 6j symbols [55]. Unlike su(2), however, the

number of representations of the quantum algebra is finite whenever q is a root of unity

not equal to one. Taking q to be a root of unity and replacing all the representation-

dependent expressions in the Ponzano-Regge state sums with their quantum analogues

1Note that the tetrahedron associated with a 6j in the Ponzano-Regge model is different from the
tetrahedral network associated to a 6j in the previous section. The labels associated to edges meeting
at a vertex of a trivalent graph satisfy a triangle constraint, while the labels associated to a face of a
tetrahedron satisfy a triangle constraint in the Ponzano-Regge model. These two labelled tetrahedra
are dual to each other.
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gives us well-defined Turaev-Viro state sums over the representations of the quantum

algebra. These state sums will diverge as q tends towards one (while still being a root

of unity), but there is a natural way of regulating this divergence that coincides with

the Ponzano-Regge model for the cases where both state sums are convergent. We

can thus define the Ponzano-Regge model for divergent sums as the classical limit of

the quantum state sum model, as in [13]. A more detailed treatment of the quantum

state sum model is given in [56]. We present here the details of how the relevant

quantities, such as summation ranges, representation dimensions, and the 6j symbols,

are deformed after being taken to their quantum analogues.

We take an integer r ≥ 3, and define q to be an rth root of unity, q := e2πi/r. The

quantum integer [n] is

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2
, (1.4.4)

which has the property that [n]→ n as r →∞ and q → 1. The quantum factorial

[n]! is

[n]! := [n][n− 1] . . . [2][1]. (1.4.5)

We say that a triple of spin labels {j1, j2, j3} satisfy the quantum triangle con-

straints if they satisfy the classical triangle constraints with the extra conditions

ji ≤ (r − 2)/2, j1 + j2 + j3 ≤ r − 2. (1.4.6)

We define ∆q(j1, j2, j3) to be one when the the spin labels {j1, j2, j3} satisfy the quan-

tum triangle constraints, and zero otherwise. By taking the explicit expression of a 6j

symbol in terms of sums and products of factorials with triangle constraints given in

[57, 58], we can replace the factorials in the definition of a 6j symbol with the quan-

tum factorials, and upgrade the triangle constraints to quantum triangle constraints,

to generate the quantum 6j symbol∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
q

. (1.4.7)

This definition coincides with the definition of a quantum 6j given in terms of the

recouplings of representations of the quantum algebra [59]. The quantum 6j symbol

converges to the classical 6j as q → 1, but crucially is only non-zero for finitely many
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Figure 1.11: The ‘4-1’ Pachner Move.

ji for each value of r. This means that if we replace all the 6j symbols in the Ponzano-

Regge state sum with quantum 6js, we arrive at an always-convergent state sum with

weight

Wq =
∏

interior edges

(−)2jp [2jp + 1]
∏

tetrahedra

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
q

. (1.4.8)

Each term in this expression converges to the classical analogue as q → 1, hence this

partition function reproduces the original Ponzano-Regge state sum in the q → 1 limit

in the cases where the original Ponzano-Regge state sum converges. For complexes

with interior vertices, we introduce the quantum normalisation factor

w2 = − 2r

(q
1
2 − q− 1

2 )2
(1.4.9)

and define the Turaev-Viro partition function

Zq = w−2v
∑

interior edges

Wq, (1.4.10)

where v is the number of internal vertices in the triangulation.

One of the most important properties of the Turaev-Viro is triangulation indepen-

dence. Any two triangulations of a 3-manifold that are equal on the boundary can be

deformed from one to the other by a series of operations on the complex called Pach-

ner moves [60]. These moves are mergings and splittings of glued tetrahedra that

will change the terms that appear in the 6j sums, but due to two identities relating

sums of products of quantum 6j symbols, these operations will not change the overall

value of the partition function.
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Figure 1.12: The ‘3-2’ Pachner Move.

The identity corresponding to the ‘4-1’ move (shown in Figure 1.11) is

w−2
∑
a,b,c,d

(−)2a+2b+2c+2d[2a+ 1][2b+ 1][2c+ 1][2d+ 1]×∣∣∣∣∣ j1 j2 j3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ j1 j5 j6

d c b

∣∣∣∣∣
q

∣∣∣∣∣ j2 j4 j6

d c a

∣∣∣∣∣
q

∣∣∣∣∣ j3 j4 j5

d b a

∣∣∣∣∣
q

=

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
q

, (1.4.11)

and the identity corresponding to the ‘3-2’ move (shown in Figure 1.12) is the

Biedenharn-Elliot identity (which also holds in the q → 1 limit),

∑
a

(−)2a[2a+ 1]

∣∣∣∣∣ j1 j5 j6

a j9 j8

∣∣∣∣∣
q

∣∣∣∣∣ j2 j4 j6

a j9 j7

∣∣∣∣∣
q

∣∣∣∣∣ j3 j4 j5

a j8 j7

∣∣∣∣∣
q

=

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
q

∣∣∣∣∣ j1 j2 j3

j7 j8 j9

∣∣∣∣∣
q

. (1.4.12)

In addition to the identities corresponding to Pachner moves, the quantum integers

satisfy the identity∑
a,b

(−)2a+2b[2a+ 1][2b+ 1]∆q(a, b, c) = w2(−)2c[2c+ 1]. (1.4.13)

and the orthogonality relation

∑
f

(−)2c+2f [2c + 1][2f + 1]

∣∣∣∣∣ a b c

d e f

∣∣∣∣∣
q

∣∣∣∣∣ a b c′

d e f

∣∣∣∣∣
q

= ∆q(d, e, c)∆q(a, b, c)δc,c′ .

(1.4.14)

The latter relation also holds in the q → 1 limit for the conventional 6j symbols.

By its construction the Turaev-Viro partition function is finite for any root of unity
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q, and converges to the Ponzano-Regge partition function when the Ponzano-Regge

partition function is finite. It is more difficult to prove that Zq tends to a finite value for

more general complexes, but it can be proved by showing that all interior vertices can

be removed from a triangulated manifold with boundary by the Pachner moves. For

the classes of manifolds with boundary that we will be constructing, the q → 1 limit

is well-defined, and so we take this as the definition of the regularised Ponzano-Regge

partition function Z for complexes with interior vertices,

Z = lim
q→1

Zq. (1.4.15)

This approach was also used in [12, 13].

The partition functions of the Turaev-Viro model are multiplicative. If M1 and

M2 are disjoint labelled complexes, then

Zq[M1 qM2] = Zq[M1]Zq[M2]. (1.4.16)

This multiplicative rule is modified slightly when the subcomplexes M1 and M2 are

not disjoint but share a boundary. If all the edges on the shared boundary remain

on the boundary of the glued complex, then the above relation still holds. For a

more general gluing, edges that are on the boundary of M1 may be in the interior

of M1 ∪M2, so new weight factors and sums need to be introduced. The partition

function of the glued complex Zq is

Zq[M1 ∪M2] = w−2v
∑
ji∈B

(∏
ji∈B

(−)2ji [2ji + 1]

)
Zq[M1]Zq[M2], (1.4.17)

where B is the subset of spin labels assigned to lines in ∂M1 ∩ ∂M2 that are in the

interior ofM1∪M2, and v is the number of vertices that were on the boundary ofM1

and M2 but are in the interior of the glued manifold M1 ∪M2. The multiplicative

rule transfers across to the Ponzano-Regge model in the q → 1 limit.

1.4.3 Belyi triangulations

We wish to construct labelled triangulations of 3-manifolds, or 3-complexes, which

can be generated from the ribbon graph and reproduce the ribbon graph evaluation in

the fuzzy sphere matrix model. These 3-complexes can be constructed by using Belyi

triangulations, which are triangulations of a two-dimensional surface generated from

an embedded dessin d’enfant.
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a b c

Figure 1.13: The ribbon graph, dessin, and Belyi triangulation associated to the ‘theta’
graph.

A connected ribbon graph of genus g can be embedded into a surface of genus

g. Recall from Section 1.1.3 that a ribbon graph can be converted into a clean dessin

d’enfant by colouring the vertices in black and introducing a new, bivalent white vertex

on each edge of the ribbon graph. An embedded ribbon graph can be realised as the

preimage of the interval [0, 1] of a Belyi map, where 0 and 1 are branch points on

the map; the preimage of 0 corresponds to the black vertices, and the preimages of 1

correspond to the white vertices.

Now consider the preimages of the third branch point at infinity under the Belyi

map. There is a preimage of infinity for each face of the dessin d’enfant; we mark these

points by crosses in the diagrams in this subsection. By also adding the preimages of

the intervals [1,∞] on the positive real axis and [∞, 0] on the negative real axis, we

construct a triangulation of the domain surface containing the dessin d’enfant. This

is the Belyi triangulation of the surface associated to the Belyi map and the dessin

d’enfant. Each triangle on the preimage surface maps onto one of the two triangles on

the target sphere, which are the regions Im(z) > 0 and Im(z) < 0. On the triangulated

domain surface, each preimage of infinity is connected to every vertex bounding the

face of the original dessin. In the following diagrams, we draw the preimages of the

interval [0, 1] (corresponding to the dessin) in blue, the preimages of the interval [1,∞]

in black, and the preimages of the negative real axis interval [∞, 0] in red. An example

of a ribbon graph being converted into a clean dessin and a Belyi triangulation is given

in Figure 1.13.

Now consider the Belyi triangulations associated to trivalent ribbon graphs. In this

case, the Belyi triangulation can be split into two distinct triangulations. Consider

first the blue and red edges embedded on the surface. Each white vertex connects to

two blue edges; if we remove the white vertex and consider the connecting edges to be
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a b

Figure 1.14: The outer and inner triangulations of the ‘theta’ graph.

a b c

Figure 1.15: The Belyi triangulations of the two-vertex genus one ribbon graph.

a single edge, then the blue and red edges form a triangulation of the surface. Each

triangle on the surface is bounded two red edges and a blue edge. We call this the

outer Belyi triangulation of the graph.

Next, consider the black edges of the original Belyi triangulation. Each white

vertex connects to exactly two black edges; we can similarly remove these vertices and

consider the connected pair of edges to be a single edge. This generates a black edge

for every edge of the original ribbon graph, and a vertex for every face of the original

graph; this is the dual of the ribbon graph. As the ribbon graph is trivalent, each dual

face is a triangle, and so the black edges form a triangulation of the surface. We call

this the inner Belyi triangulation of the graph.

In Figure 1.14, we have given an example of the inner and outer Belyi triangulations

associated to the ‘theta’ graph. In Figure 1.15, we have shown a Belyi triangulation of

a torus and its associated outer and inner Belyi triangulations, drawn on a rectangle

with opposite sides identified.

The Belyi triangulations of surfaces can be extended to triangulations of

handlebodies, which are 3-manifolds formed by embedding a surface into R3 and

taking the enclosed volume. Given a ribbon graph G of genus g, we can consider a



1. The spacetime theories of the Belyi string 67

labelled triangulation of the genus g handlebody with a boundary triangulation match-

ing the inner Belyi triangulation of the graph. On assigning integer spin labels lp to

the boundary edges, where 0 < lp ≤ 2j, we create an inner Belyi 3-complex of

the graph. We can also consider a labelled triangulation of the genus g handlebody

that matches the outer Belyi triangulation of the graph on its boundary. To each red

edge of the boundary triangulation, we assign the spin label j = 1
2
(N − 1). To each

blue edge of the boundary triangulation, we assign the spin label zero, corresponding

to the trivial representation of su(2). We call a labelled triangulation of a handle-

body with this boundary data a complete Belyi 3-complex of the graph. Since

the Ponzano-Regge partition function of a complex is independent of the choice of the

interior triangulation of the manifold, the partition function is a function purely of

the boundary data of the complex and its topology, and so the partition function is

determined by the ribbon graph. Any two complete Belyi 3-complexes of the same

graph will have the same Ponzano-Regge partition function. In the following sections,

we will show that, if M(G) is a complete Belyi 3-complex associated to a graph G
with F faces and E edges, then the Ponzano-Regge partition function is

Z(M(G)) = NF−E. (1.4.18)

This matches the ribbon graph evaluation of a graph, up to a normalisation factor

of N−E. For the case of the planar ribbon graphs, with complete Belyi 3-complexes

triangulating the solid ball, we can show that the ribbon graph evaluations will be of

exactly the form given in (1.3.21).

1.5 Belyi 3-complexes of planar graphs

In this section we restrict our attention to planar trivalent ribbon graphs generated

by the fuzzy sphere matrix model. We can construct the complete Belyi 3-complex of

a given planar ribbon graph G in two stages. First, we construct a triangulation of

the solid ball with the inner Belyi triangulation (the dual of G) on its boundary, and

assign a spin label lp to each edge of the ribbon graph. We call a labelled triangulation

with the inner Belyi triangulation on its boundary an inner Belyi 3-complex. Any

two inner Belyi 3-complexes of the same labelled graph will have the same Ponzano-

Regge partition function. We review a result of Moussouris [8] which states that the

Ponzano-Regge partition function of the inner Belyi 3-complex of a planar graph is

equal to the evaluation of the labelled spin network dual to its boundary triangulation,
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with the edge labels lp of the spin network inherited from the triangulation.

Next, we attach tetrahedra to the outside of the inner Belyi 3-complex in such a

way that the inner Belyi triangulation is moved into the interior of the manifold, and

that the outer Belyi triangulation appears on the boundary of the complex. We assign

a representation label j to each of the red edges and a label 0 to each of the blue edges,

making the triangulation a complete Belyi 3-complex. The Ponzano-Regge partition

function of the complex assigns a 6j symbol to each of the extra tetrahedra and sums

out the labels of the inner Belyi triangulation lp. This reproduces the ribbon graph

state sum in exactly the form given in (1.3.21), up to a normalisation factor of N−E.

In this section and the next section, we adopt some conventions with the edge

colours drawn in the figures. Blue edges always carry the spin label 0, corresponding

to the zero representation of su(2). Red edges carry the spin label j, corresponding

to the N -dimensional representation of su(2). These edges only appear in complete

Belyi 3-complexes, and will always appear on the boundary. The black edges will

carry spin labels lp, which will be constrained to be integers in the range 0 ≤ lp ≤ 2j

by the structure of the complexes. These edges appear on the boundaries of inner

Belyi 3-complexes, and in the interior of complete Belyi 3-complexes. The green edges

correspond to spin labels with Roman letters a, b, c, . . ., which may be integers or

half-integers, and may be unbounded from above. These edges always appear in the

interior of the inner Belyi 3-complexes.

1.5.1 Constructing the inner Belyi 3-complex

It is straightforward to construct an inner Belyi 3-complex associated to a planar

graph. Consider an embedding of the inner Belyi triangulation onto the surface of

a solid ball. Add a vertex in the interior of the solid ball, and connect every vertex

of the surface triangulation to the interior vertex. This gives a triangulation of the

solid ball with a tetrahedron for each of the V triangles on the surface, where V is

the number of vertices of the ribbon graph. We write I(G, {lp}) to denote this choice

of inner Belyi 3-complex with edges labelled lp. The aim of this subsection is to show

that

Z(I(G, {lp}) = S(G, {lp}). (1.5.1)

To do this, we first show that the partition function of the simplest inner Belyi

3-complex, corresponding to a theta graph, matches the spin network evaluation of

the graph. Next, we show that modifying the graph G by a ‘3-1’ or a ‘2-2’ move
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Figure 1.16: The inner Belyi 3-complex corresponding to the ‘theta’ graph, constructed
by gluing two tetrahedra on three faces, is a two-tetrahedron triangulation of the ball.

introduces 6j factors and spin label sums into Z ◦ I that match the factors given in

Section 1.3.2. The ‘orthogonality’ move on the graph can be generated by a ‘3-1’ and a

‘2-2’ move whenever the graph has more than two vertices. The duals of these moves,

acting on the boundary triangulation, are called the Alexander moves; they are the

two-dimensional Pachner moves, and can be used to relate any two triangulations of

the same surface. In particular, there exists a series of Alexander moves that relates

any triangulation of the sphere to the dual triangulation of the theta graph [62]. (We

could find such a sequence for a given triangulation by taking the dual graph and

reducing down the ‘polygons’ of the graph, as in Section 1.3.2.) Taking this duals of

this series of moves and reversing the order, we can generate any planar graph by a

finite series of ‘3-1’ and ‘2-2’ moves on the ribbon graph. As the functions Z ◦ I and

S agree for the theta graph and are modified by the same factors when the graph is

altered by any combination of ‘3-1’ or ‘2-2’ moves, it must be the case that Z ◦ I and

S agree for all labelled planar ribbon graphs.

In Figure 1.16 we have drawn the inner Belyi 3-complex associated to the theta

graph with the boundary edges labelled l1, l2, l3 (abbreviated to 1, 2, 3 in the diagram).

The complex can be constructed by taking two tetrahedra and gluing them on three

faces. This gives a ‘pillow’ triangulation of the solid ball, with three interior edges

labelled a, b, c, drawn in green. This manifold has an interior vertex, so we need to

regularise the Ponzano-Regge partition function by using the Turaev-Viro model. The
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a b

Figure 1.17: A pair of inner Belyi 3-complexes of graphs related by a ‘3-1’ move.

partition function is

Zq

(
I

( ))
= w−2

∑
a,b,c

(−)2a+2b+2c[2a+1][2b+1][2c+1]

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

.

(1.5.2)

By using the orthogonality identity (1.4.14) on the sum over c and the triangle con-

straint sum (1.4.13), we evaluate this to

Zq

(
I

( ))
= w−2

∑
a,b

(−)2a+2b [2a+ 1][2b+ 1]

[2l3 + 1]
∆q(a, b, l3)∆q(l1, l2, l3)

= ∆q(l1, l2, l3), (1.5.3)

which has the well-defined q → 1 Ponzano-Regge limit

Z

(
I

( ))
= lim

q→1
Zq

(
I

( ))
= ∆(l1, l2, l3) = S

( )
. (1.5.4)

This matches the spin network evaluation of the theta graph (1.3.28).

We next consider a pair of labelled ribbon graphs G and G ′ which are related by a

‘3-1’ move. Say that G has a vertex connecting edges with spin labels l1, l2, l3, and G ′

has, in place of this vertex, a triple of vertices connecting the spin labels l1, l2, . . . , l6.

The tetrahedra in the inner Belyi 3-complex associated to these vertices are given in

Figures 1.17a and 1.17b respectively. The Turaev-Viro partition function associated
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a b

Figure 1.18: A pair of inner Belyi 3-complexes of graphs related by a ‘2-2’ move.

to the part of the manifold shown in Figure 1.17a is

Zq

I



 =

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

, (1.5.5)

and the partition function associated to the part of the manifold shown in Figure 1.17b

is

Zq

I



 =

∑
d

(−)2d[2d+ 1]

∣∣∣∣∣ l1 l6 l5

d b c

∣∣∣∣∣
q

∣∣∣∣∣ l2 l4 l6

d c a

∣∣∣∣∣
q

∣∣∣∣∣ l3 l5 l4

d a b

∣∣∣∣∣
q

=

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣
q

, (1.5.6)

where we have used the ‘3-2’ Pachner move identity (1.4.12) for the Turaev-Viro model.

The inner Belyi triangulations of the two graphs therefore satisfy the relation

Zq

I



 =

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣
q

Zq

I



 , (1.5.7)

or, in terms of the complete graphs in the q → 1 limit,

Z(I(G ′, {l4, l5, l6, l1, . . .})) =

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣Z(I(G, {l1, . . .})). (1.5.8)

This matches the relation (1.3.37) for spin networks.
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Next, consider two graphs G and G ′ which differ by a ‘2-2’ move at a pair of vertices

of each graph. Say that the two vertices of G are connected by an edge labelled l6,

and the two vertices of G ′ are connected by an edge labelled l3. The tetrahedra of the

inner Belyi 3-complexes associated to the these vertices are shown in Figures 1.18a

and 1.18b respectively. The Turaev-Viro partition function associated to the labelled

complex in Figure 1.18a is

Zq

I



 =

∣∣∣∣∣ l1 l6 l5

a b c

∣∣∣∣∣
q

∣∣∣∣∣ l2 l4 l6

a c d

∣∣∣∣∣
q

(1.5.9)

and the partition function associated to the complex in Figure 1.18b is

Zq

(
I

( ))
=

∣∣∣∣∣ l1 l2 l3

d b c

∣∣∣∣∣
q

∣∣∣∣∣ l4 l5 l3

b d a

∣∣∣∣∣
q

(1.5.10)

The ‘2-3’ Pachner move, which is the inverse of the ‘3-2’ Pachner move, can be applied

on the two tetrahedra in Figure 1.18b; using the identity (1.4.12), the partition function

becomes

Zq

(
I

( ))
=
∑
l6

(−)2l6 [2l6+1]

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣
q

∣∣∣∣∣ l1 l6 l5

a b c

∣∣∣∣∣
q

∣∣∣∣∣ l2 l4 l6

a c d

∣∣∣∣∣
q

(1.5.11)

Now, as we are only interested in inner Belyi triangulations where the spin labels lp

are integers, the phase factor drops out and we can write

Zq

(
I

( ))
=
∑
l6

[2l6 + 1]

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣
q

Zq

I



 . (1.5.12)

In the q → 1 limit, the Ponzano-Regge partition functions of the inner Belyi complexes

satisfy the relation

Z (I (G ′, {l1, l2, l3, l4, l5, . . .})) =
∑
l6

(2l6 + 1)

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ Z (I (G, {l1, l2, l4, l5, l6, . . .}))

which reproduces the spin network identity (1.3.35) for Z ◦ I.
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a b

Figure 1.19: The tetrahedra glued on to each face and edge of the boundary of an
inner Belyi 3-complex.

As S(G, {lp}) and Z(I(G, {lp})) agree on the theta graph and on the ‘3-1’ and ‘2-2’

moves, and as every planar trivalent ribbon graph can be reduced down to a theta

graph by a series of ‘3-1’ and ‘2-2’ moves, we see that

Z(I(G, {lp}) = S(G, {lp}) (1.5.13)

for any planar ribbon graph G.

1.5.2 Constructing the complete Belyi 3-complex

For any labelled ribbon graph (G, {lp}) we can construct a 3-complex, homeomorphic

to a solid ball, with the dual triangulation of the ribbon graph (inner Belyi trian-

gulation) embedded on its boundary. We can glue more tetrahedra onto this inner

Belyi 3-complex to convert it into a complete Belyi 3-complex, with an outer Belyi

triangulation on its boundary. To each face of the inner Belyi triangulation, we glue

on the tetrahedron shown in Figure 1.19a. To each edge of the inner Belyi triangu-

lation, which we always draw in black in the diagrams, we glue on the tetrahedron

shown in Figure 1.19b. We assign the spin label j to each red edge and the spin label

0 to each blue edge of the boundary tetrahedra. The inner Belyi triangulation has

been moved into the inside of the complex by this gluing, hence the name ‘inner Belyi

triangulation’. The labels lp assigned to the edges of the inner Belyi triangulation are

summed over in the Ponzano-Regge partition function of the complex. The outer Belyi

triangulation is now embedded on the boundary of the complex, which makes this a

complete Belyi 3-complex. We write M(G) to denote the complete Belyi 3-complex

constructed from a planar graph G.

Each tetrahedron of the form given in Figure 1.19a glued on to a triangle with
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a b

Figure 1.20: Complete Belyi 3-complexes of a theta graph and a tetrahedral graph.

spin-labelled edges l1, l2, l3 has the associated partition function weight

Z =

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ , (1.5.14)

and each tetrahedron of the form in Figure 1.19a has the partition function weight∣∣∣∣∣ 0 j j

l1 j j

∣∣∣∣∣ =
(−)2j

(2j + 1)
, (1.5.15)

where we have used an identity on 6j symbols from [61]. The partition function of the

complete Belyi 3-complex associated to a ribbon graph G with vertices corresponding

to the faces of the inner Belyi triangulation, is

Z(M(G)) =
∑
l1,l2,...
a,b,...

Z(I(G, {lp}))
∏
edges
of G

(−)2lp(2lp + 1)

∣∣∣∣∣ 0 j j

l1 j j

∣∣∣∣∣ ∏
vertices

of G

∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣
=

(−)2jE

(2j + 1)E

∑
lp

S(G, {lp})
∏
edges

(2lp + 1)
∏

vertices

∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣ . (1.5.16)

The sum matches, factor-by-factor, the ribbon graph evaluation sum given in (1.3.21),

up to a power of NE. We deduce that the Ponzano-Regge partition function of a

complete Belyi 3-complex of a planar graph is

Z(M(G)) = N−ER(G) = NF−E. (1.5.17)
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We conclude this section with some examples of complete Belyi 3-complexes of

planar graphs. Figure 1.20a shows the complete Belyi 3-complex corresponding to

a theta graph. This is constructed from the ‘pillow’ triangulation given in Figure

1.16 by gluing a tetrahedron onto each of the boundary faces and a tetrahedron onto

each of the boundary edges. The boundary of this manifold matches the outer Belyi

triangulation of the theta graph given in Figure 1.14a. The Ponzano-Regge partition

function of this manifold is

Z = lim
q→1

w−2
∑
l1,l2,l3
a,b,c

(−)2a+2b+2c[2l1 + 1][2l2 + 1][2l3 + 1][2a+ 1][2b+ 1][2c+ 1]

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ l1 l2 l3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l1 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l2 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l3 j j

∣∣∣∣∣
q

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
q

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
q

=
(−)2j

(2j + 1)3

∑
l1,l2,l3

(2l + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
= N−3R

( )
, (1.5.18)

reproducing the ribbon graph sum given in Figure (1.3.43).

The complete Belyi 3-complex constructed from a tetrahedral graph is given in

Figure 1.20b. This complex consists of six tetrahedra of the form in Figure 1.19a, six

tetrahedra of the form in Figure 1.19b, and an inner Belyi 3-complex consisting of four

tetrahedra with black and green edges. The Ponzano-Regge partition function of this

complete Belyi 3-complex is

Z = lim
q→1

w−2
∑

internal labels

[2l1+1] . . . [2l6+1](−)2a+2b+2c+2d[2a+1][2b+1][2c+1][2d+1]×

×

∣∣∣∣∣ 0 j j

l1 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l2 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l3 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l4 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l5 j j

∣∣∣∣∣
q

∣∣∣∣∣ 0 j j

l6 j j

∣∣∣∣∣
q

×

×
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j j j
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q
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j j j
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j j j
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×
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q

∣∣∣∣∣ l2 l4 l6

d c a
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d b a
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∣∣∣∣∣ l1 l5 l6

d c b

∣∣∣∣∣
q
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= N−6
∑
l1l2l3
l4l5l6

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)

∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣×

×

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l4 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣ = N−6R


 .

(1.5.19)

This partition function matches the ribbon graph evaluation sum of (1.3.45).

1.6 Complete Belyi 3-complexes of non-planar graphs

In the previous section, we presented a way of constructing a complete Belyi 3-complex

from any planar ribbon graph whose partition function reproduces the evaluation of

the graph. We can extend this construction of Belyi 3-complexes to non-planar ribbon

graphs. For a graph G of genus g, a complete Belyi 3-complexM(G) is a triangulation

of a handlebody of genus g, with the outer Belyi triangulation of G embedded on the

boundary, and the spin labels j and 0 assigned to the red and blue boundary edges

respectively. The aim of this section is to show that, for any complete Belyi 3-complex

M(G) of a graph G,

Z(M(G)) = NF−E = N−ER(G). (1.6.1)

Unfortunately, the approach used in the previous section does not generalise to the

non-planar case, as Moussouris’ algorithm does not hold for non-planar graphs. The

complex constructed by assigning a tetrahedron to each vertex of a graph of genus g is

not a handlebody, but a three-dimensional cone over the genus g surface. The partition

function associated to this conical complex does not match the spin network evaluation

of the graph. The Ponzano-Regge partition function of a handlebody with an inner

Belyi triangulation on its boundary does not match the spin network evaluation either.

However, despite being unable to match each factor of (1.3.21) to a Ponzano-Regge

partition function, we can still show that the partition function of a complete Belyi

3-complex evaluates to NF−E in every case.

The approach we take is as follows. In the next subsection, we start by considering

the simplest triangulation of the solid torus with an outer Belyi triangulation on its

boundary, and show that its partition function evaluates to NF−E. We also consider

another complete Belyi 3-complex of the solid torus which is necessary for construct-
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Figure 1.21: The connected sum of a genus g handlebody and a solid torus is a genus
(g + 1) handlebody.

ing higher genus handlebodies. In the subsequent subsection, we show that any two

complete Belyi 3-complexes of a pair of graphs which are related by a ‘3-1’ or a ‘2-2’

move will satisfy relations of the form

Z

M



 = N−2Z

M



 , (1.6.2)

Z

(
M

( ))
= Z

M



 . (1.6.3)

Any two triangulations of a surface of the same genus are related by a series of Alexan-

der moves, which implies that any two ribbon graphs of the same genus are related by

a series of ‘3-1’, ‘2-2, and ‘1-3’ moves [62]. This shows that the ribbon graph evaluation

of any genus one graph agrees with the Ponzano-Regge partition function of a com-

plete Belyi 3-complex of the graph. In the final subsection, we show how to construct

a genus (g + 1) complete Belyi 3-complex from a genus g complete Belyi 3-complex.

A genus (g + 1) handlebody is the connected sum of a genus g handlebody and a

solid torus, glued together at a neighbourhood on their boundaries, as demonstrated

in Figure 1.21. We glue a triangulation of the solid torus with a contractible triangle

on its boundary to a general genus g handlebody, and show that the new complete

Belyi 3-complex satisfies (1.6.1). This is enough to prove that (1.6.1) holds for graphs

of any genus by induction on g.
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a b

Figure 1.22: An inner and a complete Belyi 3-complex of the simplest non-planar
graph.

1.6.1 Triangulations of the solid torus

We start by constructing an inner Belyi 3-complex I(G, {lp}) of the simplest non-planar

ribbon graph,

I

( )
. (1.6.4)

We look for a 3-complex of the solid torus with two triangles on its boundary. In fact,

there exists a particularly simple triangulation, consisting of a single tetrahedron with

two faces glued together after a 2π/3 twist [63]. This tetrahedron is shown in Figure

1.22a. In the diagram, the triangles labelled by the triples (l1, l1, l2) are identified, the

edges with the same spin label are identified, and the two distinct triangles labelled

(l1, l2, l3) lie on the boundary. The boundary triangles of this tetrahedron form the

inner Belyi triangulation shown earlier in Figure 1.15c. To convert this into a complete

Belyi 3-complex, we attach two tetrahedra with black and red edges and three tetrahe-

dra with black, red and blue edges, in an analogous manner to in the previous section.

The resulting complex is shown in Figure 1.22b, and has the outer Belyi triangulation

from Figure 1.15b on its boundary.
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a b c

Figure 1.23: A genus one ribbon graph, with its dual triangulation and an associated
inner Belyi 3-complex.

The Ponzano-Regge partition function of this complete Belyi 3-complex is

Z

(
M

( ))
=

(−)2j

(2j + 1)3

∑
l1,l2,l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)∣∣∣∣∣ l1 l2 l3

l1 l2 l1

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ (1.6.5)

We can apply the Biedenharn-Elliot identity (1.4.12) on the sum over l3 and the

orthogonality relation (1.4.14) on the sum over l2 to find

Z

(
M

( ))
=

(−)2j

(2j + 1)3

∑
l1,l2

(2l1 + 1)(2l2 + 1)

∣∣∣∣∣ l1 l1 l2

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l1 l2

j j j

∣∣∣∣∣
=

1

(2j + 1)4

∑
l1

∆(l1, j, j)(2l1 + 1)

=
1

(2j + 1)2
= N−2. (1.6.6)

As the ribbon graph has one face and three edges, we find that Z(M(G)) matches

R(G) = NF−E for this graph.

In the following subsections, we will need an inner Belyi triangulation of the solid

torus in which one of the boundary triangles is homeomorphic to a disc. For this

reason, we present another example of a Belyi 3-complex, associated to the ribbon

graph in Figure 1.23a. This graph is of genus one and has six vertices, nine edges,

and three faces, and its dual triangulation is given in Figure 1.23b with labels on the

edges. By taking the one-tetrahedron triangulation of the torus from Figure 1.22a

and layering four new tetrahedra onto the boundary, we can build up an inner Belyi
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a b

Figure 1.24: A twenty-tetrahedron complete Belyi 3-complex of the ribbon graph,
where three pairs of triangles are identified, and its Belyi triangulations.

3-complex of the graph, shown in Figure 1.23c.

We extend this inner Belyi 3-complex to a complete Belyi 3-complex by attaching a

tetrahedron onto each face and each edge of the boundary triangulation. The complete

Belyi 3-complex is shown in Figure 1.24a, along with the Belyi triangulation of the

graph in Figure 1.24b. The partition function of this complex has nine 6j symbols

corresponding to the edges of the ribbon graph, which we immediately evaluate to∣∣∣∣∣ 0 j j

lp j j

∣∣∣∣∣ =
(−)2j

(2j + 1)
. (1.6.7)

The remaining eleven tetrahedra contribute 6j symbols to the partition function,

Z(M(G)) =
(−)2j

(2j + 1)9

∑
a,b,l1,...

(−)2a+2b(2a+ 1)(2b+ 1)

[ ∏
p=1,...,9

(2lp + 1)

]
×

×

∣∣∣∣∣ l4 l7 a

l4 l7 l7

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

b l5 l2

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

l5 b l9

∣∣∣∣∣
∣∣∣∣∣ l2 l7 b

l6 l3 l1

∣∣∣∣∣
∣∣∣∣∣ l4 l9 b

l3 l6 l8

∣∣∣∣∣×
×

∣∣∣∣∣ l2 l4 l5

j j j

∣∣∣∣∣
∣∣∣∣∣ l5 l7 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l8 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l4 l6 l8

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l6 l7

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ .
(1.6.8)
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This partition function can be reduced down by successively applying the Biedenharn-

Eliot and orthogonality identities. Starting with the sum over the label a, we can use

the Biedenharn-Eliot identity in the form

∑
a

(−)2a(2a+1)

∣∣∣∣∣ l4 l7 a

l4 l7 l7

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

b l5 l2

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

l5 b l9

∣∣∣∣∣ =

∣∣∣∣∣ l2 l7 l9

l7 l5 l4

∣∣∣∣∣
∣∣∣∣∣ l2 l7 l9

l4 b l7

∣∣∣∣∣
(1.6.9)

to remove the sum over a and a 6j. This also reduces the number of 6js containing b

by one, so we can now apply the Biedenharn-Eliot identity on the sum over the label

b. In a similar manner, we can apply this identity successively on the sums over l6, l4,

and l8 to obtain

Z =
(−)2j

(2j + 1)9

∑
l1,l2,l3
l5,l7,l9

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l5 + 1)(2l7 + 1)(2l9 + 1)×

×

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l7 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l7 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l5 l7 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l5 l7 l9

j j j

∣∣∣∣∣ .
(1.6.10)

Using the orthogonality relation (1.4.14) on l5, then l7, we obtain

Z =
(−)2j

(2j + 1)11

∑
l1,l2,l3,l9

(2l1+1)(2l2+1)(2l3+1)(2l9+1)∆(l9, j, j)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
=

(−)2j

(2j + 1)9

∑
l1,l2,l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ . (1.6.11)

This 6j sum was evaluated in an earlier section, in equation (1.3.43). We conclude

that

Z(M(G)) = N−6. (1.6.12)

which confirms that the partition function of this complete Belyi 3-complex matches

the ribbon graph evaluation N−ER(G) = NF−E for the graph in Figure 1.23a (up to

a normalisation factor of NE).
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a b

Figure 1.25: Two complete Belyi 3-complexes associated to graphs related by a ‘3-1’
move.

1.6.2 Trivalent graph moves on complete Belyi 3-complexes

In this section we show that the Ponzano-Regge partition functions of complete Belyi

3-complexes associated to a pair of ribbon graphs related by a ‘3-1’ move are related by

a factor of N2, and that the partition function of a pair of complete Belyi 3-complexes

associated to graphs related by a ‘2-2’ move are equal.

Consider a pair of graphs G1 and G2 which differ from each other by a ‘3-1’ move,

with G1 having two more vertices than G2. Let M1 be a complete Belyi 3-complex

of the graph G1 with an inner Belyi 3-complex in its interior. Near to the part of

the outer Belyi triangulation affected by the ‘3-1’ move, the complete Belyi 3-complex

takes the form shown in Figure 1.25. Let Z̄(l1, l2, l3) refer to the partition function of

the remainder of the complete Belyi 3-complexM1 that is not displayed in the figure.

The partition function of the manifold M1 is then

Z(M1) =
(−)2j

(2j + 1)3

∑
l1,l2,l3
l4,l5,l6

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)(2l5 + 1)(2l6 + 1)

∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l2 l4 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ Z̄(l1, l2, l3). (1.6.13)

Let M2 be a complex which is identical to M1 everywhere except at the tetrahedra

shown in Figure 1.25a, which are replaced by the tetrahedron shown in Figure 1.25b.
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a b

Figure 1.26: Two complete Belyi 3-complexes associated to graphs related by a ‘2-2’
move.

This is a complete Belyi 3-complex of the graph G2, and has the partition function

Z(M2) =
∑
l1,l2,l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ Z̄(l1, l2, l3). (1.6.14)

We can relate the partition functions of the manifolds by applying the Biedenharn-

Eliot identity on the sum over l6 in (1.6.13) and the orthogonality relation on the

labels l5 and l4 to deduce that

Z(M1) =
(−)2j

(2j + 1)3

∑
l1,l2,l3
l4,l5

[
5∏
p=1

(2lp + 1)

] ∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣ Z̄(l1, l2, l3)

=
1

(2j + 1)4

∑
l1,l2,l3,l4

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)∆(l4, j, j)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ Z̄(l1, l2, l3)

= N−2Z(M2). (1.6.15)

The Ponzano-Regge partition function of the complete Belyi 3-complex M1 changes

by a factor of N−2 when a ‘3-1’ move is applied to the graph. Noting that any two

triangulations of the same manifold with the same boundary data have the same

Ponzano-Regge partition function, we see that any complete Belyi 3-complexes arising

from graphs related by a ‘3-1’ move are related by a factor of N−2.

Next, we consider a pair of graphs G1 and G2 which are related by a ‘2-2’ move.

LetM1 be a complete Belyi 3-complex of the graph G1 with an inner Belyi 3-complex

in its interior. The tetrahedra at the boundary of the complex corresponding to the

affected vertices are of the form shown in Figure 1.26a. We can construct a complete
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Belyi 3-complexM2 of the graph G2 by replacing these tetrahedra with the tetrahedra

shown in Figure 1.26b. Let Z̄(l1, l2, l3, l4, l5) be the partition function of the common

remainder of the complex which is not shown in the figures. The Ponzano-Regge

partition functions of the manifolds are

Z(M1) =
(−)2j

(2j + 1)

∑
l1,l2,l3
l4,l5

(
5∏
p=1

(2lp + 1)

)∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l4 l5

j j j

∣∣∣∣∣ Z̄(l1, . . . l5),

Z(M2) =
(−)2j

(2j + 1)

∑
l1,l2,l3
l4,l5,l6

(
6∏
p=1

(2lp + 1)

)∣∣∣∣∣ l2 l4 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l5 l6

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

l4 l5 l6

∣∣∣∣∣ Z̄(l1, . . . l5).

These are related by the Biedenharn-Eliot identity on the sum over the label l6, and

so Z(M1) = Z(M2). We deduce that any pair of complete Belyi 3-complexes arising

from graphs related by a ‘2-2’ move have the same Ponzano-Regge partition function.

1.6.3 Complete Belyi 3-complexes of general handlebodies

We can now show that the partition function of a complete Belyi 3-complex associated

to any graph G matches its ribbon graph evaluation. We do this by induction on the

genus. First, we show that the matching holds for all graphs of genus one. We then

show that if the matching holds for all graphs of genus g, then it also holds for all

graphs of genus (g + 1). This is enough to deduce, by induction, that the partition

function of any complete Belyi 3-complex matches the ribbon graph evaluation of its

graph.

First, consider a trivalent ribbon graph G of genus one. The Euler characteristic

formula V − E + F = 2− 2g states that its ribbon graph evaluation is

R(G) = NF = NE−V . (1.6.16)

As any two triangulations of a surface can be related by a series of Alexander moves,

we know that any two ribbon graphs of the same genus can be related by a series of

‘3-1’, ‘2-2’ and ‘1-3’ graph moves [62]. In particular, there exists a sequence of moves

which relates the V -vertex graph G to the two-vertex genus one graph with the ribbon

graph evaluation

R

( )
= N. (1.6.17)
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b

Figure 1.27: The complex near the contractible triangle, and the complex after the
removal of the four tetrahedra.

