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AABBSSTTRRAACCTT  

 

Pancreatic cancer is an aggressive disease with poor prognosis and a high 

fatality rate. Gemcitabine, the standard first-line chemotherapy for advanced 

disease, has negligible effects, necessitating the development of new therapies. 

We previously demonstrated that deletion of the anti-apoptotic gene E1B19K 

(AdΔ19K) in a replication-selective adenoviral mutant, caused synergistically-

enhanced cell-killing when combined with low-dose DNA-damaging drugs in 

pancreatic cancer xenograft models. To delineate the cellular pathways 

targeted by the combination treatment we employed Ad∆19K and gemcitabine 

or irinotecan, with the goal of identifying cellular factors that are essential for the 

synergistic cell-killing. We hypothesised that Ad∆19K and DNA-damaging drugs 

act synergistically to deregulate cell-cycle mechanisms. 

 

Pancreatic cancer cell death induced by AdΔ19K and DNA-damaging drugs is 

apoptotic and time-dependent. Ad∆19K could not block DNA-damage 

responses (DDR) elicited by the drugs, despite virus-mediated degradation of 

the DDR factor Mre11. Mre11 siRNA-mediated knockdown augmented the 

synergistic cell death. Mitotic-index analysis in synchronised cells and 

immunofluorescence microscopy suggested that Ad∆19K promotes mitotic entry 

of gemcitabine-treated DNA-damaged cells. Moreover, AdΔ19K inhibited drug-

induced accumulation of Claspin, a DDR protein whose degradation is required 

for checkpoint recovery. Treatment with Ad∆19K and gemcitabine accelerated 

Claspin degradation, and siRNA-mediated Claspin knockdown enhanced the 

synergistic cell death. Time-lapse microscopy in histoneH2B mCherry-

expressing cells showed that Ad∆19K enhanced gemcitabine-induced mitotic 

catastrophe, characterised by prolonged mitosis, chromosome missegregation 

errors, cytokinesis failure and formation of multinucleated cells. Moreover, live-

cell imaging revealed that the majority of cells treated with Ad∆19K and 

gemcitabine die before mitotic entry.  
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These findings suggest that E1B19K-deleted adenoviruses cannot prevent cell-

cycle checkpoint responses elicited by DNA-damaging drugs, but enhance 

drug-induced cell death by downregulating DDR factors, such as Mre11 and 

Claspin. Additionally, the virus enhances mitotic catastrophe of DNA-damaged 

cells escaping cell-cycle checkpoints, eventually leading to increased apoptosis. 

Through these studies cellular pathways and factors involved in the synergistic 

cell killing were identified, that could be explored in the future to develop 

improved targeted therapies for pancreatic cancer.  
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CCHHAAPPTTEERR  11::  IINNTTRROODDUUCCTTIIOONN  

 

 

1.1. Pancreatic cancer 

 

 

1.1.1. Pancreatic cancer statistics  

 

Pancreatic cancer is the 10th most commonly diagnosed cancer in United 

Kingdom, with approximately 8,800 new cases diagnosed in 2011 (Cancer 

Research UK). In United States 46,420 new cases of pancreatic cancer are 

estimated for 2014 (Siegel et al., 2014). The median age of pancreatic cancer 

development is 71 years and the risk of developing the disease is significantly 

increased in individuals older than 55 years of age (Muniraj et al., 2013; Yadav 

and Lowenfels, 2013). Other risk factors include smoking, alcohol, obesity, 

family history, non-O blood groups and pancreatitis, with the latter being 

strongly associated with pancreatic cancer (Muniraj et al., 2013; Yadav and 

Lowenfels, 2013). Although inherited predisposition to pancreatic cancer exists, 

95% of pancreatic cancers are sporadic (Muniraj et al., 2013; Reznik et al., 

2014). 

 

In spite of its relatively low occurrence, pancreatic cancer is among the leading 

causes of cancer deaths worldwide, and one of the few cancers for which there 

was no substantial improvement in survival rates over the past three decades 

(Hariharan et al., 2008; Siegel et al., 2014; Siegel et al., 2012). The 5-year 

survival rate remains less than 6% (Office for National Statistics, 2013; Siegel et 

al., 2014). Incidence and mortality rates are similar between men and women 

(Siegel et al., 2014).  
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1.1.2. Pancreatic cancer histopathology  

 

The exocrine tissue of the pancreas consists of ductal and acinar cells; the 

latter synthesize and secrete digestive enzymes into the pancreatic ducts which 

in turn dilute, pH-optimize and transmit the pancreatic secretions into the small 

intestine (Cleveland et al., 2012). The highly aggressive pancreatic cancer 

ductal adenocarcinoma (PDAC) accounts for approximately 90% of pancreatic 

cancer cases (Muniraj et al., 2013). PDAC is a heterogeneous disease and 

largely arises from pancreatic intraepithelial neoplasias (PanINs), with 

development into invasive disease driven by acquisition of various genetic 

alterations (Figure 1) (Muniraj et al., 2013; Reznik et al., 2014). Yet other cystic 

lesions, namely intraductal papillary mucinous neoplasms (IPMN) and mucinous 

cystic neoplasms (MCN), can develop into PDAC (Bailey et al., 2014). Although 

the name and histological features of PDAC imply it arises from the duct cells of 

the pancreas, there is a strong debate over the cell of origin of pancreatic 

neoplasms, with evidence for both ductal and acinar cell origin (Bailey et al., 

2014). 

 

PDAC is associated with a strong desmoplastic reaction, that is a dense stroma, 

deposited by activated fibroblasts, called pancreatic stellate cells (PSCs), which 

are now considered to play a critical role in tumour progression (Apte et al., 

2012; Rucki and Zheng, 2014; Wilson et al., 2014). A reciprocal relationship 

exists between PSCs and cancer cells, which has been shown to promote 

tumour growth and metastasis (Apte et al., 2012; Apte and Wilson, 2012; Apte 

et al., 2013). Importantly, stellate cells have been identified both in early-stage 

PanINs and distant metastatic sites and were also shown to contribute to the 

immunosuppressive environment that characterizes PDAC (Bayne et al., 2012; 

Ene-Obong et al., 2013; Wilson et al., 2014; Xu et al., 2010b). As with many 

other tumours, the microenvironment of ductal adenocarcinoma is infiltrated by 

various immune cells, the majority of which possess immunosuppressive 

functions that limit the cytotoxicity of effector T cells, thus contributing to cancer 

progression (Clark et al., 2007; Hamada et al., 2014). Given the importance of 

the tumour microenvironment in shaping PDAC development, efforts are 

currently being made to therapeutically target the pancreatic stroma 

compartment. Research has demonstrated that dense stroma is associated with 
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poor prognosis (Erkan et al., 2008) and its targeting was shown to improve the 

delivery of chemotherapeutic agents  (Neesse et al., 2013).  

 

 

1.1.3. Genetic determinants and molecular biology of pancreatic cancer  

 

Genetic analysis of pancreatic tumours demonstrated that the great majority of 

genetic alterations that occur in PDAC are somatic mutations and in particular 

missense mutations, rather than gene amplifications or deletions (Biankin et al., 

2012; Jones et al., 2008). Factors involved in numerous signalling pathways, 

such as DNA-damaging control, apoptosis, invasion, adhesion and even axon 

guidance have been found to be genetically altered in pancreatic cancers 

(Biankin et al., 2012; Jones et al., 2008). The most critical factors and pathways 

are discussed below and the common genetic mutations occurring in PDAC are 

summarised in Table 1.  

 

Development of pancreatic precursor lesions into PDAC is driven by genetic 

alterations (Figure 1). One of the earliest mutations observed is constitutive 

activation of the KRAS oncogene, frequently followed by mutational inactivation 

of the tumour-suppressors CDKN2A, TP53 and SMAD4 (Figure 1) (Hezel et al., 

2006; Reznik et al., 2014; Schneider and Schmid, 2003). Constitutive activation 

of KRAS occurs in 90% of early-stage PanINs (Kanda et al., 2012) and 

represents the most frequent (~95%) genetic alteration in PDAC (Biankin et al., 

2012; Jones et al., 2008). The mutation is predominantly a glycine (G) to 

aspartic acid (D) substitution in codon 12, but other activating mutations, for 

example G13D and G12C, can be found (Bryant et al., 2014; Kanda et al., 

2012). The substitution interferes with the binding of Ras GTPase-activating 

proteins (GAPs), which stimulate the GTPase activity of Ras resulting in 

hydrolysis of guanosine triphosphate (GTP) to guanosine diphosphate (GDP); 

oncogenic mutations lead to a constitutive GTP-bound state, which is the active 

Ras form (Bryant et al., 2014). In pancreatic cancer the effector signalling 

pathways downstream of oncogenic KRAS are the RAF/MEK/ERK, PI3K/AKT 

and Ral guanine exchange factor (RalGEF), all promoting cell survival and 

proliferation (Eser et al., 2014). Oncogenic KRAS has been shown to drive 

pancreatic cancer initiation and contribute to disease progression and 
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metastasis (Bryant et al., 2014; Eser et al., 2014). Overexpression of the human 

epidermal growth factor 2 (EGFR2 or HER2) has also been observed in early 

stage PanINs and gene amplification has been reported in 10-60% of PDAC 

patients (Figure 1) (Reznik et al., 2014). EGFR signals through various 

pathways, including Ras and PI3K, promoting cell growth and proliferation 

(McCleary-Wheeler et al., 2012). 

 

The progression from early- to intermediate-grade PanINs is characterised by 

inactivation of the growth suppressor and cell-cycle regulator p16INK4A, often 

occurring through gene deletion (Figure 1) (Hezel et al., 2006; Schneider and 

Schmid, 2003; Schutte et al., 1997). CDKN2A/p16INK4A inactivation is observed 

in more than 80% of pancreatic cancers and leads to abrogation of the G1/S 

checkpoint and loss of growth control (Schneider and Schmid, 2003; Schutte et 

al., 1997).  

 

TP53 and SMAD4 mutations are not observed until the advanced stages of 

PanINs (Figure 1) (Reznik et al., 2014). p53 is inactivated in more than 50% of 

pancreatic cancers, predominantly via missense mutations in its DNA-binding 

region, resulting in loss of p53 transcriptional functions, which include induction 

of pro-apoptotic genes and genes that block cell-cycle progression (Hezel et al., 

2006; Rozenblum et al., 1997). Inactivation of p53 therefore impacts on 

regulation of cell growth and proliferation, apoptosis and genomic stability 

(Hezel et al., 2006). DPC4/SMAD4, a downstream effector of transforming 

growth factor β (TGFβ), is also inactivated in more than 50% of PDAC cases 

and its inactivation correlates with poor prognosis (Blackford et al., 2009; Hezel 

et al., 2006). Loss of SMAD4 function, either through deletion or mutation, 

impairs the growth-inhibitory effects of TGFβ signalling pathway, but also 

impacts on tumour angiogenesis independently of TGFβ (Hezel et al., 2006; 

Reznik et al., 2014). Mutations in the tumour suppressor gene BRCA2 have 

also been detected in advanced PanINs, albeit to a much lower frequency than 

TP53 and SMAD4 (Figure 1) (Hruban et al., 2000). BRCA2 is mutated in 7% of 

PDAC cases, leading to defective DNA repair mechanisms and genomic 

instability (Koorstra et al., 2008; Reznik et al., 2014). 
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Normal   PanIN-IA    PanIN-IB         PanIN-II                      PanIN-III                    Invasion 

KRAS,   HER2 

CDKN2A 

TP53,   DPC4/SMAD4,  BRCA2 

Adapted by permission from Macmillan Publishers Ltd: MODERN PATHOLOGY (Maitra, A. et al. 2003) Copyright 2003 
 

Besides these high-frequency mutations, other more rare genetic alterations 

have been detected in PDAC. Such low-frequency (<15%) mutations occur in 

the DNA mismatch repair genes MutL homolog 1 (MLH1),  MutS homolog 2 

(MSH2), MSH6, the BRAF oncogene, the cell survival kinase AKT2 and the 

stress-response MAPK kinase 4 (MKK4), amongst others (Koorstra et al., 2008; 

Reznik et al., 2014; Schneider and Schmid, 2003).  

 

Table 1: Genetic alterations associated with PDAC 

 

Figure 1: Progression model for pancreatic cancer. Histologically normal 
pancreatic ductal epithelium develops precursor lesions known as pancreatic 

Gene Name Gene Type Frequency of 
alteration 

Reference 

KRAS Oncogene 90-95% (Reznik et al., 2014) 

CDKN2A Tumour suppressor 80-95% (Reznik et al., 2014) 

TP53 Tumour suppressor 50-85% (Reznik et al., 2014) 

SMAD4/DPC4 Tumour suppressor 50-60% (Reznik et al., 2014) 

HER2 Oncogene 10-60% (Reznik et al., 2014) 

AKT2 Oncogene 10-15% (Koorstra et al., 2008) 

BRCA2 Tumour suppressor 7% (Reznik et al., 2014) 

BRAF Oncogene 5% (Ottenhof et al., 2011) 

MKK4 Candidate tumour 
suppressor 

5% (Muniraj et al., 2013) 

MLH1, MSH2 Genome-maintenance 4% (Reznik et al., 2014) 
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intraepithelial neoplasias (PanINs). The early-stage PanINs are flat (PanIN-IA) 
or papillary (PanIN-IB) and are characterised by acquisition of activating KRAS 
and HER2 mutations. Development of nuclear atypia with micropapillary 
characteristics signifies progression to the intermediate-stage PanIN (PanIN-II), 
which is concurrent with loss of the tumour suppressor gene CDKN2A. Loss of 
cell polarity, increased cell proliferation and inactivation of the tumour 
suppressor genes TP53, DPC4/SMAD4 and BRCA2 give rise to the advanced 
stage PanIN-III (carcinoma in situ). PanIN-III then develops into invasive 
adenocarcinoma. References (Koorstra et al., 2008; Maitra et al., 2003).  
 

 

An emerging important player in pancreatic cancer progression is the Hedgehog 

(Hh) signalling pathway, which controls development patterning, cell 

proliferation and adult tissue homeostasis and repair (Briscoe and Therond, 

2013). In a comprehensive genetic analysis of 24 pancreatic cancers, Jones et 

al. identified 19 genes of the Hedgehog pathway that were mutated and all 

tumours examined contained at least one mutation in the Hedgehog pathway 

(Jones et al., 2008). Experimental evidence suggests that the Hedgehog 

pathway plays a role in pancreatic carcinogenesis, apoptosis resistance, 

pancreatic cancer desmoplasia and tumour growth (Bailey et al., 2008; 

Kelleher, 2011; McCleary-Wheeler et al., 2012), making this pathway an 

attractive therapeutic target.  

 

Another signalling pathway aberrantly activated in pancreatic cancer is the 

Notch pathway. The Notch signalling pathway is involved in normal pancreas 

development, where it regulates cell fate decisions and maintains stem cell 

populations (Avila and Kissil, 2013). Numerous genes involved in the Notch 

pathway have been found to be mutated in PDAC cases (Jones et al., 2008). 

The role of the pathway in pancreatic cancer however remains controversial, as 

evidence exists for both a role in inhibition of PanIN development and tumour 

progression (Avila and Kissil, 2013). 

 

A role in PDAC development has also been suggested for the nuclear factor κB 

(NF-κB) pathway. RelA, one of the subunits of NF-κB, was reported to be 

aberrantly activated in pancreatic cancers (Wang et al., 1999), while other 

subunits showed increased expression (Chandler et al., 2004). This signalling 

pathway has been implicated in pancreatic cancer cell proliferation, apoptotic 

resistance as well as metastasis (McCleary-Wheeler et al., 2012).  
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As with many other cancers, a characteristic feature of PDAC is evasion of 

apoptotic pathways (Fulda, 2009). Apoptotic cells are absent from early- and 

intermediate-stage PanINs, suggesting anti-apoptotic mechanisms might evolve 

early in PDAC development (Luttges et al., 2003). Overexpression of inhibitors 

of apoptosis, such as cIAP2 and Survivin, has been reported in early-stage 

PanINs increasing through to advanced-stage PanINs and PDAC (Bhanot et al., 

2006; Esposito et al., 2007). Moreover, deregulation of death-receptor signalling 

and overexpression of anti-apoptotic members of the Bcl-2 family are 

documented contributors to apoptotic resistance in PDAC (Fulda, 2009; 

Hamacher et al., 2008).  

 

 

1.1.4. Treatment options 

 

Treatment of pancreatic cancer remains challenging. Although surgery is 

potentially curative, less than 20% of patients are diagnosed with operable 

disease, and the rate of relapse following resection is high (Loos et al., 2008; 

Moss and Lee, 2010). Symptoms often do not occur until the carcinoma has 

locally advanced or metastasised, which contributes to the low frequency of 

patients qualifying for surgery (Muniraj et al., 2013). At presentation, imaging 

techniques, predominantly computed tomography (CT) and magnetic resonance 

imaging (MRI), are used for diagnosis and staging of pancreatic tumours to 

define surgical resectability and spread of the tumour (Al-Hawary et al., 2013).  

 

For those patients that surgery is possible, surgical resection is followed by 

adjuvant chemotherapy or chemoradiotherapy (Liao et al., 2013). For 

borderline-resectable pancreatic cancers, neoadjuvant chemotherapy or 

chemoradiotherapy aims to improve surgical resectability of the tumour (He et 

al., 2014; Polistina et al., 2014). Locally-advanced (unresectable) pancreatic 

cancers, which represent 25-35% of PDAC cases, are treated with 

chemotherapy (He et al., 2014; Muniraj et al., 2013), but mainly metastasize 

within a year (Muniraj et al., 2013). Patients with metastatic disease have a 

median survival of 6 months and are offered systemic chemotherapy aiming at 

palliating the symptoms and improving survival (Labianca et al., 2012; Muniraj 
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et al., 2013). The lack of curative treatment options for advanced stages, 

necessitates the exploitation of new therapeutic avenues.  

  

Since 1997 the standard chemotherapeutic agent of choice has been the 

cytidine analogue gemcitabine (Figure 2 and 3) (Mohammed et al., 2014). The 

mechanisms of action of gemcitabine are discussed in section 1.1.5. 

Gemcitabine monotherapy remains the only approved treatment option for 

patients with metastatic pancreatic cancer and poor performance status (Ghosn 

et al., 2014). Other chemotherapeutic agents, such as the topoisomerase-I 

inhibitor irinotecan, the uracil analogue 5-fluorouracil (5-FU) and the alkylating 

agent cisplatin, demonstrated anti-tumour efficacy but have not shown any 

significant improvement in overall patient survival when evaluated in clinical 

trials as single agents or in combination with gemcitabine (Ghosn et al., 2014). 

However, some meta-analyses suggested a survival benefit in patients 

receiving a combination of gemcitabine with fluoropyrimidines, such as 5-FU, or 

platinum-derivatives, such as cisplatin (Heinemann et al., 2007; Sultana et al., 

2007).  

 

FOLFIRINOX (5-FU, leucovorin, irinotecan, oxaliplatin) has so far been the only 

gemcitabine-free chemotherapeutic regimen to result in better survival 

outcomes than gemcitabine in a first-line therapy setting, but its significantly 

higher toxicity currently limits its use in patients with good performance status 

(Conroy et al., 2011; Mohammed et al., 2014). Another treatment option for 

patients with metastatic disease, is the combination of gemcitabine with nab-

paclitaxel (a nanoparticle albumin-bound paclitaxel), which has recently 

demonstrated some positive results over gemcitabine monotherapy (Al-Hajeili et 

al., 2014; Von Hoff et al., 2013). Despite resulting in less adverse effects than 

FOLFIRINOX, the gemcitabine-nab-paclitaxel regimen is still less tolerable than 

gemcitabine monotherapy, thereby it is preferentially used in patients with good 

performance status (Ghosn et al., 2014). Irinotecan monotherapy and 

irinotecan-based therapies, such as the folinic acid/5-FU and irinotecan 

(FOLFIRI) regimen and irinotecan with oxiliplatin, show activity and some 

clinical benefit as second-line treatments, that is after failure to respond to 

gemcitabine and gemcitabine-based regimens (Heinemann et al., 2012; 

Neuzillet et al., 2012; Shi et al., 2012). A nanoliposomal-encapsulated 
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irinotecan (PEP02 or MM-398) has shown encouraging results as a single-

agent or in combination with 5-FU/leucovorin in gemcitabine-refractory 

pancreatic cancers (Ko et al., 2013) and it is currently in a Phase III trial 

(https://clinicaltrials.gov/show/NCT01494506).  

 

Clinical trials with targeted therapies have overall demonstrated no positive 

results for patients with advanced pancreatic cancer (Michl and Gress, 2013). 

These included antibodies against the vascular endothelial growth factor 

(VEGF), matrix metalloproteinases (MMPs) inhibitors and tyrosine-kinase 

inhibitors. The only exception has been the EGF inhibitor erlotinib, which 

modestly increased patient survival when combined with gemcitabine, leading 

to its approval as a treatment for metastatic pancreatic cancers (Moore et al., 

2007). Given the importance of aberrant signalling in pancreatic cancer, novel 

targeted therapies are currently being evaluated (Kleger et al., 2014).  

 

 

1.1.5. DNA-damaging drugs for pancreatic cancer: Mechanisms of action  

 

Gemcitabine (Gemzar®) 

 

Gemcitabine (2'-deoxy-2',2'-difluorocytidine; dFdC) is a deoxycytidine analogue 

(Figure 2) that can be incorporated into DNA and prevent completion of DNA-

strand synthesis (Candelaria et al., 2010). Gemcitabine uptake in the cell is 

mediated by nucleoside transporters and in particular the human equilibrative 

nucleoside transporter 1 (hENT1) (Candelaria et al., 2010). High expression of 

hENT1 in pancreatic cancer tissue has been associated with significantly 

increased survival in patients treated with gemcitabine (Giovannetti et al., 

2006). Inside the cell, gemcitabine (dFdC) is metabolised to its active forms, 

dFdC diphosphate (dFdCDP) and triphosphate (dFdCTP), by a series of 

phosphorylation events as depicted in Figure 3. The rate-limiting step in dFdC 

metabolism is its phosphorylation to dFdC monophosphate (dFdCMP), 

catalysed by deoxycytidine kinase (dCK), whose expression and activity has 

also been correlated to clinical outcome (Candelaria et al., 2010). dFdC and 

dFdCMP can be deaminated to their less-active forms dFdU and dFdUMP, by 

https://clinicaltrials.gov/show/NCT01494506
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cytidine deaminase (CDA) and deoxycytidylate deaminase (dCTD), respectively 

(Figure 3) (Heinemann et al., 1992).  

 

 

 

Figure 2: Structure of Deoxycytidine and Gemcitabine. The chemical 
structure of Gemcitabine (2'-deoxy-2',2'-difluorocytidine; dFdC) differs from 
deoxycytidine (dC) through replacement of hydrogen atoms with two fluorine 
atoms at the 2-position of the deoxyribose sugar (Brown et al., 2014; Hertel et 
al., 1988).  
 

 

Gemcitabine has several mechanisms of action (Figure 3). First, as a cytidine 

analogue, dFdCTP is incorporated into DNA, and following the addition of one 

more nucleotide, DNA polymerization is blocked, leading to a potent inhibition of 

DNA synthesis (Gandhi et al., 1996; Huang et al., 1991). This process is 

referred to as "masked chain termination", since the masking of dFdCTP by the 

terminal deoxynucleotide incorporated, prevents detection and excision of 

dFdCTP by DNA repair enzymes (Gandhi et al., 1996; Huang et al., 1991). It is 

worth mentioning that incorporation of gemcitabine into RNA, albeit to a lesser 

extent than DNA, has also been reported and leads to partial inhibition of RNA 

synthesis (Ruiz van Haperen et al., 1993; Veltkamp et al., 2008).  

 

A third mechanism of action is self-potentiation, which is achieved through 

inhibition of several enzymes involved in nucleotide metabolism and results in 

increased intracellular gemcitabine concentrations and favourable gemcitabine 

incorporation into DNA (Figure 3). dFdCDP binds and efficiently inhibits 

ribonucleotide reductase (RNR), thereby blocking production of 

deoxyribonucleotides required for DNA synthesis and repair (Cerqueira et al., 
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2007; Heinemann et al., 1990). This subsequently depletes the cellular pool of 

deoxyribonucleotide triphosphates (dNTPs), particularly dCTP (Heinemann et 

al., 1990), leading to decreased feedback inhibition of dCK by dCTP (Sarup et 

al., 1989) and consequently increased dFdCMP formation (van der Wilt et al., 

2000). Depleted dCMP pool also leads to decreased activity of the dCMP 

deaminase dCTD, thereby reducing deamination and inactivation of dFdCMP by 

this enzyme (Heinemann et al., 1992). Moreover, it has been reported that high 

concentrations of dFdCTP inhibit dCTD and CTP synthase (Heinemann et al., 

1992; Xu and Plunkett, 1992). The deaminated catabolites of gemcitabine, 

dFdU and its phosphorylated forms, are often considered inactive. However, 

dFdUTP was reported to be incorporated into DNA and RNA and dFdU has 

been shown to be cytotoxic (Veltkamp et al., 2008). In addition, dFdUMP has 

been shown to inhibit thymidylate synthase (TS), which converts dUMP to 

dTMP, by yet unknown mechanisms (Bergman et al., 2000; Bergman et al., 

2002).  

