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Abstract 
 

Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is an early onset 

neurodegenerative disorder resulting from mutations in the SACS gene that encodes 

the protein sacsin. Sacsin is a 520kDa multi-domain protein localised at the cytosolic 

face of the outer mitochondrial membrane with suggested roles in proteostasis and 

most recently in the regulation of mitochondrial morphology. An excessively 

interconnected mitochondrial network was observed as a consequence of reduced 

levels of sacsin protein following SACS knockdown in neuroblastoma cells as well as in 

an ARSACS patient carrying the common Quebec homozygous SACS mutation 

8844delT. Moreover, it was suggested that sacsin has a role in mitochondrial fission as 

it was found to interact with mitochondrial fission protein Dynamin related protein 1 

(Drp1). The aim of this thesis was to explore sacsin’s role in the regulation of 

mitochondrial morphology and dynamics in non-Quebec ARSACS patients and sacsin 

knockdown fibroblasts.   

 

This study shows that loss of sacsin function promotes a more interconnected 

mitochondrial network in non-Quebec ARSACS patients and in sacsin knockdown 

fibroblasts. Moreover, recruitment of the essential mitochondrial fission protein Drp1 

to the mitochondria was significantly reduced in ARSACS patient cells and in sacsin 

knockdown fibroblasts. This reduced recruitment of Drp1 to mitochondria also 

occurred when cells were treated to induce mitochondrial fission. Furthermore, both 

the size and intensity of Drp1 foci localised to the mitochondria were significantly 

reduced in both sacsin knockdown and patient fibroblasts. Finally, reduced ATP 

production, decreased respiratory capacity of mitochondria and an increase in 

mitochondrial reactive oxygen species demonstrated impaired mitochondrial function 

in ARSACS patient and sacsin knockdown fibroblasts. 

 

These results suggest a role for sacsin in the stabilisation or recruitment of cytoplasmic 

Drp1 to prospective sites of mitochondrial fission similar to that observed by other 

mitochondrial fission accessory proteins.  
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SCA Spinocerebellar Ataxia 
SCAN1 Spinocerebellar Ataxia With Axonal Neuropathy SCAN 1 
SCRM Scrambled 
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SDS Sodium Dodecyl Sulphate 
SEC61b Protein Transport Protein Sec 61 Subunit Beta 
SEM Standard Error Of The Mean 
shRNA Short Hair Pin RNA 
SiRNA Silencing RNA 
SIRPT Sacsin Internal Repeats 
SLSJ Saguenay Lac-St-Jean 
SOCS6 Suppressor of Cytokine sigalling 6 
SOD Superoxide Dismutase 

SPG3A Spastic Paraplegia 3 Autosomal Dominant  
SRR Sacsin Repeated Region 
SUMO Small Ubiquitin Like Modifier 
TALEN Transcription Activator Like Effector Nucleases 
TCA Tricarboxylic Acid Cycle 
TFAM Mitochondrial Transcription Factor A 
TGF Transforming Growth Factor 
TMRM Tetramethylrhodamine Methyl Ester  
TOM2o Translocase Of Outer Membrane 20 
UBL Ubiquitin Like 

VD Variable Domain 
VDAC Voltage Dependant Anion Channel 
VLCFA Very Long Chain Fatty Acids 
WND Wilson’s Disease 
XPCB Xeroderma Pigmentosum Complementation Group C-Binding 
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Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is a recessive 

cerebellar ataxia caused by mutations in the gene encoding the sacsin protein. The 

cellular role of sacsin and its involvement in the pathology of ARSACS has not been 

fully defined, although over the past few years sacsin has been linked to both 

proteostasis and the regulation of mitochondrial dynamics. 

 

1.1 Cerebellum and Cerebellar Dysfunction 
 
The cerebellum is a portion of the hind brain that plays an important role in regulation 

and co-ordination of motor control as well as the maintenance of posture and balance. 

The cerebellum has also been identified as important in cognitive affective syndrome. 

Depressive and anxiety symptoms and personality changes seem to be more frequent 

in patients with spinocerebellar ataxia (Wolf et al., 2009). The cerebellum is made up 

of a highly regular arrangement of several types of neurons including Purkinje cells and 

granular cells. While damage may not impair intellect or reflexive function, it disrupts 

co-ordination of voluntary muscular movement as well as balance and eye 

movements. 

Cerebellar dysfunction usually results in a gait disorder with upper and lower limb 

dysmetria and hypotonia (Holmes, 1939, Draicchio et al., 2012). Cerebellar ataxia is an 

ataxia resulting from cerebellum dysfunction. Individuals with cerebellar ataxia may 

display a range of different symptoms. The most common deficits include nystagmus, 

dysarthria and dysdiadochokinesia (Harding, 1983). It is important to note, cerebellar 

ataxia is not in itself suggestive of a hereditary neurodegenerative disorder. Cerebellar 

ataxias can be acquired or sporadic (Manto and Marmolino, 2009, Klockgether, 2010). 

These symptoms can be induced by multiple system atrophy, immune and infectious 

disorders, toxic effects like alcohol abuse, metabolic disorders, stroke and 

paraneoplastic disorders (Iwanami et al., 2011, Sandyk and Brennan, 1984, Yabek, 

1973, Papp and Dorsey, 2009) 
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Progressive unremitting cerebellar ataxias are diagnosed as neurodegenerative on the 

ruling out of acquired subacute chronic cerebellar ataxia and following the 

examination of cerebrospinal fluid in some circumstances and an MRI scan.  

1.1.1 Inherited Cerebellar Ataxias 

Inherited ataxias are a complex, heterogeneous group of neurodegenerative disorders 

characterised by progressive degeneration of the cerebellum and spinocerebellar tract. 

Clinnically hereditary ataxias are characterised by a cerebellar syndrome as described 

earlier. There are often additional neurological or systemic signs which are highly 

variable and depend on genetic subtype as well as on the individual phenotype (Manto 

and Marmolino, 2009). Inherited ataxias are classified into three groups based on 

mode of inheritance. These groups are Autosomal recessive, Autosomal dominant and 

X-linked Ataxia(Manto and Marmolino, 2009). Gene discovery technologies have 

meant identification of many of the causative genes associated with these disorders.  

 

1.1.1 X-Linked Ataxia 
 
X-Linked ataxias are very rare inherited ataxias with variable age of onset caused by 

mutations on chromosome X. Affected males display a slowly progressive ataxia with 

tremor, parkinsonism, autonomic dysfunction, polyneuropathy and cognitive deficits. 

The most recognised form of this ataxia is late onset, fragile X tremor ataxia syndrome 

(FXTAS).  Patients with these forms of ataxia present with upper motor neuron signs, 

mild learning difficulty, Parkinsonism, dysdiadochokinesis and dysmetria (Berry-Kravis 

et al., 2007, Pagon et al., 1985).  

 

1.1.2 Autosomal Dominant Ataxia 
 

Autosomal dominant cerebellar ataxias (ADCA) are rare dominant disorders are often 

associated with neurological signs such as pyramidal and or extrapyramidal signs, 

cognitive dysfunction and ophthalmoplegia (Harding, 1981, Harding, 1982, Harding, 

1983). These disorders are usually described as late onset diseases despite having a 
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large variation in age of onset as well as disease progression (Harding, 1981, Harding, 

1982, Harding, 1983). Due to clinical heterogeneity, ADCAs were initially difficult to 

distinguish. However, Harding’s introduction of an ADCA classification in 1982 (Table 

1.1), which characterised these ataxias by clinical phenotype, has since improved 

diagnostic criteria. Although this classification was useful, making a reliable diagnosis 

on clinical grounds alone proved to be difficult due to the large overlap of clinical 

phenotype amongst ADCA individuals. Gene identification and new techniques in 

genetic sequencing have led to these disorders being better characterised and the 

replacement of Harding’s classifications with the Spinocerebellar ataxia (SCA) 

classification. The SCA classification couples clinical phenotype with genetic subtype, 

based on the disease associated gene or chromosomal locus. There are over 30 

reported SCAs, the disease locus has been identified in approximately 1/5 of them 

(Table 1.2) (Bird, 2014). 

Classification of Autosomal Dominant Cerebellar Ataxia 

Group Autosomal Dominant Cerebellar Ataxia 

I Autosomal Dominant ataxia with ophthalmoplegia optic atrophy, 

dementia, extrapyramidal features and amyotrophy. 

II Autosomal  Dominant ataxia with pigmenary retinal degeneration 

III Autosomal  Dominant ataxia with ‘Pure’ cerebellar  syndrome and 

late onset (60 years or older) without ocular or extrapyramidal 

features or dementia 

IV Autosomal  Dominant ataxia with myoclonus and deafness 

Table 1.1 Group classifications of autosomal dominant cerebellar ataxia. This 

grouping preceded SCA classification. Adapted from AE Harding Brain 1982 
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The majority of autosomal dominant cerebellar ataxias are associated with genes 

containing unstable expanded trinucleotide repeats. A polyglutamine (PolyQ) 

expansion within the coding regions of the respective genes, account for 

Spinocerebellar Ataxias; SCA1, SCA2, SCA3, SCA6, SCA7, SCA17 and Dentatorubral-

pallidoluysian atrophy (DRPLA) (Durr, 2010), while trinucleotide or pentanucleotide 

repeat expansions in non-coding regions cause SCA8 SCA10, SCA11 and SCA12 

(Moseley et al., 2006, Matsuura et al., 2000, Houlden et al., 2007, Holmes et al., 1999, 

Manto and Marmolino, 2009).  

The PolyQ expansion in the resulting protein leads to a toxic gain of function 

(potentially coupled with loss of function), which in turn causes cell death and 

neurodegeneration (Todd and Paulson, 2010, Williams and Paulson, 2008, Liu et al., 

2007, Ikeda et al., 1996, Burright et al., 1995). In the non-coding expansion SCA 

disorders, it is suggested that the CUG expanded RNA species is kept in the nucleus, 

hindering the processing of mRNA (Albin, 2003).   

Interestingly, the severity of the ADCA is associated with length of polyglutamine tract. 

In the instance of SCA1 and SCA2 the length of the expanded allele inversely correlates 

to age of onset and disease phenotype (Geschwind et al., 1997), (Ranum et al., 1995, 

Durr, 2010). Polyglutamine expansions occur in other proteins associated with 

neurodegeneration, for example Huntingtin in Huntington’s disease. The expansions 

tend to cause misfolding of the proteins and in turn disrupt protein homeostasis 

leading to aggregation of the mutant protein, like in SCA1. In addition, for SCA5, SCA 

14, SCA13 and SCA27, point mutations in respective genes have been found to be 

pathogenic (Ikeda et al., 2006, Chen et al., 2003a, Herman-Bert et al., 2000, Brusse et 

al., 2006).  
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Autosomal Dominant Spinocerebellar Ataxias 

OMIM SCA Gene Locus Protein 

160120/ 
108500 

Episodic Ataxia Type1 EA1 / 
Episodic Ataxia Type 2 EA2 

CACNA1A/ 
KCNA1 

19p13.2 
Calcium 

ion 
channel 

169500 
Leukodystrophy, demyelinating 

adult onset Autosomal 
dominant (ADLD) 

LMNB1 5q23.2 Lamin B1 

162350 
Ceroid Lipofuscinosis, Neuronal, 
4b Autosomal Dominant, CLN4B 

DNAJC5 20q13.33  

128230 Dystonia, Dopa-responsive DRD GCH1 14q22.2 
Potassium 

channel 

182600 
Spastic paraplegia, Autosomal 

dominant, SPG3A 
ATL1 14q22.1  

157640 

Progressive external 
opthalmopegia with 

mitochondrial DNA deletions, 
PEOA1 

POLG 15q26.1 
DNA  

polymerase 

137440 Gerstmann-Straussler PRNP 20p13  

206700 
Aniridia Cerebellar ataxia and 

mental retardation, ACA 
PAX6 11p13 PAX6 

164400 Spinocerebellar ataxia 1 ATXN1 6p22.3 Ataxin-1 

601517 Spinocerebellar ataxia 2 ATXN2 12q24.12 Ataxin-2 

109150 
Machado-Joseph disease 
Spinocerebellar ataxia 3 

ATXN3 14q13.12 Ataxin-3 

600223 Spinocerebellar ataxia 4  16q22.1  

600224 Spinocerebellar ataxia 5 SPTBN2 11q13.2 
beta-III 
spectrin 

183086 Spinocerebellar ataxia 6 CACNA1A 19p13.2  

164500 
Olivopontocerebellar atrophy III  

Spinocerebellar ataxia 7 
ATXN7 3P14.1 Ataxin-7 

608768 Spinocerebellar ataxia 8 
ATXN8/AT

XN8OS 
13q21 

/13q21.33 
 

603516 Spinocerebellar ataxia 10 ATXN10 22q13.31 Ataxin 10 

604432 Spinocerebellar ataxia 11 TTBK2 15q15.2 
tau tubulin 

kinase-2 

604326 Spinocerebellar ataxia 12 PPP2R2B 5q32  

605259 Spinocerebellar ataxia 13 KCNC3 19q13.33 

voltage-
gated 

potassium 
channel, 

Shaw-
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Table 1. 2 Autosomal Dominant Cerebellar Ataxias are a heterogeneous group of 

neurological disorders. Spinocerebellar ataxia (SCA) classifications has been assigned 

to the majority of these disorders. The disease causing gene or region has been 

identified in > 30  

related 
subfamily, 
member-3 

176980 Spinocerebellar ataxia 14 PRKCG 19q13.42  

606658 Spinocerebellar ataxia 15 ITPR1 3p26.1  

607136 Spinocerebellar ataxia 17 TBP  
TATA box 
binding 
protein 

607458 Spinocerebellar ataxia 18  7q22-q32  

607346 Spinocerebellar ataxia 19  1p21-q21  

608687 Spinocerebellar ataxia 20 
Duplica-

tion 
11q12  

607454 Spinocerebellar ataxia 21  
7p21.3-
p15.1 

 

610245 
Spinocerebellar ataxia 23 PDYN 20p13  

608703 Spinocerebellar ataxia 25  2p21-p13  

609306 Spinocerebellar ataxia 26  19p13.3 EEEF2 

69307 Spinocerebellar ataxia 27 FGF14 13q33.1 
fibroblast 

growth 
factor-14 

610246 Spinocerebellar ataxia 28 AFG3L2 18p11.21  

117360 Spinocerebellar ataxia 29  3p26  

613371 Spinocerebellar ataxia 30  
4q34.3-
q35.1 

 

117210 Spinocerebellar ataxia 31 BEAN 16q21  

613909 Spinocerebellar ataxia 32  7q32-q33  

133190 Spinocerebellar ataxia 34 ELOVL4 
6p12.3-
q16.2 

 

613908 Spinocerebellar ataxia 35 TGM6 20p13  

614153 Spinocerebellar ataxia 36 NOP56 20p13  
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1.1.3 Autosomal Recessive Cerebellar Ataxia 
 

Like the ADCA, autosomal recessive cerebellar ataxias (ARCA) are a group of clinically 

and genetically heterogeneous neurodegenerative disorders characterised by ataxia 

caused by progressive degeneration of cerebellum, spinocerebellar tracts of the spinal 

cord and associated structures. They are usually characterised by Purkinje cell 

degeneration and are loss of function disorders at the molecular level (Mariotti, 2001, 

Palau and Espinós, 2006). ARCA are usually early onset disorders with the age of onset 

usually under 20 years and are chiefly classified by their pathological mechanisms 

(Harding, 1983, Mariotti, 2001). Recessively inherited cerebellar ataxias are more 

difficult to classify than dominant ataxias in fact appropriate classification of ARCA has 

yet to be agreed.  The heterogeneity amongst the ARCA makes their clinical diagnosis 

complicated. Previously, all early onset ataxias were deemed recessive, which led to 

misdiagnosed ataxias. In 1983 Harding based ARCA classification on age of onset and 

pathological mechanisms (Table 1. 3); (Harding, 1983). In recent years the 

development of molecular genetic studies has improved the diagnosis and 

classification of frequent recessive ataxias of unknown cause. The identification of 

novel loci and genes has led to an increase in the number of recognised ARCAs (Table 

1. 4). 
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Classification of Autosomal Recessive Cerebellar Ataxia 

Group Ataxia 

I Cerebellum and brain stem development 

II Mitochondrial energy generation 

III Intermediate metabolism 

IV DNA repair 

V Cerebellar integrity mechanism 

Table 1. 3 Autosomal Recessive Cerebellar Ataxias were placed into one of five 

classifications based on age of onset and the pathological mechanisms of the 

disease. Adapted from AE Harding 1983 
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Autosomal Recessive Cerebellar Ataxia 

OMIM ARCA Gene Locus Protein 

277460 
Ataxia with vitamin E 

deficiency (AVED) 
α-TTP 8q13 

Alpha-tocopherol 
transfer potein 

208900 
Ataxia telangiectasia 

(AT) 
ATM 11q22.3 

Phosphatidylinositol 3 
kinase 

208920/606002 
Ataxia Oculomotor 
apraxia 1 (AOA1)/ 

(AOA2)/SCAR1 
APTX/SETX 9p13/9p34 Aprataxin/Sentaxin 

607250 
Spinocerebellar 

ataxia with axonal 
neuropathy (SCAN1) 

TDP1 14q31 
Tyrosyl-DNA 

phosphodiesterase 1 

604391 
Ataxia- 

telangiectasia-like 
disorder (ATLD) 

MRE1 IA 11q22.3  

271245 
Infantile onset 
spinocerebellar 
ataxia (IOSCA) 

C10 orf2 
10q22.3-

q24.1 
Twinkle 

229300 
Friedreich’s Ataxia. 

(FRDA) 
FXN 9q13 Frataxin 

270550 

Autosomal recessive 
spastic ataxia of 

Charlevoix 
Saguenay(ARSACS) 

SACS 13q12 Sacsin 

248800 
Marinesco-Sjögren 

syndrome 
SIL1 5q32  

606175 
Carnitine 

acetyltransferase 
deficiency (CRATD) 

CRAT 9q34 
Carnitine 

acetyltransferase 

Table 1. 4 Genetic classification of ARCA. Autosomal Recessive Cerebellar Ataxias are 

associated with loss of function of specific cellular proteins.  
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1.1.4 Prevalent Forms of Autosomal Recessive Cerebellar Ataxia  

1.1.4.1 Friedreich’s Ataxia  
 

Friedreich’s Ataxia (FRDA, OMIM: 229300) is the most common autosomal recessive 

ataxia. The estimated carrier frequency is between 1 in 50 and 1 in 100, with a 

prevalence of 1 in 50000 (Cossée et al., 1999). First described in 1861 as a locomotive 

ataxia, Friedreich’s is a degenerative disease characterised by progressive gait limb 

ataxia, lack of tendon reflexes in legs and loss of posture (Cossée et al., 1999, 

Campuzano et al., 1996, Dürr et al., 1996). Like the majority of ARCA, FRDA usually has 

an early age of onset. It is primarily caused by a homozygous expansion of Guanine-

Adenine-Adenine (GAA) trinucleotide repeat in intron 1 of the frataxin gene (FXN) on 

chromosome 9q13. Normal FXN alleles can have up to 40 GAA repeats whereas 

repeats in disease associated alleles range from 100 to 1000 repeats, most commonly 

700 to 800 repeats (Campuzano et al., 1996, Dürr et al., 1996). This expansion leads to 

a transcriptional defect of frataxin and hence results in a loss of protein function.  

Interestingly, although this trinucleotide repeat is in a non-coding region of the gene, 

both severity of the disorder and age of onset can be correlated to the length of 

expansion as observed in other trinucleotide expansion related disorders such as 

Huntington’s disease (Dürr et al., 1996, Durr, 2010).  

 

1.1.4.2 Ataxia Telangiectasia 
 

 Ataxia telangiectasia (AT, OMIM: 208900) is recognised as the second most common 

ARCA and the most common ataxia in children under the age of five years with a 

prevalence of 1:100000 (Swift et al., 1986). AT is characterised by cerebellar ataxia, 

which presents in early childhood, oculocutaneous telangiectases which appears 

between 2-8 years of age and progressive neurodegeneration. This disorder is due to 

mutations in ATM. ATM is involved in DNA damage checkpoint monitoring and the 

cellular response to DNA damage (Zakian, 1995, Lavin and Shiloh, 1997). Notably 

patients with AT have increased susceptibility to cancer, with the risk for malignancy in 

patients reported to be as high as 38% (Swift et al., 1991, Chun and Gatti, 2004). As 
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well as this, immunodeficiency with reduced levels of immunoglobulins IgA, IgE, IgG 

and T-cells have been described (Hecht and Hecht, 1990). Additionally endocrine and 

skin abnormalities have been associated with AT (Mariotti, 2001 (Hecht and Hecht, 

1990). Commonly distinct phenotypes such as an altered age of onset as well as 

varying severity of disease in both FRDA and AT, have been attributed to the type of 

mutations in FXN and ATM respectively (Anheim et al., 2010, Dürr et al., 1996, Schöls 

et al., 1997, Berciano et al., 2005, Verhagen et al., 2009). 

 

1.2 Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay 

and Sacsin 
 

1.2.1 Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay 
 

Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay (ARSACS) is an early onset 

neurodegenerative disorder first described in 1978. ARSACS is the most common 

inherited disorder in the Saguenay Lac- St- Jean (SLSJ) and Charlevoix regions of 

Quebec with an elevated carrier frequency of 1 in 22 and an estimated incidence of 1 

in 1932, from 1941-1985 (Bouchard et al., 1978, De Braekeleer et al., 1993). ARSACS 

has an autosomal recessive mode of inheritance showing no sex bias. ARSACS 

originated from French early settlers in Charlevoix and later in the SLSJ region between 

1608 and 1838 (Charbonneau and Robert, 1987). Although previously described as a 

rare founder disorder in Quebec (Engert et al., 2000) additional ARSACS cases have 

been documented from a further fifteen countries in the last decade. ARSACS 

therefore has a worldwide distribution with distinct mutations observed in different 

countries and an increasing incidence. 
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1.2.2 ARSACS Clinical Features  
  

The early signs of ARSACS are an unsteady gait with the tendency to fall as well as 

progressive ataxia at around 12 to 18 months. Progressive signs also include spasticity, 

dysarthria and distal amyotrophy (Bouchard et al., 1998). Early non progressive signs 

include increased tendon reflexes, prominent myelinated retinal fibres and bilateral 

abnormal plantar response (Bouchard et al., 1979a, Ouyang et al., 2006, Bouchard et 

al., 1998). ARSACS has a rapid disease progression in young adults, with severe 

denervation in distal muscles in most patients by their 3rd decade and consequential 

necessity for a wheelchair by their 5th decade. Neurological features of this disorder 

include atrophy of the superior cerebellar vermis, atrophy of the cervical spinal cord, 

progressive atrophy of cerebellar hemisphere, loss of Purkinje cells, abolished sensory 

nerve conduction with reduced motor nerve velocity and reported hypermyelination 

of retinal fibres (Bouchard et al., 1979b, Bouchard et al., 1998, Gerwig et al., 2010, 

Martin et al., 2007).  

Specific markers such as atrophy of the superior cerebellar vermis can be found in 

hereditary and acquired cerebellar ataxias however, this occurs more precociously in 

ARSACS and is therefore used as a core component of the diagnostic criterion. It is 

usually observed on Magnetic resonance images (MRI) and computerised tomography 

(CT) scans even in young patients (Martin et al., 2007, Gerwig et al., 2010). 

 Hypermyelinated retinal nerve fibres were once described as unique to ARSACS 

(Bouchard, 1991). However, it has subsequently been realised this is not an essential 

feature of the disease as it is not always observed in patients without the common 

Canadian mutations, described later on in this section (Ouyang et al., 2006, Hara et al., 

2005a, Grieco et al., 2004). A recent publication challenged Bouchard’s initial diagnosis 

of retinal hypermyelination, based on insufficient histological evidence (Desserre et al., 

2011). Desserre et al instead, describe a thickening of the peripapillar retinal fibres, 

which can be measured and is easily observed via fundoscopy. They have suggested 

that this is a more accurate form of diagnosis implying that the previous characteristic 

may have led to undiagnosed ARSACS (Desserre et al., 2011, Vingolo et al., 2011, 

Stevens et al., 2013).  
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Of interest, the autopsy of two ARSACS patients revealed dense lipofuscin-like granules 

present within the lysosomes of swollen neurons. Further analysis of lysosomal 

enzymes showed that they were within normal limits (Richter A et al., 1996). 

Originally impairment of intellectual function was not found to be a defining feature of 

ARSACS as most patients had a verbal IQ which was within normal limits. However 

recently, cognitive and behaviour dysfunction was identified in two adult male siblings 

(Verhoeven et al., 2012b). Unlike FRDA, there is no cardiac involvement (Bouchard, 

1991). Note, fertility is unaffected (Bouchard et al., 1998).  

Although ARSACS has distinct clinical features used to assist diagnosis, there is a 

moderate overlap between ARSACS and FRDA/FARR clinical features, which can often 

lead to confusion. Friedreich’s ataxia with retained reflexes (FARR) is a subset of FRDA 

where patients have a very early onset of the ataxia with preserved tendon reflexes. 

They have a higher tendency of skeletal deformities as well as hypopallesthesia in the 

lower limbs (De Castro et al., 1999). Especially in these cases, a positive ARSACS 

diagnosis depends on confirmation by genetic testing.  

Phenotypically, ataxias can be misdiagnosed due to the clinical overlap observed in 

recessive and dominant forms of the disorder. Clinical diagnosis of these disorders 

includes the molecular analysis of ataxia-associated genes. The number of ARSACS 

patients and prevalence of the disease has dramatically increased over the past eight 

years due to the genetic screening of the SACS gene. Increased identification of 

pateints has also highlighted the phenotypic variability of ARSACS in which clinical 

characteristics identified in non-Quebec individuals have veered from those originally 

described by Bouchard et al in 1978.  
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1.2.3 Molecular Genetics 
 

ARSACS was mapped to chromosome 13 in 1998 (Bouchard et al., 1998). Subsequent 

extensive genotyping and segregation analysis further refined that region to 1.58cM 

on chromosome 13q11 (Richter et al., 1999). 

In 2000, mutations in SACS were identified as the cause of ARSACS. SACS was found to 

be expressed in fibroblast, brain, skeletal muscle and at low levels in pancreas (Engert 

et al., 2000). The SACS protein product, sacsin, was initially thought to be encoded by 

one large exon, however additional upstream exons were identified in 2006 and 

experimentally confirmed in 2009 by Parfitt et al (Parfitt et al., 2009, Ouyang et al., 

2006). As of June 2014, >100 mutations have been identified in SACS from patients in 

Tunisia, Italy, Japan, the Nertherlands, Serbia, Hungry, France, Belgium, Spain, Turkey 

and the UK (Table 1. 5) (Anheim et al., 2010, Baets et al., 2010, Bouhlal et al., 2011, 

Breckpot et al., 2008, Criscuolo et al., 2004b, Criscuolo et al., 2005, El Euch-Fayache et 

al., 2003, H'mida-Ben Brahim et al., 2011, Kamada et al., 2008b, Ogawa et al., 2004b, 

Okawa et al., 2006, Ouyang et al., 2008, Richter et al., 2004, Shimazaki et al., 2007b, 

Takiyama, 2006, Vermeer et al., 2008, Yamamoto et al., 2005, Yamamoto et al., 2006, 

Engert et al., 2000).  The majority of these mutations occur in the large exon, exon 9. 

The most common mutation, R2502X, is found in 97% of ARSACS patients in Quebec 

(Engert et al., 2000). This is one of two mutations identified in patients from this area. 

This along with the extent of linkage disequilibrium (LD) implies that this mutation has 

arisen from the same ancestral allele (Engert et al., 2000, Richter et al., 1999).  

A direct phenotype-genotype correlation has recently been reported. Using collated 

clinical and mutation data from previous studies, Romano et al were able to  describe a 

correlation of disease severity to mutations within 4 conserved regions of sacsin 

(Romano et al., 2013).  This correlation will be discussed further in section 1.2.4.1 of 

this chapter. Increased identification of SACS mutations worldwide may shed light on 

the phenotypic heterogeneity in non-Quebec patients. Most distinctly, ARSACS 

patients identified outside of Quebec tend to have a later onset.  
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Of interest, three unusual cases of ARSACS lacking spasticity were identified in Japan 

(Shimazaki et al., 2005a, Shimazaki et al., 2007a, Miyatake et al., 2012). It is important 

to note that these patients were observed in adulthood and had severe peripheral 

nerve degeneration. This questions whether the lack of the spasticity is a unique 

phenotype or the degeneration has masked spasticity.  

Once considered a core factor, retinal hypermyelination is now described as a variable 

feature of ARSACS as it was not found in patients from Japan, Italy, Belgium and the UK 

(Ouyang et al., 2006, Hara et al., 2007, Grieco et al., 2004, Pyle et al., 2012, Miyatake 

et al., 2012, Yu-Wai-Man et al., 2014, Garcia-Martin et al., 2013a, Garcia-Martin et al., 

2013b). Such patients have been described to have an abnormal thickening of retinal 

nerve fibre layer, which predominate in the upper and lower temporal regions or 

retinal hypertrophy (Garcia-Martin et al., 2013a, Yu-Wai-Man et al., 2014, Masciullo et 

al., 2012, Desserre et al., 2011). This raises the question as to whether this 

classification should be added to the diagnostic triad of early onset ataxia, spasticity 

and neuropathy (Engert et al., 2000). 

Neuropsychological testing in the initial Bouchard study showed the verbal IQ of 

ARSACS patients in the SLSJ region was within the normal limits (Bouchard et al., 

1978). Since, studies by Takiyama and others have described intellectual impairment 

with markedly lower than average verbal IQ scores in patients from Japan, Italy and 

Turkey (Takiyama, 2006, Grieco et al., 2004, Criscuolo et al., 2004b, Hara et al., 2005b, 

Pyle et al., 2012, Verhoeven et al., 2012a, Richter et al., 1993, Richter et al., 2004). In 

addition to this, psychiatric symptoms including depression and psychosis were 

observed in four patients with late onset ARSACS (Mignarri et al., 2014). This study 

documents the psychiatric state of these patients soon after diagnosis, however it did 

not present details of psychiatric events which may have preceded onset.  

In a recent UK whole-exome study, unexplained severe sensorimotor neuropathy 

affecting two siblings was attributed to SACS mutations (Pyle et al., 2012).  Although 

neuropathy had been described in earlier publications, Pyle et al describe an increased 

damage of neurons, which was not previously mentioned. With such a difference in 

phenotype it does raise the question of whether these two siblings are indeed ARSACS 
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patients.  With the expansion of clinical features in ARSACS it is important not to 

ignore that other genetic factors, independent of SACS mutations may also contribute 

these atypical phenotypes. The revolutionary approach of whole-exome sequencing 

has assisted the identification of causative variants in rare disorders. It has also 

allowed for potential diagnosis of patients who do not ascribe to the classical 

phenotype. The caveat is whether the phenotypes observed are solely due to SACS 

variants or if these differences are due to mutations in other genes that have been 

missed. The very experimental design of whole-exome sequencing relies on the depth 

of sequencing coverage. It is possible therefore to miss variants in the non-coding 

region, such as frameshifts, which has been the factor in a few instances (Gilissen et 

al., 2012, Bloch-Zupan et al., 2011). 
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Mutations in SACS 

Mutation Origin 
Amino Acid 

Change 

Protein 

Domain 
Reference 

216delT Belgium C72fs*76 HSP90-1 (Baets et al., 2010) 

237insAfs* Canada S80Ifs*98  (Thiffault et al., 2013) 

482delA Japan N161-fs*175 HSP90-1 (Kamada et al., 2008a) 

414 C >G Japan Y138* HSP90-1 
(Shimazaki et al., 

2012) 

502 G> T 
The 

Netherlands 
D168Y HSP90-1 (Vermeer et al., 2008) 

600_604+1delAACA

GG 
Italy I200M-fs*214 HSP90-1 

(Terracciano et al., 

2009) 

602 C >A Belgium T201K HSP90-1 (Baets et al., 2010) 

814 C > T Canada R272C HSP90-1 (Guernsey et al., 2010) 

826 C > T Italy R276C  (Prodi et al., 2012) 

922 C > T Japan L308F HSP90-1 (Takado et al., 2007) 

961 C > T 
The 

Netherlands 
R321* HSP90-1 (Vermeer et al., 2008) 

1184_1193delGTAA

CAGTGT 
Japan C395W-fs*407 HSP90-1 (Ouyang et al., 2006) 

1190insAfs* Canada S397Kfs*405 HSP90-1 (Thiffault et al., 2013) 

1228_1229delTT Italy S409fs* HSP90-1 (Prodi et al., 2012) 

1373 C >T  T458I HSP90-1 (Synofzik et al., 2013) 

1475 G> A The W492* HSP90-1 (Vermeer et al., 2008) 
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Netherlands 

1597 C > T France P536L HSP90-1 (Anheim et al., 2010) 

1647_1658del Germany L549_552del HSP90-1 (Synofzik et al., 2013) 

1667 T > C Morocco L556P HSP90-1 (Baets et al., 2010) 

2063delT Japan V687-fs*713  (Ouyang et al., 2006) 

2076delG 
United 

Kingdom 
T692T fs*713  (Pyle et al., 2012) 

2182 C >T 
The 

Netherlands 
R728*  (Vermeer et al., 2008) 

2185+7748_9836 

del12kb 
Italy G729_W3278del  (Prodi et al., 2012) 

2387del Germany L796Yfs*13  (Synofzik et al., 2013) 

2405 T > C Japan L802P  (Kamada et al., 2008b) 

2881 C > T 

c11634ins A 
Italy R961*K3878fs*13  (Prodi et al., 2012) 

2971 T > C Belgium C991R  (Baets et al., 2010) 

2983 G > T Germany V995F  (Synofzik et al., 2013) 

3161 T > C Japan F1054S  
(Shimazaki et al., 

2005b) 

3328insA Tunisia I1110-fs*1111  
(El Euch-Fayache et al., 

2003) 

3421_3422insAC Belgium L1141-fs*1150  (Baets et al., 2010) 

3491 T > A Belgium M1164K  (Ouyang et al., 2006) 

3585 delT Tunisia I1195-fs*1206  (El Euch-Fayache et al., 
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2003) 

3769 G > T Japan G1257*  
(Shimazaki et al., 

2012) 

3965-3966delAC 
United 

Kingdom 
G1322Vfs*1343  (Pyle et al., 2012) 

12020 C>T Japan S4007F  (Miyatake et al., 2012) 

4033 T > C Japan Q1345*  (Okawa et al., 2006) 

4033insC Italy Q1345-fs*1349  
(Criscuolo et al., 

2004a) 

4060 C > T Italy Q1354*  (Prodi et al., 2012) 

4108 C > T Italy Q1370*  (Grieco et al., 2004) 

4145_4146insA Italy H1382Qfs*  (Prodi et al., 2012) 

4195 T > C Turkey C1398R HSP90-2 (Richter et al., 2004) 

4205 A > T Canada D1402V HSP90-2 (Thiffault et al., 2013) 

4593dupA Italy S1531fs*9 HSP90-2 (Prodi et al., 2012) 

4724 G > C Serbia R1575P HSP90-2 (Baets et al., 2010) 

4744 G > A Canada D1582N HSP90-2 (Thiffault et al., 2013) 

4760 T > G Belgium H1587R HSP90-2 (Baets et al., 2010) 

4775_4776insA Italy I1592fs1 HSP90-2 (Prodi et al., 2012) 

4954 C > T Germany Q16652* HSP90-2 (Synofzik et al., 2013) 

4957 G> T 
The 

Netherlands 
E1653* HSP90-2 (Vermeer et al., 2008) 

4882_4886 

delCAGTT/insAGAA

Algeria Q1628* HSP90-2 
(H'mida-Ben Brahim et 

al., 2011) 
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GC 

5125 C >T 
The 

Netherlands 
E1709* HSP90-2 (Vermeer et al., 2008) 

5143 A>T 
The 

Netherlands 
K1715* HSP90-2 (Vermeer et al., 2008) 

5151dupA England S1718fs*1736 HSP90-2 (Stevens et al., 2013) 

5201_5202delAG Japan E1734G-fs*1736 HSP90-2 
(Yamamoto et al., 

2005) 

5263-4delAA Japan K1755Vfs*1775 HSP90-2 
(Shimazaki et al., 

2012) 

5544dupA Germany V1849Sfs*48  (Synofzik et al., 2013) 

5629 C > T Italy R1877*  (Anesi et al., 2011) 

5719 C >T Italy R1907*  (Prodi et al., 2012) 

5836 T > C Tunisia W1946R  
(El Euch-Fayache et al., 

2003) 

5948 C > T England S1983F  (Stevens et al., 2013) 

5988-9delT Japan fs*1999  
(Shimazaki et al., 

2007a) 

6006delA Netherlands R2002fs*2013  (Vermeer et al., 2008) 

6093_6095delTTC Serbia S2032del  (Baets et al., 2010) 

6172delT Japan S2058Lfs*2076  
(Yamamoto et al., 

2005) 

6355C > T Japan R2119*  (Hara et al., 2007) 