Consider this sequence of Alexander moves in reverse. Let {Gi} be a sequence of

graphs with consecutive graphs related by a ‘3-1’, ‘2-2’, or ‘1-3’ move, with G0 being the

two-vertex graph of genus one, and Gn = G. We can choose a complete Belyi 3-complex

Mi associated to each graph Gi. The relations on complete Belyi 3-complexes derived

in the previous section state that complete Belyi 3-complexes with graphs related by

trivalent graph moves satisfy

Z

M



 = N−2Z

M



 , (1.6.18)

Z

(
M

( ))
= Z

M



 , (1.6.19)

from which we can see that, if Vi is the number of vertices of the graph Gi, then the

partition functions satisfy the relation

Z(Mi) = NVi−1−ViZ(Mi−1). (1.6.20)

This extends to a relation between the partition functions of the complete Belyi 3-

complex associated to the graph G and the complete Belyi 3-complex discussed earlier

from Figure 1.22b. We see that

Z(Mn) = NV0−VnZ(M0) (1.6.21)

= N−V = N−ER(G). (1.6.22)

As G was an arbitrary graph of genus one, this proves that equation (1.6.1) holds for

all graphs of genus one.
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We now know that ribbon graph evaluations match Ponzano-Regge partition func-

tions for genus one graphs, so we assume, as an inductive hypothesis, that this is also

true for all graphs of some genus g: that is, if M(G) is any complete Belyi 3-complex

of a ribbon graph G of genus g with V vertices, then

Z(M(G)) = N2−2g−V . (1.6.23)

We wish to show that this relation holds for some graph of genus (g+1). Consider a V -

vertex graph G of genus g with the property that one of its dual triangles is contractible:

that is, the three vertices and three edges bounding the dual triangle are distinct. Let

M(G) be a complete Belyi 3-complex of this graph with an inner Belyi triangulation

in its interior. (It is always possible to construct such a triangulation of a handlebody

with Belyi triangulations in the interior and on the boundary.) Near the contractible

triangle of the inner Belyi triangulation, the complex takes the form shown in Figure

1.27a. By removing the tetrahedron with j labels glued to the contractible triangle

with the labels (l1, l2, l3), and also removing the three adjoining tetrahedra with blue

edges, we create a new complex M̂, which takes the form shown in Figure 1.27b near

the contractible triangle. This manifold is not a complete Belyi 3-complex or an inner

Belyi 3-complex, as it does not possess either of the complete Belyi triangulations on

its boundary. Writing Ẑ(l1, l2, l3) to denote the partition function of the complex M̂,

then the partition function of the manifold M is, by the inductive hypothesis,

Z(M(G)) =
(−)2j

(2j + 1)3

∑
l1,l2,l3

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ Ẑ(l1, l2, l3)

= N2−2g−V . (1.6.24)

The manifold M̂ is a triangulation of a handlebody of genus g. We can create a

triangulation of a handlebody of genus (g+ 1) by gluing on a complex homeomorphic

to the solid torus. Consider the triangulation of the solid torus given in the latter part

of Section 1.6.1, shown in Figure 1.24a. The triangle labelled (l1, l2, l3) in the interior is

contractible, and borders a tetrahedron with three red edges. This tetrahedron meets

three other tetrahedra with blue edges at a vertex. We remove this tetrahedron and

split the vertex into three distinct boundary vertices to generate the labelled solid

torus triangulation given in Figure 1.28a. The boundary of this triangulation is given

in Figure 1.28b, with the interior Belyi triangulation projected onto the surface in

dashed lines.

We can glue this solid torus triangulation onto the handlebody triangulation by



1. The spacetime theories of the Belyi string 87

a b

Figure 1.28: A triangulation of the solid torus and its boundary triangulation with
the inner Belyi triangulation.

identifying the four pairs of triangles on the boundary of each manifold which bound

the labels l1,l2, and l3. These black edges are moved into the interior of the glued

manifold. The blue edges of the glued complex trace out an embedded graph G ′ on

the surface of the glued manifoldM′, which has genus (g+1) and V ′ = V +4 vertices.

The boundary of the glued triangulation is an outer Belyi triangulation, so this complex

is a complete Belyi 3-complex of genus (g + 1). Using the partition function of the

solid torus (1.6.8) and M̂, then the glued Belyi 3-complex has the partition function

Z(M′(G ′)) =
(−)2j

(2j + 1)9

∑
a,b,l1,...

(−)2a+2b(2a+ 1)(2b+ 1)

[ ∏
p=1,...,9

(2lp + 1)

]
×

×

∣∣∣∣∣ l4 l7 a

l4 l7 l7

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

b l5 l2

∣∣∣∣∣
∣∣∣∣∣ l4 l7 a

l5 b l9

∣∣∣∣∣
∣∣∣∣∣ l2 l7 b

l6 l3 l1

∣∣∣∣∣
∣∣∣∣∣ l4 l9 b

l3 l6 l8

∣∣∣∣∣×
×

∣∣∣∣∣ l2 l4 l5

j j j

∣∣∣∣∣
∣∣∣∣∣ l5 l7 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l3 l8 l9

j j j

∣∣∣∣∣
∣∣∣∣∣ l4 l6 l8

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l6 l7

j j j

∣∣∣∣∣ Ẑ(l1, l2, l3)
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=
(−)2j

(2j + 1)9

∑
l1,l2,l3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ Ẑ(l1, l2, l3)

= N−6N2−2g−V = N2−2(g+1)−(V+4). (1.6.25)

This evaluation matches the formula (1.6.23) for a genus (g+1) graph with V ′ = V +4

vertices, as required.

We have shown that there is a genus (g+1) graph with a complete Belyi 3-complex

matching the ribbon graph evaluation. We can relate the partition functions of all

genus (g + 1) graphs by using similar arguments as those used in the genus one case.

If G ′′ is another graph of genus (g+ 1), then there exists a sequence of trivalent graph

moves relating the graphs G ′ and G ′′ with an associated sequence of complete Belyi

3-complexes. Say that G ′′ has V ′′ vertices and an associated complete Belyi 3-complex

M′′. The partition functions of the complexes are related by (1.6.21),

Z(M′′) = NV ′−V ′′Z(M′)

= N2−2(g+1)−V ′′ . (1.6.26)

As G ′′ was an arbitrary genus (g + 1) graph, this tells us that the matching holds for

all genus (g + 1) graphs. This is enough to prove the inductive hypothesis, and so we

deduce that the matching of ribbon graph evaluations and Ponzano-Regge partition

functions of complete Belyi 3-complexes holds for all ribbon graphs.

1.7 Discussion

We have linked the Gaussian Hermitian matrix model with the fuzzy sphere matrix

algebra, and interpreted this framework as a spacetime field theory on the S2 target

space of the Belyi string. The correlators of the matrix model can be expanded into

a series of trivalent ribbon graphs, each of which corresponds to a weighted sum over

the representations of su(2), in a manner resembling the evaluations of spin networks.

The Ponzano-Regge model reproduces these spin label sums for a class of triangulated

3-manifolds with a particular set of boundary data, which we called complete Belyi

3-complexes. This suggests an interpretation of the Ponzano-Regge model as a ‘lift’

to three dimensions of the two-dimensional Belyi string theory.

The Ponzano-Regge partition functions generated by planar graphs take a different

form to those generated for non-planar graphs. For planar graphs, it is possible to
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choose Belyi 3-complexes of graphs such that partition functions take the form

Z(M(G)) =

(
(−)2j

2j + 1

)E∑
lp

S(G, {lp})
∏

graph
edges

(2lp+1)
∏

graph
vertices

∣∣∣∣∣ lp lq lr

j j j

∣∣∣∣∣ = N−ER(G).

(1.7.1)

The spin network evaluation S(G, {lp}) of a graph corresponds to the partition func-

tion Zin(G, {lp}) of the inner Belyi 3-complex, contained within the complete Belyi

3-complex, with the dual graph to G embedded on its boundary. The matching of the

partition function and ribbon graph evaluations at the level of the individual factors

in the state sum weight provides a strong link between the two models in the planar

case.

While we have successfully matched the values of the partition functions and the

ribbon graphs in all cases, this factor-by-factor matching does not extend to the non-

planar case. This is a direct consequence of the fact that Moussouris’ algorithm,

which identified Zin(G, {lp}) and S(G, {lp}) for planar graphs, does not generalise to

non-planar graphs. To solve the discrepancy between the weight factors in the two

spin label sums would be tantamount to extending Moussouris’ algorithm to non-

planar graphs. The algorithm of Section 1.3.2 gives an expression for any spin network

in terms of 6js and representation dimensions, with phase factors introduced in the

reduction of non-planar graphs. It is possible that there exists a class of triangulated

3-manifolds or 3-conifolds, which are neither handlebodies nor simply cones over a

genus g surface, whose Ponzano-Regge partition functions reproduce the spin network

evaluations of non-planar graphs. This is an open problem in our scenario and in the

spin network literature [64]. It seems plausible that the difficulties of the non-planar

case are related to the fact that the topological A-string/matrix model matching is

only known to hold at the planar level [4, 5].

The Ponzano-Regge partition functions of complete Belyi 3-complexes and the

ribbon graph evaluations differ by a factor of NE. We interpreted this discrepancy

as a relic of our choices of normalisation. Indeed, if we take the generating function

ZHMM of the trivalent ribbon graph correlators (1.2.38) with the coupling rescaled

by λ 7→ N−2λ, then the Ponzano-Regge partition functions ZPR appear in the series
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expansion with matching normalisations:

ZHMM(λ,N) =

∫
Da e−

1
2

trX2+λN−3/2trX3

=
∑
k≥0

λ2k

(2k)!
N−3k〈(trX3)2k〉

=
∑
k≥0

λ2k

(2k)!

∑
τ∈[23k]

ZPR(M(G(σk, τ))). (1.7.2)

In this expression, each pair of S6k permutations (σk, τ), with σk ∈ [32k], specifies a

trivalent ribbon graph G with V = 2k vertices and E = 3k edges, andM is any choice

of complete Belyi 3-complex of the graph G. This matching of the matrix model with

the Ponzano-Regge model holds at a graph-by-graph level. It is an open question as

to whether there exists a matching of the matrix model correlators, or the generating

functions of the correlators, to partition functions in higher-dimensional gravity.

The Belyi maps string theory discussed in this chapter was realised within a more

conventional string theory in [4]. An interesting direction for future research would be

to seek a realisation of the Ponzano-Regge state sums of complete Belyi 3-complexes

within more conventional constructs in string theory. The Ponzano-Regge model is

known to be equivalent to Chern-Simons theory with ISO(3) gauge group [12, 13],

and Chern-Simons terms are known to arise in the worldvolumes of membranes in M-

theory [65]. It seems plausible to expect there to be an embedding of our triangulated

3-manifolds within membrane constructions, giving an M-theory interpretation of the

Belyi string.



Chapter 2

Thresholds of factorisation in the AdS/CFT

correspondence

The original AdS/CFT correspondence of Maldacena proposes that type IIB string

theory on an AdS5 × S5 background is dual to N = 4 super Yang-Mills in four

dimensions in the large N limit [14]. In the half-BPS sector, the three-point correlators

of N = 4 super Yang-Mills are not renormalised, and can be matched exactly to

Kaluza-Klein graviton correlators in supergravity [17]. These correlators tend to zero

in the large N limit when the graviton energies are small, which is a manifestation of

large N factorisation.

If the graviton energies are chosen to grow at a large enough rate with respect to N ,

then the three-point correlator does not tend to zero and diverges in the large N limit.

This divergence is due to the 1/N quantum corrections to the correlator becoming

large. We interpret this breakdown of large N factorisation as a result of non-local

effects emerging in the gravitational theory at high energy. While we cannot yet

formulate an effective field theory on the gravity side which reproduces the breakdown

of factorisation in the gauge theory correlators, we believe that studying the limits of

factorisation in the gauge theory provides hints towards the nature of non-locality in

quantum gravity.

The aim of this chapter is to provide a systematic study of the threshold energies

at which large N factorisation fails to hold by careful analysis of the gauge theory

correlators. The explicit finite N form of the CFT correlator allows us to investigate

the regime of graviton energies at which the correlators become non-vanishing in the

large N limit. We define the factorisation threshold to be the submanifold of the pa-

rameter space {J1, J2, N} on which the position-independent free field CFT correlator

〈trZJ1trZJ2trZ†J1+J2〉 evaluates to a constant c, chosen for convenience to be one in

most formulae. At energies below and near the threshold, we associate single-traces to
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single objects and multi-traces to multiple objects. However, a standard Fock space

structure is not really appropriate at the threshold, as composite states made of a

pair of gravitons have non-vanishing quantum correlations with states consisting of a

single graviton, even as N is taken to infinity. Above the threshold, associating single

traces to single objects of any sort probably does not make sense. Certainly, for Ji of

order N , it is known that the gravitons are represented semiclassically by D3-branes

wrapping a sphere [66], and cannot be represented as single traces [24]. The correct

basis for single and giant gravitons is given by Schur polynomials, indexed by Young

diagrams [25].

We focus on three types of correlator in particular: an extremal three-point corre-

lator with one independent operator dimension J , an extremal three-point correlator

with two independent operator dimensions J1 and J2, and a ‘near-extremal’ three-

point correlator. We also consider some extensions concerning extremal correlators on

non-trivial backgrounds and extremal correlators with a large number of operators.

We find, quite generally, that the threshold occurs when the product of two of the

dimensions is of order N logN .

The outline of this chapter is as follows. In Section 2.1 we give an overview of our

results, introducing the definition of the factorisation threshold and stating without

detailed calculation the form of the threshold in the simplest case. The local gauge in-

variant operators are functions of a four-dimensional spacetime position and an energy

J , which is equal to angular momentum because of the BPS condition. We explain

an interesting aspect of our results, namely the similarity of the dependence of the

threshold on separations in spacetime and on differences in energy. We elaborate on

the departure from the usual Fock space structure associated with traces at large N

and raise the question of a spacetime effective field theory derivation of the properties

of the threshold. This is one of our motivations for performing detailed studies of the

threshold.

In the subsequent sections, we present the details of the calculations of the thresh-

olds. In Section 2.2 we review and introduce some notation on large N asymptotics

for describing the thresholds precisely, and give a complete calculation of the extremal

three-point correlator with one independent angular momentum J . We also discuss

in this section some links between the form of the threshold equations with running

gauge coupling equations and instanton expansions. In Section 2.3, we present a cal-

culation of the three-point extremal correlator when the operator dimensions are not

equal. In Section 2.4, we calculate a non-extremal three-point correlator, and discuss

how it differs from the extremal cases.
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We discuss in Section 2.5 some other tractable examples of extremal correlators

that could shed more light on the general nature of factorisation thresholds. We

consider the case of a correlator with k holomorphic insertions, and also the case of

a three-point correlator on a non-trivial background dual to an LLM geometry [67].

We conclude by summarising what has been shown about factorisation within this

chapter, and discussing some other examples of correlators that could tell us more

about the general nature of factorisation thresholds in the future.

2.1 Factorisation thresholds and bulk interpreta-

tions

In this section we describe the factorisation threshold for the simplest case: the transi-

tion of two gravitons with the same angular momentum J going to a single graviton of

angular momentum 2J . This is followed by a discussion of the physics at the thresh-

old in the bulk AdS space. This motivates further investigations of thresholds, which

we outline, along with the qualitative results. The details of these investigations are

presented in subsequent sections.

2.1.1 Thresholds of factorisation in the gauge theory

Our starting point is the three-point correlator of two holomorphic single trace oper-

ators and an antiholomorphic single trace operator,

〈trZJ1(x1)trZJ2(x2)trZ†J1+J2(y)〉. (2.1.1)

This correlator is not renormalised [17], and so a calculation in the free field limit will

hold for all values of the coupling g2
YM . The position-dependence of the correlator can

be factored out by conformal symmetry:

〈trZJ1(x1)trZJ2(x2)trZ†J1+J2(y)〉 =
〈trZJ1trZJ2trZ†J1+J2〉
|x1 − y|2J2|x2 − y|2J2

. (2.1.2)

The factor in the numerator of this expression is position-independent and can be

calculated using character expansions [27]. If we apply an inversion y′ = y
|y|2 , and trans-

form the anti-holomorphic operator to the primed frame, while taking

|x1−x2| → 0, y′ → 0, then the position dependence vanishes, and we are left with the

purely combinatoric factor which can be interpreted as an inner product of the double
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trace state and the single trace state. This correlator is extremal as the sum of the

holomorphic operator dimensions (J1 + J2) is equal to the antiholomorphic operator

dimension. In the following sections, we focus on the inner product

〈trZJ1trZJ2trZ†J1+J2〉. (2.1.3)

A natural normalisation for these correlators is the multiparticle normalisation, in

which each operator is divided by the square root of its two-point function,

〈〈trZJ1trZJ2trZ†J1+J2〉〉 :=
〈trZJ1trZJ2trZ†J1+J2〉√

〈trZJ1trZ†J1〉〈trZJ2trZ†J2〉〈trZJ1+J2trZ†J1+J2〉
. (2.1.4)

This normalisation is used in comparing supergravity and conformal field theory cal-

culations of the three-point functions [17]. We have introduced the double-bracket

notation 〈〈·〉〉 to refer to a multiparticle-normalised correlator. When the operator

dimensions Ji are sufficiently small, then

〈〈trZJ1trZJ2trZ†J1+J2〉〉 '
√
J1J2(J1 + J2)

N
(2.1.5)

in the large N limit [17, 68]. This clearly tends to zero at large N , and so the single

trace and double trace operators are orthogonal at large N .

Large N orthogonality of the operators can still hold when J1 and J2 increase with

N . By calculating the correlator explicitly at finite N , it can be shown that (2.1.5) is

still valid when J1 and J2 are functions of N , provided that J1, J2 ≤
√
N at large N .

However, this formula is not valid when J1 and J2 grow large enough with N . For large

enough Ji, the normalised correlator grows exponentially with N , and factorisation of

the operators no longer holds. The aim of this chapter is to investigate and interpret

the threshold partitioning these two distinct largeN limits of the normalised correlator.

For simplicitly, we initially consider in Section 2.2 a correlator in which the holo-

morphic operator dimensions are equal. Setting J1 = J2 = J , we define

G3(J,N) = 〈〈trZJtrZJtrZ†2J〉〉. (2.1.6)

To gain some insight into the large N behaviour of this correlator when J depends on

N , we can plug in a simple trial function J(N) and find the asymptotic behaviour of

the correlator when N is large. If we set J = Nα, where α is a constant, then a finite
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N calculation [68] shows that

G3(Nα, N)→ 0, 0 < α ≤ 1

2
,

G3(Nα, N)→∞, 1

2
< α < 1. (2.1.7)

If J grows as a power of N larger than 1
2
, then the correlator will diverge and factori-

sation breaks down. However, a simple power-law scaling is not sufficient to deduce

the exact growth of J that is required for the correlator to diverge. A more general

N -dependence can be found, intermediate between the cases α = 1
2

and α > 1
2
, for

which the correlator tends to a constant value.

Our main approach to considering the threshold between factorisation and break-

down is to look for a solution to the equation

G3(J,N) = 1. (2.1.8)

We call this the factorisation threshold equation. It defines a curve J(N) in the pa-

rameter space with axes labelled (J,N). For large enough N , this curve divides the

parameter space into two regions: the factorisation region, where the correlator is less

than one, and the breakdown region, where the correlator is greater than one. The

threshold Jt(N) is the exact solution of the equation G3(Jt(N), N) = 1. A sketch of

this threshold curve in (J,N) parameter space is shown in Figure 2.1.

The trial function approach shows that the threshold must scale with N at a faster

rate than
√
N , but at a slower rate than N

1
2

+δ for any constant δ. Provided that J

lies in the range N
1
2 < J < N

1
2

+δ, we show in Section 2.2.2 that the correlator G3 has

the asymptotic behaviour

G3(J,N) '
√

J

2N
exp

(
J2

2N

)
. (2.1.9)

Using this asymptotic form of the correlator, we can invert the equationG3(Jt(N), N) =

1 to derive an asymptotic solution of Jt(N), the threshold of factorisation. In Section

2.2.3 we show that the large N solution is

Jt(N) =

√
1

2
N logN

[
1− log logN

2 logN
+

log 8

2 logN
+O

(
log logN

logN

)2
]
. (2.1.10)
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Breakdown

Factorization

Figure 2.1: A sketch of the threshold curve Jt(N) in (J,N) parameter space for largeN .
Away from the origin, the curve partitions the parameter space into the factorisation
region G3(Jt(N), N) < 1, and the breakdown region G3(Jt(N), N) > 1.

Neglecting the constant term, the leading-order behaviour is simply

J2
t ∼ N logN. (2.1.11)

This is the solution that divides (J,N)-space into the regions where factorisation holds

and breaks down.

2.1.2 The breakdown of bulk effective field theory at the

threshold

The correlator 〈〈trZJtrZJ(trZ†)2J〉〉 is not renormalised [17]. It is an inner product

of the double trace state with the single trace state, normalised by the appropriate

factors given above. A sketch of these two states in energy space is given in Figure

2.2. At finite N , this inner product is non-trivial and mixes trace structures according

to a non-trivial function of J and N . The matching supergravity correlator can be

computed for J of order one in the large N limit. The supergravity computation can

be understood as relying on a Fock space structure for gravitons, where at leading

large N single gravitons are orthogonal to multi-gravitons, hence single traces are

orthogonal to multi-traces. This Fock space structure is used to set up perturbation

theory where there are 1
N

interactions. The N -corrected inner product coming from

CFT is then recovered with the help of the supergravity interactions.

At the factorisation threshold, the leading large N overlap is not vanishing; it is
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Figure 2.2: The single and multi-graviton states within energy space.

order one. At this regime, a Fock space structure with single gravitons corresponding

to single traces, being orthogonal to multi-gravitons corresponding to multi-traces,

cannot be the right spacetime structure for computing the leading large N behaviour

of the correlator. There should be a modification of the spacetime effective field theory

which reproduces the correlators at threshold. This modification is unknown, but hints

about its nature can be obtained by studying the detailed properties of the threshold.

Once the angular momenta J are sufficiently large that we are well past the thresh-

old and into the region of broken factorisation, we eventually reach the region of J ∼ N ,

where the best way to think about the physics is in terms of giant gravitons [24]. The

basis of Schur polynomial operators, which are non-trivial linear combinations of multi-

traces, becomes the best way to match bulk states and CFT states [25]. The region

where J ∼ N was indeed earlier identified as an interesting region in connection with

the fact that finite N relations allow single traces to be expressed in terms of multi-

traces via Cayley-Hamilton relations [69]. This lead to a stringy exclusion principle,

suggestive of some form of algebraic deformation of the spacetime algebra of functions

[70].

Here we focus instead on the threshold near J ∼
√
N logN , where the large N

correlator is not infinite, but fixed at G3 = 1. We could even take G3 = c for a small

c, say 10−5, but not going to zero as N approaches infinity. This suggests that a

spacetime picture in terms of elementary objects matching the number of traces, such

as gravitons stretched into BMN strings, is the right framework for understanding

the precise nature of the threshold and the form of the interactions in this threshold

region.

With these motivations spelt out, we turn to some qualitative outcomes of our

detailed studies of how the thresholds are approached when various parameters in the

graviton system are tuned. An intriguing result we find is that, as we explain further

in the next subsection, in some of its effects on the factorisation threshold, separation
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in J-space is similar to separation in coordinate space. One possible interpretation of

this is that the spatial extents of the bulk gravitons are related to their energies, in the

spirit of the UV-IR relation [71, 72]. We can make such an argument by considering the

gravitons in the context of the LLM picture [67]. A trace operator is a superposition

of Schur polynomials corresponding to hook representations, interpolating between a

single row and a single column Young diagram. This is a superposition of states in

the free fermion picture involving excitation of a fermion from some depth k below

the top of the Fermi sea to a level (J − k) above the Fermi sea, with k varying

from 0 to (J − 1). Since the fermion energy levels translate to radial positions in

the LLM plane, with large radial positions of the excited fermion being closer to the

boundary, this is in line with the UV-IR interpretation. However, consideration of

normalisable modes in the global coordinates shows that gravitons at higher energy

J become more localised near the centre [73]. This suggests that the interpretation

of half-BPS correlators in terms of gravitons requires care regarding the distinction

between normalisable and non-normalisable modes of the same field, and between the

Lorentzian versus Euclidean picture of AdS. It is therefore prudent to postpone a

detailed spacetime interpretation of the thresholds at this stage. Nethertheless, it is

clear that this breakdown of the standard Fock space structure of effective spacetime

field theory is an important new window where the gauge theory can provide valuable

information towards the spacetime understanding.

2.1.3 Refined investigations of the factorisation thresholds

In Section 2.3 we investigate the more general extremal normalised three-point corre-

lator

G3(J1, J2, N) = 〈〈trZJ1trZJ2trZ†J1+J2〉〉 (2.1.12)

where J1 6= J2. We define the threshold to be the surface in the three-dimensional

parameter space (J1, J2, N) that satisfies

G3(J1, J2, N) = 1. (2.1.13)

Making the assumption that both J1 and J2 grow at least as large as a positive power

of N , then we find in Section 2.3 that the correlator decays to zero if the product of the

angular momenta J1J2 is less than N at large N , and grows exponentially if J1J2 grows

faster than N1+δ with N , where δ is any positive constant. If the angular momenta
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Figure 2.3: Two systems of gravitons with different energy differences but the same
total energy. Graviton states become strongly correlated when the separation of the
graviton energies decreases.

are constrained to lie in the range N < J1J2 < N1+δ, then an asymptotic form of the

correlator can be found. We find that at large N in this regime, the threshold lies at

J1J2 ∼ N logN, (2.1.14)

where we have dropped a constant multiplicative factor.

In the bulk picture, single trace operators with different dimensions correspond

to gravitons at different energies. The combined energy of the two gravitons with

energies J1 and J2 is equal to the energy of the other graviton (J1 + J2). If we fix N

and the energy (J1 + J2) of the more energetic graviton, but vary the difference in the

energies of the less energetic gravitons ∆J = |J1− J2|, then we find that we can move

within parameter space from the factorisation region to the threshold by decreasing the

difference in energies of the two gravitons. This is illustrated in Figure 2.3.

Another related set-up is a strongly-correlated system of gravitons at the threshold

in which N and the value of the correlator G3(J1, J2, N) = 1 are fixed but the sepa-

ration of the graviton energies is varied. Once N is fixed and we are constrained to

the threshold surface, there is only one available free parameter in the system, which

we take to be the separation of the graviton energies |J1 − J2|. It can be shown that

increasing the separation in energies |J1 − J2| of the two gravitons at the threshold

corresponds to an increase in the energy (J1 + J2) of the single graviton state. This

system is shown in Figure 2.4.

We extend the investigation of factorisation thresholds to the case of non-extremal

correlators. In particular we study in detail the multiparticle-normalised correlator

〈〈Str(ZJ1Y )Str(ZJ2Y †)tr(Z†J1+J2)〉〉 (2.1.15)
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Figure 2.4: Two systems of gravitons at the threshold with different energy separa-
tions. Graviton states become strongly correlated at lower energies (further from the
boundary) when the separation of the graviton energies is smaller.

and find a sensible extension of the discussion of factorisation thresholds from the

extremal case. In the discussion of extremal correlators above, we did not pay much

attention to the spatial dependences of correlators. There is a simple reason for this.

In the extremal case, we can set the two holomorphic operators at one point x1 and

the anti-holomorphic operator at another point x2. This has the standard spatial

dependence |x1 − x2|−2(J1+J2). The spatial dependence can be removed by taking

the anti-holomorphic operator to infinity, changing frame by the inversion y = x2

|x2|2 .

In this limit the correlator is computing an inner product of states and all position

dependences vanish after we take into account the conformal transformation of the

anti-holomorphic operator. In the above non-extremal case we can set the first oper-

ator at x1, the second at x1 + ε and take the third operator to infinity by applying

an inversion. The only position dependence left is ε−2, so the above correlator is a

dimensionful quantity, and it does not make sense to ask when it is equal to one in

the large N limit.

We can introduce a dimensionful energy cutoff Λ in the CFT. This dimensional

cutoff will not change the CFT calculation if we take εΛ � 1. The correct quantity

to use to define the threshold is then Λ−2 times the non-extremal correlator above.

This will be dimensionless, will contain the dimensionless parameter εΛ ≡ R and

can be compared to one to define a factorisation threshold. In the region of Ji of

order one and R ∼ 1 there is factorisation, but appropriate growth of Ji with N can

cause breakdown of factorisation, with the details of the threshold depending on the

dimensionless R. We find that decreasing εΛ, within the regimes where the correlator

calcuations are valid, can cause the transition from factorisation to breakdown. This

is in line with the discussion in [74], where short distances were argued to explore

large energies which have to be low enough in relation to N for factorisation to hold.

Another interesting aspect of this nearly-extremal correlator is that when R = εΛ is

large and fixed, or only varies with N as a power or less, then the threshold is of the
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same form as the extremal correlator; we find the threshold lies at J1J2 ∼ N logN .

Later in this chapter, we consider the transition from multiple holomorphic traces

to a single anti-holomorphic trace, or equivalently multiple gravitons going to a single

graviton. If we have k starting gravitons, with k order one, we find that the threshold

depends on the largest pairwise product JiJj, and occurs at JiJj ' k−1N logN . The

threshold of factorisation decreases as the number of gravitons in the multi-graviton

state increases.

Another generalisation of the threshold investigation involves considering three-

point extremal correlators corresponding to graviton scatterings on an LLM back-

ground given by M maximal giant gravitons, as in [75]. When M is of the same order

as N , then the factorisation threshold is J1J2 ∼ (M + N) log(M + N). If M is cho-

sen to have a fixed linear dependence on N , then the leading order behaviour of the

threshold is again J1J2 ∼ N logN , up to a constant factor.

We conclude that another striking property of the thresholds is the universality of

the leading large N behaviour of the form JiJj ' N logN .

2.2 The extremal three-point correlator with J1 =

J2

In this section we present a detailed calculation of the asymptotic form of the three-

point correlator

G3(J,N) = 〈〈trZJtrZJtrZ†2J〉〉 (2.2.1)

in the relevant region N
1
2 < J < N

1
2

+δ, where δ is any small positive constant. We

then asymptotically solve the threshold equation

G3(Jt(N), N) = 1 (2.2.2)

in the large N limit, deducing that at leading order the threshold behaves as

Jt '
√
N

2
logN. (2.2.3)

Further, we discuss some links between the form of the threshold solution and running

couplings in QCD. Finally, we find explicitly the all-orders asymptotic expansion of

the threshold, and attempt to extend this result past perturbation theory by deriving
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a transseries expansion.

2.2.1 Review of asymptotics and series

We start by briefly reviewing and clarifying some definitions, and introducing some

new notation. Throughout this chapter, we will be using precise definitions of the

asymptotic symbols ‘∼’ and ‘'’, the ‘little o’ order symbol o, and asymptotic series.

We will also be using a precise definition of the ‘big O’ order symbol O that differs

slightly from that used in the literature, but which is stronger than the commonly-used

definition.

For two N -dependent functions f(N) and g(N), then we say that f ' g at large

N if

lim
N→∞

f(N)

g(N)
= 1. (2.2.4)

Note that with this definition the ratio of these two functions must tend to one, and

not to any other constant. We use the notation f = o(g) if f is a function that satisfies

lim
N→∞

f(N)

g(N)
= 0, (2.2.5)

i.e. if f is much smaller than g at large N . From these definitions, the following two

statements are equivalent:

f(N) ' g(N)

f(N) = g(N)(1 + o(1)). (2.2.6)

We shall also use the notation f � g if f = o(g), and similarly f � g if g = o(f).

An asymptotic series at large N is formally defined by a set of functions {φk(N)} and

constant coefficients {ak} with the property that

φk+1 = o(φk) (2.2.7)

for any k ≥ 0. We say that

f(N) '
∞∑
k=0

akφk (2.2.8)
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if, for any n ≥ 0, we have

f −
n∑
k=0

akφk = o(φn). (2.2.9)

This definition of an asymptotic series does not allow for terms which are subleading

to all the φk. Later, we shall also employ an extended version of an asymptotic series

called a transseries. This type of series contains extra terms that tend to zero faster

than all terms in a classical asymptotic series, but can still be assigned meaning when

considered as a formal sum. Transseries are commonly used in describing instanton

corrections to series expansions generated in QFTs, in which the instanton-dependent

terms are exponentially suppressed in the coupling constant. We discuss this more in

Section 2.2.5.

In this thesis we write f ∼ g if there exists some positive constant C such that

lim
N→∞

|f(N)|
|g(N)|

= C. (2.2.10)

This notation is commonly used in the physics literature, but not often in the mathe-

matical literature; in the latter, the constant C in this definition is required to be one.

Equivalently, we write f = O(g) if f ∼ g. This is a departure from the conventional

O-notation, which only requires the ratio f/g to be bounded from above at large N .

This modified definition is a stronger condition, as it not only implies that f/g is

bounded from above, but is also bounded from below too. This is useful for keeping

track of the errors and assumptions made at each step within our calculations.

‘Big O’ notation is used for expressing the errors of an N -dependent function, or

corrections to an asymptotic series, or for giving a coarse expression of the leading-

order behaviour of a function. It is useful in the following for representing functions

whose explicit forms are unknown or irrelevant, but whose leading-order behaviours

at large N are important. Generally, when an upper bound on the leading-order

behaviour of a correction is known but a lower bound is not, then we will use the o

(little o) symbol. In general, we shall write equations as equalities when the corrections

or errors are present, and use ‘'’ for equations when the error terms have been dropped.

2.2.2 Asymptotics of the three-point correlator

To solve the threshold equation (2.2.2), we need to find an asymptotic form of the

normalised correlator (2.2.1) at large N and large J , with small J/N . The form of this
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expression will change depending on how quickly J grows with N , so it is necessary to

carefully specify at each stage what possible behaviour J can take. We will find that

the breakdown threshold is located at J just larger than O(
√
N), and so we will look

for a large N asymptotic form of the correlator G3(J,N) that is valid in this region. It

suffices to impose J � N2/3 to describe the asymptotic form of the correlator around

the threshold.

The position-independent two-particle and three-particle correlators are known pre-

cisely for finite N [27]. We recall that the two-point function at zero coupling is

〈trZJtrZ†J〉 = J !

[(
N + J

J + 1

)
−
(

N

J + 1

)]
, (2.2.11)

and the three-point function (for general operator dimensions J1 and J2) is

〈trZJ1trZJ2trZ†J1+J2〉 = (J1 + J2)!

[(
N + J1 + J2

J1 + J2 + 1

)
−
(

N + J1

J1 + J2 + 1

)
−
(

N + J2

J1 + J2 + 1

)
+

(
N

J1 + J2 + 1

)]
, (2.2.12)

All the terms in the finite N correlator expressions are of the form

J !

(
N + Λ

J + 1

)
=

(N + Λ− J)

(J + 1)

(N + Λ)!

(N + Λ− J)!
, (2.2.13)

where Λ is either 0 or J for the terms in the two-point function. Taking N and J to

be large, but keeping J/N small, we apply Stirling’s approximation

n! = e−nnn+ 1
2

√
2π

(
1 +O

(
1

n

))
(2.2.14)

to find that

J !

(
N + Λ

J + 1

)
' (N + Λ− J)

J + 1
NJe−J

√
1 +

Λ

N

√
1 +

Λ− J
N

(
1 +

Λ

N

)N+Λ(
1 +

Λ− J
N

)−N−Λ+J

' NJ+1e−J

J

(
1 +

Λ

N

)N+Λ(
1 +

Λ− J
N

)−N−Λ+J

. (2.2.15)

Here, we have dropped some error terms of order O
(

1
J

)
and O

(
J
N

)
. We expand the

terms in the brackets by taking logs, and using the fact that Λ < N to perform a series
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expansion. We find that

log

(
1 +

Λ

N

)N+Λ

= −N
(

1 +
Λ

N

) ∞∑
k=1

(−Λ)k

kNk

= Λ +
∞∑
k=1

(−Λ)k+1

k(k + 1)Nk
. (2.2.16)

Hence, replacing Λ with Λ− J in the second bracketed factor of (2.2.15), we find

J !

(
N + Λ

J + 1

)
' NJ+1

J
exp

(
∞∑
k=1

(−Λ)k+1 − (−Λ + J)k+1

k(k + 1)Nk

)
. (2.2.17)

We can simplify this expression by dropping the terms in the infinite sum that tend

to zero with large N . The kth term in the sum scales like Jk+1/Nk for some integer

k, so if we impose that J � N2/3, then all terms with k ≥ 2 are small. With this

condition, we can drop the subleading terms of order O(J3/N2) and write

J !

(
N + Λ

J + 1

)
' NJ+1

J
exp

(
−J2

2N
+
JΛ

N

)
. (2.2.18)

This expression, which is valid for any Λ ≤ J � N2/3, is used repeatedly in the

following sections to derive the asymptotics of finite N correlators. Including both

terms in (2.2.11) with Λ = J and Λ = 0 respectively, we can now state that two-point

function has the asymptotic form

〈trZJtrZ†J〉 ' NJ+1

J
e
J2

2N

(
1− e−

J2

N

)
. (2.2.19)

This approach generalises in a straightforward manner to the three-point function.

Replacing J with 2J and allowing Λ to take the values 0, J , and 2J , we find that

(2.2.12) becomes

〈trZJtrZJtrZ†2J〉 ' N2J+1

2J

(
e

2J2

N − 2 + e
−2J2

N

)
' N2J+1

2J
e

2J2

N

(
1− e−

2J2

N

)2

. (2.2.20)

These expressions allow us to read off the asymptotic form of the normalised three-
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point function (2.2.1). We find that

G3 '
√

J

2N
exp

(
J2

2N

) (
1− e− 2J2

N

)2

(1− e−J
2

N )

√
(1− e− 4J2

N )

. (2.2.21)

This expression is valid for any behaviour of J provided that J � N2/3.

To find a more tractable version of this formula at large N , we need to state how

J2/N grows with N . There are three cases to consider: J2/N going to zero with large

N , J2/N going to a constant, and J2/N going to infinity. In the first case where J2/N

is small, we can use

(1− e−
kJ2

N ) ' kJ2

N
, exp

(
J2

2N

)
' 1, (2.2.22)

where k ∈ {1, 2, 4}, to see that

G3 '
√
JJ(2J)

N
, (2.2.23)

which is the known behaviour of the normalised three-point correlator for J �
√
N .

The assumption J2/N → 0 means that the correlator will tend to zero in this limit,

and so factorisation holds in this case. Alternatively, in the case that J2/N tends to

a constant value, i.e. J = O(
√
N), then (2.2.21) will scale as O(N−

1
4 ) with large N .