 

Another mechanism of action of gemcitabine is poisoning of topoisomerase I, 

an enzyme that cleaves one stand of duplex DNA, relaxes and re-ligates DNA, 

in order to relieve tension created during replication, transcription, chromosome 

condensation and segregation (Leppard and Champoux, 2005). Gemcitabine 

incorporation into DNA was shown to stabilize topoisomerase I cleavage 

complexes (topoisomerase I-DNA intermediates), due to conformational and 

electrostatic effects at the gemcitabine-incorporated DNA position (Pourquier et 

al., 2002). Stabilized topoisomerase I cleavage complexes can interfere with 

progressing DNA replication and transcription forks leading to the formation of 

DNA-strand breaks (Pourquier et al., 2002; Pourquier and Pommier, 2001).  

 

As it will be discussed in detail later (section 1.2.10.), the actions of gemcitabine 

activate a DNA-damage response that results in a cell-cycle arrest and 

induction of apoptosis. Gemcitabine incorporation into DNA is essential for 

induction of apoptosis (Huang and Plunkett, 1995). However, the several 

different inhibitory effects of gemcitabine on DNA synthesis, coupled  with self-

potentiation mechanisms and topoisomerase I poisoning, are likely to contribute 

to the potent cytotoxic activity of this unique nucleoside analogue.  
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Resistance to gemcitabine, which represents a common clinical scenario, can 

be intrinsic or acquired following prolong treatment. Despite that several factors 

have been associated with decreased sensitivity to gemcitabine, the 

mechanisms of gemcitabine resistance remain poorly understood. Altered 

expression and enzymatic activities of proteins involved in gemcitabine 

metabolism were the first to be implicated in gemcitabine resistance (Andersson 

et al., 2009; Bergman et al., 2002). Among these, well-defined mechanisms 

include the reduced expression of the hENT1 nucleoside transporter (Farrell et 

al., 2009; Giovannetti et al., 2006) and the activating kinase dCK (Nakano et al., 

2007; Ohhashi et al., 2008), as well as increased expression of dFdCDP's 

target RNR (Bergman et al., 2000; Nakahira et al., 2007; Nakano et al., 2007). 

Other proteins implicated in gemcitabine resistance include the transcription 

factors NF-κB and high mobility group A1 (HMGA1), whose overexpression 

promotes chemoresistance through activation of survival pathways (de Sousa 

Cavalcante and Monteiro, 2014; Elnaggar et al., 2012).  
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Figure 3: Metabolism and mechanisms of action of gemcitabine. 
Gemcitabine (dFdC) enters cells via the human equilibrative nucleoside 
transporter 1 (hENT1). Deoxycytidine kinase (dCK) catalyzes phosphorylation 
of dFdC to dFdC monophosphate (dFdCMP), which is further phosphorylated to 
dFdC diphosphate (dFdCDP) by nucleoside monophosphate kinase (NMPK). 
dFdCDP is in turn phosphorylated to the triphosphate form dFdTMP by 
nucleoside diphosphate kinase (NDPK). dFdC and dFdCMP can be converted 
to their less-active metabolites dFdU and dFdUMP through deamination 
catalysed by cytidine deaminase (CDA) and deoxycytidylate deaminase 
(dCTD), respectively. dFdUMP can be converted to dFdUDP and subsequently 
to dFdUTP. Gemcitabine's main mechanism of action is the incorporation of 
dFdCTP into DNA and to a lesser extend into RNA. After dFdCTP is 
incorporated into DNA it allows one more nucleotide to be incorporated and 
then DNA synthesis by DNA polymerase (Pol) is blocked. The terminal 
nucleotide prevents recognition and removal of dFdCTP by exonucleases 
(masked chain termination). dFdCTP stabilizes topoisomerase I (TopI) cleavage 
complexes, which can interfere with progressing DNA replication and 
transcription forks leading to the formation of DNA-strand breaks. Another 
mechanism of action is self potentiation (see text for details), achieved through 
inhibition of ribonucleotide reductase (RNR) by dFdCDP, CTP synthase 
(CTPsy) by dFdCTP and thymidylate synthase (TS) by dFdUMP, leading to 
depletion of dNTPs pool and favourable DNA incorporation of dFdCTP. In 
addition, dFdCTP inhibits dCTD, decreasing inactivation of gemcitabine. 
References (Candelaria et al., 2010; de Sousa Cavalcante and Monteiro, 2014; 
Mini et al., 2006; Veltkamp et al., 2008).  
 



38 
 

Irinotecan (CamptosarTM or Campto®) 

 

Irinotecan (CPT-11) is an analogue of the topoisomerase I inhibitor 

camptothecin (CPT) and was developed to improve the water solubility of CPT 

and decrease its side-effects (Mathijssen et al., 2002). Inside the cell, irinotecan 

(7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) is 

hydrolysed to its active form SN-38 (7-ethyl-10-hydroxycamptothecin) by 

carboxylesterases (CES), predominantly CES1 and CES2 (Figure 4) (Smith et 

al., 2006). Irinotecan and SN-38 exist in an anionic carboxylate (open ring) and 

a non-ionic lactone (closed ring) form and interconversion between these two 

forms is dependent on pH, with lactone predominating at basic pH (Kobayashi 

et al., 1999; Mathijssen et al., 2002; Smith et al., 2006). Lactone is the 

pharmacologically active form of irinotecan and is indispensable for 

topoisomerase I inhibition and drug cytotoxicity (Ramesh et al., 2010; Smith et 

al., 2006). Both irinotecan and SN-38 can enter cells through passive diffusion, 

when in the lactone form, or active transport (de Jong et al., 2006). The organic 

anion transporter polypeptide 1B1 (OATP1B1 or SLCO1B1) has been 

implicated in the influx of SN-38 (Nozawa et al., 2005; Yamamoto et al., 2001). 

Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) further 

metabolises SN-38 to SN-38 glucuronide (SN-38G) (Figure 4), an inactive 

product that is excreted through the bile (Gagne et al., 2002; Iyer et al., 1998). 

Irinotecan, SN-38 and SN-38G and transported out of the cell via members of 

the ATP-binding cassette (ABC) superfamily of transporters (Figure 4) (Smith et 

al., 2006). Irinotecan can also be metabolised to its less-active products 7-ethyl-

10-[4-(1-piperidino)-1-piperidino] (APC) and 7-ethyl-10-(4-amino-1-piperidino) 

(NPC) through the action of the cytochrome P450 3A4 (CYP3A4) (Figure 4) 

(Smith et al., 2006). However, NPC was shown to be converted to SN-38 by 

CES enzymes (Dodds et al., 1998; Rivory et al., 1996).  

 

SN-38 acts by inhibiting topoisomerase I, which as mentioned above is 

responsible for relieving tension in DNA created during replication, transcription, 

chromosome condensation and segregation (Leppard and Champoux, 2005). 

CPT and its analogues inhibit topoisomerase I by stabilizing topoisomerase I 

DNA cleavage complexes leading to inhibition of the re-ligation reaction (Hsiang 

et al., 1985; Hsiang and Liu, 1988; Svejstrup et al., 1991). The stabilized 
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cleavage complexes prevent DNA replication forks to proceed, generating 

double-strand DNA breaks, which subsequently activate a DNA-damage 

response that halts the cell-cycle and induces apoptosis (Hsiang et al., 1989; 

Mathijssen et al., 2002).  

 

 

 

Figure 4: Irinotecan mechanism of action.  Irinotecan (CPT-11) is converted 
to its active metabolite SN-38, by carboxylesterases (CES). The 
pharmacologically active lactone form of irinotecan and SN-38 can be diffused 
into the cytoplasm. Once inside the cell, SN-38 acts by stabilizing 
topoisomerase I cleavage complexes, which prevents DNA replication forks to 
proceed and leads to their collapse and subsequent formation of double-strand 
breaks. SN-38 can be metabolised to an inactive form, SN-38G, through the 
action of Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1). In 
addition, cytochrome P450 3A4 (CYP3A4) inactivates irinotecan by 
metabolising it to 7-ethyl-10-[4-(1-piperidino)-1-piperidino] (APC) and 7-ethyl-
10-(4-amino-1-piperidino) (NPC). NPC however can be converted to SN-38 by 
CES enzymes. Irinotecan and its metabolites are transported out of the cell via 
members of the ATP-binding cassette (ABC) superfamily of transporters. 
References (de Jong et al., 2006; Mathijssen et al., 2002; Smith et al., 2006).  
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1.2. DNA damage and repair responses 

 

 

1.2.1. The Cell Cycle  

 

An overview of cell-cycle stages 

 

The cell cycle represents a series of tightly-controlled events that prepare the 

cell for division into two daughter cells (Morgan, 2007). The mammalian cell 

cycle, which is completed within approximately 24h, consists of three gap (G) 

phases (G0, G1, G2), a synthesis (S) phase and mitosis (M) (Figure 5) 

(Humphrey and Brooks, 2004). The gap and synthesis phases are collectively 

called interphase. Progression through the cell-cycle phases is irreversible and 

is therefore strictly regulated by checkpoints, which halt progression if 

requirements are not met (Humphrey and Brooks, 2004). The key orchestrators 

of phase transitions are the cyclin-dependent kinase (CDK)-Cyclin complexes, 

in which Cyclins are the activator subunits and CDKs are the catalytic subunits 

(Figure 5) (Fisher, 2012; Gallorini et al., 2012). CDKs, which are themselves 

tightly regulated at several levels, are activated by the CDK-activating kinase 

(CAK) and inactivated by two families of CDK inhibitors (CKIs); the INK4 and 

Cip/Kip (Besson et al., 2008; Canepa et al., 2007).  

 

The G0 phase represents a resting or quiescent state, whereby a cell is 

maintained in the absence of growth signals (Cooper, 2003). Growth signals, 

such as mitogens, permit cell entry into G1, a phase where the cell is prepared 

for S-phase through transcription and translation of proteins required for DNA 

synthesis (Bertoli et al., 2013). Cyclin D bound to either Cdk4 or 6 is the key 

mediator of G1 events. Progression from G1 to S is controlled by the G1/S 

checkpoint, which ensures DNA synthesis factors are available and DNA is 

intact (Cooper, 2003). Once the cell passes this checkpoint, it commits to 

completion of cell division (Humphrey and Brooks, 2004). During G0 and early 

G1 the retinoblastoma (Rb) family of pocket proteins inhibit the E2F family of 

transcription factors, which control expression of S-phase genes (Bertoli et al., 

2013). When extracellular signals permit activation of the Cyclin D-Cdk4 and 

cyclin D-Cdk6 complexes, Rb members are phosphorylated by Cdks and 
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released from E2F, thereby allowing transcriptional activation of S-phase genes 

(Bertoli et al., 2013). Amongst the genes transcribed is Cyclin E, which forms a 

complex with Cdk2 that positively feeds back to the Rb/E2F axis ensuring 

commitment to cell cycle progression (Bertoli et al., 2013). 

 

S-phase, as the name suggests, is the DNA synthesis stage. A DNA replication 

licensing system strictly ensures that chromosome replication occurs only once 

per cycle, while S-phase checkpoints monitor errors occurring during 

chromosome replication in order to preserve genomic integrity (Labib and De 

Piccoli, 2011; Wu et al., 2014). Cyclin A-Cdk2 complexes drive S-phase 

progression and together with Dbf4 dependent kinases (DDKs) activate the pre-

replicative complex (pre-RC) assembled on DNA replication origins, leading to 

initiation of DNA replication (Wu et al., 2014). Successful DNA replication, which 

lasts approximately 6h, leads to G2 entry whereby the cell synthesises proteins 

necessary for mitosis (Humphrey and Brooks, 2004). A G2/M checkpoint re-

ensures DNA integrity prior to activation of Cyclin B-Cdk1 complexes, which 

marks the onset of mitosis (Stark and Taylor, 2006).  

 

Mitosis is itself divided into distinct phases, known as prophase, metaphase, 

anaphase and telophase (Figure 5), that define the onset of mitotic events: 

nuclear envelope breakdown coupled to chromosome condensation, mitotic 

spindle formation and DNA alignment, chromosome segregation and nuclear 

envelope re-assembly (Maiato, 2010). Members of the Aurora and Polo-like 

(Plk) family of kinases are amongst the key players in coordinating mitotic 

progression (Maiato, 2010). A spindle assembly checkpoint (SAC) monitors the 

alignment of chromosomes before segregation and delays the onset of 

anaphase if chromosomes are not correctly attached to mitotic spindle poles via 

their kinetochores (Lara-Gonzalez et al., 2012), that is the protein complexes 

assembled at the centromere of each sister chromatid (Cleveland et al., 2003). 

Unattached kinetochores stimulate the assembly of SAC components, such as 

members of the mitotic arrest deficient (Mad) and Bub families and Monopolar 

spindle 1 (Mps1), which leads to inhibition of the anaphase promoting complex 

or cyclosome (APC/C), responsible for initiating anaphase (Lara-Gonzalez et 

al., 2012). When the SAC is satisfied, APC/C, bound to its catalytic subunit 

Cdc20, targets securin for degradation leading to the release of separase, that 
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in turn cleaves cohesin responsible for holding the sister chromatids together 

(Manchado et al., 2010; Peters, 2006). APC/CCdc20 additionally targets Cyclin B 

for degradation, thus inactivating Cdk1 (Manchado et al., 2010; Peters, 2006). 

Inactivation of Cdk1 triggers substitution of Cdc20 with Cdh1 in telophase, and 

APC/CCdh1 targets, amongst others, Aurora-A and Plk1 for degradation to permit 

mitotic exit (Manchado et al., 2010; Peters, 2006). Following these series of 

events, cytoplasmic division, known as cytokinesis, occurs (Figure 5) (Fededa 

and Gerlich, 2012). Cytokinesis involves the formation of an actomyosin ring at 

the cell cortex, that contracts to form the cleavage furrow, which in turn 

ingresses giving rise to the midbody (Fededa and Gerlich, 2012). Plasma 

membrane fission results in midbody abscission, thereby generating two 

daughter cells (Fededa and Gerlich, 2012). 

 

 

Figure 5: Cell cycle stages. The cell cycle consists of the interphase (G0, G1, 
S, G2 phases) and mitosis (M phase) and progression through the different 
stages is driven by Cyclin-Cdk complexes, as depicted. Mitogenic signals permit 
cell entry from the quiescent G0 phase to G1, where the cell grows and 
prepares for DNA synthesis. The G1/S checkpoint monitors requirements for 
entry into S-phase and once the cell passes this transition it commits to cell 
cycle completion. During S-phase the DNA is replicated and intra-S checkpoints 
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ensure successful replication before progression to G2. In G2 the cell prepares 
for division and upon satisfaction of the G2/M checkpoint mitosis initiates. 
Chromosome condensation, nuclear envelope breakdown and spindle 
assembly occur during prophase, followed by chromosome alignment at the 
metaphase plate. When the spindle assembly checkpoint (SAC) has ensured 
that all chromosomes are properly aligned, the cell progresses to anaphase to 
segregate the paired chromosomes. In telophase, nuclear re-assembly and 
chromosome decondensation mark the end of mitosis before cytoplasmic 
division (cytokinesis) physically separates the two daughter cells. References 
(Fisher, 2012; Humphrey and Brooks, 2004; Maiato, 2010; Morgan, 2007). 
 

 

The cell cycle and cancer 

 

Deregulation of the cell cycle is a key hallmark of cancer cells (Williams and 

Stoeber, 2012). A combination of genetic and epigenetic alterations in the cell-

cycle regulatory machinery has been associated with uncontrolled proliferation, 

genomic instability and aneuploidy that characterizes cancer cells (Diaz-Moralli 

et al., 2013; Salmela and Kallio, 2013; Williams and Stoeber, 2012). 

Particularly, growth control at the G1/S transition is lost in the majority of cancer 

cells, often through inactivation of Rb and CKIs or upregulation of CDKs and 

Cyclins (Diaz-Moralli et al., 2013; Williams and Stoeber, 2012). Deregulation of 

the DNA replication licensing system or DNA damage and repair responses 

represents another common alteration in cancer, which can contribute to 

chromosome instability (Diaz-Moralli et al., 2013; Williams and Stoeber, 2012). 

Moreover, overexpression of mitotic kinases, such as Aurora-A/B and Plk1, and 

mutations in SAC regulators, such as BUBR1 and Mps1, have been observed in 

tumours (Janssen and Medema, 2011; Salmela and Kallio, 2013). In addition, 

amplification of centrosomes, which form the microtubule-organising centres or 

spindle poles in mitosis, is a common feature of tumour cells and it has been 

linked to carcinogenesis (Chan, 2011).  

 

Given the detrimental consequences of deregulating the cell cycle, it is not 

surprising that many anti-cancer agents target the cell cycle machinery. For 

example, DNA replication is a common target of nucleoside analogues and 

other anti-metabolites (Williams and Stoeber, 2012). In addition, causing lethal 

DNA damage is one of the major anti-cancer strategies currently employed 

(Cheung-Ong et al., 2013; Hosoya and Miyagawa, 2014). There have been 
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considerable efforts in targeting mitosis and its defects in cancer, as cells are 

particularly vulnerable during this cell-cycle stage (Chan et al., 2012; Janssen 

and Medema, 2011). Small molecule inhibitors against mitotic kinases, such as 

Aurora-A and -B, Plk1, Mps1 and Eg5, have been evaluated as anti-cancer 

therapies and some demonstrated anti-tumour efficacy in clinical trials (Salmela 

and Kallio, 2013).  

 

 

1.2.2. Introduction to the DNA damage and repair response 

 

DNA damage checkpoints  

 

Genome integrity is constantly being challenged by endogenous insults arising 

naturally through metabolic processes, for example reactive oxygen species, or 

errors in DNA replication, as well as environmental insults, including ultraviolet 

(UV) radiation and genotoxic agents (Warmerdam and Kanaar, 2010). In order 

to safeguard genomic stability cells have evolved mechanisms to sense DNA 

damage and halt cell-cycle progression until the lesions have been repaired. 

This is referred to as the DNA-damage response (DDR), a complex signal 

transduction network consisting of sensors, mediators, adaptors and effectors 

that work together to coordinate cellular processes with the goal of preventing 

proliferation in the presence of genomic instability (Figure 6) (Bartek and Lukas, 

2007). The outcome of the DDR, which depends on the nature of the damage 

and the context, can vary from a temporary cell cycle arrest with successful 

DNA repair and resuming of proliferation, to irreversible growth arrest, known as 

senescence, or even cell death (Bartek and Lukas, 2007). DNA damage 

checkpoints exist at every cell-cycle phase, besides mitosis. Checkpoint-

induced cell-cycle arrest at G1 and G2 phases is overall more durable and 

robust than S-phase arrest, which is largely transient and results in a 

subsequent G2 arrest if the damage is not repaired (Bartek et al., 2004). 

Notably, DNA damage in S-phase can result in three different responses: the 

DNA replication checkpoint response that deals with stalled replication forks, 

the Intra-S checkpoint that responds to double-strand breaks (DSBs) and the S-

M checkpoint which prevents mitotic entry in response to incomplete DNA 

replication (Bartek et al., 2004). 
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The DDR has diverse sensors and signal transducers, depending mainly on the 

type of DNA lesion, but they all converge on Cyclin-CDK complexes in order to 

block cell-cycle progression (Figure 6) (Bartek and Lukas, 2007; Warmerdam 

and Kanaar, 2010). The key mediators of the DDR are the phosphoinositide 3-

kinase related kinases (PIKKs) ataxia-telangiectasia mutated (ATM) and 

ataxiatelangiectasia and RAD3 related (ATR) (Bartek et al., 2004). ATM is 

primarily activated in response to DSBs, whereas ATR is activated in the 

presence of single-stranded DNA (ssDNA) generated by stalled replication 

forks, strand breaks and following recession of DSBs (Figure 6) (Bartek and 

Lukas, 2007; Lopez-Contreras and Fernandez-Capetillo, 2010). Whereas the 

activation of ATM and ATR differs at the level of sensors and 

mediators/adaptors, the signalling cascade initiated following activation of ATM 

and ATR converges on effector proteins (Cimprich and Cortez, 2008; Lopez-

Contreras and Fernandez-Capetillo, 2010). With the exception of checkpoint 

kinases (Chk) 1 and 2, which appear to be exclusive effectors of ATR and ATM 

respectively, the vast majority of targets are shared between the two kinases 

(Chen and Poon, 2008; Cimprich and Cortez, 2008; Lopez-Contreras and 

Fernandez-Capetillo, 2010). Besides ATM/Chk2 and ATR/Chk1, the p38 

mitogen activated protein kinase (MAPK) stress-response pathway is also 

activated in response to DNA damage (Figure 6).  

 

Overview of DNA repair pathways  

 

Several DNA damage repair pathways exist in higher eukaryotes and the choice 

of a repair pathway depends on the type of DNA damage as well as the phase 

of the cell-cycle (Branzei and Foiani, 2008). Single strand breaks (SSBs) and 

DSBs are mainly repaired through homologous recombination (HR) in S- and 

G2-phases, and through non-homologous end-joining (NHEJ) in G1 (Branzei 

and Foiani, 2008). HR operates only in S and G2 phases, as it repairs damaged 

DNA by using the information from an intact sister chromatid (Branzei and 

Foiani, 2008). In G1, as chromosomes are not duplicated, the preferred 

pathway for DSB repair is NHEJ (Branzei and Foiani, 2008). Accumulating 

evidence suggests that a competition exists between HR and NHEJ proteins 
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and the balance between them defines the repair choice (Branzei and Foiani, 

2008; Lazzaro et al., 2009).  

 

During DNA replication, base-base mismatches are repaired through the 

mismatch repair (MMR) pathway, while chemical alterations of nucleotide bases 

are repaired by the base-excision repair (BER) pathway, which also functions in 

G1 (Branzei and Foiani, 2008). Nucleotide excision repair (NER) is activated in 

response to bulky lesions that distort the DNA helix, for example those induced 

by UV, but NER proteins can function together with HR proteins for repair of 

crosslinks during DNA replication (Branzei and Foiani, 2008). 

 

 

1.2.3. ATR-mediated DNA-damage response   

 

ATR activation  

 

As mentioned above ATR is activated in the presence of ssDNA, whether this is 

a result of a stalled replication fork or enzymatic cleavage of DSBs. Stalled 

replication forks can result for example from direct inhibition of DNA 

polymerases, depletion of dNTP pools or collision with aberrant DNA structures, 

including crosslinks and adducts (Bartek et al., 2004; Zegerman and Diffley, 

2009). The exact signal that activates ATR is believed to be the extended 

presence of primed ssDNA, that is normally generated when the 

minichromosome maintenance 2-7 (MCM2-7) helicase complex unwinds the 

DNA helix to provide a template for the DNA polymerase (Jossen and Bermejo, 

2013).  

 

ssDNA is coated by replication protein A (RPA), which recruits the ATR-

interacting protein (ATRIP)-ATR complex (Figure 6) (Cimprich and Cortez, 

2008; Lopez-Contreras and Fernandez-Capetillo, 2010). ssDNA-RPA 

independently recruits the RAD17–replication factor C (RFC) clamp loader 

(Cimprich and Cortez, 2008; Lopez-Contreras and Fernandez-Capetillo, 2010). 

Rad17-RFC in turn loads the RAD9–RAD1–HUS1 (9-1-1) complex, which 

essentially recognises DNA ends near the ssDNA-RPA complex (Cimprich and 

Cortez, 2008; Lopez-Contreras and Fernandez-Capetillo, 2010). 9-1-1 then 
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recruits the mediator proteins Claspin and topoisomerase-binding protein-1 

(TopBP1), the latter which interacts with and activates ATR (Cimprich and 

Cortez, 2008; Lindsey-Boltz and Sancar, 2011; Liu et al., 2006; Lopez-

Contreras and Fernandez-Capetillo, 2010).  

 

Activated ATR subsequently phosphorylates various targets, but perhaps the 

most critical effector for transducing the ATR signal is Chk1 (Cimprich and 

Cortez, 2008; Lopez-Contreras and Fernandez-Capetillo, 2010). ATR-catalysed 

Chk1 phosphorylation (Ser317 and Ser345) requires the presence of Claspin, 

which binds and stabilizes Chk1, bringing it in close proximity to ATR (Chini and 

Chen, 2003; Chini and Chen, 2004; Clarke and Clarke, 2005; Lin et al., 2004; 

Lindsey-Boltz et al., 2009; Liu et al., 2006; Liu et al., 2012). Chk1 in turn 

phosphorylates and stabilizes Claspin (Chini and Chen, 2006; Chini et al., 2006; 

Freire et al., 2006). Accumulating evidence suggests that TopBP1 is required 

for phosphorylation of most ATR substrates, while Claspin seems to be specific 

for Chk1 activation (Cimprich and Cortez, 2008; Lindsey-Boltz and Sancar, 

2011; Liu et al., 2006; Tanaka, 2010). Claspin is required for normal rates of 

replication fork progression during an unperturbed DNA replication (Petermann 

et al., 2008; Tanaka, 2010; Uno and Masai, 2011) and in response to stalled 

replication forks it becomes phosphorylated and activated (Chini and Chen, 

2006; Clarke and Clarke, 2005; Kumagai and Dunphy, 2003; Tanaka, 2010). 