6352delT England F2131fs*2144  (Stevens et al., 2013) 
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6409 C > T Algeria Q2137*  
(H'mida-Ben Brahim et 

al., 2011) 

6890 T>G Norway L2297W  (Tzoulis et al., 2013) 

6835insA Italy E2280Rfs*2291  (Grieco et al., 2004) 

7121 T > C Italy L2374S  
(Terracciano et al., 

2009) 

7250_7254del Italy T2417-fs*2429  (Grieco et al., 2004) 

7255_7259 Italy E2418fs*10  (Prodi et al., 2012) 

7277 G > C Germany R2426P  (Synofzik et al., 2013) 

7279 C > T Belgium R2426*  (Baets et al., 2010) 

7374delT Belgium L2458Lfs*2474  (Baets et al., 2010) 

7372_7376delCTTA

T 
Algeria L2458-fs*2463  

(H'mida-Ben Brahim et 

al., 2011) 

7504 C > T Canada R2502*  (Engert et al., 2000) 

7613 C > T France A2558V HSP90-3 (Anheim et al., 2010) 

8107 C > T Spain R2703C HSP90-3 (Criscuolo et al., 2005) 

8393 C > A Morocco P2798Q HSP90-3 (Baets et al., 2010) 

8401-8403del Netherlands E2801del HSP90-3 (Vermeer et al., 2008) 

8584 A > T Germany K2862*  (Synofzik et al., 2013) 

 Japan K2931-fs*2952  (Ogawa et al., 2004a) 

8844delT Canada K2948-fs*2952  (Engert et al., 2000) 

8920_8923dup Germany Y2975Ffs*29  (Synofzik et al., 2013) 

9305_9306 insT Germany L3102Ffs*  (Synofzik et al., 2013) 
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9497_9498delTT Canada F3166*  (Thiffault et al., 2013) 

9508C>T Canada 
R3170*  (Thiffault et al., 2013) 

9742 T > C Japan W3248R  (Ogawa et al., 2004a) 

9911_9912del 
The 

Netherlands 
L3304fs  (Vermeer et al., 2008) 

10034 T > C Italy V3345A  (Prodi et al., 2012) 

10290 C > G Algeria Y3430*  
(H'mida-Ben Brahim et 

al., 2011) 

10298delC Turkey T3433-fs*3458  (Richter et al., 2004) 

10442 T > C 
The 

Netherlands 
L3481P  (Vermeer et al., 2008) 

10517 T > C Belgium F3506S  (Breckpot et al., 2008) 

10906 C > T Belgium R3636Q  (Baets et al., 2010) 

10906 C > T 
The 

Netherlands 
R3636*  (Vermeer et al., 2008) 

10954 C > A Belgium R3652T  (Baets et al., 2010) 

10958 T > C Belgium F3653S  (Baets et al., 2010) 

11012_11013delAA Italy Q3671Rfs*23 XPCB (Masciullo et al., 2012) 

11234_11235delTT Belgium L3745-fs*3746 XPCB (Baets et al., 2010) 

11242del688 Canada 3748fs3756* 
XPCB (Thiffault et al., 2013) 

11265_11266delAT Hungary I3755-fs*3762 XPCB (Baets et al., 2010) 

11361-2insT Japan R3788Sfs*3820  
(Shimazaki et al., 

2012) 

11375 C > T Tunisia R3792*  (Bouhlal et al., 2011) 
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11542_11544del Germany I3848del  (Synofzik et al., 2013) 

11598delC Italy G3866fs*3  (Masciullo et al., 2012) 

11624 G > A Germany R3875H  (Synofzik et al., 2013) 

11707 C > T Canada R3903*  (Guernsey et al., 2010) 

11829-32AGTT Turkey L3943-fs*3958  (Richter et al., 2004) 

11984_11986dupTG

T 
Germany L3995dup  (Synofzik et al., 2013) 

12160 C >T Netherlands Q4054*  (Vermeer et al., 2008) 

12220 G > C Tunisia A4074P  
(El Euch-Fayache et al., 

2003) 

12232 C > T Italy R4078  (Prodi et al., 2012) 

12428_12429insA Italy Y4143*  (Prodi et al., 2012) 

12603 C > A Germany Y4201*  (Synofzik et al., 2013) 

12847_12850delAG

AG 
Tunisia Q4284-fs*4305  (Bouhlal et al., 2009) 

12851_12854del 

AGAG 
Algeria E4284-fs*4307  

(H'mida-Ben Brahim et 

al., 2011) 

12973 C > T Japan R4325* J-domain 
(Yamamoto et al., 

2005) 

12982 delA Italy K4327fs*7 J-domain (Prodi et al., 2012) 

12991 C > T Italy R4331W J-domain (Prodi et al., 2012) 

12992 G > A Netherlands R4331Q J-domain (Vermeer et al., 2008) 

13027 G > A Belgium E4343K J-domain (Baets et al., 2010) 

13048 G >T  E4350 J-domain (Pyle et al., 2013) 
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13056 delT Germany F4352Lfs*11 J-domain (Synofzik et al., 2013) 

13132 C > T Italy R4378* J-domain (Anesi et al., 2011) 

13352 T > C Norway L4451P  (Tzoulis et al., 2013) 

13237 T > C UK Q4413*  
(Terracciano et al., 

2010) 

13389 G > T Tunisia D4464Y HEPN (Bouhlal et al., 2011) 

13523 A > C Belgium K4508T HEPN 
(Bouhlal et al., 2008, 

Baets et al., 2010) 

13538 G > A Germany S4513N HEPN (Synofzik et al., 2013) 

13645 A > G Turkey N4549D HEPN (Richter et al., 2004) 

Del 0.7Mb 

13q12.12 
   (Pyle et al., 2013) 

Table 1. 5 Over 80 mutations in SACS have been reported. The mutations include 

missense, deletions, insertions and nonsense mutations. 
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1.2.4 Sacsin 
 

Sacsin is a 520kDa multi-domain protein consisting of 4579 amino acids (Parfitt et al., 

2009). Bioinformatic analysis of sacsin revealed regions of protein homology to protein 

domains of known function. These regions are; an ubiquitin like domain, three Heat 

Shock Protein 90 (HSP90) like regions, a Xeroderma Pigmentosum C-Binding domain 

(XPCB), a J-domain, and a Higher Eukaryote and Prokaryote Nucleotide binding domain 

(HEPN) domain  (Figure 1. 1). As a multidomain protein, sacsin is likely to play several 

roles within the cell. Sacsin was described as a co-chaperone in 2009 due to its 

functional J domain and was postulated to be involved in protein homeostasis.   These 

domains will be discussed further in the following section. 
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Figure 1. 1 Sacsin is a multidomain protein 

 
 

 

1.2.4.1 UbL Domain  
 

The Ubiquitin like domain (UbL) domain is found at the extreme N-terminal end of 

sacsin. UbL domains are found in UbL proteins as well as in many proteins involved in 

signalling and in protein degradation (Madsen et al., 2007, Beasley et al., 2012). 

Moreover the UbL domain has been identified in proteins linked to cancer and 

neurodegeneration including SCA1 and Parkinson’s (Madsen et al., 2007, Beasley et al., 

2012).  These domains are capable of interacting with components of the proteasome, 

such as the 26S subunit (Hartmann-Petersen and Gordon, 2004, Madsen et al., 2007, 

Beasley et al., 2012). The UbL domain has been shown to act as a catalyst during the 

formation of UbL conjugates and plays a role in targeting ubiquitinated proteins for 

degradation as well as in some instances, facilitating binding of molecular chaperones 

(Hartmann-Petersen and Gordon, 2004).  The UbL domain of Rad23 and its human 

Domain Region ( amino acid) 

UbL 1-69 

HSP90 69-649 

HSP90 1388-1785 

HSP90 2509-2828 

XPCB 3660-3755 

J-Domain 492-4393 

HEPN 4460-4567 

Schematic representation of sacsin domains. Sacsin is a large protein of 

4579 amino acids with regions of similarity to known protein domains. 

Chaperone like activity has been reported in HSP90 like (blue) and J domain 

B) Schematic representation of SIRPTs and SIRPT subunits C) Domain and 

amino acid positions.  

C 
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homologs hHR23A/B was reported to interact with the S5a subunit of the 26S 

proteosome (Schauber et al., 1998, Kamionka and Feigon, 2004).  Interestingly the UbL 

sequence of sacsin was shown to be 43% similar to the UbL domain found in yeast DNA 

repair protein, Rad23 and is predicted to be functional as it interacted with the 

proteosome (Parfitt et al., 2009). In the 2009 paper from the Chapple group, the 20S 

proteosomal alpha subunit C8 was shown to co-immunoprecipitate with flag tagged N-

terminus of sacsin (residues 1-124). Mutation of conserved alanine residues in the UbL 

domain was demonstrated to reduce the co-immunoprecipitation of C8, hence 

confirming the interaction (Parfitt et al., 2009). 

 

1.2.4.2 HSP90 Like Domains 
 

Sacsin is described as having three large internal regions of sequence similarity which 

consist of a region homologous to the N-terminal domain of HSP90, but lack the C-

terminus of HSP90 (Anderson et al., 2010, Engert et al., 2000, Parfitt et al., 2009). 

Recently, these repeats have been shown to have more extensive regions of self 

homology and have been newly termed as sacsin repeat regions (SRR) (Figure 1. 

1A).SRR were found to be conserved in Eukaryotes, Bacteria and Archaea however 

these domains are not known to be conserved in common model organisms such as 

Escherichia coli (E. Coli) and Caenorhabditis elegans (C. elegans)(Anderson et al., 2010).   

Biochemical analysis showed that the first, most N terminal SRR (SRR1) was able to 

hydrolyze ATP similar to yeast HSP90 (Anderson et al., 2010). Interestingly, the ATPase 

activity of SRR1 was not inhibited by antibiotics geldanamycin or radiciol (Anderson et 

al., 2010).  These antibiotics bind to the ATP site of HSP90 consequently inhibiting 

chaperone activity (Grenert et al., 1997, Panaretou et al., 1998). While the non-

inhabitable nature of SRR1 is noteworthy, it is not uncommon.  Insensitivity of HSP90 

to geldanamycin and radiciol is also observed in C.elegans (Anderson et al., 2010, 

David et al., 2003). The authors attributed the insensitivity of SRR1 to it being too 

divergent from human HSP90. This is consistent with the observation that C.elegans, 

which shares 74% homology with human HSP90, also retained the ability to hydrolyze 
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ATP but like SRR1, lost sensitivity to these antibiotics (Anderson et al., 2010, Grenert et 

al., 1997).   

Mutations within the SRR1/HSP90 domain may inhibit ATPase activity preventing the 

hydrolysis of ATP (Anderson et al., 2010). This was demonstrated by the introduction 

of ARSACS causing mutation D168Y, replacing conserved aspartic acid with tyrosine. 

This substituted an acidic negatively charged amino acid with one that is non-acidic 

with a neutral charge. While the mutation seems to abrogate ATP hydrolysis ability, it 

did not result in misfolding or aggregation of the protein domain (Anderson et al., 

2010). 

Surprisingly, this region was also demonstrated to have chaperone activity by a slight 

but significantly enhanced efficiency for refolding of firefly luciferase (Fluc) (Anderson 

et al., 2011). The refolding of denatured Fluc has been widely used to measure 

chaperone activity. Fluc is translated and conforms to its monomemeric multidomain 

structure during translation(Conti et al., 1996). Refolding of Fluc without assistance 

from chaperones can occur however this will be slow and inefficient due to minimal 

activity (Zako et al., 2000). Although it would seem unlikely that sacsin would have a 

general chaperone function it is important not to rule out a private chaperone role.  

A moderate effect on yield of refolded Fluc, protection from the formation of 

aggregates and maintenance of protein conformation were shown to be functions of 

this N terminal region of sacsin. Moreover the assay used, showed that the sacsin 

region prevented Fluc aggregation and was capable of refolding Fluc independent of 

ATP (Anderson et al., 2011). The authors suggested that the moderate effects 

observed may be down to the fact that these assays can only interrogate the effect of 

a small fragment of sacsin. The author also suggests that any chaperone effects may be 

enhanced in vivo (Anderson et al., 2011).  

Most recently, the structure of these SRR regions have been further classified by 

Romano et al. They described three large (>1100 amino acids) homologous repeated 

regions that they have called Sacsin Internal repeats (SIRPTs) (Romano et al., 2013). 

These SIRPTs are much larger than the SSR previously described and are conserved in 
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vertebrates (Figure 1. 1B). The putative domains incorporated three further subunits, 

sub repeat (sr) sr1, sr2 and sr3 (Figure 1. 1B). Sr1 and sr2 corresponded to the SRRs 

identified by Anderson et al while sr3 was not previously reported. A further region, sr-

x was hypothesised in SIRPTs 1 and 3. This subunit was not previously identified in any 

other studies. 

Romano et al considered the functional significance of the SIRPTs domains by mapping 

the pathogenic ARSACS missense mutations. These missense mutations were 

seemingly concentrated in conserved regions of the SIRPTs while non pathogenic 

single nucleotide polymorphisms (SNPs) were found in the non-conserved regions 

(Romano et al., 2013). In addition, to further show that these domains were significant, 

the study attempted to correlate previously reported ARSACS mutations within the 

SIRPTs with clinical phenotype and severity. Clinical severity of the disease in the 

patients was quantified by the SPAX score rating method (Romano et al., 2013).  The 

SPAX score is based on the main clinical features of ARSACS (including spasticity, 

peripheral neuropathy and retinopathy) and combined the rating of Cerebellar Ataxia, 

Spastic Paraplegia and Charcot-Marie- Tooth Neuropathy score developed by Schmitz-

Hϋtsch et al, Schϋle et al and Murphy et al respectively (Murphy et al., 2011, Schüle et 

al., 2006, Schmitz-Hübsch et al., 2006). Compiling and scoring genotype and clinical 

data collected from patients in previous reports, Romano et al were able to show that 

patients with truncated sacsin had a higher Spastic Ataxia (SPAX) score than patients 

with missense mutations (Romano et al., 2013). The SPAX scores from patients with 

missense mutations in the SIRPTs varied, however it was noted that the scores on 

average decreased from sr1 to sr3 and sr-x (Romano et al., 2013). This implied that the 

lower scoring subunits sr3 and sr-x had a “minor” role in sacsin function and hence 

correlated to a less severe clinical phenotype (Romano et al., 2013). This study 

suggested that a phenotype/genotype correlation was evident in the patients 

presented and that the findings described support functionality of the novel domains. 

While informative, it is important to note that the patient subset used was quite small 

and that no biochemical analysis was performed. The patients within the subset 

however, were from different countries and included only one of the patients from the 
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SLSJ region (Engert et al., 2000). It is important to highlight that the majority were 

European patients without the common mutation. 

 

1.2.4.3 XPCB 
 

Xeroderma Pigmentosum C-Binding domain (XPCB) is a 75 residue protein-protein 

interaction domain. This domain consists of five amphipathic helices creating a mostly 

hydrophilic surface with a large hydrophobic patch (Kamionka and Feigon, 2004). The 

hydrophobic patch is the suggested region of protein interaction with the XPC protein 

(Kamionka and Feigon, 2004). This region is reportedly involved in nucleotide excision 

repair (NER) through the formation of XPC-hHR23A protein complex (Kamionka and 

Feigon, 2004, Sugasawa et al., 1998). The binding of XPC to the XPCB domain of 

hHR23A allows for the detection and subsequent repair of damaged DNA (Kamionka 

and Feigon, 2004, Sugasawa et al., 1998). It was suggested hHR23A/B function relies 

on the recruitment and interaction of S5a via its UbL, which in turn assist in the folding 

of XPC protein bound at the XPCB domain (Kamionka and Feigon, 2004).  Interestingly, 

the XPCB of sacsin shares 35% sequence similarity with the XPCB domain of hHR23A/B, 

the human homologs of yeast protein Rad23 (Kamionka and Feigon, 2004). Markedly, 

other than sacsin, this domain has limited sequence homology with other proteins 

outside of the Rad23 family (Kamionka and Feigon, 2004).  

Sacsin shares a potential interacting partner with Rad23, the protein UBE3A (Greer et 

al., 2010). UBE3A is an E3 ubiquitin ligase which is mutated in the neurodevelopmental 

disorder Angelman syndrome. Sacsin was found to be ubiquitinated in normal mice 

however levels of ubiquitinated sacsin were reduced in UBE3A knock-out mice, 

suggesting that sacsin is ubiquitinated by UBE3A via XPCB binding (Greer et al., 2010).   
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1.2.4.4 J-domain 
 

Sacsin was initially suggested to be involved in chaperone mediated protein folding 

due to the presence of HSP90 like domains and a J-domain at the C terminus end 

(Engert et al., 2000). Sacsin’s J-domain shares 60% homology to the HSP40/Hdj1 

including the conserved histidine-proline-aspartic acid (HPD) motif(Parfitt et al., 2009). 

The presence of this domain suggested that sacsin may function with a HSP70 partner 

(Kelley, 1999). In 2009 Parfitt et al used a bacterial complementation assay to 

demonstrate that the J-domain of sacsin is functional. In this assay, the E.Coli strain 

OD259 containing disrupted genes for DNAJ and CbpA was used. This disruption 

prevents the growth of the bacteria at temperatures of 37°C and above. These strains 

have however been shown to grow at 37°C the once the lack of a functional DNAJ is 

compensated by the DNAJ of Agrobacterium tumefaciens (Agt) or other Agt-chimeric 

proteins. In this instance the J-domain of Agt was substituted with the J-domain of 

sacsin (DNAJ-sacsin). The complementation assay demonstrated that the DNAJ-sacsin 

allowed for growth of the E.Coli OD259 strain at 37°C. Mutating the highly conserved 

HPD motif in the sacsin J-domain portion of this chimera abolished function, 

preventing the needed interaction with DNAK, an E.Coli HSP70 protein (Parfitt et al., 

2009). These analyses demonstrating J-domain function, as well as the structure of the 

DNAJ domain, supported the earlier suggestion of sacsin being a type III HSP40 protein 

and strengthened its alternative classification as DNAJC29(Parfitt et al., 2009, 

Kampinga et al., 2009, Cheetham and Caplan, 1998).  

 

1.2.4.5 HEPN 
 

A Higher Eukaryote and Prokaryote Nucleotide binding domain (HEPN) at the C-

terminal end of human sacsin has also been identified in zebrafish, pufferfish, mouse 

and rat sacsin orthologues. HEPN is widely distributed in eubacteria and archaea 

though restricted to animals in Eukaryotes. HEPN is postulated to have an important 

role in nucleotide binding, which is facilitated through the dimerisation of the domain 

and the formation of a complex with adjacent nucleotidyltransferase (Grynberg et al., 
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2003). Crystal structures and computed models from bacterial proteins TT1696 and the 

kanamycin nucleotidyltransferase indicate that HEPN domain proteins exist as dimers 

and the dimer formation of the HEPN domain contribute to the binding of substrate 

(Kozlov et al., 2011, Pedersen et al., 1995).  

Crystallization of sacsin’s HEPN domain (residues 4441-4579) demonstrated it also 

forms a dimer (Kozlov et al., 2011). The folding and stability of the sacsin HEPN dimer 

was examined by introduction of a mutation to the dimer interface. Bacterial 

expression of the HEPN dimer with ARSACS mutation N4549D, was shown to yield 

insoluble protein which was unable to undergo correct protein folding and form a 

dimer (Kozlov et al., 2011). The destabilisation was suggested to be caused by the loss 

of two polar contacts. This loss was a result of the introduction of a charge at the 

dimer interface on the replacement of asparagines with aspartic acid (Kozlov et al., 

2011).   

In addition, electrostatic potential measurements demonstrated that the dimer forms 

a large positively charged cavity found to bind GTP with a micromolar affinity of one 

GTP per HEPN dimer (Kozlov et al., 2011). Of interest, no GTPase activity was detected. 

It is important to note that while this dimer can bind to ATP, the affinity was ten-fold 

lower than that of GTP (Kozlov et al., 2011).  

These findings support the hypothesis that the HEPN domain may act as an energy 

store by “trapping” ATP required for ATP hydrolysis during chaperone function 

(Grynberg et al., 2003).  Although this has not been functionally demonstrated, it is 

postulated that an increase in the concentration of the nucleotides ATP or GTP trapped 

by the HEPN binding site will stimulate an exchange of nucleotides onto HSP70 (Kozlov 

et al., 2011). Further development of this role of the HEPN domain has been 

hypothesised to be important for sacsin function (Kozlov et al., 2011). 
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1.2.5 Sacsin Function  
 

1.2.5.1 Proteostasis 
 

Sacsin’s role in proteostasis was investigated by examining its recruitment to inclusions 

of mutant ataxin 1. Mutant ataxin 1 inclusions are a characteristic of autosomal 

dominant spinocerebellar ataxia, SCA1. They result from expanded polyglutamine 

tracts in the ataxin 1 protein leading to its misfolding and the formation of intranuclear 

inclusions (Klement et al., 1998, Irwin et al., 2005, Lieberman et al., 1999). It has been 

reported that these inclusions contain ataxin 1 interacting proteins, including 

molecular chaperones such as HSP70 and its co-chaperones as well as components of 

the UPS (Latonen, 2011, Parfitt et al., 2009, Jorgensen et al., 2007). It was also 

previously shown that inhibition of the proteosome led to fusion of ataxin 1 nuclear 

inclusions and an increase in size of the inclusion (Irwin et al., 2005). Moreover, type 1 

HSP40 protein DNAJ homolog subfamily A member 1 (HDJ-2/DNAJA1), was shown to 

localise to the nuclear inclusions and suppress ataxin 1 aggregation (Cummings et al., 

1998). Sacsin, a reported member of the ataxia interactomes, localised to ataxia 1 

intranuclear inclusions in cells expressing green fluorescent tagged ataxin 1 (Parfitt et 

al., 2009, Lim et al., 2006). Reducing levels of sacsin by siRNA, led to an increased 

incidence of cells with the PolyQ expanded ataxia 1 intranuclear inclusions and 

resulted in toxicity in neuroblastoma cell line SH-SY5Y, suggesting that loss of sacsin is 

detrimental to proteostasis (Parfitt et al., 2009).  

 

1.2.5.2 Mitochondrial Dynamics 
 

Sacsin is involved in the regulation of mitochondria dynamics. A loss of sacsin alters the 

balance between mitochondrial fission and fusion, resulting in a more interconnected 

mitochondrial network (Girard et al., 2012).  This was demonstrated in SH-SY5Y cells 

where a reduction in the level of sacsin protein led to an increase in mitochondrial 

volume. Moreover, fluorescence recovery after photobleaching (FRAP) showed a 

quicker rate of fluorescence recovery in SH-SY5Y cells co-transfected with green 
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fluorescent protein (GFP) tagged mitochondrial marker Mito-GFP and SACS siRNA than 

with control cells transfected with scrambled siRNA and Mito-GFP (Girard et al., 2012). 

The increase in GFP recovery of a bleached section of the mitochondrial network in the 

knockdown cells indicating an increase in GFP “mobility” is indicative of a more 

interconnected mitochondrial network. The mitochondrial morphology displayed in 

the SACS knockdown cells was similar to that seen in other reports where fission has 

been disrupted due to loss of fission proteins like Drp1.  

In addition, the defective mitochondrial morphology was also observed in dermal 

fibroblasts of ARSACS patients. A hyperfused mitochondrial phenotype was described 

in dermal fibroblasts from patients carrying the major founder mutation in Quebec, 

8844delT (R2502X). This phenotype is again indicative of dysfunctional mitochondrial 

dynamics and has been observed in cells where Drp1 function has been disrupted 

(Girard et al., 2012, Lee et al., 2004). 

Sacsin knockdown cells were also shown to have impaired mitochondrial function. 

Mitochondrial membrane potential sensitive dye tetramethylrhodamine methyl ester 

(TMRM) was used to analyse mitochondrial function. A moderate decrease in 

fluorescence was observed in sacsin knockdown cells indicating a decrease in 

mitochondrial membrane potential. In addition to this, sacsin knockdown cells labelled 

with membrane potential sensitive MitoTracker and treated with mitochondrial 

uncoupler cyanide m-chlorophenyl hydrazone (CCCP), were observed to have a slower 

recovery of fluorescence than the scrambled controls. This difference is suggestive of a 

problem with either proton pumping by the respiratory chain or increased proton 

leakage (Girard et al., 2012). 

 As well as mitochondrial dynamics, a loss of sacsin affects the cellular distribution of 

mitochondria in neurons. Sacsin hippocampal neurons were treated with SACS shRNA 

lentivirus (Girard et al., 2012). An altered distribution of mitochondria was observed in 

sacsin knockdown neurons with mitochondria clustered in the soma and proximal 

dendrites. It was hypothesised that this may result in the loss of normal ATP levels 

along the length of dendrites and may contribute toward defects in dendritic 

development  (Girard et al., 2012). 
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1.2.5.3 ARSACS Mouse Model 
 

A mouse model for ARSACS has been generated to further investigate disease 

pathology. The null mice (SACS -/-) were generated by replacing  the majority of exon 9 

of SACS with IRES-βGal cassette and a loss of sacsin message was confirmed by RT-PCR 

in the offspring of the founders (Girard et al., 2012). In investigating the 

neurodegenerative and neurodevelopment characteristics of ARSACS they found that 

at birth the SACS-/- mice had no observable difference in gross brain morphology when 

compared to their wild-type littermates however there was a significant decrease in 

the number of Purkinje cells in the cerebellum at 120 and 200 days. This age 

dependant loss of Purkinje cells similarly reflected the pathology of ARSACS patients. 

This study also described the thick and highly disordered dendritic fields observed in 

120day SACS-/- mice. This added to the hypothesis that the disruption of dendrite 

morphology is due to the impaired delivery of mitochondria to the dendrites due to a 

loss of sacsin function (Girard et al., 2012).  

 

1.3 Mitochondria Biogenesis, Dynamics and Disease 
 

Mitochondria function as suppliers of cellular energy, producing the majority of ATP 

needed for cellular processes via oxidative respiration/oxidative phosphorylation 

(OXPHOS). As well as this role, they are important in the regulation of apoptosis and 

the cell cycle along with providing a counteractive response to harmful by-products of 

OXPHOS. Oxidative respiration produces water and CO2 as by-products, plus potentially 

damaging reactive oxygen species (ROS). The rapid clearance of the ROS by antioxidant 

enzymes regulated by the mitochondria is required to prevent damage to the 

mitochondria and ultimately cellular damage and death (Alfadda and Sallam, 2012, 

Brieger et al., 2012, Broadley and Hartl, 2008). Furthermore, mitochondria are closely 

maintained and regulated to ensure optimal function. This maintenance of 

mitochondrial homeostasis and abundance involves mitochondrial dynamics and 

mitochondrial biogenesis (Attardi and Schatz, 1988). 
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Notably, mitochondrial defects are a feature of the pathogenesis of a range of diseases 

including age related degenerative diseases, Parkinson’s and Alzheimer’s disease. 

Mechanisms include mutations in mitochondrial DNA, mitochondrial dysfunction via 

oxidative stress, iron overload or deregulation of mitochondrial dynamics.  The brain 

and central nervous system have high demands for energy and appear to be 

particularly vulnerable to changes in mitochondrial function. 

 

1.3.1 Mitochondrial Dynamics 
 

Mitochondria are highly dynamic structures that continuously undergo fission and 

fusion events. Mitochondrial dynamics controls essential processes involved in 

biogenesis, cell division, distribution of mitochondria within cells and clearance of 

damaged mitochondria by the process of autophagy (mitophagy). Fusion can protect 

mitochondrial function and the cell against high levels of mtDNA mutations (Chen et 

al., 2010). While fission is important in mitochondrial disposal and ensuring energy 

requirements are met at sites away from the cell body – this is crucial in neurons 

where dendritic projections and synapses can be remote from the cell body (Cho et al., 

2013). The process and regulation of mitochondrial dynamics is not fully understood 

however, recent advances have been made in the identification of proteins involved in 

this process. 

 

1.3.1.1 Mitochondrial Fusion  

 

In mammalian cells, fusion is mediated by Mitofusin 1 (Mfn1), Mitofusin 2 and Optic 

atrophy 1 (OPA1). Mfn1, Mfn2 and OPA1 are large dynamin-family GTPases which 

coordinate mitochondrial fusion and are reliant on GTPase activity (Cerveny et al., 

2007). 
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1.3.1.1.1 Mitofusin 1 and 2 
 

Mfn1 and Mfn2 are localised to the outer mitochondrial membrane (OMM) of the 

mitochondria and directly promote fusion via trans-interaction (Figure 1. 3) (Koshiba et 

al., 2004). Specifically, these proteins were found to form homotypic and heterotypic 

oligomers in mouse embryonic fibroblasts (MEF) and initiate fusion via the 

oligomerisation of Mfn resulting in tethering of two adjacent mitochondria (Chen et 

al., 2003b, Koshiba et al., 2004).  

Mfn1 and 2 are essential for embryogenesis. Reports show that Mfn1 and Mfn2 

knockout and double knockout mice were not viable (Chen et al., 2003b). In the single 

knockout model, murine embryos died midgestation. This was postulated, in part, to 

be the result of underdeveloped placenta, leading to placental insufficiency (Chen et 

al., 2003b). The double knockout embryos died earlier and showed severe 

developmental delay (Chen et al., 2003b). 

Reduced levels of Mfn1/2 were shown to dramatically increase mitochondrial 

fragmentation, due to imbalance of fusion and fission (Chen et al., 2003b). It was 

however reported that this increase in fission had no effect on total level of mtDNA 

(Chen et al., 2003b). 

 

1.3.1.1.2 OPA1 
 

OPA1 (optic atrophy 1) is found on the inner membrane (IMM) of the mitochondria 

and mediates fusion and cristae remodelling of the inner membrane (Delettre et al., 

2000). Importation of OPA1 to the IMM is reliant on its mitochondria localisation 

sequence (MLS), found at the N terminus of the protein (Cho et al., 2010). 

Like Mfns, OPA1 forms higher order structures during mitochondrial fusion which 

comes about through the tetramerization of OPA1 (Figure 1. 3) (Olichon et al., 2003). 

Its function was demonstrated to be dependent on Mfn1 but not Mfn2 (Cho et al., 

2010, Cipolat et al., 2004). Mitochondria in Mfn2 knockdown MEFs were able to 

undergo mitochondrial fusion upon the overexpression of OPA1 (Cipolat et al., 2004). 
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Contrastingly, mitochondria in Mfn1 knockdown MEF cells did not respond to OPA1 

overexpression and remained globular and fragmented in appearance (Cipolat et al., 

2004).  

Similarly to Mfn1/2, reduced levels of OPA1 resulted in an increase of small 

fragmented mitochondria (Olichon et al., 2003). In addition to this, the silencing of 

OPA1 in HeLa cells was shown to induce the apoptotic cascade and cause 

malformation of mitochondrial cristae (Olichon et al., 2003). 

Mutations in these fusion proteins are associated with a number of diseases such as 

Charcot- Marie- Tooth disease type 2A (CMT2A) caused by mutations in Mfn2 and 

autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1 (Eiberg et al., 

1994). 
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1.3.1.2 Mitochondrial Fission 

1.3.1.2.1 Dynamin Related Protein 1 
 

Mitochondrial fission is regulated by dynamin related protein-1 (Drp1). Drp1 is a large 

GTPase protein that was suggested, like dynamin, to have a role in vesicle formation 

and or endocytosis due to its structural similarity to dynamin (Smirnova et al., 2001, 

Praefcke and McMahon, 2004).   

Structurally, Dynamin and Drp1 are very similar. Both have a GTPase, Middle (MID) and 

GTPase effector domain (GED) (Figure 1. 2) (Faelber et al., 2011, Ford et al., 2011, 

Strack et al., 2012). 

 

 

Figure 1. 2 Dynamin and Drp1 are structurally similar. 

A-B) Schematic domain comparison of Drp1 and Dynamin domains. Drp1 and dynamin 

share GTPase (yellow), MID (red) and GED (green) domains. Drp1 however has a 

Variable Domain (VD) which is capable of modulating mitochondrial fission 
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The structures of the two proteins differ in the linker domain which separates the MID 

and GED domains. In Dynamin, this linker is a pleckstrin homology domain (PH) that 

mediates phosphoinositol lipid B binding (Strack et al., 2012, Figueroa-Romero et al., 

2009, Ford et al., 2011). In Drp1 however this domain is replaced by a variable domain 

between amino acid residues 80-130 of the protein. The VD has eight SUMOylation 

sites that serve to regulate fission. Importantly, the VD is described as being an auto-

inhibitory domain as it is capable of modulating fission. Strack et al demonstrated this 

to be the case as loss of the VD domain caused excessive fission brought about by 

increased localisation of the mutated form of Drp1 to the mitochondria (Figueroa-

Romero et al., 2009, Strack et al., 2012, Chang and Blackstone, 2010b).  

Drp-1 is an ~80kDa protein found as dimers/tetramers in the cytosol (Smirnova et al., 

1998, Smirnova et al., 2001, Bhar et al., 2006). Drp1 shuttles between the cytosol and 

outer mitochondrial membrane (OMM) at potential sites of fission (Smirnova et al., 

2001). Fission occurs through the oligermisation of Drp1 protein that forms spiral like 

structures at the OMM.  GTP hydrolysis causes constriction of these oligomers and 

subsequent scission of the mitochondria (Ingerman et al., 2005, Mears et al., 2011, 

Smirnova et al., 2001) (Figure 1. 3).  
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Figure 1. 3 Schematic representation of mitochondrial dynamics. 

Mitochondria go through cycles of division and fusion in the cell. Mitochondrial 

dynamics are controlled by a group of GTPases which function in directing fission or 

fusion when required.  Fusion is mediated by outer mitochondrial membrane proteins 

Mfn1 (yellow), Mfn2 (blue) and inner mitochondrial protein OPA1 (purple). For fission 

to occur, Drp1 (green) forms oligomeric spirals around the mitochondria. Fission is a 

result of scission caused by GTP hydrolysis. 
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Regulation of Drp1 recruitment to prospective sites of fission is not clearly understood.  

In yeast, Fis1p (hFis orthologue) recruits Dnm1p (Drp1 orthologue) to the 

mitochondrial outer membrane via Mdv1p or Caf4p adapter proteins (Mozdy et al., 

2000, Tieu et al., 2002). This mechanism of recruitment is not thought to occur in 

higher organisms as there are no orthologues of Mdv1p or Caf4p in vertebrates. The 

role of hFis in Drp1 recruitment is controversial. Alternating levels of hFis has been 

reported to have no effect on Drp1 or on the levels of mitochondrial associated Drp1 

(Lee et al., 2004, Suzuki et al., 2003). This along with the lack of adaptor proteins 

suggests that there are other factors involved in vertebrate mitochondrial fission 

regulation. To date five proteins, mitochondrial fission factor (MFF), MiD49, MiD51, 

MARCH-5 and endothelin, have been implicated in Drp1 recruitment in mammalian 

cells (Palmer et al., 2011b, Karbowski et al., 2004, Karbowski et al., 2007b).  

Post-translational modification of Drp1 has a vital role in the regulation of Drp1 activity 

and function. Drp1 undergoes phosphorylation, SUMOylation and s-nitrosylation 

(Taguchi et al., 2007, Karbowski et al., 2002, Karbowski et al., 2007b, Wasiak et al., 

2007). Phosphorylation of Drp1 can occur on either of two serine residues, each having 

separate effects. 

Phosphorylation of Drp1 at serine 637 by calcium calmodulin dependant protein kinase 

1 increases Drp1 translocation to the mitochondria (Han et al., 2008), whilst 

phosphorylation at the same residue by c-AMP dependant protein kinase inhibits Drp1 

(Wilson et al., 2012). Notably Drp1 serine residue 637 is found on the border of the VD 

and GED. Phosphorylation of this residue is capable of disrupting fission by disrupting 

Drp1 assembly (Strack et al., 2012). Drp1 is known to be ubiquitinated by March V and 

Parkin E3 ligases. Moreover it has been postulated that regulation of fission can be 

initiated by ubiquitination mediated by March V (Karbowski et al., 2007a, Park et al., 

2010).  

Parkin ubiquitinates Drp1, targeting it for degradation by the proteosome (Gegg et al., 

2010, Lutz et al., 2009, Van Laar et al., 2011).  
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Finally Drp1 is modified by small ubiquitin like modifier (SUMO). SUMOylation of Drp1 

is thought to increase the recruitment of Drp1 to the mitochondria, but decrease the 

dissociation of Drp1 oligomers hence affecting Drp1 cycling and mitochondrial shape 

(Wasiak et al., 2007).  

 

1.3.1.2.2 Mitochondrial Fission Accessory Proteins 
 

MiD49 and MiD51 (MIEF1) have been recently described as mitochondrial fission 

proteins. At 49 and 51kDa respectively, these proteins are on the mitochondrial 

surface and were found to recruit Drp1. At low levels of expression, MiD49/51 form 

rings around the mitochondria in a similar pattern to the Drp1 spirals (Palmer et al., 

2011a, Zhao et al., 2011).   