This means that factorisation will still hold in this case. However, in the case that

J2/N grows large with N , then we have

(1− e−
kJ2

N ) ' 1, exp

(
J2

2N

)
→∞, (2.2.24)

and thus

G3 = 〈〈trZJtrZJtrZ†2J〉〉 '
√

J

2N
exp

(
J2

2N

)
. (2.2.25)

This correlator will grow to infinity if J grows quickly enough with N . In particular,

if J ≥ N
1
2

+δ for some small constant δ > 0 at large enough N i.e. if J grows faster

than
√
N by a positive power, then the exponential term dominates and the correlator

will tend to infinity. We deduce that the threshold - that is, the growth of J with N
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which keeps the correlator finite and non-zero at large N - lies in the range

N
1
2 < J < N

1
2

+δ, (2.2.26)

where δ is any small positive number. This is the relevant region for solving asymp-

totically the factorisation threshold equation

G3(Jt(N), N) = 1. (2.2.27)

2.2.3 Solving the factorisation threshold equation

We can use (2.2.25) in the region (2.2.26) to find a function J(N) that solves the

threshold equation (2.2.27) at large N . To do this, we write down the exact equation

G3 =

√
J

2N
exp

(
J2

2N

)
e−

1
4
r, (2.2.28)

where the error function r(J,N) is implicitly defined by this equation (the factor of 1
4

here is chosen for later convenience). All the large N approximations that were taken

in generating the asymptotic expression (2.2.25) are encoded in this error function,

so it must tend to zero with N (provided that we remain in the range (2.2.26)). To

find the leading-order behaviour of r, we collate the terms dropped at various stages

in the previous section. In (2.2.15) and (2.2.18), we have dropped terms of order

O
(

1
J

)
, O

(
J
N

)
, and O

(
J3

N2

)
. As J2/N is large, all these errors are O

(
J3

N2

)
. Also, in

performing the approximation (
1− e−

kJ2

N

)
' 1 (2.2.29)

for various values of k, we have dropped terms of order O(e−
J2

N ). At present, we have

not specified tight enough constraints on J to determine which is the larger, so we

keep both remainders. We write

G3 =

√
J

2N
exp

(
J2

2N

)(
1 +O

(
J3

N2

)
+O

(
e−

J2

N

))
(2.2.30)

and so we have

e−
1
4
r = 1 +O

(
J3

N2

)
+O

(
e−

J2

N

)
(2.2.31)
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This means that the error function r is bounded by

r = O
(
J3

N2

)
+O

(
e−

J2

N

)
. (2.2.32)

Again, we know that this function tends to zero, but cannot yet deduce its leading-

order behaviour before solving the threshold equation. Rearranging (2.2.28), we can

write the threshold equation G3(Jt(N), N) = 1 as

(
2J2

t

N
exp

(
2J2

t

N

)
1

8Ner

) 1
4

= 1. (2.2.33)

This equation cannot be solved exactly in terms of elementary functions (i.e. expo-

nentials, logarithms and powers of z), but it can be rewritten and approximated by

using the Lambert W -function. The Lambert W -function is defined by the equation

W (z)eW (z) = z. (2.2.34)

It is a multivalued function, but here we just consider the principle branch of the

function, where W (z) is positive and real for positive real z. In this regime, a large z

asymptotic expansion of the function is known to all orders [76, 77]. More discussion of

the Lambert W -function is given in Appendix C. Equation (2.2.33) is solved in terms

of the W -function by

2J2
t

N
= W (8Ner), (2.2.35)

which can be written

Jt =

√
N

2
W (8Ner). (2.2.36)

To find a more tractable version of the threshold expressed in terms of elementary

functions, we can expand the W -function by using its asymptotic series. The large z

expansion of the W -function is [77]

W (z) ' log z − log log z +
∞∑
n=1

(
−1

log z

)n n∑
k=0

[
n

n− k + 1

]
(− log log z)k

k!
, (2.2.37)

where the coefficients in the square brackets are the Stirling cycle numbers (of the first

kind); the notation
[
n
k

]
denotes the number of permutations of n elements composed
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of k disjoint cycles. We can find the leading-order behaviour of the threshold by

truncating this series. However, to guarantee that the truncated solution still satisfies

G3(Jt(N), N) = 1 in the large N limit, we need to keep all the terms in the series that

do not tend to zero. The first two terms in the series are large as z → ∞, and the

remaining terms in the infinite series all go to zero, and so we keep the first two terms

and find that the large N solution of (2.2.36) is

J2
t

N
=

1

2

[
log(8Ner)− log log(8Ner) +O

(
log logN

logN

)]
. (2.2.38)

We can now extract out the N -dependence of the remainder function at the threshold,

r(Jt(N), N). Since

J2
t

N
=

1

2
(log 8N − log logN + o(1)) , (2.2.39)

we find that

e−
J2
t
N '

√
logN

8N
,

J3
t

N2
'
√

(logN)3

8N
, (2.2.40)

and so to leading order in N ,

r(Jt(N), N) = O

(√
(logN)3

N

)
. (2.2.41)

This term is smaller than N−
1
2

+δ for any constant 0 < δ < 1
2
, and so all powers of r

are subleading to all logarithm-dependent terms in the expansion. We can therefore

discard these r-dependent terms as they are ‘exponentially suppressed’ in terms of the

parameter logN . The full asymptotic series expansion of the threshold is

J2
t '

1

2
N

[
log(8N)− log log(8N) +

∞∑
n=1

(
−1

log(8N)

)n n∑
k=0

[
n

n− k + 1

]
(− log log(8N))k

k!

]
.

(2.2.42)

Taking square roots and moving out the constant factors in the logs, we deduce that

the leading-order terms in the expansion of the threshold are

Jt =

√
1

2
N logN

[
1− log logN

2 logN
+

log 8

2 logN
+O

(
(log logN)2

(logN)2

)]
. (2.2.43)
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This is the leading-order solution to

G3(Jt(N), N) := 〈〈trZJttrZJttrZ2Jt〉〉 = 1 (2.2.44)

for large N and large Jt.

In (2.2.43), we have given the first three terms in the expansion of the threshold.

This is the necessary degree of accuracy of the threshold Jt(N) for which the truncated

series still satisfies the threshold equation in the large N limit. That is, if we take the

truncated threshold

J̃(N) =

√
1

2
N logN

[
1− log logN

2 logN
+

log 8

2 logN

]
(2.2.45)

and plug this into the exact expression (2.2.28), we have

G3(J̃(N), N) = exp

[
1

16 logN

(
log

(
8

logN

))2

− 1

4
r

]
, (2.2.46)

which tends to one in the large N limit. If we had only taken the first term in the

threshold solution J̃ =
√

1
2
N logN and plugged this into (2.2.28), we would have

found that G3(J̃(N), N) actually grows logarithmically with N , and so the threshold

equation cannot hold for arbitrarily large N . Similarly, truncating the series at the

second term causes the correlator G3(J̃(N), N) to converge to a different constant

than 1 at large N .

We remark that the factors of 8 appearing in the logs have come from choosing

the factorisation threshold to be at G3 = 1. If we had instead chosen G3(J,N) = c for

some constant c, then the threshold solution would be

J2
t

N
=

1

2
W (8c4Ner), (2.2.47)

and the leading-order behaviour after expansion would be

Jt =

√
1

2
N logN

[
1− log logN

2 logN
+

log 8 + 4 log c

2 logN
+O

(
log logN

logN

)2
]
. (2.2.48)

2.2.4 Similarities to the running coupling of gauge theories

We pause here to discuss some similarities between our threshold solution and the the

running coupling of non-abelian gauge theories. The beta function of αs(Q
2) from
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QCD gauge theory is

Q2 dαs
dQ2

=
dαs
dL

= β0α
2
s + β1α

3
s + β2α

3
s +O(α4

s), (2.2.49)

where Q2 is the energy scale, βi is the beta function at loop order (i + 1), and L =

log(Q
2

Λ2 ). This has been solved perturbatively [78, 79] for the running coupling αs(Q
2),

αs(Q
2) +

1

β0 logL
=

β1

β2
0L

(logL) +
β2

1

β4
0L

2

(
(logL)2 − logL− 1 +

β0β2

β2
1

)
+

β3
1

β6
0L

3

(
(logL)3 − 5

2
(logL)2 − (2− 3

β0β2

β2
1

) logL+
1

2
− β2

0β3

β3
1

)
+O

(
(logL)4

L4

)
.

(2.2.50)

The threshold solution can be recast into a form which reveals a striking similarity

with the expansion of αs(Q
2). Starting from the definition of the W -function and its

asymptotic series (2.2.37), we can write

logW (z) = log z −W (z)

' log log z −
∞∑
n=1

(
−1

log z

)n n∑
k=0

[
n

n− k + 1

]
(− log log z)k

k!
, (2.2.51)

where the factors
[
n
k

]
are Stirling cycle numbers of the first kind. Introducing the new

variables y = log Jt and v = logN , we can take logs of the exact solution

Jt =

√
N

2
W (8Ner) (2.2.52)

and plug in the first few Stirling numbers to find

2y = v + log v − log 2 +
1

v
(− log v + log 8)

+
1

v2

[
−1

2
(log v)2 + (1 + log 8) log v − 1

2
(log 8)(log 8 + 2)

]
+O

(
(log v)3

v3

)
(2.2.53)

' v + log v − log 2 +
∞∑
l=1

P l
0(log v)

vl
, (2.2.54)

where P l
0 are polynomials of order l, and we have dropped the subleading r-dependent

terms. All but the first three terms in this sum tend to zero in the large v (i.e. large

N) limit, so we can define the variable Y = 2y − v − log v + log 2, which has the
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perturbative expansion

Y =
1

v
(− log v + log 8) +

1

v2

[
−1

2
(log v)2 + (1 + log 8) log v − 1

2
(log 8)(log 8 + 2)

]
+O

(
(log v)3

v3

)
. (2.2.55)

We can now see that both (2.2.50) and (2.2.55) are manifestly of the same form.

Each bracketed term in the first series can be written L−nP̃ n(logL), and each brack-

eted term in the second series can be written v−nP n(log v), where P̃ n and P n are

polynomials of order n. The similarity between these series is intriguing, and it would

be of interest to find out if there is a physical explanation.

2.2.5 Expansion of the threshold as a transseries

We have given in equation (2.2.42) an infinite asymptotic series expansion of the thresh-

old Jt(N) in terms of powers of logN and log logN . We can go beyond this classical

asymptotic series approach to the threshold by considering the non-perturbative correc-

tions, generated by the subleading terms in r that were previously neglected. This type

of series is known as a transseries, and is perhaps most commonly seen in theoretical

physics to describe instanton corrections in quantum field theory.

When considering asymptotic expansions from path integrals in quantum field the-

ory, we are interested in not only the original perturbative series in the coupling

constant, but also the exponentially-suppressed instanton correction terms. These

typically come from saddle-points in the path integral. A typical asymptotic series in

a quantum field theory with small coupling constant g → 0 and instanton corrections

has the form ∑
n

ang
n + e−A/g

∑
n

a(1)
n gn +O

(
e−2A/g

)
. (2.2.56)

The definition of an asymptotic series given in Section 2.2.1 cannot be used to describe

the exponential contributions, as they are subleading to all powers of the coupling g.

We make sense of a series with instanton corrections by thinking of it as a purely

formal sum, in which g and e−A/g are treated as independent variables. Once the

formal transseries is constructed, there are approaches that can recover the exact full

form of the path integral from the series; this is called the theory of resurgence. The

lecture notes [80] give a review of transseries and resurgence in QFT and string theory.
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In our analysis of the threshold, the series we have found has not come from a

path integral, but still has exponentially-suppressed corrections. Rather than corre-

sponding to saddle-points, the exponential corrections arise from the corrections to the

asymptotics of the finite N correlators. We can see the analogy between thresholds

and instanton expansions by changing variables from N to v = logN in our threshold

expressions; the remainder term r is then proportional to e−v/2. We show in the fol-

lowing that the general form of a transseries of the threshold can be found, in terms

of e−v/2, v and log v.

An interesting possible future research direction would be to use the transseries ex-

pansion to search for an effective field theory description of gravitons at the threshold.

The threshold expansions with exponential corrections strongly resemble instanton ex-

pansions of field theoretic partition functions, and so they could well contain valuable

hints about the nature of such an effective field theory.

We start by writing the threshold in terms of the variables y = log Jt and v = logN

introduced in the previous section, but retain the r-dependent terms in the series

expansion. With the r-corrections, the series (2.2.53) becomes

2y = v + log v − log 2 +
1

v
(− log v + log 8) +

r

v
+O

(
r2

v2

)
+

1

v2

[
−1

2
(log v)2 + (1 + log 8) log v − 1

2
(log 8)(log 8 + 2)

]
+O

(
(log v)3

v3

)
(2.2.57)

' v + log v − log 2 +
∞∑
l=1

P l
0(log v)

vl
+O

(r
v

)
, (2.2.58)

All the terms that depend on the error function r are subleading to any power of log v

and v. To find the exponentially-supressed contributions to the threshold and extend

the asymptotic series to a transseries, we need to find a more precise expression for r

near the threshold. In the previous section, the function r(J,N) was defined by the

exact equation

G3 =

√
J

2N
exp

(
J2

2N

)
e−

1
4
r. (2.2.59)

The next-to-leading order corrections to the remainder function r were estimated in

(2.2.32). A more careful calculation shows that the next-to-leading order behaviour of
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the correlator near the threshold is

G3 =

√
J

2N
exp

(
J2

2N

)[
1− J3

N2
+ e−

J2

N +O
(
J6

N4

)]
, (2.2.60)

and so

r(J,N) = 4

(
J3

N2
− e−

J2

N +O
(
J6

N4

))
. (2.2.61)

Plugging in the leading-order behaviour of the threshold J '
√

1
2
N logN gives us the

leading-order behaviour of r as a function purely of N , or as a function of v. We find

r(Jt(N), N) =

√
2(logN)3

N

[
1− 1

logN

(
log logN − 3

2
log 8 + 1

)
+O

(
log logN

logN

)2
]

=
√

2v
3
2 e−

v
2

[
1− 1

v

(
log v − 3

2
log 8 + 1

)
+O

(
log v

v

)2
]

(2.2.62)

This correction can be reintroduced into (2.2.57) to give the first exponential correction

of the threshold,

2y = v + log v − log 2 +
1

v
(− log v + log 8) +O

(
log v

v

)2

+
√

2ve−v

[
1 +

1

v

(
3

2
log 8− 2− log v

)
+O

(
log v

v

)2
]

+O
(
ve−v

)
. (2.2.63)

The remainder r has an asymptotic expansion at the threshold as a series of powers

of v
3
2 e−

v
2 multiplied by powers of log v and inverse powers of v. From considering the

structure of the terms in (2.2.51), and writing 8Ner = ev+log 8+r, it can be seen that

a kth power of r in the asymptotic expansion of W (8Ner) is accompanied by a kth

inverse power of v, followed by positive powers of log v and inverse powers of v. Noting

that the subleading terms in the asymptotic expansion of r can also contribute, we

can deduce the all-orders form of the asymptotic series with exponential corrections,

although it is difficult to calculate coefficients explicitly beyond the first few terms.

The general form of the transseries form of the threshold is

2y ' v + log v − log 2 +
∞∑
k=0

∞∑
n=0

(
√
ve−v)k

P n
k (log v)

vn
, (2.2.64)
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where the P n
k are polynomials of order n, and P 0

0 (log v) = 0.

This series gives an alternative expression for the threshold Jt = ey in terms of

v = logN . Only the first three terms do not go to zero in the large N limit, so we can

exponentiate this expression to derive an infinite asymptotic series for the threshold.

We find that

Jt '
√

1

2
N logN

1 +
∞∑
k=0

∞∑
n=0

(√
logN

N

)k
P ′nk (log logN)

(logN)n

 (2.2.65)

where the polynomials have been modified, but the form of the series has not. As

remarked at the end of subsection 2.2.3, for a truncated threshold series J̃t(N) to

satisfy G3(J̃t(N), N)→ 1 at large N , we must include the next-to-leading order term,

P ′10 (log logN)

logN
=
− log logN

2 logN
+

log 8

2 logN
. (2.2.66)

As a final remark, we note again that changing the threshold from G3 = 1 to G3 = c

will not alter the form of the series, but will modify the polynomials and constants.

From (2.2.47), we see that shifting the threshold equation to G3 = c will transform

the series as

2y ' v + log v − log 2 +
∞∑
k=0

∞∑
n=0

(
√
v + c4e−

v+c4

2 )k
P n
k (log(v + c4))

(v + c4)n
(2.2.67)

' v + log v − log 2 +
∞∑
k=0

∞∑
n=0

(
√
ve−

v
2 )k

P̃ n
k (log v)

vn
. (2.2.68)

The three leading-order terms and the highest-order terms in the polynomials are

unaffected by the shift.

2.3 The extremal three-point correlator with J1 6=
J2

In the previous section we solved the equation G3(J(N), N) = 1 at large N by finding

the asymptotic form of the three-point function G3 and solving for J(N). In this

section we consider the threshold of factorisation for the more general three-point
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function,

G3(J1, J2, N) := 〈〈trZJ1trZJ2trZ†J1+J2〉〉

=
〈trZJ1trZJ2trZ†J1+J2〉√

〈trZJ1trZ†J1〉〈trZJ2trZ†J2〉〈trZJ1+J2trZ†J1+J2〉
, (2.3.1)

and examine the behaviour of J1(N), J2(N) with N for which the threshold equation

G3(J1(N), J2(N), N) = 1 (2.3.2)

is satisfied at large N . Using similar methods as in the previous section, the asymptotic

form of G3(J1(N), J2(N), N) can be found at large N , and can be used to invert the

threshold equation (2.3.2) to retrieve a simple leading-order constraint on the functions

J1(N), J2(N) at the threshold. We find quite generally that (2.3.2) is solved in the

large N limit by solutions J1(N), J2(N) that have the leading-order behaviour

J1J2 ∼ N logN, (2.3.3)

where we have omitted a constant of proportionality. In fact, this constant of pro-

portionality depends on the N -dependent behaviour of the smaller of the two angular

momenta J1 and J2.

In the following subsection, we present the calculation of the large N behaviour of

the correlator G3(J1, J2, N), and invert the threshold equation G3(J1(N), J2(N), N) =

1 to find the result J1J2 = O(N logN). Following that, we discuss how the threshold

from the bulk perspective relates the separation of the graviton energies ∆J = |J1−J2|
to the energy of the single graviton E = (J1 + J2).

2.3.1 Scaling limits and the threshold equation

We start from the expressions for the two and three-point correlators in Section 2.2.2.

These generalise in a straightforward manner to give the expression, valid for large N

and 1� J1, J2 � N
2
3 :

G3(J1, J2, N) '

√
J1J2

(J1 + J2)N
exp

(
J1J2

2N

)
(1− e−

J1(J1+J2)
N )(1− e−

J2(J1+J2)
N )√

(1− e−
J2
1
N )(1− e−

J2
2
N )(1− e−

(J1+J2)2

N )

.

(2.3.4)

Without loss of generality, we assume throughout that J1 ≤ J2.
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We can find bounds on the threshold region by considering the large N behaviour

of the product of the angular momenta J1J2. If J1J2/N goes to zero with N , then the

assumption J1 ≤ J2 means that J2
1/N must also go to zero with N . We use

1− e−
J2
1
N ' J2

1

N
,

1− e−
J1(J1+J2)

N ' J1(J1 + J2)

N
,

1− e−
J2(J1+J2)

N ' 1− e−
J2
2
N ,

1− e−
(J1+J2)2

N ' 1− e−
J2
2
N (2.3.5)

to deduce that the the correlator behaves as

G3 '
√
J1J2

N

√
J1 + J2

N
� 1. (2.3.6)

The correlator thus decays to zero at large N . On the other hand, if J1J2/N grows with

N to infinity at a faster rate than some small positive power of N , i.e. J1J2 ≥ N1+δ

for some small positive constant δ, then the exp(J1J2/2N) factor scales at least as

quickly as exp(N δ), an exponential of a positive power of N . All other factors in the

expression are bounded by powers of N , and so the exponential term dominates and

G3 must tend to infinity. Summarizing the above, we have

G3(J1, J2, N)→ 0,
J1J2

N
→ 0,

G3(J1, J2, N)→∞, J1J2

N1+δ
→∞ for some δ > 0. (2.3.7)

These limits extend the relations given in (2.1.7) to the more general case. We deduce

that a large N solution to the equation G3 = 1 could only exist when the product J1J2

lies somewhere in the range

N < J1J2 < N1+δ, (2.3.8)

for any small positive constant δ.

By constraining J1J2 to lie within this range, the expression for the three-point

correlator (2.3.4) can be simplified. Since we require J1J2 to be grow larger than N ,

and have constrained both J1 and J2 to be less than N
2
3 , we must have that J1 � N

1
3 ,

i.e. J1 grows at least as quickly as a positive power of N . Also, the factors of the form



2. Thresholds of factorisation in the AdS/CFT correspondence 118

(1 − e−x) in (2.3.4) tends to one if x tends to infinity, so we can use the facts that

J1J2/N →∞ near the threshold and J1 ≤ J2 to neglect several factors and write

G3 '

√
J1J2

(J1 + J2)N
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

. (2.3.9)

We can keep track of the errors generated in approximating the asymptotic form of

the correlator by writing the exact expression,

G3 =

√
J1J2

(J1 + J2)N
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

e−
r
2 , (2.3.10)

where again the remainder function r(J1, J2, N) is defined implicitly by this equation,

and the Ji scale with N in the range N
1
3 � J1 ≤ J2 � N

2
3 . This remainder function

tends to zero with N , but its leading-order behaviour will in general change depending

on the scaling behaviour of J1 and J2. We will later show that, near the threshold,

the remainder function is of the order

r = O
(

(logN)2

J1

)
, (2.3.11)

and so decays to zero at a faster rate than some inverse power of N .

We wish to simplify the equation

G3 =

√
J1J2

(J1 + J2)N
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

e−
r
2 = 1 (2.3.12)

in the large N limit. A convenient way to do this is by using the Lambert W -function,

and its large argument expansion. Equation (2.3.12) is solved exactly (with the implicit

remainder term r) by

J1J2

N
= W

(
(J1 + J2)(1− e−

J2
1
N )er

)
. (2.3.13)

The argument of the W -function changes depending on the behaviour of J2
1/N with

increasing N , but will grow to infinity in all relevant cases, allowing us to use the large

argument asymptotic expansion of the W -function,

W (z) = log z − log log z +O
(

log log z

log z

)
. (2.3.14)
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To proceed, we must consider three possible scaling behaviours of J2
1/N in turn: the

case when J2
1/N tends to zero, the case when J2

1/N tends to a constant, and the case

when J2
1 tends to infinity.

First, consider the case where J2
1/N → 0. We have

(1− e−
J2
1
N ) =

J2
1

N
+O

(
J2

1

N

)2

(2.3.15)

so

(J1 + J2)(1− e−
J2
1
N ) =

J1J2

N
J1

(
1 +

J1

J2

)(
1 +O

(
J2

1

N

))
(2.3.16)

which must tend to infinity since J1J2/N and J1 are large. Neglecting the remainder

term r for the moment, we expand out the W -function to find the threshold equation

J1J2

N
= log J1 − log log J1 + log

(
J1J2

N

)
+ log

(
1 +

J1

J2

)
− log

[
1 +

1

log J1

(
log

(
J1J2

N

)
+ log

(
1 +

J1

J2

))]

+O
(
J2

1

N

)
+O

 log log(J1 + J2)(1− e−
J2
1
N )

log(J1 + J2)(1− e−
J2
1
N )

 . (2.3.17)

This fairly involved expression can be substantially simplified as follows: first, we

simplify the final error term by giving its leading behaviour in terms of N . Next, we

show that all terms on the second line are small at large N , which allows us to deduce

that the leading-order behaviour of the expression is log J1. Finally, by plugging in

log J1(1 + o(1)) into the expressions for J1J2/N on the RHS of (2.3.17), we will find

that the log log J1 term cancels, and that only one large term remains in its asymptotic

series expansion.

First, we consider the latter remainder term. We know that J1 and J2 scale with N

at a larger rate than some positive power of N , so log J1 is O (logN) to leading order.

We have also required J1J2/N to scale to infinity at a slower rate than any positive

power of N , as this is required for the threshold solution to G3 = 1 to be valid at large

N . This means that log(J1J2/N) must be o(logN). We deduce that

log

[
(J1 + J2)(1− e−

J2
1
N )

]
= log J1 + log

(
J1J2

N

)
+ log

(
1 +

J1

J2

)
+O

(
J2

1

N

)
= O(logN), (2.3.18)
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and hence

O

 log log(J1 + J2)(1− e−
J2
1
N )

log(J1 + J2)(1− e−
J2
1
N )

 = O
(

log logN

logN

)
. (2.3.19)

Both this term and the O
(
J2

1

N

)
term are small in the large N limit. Next, we can see

that all terms on the second line of (2.3.17) must be small. Noting that

J1

J2

=
J2

1

N

N

J1J2

→ 0 (2.3.20)

since J2
1/N → 0 and J1J2/N →∞, we have that

log

(
1 +

J1

J2

)
→ 0. (2.3.21)

Also, it was required that J1J2/N grows to infinity with N , but not as a positive power

of N or greater, so log(J1J2/N) = o(logN). Since log J1 = O(logN), this means that

1

log J1

log

(
J1J2

N

)
→ 0, (2.3.22)

and so the second term in the second line of (2.3.17) is also small. The largest term in

(2.3.17) must therefore be log J1, which is of order O(logN). Using this and (2.3.20),

we see that J1/J2 must be smaller than O(1/ logN), and so we can collate all the

remainders in the threshold expression into two terms; we find

J1J2

N
= log J1 − log log J1 + log

(
J1J2

N

)
+O

(
log logN

logN

)
+O

(
J2

1

N

)
. (2.3.23)

By plugging in this expression for J1J2/N into the third term, we can cancel the

log log J1 and obtain the leading-order threshold equation

J1J2

N
= log J1 +O

(
log logN

logN

)
+O

(
J2

1

N

)
. (2.3.24)

This formula is valid at the threshold, provided that J2
1/N → 0 with large N . There

are two different remainder terms in this expression as we have not imposed enough

conditions on J1 to state which term is larger. Constraining the scaling behaviour of

J1 with N would allow us to deduce which term is subleading. For example, if we

set J1 '
√
N(log logN)/

√
logN , then the O(J2

1/N) term is the leading error, but if
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J1 ' N5/12 then the O
(

log logN
logN

)
term is the largest error.

Next, we consider the case where J2
1/N tends to a constant. Starting from threshold

equation

J1J2

N
= W ((J1 + J2)(1− e−

J2
1
N )er), (2.3.25)

the argument of the W -function is clearly large since (J1 + J2) grows with N . Again

neglecting the remainder term, we can use the large argument expansion of the W -

function and write

J1J2

N
' log

(
(J1 + J2)(1− e−

J2
1
N )

)
− log log

(
(J1 + J2)(1− e−

J2
1
N )

)

+O

 log log

(
(J1 + J2)(1− e−

J2
1
N )

)
log

(
(J1 + J2)(1− e−

J2
1
N )

)
 . (2.3.26)

Since log((J1 + J2)(1 − e−
J2
1
N )) = O(logN), we can simplify this remainder term and

expand out the second term to write

J1J2

N
' log(J1 + J2)− log log(J1 + J2) + log

(
1− e−

J2
1
N

)
+O

(
log logN

logN

)
. (2.3.27)

In writing this expression, we have dropped a term of O
(

1
logN

)
as it is subleading

to the O
(

log logN
logN

)
remainder term. The first two terms in this expression grow large

with increasing N , and the third term tends to a constant.

Finally, we consider the case where J2
1/N tends to infinity with N . Again we find

that (2.3.27) still holds, but that the third term now tends to zero. From the series

expansion of the logarithm, we have

log

(
1− e−

J2
1
N

)
= O

(
e−

J2
1
N

)
, (2.3.28)

so we write the final expression

J1J2

N
' log(J1 + J2)− log log(J1 + J2) +O

(
e−

J2
1
N

)
+O

(
log logN

logN

)
. (2.3.29)

Again, we have two remainder terms, as we have not specified how quickly J2
1/N scales

to infinity with N and so cannot state which is the larger.
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Summarizing the above, we have three different threshold equations for the different

regimes of J2
1/N . Listed in order of increasing J2

1/N , we have:

J1J2

N
=


log J1 +O

(
log logN

logN

)
+O

(
J2

1

N

)
J2

1

N
→ 0

log(J1 + J2)− log log(J1 + J2) + log

(
1− e−

J2
1
N

)
+O

(
log logN

logN

)
J2

1

N
→ const.

log(J1 + J2)− log log(J1 + J2) +O
(

log logN
logN

)
+O

(
e−

J2
1
N

)
J2

1

N
→∞.

(2.3.30)

In all cases, the explicitly-given terms are non-zero in the large N limit, and the higher-

order terms are small. All these large terms are necessary to describe the threshold

accurately at large N ; if we plug (2.3.30) into (2.3.12) with the remainder terms and

r discarded, then the correlator tends to one at large N in each case.

The angular momenta J1 and J2 grow at least as quickly as a positive power of N ,

so the leading-order term in the threshold is always proportional to logN . If we assume

that the power-dependence of J1 on N is simple enough that it can be separated out

into the form J1 = Nα1eδ1 , where α1 is a constant and |δ1(N)| � logN , then the

leading-order term of the threshold solution is

J1J2 ' α1N logN. (2.3.31)

We have so far neglected the error parameter r without discussion, but we can now

justify this. To derive the equation

G3 '

√
J1J2

(J1 + J2)N
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

(2.3.32)

near the threshold, we have dropped corrections of at most orderO (1/J1) andO(J1J2(J1+

J2)/N2). Near the threshold, J1 and J2 satisfy

J1J2(J1 + J2)

N2
' 1

J1

(
J1J2

N

)2

= O
(

(logN)2

J1

)
. (2.3.33)

The remainder parameter r, defined in (2.3.12), must contain all the corrections to

the correlator near the threshold. We can therefore state that, near the threshold, the

largest corrections to r must be

r = O
(

(logN)2

J1

)
, (2.3.34)
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which decays to zero with N at a faster rate than some inverse power of N . If we

reintroduce this remainder when expanding out the W -function in (2.3.13), we will

modify each equation in (2.3.30) by the addition of an r term, plus O(r2) corrections.

However, this term must be smaller than O
(

log logN
logN

)
, and in fact is smaller than any

power of (log logN/ logN): in terms of the parameter v = logN , the contributions

from r are exponentially suppressed in v. As a consequence, we can always drop these

terms from the solution.

2.3.2 A change of variables

The threshold equation G3(J1, J2, N) = 1 defines a two-dimensional threshold surface

in three-dimensional (J1, J2, N)-space. We can develop some insight into the relation

between this surface and the physical properties of the correlator by changing the

parameter space variables. If we takeN to be fixed but large enough that the remainder

O
(

log logN
logN

)
is small, then we can use (2.3.30) to rewrite the threshold as a curve in

E = J1+J2 and ∆J = |J2−J1|. For the region where J2
1/N → 0, i.e. (E2−∆J2)/N →

0, then the threshold of factorisation is

E2 −∆J2

4N log (E −∆J)
' 1 +O

(
log logN

logN

)
, (2.3.35)

and for the region where J2
1/N = (E2 − ∆J2)/N does not tend to zero, then the

threshold is

E2 −∆J2

4N(logE − log logE)
' 1 +O

(
log logN

logN

)
, (2.3.36)

where all the discarded terms are small.

We can say something about how perturbations away from the threshold in (E,∆J,N)

space affect the factorisation of the correlator by rewriting the correlator in the form

G3(E,∆J,N) =

[
E2 −∆J2

4NE
exp

(
E2 −∆J2

4N

)(
1− e−

1
4N

(E−∆J)2
)−1

e−r
] 1

2

. (2.3.37)

It is convenient to work with log(G3)2, and allow E and ∆J to be independent of N .

Taking the differential of log(G3)2, we have

d log(G3)2 =
2

G3

dG3 =
2

G3

[
∂G3

∂E
dE +

∂G3

∂(∆J)
d(∆J) +

∂G3

∂N
dN

]
, (2.3.38)
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Expressing the coefficients of the differentials in terms of J1, J2 and N for convenience,

we have

d log(G3)2 =
1

2
dE

J2

N
+

1

J1

+
J1

N
+

1

J2

− 2

J1 + J2

− 2J1

N(e
J2
1
N − 1)


+

1

2
d(∆J)

−J2

N
− 1

J1

+
J1

N
+

1

J2

+
2J1

N(e
J2
1
N − 1)


− dN

N

J1J2

N
+ 1− J2

1

N(e
J2
1
N − 1)

− dr. (2.3.39)

At large N and near the threshold J1J2 = O(N logN), the largest term in the coef-

ficient of dE is J2/N , which is of order O
(

logN
J1

)
. This means that ∂G3

∂E
is positive

at large N . Similarly, the largest term in the coefficient of d(∆J) is −J2/N , which is

order O
(

logN
J1

)
, and so ∂G3

∂∆J
is negative at large N . The corrections to dE and d(∆J)

from the differential of the error function dr are order O
(

logN
J2

1

)
at the threshold, and

so are subleading.

The signs of the partial derivates of G3 with respect to E and ∆J gives us some

interesting insights into factorisation near the threshold. If we consider N to be large

and fixed, and take E and ∆J near to the threshold, then a small increase in the energy

of the single graviton E will increase the correlator G3, and move the correlator into

the breakdown region. On the other hand, if the separation between the gravitons ∆J

in the multi-graviton state is increased by a small amount, then G3 will decrease, and

the correlator will move into the factorisation region.

2.4 Non-extremal correlators

We can consider the existence of a threshold of factorisation for a non-extremal three-

point function with operators formed from the complex scalar fields Z = φ5 + iφ6

accompanied by a small number of Y = φ3 + iφ4 insertions. Consider a correlator of

symmetrised trace operators inserted at the points x1, x2, and y:

〈Str(ZJ1Y J3)(x1)Str(ZJ2Y †J3)(x2)tr(Z†J1+J2)(y)〉. (2.4.1)

In a similar manner to the extremal correlator consisting of only Z-fields, we can

use the conformal symmetry to separate out a position-independent correlator by a
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particular choice of operator insertion locations. Under the inversion y → y′ = y/|y|2,

the antiholomorphic operator transforms as

tr(Z†J1+J2)(y) → tr′(Z†J1+J2)(y′)

= |y|J1+J2tr(Z†J1+J2)(y). (2.4.2)

By taking x1 → 0 and y′ → 0 i.e. y →∞, the correlator becomes

〈Str(ZJ1Y J3)(0)Str(ZJ2Y †J3)(x2)tr′(Z†J1+J2)(0)〉

=
〈Str(ZJ1Y J3)Str(ZJ2Y †J3)tr(Z†J1+J2)〉

|x2|2J3
. (2.4.3)

We have separated out a combinatoric factor which can be evaluated by a matrix model

calculation. Unlike the extremal correlator, however, the separation |x2| between the

operators inserted at Str(ZJ1Y J3) and Str(ZJ2Y †J3) is still present in this correlator.

Introducing the notation ε ≡ |x2| for the magnitude of the separation between these

two operators, and ‖ O ‖=
√
〈OO†〉 for the norm of a matrix model operator O, then

the multiparticle-normalised correlator is

G3(Ji, N ; ε) =
〈Str(ZJ1Y J3)Str(ZJ2Y †J3)tr(Z†J1+J2)〉

ε2J3 ‖ Str(ZJ1Y J3) ‖‖ Str(ZJ2Y J3) ‖‖ tr(ZJ1+J2) ‖
(2.4.4)

The appearance of this position-dependence means that the three-point correlator is

dimensionful, and so it is not meaningful to define the threshold as being when the

correlator approaches a fixed number at large N . However, if we introduce an arbitrary

mass scale Λ, then we can instead consider the combination Λ−2J3G3(Ji, N ; ε), which

is dimensionless. We define the non-extremal threshold as the solution to the equation

Λ−2J3G3(Ji, N ; ε) = 1. (2.4.5)

A natural choice of Λ would be a UV cutoff of the CFT. This will modify correlators

in general, and the ε−2J3 factor will be modified to

1

ε2J3

(
1 + o(ε−1Λ−1)

)
. (2.4.6)

The higher-order corrections can be neglected if we require that the separation ε is

much larger than the cutoff length Λ−1. We can do this by setting εΛ to be large and

independent of N , or by allowing εΛ to grow large with N . It is convenient in the

following to define R := εΛ as the dimensionless ratio between the cutoff separation
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and the length scale. This is required to be large for the higher-order corrections to ε

to be absent. The non-extremal threshold equation can then be written in the form

Λ−2J3G3(Ji, N ; ε) = R−2J3
〈Str(ZJ1Y J3)Str(ZJ2Y †J3)tr(Z†J1+J2)〉

‖ Str(ZJ1Y J3) ‖‖ Str(ZJ2Y J3) ‖‖ tr(ZJ1+J2) ‖
= 1. (2.4.7)

To investigate the threshold of this non-extremal correlator, we look for an exact

finite N expression of the correlator that is valid when some of the operator dimensions

are large. There are three matrix model correlator expressions that we need in order

to evaluate the correlator:

‖ Str(ZJ1Y J3) ‖2 = 〈Str(ZJ1Y J3)Str(Z†J1Y †J3)〉,

‖ tr(ZJ1+J2) ‖2 = 〈tr(ZJ1+J2)tr(Z†J1+J2)〉,

〈Str(ZJ1Y J3)Str(ZJ2Y †J3)tr(Z†J1+J2)〉. (2.4.8)

The norm ‖ tr(ZJ1+J2) ‖2 is known explicitly, but we have not found a closed form of

the other correlators for general operator dimensions. However, exact evaluations of

the correlator can be found for small values of J3, where there is only a small number

of Y -insertions; in the following we focus on the ‘near-extremal’ case when J3 = 1.

2.4.1 The ‘near-extremal’ correlator

We set J3 = 1 in (2.4.7) and consider the correlator

G3(Ji, N ; ε) =
〈Str(ZJ1Y )Str(ZJ2Y †)tr(Z†J1+J2)〉

ε2 ‖ Str(ZJ1Y ) ‖‖ Str(ZJ2Y ) ‖‖ tr(ZJ1+J2) ‖
. (2.4.9)

The norm ‖ tr(ZJ1+J2) ‖2 was known previously [27] and used in Sections 2.2 and 2.3:

〈tr(ZJ1+J2)tr(Z†J1+J2)〉 = (J1 + J2)!

[(
N + J1 + J2

J1 + J2 + 1

)
−
(

N

J1 + J2 + 1

)]
. (2.4.10)

For J3 = 1, there is only one pair of Y -matrices, so the contraction of the three-

point function can be performed immediately. The unnormalised three-point correlator

becomes

〈Str(ZJ1Y )Str(ZJ2Y †)tr(Z†J1+J2)〉 = 〈tr(ZJ1+J2)tr(Z†J1+J2)〉, (2.4.11)
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where we have used the fact that Str(ZJ1+J2) = tr(ZJ1+J2). This means that (2.4.9)

reduces to

G3(Ji, N ; ε) =
‖ tr(ZJ1+J2) ‖

ε2 ‖ Str(ZJ1Y ) ‖‖ Str(ZJ2Y ) ‖
. (2.4.12)

The other correlators can be determined by tensor space methods. In Appendix D,

we have derived the equation

〈Str(ZJ1Y J2)Str(Z†J1Y †J2)〉 = J1!J2!

[(
N + J1 + J2

J1 + J2 + 1

)
−
(

N

J1 + J2 + 1

)]
. (2.4.13)

Substituting in the relevant values of J1 and J2 in to the correlators in the denominators

of (2.4.9), we find that

‖ Str(ZJ1Y ) ‖ =
√
J1!

[(
N + J1 + 1

J1 + 2

)
−
(

N

J1 + 2

)] 1
2

, (2.4.14)

‖ Str(ZJ2Y ) ‖ =
√
J2!

[(
N + J2 + 1

J2 + 2

)
−
(

N

J2 + 2

)] 1
2

, (2.4.15)

and so

Λ−2G3(Ji, N ; ε) = R−2

(
(J1 + J2)!

J1!J2!

) 1
2
[(
N + J1 + J2

J1 + J2 + 1

)
−
(

N

J1 + J2 + 1

)] 1
2

×

×
[(
N + J1 + 1

J1 + 2

)
−
(

N

J1 + 2

)]− 1
2
[(
N + J2 + 1

J2 + 2

)
−
(

N

J2 + 2

)]− 1
2

. (2.4.16)

This is the finite N expression of the non-extremal correlator when J3 = 1. It is

valid for small or large J1 and J2, provided that J1, J2 � N . As in the extremal case,

we wish to find the asymptotic form of this expression when J1, J2, and N are large,

but the ratios J1/N and J2/N are small. Making the assumptions that J1 ≤ J2 � N
2
3 ,

then equation (2.2.18) still holds with J replaced by (J1 +1). Dropping the subleading

corrections, we find that

J1!

[(
N + J1 + 1

J1 + 2

)
−
(

N

J1 + 2

)]
' NJ1+2

J2
1

exp

(
J2

1

2N

)(
1− e−

J2
1
N

)
, (2.4.17)

and similarly for J2. The full large N expression for the correlator for 1� J1 ≤ J2 �
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N is therefore

Λ−2G3 ' R−2

√
J2

1J
2
2

(J1 + J2)N3
exp

(
J1J2

2N

)√√√√√√
(

1− e−
(J1+J2)2

N

)
(

1− e−
J2
1
N

)(
1− e−

J2
2
N

) (2.4.18)

We can argue that the correlator must decay to zero if J1J2/N is small as follows:

If J1J2/N tends to zero with N , then the exponential term tends to 1. The factor R−2

has already been taken to be small. Since J1J2/N is small and we have assumed that

J1 ≤ J2, we know that J2
1/N is also small and so

1− e−
(J1+J2)2

N ' 1− e−
J2
2
N ,

J2
1/N

1− e−
J2
1
N

' 1, (2.4.19)

and thus we can deduce that

Λ−2G3 ' R−2J2

N

1√
J1 + J2

. (2.4.20)

The correlator must therefore tend to zero when J1J2/N is small.

On the other hand, consider the case when J1J2/N grows larger than a positive

power of N , i.e. J1J2 > N1+δ for some δ > 0. The exponential term will dominate the

expression, as it will grow to infinity exponentially quickly with N as compared to the

other factors of J1, J2, and N outside of the exponential. In this case, the correlator

must definitely grow to infinity (provided that R is does not grow with N at a faster

than a power of N). Summarizing the above, we have

G3(J1, J2, N ;R)→ 0,
J1J2

N
→ 0,

G3(J1, J2, N ;R)→∞, J1J2

N1+δ
→∞ for some δ > 0. (2.4.21)

The threshold must therefore be constrained to lie in the region

N < J1J2 < N1+δ. (2.4.22)
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In this range, the large N behaviour of the correlator is simply

Λ−2G3(J1, J2, N ; ε) ' R−2

√
J2

1J
2
2

(J1 + J2)N3
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

. (2.4.23)

We can encompass all the errors present in approximating this expression by the

function r, defined by the equation

Λ−2G3(J1, J2, N ; ε) = R−2

√
J2

1J
2
2

(J1 + J2)N3
exp

(
J1J2

2N

)(
1− e−

J2
1
N

)− 1
2

e−
r
2 , (2.4.24)

and attempt to solve asymptotically the threshold equation

Λ−2G3(J1, J2, N ; ε) = 1. (2.4.25)

We consider the cases J1 = J2 and J1 6= J2 separately.