Claspin phosphorylation occurs in the Chk1-binding domain on Thr916 and 

Ser945, and it is dependent on ATR but not catalysed by ATR (Chini and Chen, 

2006; Clarke and Clarke, 2005; Kumagai and Dunphy, 2003; Lindsey-Boltz et 

al., 2009; Tanaka, 2010). Multiple kinases have been implicated in the 

phosphorylation of Claspin, including Chk1 itself (Chini and Chen, 2006), Cdc7 

(Kim et al., 2008; Rainey et al., 2013) and Casein kinase 1 γ1 (CK1γ1) (Meng et 

al., 2011). Another adaptor proposed to be required for efficient Chk1 

phosphorylation is the Timeless (Tim)-Tipin complex, suggested to bind ssDNA-

RPA and facilitate Claspin recruitment (Leman and Noguchi, 2012).  

 

ATR targets  

 

ATR phosphorylates various substrates at the stalled replication forks, such as 

RPA and MCM2-7, to promote fork stability and recovery, which is important to 
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prevent fork collapse and subsequent generation of DSBs (Cimprich and 

Cortez, 2008; Lopez-Contreras and Fernandez-Capetillo, 2010). ATR also 

phosphorylates the RecQ helicase bloom syndrome protein (BLM), which was 

shown to play important roles in replication fork recovery and HR repair 

(Manthei and Keck, 2013). Other ATR targets present at the stalled replication 

forks include TopBP1, Rad17, 9-1-1, ATRIP and histone H2A.X (Figure 6); their 

phosphorylation is believed to amplify the DNA damage signal (Shiotani and 

Zou, 2009; Warmerdam and Kanaar, 2010). Moreover, ATR phosphorylates 

proteins involved in DNA repair, such as the HR protein BRCA1, the DNA 

crosslink repair protein Fanconi-anaemia group D2 (FANCD2), the helicase 

WRN, the nuclease ExoI  and the NER protein xeroderma pigmentosum group 

A (XPA) (Cimprich and Cortez, 2008; Sirbu and Cortez, 2013; Warmerdam and 

Kanaar, 2010). ATR also acts to prevent degradation of the R2 subunit of RNR 

(D'Angiolella et al., 2012). Regulation of RNR in response to replication stress, 

which serves to adjust dNTP production, has been well documented in yeast, 

but it remains to be elucidated in human cells (Labib and De Piccoli, 2011; Sirbu 

and Cortez, 2013; Zegerman and Diffley, 2009).   

 

Chk1 signalling  

 

Once activated, Chk1 dissociates from chromatin and functions to transduce the 

ATR DNA damage signal by phosphorylating various substrates (Lopez-

Contreras and Fernandez-Capetillo, 2010). In response to DNA damage or 

replication stress Chk1 mediates cell-cycle arrest by controlling the 

phosphorylation status of CDKs (Figure 6) (Patil et al., 2013). First, Chk1 

phosphorylates all three members of the cell division cycle 25 (Cdc25) family of 

phosphatases (Cdc25A,B,C), which remove inhibitory phosphorylations on 

CDKs thereby activating them (Aressy and Ducommun, 2008). Chk1-mediated 

Cdc25A phosphorylation results in its proteasome-mediated degradation, 

leading to inhibition of CDK1 and CDK2 and subsequent arrest at G1, S or G2 

(Patil et al., 2013). Moreover, it was reported that Chk1 phosphorylates the 

never in mitosis gene A (NIMA)-related kinase 11 (Nek11), which also 

phosphorylates Cdc25A targeting it for degradation (Melixetian et al., 2009). For 

Cdc25C, Chk1-mediated phosphorylation creates binding sites for 14-3-3 

proteins, which subsequently sequester Cdc25C in the cytoplasm and inhibit 
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activation of CDK1 (Donzelli and Draetta, 2003; Patil et al., 2013). Chk1-

mediated Cdc25B phosphorylation results in the inactivation of CDK1 present at 

the interphase centrosomes thereby preventing premature mitotic entry (Kramer 

et al., 2004; Loffler et al., 2006). Another mechanism for Chk1-mediated 

inhibition of CDK1 activity is the phosphorylation and activation of the Wee1 

kinase, which catalyzes an inhibitory phosphorylation on CDK1 (Patil et al., 

2013). Therefore, while Chk1-mediated inactivation of CDK2 only occurs 

through degradation of Cdc25A, multiple mechanisms exist for Chk1-mediated 

inactivation of CDK1 and inhibition of mitotic entry.  

 

Besides the rapid phosphorylation-driven checkpoint response, a transcriptional 

response is also induced to sustain the checkpoint signal. Both ATR and Chk1 

phosphorylate p53 leading to its stabilization and subsequent transcriptional 

activation of genes involved in cell-cycle arrest and DNA repair or apoptosis 

(Stracker et al., 2009). Activating p53 phosphorylations on Ser15 and Ser20 

stabilize p53 and recruit transcriptional co-factors, like p300 and CBP, which 

also act to further stabilize p53 (Meek, 2004). Chk1 also phosphorylates Mouse 

double minute 2 homolog  (Mdm) 4/X, which co-operates with Mdm2 for 

targeting p53 for degradation, leading to its 14-3-3-mediated sequestration and 

subsequent stabilisation of p53 (Stracker et al., 2009). The CKI p21CIP1/WAF1 is a 

well-defined gene induced in response to p53 and it is responsible for inhibiting 

CDK2 thereby preventing Rb dissociation from E2F and leading to G1 arrest 

(Meek, 2004). Other p53-activated genes involved in cell-cycle arrest are 

Growth Arrest and DNA Damage (GADD45) and 14-3-3  (Meek, 2004). 

Moreover, p53 represses the expression of genes involved in the G2/M 

transition, such as Cyclin B, Cdk1 and Plk1 (McKenzie et al., 2010; Taylor and 

Stark, 2001). Interestingly, a study reported that the dissociation of Chk1 from 

chromatin was concurrent with a reduction in histone H3 (Thr11) 

phosphorylation and this reduction correlated with the decreased binding of 

histone acetyltransferase GCN5 to Cyclin B1 and Cdk1 promoters and 

repression of transcription (Shimada et al., 2008).  

 

Similar to ATR, Chk1 also phosphorylates proteins involved in DNA repair. In 

the context of DNA crosslink repair, Chk1 phosphorylates the FANCE subunit of 

the Fanconi-anaemia complementation group resulting in its co-localisation with 
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FANCD2 (Patil et al., 2013). In addition, Chk1 phosphorylates the HR repair 

protein Rad51, recruiting it to DNA repair foci (Sorensen et al., 2005).  

 

Homologous recombination (HR) at stalled replication forks  

 

When replication forks stall, ATR signalling promotes fork stabilisation to 

prevent breakage and ATR phosphorylates and recruits various DNA repair 

enzymes. HR was shown to play an important role in the repair of damaged 

replication forks. At stalled replication forks, BRCA2 recruits Rad51 to RPA-

coated ssDNA and promotes HR by displacing RPA (Costanzo, 2011; Yeeles et 

al., 2013). Initially, BRCA2 and Rad51 act to protect fork degradation induced 

by the exonuclease activity of Mre11, which is thought to enlarge ssDNA gaps 

(Costanzo, 2011; Costes and Lambert, 2012; Yeeles et al., 2013). Then, HR 

promotes the re-start of stalled or collapsed replication forks and the Mre11-

Rad50-Nbs1 (MRN)-complex, Rad51 and BRCA2 are critical players in this 

process (Costanzo, 2011; Costes and Lambert, 2012; Yeeles et al., 2013). 

Damaged forks are also processed by several other enzymes, including 

helicases, such as WRN and the FA group M protein (FANCM), that unwind 

DNA, and ATPases, such as SMARCAL1, that re-anneal DNA; all are targets of 

ATR (Sirbu and Cortez, 2013). The exact sequence of events during processing 

of stalled replication forks is poorly understood. HR has best been described in 

the context of DSBs and it is discussed in section 1.2.4. 

 

Base-excision repair (BER)  

 

BER is responsible for the repair of incorrectly incorporated, damaged or 

modified bases, as opposed to mismatches which are dealt with by MMR (Kim 

and Wilson, 2012). A frequent incorrectly incorporated base is Uracil, while 

modified bases can arise through oxidation, alkylation and deamination (Dianov 

and Hubscher, 2013; Kim and Wilson, 2012). BER also deals with abasic sites 

(Kim and Wilson, 2012). BER can be activated in response to certain forms of 

chemotherapy, such as alkylating agents, the autophagy inhibitor 3-

methyladenine (3-MA), as well as by ionizing radiation generating reactive 

oxygen species (ROS), which can oxidize bases (Kim and Wilson, 2012; 

Parsons and Dianov, 2013).  
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BER proceeds by excising the damaged base through the action of DNA 

glycosylases, which results in DNA bending and base flipping (Kim and Wilson, 

2012). At least 10 human DNA glycosylases have been identified to date, each 

with different substrate specificity (Parsons and Dianov, 2013). For example 

uracil DNA glycosylase (UDG) is responsible for removal of Uracil and 5-FU 

(Kim and Wilson, 2012). Excision by DNA glycosylase creates an abasic site 

which is incised by apurinic/apyrimidinic (AP) endonucleases (APE), the most 

frequently used being APE1, to create an intermediate strand break (Kim and 

Wilson, 2012). Interestingly, APE1 was implicated in the regulation of DNA 

binding by various transcription factors, including p53, NF-κB and hypoxia-

inducible factor 1α (HIF-1α) (Tell et al., 2009). The next step is cleaning-up of 

the DNA ends/termini, performed by either DNA polymerase β (Pol β), APE1 or 

polynucleotide kinase phosphatase (PNKP), depending on the nature of the 

DNA end (Parsons and Dianov, 2013). If completed successfully, Pol β fills in 

the gap with a new nucleotide (short-patch BER) followed by DNA stabilization 

through binding of poly(ADP-ribose)polymerase 1 (PARP1), which recruits the 

X-ray cross complementing protein-1 (XRCC1) (Kim and Wilson, 2012). XRCC1 

together with DNA ligase IIIα perform the sealing step of short-patch BER (Kim 

and Wilson, 2012; Parsons and Dianov, 2013). However, in some instances the 

DNA termini are resistant to the "cleaning-up" and replicative DNA polymerases 

(Pol δ/ɛ ) are required to repair the gap (Parsons and Dianov, 2013). Addition of 

more than one nucleotide by Pol δ/ɛ  is facilitated by the DNA clamp molecule 

proliferating cell nuclear antigen (PCNA) and it is followed by DNA ligase I-

mediated sealing (Kim and Wilson, 2012; Parsons and Dianov, 2013). This is 

known as long-patch BER (Kim and Wilson, 2012; Parsons and Dianov, 2013).  

 

Several BER enzymes have been implicated in cancer cell resistance to 

chemotherapeutic agents and BER inhibition is being evaluated as a sensitizing 

strategy to chemotherapy (Kim and Wilson, 2012). APE1 is one of these 

enzymes. Overexpression of APE1 can cause genetic instability, most likely 

through a collapse of replication forks that can accumulate SSBs and/or DSBs, 

whereas reduced APE1 expression has been shown to increase sensitivity to 

ionizing radiation, etoposide and temozolomide (TMZ) (Kim and Wilson, 2012; 

Parsons and Dianov, 2013). Similarly, suppression of XRCC1 increases 

sensitivity to ionizing radiation and topoisomerase I inhibitors and it is thought to 
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be involved in the processing of topoisomerase I-DNA intermediate complexes 

in response to CPT treatment (Kim and Wilson, 2012). Besides APE1 and 

XRCC1, the expression and activity of PARP-1, which regulates BER capacity, 

can increase in response to several chemotherapeutics, such as nucleoside 

analogues and topoisomerase I inhibitors, and PARP-1 inhibitors are being 

currently evaluated as anti-cancer agents (Kim and Wilson, 2012; Shah et al., 

2013). 

 

Nucleotide-excision repair (NER)  

 

NER removes bulky, helix-distorting lesions that can be generated naturally or 

by environmental agents, such as UV radiation and cisplatin chemotherapy 

(Marteijn et al., 2014). NER is considered one of the most versatile types of 

DNA repair (Marteijn et al., 2014). There are two types of NER: global genome 

NER (GG-NER), that operates throughout the genome, and transcription-

coupled NER (TC-NER), that repairs the template strand of actively-transcribed 

genes (Kamileri et al., 2012; Scharer, 2013). 

 

In GG-NER, DNA lesions are being recognized by the sensor xeroderma 

pigmentosum complementation group C (XPC), which forms a complex with the 

RAD23 homologue B (RAD23B) and centrin 2 (CETN2) (Kamileri et al., 2012; 

Marteijn et al., 2014). DNA recognition is facilitated by the UV DNA damage-

binding protein (UV-DDB) complex and once DNA has been bound, RAD23B 

dissociates from the complex (Kamileri et al., 2012; Marteijn et al., 2014; 

Scharer, 2013). UV-DDB forms a complex with cullin 4A (CUL4A)-regulator of 

cullins 1 (ROC1) E3 ubiquitin ligase and together mediate ubiquitination of XPC 

and core histones, such as H2A, as well as PARP-1-mediated PARylation of 

chromatin (Kamileri et al., 2012; Marteijn et al., 2014). Histone 

acetyltransferases, including p300, are also recruited to enhance chromatin 

relaxation (Kamileri et al., 2012). These post-translational modifications are 

thought to stimulate NER and facilitate the repair process (Kamileri et al., 2012; 

Marteijn et al., 2014). 

 

In TC-NER, as RNA polymerase II (RNA Pol II), that elongates the transcript, 

stalls at the DNA lesion, a complex containing the ATPases Cockayne 
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syndrome protein B and A (CSB and CSA) binds RNA Pol II (Kamileri et al., 

2012; Marteijn et al., 2014). This follows the binding of the UV-stimulated 

scaffold protein A (UVSSA) and ubiquitin-specific-processing protease 7 (USP7) 

(Marteijn et al., 2014).  

 

Following damage recognition, GG-NER and TC-NER proceed in the same 

pathway which involves recruitment of the transcription initiation factor IIH 

(TFIIH) complex and lesion verification through the action of its DNA helicases 

XPB and XPD (Kamileri et al., 2012; Marteijn et al., 2014). XPA binds the 

altered ssDNA and recruits XPF-ERCC1 and XPG, the endonucleases that 

catalyze lesion excision leaving a ssDNA gap that is recognized by RPA 

(Kamileri et al., 2012; Marteijn et al., 2014). Similar to long-patch BER, NER 

proceeds with the binding of PCNA that recruits replication factors A and C 

(RFA and RFC) and DNA Pol δ/ɛ  to fill the gap by DNA synthesis, while DNA 

ligase III-XRCC1 and DNA ligase I perform the final sealing step (Kamileri et al., 

2012; Marteijn et al., 2014).  

 

The intermediate ssDNA formed during excision is bound by RPA and has the 

potential of activating ATR signalling, particularly when the intermediates 

accumulate due to excision malfunction, excessive damage or various factors 

that inhibit DNA repair synthesis (Marteijn et al., 2014; Scharer, 2013). In such 

instances, XPG can be replaced with the exonuclease EXO1, which processes 

the NER intermediates generating long stretches of ssDNA that activate ATR-

mediated DDR (Giannattasio et al., 2010; Sertic et al., 2011). 

 

 

1.2.4. The ATM-mediated response to double-strand breaks 

 

ATM activation  

 

DSBs, one of the most lethal types of DNA damage, are recognised by the 

Mre11-Rad50-Nbs1 (MRN) complex, which recruits ATM leading to ATM 

autophosphorylation and activation (Figure 6) (Warmerdam and Kanaar, 2010). 

ATM directly interacts with MRN through Nbs1 (Warmerdam and Kanaar, 

2010). Full activation of ATM was suggested to require acetylation by the Tip60 
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acetyltransferase (Sun et al., 2005; Sun et al., 2007). Activated ATM then 

phosphorylates histone H2A.X ( H2AX), which forms a docking site for the 

mediator of DNA damage checkpoint 1 (Mdc1) adaptor protein (Figure 6). 

These initial events are important for the subsequent assembly of other DNA 

damage and repair proteins as well as the amplification of the signal (Bartek 

and Lukas, 2007; Huen and Chen, 2010). Sustained localization of MRN is 

achieved through an interaction of Mdc1 with Nbs1 (Huen and Chen, 2010). 

ATM phosphorylates numerous substrates, including Nbs1, Chk2, BRCA1, p53 

and the nuclease Artemis (Warmerdam and Kanaar, 2010).  

 

Recruitment of chromatin remodelling, ubiquitination and DNA repair factors  

 

Chromatin remodelling complexes, such as SWItch/Sucrose NonFermentable 

(SWI/SNF), are also recruited to H2AX foci and are thought to relax chromatin 

for DNA repair protein access (Sirbu and Cortez, 2013). Independently of 

H2AX, ATM induces the mono-ubiquitylation of histone H2B and the 

phosphorylation of the transcriptional co-repressor KAP-1, further relaxing 

chromatin (Sirbu and Cortez, 2013). Various DNA repair factors are recruited to 

the sites of DSBs. Among the proteins being recruited are the RING ubiquitin 

ligases RNF8 and RNF168, which catalyze ubiquitylation at the DSB to further 

recruit other ubiquitin ligases, like UBC13 (Huen and Chen, 2010; Sirbu and 

Cortez, 2013). These ubiquitylation events recruit a complex consisting of 

Abraxas, the ubiquitin-binding protein Rap80, and the DNA repair protein 

BRCA1 (Huen and Chen, 2010; Sirbu and Cortez, 2013). The p53 binding 

protein (53BP1) is also recruited and acts as a scaffold for recruitment of other 

proteins, such as the chromatin modulator EXPAND, as well as an ATM signal 

amplifier (Panier and Boulton, 2014). Additionally, 53BP1 acts to favour the 

choice of NHEJ repair in G1, by protecting the ends of DSBs from resection, 

and it has been suggested that during S-phase, BRCA1 might act to displace 

53BP1 in order to favour HR (Bunting et al., 2010; Chapman et al., 2012; Panier 

and Boulton, 2014).  
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Chk2 signalling  

 

Chk2 is the best-characterised effector of ATM signalling. ATM phosphorylates 

Chk2 on Thr-68, which stimulates dimerization and a series of 

autophosphorylation events on Thr-383 and Thr-387, leading to its full activation 

(Reinhardt and Yaffe, 2009; Stracker et al., 2009). Despite that Chk2 was 

reported to phosphorylate Cdc25A leading to proteasomal degradation (Falck et 

al., 2001), a study has challenged the ability of Chk2 to target Cdc25A for 

degradation (Jin et al., 2008). Similarly to Chk1 though, Chk2 can 

phosphorylate Cdc25C leading to 14-3-3-mediated cytoplasmic sequestration 

and CDK1 inactivation (Figure 6) (Boutros et al., 2006; Donzelli and Draetta, 

2003). p53 and Mdm4/X are also phosphorylated by both Chk1 and Chk2 

(Stracker et al., 2009). Similarly to ATM, Chk2 phosphorylates BRCA1 

promoting BRCA1-mediated repair (Bartek et al., 2001).  

 

DSB repair  

 

Two important pathways for DSB repair are HR and NHEJ (Branzei and Foiani, 

2008). The choice of repair pathway depends on the occurrence of DNA end-

resection, with DNA end-binding HR and NHEJ proteins competing (Jasin and 

Rothstein, 2013; Symington and Gautier, 2011). It has been reported that 

CDK/cyclin B activity is required for the initiation of HR, which is another reason 

why HR is not utilized in G1 (Lazzaro et al., 2009; Warmerdam and Kanaar, 

2010).  

 

As mentioned above, MRN is the first molecule to bind DSBs. For HR, MRN 

recruits the endonuclease carboxy-terminal binding protein (CtBP)-interacting 

protein (CtIP), and together they resect DSBs (Lazzaro et al., 2009; 

Warmerdam and Kanaar, 2010). The E3 ubiquitin ligase BRCA1 is also 

recruited and interacts with both MRN and CtIP to facilitate HR (Jasin and 

Rothstein, 2013). Further resection is catalysed by the 5'-3'-exonuclease ExoI, 

the nuclease/helicase DNA2 and the BLM helicase (Nimonkar et al., 2011; 

Warmerdam and Kanaar, 2010). DSB resection generates ssDNA overhangs, 

which are bound by RPA that activates ATR, as described in section 1.2.3. RPA 

is eventually replaced by the DNA-dependent ATPase Rad51 that results in 
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invasion of the Rad51-bound strand into the homologous double-stranded DNA 

(dsDNA) template (Jasin and Rothstein, 2013; Warmerdam and Kanaar, 2010). 

BRCA2 is an important mediator of the displacement of RPA and its substitution 

with Rad51 and it is required to promote HR repair (Jasin and Rothstein, 2013).  

 

When the balance tilts towards NHEJ, DNA ends are recognised by the 

Ku80/70 heterodimer, which recruits the PIKK member DNA-dependent protein 

kinase (DNA-PK) that provides the catalytic subunit (Warmerdam and Kanaar, 

2010). Next, XRCC4, XLF and DNA ligase IV are recruited, which catalyze the 

ligation of the broken DNA ends (Warmerdam and Kanaar, 2010). The nuclease 

Artemis is responsible for processing of DSBs that can not directly be ligated, 

and binds DNA-PK (Warmerdam and Kanaar, 2010).  

 

 

1.2.5. The p38/MAPK pathway in DNA-damage response  

 

p38MAPK is activated by phosphorylation in its activation loop catalysed by 

MAPK kinases (MAPKK or MKKs), which are in turn activated by MAPKK 

kinases (MAPKKKs) depending on the stress signal (Obata et al., 2000). 

p38MAPK controls many cellular processes, such as transcription and 

translation, that impinge on cell survival or death decisions (Obata et al., 2000). 

A number of studies have shown that p38MAPK can be activated in response to 

various DNA-damaging agents including UV, ionizing radiation and several 

chemotherapeutic drugs, and that G2/M arrest following DNA damage induced 

by these agents was p38MAPK-dependent (Reinhardt and Yaffe, 2009; 

Thornton and Rincon, 2009).  

 

It was later demonstrated that upon activation of p38MAPK, its effector kinase 

MAPK-activated protein kinase 2 (MK2) is activated which phosphorylates 

Cdc25B and C, creating 14-3-3 binding sites that lead to nuclear sequestration 

of Cdc25B/C (Figure 6) (Reinhardt and Yaffe, 2009; Thornton and Rincon, 

2009). Additionally, p38MAPK phosphorylates and activates p53 (Thornton and 

Rincon, 2009). Reinhardt et al. showed that the p38MAPK/MK2 pathway 

functions downstream of ATM/Chk2 and ATR/Chk1 pathways and Raman et al. 

further demonstrated that ATM-mediated phosphorylation of the MAPKKK TAO 
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activates p38MAPK signalling in response to DNA damage (Figure 6) (Raman 

et al., 2007; Reinhardt et al., 2007). Interestingly, Reinhardt et al. suggested 

that p53-deficient cells require the p38MAPK/MK2 pathway downstream of 

ATM/Chk2 and ATR/Chk1 for functional checkpoint responses that lead to 

survival (Reinhardt et al., 2007).  

 

Figure 6: The DNA Damage Response. Single strand breaks (SSBs) get 
readily coated by RPA, which recruits the ATRIP-ATR complex and Rad17. 
Rad-17 in turn recruits the 9-1-1 complex which binds the adaptors TopBP1 and 
Claspin. Activated ATR phosphorylates the sensor and adaptor molecules at 
SSBs, including H2AX, and its effector Chk1, a phosphorylation event facilitated 
by Claspin. In response to double strand breaks (DSBs) the Mre11-Rad50-Nbs1 
(MRN) complex binds DNA and recruits ATM that gets activated. ATM then 
phosphorylates H2AX triggering the recruitment of adaptor molecules, such as 
Mdc1 and 53BP1. ATM phosphorylates and activates its effector Chk2, as well 
as the MAPKKK TAO, which in turn activates the p38/MK2 kinase complex. 
Chk1, Chk2 and MK2 phosphorylate members of the Cdc25 family of 
phosphatases that remove inhibitory phosphorylations on Cdks to activate 
them. Phosphorylation of Cdc25A by Chk1 and Chk2 leads to its degradation 
and subsequently Cdk1 and Cdk2 inactivation. Phosphorylation of Cdc25B and 
Cdc25C by Chk1, Chk2 and MK2 recruits 14-3-3 proteins that sequester 
Cdc25B/C in the cytoplasm, thus preventing activation of Cdk1. Additionally, 
ATM, ATR, Chk1, Chk2 and p38/MK2 all phosphorylate and activate p53, 
stimulating the expression of p21 that acts to inhibit Cdk1-CyclinA/B and Cdk2-



58 
 

CyclinA/E complexes. The DDR leads to cell cycle arrest at G1, S and/or G2 in 
order to allow time for DNA damage repair. Chromatin remodelling, 
ubiquitination and DNA repair factors are also recruited to single- or double-
strand breaks (not shown on the diagram for simplicity) to initiate the process of 
repairing the lesions. References (Bartek and Lukas, 2007; Lopez-Contreras 
and Fernandez-Capetillo, 2010; Reinhardt and Yaffe, 2009; Sirbu and Cortez, 
2013; Warmerdam and Kanaar, 2010). 
 