Low level overexpression of MiD49/51 reportedly led to induced fission (Palmer et al., 

2011b). While, Zhao et al and later Palmer et al demonstrate that greater levels of 

overexpression of MiD49/51 acts in a dominant negative manner by sequestering 

inactive Drp1 to the mitochondria, blocking fission and consequently promoting fusion 

by inducing Mfn1 and Mfn2 (Zhao et al., 2011, (Palmer et al., 2013).  

Reduced levels of MiD49/51 brought about by siRNA, led to a decrease in Drp1 

recruitment and an increase in mitochondrial fusion (Palmer et al., 2011a). Conversely, 

Zhao et al demonstrates that a knockdown of these proteins ultimately lead to a more 

fragmented mitochondria. It is also suggested that MiD49/51 can promote fusion of 

the mitochondria independent of mitofusins (Zhao et al., 2011).  

MFF is localised to the outer mitochondrial membrane (OMM) and recruits Drp1 

independent of Fis 1 (Otera et al., 2010, Gandre-Babbe and van der Bliek, 2008). Loss 

of MFF induced elongation of mitochondria while overexpression caused 

mitochondrial fission (Gandre-Babbe and van der Bliek, 2008, Otera et al., 2010). The 

interaction between MFF and Drp1 appeared to be transient, as it was only observable 

after chemical cross-linking (Gandre-Babbe and van der Bliek, 2008). 
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Briefly, Endothelin B1, assist the remodelling of the mitochondrial membrane during 

apoptosis (Karbowski et al., 2004). GDAP1 (ganglioside – induced differentiation 

associated protein) is located on the OMM. Loss of GDAP1 resulted in increased 

elongation of the mitochondria. Likewise loss of MTP18 (mitochondrial protein 18kDa) 

also led to increased elongation of the mitochondria upon treatment with RNAi, whilst 

overexpression of MTP caused Drp1 mediated fragmentation (Tondera et al., 2005).  

The ER and cytoskeleton also contribute to the mitochondrial fission process. This is 

discussed in Chapter 5 of this thesis. 

 

1.3.2 Mitochondrial Biogenesis 
 

The formation of new mitochondria is regulated in response to cell cycle, energy 

requirements and cellular health as well as environmental stimuli by numerous 

transcription factors and signalling pathways (Attardi and Schatz, 1988, Moyes and 

Hood, 2003). Several molecular events ensure the succinct co-ordination of nuclear 

and mitochondrial genes that encode essential mitochondrial proteins and maintain 

the mitochondrial membrane (Figure 1. 4). 

The key regulators controlling mitochondrial biogenesis are nuclear respiratory factor 

1 (Nrf1) and nuclear respiratory factor 2 (Nrf2), mitochondrial transcription factor A 

(TFAM) and peroxisome proliferator activator receptor gamma co activator 1 α 

(PGC1α) (Wu et al., 1999, Evans and Scarpulla, 1990, Virbasius and Scarpulla, 1994). 

NRF1 and NRF2 regulate the expression of nuclear encoded mitochondrial protein 

whilst TFAM regulates and drives replication of mtDNA as well as transcription of 

mitochondrial proteins (Figure 1. 4). These three factors are regulated by PGC1α, 

which, once stimulated, coordinates the expression of genes involved in respiratory 

complexes by inducing the expression of Nrf1 and Nrf2 (Wu et al., 1999, Puigserver et 

al., 2001, Puigserver and Spiegelman, 2003) (Figure 1. 4).  
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Figure 1. 4 Schematic representation of mitochondrial biogenesis. 

The majority of mitochondrial proteins are encoded by nuclear genes while roughly 5% 

are encoded by mtDNA. Proteins synthesised in the cytosol as well as tRNA are then 

imported to the mitochondria where they can be utilised. 

 

The biosynthesis of the majority of mitochondrial proteins also depends on the 

importation of proteins from the cytosol (Figure 1. 4).  Proteins encoded by nuclear 

genes are synthesised in the cytoplasmic compartment prior to translocation to where 

they are needed in the membrane or matrix of the mitochondria. For instance, the 

function of mitochondrial redox carrier, complex 1, relies on importation of the 

NDUFS4 subunit from the cytoplasm (De Rasmo et al., 2008, Lee and Wei, 2005). 

mtDNA only encodes a small subset of proteins along with two rRNAs and twenty two 

tRNAs, therefore function of the enzyme complexes involved in respiration depend on 

correct assembly, coordinated by the interaction between products of mitochondrial 

genome and products of the nuclear genomes (Poyton and McEwen, 1996, Lee and 

Wei, 2005) (Figure 1. 4).  

Mitochondrial disorders are caused by dysfunctional mitochondria. More specifically, 

they arise due to dysfunction of the respiratory chain, which can be a result of 

mutations in either nuclear DNA or mtDNA. Due to this, genetic classifications of these 
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diseases are known to be complex. Defects or rearrangements of mtDNA can either be 

heteroplasmic or homoplasmic and can involve tRNA, rRNA and mitochondrial proteins 

(Rahman and Leonard, 1997, DiMauro, 2004). Nuclear DNA encodes the majority of 

the respiratory complex and mitochondrial membrane proteins (Dimauro and 

Davidzon, 2005). Therefore, mutations in the protein’s associated genes can give rise 

to mutated respiratory enzymes.  In addition to this, mutations in the nuclear DNA can 

also lead to reduced transportation of mitochondrial proteins into the mitochondria 

and transcription of essential mitochondrial proteins (DiMauro, 2004, Lu and Claypool, 

2015). 

There is a diverse array of clinical features associated with mitochondrial disorders. 

Features can include; liver failure, hypoparathyrodism, hypogonadism, ataxia, 

peripheral neuropathy, dystonia, optic atrophy and cardiomyopathy, to name a few 

(Rahman and Leonard, 1997). Mitochondrial disorders may present at any age and is 

estimated to have a prevalence of 1:5000 (Thorburn, 2004, Kanabus et al., 2014). The 

heterogeneity of the disorder makes it complicated to treat, manage and diagnose 

affected individuals however advances in cell and animal models hold promise for 

future therapeutic strategies.  
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1.3.3 Mitophagy 
 

The degradation of mitochondria is essential for the maintenance of healthy 

mitochondria as selective degradation of defective mitochondria can reduce the build 

up of potentially damaging toxins and maintain the efficiency of cellular respiration 

(Twig et al., 2008a, Kim et al., 2007). 

The selective autophagy of mitochondria is via autophagic sequestration and 

subsequent hydrolytic degradation by lysosomes (Kim et al., 2007, Ding and Yin, 2012). 

Damage to the mitochondrion or induced mitochondrial permeability, leads to the 

depolarisation of the mitochondrion. This in turn results in the formation of 

autophagosomes followed by the fusing of autolysosomes and the degradation of the 

damaged mitochondrion (Kim et al., 2007)  

Mitophagy is dependent on the mitochondrial fission. OPA1 overexpression, the 

reduction of Fis1 levels or overexpression of the dominant negative form of Drp1  have 

all been demonstrated to lead to reduced levels of mitophagy (Twig et al., 2008a). 

Interestingly, proteins such as Pten induced kinase 1 and parkin, which have been 

implicated in the neurodegenerative disease Parkinson’s have been shown to be 

involved in the regulation of both mitochondrial dynamics and mitophagy (Vives-Bauza 

et al., 2010).  

 

1.3.4 Mitochondrial Dysfunction in Neurodegenerative Disorders 
 

The health of mitochondria is vital to the function and development of neurons, with 

dysfunction in many cases resulting in cell death. The role of mitochondrial dysfunction 

in neurodegenerative disorders and in particular cerebellar ataxias is becoming more 

apparent.  
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1.3.4.1 Mitochondrial Dysfunction in Ataxia  
 

Mitochondrial dysfunction has been observed in several cerebellar ataxias. Fibroblasts 

from ataxia telangiectasia patients as well as thymocytes from ATM null mice have 

been demonstrated to have an imbalance of mitochondrial homeostasis resulting in 

dysregulation of mitochondria DNA (mtDNA) content (Eaton et al., 2007, Valentin-Vega 

et al., 2012). Inadequate removal of damaged mitochondria (mitophagy) causes an 

increase of defective mitochondria resulting in elevated levels of reactive oxygen 

species (ROS) in AT (Valentin-Vega et al., 2012).  

Machado-Joseph disease models demonstrate reduced function of mitochondria due 

to decreased complex II activity (Laço et al., 2012). In addition, a decrease in the 

activity of antioxidant enzymes glutathione reductase, superoxide dismutase and 

catalase, was measured in SK-N-SH and COS-7 cells which expressed mutant ataxin-3. 

The authors suggested that these results contributed to the decrease in mtDNA copy 

number in SK-N-SH expressing mutant ataxin-3 and in the leukocytes of Machado-

Joseph disease patients (Yu et al., 2009).  

Cerebellar ataxias can be a result of mutations in mitochondrial proteins. 

Mitochondrial dysfunction in FRDA is predominantly due to mitochondrial iron 

overload caused by Fe-S disruption (Bulteau et al., 2004, Guillon et al., 2009, Rötig et 

al., 1997a, Campuzano et al., 1996, Babcock et al., 1997, Mühlenhoff et al., 2002). FXN, 

the causative FRDA gene, encodes 23kDa mitochondrial protein Frataxin. This protein 

is involved in the biogenesis of iron-sulphide (Fe-S) cluster (Rötig et al., 1997b, Lill et 

al., 2012), (Mühlenhoff et al., 2002). Fe-S clusters are inorganic co-factors, essential for 

many critical cellular processes. Iron metabolism, respiration and DNA repair are 

facilitated by the enabling of enzymatic complexes by Fe-S clusters.  FXN deficiency 

therefore results in a disruption of many important pathways within the cell. Moreover 

Fe-S cluster deficiency leads to an impairment of mitochondrial respiratory chain, iron 

dysregulation and an increase in oxidative stress (Lodi et al., 1999, Schulz et al., 2000). 

As well as this, in 2000 Ristow et al demonstrated that FXN may also be important in 

oxidative phosphorylation and regulation of mitochondrial membrane potential 

(Ristow et al., 2000).  
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Mitochondrial dysfunction has also been observed in autosomal dominant ataxia 

SCA12. SCA12 is a late onset ataxia characterised by action tremor in the upper 

extremities in the fourth decade. It is associated with mutations in the gene PPP2R2B, 

encoding the protein phosphatase 2A (PP2A) Bβ regulatory subunit. Importantly this 

serine/threonine phosphatase has been shown to be involved in mitochondria 

mediated apoptosis (Dagda et al., 2003). CAG expansion within exon 7 of PPP2R2B, or 

its promoter region both account for SCA12 (Holmes et al., 1999, O'Hearn et al., 2012). 

The pathogenic expansions are usually 51 or more repeats. The pathogenic mechanism 

of the mutations has not been fully determined however dysregulation of the Bβ 

expression appears to contribute to the disorder.  

Products of PPP2R2B are neuron specific regulators of PP2A and are essentially 

expressed during neurodevelopment (Dagda et al., 2003).  Drosophila models of SCA12 

developed by the overexpression of PPP2R2B drosophila homolog tws showed an 

increase in neurodegeneration, elevated levels of ROS, as well as increase in 

cytochrome c and caspase activity. Moreover, splice variants of Bβ regulate the 

translocation of PP2A to the mitochondria, where it has a role in regulating 

mitochondrial dynamics (Merrill et al., 2012, Dagda et al., 2003).   

 

1.3.4.2 Mitochondrial Dysfunction in Alzheimer’s Disease 
 

Mitochondrial dysfunction also contributes toward age related neuronal disorders. In 

Alzheimer’s disease (AD) elevated levels of ROS as well as signs of oxidative damage 

were identified in the brain. This was in the early stages of AD, preceding Aβ deposits 

(Rötig et al., 1997b). Aβ deposits induce mitochondrial dysfunction by inhibiting 

essential respiratory enzymes such as pyruvate dehydrogenase and cytochrome 

oxidase (Chen and Yan, 2007, Crouch et al., 2005, Casley et al., 2002). The oxidative 

stress caused by Aβ deposits induces fragmentation and abnormal distribution of 

mitochondria (Rui et al., 2006). Sustained elevated levels of ROS can also affect 

regulation of genes involved in maintaining mitochondrial biogenesis therefore leading 
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to irregular mtDNA replication, mitochondrial mass and expression of genes encoding 

respiratory complexes (Lee and Wei, 2005).  

Over expression of mutant tau caused increased elongation of mitochondria and a 

decrease in mitochondrial localisation of Drp1 in Drosophila and Murine models of 

tauopathies (DuBoff et al., 2012).  Moreover the altered mitochondrial dynamics led to 

enhanced neurotoxicity in these models. This was thought to contribute toward 

neurodegeneration observed in AD, although more evidence is needed to confirm that 

hypothesis. The study postulates that the blocking of the mitochondrial localisation of 

Drp1 is downstream of tau’s ability to stabilise actin. Therefore excessive actin 

stabilisation alters mitochondrial fission through the dysregulation of Drp1 (DuBoff et 

al., 2012).  

Tau models have been shown to have increased levels of ROS and accumulative 

oxidative stress which may plausibly lead to neurodegeneration following DNA damage 

and activation of apoptosis (David et al., 2005, Dias-Santagata et al., 2007). DuBoff et 

al demonstrated that increasing Drp1 and reducing MARF (fly homolog of Mfn) was 

capable of reducing superoxide and rescuing the elongated mitochondrial phenotype 

(DuBoff et al., 2012).  

 

1.3.4.3 Mitochondrial Dysfunction in Parkinson’s Disease 
 

Damage caused by increased oxidative stress is also a feature of Parkinson’s disease. 

Interestingly many genes implicated in Parkinson’s disease have also been associated 

in the regulation of mitochondrial shape. Of interest both PINK1 (PTEN induced kinase 

1) and Parkin are involved in the regulation of the balance between fusion and fission 

and mutations in these genes cause PD. Studies have demonstrated that loss of PINK1 

and Parkin led to mitochondrial fragmentation and increased mitophagy (Exner et al., 

2007, Lutz et al., 2009). Pink 1 and parkin are reportedly involved in mitochondrial 

homeostasis through a quality control pathway. Parkin has been demonstrated to 

translocate to depolarised mitochondria, where it ubiquitinylates proteins on the 

OMM causing a cascade which goes on to induce mitophagy. Pink 1 also accumulates 
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in damaged mitochondria and has been suggested to be an upstream regulator of 

parkin function, in which the recruitment of parkin is reliant on the kinase activity of 

PINK 1 (Vives-Bauza et al., 2010, Youle and Narendra, 2011, Narendra et al., 2010).  

Mitochondrial protein complex 1 (NADH:ubiquinone oxidoreductase) is the first 

enzyme in the mitochondrial respiratory chain. It is involved in extracting energy from 

NADH through the translocation of protons across the inner mitochondrial membrane. 

Mutations in PINK1 and Parkin have been demonstrated to lead to an impairment of 

complex 1 activity resulting in decreased mitochondrial function (Morais et al., 2009, 

Mortiboys et al., 2008). Moreover, complex 1 inhibitors result in Parkinson’s disease 

like phenotypes in cells and animal and has been shown to lead to neurodegeneration 

in mice (Perier et al., 2007, Duchen, 2004a). 

 

1.3.4.4 Mitochondrial Dysfunction in Huntington’s Disease 
 

A decrease in ATP levels and increased cell death was observed in Huntington’s 

disease. Increased levels of Huntington disease associated protein huntingtin (htt), 

induced mitochondrial fragmentation. Overexpression of Mfn2 was shown to rescue 

these affects (Nakamura and Lipton, 2011).  In addition, htt is thought to function in 

mitochondrial trafficking. Htt and the motor protein Dynactin, are bound through the 

mitochondria adapter protein Milton (Stowers et al., 2002, Trushina et al., 2004). 

Milton is required for the transportation of mitochondria along the axon to the 

synapse. In addition, Milton was also identified as a binding partner of PINK1 

(Weihofen et al., 2009). 

Further understanding on the link between morphology, dysfunction and disease is 

important for the advancement of research into neurodegeneration. 
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1.4 Aims and Objectives 
 

This thesis aims to explore sacsin’s role in the regulation of mitochondrial morphology 

and dynamics.  

The mitochondrial morphology of neuroblastoma derived SH-SY5Y cells with reduced 

levels of sacsin, as well as the mitochondrial morphology of ARSACS patient fibroblasts 

carrying the Quebec homozygous SACS mutation 8844delT (R2502X), were respectively 

described by Girard et al as being more interconnected and having a hyperfused 

network (Girard et al., 2012).  

In this thesis, chapter 3 aimed to further define the morphometric changes that occur 

to the mitochondrial networks of cells lacking sacsin. This chapter goes on to examine 

whether this morphology was also a phenotype in non-Quebec ARSACS patients 

harbouring different SACS mutations. To complete this objective, the mitochondrial 

morphology in fibroblasts from 4 Dutch ARSACS patients with compound heterozygous 

mutations and 4 controls were quantitatively and qualitatively compared using assays 

developed in the laboratory. These were based on confocal microscopy and image 

analyses. The morphometric analyses of the mitochondrial networks of cell lines from 

these patients are discussed. 

The increased interconnectivity of the mitochondrial network observed in the 

fibroblasts of ARSACS patients, and previously in knockdown cells, were hypothesised 

to be the result of a dysregulation of mitochondrial dynamics (Girard et al., 2012). This 

phenotype along with the previously reported interaction of sacsin and Drp1 led to the 

postulation that sacsin was involved in mitochondrial fission. Studies have shown 

similar phenotypes in cells with reduced mitochondrial fission accessory proteins like 

Mff and MiD49/51 (Losón et al., 2013, Palmer et al., 2013, Gandre-Babbe and van der 

Bliek, 2008). Those studies demonstrated that the accessory proteins not only 

interacted with Drp1 but were also involved in Drp1 recruitment to the mitochondria 

(Losón et al., 2013, Palmer et al., 2013).  
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Leading on from the work described in Chapter 3, Chapter 4 is based on sacsin’s 

potential role in fission and tests the hypothesis that it is involved in the recruitment of 

Drp1. To explore if Drp1 recruitment was impaired in cells lacking functional sacsin, the 

localisation of Drp1 in sacsin knockdown fibroblasts along with ARSACS patient 

fibroblasts was measured by two different means. These methods quantitatively 

assessed and allowed for the comparison of Drp1 localised to the mitochondria in 

sacsin knockdown, patient and control fibroblasts. In the first instance, the incidence 

of Drp1 foci associated with the mitochondria, per mitochondrial length in sacsin 

knockdown and patient fibroblasts was quantified by a technique developed for this 

thesis. The measurements were performed under basal conditions and again after 

mitochondrial fission had been induced by treatment with a mitochondrial uncoupler. 

Following on from this, the intensity and size of Drp1 foci was examined using confocal 

microscopy and image analysis software as a means of further assessing Drp1 

dysfunction in ARSACS. In particular, we hypothesised that changes in the size of Drp1 

foci may reflect problems with the formation of higher order Drp1 structures.  

Chapter 5 further expounds on sacsin’s role in Drp1 recruitment and consequent role 

in fission. The endoplasmic reticulum (ER) and the mitochondria share contact sites via 

mitochondria associated membrane (MAM), which allow for the uptake of ER released, 

Ca2+ into the mitochondria. Most interestingly, these contact sites have been shown to 

mark potential sites of mitochondrial fission and colocalise with mitochondria-

associated Drp1 foci, implying that there is an involvement of the ER in mitochondrial 

fission (Friedman et al., 2011). Furthermore the ER is postulated to be important for 

the initiation of fission by constricting the mitochondria prior to the recruitment and 

oligomerisation of Drp1 (Schuldt, 2011). Changes in the size, tethering and number of 

contacts have been observed in neurodegenerative disease and in cells where 

essential mitochondrial dynamic regulatory proteins have been knocked down (de 

Brito and Scorrano, 2008, Area-Gomez et al., 2012). This chapter explores the 

hypothesis that sacsin’s role in fission is through the mediation of Drp1 recruitment 

and not through an upstream event. This was examined by quantifying MAMs in sacsin 
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knockdown and patient fibroblasts using confocal microscopy and image analysis 

software.  

Following on from this, mitochondrial fission accessory proteins such as MiD49/51, Mff 

and fission protein Drp1 have also been implicated in regulation of peroxisome fission 

(Palmer et al., 2013, Gandre-Babbe and van der Bliek, 2008, Waterham et al., 2007). 

Based on the hypothesis that mitochondrial fission proteins may also affect 

peroxisome morphology, sacsin’s role in the regulation of peroxisome dynamics in our 

sacsin knockdown and ARSACS patient fibroblasts was investigated using confocal 

microscopy and image analysis software. A dysregulation of mitochondrial dynamics 

affects mitochondrial function in cells. This has been observed in cells where 

mitochondrial fission proteins have been reduced (Qian et al., 2012, Dagda et al., 2011, 

Hom et al., 2010). Moreover, a decrease in the mitochondrial membrane potential in 

sacsin knockdown cells has already been reported (Girard et al., 2012).  

Chapter 6 addresses the mitochondrial function in ARSACS patient fibroblasts. 

Mitochondrial function was assessed by measuring cell metabolism and the production 

of mitochondrial superoxide in patient fibroblasts. Seahorse respirometer technology 

allowed for quantification of mitochondrial and glycolytic function in ARSACS patient 

fibroblasts and fluorogenic dyes allowed for the identification and quantification of 

mitochondrial superoxide production. In summary this chapter investigates the cellular 

bioenergetics and superoxide status of ARSACS fibroblasts. 

Conclusions and details of potential future directions are detailed in chapter 7 of this 

thesis. Sacsin has a role in mitochondrial fission through regulating Drp1 recruitment 

from the cytosol to prospective sites of fission. Hence loss of sacsin leads to increased 

fusion due to impaired Drp1 recruitment. As a consequence, this results in increased 

superoxide production and reduced mitochondrial function in sacsin knockdown and 

patient cells. Reduced mitochondrial function can lead to cell degeneration therefore 

such reduction may contribute to loss of Purkinje cells, a feature of ARSACS. Future 

work on the regulation of Drp1 activity as well as refining the sacsin/Drp1 interaction 

domain is needed.  
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Chapter 2 

Methods and Materials 
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2.1 Cell Culture 

2.1.1 Culture of SH-SY5Y Cells 
 

SH-SY5Y neuroblastoma derived cell line was purchased from the European Collection 

of Cell Cultures (ECACC) at the Health Protection Agency (HPA; Salisbury, UK). These 

cells were maintained in culture in 50% Dulbecco’s Minimum Eagle Medium 

(DMEM)/50% F12 (Sigma, Poole, UK) supplemented with 10% heat inactivated Foetal 

Bovine serum (FBS; Biosera, East Sussex, UK ) and 1% final concentration of penicillin 

and streptomycin (PenStrep) at 5U/ml and 50µg/ml respectively (Sigma, Poole, UK). 

Cells were kept at 37°C in a constant humidified atmosphere of 5% CO2. 

 

2.1.2 Culture of ARSACS Patient and Control Fibroblasts  
 

Patient fibroblasts (Passage #4) and a control line were a kind gift from Dr Vermeer, 

Radbound University, Netherlands. Commercial human dermal fibroblasts were 

purchased from Promocell, Heidelberg, Germany. Additional cultured human dermal 

fibroblasts were supplied by Dr T McKay (Passage #5), Dr R Hannen (Passage #4) and 

Prof H A Navsaria (Passage #4) from Barts and the London, School of Medicine and 

Dentistry, Queen Mary University of London.  

Fibroblasts were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% heat inactivated FBS (Invitrogen, Paisley, UK) and 1% final concentration of 

penicillin and streptomycin at 5U/ml and 50µg/ml respectively (Sigma, Poole, UK) 

(complete media) in a 37°C incubator in a constant humidified atmosphere 5%CO2. 

 

2.1.3 Maintenance of Cells in Culture 
 

Cells were subcultured (passaged) into a new flask once they reached a confluence of 

80-90%. Firstly, the growth medium was aspirated and the cells were washed twice in 

5ml of Phosphate buffered saline without calcium and magnesium (PBS; Sigma, Poole, 

UK). After which the PBS was removed and cells were incubated in 1.5ml of 
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Trypsin/Ethylenediamine-tetraacetic acid (TE; Sigma, Poole, UK) at 37°C for 2 minutes 

or until cells had completely detached from the flask surface. Following this, 3.5ml of 

warm complete medium was added and the cell suspension was titurated to disperse 

cell clumps. Finally, 1ml of the cell suspension was placed in a new T75 flask, topped 

up with 9ml of complete media. Cells were then placed in 37°C, 5% CO2 incubator.  

Unused cell suspension was disposed of in accordance with health and safety 

guidelines. Cells were split approximately every four days. 

 

2.1.4 Freezing Cells 
 

Cells were frozen for long term storage of low passage stocks. Growth medium 

(complete media) was aspirated and, cells were washed and trypsinized as described 

above. Once cells had become detached, 3.5ml of complete media was added and the 

entire cell suspension was transferred to 15ml Falcon tube. Cells were first centrifuged 

at 600g for 5 minutes after which, the supernatant was aspirated leaving a cell pellet. 

The pellet was fully resuspended in freezing solution consisting of 10% dimethyl 

sulfoxide (DMSO) and 90 %FBS. 1 ml aliquots of this new suspension were placed into 

cryogenic vials and stored in a Mr Frosty® (Thermo Scientific) freezing container at -

80°C overnight. Mr Frosty® allows the cells to freeze at an optimal rate of -1°C/minute. 

The vials were transferred to liquid nitrogen the following day. When necessary, the 

cells were revived from frozen by quickly thawing in a 37°C water bath. The 1ml aliquot 

was transferred to a 15ml falcon tube and spun at 600g for 5 minutes. The supernatant 

was removed and the cells were resuspended in 10ml of complete medium and plated 

into a new flask. Flasks were incubated in a 5% CO2, 37°C incubator and the growth 

media was changed the following day. 
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2.1.5 Cell Counting 
 

The growth medium was removed and cells were washed twice in PBS and trypsinised 

as previously described. The cell suspension was transerferred into 15ml tube and 

thoroughly resuspended using a pipette. 20µl of cell suspension was loaded into the 

injection area of the disposable C-Chip haemocytometer (Cronus technologies, Surrey, 

UK). Cells were counted in all of the large four corners (shaded in yellow) of one grid 

using 10x objective of a Leica DMIL light microscope (Figure 2. 1). The concentration of 

cells and volume needed to get required cell density were acquired using following 

formulae: 

Cells per ml = average number of cells x dilution factor x 104 (volume factor). 

C1V1=C2V2 

C1 is the cell concentration of the stock solution  

V1 Volume of stock solution required  

C2 final concentration of diluted solution  

V2 final volume of diluted solution 

 

Figure 2. 1 Schematic of grid pattern of C-Chip disposable haemocytometer 
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Yellow shaded boxes represent areas where cells were counted. 

2.1.6 Mycoplasma Testing  
 

Cells were routinely sent for testing for mycoplasma contamination. Mycoplasma 

contamination has been shown to reduce respiration and cell metabolism in fibroblasts 

(Darin et al., 2003). Therefore this testing was essential as contamination of fibroblasts 

may have gone on to affect the sensitive assay used for assessing mitochondrial 

function through measuring cellular respiration. To carry out testing, fibroblasts were 

grown to 90% confluence in growth media lacking PenStrep. 100µl of growth medium 

was removed from cells and was boiled at 95°C for 5 minutes. The media was then 

briefly centrifuged to pellet any cell debris and the supernatant was removed and used 

in a polymerase chain reaction. The details of this are given in section 2.3.1. The 

presence of a band at approximately 300 base pairs on a 2% agarose gel signifies 

positive mycoplasma contamination (Figure 2.2).  

 

All cell lines used were free of Mycoplasma contamination.  

 

  

Figure 2. 2 Digital image of agarose gel electropherisis of Mycoplasma 
PCR. 
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2.2 Genomic DNA extraction 
 

For extraction of genomic DNA, cells were grown in 25cm3 flask until 80-90% 

confluence in complete media. Media was aspirated and cells were washed twice in 

3ml of PBS. Cells were then incubated with 2ml of TE until detached. TE was 

neutralised by the addition of 5ml of complete medium, cells were harvested and 

centrifuged at 400g for 5mins. 

Genomic DNA (gDNA) was extracted using GenElute Mammalian Genomic Miniprep Kit 

(Sigma, Poole, UK). For harvesting, 200µl of resuspension solution was added to the 

cell pellet. As RNA free DNA was required, 20µl of Rnase A was added and the mixture 

was incubated at room temperature for 2 minutes. The cells were lysed by the addition 

of 20µl of Proteinase K (20mg/ml) followed by the addition of 200µl of Lysis Solution C. 

The mixture was vortexed for 15 seconds and then placed at 70°C for 10 minutes.  

Before using the GenElute columns, 500µl of column preparation solution was added 

and the column was centrifuged at 1200g for 1 minute to equilibrate the column. The 

homogenised lysated was mixed with 200µl of absolute Ethanol and vortexed for a 

further 10 seconds. The entire mixture was then added to the prepared GenElute 

column and spun at 6500g for 1 minute. The columns were washed twice with 500µl of 

wash solution PCR and centrifuged at 6500g for 1 minute in the first instance and then 

12000g for 3minutes. DNA was eluted in 50µl of nuclease free water. The 

concentration of the DNA was measured using a nanodrop ND-spectrophotometer at 

λ=260nm. The ratio of absorbance at 260nm and 280nm was used to assess purity of 

the extracted DNA. DNA was deemed of good quality if 260/280nm = 1.8 – 2. 
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2.3 Polymerase Chain Reaction and Sequencing 

2.3.1 PCR 
 

The DNA extracted was incubated with DNA polymerase from Thermus aquatius (Taq), 

SACS primers to region of interest and dNTPs to allow amplification. PCR reaction 

mixtures were composed of the following: 

2.5µl of 10x reaction buffer (Sigma, Poole, UK) (100mM Tris-HCL, pH8.3, 500mM KCL, 

15mM MgCl2,0.01% gelatin). 

25-50ng of template 

10µM forward primer 

10µM reverse primer 

0.2mM dNTPs 

0.125µl of Taq DNA polymerase (Sigma, Poole, UK) 

ddH2O to a final volume 0f 25µl. 

The thermocycling conditions were based on a standard PCR, where a primer specific 

annealing temperature of was used (Table 2. 1). The amplification proceeded over 35 

cycles with the inclusion of a final extension step of 5 minutes. All PCR reactions were 

carried out on G-Storm GS1 thermocycler (G-Storm, Someset, UK).  The PCR products 

were visualised on a 1% agarose gel using 1:20000 GelRed (Biotium, Hayward UK). 10l 

of PCR reaction mixture was added to 3l of sucrose loading dye and run, at 110 volts 

(V) in 1 Tris Acetate EDTA (TAE) buffer, with a suitable DNA sizing ladder.  
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Primer Name 
Annealing Temperature 

(°C) 

Mycoplasma 55 

SACS (all) 59 

Table 2. 1 Annealing Temperatures for Mycoplasma and SACS primers 

 

2.3.2 Sequencing  
  

Sequencing was carried out by the Genome centre, Barts and the London School of 

medicine and dentistry, Queen Mary University.  10µl of the PCR product was 

submitted along with primers of 10pmol/µl concentration. Prior to sequencing, 5µl of 

the PCR product was purified using ExoSAP-it. This purification was included in the 

service provided by the genome centre. Sequencing was carried out using BigDye 3.1 

(Applied Biosystems) and visualised on ABI 3730. Sequencing results were analysed 

using sequence analysis software Finch TV (Geospiza, Washington, USA).  

 

2.4 Transfection 
 

Cells were seeded in either; 6 well plates, 12 well plates (VWR) or 8 well chamber 

slides (Nunc) until 70% confluence was reached. Cells were transfected using catatonic 

lipid mediated gene delivery using Lipofectamine and Plus reagent (Invitrogen, Paisley, 

UK) as per (Table 2. 2). 
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Vessel 

Final 

volume 

(µl) 

OptiMEM 

(µl) 

Plus 

Reagent 

(µl) 

DNA 

concentration 

OptiMEM 

(µl) 

Lipofectamine 

(µl) 

8-well 

slide 
100 12.5 1 100ng 84.5 1 

12 

well 

plate 

400 50 2 500ng 341 2 

6 well 

plate 
700 100 4 1µg 591 4 

Table 2. 2 Transfection mixtures used for different vessels for SH-SY5Y cells. 

 

Briefly for a well of a 6 well plate, the mixture of 1µg of DNA, 100µl of serum free 

OptiMEM (Invitrogen, Paisely, UK) and 4µl of Plus reagent (Invitrogen, Paisely, UK) was 

incubated at room temperature for 20 minutes. 4µl of Lipofectamine (Invitrogen, 

Paisely, UK) and 591µl of OptiMEM was added to the mixture and incubated for 15 

minutes at room temperature. Cells were washed twice in PBS before the addition of 

700µl of the transfection mixture. DMEM containing 20% FBS and 2% PenStrep was 

added to the cells 3 hours post incubation at 37°C. Further cell processing occurred 24-

48hour post transfection. 
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2.4.1 siRNA Transfection 
 

Custom SACS siRNAs previously validated by our group were ordered from Ambion 

(Life Technologies LTD, UK).  The siRNAs were designed to target exons 6, 7 and 9 of 

SACS. The lyophilised siRNAs were first resuspended in water to give a 100µM stock. 

The siRNAs were diluted to working concentration of 20µM for use in transfections 

where a final concentration of 20nM was required. Small volumes of the 20µM 

solution were aliquoted and stored at -20°C.  For a well of a 6 well plate, the mixture of 

0.7µl of siRNA (20µM), 100µl of serum free OptiMEM and 4µl of Plus reagent was 

incubated at room temperature for 20 minutes. 4µl of Lipofectamine and 591.3 µl of 

OptiMEM was added to the mixture and incubated for 15 minutes at room 

temperature. Cells were washed twice in PBS before the addition of 700µl of the 

transfection mixture. DMEM containing 20% FBS and 2% PenStrep was added to the 

cells 3 hours post incubation at 37°C. Further cell processing occurred 48 hours after 

transfection. In many instances EGFP (Clonetech Laboratories California ,USA) (green 

fluorescent protein) or pDsRed2-Mito (mtDsRed) (mitochondrial marker) (Figure 2. 7 

SECTION 2.10) was co-transfected to indicate successful transfection. This was 

especially important in the fibroblasts cell lines where low transfection efficiency was 

obtained and therefore made verification of knockdown by immuoblotting difficult.  
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2.4.2 siRNA Sequences 
 

Name of oligomers Sequences 

SACS exon 6 
sense GGAUGAUCCUCUGAAGGUC 

antisense GACCUUCAGAGGAUCAUCC 

SACS exon 7 
sense GCGGCCGAAUUCUAUAAAG 

antisense CUUUAUAGAAUUCGGCCGC 

SACS exon 9 
sense CGUAAGAUUUCUAGAUGAC 

antisense GUCAUCUAGAAAUCUUACG 

Table 2. 3 Sense and Antisense sequences of siRNA. 

 

 

Figure 2. 3 Schematic of SACS mRNA. 

The positions of SACS siRNAs used in relative to SACS mRNA is shown. 
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2.5 Western Blotting 

2.5.1 Cell lysate preparation 
 

Cells were harvested for separation by electrophoresis as follows. A T25 or single well 

of a six well plate at 80-90% confluence was used for each sample. Cells were washed 

in 1ml of cold PBS prior to the addition of 500µl of 2x Laemmli sample buffer consisting 

of 4%SDS, 20% glycerol, 10% Mercaptoethanol, 0.004% bromophenol blue and 0.125M 

Tris-HCL (Sigma, Poole, UK) to the cells surface. The cells were collected followed by 

homogenisation by passing the lysate through a 21G needle 10 times and boiling at 

90°C for 10 minutes. The lysates were centrifuged at 18,500g for 1 minute before 

loading.  

 

2.5.2 SDS-PAGE 
 

The soluble fractions of cell lysates were run on precast 4-12% polyacrylamide NuPage 

BisTris gels (Invitrogen, Paisley, UK). The gels were electrophoresed in 1x 3-(N-

morpholino)propanesulfonic acid (MOPS) running buffer (Invitrogen, Paisely, UK) 

consisting of 50mM Mops, 0.1% SDS, 50mM Tris and 1mM EDTA (pH7.7) along with 

high molecular weight marker HiMark or Novex (Invitrogen, Paisely, UK). SDS- PAGE 

gels ran for 2-3 hours at 150V.  
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2.5.3 Immunoblotting 
 

Post electrophoretic separation, proteins were electrotransferred to a nitrocellulose 

membrane 0.45µm (GE Healthcare Life Sciences) by either semi-dry transfer using 

Trans-Blot cell (Bio-Rad, Hemel Hempsted, UK) or wet transfer using a mini Trans-Blot 

cell (Bio-Rad, Hemel Hempsted, UK). Wet transfer was used for sacsin blots. This 

method is usually recommended for transferring large, high molecular weight proteins 

greater than 100kDa as it yields a better transfer efficiency. Semi-dry transfer was used 

for proteins under 100kDa like Drp1.  The nitrocellulose membrane and filter paper 

required were soaked in transfer buffer for 5 minutes prior to transfer. The transfer 

buffer consisted of 20mM Tris, 120mM glycine, and 20% methanol. Blots were 

transferred for duration of 45 minutes at 15V in instance of semi-dry transfer and 16 

hours at 40V for wet transfers. After transfer, the membrane was stained with 0.1% 

Ponceau S (w/v) in 5% acetic acid to detect protein bands and to signify successful 

transfer. The membrane was destained by washing in PBST for 3 minutes on a shaking 

platform. 