2.4.2 J1 = J2

If we consider the non-extremal correlator when J1 = J2 = J , then the threshold

equation with error function r becomes

R−2

√
J3

2N3
exp

(
J2

2N

)(
1− e−

J2

N

)− 1
2

e−
r
2 = 1. (2.4.26)

This has an exact solution in term of the W -function,

J2
t

N
=

3

2
W

[
25/3

3
NR8/3

(
1− e−

J2
t
N

) 2
3

e
2r
3

]
. (2.4.27)

The argument of the W -function must be large, so we can again expand it in terms

of logarithms. The factors of (1 − e−J
2

N ) and e
2r
3 must be subleading, and so a short

calculation shows that the threshold expands out to

J2
t

N
=

3

2
logN + 4 logR− 3

2
log

[
logN +

8

3
logR

]
+

1

2
log

(
32

27

)
+ o(1). (2.4.28)

In this large N expansion of the threshold, we have the two parameters N and

R ≡ εΛ. If we take R to be large but independent of N , then it must become
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subleading in the large N limit, and the threshold becomes

J2
t

N
=

3

2
logN − 3

2
log logN + 4 logR+

1

2
log

(
32

27

)
+ o(1) (2.4.29)

' 3

2
logN. (2.4.30)

Alternatively, we can allow the ratio R to grow large with N , by letting either the

separation of the operators ε or the cutoff scale Λ grow with N . The logR terms are

subleading and the above expression still holds if R scales to infinity at a slower rate

than a power of N . If R grows like a power of N , then it can influence the leading

constant of the threshold, but it is still logarithmically dependent on N . In all these

cases, the leading-order behaviour of the threshold is simply

J2 = O(N logN), (2.4.31)

as was the case for the extremal correlator.

The expansion of the threshold given in (2.4.29) tells us something new about the

factorisation thresholds for non-extremal correlators. The (4 logR) term, which did

not appear in the extremal threshold, means that the threshold in the non-extremal

case depends on the separation of the correlators in the boundary directions. If we

considered a system at the threshold at fixed large N and fixed largeR, then a decrease

in R will lead to an increase in Λ−2G3, and an increase in R will lead to a decrease in

Λ−2G3. From the bulk AdS perspective, this means that we move from factorisation to

breakdown when the gravitons are moved closer together in the boundary directions,

perpendicular to the AdS radius.

2.4.3 J1 6= J2

When J1 and J2 are not equal, but lie in the region N
1
3 � J1 ≤ J2 � N

2
3 , then

equation (2.4.24) has the solution

J1J2

N
= 2W

[√
1

4
R4N(J1 + J2)(1− e−

J2
1
N )er

]
. (2.4.32)

The form of the expansion of the W -function depends on the scaling behaviour of

the smallest angular momentum with N , which we have chosen to be J1. We consider

separately three cases: J2
1/N tends to zero, J2

1/N tends to a constant, and J2
1/N tends

to infinity.



2. Thresholds of factorisation in the AdS/CFT correspondence 131

If J2
1/N → 0, then the leading terms in the expansion of the W -function are

J1J2

2N
' 1

2
log

[
1

4
R4N(J1 + J2)

J2
1

N

]
− log

[
1

2
log

[
1

4
R4N(J1 + J2)

J2
1

N

]]
+ o(1)

=
1

2
log

(
J1NR4

4

)
+log

(
1 +

J1

J2

)
+log

(
J1J2

N

)
− log

[
1

2
log

[
1

4
R4N(J1 + J2)

J2
1

N

]]
(2.4.33)

Plugging in J1J2/N into the third term, the log-log cancels and we have

J1J2

2N
=

1

2
log

(
J1NR4

4

)
+ log

(
1 +

J1

J2

)
+O(1). (2.4.34)

Since J1 ≤ J2, the second term is O(1), hence

J1J2

N
= log(J1N) + 4 logR+O(1). (2.4.35)

If J2
1/N tends to a constant at large N , then the expansion becomes

J1J2

2N
=

1

2
log

[
R4N

4
(J1 + J2)

]
+ c − log

[
1

2
log

[
R4N

4
(J1 + J2)

]
+ c

]
+ o(1),

(2.4.36)

where c is some constant (order 1 with respect to N). Hence

J1J2

N
= log((J1 + J2)N) + 4 logR− log log((J1 + J2)N) +O(1). (2.4.37)

If J2
1/N tends to infinity with N , then the above equation also holds but with c replaced

by zero.

We can collate these three cases into a single equation by taking the leading scaling-

behaviour of J1 to be fixed, i.e. assuming J1 = Nα1eδ1 for subleading δ1 and constant

α1. The threshold can then be written in all cases as

J1J2

N
= (1 + α1) logN + 4 logR+ o(logN). (2.4.38)

As in the extremal case, decreasing the difference between the angular momenta

∆J = |J2−J1| will move the correlator from the threshold to the breakdown region. In

addition, from the structure of the correlator in (2.4.24), it is clear that decreasing R
while fixing N , J1, and J2 will move the correlator from the threshold to the breakdown
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region. From the bulk AdS point of view, non-extremal correlators correspond to

the interactions of Kaluza-Klein gravitons with angular momenta in perpendicular

directions in the S5. We can move from the threshold to the breakdown region by

moving the gravitons closer together in the boundary directions, or by decreasing the

separation in the graviton energies.

2.5 Multi-gravitons and non-trivial backgrounds

In the previous sections we have studied in detail the thresholds of some simple ex-

tremal and non-extremal three-point functions. In this section we briefly discuss two

other examples of extremal correlators for which we have found explicit expressions of

the threshold: a correlator corresponding to a (k + 1)-graviton system, and a correla-

tor corresponding to gravitons in an LLM background. We find a very similar form of

the thresholds to the previous examples in both cases. In the future, developing the

tools to calculate more general correlators in the half-BPS sector could give us more

insight into general properties of thresholds, and thus also shed light on the behaviour

of high-momentum graviton systems in supergravity.

2.5.1 The (k + 1)-graviton correlator

We can calculate the extremal correlator associated to k gravitons scattering into a

single graviton,

〈〈
k∏
i=1

(trZJi)trZ†
∑
Ji〉〉 (2.5.1)

and take the large dimensions limit using similar techniques. We find that the corre-

lator evaluates to

〈
k∏
i=1

(trZJi)trZ†J〉 = J !
k∑
t=0

∑
S⊆{1,...,k}
|S|=t

(−)k−t
(
N +

∑
i∈S Ji

J + 1

)
, (2.5.2)

where the sum is performed over all subsets of the k-element set {1, 2, . . . , k}, and

J =
∑

i Ji. An outline of the derivation of this result is given in Appendix D.

In this section, we we derive the asymptotic form of the (k + 1)-point function

(2.5.2). Assuming that Ji � N
2
3 and that Λ is some sum of the Ji, we have from
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Section 2.2

J !

(
N + Λ

J + 1

)
' NJ+1

J
exp

(
J(2Λ− J)

2N
−O

(
J3

N2

))
. (2.5.3)

We can then write (2.5.2) as

〈
k∏
i=1

(trZJi)trZ†J〉 ' NJ+1

J

∑
S⊆{1...k}

(−)k−|S|e−
J2

2N
+O(J3/N2)e

J
N

∑
i∈S Ji

' NJ+1

J
e−

J2

2N
+O(J3/N2)(−)k

∑
S⊆{1...k}

∏
i∈S

(
−e

J
N
Ji
)

(2.5.4)

We can evaluate this sum over subsets explicitly by first partitioning the sum into

two; one sum over the subsets including the element k, and one over the subsets not

including k. We can then apply this for each integer from 1 to k. We have∑
S⊆{1...k}

∏
i∈S

(
−e

J
N
Ji
)

=
(
−e

J
N
Jk
) ∑
S⊆{1...k−1}

∏
i∈S

(
−e

J
N
Ji
)

+ 1
∑

S⊆{1...k−1}

∏
i∈S

(
−e

J
N
Ji
)

= (−e
J
N
J1 + 1)(−e

J
N
J2 + 1) . . . (−e

J
N
Jk + 1). (2.5.5)

Taking out a factor of eJ
2/N from this product, we have the asymptotic form of the

unnormalised correlator,

〈
k∏
i=1

(trZJi)trZ†J〉 ' NJ+1

J
exp

(
J2

2N
+O

(
J3

N2

)) k∏
i=1

(
1− e−

JJi
N

)
. (2.5.6)

Together with the known asymptotic form of the 2-point function

〈trZJitrZ†Ji〉 ' NJi+1

Ji
e
J2
i

2N

(
1− e−

J2
i
N

)
, (2.5.7)

we can therefore write the full correlator in the large J , small J3/N2 limit,

〈〈
k∏
i=1

(trZJi)trZ†J〉〉 '
√
J1 . . . Jk
JNk−1

e
J2

4N
− J2

1
4N
−...− J2

k
4N

∏k
i=1(1− e−JJ1/N)√

(1− e−J2/N)
∏k

i=1(1− e−J2
1/N)

'
√
J1 . . . Jk
JNk−1

(1− e−
JJ1
N ) . . . (1− e−

JJk
N )√

(1− e−
J2
1
N ) . . . (1− e−

J2
k
N )(1− e−J

2

N )

exp

(∑
i<j

JiJj
2N

+O
(
J3

N2

))
.

(2.5.8)
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In the regime where all Ji � N
2
3 for all i = 1, 2, . . . k, then the correlator is

asymptotic to√
J1 . . . Jk

Nk−1
∑

i Ji

(1− e−
J1

∑
Ji

N ) . . . (1− e−
Jk

∑
Ji

N )√
(1− e−

J2
1
N ) . . . (1− e−

J2
k
N )(1− e−

(
∑
Ji)

2

N )

exp

(∑
i<j

JiJj
2N

)
. (2.5.9)

The factors in front of the exponential tend to zero as a power ofN when 1� Ji � N
2
3 .

If all pairs of dimensions satisfy JiJj . N , then the exponential term is small, and

the correlator decays to zero. However, if any pair of distinct dimensions satisfy

JiJj ≥ N1+δ for some δ > 0, then the exponential term dominates any power of N ,

and so the correlator tends to infinity. We can deduce that the factorisation threshold

when G3 = 1 should be located when the product of the largest two operators grows

logarithmically larger than N :

JiJj = O(N logN). (2.5.10)

In the case when all the Ji are taken to be equal to J , then we can solve the thresh-

old explictly at leading order. The correlator for N
1
2 < J < N

1
2

+δ is asymptotically

Gk+1 '
√

Jk−1

kNk−1
exp

(
k(k − 1)

4

J2

N

)
, (2.5.11)

and the leading-order terms in the expansion of the threshold satisfying

Gk+1(Jt(N), N) = 1 are

J2
t =

N

k

[
logN − log logN +

(
k + 1

k − 1

)
log k + o(1)

]
. (2.5.12)

This can be interpreted as saying that as the number of gravitons increases, the region

in which factorisation holds shrinks. When more gravitons are added to a system,

they will start behaving like a single particle located further away from the boundary.

2.5.2 Factorisation thresholds for large backgrounds

Thresholds of factorisation can be considered in more general half-BPS bulk back-

grounds, specified in the dual description by Schur Polynomials. For a background

described by a Young tableau B with n boxes, the associated Schur polynomial χB is
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a U(N) character [25],

χB(Z) =
1

n!

∑
σ∈Sn

χB(σ)tr(σZ⊗n). (2.5.13)

The CFT state corresponding to such a background is |B〉 = χB(Z†)|0〉, and the

operator in this background are defined by [75]

〈O . . .O〉B =
〈B|O . . .O|B〉
〈B|B〉

. (2.5.14)

This gives us the definition of a three-particle normalised correlator in the state,

G3(J1, J2;N,M)B =
〈trZJ1trZJ2trZ†J1+J2〉B√

〈trZJ1trZ†J1〉B〈trZJ2trZ†J2〉B〈trZJ1+J2trZ†J1+J2〉B

=
√
〈B|B〉 〈B|trZJ1trZJ2trZ†J1+J2|B〉√

〈B|trZJ1trZ†J1|B〉〈B|trZJ2trZ†J2|B〉〈B|trZJ1+J2trZ†J1+J2|B〉
. (2.5.15)

One of the easiest ones backgrounds in which to perform the threshold calculation is

the background corresponding to a large rectangular Young diagram with N rows of

length M , where M is of the same order as N . In [75], it was shown by performing

manipulations of Schurs that the large rectangular background modifies the normalised

correlator by shifting the matrix rank parameter from N to M +N . That is, we have

G3(J1, J2;N,M)B =

[
〈trZJ1trZJ2trZ†J1+J2〉√

〈trZJ1trZ†J1〉〈trZJ2trZ†J2〉〈trZJ1+J2trZ†J1+J2〉

]
N→N+M

= G3(J1, J2, N +M). (2.5.16)

Hence, the correlator in a large rectangular background only differs from the nor-

malised correlator in that the argument N is replaced by N + M . This means that,

in this background, the threshold of factorisation is at

J1J2 ∼ (N +M) log(N +M). (2.5.17)

We interpret this as evidence that the presence of a background can increase the size

of the region in which factorisation is valid.
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2.6 Discussion

We have undertaken a detailed study, via gauge theory calculations, of the thresholds

where multi-particle Kaluza-Klein gravitons have order one correlations at large N

with single gravitons. The angular momenta of the gravitons in AdS5×S5 must grow

large with N for the correlator to approach the threshold, and the precise form of

this growth was worked out in several cases. The large N growth at the threshold

region for the case of two gravitons of angular momentum J being correlated with

a single graviton of angular momentum 2J is J ∼
√
N logN . The breakdown of

factorisation is a breakdown of the usual perturbative scheme for computing graviton

interactions in spacetime, which relies on a multi-graviton Fock space with states

of different particle number being orthogonal. In this usual framework, the mixing

between different particle numbers arises in 1/N corrections which are suppressed at

large N for small enough J . We have found quantitative description of several factors

which can move a correlator from the regime factorisation to the threshold, such as:

• Increasing the total energy of the gravitons,

• Decreasing the separation in the energies of the two gravitons,

• Decreasing the separation of gravitons in the boundary directions,

• Increasing the number of gravitons.

Another qualitative outcome of interest is that for k gravitons being correlated with

a single graviton, the threshold can be expressed in terms of the two largest momenta

among the k gravitons, taking the form JiJj ∼ N logN . In these investigations, we

have found a rich variety of applications of the Lambert W -function. We have seen

intriguing similarities between asymptotic threshold equations and running gauge cou-

plings in non-abelian gauge theories. The large N approximations have also involved

transseries of the kind seen in instanton-corrected perturbation expansions of quantum

field theory.

We also investigated the factorisation thresholds in the presence of LLM back-

grounds associated with rectangular Young diagram backgrounds. The presence of

these backgrounds increases the region of graviton momenta that are consistent with

factorisation. There are indications that triangular Young diagrams can be used to

model thermal black hole-like backgrounds [81]. We expect that, in the presence of

black holes, the regime of validity of effective field theory should be smaller than in the
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absence of black holes. This would suggest that factorisation in triangular Young dia-

gram backgrounds should occur in a more limited regime of graviton angular momenta

than factorisation in the vacuum. This is a very concrete problem in the combinatorics

of CFT correlators, and an interesting research direction for the future.

In the study of factorisation thresholds, we have consistently found thresholds

when the angular momenta are of the form JiJj ∼ N logN , which suggests that there

is some form of universality of the threshold. An interesting future direction would be

to consider the thresholds calculated in the ‘overlap-of-states’ norm from [24, 82], as

opposed to the ‘multiparticle’ norm used in this thesis. In the overlap normalisation,

the correlators are bounded by one from above and cannot grow exponentially with

N , but they may well tend to a finite non-zero constant at large N if their angular mo-

menta grow quickly enough. We could define a threshold in the overlap normalisation

as the surface where a correlator is equal to some fixed constant between zero and one.

Evidence from shifting the factorisation threshold at the end of Section 2.2.3 suggests

that the form of the threshold will not change when going to the overlap norm, and

will remain J2 ∼ N logN . This is another interesting problem for the future that

involves non-trivial asymptotics of finite N CFT correlators, and could well provide

further evidence for the universality of the N logN threshold.

In Section 2.4 we showed how the ‘near-extremal’ correlator has a threshold which

depends on the separation of the CFT insertions in the 4d spacetime directions, as

well as exhibiting the dependences on total energy and energy differences of the cor-

responding gravitons. We considered two gravitons in AdS with angular momenta

(J3, J1), (−J3, J2) where the first entry refers to the Y -plane and the second to the

Z-plane. We studied the correlation with a single graviton with angular momenta

(J1 + J2, 0). The explicit calculations were done for J3 = 1, with J1, J2 growing with

N . A generalisation to the case of J3 also growing with N would be very interesting,

as it would show the effect on the quantum correlations at threshold between two

gravitons and a single graviton, when the two gravitons annihilate a large amount of

Y -momentum and the correlator is no longer near-extremal.

We hope to have convinced the reader that the theme of thresholds between dif-

ferent behaviours is a fruitful way to explore the bulk AdS physics encoded in the

correlators of the CFT. Since the string coupling parameters are related as

1

N
= gs

l4s
R4

(2.6.1)
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for fixed R/ls, finite N is finite string coupling, and is non-perturbative from the point

of view of strings in the bulk spacetime. Hence, finite N calculations in CFT con-

tain valuable information about strongly quantum gravitational effects. The generic

JiJj ∼ N logN we found, which in spacetime variables is

JiJj ∼ N logN =

(
R4

gsl4s

)
log

(
R4

gsl4s

)
, (2.6.2)

is an intriguing result that should be understood better from the bulk point of view,

either from a first principles string calculation in AdS5 × S5 or from a phenomeno-

logical model of quantum gravitational spacetime constructed to reproduce the CFT

result. As we observed, the threshold corresponds to a region where the Fock space

of spacetime field modes breaks down. The broader issue of the breakdown of pertur-

bative effective field theory is central to questions in black hole physics [74, 83, 84].

In particular, black hole complementarity is related to the structure of Hilbert spaces

needed to describe infalling observers and outgoing radiation. We propose that a

convincing spacetime understanding of the thresholds derived here would be a highly

instructive step in understanding the departures from effective field theory in quan-

tum gravity. Insights from earlier work on bulk spacetime in AdS in connection with

gauge-string duality, such as in [85, 86], might be useful. Alternatively, the methods

of collective field theory [87] could help with a derivation of the large N effective field

theory. Another possible approach towards better understanding the thresholds from

the spacetime point of view would be to make use of a combination of semi-classical

tools, exploiting high energy eikonal approximations or physical effects such as the

tidal stretching of high energy gravitons into strings, for example along the lines of

[88, 89].

The study of Schur operators as the description of giant gravitons was motivated by

the observed departure from orthogonality between multi-graviton and single graviton

states at large J [24]. Schur operators give a weakly-coupled description of giant

gravitons in the regime of J ∼ N , but become strongly-interacting as J is decreased

[68]. In this chapter, we have focused on the approach to the threshold in the regime

near J ∼
√
N by studying single and multi-trace graviton operators. It would be very

interesting to study thresholds between weak and strong interactions in giant graviton

physics as the angular momenta are decreased from J ∼ N . The detailed investigations

of the one-loop and multi-loop dilatation operators around giant graviton backgrounds

should provide useful data for this purpose [90, 91, 92].
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The fact that the thresholds are near
√
N rather than N1/4 is rather intriguing.

This has been discussed in [68]. Angular momenta of J ∼ N1/4 correspond to momenta

comparable to the ten-dimensional Planck scale. This may be a sign that AdS5 × S5

physics is just very different from expectations derived from effective field theory in

flat space R9,1. On the other hand, it could be that a clever interpretation of the

link between the extremal correlators and flat space scattering would account for the

thresholds we see from the CFT. Potentially, the correct interpretation has to recognise

that extremal correlators correspond to collinear graviton scatterings. We would need

to consider the flat space expectations in the light of collinear effective theories of

gravitons, along the lines developed in [93], to understand the difference between the

threshold scale and the Planck scale. An early discussion of the subtleties of connecting

bulk AdS spacetime physics to the flat space limit is given in [94].

There is a great deal of quantitative information about graviton correlations at the

factorisation threshold which is available via finite N CFT computations and their

large N asymptotics. The lessons we draw from these are very likely to be important

for questions we would like to answer in black hole physics and quantum gravity.



Chapter 3

The light-cone cell decomposition of moduli

space

Moduli spaces of Riemann surfaces appear in the ranges of integration for bosonic

string amplitudes. Distinct points in the same moduli space correspond to inequivalent

Riemann surfaces with the same topology and number of punctures. However, moduli

spaces are very difficult to describe explicitly in all but the simplest cases, where the

Riemann surfaces have low genus and few punctures.

A detailed understanding of moduli spaces is fundamental both in pure mathemat-

ics and in string theory. The aim of this chapter is to develop the understanding of

moduli spaces via the light-cone cell decomposition of Giddings, Wolpert, and Naka-

mura [30, 31]. In the light-cone cell decomposition, each cell is associated to a partic-

ular type of ribbon graph embedded on the surface, which we call a Nakamura graph.

We undertake a systematic study of Nakamura graphs and their associated cells by

introducing a description of the graphs in terms of equivalence classes of permutation

tuples. These tuples precisely describe the structure of the cells in moduli space, their

boundaries, and their automorphism groups. We use this tuples description to de-

velop powerful computational tools to catalogue Nakamura graphs, and demonstrate

this approach by finding the orbifold Euler characteristic of the moduli spaces Mg,n

with (2g − 2 + n) ≤ 7.

The outline of this chapter is as follows. In Section 3.1, we start by recalling the

properties of the Giddings-Wolpert differential and explaining how Nakamura associ-

ated a graph to each differential. The Giddings-Wolpert differential of a surface is a

meromorphic one-form with purely imaginary periods and residues at the punctures

which sum up to zero. The Nakamura graph associated to the surface has vertices at

the poles and zeroes of the differential, and edges on the real trajectories extending

from the zeroes. We introduce some parameters to describe the graphs and their as-

140
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sociated cells in the light-cone cell decomposition. We review an alternative definition

of moduli space, which was used in [31], describing the equivalence classes of Riemann

surfaces in which some of the punctures may be permuted.

In Section 3.2, we develop a new permutation description of Nakamura graphs

by considering branched covering maps from the worldsheet onto the Riemann sphere.

The branching determines a Hurwitz class associated to the graph, and the ramification

points correspond to vertices of the graph. Each Hurwitz class determines a unique

Nakamura graph, but there can be multiple Hurwitz classes corresponding to a given

Nakamura graph. To solve this redundancy, we introduce an equivalence relation

on the space of Hurwitz classes which we call slide-equivalence. There is a one-to-

one correspondence between slide-equivalence classes and Nakamura graphs. These

Hurwitz classes and slide-equivalence classes describe cells in the moduli space of

Riemann surfaces in which the punctures on the surfaces can be permuted. To describe

cells in the moduli space with fixed punctures, we introduce split tuples which encode

a labelling of the punctures.

In Section 3.3 we explain how the permutation tuples can be used to generate the

cells in moduli space explicitly. The faces of a Nakamura graph are holomorphic to

strips in the complex plane. Each of the d strips has a width bj, and each of the l

zeroes has a time coordinate tk, and so a point in the cell is determined by a point

in Rd+l. These parameters are constrained by the residues of the poles and the time-

ordering of the zeroes determined by the graph, forming a (d + l − n)-dimensional

subset. These constraints, and the automorphism group of the graph, can be read off

from the permutation tuple. This approach also shows how the automorphism group

of the graph acts on the parameter space, which gives the orbifold quotienting of the

cell explicitly. The boundaries of this cell can be found from the tuple, corresponding

to the collapse of a strip or the merging of a pair of interaction points. We show

how this procedure works for some simple examples of low-dimensional moduli spaces.

The cell decomposition of moduli space is preserved by the action of the mapping class

group; we demonstrate this in Section 3.4 by extending the cell decomposition to a

cell decomposition of Teichmüller space.

In Section 3.5 we discuss the orbifold Euler characteristic of moduli space. This

was used by Nakamura as a method of verifying that the graphs gave a cell decom-

position. We explore some links between the counting of cells in the moduli space

and the correlators of matrix models. Cells of top dimension in the light-cone cell

decomposition are specified by Nakamura graphs with simple zeroes and no internal

edges, i.e. graphs where all zeroes have valency four and connect only to the poles.
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Within the slide-equivalence class of a top-dimensional graph, there is a unique Hur-

witz class consisting of a tuple of three permutations, which naturally corresponds to

a Belyi map. This allows us to use known exact results from Hermitian matrix model

correlators [34] to obtain all-orders analytic formulae for the contribution to the Euler

characteristic from the top-dimensional cells. These results agree with the tables given

by Nakamura for small g and n. We can also consider cells with lower dimension cor-

responding to graphs with no internal edges In this case, we can use complex matrix

models to derive analytic formulae for the contributions to the Euler characteristic

from lower-dimension cells. We conclude this section by briefly discussing our compu-

tational approach to testing the validity of the light-cone cell decomposition. Using

the group theory software GAP, we were able to reproduce and extend the tables of

cells, dimensions, and automorphism groups found in [31]. The full details of the al-

gorithm are presented in Appendix F. We conclude this chapter with some discussion

of our results and future applications.

3.1 Nakamura graphs

The key aim of this chapter is to develop a cell decomposition of the moduli space

of Riemann surfaces by using a family of graphs which we call Nakamura graphs. In

this section, we introduce the definition of Nakamura graphs via the Giddings-Wolpert

differential on a Riemann surface, and discuss their properties and parameters. More

discussion and definitions of moduli spaces of Riemann surfaces are given in Appendix

E.

3.1.1 Giddings-Wolpert differentials

Consider a Riemann surface X with n distinguished labelled points P1, P2, . . . , Pn and

genus g, where n ≥ 2. Associate a set of real numbers r1, r2, . . . rn respectively to the

n labelled points, which satisfy
∑

i ri = 0. Giddings and Wolpert proved in [30] that

there exists a unique abelian differential ω on the Riemann surface X such that ω has n

simple poles at the points Pi with respective residues ri and pure imaginary periods on

any closed integral on the surface. This is the Giddings-Wolpert differential of the

surface. This differential restricts to a holomorphic differential on X̂, the punctured

Riemann surface with the n labelled points removed.

The Giddings-Wolpert differential yields a global time coordinate on the Riemann

surface X, up to an overall constant representing the time translation symmetry. If we
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fix a point z0 on the surface which is not a pole of ω, then we can define the global time

coordinate of a generic point z on the surface to be T := Re(
∫ z
z0
ω). This expression

does not depend on the choice of integration contour from z0 to z, since any two paths

from z0 to z differ only by a closed contour, and the integral of the differential along

any closed contour is imaginary. The global time coordinate tends to negative infinity

as we approach the poles with positive residue, and to positive infinity as we approach

the poles with negative residues. We call the poles with positive residue the incoming

poles, and the poles with negative residue the outgoing poles.

For the cases of the sphere and the torus, it is not too difficult to construct the

differential of a given marked surface and its time coordinate explicitly. Take a sphere

with n marked points Pi and associated reals ri, where
∑

i ri = 0. We can choose

coordinates z on the sphere such that the marked points Pi are located at z = pi for

some pi ∈ C. In this chart, the Giddings-Wolpert differential can be explicitly written

as

ω(z; pi) :=
n∑
i=1

ridz

z − pi
. (3.1.1)

It is clear that this differential has residue ri at each point Pi. The integral of the

differential along any closed contour C is
∮
C ω = 2πi

∑
Pi∈C ri, summed over the points

Pi enclosed in the contour C, and this integral is purely imaginary. The global time

coordinate is

T (z) = ln

(∏
i

|z − pi|ri
)

+ T0, (3.1.2)

where T0 is an arbitrary constant.

Now consider a torus with n marked points Pi, associated real values ri with∑
i ri = 0, and modular parameter τ with Im(τ) > 0. This torus can be realised as

the quotient of the complex plane C by the equivalence relation z ∼ z+n+mτ for all

integers n and m. In these coordinates, the marked points Pi are located respectively

at z = pi for some pi = ai + biτ , where 0 ≤ ai, bi < 1. To define the Giddings-

Wolpert differential on this surface, we use the Jacobi theta function θ11(z; τ), which

is a holomorphic quasi-periodic function on the complex z plane satisfying

θ11(z + 1; τ) = θ11(z; τ), θ11(z + τ ; τ) = e−2πi(z+1/2)θ11(z; τ),

θ11(z; τ + 1) =
√
iθ(z; τ), θ11(z/τ ;−1/τ) = (−i)

√
iτeiπz

2/τθ11(z; τ), (3.1.3)
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and behaves like θ11(z; τ) ≈ z for small values of z. The differential on this surface is

ω(z; pi, τ) := dz
n∑
i=1

ri

(
−2πi

Im(pi)

Im(τ)
+
θ′11(z − pi; τ)

θ11(z − pi; τ)

)
, (3.1.4)

and the associated global time coordinate on the surface is

T (z) =
∑
i

ri

[
2π

Im(pi)

Im(τ)
Im(z) + log |θ11(z − pi; τ)|

]
+ T0, (3.1.5)

where T0 is an arbitrary constant. It can be shown from the above properties and

relations of the Jacobi theta function that ω(z; pi) and T (z) are well-defined on the

torus, i.e. these definitions are invariant under the coordinate shifts z → z + m + nτ

and under the modular transformations (τ, pi) → (τ + 1, pi), (τ, pi) → (−1/τ, pi/τ).

The integrals of the differential along the cycles a : z → z + 1 and b : z → z + τ are

imaginary, as are the integrals around each pole pi, and so all periods of the differential

are pure imaginary.

Formulae for Giddings-Wolpert differentials in terms of theta functions at genus

one and higher can be found in recent work [95].

3.1.2 Graphs and strip decompositions

The Giddings-Wolpert differential associated to a marked Riemann surface naturally

gives rise to an embedded ribbon graph on the surface. This construction was devel-

oped by Nakamura in [31], and leads to a cell decomposition of the moduli space of

Riemann surfaces in which each cell is specified by a graph. In this subsection we

review the basic properties of these graphs, which we call Nakamura graphs.

The Giddings-Wolpert differential ω has a set of zeroes Q1, . . . , Ql, around which

there exist complex coordinates z such that ω = d(zp+1) for some positive p. This

integer p is the order of the zero: if p = 1, the zero is simple. For each point on the

surface, there exists a finite set of directions in which zp+1 is real. These are the real

trajectories that extend out from the point. There are two real trajectories extending

out from a generic point on the surface, and 2(p + 1) real trajectories extending out

from a zero of order p. The real trajectories that extend out from the zeroes of the

differential will only meet at the poles and zeroes of the differential.

The set of real trajectories extending out from all the zeroes of the differential

defines a ribbon graph embedded onto the surface, with the vertices of the graph

corresponding to the poles and zeroes of ω, and the edges of the graph corresponding
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a b c

Figure 3.1: The real trajectories of a Giddings-Wolpert differential on a three-
punctured sphere, the associated strip-decomposition, and the Nakamura graph.

to the real trajectories extending out from zeroes. The edges also inherit an orientation

from the Giddings-Wolpert differential: they are oriented in the direction along which

the global time coordinate increases. It was shown in [31] that this graph has the

following properties:

• The graph is connected, oriented, and cyclically ordered at the vertices.

• The edges connecting to an incoming pole are all oriented away from the pole,

and the edges corresponding to an outgoing pole are all oriented towards the

pole.

• A zero connects to cyclically alternating incoming and outgoing edges, and has

a valency of at least four.

• No edge connects to the same end point twice, and no edge has only poles as its

end points.

• Every face of the ribbon graph contains on its boundary exactly two poles, one

incoming and one outgoing.

The unique oriented graph G associated to the surface with labelled points and residues

(X,Pi, ri) is the Nakamura graph of the surface. We can also assign a labelling to

the n poles of the graph, coming from the labelling of the points on the Riemann

surface. This is the pole-labelled Nakamura graph Ḡ of the surface.

Each face of the graph is bounded by two extended real trajectories of the dif-

ferential. It is possible to choose local coordinates z on each face such that ω = dz

within the face, with z in the range 0 < Im(z) < bj for some bj. Each face of the
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a b

Figure 3.2: Two examples of Nakamura graphs.

graph is holomorphic to a strip R× (0, bj) in the complex plane, and each strip has a

width bj which is determined by the differential. The zeroes of the differential lie on

the boundaries of the strips. We can consistently choose complex coordinates on each

strip such that the real coordinates of the zeroes on the boundary of the strip match

the global time coordinates of the zeroes. The global time coordinates tk of the zeroes

Qk are unique up to a simultaneous time translation of all the zeroes, tk 7→ tk+c. This

time-translation symmetry can be fixed by putting a constraint on the time coordi-

nates, such as requiring that
∑

k tk = 0. In this way, each punctured Riemann surface

with residues (X̂, ri) has a unique decomposition into strips via the Giddings-Wolpert

differential, and with the gluing at the strip boundaries determined by the Nakamura

graph. We call this the strip decomposition of the surface. The surface (X,Pi, ri)

with labelled points can be recovered from X̂ by reintroducing points at t = ±∞ on

the strips, corresponding to the poles of the Giddings-Wolpert differential.

An example of a Nakamura graph and a strip decomposition of a surface of genus

zero with three punctures is given in Figure 3.1. In the first figure, the three boundary

circles represent the removed points from the surface, taken to infinity, which corre-

spond to the poles of the Giddings-Wolpert differential. The white vertices represent

the zero of the differential. We label the graph edges by assigning the same label to all

the edges on the upper boundary of a given strip. This graph decomposes the surface

into two strips in the complex plane, which we have drawn in the second figure. The

bounding edges with the same label and the same real coordinate range are identified.

The third figure shows the Nakamura graph without an embedding into a surface. The

black vertices represent the poles of the differential, which are at the labelled points

of the surface. Two more examples of Nakamura graphs are given in Figure 3.2.

Once we have fixed a set of n residues ri, then for each distinct Riemann surface
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X with n labelled points there is a unique pole-labelled Nakamura graph Ḡ, set of

strip widths bj, and set of interaction times tk, up to relabellings of the parameters.

Alternatively, given a Nakamura graph Ḡ and a consistent set of strip widths bj and

interaction times tk, then we can uniquely reconstruct the associated Riemann surface

by constructing and gluing together the holomorphic strips. For a given graph Ḡ, the

set C(Ḡ) of Riemann surfaces with this graph can be parametrised by the admissible

strip widths bj and interaction times tk. One of the main goals of this chapter is to

specify the set C(Ḡ) explicitly for any Nakamura graph, and to show that the collection

of all such C(Ḡ) gives a cell decomposition of the moduli space Mg,n.

3.1.3 Parameters of Nakamura graphs

Using the properties of Nakamura graphs listed in the previous subsection, we can find

bounds on the number of strips (faces) and zeroes (internal vertices) of any Nakamura

graph of a given genus g and number of poles n. We can also set up relations on the

valencies of the zeroes and the number of internal lines of the graph, which aids in the

computational cataloguing of the graphs.

A Nakamura graph is a ribbon graph that can be embedded in a surface, and so

has V vertices, E edges, and F faces. The V vertices are separated into l zeroes and n

poles. All edges connect to zeroes, and no edge connects two poles together. We use

the parameter d for the number of faces of the graph, as we will show that a graph

with d faces is described by permutations in the symmetric group of degree d. There

are exactly two poles on the boundary of each of the d faces of the graph, one incoming

and one outgoing. Hence, there are d external edges of the graph connecting incoming

poles to zeroes, d external edges connecting outgoing poles to zeroes, and I internal

edges that connect only to zeroes. We have

V = l + n,

E = 2d+ I,

F = d.

The Euler characteristic of a surface with an embedded graph is 2− 2g = V −E +F ,

which gives the relation

d+ I − l = 2g − 2 + n. (3.1.6)

We next consider the valencies of the vertices. As all faces have on their boundary
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exactly one incoming pole, the valencies of the incoming poles sum up to d, and

similarly for the outgoing poles. As the zeroes always border an equal number of

incoming and outgoing edges, the valencies of the zeroes are always even. The zeroes

are points at which at least two real trajectories meet, so the valency of a zero is always

greater than four. We define the branching number ∆ to be

∆ =
l∑

k=1

[(vk
2

)
− 2
]
, (3.1.7)

where the vj are the valencies of each of the l zeroes. The branching number is a

non-negative integer for every Nakamura graph. This sum rearranges to

2∆ + 4l =
l∑

k=1

vk. (3.1.8)

Now, adding the sum of the valencies of the poles to this equation give us the sum

over the valencies of all vertices, which must equal twice the number of edges. We

thus have

2∆ + 4l + 2d = 2E = 2(2d+ I), (3.1.9)

and hence we have the relation

∆ = d+ I − 2l. (3.1.10)

We can use (3.1.6) and (3.1.10) to find a bound on the number of faces d for

Nakamura graphs of any genus g and number of poles n. Using the equations to

eliminate l, we write

2(2g − 2 + n)− d = (∆ + I). (3.1.11)

The constants ∆ and I are always non-negative integers, so d is bounded from above

by dmax, where

dmax := 2(2g − 2 + n) = −2χ. (3.1.12)

This is the maximum number of faces of a Nakamura graph of genus g with n fixed

points. To find Nakamura graphs computationally, it is helpful to first fix the Euler

characteristic |χ| and then to find all the graphs of genus g with n poles such that
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|χ| = (2g − 2 + n).

We can eliminate the number of internal edges I from (3.1.6) and (3.1.10) to find

a relation between the branching number ∆, the number of zeros l, and the Euler

characteristic |χ|:

∆ = |χ| − l. (3.1.13)

As ∆ ≥ 0, this equation gives us a bound on the number of zeroes of a Nakamura

graph. Since a Nakamura graph always has at least one zero, we have the bounds on

the number of zeros of a Nakamura graph,

1 ≤ l ≤ |χ|. (3.1.14)

The set C(Ḡ) of Riemann surfaces that have the pole-labelled Nakamura graph Ḡ
is parametrised by the widths of the d strips and the interaction times of the l zeroes.

The widths b
(i)
j of the strips bordering a given pole Pi satisfy a relation

∑
j b

(i)
j = |ri|.

These residue relations specify (n−1) independent constraints on the strip widths, due

to the overall constraint
∑n

i=1 ri = 0. There are (l− 1) real coordinates parametrising

the positions of the l zeroes, due to the overall time translation symmetry. This means

that the real dimension of the set C(Ḡ) is (l−1)+d−(n−1). In terms of the branching

and internal edges, this can be written

dimR(C(Ḡ)) = l + d− n = 6g − 6 + 2n− (2∆ + I). (3.1.15)

For a given genus g and number of poles n, the dimension of the moduli space is

6g − 6 + 2n, and so the codimension of C(Ḡ) in moduli space is

dimR(Mg,n)− dimR(C(Ḡ)) = 2∆ + I. (3.1.16)

The structure of this set C(Ḡ) is discussed in more depth in Section 3.3.1.

3.1.4 Alternative definitions of moduli space

There are two distinct notions of the moduli space of Riemann surfaces discussed in

[31], corresponding to the more conventional definition of moduli space Mg,n, and

a modified version of moduli space Mg,1[n−1]. The former is the set of equivalence

classes of Riemann surfaces of genus g with n labelled points under biholomorphisms

which preserve the labelling of the points. The latter is the set of equivalence classes
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Figure 3.3: A Nakamura graph and a pole-labelled Nakamura graph.

under biholomorphisms which can permute the first (n− 1) labelled points. The more

conventional moduli space Mg,n is more commonly-used in the literature, but the

modified moduli space Mg,1[n−1] is simpler to work with computationally, as its cell

decomposition is much coarser than that of Mg,n.

We are free to choose any values for the residues ri of the poles, so in the follow-

ing we set exactly one of the residues rn to be positive, and the remaining residues

r1, . . . , rn−1 to be negative. The corresponding Nakamura graphs will have one in-

coming pole and (n − 1) outgoing poles. When considering Nakamura graphs cor-

responding to cells in Mg,1[n−1], we must also set the negative residues to be equal:

r1 = r2 = . . . = rn−1.

There are two notions of graph automorphisms given in [31]: the pole-permuting

automorphisms, and the pole-fixing automorphisms. The automorphism group Aut(G)

is the group of bijective mappings of the unlabelled graph G to itself which preserves

the structure of the graph. Graph automorphisms preserve the orientation of the

edges, and so map incoming poles to incoming poles and outgoing poles to outgoing

poles, but may permute the poles in general. The automorphism group Autfix(G) is the

subgroup of Aut(G) consisting of the automorphisms which fix each pole separately.