 

1.2.6. The DNA-damage response targets mitotic kinases  

 

Besides Cdk1, mitotic kinases that stimulate G2/M transition are inactivated 

during the DDR, presumably to re-enforce blockade of mitotic entry (Peng, 

2013). At the onset of mitosis, Plk1, which is phosphorylated (Th210) and 

activated by Aurora-A, activates Cdk1 through a number of mechanisms: it 

directly phosphorylates and activates Cdk1, it phosphorylates and activates 

Cdc25C and it phosphorylates and inactivates Wee1 (Archambault and Glover, 

2009; Petronczki et al., 2008). In response to DNA damage Plk1 was shown to 

be inactivated in an ATM- and ATR-dependent manner (Hyun et al., 2014; 

Smits et al., 2000). A study also reported that DNA damage in G2 induces 

degradation of Plk1 through the E3 ubiquitin ligase APC/CCdh1 (Bassermann et 

al., 2008).  Aurora-A, which was reported to activate Cdc25B, and Aurora-B are 

also inactivated by the DDR (Cazales et al., 2005; Krystyniak et al., 2006; 

Monaco et al., 2005).  

 

Protein phosphatase 2A (PP2A) is a well-known antagonist of CDK activities 

throughout the cell-cycle (Jeong and Yang, 2013; Kurimchak and Grana, 2012). 

PP2A bound to its regulatory subunit B55 counteracts Cdk1 activities in 

interphase by de-phosphorylating Cdk1 substrates (Jeong and Yang, 2013). 

Mitotic entry requires inactivation of PP2A, which was shown to be mediated by 

the Greatwall kinase, also known as microtubule-associated serine/threonine 

kinase-like (MAST-L), through its substrates Ensa and ARPP19 (Glover, 2012; 

Yasutis and Kozminski, 2013). From studies in Xenopus extracts it was 

suggested that Greatwall is inhibited by the DDR (Peng et al., 2011; Peng et al., 

2010); it remains to be seen whether this inhibition is conserved in humans. 

Although the function of Greatwall has been mainly studied in Xenopus, 

subsequent studies indicated the conservation of this function in human cells 
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and that Greatwall depletion causes a significant G2 delay rescued by inhibiting 

PP2A (Burgess et al., 2010; Hegarat et al., 2014; Krajewska and van Vugt, 

2010; Voets and Wolthuis, 2010).  

 

 

1.2.7. Recovery from the DNA-damage response: Switching the signal off 

 

As cells complete repair of damaged DNA, the DNA damage checkpoint signal 

needs to be switched off in order to allow cells to resume cell cycle progression; 

this process is termed checkpoint recovery (Medema and Macurek, 2011; Peng, 

2013). Checkpoint recovery has been mainly studied in the context of G2/M 

transition and it has emerged that re-activation of the Cyclin B-Cdk1 complex 

and subsequent mitotic entry is regulated by a balance of activities between 

DDR and mitotic kinases (Medema, 2010; Medema and Macurek, 2011; Peng, 

2013; van Vugt and Yaffe, 2010). It should be noted that Cyclin B-Cdk1 lies in 

the centre of complex feedback loops occurring during G2/M transition 

(Medema, 2010; Medema and Macurek, 2011). For example, active Cdk1 

inactivates its inhibitor Wee1, while it positively feeds back to its activator Cdc25 

and additionally phosphorylates and activates Greatwall, which suppresses the 

Cdk1-antagonist PP2A (Medema, 2010).  

 

The mitotic kinases Aurora-A and Plk1 have emerged as important regulators of 

checkpoint recovery. During checkpoint recovery, Aurora-A binds its activating 

co-factor Bora and phosphorylates Plk1, which subsequently acts to inhibit 

several components of the DDR as described below (Macurek et al., 2008; Seki 

et al., 2008). Several groups demonstrated that the mitotic kinase Plk1 

phosphorylates Claspin, leading to Skp, Cullin, F-box (SCF)-βTrCP-mediated 

ubiquitination and subsequent proteasomal degradation (Gewurz and Harper, 

2006; Macurek et al., 2008; Mailand et al., 2006; Mamely et al., 2006; 

Peschiaroli et al., 2006). Claspin degradation prevents further Chk1 activation 

and promotes recovery from the ATR/Chk1 checkpoint response (Gewurz and 

Harper, 2006). Plk1 was also shown to inhibit the ATM/Chk2 pathway. First, 

Plk1 directly phosphorylates Chk2 interfering with its ability to bind substrates 

and adaptor proteins (Tsvetkov, 2004; van Vugt et al., 2010). Second, Plk1 

phosphorylates the adaptor protein 53BP1, which results in its exclusion from 
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chromatin at the onset and throughout mitosis (van Vugt et al., 2010). It was 

also shown that following a prime phosphorylation by Cdk1, Plk1 

phosphorylates Wee1 leading to SCF-βTrCP-mediated degradation (van Vugt 

et al., 2004; Watanabe et al., 2005; Watanabe et al., 2004; Yde et al., 2008).  

 

The phosphatase wild-type p53 inducible protein 1 (Wip1 or PPM1D), member 

of the PP2C family, has also been implicated in checkpoint recovery. Wip1, 

which is induced in response to various stresses (Lowe et al., 2012), was 

shown to reverse the ATR-mediated Ser345 phosphorylation on Chk1 resulting 

in reduced activity, as well as the Ser15 phosphorylation on p53 (Lu et al., 

2005). Similar to Wip1, PP2A can reverse ATR-mediated Chk1 

phosphorylations on Ser317 and Ser345 (Leung-Pineda et al., 2006). In 

addition Wip1 de-phosphorylates Mdm2 and Mdm4/X leading to their 

stabilization and subsequent enhancement of p53 degradation (Lowe et al., 

2012; Lu et al., 2008). Another target of Wip1 is the p38MAPK whose Wip1-

mediated de-phosphorylation leads to decreased p53 activity (Takekawa et al., 

2000). Since Wip1 is transcriptionally induced by p53, Wip1-mediated inhibition 

of p53 creates a negative feedback loop (Lu et al., 2008). Wip1 also removes 

the ATM-mediated Thr68 phosphorylation on Chk2, reducing its activity, as well 

as dephosphorylating ATM itself (Lu et al., 2008). Several groups have shown 

that Wip1 de-phosphorylates H2AX, impairing the recruitment of other DDR 

proteins (Lowe et al., 2012). Moreover, it was proposed that Wip1 attenuates 

NER and BER through dephosphorylation of the NER proteins XPA and XPC 

and the Uracil-removing enzyme UNG2 (Lu et al., 2004a; Lu et al., 2004b; 

Nguyen et al., 2010). Importantly, it was demonstrated that Wip1 

overexpression abrogates the intra-S and G2/M checkpoints (Lowe et al., 

2012).  A direct link between Wip1 activation and checkpoint recovery has been 

demonstrated (Lindqvist et al., 2009). In this report it was revealed that Wip1 

activity is required to maintain the competency of cells to recover and resume 

cell cycle progression (Lindqvist et al., 2009). However, the requirement of Wip1 

for checkpoint recovery was attributed to its ability to antagonise p53-mediated 

repression of G2 genes, such as Cyclin B and Plk1, rather than the mere 

dephosphorylation of DDR factors (Lindqvist et al., 2009).   
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Another transcriptional mechanism for G2/M checkpoint recovery was proposed 

by Alvarez-Fernandez et al, who showed that checkpoint recovery at G2 

requires Cdk1 to phosphorylate and activate the transcription factor FoxM1 

thereby inducing FoxM1-mediated expression of Cyclin A, Cyclin B and Plk1 

(Alvarez-Fernandez et al., 2010). Interestingly, the authors further suggested 

that a residual low Cdk1 activity during checkpoint activation is required for cells 

to be able to recover from the checkpoint response, as inhibition of that activity 

prevented cells from recovering (Alvarez-Fernandez et al., 2010).  

 

An unresolved question in the field is how mitotic kinases regain activity for 

checkpoint recovery since they are inhibited by the DDR (Peng, 2013). In a 

recent review Aimin Peng proposed two models that could explain this paradox 

(Peng, 2013): The first model, in agreement with Alvarez-Fernandez et al 

(Alvarez-Fernandez et al., 2010), suggests that a residual low activity of mitotic 

kinases is maintained despite inhibition by the DDR and that this activity 

progressively increases as DNA repair is completed and suppressing signals 

are attenuated. The second model suggests that checkpoint recovery occurs 

spontaneously regardless of DNA repair completion.  

 

The second model is in agreement with the concept of checkpoint adaptation. 

Checkpoint adaptation describes the process whereby cells are de-sensitised to 

the checkpoint signal after prolong periods of checkpoint activation (Bartek and 

Lukas, 2007; Clemenson and Marsolier-Kergoat, 2009; Syljuasen, 2007). 

Evidence for checkpoint adaptation in human cells was provided through 

studies using persistent ionizing radiation (IR) in G2 (Syljuasen, 2007). 

Following treatment with IR cells can undergo several rounds of division before 

dying, which could imply an adaptation to the DDR (Syljuasen, 2007). Syljuasen 

et al. showed that following a sustained IR-induced G2 checkpoint, cells entered 

mitosis in the presence of DNA lesions, as shown by persistent H2AX foci (a 

marker of DNA damage) and checkpoint adaptation required Plk1 activity 

(Syljuasen et al., 2006). Besides Plk1, it was previously shown that Cyclin B 

levels gradually accumulate following prolonged IR-induced G2 arrest (Ianzini 

and Mackey, 1997; Maity et al., 1996). It remains to be seen whether 

checkpoint adaptation occurs under other forms of genotoxic stress and 

whether it is a common feature of human cells.   
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1.2.8. DNA damage-induced apoptosis   

 

Apoptotic pathways 

 

Apoptosis can be activated intrinsically through the mitochondrial pathway and 

extrinsically through death ligands and receptors (Figure 7). The 

intrinsic/mitochondrial apoptotic pathway is governed by the B-cell lymphoma 2 

(Bcl-2) family of pro- and anti-apoptotic proteins, which include the pro-apoptotic 

members Bax, Bak, Bad, Bcl-XS, Bid, Bik, Bim and Hrk and the anti-apoptotic 

members Bcl-2, Bcl-XL, Bcl-W, Bfl-1 and Mcl-1 (Chipuk et al., 2010). When 

signals shift the balance towards the pro-apoptotic members, BAX and BAK 

oligomerize to form complexes that create pores in the outer mitochondrial 

membrane (Chipuk et al., 2010; Elmore, 2007). This leads to loss of the 

mitochondrial transmembrane potential and mitochondrial release of pro-

apoptotic molecules, such as cytochrome-c and Smac/DIABLO (Figure 7) 

(Chipuk et al., 2010; Elmore, 2007). Cytochrome-c then forms a complex with 

pro-caspase-9 and apoptotic protease activating factor 1 (Apaf-1), called the 

apoptosome (Figure 7) (Elmore, 2007). This leads to the cleavage of pro-

caspase-9 to caspase-9, which subsequently activates caspase-3 triggering the 

execution pathway (Elmore, 2007). 

  

Extrinsic apoptosis is activated by the binding of extracellular death ligands (L) 

of the tumour necrosis factor (TNF) family (TNF-α, FasL, Apo2L/TRAIL, Apo3L) 

to their respective death receptors (DR) (TNF-R1, Fas, DR4, TRAIL-R1/DR4, 

TRAIL-R2/DR5, DR3) (Figure 7) (Elmore, 2007). Upon ligand binding, adaptor 

proteins, mainly Fas-associated death domain (FADD), are recruited and bind 

to the cytoplasmic tails of the corresponding receptors via their death domains 

(Elmore, 2007). Pro-caspases 8 and 10 are then recruited and together with the 

death domains form the death-inducing signaling complex (DISC) (Figure 7) 

(Elmore, 2007; Fiandalo and Kyprianou, 2012). Pro-caspases are cleaved to 

their active caspases, a process which can be inhibited by the FLICE-inhibitory 

protein (cFLIP) (Elmore, 2007; Fiandalo and Kyprianou, 2012). Active caspase-

8 cleaves and activates caspase-3 and -7, triggering the execution pathway 

(Fiandalo and Kyprianou, 2012). The extrinsic apoptotic pathway can also lead 

to mitochondrial outer membrane permeabilization via activation of BID; cleaved 
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caspase-8 can activate pro-apoptotic BID which acts to inhibit the anti-apoptotic 

Bcl-2 family members and promote Bax/Bak oligomerisation (Figure 7) (Li et al., 

1998b; Luo et al., 1998).  

 

Extrinsic and intrinsic apoptosis converge to the execution pathway (Figure 7). 

This is mediated by the execution caspases (-3, -6 and -7), which activate 

proteases that degrade cellular components (Elmore, 2007). Caspase-3 also 

cleaves PARP (Elmore, 2007); cleaved PARP is a common marker of apoptosis 

induction. Independently of caspases, apoptosis-inducing factor (AIF), which is 

released from the mitochondria, acts to condense chromatin (Elmore, 2007). 

DNA fragmentation is catalyzed by endonucleases, such as endonuclease G 

and the Caspase Activated DNase (CAD), which is activated by caspase-3 

(Elmore, 2007). Members of the inhibitor of apoptosis (IAP) family, including 

XIAP, cIAP1/2 and Survivin, antagonize apoptosis by direct binding and 

inhibition of caspases and Smac/DIABLO (Dubrez et al., 2013).  
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Figure 7: Apoptotic pathways. Apoptosis can be activated intrinsically through 
the mitochondrial pathway (right side of figure) and extrinsically through death 
ligands and receptors (left side of figure). The intrinsic pathway is mediated by 
pro-apoptotic members of the Bcl-2 family (see text for details) and results in 
the oligomerisation of Bax and Bak that form pores on the outer mitochondrial 
membrane. This subsequently leads to the release of pro-apoptotic molecules, 
such as cytochrome C, SMAC/DIABLO and AIF. Cytochrome C together with 
APAF-1 and pro-caspase-9 form the apoptosome, that results in cleavage and 
activation of caspase-9. The extrinsic pathway is mediated by death ligands that 
bind to death receptors to stimulate the assembly of the DISC complex (see text 
for details), comprised of adaptor death domain molecules, such as FADD, and 
pro-caspase-10 and -8. Within the DISC pro-caspases are cleaved to form 
active caspases. The intrinsic and extrinsic pathways converge on execution 
caspases (-3, -7, -6) that are activated through cleavage by caspase-8 and -9.  
The execution caspases in turn activate proteases and endonucleases that 
degrade proteins and DNA. Additionally, released AIF acts to condense 
chromatin. Apoptosis-inducing factors can be antagonised by anti-apoptotic 
molecules including IAPs, c-FLIP, Bcl-2 and MCL-1 (see text for details). 
References (Chipuk et al., 2010; Elmore, 2007; Fiandalo and Kyprianou, 2012).  
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Activation of apoptosis by the DNA-damage response 

 

ATM, ATR, Chk1 and Chk2 can all phosphorylate and activate p53, as well as 

stabilize it by downregulating the p53 negative regulators of the Mdm family 

(Stracker et al., 2009). p53 activation can lead to the transcription of genes 

involved in cell-cycle arrest and DNA repair or pro-apoptotic genes; the 

mechanism for the cell fate decision has only recently been fully explored. It 

was suggested that p53 levels oscillate in distinct pulses and DDR-induced p53 

transient pulses can lead to a survival response whereas sustained and 

constant levels of p53 can support induction of apoptosis (Lahav, 2008; Zhang 

et al., 2011). It was also demonstrated that these pulses depend on the 

presence of the Wip1 phosphatase (Batchelor et al., 2008). Moreover, evidence 

suggests that the Ser15 and Ser20 phosphorylations promote cell-cycle arrest 

while a delayed Ser46 phosphorylation stimulates full activation and induction of 

apoptosis (Oda et al., 2000; Zhang et al., 2011). The p53-induced pro-apoptotic 

genes including BAX, NOXA, BID, PUMA and APAF1 are involved in the 

intrinsic apoptotic pathway, while DR5, FAS and p53-induced death domain 

(PIDD) proteins are involved in the extrinsic apoptotic pathway (Meek, 2004; 

Vousden and Lu, 2002).  

 

In addition to p53, Chk1 and Chk2 have been reported to phosphorylate and 

stabilize E2F1, promoting E2F1-mediated apoptosis (Stracker et al., 2009). 

E2F1 stimulates transcription of the p53 homologue p73, which can activate 

expression of the pro-apoptotic protein PUMA (Roos and Kaina, 2006).  

 

A pro-apoptotic NF- B pathway has also been implicated in DNA damage-

induced apoptosis (Wu and Miyamoto, 2008). ATM binds to and phosphorylates 

the regulatory subunit NEMO/IKKγ, which leads to monoubiquitination and 

SUMOylation that activate NEMO (Miyamoto, 2011). The ATM/NEMO complex 

is then exported to the cytoplasm where NEMO can activate IKΚβ (Miyamoto, 

2011). IKΚβ subsequently targets IκBα for degradation, releasing it from NF- B, 

which can now translocate to the nucleus and activate transcription (Miyamoto, 

2011). Pro-apoptotic genes induced by NF- B include the FasL and TNF-α 

(Nowsheen and Yang, 2012).  
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As mentioned above, DDR activates BRCA1. BRCA1 has been shown to 

enhance p53-independent apoptosis when cytoplasmic, and p53 has been 

shown to be important in DNA-damage induced nuclear export of BRCA1 

(Nowsheen and Yang, 2012). In addition, BRCA1 was reported to localize at 

mitochondria and promote apoptosis (Nowsheen and Yang, 2012).  

 

 

1.2.9. DNA damage in mitosis 

 

Mitosis prevents DDR activation and DNA repair  

 

Cells escaping DNA damage checkpoints, due to either defective checkpoints 

or checkpoint adaptation, can initiate mitosis with damaged DNA. As discussed 

above (section 1.2.6.), DDR proteins are inactivated at the onset of mitosis to 

allow de-repression of Cdk1 activity that is required to drive mitotic progression, 

during which the suppressive state of DDR proteins is maintained (Heijink et al., 

2013). This is in agreement with observations made decades ago that 

irradiation of mitotic cells does not lead to mitotic arrest and that cells progress 

to division (Mazia, 1961; Rieder and Cole, 1998; Zirkle and Bloom, 1953). The 

point of mitotic commitment is late prophase, as causing DNA damage before 

this stage can revert the cell to interphase (Rieder, 2011; Rieder and Cole, 

1998).  

 

Despite mitotic inactivation of DDR signalling, several studies reported the 

presence of the MRN complex, Mdc1, RPA and H2AX, on mitotic 

chromosomes, suggesting that the initial steps of DNA damage recognition do 

occur (Heijink et al., 2013). In agreement with MRN and Mdc1 presence on 

mitotic chromosomes, ATM phosphorylation has also been reported in mitotic 

cells, however the activation of downstream effectors 53BP1 and Chk2 and 

subsequent recruitment of ubiquitin ligases RNF8, RNF168 and BRCA1 was 

blocked (Giunta et al., 2010; van Vugt et al., 2010). Indeed, several studies 

demonstrated the strict exclusion of 53BP1 from mitotic chromosomes 

(Belotserkovskaya and Jackson, 2014; Giunta et al., 2010; Giunta and Jackson, 

2011; Nelson et al., 2009; van Vugt et al., 2010).  
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Regarding DNA repair, resection of mitotic DNA ends in Xenopus extracts was 

observed to be dependent on MRN and CtIP but did not lead to ATR/Chk1 

activation or Rad51 recruitment (Peterson et al., 2011). The same study as well 

as another study in human cells reported the presence of the NHEJ complexes 

Ku on mitotic chromosomes (Gomez-Godinez et al., 2010; Peterson et al., 

2011). Despite the presence of some DNA repair proteins and a partial 

resection of mitotic chromosomes, active and complete DNA repair in mitosis 

has not been demonstrated. Consistent with the lack of a functional DNA repair 

machinery in mitosis, it has recently been demonstrated that attempting to 

repair DNA during mitosis leads to Aurora B-dependent sister telomere fusions, 

chromosome missegregation and subsequent genetic instability and aneuploidy 

(Orthwein et al., 2014). Therefore, it seems that cells have evolved mechanisms 

to suppress DNA repair in mitosis in order to protect telomeres and genome 

integrity (Belotserkovskaya and Jackson, 2014). The elegant study by Orthwein 

et al. also revealed that re-activation of RNF8 and 53BP1 was sufficient to 

initiate DNA repair in mitosis, suggesting a critical role of these molecules in 

DSB repair (Orthwein et al., 2014; Zlotorynski, 2014). Damaged mitotic 

chromosomes are instead repaired in the subsequent G1 phase, where DDR 

activation is permitted (Heijink et al., 2013; Uetake and Sluder, 2010).  

  

In addition to avoiding repair in order to protect telomeres, another rationale for 

preventing execution of a DDR-mediated arrest in mitosis has emerged from 

accumulating evidence that mitotic arrest can itself damage DNA (Ganem and 

Pellman, 2012; Heijink et al., 2013). Early indications for this phenomenon 

came from observations that cells arrested in mitosis either die or exit mitosis 

with a subsequent p53-dependent G1 arrest (Ganem and Pellman, 2012). 

Subsequently it was shown that H2AX foci could be detected 5-16h after 

mitotic arrest and further accumulated while cells remained arrested (Dalton et 

al., 2007; Orth et al., 2012). A study by Orth et al. provided some explanation 

for the observed DNA damage following prolonged mitosis. It was shown that 

cells arrested in mitosis for prolonged periods induced partial mitochrondrial 

membrane permeabilization and cytochrome c release, sufficient to induce 

CAD-mediated cleavage of DNA but not complete DNA fragmentation (Orth et 

al., 2012). Accordingly, caspase inhibition inhibited H2AX foci formation (Orth 

et al., 2012). Activation of apoptosis during mitosis can be supported by the 
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observation that the anti-apoptotic proteins Mcl-1 and cFLIP are degraded when 

cells arrest in mitosis (Harley et al., 2010; Inuzuka et al., 2011; Millman and 

Pagano, 2011; Sanchez-Perez et al., 2010). Hayashi et al. observed that mitotic 

arrest triggered deprotection of telomeres (Hayashi et al., 2012), which are 

normally protected from DDR recognition through coating by the Telomere 

Repeat binding Factor 2 (TRF2) and Protection Of Telomeres 1 (Pot1) 

components of the shelterin (de Lange, 2009). Telomere deprotection during 

prolonged mitosis was associated with Aurora-B mediated TRF2 dissociation 

and led to ATM activation (Hayashi et al., 2012). Moreover, the study showed 

that cells with unprotected telomeres arrested in G1 in the presence of a 

functional p53, whereas p53-deficient cells progressed through the cell cycle 

eventually becoming aneuploid (Hayashi et al., 2012).  

 

Given that cells do not normally spend more than 60 minutes in mitosis, it can 

be presumed that mitosis is not a favourable state for a cell. Indeed, mitosis 

comes with striking reorganization of the cell apparatus (Ganem and Pellman, 

2012; Robbins and Gonatas, 1964), including nuclear membrane breakdown 

(Hetzer, 2010), major cytoskeletal reformations (Heng and Koh, 2010; Kunda 

and Baum, 2009; Lancaster and Baum, 2014), silencing of transcription 

(Gottesfeld and Forbes, 1997; Prescott and Bender, 1962) and inhibition of 

translation (Pyronnet et al., 2001). Remarkably, a study suggested that cells 

can sense the duration of prometaphase and prevent proliferation of cells that 

have arrested in mitosis (Uetake and Sluder, 2010). The study showed that 

when a mother cell spent more than 90 minutes in prometaphase, the daughter 

cells arrested in the subsequent G1 in a p53- and p38-dependent manner and 

their proliferation was blocked (Uetake and Sluder, 2010).  

 

Consequences of entering mitosis with DNA damage  

 

Despite the lack of a DNA damage checkpoint in mitosis, it has been reported 

that mitotic cells exhibiting extensive DNA damage can arrest in metaphase 

(Mikhailov et al., 2002; Nitta et al., 2004). However, such arrest was 

demonstrated to be triggered by defects in kinetochore-microtubule attachment 

that activate the SAC, rather than a DDR, and minor DNA damage does not 

seem to delay mitotic progression (Heijink et al., 2013; Mikhailov et al., 2002; 
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Nitta et al., 2004). SAC does not necessarily need be satisfied for cells to exit 

mitosis, as the prerequisite for mitotic exit is degradation of Cyclin B and/or 

inactivation of Cdk1 (Rieder and Maiato, 2004). As in the case of any other 

checkpoint, cells can adapt to or abrogate the SAC and progress to anaphase, 

or even skip anaphase and cytokinesis (mitotic slippage) (Rieder and Maiato, 

2004). 