Following this, the membrane was blocked in a solution consisting of 5% semi skimmed 

milk powder in PBS with 0.1% Tween20 (PBST) for 1 hour. For the detection of sacsin, 

the affinity-purified antibody (r- sacsin4489-4503) to the C-terminus of sacsin was used. 

This antibody was developed by our group and has been characterised in 

immunoblotting (Parfitt et al., 2009). R-sacsin4489-4503 was used at 1:500 in 10ml of PBST 

(with 5% milk) for 3 hours. The membrane was then washed three times for 10 

minutes. After incubation of the membrane for 1 hour with goat ant-rabbit 

IRDye800CW secondary antibody (Licor, Cambridge, UK) at a dilution of 1:10000 in 

10ml of 5% milk PBST, the membrane was washed twice with PBST and once in PBS for 

ten minutes. The membrane was imaged using Licor Odessy infrared scanner and 

analysed using Licor Odessy, software (Licor, Cambridge. Densitometeric analysis was 

performed using Image Studio Lite (LiCor, Cambridge). 
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2.6 Measuring Mitochondrial Respiration and Glycolysis 
 

The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

assessed by the Seahorse XFe96 Extracellular Flux Analyser (Seahorse Bioscience). The 

MitoStress (Seahorse Bioscience) and GlycoStress kit (Seahorse Bioscience) were also 

used in conjunction with Seahorse analyser to measure the response of the fibroblasts 

to mitochondrial and glycolytic stress.   

Measurement of mitochondrial respiration and glycolysis was dependent on the 

creation of a transient microchamber in which the sensor cartridge and its sleeves was 

lowered to 200 µm above the cells (Figure 2. 4).  This created a small volume of 

between 2-7µm. The sensor cartridge consisted of 2 fluorophores embedded in 

polymer. Each of the fluorophores distinctively measured either the quenching of 

oxygen (a measurement for mitochondrial respiration) or the change in acidity 

(measuring glycolysis). Further information on each test is given in chapter 6.3 and 

chapter 6.4. 
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Figure 2. 4 Schematic of Seahorse mechanism depicting a single well of Seahorse 
Bioscience culture plate 

 

The drugs were dispensed from one of the 4 drug ports incorporated in the sleeves 

into the wells of the plate at times specified by protocol. The probes also mixed the 

drugs into the medium after the addition of each drug at times and for durations 

specified by the protocol.  

 

2.6.1 Optimisation of Cell Density and FCCP Concentration 
 

The optimal cell density and carbonyl cyanide -4- (trifluoromethoxy)phenylhydrazone 

(FCCP) for dermal fibroblasts, were ascertained prior to oxygen consumption or 

extracellular rate stress test. Dermal fibroblasts were seeded at 4 different 

concentrations 40 x103 cells, 80 x103 cells, 450 x103 cells and 589 x103 cells. Seahorse 

Bioscience suggests that once optimal, cell density should yield basal OCR reading 

between 80-200pmoles/min(Invernizzi et al.). The basal oxygen consumption rate 

(OCR) measured in optimisation experiments, showed that the optimal density was 

450 x 103 cells (Figure 2. 5). 
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Figure 2. 5 Basal OCR level of human dermal fibroblast plated at four different 
concentrations 

Three reading were taken at 1:38, 8:22 and 17:20 mins . B) Average OCR per 

cell density. Blue represents 40 x103 cells, Red represents 80 x103 cells, Green 

represents 450 x103 cells. And Purple represents 589 x103 cells. Error bars are ± 

SEM.  

 

The maximal respiration was attained by optimising the FCCP concentration. The 

maximum respiration was achieved using 1µM, however the steep decline in OCR 

suggest that this concentration may be toxic, therefore the concentration of 0.5µM 

was chosen and used in the MitoStress experiments (Figure 2. 5). Oligomycin and Mito 

Inhibitor concentration was used at predetermined concentrations. 
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Figure 2. 6 Optimising FCCP concentration for control human dermal fibroblasts 
plated at 450x103 cells. 

Blue represents FCCP concentration of 0.0125µM, Red represents FCCP concentration 

of 0.25µM, Green represents FCCP concentration 0.5µM Purple FCCP concentration 

0.75µM and Cyan 1µM. 

 

Lastly, cell age affects the cell oxygen consumption rate as increased passage number 

has been shown to reduce OCR (Jonckheere et al., 2010).  Therefore all cells used in 

each experiment were of the same passage. 

 

2.6.2 Preparation 
 

Fibroblasts were seeded at 320x103 cells/well in 80µl of complete media in XFe96 cell 

culture plates (Seahorse Bioscience) and incubated for 24 hours at 37ºC in 5% CO2 

atmosphere. The XFe96 sensor cartridge was hydrated overnight in 200µl XF Seahorse 

Calibrant and was incubated in a non CO2 also for 24 hours.  

Post 24 hours, fibroblasts were washed twice before adding 175µl of XF assay base 

medium (XF DMEM, 10mM glucose, 1mM sodium pyruvate and 2mM glutamine). This 
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XF medium was freshly prepared and pH adjusted to pH 7.4. Following this, the 

fibroblasts were incubated for an hour in a CO2 free incubator at 37°C.  

 

2.6.3  MitoStress Assay 
 

The XFe96 Sensor Cartridge was loaded with 25µl of 5µM Oligomycin, 25µl of 0.5µM 

FCCP, 25µl of 1µM, Mito inhibitor A (Rotenone) and 1µM Mito inhibitor B (Antimycin) 

at the end of the 24 hours hydration period. These will give a final concentration of 

5µM Oligomycin, 0.5µM FCCP and 1µM, Mito inhibitor A (Rotenone) and Mito inhibitor 

B (Antimycin). 

XF24 Analyzer and XF Assay cartridge were first calibrated. Following this, the XFe96 

cell culture plate was loaded and the experimental run initiated using the protocol 

below (Table 2. 4).  
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Start Protocol 

Command Time (mins) Port 

Calibrate 5  

Equilibrate 12  

Mix 4 

(Repeated 4 times) 

Measure 5 

Inject  A (Oligomycin) 

Mix 4 

(Repeated 4 times) 

Measure 5 

Inject  B (FCCP) 

Mix 4 

(Repeated 4 times) 

Measure 5 

Inject  
C (Mito inhibitors 

A&B) 

Mix 4 

(Repeated 4 times) 

Measure 5 

End Protocol 

Table 2. 4 Instrument run protocol for MitoStress Test 
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2.6.4 Glycolysis Assay 

 

The XFe96 Sensor Cartridge was loaded with 25µl of 80mM Glucose, 25µl of 45µM 

Oligomycin and 25µl of 1M Deoxy-D-glucose (2DG) after 24 hours of hydration. The 

final concentrations per well was 10mM Glucose, 5µM Oligomycin and 100mM 2DG.  

The assay program started following the calibration of the sensor cartridge and loading 

of the culture plate. The following protocol was used (Table 2. 5): 

Start Protocol 

Command 
Time 

(mins) 
Port 

Calibrate 5  

Equilibrate 12  

Measure 4 (Repeated 4 times) 

Inject  A (Glucose) 

Mix 4 

(Repeated 4 times) 

Measure 5 

Inject  B (Oligomycin) 

Mix 4 

(Repeated 4 times) 

Measure 5 

Inject  C (2-DG) 

Mix 4 

(Repeated 4 times) 

Measure 5 

End Protocol 

Table 2. 5 Instrument run protocol for Glycolysis Stress Test 
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Results for MitoStress and Glycolysis stress assays were analysed using the XFeWave 

software (Seahorse Bioscience). For both assays, 4 control dermal fibroblasts were 

compared to 4 patients. Data presented is an average of 10-12 replicate wells for each 

patient or control fibroblast cell line. Data was normalised to cell number.  

 

2.7 Immunofluoresence 
 

2.7.1. Chamber Slides 
 

Cells were grown on glass 8 well chamber slides (Nunc,VWR, Leicester, UK) until 70% 

confluent. Cells were washed twice in PBS and fixed with 4% formaldehyde for 15 

minutes followed by 5 minutes of membrane permeablisation with 0.2%Triton-X 100. 

Cells were washed quickly in PBS and blocked for 45 minutes in Buffer A (PBS with 

0.02% Triton –X100, 1% bovine serum albumin (BSA), 10% normal goat serum (NGS). 

After blocking, the cells were incubated with 100µl primary antibody for 2 hours 

diluted in Buffer A. Cells were then washed 4 times for 2 mins in PBS followed by 

incubation with 100µl of secondary antibodies at a dilution of 1:1000 conjugated goat 

antibody in Buffer A (Invitrogen, Paisely, UK). Cells were then washed 2 times for 3 

minutes in PBS, incubated for 1 minute with 2µg/ml 4’6-diamidino-2-phenylidnole 

dihydrochloride (DAPI, Sigma, Poole, UK) to counterstain nuclei and then washed for 5 

minutes with PBS. The chamber was removed and mounted after the application of 

fluorescent mounting medium (Dako, Ely, UK). 

 

2.7.2 Coverslips 
 

Cells were grown on 5mm glass coverslips in 12 well plates (VWR, Leicester, UK) until 

70%  confluence was obtained. Immunostaining was performed as described above 

however notable changes were the made to the following; 300µl of primary antibody 

diluted in Buffer A was used after permeablisation and blocking stages, after the final 

wash step, the cover slips were removed from the plates and mounted on a glass slide 
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aided by the application of fluorescent mounting medium. The coverslips were sealed 

with a thin layer of nail polish to prevent the evaporation of the mountant hence 

preserving the sample. 

 

Antibody Species Titre Application 
Catalogue 

Number 
Company 

Drp1 Mouse 
1:100 IF 

611113 
BD Sioscience, 

New Jersey, USA 1:500 WB 

Tom20 Rabbit 1:500 IF SC11415 
Santacruz, Texas, 

USA 

Phalloidin  1:1000 IF A22287 
Alexaflor 

Invitrogen 

GAPDH Rabbit 1:5000 WB G5262 Sigma, Poole 

β-Actin Mouse 1:10000 WB A5441 Sigma, Poole 

PMP70 Rabbit 1:500 WB, IF AB3421 
Abcam, 

Cambridge, UK 

Tubulin Mouse 1:200 IF T9026 Sigma, Poole 

Sacsin Rabbit 1:500 WB - 
Eurogentec, 

Southampton UK 

Table 2. 6 Antibodies used in immunofluoresence and western blotting experiments 
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Marker Species Titre 

Wavelength  
Emission 

colour 
Company 

Excitation Emission 

Alexa Fluor 

488 

Mouse/ 

Rabbit 
1:1000 490 425 Green 

Invitrogen

, Paisley, 

UK 

Alexa Fluor 

568 

Mouse/ 

Rabbit 
1:1000 578 603 Red 

Invitrogen

, Paisley, 

UK 

Alexa Fluor 

680 
Rabbit 1:1000 679 702 Far Red 

Invitrogen

, Paisley, 

UK 

DAPI - 1:5000  Blue Blue 
Sigma, 

Poole, UK 

MitoTracker - 250nM 579 599 Red 

Invitrogen

, Paisley, 

UK 

MitoSOX - 5µM 510 580 Red 

Invitrogen

, Paisley, 

UK 

IRDye 680LT 
Mouse/ 

Rabbit 

1:1000

0 
 693 Far red 

LiCor, 

Cambridg

e, UK 

IRDye 

800CW 

Rabbit/ 

Mouse 

1:1000

0 
 789 Far red 

LiCor, 

Cambridg

e, UK 

Table 2. 7 Markers/conjugated antibodies used in immunofluorescence and western 
blotting 
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2.8 Confocal analysis and data analysis 
 

Cells stained for Drp1 and mitochondrial markers were visualised and imaged with the 

Zeiss LSM510 laser scanning microscope using the 63x oil immersion objective unless 

otherwise stated.  

For the analysis of Drp1 foci localisation; the scan area of 1024 x1024 pixels – 16 bit 

depth, an 8-line average, a pixel dwell of 0.8µs, laser power and gain were set and 

remained uniform throughout the duration of the experiment (Table 2. 8).  

The number of Drp1 foci was determined by the quantification of the number of peaks 

corresponding to the intensity of the fluorescently labelled Drp1 protein as detailed in 

Chapter 4. Both Drp1 and mitochondrial marker Tom20 were labelled by 

immunoflouresent staining. 

   

Channel Laser Filter 
Master 

Gain 
Power (%) 

DAPI 405 BP420-480 607 8 

Cy2 (Green/ 

Drp1) 
488 505-530 866 4 

Cy3 (Red/ 

Mitochondria) 

534 560-615 730 50 

Table 2. 8 Confocal settings used for the analysis of Drp1 localisation. The pinhole for 
each detection was set to 1.0 Airy unit. 
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2.8.1 Live cell imaging 

2.8.1.1 MitoTracker  
 

MitoTracker (Invitrogen, Paisley, UK), is a cell permeant mitochondrial probe which 

stains the mitochondria of live cells. A stock solution was initially prepared by 

dissolving 50µg of lyophilized marker in DMSO to concentration of 1mM. This was then 

stored at -20°C. The excitation and emission maxima are given as 579nm and 599nm 

respectively by Invitrogen. 

Cells for live cell imaging were seeded in 35mm dishes (Mat-Tek) until cells were 70-

80% confluent. The stock MitoTracker solution was diluted to working concentration of 

250nm complete medium (DMEM, 10%FBS, 1%PS).  1ml of MitoTracker was added to 

the cells and incubated for 30 minutes at 37ºC in 5% CO2 atmosphere.  After the 

incubation period had elapsed, cells were washed twice in warm complete media and 

replenished with 2ml of complete media before imaging.   

Dishes were placed on a pre-warmed heated stage (37°C). Images were collected in Z-

stacks 0.44µm thickness. The images were collected with 40x oil immersion objective. 

The scan area was 1024x1024 pixels of 12 bit depth and a line averaging of 16. The 

laser power was set at 50% and master gain at 435. The confocal settings remained the 

same throughout the experiment and between conditions. Further settings used are 

shown in the table below (Table 2. 9).   

Channel Laser Filter 
Master 

Gain 
Power (%) 

Pinhole 

(µm) 
Airy Unit 

Cy3 543 LP560 435 50 118 1 

Table 2. 9 Confocal settings used for the mitochondrial morphometric analysis 
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2.8.1.2 MitoSOX  
 

The fluorogenic dye, MitoSOX (Invitrogen) is an indicator of mitochondrial superoxide 

which has an excitation maximum of approximately 510nm and an emission maximum 

of 580nm. 

Cells for live cell imaging were seeded in 35mm dishes (Mat-Tek) and MitoSOX 

performed when cells were 80% confluent. A stock solution of 5mM was prepared by 

dissolving 50µg of MitoSOX in 13µl of DMSO. The 5mM solution was diluted in PBS 

with calcium and magnesium (PBS/Ca/Mg) to give working concentration of 5µM. Cells 

were washed once in PBS/Ca/Mg prior to the application of 1ml of 5µm MitoSOX. Cells 

were subsequently incubated at 37ºC at 5% CO2 for 10 minutes. Cells were washed 3 

times with warm PBS/Ca/Mg before the addition of 2ml of warm PBS/Ca/Mg in 

preparation for imaging.  

Dishes were placed on a 37°C heated stage and Z-stacks were collected using the 40x 

objective of a Zeiss LSM510 laser scanning microscope. Each stack in the Z-stacks was 

0.5µm 1024 x 1024 pixel, 12bit depth images. Line average (8), pixel dwell (1.62µs), 

laser power (50%) and gain (702) remained constant.  Further settings are shown in 

the Table 2. 10 below. Images were later analysed using Zeiss software. Further details 

on the method implemented are described in Chapter 5.  

Channel Laser Filter 
Master 

Gain 
Power (%) 

Pinhole 

(µm) 

Airy 

Unit 

Cy3 543 LP560 702 50 84 0.7 

Table 2. 10 Confocal settings used for MitoSOX quantification 
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2.8.2 Imaris 
 

Imaris (Bitplane) microscope image analysis software was used for 3D rendering, 

colocalisation and volumetric measurements. Multiple software algorithms equip the 

program to produce computer generated representations of mitochondria, 

peroxisomes and Drp1 allowing for the calculation of dimensions as well as 

colocalisation. More detail regarding thresholding used for experiments and 

processing can be found in chapters 3 and 4.  

For mitochondrial morphometric analysis three dimensional Surface rendering was 

performed using the Surface module of Imaris (Bitplane). Background noise was 

reduced by eliminating any three-dimensional (3D) pixels which were below a value of 

10 voxels. Here, voxels are used to describe the resolution of the volumetric structures 

which where surface rendered using image analysis software.   

Co-localisation analysis was performed using the Coloc module of Imaris (Bitplane) and 

results were analysed using Manders coefficient as explained in chapter 4. 

Thresholding was obtained by using the Coloc automatic threshold wizard which 

removed researcher bias.  

Drp1 foci intensity and diameter were measured using a combination of Surfaces and 

Measurement Pro modules. 3D rendering and thresholding allow for the accurate 

determination of mean intensity and diameter (see Chapter 4).  
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2.9 PCR and Sequencing Primers 
 

Primers used for the PCR and sequencing of patient and control DNA were designed 

using the Primer 3 software. This software is publicly accessible on the internet 

(http://www_genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi/). 

Primer Sequence 

SACS 1715 

Forward ACCCTTTTCCGACTGTCCTT 

Reverse TGCTTTGGAAGAGCAGGATT 

SACS intron 

Forward GTCGGCTTAACTGACTTGAAAA 

Reverse CCTTTAAAGCAGCCACAAGG 

SACS 

4331 

Forward CTTCCAGAATCGGAACG AAA 

Reverse GGGATGCTGAGGTTGAAAAT 

SACS 

4054 

Forward CTGGCCAATGAAGAAAAAGC 

Reverse TGCATTACCAAATCGCTTCA 

SACS 

2002 

Forward GCTCATGGAAAAGGGAAAGA 

Reverse TGGACCCAGTCTTCTTGAGG 

SACS 

2801 

Forward AAGGGCAAAATCACAGATGG 

Reverse AATGCAGGCAGCTACTCCAC 

Mycoplasma 

GPO3 
GGGAGCAAACAGGATTAGATACCCT 

 

MGSO 
TGCACCATCTGTCACTCTGTTAACCTC 

 

Table 2. 11 Primer sequences of all primers used for PCR and sequences 

http://www_genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi/
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2.10  Statistics 
 

Unless otherwise stated, error bars in this thesis represent ± SEM for dataset where 

the mean values are presented. Statistical significance was determined by a student’s 

t-Test in the sacsin knockdown dataset or ANOVA in the ARSACS patient dataset. 

Statistical analyses were carried out using GraphPad Prism software. P values < 0.05 

were considered to be statistically significant.  
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2.11  Plasmid Maps 
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Figure 2. 7 Plasmid Maps of pDsRed2-Mito (mtDsRed) and EGFP. Maps adapted from 

Clontech Laboratories. 
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Chapter 3 

Mitochondrial Network Morphology in 

ARSACS Patients and Sacsin 

Knockdown Fibroblasts 
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3.1 Introduction 
 

The cellular morphology of mitochondria includes fragmented tubules and 

interconnected, elongated networks. Interchange between these phenotypes is 

dependent on the processes of fission and fusion (Figure 3. 1A-E). This continual 

change in mitochondrial network shape is important in determining mitochondrial 

distribution and function. The adaptive characteristic of mitochondria is also 

dependant on the energy requirements and health of the cell (Hermann and Shaw, 

1998, Shaw and Nunnari, 2002, Benard et al., 2007b, Yaffe, 1999). These processes are 

regulated by a group of GTPases and their accessory proteins. For cellular health, it is 

important that there is a balance between fission and fusion events, as failure in the 

governance of the regulatory proteins and or accessory proteins that mediate these 

processes leads to mitochondrial dysfunction.  

Cellular or mitochondrial damage caused by toxins, drugs, mutations in mtDNA or 

genomic DNA coding for mitochondrial proteins can push mitochondrial morphology 

toward a more extreme phenotype. Excess fragmentation or hyperfission (Figure 3. 

1B), is common in cells entering apoptosis. During apoptosis, mitochondria enter a 

state of unopposed fragmentation due to an increase in Bak/Bax oligomerisation and 

Drp1 recruitment (Parone et al., 2006, Montessuit et al., 2010). Treatment of cells with 

mitochondrial uncouplers (such as CCCP which has been used in experiments 

described in this thesis) and other mitochondrial complex inhibitors can also drive 

toward a more extreme fission phenotype due to the dissipation of mitochondria 

membrane potential (Malka et al., 2005, Gottlieb et al., 2003). In contrast, the 

presence of bulbous like structures in mitochondrial networks is indicative of 

hyperfusion (Figure 3. 1E). The swelling of the mitochondria, seen in hyperfusion, is 

believed to be due to the formation of a ‘mesh’ of interconnected tubules (Nunnari 

and Suomalainen, 2012). Mitochondrial hyperfusion has been observed to occur in 

cells with reduced Drp1 protein, increased dominant negative forms of Drp1 and 

during the inhibition of apoptosis (Lee et al., 2004, Estaquier and Arnoult, 2007, Girard 

et al., 2012). 
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Figure 3. 1 Representative images depicting a range of mitochondrial phenotypes. 

 

Fibroblasts were stained with Tom 20 (Red) A) Normal mixed tubular and branched 

mitochondria with few branches illustrating balance between fission/fusion. B) 

Hyperfission – small fragmented tubules depict increased fission. C) Fewer branches 

than in A representing onset of fission. D) Increased branching and elongation of 

mitochondrial tubules illustrates fusion. E) Hyperfusion- Swollen, bulbous like tubules 

with increased branches and few/no individual tubules seen. Scale bars represent 

1µm. 

Previously published work (from our group and collaborators) has shown that a loss of 

sacsin leads to increased mitochondrial network connectivity in SH-SY5Y cells (Girard 

et al., 2012). In the work described in this thesis, cultured human dermal fibroblasts 

were used to further analyse the effects of loss of sacsin on mitochondrial 

morphology. Fibroblasts were selected for this image analysis-based study as they 

have a mitochondrial network that is more evenly distributed throughout the cell than 

that seen in SH-SY5Y cells (Figure 3. 2A-B). The tightly packed mitochondrial network in 

SH-SY5Ys can result in problems detecting subtle changes in mitochondrial 

morphology. Fibroblasts have been used to explore mitochondrial morphology and 

distribution in a number of similar studies (Mortiboys et al., 2008, Chevrollier et al., 

2012, Guillery et al., 2008). Moreover, fibroblasts have detectable levels of 

endogenous sacsin. 
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Figure 3. 2 The mitochondrial network is more evenly distributed throughout the cell 

in dermal fibroblasts compared to SH-SY5Y neuroblastoma cells. 

 Cells were transfected with mitoDsRed, and stained with DAPI to distinguish the 

nucleus. Cells were fixed, stained and imaged 48hrs post transfection.  Representative 

images of four examples for each cell type are shown. A) Mitochondria were 

distributed relatively evenly throughout the cell in fibroblasts compared to SH-SY5Y 

cells where the mitochondrial network was more compact. Scale bars represent 10µm. 
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An added benefit of using fibroblasts, is the possibility of studying the mitochondrial 

morphology in ARSACS patients. Dermal fibroblasts are easily accessible by a minimal 

invasive procedure and can be readily cultured. ARSACS patient fibroblasts are useful 

cellular models as they contain pathological mutations in SACS as well as the whole 

genetic background of the affected individual. Hence they can provide more 

information on disease mechanism as the effect of the patient specific mutations and 

cellular phenotypes can be compared (Huang et al., 2005, Mortiboys et al., 2008, 

Chevrollier et al., 2012).  Lastly, heterologous expression of sacsin is difficult due to its 

size. Therefore the effect of clinically occurring point mutations in ARSACS patients, are 

difficult to model in heterologous expression systems. Thus any morphological 

differences resulting from missense mutations would be difficult to ascertain without 

the patient fibroblasts.  

The dynamic nature of the mitochondrial network contributes to the complex and 

varied morphology seen in human dermal fibroblast. Characterisation of the network 

can be complex and depends on multiple factors such as distribution, mitochondrial 

length, and network connectivity. Various methods have been employed to accurately 

describe morphology. These are largely based on imaging analysis and include 

measuring average mitochondrial length, mitochondrial volume and number of 

branches in the mitochondrial network (Rafelski et al., 2012, Palmer et al., 2011a, 

Niemann, 2005).  

In mammalian fibroblasts, mitochondria can appear as small separate tubules (Figure 

3. 3A), interconnected tubular network (Figure 3. 3C) or as a mixture of the two 

phenotypes with a spatial distribution of mitochondria throughout the cytosol (Figure 

3. 3B, C-DF).   
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Figure 3. 3 Representative images of mitochondrial network phenotypes observed in 

Human dermal fibroblasts. 
Commercially available control fibroblasts were incubated with 100nM of MitoTracker 

for 30minutes at 37°C.  A) Fibroblast with a predominantly tubular network. B) 

Fibroblast with a mixture of tubular and elongated mitochondria. C) Fibroblast with an 

elongated mitochondrial network. D-E) Fibroblasts had a normal, even distribution of 

mitochondria. F-G) Fibroblasts had collapsed mitochondrial networks which were 

clustered around the nucleus. Scale bars represent 10µm  
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Elongated, hyperfused networks have the tendency, in some cases, of collapsing 

toward the nucleus (Figure 3. 3F-G) (Losón et al., 2013, Palmer et al., 2011a, Palmer et 

al., 2013, Wang et al., 2008, De Paepe et al., 2012, Okatsu et al., 2010, Smirnova et al., 

2001). This phenotype has also been observed in cells with reduced levels of 

mitochondrial fission adapter proteins such as MiD51, MiD49 and Fis 1 (Palmer et al., 

2011a, Palmer et al., 2013). Notably in 2012, work conducted in our laboratory in 

collaboration with Girard et al described an accumulation of the mitochondrial 

network in the cell body of cultured hippocampal neurons transduced with lentiviral 

encoded SACS shRNA (Girard et al., 2012). In these cases the majority of the network 

was perinuclear with very few mitochondria distributed towards the periphery of the 

cell. The increase in mitochondrial interconnectivity or length is hypothesized to impair 

mitochondrial trafficking either due to mitochondrion size or the failure of adequate 

attachment by Kinesin motor proteins (Chen and Chan, 2009, Baloh et al., 2007, 

Smirnova et al., 2001, Tanaka et al., 1998).  

 
The analysis of mitochondrial morphology has been predominantly qualitative in many 

studies, where phenotypes were scored by observation blind to experimental status. In 

the area of age related disorders, Parkinson’s and Alzheimer’s, such qualitative 

methods have been used to imply disruption of mitochondrial dynamics as well as 

examine changes in mitochondrial morphology and distribution in patient fibroblasts 

and neurons (Regmi et al., 2014, Wang et al., 2009a, Wang et al., 2009b, Wang et al., 

2008). Qualitative assessment of the mitochondrial network has relied on researcher 

defined descriptors to measure normal or aberrant shape. Questions arise however, as 

to whether conclusions on changes in the dynamic complex can be solely based on 

such qualitative characterizations. Mitochondria morphometric analyses have evolved 

from just purely observational to more quantitative methods. Quantitative description 

of mitochondrial biology uses microscope techniques and sophisticated image analyses 

software to give another method of measurement, which is less reliant on researcher 

defined categories. Microscopy techniques such as fluorescence recovery after 

photobleaching (FRAP) and the use of photoactivatable mitoGFP allows for the 

monitoring of interconnectivity and mitochondrial fusion (Karbowski et al., 2004, 
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Girard et al., 2012, Westrate et al., 2014, Mortiboys et al., 2008). These techniques are 

preferred in cells where the mitochondria are less motile and therefore are not always 

suitable, particularly in cells where networks are very dynamic (Berman et al., 2008).  

 
Increased fusion increases the interconnectivity and branching of the mitochondrial 

network. Measuring mitochondrial branching and the slightly ambiguous “mass” 

(mitochondrial content including mtDNA and encoded proteins) have also been used 

to describe increased size of the mitochondrial network in neurodegeneration (Arthur 

et al., 2009, Mortiboys et al., 2008, Wang et al., 2009b).  However an increase in 

mitochondrial fusion and branching may not cause an increase in the total 

mitochondrial mass of the cell as it may be counteracted by mitochondrial clearance or 

biogenesis. Therefore these analyses are rarely used in isolation. Assessing the 

mitochondrial volume may be a better indicator of mitochondrial phenotype as a 

geometric analysis of both shape and size. 

 
In more dynamic cells such as neurons, it has been argued that the best measure of 

mitochondrial morphology should be the rate of fission to fusion events measured by 

time lapsed microscopy (Lovy et al., 2012). While these can be very precise means of 

analyses, problems can arise due to having to impose artificial fusion, prolonged 

imaging time and toxic consequences of some fusion assays causing cell death and 

skewed data (Lovy et al., 2012, Karbowski et al., 2004). Sole use of these methods can 

lead to varying descriptions of mitochondrial phenotype which can be quite restricted 

and limited, missing subtle variations and therefore leading to a reclassification of 

morphology not accounted for in previous studies. 

This thesis builds on work published by the Chapple Group, combining qualitative 

assessment of the mitochondrial phenotype blind to experimental status and 

quantitative morphometric analyses to further define the mitochondrial network 

morphology associated with loss of sacsin function. Specifically, in this chapter, the 

mitochondrial morphology of siRNA-mediated sacsin knockdown fibroblasts and Dutch 

ARSACS patient fibroblasts are described.  
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3.2 Quantitative Mitochondria Network Analyses in Sacsin 

Knockdown Fibroblasts 
 
Fibroblasts were transiently transfected with previously validated siRNAs for SACS 

mRNA along with mitochondria targeted red fluorescent protein, mitoDsRed, to 

reduce the levels of sacsin (SACS) and visualize mitochondria respectively. A scrambled 

non- targeting siRNA was also transiently transfected along with mitoDsRed as a 

control (SCRM). In these experiments, it was assumed that cells which expressed 

mitoDsRed had also been transfected with the siRNAs. 

 

3.2.1 Volumetric and Numerical Analysis in Sacsin Knockdown 

Fibroblasts 
 

Confocal image analyses revealed that the mitochondrial morphology in control 

fibroblasts was a mixture of tubular and elongated phenotypes with very few cells 

showing bulbous hyperfused structures (Figure 3. 4A). In contrast, the mitochondrial 

network in fibroblasts with reduced levels of sacsin appeared more compact and 

interconnected (Figure 3. 4A). More distinctly, significantly more sacsin knockdown 

fibroblasts displayed hyperfused mitochondria structures (Figure 3. 4A). Of interest, 

the morphology of the mitochondria in sacsin knockdown fibroblasts is similar to those 

of Canadian ARSACS patients carrying 8844delT sacsin mutation described by Girard et 

al (Girard et al., 2012). Hyperfused, highly interconnected mitochondrial networks are 

suggestive of a disruption of the dynamic equilibrium (Girard et al., 2012, Smirnova et 

al., 1998, Lee et al., 2004). 

 

To further analyse the morphology of the mitochondrial network in a more 

quantitative manner, confocal Z-stacks through the whole cells were taken, on 

average, 30 images were acquired in the Z-dimension through approximately 13 µm. 

Subsequently three-dimensional (3D) reconstructions of the mitochondrial network 

were performed using the Surpass module of Imaris (Figure 3. 5). Imaris analysed the 

voxel (pixel depth) data collected in Z-stacks, using multiple volume rendering 

algorithms, to produce an artificial multidimensional object. This allowed for the 
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measurement of mitochondrion volume, mitochondria number and total (global) 

mitochondrial volume within a given cell.  

 

For volumetric and quantitative analysis, an active threshold defined by the Imaris 

algorithm was used to ensure that only separate discernible structures were captured 

and calculated (Figure 3. 5). To further eliminate background, surfaces were classified 

as real surfaces as long as their pixel depth was above 10.00 voxels (Figure 3. 5). These 

analyses show that there were significantly (p≤0.001) less individual mitochondria per 

cell in SACS knockdown fibroblasts, compared to controls, with the mean number of 

30.8 ±2 and 52.6 ±3.6 mitochondrial objects respectively (Figure 3. 6A-B). The total 

volume of the entire mitochondrial network within a cell (global volume) and the 

average volume of an individual mitochondrion were collected for both SCRM and 

SACS fibroblasts (Figure 3. 6C, D). While there was no significant difference in the 

global mitochondrial volume between the knockdowns and controls (Figure 3. 6D) 

there was a significant (p≤0.01) difference in the average volume for an individual 

mitochondrion (Figure 3. 6C). The average mitochondrion volume was larger in SACS 

knockdown 151.1µm3 ± 15.5µm3 compared to SCRM controls 104.9µm3 ± 10.6µm3. 

Furthermore, the distribution histogram indicates a subtle shift in the frequency of the 

volume data toward larger mitochondria, with an increase in the number of 

mitochondria having volumes larger than 701µm3 in the SACS fibroblast (Figure 3. 6E). 

This is in keeping with hyperfused structures observed in the confocal images and 

supports volume analysis described in Girard et al 2012 (Girard et al., 2012).  

 

A decrease in the number of mitochondria and an increase in mitochondrial size or 

volume is indicative of a problem in the regulation of dynamic equilibrium. Further 

investigation of mitochondrial morphology in patient fibroblast will increase 

understanding of the mitochondria phenotype of ARSACS. 
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Figure 3. 4 Altered mitochondrial morphology in sacsin knockdown fibroblasts. 

Fibroblast were transfected with mitoDsRed and either SCRM or SACS siRNAs. Confocal 

Z-stacks were taken 48 hours post transfection. A) Confocal images showing 

knockdown and control fibroblast. Yellow arrows in zoomed panels show hyperfused 

mitochondrial structures B) Quantification of the percentage of fibroblasts with 

hyperfused structures scored for cellular phenotype with investigator blinded to 

experimental status. Scale bars represent 10µm. ‡≤ 0.05, 50 cells from 3 experiments 

n=150. 
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Figure 3. 5 Workflow of Imaris 3D image rendering. 
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Figure 3. 6 SACS knockdown fibroblast had fewer mitochondria and a larger 
average mitochondrial volume. 

Representative images of fibroblasts transfected with mitoDsRed and either 

SCRM or SACS siRNAs. Confocal Z-stacks were taken 48 hours post transfection. 

Imaris image analysis software was used to surface render the mitochondrial 

network for morphometric analysis.  B) The mean number of mitochondria per 

cell. C) The average mitochondrial volume for a single mitochondrion. D) The 

mean global mitochondrial volume (volume of the entire mitochondrial 

network). E) Distribution histogram of mitochondrial volume. Arrow highlights 

the increase in larger mitochondria observed. Scale bars represent 10µm. ‡p≤ 

0.05, ‡‡p ≤ 0.01, ‡‡‡p ≤ 0.001. Error bars are presented as ± standard error of 

the mean ( SEM) unless otherwise stated.  
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3.3 Validation of Sacsin Mutations and Sacsin levels in ARSACS 

Patients 
 

Four ARSACS patient fibroblast cell lines were a generous gift from Dr Vermeer, 

Netherlands. Skin biopsies of ARSACS patients were taken by clinicians in Nijmegen 

and primary fibroblasts were cultured and sub-cultured. Dr Vermeer holds ethical 

approval for the collection of fibroblasts from these patients. Cells were only sent to us 

after they had been expanded through to passage four and thus would not be 

considered relevant material by the UK Human Tissue Authority. The mutations of the 

ARSACS patients and consequent effect on sacsin expression were confirmed before 

any further examination. Genomic DNA was extracted from the fibroblasts using 

GenElute kit and used for direct sequencing. Sequencing of genomic DNA from the four 

ARSACS patients confirmed previously described mutations (Vermeer et al., 2008, 

Vermeer et al., 2009). Three of the ARSACS patients, patients 1, 2 and 3, carried 

compound heterozygous mutations in SACS whilst patient 4 carried a homozygous 

mutation (Figure 3. 7A-D). Patient 1 had a nonsense mutation Q4054* and splice site 

mutation c.2094-2 A>G (Figure 3. 7A), patient 2 had a missense mutation R4331Q and 

nonsense mutation K1715* (Figure 3. 7B). Patient 3 also had a nonsense mutation and 

a frame shift mutation caused by a 4 base pair deletion (Figure 3. 7C). Lastly, patient 4 

had a homozygous in frame, 3 base pair deletion leading to loss of conserved 

glutamine at amino acid 2801, within the third HSP90 like domain of sacsin.  The 

nonsense mutation in the second HSP90 like domain and missense mutation in patient 

1 result in a truncation and loss of transcript by nonsense mediated decay respectively 

(Figure 3. 8A-B). Vermeer et al describe that the missense mutation in the acceptor site 

leads to skipping of exon 5 and the introduction of a premature termination codon 

(Vermeer et al., 2008). The missense mutation R4331Q in patient 2 is a mutation of a 

conserved amino acid in the highly conserved J-domain and was predicted to lead to a 

loss of function, however Parfitt et al has since disputed this hypothesis (Figure 3. 