Moduli spaces are orbifolds, and any cell in a cell decomposition of an orbifold is

homeomorphic to a subset of Rk modulo a finite group. We will show explicitly in

later sections that the automorphism group of a graph corresponds to the orbifold

quotienting group of the cell in moduli space. The orbifold groups of the cells in

Mg,1[n−1] correspond to the pole-permuting automorphism groups Aut(G), and the

orbifold groups of the cells inMg,n correspond to the pole-fixing automorphism groups

Autfix(G). Cells inMg,n are naturally described by graphs with a labelling on the poles,

and cells in Mg,1[n−1] are described by graphs with no labelling on the poles.

Let G be a graph with one incoming pole and (n− 1) outgoing poles, and let Ḡ be

the same graph with the labelling {1, 2, . . . , n−1} assigned to the outgoing poles, and



3. The light-cone cell decomposition of moduli space 151

Figure 3.4: An element σ ∈ Sn−1 relabels the outgoing poles of a labelled graph Ḡ.

the label n assigned to the incoming pole. The automorphisms Aut(G) will permute

these integer labels in general, while the automorphisms in Autfix(G) will fix these

labels. We define the automorphism group of a pole-labelled graph to be the pole-

fixing automorphisms of the corresponding unlabelled graph Aut(Ḡ) = Autfix(G). An

example of a pole-labelling of a graph is given in Figure 3.3.

The action of an automorphism g ∈ Aut(G) on a labelled graph Ḡ permutes the

poles of the graph, and so corresponds to a permutation in Sn−1. This gives a homo-

morphism

φ : Aut(G) → Sn−1

g 7→ κg. (3.1.17)

The kernel of this homomorphism is the subgroup Autfix(G). By the isomorphism

theorem, the image of this homomorphism is isomorphic to the quotient group

H := Aut(G)/Autfix(G) ∼= Im(φ) ⊂ Sn−1. (3.1.18)

We can count the number of possible pole-labelled graphs {Ḡ} corresponding to an

unlabelled graph G as follows. An arbitrary element σ ∈ Sn−1 acts on a labelling Ḡ
of G by replacing the label i with σ(i), as in Figure 3.4. The set of all such labelled

graphs are all the possible labellings of the graph G with the label n assigned to the

incoming pole. However, a pair of labellings Ḡ and σ(Ḡ) are indistinguishable labellings

of the same graph G if there is some (in general pole-permuting) graph automorphism

g ∈ Aut(G) that acts on Ḡ in such a way that g(Ḡ) = σ(Ḡ). This g is unique up

to a pole-fixing automorphism gfix ∈ Autfix(G), as g ◦ gfix(Ḡ) = g(Ḡ). We see that

σ ∈ Sn−1 does not generate a distinct labelling of Ḡ if and only if σ is an element of

Aut(G)/Autfix(G). This means that there is a one-to-one correspondence between the

distinct labellings of G and the cosets Sn−1/H. The order of H is |Aut(G)|/|Autfix(G)|,
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so there are

(n− 1)!
|Autfix(G)|
|Aut(G)|

(3.1.19)

distinct labelled graphs {Ḡ} corresponding to a Nakamura graph G.

In later sections, we will show that the unlabelled graphs give a cell decomposition

of Mg,1[n−1], and the graphs with pole labellings give a cell decomposition of the

moduli spaceMg,n. Each cell inMg,1[n−1] corresponds to (n− 1)!|Autfix(G)|/|Aut(G)|
identified cells in Mg,n.

3.2 Equivalence classes of permutation tuples

In the previous section we reviewed the fact that, for a given g and set of n real

numbers r1, . . . , rn that sum to zero, each Riemann surface of genus g with n labelled

points has a unique Giddings-Wolpert differential ω, which uniquely determines a pole-

labelled Nakamura graph Ḡ. It was stated that the set of Riemann surfaces in moduli

space with a given graph Ḡ is a cell, and so the set of all admissible Nakamura graphs

for a given g and n gives a cell decomposition of moduli space. Distinct points in

a cell correspond to inequivalent Riemann surfaces with the same Nakamura graph

but different Giddings-Wolpert differentials. The automorphism groups of the graphs

correspond to the orbifold groups of their associated cells, and the automorphism

groups of the graphs depends on the type of moduli space under consideration.

We can develop a useful description of Nakamura graphs by using equivalence

classes of permutation tuples. Recall from Section 1.1.3 that holomorphic branched

coverings from surfaces onto the sphere are described by Hurwitz equivalence classes

of permutation tuples. Ribbon graphs and dessins d’enfants embedded on surfaces

can be constructed from the preimages of Belyi maps, which are associated to Belyi

triples (σ, τ, γ) with σ associated to the vertices of the graph, τ to the edges, and γ

to the faces. While it is possible to describe Nakamura graphs with Belyi triples, this

method requires large permutation groups to describe even the simplest graphs, and

the set of conditions that a given Belyi triple must satisfy to give a Nakamura graph

is quite cumbersome. In fact, the properties of Nakamura graphs allows for a cleaner

description in terms of tuples of permutations of smaller degree than in Belyi triples.

For a Riemann surface with an embedded Nakamura graph, we can construct a

branched covering of degree d onto the sphere with (m+ 2) branch points, where d is

the number of faces of the graph and m is the number of distinct time coordinates of the
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zeroes. This map will not be holomorphic in general, but the approach of Section 1.1.3

generalises in a straightforward manner to topological branched coverings of surfaces.

The tuple of permutations associated to this branched covering is a tuple of (m + 2)

permutations in Sd, and such a tuple contains enough information to reconstruct the

graph. We can find and count cells in the cell decomposition of moduli space by finding

and counting the tuples of permutations that give distinct Nakamura graphs.

A pair of tuples which are conjugate by a permutation γ ∈ Sd give the same

Nakamura graph, but this action by conjugation may interchange the poles of the

graph. As such, Hurwitz classes of tuples correspond to the unlabelled graphs discussed

in the previous section, and the automorphism groups of the Hurwitz classes will

correspond to the quotienting groups of cells in the modified moduli space Mg,1[n−1].

Initially, we will set the residues ri of the (n − 1) outgoing poles to be equal and

consider only the cell decomposition of this modified moduli space via the Nakamura

graphs without a pole labelling. We will extend our description to the moduli space

Mg,n in the final part of this section by introducing a new type of permutation tuple,

which we call a split tuple, that describes pole-labelled Nakamura graphs.

In general, there can be many distinct Hurwitz classes associated to the same Naka-

mura graph. This is because the zeroes of a graph, and their associated permutations

in the Hurwitz tuple, can be ordered in many different ways without altering the graph

at a topological level. To solve this redundancy, we introduce a new equivalence rela-

tion on the set of Hurwitz classes - which we call slide-equivalence - such that the

equivalence classes of this relation are in one-to-one correspondence with the (unla-

belled) Nakamura graphs. Also, the automorphism group of a Hurwitz tuple will not in

general match the automorphism group of its graph. Within the slide-equivalence class

of any Nakamura graph, we can make a canonical choice of a Hurwitz class - whose

elements we call reduced tuples - with the property that the automorphism group

of the graph is identical to the automorphism group of the reduced tuple. This de-

scription leads to a computationally powerful method of finding the Nakamura graphs

and their automorphism groups by finding the reduced tuples.

3.2.1 Nakamura graphs from branched coverings

The Nakamura graph of a Riemann surface partitions the surface into d faces, each of

which is holomorphic to an infinite complex strip, such as in Figure 3.1. The zeroes

of the differential lie on the boundaries of the strips, and the poles are located at the

negative and positive infinities of the strips. Given a graph and set of strip widths,
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Figure 3.5: Nakamura graph strips naturally form a branched cover of the cylinder
and the sphere.

the Riemann surface can be reconstructed by a gluing of the edges determined by the

graph.

For a given Nakamura graph, consider a Riemann surface with a Giddings-Wolpert

differential in which the d strips are of equal width 2π, and choose a consistent set

of residues of the poles. The strips can then be viewed as copies of a single template

strip of width 2π. There is a trivial map from each of the d worldsheet strips on to

the target strip, in which all the preimages of a point on the target strip have the

same time coordinate. On identifying the upper and lower edges of the target space

strip, the map extends to a branched covering from the punctured Riemann surface

onto the cylinder. All the real trajectories of the Nakamura graph are mapped on to

a single infinite line on the cylinder, and all the zeroes are mapped on to this line.

The positive (incoming) poles of the graph are mapped on to negative infinity, and the

negative (outgoing) poles of the graph are mapped on to positive infinity. The map

has (m+ 2) branch points, where m ≤ l is the number of distinct time coordinates of

the zeroes. If the time coordinates of all the zeroes are distinct, then m = l.

An infinite cylinder of circumference 2π can be mapped bijectively to the twice-

punctured Riemann sphere with the exponential map z 7→ exp z. On restoring the

removed points to the surface, the composition of the cylinder covering and the expo-

nential map is a holomorphic branched covering f of the Riemann sphere with (m+2)

branch points. The positive poles of the Nakamura graph map on to 0, the negative

poles of the graph map on to ∞, and the remaining l zeroes map on to m branch

points along the real axis on the sphere. The Giddings-Wolpert differential on the

worldsheet is df
f

.
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Now consider a more general Giddings-Wolpert differential where the strips are no

longer of equal width. We can construct a bijective mapping from each strip onto

a single template strip of width 2π in such a way that the preimages of a point on

the template strip have the same time coordinate: however, this mapping will not be

holomorphic in general. Applying the exponential map to this template strip gives a

map f from a general Riemann surface onto the sphere. The differential cannot be

written in the form df
f

in this more general case, but the map f is still a branched

cover of the sphere, with ramification points at the poles and zeros of the differential.

The Hurwitz class description of branched covers discussed in Section 1.1.3 still

holds for non-holomorphic maps in this case, but with the biholomorphism equivalence

of maps replaced by homeomorphism equivalence. We mark an unbranched point on

the sphere and label the preimages of this point with the integers {1, 2, . . . , d}. The

preimage of a small loop starting and ending on this marked point that encloses a

branch point on the Riemann sphere is a collection of closed paths connecting the

labelled preimages of the unbranched point. Each branch point determines a permu-

tation σ ∈ Sd, and so the branched covering determines a tuple consisting of (m + 2)

permutations

(σ+, σ1, σ2, . . . , σm, σ−), (3.2.1)

that describes the gluing of the different strips. The permutation σ+ describes the

branching about 0, the permutation σ− describes the branching around ∞, and each

σi describes the branching around the ith branch point on the real line. As this is a

branched covering of the sphere, this tuple of permutations multiplies to one,

σ+σ1σ2 . . . σmσ− = 1. (3.2.2)

There is also an overall conjugacy equivalence of the tuple due to the arbitrary choice

of labelling of the d inverse images of the marked point:

(γσ+γ
−1, γσ1γ

−1, γσ2γ
−1, . . . , γσmγ

−1, γσ−γ
−1) ∼ (σ+, σ1, σ2, . . . , σm, σ−), (3.2.3)

where γ ∈ Sd. This construction is shown in Figure 3.5, where the marked point is

chosen to lie on the real axis of the Riemann sphere, and the preimages of this point

lie on the boundaries of the strips. The disjoint cycles of σ+ and σ− correspond to

the poles of the Nakamura graph, and the non-trivial disjoint cycles of each σk with

k = 1, . . . ,m correspond to the zeroes of the graph. The Riemann-Hurwitz relation
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Figure 3.6: The gluing of the strips can be read off from the Hurwitz tuple.

on this branched covering of the sphere can be written

(2g − 2) = −2d+ (d− Cσ+) + (d− Cσ−) +
m∑
k=1

(d− Cσk)

= −n+
m∑
k=1

(d− Cσk). (3.2.4)

By considering the branching numbers Bk = d− Cσk of the zeroes and relating these

to the valencies of the vertices of the graph, it can be shown that the above relation

is equivalent to the relation (3.1.13) given in the previous section.

The boundaries of the strips are the real trajectories of the differential, which

form the Nakamura graph of the surface. We can choose to label the real trajectories

bounding the upper edge of each strip with the same integer that was assigned to the

marked point lying on the upper edge of this strip. This gives us an edge-labelling of

the Nakamura graph associated to the surface, in which all the edges corresponding

to the upper boundary of the same strip have the same label. We call this labelling of

a Nakamura graph the Hurwitz class description, or the Sd description, as the

Nakamura graph associated to this surface can be reconstructed from the Sd Hurwitz

class of the branched covering.

The labelling of the edges glued to the lower boundary of a strip are determined

by the Hurwitz tuple. On a strip in which the upper boundary is labelled by some

integer j ∈ {1, 2, . . . , d}, the edge preceding the preimage of the first branch point

is labelled by Σ0(j), where Σ0 := σ+. The edge proceeding the next branch point is

labelled Σ1(j), where Σ1 = σ+σ1; the next edge is labelled Σ2(j), with Σ2 = σ+σ1σ2,

and so on. This labelling for a general strip is shown in Figure 3.6.

Given a Nakamura graph associated to a surface, we can read off an associated

Hurwitz tuple. Choose an ordering of the l zeroes of the graph that respects the
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Figure 3.7: A labelling of the edges of a Nakamura graph and its associated Sd tuple.

orientations of the internal edges, and assign a labelling to the edges that lie on the

upper boundary of a face. The cyclic ordering of the edges at the incoming and

outgoing poles correspond to σ+ and σ− respectively, and the cyclic ordering of the

incoming (or the outgoing) edges at the kth zero corresponds to σk. Each outgoing

edge at a zero has the same label as the incoming edge located in the next clockwise

position at the zero. An example of a Nakamura graph with Hurwitz class labellings

is given in Figure 3.7 with its Hurwitz tuple description. Conversely, a Hurwitz tuple

(σ+, σ1, . . . , σ−) is enough to completely specify a Nakamura graph. Each Nakamura

graph, and thus each Hurwitz class, determines a cell in the cell decomposition of

moduli space. In general, extra data is required to specify a particular point within

this cell, as the permutation tuple alone does not encode the continuous data of the

strip widths and the time coordinates of the zeroes.

Not every possible Hurwitz class corresponds to a Nakamura graph. For a general

Sd tuple of (m+ 2) permutations to describe a Nakamura graph, it must satisfy three

properties:

• The permutations corresponding to the zeroes {σ1, σ2, . . . , σm} are non-trivial.

(This ensures that each permutation σk describes at least one interaction point.)

• Each integer in {1, 2, . . . , d} is permuted by at least one of the permutations

describing the zeroes {σ1, σ2, . . . , σm}. (This ensures that no trajectories connect

poles directly to poles.)

• The tuple (σ+, σ1, . . . , σm, σ−) acts transitively on {1, 2, . . . , d}. (This ensures

that the Riemann surfaces are connected.)

All the other conditions given in Section 3.1.2 that a Nakamura graph must satisfy are

guaranteed by the construction of the permutation tuple.
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Figure 3.8: A Nakamura graph in the Sd picture, and an embedding of the graph on
the torus with closed imaginary trajectories drawn in grey.

Figure 3.9: The strip decomposition of the above graph.

As an example of the strip decomposition of a surface via a Nakamura graph, and

its description with an Sd tuple, we consider the example of a Nakamura graph with no

internal edges and four faces, shown on the left of Figure 3.8. This graph corresponds

to a genus one surface with two marked points, drawn with the embedded Nakamura

graph on the right of Figure 3.8. With Sd labellings, this graph can be described by

the Hurwitz class

(σ+, σ1, σ2, σ−) = ((1234), (13), (24), (1234)). (3.2.5)

The strip decomposition of the surface is shown in Figure 3.9.
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3.2.2 Slide-equivalence classes and reduced tuples

There is some redundancy in the Hurwitz class description of Nakamura graphs. Given

a Riemann surface with a Giddings-Wolpert differential, then there exists a unique

branched covering of the sphere as constructed above up to equivalence, and so there

exists a unique Hurwitz class associated to the surface. The cycles of the permutations

in the Hurwitz class correspond to the vertices of the Nakamura graph. However, there

may be more than one Hurwitz class that can describe the same Nakamura graph.

This is because a Hurwitz class has a well-defined total ordering of the branch points,

derived from the time coordinates of the zeroes, but a Nakamura graph generally only

has a partial ordering on its zeroes derived from the orientation of the edges.

This redundancy makes the automorphisms of a Nakamura graph harder to deter-

mine in the Hurwitz class description than for more general types of ribbon graphs.

The set of permutations γ ∈ Sd such that

(γ−1σ+γ, γ
−1σ1γ, . . . , γ

−1σmγ, γ
−1σ−γ) = (σ+, σ1, . . . , σm, σ−) (3.2.6)

are indeed automorphisms of the Nakamura graph, but they are not the only automor-

phisms. In some cases, there are permutations mapping the σi into each other upon

conjugation which preserve the structure of the associated Nakamura graph.

To solve this redundancy in the Hurwitz class description, we introduce a new

equivalence relation on the Hurwitz classes. For a general tuple of (m+2) permutations

(σ+, σ1, . . . , σm, σ−) describing a Nakamura graph arising from a branched covering of

the sphere, each permutation σk represents a set of zeroes with the same time coor-

dinate. If there are two subsequent permutations σk and σk+1 which are disjoint (the

intersection of their moved-point sets is empty), then there are no internal edges di-

rectly connecting any of the zeroes which correspond to the cycles in the permutations.

Any other branched covering with the (m+ 1)-permutation tuple

(σ+, σ1, . . . , σkσk+1, . . . , σm, σ−), (3.2.7)

would have an identical Nakamura graph. We therefore define a binary relation on the

set of permutation tuples

(σ+, σ1, . . . , σk, σk+1, . . . , σm, σ−) ∼ (σ+, σ1, . . . , σkσk+1, . . . , σm, σ−) (3.2.8)

whenever σk and σk+1, 1 ≤ k < m are disjoint. This relation extends to an equivalence
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relation on the set of all tuples. The overall product of a tuple of permutations is

unchanged by this relation, and the overall action of conjugacy on tuples commutes

with this relation, which means that this relation is a well-defined equivalence relation

on the set of Hurwitz classes describing Nakamura graphs. We call this relation slide-

equivalence, as it represents the ability to ‘slide’ around the orderings of the zeroes

of a Nakamura graph when there are no internal edges connecting the zeroes. Each

slide-equivalence class of Hurwitz classes corresponds to a unique Nakamura graph.

Up to conjugacy equivalence, we can canonically choose a representative element

for each slide-equivalence class, which we call the reduced tuple description of a

Nakamura graph, and denote by (σ+, τ1, . . . , τm, σ−). Each slide-equivalence class has

exactly one Hurwitz class specified by a representative tuple (σ+, τ1, . . . , τm, σ−) with

the property that every cycle in τk+1 shares a moved point with τk, for each k =

1, 2, . . . , (m − 1). This is the Sd tuple constructed by taking a tuple and placing

as many cycles as possible in the earliest possible permutation via slide-equivalence.

Graphically, this can be thought of as ‘sliding’ the zeroes around so that as many zeroes

as possible are vertically adjacent in the earliest position, and then subsequently as

many zeroes as possible are arranged in the second earliest position, and so on.

The reduced tuple has the property that the graph automorphisms do not exchange

cycles between different τk. Consequently, the automorphisms of a Nakamura graph

described by a reduced tuple are precisely those γ ∈ Sd such that

(γ−1σ+γ, γ
−1τ1γ, . . . , γ

−1τmγ, σ−) = (σ+, τ1, . . . , τm, σ−). (3.2.9)

Reduced tuples are a useful step in finding and cataloguing Nakamura graphs, as there

is a one-to-one correspondence between Nakamura graphs and the Hurwitz equivalence

classes of reduced tuples, and the automorphism group of a Nakamura graph is the

automorphism group of its reduced tuple.

As an example, we consider the Nakamura graph from the previous subsection

shown in Figure 3.8, and described by the Sd tuple

(σ+, σ1, σ2, σ−) = ((1234), (13), (24), (1234)). (3.2.10)

The time coordinates of the zeroes associated to the permutations (13) and (24) satisfy

t(13) < t(24). If we were to consider a surface with a different Giddings-Wolpert differ-

ential in which the time coordinates of the zeroes were interchanged and t(24) < t(13),
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then the Sd description of the graph would be

(σ+, σ1, σ2, σ−) = ((1234), (24), (13), (1234)). (3.2.11)

If we instead considered a surface where the time coordinates of the zeroes were iden-

tical, then the ramification of the branched cover of the sphere would no longer be

simple, and the Sd description of the graph would be

(σ+, σ1, σ−) = ((1234), (13)(24), (1234)). (3.2.12)

In all three of these cases, the Nakamura graph corresponding to the surface is identical.

These three tuples are in distinct Hurwitz classes, but lie in the same slide-equivalence

class. This slide-equivalence can be thought of as ‘sliding around’ the time coordinate

of the zero associated to the transposition (34). Of the three Hurwitz classes in the

slide-equivalence class, the reduced tuple is

(σ+, τ, σ−) = ((1234), (13)(24), (1234)), (3.2.13)

as it is the only one of the three tuples above which (trivially) satisfies the property

that every cycle in τk+1 shares a moved point with τk for each k.

3.2.3 Split tuples

The slide-equivalence classes of tuples of permutations specify Nakamura graphs with-

out pole labellings, corresponding to cells in Mg,1[n−1]. We can extend this Hurwitz

and slide-equivalence class description of Nakamura graphs to describe pole-labelled

graphs by introducing split tuples, which assign an ordering to the distinct outgoing

poles of a graph.

Let Ḡ be a Nakamura graph with labelled poles and edges with an associated tuple

(σ+, σ1, . . . , σm, σ−). Each cycle of σ− corresponds to an outgoing pole of the graph,

labelled from 1 to (n− 1). We write σ
(i)
− to denote the cycle corresponding to the ith

pole of the labelled graph. A split tuple is a tuple arising from a Nakamura graph

in which σ− is replaced by (n− 1) disjoint ordered single cycles corresponding to the

outgoing poles of the graph:

(σ+, σ1, σ2, . . . , σm; σ
(1)
− , σ

(2)
− , . . . , σ

(n−1)
− ). (3.2.14)

If the Hurwitz class is a reduced tuple of a labelled graph Ḡ, then we call its split tuple
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a reduced split tuple, and replace the σk with τk:

(σ+, τ1, τ2, . . . , τm; σ
(1)
− , σ

(2)
− , . . . , σ

(n−1)
− ). (3.2.15)

In this subsection, we will constrain ourselves to considering the reduced split tuples

of labelled graphs.

The conjugacy equivalence classes of reduced split tuples correspond to distinct

pole-labelled Nakamura graphs. We show this by matching the coset description of

graph labellings given in Section 3.1.4 to the equivalence classes of reduced split tuples.

A general element γ ∈ Sd acts on a tuple by relabelling each individual cycle in the

permutations

(j1j2 . . . jp)
γ−→ (γ(j1)γ(j2) . . . γ(jp)). (3.2.16)

This relabelling corresponds to the action by conjugation on the permutations in the

tuple σ+ 7→ γ−1σ+γ, τk 7→ γ−1τkγ, σ
(i)
− 7→ γ−1σ

(i)
− γ. (For a cycle (j) of length 1, the

action of conjugation by γ is defined to be (j) 7→ (γ(j)).) The group of permutations

that preserve the reduced tuple (σ+, τ1, . . . , τm, σ−) under this action are the automor-

phisms of the unlabelled graph Aut(G). An automorphism a ∈ Aut(G) will preserve

σ− under conjugation, but will not generally preserve each σ
(i)
− , and may interchange

them. This means that the action of a on a given single-cycle σ
(i)
− in σ− will produce

another single-cycle σ
(j)
− in σ−, and so we can read off an element κa ∈ Sn−1 such that

the action of the automorphism is

σ
(i)
−

a−→ σ
(κa(i))
− . (3.2.17)

This is the homomorphism φ : Aut(G) → Sn−1 discussed in subsection 3.1.4. The

kernel of this homomorphism is Autfix(G), the group of automorphisms which fix each

pole. By the isomorphism theorem, the group H = Aut(G)/Autfix(G) is isomorphic

to a subgroup of Sn−1. This is the group of all κa ∈ Sn−1 arising from the automor-

phisms a ∈ Aut(G). Two permutations in this group κa, κb arising from the distinct

automorphisms a, b ∈ Aut(G) are identical if there is some pole-fixing automorphism

afix ∈ Autfix(G) with a = b ◦ afix.

A relabelling of the outgoing poles of a graph can be described by a general element
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a b c

Figure 3.10: A Nakamura graph with edge labellings and three inequivalent pole la-
bellings.

κ ∈ Sn−1 acting on the split tuple by rearranging the (n− 1) single cycles,

(σ+, τ1, τ2, . . . , τm; σ
(1)
− , σ

(2)
− , . . . , σ

(n−1)
− ) (3.2.18)

κ−→ (σ+, τ1, τ2, . . . , τm; σ
(κ(1))
− , σ

(κ(2))
− , . . . , σ

(κ(n−1))
− ). (3.2.19)

The arrangements of the split cycles given in (3.2.18) and (3.2.19) correspond to the

same graph if there is some relabelling of the graph edges γ ∈ Sd that maps one to

the other. Such a relabelling must preserve σ+ and each τk separately, and hence

must be an automorphism γ ∈ Aut(G) ⊂ Sd. The action of an automorphism γ on the

(n−1) split-cycles is described by some κγ ∈ Sn−1. We see that the tuples (3.2.18) and

(3.2.19) describe the same graph if and only if κ corresponds to some automorphism,

i.e. κ = κγ for some γ ∈ Aut(G). This is precisely the statement that κ is in the image

of Aut(G) under the homomorphism φ, i.e. κ ∈ H. We conclude that the distinct split

tuples associated to a reduced tuple correspond to the distinct cosets of H in Sn−1.

As an example, we consider the graph from subsection 3.1.4, drawn in Figure 3.3.

This has n = 4 poles, and is described by the unlabelled tuple

(σ+, τ, σ−) = ((1234), (12)(34), (1)(24)(3)). (3.2.20)

We can split σ− into the constituent cycles σ
(1)
− , σ

(2)
− , σ

(3)
− :

(σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((1), (24), (3)). (3.2.21)

The distinct pole labellings correspond to the unique ways to order the permutations

σ
(1)
− , σ

(2)
− , σ

(3)
− in the tuple, up to edge-relabellings. We can derive the pole labellings

from the cosets construction as follows. The automorphism group of the unlabelled

tuple in Equation (3.2.20) is isomorphic to Z2, generated by the action by conjugation

of the permutation γ := (13)(24) on each element of the tuple. This automorphism
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maps the split-cycles as follows:

σ
(1)
−

γ−→ σ
(3)
− ,

σ
(2)
−

γ−→ σ
(2)
− ,

σ
(3)
−

γ−→ σ
(1)
− , (3.2.22)

and so defines an element κγ := (13) ∈ S3 = Sn−1. The cosets of H := 〈(13)〉 in

S3 correspond to the distinct ways to rearrange the outgoing poles of the tuple. The

cosets are H, (12)H and (23)H, and we can choose the representative elements of these

cosets {(), (12), (23)}. Acting with these representative elements on the split-cycles in

Equation (3.2.21) gives the three distinct pole-labelled graphs:

(σ+, τ ; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((1234), (12)(34); (1), (24), (3)), (3.2.23)

(σ+, τ ; σ
(2)
− , σ

(1)
− , σ

(3)
− ) = ((1234), (12)(34); (24), (1), (3)), (3.2.24)

(σ+, τ ; σ
(1)
− , σ

(3)
− , σ

(2)
− ) = ((1234), (12)(34); (1), (3), (24)). (3.2.25)

These split tuples describe all possible pole-labelled graphs associated to the unlabelled

tuple (3.2.20). For example, we could see that the tuple created by acting on Equation

(3.2.23) with (13), the generator of H, gives the tuple

(σ+, τ ; σ
(3)
− , σ

(2)
− , σ

(1)
− ) = ((1234), (12)(34); (3), (24), (1)), (3.2.26)

which describes the same graph as the tuple in Equation (3.2.23) as the two tuples can

be related by the relabelling automorphism γ = (13)(24). The distinct pole-labelled

graphs associated to these three tuples are shown in Figure (3.10).

3.3 The cell decomposition of moduli space

In the previous section, we showed that Nakamura graphs are related to equiva-

lence classes of permutation tuples by constructing branched coverings from Riemann

surfaces onto the sphere. Branched covers are described by Hurwitz classes which

encode the same data as a Nakamura graph without pole labellings. Each slide-

equivalence class of Hurwitz classes determines a distinct Nakamura graph. As ev-

ery slide-equivalence class has a unique Hurwitz class of reduced tuples, there is a

one-to-one correspondence between Hurwitz classes of reduced tuples and Nakamura

graphs. Nakamura graphs with labelled poles are described by split tuples, and there
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is a one-to-one correspondence between conjugacy classes of reduced split tuples and

pole-labelled Nakamura graphs.

In this section, we explicitly show how to construct the set of points in moduli

space associated to a pole-labelled graph Ḡ by using its reduced split tuple. We find

that the set is homeomorphic to Rd+l−n modulo the action of the pole-fixing graph

automorphism group Aut(Ḡ). We explain how to find the boundaries and incidences

of these sets from the split tuples. This confirms the claim of [31] that the set of

distinct Nakamura graphs give a valid cell decomposition of moduli space. We also

discuss the generalisation to the moduli space Mg,1[n−1], and show that a cell C(G)

corresponding to a graph without pole labellings is described by a set homeomorphic

to Rd+l−n modulo the pole-permuting automorphisms Aut(G).

As examples, we give the graph decompositions of the low-dimensional moduli

spaces M0,4 and M1,2, and show that the cell decomposition of M0,4 matches the

description of the space known by considering Möbius maps on the sphere. We briefly

describe how to construct the moduli space M0,1[3] from the quotienting of M0,4.

3.3.1 Cells

Recall that any cell in a cell decomposition of an orbifold is homeomorphic to a ball

modulo a finite group. The aim of this section is to show that, from the reduced split

tuple of any labelled Nakamura graph Ḡ, we can construct a convex real set B(Ḡ) on

which Aut(Ḡ) acts naturally in such a way that B(Ḡ)/Aut(Ḡ) = C(Ḡ).

Consider the moduli space of inequivalent Riemann surfaces of genus g with n

labelled points Mg,n, and choose a set of negative reals r1, . . . , rn−1 and the positive

real rn = −
∑

i ri. Let C(Ḡ) be the collection of points inMg,n with the same labelled

Nakamura graph Ḡ associated to the tuple

(σ+, τ1, τ2, . . . , τm; σ
(1)
− , σ

(2)
− , . . . , σ

(n−1)
− ). (3.3.1)

A Riemann surface with this Nakamura graph is specified by a set of strip widths and

interaction times. Label the widths of the d strips b1, b2, . . . , bd, and the interaction

times of the zeroes t1, t2, . . . , tl. The cell C(Ḡ) is parametrised by a subspace of Rd+l.

The (d + l) variables parametrising the cell are subject to some linear constraints

determined by the structure of the graph and our choice of time-symmetry fixing:

• The strip widths must be consistent with the residues at the poles. Each single

cycle σ
(i)
− = (j1j2 . . . jk) corresponds to the ith pole of the graph, which connects
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to k strips with widths bj1 , bj2 , . . . , bjk . This gives (n−1) independent constraints

of the form

bj1 + bj2 + . . .+ bjk = |ri|. (3.3.2)

(There is also a constraint that the total sum of the widths of all strips must

correspond to
∑
|ri|, but this constraint is derived from the above (n− 1) con-

straints.)

• The time-translation symmetry of the zeroes is fixed by requiring that the sum

over all the interaction times is zero,

t1 + t2 + . . .+ tl = 0. (3.3.3)

Each of these n constraints is of the form
∑
qj = C for some continuous parameters

qj and some constant C, which are the equations of a set of hyperplanes in Rd+l. As

well as the above hyperplane constraints, there are some ‘half-space’ constraints on

the variables, which are of the form
∑
qj > C. Each of these constraints partitions

Rd+l into two subsets by a hyperplane, and so does not lower the dimension of the

space. The independent half-space constraints are formulated from the reduced split

tuple as follows:

• Each strip-width bj must be positive. However, if a label j ∈ {1, . . . d} cor-

responds to some 1-cycle in σ−, i.e. σ
(i)
− = (j), then the constraint bj = |ri|

automatically implies that bj > 0. (Geometrically, the hyperplanes bj = 0 and

bj = |ri| are parallel.) The independent half-plane constraints on the strip widths

are

bj > 0, j ∈ {1, 2, . . . , d} and σ−(j) 6= j. (3.3.4)

• The interaction times of the zeroes must respect the ordering of the associated

cycles of the reduced tuple. Recall that a given τk in the reduced tuple consists

of multiple disjoint non-trivial single cycles of the form

τk = σp1σp2 . . . σpa , (3.3.5)

where {p1, p2, . . . , pa} ⊂ {1, 2, . . . , l}. Each σpj corresponds to a zero of the

Giddings-Wolpert differential on the surface with interaction time tpj . It follows
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Figure 3.11: Each line corresponds to a time-ordering inequality.

explicitly from the construction of the reduced tuple that every cycle in τk+1

must appear at a later interaction time than every cycle in τk. If τk+1 has the

decomposition

τk+1 = σq1σq2 . . . σqb , (3.3.6)

for some {q1, q2, . . . , qb} ⊂ {1, 2, . . . , l}\{p1, p2, . . . , pa}, then we have a half-plane

constraint

tpα < tqβ (3.3.7)

for each pair (pα, qβ) with pα ∈ {p1, p2, . . . , pa} and qβ ∈ {q1, q2, . . . , qb}. The

collection of all such constraints are necessary and sufficient to guarantee that

any configuration of the interaction times is consistent with the chosen Naka-

mura graph. If τ1, τ2, . . . , τm each have c1, c2, . . . cm constituent non-trivial cycles

respectively, where c1 + c2 + . . .+ cm = l, then there are

c1c2 + c2c3 + . . .+ cm−1cm (3.3.8)

inequalities imposed on the interaction times.

A figure demonstrating the time-ordering inequalities associated to a permu-

tation tuple is given in Figure 3.11. In this example, the single-cycle interac-

tion permutations σk are collated into the reduced tuple permutations τk with

τ1 = σ1σ2, τ2 = σ3σ4σ5, τ3 = σ6, and τ4 = σ7σ8. Each line connecting the consec-

utive σi corresponds to an inequality on the time coordinates of the respective

interaction points.
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Each of these hyperplane and half-space constraints defines a convex subspace of

Rd+l. The intersection of convex subspaces is convex, and so these constraints define

a convex subspace of Rd+l. The n hyperplane constraints define subspaces of Rd+l of

codimension one, and the half-space constraints define subsets of codimension zero,

hence these constraints define a convex (d+ l − n)-dimensional subset of Rd+l, which

is homeomorphic to Rd+l−n. We denote this subset by B(Ḡ).

The group Aut(Ḡ) = Autfix(G) of pole-fixing automorphisms of the tuple (3.3.1)

has a natural action on the parameters of B(Ḡ). An element afix ∈ Aut(Ḡ) ⊂ Sd acts

on the strip widths by the relabelling

bj → bafix(j). (3.3.9)

It also acts on the interaction vertices by permutation: recall that the action by

conjugation of an automorphism afix will fix any τk, but may permute around the

constituent cycles σp1 , . . . , σpa in τk. There is therefore some permutation κ acting on

the integers {p1, p2, . . . , pa} corresponding to the automorphism afix. The action of afix

on the interaction times corresponds to this permutation:

tpα → tκ(pα). (3.3.10)

We can see that the defining constraints of B(Ḡ) are preserved under these actions.

Pole-fixing automorphisms do not modify the split-cycles σ
(i)
− , so the strip-width equa-

tions (3.3.2) and inequalities (3.3.4) are all preserved. The interaction times are all

permuted into each other, so the overall sum (3.3.3) is preserved. Also, the interaction

vertices are only permuted within each τk separately: cycles within τk are mapped to

cycles within τk. This means that the associated time-ordering inequalities of the form

(3.3.7) are mapped into each other, and so these constraints are preserved. This is

enough to conclude that pole-fixing automorphisms map Ḡ into itself.

Finally, we can show that points in B(Ḡ) related by a pole-fixing automorphism

correspond to strip decompositions of Riemann surfaces related by a biholomorphism.

Let X and X̃ be Riemann surfaces with the same labelled graph Ḡ and the respective

sets of strip parameters (bj, tk) and (b̃j, t̃k). If there exists a biholomorphism f :

X → X̃, then the pull-back of the Giddings-Wolpert differential from the surface X̃

satisfies the required properties of a Giddings-Wolpert differential on the surface X,

and so is the Giddings-Wolpert differential of X by uniqueness. This implies that the

biholomorphism f preserves the strip decomposition of the surface, and so restricts to

an automorphism of the graph af ∈ Aut(Ḡ) on the strip boundaries, and the action of



3. The light-cone cell decomposition of moduli space 169

this automorphism on the point in B(Ḡ) is af : (bj, tk) 7→ (b̃j, t̃k). Conversely, if (bj, tk)

and (b̃j, t̃k) are points in B(Ḡ) related by a graph automorphism a ∈ Aut(Ḡ) which

maps bj 7→ b̃j and tk 7→ t̃k, then b̃j = ba(j) and t̃k = tα(k) for some α ∈ Sl. The strip

decompositions of the Riemann surfaces constructed from the parameters (bj, tk) and

(b̃j, t̃k) are related by a biholomorphism mapping the strip with upper edges labelled j

to the strip with upper edges labelled a(j). This is enough to conclude the following:

Theorem: Given a Nakamura graph Ḡ with genus g, d faces, l interaction

points (zeroes), one ingoing pole, and (n − 1) outgoing poles labelled 1, 2, . . . (n − 1)

respectively, then there is an open subset B(Ḡ) ⊂ Rd+l of dimension (d+ l− n) which

parametrises the possible strip widths and interaction times of the graph. The group

Aut(Ḡ) of pole-fixing automorphisms of Ḡ is a subgroup of the isometries of B, and

there is a one-to-one correspondence between the quotient space B/Aut(Ḡ) and the

set C(Ḡ) of Riemann surfaces with the Nakamura graph Ḡ.

We can extend the above description to cells in the modified moduli spaceMg,1[n−1].

We set the outgoing residues of the n poles to be equal, r1 = . . . = rn−1 = r, for some

negative real r. For an unlabelled graph G with associated reduced tuple

(σ+, τ1, . . . , τm, σ−), (3.3.11)

the parameter space B(G) is defined entirely similarly to that of a pole-labelled graph.

Each cycle in (j1 . . . jk) ∈ σ− determines a strip-width constraint

bj1 + bj2 + . . .+ bjk = |r|. (3.3.12)

The pole-permuting automorphisms Aut(G) interchange the cycles of σ−, and so per-

mutes the set of (n − 1) constraints of the form (3.3.12) into each other: this is con-

sistent when the outgoing pole residues are equal. The quotient space B(G)/Aut(G)

is therefore well-defined, and the arguments above for the one-to-one correspondence

between strip decompositions of Riemann surfaces and the parameter space still hold

for pole-permuting automorphisms. We deduce that C(G) = B(G)/Aut(G).

3.3.2 Boundaries

The boundaries of a cell C(Ḡ) correspond to the limits of the half-spaces of the form

tp < tq and b > 0. The first of these corresponds to the collapsing of an internal

edge, which merges two interaction points together, and the second corresponds to

the collapsing of one of the strips of the graph. In the following, we outline how to
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determine the boundaries of the cells from both the strips description and the tuples

description.

Recall that each pole-labelled Nakamura graph is described by an equivalence class

of split tuples, in which tuples are equivalent when they are related by conjugacy or

slide-equivalence. Every point in the cell of the graph has an associated conjugacy

equivalence class of split tuples, generated from the branched covering of the surface

onto the sphere and the labelling of the poles. Zeroes of the Nakamura graph with

the same time coordinate will correspond to cycles in the same permutation. This

conjugacy equivalence class will not be an equivalence class of reduced split tuples

in general, but will be slide-equivalent to the reduced split tuple of the graph. The

reduced tuple comes from tuning as many of the time-coordinates of the zeroes to be

coincident and as early as possible. We can also generate an expanded split tuple

by tuning the time-coordinates such that every zero of the graph has a distinct time

coordinate.

We can encode the data given by a tuple (σ+, σ1, σ2, . . . , σm;σ
(1)
− , . . . σ

(n−1)
− ) in terms

of the variables Σ0 := σ+, Σk = σ+σ1 . . . σk. This alternative tuple

(Σ0,Σ1,Σ2, . . . ,Σm;σ
(1)
− , . . . σ

(n−1)
− ) (3.3.13)

directly encodes how the strips of a surface are glued, as was demonstrated in Section

3.2 in Figure 3.6. Each strip with upper edges all labelled i is glued to strips with

lower edges labelled Σk(i). Given a tuple Σi, we can recover the original tuple by

inverting the above formulae: σ+ = Σ0, σk = Σ−1
k−1Σk.