 

When cells do progress to anaphase, attempting to segregate damaged 

chromosomes can be detrimental. In recent years, several studies 

demonstrated that strand breaks, replication stress or any unresolved S-phase 

DNA structure can lead to chromosome segregation errors, such as 

chromosome bridges, which form due to the centromeres of a dicentric 

chromosome being pulled to opposite poles, ultrafine DNA bridges, or lagging 

chromosomes, which arise when a single kinetochore binds microtubules from 

two opposite poles pulling with same strength (Bakhoum et al., 2014; Burrell et 

al., 2013; Chan et al., 2009; Ichijima et al., 2010; Lukas et al., 2011; Mankouri et 

al., 2013). Lagging chromosomes and other chromatid fragments originating 

from DSBs or incomplete DNA repair, can be missegregated in daughter cells 

or excluded from daughter nuclei, leading to the formation of micronuclei 

(Fenech et al., 2011). Moreover, chromosome bridges and lagging 

chromosomes can get trapped in the cleavage furrow during cytokinesis and 

lead to chromosome breakage or cytokinesis delay and/or failure (Ganem and 

Pellman, 2012; Hayashi and Karlseder, 2013; Janssen et al., 2011).  

 

Cytokinesis failure results in a single daughter cell containing two nuclei 

(binucleated/tetraploid) and such cells are often arrested in G1 in a p53-

dependent manner (Ganem and Pellman, 2007; Normand and King, 2010). 

However, some tetraploid cells can continue cycling generating chromosomal 

aberrations and polyploidy and even facilitate tumorigenesis in the absence of 

p53 (Fujiwara et al., 2005; Ganem and Pellman, 2007; Ganem et al., 2007). 

Very recently Ganem et al. demonstrated that cytokinesis failure activates the 

Hippo tumour suppressor pathway which negatively impacts on proliferation by 

stabilizing p53 and stimulating YAP/TAZ-dependent transcription of genes 

involved in cell proliferation and death (Ganem et al., 2014; Yu and Guan, 

2013).  Another consequence of cytokinesis failure is the gaining of one more 
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centrosome and as centrosomes duplicate in S-phase, tetraploid cell cycle 

progression could lead to supernumerary centrosomes (Nigg, 2002). 

Centrosome overduplication (amplification) can also arise in S-phase arrested 

cells, as a result of uncoupling DNA replication and centrosome duplication and 

permitting multiple rounds of centrosome duplication (Balczon et al., 1995; 

Collins et al., 2010; Nigg, 2002; Prosser et al., 2009). Supernumerary 

centrosomes can generate multiple spindle poles during mitosis and lead to 

multipolar anaphases and chromosome missegregation, which can in turn result 

in aneuploidy and genetic instability (Brinkley, 2001; Fukasawa, 2005; 

Fukasawa, 2007; Marthiens et al., 2012; Nigg, 2002). Interestingly, the majority 

of cancer cells have evolved mechanisms to cluster supernumerary 

centrosomes in two spindle poles thus avoiding the poor cell survival associated 

with multipolar divisions (Brinkley, 2001; Gergely and Basto, 2008; Marthiens et 

al., 2012).  

 

SAC-mediated arrest of DNA-damaged cells followed by premature mitotic exit 

(mitotic slippage) also leads to cytokinesis failure (Andreassen et al., 2001; 

Hayashi and Karlseder, 2013; Huang et al., 2005; Hyun et al., 2012; Nitta et al., 

2004; Vakifahmetoglu et al., 2008). Premature mitotic entry of DNA-damaged 

cells followed by an aberrant mitosis that leads to cell death has often been 

referred to as mitotic catastrophe. DNA damage-induced mitotic catastrophe 

was observed decades ago in cancer cells treated with chemotherapy or 

radiotherapy and it is often coupled to a defective or abrogated G2/M, G1/S or 

spindle assembly checkpoint (Castedo et al., 2004; Mansilla et al., 2006; 

Portugal et al., 2010; Roninson et al., 2001; Vakifahmetoglu et al., 2008). Cells 

with non-functional p53 and/or deficiencies in p21, Chk1 and Chk2 are 

particularly prone to mitotic catastrophe (Castedo et al., 2004; Portugal et al., 

2010; Vakifahmetoglu et al., 2008). DNA damage-induced mitotic catastrophe is 

associated with premature mitotic entry followed by several mitotic aberrations, 

including chromosome condensation errors, multipolar spindles and formation 

of micro- and multi-nucleated cells (Castedo et al., 2004; Roninson et al., 2001; 

Vakifahmetoglu et al., 2008). Micromultinucleated cells are a prominent feature 

of mitotic catastrophe and arise through cytokinesis failure and 

endoreduplication, that is continued cycling in the absence of cell division 

(Castedo et al., 2004; Roninson et al., 2001; Vakifahmetoglu et al., 2008). A 
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possible outcome of mitotic catastrophe is death during mitosis that can be 

caspase-dependent or -independent (Castedo et al., 2004; Portugal et al., 2010; 

Vakifahmetoglu et al., 2008). Alternatively, cells exit mitosis and progress to G1, 

where different outcomes are possible: cells can die through apoptotic or 

necrotic mechanisms, remain arrested (senescent) or re-enter the cell cycle and 

die following one or more rounds of division (Castedo et al., 2004; Portugal et 

al., 2010; Vakifahmetoglu et al., 2008). The outcome of mitotic catastrophe is 

largely cell-context and treatment specific (Portugal et al., 2010).  

 

 

1.2.10. DDR, apoptosis and the DNA-damaging drugs gemcitabine and 

irinotecan  

 

Understanding the cellular response to DNA-damaging anti-cancer drugs is 

critical for identification of cellular factors involved in drug sensitivity or 

resistance and subsequent development of improved anti-cancer treatments. In 

the next section I will summarize the current understanding of DNA-damage 

response and apoptotic pathways activated in response to the DNA-damaging 

chemotherapeutic drugs gemcitabine and irinotecan.  

 

Gemcitabine  

 

Gemcitabine is a cytidine analogue that inhibits DNA replication and is thus 

expected to activate the ATR/Chk1 response to stalled replication forks. Indeed, 

numerous studies demonstrated activation of Chk1 2-24h following 10-500nM 

gemcitabine treatment of different cancer cell lines, including leukemia, cervical, 

pancreatic, lung and colon adenocarcinoma (Duong et al., 2013; Ewald et al., 

2007; Karnitz et al., 2005; McNeely et al., 2010; Morgan et al., 2005; Parsels et 

al., 2009). In addition, phosphorylated H2AX was shown to be present at 

gemcitabine-induced stalled replication forks (Ewald et al., 2007; Karnitz et al., 

2005; Parsels et al., 2009) within 2h after treatment and increased with 

increasing drug concentrations up to 100nM (Ewald et al., 2007). Consistent 

with the observed activation of the ATR/Chk1 pathway followed by degradation 

of Cdc25A, gemcitabine induces a potent S-phase arrest within 24h after 

treatment (Ewald et al., 2007; Parsels et al., 2009; Shi et al., 2001). Shi et al. 
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reported that 10nM gemcitabine was sufficient to arrest the majority of cells for 

at least 36h (Shi et al., 2001). Several studies demonstrated that in addition to 

Chk1, gemcitabine induces phosphorylation of Chk2 that increases as a 

function of dose or time (Karnitz et al., 2005; Morgan et al., 2005; Parsels et al., 

2009). Ewald et al. showed that H2AX foci co-localise with phosphorylated 

ATM within 2h after treatment with 100nM gemcitabine and in a separate study 

the same authors showed that the MRN complex also co-localises with 

phosphorylated ATM within 2h post-treatment (Ewald et al., 2007; Ewald et al., 

2008) Therefore, gemcitabine activates both ATR/Chk1 and ATM/Chk2 

pathways.  

 

Pharmacological inhibition or siRNA-mediated knockdown of Chk1, Chk2, ATR, 

ATM, Rad9, Rad17, Mre11 or Rad50 was shown to sensitize cells to 

gemcitabine-induced cell death (Duong et al., 2013; Ewald et al., 2007; Ewald 

et al., 2008; Fredebohm et al., 2013; Karnitz et al., 2005; Morgan et al., 2005; 

Parsels et al., 2009; Shi et al., 2001). Wee1 inhibition was also found to 

increase the anti-tumour efficacy of gemcitabine in p53-deficient pancreatic 

cancer xenografts, by triggering checkpoint abrogation and premature mitotic 

entry of gemcitabine-treated cells (Rajeshkumar et al., 2011). Azorsa et al. 

performed a synthetic lethality kinase screen in pancreatic cancer cells and 

identified Chk1 as the most significant sensitizing target for gemcitabine (Azorsa 

et al., 2009). The study also identified ATR siRNA as gemcitabine sensitizer, 

but in disagreement with other studies, ATM and Chk2 knockdown did not 

significantly alter gemcitabine cytotoxicity (Azorsa et al., 2009). Other kinases 

identified were CAMK1, STK6, PANK2 and EPHB1 (Azorsa et al., 2009). 

Extensive literature suggesting that Chk1 inhibition is a potent sensitizer of 

gemcitabine led to clinical evaluation of various Chk1 inhibitors in combination 

with gemcitabine in patients with solid tumours, lymphoma and pancreatic 

cancer (Garrett and Collins, 2011; Hosoya and Miyagawa, 2014). UCN-01, the 

first inhibitor to be clinically tested, was discontinued because of high toxicities 

and other inhibitors did not progress to Phase II trials, while SCH900776 in 

combination with gemcitabine demonstrated some encouraging results (Garrett 

and Collins, 2011; Hosoya and Miyagawa, 2014). Other Chk1 inhibitors are 

currently in clinical trials (http://www.clinicaltrials.gov).  

 

http://www.clinicaltrials.gov/
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Preclinical research showed that inhibition of Chk1 increases gemcitabine-

induced DNA damage and triggers premature mitotic entry of gemcitabine-

treated cells, leading to catastrophic mitosis and cell death (Garrett and Collins, 

2011). In addition, Parsels et al. demonstrated that gemcitabine induces Rad51 

foci formation in pancreatic cancer cells, which is prevented upon Chk1 

inhibition and moreover, Chk1 inhibition abrogated recovery from gemcitabine-

induced replication stress (Parsels et al., 2009). Similarly, another study 

demonstrated that Chk1 inhibition prevents gemcitabine-induced Rad51 foci 

formation and HR repair and increases sensitivity to gemcitabine and 

gemcitabine combined with radiation in pancreatic cancers (Morgan et al., 

2010). Gemcitabine-induced upregulation of Rad51 was also observed in non-

small-cell lung cancer (NSCLC) cells and downregulation of Rad51 increased 

sensitivity to gemcitabine and overcame drug resistance (Tsai et al., 2010). In 

agreement with a survival role of DNA repair, McNeely et al. found that besides 

premature mitotic entry, Chk1 inhibition promotes the conversion of stalled 

replication forks into DSBs triggering an ATM and DNA-PK response in HCT116 

cells and inhibition of the DNA repair enzymes BRCA2 and XRCC3 increases 

sensitivity to gemcitabine combined with Chk1 inhibitor (McNeely et al., 2010). 

Interestingly, in a very recent study Jones et al. showed that following 

gemcitabine removal, Rad51 and BRCA2 are recruited to stalled replication 

forks and inhibit fork progression by triggering MUS81- and XPF-mediated fork 

processing that generates DSBs, suggesting a pro-death role for DNA repair  

(Jones et al., 2014). Another study found that deficiency in NER, NHEJ, BER or 

HR repair in Chinese hamster ovary (CHO) cells did not increase sensitivity 

towards gemcitabine (Crul et al., 2003). Therefore, it seems that there is some 

controversial evidence regarding the role of DNA repair in gemcitabine 

cytotoxicity, although abrogation of Rad51-mediated HR repair following Chk1 

inhibition does correlate with increased sensitivity to gemcitabine.   

 

Interestingly, two studies examined the ability of gemcitabine to re-activate 

epigenetically silenced genes. One study demonstrated that gemcitabine can 

inhibit DNA methyltransferase and activate expression of genes that are 

epigenetically silenced through DNA CpG methylation, such as VEGFR, 

RASSF1A and IGFBP3 in different cancer cells lines (Gray et al., 2012). 

Reactivation of an epigenetically silenced gene, target of methylation induced 
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silencing 1 (TMS1), by DNA methyltransferase inhibitors (DNMTi) was 

previously shown to increase sensitivity to gemcitabine (Ramachandran et al., 

2010). Another study provided evidence that gemcitabine inhibits GADD45A-

mediated de-methylation and activation of a reporter gene and can induce 

hypermethylation and silencing of the MLH1 gene which is counteracted by 

Gadd45a (Schafer et al., 2010). The same group previously showed that 

Gadd45a together with the NER enzyme XPG mediates DNA de-methylation 

during DNA repair (Barreto et al., 2007). The authors suggested that 

gemcitabine functions to inhibit NER-mediated DNA de-methylation and 

activation of epigenetically silenced genes (Schafer et al., 2010). Of note, the 

synergy between cisplatin and gemcitabine is thought to be mediated by 

gemcitabine-induced inhibition of NER at sites of cisplatin-induced DNA lesions 

(Crul et al., 2003; Moufarij et al., 2003; Yang et al., 2000).  Despite that the two 

studies are somewhat contradicting regarding the role of gemcitabine in 

epigenetic gene regulation which was suggested to be due to differences in 

drug concentration used, both studies concluded that gemcitabine does not 

affect the global DNA CpG methylation status (Gray et al., 2012; Schafer et al., 

2010).  

 

Achanta et al. previously demonstrated that a complex containing p53 and 

DNA-PK forms at gemcitabine-incorporated DNA sites preventing further DNA 

synthesis, and nuclear localisation of the complex coincided with induction of 

apoptosis (Achanta et al., 2001). Gemcitabine can induce both p53-dependent 

and independent apoptosis, although a functional p53 increases cell sensitivity 

to gemcitabine (Elnaggar et al., 2012). Regarding the mitochondrial apoptotic 

pathway, anti-apoptotic Bcl-XL levels correlate with chemoresistance and 

targeting of Bcl-XL or expression of the pro-apoptotic Bax increases 

gemcitabine-induced apoptosis (Elnaggar et al., 2012). The Fas-mediated 

extrinsic apoptotic pathway was also implicated in gemcitabine-induced 

apoptosis (Ferreira et al., 2000; Pace et al., 2000). Moreover, several studies 

demonstrated that the p38MAPK pathway is involved in gemcitabine-induced 

cytotoxicity in pancreatic cancer cell lines (Bu et al., 2012; Habiro et al., 2004; 

Koizumi et al., 2005) and a recent study showed that re-expression of 

p38MAPK overcomes resistance and decreases cell migration in urothelial 

carcinoma cell lines (Kao et al., 2014). Activation of NF- B was previously 
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associated with resistance to gemcitabine through repression of nucleoside 

transporter gene transcription and stimulation of tumour-associated 

desmoplasia, and inhibition of the NF- B pathway was shown by a number of 

studies to increase sensitivity to gemcitabine (de Sousa Cavalcante and 

Monteiro, 2014; Elnaggar et al., 2012).  

 

Irinotecan  

 

Irinotecan is a topoisomerase I inhibitor and, as mentioned previously, it acts to 

stabilize topoisomerase I cleavage complexes, which prevent DNA replication 

forks to proceed and can lead to the formation of DSBs. In line with its mode of 

action, several studies demonstrated that treatment with irinotecan causes DNA 

damage in the form of single- and double-strand breaks (Attia, 2012; Esselen et 

al., 2013; Petitprez et al., 2013) and induces a time- and dose-dependent 

increase in H2AX phosphorylation (Davidson et al., 2012; Ma et al., 2012; 

Petitprez et al., 2013; Rudolf et al., 2012; Rudolf et al., 2013; Takatori et al., 

2012). In addition it was demonstrated that irinotecan activates the DDR 

kinases DNA-PK (Davidson et al., 2012), ATM, p38MAPK, Chk1 and Chk2 

(Rudolf et al., 2012; Rudolf et al., 2013; Tse et al., 2007) and induces Rad51 

foci formation (Davidson et al., 2012). Rudolf et al. further showed that 

irinotecan induces p53 phosphorylation leading to increased p53 transcriptional 

activity and p21 expression (Rudolf et al., 2012). Consistent with DDR 

activation, irinotecan causes a cell-cycle arrest which initiates as a cell 

accumulation in S-phase followed by a robust G2 arrest (Attia, 2012; Davidson 

et al., 2012; Hapke et al., 2002; Ma et al., 2012; Tse et al., 2007). Interestingly, 

a study showed that irinotecan induces abnormal and polyploid metaphases 

and formation of micronuclei, suggesting aberrant passage of DNA-damaged 

cells from mitosis (Attia, 2012).  

 

Similar to gemcitabine, pharmacological inhibition of Chk1 induces premature 

mitotic entry of irinotecan-treated cells and increases irinotecan cytotoxicity (Ma 

et al., 2012; Tse et al., 2007). Interestingly, treatment with an inhibitor of the 

90kDa heat shock protein (Hsp90), which has been implicated in irinotecan 

resistance, enhances irinotecan-induced cytotoxicity by abrogating the G2/M 

checkpoint through depletion of Chk1 and Wee1 (McNamara et al., 2012; Tse et 
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al., 2009). Chk1 and Hsp90 inhibition was evaluated in Phase I clinical trials in 

combination with irinotecan, but did not show significant patient responses 

(Fracasso et al., 2011; Tse et al., 2008).  

 

Whole genome analysis in irinotecan resistant melanoma cell lines revealed a 

gain in the 14q23.2-31.1 amplicon, encompassing genes involved in DNA 

repair, such as RAD51 and MLH3, and losses in the loci of DDR genes, such as 

TP53, H2AFX and CHK1 (Gao et al., 2008). Another study however showed 

that MLH1 proficiency contributed to stronger irinotecan-induced DDR activation 

and G2/M arrest and, interestingly, sustained G1 arrest of tetraploid cells 

(Bhonde et al., 2010). The role of p53 in irinotecan-induced cytotoxicity is 

somewhat controversial, with some studies reporting involvement of p53 in 

irinotecan-induced apoptosis (Cao et al., 2010; Rudolf et al., 2012; Takeba et 

al., 2007) and others implicating p53 in reduced cell sensitivity to irinotecan 

(Bhonde et al., 2006; Ma et al., 2012).  

 

The p38MAPK pathway has been the focus of several studies of irinotecan 

cytotoxicity. Rudolf et al. showed in response to high doses of irinotecan a 

transient and robust p38MAPK activation mediates irinotecan-induced 

apoptosis, whereas low doses of irinotecan activate a delayed p38MAPK 

response, whose inhibition increases irinotecan-induced cell death (Rudolf et 

al., 2013). Other studies found that endogenous p38MAPK activation 

contributes to irinotecan resistance (Gongora et al., 2008; Paillas et al., 2011) 

through induction of survival-promoting autophagy (Paillas et al., 2012) and 

inhibition of p38MAPK increases cell sensitivity to irinotecan (Paillas et al., 

2011; Paillas et al., 2012).  

 

Perspective 

 

Collectively, both gemcitabine and irinotecan activate all three branches of the 

DDR; the ATM/Chk2, ATR/Chk1 and p38MAPK pathways. Chk1 inhibition 

increases the cytotoxicity of both drugs through checkpoint abrogation that 

leads to a catastrophic passage of DNA-damaged cells through mitosis. 

Moreover, p38MAPK activation is implicated in the cytotoxicity of both 

chemotherapeutic agents, albeit it can also be associated with resistance to 
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irinotecan. The role of DNA repair in gemcitabine and irinotecan cytotoxicity 

remains unresolved. Overall, more evidence is warranted to delineate the 

sequence of events that occur from drug-induced inhibition of DNA synthesis to 

activation of apoptotic pathways. A better understanding of how different cellular 

pathways impact on gemcitabine and irinotecan mechanism of action will 

enable development of improved treatment regimens for solid cancers.  
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1.3. Adenovirus 

 

 

1.3.1. Adenovirus biology and life cycle 

 

Human adenoviruses (Ad) belong to the Adenoviridae family, which consists of 

agents that are responsible for many respiratory, ocular and gastrointestinal 

diseases (Shenk, 2001). Currently there are more than 50 human adenovirus 

serotypes. These are classified into six subgroups (A to F) based on their ability 

to agglutinate red-blood cells, with subgroup C viruses, such as Ad2 and Ad5, 

being the most extensively studied (Leopold and Crystal, 2007; Russell, 2009; 

Shenk, 2001). The following literature review will be focused on adenovirus type 

5 (Ad5).  

 

The adenoviral genome (Figure 8) is approximately 36kb and is composed of 

linear, double-stranded DNA that does not integrate into host-cell DNA (Shenk, 

2001). Adenoviruses have a non-enveloped icosahedral capsid, mainly 

consisting of the hexon and penton bases and the projecting fiber extensions 

(Figure 8) (Nemerow et al., 2009; Russell, 2009). The fiber binds the coxsackie 

adenovirus receptor (CAR) via the knob-domain, while penton binds to cell-

surface integrins αVβ3, αVβ5, αVβ1 and α3β1 (Goncalves and de Vries, 2006; 

Russell, 2009). The immunoglobulin CAR is the main receptor for adenovirus in 

epithelial cells, however, it is the binding to integrins via the arginine-glycine-

aspartate (RGD) motif that mediates the internalization of virus into the host-cell 

(Leopold and Crystal, 2007; Russell, 2009). The heparin sulphate 

glycosoaminoglycans (HSGAGs) have also been reported to bind to species C 

adenovirus (Dechecchi et al., 2001). Other minor components of the capsid 

include the structural polypeptides IIIa, VI, VIII and IX, while several core 

proteins associate with the viral genome (Table 2 and Figure 8) (Russell, 2009).  

 

Cell entry occurs within a few hours of infection via receptor-mediated 

endocytosis in clathrin-coated pits and macropinosomes, which pinch off the 

plasma membrane to generate endocytic vesicles (Leopold and Crystal, 2007; 

Medina-Kauwe, 2003). It has been suggested that endocytosis requires 
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reorganisation of the actin cytoskeleton mediated by activation of the Rho family 

of GTPases (Li et al., 1998a). The acidic environment of the endosomes 

induces conformational changes in the capsid leading to penton-dependent 

membrane penetration and rapid escape of the capsid into the cytosol (Leopold 

and Crystal, 2007; Medina-Kauwe, 2003). Once into the cytosol adenovirus 

capsid is transported along microtubules and interacts with the motor protein 

dynein to facilitate translocation to the nucleus (Leopold and Pfister, 2006). 

Intracellular trafficking towards the nucleus is also mediated by activation of the 

cAMP-dependent protein kinase A (PKA) and p38/MAPK signalling pathways 

(Medina-Kauwe, 2003). From the time of cell entry to nuclear docking, 

adenovirus capsid is progressively dismantled and this is important for cell 

entry, endosomal lysis and intracellular trafficking (Medina-Kauwe, 2003). When 

it reaches the nucleus, the capsid forms a stable interaction with the nucleus 

that involves nucleoporins (Nup) and the export receptor chromosome region of 

maintenance 1 (CRM1), leading to complete capsid uncoating (Le Sage and 

Mouland, 2013; Strunze et al., 2011). Dismantled capsid components are 

sequestered to the perinuclear envelope, while the protein VII-wrapped DNA 

(Figure 8) is imported into the nucleus with the help of hexon, viral core protein 

VII, histone H1, import receptor transportin 1, hsp70 and importin-α (Le Sage 

and Mouland, 2013; Leopold and Crystal, 2007). At this stage of the life cycle, 

protein VII acts to protect the Ad DNA from being recognised by the DNA 

damage and repair response, which would otherwise lead to ligation of Ad DNA 

into concatemers (discussed in section 1.3.2.) (Karen and Hearing, 2011; 

Schreiner et al., 2013b).  

 

Once the adenovirus genome enters the nucleus it is associated with cellular 

histones, a process referred to as "chromatinization" of the Ad DNA (Giberson 

et al., 2012). Protein VI appears to stimulate initiation of viral transcription 

(Schreiner et al., 2012). Adenovirus gene transcription (Figure 8) occurs in early 

and late phases, defined by the onset of viral DNA replication, and it is 

mediated primarily by the cellular RNA Polymerase II complex (Shenk, 2001). 