8B,D),  using a bacterial complementation assay, they demonstrated that an 

introduction of the R4331Q mutation into the sacsin chimeric protein did not abolish 

or reduce J-domain function (Parfitt et al., 2009, Vermeer et al., 2008).  It is important 
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to note that bacterial complementation assays do have their limitations as they are not 

a mammalian system looking at human protein-protein interactions. The frame shift 

mutation of arginine in patient 3 introduces a premature truncated protein (Figure 3. 

8A-B). In this study, the patients will be identified by their specific mutations. 

Immunoblot analysis of lysates from patients fibroblasts revealed no detectable sacsin 

in patients c.2094-2 A>G/Q4054* and patient R2002fs/Q4054* using carboxy-terminus 

sacsin antibody (r-sacsin4489-4503). Sacsin was detected in patient 2801delQ and patient 

R4331Q & K1715* (Figure 3. 8C). 
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Figure 3. 7 Sequence chromatograms confirming compound heterozygous 

SACS mutations in Dutch ARSACS patient fibroblasts. 

Patient 1 had splice site mutation  c.2094-2 A>G and nonsense mutation 

Q4054*  B) Patient 2 had nonsense mutation K1715* and missesnse mutation 

R4331Q C) Patient 3 had frame shift mutation R2002fs and Q4054*  D) Patient 

4 is the only patient in this study with a homozygous mutation p2801delQ. 
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Figure 3. 8 Predicted consequences of patient SACS mutations. 

Schematic representation of sacsin protein showing relative positions of 

ARSACS mutations. B)  Predicted consequences of SACS mutation on each 

allele. C) Sacsin immunoblot of control and ARSACS patients fibroblasts. No 

detectable sacsin in patients c.2094-2A>G/Q4054* and R2002fs/Q4054* using 

C-term sacsin antibody. In contrast, sacsin was detected in patients 

K1715*/R4331Q and 2801delQ. 
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Figure 3. 8 continued Predicted consequences of patient SACS mutations. 

D) Sequence alignment of HSP90 like region 1 of sacsin, amino acids 2509-2828. 

Conserved residue Q2801 is shaded in red E) Sequence Alignment of highly conserved 

sacsin J-Domain, amino acids 4293-4393.  Amino Acid R4331Q, mutated in ARSACS is 

highly conserved, depicted by red shading. The highly conserved histidine-proline-

aspartic acid (HPD) motif is denoted by Pink box. 
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3.4 Mitochondrial morphology of ARSACS Patients 
 
ARSACS patients and control fibroblasts were stained with anti- Tom20 (Translocase of 

Outer Membrane 20) for mitochondria and nuclear stain, 4’,6-diamidino-2-

phenylindole (DAPI). Morphological phenotypes counted, were blind to experimental 

status and scored following confocal imaging (Figure 3. 9). Cells where the majority of 

the mitochondrial network was situated in close proximity to the nucleus and where 

remote cytoplasmic regions were mostly devoid of mitochondria, were classified as 

collapsed (Figure 3. 3) (Wang et al., 2008). ARSACS patients’ fibroblasts displayed a 

more interconnected, perinuclear collapsed mitochondrial network than controls 

(p≤0.0001) (Figure 3. 9B). Patient K1715*/R4331Q had the most severe collapsed 

phenotype with collapsed network being the predominant mitochondrial phenotype 

(Figure 3. 9A-B). Although the bulbous, hyperfused phenotype observed in Canadian 

ARSACS patients as well as in the knockdowns was absent in these patients the 

compact, interconnected network was similar to that described in sacsin knockdown 

fibroblasts above. 

 

3.4.1 Volumetric and Numerical Analysis in ARSACS Fibroblasts 

Morphometric analysis of ARSACS fibroblasts were carried out similarly to SACS 

fibroblasts. To analyse the mitochondrial morphology, fibroblasts were incubated with 

100nM MitoTracker for 30 minutes. Live confocal Z-stack images of the mitochondria 

were subsequently taken and used to generate maximum intensity projections. Imaris 

was used to generate surface rendered, 3D images and to calculate the number of the 

mitochondria and volume.  MitoTracker is capable of passive diffusion through the cell 

membrane and into active mitochondria, thereby staining the mitochondria.  Using 

this probe for live cell imaging ensured that changes in mitochondrial shape were not 

due to artefacts caused by fixation methods prior to immunocytochemistry.  

There was a significant decrease (p≤0.01) in the number of mitochondria in patient 

2801delQ (57.18 ± 4.11µm3) when compared to control (80.42 ± 5.79µm3). There were 



Mitochondrial Network Morphology                               Chapter 3 

_______________________________________________________________________ 

128 
 

small differences in the number of mitochondria in patients c.2094-2A>C/Q4054* 

(76.60 ± 5.80µm3), K1715*/R4331Q (69.34 ± 9.84 µm3), R2002fs/Q4054* (81.20 ± 

4.11µm3) however these differences were not statistically significant (Figure 3. 10B). 

All of the patient fibroblasts had an increase in their average mitochondrial volume 

compared to control (Figure 3. 10). The largest average mitochondrial volume of 162 ± 

32.31µm3 was recorded in patient R2002fs/Q4054*, significantly (p≤0.0001) more than 

the average volume of 52.3µm3 ± 6.81µm3 observed in the controls (Figure 3. 10C).  

The increase in the average mitochondrial volume observed in the other patients did 

not reach statistical significance. The smallest average mitochondrial volume of the 

patients was seen in patient 2801delQ 92.13µm3 ± 17.77µm3 and the average 

mitochondrial volumes in patient K1715*/R4331Q and patient c.2094-2A>C/Q4054* 

were 97.53µm3 ± 18.48µm3 and 97.13µm3 ± 15.60µm3 respectively. Following on from 

these measurements, the mean total volume of the entire mitochondrial network was 

calculated. A significant (p≤0.0001) increase in the volume of the mitochondrial 

network was observed in patient R2002fs/Q4054* (623.24 ± 61.01 µm3) and 2801delQ 

480.16 ± 45.92 µm3) when compared to control (257.78 ± 19.97 µm3). No statistical 

difference in the total mitochondrial network volume was observed between the 

control and patients c.2094-2A>C/Q4054* (341.57 ± 27.03 µm3) and K1715*/R4331Q 

(370.78 ± 32.79 µm3) (Figure 3. 10D).  In addition there was an increase in the 

frequency of larger mitochondria observed in all patients when compared to control 

fibroblast (Figure 3. 10E). This increase was particularly highlighted in the frequency of 

mitochondria with volumes between 100-199 µm3 and with the larger volumes of 500-

599 µm3. There was a higher frequency of mitochondria with volumes between 100-

199 µm3 in patient fibroblasts (Figure 3. 10F). Of note there were no mitochondria with 

volumes over 400µm3 in control fibroblasts. 

The increased interconnectivity of the mitochondria in the ARSACS patient fibroblasts 

was indicated by the decrease in number of discrete mitochondria as well as an 

increase in frequency of mitochondria with larger volumes (Figure 3. 10E). This is in 

keeping with the inverse relationship between mitochondrial volume and number in 

SACS null cells presented earlier, as well as previous data where an increase in 
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mitochondrial volume and decrease in mitochondrial number was described (Girard et 

al., 2012).  
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Figure 3. 9  Mitochondrial morphology differs in ARSACS patients compared 

to control. 

Confocal immunofluorescent images of ARSACS patients and control dermal 

fibroblasts. Cells were immunostained with Tom20 (red) and DAPI (blue) to 

visualise the mitochondria and nucleus respectively. B) Quantification of the 

percentage of fibroblasts with collapsed mitochondrial networks was 

performed. (mean ±SEM, n=3 30 cells counted per experiment) Scale bars 

represent 10µm ‡‡‡‡ p≤0.0001 
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Figure 3. 10 Mitochondrial morphology of ARSACS patients. 

Representative images of ARSACS patients and control fibroblasts incubated 

with 100nm of MitoTracker for 30mins at 37°C. Confocal Z-stacks were 

subsequently taken. Imaris image analysis software was used to surface render 

the mitochondrial network for morphometric analysis as described earlier.   
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Figure 3. 10 continued Mitochondrial morphology of ARSACS patients.  

B) The mean number of mitochondria per cell. C) The average mitochondrial volume 

per cell. D) The mean global (entire network) mitochondrial volume. 
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Figure 3. 10 continued Mitochondrial morphology of ARSACS patients. 

E) Distribution histogram of mitochondrial volume. Arrows highlight the change in 

distribution to the right. F) Frequency of mitochondria with volumes between 100-199 

µm3 and 500-599µm3. Scale bars represent 10µm. ‡‡p < 0.01 ‡‡‡‡p < 0.0001. Error 

bars are presented as ± SEM.  
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3.5 Cytoskeletal Structure in Sacsin Knockdown and ARSACS 

Fibroblasts.  
 

The cystoskeleton can influence mitochondrial network organisation and distribution. 

Capable of both retrograde and anterograde transport along microfilaments and 

microtubules, mitochondrial trafficking is important for biogenesis and distribution of 

mitochondria (Morris and Hollenbeck, 1995, Ligon and Steward, 2000, Davis and 

Clayton, 1996). As semi-autonomous organelles it is hypothesised that mitochondrial 

biogenesis happens at close proximity to the nucleus, due to the requirement of 

nuclear-encoded gene products for mtDNA replication and expression with 

mitochondria then migrating to other cellular locations (Davis and Clayton, 1996). 

Trafficking is also responsible for transportation of mitochondria to areas with high 

energy requirements.  

Disruption of cytoskeletal structure can lead to the redistribution of mitochondria, 

shifting the transport toward anterograde transport (Morris and Hollenbeck, 1995). 

Depolymerisation of the microtubules by anti mitotic agent nocodazole or colcemid 

was shown to cause the collapse of the mitochondrial network toward the nucleus by 

disrupting the filamentous structure (Koutsopoulos et al., 2010, Heggeness et al., 

1978). Interestingly, a similar mitochondrial phenotype was observed in cultured 

hippocampal neurons transduced with lentiviral encoded SACS shRNA and now, in 

ARSACS patient fibroblasts (Girard et al., 2012). 

The collapsed cellular phenotype observed in the patient fibroblasts as well as 

previously reported observations mentioned above by Girard et al, led to the 

examination on the cytoskeletal structure in sacsin knockdown and the ARSACS patient 

fibroblasts. This was to determine whether the mitochondrial collapsed phenotype 

observed was due to a defect in microtubule structure rather than an inherent 

problem in mitochondrial dynamics. Using fibroblasts prevented the exploration of 

association of intermediate filaments with mitochondrial distribution and shape, as 

previous studies have suggested that mitochondria are associated with microtubules in 
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conjunction with their motor proteins and not with intermediate filaments in cultured 

fibroblasts (Ball and Singer, 1982, Heggeness et al., 1978, Lackner, 2013). 

 

3.5.1 Microtubule Structure in Sacsin Knockdown Fibroblasts. 
 

Fibroblasts were transiently transfected with siRNAs targeting SACS mRNA (SACS) 

along with a plasmid expressing green fluorescent protein (GFP). A scrambled non- 

targeting siRNA was also transiently transfected as a control (SCRM) again with GFP. In 

these experiments, it was assumed that cells expressing GFP were successfully 

transfected with the siRNAs. Fibroblasts were fixed and stained for β-tubulin 48 hours 

post transfection. 

 
There was, visually, no significant difference observed in the microtubule structure of 

SACS fibroblasts when compared to SCRM fibroblasts (Figure 3. 11). The microtubule 

network in SACS fibroblasts appeared to be organised and very similar to that of SCRM 

fibroblasts. Therefore the hypothesis that the mitochondrial phenotype observed in 

sacsin knockdown fibroblasts was due to microtubule disruption, was not pursued 

further. 

 

3.5.2 Microtubule Structure in ARSACS Fibroblasts. 
 
Patient and control fibroblasts were grown until they were 70% confluent. After which 

they were fixed and stained with β-tubulin to visualise the microtubule structure 

within the fibroblasts. 20 cells were imaged for each patient and control. 

The microtubule structure observed in the patients was very similar to those observed 

in the controls (Figure 3. 12). Like in the SACS fibroblasts, there were no striking 

differences between the patients and the controls to be reported. The microtubules 

appeared relatively organised with a filamentous network which extended to the 

periphery of the cell. 
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Figure 3. 11 Representative images of microtubules (red) and GFP 

Fibroblast were transfected with GFP and either SCRM or SACS siRNAs. Confocal 

images were taken 48 hours post transfection. Cells were fixed and stained with β-

Tubulin. 
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Figure 3. 12 Microtubule structure was similar in ARSACS patients and control. 

Confocal immunofluorescent images of ARSACS patients and control dermal 

fibroblasts. Cells were immunostained with β-Tubulin (green) and DAPI (blue) 

to visualise the microtubules and nucleus respectively. 
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3.6 Discussion 
 

Mitochondrial fusion and fission are important regulators of mitochondrial function. 

Perturbations of mitochondrial dynamics can greatly impact the regulation of other 

cellular processes as well as mitochondrial function.  

The mitochondrial phenotype in fibroblasts with reduced levels of sacsin protein or 

loss of sacsin function due to mutations in SACS, is similar to that of the mitochondrial 

network in cells with knockdown of mitochondrial fission proteins or over expression 

of mitochondrial fusion proteins.  As the microtubule network in the SACS and ARSACS 

fibroblasts tend to resemble that of the controls, supports that this phenotype is likely 

due to a defect in mitochondrial dynamics. Sacsin, like Drp1 and fission adapters, is 

possibly indirectly involved in mitochondrial distribution. The collapsed morphology in 

ARSACS fibroblasts is similar to the morphology noted in patient carrying embryonic 

lethal Drp1 mutation (Chen and Chan, 2009, Waterham et al., 2007). Furthermore both 

phenotypes observed in the SACS and ARSACS fibroblasts have been observed in cells 

transfected with dominant negative Drp1 or Drp1 RNAi (Wang et al., 2008, Li et al., 

2004, Smirnova et al., 1998).  The hyperfused and collapsed mitochondrial network 

phenotypes were shown to be indicative of a loss of Drp1 function (Smirnova et al., 

1998, Wang et al., 2008).  

 

The subtle differences in the mitochondrial volume and number for the patients may 

be due to sacsin’s role in mitochondrial dynamics. The severity of the mitochondrial 

phenotypes due to loss of mitochondrial dynamic proteins has been shown to vary 

depending on the protein and the pathway effected. For example, reduction in the 

levels of mitochondrial fission protein Fis 1 results in the mitochondria having a more 

elongated shape. It has been demonstrated that this effect on mitochondrial 

morphology is somewhat subtle in mammalian cells when compared to controls. 

Moreover the change in morphology caused by reduced Fis 1 has also been shown to 

be less dramatic than the changes in morphology brought about by reduction in Mff or 

Drp1 (Otera et al., 2010).   
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Of interest, the global mitochondrial volume did not vary greatly between SACS and 

SCRM fibroblasts. This would suggest that mitophagy and biogenesis are continuing to 

occur in the absence of sacsin. If this were not the case the cells would not be viable. 

This data is similar to that of mitochondrial fission proteins MFF, MiD51/49 and hFIS 

(Gandre-Babbe and van der Bliek, 2008, Losón et al., 2013, Palmer et al., 2013). 

Moreover this data is particularly interesting as mitochondrial turnover heavily relies 

on the fission process. Both mitochondrial biogenesis and mitophagy occur through 

pathways involving the fragmentation of the mitochondrial network. Loss of sacsin 

may therefore decrease the rate of fission. Further investigation on the rate of 

fission/fusion is needed to establish this hypothesis. Although this finding was similar 

in 2 of the patients compared to control, a significant reduction in the number of 

mitochondria was evident in patient 2801delQ and both patients 2801delQ and 

R2002fs/Q4054* showed a significant increase in mitochondrial network volume 

therefore it is important not to disregard  problems in mitochondrial biogenesis and 

clearance. 

 
Controversially, increasing mitochondrial fusion events have been postulated to be 

potentially beneficial in treating Parkinson’s and Alzheimer’s disease, as delayed 

apoptosis may allow time for the mitochondria to share contents with the network, 

potentially “healing” repairable mitochondria (Cereghetti et al., 2010, Lutz et al., 2009, 

Qi et al., 2013, Bonda et al., 2011). However, it is well established that the disruption 

of mitophagy can lead to the accumulation of toxic by-products within the 

mitochondria. Consequently, these toxins can damage the mitochondria and lead to 

cell death (Uo et al., 2009). These and previous results may find a possible role for 

sacsin in indirect regulation of cell death through regulation of mitochondrial 

morphology. 

 
The results imply that the observed interconnected, collapsed mitochondrial network 

is in some way linked to the loss of sacsin function.  Further examination of the fission 

process as well as the effects of this change in morphology will be addressed. As novel 

pathways and proteins involved in regulation of mitochondrial dynamics are being 
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investigated, more standardized tests are needed. Moreover the development of a 

systematic quantitative classification that can be applied to multiple studies would 

facilitate comparison between studies from different groups on different components 

of the machinery that regulates mitochondrial dynamics. 
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4.1 Introduction 
 

The morphological phenotype of the mitochondrial network in sacsin knockdown and 

ARSACS patient fibroblasts is consistent with increased fusion or reduced fission.  

Importantly, our lab along with our Canadian collaborators, established a link between 

sacsin and the essential mitochondrial fission protein Drp1.  Immunofluorescence 

analysis revealed that sacsin partial overlaps with Drp1 foci at mitochondria. 

Moreover, an interaction between the N-terminus of sacsin (residues 1-1368) and 

Drp1 was identified through co-immunoprecipitation (Girard et al., 2012). These 

results, coupled with the mitochondrial phenotype observed in SACS knockdown cells 

and ARSACS patients (Chapter 3 of this thesis) suggest a role for sacsin in 

mitochondrial fission. 

Drp1 is crucial for normal mitochondrial fission and subsequently for mitochondrial 

distribution, shape and function (Waterham et al., 2007, Wang et al., 2008, Chen and 

Chan, 2005, Hemach et al., 2011, Wakabayashi et al., 2009). Drp1 is localised 

throughout the cytosol and at foci on mitochondria – with approximately 3% of the 

protein reported to be at mitochondria under normal physiological conditions 

(Smirnova et al., 2001).  For fission to occur Drp1 monomers/dimers in the cytosol are 

recruited to mitochondria, where they form higher order scission complexes that 

undergo conformational change driven by GTP-hydrolysis, which is believed to 

constrict mitochondria  (Figure 4. 1). Although better understood in yeast, the process 

of Drp1 recruitment is still enigmatic in mammalian cells.  
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Figure 4. 1 Schematic and images of Drp1 recruitment to mitochondria. 

Drp1 is recruited from the cytosol to sites of potential fission. The protein 

forms oligomeric ring-like structures where scission can occur. B) 

Representative confocal image showing mitochondria (red) with associated 

Drp1 foci (green). The majority of Drp1 foci are found in the cytsol with a small 

percent localised to the mitochondria. Once localized to the mitochondria, 

Drp1 can form oligomeric spirals. C) 3D surface rendering of confocal image. 

Arrows 1 and 2 clearly show the Drp1 “wrapped” around the mitochondria. D) 

Zoomed in image of site 1 shown in C. Arrow highlights the Drp1 ring like Drp1 

foci E) Zoomed in image of site 2 shown in C. Arrow highlights the ring like Drp1 

foci.  
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In Yeast, mitochondrial fission adaptors Mdv1 and Caf4 are as much essential 

components of the mitochondrial division machinery as Dmn1, the yeast Drp1 

orthologue. During fission Dmn1 is recruited to the mitochondria via Mdv1 to Fis1 at 

the outer mitochondrial membrane. Once bound to Fis1, Mdv1 co-assembles with 

Dnm1 to form oligomeric spirals around mitochondria (Naylor et al., 2006, Bhar et al., 

2006, Bui et al., 2012).  These oligomers then undergo conformational change, causing 

scission of the mitochondria and ultimately fission occurs. The loss of Drp1 oligomers 

and/or protein involved in the recruitment of Drp1 prevents fission.  

Mammalian cells lack orthologues of the yeast mitochondrial fission adaptors Mdv1 or 

Caf4 (Palmer et al., 2011c) and are capable of undergoing hFis 1 independent Drp1 

mediated fission (Koch et al., 2005, Chang and Blackstone, 2010a, Suzuki et al., 2003). 

It is therefore postulated that identified mammalian mitochondrial fission proteins 

Mff, hFis1, MiD49 and MiD51 bind and sequester Drp1 to the outer mitochondrial 

membrane facilitating oligomerisation and subsequent scission and may therefore act 

as an alternate mechanism for Drp1 recruitment in mammalian cells (Figure 4. 1) 

(Palmer et al., 2011a, Palmer et al., 2011c, Palmer et al., 2013). Moreover, although 

mechanisms regulating oligomeric assembly and stabilisation of Drp1 in mammalian 

cells remains unclear, it is postulated that Mff, hFis1, MiD49 and MiD51 have a role 

similar to that of Mdv1 in yeast (Palmer et al., 2013). It is important to note that these 

proteins are not wholly essential for mitochondrial fragmentation as loss or reduced 

expression does not obliterate fission (Palmer et al., 2011a, Gandre-Babbe and van der 

Bliek, 2008, Zhao et al., 2011, Losón et al., 2013). This phenomenon suggests a 

complex recruitment mechanism for Drp1 in mammalian cells with the possibility of 

additional unidentified accessory proteins (Koirala et al., 2013, Chen and Chan, 2005, 

Wilson et al., 2012). 

In this chapter, the effect of loss of sacsin function on mitochondria associated Drp1 

recruitment was investigated to further establish cellular pathogenic mechanisms of 

ARSACS. 
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4.2 Localisation of mitochondrial fission protein Drp1 in Sacsin 

Knockdown Fibroblast 
 

Fibroblasts were transfected with mitoDsRed along with either SACS or SCRM siRNA. 

Cells were fixed and stained with anti-Drp1 (green) and DAPI (blue). Confocal imaging 

was performed and two methods were employed to quantify Drp1 localisation.  

 

4.2.1 Quantification of Drp1 Localised to the Mitochondria in 

Sacsin Knockdown Fibroblasts 
 

Firstly, the number of Drp1 foci per micrometer of mitochondrial length was 

determined using the line trace function of the LSM510 confocal software (Zeiss). Line 

trace measured the intensity of both the red and green channel along individual 

mitochondria (Figure 4. 2A). Peaks in green intensity along this line represented Drp1 

foci (Figure 4. 2A-B). The number of Drp1 foci along the measured length of 

mitochondria was then collated from the graphical and tabular output. Six individual 

mitochondria were measured in twenty fibroblasts from three separate experiments 

and the number of Drp1 foci was quantified. This gave an n of 120 mitochondria 

measured for each treatment in three experimental replicates. 

 
The Surpass and Co-loc, co-localisation module of Imaris, were used in conjunction 

with this analysis to quantify the degree of overlap between Drp1 foci and 

mitochondria in the fibroblasts. Surpass was used to define the mitochondria as 

regions of interest for analysis. The creation and subsequent application of the 

masking channel in Coloc excluded areas that were attributed to non specific 

background staining and areas of no signal (Figure 4. 2C). Following this, the thresholds 

were automatically calculated and statistical data exported (Figure 4. 2C).  

 
Manders’ coefficient was used to measure the colocalized overlap of Drp1 (green) and 

mitochondria (red). This method was chosen due to its properties as a good method of 

analysis for proteins with diffuse localisation patterns (Costes et al., 2004). Manders’ 
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coefficient is based on the Pearson’s coefficient, however unlike Pearson’s, the 

Manders’ equation does not take the intensity of the signal being analysed into 

consideration again making it suited for proteins like Drp1 which is primarily diffuse 

throughout the cytoplasm (Equation 1) (Costes et al., 2004, Manders et al., 1996). 

Manders’ coefficient is sensitive to thresholding therefore outputs heavily rely on the 

thresholds set to distinguish real signal from background.  The coefficient ranges in 

values from 0 (corresponding to no overlapping) to 1 (representing 100% overlap).  

 

Equation 1 Manders’ Coefficient.  

Ri =grey voxel (i) values of Red Ichannel.  Gi = grey voxel of Green (G) channel 

 

Imaris Coloc automatic threshold was used to remove any researcher bias as the 

software uses the Costes algorithm. This algorithm is based on the two-dimensional 

histogram of both channels which is then used to compute the overall fraction of each 

protein being colocalized. This computation calculates the probability that a given area 

will have a p –value of <95% and identifies colocalized pixels based on the overall 

fraction of overlapping proteins (Costes et al., 2004).  

 

For the colocalization analysis, Z-stacks were collected from five fibroblasts in three 

experiments from each condition. The difference in the amount of Drp1 colocalization 

with mitochondria was insignificant with Manders’ coefficient for SCRM and SACS 

siRNA treated fibroblasts being 0.092 ± 0.005 and 0.061 ± 0.004 respectively (Fig 4.3C). 

However, measuring the number of Drp1 foci localised to the mitochondria showed 

reduction in Drp1 foci per micrometer of mitochondria in SACS fibroblasts (Fig 4.3B). 

On average, fibroblasts transfected with SACS siRNA had 0.68 ± 0.039 Drp1 foci per µm 

of mitochondria compared to 0.81 ± 0.047 Drp1 foci per µm of mitochondria for 

scrambled controls. This reduction in Drp1 foci associated with mitochondria in SACS 

knockdown cells was significant (p=0.02) (Figure 4. 3B).   
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Figure 4. 2 Quantification methods used for analyses of Drp1 mitochondrial 

localisation. 

Fibroblasts were transfected with mitoDsRed along with either SACS or SCRM siRNA.  

Cells were fixed and stained for Drp1 (green) 48hours post transfection.  Line traces 

were performed along the length of the mitochondria (red) and the number Drp1 foci 

(green peaks) were counted. A-B) Representative, zoomed images  and their 

corresponding line traces for each condition. Line traces are indicated by white line 

and arrows on the confocal image.  C) Imaris workflow for quantifying Drp1 

colocalization with mitochondria in SCRM and SACS fibroblasts.  
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Figure 4. 3  Reduced localisation of Drp1 foci to mitochondria was observed in SACS 

fibroblasts 

Representative confocal images of SACS and SCRM fibroblasts. Fibroblasts were 

transfected with mitoDsRed along with either SACS or SCRM siRNA. Cells were fixed 

and stained for Drp1 (green) 48 hours post transfection. The white box in the merged 

panel is shown zoomed in the panel on the far right. White arrows indicate Drp1 foci in 

close proximity to mitochondria. Yellow arrows show areas of hyperfusion in SACS 

fibroblasts. B) Quantification of  the mean number of Drp1 in SACS and SCRM 

fibroblasts, showed reduced Drp1 foci per µm of mitochondria. Line traces were 

performed along the length of  mitochondria (red)  and the number Drp1 foci (green 

peaks) were counted. 6 mitochondria were analysed per cell in 20 fibroblasts per 

experiment. 3 experiments for each condition were analysed. C) Drp1 colocalisation 

with mitochondria was analysed using the Coloc module of Imaris in 15 cells (5 x 3 

experiments) from each condition.  Z-stacks were collected and used to establish the 

degree of colocalisation. This was expressed as Manders coefficient of 

Drp1/mitochondria. Error bars represent SEM,  ‡ p=0.02 Scale bar = 10µm  
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4.2.2 Effect of Induced Fission on Drp1 Localisation in Sacsin 

Knockdown Fibroblasts 
 

The previous results showing a reduction of Drp1 foci at mitochondria would suggest 

that there is a defect in the Drp1 recruitment in sacsin null cells. To investigate if 

knockdown fibroblasts were fully fission competent, cells were exposed to 20µM 

carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 1hr before mitochondrial 

morphological analysis. Carbonyl cyanide m-chlorophenyl hydrazone inhibits oxidative 

phosphorylation leading to uncoupling of the proton gradient and resulting in 

mitochondrial fragmentation through unopposed Drp1 mediated fission (Legros et al., 

2002).  

Fibroblasts were transfected with mitoDsRed and either SACS or SCRM siRNA.  The 

fibroblasts were fixed and stained for Drp1 (green) and DAPI (blue) 48 hours post 

transfection. Confocal Z-stacks were taken and Imaris was used to surface render 

mitochondria, enabling quantification of the number of mitochondria in each cell as 

previously described. In this instance, for each condition, six mitochondria were 

measured in fourteen cells from three separate experiments. In these experiments, 

successful fission was quantitatively verified by an increase in the number of 

mitochondria. Complete fission appears to occur in SCRM siRNA transfected 

fibroblasts. Small fragmented mitochondria were seen after 1 hour of CCCP treatment 

(Figure 4. 4A). This observation was further validated by quantification using the Imaris 

software.  A large increase in number of mitochondria in SCRM fibroblasts occurred 

after treatment with CCCP (p=0.0002). Untreated SCRM fibroblasts had an average of 

55.89 ± 6.70 mitochondria compared to 95.13 ± 5.60 mitochondria in CCCP treated 

SCRM fibroblasts (Figure 4. 4). CCCP appeared to also induce fission in SACS 

knockdown fibroblasts as there was a small increase in mitochondrial number, 

however this was not significant at the p<0.05 level of significance (Figure 4. 4B). The 

average number of mitochondria went from 34.07 ± 3.22 in untreated cells to 46.88 ± 

5.07 in treated cells. While some degree of fragmentation was observed, in parts, 

hyperfused mitochondrial networks remained (Figure 4. 4A). This was not the case in 

SCRM siRNA transfected fibroblasts (Figure 4. 4A). 
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Interestingly, a small but insignificant increase in Drp1 recruitment was observed after 

treatment with CCCP in SACS knockdown fibroblasts (Figure 4. 4B) 0.42 ± 0.025 Drp1 

foci per µm of mitochondria were recorded in untreated cells whilst 0.52 ± 0.018 Drp1 

foci per µm of mitochondria were present after CCCP. In contrast there was a 

significant increase in Drp1 localisation at the mitochondria after CCCP treatment in 

SCRM controls (Figure 4. 4C). The 1.02 ± 0.028 Drp1 foci per µm of mitochondria in 

untreated rose to 1.41 ± 0.038 Drp1 foci per µm of mitochondria in CCCP treated 

fibroblasts. 
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Figure 4. 4 Drp1 recruitment to mitochondria was reduced in SACS knockdown 

fibroblasts following CCCP treatment. Fibroblasts were transfected with mitoDsRed 

along with either SACS or SCRM siRNA. 48 hours post transfection, cells were 

incubated for 60 mins with 20µM of mitochondrial uncoupler CCCP to induce fission. 

Fibroblasts were then fixed and stained for Drp1 (green). A) Representative confocal 

images showing an increase in mitochondrial fragmentation in control fibroblasts after 

treatment with CCCP. The white box in the merged panel is shown zoomed in the 

panel on the far right. Zoomed panel clearly show hyperfused mitochondria in SACS 

fibroblasts. White arrows indicate Drp1 foci in close proximity to mitochondria.  B) 

Imaris image analysis software was used to 3D surface render the mitochondrial 

network and to quantify the number of mitochondria.  C) The number of Drp1 foci per 

µm of mitochondria was quantified from confocal images. Scale bars represent 10µm 

‡‡‡‡ p≤0.0001 ‡‡‡p≤0.001 
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4.3 Localisation of Mitochondrial Fission Protein Drp1in 

ARSACS Fibroblast 
 

4.3.1 Quantification of Total Drp1 Protein 
 

Immunoblotting and subsequent quantification of total Drp1 in sacsin fibroblasts was 

difficult due to low transfection efficiency with siRNA. This analysis was however 

possible in ARSACS fibroblasts. The immunoblot and densitometry analysis show that 

the total Drp1 protein levels were similar in 4 ARSACS patients and 4 control lines 

(Figure 4. 5A). Fibroblasts were labelled with Tom20 antibody for mitochondria (red), 

Drp1 (green) and nuclear stain DAPI (blue). Confocal images were taken and the 

number of Drp1 foci per µm of the mitochondria was quantified as previously 

described.  Six mitochondria were measured in twenty-five fibroblasts from three 

separate experiments and the number of Drp1 foci was quantified.  

 

4.3.2 Quantification of Drp1 Localised to the Mitochondria in 

ARSACS  fibroblasts 
 
In this instance, five cultured control fibroblasts lines from five healthy individuals 

were compared with the ARSACS patient cell lines (Figure 4. 6). A significant reduction 

(p≤0.0001) of Drp1 foci localised to the mitochondria was observed in all of the 

ARSACS patients when compared to controls (Figure 4. 6A-B). An average of 0.84 ± 

0.028 Drp1 foci per µm of mitochondria was observed in the controls while 

interestingly, patient K1715*/R4331Q which displayed the most collapsed 

mitochondrial network described in chapter 3, had 0.19 ± 0.020 Drp1 foci per µm of 

mitochondria. (Figure 4. 6B). Patients R2002fs/Q4054* and 2801delG had 0.58 ± 0.023 

Drp1 foci per µm of mitochondria and 0.62 ± 0.023 Drp1 foci per µm of mitochondria 

respectively (Figure 4. 6B). Lastly fewer Drp1 foci per µm mitochondria were found to 

be localised to the mitochondria in patient c.2094-2A>G/ Q4054*, with 0.39 ± 0.031 

Drp1 foci per µm of mitochondria recorded (Figure 4. 6B). 
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The degree of overlap between Drp1 (green) and mitochondria (red) was also 

investigated using Imaris image analysis. For these analyses, cells were stained with 

Tom20 red, and Drp1 green. For the colocalization analyses, confocal Z-stacks of 25 

cells were acquired from each of three separate experiments. The colocalization 

highlighted the reduced Drp1 foci localised to the mitochondria in patient 

K1715*/R4331Q with the Manders’ coefficient of 0.08 ± 0.003, the lowest of all of the 

patients (Figure 4. 6C). This was significantly (p≤0.0001) less than the controls and 

agreed with earlier quantification of Drp1 foci per µm of mitochondria. Patients 

R2002fs/Q4054* and patient 2801delG Manders’ results also showed significantly less 

Drp1 localised to the mitochondria than in the controls fibroblasts with values of  0.13 

± 0.005 (p≤0.05) and  0.10 ± 0.12 (p≤0.001) respectively (Figure 4. 6C). In contrast to 

the results obtained from quantifying the number of Drp1 foci localised to the 

mitochondria, these colocalisation results did not show any statistical difference 

(>0.05) in Drp1 localisation between control at 0.17 ± 0.005 and patient c.2094-2A>G/ 

Q4054* 0.15 ± 0.009 (Figure 4. 6C). 
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Figure 4. 5 Western Blot analysis of Drp1 expression in control and ARSACS patients’ 

fibroblasts 

 Densitometric analysis of the western blot revealed similar levels of Drp1 expression 

in patients and controls. Levels were normalised to β-Actin and then to the control. 

Error bars represent SEM. N=3 
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Figure 4. 6 Mutation in SACS impairs Drp1 recruitment to prospective sites of 
fission. 

Fibroblasts were fixed and stained with Tom20 (red) and Drp1 (green). Confocal 

images were taken and line traces were used to quantify the number Drp1 foci 

localised to the mitochondria. Arrows indicate Drp1 foci localised to the 

mitochondria.  B) Quantification of Drp1 foci localised to the mitochondria.  C) 

Colocalization of Drp1 and the mitochondria was quantified in the patients 

represented by Manders’ coefficient. Error bars represent SEM. Scale 

bar=10µm. ‡ p<0.05 ‡‡‡ p≤0.001 ‡‡‡‡ p≤0.0001  
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4.3.3 Effect of Induced Fission on Drp1 Localisation in ARSACS 

Fibroblasts 
 

To investigate if patient fibroblasts were fully fission competent, cells were exposed to 

20µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 1hr before the analysis 

of mitochondrial morphology.  Fibroblasts were fixed and stained with Tom20 (red) for 

the mitochondria, Drp1 (green) and DAPI (blue). Confocal images and Z-stacks were 

collected and analysed as previously described. In these patients and controls, six 

mitochondria where measured in fifteen cells from three separate experiments, for 

each condition.  

Small fragmented mitochondria were seen after 1 hour of CCCP treatment in control 

cells. This was accompanied by an increase in Drp1 localised to the mitochondria. A 

less fragmented mitochondrial network was observed in ARSACS patient cells after 

treatment with the uncoupler. This suggests a partial inhibition of CCCP induced 

mitochondrial fission due to the observed reduction in Drp1 foci localised to the 

mitochondria (Figure 4. 7A). 

 

Quantification of confocal images of fibroblasts from patients and controls 

demonstrated there was significantly (p≤ 0.0001) more Drp1 localised to the 

mitochondria after CCCP treatment in control fibroblasts than in patient fibroblasts. 