We consider the boundaries of the cell corresponding to the time-ordering con-

straints. These boundaries arise in the limit when two time coordinates merge to-

gether. Focusing on the (cell) codimension one boundaries of a cell, we first take a

point in the bulk of the cell at which the l internal vertices have distinct time coor-

dinates, and label the associated single-cycle permutations σ1, . . . , σl. For a pair of

zeroes σk, σk+1 which cannot be commuted past each other by slide-equivalence, there

is an associated time-inequality tk < tk+1. As can be seen in Figure 3.12, taking the

limit as tk+1 → tk corresponds to removing the internal edges directly following the

σk. The effect on the permutation is to replace the consecutive cycles σk, σk+1 with

the single permutation σkσk+1:

(σ+, . . . , σk−1, σk, σk+1, . . . ;σ
(1)
− , . . .)→ (σ+, · · · , σk−1, σkσk+1, . . . ;σ

(1)
− , . . .)(3.3.14)

In terms of the Σi description, this type of cell incidence corresponds to dropping Σk



3. The light-cone cell decomposition of moduli space 171

from the Σ-tuple:

(Σ0, . . . ,Σk−1,Σk,Σk+1, . . . ; σ
(1)
− , . . .)→ (Σ0, . . . ,Σk−1,Σk+1, . . . ; σ

(1)
− , . . .)(3.3.15)

Such a contraction of the strip can in general change the genus of the strip-

decomposed surface. In this case, the boundary of the cell is not a cell in Mg,n.

We can formulate a condition to ascertain if a contraction of permutations gives a

surface of the same genus by using the Riemann-Hurwitz formula,

2g − 2 + n =
m∑
k=1

(d− Cσk) = ∆ + l. (3.3.16)

The expression (d− Cσi) is the branching number of the permutation σi, and ∆ is

the (overall) branching number defined in Section 3.1.3 of a Nakamura graph with l

zeroes. If each σi is a single non-trivial cycle, then a contraction of the subsequent

non-disjoint cycles σk and σk+1 will preserve the genus if the sum over the branching

numbers is preserved:

(d− Cσk) + (d− Cσk+1
) = (d− Cσkσk+1

). (3.3.17)

Equivalently, the genus is preserved if and only if (∆ + l) is unchanged in the merging.

When this condition is satisfied, the permutation tuple resulting from the contraction

defines a new slide equivalence class with one fewer time parameter, and so specifies

a cell in Mg,n with one fewer dimension. For a given time-inequality tk < tk+1, there

can be many different boundaries of the cell, which correspond to the different initial

choices of the time-coordinates of the remaining interaction vertices.

As an example of when the genus-preserving condition is not satisfied, the con-

traction of a pair of permutations satisfying σkσk+1 = 1 cannot preserve the genus, as

the right-hand-side of (3.3.17) is zero and the left-hand-side is always positive. An-

other example of a genus-reducing contraction is when σk = (123), σk+1 = (234),

and σkσk+1 = (13)(24). Here, the branching numbers before contraction add up to

four, but the product permutation has a branching number of two. We present some

examples where genus is conserved in later sections.

Next, we consider the boundaries of the cell corresponding to the strip-width con-

straint bj > 0. A strip can be collapsed to zero width if the label on the upper bound

of the strip j is not fixed by σ−. Look at the labels on the upper and lower edges of

a strip, such as in the top half of Figure 3.12, we can see that the collapse of a strip
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Figure 3.12: Taking the limit of a time inequality.

bj → 0 corresponds to replacing j in each permutation Σk with Σk(j) when Σk(j) 6= j,

or dropping the 1-cycle (j) from Σk when Σk(j) = j. In other words, we remove each

occurrence of j from each permutation in the Σ-tuple

(Σ0,Σ1,Σ2, . . . ,Σm;σ
(1)
− , . . . σ

(n−1)
− ). (3.3.18)

To find a codimension one boundary of a cell from strip-collapse, we first take a point

in the cell with distinct time coordinates for the l zeroes. We construct the associated

Σ-tuple, remove each occurrence of j from the tuple, relabel the tuple with labels

in {1, . . . , d − 1}, and rewrite the tuple back in terms of σk, dropping any identity

permutations appearing within the σk, k = 1, . . . , l.

As with the contraction of internal edges, the surface constructed from contracting

a strip might not have the same genus as the original surface. In the case that strip

contraction preserves the genus, then the slide-equivalence class of the new tuple spec-

ifies a new cell on the boundary of the original cell. The Riemann-Hurwitz formula

(3.3.16) relates the sum of the branching numbers of the zeroes of a tuple to the genus

and number of poles of the surface. We can deduce that a strip contraction of the
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tuples (σ+, σ1, . . . , σ−) 7→ (σ̃+, σ̃1, . . . , σ̃−) preserves the genus of the surface if and

only if the sum over branching numbers is conserved in the contraction:

m∑
i=1

(d− Cσi) =
m∑
i=1

(d− 1− Cσ̃i). (3.3.19)

Equivalently, strip contraction preserves the genus if and only if the sum (∆ + l)

is conserved. We present some explicit examples of this collapsing in the following

sections.

3.3.3 Example: M0,4 and M0,1[3]

We can explicitly derive the cell complex of Mg,n using this procedure for some ex-

amples of low genus and few punctures. One of the simplest non-trivial examples of

a moduli space is M0,4, the space of inequivalent Riemann surfaces with four distin-

guishable labelled points. It is not hard to construct this space explicitly without

reference to the Nakamura cell decomposition. Consider a base-space Riemann sphere

with three labelled points, which we choose to be (1, e2iπ/3, e4iπ/3). The group of bi-

holomorphic maps on the Riemann sphere are the Möbius maps, and given a Riemann

sphere with four marked points q1, q2, q3, q4, then there exists a unique Möbius map

which takes q1 7→ 1, q2 7→ e2iπ/3, q3 7→ e4iπ/3. This biholomorphism maps q4 to some

point z, with z3 6= 1. The only biholomorphism fixing three points on the Riemann

sphere is the identity, and so this map is unique; any two Riemann spheres with four

labelled points are related by a biholomorphism if and only there are Möbius maps

taking q4 to the same point z with q1 7→ 1, q2 7→ e2iπ/3, q3 7→ e4iπ/3. This z parametrises

the equivalence classes of spheres with four labelled points, and so we deduce that the

moduli space is the Riemann sphere with three punctures,

M0,4 = C∞\{1, e2iπ/3, e4iπ/3}. (3.3.20)

In this section, we show that the cell decomposition arising from Nakamura graphs

reproduces this moduli space.

First, we choose an arbitrary set of residues r1, r2, r3 to assign to the outgoing

poles, where ri < 0. There are three distinct Nakamura graphs of genus zero with four

external points: these are shown in Figure 3.13. There are several distinct possible

labellings of the outgoing poles for each graph. Each pole-labelled graph corresponds

to a distinct cell in the cell decomposition of M0,4. The cells in moduli space corre-

sponding to the same labelled graph are similar in structure, and differ only in their
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a b c

Figure 3.13: The Nakamura graphs of M0,4 (without pole labellings).

labellings and in the assignments of the ri. In this example, all the boundaries of the

cells inM0,4 will correspond to other cells inM0,4, as there are no genus-reducing cell

boundaries.

The graph in Figure 3.13a was discussed in previous sections. There are three

distinct pole-labelled Nakamura graphs corresponding to this unlabelled graph, and

they are described by the split reduced tuples

A1 : (σ+, τ ; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((1234), (12)(34); (1), (24), (3)), (3.3.21)

A2 : (σ+, τ ; σ
(2)
− , σ

(1)
− , σ

(3)
− ) = ((1234), (12)(34); (24), (1), (3)), (3.3.22)

A3 : (σ+, τ ; σ
(1)
− , σ

(3)
− , σ

(2)
− ) = ((1234), (12)(34); (1), (3), (24)). (3.3.23)

The pole-labelled graphs associated to these tuples were drawn in Figure 3.10. The

cell A1 associated to the first of these tuples is a subset of R6, with the coordinates

{b1, b2, b3, b4; t1, t2}, subject to the constraints:

b1 = |r1|, (3.3.24)

b2 + b4 = |r2|, (3.3.25)

b3 = |r3|, (3.3.26)

t1 + t2 = 0, (3.3.27)

b2, b4 > 0. (3.3.28)

The other two cells A2 and A3 are defined similarly, but with the ri interchanged.

These equations define a two-dimensional subspace of R6, which we can parametrise

by the two variables b2 and t2, subject to the relation

0 < b2 < |r2|. (3.3.29)
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The time coordinate t2 is unconstrained and can take any real value. This means that

the cell associated to this tuple is an infinite strip of width |r2|. The upper and lower

boundaries of the strip correspond to the limiting values of b2 = |r2| (i.e. b4 = 0) and

b2 = 0 respectively. The other two cells A2 and A3 are strips of width |r1| and |r3|
respectively. The pole-fixing automorphism group of the graph is trivial, and so there

is no orbifolding of the cells.

The graph in Figure 3.13b has six distinct pole labellings, given by the split tuples

B1 : (σ+, τ1, τ2; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((123), (13), (12); (1), (2), (3)), (3.3.30)

B2 : (σ+, τ1, τ2; σ
(2)
− , σ

(3)
− , σ

(1)
− ) = ((123), (13), (12); (2), (3), (1)), (3.3.31)

B3 : (σ+, τ1, τ2; σ
(3)
− , σ

(1)
− , σ

(2)
− ) = ((123), (13), (12); (3), (1), (2)), (3.3.32)

B4 : (σ+, τ1, τ2; σ
(1)
− , σ

(3)
− , σ

(2)
− ) = ((123), (13), (12); (1), (3), (2)), (3.3.33)

B5 : (σ+, τ1, τ2; σ
(2)
− , σ

(1)
− , σ

(3)
− ) = ((123), (13), (12); (2), (1), (3)), (3.3.34)

B6 : (σ+, τ1, τ2; σ
(3)
− , σ

(2)
− , σ

(1)
− ) = ((123), (13), (12); (3), (2), (1)). (3.3.35)

The cell B1 associated to the first of these tuples is a subspace of R5 with coordinates

{b1, b2, b3; t1, t2}, defined by the constraints

b1 = |r1|, (3.3.36)

b2 = |r2|, (3.3.37)

b3 = |r3|, (3.3.38)

t1 + t2 = 0, (3.3.39)

t1 < t2. (3.3.40)

There is only one free parameter in this cell, which we can take to be t2, which satisfies

0 < t2 <∞. (3.3.41)

The cell B1 is a half-line, with a boundary at the point t2 = 0. The automorphism

group of the cell is trivial. The other cells B2, . . . , B6 have similar descriptions.

Finally, the graph in Figure 3.13c has two associated pole-labellings, corresponding

to the split tuples

C1 : (σ+, τ ; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((123), (132); (1), (2), (3)), (3.3.42)

C2 : (σ+, τ ; σ
(1)
− , σ

(3)
− , σ

(2)
− ) = ((123), (132); (1), (3), (2)). (3.3.43)
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For the first cell C1, the variables b1, b2, b3, t satisfy the constraints

b1 = |r1|, (3.3.44)

b2 = |r2|, (3.3.45)

b3 = |r3|, (3.3.46)

t = 0. (3.3.47)

All four variables are fixed, so this cell is zero-dimensional. The automorphism group

is trivial, and so there is no orbifolding. Similarly, C2 is a zero-dimensional cell.

Collating the above, the cell decomposition ofM0,4 consists of three cells A1, A2, A3

that are two-dimensional strips in parameter space, six cells B1, . . . , B6 that are 1-

dimensional half-lines, and a pair of 0-dimensional point cells C1, C2. The incidences

of these cells can be found by looking at the tuples and applying the strip-collapsing

or interaction point-collapsing algorithms. It can be shown that each of the two

boundaries of a cell Ai contains a pair of half-line cells Bi, and that these half-lines

share a boundary cell Ci. We will demonstrate the procedure for one of the boundaries

of the strip cell A1 and a boundary of the half-line cell B1.

The cell A1 is parametrised by the half-strip in (b2, t2)-space, where 0 < b2 < |r2|,
and t2 can take any value. Consider the case of the strip width b2 approaching |r2|,
with t2 < 0. In this range of time coordinates, the zero corresponding to (34) appears

at an earlier time than the zero corresponding to (12), and so the split tuple of points

in the cell in this range is

(σ+, σ1, σ2; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((1234), (34), (12); (1), (24), (3)). (3.3.48)

The limit b2 → |r2| corresponds to taking the strip width b4 → 0. Employing the

procedure for strip collapse from the previous section, we convert the tuple into the

Σ-notation:

(Σ0,Σ1,Σ2; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((1234), (124)(3), (1)(24)(3); (1), (24), (3)). (3.3.49)

Here, we have written out the 1-cycles explicitly. Collapsing the strip with upper edges

labelled 4 corresponds to removing the integer 4 from each cycle in the Σ-tuple:

(Σ0,Σ1,Σ2; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((123), (12)(3), (1)(2)(3); (1), (2), (3)). (3.3.50)
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a b c

Figure 3.14: The 2-dimensional cells A1, A2, A3, and their incidences with lower-
dimensional cells.

Converting this back into the σ-notation, we find the split tuple

(σ+, σ1, σ2; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((123), (13), (12); (1), (2), (3)). (3.3.51)

This is the split tuple of the cell B1, given in (3.3.30). We deduce that the b2 =

|r2|, t2 < 0 boundary of the cell A1 is the cell B1. A similar procedure can be applied

to the b2 = |r2|, t2 > 0 boundary, the b2 = 0, t2 < 0 boundary, and the b2 = 0, t2 > 0

boundary of the cell. We recover the split tuples of the half-line cells B3, B5, and B6

respectively.

The cell B1 is a half-line, corresponding to the split tuple (3.3.51), and parametrised

by the time coordinate t̃2 of the interaction point associated to the cycle (12), where

t̃2 > 0. (Note that this time coordinate is not the same as the time coordinate on the

cell A1 given above, as the ordering of the interaction vertices has been interchanged.)

Taking the limit t̃2 → 0 while t̃1 + t̃2 = 0 is held fixed corresponds to merging the

two interaction points together. The corresponding new interaction point is described

by the product of the permutations of the original two points, as was shown in the

previous subsection. The merging of the two points σ1 = (13) and σ2 = (12) generates

the new split tuple

(σ+, τ ; σ
(1)
− , σ

(2)
− , σ

(3)
− ) = ((123), (132); (1), (2), (3)) (3.3.52)

which is the split tuple (3.3.42) of the 0-dimensional cell C1.

By performing a similar analysis on each cell A1, A2, A3 in turn, we find that

each cell borders four distinct 1-cells and two distinct 0-cells. A diagram showing the

cells and their incidences is given in Figure 3.14. These cells glue together to form a

sphere with three punctures, as shown in Figure 3.15, where the positive and negative

infinities of the strips have been homeomorphically mapped to the white vertices of
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Figure 3.15: The cell decomposition of M0,4.

the diagram. This picture agrees with the description of M0,4 as a three-punctured

sphere given at the beginning of this section.

We can also obtain the cell decomposition ofM0,1[3] by using this cell decomposition

ofM0,4. First, set r1 = r2 = r3 = r for some negative real r. The split tuples associated

to the cells C1, C2 in M0,4 differ only by a rearrangement of the cycles representing

the poles, and so these cells correspond to the same cell C inM0,1[3], described by the

tuple

(σ+, τ, σ−) = ((123), (132), ()). (3.3.53)

Similarly, there is a single 1-cell B in M0,1[3] associated to the six 1-cells B1, . . . , B6

of M0,4. There is also a single cell A in M0,1[3], corresponding to the three cells

A1, A2, A3, with the reduced tuple

(σ+, τ, σ−) = ((1234), (12)(34), (24)). (3.3.54)

The covering space B(G) of the cell A is defined by the constraints

b1 = |r|, (3.3.55)

b2 + b4 = |r|, (3.3.56)

b3 = |r|, (3.3.57)

t1 + t2 = 0, (3.3.58)

b2, b4 > 0. (3.3.59)
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Figure 3.16: The 2-cell A in the cell decomposition of M0,1[3].

The tuple has the non-trivial automorphism group Z2 generated by the permutation

(13)(24). This acts on the parameter space by interchanging the time coordinates of

the zeroes and strip widths t1 ↔ t2, b1 ↔ b3, b2 ↔ b4. This acts on the parametrising

strip −∞ < t2 <∞, 0 < b2 < |r| as a rotation by π about the point t2 = 0, b2 = |r|/2.

The cell A in M0,1[3] is the quotient space B(G)/Z2. This is shown in Figure 3.16

The moduli spaceM0,1[3] can be visualised as a quotienting ofM0,4. In the Möbius

maps description, a pair of points on the three-punctured sphere represent the same

point in M0,1[3] if they are related by a Möbius map which preserves the set of three

punctures {1, e2πi/3, e4πi/3}. The set of Möbius maps which preserve these three points

is the group S3, and acts on the Riemann sphere 3.14 like a finite group of rotations.

We deduce that

M0,1[3] = (C∞\{1, e2iπ/3, e4iπ/3})/S3. (3.3.60)

In terms of the cells decomposition ofM0,4 shown in Figure 3.14, the quotienting by S3

identifies the 2-cells labelled A1, A2, A3, the 1-cells labelled B1, . . . , B6, and the 0-cells

labelled C1, C2. The 2-cell ofM0,1[3] acquires a non-trivial automorphism group Z2 in

this quotienting.

3.3.4 Example: M1,2

In this subsection we present another example of an explicit low-dimensional cell de-

composition of a moduli space. There are four Nakamura graphs with g = 1 and

n = 2, which are shown in Figure 3.17. These graphs correspond to the cells of the

four-dimensional moduli space M1,2. As there is one incoming and one outgoing pole

for each graph, there is just one possible labelling of the outgoing pole for each graph,

and so each graph corresponds to exactly one cell in the cell decomposition of moduli
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c d

Figure 3.17: The Nakamura graphs of Mfix
1,2.

space. We refer to these cells as cell A, B, C, and D respectively. Unlike the previous

example of M0,4, the automorphism groups Autfix(G) = Aut(G) of these graphs are

non-trivial, so M1,2 is not a manifold. Also, as this is a moduli space of Riemann

surfaces with non-zero genus, there can be cell boundaries that correspond to surfaces

of reduced genus, and so are not contained within the moduli space M1,2.

The four cells of M1,2 are described by the tuples

A : (σ+, τ ; σ−) = ((1234), (13)(24); (1234)), (3.3.61)

B : (σ+, τ1, τ2;σ−) = ((123), (12), (13); (123)), (3.3.62)

C : (σ+, τ ; σ−) = ((123), (123); (123)), (3.3.63)

D : (σ+, τ1, τ2; σ−) = ((12), (12), (12); (12)). (3.3.64)

Cell A is constructed by quotienting a subspace of {(b1, b2, b3, b4; t1, t2)} with Z4, the

automorphism group of the graph. The strip widths and time coordinates of points in

A satisfy the relations

b1 + b2 + b3 + b4 = |r|,

bi > 0, i = 1, 2, 3, 4

t1 + t2 = 0. (3.3.65)

The cell is four-dimensional, as b4 and t1 can be written in terms of the variables
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(b1, b2, b3; t2) which satisfy

bi > 0, i = 1, 2, 3, 4

b1 + b2 + b3 < |r| (3.3.66)

with t2 taking any real value. The generator a of the automorphism group Autfix(G) =

Z4 acts on the edge labels as the permutation (1234) and acts on the time coordinates

as the permutation (12). Geometrically, this cell is the direct product of a 3-simplex

(tetrahedron) and the real line, with a quotienting Z4 action on the tetrahedron and

a Z2 action on the real line.

The automorphism group of cell A identifies the four boundaries of the parameter

space at bj = 0, so cell A has a single codimension one boundary. To determine the cell

on this boundary, we first split up the time coordinates of the two vertices to generate

the tuple

(σ+, σ1, σ2; σ−) = ((1234), (13), (24); (1234)), (3.3.67)

and employ the procedure described in subsection 3.3.2 to take the strip width b4 → 0.

The tuples generated at each step are:

Σ−→ (Σ0,Σ1,Σ2; σ−) = ((1234), (12)(34), (1432); (1234)) (3.3.68)
−4−→ (Σ0,Σ1,Σ2; σ−) = ((123), (12)(3), (132); (123)) (3.3.69)
σ−→ (σ+, σ1, σ2; σ−) = ((123), (13), (23); (123)) (3.3.70)

relabel−→ (σ+, σ1, σ2; σ−) = ((123), (12), (13); (123)). (3.3.71)

In the last step, we have relabelled the tuple by acting on the tuple by conjugation

with (123). We see that the cell B lies on the boundary of A.

Cell B is described by the variables (b1, b2, b3; t1, t2) which satisfy

b1 + b2 + b3 = |r| (3.3.72)

b1, b2, b3 > 0, (3.3.73)

t1 + t2 = 0 (3.3.74)

t1 < t2 (3.3.75)

The cell is three-dimensional and can be parametrised by the variables (b1, b2; t2) sat-
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isfying

b1, b2, t2 > 0 (3.3.76)

b1 + b2 < |r| (3.3.77)

t2 > 0. (3.3.78)

The automorphism group Autfix(G) of the graph is trivial. Geometrically, the cell is the

direct product of a 2-simplex (triangle) and a half-line. The cell has four boundaries

of the form b1 = 0, b2 = 0, b3 = 0, and t2 = 0.

The boundary t2 → 0 of cell B corresponds to the merging of the two interaction

vertices; it can be seen that this gives the cell C of the graph with a single interior

vertex. Collapsing either the strip width b3 → 0 or the strip width b2 → 0 leads to the

tuple

(σ+, σ1, σ2; σ−) = ((12), (12), (12); (12)), (3.3.79)

hence two of the boundaries of B are the cell D. However, collapsing the strip b1 → 0

leads to a different tuple: we have

(σ+, σ1, σ2;σ−) = ((123), (12), (13); (123)) (3.3.80)
Σ−→ (Σ0,Σ1,Σ2; σ−) = ((123), (1)(23), (132); (123)) (3.3.81)
−1−→ (Σ0,Σ1,Σ2; σ−) = ((23), (23), (23); (23)) (3.3.82)

relabel−→ (Σ0,Σ1,Σ2; σ−) = ((12), (12), (12); (12)) (3.3.83)
σ−→ (σ+, σ1, σ2; σ−) = ((12), (), (); (12)). (3.3.84)

remove ()−→ (σ+; σ−) = ((12); (12)). (3.3.85)

This last tuple does not describe a cell inM1,2. We can interpret the tuple as describing

a degenerate Nakamura graph, representing the single point in the trivial moduli space

M0,2. This means that the boundary b1 = 0 of cell B is not part of the decomposition

of M1,2.

Cell C is a two-dimensional simplex, parametrised by b1 and b2 satisfying

b1, b2 > 0, (3.3.86)

b1 + b2 < |r|, (3.3.87)

under the quotienting group Z3 which acts like a 2π/3 rotation on the simplex. The



3. The light-cone cell decomposition of moduli space 183

boundary of this cell corresponds to the degenerate tuple ((12); (12)), so is not a part

of the moduli space. Cell D is also two-dimensional and is parametrised by b1 and t2

satisfying

0 < b1 < |r| (3.3.88)

t2 > 0, (3.3.89)

under a Z2 quotienting. Geometrically, this cell is a half-strip of width |r| with a Z2

quotienting associated to a reflection in the line b2 = |r|/2. The boundaries b1 = 0

and t2 = 0 again correspond to the degenerate tuple ((12); (12)), and are not part of

the moduli space.

3.4 The cell decomposition of Teichmüller space

Nakamura graphs can also be used to find a cell decomposition of Teichmüller space.

Teichmüller space can be thought of as the set of equivalence classes of marked complex

structures on a topological surface Σg,n of genus g with n marked points. A marked

complex structure on Σg,n is a triple (X,Pi, φ) in which X is a Riemann surface

with labelled points Pi and φ : Σg,n → X is a homeomorphism which maps the

labelled points of Σg,n to the respective labelled points Pi of X. A pair of marked

complex structures (X1, P
(1)
i , φ1) and (X2, P

(2)
i , φ2) are Teichmüller-equivalent if there

exists a biholomorphism f : X1 → X2 such that f ◦ φ1 and φ2 are isotopic through

labelled point-preserving homeomorphisms. More discussion on Teichmüller space and

its relation to moduli space and mapping class groups is given in Appendix E.

It was stated in [31] that the ‘marked graphs’ give a cell decomposition of Te-

ichmüller space, and that the action of the mapping class group preserves these cells,

giving a cell decomposition of moduli space. In this section, we confirm this claim,

showing that each point in the Teichmüller space Tg,n corresponds to a Nakamura

graph Ḡ, an embedding of this graph on a surface Σg,n, and some strip widths bj and

interaction times tk. Each cell is specified by a pair (Ḡ, ψ̂), where ψ̂ is a graph embed-

ding into Σg,n, and this cell is in one-to-one correspondence with the parameter space

B(Ḡ) of the graph.

On choosing a set of residues r1, r2, . . . rn, any Riemann surface X has a Nakamura

strip decomposition (Ḡ, bj, tk), which is unique up to relabellings of the parameters.

Inverting the complex structure marking φ : Σg,n → X gives a strip embedding ψ :

X → Σg,n, which restricts to a graph embedding on the boundaries of the strips
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ψ̂ : G → Σg,n. A graph embedding ψ̂ and a strip decomposition is enough to reconstruct

a strip embedding ψ up to isotopy.

We can rephrase the above definition of Teichmüller space in terms of Nakamura

graph embeddings and strip decompositions. Teichmüller space is the set of equivalence

classes of tuples of the form (Ḡ, ψ̂, bj, tk) consisting of a pole-labelled graph, a graph

embedding, a set of strip widths, and a set of time coordinates. A pair of tuples

(Ḡ(1), ψ̂(1), b
(1)
j , t

(1)
k ) and (Ḡ(2), ψ̂(2), b

(2)
j , t

(2)
k ) are Teichmüller equivalent if and only if:

• The graphs are identical: Ḡ(1) = Ḡ(2);

• There exists an automorphism g ∈ Aut(Ḡ(1)) which acts on the parameters of

the graph as b
(1)
j 7→ b

(2)
j , t

(1)
k 7→ t

(2)
k ;

• The graph embeddings ψ̂(1) and ψ̂(2) ◦ g are isotopic.

In Section 3.3.1, we constructed the set B(Ḡ) parametrising the possible strip de-

compositions {(bj, tk)} of Riemann surfaces for a given graph. In general, there are

distinct points in B(Ḡ) that correspond to the same Riemann surface. The number

of points in B(Ḡ) that correspond to the same Riemann surface X is the order of

the biholomorphism group Bi(X), which is the group of biholomorphisms from the

surface X to itself.1

We show that for a given graph Ḡ and graph embedding ψ̂ : Ḡ → Σg,n, a pair of

strip decompositions of the graph (b
(1)
j , t

(1)
k ) and (b

(2)
j , t

(2)
k ) in B(Ḡ) can only correspond

to Teichmüller-equivalent points when the parameters are identical. For Teichmüller-

equivalence, these strip decompositions must correspond to the same Riemann surface

X, and there must exist a graph automorphism g with the property that ψ̂ and ψ̂ ◦ g
are isotopic. This graph automorphism g acts on the parameters of the strips as a

permutation, and so extends to a biholomorphism fg : X → X. The graph embedding

ψ̂ can be extended to a strip embedding ψ : X → Σg,n, and so ψ and ψ ◦ fg are

isotopic embeddings of the strips into Σg,n, which implies that fg is isotopic to the

identity. However, it was shown by Hurwitz [96] that non-trivial biholomorphisms

of hyperbolic Riemann surfaces are not isotopic to the identity. We deduce that fg

is trivial, the graph automorphism g is trivial, and so the parameters must satisfy

b
(1)
j = b

(2)
j , t

(1)
k = t

(2)
k .

We write B(Ḡ, ψ̂) := B(G) for the set of points in Teichmüller space corresponding

to a graph Ḡ and a marking ψ̂ : Ḡ → Σg,n. To construct a cell decomposition of

1This group is sometimes called the automorphism group Aut(X) of the Riemann surface in the
literature.
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Figure 3.18: Two embeddings of a graph which cannot be identified by isotopy.

Teichmüller space Tg,n, we find all the possible Nakamura graphs {Ḡ} with genus g

and n marked points, and the inequivalent graph embeddings ψ̂ for each graph Ḡ. A

pair of graph markings ψ̂(1) and ψ̂(2) are equivalent if there is a graph automorphism

g ∈ Aut(Ḡ) such that ψ̂(1) and ψ̂(2) ◦ g are isotopic. The mapping class group Γg,n acts

on the set of graph embeddings in a well-defined way up to isotopy, and any two graph

markings can be related by some element of the mapping class group. This confirms

the claim that the marked graphs yield a cell decomposition of Tg,n which descends to

a cell decomposition of Mg,n.

We conclude this section with some examples of embeddings of a graph which was

considered in the example in the previous section, determined by the tuple

(σ+, τ1, τ2;σ−) = ((12), (12), (12); (12)). (3.4.1)

In Figure 3.18, we have shown two embeddings ψ̂(1) and ψ̂(2) of the graph into the two-

punctured torus that cannot be isotopic. These two markings correspond to different

cells B(Ḡ, ψ̂(1)) and B(Ḡ, ψ̂(2)) in Teichmüller space. In Figure 3.19, we have given

two examples of strip embeddings ψ(1) and ψ(3) into the two-punctured torus. These

embeddings of the strip decomposition correspond to the same point in Teichmüller

space if and only if the strip widths are equal. The restriction of these strip embeddings

to the graphs are ψ̂(1) and ψ̂(3), which are related by a graph automorphism, and so

correspond to the same Teichmüller space cell B(Ḡ, ψ̂(1)). This cell is parametrised by

a strip width b1 ∈ (0, r) and an interaction time t2 > 0, which is a semi-infinite strip.
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Figure 3.19: Two embeddings of the strips into the surface, which are Teichmüller-
equivalent if and only if the strip widths are equal.

3.5 Verifying the cell decomposition with orbifold

Euler characteristics

In [31], the orbifold Euler characteristic was used to verify at low genus that the

Nakamura graphs give a cell decomposition of moduli space. All the graphs with

graph Euler characteristic |χ| ≤ 6 were enumerated, along with their pole-permuting

automorphism groups and dimensions. This enumeration matches the exact formula

for the the orbifold Euler characteristic given in [34].

In the following subsections, we expand upon the idea of using the orbifold Euler

characteristic as a check of the consistency of the Nakamura graph cell decomposition.

The description of Nakamura graphs with equivalence classes of reduced tuples gives

us some tractable methods to enumerate the graphs. The top-dimensional cells in

Mg,1[n−1] correspond to Belyi triples of permutations, in which one of the permutations

is a product of 2-cycles: these can be counted by using correlators of the Gaussian

Hermitian matrix model. Similarly, the other high-dimensional cells ofMg,1[n−1] which

correspond to graphs with no internal edges can be counted by using the correlators

of the complex matrix model. We conclude this section with some discussion of how

equivalence classes of reduced tuples were used to enumerate all the Nakamura graphs

with graph Euler characteristic |χ| ≤ 7. The full details of the algorithmic approach

that we used are presented in Appendix F.
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3.5.1 The orbifold Euler characteristic

We review the construction of the orbifold Euler characteristic, following the definition

of [97] for orbifolds with a cell decomposition. Let Γg,1[n−1] to be the mapping class

group of isotopy classes of homeomorphisms acting on a surface which fix one of the

labelled points and permute the remaining (n− 1) labelled points. The quotienting of

Teichmüller space Tg,n by this group gives the modified moduli space

Mg,1[n−1] := Tg,n/Γg,1[n−1]. (3.5.1)

As discussed in previous sections, the cells ofMg,n correspond to unlabelled Nakamura

graphs, the cells of the moduli spaceMg,1[n−1] correspond to labelled Nakamura graphs,

and the cells in the cell decomposition ofMg,1[n−1] can be constructed by quotienting

the cells in Mg,n. More discussion of the definitions of mapping class groups and

Teichmüller space is given in Appendix E.

The orbifold Euler characteristic of a moduli space is equivalent to the group Euler

characteristic of its associated mapping class group [98, 99]:

χ(Mg,n) = χ(Γg,n). (3.5.2)

A similar statement holds for the alternative definition of moduli space with per-

mutable labelled points,

χ(Mg,1[n−1]) = χ(Γg,1[n−1]). (3.5.3)

This allows us to use some of the elementary properties of group Euler characteristics

to find a relation between the orbifold Euler characteristics ofMg,n andMg,1[n−1]. We

will not present a full definition of the group Euler characteristic in this section, but

will instead quote the relevant properties, and refer to [100, 99] for a more complete

treatment.

The Euler characteristic is defined for any discrete group G which is virtually

torsion-free: that is, any group G with a torsion-free subgroup H of finite index.

Mapping class groups are virtually torsion-free [101]. The group Euler characteristic

respects quotienting: if H is a subgroup of G of finite index, then

χ(G/H) =
χ(G)

χ(H)
. (3.5.4)
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In addition, the Euler characteristic of any finite group G is [98, 100]

χ(G) =
1

|G|
. (3.5.5)

These properties of group Euler characteristics give a means of relating the Euler

characteristics of the two moduli spaces. An element of the mapping class group Γg,n

is also an element of Γg,1[n−1], and the action of an element of Γg,1[n−1] on the set of

n distinguished points gives a permutation in S1 × Sn−1
∼= Sn−1, so there is a short

exact sequence

1→ Γg,n → Γg,1[n−1] → Sn−1 → 1. (3.5.6)

In other words, there is the group isomorphism

Sn−1
∼= Γg,1[n−1]/Γg,n. (3.5.7)

Noting that |Sn−1| = (n− 1)! and using the above properties of Euler characteristics,

we have

1

(n− 1)!
= χ(Sn−1)

= χ(Γg,1[n−1]/Γg,n)

= χ(Γg,1[n−1])/χ(Γg,n) (3.5.8)

and so the Euler characteristics of the moduli spaces satisfy the relation

χ(Mg,n) = (n− 1)!χ(Mg,1[n−1]). (3.5.9)

The relation (3.5.9) between the two types of moduli space can also be derived

from the definition of the orbifold Euler characteristic. If {C} is a cell decomposition

of an orbifold such that the orbifold group at every point in a given cell is constant,

then the orbifold Euler characteristic is [97]

χ({C}) =
∑
C

(−)dim(C) 1

|A(C)|
, (3.5.10)

where A(C) is the orbifold group at any point in the cell C. The Nakamura graph cell

decomposition of Mg,1[n−1] allows us to write this formula in terms of the graphs and
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their parameters,

χ(Mg,1[n−1]) =
∑
G

(−)d+l−n 1

|Aut(G)|
. (3.5.11)

The analogous formula for Euler characteristic of the moduli space Mg,n is

χ(Mg,n) =
∑
Ḡ

(−)d+l−n 1

|Aut(Ḡ)|
. (3.5.12)

Recall from Section 3.1.4 that the possible labellings {Ḡ} of an unlabelled graph

G are given by the cosets of H = Aut(G)/Autfix(G) in Sn−1, and that there are

(n− 1)!|Autfix(G)|/|Aut(G)| cosets. The automorphism group Aut(Ḡ) of any labelling

of a graph G is isomorphic to Autfix(G), and so we can see that

∑
Ḡ

(−)d+l−n 1

|Aut(Ḡ)|
=

∑
G

(−)d+l−n (n− 1)!

|Autfix(G)|
|Autfix(G)|
|Aut(G)|

= (n− 1)!
∑
G

(−)d+l−n 1

|Aut(G)|
, (3.5.13)

as required.

Explicit expressions for the Euler characteristic ofMg,n were derived in [34]. Using

the relation (3.5.9), the Euler characteristics of Mg,1[n−1] are

χ(M0,1[n−1]) =
(−)n−1

(n− 1)(n− 2)
, n ≥ 3,

χ(M1,1[n−1]) =
(−)n

12
, n ≥ 2,

χ(Mg,1[n−1]) =
(−)2g

2g

(
2g + n− 3

n− 1

)
B2g g ≥ 2, n ≥ 2, (3.5.14)

where B2g is a Bernoulli number. In [31], the primary method of confirming that

the Nakamura graphs specified a cell decomposition of moduli space was by explicitly

counting the unlabelled graphs of a given genus g with one incoming pole and (n− 1)

outgoing poles, and comparing the sum (3.5.11) to these formulae. The results were

found to match in all cases.
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3.5.2 The Gaussian Hermitian matrix model

The moduli spaceMg,1[n−1] has real dimension (6g−6+2n). A cell C(G) corresponding

to a graph with branching number ∆ and number of internal edges I has codimension

(2∆ + I). The top-dimensional cells of moduli space are of codimension zero, and are

associated to graphs with ∆ = 0 and I = 0. The zeroes of these graphs have valency

four, and each zero can be described in the Sd description by a cycle permuting two

labels (a transposition). There are no internal edges connecting the zeroes, so their

associated cycles can all be collated into a single permutation τ by slide-equivalence.

The triple (σ+, τ, σ−) is the reduced tuple of the graph; here, σ+ ∈ [d] is a single d-

cycle, τ ∈ [2l] = [2d/2] is a product of 2-cycles, and σ− consists of (n−1) cycles. There

are correlators in the Gaussian and complex matrix models that directly correspond

to counting triples of permutations multiplying to one. This allows us to apply known

explicit expressions for matrix model correlators to the counting of Nakamura graphs.

First, recall from Section 1.1 that a single-trace correlator in the Gaussian Hermi-

tian matrix model can be written as

trXd = X i1
iσ+(1)

· · ·X id
iσ+(d)

(3.5.15)

with σ+ = (12 . . . d). In other words, when we have a single trace, the lower indices

are a cyclic permutation of the upper indices. Now when we perform the Wick con-

traction on the correlator, we are summing over the pairings of d objects, such as

(12)(34) . . . (d − 1, d). Each pairing corresponds to a permutation τ in the class [2l]

where l = d/2. The matrix model correlator of a single trace trXd can be written in

terms of these two permutations,

〈trXd〉 =
∑
τ∈[2l]

∑
σ−∈Sd

δ(σ+τσ−)NCσ− , (3.5.16)

where the delta function imposes the condition that the three permutations multiply

to one, and Cσ− is the number of cycles in the product σ− = (σ+τ)−1. We can also

introduce a sum over the conjugacy class of single-cycles of length d accompanied by

a factor of |[d]| = (d− 1)! without changing value of the correlator:

〈trXd〉 =
1

(d− 1)!

∑
σ+∈[d]

∑
τ∈[2l]

∑
σ−∈Sd

δ(σ+τσ−)NCσ− . (3.5.17)

Now, consider the equivalence classes of triples (σ+, τ, σ−) under conjugacy by
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γ ∈ Sd,

(σ′+, τ
′, σ′−) ∼ (γσ+γ

−1, γτγ−1, γσ−γ
−1). (3.5.18)

These equivalence classes correspond precisely to the Nakamura graphs with a single

incoming pole, no internal edges, and ∆ = 0. The number of poles in a Nakamura

graph given by such a tuple is Cσ+ +Cσ− , which is equal to n. As Cσ+ = 1, and we are

interested in graphs with n poles, we can consider just the permutation tuples with

Cσ− = n− 1, and so consider the coefficient of Nn−1 in the correlator:

Coefficient(〈trXd〉, Nn−1) =
1

(d− 1)!

∑
σ+∈[d]

∑
τ∈[2l]

∑
σ−∈Sd

Cσ−=(n−1)

δ(σ+τσ−). (3.5.19)

We can split the sum over σ− into a sum over distinct conjugacy classes T−, each

consisting of (n− 1) cycles, and a sum over each individual class σ− ∈ T−:

Coefficient(〈trXd〉, Nn−1) =
1

(d− 1)!

∑
T−

∑
σ+∈[d]

∑
τ∈[2l]

∑
σ−∈T−

δ(σ+τσ−). (3.5.20)

Now the sum

1

d!

∑
σ+∈[d]

∑
τ∈[2l]

∑
σ−∈T−

δ(σ+τσ−) (3.5.21)

can be written in terms of equivalence classes of permutation triples. By the orbit-

stabiliser theorem, the number of times each equivalence class appears in the sum

is

d!

|Aut((σ+, τ, σ−))|
(3.5.22)

where Aut({σ+, τ, σ−}) is the order of the automorphism group of the triple. Each

equivalence class corresponds to a distinct unlabelled graph G. This means that

1

d!