Adenovirus 5 expresses at least 36 major proteins (Table 2). Notably, the 

functions of some of these proteins remain unknown or poorly defined. Upon 

initiation of early viral gene expression, which occurs through multiple 

promoters, the E1A gene is immediately and constitutively transcribed (Shenk, 
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2001). E1A expression is necessary for a productive viral infection (Jones and 

Shenk, 1979). Each early gene (E1A, E1B, E2A, E2B, E3 and E4) encodes 

several proteins mainly through differential splicing, that function to promote 

viral replication and protein synthesis, block host-cell protein synthesis and 

inhibit apoptosis and immune responses, with the ultimate goal of successful 

replication and virion production (Table 2) (Berk, 2005; Branton, 1999; 

Weitzman and Ornelles, 2005). Adenovirus DNA replication, which usually 

occurs by 6h post-infection, is mediated by the Ad DNA polymerase (Ad-Pol), 

the Ad DNA-binding protein (Ad-DBP) and the precursor terminal protein (pTP), 

all produced by the E2 genes (Table 2), but efficient DNA replication and 

elongation also requires the cellular transcription factors nuclear factor (NF) I, II 

and III (Goncalves and de Vries, 2006). The synthesis of viral DNA activates 

transcription of late genes from the major late promoter (MLP) (Figure 8) 

(Goncalves and de Vries, 2006). Late genes, expressed from the L1-L5 

transcription units (Figure 8) (Boyer and Ketner, 1999), are mainly involved in 

the assembly of infectious virions (Table 2), which occurs in the nucleus by a 

complex process involving a series of maturation events and eventual loading of 

viral DNA into empty capsids (D'Halluin, 1995; Goncalves and de Vries, 2006). 

The adenovirus life cycle is completed within 20-24h and can produce up to 

10,000 progeny virions per infected cell, which are subsequently released 

through cell lysis (Giberson et al., 2012; Shenk, 2001). The process of host cell 

lysis remains poorly understood, but it was shown to involve the E3-11.6K 

adenovirus death protein (ADP) and perhaps autophagy (Gros and Guedan, 

2010). 
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Figure 8: Virion structure and schematic representation of adenovirus 
type 5 genome. (A) The virion structure of adenovirus 5 is based on cryo-
electron microscopy and crystallographic studies. The adenovirus icosahedral 
capsid is composed of the major capsid proteins, hexon, penton and fibre, the 
minor capsid proteins and core proteins. The minor capsid protein pIX is located 
on the outside of the capsid, whereas pIIIa, pVI and pVIII are found in the inner 
surface. The core proteins pV, pVII and Mu interact with the double-stranded 
linear genome and the terminal protein coats the termini of adenovirus DNA. 
References (Nemerow et al., 2009; Russell, 2009). (B) The diagram represents 
the Ad5 genome with arrows illustrating the location and orientation of gene 
transcription. The genome termini are comprised of inverted terminal repeat 
(ITR) sequences incorporating the viral origin of replication. Also shown is the 
packing domain (ψ) involved in virus genome packing into capsids. There are 
six early RNA Pol II transcription units E1A, E1B, E2A, E2B, E3 and E4, which 
generate several mRNA transcripts by differential splicing and alternative start 
codon usage. The major late promoter (MLP) drives expression of a long 
transcript that produces the late mRNAs L1-L5 through alternative splicing and 
differential polyadenylation. pIX and IVa2 are intermediate genes. The small 
virus-associated (VA) I and II RNAs are synthesised by RNA Pol III and act to 
regulate mRNA translation. References (Goncalves and de Vries, 2006; 
Rosewell et al., 2011; Shenk, 2001). 

Republished with permission of SOCIETY 
FOR GENERAL MICROBIOLOGY, from 
"Adenoviruses: update on structure and 

function". W.C. Russell. J Gen Virol. 
90(1):1-20. Copyright 2009; permission 
conveyed through Copyright Clearance 

Center, Inc. 
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Table 2: Adenovirus 5 proteins and their function 

Protein Gene Function(s) during infection References 

E1A12S E1A 

 Induction of host DNA synthesis  

 Transcriptional regulation of genes involved 
in cell-cycle, apoptosis, inflammation, protein 
translation 

 Regulation of protein stability through 
interaction with the 26S proteasome  

 Induction of apoptosis 

(Gallimore and 
Turnell, 2001; 
Weitzman and 
Ornelles, 2005; 
White, 2006) 

E1A13S E1A 
 Transcriptional activation of host and viral 
genes  

(Gallimore and 
Turnell, 2001) 

E1B19K E1B  Inhibition of extrinsic and intrinsic apoptosis 
(White, 2001; 
White, 2006) 

E1B55K E1B 

 Inhibition of DNA-damage and repair 
response 

 Inhibition of p53-dependent apoptosis 

 Late viral mRNA nuclear export and 
translation 

 Blocking of host mRNA nuclear export and 
protein synthesis 

(Weitzman and 
Ornelles, 2005; 
White, 2001) 

DBP E2A 

 Replication initiation and elongation 

 Transcriptional regulation 

 DNA recombination 

 Virus assembly 

(Goncalves and 
de Vries, 2006; 
Weitzman and 
Ornelles, 2005) 

Pol E2B  DNA polymerisation/replication 
(Goncalves and 
de Vries, 2006) 

pTP E2B  DNA replication (serves as primer) 
(Goncalves and 
de Vries, 2006) 

E3-12.5K E3  Uknown  

E3-11.6K 
(ADP) 

E3  Cell lysis 
(Gros and 

Guedan, 2010) 

E3gp19K E3 

 Inhibition of MHC class I cell-surface 
expression by binding and retaining the 
heavy chain in endoplasmic reticulum (ER) 

 Inhibition of the processing of peptides 
presented by class I MHC 

 Sequestration of natural killer cell ligands 

(Goncalves and 
de Vries, 2006; 
Horwitz, 2004; 

McSharry et al., 
2008) 

E3-6.7K 
(CR1α) 

E3 

 Inhibition of extrinsic apoptosis through 
TRAIL-R2 internalization and degradation in 
lysosomes 

 Directs E3gp19K to ER 

(Lichtenstein et 
al., 2004a; 

Lichtenstein et 
al., 2004b; 

Wilson-Rawls 
et al., 1994) 

E3-10.4K 
(RIDα) 

E3 

 Inhibition of extrinsic apoptosis through death 
receptor internalization and degradation in 
lysosomes 

 Inhibition of TNF-induced secretion of 
arachidonic acid, production of chemokines 

and NF- B signal transduction 

(Horwitz, 2004; 
Russell, 2000) 

E3-14.9K 
(RIDβ) 

E3 

 Inhibition of extrinsic apoptosis through death 
receptor internalization and degradation in 
lysosomes 

 Inhibition of TNF-induced secretion of 

(Horwitz, 2004; 
Russell, 2000) 
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arachidonic acid, production of chemokines 

and NF- B signal transduction 

E3-14.7K E3 
 Inhibition of TNFα-induced secretion of 
arachidonic acid 

(Horwitz, 2004; 
Russell, 2000) 

E4orf1 E4 
 Growth induction through PI3K/mTOR 
pathway activation 

(Weitzman and 
Ornelles, 2005) 

E4orf2 E4  Unknown  (Russell, 2000) 

E4orf3 E4 

 Re-organisation of PML bodies 

 Inhibition of DNA-damage and repair 
response  

 Facilitation of S-phase DNA replication  

(Weitzman and 
Ornelles, 2005) 

E4orf4 E4 
 Growth induction through PI3K/mTOR 
pathway activation  

 Disruption of PP2A functions 

(Weitzman and 
Ornelles, 2005) 

E4orf6/7 E4 

 Inhibition of DNA-damage and repair 
response 

 Inhibition of NHEJ DNA repair  

 Late viral mRNA nuclear export and 
translation 

 Blocking of host mRNA nuclear export and 
protein synthesis 

 Viral DNA replication 

(Weitzman and 
Ornelles, 2005) 

E4-34K E4  Uknown   

pIVa2 IVa2 
 DNA encapsidation/packing  

 Activation of late viral gene transcription 

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006) 

pIX IX 
 Cementing of virion structure  

 Stabilization of capsid 

(Goncalves and 
de Vries, 2006) 

Hexon 
(pII) 

L3 
 Formation and structure of the virion 

 Binding of coagulation factors  

(Davison et al., 
2003; Russell, 

2009) 

Penton 
(pIII) 

L4 

 Cell attachment via integrins  

 Virus internalization and release from 
endosome 

 Formation and structure of the virion 

 Stabilization of capsid 

(Goncalves and 
de Vries, 2006) 

Fiber 
(pIV) 

L5 

 Cell attachment via CAR and HSGAG 

 Blood factor attachment  

 Formation and structure of the virion 

(Goncalves and 
de Vries, 2006; 
Russell, 2009) 

23K 
protease 

L3 

 Cleavage of precursors to produce the 
mature structural proteins  

 Virion assembly  

 Capsid uncoating  

 Facilitation of cell lysis 

(Goncalves and 
de Vries, 2006; 
Russell, 2009) 

22K L4  DNA encapsidation/packaging  (Russell, 2009) 

33K L4  Formation and structure of the virion 
(Davison et al., 

2003) 

100K L4 
 Formation and structure of the virion 

 Blockage of protein translation initiation 

(Davison et al., 
2003; 

Weitzman and 
Ornelles, 2005) 
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Protein 
IIIa 

L1  Cementing of virion structure  

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006) 

Protein  
V 

L2 
 Bridging of viral core and capsid  

 Possible role in revealing viral DNA for 
replication and transcription  

(Russell, 2009) 

Protein 
VI 

L3 

 Cementing of virion structure 

 Disruption of endosomal membrane  

 Virus maturation  

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006; 
Russell, 2009) 

Protein 
VII 

L2 

 Formation and structure of the virion 

 DNA encapsidation 

 Nuclear import of viral DNA  

 Reduction of early transcription  

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006; 
Russell, 2009) 

Protein 
VIII 

L4  Cementing of virion structure  

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006) 

µ or Mu 
(polypept

ide X) 
L2 

 Cementing of virion structure  

 Precursor in modulating expression from E2  

 DNA packaging  

(Davison et al., 
2003; 

Goncalves and 
de Vries, 2006) 

52/55K L1  DNA encapsidation  

(Goncalves and 
de Vries, 2006; 
Russell, 2009) 

 

 

1.3.2. Regulation of cell-cycle and apoptosis by adenoviral proteins  

 

Adenovirus E1A: Rewiring the host  

 

The adenovirus E1A can be viewed as a viral molecular hub (Pelka et al., 2008) 

that acts to reprogram host cell gene expression, promote cell-cycle 

progression and block differentiation, by interacting with a plethora of cellular 

factors; at least 50 have been identified to date (Berk, 2005; Frisch and 

Mymryk, 2002; Gallimore and Turnell, 2001; Yousef et al., 2012). The E1A gene 

encodes five polypeptides (13S, 12S, 11S, 10S and 9S), two of which are the 

most abundant: the 12S and 13S proteins (Stephens and Harlow, 1987; 

Ulfendahl et al., 1987). These differ in the conserved region 3 (CR3) which is 

absent in 12S, while conserved regions 1, 2 and 4 (CR1,2, and 4) are present in 

both E1A proteins (Gallimore and Turnell, 2001; Pelka et al., 2008). E1ACR3 

mediates transcriptional activation of viral and host-cell genes, by binding to 
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numerous transcription factors and co-factors, including ATF, C-Jun and SP1, 

as well as the basic transcriptional machinery, including the TATA binding 

protein (TBP) (Berk, 2005; Jones, 1995; Mymryk and Smith, 1997; Pelka et al., 

2008).  

 

The CR1 and CR2 regions have a number of functions, including induction of 

apoptosis and inhibition of differentiation, but one of the most important 

functions in the context of infection is deregulation of the cell cycle that 

promotes S-phase entry (Gallimore and Turnell, 2001). This is largely mediated 

through interaction with the tumour-suppressor pRb, pRb family members 

(p107, p130) and the transcriptional co-activator p300/CPB, by binding of the 

CR2 and CR1 regions (Figure 9) (Felsani et al., 2006; Gallimore and Turnell, 

2001). E1A CR2 and CR1 regions interact with the hyperphosphorylated form of 

pRb displacing E2F, thus enabling E2F-mediated transcription of S-phase 

genes, such as cyclin A and E (Felsani et al., 2006). The interaction with pRb 

also displaces histone deacetylases (HDACs) and the BRG1 component of the 

SWI/SNF chromatin remodelling complex, that are recruited by pRb to repress 

transcription of target genes (Frisch and Mymryk, 2002).  

 

Another transcriptional co-repressor complex that can be recruited by pRb to 

suppress E2F-mediated transcription is the CtBP and CtIP (Chinnadurai, 2002). 

E1A binding to CtBP1/2 displaces CtBP-recruited DNA-binding repressor 

proteins, such as HDACs, leading to de-repression (Frisch and Mymryk, 2002; 

Yousef et al., 2012). It has been suggested that E1A might compete with CtIP 

for binding to CtBP (Schaeper et al., 1998). E1A also directly binds CtIP 

disrupting the CtIP/Rb and CtIP/p130 complexes (Bruton et al., 2007). 

Moreover, E1A recruits p300/CBP, which has histone acetyltransferase (HAT) 

activity, and utilizes it to acetylate CtBP, which reduces its repressor ability 

(Yousef et al., 2012). CtBP1/2 regulates genes involved in growth, survival and 

apoptosis and is responsible for repression of the pro-apoptotic genes BAX and 

NOXA, the epithelial gene E-Cadherin, and the tumour suppressor PTEN 

(Chinnadurai, 2009). It is possible that the interaction of E1A with CtIP might 

stimulate S-phase entry independently of pRb transcriptional regulation, as 

Chen et al. previously proposed that CtIP directly counteracts Rb restraint 

(Chen et al., 2005).  
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E1A binding to the chromatin remodelling factor and transcriptional co-activator 

p300/CBP can result in both stimulation of p300/CBP HAT activity and 

inhibition, depending on the target promoter (Gallimore and Turnell, 2001). For 

example, it has been reported that the CR3 region in E1A13S protein recruits 

p300 to activate transcription of viral genes (Pelka et al., 2009). p300/CBP 

activates p53-mediated transcription of target genes, both by acting as a 

transcriptional co-activator and by acetylating p53 (Grossman, 2001). In the 

context of the transcription factor p53, E1ACR1 binding to p300/CBP acts to 

inhibit its function, thus preventing p53-dependent transcriptional activation and 

subsequent cell-cycle arrest (Frisch and Mymryk, 2002). Similar to p300/CBP, 

the CR1 region interacts with the p300/CBP-associated factor (P/CAF) inhibiting 

its HAT activity, which is required for acetylation of p53 that stimulates p53 

binding to promoters of target genes, such as the CKI p21 (Frisch and Mymryk, 

2002). It was also reported that E1A-mediated p300 inhibition upregulates the 

transcription factor c-MYC and subsequently c-MYC-dependent transcription of 

genes involved in DNA-synthesis (Baluchamy et al., 2007; Kadeppagari et al., 

2009; Kolli et al., 2001). Moreover, it was demonstrated that E1A binding to 

p300/CBP disrupts the interaction of p300/CBP with the APC/C complexes 

APC5 and APC7, which normally leads to stimulation of p300/CBP HAT activity 

and subsequent stimulation of p300/CBP-dependent transcription (Turnell and 

Mymryk, 2006; Turnell et al., 2005). E1A interference with the p300/CBP-APC/C 

complex inhibited p53-mediated expression of p21CIP1/WAF1 and promoted 

cellular transformation (Turnell and Mymryk, 2006; Turnell et al., 2005).  

 

Another transcriptional regulator complex interacting with E1A is the 

Transformation/transcription domain-associated protein (TRRAP) and ATPase 

p400, a member of the SWI/SNF family of chromatin remodelling enzymes 

(Fuchs et al., 2001). p400, in complex with other chromatin remodelling factors, 

mediates repression of p21 transcription (Chan et al., 2005) and by inducing 

p400 E1A might promote p21 repression contributing to inhibition of growth 

arrest (Samuelson et al., 2005). In addition to suppressing p21 expression, E1A 

directly binds and inhibits p21 (Chattopadhyay et al., 2001) and the CKI p27kip1 

(Mal et al., 1996), which would otherwise inactivate Cdk-Cyclin complexes to 

arrest cells at the G1/S and/or G2/M transitions (Figure 9) (Berk, 2005).  
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Singhal et al. investigated the effects of E1A on cellular DNA replication and 

demonstrated that E1A induces the upregulation of genes involved in DNA 

replication, such as Ctd1, Cdc6, MCM3,4, RFC5, PCNA, PolE2, CyclinE2 and 

E2F2 (Singhal et al., 2013). The gene upregulation and the capacity to induce 

replication initiation were significantly higher than in serum-stimulated cells 

(Singhal et al., 2013). It was further demonstrated that E1A accelerates 

replication fork progression during early S-phase and induces massive DNA re-

replication accompanied by the accumulation of cells with >4N DNA content 

(Singhal et al., 2013). These effects were partly attributed to the ability of E1A to 

bind p300/CBP and dissociate the repressor complex present at Myc promoter, 

leading to Myc induction (Kadeppagari et al., 2009; Sankar et al., 2008; Singhal 

et al., 2013).  

 

In contrast to the N-terminus, the C-terminus of E1A has been poorly studied 

and besides the interaction with CtBP, much less is known about the function of 

C-terminal binding proteins (Yousef et al., 2012). E1ACR4 was reported to bind 

the pro-survival dual-specificity tyrosine (Y) phosphorylation-regulated kinases 

(DYRK) 1A and 1B, stimulating their activity, although the functional 

consequence of the interaction remains unresolved (Pelka et al., 2008; Yousef 

et al., 2012). DYRKs regulate multiple cellular processes, including survival, 

proliferation and differentiation (Aranda et al., 2011). DYRK1A/1B exert anti-

apoptotic functions, for example by inhibiting caspase-9, and phosphorylate and 

activate p53 in response to DNA damage (Aranda et al., 2011). Komorek et al. 

observed that an E1A mutant defective in DYRK1A/1B binding has increased 

proliferation, transformation and tumour-forming capacities, suggesting that the 

interaction with DYRKs might suppress E1A-induced proliferation (Komorek et 

al., 2010). Yousef et al. proposed that E1A interaction with DYRK1A/1B might 

explain the E1A-mediated inhibition of Rac1 signalling in Ras-transformed cells 

(Yousef et al., 2012).  

 

Besides DYRKs, the transcription factors Forkhead Box K1 and K2 (FOXK1/2) 

were also reported to interact with the CR4 region (Komorek et al., 2010). 

Similar to DYRKs, deleting the FOXK1/2 interacting domain resulted in 

increased S-phase accumulation and transformation, implying that FOXK1/2 

interaction with E1A acts to suppress E1A-induced proliferation (Komorek et al., 
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2010). The FOXK1 transcription factor has been associated with transcriptional 

repression of the p21 and Foxo4 genes in myogenic progenitor cells (Hawke et 

al., 2003; Shi et al., 2010) and of some serum response factor (SRF)-regulated 

genes (Freddie et al., 2007). Grant et al. reported that FOXK1 mediates 

expression of genes involved in G1/S and G2/M transitions (Grant et al., 2012). 

FOXK2 was proposed to activate IL-2 transcription (Nirula et al., 1997) and 

promote AP-1-dependent transcription regulation (Ji et al., 2012). Interestingly, 

FOXK2 was reported to function as a G/T-mismatch DNA-binding protein and 

become hyperphosphorylated during mitosis in a Cdk-Cyclin dependent manner 

(Marais et al., 2010). It will be interesting to determine how interaction of E1A 

with FOXK1/2 impinges on these functions.  

 

Induction of apoptosis by E1A  

 

Besides promoting an S-phase cell state, expression of E1A can induce 

apoptosis through p53-dependent and -independent mechanisms. The ability of 

E1A to induce apoptosis is mediated through accumulation of p53, degradation 

of anti-apoptotic proteins (White, 2006) and hijacking of Myc-dependent 

transcription via p400 (Chakraborty and Tansey, 2009).  

 

E1A stabilizes p53 in a number of ways (Figure 9) [reviewed in (Gallimore and 

Turnell, 2001)]. Firstly, inhibition of pRb by E1A leads to stimulation of E2F-

mediated transcription of p19ARF, an Mdm2 inhibitor, thereby preventing Mdm2-

induced p53 degradation (de Stanchina et al., 1998; Sherr, 1998). Secondly, 

E1A-mediated p300 inhibition also prevents Mdm2-induced p53 degradation, 

since p300 contributes to Mdm2-induced p53 degradation by either directly 

binding to p53/Mdm2 or mediating Mdm2 transactivation by p53 (Grossman et 

al., 1998; Thomas and White, 1998). Thirdly, E1A interacts with and inhibits the 

ATPase function of the 19S proteasomal regulatory complex leading to 

increased p53 stability (Turnell et al., 2000; Zhang et al., 2004).  

 

Independently of p53, it was demonstrated that in DNA-damaged cells E1A 

binds and inhibits the CKI p21, abrogating G1/S arrest and promoting apoptosis 

(Chattopadhyay et al., 2001). It was recently shown that in response to DNA 

damage CtIP binds to p21 promoter and activates p21 transcription (Liu et al., 
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2014). By interacting with CtIP E1A might displace CtIP from p21 promoters to 

prevent expression.  

 

The second mechanism of E1A-induced apoptosis involves E1A-mediated 

degradation of MCL-1. This leads to release of the pro-apoptotic protein BAK 

from MCL-1, thus allowing it to form complexes with the pro-apoptotic BAX 

protein at the mitochondrial membrane (Figure 9) (Cuconati et al., 2003). E1A 

also activates the extrinsic-apoptotic pathway. It can sensitize cells to TNF-α-

induced apoptosis, by stimulating the degradation of the anti-apoptotic molecule 

c-FLIP, thereby allowing TNF-α-mediated caspase-8 activation (Figure 9) 

(White, 2001).  

 

The third mechanism by which E1A promotes apoptosis depends on its 

interaction with p400 (Samuelson et al., 2005). It was demonstrated that p400 is 

required for E1A to induce apoptosis and this is likely the result of p400-E1A 

interaction promoting p400 association with Myc, stabilizing Myc and stimulating 

Myc-dependent transcription of apoptotic genes (Chakraborty and Tansey, 

2009; Samuelson et al., 2005; Tworkowski et al., 2008).  

 

In addition to E1A, overexpression of one of the products of the E4 transcription 

unit, E4orf4, induces p53-independent cell-death, with many features of 

classical apoptosis although requirement for caspase activation was shown to 

be cell-line dependent (Lavoie et al., 1998; Livne et al., 2001; Marcellus et al., 

1998; Robert et al., 2002; Shtrichman and Kleinberger, 1998). Induction of cell 

death by E4orf4 was shown to depend on its interaction with PP2A (see below) 

(Li et al., 2009a; Li et al., 2009b; Shtrichman et al., 1999; Shtrichman et al., 

2000).  

 

Inhibition of apoptosis by anti-apoptotic viral proteins 

 

In the context of a viral infection, E1A-induced apoptosis is inhibited by the 

E1B19K and E1B55K proteins, in order to allow productive adenoviral 

replication (Figure 10) (White, 2001). E1B55K binds and inhibits the function of 

p53, thus preventing p53-mediated cell-cycle arrest and apoptosis (Berk, 2005). 

On the other hand, the anti-apoptotic protein E1B19K can inhibit both p53-
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dependent (Debbas and White, 1993; Lomonosova et al., 2005) and -

independent apoptosis (Chiou and White, 1997; White et al., 1991) and block 

death-receptor-mediated apoptosis in response to TNF-α, FasL and TRAIL 

(Gooding et al., 1991; Hashimoto et al., 1991; Tollefson et al., 2001; White et 

al., 1992). Early studies showed that infection of cells with adenoviruses 

mutated in the E1B19K gene results in the large plaque phenotype (lp) 

characterised by cellular large clear plaques, the cytocidal (cyt) phenotype, 

characterised by enhanced cytopathic effect, and the degradation (deg) 

phenotype characterised by degradation of cellular and viral DNA (Chinnadurai, 

1983; Pilder et al., 1984; Subramanian et al., 1984; Takemori et al., 1984; White 

et al., 1984). It was later discovered that the enhanced cytopathic effect and the 

DNA degradation were hallmarks of apoptosis induced by E1A due to lack of 

E1B19K anti-apoptotic functions (White et al., 1991; White and Stillman, 1987). 

E1B19K is a Bcl-2 homologue and exerts its anti-apoptotic functions by binding 

BAK and BAX proteins, preventing oligomerization and pore formation in the 

mitochondrial membrane which would otherwise lead to the release of pro-

apoptotic proteins, such as cytochrome c, from the mitochondria and 

subsequent activation of caspases (Figure 9) (White, 2006). Inhibition of 

caspase activation by E1B19K prevents cleavage of apoptotic nucleases, which 

is necessary during infection to avoid degradation of viral and host-cell DNA 

(White, 2001). By blocking mitochondrial membrane permeabilization, E1B19K 

efficiently prevents apoptosis in response to various stimuli that converge on the 

mitochondria affecting their membrane integrity (White, 2006). In addition to its 

anti-apoptotic functions, it was demonstrated that E1B19K binds the autophagy 

protein Beclin-1, disrupts its interaction with Bcl-2 and recruits the C3 catalytic 

subunit of PI3K (PI3KC3), leading to autophagosome formation (Piya et al., 

2011). E1B19K deletion subsequently impaired the ability of adenovirus to 

induce autophagy (Piya et al., 2011).  