The amount of Drp1 foci per micrometer of mitochondria in the controls increased 

from 0.89 ± 0.039 to 1.27 ± 0.064 Drp1 foci per µm of mitochondria after treatment 

with CCCP (Figure 4. 7B).  Interestingly, a small but insignificant increase in Drp1 

localisation at mitochondria was observed after treatment with CCCP in all of the 

ARSACS fibroblasts (Figure 4. 7B).  In patient c.2094-2A>G/ Q4054*, 0.49 ± 0.034 of 

Drp1 foci per µm of mitochondria was recorded in untreated cells whilst 0.61 ± 0.06 

Drp1 foci per µm of mitochondria counted after CCCP. As well as having more Drp1 

recruitment than in the other patients, more mitochondrial fragmentation than the 

other patients was also observed. Patient K1715*/R4331Q which had the most 

interconnected mitochondrial phenotype exhibited the least amount of fragmentation 
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as well as a very small increase in Drp1 foci associated with mitochondria after CCCP 

treatment. Untreated K1715*/R4331Q fibroblasts had 0.34 ± 0.034 Drp1 foci per µm of 

mitochondria which after treatment rose to 0.43 ± 0.048 Drp1 foci per µm of 

mitochondria. Patient R2002fs /Q4054* and 2801delG had 0.48 ± 0.017 and 0.59 ± 

0.044 Drp1 foci per µm of mitochondria respectively, when untreated (Figure 4. 7). In 

these two cases, the amount of Drp1 foci per µm of mitochondria after CCCP again 

increased, however the increases were not at a statistically significant level (p≥0.05) 

with 0.51 ± 0.046 and 0.62 ± 0.038 Drp1 foci per µm of mitochondria respectively 

(Figure 4. 7B).   

 

To assess the levels of CCCP induced fission, the average number of mitochondria per 

cell was quantified in patient K1715*/R4331Q, as it exhibited the most extreme, 

collapsed mitochondrial phenotype compared to controls cell lines (chapter 3.4) and 

also showed a reduction in Drp1 foci per micrometer of the mitochondria. The 

quantification of the average number of mitochondria after CCCP treatment was also 

performed in patient c.2094-2A>G/ Q4054*. This patient had a less severe 

mitochondrial phenotype (chapter 3 section 3.4) when compared to the controls and 

also displayed the largest increase in Drp1 foci per micrometer of the mitochondria 

when compared to the other patients.  

An increase in the number of mitochondria was seen in both patients and controls 

after CCCP treatment. This increase however was not of the same magnitude as in the 

controls. The controls had a significant (p ≤ 0.0001) increase in the average number of 

mitochondria from 92.20 ± 30.84 when untreated to 260.9 ± 13.00 when treated with 

CCCP. A significant (p≤ 0.05) increase was also observed in patient c.2094-2 A>G 

/Q4054*. The average number of mitochondria increased from 63.70 ± 22.94 when 

untreated to 144.7 ± 15.57 mitochondria when treated with CCCP. An increase in the 

number of mitochondria in patient K1715*/ R4331Q from 46.38 ± 27.03 to 112.5 ± 

9.93 however this increase was deemed statistically insignificant by ANOVA testing. 

This result suggests partial inhibition of fission occurs due to reduced Drp1 recruitment 

(Figure 4. 7C). 
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Figure 4. 7 Drp1 recruitment to the mitochondria was not significantly 

increased after fission was induced in ARSACS fibroblasts 

Fibroblasts were incubated for 60mins with 20µM of CCCP prior to fixation and 

staining with Tom20 for mitochondria (red), Drp1 (green) and DAPI.  B) The 

number of Drp1 foci per µm of mitochondria was quantified from confocal 

images using ZEN software. Confocal Z stacks were taken and cell images were 

rendered using Imaris. Scale bars represent 10µm. 
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To summarise the data so far in this chapter, there are significantly fewer Drp1 foci 

localised to the mitochondria in both sacsin knockdown and in ARSACS patient 

fibroblasts than in the control cells. Importantly, cells without sacsin showed a 

reduction in the recruitment of Drp1 to mitochondria after the induction of 

mitochondrial fission by the addition of uncoupler, CCCP. These localisation results 

strengthen the hypothesis that loss of sacsin function impairs Drp1 recruitment and it 

is by this mechanism that mitochondrial dynamics is impaired in ARSACS.  
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4.4 Drp1 Foci Diameter and Intensity in Sacsin Knockdown and 

ARSACS Fibroblasts 
 

Further evaluation of sacsin’s role in Drp1 recruitment and stabilisation was addressed 

by measuring the size and intensity of mitochondria associated Drp1 foci and cytosolic 

Drp1 foci. This was of interest as loss of mitochondrial fission proteins lead to a 

reduction of the size and intensity of Drp1 foci associated with mitochondria (Losón et 

al., 2013). As sacsin is in close proximity with Drp1 (Girard et al., 2012) and appears to 

be involved in the recruitment of Drp1 foci to the mitochondria, the effect of sacsin 

knockdown and SACS mutations on the size and intensity of Drp1 was investigated.  

Fibroblasts were transfected with mitoDsRed along with either SACS or SCRM siRNA. 

Cells were fixed and stained with anti-Drp1 (green) and DAPI (blue) and confocal 

images were taken. To avoid variability related to image acquisition and or 

immunocytochemistry methodology, all samples were stained simultaneously. 

Confocal imaging of the samples was also performed on the same day using the same 

acquisition settings (16 bit confocal Z-stack images through the cell were acquired at 

0.45µm Z intervals for quantification). Imaris modules Surface and Measurement Pro 

were used to measure the intensity and diameter of five Drp1 foci on five randomly 

chosen mitochondria and in five cytosolic regions (Figure 4. 8A). This was carried out 

for six cells in three experiments, giving a total n number of 450 measurements of 

Drp1 foci in the cytosol and 450 measurements of mitochondria associated Drp1 foci.  

The diameters of cytosolic Drp1 foci were similar in cells transfected with sacsin 

targeting and scrambled siRNAs. The average diameters of cytosolic Drp1 foci in SCRM 

and SACS were 0.38 ± 0.005µm and 0.36 ± 0.009µm respectively. Mitochondria 

associated Drp1 foci in control cells were 0.52 ±0.0094µm in diameter. This was 17.5% 

larger than that observed in sacsin knockdown fibroblasts, which had mitochondrial 

foci with an average diameter of 0.44 ± 0.008µm (p≤0.01) (Figure 4. 8B). 

The fluorescence intensity of mitochondrial Drp1 foci relative to cytosolic Drp1 

fluorescence intensity was used as a method of further characterising Drp1 

recruitment. The mean intensity of Drp1 foci was collected, using the Measurement 



Drp1 Function in Sacsin Null Cells                                    Chapter 4  
_______________________________________________________________________ 

 

171 
 

Pro and Surface modules of Imaris. Once collected, the mean mitochondrial Drp1 foci 

fluorescence intensity was divided by the mean intensity of cytosolic Drp1 foci within 

the same cell generating a ratio used to define the relative Drp1 foci fluorescence. This 

analysis was similar to work carried out by Losón et al 2013 and Zunino et al 2009 

where the relative fluorescence intensity of mitochondria associated Drp1 foci 

compared to cytosolic Drp1 foci was presented as a means of measuring for Drp1 

recruitment and the formation of oligomers at the outer mitochondrial membrane.  

The relative intensity of Drp1 foci was significantly less (p≤0.01) in the sacsin 

knockdown fibroblasts than in the SCRM controls (Figure 4. 8). The relative Drp1 foci 

intensity in sacsin knockdown was 6.97 ± 0.196 AU (arbitrary units for fluorescence 

intensity) compared to 8.09 ± 0.284 AU recorded in the control cells. These analyses 

indicated a potential decrease in Drp1 levels in mitochondria associated foci and may 

suggest a possible problem with Drp1 oligomerisation. 

The relative fluorescence intensity of Drp1 foci was further compared ARSACS patient 

K1715*/R4331Q and control fibroblasts. The results showed that patient 

K1715*/R4331Q had significantly (p<0.001) smaller mitochondrial associated Drp1 foci 

than the control. In this instance, Drp1 foci in patient K1715*/R4331Q were on average 

0.54µm ± 0.008µm, 11.5% less than in the controls where foci averaged 0.61µm ± 

0.010µm. Additionally, the relative mean Drp1 intensity was 2.83 ± 0.052AU in ARSACS 

patient K1715*/R4331Q lower than control 3.48 ± 0.063AU (p≥0.0001) (Figure 4. 9).  
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Figure 4. 8 Drp1 foci in SACS knockdown fibroblasts were significantly smaller and 

less intense than controls. 

Fibroblasts were transfected with mitoDsRed along with SCRM or SACS siRNA. Cells 

were fixed and stained with Drp1 (green). Z-Stacks were collected and analysed using 

IMARIS image analysis software. Representative zoomed images and insets show 

examples of how Drp1 foci were measured. B) The diameter and intensity of 5 Drp1 

foci on 5 different mitochondria and in 5 cytosolic regions in each cell were measured. 

Analysis was carried out in 3 experiments consisting of 6 cells per experiment. SACS 

knockdown fibroblasts had on average smaller Drp1 foci. C) The relative ratio of 

mitochondrial Drp1/cytosolic Drp1 was less in SACS fibroblasts. ‡‡ p≤0.01 ‡‡‡‡ 

p≤0.0001 Error bars ± SEM Scale bars represent 1µm. 
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Figure 4. 9 Drp1 foci in patient fibroblasts were significantly smaller and less intense 

than control 

Fibroblasts were fixed and stained with Tom20 (red), Drp1 (green) and DAPI (blue). 

Representative zoomed images for each condition. B) Drp1 foci were measured and 

quantified as previously described. Drp1 foci were on average significantly smaller than 

controls. C) Drp1 foci intensity was ascertained using Imaris surface and measure 

modules. Error bars  ± SEM.  ‡‡‡‡ p≤0.0001 Scale bars represent 1µm. 
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4.5 Discussion 
 

There were significantly fewer Drp1 foci associated with the mitochondria in sacsin 

knockdown and patient fibroblasts.  

We hypothesize that this decrease in Drp1 recruitment to mitochondria accounts for 

the altered mitochondrial morphology discussed in Chapter 3. Concordantly, similar 

results have been published in cells where levels of mitochondrial fission accessory 

proteins MiD49/51, Fis1 and Mff were reduced (Palmer et al., 2011b, Gandre-Babbe 

and van der Bliek, 2008,(Losón et al., 2013). In these reports, reduction of the 

aforementioned proteins significantly decreased the number of Drp1 foci localized to 

the mitochondria, and this was accompanied by an increasingly fused mitochondrial 

network (Gandre-Babbe and van der Bliek, 2008).  

Of importance, the Drp1 localization phenotype observed in SACS and patient 

fibroblasts did not significantly improve upon inducing fission. These continued to have 

significantly fewer Drp1 foci per µm of mitochondria when compared to controls. This 

finding was similar to that reported on MiD49/51 by Palmer et al  who observed  

MiD49/51 knockdown cells had a fourfold decrease in CCCP-induced mitochondrial 

fragmentation (Palmer et al., 2011a). Similar observations were also made when Mff 

knockdown cells were treated with the uncoupler CCCP (Gandre-Babbe and van der 

Bliek, 2008). These results suggest that sacsin, like the MiD and Mff proteins, may be 

involved in regulating mitochondrial fission.  It is however important to note that loss 

of these proteins did not obliterate fission (Palmer et al., 2011a, Gandre-Babbe and 

van der Bliek, 2008). Unlike Drp1, loss of the MiD and Mff proteins were non-lethal, 

emphasizing multiple steps and the involvement of other accessory proteins in the 

facilitation of the fission process. The complex mechanism which brings about 

mitochondrial fragmentation along with the low expression of sacsin in skin would 

suggest that sacsin is not vital in dermal fibroblasts and may in fact only be essential in 

certain neuronal populations. As neurons have high metabolic demands, they are 

therefore more sensitive to changes in mitochondrial morphology. Therefore this 
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decrease in recruitment to the mitochondria and change in morphology may 

contribute to neurodegenerative aspects of ARSACS pathology.  

Strikingly, there is a reduction of intensity and diameter of mitochondria-associated 

Drp1 in SACS and patient fibroblasts. Again these results are consistent with that of 

prior studies of known mitochondrial fission proteins. In 2013, Loson et al reported a 

significant decrease in size and intensity of mitochondria-associated Drp1 in Fis1, Mff 

and Fis1/Mff knockdown cells (Losón et al., 2013). In theory, as Drp1 forms an 

oligomeric structure at potential sites of fission, there should be an increase in both 

the diameter and intensity of Drp1 (green foci) on the mitochondria. The reduction in 

intensity and diameter suggests that there is either a problem with the recruitment of 

Drp1 (not going to the mitochondria) or in the stabilization of the oligomeric structure 

preventing the scission/ fission process.  

 Drp1 mediated mitochondrial fission consists of several vital stages. It is yet to be 

determined whether sacsin’s role in recruitment of Drp1 to the mitochondria is mainly 

to assist in sequestering, or if it is also involved in stabilization of Drp1 oligomers 

involved in scission. Further experiments that analyze and quantify Drp1 oligomers, 

kinetics and regulation in ARSACS patients or sacsin knockdown cells would contribute 

towards further defining sacsin’s involvement in the fission process. Quantification of 

cytosolic and mitochondria associated Drp1 protein can be performed by subcellular 

fractionation and immunoblotting in sacsin knockdown and patients cells. Similar 

biochemical analyses have been performed in MiD49/51 and Mff studies. A significant 

reduction of mitochondria associated Drp1 was found in MiD, Fis and Mff null cells 

whilst there was no difference in total Drp1 protein levels (Losón et al., 2013, Palmer 

et al., 2011a). Total Drp1 levels were found to be similar in the ARSACS patients and 

controls, although reduced localization of Drp1 to the mitochondria was observed by 

confocal imaging and imaging analysis. Therefore further investigation via subcellular 

fractionation will be useful in validating the reduction of Drp1 recruited to the 

mitochondria in cells with reduced or no sacsin.   
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In addition, it is important to note that fission heavily depends on Drp1 cycling 

dynamics. It is important that Drp1 is able to translocate to the mitochondria, 

associate and then disassociate rapidly in response to cellular stresses or inducers of 

mitochondrial depolarization. Wasiak et al established that Drp1 sequestration was 

delayed in HeLa cells upon the induction of apoptosis (Wasiak et al., 2007). Using  FRAP 

experiments, they postulated that the retarded turnover of yellow fluorescently 

tagged Drp1 was due to the stabilization and accumulation of Drp1 at the 

mitochondria preventing it from cycling back to the cytosol (Wasiak et al., 2007). 

Merrill et al also demonstrated that unopposed fusion led to “slow recycling” of Drp1 

and reduced disassembly of oligomers in their neuroprotective cell model (Merrill et 

al., 2011). 

 In answering whether the effect of a loss of sacsin on mitochondrial morphology and 

Drp1 recruitment is related to Drp1 turnover, Drp1 cycling dynamics needs to be 

examined in control fibroblasts and compared to ARSACS patients and sacsin 

knockdown cells. Replacing endogenous Drp1 with a GFP-tagged Drp1 plasmid which 

also co-expresses Drp1 shRNA as described by Cribbs and Strack will allow for more 

accurate quantification of Drp1 dynamics (Cribbs and Strack, 2007). Time lapsed 

imaging coupled with observed image analysis software such as Imaris will enable 

particle tracking via its ImarisTrack and MeasurementPro modules. These modules use 

a customized algorithm which incorporates Brownian and autoregression motion 

models as well as other advanced models which assist in tracking and tracing the 

particles and their migration pathways (Coleri et al., 2013). Comparing the cycling 

dynamics of the Drp1 protein under normal and fission inducing conditions in patients, 

controls and knockdown cells will assist in determining the effects of loss of sacsin on 

Drp1 cycling.  

 It is also important to take into account the extensive post translational modifications 

that regulate Drp1 function and recruitment. Therefore there is a need to address the 

relationship between loss of sacsin and key regulatory modifications. Primarily, 

determining the phosphorylation status of Drp1 in ARSACS patients and sacsin 

knockdown cells is important. Phosphorylation of serine 637 is known to inhibit Drp1 



Drp1 Function in Sacsin Null Cells                                    Chapter 4  
_______________________________________________________________________ 

 

177 
 

activation leading to retention of the protein in the cytosol while dephosphorylation of 

serine 637 promotes translocation of Drp1 to the mitochondria from the cytosol and 

subsequently leads to an accumulation of Drp1 at the mitochondria (Knott et al., 2008, 

Cereghetti et al., 2008).  In order to further examine the phosphorylation status of 

Drp1, the levels of expression and activation of proteins which regulate 

phosphorylation such as protein kinase A (PKA) and calcineurin possibly needs to be 

considered. Such investigations will explore sacsin’s role in the regulation of Drp1 

activity as well as help in understanding sacsin’s position in the fission pathway. 

Defining whether sacsin has a more upstream or indeed downstream role.   

Moreover, an investigation on the loss of sacsin and its effect on Drp1 regulation by 

SUMOylation is yet to be reported.  SUMOylation stabilizes Drp1 and enhances fission 

via E3 ligases such as MAPL (mitochondrial anchored protein ligase) or proteases such 

as SENP5 (Harder et al., 2004, Wasiak et al., 2007, Zunino et al., 2009, Schauss et al., 

2010). Further work to investigate the mitochondrial SUMOylation targets in ARSACS 

and sacsin knockdown cells will enhance the understanding of loss of sacsin Drp1 

regulation and activation.   

Taken together, these results support a role for sacsin in Drp1 recruitment, explaining 

the fission defect suggested by morphometric analyses. Disruptions in mitochondrial 

dynamics will likely lead to dysfunctional mitochondria.  This is investigated in Chapter 

6. 
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Chapter 5 
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5.1 Introduction 
 

Reduced levels of sacsin correlated with a reduction in the amount of Drp1 recruited to 

mitochondria. Proteins involved in mitochondrial dynamics have been demonstrated 

to have roles that go beyond regulation of mitochondrial dynamics. Some 

mitochondrial fission proteins have been shown to also have a role in regulating the 

dynamics of other organelles, including peroxisomes and lysosomes. Moreover, 

mitochondrial fusion proteins have been reported to additionally be involved in the 

regulation of mitochondrial contact sites with the endoplasmic reticulum. The 

interactions between the mitochondria and other organelles can also influence 

mitochondrial dynamics. The dynamic nature of those interactions along with, in some 

instances, shared components of the fission machinery, reinforces the notion of cross 

talk occurring between these subcellular compartments (Schrader et al., 2013, Beach 

et al., 2012, Cheville, 2013, Zampese et al., 2011).  
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5.2  Endoplasmic Reticulum and the Mitochondria Associated 

Membrane 
 

The endoplasmic reticulum (ER) is responsible for the synthesis and trafficking of 

membrane components, including luminal and secretory proteins as well as the 

synthesis of cellular lipids. Additionally, the ER has a significant role in Ca2+ 

homeostasis and storage within the cell (Franzini-Armstrong, 1963, Henkart, 1980, 

Weber et al., 2001, Kim et al., 2014).  

A physical association between the ER and the mitochondria, termed mitochondria 

associated membranes (MAM), was experimentally identified in the 1990s (Vance, 

1990, de Brito and Scorrano, 2008, Rizzuto et al., 1998). Close contact sites between ER 

and mitochondrial membranes are tethered by proteins including phosphofurin acid 

cluster sorting protein 2 (PACS-2) and mitofusin 2 (Mfn2), on the respective 

membranes (de Brito and Scorrano, 2008, Iwasawa et al., 2010, Kornmann, 2013).  

PACS-2 is a multifunctional sorting protein which localizes to both the ER and 

mitochondria (Simmen et al., 2005). It has been demonstrated to be essential in the 

maintenance and association of ER with mitochondria by stabilizing and regulating 

contact (Simmen et al., 2005). The importance of PACS-2 was demonstrated in cells 

treated with PACS-2 siRNA. The knockdown of this protein resulted in the uncoupling 

of the ER from the mitochondria and increased mitochondrial fragmentation (Simmen 

et al., 2005). 

Mitochondrial fusion protein, Mfn2 has been found to be essential in ER tethering to 

the mitochondria (Friedman et al., 2011, de Brito and Scorrano, 2008). Loss of this 

protein resulted in decreased tethering of the mitochondrial and ER membranes as 

well as mitochondrial fragmentation (de Brito and Scorrano, 2008, Friedman et al., 

2011). 

MAMs are enriched with enzymes required in the lipid biosynthetic pathways, 

phospholipid metabolism and transport (Stone and Vance, 2000, van Meer et al., 

2008). One example is Phosphatidylserine synthase 2 (PTDSS2), an enzyme which was 

primarily found to be present in MAMs and is involved in the biosynthesis of 
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mammalian cell membrane constituents; phosphatidylserine (PtSer), 

phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtEt) (Bergo et al., 2002, 

Fujimoto et al., 2012, Stone and Vance, 2000). The synthesis of PtSer, facilitated by 

PTDSS2 and PtdCho, by phosphatidylethonalamine methyltransferase (PEMT) occur in 

the MAMs (Schon and Area-Gomez, 2013).  

The ER releases Ca2+ at the mitochondrial contact sites, providing an accumulation of 

Ca2+ required for mitochondrial metabolism (Filippin et al., 2003, Duchen, 2004b, 

Rizzuto et al., 2004). The close contact with mitochondria facilitates the mitochondrial 

uptake of Ca2+ released from the ER. This is important as the Ca2+ imported to the 

mitochondria increased the efficiency of vital enzymes such as ATP synthase and TCA 

dehydrogenases (Calì et al., 2012, McCormack et al., 1990).  

MAMs are also implicated in the regulation of cell death (Høyer-Hansen and Jäättelä, 

2007, Iwasawa et al., 2010, Hamasaki et al., 2013). One proposed mechanism is that 

apoptosis can be stimulated by the local influx of Ca2+. This arises from the opening of 

mitochondrial permeability transition pores (mPTP) causing release of cytochrome c 

and initiating the apoptotic cascade (Pinton et al., 2001, Szalai et al., 1999).  

Notably, a number of proteins that play a role in regulating Ca2+ and apoptosis are 

found localized to MAMS (Rizzuto et al., 1998, Lasorsa et al., 2008). These include 

inositol 1,4,5-trisphophate receptor (IP3R), the principle intracellular Ca2+ release 

channel, which facilitates the uptake of Ca2+ by mitochondria enabling the mediation 

of apoptosis and the metabolic flow of Ca2+ via the voltage dependant anion channel 

(VDAC) (Szabadkai et al., 2006, Mendes et al., 2005). 

The disruption of MAMs may also play a role in neurological disorder such as 

Alzheimer’s disease. Evidence for this includes the observation of an increase in MAMs 

in hippocampal neurons exposed to oligomeric Aβ (Hedskog et al., 2013). Moreover, 

an increase in the number and size of MAMs in presenilin 1 and 2 double knockout 

mouse embryonic fibroblasts (MEF) and human sporadic (SAD) and familial (FAD) 

Alzheimer’s patient fibroblasts has been observed. Electron microscopy and 

quantitative analysis revealed a significant increase in the incidence of very long and 
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long MAMs in double knockout MEFs as well as in SAD and FAD patient fibroblasts 

(Area-Gomez et al., 2012). 

Of particular interest, in the context of my work on Drp1 recruitment to mitochondria, 

the ER has also been implicated in regulating mitochondrial fission as the contact 

points have been shown to mark sites of prospective fission. Time lapse imaging of 

Cos-7 cells expressing mitochondrial marker mitoDsRed and ER protein GFP-Sec61β 

showed that mitochondrial division mostly occurred at sites of mitochondria and ER 

contacts. As well as this, ER contacts were also observed to be located adjacent to 

Drp1 puncta and Mff. Imaging of Cos-7 cells expressing fluorescently tagged Drp1, 

KDEL (ER marker) and mito-EGFP or fluorescently tagged Mff, KDEL and mtDsRed 

showed that these ER/mitochondrial sites are associated (Friedman et al., 2011). 

Moreover, three dimensional electron microscope tomograms of wild type yeast cells 

showed constriction of the mitochondrion tubule at sites of ER contact. The 

tomograms show that ER tubules wrapped around the mitochondria at these sites 

(Friedman et al., 2011).  It is postulated that the constriction of the mitochondrial 

tubules is first caused by ER tubules therefore enabling the assembly of Drp1 oligomers 

along with other mitochondrial fission proteins (Kornmann, 2013, Friedman et al., 

2011). Although this theory of ER constriction being upstream of Drp1 oligomerisation 

is widely accepted, it has also been suggested that in fact, the ER preferentially tethers 

to the already altered, constricted mitochondria (Rowland and Voeltz, 2012).  

The first aim of the work described in this chapter was to identify if loss of sacsin 

affected the incidence of ER/mitochondrial contact sites. The rationale was that MAM 

formation represents a step in mitochondrial division that is upstream of Drp1 

recruitment. Using the hypothesis that ER mediated mitochondrial constriction 

initiates Drp1 recruitment, we explored whether the reduced localisation of Drp1 and 

increased network interconnectivity was due to an earlier defect in the fission 

pathway. This was analysed through the quantification of ER/mitochondrial contacts 

by immunofluorescent analysis.  
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5.2.1 Endoplasmic Reticulum and Mitochondrial Membrane 

contacts in Sacsin Knockdown Fibroblasts 
 
Fibroblasts were transfected with GFP-Sec61β, an ER marker, along with either SACS or 

SCRM siRNA. After 48 hours, the fibroblasts were incubated with 100nM MitoTracker 

for 30 minutes then fixed and stained with DAPI (blue). Confocal stacks in the Z-axis 

were collected and used for co-localisation analysis. Each stack had a thickness of 

0.85µm and 15 cells were imaged for each condition. The confocal acquisition settings 

remained constant throughout imaging and for each condition.  

The Surpass and Co-loc, co-localisation modules of Imaris were used in conjunction 

with this analysis to quantify the degree of overlap between the ER (green) and 

mitochondria (red) in the fibroblasts. As before, Manders’ coefficient was used to 

measure the colocalized overlap of ER and mitochondria. The method of analysis and 

Imaris workflow was similar to that described in Chapter 4 of this thesis (where the 

colocalisation of Drp1 to the mitochondria was quantified). This method was also 

similar to that performed by de Brito et al where colocalisation analysis of ER to 

mitochondria was performed on confocal images in Mfn knockout MEF or HELA cells 

and analysed using Manders’ coefficient (de Brito and Scorrano, 2008).  

In this Chapter, the analysis of the co-localisation of the ER to mitochondria was used 

as a means of quantifying ER/mitochondrial contacts. The results showed that there 

was no significant difference in ER/mitochondrial contacts in the sacsin knockdown 

fibroblasts compared to the controls (Figure 5. 1A-B). Control fibroblasts had a 

Manders’ coefficient of 0.25 ± 0.060 while the sacsin knockdown fibroblasts had a 

Manders’ coefficient of 0.32 ± 0.051. Although the value in sacsin knockdown 

fibroblasts was higher than the controls, a student’s t-test revealed an insignificant p 

value of 0.38 (Figure 5. 1A-B). 
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Figure 5. 1 No statistical difference in the colocalisation of ER with mitochondria was 

observed between sacsin knockdown cells and controls. 

Fibroblasts were transfected with either SACS or SCRM siRNA along with GFP tagged, 

ER protein, Sec61β (green). Cells were incubated with 100nm of MitoTracker for 

30mins, 48 hours after transfection. Cells were then fixed and confocal Z-stacks were 

acquired. Surface and Coloc modules of Imaris were used for Manders’ analysis.   A) 

Representative images of ER morphology and mitochondria. B) There was no statistical 

difference in the Manders’ coefficient of sacsin knockdown and control fibroblasts. 

Error bars represent ± SEM. Scale bars represent 10µm. 
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5.2.2 Endoplasmic Reticulum and Mitochondrial Membrane 

Contacts in ARSACS Fibroblasts 
 

Following on from the previous experiment, ER/mitochondrial contacts were 

quantified in 4 ARSACS patients and 2 controls fibroblast cell lines. Cells were first 

transfected with GFP tagged Sec61β. After 48 hours, cells were incubated with 100mM 

of MitoTracker for 30mins. Live cell imaging involving the collection of confocal images 

taken at 0.85µm Z-axis intervals was performed. As before, the confocal settings 

remained constant throughout the experiment and 15 cells for each cell type were 

imaged. Surpass and Co-loc was used to measure co-localisation which here is defined 

by Manders’ coefficient. 

As in the fibroblasts transfected with SACS siRNA, no observable difference in the 

amount of overlap of the mitochondria and the ER was observed (Figure 5. 2A-B). The 

Manders’ coefficient was lowest in patient 2801delQ with a value of 0.135 ± 0.017.  

The control and patients c.2094-2 A>G/Q4054*, K1715*/R4331Q, R2002fs/ Q4054* 

had very similar Manders’ coefficient values of; 0.20 ± 0.045, 0.245 ±0.044, 0.230 ± 

0.032 and 0.241± 0.040 respectively. ANOVA statistical analysis showed that these 

values were statistically insignificant with p values greater than 0.5 (Figure 5. 2A-B). 
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 Fibroblasts were transfected with GFP tagged, ER protein, Sec61β (green) once a 

confluence of 70% was achieved. Cells were incubated with 100nM of MitoTracker for 

30mins, 48 hours after transfection. Cells were then fixed and confocal Z-stacks were 

acquired. Surface and Co-Loc modules of Imaris were used for Manders’ analysis.   A) 

Representative images of ER morphology and mitochondria. B) There was no statistical 

difference in the Manders’ coefficient of sacsin knockdown and control fibroblasts. 

Error bars represent ± SEM. Scale bars represent 10µm. 

  

 Figure 5. 2 No statistical difference in the colocalisation of ER to mitochondria was 

observed between patients and controls. 
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5.3 Peroxisome Morphology  
 

Proteins involved in mitochondrial fission and in the regulation of Drp1 have also been 

demonstrated to have a role in regulating peroxisome dynamics. This includes 

evidence that Drp1 is required for peroxisome division (Waterham et al., 2007). Thus 

the effect of SACS mutations or reduced levels of sacsin on peroxisome morphology 

was analyzed.  

Peroxisomes are single membrane organelles involved in essential catabolic and 

anabolic functions such as lipid metabolism, β-oxidation of fatty acids as well as 

synthesis of other lipids some of which are vital for myelin sheath formation  (van den 

Bosch et al., 1992). Peroxisomes both produce and scavenge for reactive oxygen 

species (ROS) in the cell (Ivashchenko et al., 2011, Boveris et al., 1972, De Duve and 

Baudhuin, 1966). The process of β-oxidation of fatty acids is the main contributor of 

hydrogen peroxide (H2O2) generation in these organelles (Schrader and Fahimi, 2006). 

The antioxidant enzyme catalase,  found in the peroxisomes  catalyses the 

decomposition of H2O2 to water and oxygen (Schrader and Fahimi, 2006). As with 

mitochondria, dysfunction of peroxisomes leads to an increase in ROS and oxidative 

stress. The importance of peroxisome function was also shown to be essential in brain 

development (Li et al., 2002, Janssen et al., 2003). For example, a delay in neocortical 

neuronal migration was observed in knockout mouse pups lacking PEX5 which encodes 

the essential peroxisome targeting signaling 1 receptor (Janssen et al., 2003). This 

change in neuronal migration was accompanied by an accumulation of very long chain 

fatty acids (VLCFA) as well as an increase in neocortical neural cell death (Janssen et 

al., 2003).   

Furthermore, changes in peroxisome morphology have been identified in 

neurodegeneration. Alterations in peroxisome regulation were linked to Alzheimer’s 

disease progression in mouse disease models (Cimini et al., 2009, Fanelli et al., 2013). 

A significant induction of peroxisome membrane protein of 70kDa (PMP70) was 

observed by immunoblotting of hippocampal protein extracts and the immunostaining 

of pyramidal cell layer in 3 month old male and female transgenic Alzheimer’s disease 
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model mice (Tg2576) (Cimini et al., 2009, Fanelli et al., 2013). A dramatic decrease in 

PMP70 protein levels was observed via the same methods in 6 month old Tg2576 mice 

(Fanelli et al., 2013). Both the induction of PMP70 and decrease in PMP70 protein level 

were significantly different from their wild-type littermates (Fanelli et al., 2013). 

Finally, an increase in PMP70 levels was observed in the AD model mice at 18 months. 

This was postulated to signify an increase in the number of peroxisomes. The authors 

suggest that the increase in PMP70 recorded at 18 months was most likely due to 

astrogliosis caused by disease progression (Fanelli et al., 2013).  

An increase in total peroxisomal volume per cell was described in Parkinson disease 

patient fibroblasts. While there was a significant decrease in catalase, up to a 5 fold 

increase in the volume of peroxisomes were recorded in these patients, both of whom 

carry mutations in parkin gene PARK2 (Pacelli et al., 2011). Of interest the 

mitochondrial network in these fibroblasts were notably more fragmented than in the 

control. The authors made no mention of peroxisome number but state that the 

decrease in catalase may contribute to the imbalance of intracellular ROS indentified 

(Pacelli et al., 2011).  

The relationship between peroxisomes and mitochondria is evident through their 

functional and morphological similarities. Like mitochondria, peroxisomes are dynamic 

organelles which change morphology and abundance in response to cellular 

environment. Additionally, the Drp1 fission complex has been shown to be conserved 

between the two organelles (Schrader et al., 2012).  The regulation of peroxisome 

dynamics is crucial to both peroxisome function and biogenesis. During peroxisome 

proliferation, existing peroxisomes import newly synthesized proteins from the 

cytosol. The peroxisome then elongates with the assistance of protein Pex11p, this 

elongation is subsequently followed by fission (Lazarow and Fujiki, 1985, Li and Gould, 

2003, Motley and Hettema, 2007). Importantly, division is caused by GTPase activity 

associated with Drp1, Mff and Fis1 (Gandre-Babbe and van der Bliek, 2008, Koch et al., 

2003, Koch et al., 2005). 
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Mitochondrial fission proteins Mff and Fis1 have all been found to localize to the 

peroxisomes and inhibition or loss of these proteins lead to elongated peroxisomes 

(Koch et al., 2003, Koch et al., 2005, Koch and Brocard, 2012). Furthermore, while not 

directly localised to the peroxisomes, the regulation of Drp1 activity by MiD49/51 also 

led to a change in peroxisome morphology. Over expression of MiD49/51 was found to 

result in the elongation of peroxisomes due to the deactivation of Drp1 (Palmer et al., 

2013). Notably in 2007 an elongated peroxisome morphology was also described in a 

patient carrying Drp1 mutation (Waterham et al., 2007). As well as this, increased 

lactate and very long chains fatty acids were measured in the plasma of this patient, 

suggestive of a probable defect in fatty acid oxidation and peroxisome function 

(Waterham et al., 2007). 
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5.3.1 Peroxisome morphology in sacsin knockdown fibroblasts. 
 
Fibroblasts were transfected with GFP along with either SACS or SCRM siRNA. The 

fibroblasts were then fixed and stained with anti-PMP70 (red) and DAPI (blue) 48 

hours after transfection. Confocal stacks of 0.44µm in the z dimension were collected 

and used for surface rendering and volumetric analysis using the Surpass module of 

Imaris. A total of 15 cells were imaged for this experiment. PMP70 has been described 

as a good marker for morphometric analysis of peroxisomal population and was 

therefore used in this experiment (Fanelli et al., 2013). 

Volumetric analysis of the peroxisomes was based on Imaris defined thresholding 

which discarded objects brought about by non specific staining and ensured that 

calculations were performed on discernible peroxisomes. The analysis and Imaris 

workflow was similar to that described in Chapter 3 of this thesis (where the 

mitochondrial volume was analyzed).  

There was a significant decrease in the number of peroxisomes in the sacsin 

knockdown fibroblasts (p = 0.049) (Figure 5. 3A-B). The mean number of peroxisomes 

in the control fibroblasts was found to be 209.69 ± 25.01 peroxisomes per cell. 

Conversely the mean number of peroxisomes in sacsin knockdown fibroblasts was 

found to be in 147.77 ± 14.44 peroxisomes per cell (Figure 5. 3B).  

The total combined volume of peroxisomes in sacsin knockdown fibroblasts was not 

statistically different to the volume in the controls. A mean total volume of 246.71 ± 

14.89µm3 per cell was recorded in control fibroblasts while the mean total volume of 

peroxisomes in sacsin knockdown fibroblasts was 209.77 ± 28.57µm3 (Figure 5. 3C).  

An obvious morphological change in sacsin knockdown fibroblasts was not observed 

(Figure 5. 3A). The sphericity of the peroxisomes was measured in order to capture any 

subtle differences in peroxisome shape. This measurement was performed using the 

Surface module of Imaris image analysis software. Sphericity is the measure of how 

spherical an object is.  The sphericity is usually measured from 0 to 1 with 1 

representing a completely spherical object.  This measurement was based on the 
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hypothesis that like other mitochondrial fission proteins, loss of sacsin will result in an 

elongation of the peroxisome, resulting in knockdown cells having more peroxisomes 

with a sphericity of less than 1 when compared to controls. 

The sphericity of peroxisomes was similar in sacsin knockdown and control fibroblasts. 