∑
T−

∑
σ∈[d]

∑
τ∈[2l]

∑
σ−∈T−

δ(σ+τσ−)

=
∑
T−

∑
equiv. classes

of triples

1

|Aut(σ+, τ, σ−)|
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=
∑
G

1

|Aut(G)|
. (3.5.23)

This sum is taken over all the graphs specified by a permutation triple (σ+, τ, σ−)

with one incoming pole and (n− 1) outgoing poles. This is exactly the sum (3.5.11),

constrained to just the graphs corresponding to top-dimensional cells inMg,1[n−1]. We

conclude that the contribution of the top dimensional cells of Mg,n to the orbifold

Euler characteristic is

χtop(Mg,1[n−1]) =
1

d
× Coefficient(〈trXd〉, Nn−1). (3.5.24)

There is a generating function for correlators of single traces in the Gaussian Her-

mitian matrix model, due to Harer and Zagier [34]:

Z(x,N) =
∞∑
l=1

〈tr(X2l)〉 x2l

(2l − 1)!!
(3.5.25)

=
1

2x2

((
1 + x2

1− x2

)N
− 1

)
. (3.5.26)

The contribution to the top-dimensional cell can be read off from this formula:

χtop(Mg,1[n−1]) =
(d− 1)!!

d
Coefficient(Z(x,N), xdNn−1). (3.5.27)

We can calculate exactly the coefficient of Nn−1 in this expression. Noting that

Z(x,N) =
1

2x2

[
exp

(
N log

(
1 + x2

1− x2

))
− 1

]
, (3.5.28)

we differentiate this (n− 1) times with respect to N to see that

Coefficient (Z(x,N), Nn−1) =
1

2x2(n− 1)!

[
log

(
1 + x2

1− x2

)]n−1

. (3.5.29)

The contribution to the Euler characteristic is therefore

χtop(Mg,1[n−1]) =
(d− 1)!!

2d(n− 1)!
Coefficient

(
1

x2

[
log

(
1 + x2

1− x2

)]n−1

, xd

)

=
(d− 1)!!

2d(n− 1)!
Coefficient

([
log

(
1 + w

1− w

)]n−1

, w(n−1)+2g

)
, (3.5.30)
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where d = 2(2g−2+n), and we have substituted w = x2 in the final equation. Written

purely in terms of g and n, the expression for the Euler characteristic contribution is

χtop(Mg,1[n−1]) =
(4g − 5 + 2n)!

22g−3+n(n− 1)!(2g − 2 + n)!
Coefficient

(
log

(
1 + w

1− w

)n−1

, w(n−1)+2g

)
.

(3.5.31)

This expression matches the values found by counting graphs in Nakamura’s paper.

In the case n = 2, the series expansion of the generating function can be found

exactly. We have

log

(
1 + w

1− w

)
= 2

∞∑
g=0

w2g+1

(2g + 1)
, (3.5.32)

so we deduce that

χtop(Mg,2) =
(4g)!

22g(2g)!

1

4g

1

2g + 1
=

(4g − 1)!

22g(2g + 1)!
. (3.5.33)

Starting at g = 1, the first few terms in this sequence are

1

4
,
21

8
,
495

4
,
225225

16
· · · (3.5.34)

All four of these terms were verified by counting the top-dimensional graphs using

GAP [102].

3.5.3 The complex matrix model

We can use the correlators of the complex matrix model to find expressions for the

contributions to the orbifold Euler characteristic coming from the lower-dimensional

cells with no internal edges. Let T be the Sd conjugacy class [2k23k3 . . . dkd ]. Choose a

representative element σ̂+ ∈ [d] and τ̂ ∈ T . The complex matrix model correlator of

a holomorphic trace and an antiholomorphic product of traces corresponding to these

classes is

〈tr(σ̂+Z
⊗d)tr(τ̂Z†⊗d)〉 := 〈trZd(trZ†2)k2(trZ†3)k3 . . . (trZ†d)kd〉

=
d

|T |
∑
σ+∈[d]

∑
τ∈T

∑
σ−∈Sd

NCσ−δ(σ+τσ−). (3.5.35)
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As in the Hermitian matrix model, this correlator is a sum over conjugacy classes of

permutation triples that multiply to one. Splitting up the sum over σ− ∈ Sd, we can

write

〈tr(σ̂+Z
⊗d)tr(τ̂Z†⊗d)〉 =

d

|T |

d−1∑
n=2

Nn−1
∑
σ+∈[d]

∑
τ∈T

∑
σ−∈Sd

Cσ−=n−1

δ(σ+τσ−). (3.5.36)

This expression is a sum over the Nakamura graphs with (n − 1) outgoing poles, no

internal edges, and the internal vertex structure given by T :

〈tr(σ̂+Z
⊗d)tr(τ̂Z†⊗d)〉 =

d!d

|T |

d−1∑
n=2

Nn−1
∑
G

1

|Aut(G)|
. (3.5.37)

This sum appears in the orbifold Euler characteristic of moduli space of genus g with

n marked points. Defining the contribution to the orbifold Euler characteristic coming

from a class T by the formula

χT (g, n) =
∑
G

1

Aut(G)
, (3.5.38)

we can state that the contribution to the Euler characteristic coming from graphs with

class T is

χT (g, n) =
|T |
d!d

Coefficient(〈tr(σ̂+Z
⊗d)tr(τ̂Z†⊗d)〉, Nn−1). (3.5.39)

The parameters ki defining T are related to the branching constant ∆ and number of

zeroes l of the graphs by the formulae

l =
d∑
i=2

ki, ∆ =
d∑
i=2

(i− 2)ki = d− 2l. (3.5.40)

The complex matrix model correlator can be calculated by using character sums.
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In Appendix D, it is shown that

〈trZd(trZ†2)k2(trZ†3)k3 . . . (trZ†d)kd〉 = d!
d∑
t=0

∑
S⊂{1,2,...l}
|S|=t

(−)l−t
(
N +

∑
i∈S ki

d+ 1

)

= d!

k1∑
r1=0

k2∑
r2=0

. . .

kd∑
rd=0

(−)k1+...+kd−r1−...−rd
(
k1

r1

)
. . .

(
kd
rd

)(
N +

∑d
j=1 jrj

d+ 1

)
. (3.5.41)

The size of the conjugacy class T is

|T | = d!

k2!2k2k3!3k3 . . . kd!dkd
. (3.5.42)

This gives us an explicit expression for the orbifold Euler characteristic contribution

from the class T = [2k23k3 . . . dkd ]:

χT (g, n) =
(d− 1)!

k2!2k2k3!3k3 . . . kd!dkd

k1∑
r1=0

. . .

kd∑
rd=0

(−)k1+...+kd−r1−...−rd
(
k1

r1

)
. . .

(
kd
rd

)
×

× Coefficient

[(
N +

∑d
j=1 jrj

d+ 1

)
, Nn−1

]
. (3.5.43)

This formula can reproduce the Euler characteristic contributions for cells of codi-

mension zero from the previous subsection. For fixed g and n with ∆ = 0, then the

degree d is 2(2g − 2 + n), the number of zeroes is l = d/2 = 2g + n − 2, and the

contribution to the Euler characteristic is

χ[2l](g, n) =
(2l − 1)!

l!2l

l∑
r2=0

(−)l−r2
(
l

r2

)
Coefficient

[(
N + 2r2

2l + 1

)
, Nn−1

]

=
(4g + 2n− 5)!

(2g + n− 2)!22g+n−2

2g+n−2∑
r2=0

(−)2g+n−2−r2
(

2g + n− 2

r2

)
Coefficient

[(
N + 2r2

4g + 2n− 3

)
, Nn−1

]
.

(3.5.44)

This formula has been checked computationally for all graphs with degree d ≤ 9. We

have written the relevant top-cell graphs in Table 3.1, using the notation [a] × n to

denote n graphs with cyclic automorphism groups of order a. The contribution to

the Euler character calculated by counting the graphs and using the formula (3.5.23)

exactly matches the results derived from the complex matrix model formula (3.5.44)

and the Hermitian matrix model formula (3.5.31).
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(g, n) χ[2l](g, n) ∆ = 0 Graphs

(0, 5) 5
6

[2]× 1, [3]× 1

(0, 6) 7
4

[1]× 1, [2]× 1, [4]× 1

(0, 7) 21
5

[1]× 3, [2]× 2, [5]× 1

(1, 3) 5
3

[1]× 1, [2]× 1, [6]× 1

(1, 4) 35
4

[1]× 7, [2]× 3, [4]× 1

(1, 5) 42 [1]× 38, [2]× 8

(2, 2) 21
8

[1]× 2, [2]× 1, [8]× 1

(g, n) χ[2l−13](g, n) ∆ = 1 Graphs

(0, 5) 1 [1]× 1

(0, 6) 3 [1]× 3

(0, 7) 28
3

[1]× 9, [3]× 1

(1, 3) 3 [1]× 3

(1, 4) 20 [1]× 20

(1, 5) 350
3

[1]× 116, [3]× 2

(2, 2) 7 [1]× 7

Table 3.1: The number of graphs and their automorphism group sizes against χ[2l](g, n)
and χ[2l−13](g, n) for different values of g and n. The notation [a]×n denotes n graphs
with cyclic automorphism group of order a.

For graphs with ∆ = 1, the conjugacy class T is of the form T = [2l−1, 3] for some

l. We have d = 3 + 2(l − 1) = 2(2g − 2 + n) − 1, so l = 2g + n − 3. The Euler

characteristic sum is

χ[2l](g, n) =
2l!

(l − 1)!2l−13

l−1∑
r2=0

1∑
r3=0

(−)l−r2−r3
(
l − 1

r2

)(
1

r3

)
Coefficient

[(
N + 2r2 + 3r3

2l + 2

)
, Nn−1

]

=
(4g + 2n− 6)!

(2g + n− 4)!22g+n−43

2g+n−4∑
r2=0

1∑
r3=0

(−)2g+n−3−r2−r3
(

2g + n− 4

r2

)(
1

r3

)
Coefficient

[(
N + 2r2 + 3r3

4g + 2n− 4

)
, Nn−1

]
. (3.5.45)

A program was written in GAP to count all the graphs with I = 0 and ∆ = 1 for

a given genus g and number of external points n; the results are tallied in Table 3.1.

The formula (3.5.45) precisely matches the calculation of the contribution to the Euler

character produced by using the explicit graph counting and (3.5.38).

3.5.4 Counting graphs using GAP

We used the software package GAP to find all the equivalence classes of reduced

tuples corresponding to Nakamura graphs of a given genus g and number of poles

n, along with the dimensions of their cells and their pole-permuting automorphism

groups Aut(G). A pair of reduced tuples with the same incoming pole permutation

σ+ = (12 . . . d) are in the same Hurwitz equivalence class if and only if they are

conjugate by an element in 〈σ+〉 ∼= Zd. We used this to find all the distinct Nakamura
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graphs by finding the Zd-equivalence classes of the reduced τ-tuples (τ1, τ2, . . . , τm).

The program we used takes a graph Euler characteristic |χ| as input, uses the rela-

tions from Section 3.1.3 to find constraints on the number of zeroes l and the branching

number ∆, and constructs all the consistent cycle-types (Sd-conjugacy classes) that

the τi can have, for each value of l and ∆. At this stage, we found two different

methods for finding the reduced τ -tuples from the cycle-types. The first method is to

consider each potential τ -tuple in turn and test to see if such a tuple gave a Nakamura

graph. This method is feasible for |χ| ≤ 6, but is not powerful enough to find graphs

with Euler characteristic |χ| = 7, as there is a large number of tuples generated by

the program that do not correspond to graphs. The second method involves introduc-

ing a new type of diagram called an I-structure, which describes the internal edges

of a Nakamura graph. Each equivalence class of τ -tuples has a unique I-structure,

but there can be many inequivalent τ -tuples with the same I-structure. By deter-

mining all the possible I-structures consistent with a given cycle-type of the τi, and

then determining all the possible τ -tuples consistent with this I-structure, we were

able to circumvent a large amount of the degeneracy of the first method. By using

I-structures, the program was able to find all the Nakamura graphs for |χ| ≤ 7.

From the generated consistent τ -tuples, the program finds all the Zd-equivalence

classes, adds the permutation σ+ = (12 . . . d) to each tuple, and calculates σ− =

(σ+τ1 . . . τm)−1. Each Zd-equivalence class corresponds to a graph, and the number of

poles n, genus g, and size of the automorphism group Aut(G) can be read off from a

tuple in this class. The details of these algorithms and I-structures are given in more

depth in Appendix F.

The resulting output generated by the program matched the data given in [31], and

also found the graphs with graph Euler characteristic |χ| = 7, corresponding to the

moduli spaces M0,1[8], M1,1[6], M2,1[4], and M3,1[2]. This data is listed in Appendix

F.3. From the orbifold Euler characteristic formula∑
G

(−1)dim(C(G)) 1

|Aut(G)|
, (3.5.46)
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we can read off the orbifold Euler characteristics associated to these moduli spaces,

χ(M0,1[8]) =
1

56
,

χ(M1,1[6]) = − 1

12
,

χ(M2,1[4]) =
1

8
,

χ(M3,1[2]) = − 5

84
.

This is consistent with the formulae (3.5.14) from Harer and Zagier.

3.6 Discussion

In this chapter we have developed the Nakamura graphs description of the light-cone

cell decomposition of moduli space. By associating branched coverings of the sphere

to Riemann surfaces with Giddings-Wolpert differentials, we have linked Nakamura

graphs of surfaces to Hurwitz classes of permutation tuples. We introduced an equiv-

alence relation on the Hurwitz classes called slide-equivalence, with the property that

each slide-equivalence class corresponds to a single Nakamura graph. Two definitions

of moduli space were considered: the space Mg,n of equivalence classes of genus g

Riemann surfaces with n labelled distinguishable points, and the space Mg,1[n−1] in

which (n − 1) of the labelled points on the Riemann surfaces are indistinguishable.

The moduli space Mg,n is more commonly used in mathematics and string theory

literature, while the moduli spaceMg,1[n−1] is simpler space to work with as there are

fewer cells in its cell decomposition. We introduced split tuples to describe graphs

with labelled poles, corresponding to cells in Mg,n.

The orbifold Euler characteristic is a topological invariant of moduli space with

an explicit exact formula (3.5.14), and a formula related to its cell-decomposition

(3.5.46). The matching of these two formulae was used as a check of the validity of

the cell decomposition. We developed links between Hermitian and complex matrix

model correlators and graphs with I = 0 (no internal edges). We used known exact

results for Hermitian matrix model correlators to give analytic results for the contri-

bution of the top-dimensional cells to the orbifold Euler character in the light-cone

decomposition. Beyond the top-dimensional cells, we related the contributions to the

orbifold Euler characteristic from lower-dimensional cells with ∆ > 0 and I = 0 to

analytic expressions in complex matrix models.

The light-cone cell decomposition via Nakamura graphs associates a ribbon graph,
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set of strip widths and interaction times to each point in moduli space. In the original

light-cone picture, each point in moduli space is specified by a light-cone diagram

with internal string momenta (cylinder widths) and twist angles [32, 33, 103, 95]. It

is an interesting open problem how to relate these two approaches. In particular,

the graph automorphism groups and surface biholomorphism groups should have an

interpretation in terms of the more traditional light-cone diagrams.

The light-cone cell decomposition of moduli space is used in a new foundational

approach to the geometry of string theory called the metastring [104, 105]. This

formulation requires a parametrisation of the moduli space of Riemann surface that

includes a notion of worldsheet time while preserving invariance under the mapping

class group. Our description of Teichmüller space in terms of the Nakamura graphs

explicitly shows that the cell decomposition is invariant under the mapping class group,

which is necessary for the consistency of the metastring theory.

As observed in [31], the numbers of cells in the light-cone cell decomposition for

given g and n is smaller than the corresponding number in the Kontsevich-Penner cell

decomposition [35, 36]. This is because the Nakamura graphs corresponding to cells

have tight restrictions dictated by the form of the Giddings-Wolpert differential. The

quadratic differential formed by taking the square of a Giddings-Wolpert differential

satisfies all the properties of a Strebel differential; however, not all Strebel differentials

have a Giddings-Wolpert differential as a square root. This is because Strebel differ-

entials are defined for any punctured Riemann surface with any choice of residues at

the punctures, while Giddings-Wolpert differentials need the residues to sum to zero.

It is an open problem as to how the parameters of a Nakamura strip decomposition

and the edge lengths of a Strebel differential metric ribbon graph are related.

The fact that there is a well-defined global time coordinate imposes restrictions

on which connected ribbon graphs can be Nakamura graphs. These restrictions are

detailed in the language of permutations in Section 3.2. This suggests that it would

be worthwhile to revisit mathematical questions on the topology of Mg,n using the

light-cone cell decomposition. The computation of all the homology groups is still an

open question [106]. From a physics perspective, an immediate goal would be to use

the improved understanding of the light-cone cell decomposition in the computation

of string amplitudes in the light-cone gauge, either in the first-quantised or second-

quantised string field formalism.



Chapter 4

Conclusion

The mathematical theories of permutation groups, ribbon graphs and cell decomposi-

tions are invaluable tools within theoretical physics, string theory, and the AdS/CFT

correspondence. In the first chapter of this thesis, we found two holographically-related

spacetime theories of the Belyi string via the Hermitian matrix model. By expand-

ing the matrix fields in terms of the su(2)-covariant fuzzy spherical harmonics, we

showed that there exists a cut-off topological scalar theory on the target sphere which

matches the Hermitian matrix model. We expressed the ribbon graphs of the matrix

model in terms of su(2) representation labels and their couplings. This showed that

the trivalent ribbon graphs are equivalent to spin networks with extra 6j weights and

representation label sums. An algorithm involving trivalent graph moves was exhib-

ited that allows any spin network sum to be expressed in terms of 6j symbols and

representation dimensions. By manipulating the ribbon graph evaluations into this

form, we were able to find labelled triangulated 3-manifolds, which we called complete

Belyi 3-complexes, with Ponzano-Regge partition functions matching the 6j sum. In

the planar case, we showed this matching by directly constructing triangulations of the

solid ball with matching ribbon graph and Ponzano-Regge state sums. For the non-

planar case, we exhibited an algorithm that shows that the partition function of any

complete Belyi 3-complex matches its ribbon graph evaluation. As these 3-complexes

contain embeddings of the trivalent ribbon graphs on their boundaries, and Ponzano-

Regge is equivalent to three-dimensional Euclidean gravity, this gives a holographic

interpretation of the Belyi string matrix model.

In the second chapter of this thesis, we studied the limits of large N factorisation

within the AdS5/CFT4 duality. The three-point correlators of single-trace operators in

the half-BPS sector ofN = 4 super Yang-Mills theory have known finite N evaluations.

Taking these expressions as our starting point, we undertook a careful asymptotic

analysis of the three-point functions in the limits when N and the operator dimensions

Ji are both large by using Stirling’s formula. We found that correlators become of order

200
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one when the product of the single-trace operator dimensions are of order N logN .

From the bulk perspective, we interpreted this as a sign that some new non-local

gravitational theory is emerging in the bulk at this energy scale. By considering the

normalised correlators of multiple gravitons, near-extremal correlators, and correlators

in non-trivial backgrounds, we found many cases where factorisation fails when a pair

of operator dimensions are of the order JiJj ∼ N logN , suggesting a universality of

this threshold. We also found that increasing the number of gravitons, decreasing

the separation in the energies of the gravitons, or decreasing the separation in the

boundary directions of the gravitons, can lead to factorisation breakdown. These

results suggest that information about a possible modification to the bulk theory at

finite string coupling can be found by studying the gauge theory at finite N .

In the third chapter of this thesis, we developed the light-cone cell decomposition

of moduli space via Nakamura graphs. By constructing a branched covering of the

sphere for each Riemann surface with a Giddings-Wolpert differential, we were able to

read off a Hurwitz tuple that describes the Nakamura graph of the surface. Each cell

in the light-cone cell decomposition corresponds to a distinct Nakamura graph. Some

of the cycles in the Hurwitz tuples can be rearranged without altering the structure of

the graph, so we introduced slide-equivalence on Hurwitz tuples to solve this degen-

eracy. Each slide-equivalence class corresponds to a unique Nakamura graph. Within

each slide-equivalence class, we found a canonical choice of tuple which we called the

reduced tuple. The counting of Nakamura graphs is equivalent to the counting of

Hurwitz classes of reduced tuples. This gave us the means to construct links between

the Hermitian and complex matrix model correlators and the counting of Nakamura

graphs, and to create a program which catalogued the graphs and their automorphism

groups. The structure of the reduced tuples associated to Nakamura graphs also allows

us to explicitly read off a parametrisation of the cells in moduli space, their bound-

aries, and their orbifold automorphism groups. We were able to use this to give some

explicit low-genus examples of the light-cone cell decomposition of moduli space.

We have found many applications for discrete mathematical techniques to phys-

ical theories within this thesis. Hurwitz classes of permutation tuples can describe

Belyi maps and cells in the light-cone cell decomposition. Matrix models can link

the topological A-string on a 2-sphere target and Ponzano-Regge state sums in three-

dimensional gravity. Schur polynomials and character sums can be used to evaluate

non-extremal and many-graviton correlators in the half-BPS sector of N = 4 super

Yang-mills theory. These diverse applications within string theory and gauge-string

duality indicate that combinatoric and graphical methods will remain important tools
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within mathematics and physics in the foreseeable future.



Appendix A

The coupling coefficients of su(2) represen-

tations

In this appendix we summarise the representation theory of su(2) that we have used

in this thesis, taking definitions, expressions and identities from [61, 57, 58]. The finite

dimensional irreducible representations of the Lie algebra su(2) are labelled by a half-

integer j ∈ {0, 1
2
, 1, 3

2
, . . .}, where the dimension of each representation is (2j+1). Each

representation labelled by j has a basis {|jm〉}, where m runs over the half-integers in

{−j,−j + 1, . . . , j − 1, j}. The labels j associated to a representation are commonly

called the spin labels, and the integer m labelling the vector in the representation

is called the state label. The tensor product of two representations of su(2) can

be decomposed into a direct sum of irreducible representations of su(2). Individual

product states in the tensor product representation are linearly related to sums over

states within other irreducible representations of su(2); the linear coefficients relating

these decompositions are the Clebsch-Gordan coefficients. The Wigner 3j symbols

are more symmetric versions of these coefficients, and the Wigner 6j symbols are

a generalisation to describe the coupling of three representations. The 3j and 6j

symbols enjoy many orthogonality properties and coupling relations, allowing for the

simplification of many expressions in the spin network calculus and the Ponzano-Regge

model.

A.1 Clebsch-Gordan coefficients

For two representations of su(2) labelled by the half-integers j1 and j2, a state in the

product representation |JM〉 can be written

|J,M〉 =
∑
m1,m2

〈j1,m1; j2,m2|J,M〉|j1,m1〉 ⊗ |j2,m2〉, (A.1.1)

203
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where 〈j1,m1; j2,m2|J,M〉 are the Clebsch-Gordan coefficients of this coupling. The

inverse equation is

|j1,m1〉 ⊗ |j2,m2〉 =
∑
J,M

〈J,M |j1,m1; j2,m2〉|J,M〉. (A.1.2)

The Clebsch-Gordan coefficients can be chosen to be real:

〈j1,m1; j2,m2|J,M〉 = 〈J,M |j1,m1; j2,m2〉. (A.1.3)

For this Clebsch-Gordan coefficient to be non-zero, the values of J and M in the

coupled representation must satisfy

M = m1 +m2, J ∈ {|j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2}. (A.1.4)

Note that the conditions

j3 ∈ {|j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2}, j1 + j2 + j3 is an integer (A.1.5)

are invariant under any permutation of the labels {j1, j2, j3}. These conditions are

called the triangle constraints on the labels {j1, j2, j3}. We introduce the function

∆(j1, j2, j3) that is defined to be equal to 1 if the labels {j1, j2, j3} satisfy the triangle

constraints, and zero otherwise. The Clebsch-Gordan coefficient 〈j3,m3|j1,m1; j2,m2〉
is non-vanishing if and only if ∆(j1, j2, j3) = 1. The coefficients satisfy the two or-

thogonality relations∑
m1,m2

〈J ′,M ′|j1,m1; j2,m2〉〈j1,m1; j2,m2|J,M〉 = δJ,J ′δM,M ′∆(j1, j2, J), (A.1.6)∑
J,M

〈j1,m
′
1; j2,m

′
2|J,M〉〈J,M |j1,m1; j2,m2〉 = δm1,m′1

δm2,m′2
. (A.1.7)

An explicit closed form of a Clebsch-Gordan coefficient is given in [107, 58]:

〈j3,m3|j1,m1; j2,m2〉 =

[
(2j3 + 1)

(j3 + j1 − j2)!(j3 − j1 + j2)!(j1 + j2 − j3)!(j3 +m3)!(j3 −m3)!

(j1 + j2 + j3 + 1)!(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!

] 1
2

× δm3,m1+m2

∑
ν

(−)ν+j2−m2

ν!

(j2 + j3 +m1 − ν)!(j1 −m1 + ν)!

(j3 − j1 + j2 − ν)!(j3 +m3 − ν)!(ν + j1 − j2 −m3)!
.

(A.1.8)
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The sum over ν runs over the integer values where the factorial expressions are non-

negative. This is a somewhat cumbersome expression, but it is possible to use it to

derive some relations of the coefficients under switching and reversing of their labels.

For example, it can be shown that

〈j3,m3|j1,m1; j2,m2〉 = (−)j1+j2−j3〈j3,−m3|j1,−m1; j2,−m2〉

= (−)j1+j2−j3〈j3,m3|j2,m2; j1,m1〉

= (−)j1−m1

(
2j3 + 1

2j2 + 1

) 1
2

〈j2,−m2|j1m1; j3,−m3〉.(A.1.9)

A.2 Wigner 3j symbols

The Wigner 3j symbols are a much more symmetric version of the Clebsch-Gordan

coupling coefficients. We define(
j1 j2 j3

m1 m2 m3

)
= (−)j1−j2−m3(2j3 + 1)−

1
2 〈j3,−m3|j1,m1; j2,m2〉. (A.2.1)

This symbol is non-zero when the triangle constraint (A.1.5) and the state label rela-

tion m1 +m2 +m3 = 0 are satisfied. As the Clebsch-Gordan coefficients are real and

j1 − j2 −m3 is an integer when the triangle constraints are satisfied, the 3j symbols

are real. From (A.1.9), the symmetry under permutation of the labels is simply(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)

= (−)j1+j2+j3

(
j1 j3 j2

m1 m3 m2

)
= (−)j1+j2+j3

(
j2 j1 j3

m2 m1 m3

)
= (−)j1+j2+j3

(
j3 j2 j1

m3 m2 m1

)

= (−)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (A.2.2)

A phase of (−)j1+j2+j3 is introduced when two sets of labels in a 3j symbol are trans-

posed, or when the state labels mi are inverted. They now satisfy the two orthogonality

relations

∑
m1,m2

(2j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j′3

m1 m2 m′3

)
= δj3,j′3δm3,m′3

∆(j1, j2, j3), (A.2.3)
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∑
j3,m3

(2j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′1 m′2 m3

)
= δm1,m′1

δm2,m′2
. (A.2.4)

A.3 Wigner 6j symbols

The Wigner 3j symbols describe the tensor product of two representations with labels

j1 and j2. We now consider the tensor product of three representations labelled j1,

j2, and j3. We could first take the tensor product of the representations j1 and j2,

which gives a direct sum over representations that we label j12, and then couple these

representations to j3, generating a direct sum of triply-coupled representations J .

Alternatively, we could start by coupling j2 and j3 to a direct sum of representations

j23, and then couple these representations to j1 to generate a direct sum of triply-

coupled representations J̃ . The Wigner 6j symbol is the coupling coefficient describing

how a single triply-coupled representation J = J̃ is generated via the intermediate

representations j12 and j23.

Consider a state in the representation |JM〉12 arising from the coupling of j12 to

j3. This can be written in terms of the Clebsch-Gordan coefficients

|JM〉12 =
∑

m12,m3

〈JM |j12,m12; j3,m3〉|j12,m12〉 ⊗ |j3,m3〉

=
∑

m1m2m3m12

〈JM |j12,m12; j3,m3〉〈j12,m12|j1,m1; j2,m2〉|j1m1〉|j2m2〉|j3m3〉. (A.3.1)

The state corresponding to the coupling of j23 to j1 is similarly written

|JM〉23 =
∑

m1m2m3m23

〈JM |j1,m1; j23,m23〉〈j23,m23|j2,m2; j3,m3〉|j1m1〉|j2m2〉|j3m3〉.

We can consider the difference between the two methods of coupling by considering

their inner product,

〈JM |12JM〉23 =
∑

m1m2m3
m12m23

〈j12,m12|j1,m1; j2,m2〉〈JM |j12,m12; j3,m3〉

× 〈j23,m23|j2,m2; j3,m3〉〈JM |j1,m1; j23,m23〉. (A.3.2)

It can be shown that this expression is independent of the choice of state label M [57].

This inner product is therefore a function purely of the six spin labels j. The Wigner
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6j symbol is defined to be a symmetrised version of this inner product,∣∣∣∣∣ j1 j2 j12

j3 J j23

∣∣∣∣∣ = [(2j12 + 1)(2j23 + 1)]−
1
2 (−)j12+j23〈JM |12JM〉23

= [(2j12 + 1)(2j23 + 1)]−
1
2 (−)j12+j23

∑
m1m2m3
m12m23

〈j12,m12|j1,m1; j2,m2〉〈JM |j12,m12; j3,m3〉

× 〈j23,m23|j2,m2; j3,m3〉〈JM |j1,m1; j23,m23〉. (A.3.3)

With this definition, a 6j symbol is not always real, as the power in the phase factor

is not always an integer. A 6j will be either real or pure imaginary, depending on

whether j12 + j23 is an integer or a half-integer. (Some authors use the convention

where the 6js are taken to be real.)

The 6j symbol can be expressed in a more symmetric form by using Wigner 3j

symbols, introducing a summation over the states in the triply-coupled representation,

and choosing a more symmetric spin labelling:∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ =
∑

m1, m2, m3
m4, m5, m6

(−)m1+m2+m3+m4+m5+m6

(
j1 j2 j3

m1 m2 m3

)
×

×

(
j1 j5 j6

−m1 m5 −m6

)(
j3 j4 j5

−m3 m4 −m5

)(
j2 j6 j4

−m2 m6 −m4

)
. (A.3.4)

The 6j symbol is real when the sum of the spin labels in any column is an integer, and

is pure imaginary when the sum of the spin labels in any column is not an integer.

The 6j is invariant under any permutation of its columns,∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ =

∣∣∣∣∣ j3 j1 j2

j6 j4 j5

∣∣∣∣∣ =

∣∣∣∣∣ j2 j3 j1

j5 j6 j4

∣∣∣∣∣
=

∣∣∣∣∣ j1 j3 j2

j4 j6 j5

∣∣∣∣∣ =

∣∣∣∣∣ j3 j2 j1

j6 j5 j4

∣∣∣∣∣ =

∣∣∣∣∣ j2 j1 j3

j5 j4 j6

∣∣∣∣∣ , (A.3.5)

and also under the interchange of the upper and lower arguments in any two of their

columns, ∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ =

∣∣∣∣∣ j4 j5 j3

j1 j2 j6

∣∣∣∣∣ =

∣∣∣∣∣ j4 j2 j6

j1 j5 j3

∣∣∣∣∣ =

∣∣∣∣∣ j1 j5 j6

j4 j2 j3

∣∣∣∣∣ . (A.3.6)

As the 6js are composed of Clebsch-Gordan coefficients which obey the triangular
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a b

Figure A.1: The 6j symbol as a planar spin network and as a tetrahedron.

constraints, the above 6j is only non-zero when the sets of variables

{j1, j2, j3}, {j1, j5, j6}, {j2, j4, j6}, {j3, j4, j5} (A.3.7)

all obey the triangle constraint (A.1.5). These triples are mapped into each other by

the action of the symmetries (A.3.5) and (A.3.6).

A 6j symbol can be viewed as a weight associated with a planar spin network (a

ribbon graph embedded on a plane, with edges labelled by spins) or as a tetrahedron

with edges labelled by spins. The 24 symmetries of the 6j generated by (A.3.5) and

(A.3.6) correspond to the symmetry group of the tetrahedron S4. The spin network

can be obtained by a 2D duality on the surface of the tetrahedron. In Figure A.1a, the

trivalent vertices of the graph represent the couplings of the triples of representations,

and the triangle constraints are satisfied by the labels meeting at a vertex. The

interpretation of a 6j symbol as a spin network is used in Section 1.3 in describing the

3j sums arising from ribbon graphs. Alternatively, as in Figure A.1b, the couplings

of representations can be interpreted as the triangular faces of the tetrahedron. This

interpretation of the 6j as a tetrahedron is used in the Ponzano-Regge model in Section

1.4.

There are many relations and identities regarding sums of 3js and 6js, many of

which are listed in [61]. Perhaps the most useful 6j relations in this thesis are the

orthogonality relation

∑
j3

(−)2j3+2j6(2j3+1)(2j6+1)

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
∣∣∣∣∣ j1 j2 j3

j4 j5 j7

∣∣∣∣∣ = ∆(l1, l5, l6)∆(l2, l4, l6)δj6,j7 ,

(A.3.8)
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and the Biedenharn-Elliot identity,

∑
ja

(−)2ja(2ja+1)

∣∣∣∣∣ j1 j5 j6

ja j9 j8

∣∣∣∣∣
∣∣∣∣∣ j2 j4 j6

ja j9 j7

∣∣∣∣∣
∣∣∣∣∣ j3 j4 j5

ja j8 j7

∣∣∣∣∣ =

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
∣∣∣∣∣ j1 j2 j3

j7 j8 j9

∣∣∣∣∣ .
(A.3.9)

The Biedenharn-Elliot identity has an interpretation as the equivalence of the Ponzano-

Regge state sum model under the 3-2 Pachner Move on tetrahedra given in Figure 1.12.

The 3j and 6j symbols also satisfy the 2-2 identity

∑
m3

(−)m3

(
j1 j2 j3

m1 m2 −m3

)(
j4 j5 j3

m4 m5 m3

)
=

= (−)2j5
∑
j6,m6

(−)m6(2j6 + 1)

(
j5 j1 j6

m5 m1 m6

)(
j2 j4 j6

m2 m4 −m6

)∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
(A.3.10)

and the 3-1 identity

∑
m4,m5,m6

(−)m4+m5+m6

(
j5 j1 j6

m5 m1 −m6

)(
j4 j3 j5

m4 m3 −m5

)(
j6 j2 j4

m6 m2 −m4

)

=

(
j1 j2 j3

m1 m2 m3

)∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣ (A.3.11)

which are used to relate different spin network graphs in section 1.3.

These following relations are used in various parts in section 1.4 to calculate state

sums in the Ponzano-Regge model:∑
l

(2l + 1)∆(l, j, j) = (2j + 1)2, (A.3.12)

∑
l1

(2l1 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ =
(−)2j

(2j + 1)
∆(l2, j, j)∆(l3, j, j), (A.3.13)

∑
l1,l2

(2l1 + 1)(2l2 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ = (−)2j(2j + 1)∆(l3, j, j), (A.3.14)
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∑
l1,l2

(−)l1+l2(2l1 + 1)(2l2 + 1)

∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣
∣∣∣∣∣ l1 l2 l3

j j j

∣∣∣∣∣ = (2j + 1)δl3,0, (A.3.15)

∑
l1

(−)3j+l1(2l1 + 1)
3
2

∣∣∣∣∣ l1 l1 0

j j j

∣∣∣∣∣ = (2j + 1)
3
2 . (A.3.16)

A.4 Quantum 6j symbols

The Lie algebra of su(2) can be deformed to the quantum algebra Uq(su(2)). Rep-

resentations of Uq(su(2)) are labelled by integers and half-integers j each containing

(2j + 1) states. When q is an rth root of unity q = e2πi/r, then Uq(su(2)) has a finite

number of finite-dimensional representations. The conventional representation theory

of su(2) is recovered in the limit r →∞, q → 1.

A quantum integer [n] is defined to be

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2
, (A.4.1)

which has the property that [n] → n as r → ∞ and q → 1. A quantum factorial [n]!

is defined to be

[n]! := [n][n− 1] . . . [2][1]. (A.4.2)

We say that a triple of spin labels {j1, j2, j3} satisfy the quantum triangle constraints

if they satisfy the classical triangle constraints with the extra conditions

jp ≤ (r − 2)/2, j1 + j2 + j3 ≤ r − 2. (A.4.3)

The function ∆q(j1, j2, j3) is defined to be one when the quantum triangle constraints

are satisfied by the spin labels {j1, j2, j3}, and zero otherwise. The quantum integers

satisfy the identity∑
a,b

(−)2a+2b[2a+ 1][2b+ 1]∆q(a, b, c) = w2(−)2c[2c+ 1], (A.4.4)
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where w2 is the quantum weight factor

w2 = − 2r

(q1/2 − q−1/2)2
. (A.4.5)

This factor is divergent in the q → 1 limit.

The quantum analogues of the Clebsch-Gordan coefficients can be derived from

the explicit expression (A.1.8) by replacing the factorials with quantum factorials.

This leads to a definition of the quantum 3j symbol and the quantum 6j symbol by

replacing the factors in (A.2.1) and (A.3.4) with their quantum analogues. All the

identities stated in the previous subsection still hold when the 6js and representation

dimension factors are replaced by their quantum analogues. They also satisfy the

identity corresponding to the ‘4-1’ Pachner move (shown in Figure 1.11),

w−2
∑
a,b,c,d

(−)2a+2b+2c+2d[2a+ 1][2b+ 1][2c+ 1][2d+ 1]×∣∣∣∣∣ j1 j2 j3

a b c

∣∣∣∣∣
q

∣∣∣∣∣ j1 j5 j6

d c b

∣∣∣∣∣
q

∣∣∣∣∣ j2 j4 j6

d c a

∣∣∣∣∣
q

∣∣∣∣∣ j3 j4 j5

d b a

∣∣∣∣∣
q

=

∣∣∣∣∣ j1 j2 j3

j4 j5 j6

∣∣∣∣∣
q

. (A.4.6)



Appendix B

Summary of the trivalent graph and Pach-

ner moves

`Parity'

Orthogonality

`3-1'

`1-3'

Trivalent Graph Moves

Genus-preserving

Complete Set

Alternative

Complete Set

2D Duals

3D Pachner Moves

Complete Set

Pachner Moves

`3-1'

`1-3'

`3-2'

`2-3'

`4-1'

`1-4'

`2-2'

`2-2'

Orthogonality

Orthogonality

Complete

Set

Alexander Moves

(2D Pachner Moves)

Alternative

Complete Set

Alternative 

Complete Set

We have used several operations on embedded trivalent graphs and triangulations of

manifolds in this thesis, which we referred to as ‘moves’.
212
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The trivalent graph moves are operations that relate trivalent ribbon graphs

embedded on 2D surfaces. The genus-preserving trivalent graph moves are

the moves which do not change the genus of the graph. A complete set of genus-

preserving trivalent graph moves are sufficient to relate any two trivalent graphs of

the same genus by a sequence of moves.

The Pachner moves are operations that relate triangulations of manifolds. Any

two triangulations of a compact manifold can be related to each other by a sequence of

Pachner moves. The 2D Pachner moves are sometimes called Alexander moves,

and can relate any two triangulations of a compact surface. The genus-preserving

moves on ribbon graphs are dual to the Alexander moves. A complete set of Alexan-

der moves is sufficient to relate any two triangulations of a surface of the same genus.

The 3D Pachner moves can relate any two triangulations of a compact 3-manifold

with boundary, provided that the boundary triangulations are identical. A complete

set of 3D Pachner moves are sufficient to relate any two triangulations of the same

3-manifold. (The orthogonality 3D Pachner move reduces a ‘pillow’ pair of tetrahedra,

glued together on three faces, to a single triangle.)



Appendix C

The Lambert W -function

The Lambert W -function is, by definition, the solution to the equation

W (z)eW (z) = z. (C.0.1)

This equation cannot be solved in a closed form in terms of elementary functions, but

a Taylor series can be found near z = 0, and its asymptotic series can be derived for

large positive z.

There are many solutions W (z) to the equation (C.0.1), which means that the

Lambert W -function is multivalued. However, only two solutions take real values

when z is real, and these are the only relevant solutions in this thesis. One of these

solutions is the principal branch W0(z), which is real and satisfies W0(z) ≥ −1 on its

domain z ∈ [−e−1,∞). The other is the W−1(z) branch, which takes values in the

range W−1(z) ≤ −1 and is defined on the domain z ∈ [−e−1, 0). The two real branches

of the W -function are shown in figure C.1.

The large z expansion of the principal branch of the W -function is

W (z) ' log z − log log z +
∞∑
n=1

(
−1

log z

)n n∑
k=1

[
n

n− k + 1

]
(− log log z)k

k!
, (C.0.2)

where the coefficients in the square brackets are the (unsigned) Stirling cycle numbers

of the first kind. The notation
[
n
k

]
denotes the number of permutations of n elements

composed of k disjoint cycles. (For example,
[

4
2

]
refers to the number of permutations

in the symmetric group S4 composed of two disjoint cycles. There are six permutations

in S4 composed of a 3-cycle and a 1-cycle, and three permutations composed of a pair

of disjoint 2-cycles, and these are the only permutations composed of two disjoint

cycles in S4. Hence,
[

4
2

]
= 6 + 3 = 9.)
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- 1 1 2 3 4

- 4

- 3

- 2

- 1

1

2

Figure C.1: The Lambert W -function W (x) for real x is multivalued: the principal
branch W0 takes values greater than -1, and the other branch W−1 is defined for
W < −1.