 

The E3 region of adenovirus encodes several proteins that primarily function to 

evade anti-viral immune responses (Windheim et al., 2004). The E3gp19K 

protein counteracts immune responses by inhibiting the cell surface expression 

of the class I major histocompatibility complex (MHC) and by sequestering 

natural killer cell ligands (Table 2) (Horwitz, 2004; McSharry et al., 2008). Other 

E3 proteins antagonize pro-apoptotic immune responses by promoting death 
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receptor internalization and degradation in lysosomes and by inhibiting TNF-

induced secretion of arachidonic acid, production of chemokines and NF- B 

signal transduction (Table 2) (Horwitz, 2004; Lichtenstein et al., 2004b). In 

contrast to the other E3 proteins, ADP (E3-11.6kDa) has pro-death functions 

and is expressed in the late stages of infection to stimulate cell lysis, through 

non-apoptotic mechanisms (Braithwaite and Russell, 2001; Lichtenstein et al., 

2004b). Besides E1B19K and E3 proteins, it was recently shown that E4orf3 

and E1B55K act to suppress AIF release from mitochondria and subsequent 

nuclear entry that leads to nuclear fragmentation, a process that requires 

activation of PARP-1 (Turner et al., 2014). 

 

Regulation of DNA damage and repair response by adenoviral proteins 

 

Cells infected with adenoviruses stimulate a DNA damage response (DDR) 

(Figure 9) that needs to be counteracted by the virus in order to enable efficient 

viral replication (Turnell and Grand, 2012). It has been suggested that the 

presence of the viral DNA is sufficient to trigger a DDR and it has been shown 

that viral DNA replication is sufficient to cause phosphorylation of H2AX and 

activate PARP-1 (Nichols et al., 2009; Turner et al., 2014). 

 

The E4 transcription unit expresses the E4orf 1 to 6/7 polypeptides that have a 

variety of functions, including enhancing late viral mRNA and protein synthesis, 

while shutting-off host-cell protein synthesis (Tauber and Dobner, 2001). The 

most important function for the E4 proteins is evasion of the DDR (Tauber and 

Dobner, 2001). Infection with E4-deleted adenoviruses stimulates a DDR, since, 

from a simplistic perspective, the linear double-stranded viral genome is 

recognised as DSBs by the MRN complex (Weiden and Ginsberg, 1994; 

Weitzman and Ornelles, 2005). Recognition of viral DNA initiates an ATR- and 

ATM-mediated signalling cascade, eventually leading to concatemerization of 

viral DNA through the actions of DNA-PK, DNA ligase IV and Mre11 (Boyer et 

al., 1999; Carson et al., 2009; Carson et al., 2003; Weiden and Ginsberg, 1994; 

Weitzman and Ornelles, 2005). During infection, several proteins of the ATR 

signalling axis, including RPA32, ATR, ATRIP, Rad9, TOPBP1, Rad17 and 

BLM localize to viral replication centres and it is possible that this results in 
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inhibition of their functions (Blackford et al., 2008; Carson et al., 2009; Carson 

et al., 2003; Turnell and Grand, 2012).  

 

E4orf3 and E4orf6 proteins independently inhibit the DDR signalling by targeting 

the MRN complex (Figure 9) (Carson et al., 2009; Stracker et al., 2002). E4orf3 

promotes the reorganization of promyelytic leukaemia (PML) nuclear bodies into 

track-like structures, whereby it sequesters Mre11 in track-like nuclear 

structures and cytoplasmic aggresome-like structures (Araujo et al., 2005; 

Carson et al., 2009; Stracker et al., 2002). By redistributing the MRN complex 

E4orf3 inhibits ATR signalling (Carson et al., 2009). On the other hand, E4orf6 

in a complex with E1B55K recruits ubiquitin ligases that target Mre11, Rad50, 

Nbs1, p53 as well as the BLM helicase for degradation in aggresomes (Harada 

et al., 2002; Orazio et al., 2011; Querido et al., 2001; Stracker et al., 2002; 

Turnell and Grand, 2012). Independently of E1B55K, E4orf3 was found to form 

nuclear structures whereby histone H3 methylation (Lys9) induced 

heterochromatin compaction at p53 target promoters, leading to abrogation of 

p53 DNA binding and silencing of p53-mediated transcription (Soria et al., 

2010).  

 

In addition, E4orf6 acts to dissociate the NHEJ repair DNA ligase IV/XRCC4 

complex (Jayaram et al., 2008) and the E4orf6/E1B55K complex targets the 

protein DNA ligase IV for degradation, thereby preventing the ligation step 

during NHEJ (Baker et al., 2007). E4orf6/E1B55K were found to interact with 

DNA-PK (Boyer et al., 1999) although no impairment of DNA-PK function has 

so far been reported in the presence of the viral proteins. Cells stably 

expressing E4orf6 showed reduced DSB repair capacity in response to IR (Hart 

et al., 2005). More recently, the E1B55K/E4orf6 complex was found to target 

the survival-time associated PHD protein in ovarian cancer 1/PHF13 (SPOC-1) 

and the acetyltransferase TIP60 for degradation (Gupta et al., 2013; Schreiner 

et al., 2013b). Recent reports suggest that SPOC-1 regulates chromatin 

compaction and is recruited to DSBs in an ATM-dependent manner where it 

modulates the choice of NHEJ and HR and kinetics of DNA repair by interacting 

with other chromatin remodelling factors, such as KAP1 (Kinkley et al., 2009; 

Mund et al., 2012). Similarly, TIP60 functions in chromatin remodelling, 

transcriptional regulation and DNA damage and repair response, during which it 
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acetylates and activates ATM and remodels chromatin to facilitate DNA repair 

(Sun et al., 2010). Both SPOC-1 and TIP60 were shown to suppress viral gene 

expression (Gupta et al., 2013; Schreiner et al., 2013b), therefore Ad5-mediated 

degradation of these factors promotes chromatin relaxation and enhances viral 

gene transcription. At the same time, degradation of TIP60 should impair ATM 

activation and degradation of both SPOC-1 and TIP60 would impact on DNA 

repair (Figure 9). Interestingly, TIP60 associates with the E1A-interacting 

protein complex p400/TRRAP, which was reported to be recruited to DSBs 

through Mdc1 and to modulate chromatin structure promoting recruitment of 

other factors required for DSB repair (Xu et al., 2010a).  

 

Despite targeting of various DDR components, viral infection results in 

phosphorylation of H2AX and RPA32 (Nichols et al., 2009; Turnell and Grand, 

2012). This can be explained partly by the presence of the E1B55K-binding 

protein E1B-AP5 or hnRNPUL1 at viral replication centres. Blackford et al. 

showed that E1B-AP5/hnRNPUL1 interacts with ATR, ATRIP and RPA32 in 

viral replication centres and mediates phosphorylation of RPA32 by ATR 

(Blackford et al., 2008). hnRNPUL1/2 proteins were reported to be recruited to 

DSBs by the MRN complex and PARP-1 where they stimulate DNA-end 

resection, ATR-dependent signaling and DSB repair (Hong et al., 2013; Polo et 

al., 2012). hnRNPUL1/2  might also regulate PARP-1 transcription (Hong et al., 

2013).  

 

The E1A interacting protein CtIP has emerged as an important player in DSB 

repair. As previously mentioned, the CtIP endonuclease acts together with the 

MRN complex to resect DNA ends during DSB repair. Expression of AdE1A12S 

or AdE1A13S was reported to inhibit phosphorylation of CtIP (Bruton et al., 

2007), which is mediated by ATM and/or ATR, although it is uncertain whether 

this is due to the direct interaction of E1A with CtIP or an indirect mechanism. 

One might speculate that E1A can sequester CtIP from sites of cellular DSBs 

thus impairing DNA repair.  
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Figure 9: Regulation of cell cycle and apoptosis by adenoviral proteins. 
Adenovirus infection ultimately leads to S-phase entry, inactivation of DNA 
damage and repair responses and inhibition of apoptosis. E1A acts to stimulate 
S-phase entry through inhibition of pRb and the CKIs p21 and p27, as well as 
dissociation of chromatin remodelling and HAT factors, including p300/CBP, 
CtBP, CtIP and p400 (see text for details). This leads to activation of E2F- and 
Myc-dependent transcription of cell-cycle genes. In addition, E1A stabilizes p53 
and inhibits the anti-apoptotic proteins c-FLIP and MCL-1. However, induction 
of apoptosis is efficiently counteracted by E1B19K, E4orf6/E1B55K and E3 viral 
proteins. E1B19K and E3 proteins inhibit intrinsic and extrinsic apoptotic 
pathways as depicted on the diagram, while E4orf6/E1B55K blocks p53-
dependent apoptosis. E4orf3 and the E4orf6/E1B55K complex are 
predominantly responsible for inactivation of a DNA damage and repair 
response that is initiated following viral infection. E4orf3 sequesters the Mre11 
subunit of MRN complex in PML nuclear tracks and E4orf6/E1B55K target 
Mre11, Nbs1, p53, BLM, Tip60, SPOC-1 and ligase IV for proteasomal 
degradation (see text for details).  E4orf6/E1B55K also interact with DNA-PKs 
and inhibit NHEJ repair.  
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Other cellular factors targeted by adenoviral proteins 

 

E4orf3 reorganizes the TIF1α/TRIM24 into the PML-containing nuclear tracks 

(Yondola and Hearing, 2007) and targets TIF1 /TRIM33 for proteasomal 

degradation (Forrester et al., 2012). TIF1α/TRIM24 is overall associated with 

chromatin silencing (Ikeda and Inoue, 2012; Napolitano and Meroni, 2012) and 

interestingly, it is a E3 ubiquitin ligase targeting p53 for degradation but in 

response to DNA damage undergoes ATM-dependent degradation (Jain et al., 

2014). TIF1 /TRIM33 is also associated with transcriptional repression (Agricola 

et al., 2011) and has been implicated in the regulation of TGF-β signalling 

(Fattet et al., 2013) and PARP-dependent DNA damage response (Kulkarni et 

al., 2013). E1B55K interacts with another member of the TIF family, 

TIF1β/KAP1/TRIM28, which is required for DSB repair during which it gets 

phosphorylated by ATM (Forrester et al., 2012). The functional consequences 

of the E1B55K-TIF1β interaction are unknown, but it could be possible that the 

interaction further disrupts DSB repair signalling. It is likely that the TIF family 

members possess anti-viral activities; TIF1  was shown to attenuate viral gene 

expression (Forrester et al., 2012) and other TRIM family members function in 

antiviral immune response (Jefferies et al., 2011).  

 

Another protein targeted for degradation is the death-domain-associated protein 

(Daxx). Daxx is a PML-interacting protein that binds to other chromatin 

remodelling proteins, such as ATRX and HDACs, to repress transcription of 

various genes, including NF- B, E2F1 and p53, but it also regulates apoptosis 

(Salomoni, 2013; Salomoni and Khelifi, 2006). In addition it interacts with Mdm2 

and promotes p53 degradation, although during DNA damage the interaction is 

disrupted by an ATM-mediated phosphorylation event (Tang et al., 2013). Daxx 

was shown to repress Ad5 replication and together with its binding partner 

ATRX acts to inhibit viral gene expression (Schreiner et al., 2013a; Schreiner et 

al., 2010). Schreiner et al. showed that Daxx acts to suppress the immediate 

early E1A promoter and that core protein VI inhibits Daxx to enable initiation of 

viral transcription (Schreiner et al., 2012). As early viral proteins are synthesised 

Daxx is targeted by E1B55K that recruits E3 ubiquitin ligases, independently of 

E4orf6, to target Daxx for degradation. The E1B55K/E4orf6 complex also 
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targets ATRX for proteasomal degradation (Schreiner et al., 2013a; Schreiner et 

al., 2010).  

 

Effects of adenovirus on mitosis  

 

Regulation of mitosis by adenovirus is poorly studied and the current literature 

on how adenovirus might affect mitotic progression is scarce. Interestingly, in a 

microarray gene expression analysis in Ad5-infected cells it was revealed that 

mitosis-associated genes were significantly upregulated throughout the viral life 

cycle (Miller et al., 2007). Such genes encoded for subunits of the anaphase 

promoting complex, mitotic checkpoint proteins and proteins that regulate 

spindle formation, chromosome condensation and chromosome segregation 

(Miller et al., 2007).  

 

Several studies reported that adenovirus infection can cause mitotic 

abnormalities (Braithwaite et al., 1983; Cherubini et al., 2006; Connell et al., 

2008; Ingemarsdotter et al., 2010; Lavia et al., 2003; Murray et al., 1982). 

Adenovirus alters the microtubule cytoskeleton and stabilizes microtubules in 

the early hours post-infection in order to promote its transport towards the 

nucleus (Warren et al., 2006). Despite that adenovirus utilizes microtubules for 

trafficking, adenoviral particles were not found to be associated with spindle and 

astral microtubules during mitosis (Strunze et al., 2005). Ingemarsdotter et al. 

observed that altered organisation of microtubules and stabilization was still 

evident at 48h post-infection with a replication-selective adenovirus and 

interestingly, reported that the microtubule network is important for adenoviral 

non-lytic cell exit (Ingemarsdotter et al., 2010).  

 

Cherubini et al. demonstrated that an E1B55K-deleted adenovirus and to a 

lesser extend wild-type Ad5 induce polyploid cells and hypercondensed mitotic 

chromosomes and upregulate the SAC protein Mad2 (Cherubini et al., 2006). 

Moreover, the oncolytic virus dl922-947 was reported to cause chromosome 

alignment issues, spindle multipolarity and cytokinesis failure (Connell et al., 

2008). In another study, expression of E1A induced polyploidy, prolonged 

mitosis and chromosome segregation defects (Hernando et al., 2004). The 

authors observed that Mad2 expression was upregulated and suggested that 
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this could be due to E1A-mediated deregulation of the Rb/E2F pathway, since 

Mad2 transcription was found to be regulated by E2F (Hernando et al., 2004). 

Another study reported that E1A utilizes the CBF/NF-Y transcription factors to 

stimulate the expression of Cdk1 (Kao et al., 1999). 

 

E1A can induce centrosome amplification and subsequent multipolar spindles 

and this was shown to require a functional RanGTPase network (De Luca et al., 

2003; Lavia et al., 2003). The RanGEF RCC1 promotes the active and 

predominantly nuclear GTP-bound form of Ran, whereas RanGAPs and 

RanBP1/2 (Ran-binding proteins 1/2) stimulate the GTPase activity of Ran, 

promoting the inactive GDP-bound form which primarily localises in the 

cytoplasm (Clarke and Zhang, 2008). Besides the role of RanGTPase in 

interphase nucleocytoplasmic transport, RanGTP promotes the nucleation of 

microtubules at centrosomes, stabilizes microtubules and regulates spindle 

assembly and nuclear envelope assembly during mitosis (Clarke and Zhang, 

2008). It interacts with importin-β, dissociating spindle assembly factors, 

including TPX2, NuMa and Lamin B, from the importin-α/β dimer and enabling 

their localisation to spindle poles and microtubules (Clarke and Zhang, 2008). 

De Luca et al. demonstrated that the N-terminus of E1A interacts with Ran and 

that E1A downregulates RCC1-mediated nucleotide exchange on Ran in vitro, 

leading to centrosome overduplication (De Luca et al., 2003). It was previously 

suggested that Ran might regulate centrosome duplication through RCC1-

mediated association of Ran with Crm1 (exportin 1) and subsequent Crm1-

mediated binding of nucleophosmin (NPM) to centrosomes; disruption of this 

process results in centrosome amplification (Budhu and Wang, 2005).  

 

As previously mentioned, E1A binding to p300/CBP disrupts p300/CBP-APC/C 

complexes. Besides the role of p300/CBP-APC/C in G1/S transcriptional 

regulation, CBP was also found to interact with APC/C and stimulate the 

ubiquitin ligase activity during mitosis (Turnell et al., 2005). Knockdown of CBP 

disrupted APC/C-mediated ubiquitination and subsequent degradation of Cyclin 

B and Plk1, and prolonged mitotic exit (Turnell et al., 2005). Therefore E1A 

interference with p300/CBP-APC/C can potentially lead to APC/C deregulation, 

prolonged mitosis and inhibition of mitotic exit, although this has not been 

experimentally verified. Prolonged mitosis was indeed previously reported 
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following E1A expression (Hernando et al., 2004). It was recently shown that 

the ubiquitin ligase activity of APC/CCdc20 can be regulated by TIF1 , and 

knockdown of TIF1  disrupted APC/CCdc20 function resulting in SAC activation, 

prolonged mitosis and chromosome alignment errors (Sedgwick et al., 2013). 

Since TIF1  is targeted for degradation by adenovirus E4orf3 it is likely that 

APC/CCdc20 function towards mitotic substrates is impaired during adenovirus 

infection, leading to deregulated mitosis.  

 

Several independent studies established that E4orf4 binds to the B55 regulatory 

subunit of the PP2A holoenzyme (Horowitz et al., 2013; Li et al., 2009a; Mui et 

al., 2013; Shtrichman et al., 1999; Shtrichman et al., 2000). PP2A-B55 functions 

in mitotic entry and exit by counteracting Cdk1-mediated phosphorylations and 

inactivates Cdk1 by de-phosphorylating Wee1, Cdc25 and Greatwall (Hegarat 

et al., 2014; Jeong and Yang, 2013; Wurzenberger and Gerlich, 2011). E4orf4 

interaction with B55 was shown to disrupt PP2A phosphatase activity in vitro 

and at least two PP2A targets, 4E-BP1 and p70S6K, were found to be 

hyperphosphorylated in vivo and another substrate, p107 was prevented from 

accessing PP2A (Li et al., 2009a; Mui et al., 2013). In Saccharomyces 

cerevisiae, E4orf4-mediated interaction with PP2A resulted in mislocalisation of 

PP2A, activation of Cdk1 in S-phase and premature activation of APCCdc20 as a 

consequence of uncoupling Cdk1 and APC activity (Mui et al., 2010). Another 

study in Saccharomyces cerevisiae reported that E4orf4 interacts with PP2A 

and APC/C and inhibits APCCdh1 and perhaps APCCdc20 activity (Kornitzer et al., 

2001).  

 

The ability of E4orf4 to interfere with PP2A activity results in upregulation of 

Cdk1 and E4orf4-induced G2/M arrest and cell death (Li et al., 2009a; Li et al., 

2009b; Mui et al., 2013; Shtrichman et al., 1999; Shtrichman et al., 2000). Cell 

death in lung carcinoma cells was accompanied by mitotic catastrophe, 

characterised by formation of micro- and multi-nucleated cells (Li et al., 2009b). 

Interestingly, a study reported that E4orf4 activates the myosin II motor and 

recruits endosomes to stimulate actin polymerisation, through regulation of the 

Rho GTPases RhoA, Rac1 and Cdc42 and this is required for E4orf4-induced 

cell death (Robert et al., 2006). 
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Despite the characterisation of E4orf4 functions when overexpressed, its role 

during the viral life cycle remains poorly defined. Mui et al. proposed that during 

viral infection the interaction of E4orf4 with PP2A might serve the delivery of 

specific substrates to PP2A, like in the instance of the mRNA splicing factor 

ASF/SF2/SRSF1 (Mui et al., 2013). Nevertheless, given the important roles of 

PP2A-B55 during mitosis E4orf4 interference with PP2A activity is likely to 

impact on mitotic progression.  

 

Besides its role in DNA damage and repair response, the E1B55K/E4orf6 target 

SPOC-1 has been implicated in mitosis. The expression of SPOC-1 significantly 

increases in late G2 and mitosis and it localizes to mitotic chromosomes 

(Kinkley et al., 2009). Depletion of SPOC-1 resulted in chromosome 

condensation defects and chromosome alignment and segregation errors, 

suggesting it regulates mitotic chromosome architecture and condensation 

(Kinkley et al., 2009). Therefore, degradation of SPOC-1 by adenovirus can 

result in mitotic chromosome condensation errors.  

 

A study reported that the E3-11.6K ADP protein interacts with the mitotic arrest 

deficient protein 2B (MAD2B) and found that MAD2B overexpression reduced 

the rate of cell lysis, suggesting that MAD2B attenuates ADP-mediated cell lysis 

(Ying and Wold, 2003). MAD2B (Rev7 or MAD2L2) is known to inhibit the 

activity of both APCCdh1 and APCCdc20 (Chen and Fang, 2001; Pfleger et al., 

2001) functioning at the metaphase-to-anaphase transition (Listovsky and Sale, 

2013) and co-localizes with clathrin light chain A (CLTA) and the RanGTPase at 

mitotic spindles where it was suggested to function in chromosome alignment 

and spindle assembly (Medendorp et al., 2009; Medendorp et al., 2010). The 

functional consequences of ADP-MAD2B interaction are not known, but it could 

potentially impinge on the function of MAD2B as a mitotic regulator.  

 

Taken together, several studies reported adenovirus-mediated aberrant effects 

on mitosis but the mechanisms underlying these effects remain largely 

unidentified. A number of adenoviral proteins interact with mitosis-associated 

factors and appreciation of the functional consequences of these interactions 

would improve our understanding of the relationship between adenovirus and 

host, with subsequent impact on advancing of adenovirus-based therapeutics.   
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1.3.3. Replication-selective oncolytic adenoviruses as a promising anti-

cancer strategy  

 

Due to their many appealing features as therapeutic tools, adenoviruses are 

amongst the most widely used viruses in cancer gene therapy, both as 

engineered oncolytic mutants or as non-lytic vectors delivering therapeutic 

genes (Dyer and Herrling, 2000; Good et al., 2011; Vorburger and Hunt, 2002). 

Replication-selective oncolytic adenoviruses represent a novel anticancer 

strategy, with demonstrated efficacy, tumour-selectivity and overall safety for 

several mutants, in preclinical and clinical studies (Kirn, 2000; Liu et al., 2007; 

Parato et al., 2005; Yamamoto and Curiel, 2010). Oncolytic virotherapy using 

adenovirus has many advantages: tumour-specific cytotoxicity with limited 

infection of normal tissue, mild side-effects, potential of 104-fold amplification of 

the initial dose, ability of co-delivering therapeutic genes, activation of different 

cell-death pathways including anti-tumour immune responses and no 

development of treatment resistance (Hallden and Portella, 2012).  

 

Replication-selective oncolytic adenoviruses are engineered to replicate 

specifically in cancer cells, by taking advantage of cancer-specific alterations 

(Alemany, 2007). One approach to achieve tumour-selective replication is to 

drive viral gene expression by tissue- or tumour-specific promoters, such as the 

prostate-specific antigen (PSA) promoter or enhancer used in prostate cancer 

(Dilley et al., 2005; Small et al., 2006; Yu et al., 1999). Another example is the 

use of hypoxia response elements (HREs) to drive viral gene expression in the 

hypoxic tumour environment (Choi et al., 2012) and the human telomerase 

reverse transcriptase (hTERT) promoter, which takes advantage of the high 

expression of hTERT observed in tumour, but not normal cells (Shay and 

Wright, 2011; Stewart and Bertuch, 2010). The most frequently used approach 

is to engineer tumour-selectivity by deleting viral genes that function to 

inactivate tumour-suppressor proteins in normal cells, since such functions are 

often already inactivated in cancer cells (Bischoff et al., 1996; McCormick, 

2003). This concept formed the basis for the development of the first clinically-

tested replication-selective oncolytic adenovirus dl1520 (Onyx-015) 

(McCormick, 2003). dl1520 is deleted in the E3B immune-regulatory region and 

the E1B55K gene, responsible for inactivating p53. It was hypothesised that the 
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mutant virus would replicate efficiently in cancer cells with non-functional p53, 

but not in normal cells (Bischoff et al., 1996) and indeed that was demonstrated 

as discussed next.  

 

 

1.3.4. The evolution of replication-selective oncolytic adenoviruses: a 

clinical perspective 

 

Clinical trials with ONYX-015 

 

A total of 18 phase I and II clinical trials have been conducted using dl1520, 8 of 

which combined dl1520 with chemotherapy (Aghi and Martuza, 2005; Liu et al., 

2007; Parato et al., 2005). Patients with a variety of cancers have been 

evaluated, with both primary and metastatic tumours, including head and neck 

squamous cell carcinoma, colorectal carcinoma, liver and lung metastases, 

using several routes of administration, including intra-tumoural, intra-vesicular, 

intra-venous and via the hepatic artery (Aghi and Martuza, 2005; Kirn, 2000).  

Tumour-selectivity and overall safety were demonstrated; dl1520 was well-

tolerated, causing only flu-like symptoms, without significant toxicity in liver or 

other normal tissue (Kirn, 2000; McCormick, 2003; Toth and Wold, 2010). 

However, the efficacy of dl1520 as a single agent was poor, while more 

encouraging results were obtained in combination with chemotherapy, such as 

5-FU and cisplatin (Aghi and Martuza, 2005; Heise and Kirn, 2000; Kirn, 2000). 

In a Phase I trial in patients with unresectable pancreatic cancer dl1520 was 

well-tolerated but no objective responses were demonstrated (Mulvihill et al., 

2001).   