The controls had a higher frequency of peroxisomes with values between 0 and 0.8, 

than sacsin knockdown cells (Figure 5. 3D). This indicated that the controls had a 

higher frequency of less spherical objects.   

 



ER and Peroxisome Morphology                                       Chapter 5  
_______________________________________________________________________ 

 

194 
 

 



ER and Peroxisome Morphology                                       Chapter 5  
_______________________________________________________________________ 

 

195 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3 A significant decrease in the number of peroxisome were observed in 

sacsin fibroblasts. 

Fibroblasts were transfected with GFP along with either SACS or SCRM siRNA. Cells 

were then fixed and stained for PMP70 (red) and DAPI (blue). Confocal Z-stacks were 

acquired. Surface module of Imaris was used for analysis. A) Representative images of 

peroxisomes B) Average number of peroxisomes per cell. Peroxisome numbers were 

quantified using the Surface module of Imaris. C) Average total peroxisomal volume 

per cell. D) Distribution histogram of peroxisomal volume. E) Percentages of 

peroxisomes which had sphericity values between 0.51-0.8 and 0.81-1.   Error bars 

represent ± SEM. Scale bars represent 10µm. ‡p≤0.05 
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5.3.2 Peroxisome morphology in ARSACS fibroblasts 
  
Fibroblasts were grown until a confluence of 70% was reached. Cells were then fixed 

and stained with anti-PMP70 (red) and DAPI (blue). Confocal Z-stacks of 0.44µm thick 

sections were collected and used for surface rendering and volumetric analysis using 

the Surface module of Imaris. Volumetric analysis was performed on 15 cells for each 

cell line. The experiment was repeated 3 times giving a total n of 45 for each cell line.   

The analyses show that there was a decrease in both the number of peroxisomes and 

total volume per cell in the patient fibroblasts (Figure 5. 4A-C). However, this decrease 

was only statistically significant in two of the patients. Control fibroblasts had a mean 

of 316 ± 36.09 peroxisomes per cell. Patient 2801delQ had the lowest mean number of 

peroxisomes with 155.8 ± 7.52 peroxisomes per cell. This decrease in peroxisome 

number was significant with a p ≤ 0.001. There were also significantly less peroxisomes 

in patient K1715*/R4331Q (p≤0.05), this patient had a mean of 220.7 ± 18.58 

peroxisomes per cell, 30.16% less than the number of peroxisomes in the control 

fibroblasts. Patient c.2094-2 A > G/Q4054* and R2002fs/ Q4054* had similar amounts 

of peroxisomes with 292 ± 33.94 and 295 ± 36.55 peroxisomes per cell respectively 

(Figure 5. 4B). 

Patient 2801delQ had the lowest total peroxisomal volume with a mean of 207.5 ± 

18.75 µm3. This volume was significantly less (p≤0.01) than control fibroblasts which 

had a mean volume of 631.9 ± 108.14µm3 per cell (Figure 5. 4C). Patient 

K1715*/R4331Q, although having significantly less peroxisomes, had the highest 

peroxisomal volume relative to the patients with a mean volume of  517 ± 49.26µm3 

per cell.  Similarly patient c.2094-2 A > G / Q4054* had a mean total peroxisomal 

volume of 507.3 ± 84.74µm3 per cell. Lastly patient R2002fs/ Q4054* had a mean 

peroxisomal volume of 441 ± 62.47 µm3 per cell (Figure 5. 4C). 

Densitometric analysis of immunoblots performed using cell lysates showed a 

significant decrease in the levels of PMP70 in these cells (fig 5.4D). PMP70 levels 

appeared to be most significantly (p≤0.001) decreased in patient K1715*/R4331Q 

compared to the controls than any of the other patients. All of the other patients also 
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had significantly less PMP70 than in the control (p≤0.01). This seems to confirm the 

results showing a decrease in peroxisome number.  

When analysing these results it was important to note that the patients had fewer 

peroxisomes then the controls. The majority of peroxisomes had spherecity values of 

between 0.51- 0.8 and 0.81 – 1 in controls and patient fibroblasts (Figure 5. 4E-F). In 

the controls 61% of peroxisomes had sphericity values between 0.51-0.8 and 38% of 

peroxisomes had values between 0.81-1. Patient c.2095-2A>G had a higher frequency 

of peroxisomes with sphericity values between 0.51 -0.8. The histogram therefore had 

a slight shift to the left with 73% of the peroxisomes having values within this range 

and 26% had values of 0.81-1. There was also a slight shift of the sphericity histogram 

to the left in patient K1715*/R4331Q as 76% of peroxisomes had sphericity values of 

0.51-8 while 23% had values between 0.81 -1 (Figure 5. 4E-F). Patients 2801delQ and 

R2002fs/Q4054* had roughly equal amounts of peroxisomes in both groups. Patient 

2801delQ had 55% of peroxisomes with sphericity values of 0.51-0.8 and 44% of 

peroxisomes with sphericity values of 0.81-1. Lastly, patient R2002fs/Q4054* had 52% 

and 47% of peroxisome within 0.51- 0.8 and 0.81-1 respectively. In all, patients 

K1715*/R4331Q and c.2095-2A>G had a higher frequency of peroxisomes which were 

less spherical than the controls (Figure 5. 4F). This may suggest a subtle change in 

peroxisomal morphology however this was not observed in patients 2801delQ and 

R2002fs/Q4054*. 
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Figure 5. 4 A decrease in the number of peroxisomes was observed in ARSACS 

fibroblasts. 

Cells were fixed and stained for PMP70 (red) after a confluence of 70% had been 

obtained. Confocal Z-stacks were acquired and the Surface module of Imaris was used 

for analysis. A) Representative images of peroxisomes and Imaris surface rendered 

images. B) Average number of peroxisomes per cell. Peroxisome numbers were 

quantified using the surface module of Imaris. C) Average total peroxisomal volume 

per cell. D) Distribution histogram of peroxisomal volume. E) Percentages of 

peroxisomes which had sphericity values between 0.51-0.8 and 0.81-1.   Error bars 

represent ± SEM. Scale bars represent 10µm. ‡p≤0.05 ‡‡ p≤0.01 ‡‡‡p≤0.001. 
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5.4 Discussion 
 

The investigation of ER/mitochondria co-localisation was based on the model of fission 

which suggests that constriction of the mitochondria as a result of the ER and 

mitochondrial tethering is an important initiator of Drp1 recruitment (Friedman et al., 

2011). Quantification of the ER/mitochondria co-localisation showed no statistical 

difference in the amount of ER /mitochondria contact sites between sacsin knockdown 

and control or between patient and control fibroblasts. The morphology of the ER also 

appeared normal in the patients and in fibroblasts transfected with SACS siRNA. From 

these results we can infer that the reduction of Drp1 recruitment to the mitochondria 

in sacsin knockdown and patient fibroblasts reported in Chapter 4 is unlikely to be due 

to a reduction in ER/mitochondrial contacts.  

Confocal imagery and Imaris image analysis software were utilised in this study. More 

recently super resolution imagery has become available. The developments in super 

resolution microscopy will further resolve the definition of the contact regions in these 

cells. It can lead to a better understanding of the structure and tethering of the ER to 

the mitochondria. For instance, the maintenance of these contacts and ultimate 

mitochondrial constriction depends on the correct function and expression of the 

tethering proteins Mfn and PACS2, which were not explored on this occasion and 

should be investigated. Exploration of PACS2 may be preferential as it is not directly 

involved in mitochondrial dynamics and therefore conclusion made regarding ER 

tethering may be more specific to tethering and less dependent on mitochondrial 

morphology. Super resolution images and analysis on the localisation of PACS2 as well 

as the effects of overexpression of the protein on the Drp1 recruitment phenotype in 

sacsin knockdown and patient fibroblasts will not only further clarify the role of MAMs 

in Drp1 sequestration but may also uncover a method of rescuing the phenotype in 

these cells. In addition qPCR and immunoblotting of PACS2 expression in sacsin 

knockdown and patient fibroblasts will also be useful in understanding MAMs in 

ARSACS.  
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Further approaches to look at MAM function in ARSACS would be beneficial. The 

synthesis of phospholipids PtSer, PtdCho and PtEt depend on optimal MAM function 

(Schumacher et al., 2002). Measuring the abundance of these phospholipids has been 

used as a measure for the biochemical activity of MAMs. A 1.5 to 2 fold increase in 

PtSer and PtEt biosynthesis was reported in these cells (Area-Gomez et al., 2012). The 

exploration of MAM function in patient and sacsin knockdown fibroblasts will give 

biochemical information of MAM mechanism in these cells.  

Moving on from this, a putative function for sacsin function in the regulation of 

organelle dynamics beyond the mitochondria remains unclear. Although a decrease in 

the number of peroxisomes was observed in both sacsin knockdown and patient 

fibroblasts a significant difference in the mean total peroxisomal volume per cell was 

only recorded in patients K1715*/R4331Q and 2801delQ. Interestingly both of these 

patients had significantly impaired recruitment of Drp1 to the mitochondria reported 

in Chapter 4. The immunoblot and densitometric analysis showed a marked decrease 

in the level of PMP70 in ARSACS fibroblasts. This blot further confirms the decrease in 

the number of peroxisomes in patient fibroblast. The results show that there is a 

reduction of peroxisomes in patient fibroblasts.  There was also a decrease in the 

frequency of spherical peroxisomes in sacsin knockdown and patient fibroblasts 

relative to the number of peroxisomes. This would suggest that SACS mutations or 

reduced levels of sacsin may in fact have an effect on peroxisome morphology, 

however the effect is very subtle. It is possible that sacsin may not have a direct role in 

peroxisome dynamics and the effects observed may be due to its effect on Drp1 

regulation.  

A decrease in the number of peroxisomes was observed in cells with reduced levels of 

Fis1 and in cells where MiD49/51 had been over expressed, however these changes 

were accompanied by an obvious change in peroxisome morphology (Kobayashi et al., 

2007). A decrease in peroxisomes was also reported in Alzheimer’s disease mouse 

model (Kou et al., 2011). This loss of peroxisomes was observed in the neuronal 

processes where there was an abnormal phosphorylation of tau that was accompanied 

by accumulation of substrates of peroxisomal β oxidation (Kou et al., 2011).  
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The results reported in Alzheimer’s disease model demonstrated that a loss of 

peroxisomes led to a decrease in peroxisomal function. Therefore a more 

comprehensive investigation into the effect of these subtle changes on the function of 

peroxisomes could be important for understanding the consequences of reduced Drp1 

recruitment in cells with reduced sacsin function. Investigations of the levels of VLCFA 

and ROS production in neurodegeneration have been referred to in section 5.2 of this 

chapter. It will be beneficially to examine the impact of reduced sacsin on the function 

of peroxisomes. 

 It is important to note that the impairment of peroxisome function may also lead to 

an increase in cellular oxidative stress. Although the changes in peroxisome may be 

subtle these may still provide an enhanced effect in the brain which is sensitive to 

oxidative insult. Measuring the expression, abundance and efficiency of catalase will 

address whether there is an increase in cellular ROS as a result of reduced sacsin or 

SACS mutations. In addition to using the fibroblasts models, it will be beneficial to 

immunostain neurons and brain sections from the ARSACS mouse model to examine 

whether the effect of the loss of sacsin on peroxisome function is enhanced in the 

brain. 

Whether sacsin localises to peroxisomes should be investigated by either 

immunofluorescence or immunoblotting of a peroxisome fraction. In addition, 

peroxisome biogenesis and clearance has not been explored in ARSACS. The decrease 

in peroxisome number may be due to a deregulation of peroxisome biogenesis and or 

pexophagy (peroxisome autophagy). Therefore these must be examined in sacsin 

knockdown and patient cells. The regulation of peroxisome turnover is a relatively new 

field. However, investigating the expression levels of PpAtg30, a protein which has 

been described to selectively target peroxisomes and initiate autophagy and 

investigating PEX proteins;  Pex3p and Pex19p and Pex11β which are involved in 

peroxisome biogenesis will resolve sacsin’s role in the regulation of peroxisomes (Farré 

et al., 2008, Eckert and Erdmann, 2003, Kunau, 2005). 
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In addition to this, the monitoring of the peroxisome may give insight into its 

regulation and turnover. Live cell imaging of peroxisome dynamics using Halo-Tag 

technology and pulse imaging or CellLight® Peroxisome-GFP, BacMam 2.0  have been 

successfully used in studies to examine peroxisome dynamics and trafficking in 

mammalian cells and in hereditary spastic paraplegia patient derived cells (Fan et al., 

2014, Huybrechts et al., 2009). These methods can also be employed in sacsin 

knockdown and patient fibroblasts. 

The results in this chapter have led to the conclusion that sacsin’s involvement in Drp1 

recruitment is downstream of the ER’s role in mitochondrial fission. The findings also 

suggests that sacsin’s role in Drp1 recruitment may also affect peroxisomes.  
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6.1 Introduction 

The disruption of Drp1 recruitment to mitochondria in ARSACS patients and sacsin 

knockdown fibroblasts, potentially explains the morphological phenotype of the 

mitochondrial network. As discussed previously, impairment in mitochondrial fission is 

known to be detrimental to cells. In particular, impaired fission can prevent the 

elimination of damaged mitochondria (Seo et al., 2010, Mammucari and Rizzuto, 

2010). Moreover, mitochondrial dysfunction has been found to be a contributing 

factor of many neurological, and ARCA disorders. This chapter focuses on examining 

mitochondrial function through measuring respiration rate and mitochondrial 

superoxide production, focusing on the hypothesis that reduced recruitment of Drp1 

and associated changes in mitochondrial network morphology will be linked to 

impaired mitochondrial function in sacsin knockdown and ARSACS patient fibroblasts.  

The main function of the mitochondria is the generation of adenosine triphosphate 

(ATP) via the process of cellular respiration. This complex process leads to the 

production of toxic by-products, which are then cleared by other pathways within the 

organelle. Before considering the measurement of mitochondrial function it is 

necessary to expand on the role of the mitochondrion in cellular respiration.  

Briefly, the end products of glycolysis and fatty acid oxidation, namely pyruvate and 

fatty acids are transported from the cytosol into the matrix of the mitochondria where 

they are converted into Acetyl CoA by Coenzyme A (Figure 6. 1). Acetyl CoA is then 

utilised by the tricarboxylic cycle (TCA) to generate the electron carrier molecules 

nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide (FADH2), 

needed for the electron transport chain (ETC). The production of ATP in a series of 

reactions is known collectively as oxidative phosphorylation (OXPHOS). Mainly, the ETC 

reduces consumed molecular oxygen (O2) to water, creating a proton gradient across 

the inner mitochondrial membrane (Figure 6. 1). This gradient is then used in the 

synthesis of ATP from ADP by the enzyme ATP synthase (Figure 6. 1) (Brand and 

Murphy, 1987, Baldwin and Krebs, 1981, Hatefi, 1985, Ernster and Schatz, 1981). 
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Figure 6. 1 Schematic representation of cellular respiration. 

Products of glycolysis and fatty acid oxidation, namely pyruvate and fatty acids are 

transported from the cytosol to the mitochondria where they are converted to NADH 

and FADH2 through the citric acid (TCA) cycle. Electrons are donated to the electron 

transport chain (ETC) from NADH and FADH2 to produce adenosine triphosphate (ATP) 

through a series of reactions.  
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As well as ATP and CO2, OXPHOS produces reactive oxygen species (ROS) as a 

potentially cytotoxic by-product. ROS arise as a consequence of unpaired electrons 

from the ETC interacting with O2 and subsequently generating superoxide ions. These 

superoxide ions can then be converted into other species such as hydrogen peroxide 

(H2O2) and hydroxyl radicals (OH-) (Duchen, 2004a). The mitochondria are a major 

source and target of ROS. Mitochondria and subsequently cells are usually protected 

from ROS induced damage by antioxidant enzymes such as superoxide dismutase 

(SOD) and catalase (Duchen, 2004a). Although ROS may be damaging, there are 

emerging reports showing there is also a beneficial role for ROS in signalling several 

physiological processes (Balaban et al., 2005). For example, H2O2 was found to be 

required for TGF-β signalling in primary lung fibroblasts. Treatment of these fibroblasts 

with mitochondria targeted antioxidants like mitochondria-vitamin E led to the 

attenuation of TGF-β mediated gene expression (Jain et al., 2013). Interestingly TNF 

induced c-Jun NH2-terminal kinase (JNK)/p38 activation pathway, which is important in 

regulation of apoptosis, was found to be dependent on H2O2 in mouse embryonic 

fibroblasts. This pathway was inhibited by treatment of these cells with chemical 

antioxidant N-acetyl-L-cysteine (Nac) (Tobiume et al., 2001). Moreover both epidermal 

growth factor and platelet derived growth factor have been demonstrated to be 

mediated by H2O2 (Bae et al., 1997, Sundaresan et al., 1995). In addition superoxide 

was demonstrated to be essential for the activation of CD4+ T-Cells and treatment with 

mitochondria-vitamin E attenuated interlukin-2 induction and hence T-Cell activation 

(Sena et al., 2013).  

Mostly, ROS are damaging to cells and disrupt cellular function when they are at 

sustained elevated levels. In homeostasis, the equilibrium between ROS production 

and antioxidant detoxifying effects, maintains the cell in a healthy state. Oxidative 

stress occurs once there is a disequilbrium created by elevated ROS which overwhelms 

the antioxidant capacity of the cell. This increase in ROS is usually indicative of 

mitochondrial dysfunction. 

The brain is particularly susceptible to the damaging effects of ROS and oxidative 

stress, probably due to the consequences of high metabolic demands of neurons which 
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are non-dividing cells. Accordingly, increased oxidative stress and mitochondrial 

dysfunction plays a role in the pathologies of neurodegenerative disorders including 

Huntington’s, Parkinson’s and Alzheimer’s disease. Elevated ROS was seen in 

Huntington’s disease post-mortem cortex and striatum. Moreover, marked neuronal 

cell death, as well as increased mitochondrial ROS was recorded in the Huntington’s 

disease mouse models (Valencia et al., 2013). Likewise analysis conducted on post 

mortem brain tissue showed oxidative damage caused by elevated ROS results in the 

degradation of dopaminergic cells in the substantia nigra of Parkinson’s disease 

(Jenner et al., 1992). In addition, elevated ROS has been described as being an early 

event in Alzheimer’s, preceding the formation of amyloid-β plaques (Nunomura et al., 

2001, Praticò et al., 2001).  

Oxidative stress is also involved in autosomal cerebellar ataxias. This includes that 

oxidative stress and impaired OXPHOS has been observed in Friedreich’s Ataxia 

patients (Lodi et al., 1999, Bradley et al., 2000). Additionally, oxidative stress and 

elevated ROS were present in the Ataxia-Telangiectasia, ATM-deficient mouse model 

(Kamsler et al., 2001). 

 Mitochondrial function can be more directly analysed by measuring the efficiency of 

respiration. Mitochondrial bioenergetics analyzers like the Seahorse Extracellular flux 

(XF) analyser have been developed to assess OXPHOS by measuring the rate of oxygen 

consumption (OCR) and glycolysis by determining the extracellular acidification rate 

(ECAR) of cultured cells. These systems are capable of sensitively analysing 

mitochondria bioenergetics in real time and can be used to detect relatively subtle 

impairment of mitochondrial function.  

The Seahorse XF analyser has been used in investigating neurodegenerative disorders. 

A study revealed a deficit in mitochondrial bioenergetics directly preceding the 

development of amyloid pathology in Alzheimers disease mouse models, agreeing with 

the increase of ROS at this time (Yao et al., 2009). In cells treated with Parkinson’s 

disease mimetic compounds, there was a significant decrease in OCR and increase in 
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ECAR leading to increased cell death, suggesting a role for mitochondrial dysfunction in 

the disease (Giordano et al., 2012).   
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6.2 Superoxide production in sacsin knockdown and ARSACS 

fibroblasts 
 
The MitoSOX fluorogenic dye and fluorescent imaging technology allows for the 

quantitative analysis of mitochondrial superoxide production in individual cells and has 

been used as an indicator of impaired mitochondrial function in numerous studies 

(Mukhopadhyay et al., 2007, Meimaridou et al., 2012, Mezencev et al., 2011). 

Fibroblasts were transfected with GFP along with either SACS or SCRM siRNA. After 

48hrs, cells were washed once with PBS and incubated with MitoSOX for 10 minutes in 

a 37°C, 5% CO2 incubator, followed by a further wash and imaging. Cells which 

expressed GFP were assumed to have been successfully transfected with siRNA. GFP in 

this instance was also useful in defining the cell boundaries for MitoSOX analysis 

(Figure 6. 2).  

 

 

Figure 6. 2 Representative maximum intensity projections of MitSOX fluorescence. 

Fibroblasts were transfected with SCRM siRNA along with GFP. After 48 hours, cells 

were washed with PBS and incubated with MitoSOX for 10mins. Region of interest 

(ROI) were selected by drawing around the cell boundary visualised by GFP, using the 

line tool in the Zeiss software. The mean MitoSOX fluorescence within each ROI was 

measured using the software.  
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For this analysis confocal Z-stacks of 0.55µm each over an average of 7µm were 

acquired in 35 cells for each condition.  MitoSOX fluorescence occurs through 

oxidisation of the reagent by superoxide, therefore the intensity of MitoSOX 

fluorescence was used to indicate the levels of mitochondrial superoxide present 

within the mitochondria. Intensity was measured using the Zeiss confocal software 

which allowed for the measurement of intensity within a selected region of interest 

(ROI). The line tool in the software was used to draw around the cell boundary (ROI) 

and measurement tool to measure mean red (MitoSOX) fluorescence (Figure 6. 2). 

Confocal conditions were maintained for each sample throughout the experiment.  

The sacsin knockdown fibroblasts had a higher level of MitoSOX fluorescence than 

then controls.  A fluorescence of 469.61 ± 40.01AU was recorded in SCRM fibroblasts, 

significantly lower (p ≤ 0.05) than the 708.99 ± 91.77AU recorded in SACS fibroblasts. 

This indicated the presence of more mitochondrial superoxide in the sacsin knockdown 

than in control fibroblasts (Figure 6. 3B).  

Following on from the results obtained in sacsin knockdown fibroblasts, the 

mitochondrial superoxide production was examined in patient fibroblasts using 

MitoSOX.  The cells were grown until a confluence of 70% was reached. Cells were 

washed in PBS and incubated with MitoSOX for 10 minutes as previously described. 

Phase images were used instead of GFP in this instance to define the cell boundary. 

Confocal Z-stacks were collected at 0.5 µm Z-intervals for 75 cells from 3 control and 4 

patient fibroblasts cell lines. 

A higher MitoSOX fluorescence was observed in all of the patients when compared to 

control fibroblasts (Figure 6. 3B). Control fibroblasts had a mean fluorescence of 

235.53 ± 8.66 AU. Patient c.2094-A>G/Q4054*(296.17 ± 12.44 AU), and patient 2801Q 

(300.35 ± 20.49 au) had similar levels of MitoSOX fluorescence and both were 

significantly (p≤0.01) higher than controls.  Similarly, significantly (p≤0.0001) higher 

levels of fluorescence was observed in patient R2002fs/Q4054*, which had the highest 

fluorescence of 436.69 ± 23.33 AU and patient K1715*/R4331Q, the second highest 

MitoSOX fluorescence (418.37 ± 14.99 AU) recorded (Figure 6. 4B). 
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Figure 6. 3 Sacsin knockdown fibroblasts have significantly higher levels of 

mitochondrial superoxide than scrambled control fibroblasts. 

Fibroblasts were transfected with either SACS or SCRM siRNA along with GFP. 

Fibroblasts were washed and loaded with MitoSox 48 hours post transfection. 

Confocal Z-stacks were taken and images were analysed using the Zeiss confocal 

software. A)  Representative images of MitoSox fluorescence in SACS and SCRM 

fibroblasts. B) Quantification of MitoSOX was performed using Zeiss confocal software. 

Data represents mean values. Error bars represent ± SEM. Scale bars represent 10µm. 

n=35  ‡p≤0.05.  
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Figure 6. 4 ARSACS patient fibroblasts have significantly higher levels of 

mitochondrial superoxide than control fibroblasts. 

Fibroblasts were washed and loaded with MitoSOX for 10mins prior to imaging. 

Confocal Z-stacks were taken and images were analysed using the Zeiss confocal 

software. A)  Representative images of MitoSOX fluorescence in patient and control 

fibroblasts. B) Quantification of MitoSOX was performed using Zeiss confocal software. 

Data represents mean values. Error bars represent ± SEM. N=75 Scale bars represent 

10µm  
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6.3 Mitochondrial respiration in ARSACS patient fibroblasts 
 

The bioenergic profile of the controls and patient fibroblasts were analysed using 

XFe96 flux analyser along with XF Cell MitoStress kit (Seahorse Bioscience). These 

allowed the accurate measurement of the basal respiration as well as the response to 

mitochondrial insult by the introduction of reagents known to induce mitochondrial 

stress. siRNA treated fibroblasts were not used for this analysis due to the low 

transfection efficiency making measurements on populations of cells difficult. The OCR 

was measured in 3 control and 4 patient fibroblasts lines.  

In the first instance, 4 OCR measurements were recorded to establish the basal OCR of 

the fibroblasts. After these measurements were taken, 4 reagents (Oligomycin, 

carbonyl cyanide-p-trifluoromethoxyphenyl analyser, Rotenone and Antimycin A) were 

added sequentially to the culture plate and OCR readings were recorded.  All 

measurements were in quadruplet in 10-12 replicates for each sample. 

Oligomycin, an ATP coupler, was the first reagent added at a concentration of 5 µM.  

Oligomycin inhibits ATP synthesis by blocking ADP phosphorylation. The reduction in 

OCR after the introduction of Oligomycin indicates the oxygen consumption required 

for ATP synthesis as well as the percentage of oxygen consumption necessary to 

overcome the proton leak across the inner membrane (Figure 6. 5).   

The second reagent added was 0.5µM of carbonyl cyanide-p-trifluoromethoxyphenyl 

analyser (FCCP), which causes an increase in OCR (Figure 6. 5). FCCP is an uncoupler 

which disrupts mitochondrial membrane potential allowing hydrogen ions across the 

mitochondrial membrane bypassing complex V. This in turn disrupts ATP synthesis and 

therefore accelerates the ETC. The increase in OCR is indicative of the maximal 

respiration of the fibroblasts (Figure 6. 5).  

1µM of rotenone, a complex I inhibitor and Antimycin A, a complex III inhibitor were 

the final reagents added. These reagents inhibit the production of ATP resulting in a 

decrease in OCR measurements. OCRs recorded after the addition of these reagents 

indicate non-mitochondrial respiration (Figure 6. 5). 
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The basal OCRs were calculated as the OCRs recorded prior to the addition of 

mitochondrial inhibitors minus non-mitochondrial respiration (Figure 6. 5). These 

readings were carried out in the presence of 10mM glucose. The basal OCRs of the 

patient fibroblasts were significantly (p≤0.0001) reduced when compared to control 

(Figure 6. 6, Figure 6. 7) Control fibroblasts had an OCR of 116.71 ± 9.98 pmol/min 

while patient 2801delQ had the lowest basal OCR at 20.49 ± 0.73 pmol/min. Patient 

K1715*/R4331Q had the highest basal OCR of 72.68 ± 3.23 pmol/min despite having a 

more collapsed mitochondrial phenotype described in chapter 3. Patients c.2094-2 

A>G/Q4054* and R2002fs/Q4054*had OCRs of 52.17 ± 3.18 pmol/min and 36.55 ± 

1.38 pmol/min respectively.  

The amount of proton leak was calculated as OCR after oligomycin treatment minus 

non-mitochondrial respiration (Figure 6. 5). The results gathered showed that patient 

fibroblasts had a marked decrease in proton leak. The lowest proton leak, 4.04 ± 0.32 

pmol/min, was recorded in patient 2801delQ which was significantly (p≤0.0001) less 

than recorded in control, (21.78 ± 3.84 pmol/min).  Similarly, a significant (p≤0.001) 

decrease in proton leak was found in patient R2002fs/Q4054* with an OCR reading of 

9.35 ± 0.40 pmol/min. Patients K1715*/R4331Q and c.2094-2 A>G/Q4054* had similar 

measurements of 12.12 ± 0.14 pmol/min and 12.84 ± 0.83 pmol/min which again was 

notably different from the controls (p≤0.01).  

A significant (p≤0.0001) reduction in ATP production was observed in ARSACS patients. 

Here, the ATP production was defined as the difference between basal OCR and proton 

leak (Figure 6. 5). Control fibroblasts had an OCR of 94.93 ± 6.43pmol/min (Figure 6. 7). 

This OCR was over 2x higher than that observed in patient c.2094-2 A>G/Q4054* 

(39.34 ± 2.07 pmol/min) and over 3.5 x higher than patient R2002fs/Q4054* (27.19 ± 

0.65 pmol/min). Patient K1715*/R4331Q and had a higher ATP production than the 

other patients which was reflected by OCR of 60.56 ± 2.83 pmol/min. Contrastingly, 

ATP production was lowest in patient 2801delQ indicated by an OCR of 16.45 ± 0.23 

pmol/min (Figure 6. 7).  
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Interestingly, maximal respiration was significantly (p≤0.0001) reduced in the patients. 

Maximal respiration was calculated as the difference between the OCR recorded after 

FCCP injection minus non-mitochondrial respiration (Figure 6. 7). OCR readings 

recorded show that the mitochondria did not appear to effectively respond to FCCP 

treatment as it did in the controls. While control maximal respiration OCR reading was 

126.49 ± 6.23 pmol/min, patient c.2094-2 A>G/Q4054* and K1715*/R4331Q had OCRs 

of 25.35 ± 1.43 and 56.50 ± 2.35 pmol/min respectively( Figure 6. 6, Figure 6. 7). 

Patient 2801delQ had the lowest OCR at 4.00 ± 0.35 pmol/min and did not recover 

from ATP synthesis inhibition after treatment with oligomycin (Figure 6. 6). Lastly 

patient R2002fs /Q4054* also showed reduced recovery following oligomycin 

treatment and had a mean maximal respiration of 6.98 ± 0.23 pmol/min Figure 6. 

6,Figure 6. 7).   

Spare capacity was defined as the difference between maximum and basal respiration 

(Figure 6. 5). A reduction in the spare respiratory capacity was observed in patients 

(Figure 6. 6, Figure 6. 7).  These results were significant with p≤0.0001. Strikingly, none 

of the patients appeared to have sufficient spare respiratory capacity and on average 

yielded negative readings. In the control fibroblasts, the increase in OCRs after 

treatment with FCCP showed that the mitochondrial uncoupling had occurred and 

mitochondria recovered after oligomycin treatment. The same appeared to be true for 

patients c.2094-2A>G/Q4054* and K1715*/R4331Q, however the OCRs obtained after 

FCCP treatment were lower that the basal OCRs recorded. As expected, based on very 

low values for maximum respiration, patient 2801delQ and R2002fs /Q4054* had the 

worse recorded values for spare capacity -16.49 ± 0.44 and -29.57 ± 1.22 pmol/min.  
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Figure 6. 5 Representative respiratory profile of human dermal fibroblasts. 

450 x103 Dermal fibroblasts were seeded into the XFe96 microculture plate 24 hours 

prior to analysis. Cells were then washed and incubated with supplemented XF Assay 

media for 1 hour in a non CO2 incubator. Cells were placed into the analyser and 3 

initial OCR readings were taken. This was followed by sequential injections of 25µl of 

5µM Oligomycin, 25µl of 0.5 µM FCCP and 25µl of 1µM Antimycin A/Rotenone. 

Concentrations represent final concentrations in the well. This profile represents 12 

replicates. Three measurements were taken after each injection.  
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Figure 6. 6 Reduced mitochondrial respiration was observed in ARSACS patients. 

Respiratory profile of 3 control and 4 patient fibroblasts. 390 x103 cells were seeded 

into the XFe96 microculture plate 24 hours prior to analysis. Cells were then washed 

and incubated with XF Assay media for 1 hour in a non CO2 incubator. Cells were 

placed into the analyser and 4 initial OCR readings were taken. This was followed by 

sequential injections of 25µl of 5µM Oligomycin, 25µl of 0.5 µM FCCP and 25µl of 1µM 

Antimycin A/Rotenone. This profile represents 10-12 replicates. Four measurements 

were taken after each injection. Error bars represent ±SEM.  
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Figure 6. 7 Reduced mitochondrial efficiency was observed in ARSACS patients. 

A reduction in maximum respiratory capacity as well as ATP production was recorded 

in patient fibroblasts.  Each bar in the chart represents the mean of four readings in 10-

12 replicates. The OCR measurements were normalised to 390 x 103 cells Error bars 

represent ± SEM. ‡‡ p≤0.01 ‡‡‡p≤0.001 ‡‡‡‡p≤0.0001 
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6.4 Glycolytic Function in ARSACS fibroblasts 
 

The glycolytic profile of the controls and patient fibroblasts were analysed using the 

XFe96 flux analyser along with XF Cell Glycolysis Stress kit. Cells are capable of 

dynamically shifting energy production between oxidative phosphorylation and 

glycolysis, in order to maintain the balance of energy in response to changes in 

environment. Being able to adapt mechanism of energy production is vital. OXPHOS 

occurs under aerobic conditions, where pyruvate produced in the glycolysis process 

enters the TCA cycle initiating the process described earlier (Figure 6. 1). Under 

anaerobic conditions pyruvate is reduced to lactate (lactic acid) by lactate 

dehydrogenase A (Pfeiffer et al., 2001). This process occurs in the cytoplasm and the 

lactic acid produced is excreted into the extracellular environment.   

The production and excretion of lactic acid allowed for the measurement of the 

change in pH of the fibroblasts’ extracellular medium. Lactic acid excreted into the 

extracellular medium leads to acidification of the medium. The change in pH can then 

be measured by the XFe96 flux analyser. 

The Glycolysis Stress kit allowed for the measurement of glycolysis, maximal glycolytic 

capacity and glycolytic reserve in the patient and control fibroblasts by examining the 

cells response to glycolytic stress. After the initial basal ECAR measurements were 

taken, 3 reagents (Glucose, Oligomycin and 2-Deoxy-D-Glucose) were added 

sequentially to the culture plate and ECAR readings were recorded.  All measurements 

were in quadruplet in 10-12 replicates for 3 control and 4 patient fibroblasts lines.  

A high concentration of 10mM of glucose was the first reagent added after the four 

basal ECAR readings were recorded. Cells at this stage, have been deprived of pyruvate 

and glucose for an hour, therefore this injection of glucose results in the uptake of 

glucose by the cells so that it can be utilised to produce ATP through the process of 

glycolysis as described earlier. This sudden uptake leads to release of protons into 

surrounding media and hence an increase in ECAR. The response induced by the 

introduction of glucose is measured as the rate of glycolysis (Figure 6. 8).   
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The second reagent was ATP synthase inhibitor oligomycin (5µM). Oligomycin inhibits 

ATP production and therefore shifts the production of energy toward glycolysis. The 

increase in ECAR is due to the cells attempting to maintain ATP production through this 

alternate process and gives us the maximum glycolytic capacity of the cell (Figure 6. 8). 

The addition of 100mM 2-Deoxy-D-Glucose (2DG) results in the decrease of ECAR and 

2DG inhibits glycolysis through competitive binding to glucose hexokinase. 2DG is an 

analogue of glucose which cannot undergo glycolysis due to a change in the hydroxyl 

group of the inhibitor. Once bound to glucose hexokinase it suppresses the action of 

the hexokinase preventing the initiation of glycolysis. The use of this molecule ensures 

that the ECARs recorded during the experiment were the result of glycolysis (Figure 6. 

8).    

Glycolysis in this case was calculated as the ECAR recorded after glucose injection 

minus the non-glycolytic acidification. Glycolysis was highest in patient 2801delQ at 

42.89 8.32 mpH/min. This was higher than all of the patients and significantly (p≤0.01) 

higher than control. Glycolysis measurements were similar in the control and the other 

3 patients. The control fibroblasts had a value of 12.96 ± 3.00 mpH/min, while patient 

c. 2094-2 A>G/Q4054*, K1715*/R4331Q and R2002fs / Q4054* had values of 14.63 ± 

1.97 mpH/min, 13.19 ± 7.09 mpH/min and 15.42 ± 2.27 mpH/min respectively. These 

results were not deemed statistical different from the controls. 

The glycolytic capacity was defined as the difference between the ECAR recorded after 

the oligomycin injection and non-glycotic acidification. Glycolytic capacity was highest 

in patient 2801delQ with a mean ECAR measurement of 55.53 ± 7.78mpH/min, 

superseding measurements recorded in the controls and other patient fibroblasts. The 

increase in ECAR was statistical different with a p value ≤0.001. The control had a 

mean ECAR of 20.30 ± 2.55 mpH/min representing the glycolytic capacity. These 

measurements were comparable to those observed in the patients c.2094-2 

A>G/Q4054*, K1715*/R4331Q and R2002fs/Q4054* in which glycolytic capacity was 

represented by mean ECARs of 18.25 ± 2.19 mpH/min, 16.10 ± 6.73 mpH/min and 
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14.96 ± 1.25 mpH/min respectively. ANOVA statistical testing did not find the 

difference to be statistically significant.  