Appendix D

Combinatoric calculations using character

sums

In this appendix we present some finite N calculations of correlators using matrix

model techniques. The extremal correlator 〈trZJ1trZJ2trZ†J1+J2〉 was calculated in

[27], and using character sums in [28]. We use the methods of [28] to calculate the

norm of the operator Str(ZJ1Y J2), and to calculate the k → 1 correlator

〈trZJ1trZJ2 . . . trZJktrZ†
∑
i Ji〉. (D.0.1)

We then find an expression for the normalised (k + 1)-point correlator at large N .

D.1 The non-extremal operator norm

Consider the non-extremal two-point function which is the norm of a mixed operator

consisting of two types of adjoint fields,

‖ Str(ZJ1Y J2) ‖2 = 〈Str(ZJ1Y J2)Str(Z†J1Y †J2)〉. (D.1.1)

The symmetrised trace of a string of matrices in the adjoint representation of the

gauge group U(N) is

Str(ZJ1Y J3) =
1

(J1 + J3 − 1)!

∑
σ∈[J1+J3]

X i1
iσ(1)

X i2
iσ(2)

. . . X
iJ1
iσ(J1)

Y
iJ1+1

iσ(J1+1)
. . . Y

iJ1+J3
iσ(J1+J3)

.(D.1.2)

The sum is performed over all permutations in [J1 + J3], the conjugacy class in SJ1+J3

consisting of all the cyclic permutations with a single cycle of length (J1 + J3). All

matching pairs of adjoint matrix indices il are implicitly summed. This expression can

216
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be written more concisely in tensor space notation [28] as

Str(ZJ1Y J3) =
1

(J1 + J3 − 1)!

∑
σ∈[J1+J3]

tr(σX⊗J1 ⊗ Y ⊗J3). (D.1.3)

This two-point function can be calculated by using diagrammatic tensor space

techniques [28]:

‖ Str(ZJ1Y J2) ‖2 =
1

(J1 + J2 − 1)!2

∑
σ1,σ2∈[J1+J2]

(D.1.4)

=
1

(J1 + J2 − 1)!2

∑
σ1,σ2∈[J1+J2]

γ1∈SJ1
γ2∈SJ2

(D.1.5)

J1!J2!

(J1 + J2 − 1)!2

∑
σ1,σ2∈[J1+J2]

(D.1.6)

We can replace the permutation sums with sums over representations with projectors

on the group algebra,

‖ Str(ZJ1Y J2) ‖2= J1!J2!
∑

R1,R2`(J1+J2)

χR1([J1 + J2])χR2([J1 + J2])

dR1dR2

, (D.1.7)

where χR1([J1 + J2]) is the character in R1 of a permutation in the conjugacy class

[J1 + J2]. Representation projectors satisfy the identity PR1PR2 = δR1R2PR1 , and
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Figure D.1: A Young diagram with J1 + J2 boxes corresponding to a hook rep with
hook length k.

trPR = dimN(R)dR, where dimN(R) and dR are the respective dimensions of the U(N)

and SJ1+J2 representations associated to the Young diagram R. From the Murnaghan-

Nakayama lemma [109], the character of a (J1 +J2)-cycle in SJ1+J2 is ±1 if the diagram

is a hook, and zero otherwise. A hook representation corresponds to a Young tableau

where all the boxes are in the first row or the first column, as in Figure D.1. We find

‖ Str(ZJ1Y J2) ‖2 = J1!J2!
∑

R`(J1+J2)

χR([J1 + J2])2

d2
R

tr(PR) (D.1.8)

= J1!J2!
∑

R a hook rep

dimN(R)

dR
. (D.1.9)

This sum is weighted by the dimension of a hook rep of U(N) divided by the dimension

of the corresponding hook rep in SJ1+J2 . Parametrizing the hook lengths by the hook

length k, where k = 0, 1, . . . (J1 + J2 − 1), we find that the ratio of the dimensions is

dimN(R)

dR
=

(
N + J1 + J2 − k − 1

J1 + J2

)
, (D.1.10)

and hence the correlator is

‖ Str(ZJ1Y J2) ‖2 = J1!J2!

J1+J2−1∑
k=0

(
N + J1 + J2 − k − 1

J1 + J2

)
(D.1.11)

= J1!J2!

J1+J2−1∑
k=0

(
N + k

J1 + J2

)
. (D.1.12)
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Finally, we employ the general identity

n−1∑
k=0

(
N + k

m

)
=

(
N + n

m+ 1

)
−
(

N

m+ 1

)
(D.1.13)

to deduce the final exact answer,

‖ Str(ZJ1Y J2) ‖2 = J1!J2!

[(
N + J1 + J2

J1 + J2 + 1

)
−
(

N

J1 + J2 + 1

)]
. (D.1.14)

D.2 The (k + 1)-graviton correlator character sum

In this section we present a calculation of the (k + 1)-graviton correlator in the gauge

theory. A similar calculation was done previously in [110]. The representation sum of

the general extremal correlator was stated in [28] as being

〈
k∏
i=1

(trZJi)trZ†J〉 =
∑
R`J

fRχR([J1 . . . Jk])χR([J ]). (D.2.1)

We adopt the notation J =
∑

i Ji throughout this subsection. Using the Murnaghan-

Nakayama lemma [109], we find that χR([J ]) is non-zero only if R is a hook rep, and

equal to (−)k for a hook of length k. This constrains the sum to run only over hook

representations, and so

〈
k∏
i=1

(trZJi)trZ†J〉 = J !
J−1∑
l=0

(
N + l

J

)
(−)J−1−lχHl([J1 . . . Jk]), (D.2.2)

where Hl denotes the hook representation [l + 1, 1J−1−l]. The Murnaghan-Nakayama

lemma states that we can knock Jk boxes off this J-box hook rep to get

χHl [J1 . . . Jk] = δ(l ≥ Jk)χHl−Jk ([J1 . . . Jk−1]) + (−)Jk+1δ(J − l > Jk)χHl([J1 . . . Jk−1])

If we replace the expressions in the binomial coefficient by the general terms M , m,

we have

J−1∑
l=0

(−)l
(
M + l

m

)
χHl([J1 . . . Jk]) =

J−Jk−1∑
l=0

(−)JkχHl([J1 . . . Jk−1])

[(
M + Jk + l

m

)
−
(
M + l

m

)]
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We can plug this formula in to (D.2.2) for different values of M and m. We get

〈
k∏
i=1

(trZJi)trZ†J〉 = J !(−)J−1

J−1∑
l=0

(−)lχHl([J1 . . . Jk])

(
N + l

J

)

= J !(−)J−Jk−1

J−Jk−1∑
l=0

(−)lχHl([J1 . . . Jk−1])

[(
N + Jk + l

J

)
−
(
N + l

J

)]

= J !(−)J−Jk−Jk−1−1

J−Jk−Jk−1−1∑
l=0

(−)lχHl([J1 . . . Jk−2])

[(
N + Jk + Jk−1 + l

J

)
−(

N + Jk + l

J

)
−
(
N + Jk−1 + l

J

)
+

(
N + l

J

)]

= J !(−)J1−1

J1−1∑
l=0

(−)lχHl([J1])

[(
N + J − J1 + l

J

)
− . . .+ (−)k−1

(
N + l

J

)]
, (D.2.3)

where we have omitted the intermediate binomials with arguments containing all sums

of elements in {J2, J3 . . . , Jk}. Using χHl([J1]) = (−)J1−1−l and

J1−1∑
l=0

(
M + l

J

)
=

(
M + J1

J + 1

)
−
(

M

J + 1

)
, (D.2.4)

we can now evaluate the sums to find that

〈
k∏
i=1

(trZJi)trZ†J〉 = J !

[(
N + J

J + 1

)
− . . .+ (−)k

(
N

J + 1

)]
(D.2.5)

and restoring the omitted terms, we deduce that

〈
k∏
i=1

(trZJi)trZ†J〉 = J !
k∑
t=0

∑
S⊆{1,...,k}
|S|=t

(−)k−t
(
N +

∑
i∈S Ji

J + 1

)
. (D.2.6)

The sum over S is a sum over all the subsets of the k-element set.



Appendix E

Moduli space, the mapping class group, and

Teichmüller space

In this chapter, we consider compact Riemann surfaces of some genus g with sets of

n distinguished labelled points (P1, P2, . . . , Pn). A pair of Riemann surfaces X(1) and

X(2) with respective sets of labelled points P
(1)
i and P

(2)
i are equivalent if there exists

a map f : X(1) → X(2) between the surfaces which is bijective and holomorphic (a

biholomorphism) which preserves each labelled point: f(P
(1)
i ) = P

(2)
i . The space of

equivalence classes of Riemann surfaces with a given genus g and number of labelled

points n is the moduli spaceMg,n.

We can also consider Riemann surfaces of genus g with sets of n distinguished

points {P1, . . . , Pn}, but with a different equivalence relation, leading to an alternative

definition of moduli space. We say that two surfaces X(1) and X(2) with respective sets

of labelled points P
(1)
i and P

(2)
i are equivalent if there is a biholomorphism f between

the two surfaces which maps the sets of labelled points to each other, and maps the

point P
(1)
n to P

(2)
n . This f will permute the remaining (n − 1) points n general, so

f(P
(1)
i ) = P

(2)
σ(i) for some σ ∈ Sn−1 × S1

∼= Sn−1. The set of equivalence classes under

this equivalence relation is the modified moduli space of Riemann surfaces Mg,1[n−1].

A compact Riemann surface X with n distinguished labelled points can also be

thought of as a non-compact surface X̂, constructed by removing the n distinguished

points from X. A biholomorphism between two surfaces X(1) and X(2) preserving the

labelled points restricts to a biholomorphism between the two surfaces X̂(1) and X̂(2)

preserving the n labelled punctures. The moduli space of punctured surfaces is the

same as the moduli space of surfaces with distinguished points,Mg,n. Similarly, if we

consider surfaces to be equivalent if they are related by puncture-permuting biholo-

morphisms that fix a single puncture, then the associated moduli space is Mg,1[n−1].

We can switch between these two descriptions of Riemann surfaces by adding and

221
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removing the labelled points from the surfaces.

In general, moduli spaces are not manifolds; they are orbifolds. An orbifold is a

topological space in which the neighbourhood of every point is homeomorphic to Rn

modulo a finite group (see [97] for a more thorough definition). A manifold can then

be viewed as a particular type of orbifold, where the quotienting group at every point

is trivial.

The mapping class group Γg,n is a discrete group that describes the large homeo-

morphisms of a surface Σg,n of genus g with n labelled points. (In this thesis, we will

use X to denote Riemann surfaces with a complex structure, and Σ to denote topo-

logical surfaces without an intrinsic complex structure.) Let Homeo+(Σg,n) be the

group of orientation-preserving homeomorphisms of a surface Σg,n that preserve the n

labelled points. A pair of homeomorphisms φ1, φ2 are isotopic if there exists a con-

tinuous function F : [0, 1]×Σg,n → Σg,n such that F (0, p) = φ1(p) and F (1, p) = φ2(p)

for any point p on Σg,n. Let Homeo0(Σg,n) be the set of homeomorphisms of a surface

that are isotopic to the identity. This is a normal subgroup of Homeo+(Σg,n). The

group of orientation-preserving homeomorphisms, up to homeomorphisms isotopic to

the identity, is the mapping class group of the surface:

Γg,n = Homeo+(Σg,n)/Homeo0(Σg,n). (E.0.1)

Similarly, we can define the mapping class group Γg,1[n−1] by considering the group

of orientation-preserving homeomorphisms that can interchange (n−1) of the labelled

points, Homeo+(Σg,1[n−1]). The group Homeo+(Σg,n) is a subgroup of Homeo+(Σg,1[n−1])

and Homeo0(Σg,n) is isomorphic to Homeo0(Σg,1[n−1]), so Γg,n is a subgroup of Γg,1[n−1].

The permutation of the first (n − 1) labelled points associated to each element of

Γg,1[n−1] gives us a mapping into Sn−1, and so there is a short exact sequence

1→ Γg,n → Γg,1[n−1] → Sn−1 → 1. (E.0.2)

The Teichmüller space Tg,n of genus g surfaces with n labelled points can be de-

fined in several equivalent ways. We use the definition given in [108] that classifies

the possible marked complex structures that can be placed on a topological surface.

Consider a topological surface Σg,n of genus g with n distinguished labelled points

P̃i. A marked complex structure on Σg,n is a triple (X,Pi, φ) in which X is a

Riemann surface (i.e. a complex structure on Σg,n) with distinguished points Pi and

φ : Σg,n → X is a homeomorphism mapping P̃i to Pi. A pair of marked complex struc-

tures (X1, P
(1)
i , φ1) and (X2, P

(2)
i , φ2) are Teichmüller equivalent if there exists a
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bijective holomorphism f : X1 → X2 such that f ◦ φ1 and φ2 are isotopic through la-

belled point-preserving homeomorphisms. (This means that there exists a continuous

function F : [0, 1] × Σg,n → X2 with F (0, p) = f ◦ φ1(p) and F (1, p) = φ2(p) for all

p on Σg,n, and F (t, P̃i) = P
(2)
i for all t ∈ [0, 1].) The set of Teichmüller-equivalence

classes of marked complex structures is the Teichmüller space

Tg,n = {(X,Pi, φ)}/ ∼ . (E.0.3)

The mapping class group acts on Teichmüller space as follows. Given an element

g ∈ Γg,n, we can pick a representative element of the isotopy equivalence class φg :

Σg,n → Σg,n which is an orientation and labelled point-preserving homeomorphism.

The action of φg on a marked complex structure is then

g : (X,Pi, φ) 7→ (X,Pi, φ ◦ φg). (E.0.4)

This action is well-defined on Teichmüller equivalence classes: any other choice of

homeomorphism φ̃g for this g ∈ Γg,n will give a pair (X,Pi, φ◦φ̃g) which is Teichmüller-

equivalent to (X,Pi, φ ◦ φg), and if (X1, P
(1)
i , φ1) and (X2, P

(2)
i , φ2) are Teichmüller-

equivalent marked complex structures, then (X1, P
(1)
i , φ1◦φg) and (X2, P

(2)
i , φ2◦φg) are

also Teichmüller-equivalent. Given any pair of markings φ1, φ2 of the same Riemann

surface X, then the isotopy class of the mapping φ−1
1 ◦ φ2 from Σg,n to itself is an

element of the mapping class group g ∈ Γ, and the action of g on (X,Pi, φ1) ∈ Tg,n is

g : (X,Pi, φ1) 7→ (X,Pi, φ2). (E.0.5)

This shows that any two markings (X,Pi, φ1) and (X,Pi, φ2) of the same labelled

Riemann surface can be related by an element of the mapping class group. The

quotienting of Teichmüller space by the mapping class group can be thought of as

dropping the last argument of each triple (X,Pi, φ): distinct points in the quotient

space correspond to distinct Riemann surfaces with labelled points. This shows that

the moduli space of Riemann surfaces is the quotient space

Mg,n = Tg,n/Γg,n. (E.0.6)

The action of Γg,n on Teichmüller space can be extended to an action of Γg,1[n−1],

the mapping class group that permutes (n − 1) of the labelled points. Consider a

marked complex structure (X,Pi, φ) representing a point in Tg,n. For an element
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g ∈ Γg,1[n−1], we can choose a distinguished point-permuting homeomorphism of the

surface φg : Σg,n → Σg,n such that φg(P̃i) = P̃σ(i) for some σ ∈ Sn−1 × S1. The action

of the element g on the triple preserves the complex structure of X but relabels the

distinguished points:

g : (X,Pi, φ) 7→ (X,Pσ(i), φ ◦ φg). (E.0.7)

As Γg,n is a subgroup of Γg,1[n−1], the quotienting of Teichmüller space by this group

not only identifies all marked complex structures of the same Riemann surface X, but

also identifies marked complex structures that differ by a relabelling of (n− 1) of the

distinguished points. This results in the coarser version of moduli space,

Mg,1[n−1] = Tg,n/Γg,1[n−1]. (E.0.8)

The definition of Teichmüller space in terms of marked complex structures makes

it explicit how moduli space arises from the quotienting of the mapping class group.

However, some other fundamental properties of Teichmüller space are obscured in this

approach. It can be shown that Teichmüller space Tg,n is actually the universal covering

orbifold of Mg,n, and so is a simply-connected space. Also, the orbifolding at each

point in Tg,n is trivial, which makes Teichmüller space a manifold. When 3g−3+n > 0,

the Teichmüller space Tg,n is homeomorphic to R6g−6+2n. These properties are proved

in several texts on the subject, such as in [108].



Appendix F

Counting Nakamura graphs in the Sd pic-

ture using GAP

In this appendix, we outline a method for finding Nakamura graphs (without pole la-

bellings) computationally, which we were able to implement with the software package

GAP [102]. Each Nakamura graph corresponds to a slide-equivalence class of Hurwitz

classes, in each of which there is a unique Hurwitz class of reduced tuples. Each graph

with d faces has a single incoming pole, so we can use the Sd equivalence to consider

only the reduced tuples with σ+ = (1, 2, . . . , d). Reduced tuples of these form are

equivalent if their associated τ-tuples (τ1, τ2, . . . , τm) are conjugate by an element of

Sd which fixes σ+ under conjugation. We can therefore count all the Nakamura graphs

of a given genus g and number of poles n by counting the equivalence classes of reduced

τ -tuples (τ1, . . . , τm) under the action of Zd = 〈(1, 2, . . . , d)〉.
The algorithm proceeds as follows:

• First, fix a value of the (graph) Euler characteristic χ = 2−2g−n. From (3.1.12),

this gives the maximum number of faces d of the associated Nakamura graphs,

dmax = 2|χ|. This corresponds to the maximum degree of the permutation groups

Sd used in the tuples.

• Allow the number of zeroes (internal vertices) l to scroll over the range (3.1.14),

1 ≤ l ≤ |χ|. For each l, (3.1.13) gives us the branching number ∆ = |χ| − l.

• Given l and ∆, find all the possible valencies of the zeroes. A zero of a Nakamura

graph with valency 2k is described by a k-cycle in its permutation tuple, where

k > 2. The branching number ∆ is defined in (3.1.7) in terms of the valencies.

Writing this expression in terms of the l cycle lengths k1, . . . , kl, the branching

225
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number is

∆ = |χ| − l =
l∑

i=1

(ki − 2). (F.0.1)

The possible valencies of the zeroes correspond to the partitions of (|χ| − l) into

l parts: we write these as valency partitions [k1, k2, . . . , kl], with ki ≥ 2 and

ki ≤ ki+1 for each i. For example, if we had |χ| = 5 and l = 3, then the possible

valency partitions are [2, 3, 3] and [2, 2, 4].

• For each valency partition [k1, . . . , kl] determining the valencies of the zeroes, con-

struct all the ‘reduced class tuples’ which specify where the cycles appear within

the reduced tuples. A reduced class tuple is an ordered list of Sdmax conjugacy

classes (T1, T2, . . . , Tm) for some m ≤ l, where the conjugacy classes are specified

by partitioning (k1, . . . , kl) into m parts. Each conjugacy class Ti is of the form

[ka1 , ka2 , . . . , kap ], where a1, . . . , ap are distinct integers from 1 to l. In a given

reduced class tuple, each cycle length from the valency partition appears in ex-

actly one Ti. For example, the valency partition [2, 3, 3] can be combined as T1 =

[2, 3, 3] with m = 1, or as (T1, T2) ∈ {([3, 3], [2]), ([2], [3, 3]), ([2, 3], [3]), ([3], [2, 3])}
for m = 2, or as (T1, T2, T3) ∈ {([3], [3], [2]), ([3], [2], [3]), ([2], [3], [3])} for m = 3.

We are only interested in the reduced class tuples which can give valid Nakamura

graphs in the reduced tuple picture. This means we should discard any sequence

of class tuples in which there is some i ∈ {1, . . .m−1} such that τi ∈ Ti permutes

fewer integers than the number of disjoint cycles in τi+1 ∈ Ti+1. For example,

if we were to partition the valency partition [2, 2, 2, 2] into reduced class tuples,

then we would discard (T1, T2) = ([2], [2, 2, 2]), as any a permutation τ1 ∈ T1

moves two points while all permutations in T2 have three non-trivial cycles, so

no elements in these classes can give a valid Nakamura graph in the reduced

tuple description.

• For each reduced class tuple, scroll over all the tuples (τ1, . . . , τm) in the conju-

gacy classes (T1, . . . , Tm), and keep the tuples with the following two properties:

– For all i ∈ {1, . . .m − 1}, there is no cycle in τi+1 that is disjoint from all

cycles in τi.

– The set of points moved by at least one of the τi is exactly {1, 2, . . . , d} for

some d.
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The number of points moved by the τi tuple is d, the degree of the permutation

group Sd associated to the tuple.

• Act on the set of τ -tuples of the same degree and same reduced class tuple

with the cyclic group 〈(1, 2 . . . , d)〉. Each conjugacy class, together with σ+ =

(1, 2, . . . d) and σ− := (σ+τ1 . . . τm)−1, gives a Hurwitz class of a reduced tuple,

and so is associated to a distinct Nakamura graph. Each graph has an auto-

morphism group Z(d/k) generated by (1, 2, . . . , d)k, where k is the size of the

conjugacy class of the τ -tuple.

• Collate the graphs by genus g, the number of poles n, and the dimension of its

cell in moduli space. The number of disjoint cycles in σ− = (σ+τ1 . . . τm)−1 is

equal to (n−1), the number of outgoing poles of the graph. The graph has genus

g, where

g = −1

2
χ− n

2
+ 1. (F.0.2)

The dimension of the cell in moduli space associated to the graph is l + d− n.

This procedure can quickly generate all Nakamura graphs for dmax ≤ 10 or so,

and is capable of generating all Nakamura graphs for dmax = 12, given sufficient

time. However, the step of scrolling over all tuples in (T1, . . . , Tm) is very resource-

intense, as a relatively small percentage of the trial tuples give a valid Nakamura

graph. (For d = 10, about 6% of trial tuples satisfy the two properties given above.)

In addition, the vast majority of Nakamura graphs have trivial automorphism group,

so there is virtually a d-fold degeneracy in the graphs counted. For these reasons, we

introduce in the next section a new structure within the reduced Sd tuple description

that circumvents both these issues and results in a much more powerful method of

counting Nakamura graphs.

F.1 I-structures

A Nakamura graph has I internal edges that connect zeroes to zeroes. In terms of

its reduced tuple description, these edges are labelled by precisely those integers in

{1, 2, . . . d} which are permuted by more than one of the τi in the tuple (τ1, τ2, . . . τm).

The integers which are permuted by exactly one τi correspond to the external edges,

which connect zeroes only to poles. We can describe the structure of the internal
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edges of the graph by creating a diagram that shows which permuted points are shared

between the different τi, which we call an I-structure.

An I-structure is a diagram consisting of m parallel vertical edges, which we call

‘columns’, and several rows of horizontal edges, which we call ‘I-rows’. Each I-row is

a connected line of horizontal edges and vertices, with the vertices connecting columns

and horizontal edges. An I-structure may contain the same I-row multiple times, and

the I-rows of an I-structure are taken to be interchangeable. All pairs of adjacent

columns are connected by at least one edge of an I-row. An example of an I-structure

is given in Figure F.1.

Figure F.1: An I-structure with five I-rows and three columns.

There is a unique I-structure corresponding to each reduced tuple of permutations

τi, which represents the internal edges of the associated Nakamura graph. The m

columns correspond to the m permutations in the tuple (τ1, . . . , τm). From the defini-

tion of a Nakamura graph, each integer in the set {1, 2, . . . d} is permuted by at least

one of the τi. If an integer j is permuted by two or more of the τi, then there is an

I-row associated to this integer. The vertices of this I-row are drawn on the columns

corresponding to the τi which permute the integer j. There is a horizontal edge asso-

ciated to every consecutive pair of vertices along the I-row; these edges correspond to

the internal edges of the Nakamura graph. Each vertex of the I-structure corresponds

to a zero (internal vertex) of the Nakamura graph, but there will in general be zeroes

which do not correspond to vertices of the I-structure, and there can be many vertices

of an I-structure representing the same zero of the graph.

The I-structure constructed from a permutation tuple is unique, but there will be

many different permutation tuples that have the same I-structure. For example, the
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I-structure given in Figure F.1 could be generated by the tuple of S6 permutations

τ1 = (1, 2)(3, 4), τ2 = (1, 3)(4, 5), τ3 = (1, 2)(5, 6). (F.1.1)

The integers {1, 2, 3, 4, 5} correspond to internal edges, and the integer ‘6’ corresponds

to an external edge. If we conjugate the above tuple by some γ ∈ S6, then we have

the new tuple

(τ̃1, τ̃2, τ̃3) = (γτ1γ
−1, γτ2γ

−1, γτ3γ
−1), (F.1.2)

which is just a relabelling of the τi and so has the same I-structure. In general,

conjugate permutation tuples have the same I-structure, but there can also be distinct

tuples which are not conjugate which have the same I-structure. An example of a

permutation tuple that also generates the I-structure in Figure F.1 and is not conjugate

to the above tuple is

τ1 = (1, 2, 3, 4), τ2 = (1, 3, 4, 5), τ3 = (1, 2, 5). (F.1.3)

For small values of I, we can explicitly list all the possible I-structures that can

be generated from Nakamura graphs. We start by considering I = 0. Any graph with

no internal edges must have m = 1 in the reduced tuple description, and so the tuples

of these graphs take the form

σ+τσ− = 1. (F.1.4)

The Nakamura graphs with I = 0 have no I-structure. These graphs were counted

using matrix models in Section 3.5.2.

Figure F.2: The only possible I-structure for I = 1.

Now consider the graphs where I = 1, which have exactly one internal edge. From

the definition of a reduced tuple, the zeroes of an I = 1 graph must be described by
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a pair of permutations τ1 and τ2, and there exists a unique j ∈ {1, 2, . . . d} such that

τ1(j) 6= j

τ2(j) 6= j. (F.1.5)

In other words, j belongs to the moved-point sets of both τ1 and τ2. The associated

I-structure consists of two columns and a single I-row with two vertices. This is given

in Figure F.2.

Figure F.3: The I-structures for I = 2.

In the case that I = 2, there are three distinct I-structures, as drawn in Figure

F.3. The first I-structure has three columns and one I-row with three vertices. This

corresponds to tuples in which there is a single integer j ∈ {1, 2, . . . , d} that is per-

muted by all three permutations τ1, τ2, τ3, and no other integer in the set {1, 2, . . . , d}
is permuted by any two of the τi. The second I-structure has two columns and two

identical I-rows, each with two vertices. This structure corresponds to graphs for

which there are exactly two integers j1, j2 ∈ {1, 2, . . . , d} that are mutually permuted

by the pair of permutations τ1 and τ2. The third I-structure has three columns and

two distinct I-rows with two vertices. This corresponds to a triple τ1, τ2, τ3, with the

property that there is some pair j1, j2 ∈ {1, 2, . . . , d} such that

τ1(j1) 6= j1, τ2(j1) 6= j1, τ3(j1) = j1

τ1(j2) = j2, τ2(j2) 6= j2, τ3(j2) 6= j2 (F.1.6)

For I = 3, there are eleven I-structures that can be drawn that correspond to

tuples in the reduced Sd description. These are shown in Figure F.4.

F.2 An algorithm utilising I-structures

There is an efficient algorithm that counts Nakamura graphs by using I-structures. As

in the original algorithm outlined above, the I-structures algorithm takes the graph
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Figure F.4: The I-structures for I = 3.

Euler characteristic |χ| as input, and starts by finding all the valency partitions and

reduced class tuples. For each reduced class tuple (T1, . . . , Tm), the algorithm finds

all possible I-structures that are consistent with this class tuple. Each I-structure

must have one edge connecting columns (i− 1) and i for each cycle in τi ∈ Ti, where

i = 2, . . . ,m. Also, there must be no more edges connecting each column i = 1, 2, . . .m

in an I-structure than the total number of labels permuted by any τi ∈ Ti.
The algorithm considers each reduced class tuple and I-structure in turn. All

Nakamura graphs with this reduced class tuple have the same values of ∆ and I, and

all Nakamura graphs with this chosen I-structure have the same value of I, and so all

graphs with this I-structure and class tuple have the same degree,

d = ∆ + 2l − I. (F.2.1)

Let ΩI,T be the set of tuples (τ1, . . . , τm) with a given I-structure I and reduced class

tuple (T1, . . . , Tm). The Nakamura graphs with the specified I-structure and reduced
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class tuple are the equivalence classes of this set under the conjugation action

(τ1, . . . , τm) ∼ (γ−1τ1γ, . . . , γ
−1τmγ), (F.2.2)

for γ ∈ 〈(1, 2, . . . , d)〉 = Zd. However, the set ΩI,T can be very large in general, so it

is computationally very expensive to split this set into Zd conjugacy classes directly.

We circumvent this difficulty by breaking the problem into stages: first, we split ΩI,T

into conjugacy classes under the equivalence relation

(τ1, τ2, . . . , τm) ∼ (α−1τ1α, α
−1τ2α, . . . , α

−1τmα), (F.2.3)

where α ∈ Sd. Once we have found the Sd-equivalence classes of ΩI,T , we then split

these classes down into Zd-equivalence classes, which correspond to distinct Nakamura

graphs. Rather than directly constructing the very large set ΩI,T and then splitting

this set into Sd equivalence classes, it is more efficient to construct the Sd-equivalence

classes directly by finding a representative element of each class.

We find the representative elements of the Sd-classes by using the I-structure and

breaking the Sd symmetry. Let k be the number of rows in the I-structure I, where

k ∈ {0, 1, . . . , d}. For any tuple (τ1, . . . , τm) ∈ ΩI,T , there are exactly k integers in

{1, 2, . . . , d} that are permuted by more than one τi. These integers correspond to the

internal edges of the Nakamura graph. By adding the length of the cycles in the class

Ti for some i ∈ {1, 2, . . . ,m} and subtracting the number of vertices in the ith column

of the I-structure, we have the number of integers ei that are permuted by only the

permutation τi within the tuple (τ1, . . . , τm). These integers correspond to the external

edges of the graph. Consider the set of ‘canonically-labelled’ τi-tuples Ω̃I,T ⊂ ΩI,T

which consists of those tuples in which the permuted integers 1 to k correspond to

the rows of the I-structure, the integers k + 1, . . . , k + e1 are permuted only by τ1,

the labels k + e1 + 1, . . . , k + e1 + e2 are permuted only by τ2, and so on. Each Sd-

equivalence class of ΩI,T contains at least one such canonically labelled τi-tuple. A pair

of canonically-labelled tuples are in the same Sd-equivalence class if and only if they

are conjugate to each other by an element of the group Sk×Se1 × . . . Sem . This means

that the orbits of the canonically-labelled tuples under the action by conjugation of

the group Sk × Se1 × . . . Sem are in direct correspondence with the equivalence classes

of ΩI,T under conjugation by Sd. As the set Ω̃I,T is usually much smaller than ΩI,T , it

is relatively cheap computationally to construct the set of canonically-labelled tuples,

find their orbits under Sk × Se1 × . . . Sem , and choose a representative element from

each orbit. In this way, we can construct a set of representative elements of the Sd
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classes of ΩI,T .

Consider each Sd-equivalence class of ΩI,T in turn, specified by a representative

τ -tuple (τ1, . . . , τm). All the elements of this Sd equivalence class are of the form

(α−1τ1α, . . . , α
−1τmα), where α ∈ Sd. Let Aut(τ) be the automorphism group of the

representative τ -tuple (τ1, . . . , τm); that is, the set of elements γ ∈ Sd that satisfy

γ−1τiγ = τi for all i = 1, 2, . . . ,m. If two permutations α, α̃ satisfy α̃ = γα for some

γ ∈ Aut(τ), then

(α−1τ1α, . . . , α
−1τmα) = (α̃−1τ1α̃, . . . , α̃

−1τmα̃). (F.2.4)

We can therefore see that each right coset Aut(τ)α ∈ Aut(τ)\Sd specifies a unique

element in the Sd-equivalence class of the τ -tuple.

We wish to split this Sd equivalence class into Zd equivalence classes. A pair of

elements of the Sd equivalence class (α−1τ1α, . . . , α
−1τmα) and (α̃−1τiα̃, . . . , α̃

−1τmα̃)

are in the same Zd equivalence class if and only if

(α̃−1τiα̃, . . . , α̃
−1τmα̃) = (z−1α−1τ1αz, . . . , z

−1α−1τmαz) (F.2.5)

for some z ∈ Zd = 〈(1, 2, . . . , d)〉. This means that two right cosets Aut(τ)α and

Aut(τ)α̃ are in the same Zd-equivalence class if Aut(τ)α̃ = (Aut(τ)α)z for some z ∈ Zd.
We deduce that the double cosets

Aut(τ)αZd ∈ Aut(τ)\Sd/Zd (F.2.6)

parametrise the Zd-equivalence classes of a given Sd-equivalence class of ΩI,T , and so

give the Nakamura graphs associated to a given Sd-equivalence class of ΩI,T .

We can read off the size of the automorphism group of each graph by looking

at the size of its associated double coset. The product group Aut(τ) × Zd acts on

the elements in Sd by left and right multiplication. The orbits of this action are the

double cosets Aut(τ)\Sd/Zd. The stabiliser group of an element α ∈ Sd under this

action consists of the pairs of elements (γ, z) which satisfy γαz = α, or equivalently

α−1γα = z−1. As γ and z can be any elements of the groups Aut(τ) and Zd respectively,

the stabiliser of α is precisely the intersection of the groups α−1Aut(τ)α and Zd.
These are exactly the elements which fix under conjugation every element in the tuple

(σ+, α
−1τ1α, . . . , α

−1τmα, σ−), and so the stabiliser of α is the automorphism group of

the graph. By the orbit-stabiliser theorem, we therefore deduce that the size of the
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automorphism group of a Nakamura graph given by the double coset Aut(τ)αZd is

d|A|
|Aut(τ)αZd|

. (F.2.7)

GAP can efficiently count double cosets and find their representative elements and

sizes. The algorithm we have devised is therefore able to quickly find all the Nakamura

graphs that arise from a given representative τ -tuple in the Sd-equivalence classes of

ΩI,T , and to read off their automorphism group sizes.

As an example of this procedure, we consider the reduced class tuple (T1, T2, T3) =

([2, 2], [3], [2]) with |χ| = 5. This class tuple contains only one cycle with cycle size

greater than 2, so its branching number is ∆ = 1. From the relation

2|χ| − d = ∆ + I, (F.2.8)

we know that the degree and the number of internal edges are related by d + I = 9.

Permutations in the class T1 permute four integers, so the degree is bounded from

below by 4. There are three classes in this reduced class tuple, so there are at least

two internal edges. This means that the number of internal edges I lies in the range

{2, 3, 4, 5}.

Figure F.5: An example of an I-structure of the reduced class tuple (T1, T2, T3) =
([2, 2], [3], [2]).

One of the I-structures found by the algorithm is given in Figure F.5. This struc-

ture has I = 3 internal edges, and degree d = 6. Let ΩI,T be the set of tuples

corresponding to this I-structure and reduced class structure. This I-structure has

two rows, so there are k = 2 integers corresponding to internal edges in each tuple.

The first column has two vertices, and corresponds to the class T1 = [2, 2] of permuta-

tions which permute four integers. This means that there are e1 = 2 integers permuted

by the first permutation in each tuple which correspond to external edges. Similarly,



F. Counting Nakamura graphs in the Sd picture using GAP 235

there are e2 = 1 integers permuted only by the permutation τ2 within each tuple and

e3 = 1 integers permuted by the permutation τ3.

To find the Sd-equivalence classes of ΩI,T , we first find the ‘canonically-labelled’

tuples (τ1, τ2, τ3) in which τ1 permutes the integers {1, 2, 3, 4}, τ2 permutes {1, 2, 5},
and τ3 permutes {1, 6}. There are six such elements, and the set of canonically-labelled

tuples is

Ω̃I,T = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} × {(1, 2, 5), (1, 5, 2)} × {(1, 6)}. (F.2.9)

Next, we consider the orbits in ΩI,T generated by this set under the action of the group

Sk × Se1 × Se2 × Se3 = 〈(1, 2), (3, 4)〉. Note that the set Ω̃I,T is not closed under this

group action. The tuples ((1, 3)(2, 4), (1, 2, 5), (1, 6)) and ((1, 4)(2, 3), (1, 2, 5), (1, 6))

are conjugate, as are the tuples ((1, 3)(2, 4), (1, 5, 2), (1, 6)) and ((1, 4)(2, 3), (1, 5, 2), (1, 6)),

and so a set of representatives for the orbits of the canonically-labelled tuples (τ1, τ2, τ3)

is

((1, 2)(3, 4), (1, 2, 5), (1, 6)),

((1, 2)(3, 4), (1, 5, 2), (1, 6)),

((1, 3)(2, 4), (1, 2, 5), (1, 6)),

((1, 3)(2, 4), (1, 5, 2), (1, 6)). (F.2.10)

These are representative elements of the Sd-equivalence classes of ΩI,T .

For each representative tuple, the Nakamura graphs are given by the double cosets

Aut(τ)\Sd/Zd. The representative tuple (τ1, τ2, τ3) = ((1, 2)(3, 4), (1, 2, 5), (1, 6)) has

the automorphism group Aut(τ) = 〈(3, 4)〉, and so the Nakamura graphs correspond

to the double cosets 〈(3, 4)〉\S6/〈(1, 2, . . . , 6)〉. There are 60 distinct double cosets, all

consisting of 12 elements, and so there are 60 Nakamura graphs in this Sd-class. All

these graphs have trivial automorphism group. For the representative tuple (τ1, τ2, τ3) =

((1, 3)(2, 4), (1, 2, 5), (1, 6)), the automorphism group Aut(τ) is trivial, and so the dou-

ble cosets are {()}\S6/〈(1, 2, . . . , 6)〉. There are 120 distinct double cosets in this case,

and so there are 120 Nakamura graphs in this Sd-equivalence class.
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F.3 Tables of Nakamura graphs with |χ| = 7

Table F.1: (g, n)=(0,9)

dimension 12 11 10 9 8 7

Graphs
([Aut]× Number)

[1] 28
[2] 5
[7] 1

[1] 297
[1] 1324
[2] 25

[1] 3675
[1] 6795
[2] 52
[4] 1

[1] 8892

· · ·

6 5 4 3 2 1 0

[1] 8169
[2] 57

[1] 5250
[1] 2226
[2] 29
[4] 2

[1] 595
[1] 85
[2] 6

[1] 6 [8] 1

Table F.2: (g, n)=(1,7)

dimension 14 13 12 11 10 9

Graphs
([Aut]×#)

[1] 838
[2] 40

[1] 9702
[1] 51870
[2] 210

[1] 174090

[1] 404059
[2] 471
[3] 1
[4] 2
[6] 1

[1] 680960
· · ·

· · ·

8 7 6 5 4 3 2 1

[1] 843976
[2] 574

[1] 766000
[3] 5

[1] 497046
[2] 378
[4] 4

[1] 222057

[1] 64087
[2] 124
[3] 5
[6] 2

[1] 10820
[1] 863
[2] 15
[4] 1

[1] 18
[3] 2
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Table F.3: (g, n)=(2,5)

dimension 16 15 14 13 12

Graphs
([Aut]×#)

[1] 4680
[2] 78

[1] 59598
[1] 359771
[2] 485

[1] 1374975

[1] 3688668
[2] 1322
[3] 9
[4] 2

· · ·

· · ·

11 10 9 8 7 6

[1] 7291788
[1] 10799810
[2] 1995

[1] 11954262
[3] 30

[1] 9708622
[2] 1671
[4] 5

[1] 5611630
[1] 2204212
[2] 695
[3] 36

· · ·

· · ·

5 4 3 2

[1] 548779

[1] 76822
[2] 101
[4] 3
[8] 1

[1] 4814
[3] 12

[1] 84

Table F.4: (g, n)=(3,3)

dimension 18 17 16 15 14

Graphs
([Aut]×#)

[1] 4013
[2] 63
[7] 2
[14] 1

[1] 55143
[1] 360892
[2] 421

[1] 1502760

[1] 4420204
[2] 1236
[3] 7
[4] 5
[6] 1

· · ·

· · ·

13 12 11 10 9 8

[1] 9649120
[1] 15910334
[2] 2031

[1] 19771176
[3] 25

[1] 18191095
[2] 1891
[4] 11

[1] 12042490

[1] 5502643
[2] 940
[3] 29
[6] 2

· · ·

· · ·

7 6 5 4

[1] 1632983

[1] 284718
[2] 203
[4] 4
[8] 2

[1] 24312
[3] 10

[1] 680
[2] 12
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