The results for glycolytic capacity in the patients were quite varied. A significant 

(p≤0.01) decrease in glycolytic capacity was found in patient R2002fs/Q4054* (-0.46 ± 

1.81) (Figure 6. 9,Figure 6. 10). The glycolytic profile for this patient clearly shows a 

lack of response to oligomycin treatment in these cells, therefore these results are in 

keeping with the profile obtained (Figure 6. 9, Figure 6. 10). Contrastingly, patient 

2801delQ had a significant (p≤0.05) increase in glycolytic capacity(12.65 ± 1.73) when 

compared to control (7.35 ± 0.46 mpH/min). The differences in the glycolytic reserve 

between patient c.2094-2>AG/Q4054* and control and patient K1715*/R331Q  and 

control did not obtain statistical significance (p>0.05). 
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Figure 6. 8 Representative glycolytic profile of human dermal fibroblasts. 

390 x103 dermal fibroblasts were seeded into the XFe96 microculture plate 24 hours 

prior to analysis. Cells were then washed and incubated with XF Assay media without 

glucose for 1 hour in a non CO2 incubator. Cells were placed into the analyser and 4 

initial ECAR readings were taken. This was followed by sequential injections of 25µl of 

10mM Glucose, 25µl of 5µM Oligomycin and 25µl of 100mM 2-DG.  Concentrations 

represent final concentrations in the well. This profile represents 12 replicates. Three 

measurements were taken after each injection. 
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Figure 6. 9 An increased basal ECAR and maximum ECAR was observed in patient 

2801delQ. 

Glycolytic profile of 3 control and 4 patient fibroblasts. 390 x103 cells were seeded into 

the XFe96 microculture plate 24 hours prior to analysis. Cells were then washed and 

incubated with XF Assay media for 1 hour in a non CO2 incubator. Cells were placed 

into the analyser and 4 initial OCR readings were taken. This was followed by 

sequential injections of 25µl of 5µM Oligomycin, 25µl of 0.5 µM FCCP and 25µl of 1µM 

Antimycin A/Rotenone. This profile represents 10-12 replicates. Four measurements 

were taken after each injection.  Error bars represent ±SEM. 
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Figure 6. 10 Increased glycolytic efficiency was observed in patient 2801delQ. 

Each bar in the chart represents the mean of four readings in 10-12 replicates. The 

ECAR measurements were normalised to 390 x 103 cells. Error bars represent ± SEM. 

‡p≤0.05 ‡‡p≤0.01 ‡‡‡p≤0.001. 
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6.5 Discussion 
 

An increased level of mitochondrial superoxide was measured in sacsin knockdown 

and patient fibroblasts. MitoSOX fluorescence observed in sacsin knockdown 

fibroblasts was 1.5 x greater than in controls. This relative difference varied between 

1.25 – ~1.9x in the patients (Table 6. 1). Mitochondrial superoxide is produced by 

components of the ETC like complex I and III (Brand et al., 2004, Turrens, 2003). The 

superoxide anion (O2
-.) is the precursor of reactive oxygen species (ROS) produced 

through the reduction of oxygen by 1- electron and is a potential source of cellular 

damage if it accumulates (Brand et al., 2004, Li et al., 1995). This reactive molecule is 

usually converted to hydrogen peroxide (H2O2), which can occur spontaneously or 

through a reaction catalysed by superoxide dismutases. H2O2 can then be reduced to 

water and oxygen by catalase and glutathione peroxidase enzymes through a series of 

reactions (Turrens, 2003). The imbalance between superoxide production and it’s 

clearance by antioxidant enzymes or scavengers, result in oxidative stress.  

 
MitoSOX fluorescence 

(relative to control) 

Sacsin knockdown 1.5 

c.2094-2 A>G/ Q4054* 1.25 

K1715*/R4331Q 1.77 

R2002fs/Q4054* 1.86 

2801delQ 1.27 

Table 6. 1 Summary of the MitoSOX fluorescence relative to control fibroblasts. 
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While these results are interesting, further analysis of the regulation of mitochondrial 

antioxidant enzymes will provide a more comprehensive ROS profile in patient cells 

and in cells with reduced sacsin. 

 Prior studies have demonstrated the importance of understanding the regulation of 

mitochondrial antioxidants in the pathology of neurodegenerative diseases. Increased 

ROS/superoxide production has been described as a feature of neurodegenerative 

disorders. High, sustained levels of superoxide was observed when frataxin was 

knocked down in SH-SY5Y cells (Bolinches-Amorós et al., 2014). These cells also 

exhibited a fused mitochondrial network and reduction in mitochondrial number 

(Bolinches-Amorós et al., 2014).  Developing neurons from Alzheimer’s mouse model 

were shown to have increased mitochondrial manganese superoxide dismutase 

(MnSOD) activity as well as an increase in the levels of MnSOD protein. However these 

levels decreased in mature neurons of the Alzheimer’s disease mouse model, which 

was suggested to result in an impairment of the neurons to respond to oxidative insult 

and hence contributing to disease pathology (Sompol et al., 2008). Increased levels of 

ROS, MnSOD activity and a decrease in antioxidant enzyme, glutathione peroxidase 

(GPX1) were found in the cerebellum of ATM null mice (Kamsler et al., 2001, Okuno et 

al., 2012). In addition, an increase in mitochondrial manganese superoxide dismustase 

and mitochondrial glutathione peroxidase was reported in the brain of a Parkinson’s 

disease mouse model (Andres-Mateos et al., 2007). The analysis of gene and protein 

expression of MnSOD and GPX1, via quantitative real time PCR and immunoblotting, as 

well as the assessment of their enzymatic activity by colourimetric assays, can be 

carried out using patient fibroblasts or sacsin knockdown SH-SY5Y cells. Such an 

undertaking will be beneficial in understanding the consequence of a loss of sacsin on 

the ROS status of mitochondria.  

Similar to results obtained in this thesis, sustained mitochondrial fusion, caused by the 

reduction of hFis1 in HeLa cells led to an increase in ROS production and a decrease in 

membrane potential (Lee et al., 2007).   
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An increase in ROS and ROS damage is postulated to be an upstream activator of 

mitophagy (Wang et al., 2012). As mentioned earlier in this thesis, damaged 

mitochondria are removed by this selective process to limit the damage to the entire 

mitochondrial network and to protect the cell from damage and ultimately apoptosis 

(Mammucari and Rizzuto, 2010). Most importantly however, in order for mitophagy to 

occur, damaged sections of the mitochondrial network are removed by mitochondrial 

fission. Therefore loss of this mechanism  impairs mitopagy and can potentially result 

in the cell death observed in neurodegeneration (Mammucari and Rizzuto, 2010, Youle 

and Narendra, 2011).    

Interestingly the relative difference in MitoSOX fluorescence was highest in patient 

R2002fs/Q4054* with 1.86 times more fluorescence recorded than controls. 

Morphometric analysis of the mitochondrial network, reported in Chapter 3 of thesis, 

showed this patient to have a significantly larger total mitochondrial volume than 

controls. The studies linking mitophagy, oxidative stress and regulation of 

mitochondrial dynamics, in conjuction with results presented here and in chapters 3- 

4, have provoked questions of whether the cellular death reported in ARSACS is a 

consequence of the increased ROS brought about by impaired fission and cellular 

damage or attenuated mitophagy. It is therefore important to explore the regulation 

of mitophagy in sacsin knockdown and patient cells as well as cell viability.  

Examining the cellular localisation of markers involved in mitophagy like PINK1 and 

parkin in sacsin null cells will give a better understanding of sacsin’s role in mitophagy. 

PINK1 is known to accumulate on the surface of damaged mitochondria thereby 

recruiting parkin and initiating the mitophagy cascade. Quantification of the cellular 

localisation of these proteins in SACS null cells will address whether mitophagy is 

impared in ARSACS.  

Results in this chapter highlights the extent of mitochondrial dysfunction in ARSACS 

fibroblasts. Patients had low basal respiration which may be due to the damaged 

mitochondria caused by elevated ROS. The main function of mitochondria is the 

production of ATP. Optimal function is especially important in neuronal cells, which 
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have high demands for energy. A decrease in maximal respiration was observed in the 

ARSACS patient cells  indicating decrease in efficiency of mitochondrial respiration. 

Reduced ATP production has been linked with other neurodegenerative diseases. For 

example, hippocampal neurons in an Alzhiemer’s disease mouse model displayed 

significantly lower basal OCR than controls (Yao et al., 2009). Moreover a significant 

reduction in maximal OCR was also observed in the hipocampal neurons of the same 

mice (Yao et al., 2009). In fibroblasts with reduced levels of parkin, a decrease in basal 

respiration was described. This was significantly lower than their scrambled siRNA 

controls (Ferretta et al., 2014).  

A decrease in mitochondrial respiration was observed in cells where fission had been 

impaired. Furthermore, a low basal respiration as well as low ATP production was 

observed in cells where Drp1 had been reduced (Benard et al., 2007a). A recent paper 

published in 2013 showed that supressor of cytokine sigalling 6 (SOCS6), may be 

involved in the translocation of Drp1 to the mitochondria (Lin et al., 2013). An increase 

in mitochondrial elongation was observed in cells with reduced levels of SOCS6. As well 

as this, a reduction in basal respiration, spare capacity and ATP production was also 

measured in the SOCS6 knockdown cells (Lin et al., 2013).  

Finally, an increase in glycolytic capacity and glycolysis was observed in patient 

2801delQ. A shift toward glycolysis tends to be a sign of dyfunctional OXPHOS. This 

shift is in keeping with the reduction of ATP production observed patient in 2801delQ 

cellular respiratory profile.  An increase in ECAR accompanied a decrease in OCR was 

observed in cells with hyperfused mitochondria where Drp1 had been reduced (Qian et 

al., 2012). Glycolysis and glycolytic capacity was lower in the other ARSACS patients 

compared to the controls. Similar results were also observed in SOCS6 knockdown 

cells. These cells also had a lower basal OCR than in controls as well as reduced 

glycolytic capacity (Lin et al., 2013).  

Of note, the delay in the recovery of oxidative metabolism and membrane potential in 

sacsin knockdown cells following CCCP washout experiment was suggested by Girad et 

al, to be attributed to either reduced proton pumping or increased proton leakage 
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(Girard et al., 2012). Conversely, a significant decrease in proton leak was observed in 

the patients. The process of oxidative phosphorylation is not 100% efficient. This is a 

result of the ability of some protons to leak across the membrane, returning to the 

mitochondrial matrix without the ATP synthase complex, therefore no ATP is 

generated from this process (Divakaruni and Brand, 2011). Nonetheless, proton leak 

pathways are important in other functions such as nonshivering thermogenesis 

(Jastroch et al., 2005). Controversially, it was suggested that proton leak can function 

to protect ROS damage, this hypothesis is fascinating in relation to data obtained in 

the patient fibroblasts. However, this has not been conclusively demonstrated (Brand, 

2000). These results could mean that the observations regarding oxidative metabolism 

are due to decreased proton pumping and not increased proton leakage. Whilst this is 

alluring, an exploration of proton cycling in sacsin knockdown cells is required to 

address this hypothesis.   

It will be of some interest to investigate whether the increased mitochondrial ROS  

observed in sacsin knockdown cells is the result of dysfunctional OXPHOS or visa versa. 

Overexpression of mitochondrial antioxidants such as mitochondrial superoxide 

dimutase in the sacsin knockdown cells or treatment with mitochondria targeted 

antioxidant like MitoQ may reduce ROS and improve function. 

The results in this chapter demonstrates the mitochondrial bioenergetic profile and 

mitochondrial superoxide production in patient fibroblasts and in cells where sacsin 

has been reduced. Further discussions regarding the implications of these findings will 

continue in the subsequent chapter. 
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This thesis set out to explore sacsin’s role in the regulation of mitochondrial dynamics 

and thus further understand the molecular pathology of ARSACS. Morphometric 

analysis established that an overly interconnected mitochondrial network is a 

phenotype in Non-Quebec ARSACS patients. This was consistent with a similar 

phenotype observed in fibroblasts from patients with the common Canadian mutation 

(Girard et al., 2012). Furthermore, this study went on to show that a loss of sacsin 

directly impacted the mitochondrial fission machinery, potentially explaining the 

mitochondrial morphology phenotype. Expanding on the work published by our group 

along with our collaborators, my PhD supports sacsin’s involvement in the recruitment 

of Drp1 to the mitochondria and further describes the effect of loss of sacsin on 

mitochondrial function.   

To date, four mammalian mitochondrial fission accessory proteins (MiD49, MiD51, Mff 

and hFis1) have been identified and characterised. Loss of function of these proteins 

results in cells having a mitochondrial phenotype similar to that described in ARSACS 

patients and sacsin knockdown fibroblasts (see chapters 3 of this thesis) (Table 7. 2) 

(Palmer et al., 2011b, Gandre-Babbe and van der Bliek, 2008, Palmer et al., 2013, Otera 

et al., 2010, Koch et al., 2005). Loss of function of Mff and MiD 49/51 reportedly leads 

to a more extreme mitochondrial network phenotype than loss of hFis 1 alone (Table 

7. ) (Losón et al., 2013, Gandre-Babbe and van der Bliek, 2008). It has been suggested 

that the more moderate phenotype observed in hFis1 knockdown cells may be due to 

this protein being dispensable in the fission process implying that the other proteins 

are therefore more essential (Otera et al., 2010, Losón et al., 2013). Moreover, it is 

suggested that the relative severity of the mitochondrial phenotype and significance of 

these proteins in regulating fission can be largely due to the pathway(s) (e.g. apoptosis 

and mitophagy) mostly affected by its loss of function (Losón et al., 2013, Bui and 

Shaw, 2013). The severity of the mitochondrial phenotype in SACS and patient cells 

shown in chapter 3 are more akin to that observed in Mff and MiD49/51 knockdown 

cells than that observed in hFis 1 knockdown cells. This suggests that sacsin too is 

essential for the normal regulation of mitochondrial dynamics in neurons. 
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Mutation 

Status 
Mitochondrial Morphology 

Drp1 Localisation to mitochondria 

and Recruitment 

Control Mixed Tubular Phenotype 

Average Drp1 foci per μm of 

mitochondria was 0.84 ± 0.028 Drp1 

foci per μm of mitochondria. Which 

significantly increased after 

treatment with CCCP. 

2094-2 A>G 

/ Q4054* 

Moderate/severe phenotype 

Fused, interconnected 

mitochondria with Mixture of 

Collapsed and Tubular 

Phenotype (Increased 

mitochondrial volume) 

Significant less Drp1 foci per μm of 

mitochondria than control. No 

significant change after inducing 

mitochondrial fission. 

K1715* / 

R4331Q 

Moderate/severe phenotype 

Fused, interconnected 

mitochondria with Collapsed 

Phenotype (most severe) 

(Increased mitochondrial 

volume) 

Significant less Drp1 foci per μm of 

mitochondria than control. No 

significant change after inducing 

mitochondrial fission. 

R2002fs / 

Q4054* 

Moderate/severe phenotype 

Fused, interconnected 

mitochondria with Collapsed 

Phenotype (Increased 

mitochondrial volume) 

Significant less Drp1 foci per μm of 

mitochondria than control. No 

significant change after inducing 

mitochondrial fission. 

2801delQ 
Collapsed Phenotype (Increased 

mitochondrial volume) 

Significant less Drp1 foci per μm of 

mitochondria than control. No 

significant change after inducing 

mitochondrial fission.  

.Table 7. 1 Summary of Results and phenotypes measure/observed in ARSACS 

patient
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Mutation 

Status 
MitoSOX Mitochondrial Function 

Control 
Average mean intensity 

– 235.53±8.66 AU 
“Normal” 

2094-2 

A>G / 

Q4054* 

Increased Average 

mean intensity 

296.17±12.44 AU. 

Indicating increased 

Superoxide Levels 

Decreased: Basal Respiration, 

Proton Leak, ATP production, 

Maximum Respiration, Spare capacity. 

K1715* / 

R4331Q 

Increased Average 

mean intensity 

418.37±14.99 AU 

Indicating  increased 

Superoxide Levels 

Decreased: Basal Respiration, 

Proton Leak, ATP production, 

Maximum Respiration, Spare capacity. 

R2002fs / 

Q4054* 

Increased Average 

mean intensity 

436.69±23.33 AU 

Indicating  increased 

Superoxide Levels 

Decreased: Basal Respiration, 

Proton Leak, ATP production, 

Maximum Respiration, Spare capacity. 

2801delQ 

Increased Average 

mean intensity 

300.35±20.49 AU 

Indicating  increased 

Superoxide Levels 

Decreased: Basal Respiration, 

Proton Leak, ATP production, 

Maximum Respiration, Spare capacity. 

This patient has the most severe 

phenotype and has an increase in 

glycolytic capacity and glycolytic 

reserve. 

Table 7. 2 continued, Summary of Results and phenotypes measure/observed in 

ARSACS patient
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Table 7. 2 Summary of mitochondrial phenotypes observed in published 

mitochondrial fission accessory proteins and sacsin. 

Protein 

Reduction of Protein by RNAi 

Mitochondrial Phenotype Drp1 recruitment Reference 

Drp1 

Severe phenotype                  

Fused networks, showing 

both hyperfused and 

collapsed mitochondrial 

networks. 

No recruitment 

of Drp1 to the 

mitochondria. 

(Smirnova et al., 

2001, Gandre-

Babbe and van 

der Bliek, 2008) 

Mff 

Moderate/severe phenotype 

Fused mitochondrial 

phenotype with increased 

branching of the 

mitochondrial network. 

Reduced 

recruitment of 

Drp1 to the 

mitochondria. 

(Gandre-Babbe 

and van der 

Bliek, 2008) 

MiD49/51 

Moderate/severe phenotype 

Fused mitochondrial 

phenotype with 

collapsed/irregular 

distribution of the network. 

Reduced 

recruitment of 

Drp1 to the 

mitochondria. 

(Palmer et al., 

2011b, Losón et 

al., 2013) 

hFis1 

Mild/moderate phenotype  

Elongation of mitochondria 

with some increased 

branching observed. 

Slight reduction 

of recruitment of 

Drp1 to the 

mitochondria. 

(Koch et al., 

2005, Losón et 

al., 2013) 

Sacsin 

Moderate/severe phenotype 

Fused, interconnected 

mitochondria with a more 

compact mitochondrial 

network. 

Reduced 

recruitment of 

Drp1 to the 

mitochondria. 

(Girard et al., 

2012),This thesis. 
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 Data presented in chapter 4 suggests the effect of sacsin loss on mitochondrial 

network morphology is through impaired recruitment of Drp1 to the mitochondria. 

This impairment was observed both in patients and in fibroblasts with reduced levels 

of sacsin. The regulation of Drp1 recruitment to the mitochondria is the canonical 

function of accessory proteins MiD49, MiD51 and Mff (Losón et al., 2013, Palmer et al., 

2013, Gandre-Babbe and van der Bliek, 2008). Reduction of these proteins by RNAi in 

MEFs led to a reduction in Drp1 recruitment. The findings obtained in sacsin 

knockdown and patient cells give similar results to studies on loss of function of 

mitochondrial accessory proteins, Mff and MiD49/51. This suggests that sacsin may 

function in the same pathway as these proteins.  

During mitochondrial fragmentation, several processes including mitochondrial 

constriction, Drp1 recruitment, assembly of a scission complex, scission and 

subsequent dissasembly of the complex must occur. The endoplasmic reticulum has 

been postulated to initiate the fission process by constricting mitochondria. This 

process was suggested to occur prior to Drp1 sequestration (Friedman et al., 2011).  It 

was therefore important to estabish whether the decrease in Drp1 recruitment 

observed in my experiments, was a consequent of regulation of the protein or merely 

a downstream occurrence. As there was no observable difference in the number of 

contacts between mitochondria and the endoplasmic reticulm, it would appear that 

sacsin’s involvement in mitochondrial fission is downstream of the endoplasmic 

reticulum. 

Sacsin, like Fis1 and Mff, seems also to be involved in the regulation of peroxisome 

dynamics. However, the peroxisome phenotype observed in SACS and patient 

fibroblasts was distinct from that found in patient fibroblasts harbouring Drp1 

mutation or cells with reduced levels of Fis1 or Mff. Knockdown of Drp1 or these 

accessory proteins led to an elongated peroxisome phenotype and a reduction in the 

number of peroxisomes (Palmer et al., 2013, Gandre-Babbe and van der Bliek, 2008, 

Waterham et al., 2007). Conversley, MiD 49/51 proteins were not found to be targeted 

to the peroxisome and while a loss of MiD proteins had no effect of peroxisome 

morphology, overexpression of the proteins led to an increase in peroxisome length 
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and a decrease in peroxisome number (Palmer et al., 2013). This was attributted to the 

proposed mechanism of MiD function in which Drp1 is inactivated by phosphorylation 

at serine resiude 637 and the inactive form is recruited to proposed sites of fisson. This 

therefore impairs peroxisome dynamics and results in the elongated morphology 

observed (Palmer et al., 2013). From these results, MiD 49/51 were shown to be 

primarily involved in mitochondrial fission.  Loss of sacsin did not result in peroxisomes 

having an elongated phenotype. However, a reduction in the number of peroxisomes 

was oberved in patient and sacsin knockdown fibroblasts. Moreover a reduction in the 

total cellular peroxisome volume was evident in SACS and patient cells. Further 

investigation is required to asertain whether this change in the number of peroxisomes 

is directly linked to sacsin modulating Drp1 activity.  

Mitochondria associated Drp1 foci are smaller in sacsin knockdown and ARSACS 

patient fibroblasts when compared to controls. This finding could suggest that sacsin 

has a role in the stabilization/assembly of the Drp1 complex. Similarly, loss of Mff 

and/or Fis1 led to a decrease in the size and intensity of Drp1 foci (Losón et al., 2013). 

The mitochondrial Drp1 foci in Fis1, Mff and Fis1-Mff null MEFs were ~ 30%, ~50% and 

~70% smaller than Drp1 foci measured in wild type. Likewise, the mitochondrial Drp1 

foci in Fis1, Mff and Fis1-Mff null MEFs had 30%, ~50% and ~70% less fluorescence 

intensity than the foci in wild type cells (Losón et al., 2013). In comparison, the 

diameter of the mitochondrial Drp1 foci in sacsin knockdown fibroblasts and in patient 

K1715*/R4331Q were 11.5% and 17.5% respectively, smaller than Drp1 foci in the 

controls. Moreover the mitochondrial Drp1 foci in cells had 20% and 14% less 

fluorescence intensity than the mitochondrial Drp1 foci in the controls. The magnitude 

of percentage difference in Drp1 foci size and intensity observed in sacsin knockdown 

and patient fibroblasts were lower than those observed in Fis1, Mff and Fis1-Mff null 

MEFs. A possible explanation for this is that sacsin may not be as vital as Fis1 or Mff in 

the stabilisation/assembly of the Drp1 oligomers. However, it is important to bear in 

mind that various factors such as different cell types and methods used in my work 

and in studies by Losòn et al 2013 and Palmer et al 2013, can also account for this 

apparent difference in magnitude. Importantly, the decrease in intensity and diameter 
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of Drp1 foci in patients and sacsin knockdown cells is in accordance with the Losòn et 

al study. Summarily, loss of sacsin resulted in a decrease of recruitment and/assembly 

of the Drp 1 scission complex, correlating with a decrease in mitochondrial fission. 

Although reduced levels of Mff and MiD49/51 in HeLa and COS-7 cells affected 

mitochondrial morphology, fission was not completely obliterated.  This appears to 

also be the case in SACS knockdown and patient fibroblasts as the cells are viable and 

mitochondrial function is only partially impaired. This highlights the complexity of the 

fission mechanism. One explanation for the impaired, but not complete ablation of 

fission, is that Mff, hFis 1, MiD 49 and MiD 51 have a degree of functional redundancy 

and are capable of functioning independently of one another (Losón et al., 2013, 

Palmer et al., 2013). Therefore loss of one of these proteins would still allow for 

mitochondrial fission, all be it that regulation of the process is not optimal.  This is 

consistent with our observations in ARSACS patient cells and cells where levels of 

sacsin had been reduced by RNAi.  

We speculate that the mitochondrial dysfunction we observed in sacsin null cells 

(chapter 6) is downstream of the disequilibrium of mitochondrial network dynamics 

reported in this thesis (chapter 3). Bioenergetic decline observed in cells with an 

imbalance in mitochondrial dynamics has been hypothesised to be due to a number of 

reasons, including mitochondrial quality control. Increased fusion influences 

mitochondrial biogenesis and mitochondrial clearance and can result in the 

accumulation of toxins, which in turn damages the mitochondria (Twig et al., 2008a, 

Twig et al., 2008b, Benard, 2011). Mitochondrial network morphology and dynamics 

change in response to the energy state of the cell as well as to mitochondrial energy 

production. In addition, mitochondrial energy production is reliant on mitochondrial 

network morphology (Benard et al., 2007b, Benard, 2011). These two process are not 

mutually exclusive and in fact have been described as being bidirectional (Benard, 

2011). Therefore altered mitochondrial dynamics also disrupts this quality control 

cycle and can hamper the energy production of a mitochondrion. 
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There is still some way to go in understanding the complexity of mitochondrial fission 

in mammalian cells.  Although capable of independent function, a reduction in more 

than one accessory protein increases the severity of the mitochondrial phenotype as 

was the case in Mff and Fis1 double knockdown mouse embryonic fibroblasts (Losón et 

al., 2013). Further work needs to be conducted in order to examine whether loss of 

sacsin has an effect on other proteins regulating mitochondrial dynamics.    

New structural reports on MiD51 have given more insight into the regulation of this 

protein and its subsequent role in mitochondrial fission. These studies show that 

MiD51 belongs to the nucleotidyltransferase fold superfamily of proteins (Richter et 

al., 2014, Losón et al., 2014). This is of interest in the context of sacsin as it processes a 

HEPN domain and HEPN domains are hypothesised to form a complex with adjacent 

nucleotidyltransferase and facilitate nucleotide binding (Grynberg et al., 2003, Kozlov 

et al., 2011). 

To recap, a cleft nucleotidyltransferases bind nucleotide trisphophates catalysing the 

polymerisation of the nucleic acids (Kristiansen et al., 2011, Kuchta et al., 2009). 

Interestingly, as MiD51 binds to GDP and ADP instead of nucleotide trisphophates, it 

was suggested that it may not  support nucleotide hydrolysis and transfer (Richter et 

al., 2014). In addition to the partial conservation of the nucleotidyltransferase binding 

domain, MiD51 crystallised as a dimer (Losón et al., 2014). Sacsin’s HEPN domain is 

also suggested to form a dimer and was found to bind ATP and GTP with low affinity, a 

process thought to be important for sacsin function (Kozlov et al., 2011). Taking the 

findings of these studies together with the information on sacsin structure, it is 

possible that sacsin may have a further role in the fission complex and may be 

associated with the MiD49/51 proteins. 

Important to mitochondrial fission, severe disruption of nucleotidyltransferase domain 

reduced Drp1 recruitment (Richter et al., 2014, Losón et al., 2014). Sedimentation 

experiments using recombinant Drp1 and recombinant MiD51 showed that MiD51 was 

capable of basally promoting the assembly of Drp1 oligomers which was enhanced 

upon binding of ADP to the protein (Losón et al., 2014, Richter et al., 2014). These 
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findings raise the question as to whether sacsin may interact with MiD51 and thereby 

also have a role in MiD51 mediated regulation of Drp1. Further investigation is 

required to examine; 1. whether there is an interaction between sacsin and MiD51 and 

2. the effect of a loss of sacsin function on the localisation and regulation or expression 

of MiD proteins. 

Loss of sacsin does not prevent fission completely, hence it is possible that there may 

be an upregulation of another accessory protein which enables fission to occur. 

Futhermore the increased fused state of the mitochondria may also affect the 

regulation and or activation of Mfn 1/2 and OPA 1 proteins. The effect of reduced Drp1 

recruitment on the regulation and expression of these proteins should also be looked 

at. 

The interconnected, fused mitochondrial phenotype seems to be common to sacsin 

null cells, however the severity of the phenotype appears to vary between our 

patients. This may be due to the specific SACS mutations harboured by the patient.  

The characterisation of mitochondrial morphology from more ARSACS patients with a 

range of different mutations may allow for the establishment of a genotype-cellular 

phenotype correlation. Results from this genotype-cellular phenotype correlation 

could also be combined with clinical phenotype data to further develop our 

understanding of ARSACS.  Well defined genotype-phenotype correlation data may 

also be useful in the development of strategies  for screening of potential therapeutic 

reagents. 

Such analysis would need a high throughput, standardised method of scoring the 

mitochondria phenotypes.  This could be based on methods developed for this thesis, 

along with more sophisticated computer algorithms. This throughput should be 

capable of attributing a numerical score to different categories of  mitochondrial 

network morphology. Westrate et al recently developed a new way of classifying 

shape and dynamics through computer algorithm and high resolution imagery. Their 

approach used geometeric parameters such as perimeter and solidity to place 

mitochondria into a fused, branched or fragmented classification. Fused or branched 
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mitochondria have a higher perimeter because of the change in shape and would 

therefore also have a lower solidity than smaller compact mitochondria. In this 

algorithm solidity measures the amount of pixels contained within a defined region, 

selected by the program. This is then given a score between 0-1, where 0 represents a 

more irregular shaped mitochondrion and 1 represents a more compact 

mitochondrion (Westrate et al., 2014).  

Mitochondrial dysfunction is a feature of multiple neurodegenerative diseases. For 

example reduced mitochondrial function and increased cell death have been described 

in primary neurons from a mouse model of Parkinson’s disease (Wood-Kaczmar et al., 

2008). Wood-Kaczamar et al went on to validate this finding by creating a PINK1 loss of 

function model in human neuronal stem cells which were capable of differentiating 

into functional dopaminergic neurons. A significant increase in mitochondrial ROS 

production and cell death were observed in these cells (Wood-Kaczmar et al., 2008). 

Mitochondrial dysfunction was also found to be a feature of Huntington’s.  Impaired 

mitochondrial respiration, ATP production and increased mitochondrial superoxide 

were recorded in the clonal striatal cells from the embryos of a Huntington’s disease 

mouse (Milakovic and Johnson, 2005, Siddiqui et al., 2012). It is important to note that 

Parkinson’s, Alzheimer’s and Huntington’s disease are mostly late age of onset 

disorders which have similar features, while ARSACS has an early age of onset and 

lacks the accumulation of misfolded proteins which are characteristic of the 

aforementioned disorders. These studies however do highlight the importance of the 

regulation of mitochondrial dynamics and function in neuronal survival and possible 

disease progression, which is a vital feature of ARSACS.  Taking these studies into 

account, the brain’s high demand for energy makes it particularly sensitive to reduced 

ATP production and cellular damage resulting in cell death. Potentially the decrease in 

ATP and increased ROS production in ARSACS patients reported in the previous 

chapter likely contributes to the pathogenesis of ARSACS including a loss of Purkinje 

cells and dendrites. In relation to the modulation of Drp1, reduced levels of Drp1 

protein or over expression of dominant negative Drp1 resulted in a significant increase 

in cell death of cultured cortical neurons (Uo et al., 2009). Loss of sacsin may also be 
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linked to programmed cell death through the disruption of mitochondrial dynamics 

and hence function. However further examination on the cell viability will be required 

before any such conclusions can be made. 

Rescuing the mitochondrial phenotype of ARSACS and reducing ROS production 

represents a potential therapeutic target for ARSACS. We have been unable to 

heterologously express sacsin in cells, most likely due to its large size. Hence rescue of 

the sacsin null phenotype by overexpression has not been possible the cellular models, 

therefore ultimately, other methods will have to be employed. Precision editng 

techniques such as transcription activator-like effector nuleases (TALEN) and the 

clustered regularly interspaced short palindromic repeats/Cas9 systems (CRISPR/Cas9) 

have been sucessful used to correct genetic mutations in primary fibroblasts of 

Epidermolysis Bullosa and Duchen’s Muscular Dystrophy patients (Ousterout et al., 

2013, Osborn et al., 2013). The cells were either reprogrammed into inducible 

pluripotent cells or into myoblasts (Ousterout et al., 2013, Osborn et al., 2013). Both 

systems have been shown to be very effective and have distinct mechansims of action. 

TALEN induces site specific double stranded break in DNA. Following this, an 

exogenous donor template is used in order for homology directed repair to occur (Ding 

et al., 2013). In the CRISPR /Cas 9 RNA guided system, Cas9, a bacterial nuclease, 

induces a break in double stranded DNA. In this instance a RNA guide is also used to 

ensure site speicificity. The cleaved DNA strands can be repaired by either 

nonhomologous end joining or by oligo-mediated homology repair  (Gaj et al., 2013, 

Cong et al., 2013). Such approaches are likely to prove to be good tools when exploring 

sacsin function as they would allow us to generate isogenic control lines for the 

ARSACS patient fibroblasts.  

The overexpression of Drp1 signficantly rescued the perinuclear mitochondrial 

network observed in  Alzheimers fibroblasts and the overexpression of Mff in Fis 1 

knockdown cells rescued the mitochondrial phenotype observed in those cells (Losón 

et al., 2013, Wang et al., 2008). Markedly enhanced recruitment of Drp1 was observed 

when MiD proteins were overexpressed in Mff/Fis1 knockdown cells (Losón et al., 

2013). Therefore the overexpression of Drp1 or a mitochondrial fission accessory 
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protein in the sacsin knockdown and patient fibroblasts could lead to an increase in 

mitochondrial fragmentation and a decrease in mitochondrial dysfunction.  

Mitochondrial  ATP production has been used to assess mitochondrial function in our 

ARSACS cell models. However mitochondria are also involved in Calcium (Ca2+) 

homeostasis (Duchen, 2004a, Chen et al., 2007) it would also be of interest to explore 

calcium regulation in ARSACS.  As mentioned in Chapter 5, the ER is the major source 

of Ca2+ and Ca2+ signalling of the ER and mitochondria is facilitated by mitochondrial-ER 

contacts (MAMs) (Rizzuto et al., 2004, de Brito and Scorrano, 2008).  

Calcium is very important in regulating mitochondrial function and energy production 

by stimulating OXPHOS and regulating many of the enzymes involved in the citric acid 

cycle, glycolysis and the ETC complexes (McCormack et al., 1990, Brookes et al., 2004, 

Duchen, 2004a, Rizzuto et al., 2004). An increase in the uptake of Ca2+ results in an 

upregulation of enzymes involved in OXPHOS and ultimately an increase in ATP 

production (Jouaville et al., 1995). Likewise a decrease in ATP production was found to 

be accompanied by an intracellular imbalance of ions like Ca2+, an increase in ROS and 

cell death (Duchen, 2004a, Brookes et al., 2004, Chen and Chan, 2009).   

Futhermore calcium overload has been observed in disorders such as Alzheimer’s and 

Parkinson’s (Gibson et al., 2010). Mammalian neurons, deficient in PINK1 were found 

to have an increase in ROS production, calcium overload and decreased mitochondrial 

function (Gandhi et al., 2009) Alzheimer’s preslin-1 mutations in PC12 cells were also 

shown to disrupt calcium homeostaisis leading to an increase in Ca2+ resulting in an 

increase in amyloid formation and ultimately cell death (Guo et al., 1996). Conversely, 

decreased calcium uptake has been observed in fibroblasts from patients with 

Alzheimer’s  (Kumar et al., 1994) 

Investigating the calcium homeostasis in patient and sacsin knockdown fibroblasts is 

required to examine the Ca2+ status of ARSACS patient cells. Fluorescent indicators  of 

Ca2+  such as voltage sensitive dye rhodamine 123 (Rh123) and fura-2 or proteins like 

Cameleon, will allow for the quantification of Ca2+using confocal imaging and analysis 

software or by flow cytometery (Kovács et al., 2005, Gandhi et al., 2009, Whitaker, 
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2010). These experiments will assist in further defining the  role of the ER in ARSACS as 

well as provide a calcium profile and more understanding of mitochondrial function in 

this disorder.  

In conclusion, this thesis has shown that sacsin is nessecary for the regulation of 

mitochondrial dynamics. We propose that this is through the regulation and 

recruitment of Drp1 from the cytosol to prospective sites of fission (Figure 7. 1), 

making sacsin one of the accessory proteins involved in mitochondrial fission. 

Futhermore we provided evidence that a loss of sacsin results in mitochondrial 

dysfunction and an increase in the reactive oxygen species. We postulate that this 

dysfunction will contribute to the cellular pathology of ARSACS. 
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Proposed Model of Sacsin Function in Mitochondrial Dynamics. 
 

 

Figure 7. 1 Sacsin functions as a mitochondrial fission accessory protein. 

A) Schematic of Purkinje cell. B-C) Loss of sacsin leads to accumulation of mitochondria 

in the cell body due to reduced fission. This alters the distribution of mitochondria 

and resulting in loss of dendrites. D) Sacsin is involved in the regulation and 

recruitment of Drp1 from the cytosol to prospective sites of fission. Loss of sacsin 

results in a decrease of Drp1 foci recruited to the mitochondria and therefore leads 

to impaired mitochondrial fission and mitochondrial dysfunction.   
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