 

Subsequent studies revealed that the attenuated potency of dl1520 could be 

attributed to the loss of critical functions of the E1B55K/E4orf6 complex, such 

as viral late mRNA nuclear export and translation, and subsequent blocking of 

host mRNA nuclear export and protein synthesis (Babiss and Ginsberg, 1984; 

Babiss et al., 1985; Beltz and Flint, 1979; O'Shea et al., 2004). Deletion of the 

E3B genes was later shown to also decrease viral efficacy by more rapid 

macrophage-mediated clearance of the virus (Suzuki et al., 2002; Wang et al., 

2003). Moreover, in contrast to initial findings, several studies reported that 
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dl1520 could replicate in certain primary cells and that its replication in tumour 

cells was not dependent on p53 status, but rather complementation of late viral 

nuclear mRNA export functions (Goodrum and Ornelles, 1998; Hall et al., 1998; 

O'Shea et al., 2004; Rothmann et al., 1998; Turnell et al., 1999). Despite this, 

the almost identical H101 (Shanghai Sunway Biotech) was reported to have a 

79% response rate in combination with cisplatin and 5-FU in a phase III trial in 

China (Xia et al., 2004), which subsequently led to its approval as a treatment 

for head and neck cancer in China (Garber, 2006).  

 

Clinical trials with dl1520 combined with chemotherapy illustrated that the 

greatest anti-tumour efficacy was observed in patients with head and neck 

cancer. dl1520 combined with 5-FU and cisplatin in patients with recurrent head 

and neck cancer demonstrated significant objective responses over 

monotherapy and importantly, chemotherapy-induced toxicity was not increased 

in the presence of virus (Khuri et al., 2000). Similarly, the H101 phase III trial in 

China demonstrated that the response rate following treatment with cisplatin 

and 5-FU was doubled in the presence of H101 and toxicity was low (Xia et al., 

2004). In other types of cancer less-encouraging patient responses were 

observed from combinations of chemotherapy with dl1520, however in some 

cases chemosensitization was demonstrated. Intra-vascular administration of 

dl1520 with intravenous injection of 5-FU and leucovorin in patients with 

colorectal cancer metastasised to the liver, resulted in anti-tumoral activity and 

chemosensitization in 2/11 patients (Reid et al., 2001). Ultrasound-guided 

tumour injection of dl1520 in combination with gemcitabine in a Phase I/II trial in 

patients with locally advanced adenocarcinoma of the pancreas or with 

metastatic disease, resulted in partial regressions in 2/21 patients, minor 

responses in 2/21 patients and stable disease in 6/21 patients (Hecht et al., 

2003). These results demonstrate that, at least some patients, did benefit from 

a combination of dl1520 with chemotherapy compared to chemotherapy alone. 

It needs to be kept in mind though that most of these trials mainly assessed 

safety without considerable optimisation of treatment schedule and it can be 

appreciated that dosing and administration schedule significantly affect the 

efficacy of combination treatments.  
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Several lessons have been learnt from the dl1520 trials and clearly, the data 

point towards a need for more efficacious oncolytic adenoviruses. In an attempt 

to improve the potency and selectivity of dl1520, the mutant was armed with the 

suicide fusion-gene Escherichia coli cytosine deaminase (CD)-herpes 

simplex virus type 1 thymidine kinase (HSV1-TK) (Ad5-CD/TKrep) (Freytag et 

al., 1998). In one trial, patients with recurrent prostate cancer following 

radiotherapy were recruited, while in a second trial Ad5-CD/TKrep was 

combined with radiation therapy in patients with newly-diagnosed prostate 

cancer (Freytag et al., 2002; Freytag et al., 2003). The results showed low 

toxicity and patient responses, albeit transient. A 5-year follow-up reported that 

the oncolytic virotherapy delayed salvage therapy by at least 2 years, 

suggesting possible long-term beneficial effects in patients (Freytag et al., 

2007b). The potency of Ad5-CD/TKrep has since been further improved, by 

increasing the catalytic activity of the fusion gene, and ADP expression to 

improve viral efficacy and spread. The newly-modified virus, Ad5-

yCD/mutTKSR39rep-ADP, is currently in a phase II/III clinical trial in combination 

with radiotherapy in patients with newly-diagnosed prostate cancer (Barton et 

al., 2006; Freytag et al., 2007a).  

 

Improving anti-tumour efficacy by more selective viral engineering  

 

Studies aiming at improving viral potency while retaining tumour selectivity, 

demonstrated that deletion of the pRb-binding region in the E1ACR2 domain 

increases tumour-selectivity, since pRb inactivation is complemented in the 

majority of cancer cells due to deregulated G1/S growth control (Sherr, 1996). 

dl922-947 and the very similar Ad5-Δ24, demonstrated high tumour-selectivity 

and increased potency in vivo in a number of studies (Fueyo et al., 2000; Heise 

et al., 2000; Kirn et al., 1998; Lamfers et al., 2002), while anti-tumour efficacy 

was further enhanced in combination with chemotherapy (Bhattacharyya et al., 

2011; Conrad et al., 2005; Gomez-Manzano et al., 2006; Radhakrishnan et al., 

2010). In addition to E1ACR2, E1B19K deletion was shown to prevent viral 

spread in normal tissue through tumour necrosis factor (TNF)-induced 

apoptosis, and enhance anti-tumour efficacy (Harrison et al., 2001; Kim et al., 

2002; Leitner et al., 2009; Liu et al., 2004; Sauthoff et al., 2000; White et al., 

1992).  
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Arming oncolytic adenoviral mutants with therapeutic genes 

 

Arming of oncolytic viruses with therapeutic genes in order to improve potency 

has been widely adopted. Pre-clinical examples include adenoviral-mediated 

delivery of pro-apoptotic genes, such as TRAIL (Chen et al., 2009; Mao et al., 

2014; Zhu et al., 2013), to enhance cell death, and delivery of small hairpin or 

interference RNAs (shRNAs or siRNAs) against survival factors, such as the 

IAP survivin (Shen et al., 2010; Shen et al., 2009; Wang et al., 2012; Yin et al., 

2008). Currently, a considerable focus of the field has been the arming of 

oncolytic adenoviruses with immunomodulatory genes aiming at enhancing anti-

tumour immune responses. Anti-tumour efficacy has been demonstrated in pre-

clinical models using adenoviruses armed with various cytokines, such as the 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (Thorne, 2013), 

interleukin 24 (IL-24) (He et al., 2013; Zhang et al., 2012; Zhu et al., 2012; Zhuo 

et al., 2013), IL-15 (Zhao et al., 2014), IL-18 and IL-12 (Choi et al., 2011).  

 

Preliminary clinical testing of oncolytic viruses armed with GM-CSF as an 

immunostimulatory therapeutic gene has been showing some positive 

responses in cancer patients, but further clinical trials are required to fully 

evaluate the potential of such viruses (Bramante et al., 2014; Burke et al., 2012; 

Cerullo et al., 2010; Koski et al., 2010). The CG0070 virus expresses GM-CSF 

under the control of the human E2F-1 promoter to take advantage of 

upregulated E2F-1 due to defective retinoblastoma pathway in bladder cancers 

(Ramesh et al., 2006). CG0070 is currently in a phase II safety and efficacy 

study (http://clinicaltrials.gov/show/NCT01438112) and an integrated phase 

II/III, open label, randomized and controlled study 

(http://clinicaltrials.gov/show/NCT02143804) in patients with invasive bladder 

cancer. Another example is the E1B-deleted adenovirus Ad/L523S armed with 

the immunogenic lung cancer antigen L523S, which has proven to be safe in a 

phase I trial with non-small-cell lung cancer patients, however no further clinical 

testing has been reported (Nemunaitis et al., 2006). The use of oncolytic viruses 

as immunotherapy for cancer is at the present time an intense and exciting area 

of research (Chiocca and Rabkin, 2014; Hemminki, 2014; Prestwich et al., 

2009; Stanford et al., 2008; Tong et al., 2012).  

 

http://clinicaltrials.gov/show/NCT01438112
http://clinicaltrials.gov/show/NCT02143804
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Improving infectability 

 

Numerous studies have also focused on the improvement of infectivity. 

Adenovirus infection depends on the availability of CAR and integrins, and CAR 

deficiency in many tumour cells represents a major obstacle in adenovirus-

based gene therapy (Yamamoto and Curiel, 2010). Thus, a major focus has 

been to achieve CAR-independent adenovirus transduction. Strategies being 

used include modifications of the fiber-knob and incorporation of fiber-knob 

domains from adenovirus serotypes that do not depend on CAR for cell-entry 

(Pesonen et al., 2011; Yamamoto and Curiel, 2010).  

 

An example is the oncolytic adenovirus Ad5-Δ24-RGD, an Ad5-Δ24-based virus 

containing an RGD insertion in the fiber to allow infection through αvβ integrins 

(Fueyo et al., 2003), which are often constitutively-expressed in tumours (Weis 

and Cheresh, 2011). Ad5-Δ24-RGD showed encouraging results in pre-clinical 

models (Fueyo et al., 2003; Guse et al., 2007; Kangasniemi et al., 2006) and a 

phase I clinical trial with Ad5-Δ24-RGD in patients with recurrent ovarian cancer 

demonstrated overall safety and potential anti-tumour efficacy, with stable 

disease in 71% of patients after 1 month (Kimball et al., 2010). A phase I trial 

with Ad5-Δ24-RGD in patients with recurrent glioblastomas is currently on-

going, with the aim to determine maximum tolerable doses of virus as well as 

safety and preliminary efficacy 

(http://www.clinicaltrials.gov/show/NCT01582516). Another phase I trial for 

recurrent glioblastoma is currently evaluating the efficacy of Ad5-Δ24-RGD with 

the drug temozolomide (http://www.clinicaltrials.gov/show/NCT01956734). A 

phase 1b clinical trial is expected to open soon and it will evaluate safety and 

efficacy of Ad5-Δ24-RGD with or without interferon gamma (IFN ) treatment in 

patients with glioblastoma or gliosarcoma 

(http://www.clinicaltrials.gov/show/NCT02197169). Further modifications of Ad5-

Δ24-RGD were introduced to improve selectivity and replication, giving rise to 

the ICOVIR virus (Oncos Therapeutics, Inc), which contains an E2F-1 promoter 

with additional palindromes of E2F-responsive sites controlling E1A-Δ24 

expression (Rojas et al., 2009). ICOVIR could be safely administrated in 

patients with advanced solid tumours and resulted in stabilization or reduction in 

tumour size in 5 out of 12 patients, encouraging further clinical testing 

http://www.clinicaltrials.gov/show/NCT01582516
http://www.clinicaltrials.gov/show/NCT01956734
http://www.clinicaltrials.gov/show/NCT02197169
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(Nokisalmi et al., 2010; Rojas et al., 2009). ICOVIR is currently in a phase I trial 

for patients with locally advanced or metastatic melanoma 

(http://www.clinicaltrials.gov/show/NCT01864759).  

 

Another virus utilising RGD for improved infectivity is Ad5.SSTR/TK.RGD, which 

also expresses a therapeutic TK suicide gene and a somatostatin receptor 

(SSTR) that allows for gene transfer imaging (Kim et al., 2012). This virus was 

evaluated in a phase I clinical trial in patients with recurrent gynecologic cancer, 

showing safety but moderate efficacy with 5 out of 13 patients maintaining 

stable disease (Kim et al., 2012).  

 

Improving viral spread and limiting clearance 

 

Research is also aiming at improving viral spread within the tumour bed, as the 

extracellular matrix (ECM) in the tumour stroma could limit efficient viral 

distribution (Choi et al., 2012). Adenoviruses expressing ECM modulators, such 

as relaxin and decorin, have demonstrated improved spread and efficacy in 

tumour spheroids and in vivo xenograft models (Choi et al., 2010; Kim et al., 

2006).  

 

Perhaps the biggest limitation in developing oncolytic adenoviruses as anti-

cancer therapies is the host anti-viral immune response and the sequestration 

of adenovirus from the blood by liver macrophages (Kupffer cells) and 

coagulation factors (Ferguson et al., 2012; Thaci et al., 2011). These host 

factors are partly responsible for the transient efficacy of most clinically 

evaluated oncolytic viruses (Ferguson et al., 2012; Thaci et al., 2011). Anti-viral 

immune responses, which include the complement system (part of innate 

immunity) and neutralising antibodies (adaptive/acquired immunity), occurring 

during systemic delivery, represent a major hurdle in oncolytic virotherapy 

(Nayak and Herzog, 2010; Randall and Goodbourn, 2008). One approach to 

limit antibody neutralization is to coat adenoviruses with chemical conjugates, 

such as co-polymers of poly N-(2-hyrdoxypropyl) methacrylamide which was 

shown to evade neutralization and also decrease liver uptake of the virus in vivo 

(Fisher and Seymour, 2010). Another approach that has been employed is the 

encapsulation of adenoviruses into liposomes that was shown to limit virus 

http://www.clinicaltrials.gov/show/NCT01864759
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neutralisation by the immune system (Liu et al., 2011; Wan et al., 2013; Yang et 

al., 2010). In order to limit viral liver and spleen uptake, Shashkova et al 

depleted Kupffer cells and pre-treated xenografts with the anticoagulant drug 

warfarin before intravenous adenoviral injection, demonstrating circumvention of 

macrophage and hepatocyte binding of adenovirus and enhanced anti-tumour 

efficacy (Shashkova et al., 2008). It remains to be seen whether these results 

will translate into patients.  

 

 

1.3.5. Replication-selective oncolytic adenoviruses: Mechanisms of 

cytotoxicity  

 

Although much is known about how individual adenoviral proteins regulate cell-

death pathways, the precise mechanisms that govern adenovirus-mediated cell-

lysis during infection are poorly understood, let alone the different oncolytic 

mutants. As reviewed below accumulating evidence suggests that replication-

selective oncolytic adenoviruses utilize multiple mechanisms to induce 

cytotoxicity.  

 

Ad5-Δ24 (E3-deleted) and Ad5-Δ24-RGD with intact E3 region were shown to 

induce a necrosis-like programmed cell-death, independent of caspases and 

the presence or absence of ADP, in non-small-cell lung carcinoma cells (Abou 

El Hassan et al., 2004). Abnormal chromatin condensation and nuclear-

swelling, characteristic of necrosis, was observed following adenovirus 

infection, and although apoptotic phosphatidylserine (PS) externalization could 

be detected after Annexin V staining, cell-death was caspase-independent 

(Abou El Hassan et al., 2004). Baird et al. exploited the mode of cell-death 

induced by dl922-947 in ovarian cancer cells, and despite some observed 

nuclear-swelling and apoptotic morphological characteristics, programmed cell-

death could not be attributed to apoptosis or pure necrosis (Baird et al., 2008). 

Autophagy was also examined as a potential mode of cell-death but was rather 

found to act as a cell-survival response (Baird et al., 2008). Autophagy is 

generally considered as a pro-survival mechanism in response to cellular 

stresses, and involves the engulfment of proteins and organelles by 

autophagosomes and their degradation upon fusion with lysosomes (Yang and 
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Klionsky, 2010). However, autophagy is also a type of programmed cell-death 

and is intricately involved in crosstalk with apoptotic pathways (Fimia and 

Piacentini, 2010). 

 

Another group used glioma, cervical and prostate cancer cell lines to assess the 

anti-tumour mechanisms of an oncolytic adenovirus with hTERT promoter 

driving E1A expression (Ito et al., 2006). In contrast to Baird et al., this group 

demonstrated that hTERT-Ad-induced tumour-specific cell-death was 

autophagic, mediated though inhibition of the mammalian target of rapamycin 

(mTOR) signalling. Blockade of autophagy was shown to reduce hTERT-Ad-

induced cytotoxicity in glioma cells (Ito et al., 2006). Following this study, 

several publications further implicated autophagy in adenovirus-induced glioma 

cell-death, and growing evidence suggests that, at least in glioma cells, 

adenovirus-induced cell lysis is linked to autophagy (Jiang et al., 2008). A study 

evaluating the therapeutic potential of Ad5-Δ24-RGD in glioblastoma stem-cells, 

revealed that Ad5-Δ24-RGD induces autophagic cell-death, as judged by the 

formation of autophagic vacuoles and upregulation of autophagic markers, 

which co-localized with the viral fiber protein near the area of tumour necrosis in 

xenografts (Jiang et al., 2007). Another publication confirmed induction of 

complete autophagic flux by Ad5-Δ24-RGD in glioma cells and further 

associated autophagy to cell-lysis (Jiang et al., 2011b). Interestingly, in 

leukemia but not glioma cells, autophagy triggered caspase activation, which 

contributed to adenoviral-induced lysis (Jiang et al., 2011b). Consistent with 

findings in glioma cells, a study in lung adenocarcinoma cells demonstrated that 

autophagy was associated with enhanced viral replication and oncolysis 

(Rodriguez-Rocha et al., 2011). 

 

Botta et al. reported that dl922-947 activated autophagy in glioma cell lines, as 

evidenced by formation of acidic vesicles, LC3II expression and p62 

downregulation (Botta et al., 2012). However, in contrast to other studies but in 

agreement with Baird et al., it was proposed that dl922-947-induced autophagy 

acted as a cell survival mechanism. The proposal was a result of various 

findings. First, the AKT/mTOR pathway that negatively regulates autophagy 

was activated following infection, while the ERK1/2 pathway that positively 

regulates autophagy was inhibited. Second, MEK inhibition enhanced dl922-947 
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cytotoxicity, whereas rapamycin-induced autophagy attenuated dl922-947 

cytotoxicity. Moreover, inhibiting autophagy with chloroquine enhanced dl922-

947 anti-tumour efficacy both in vitro and in vivo (Botta et al., 2012).  

 

Another study in glioma cells, showed that oncolytic Ad-Survivin-RGD (RGD-

modified adenovirus with the tumour-specific promoter survivin driving E1A 

expression) increased apoptosis and upregulated caspase-3 and BAX mRNA 

levels (Ulasov et al., 2007). However, at the protein level, despite cytochrome c 

release, no BAX or p53 upregulation was detected, and caspase-3 was not 

activated. Electron microscopy experiments revealed the presence of 

autophagic vacuoles. The authors concluded that conditionally replicating Ad-

Survivin-RGD-induced cell-death was autophagic (Ulasov et al., 2007).  

 

Using dl922-947 in ovarian cancer cells, Flak et al. demonstrated that knocking-

down or over-expressing p21 reduced or enhanced, respectively, both E1A 

expression and dl922-947-induced cytotoxicity both in vitro and in vivo (Flak et 

al., 2010). This group previously demonstrated that dl922-947 induces the 

formation of cells with >4N DNA content and mitotic defects, such as multipolar 

spindles, and that dl922-947-induced cytotoxicity correlated with its ability to 

induce extensive DNA-damage and host-cell DNA over-replication (Connell et 

al., 2011). dl922-947-induced DNA-damage and over-replication were mediated 

by the ATR/Chk1-target Cdc25A, which was transcriptionally upregulated by the 

virus, and over-expression of Cdc25A increased dl922-947-induced DNA-

damage and cytotoxicity (Connell et al., 2011).  

 

Taken together, the evidence so far shows that cytotoxicity mechanisms differ 

between different cell- and tumour-types, and also for different replication-

selective oncolytic adenoviruses. This is not surprising given the various distinct 

modifications being made to different oncolytic adenoviruses, as well as the 

expected genetic variations among different tumour cell lines. Numerous 

studies have clearly demonstrated that autophagy mediates oncolytic 

adenovirus-induced cytotoxicity in glioma cells, but besides A549 lung cancer 

cells, the evidence for such mechanism in other tumour cells remains poor. 

Therefore further studies are required before assigning a primary role of 

autophagy in adenovirus-induced oncolysis. Furthermore, when oncolytic 
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adenoviruses are administered to a host with intact immune system, immune-

factors may alter the major mode of virus-induced cell death. Several recent 

reports have described new concepts of cell killing in connection with virus-

induced oncolysis in vivo, such as immunogenic cell death (Guo et al., 2014; 

Inoue and Tani, 2014). It has been suggested that the immune-response to 

virus infection constitutes the major mechanism whereby oncolytic viruses 

eliminate tumours clinically, and consequently the terminology oncolytic 

immunotherapy rather than oncolytic virotherapy was proposed (Guo and 

Bartlett, 2014; Hemminki, 2014; Pesonen et al., 2012). 

 

 

1.3.6. Replication-selective oncolytic adenoviruses combined with 

chemotherapy: Mechanisms of cytotoxicity  

 

Numerous pre-clinical studies demonstrated that combining oncolytic 

adenoviruses with other cytotoxic agents greatly enhances anti-tumour efficacy. 

Increased therapeutic responses have been demonstrated upon adenovirus 

combination with anthracyclins, such as doxorubicin and mitomycine C, anti-

metabolites, such as gemcitabine and 5-FU, platinum-based 

chemotherapeutics, such as cisplatin, alkylating agents, such as temozolomide, 

topoisomerase inhibitors, such as irinotecan and mitoxantrone, and mitotic 

inhibitors, including paclitaxel and docetaxel (Bressy and Benihoud, 2014; 

Hallden and Portella, 2012; Jiang et al., 2011a). While a plethora of studies 

demonstrated enhanced anti-tumour efficacy when oncolytic adenoviruses are 

combined with chemotherapy, a handful of studies have thoroughly examined 

the mechanisms underlying the synergistic anti-tumour effects. The interactions 

of adenoviral proteins and drugs are likely to occur by convergence on 

pathways and host-cell factors that induce tumour cell killing. Understanding of 

such interactions is necessary for further clinical developments. 

 

Combination with alkylating agents 

 

Ulasov et al. demonstrated that combining the chemotherapeutic autophagy-

inducing agent temozolomide with the oncolytic Ad-Survivin-pk7 virus, 

enhances cytotoxicity in glioma cells through autophagic cell-death. However, in 
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vivo anti-tumour efficacy was attributed to induction of both autophagy and 

apoptosis (Ulasov et al., 2009). It was similarly reported that temozolomide-

induced autophagy was the mechanism underlying therapeutic synergy when 

this drug was combined with OBP-405 (hTERT-Ad-RGD) in glioblastoma cells 

(Yokoyama et al., 2008). Fueyo's group showed that temozolomide synergizes 

with Ad-Δ24-RGD to induce cytotoxicity in glioma cells and the combination 

treatment improves survival in a mouse model (Alonso et al., 2007). Ad-Δ24-

RGD abrogated temozolomide-induced G2/M arrest and blocked p300 

recruitment to promoters of the DNA repair enzyme 6-methylguanine-DNA 

methyltransferase (MGMT), which has been previously associated with 

resistance of glioma cells to temozolomide. Ad-Δ24-RGD-mediated interaction 

with p300, a well-known target of E1A, inhibited MGMT expression (Alonso et 

al., 2007).  

 

Combination with anthracyclins or platinum-based agents 

 

Interestingly, a study showed that Ad5-Δ24RGD synergised with doxorubicin to 

induce cytotoxicity in osteosarcoma cell lines, but not in primary osteosarcoma 

cells (Graat et al., 2006). Synergistic effects correlated with the ability of 

doxorubicin to induce G2 cell-cycle arrest, which was not evident in primary 

cells perhaps due to their slow growth rate. Adenovirus cell attachment, 

internalization and replication was previously reported to be enhanced in G2/M 

phase (Bernt et al., 2002; Steinwaerder et al., 2000) and in this study 

doxorubicin inhibited viral replication only in the non-arresting primary cells 

(Graat et al., 2006).  

 

You et al. showed that SG511 (chimeric fiber and E1B55K-deleted Ad) 

enhanced efficacy of the DNA-damaging drug cisplatin, by downregulating anti-

apoptotic MCL-1 and increasing apoptosis through the intrinsic/mitochondrial 

pathway, in colon and cervical cancer cells (You et al., 2012). Increased 

apoptosis was also observed when cisplatin was combined with adenovirus 

lacking E1B55K and E1B19K (Ad E1B19/55) in a human cervical cancer 

xenograft model (Yoon et al., 2006). In addition, synergistic induction of 

apoptosis was greatly enhanced when both E1B55K and E1B19K were deleted, 

as opposed to deletion of only E1B55K (Yoon et al., 2006). 
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Combination with topoisomerase inhibitors 

 

A study in glioma cells showed that Ad 24 enhanced irinotecan-induced 

cytotoxicity and Ad 24 injection of glioma xenografts followed by irinotecan 

treatment significantly prolonged survival (Gomez-Manzano et al., 2006). Viral 

replication was unaffected and chemosensitization was attributed to Ad 24-

induced upregulation of topoisomerase I expression and activity as well as S-

phase cell accumulation (Gomez-Manzano et al., 2006). The suggestion was 

based on previous publications reporting enhanced effect of irinotecan and 

camptothecin in S-phase cells (Darzynkiewicz et al., 1992; Li et al., 1972).  

 

Our group previously demonstrated significantly improved anti-tumor efficacy 

upon combination of mitoxantrone with the dl922–947 oncolytic adenovirus in 

both in vitro and in vivo prostate cancer models (Radhakrishnan et al., 2010). 

Treatment with mitoxantrone, before or at the same time as virus infection, 

increased viral uptake in a dose-dependent manner and E1A expression, while 

it attenuated virus replication (Radhakrishnan et al., 2010). E1A expression was 

sufficient for chemosensitisation, as shown by E1A overexpression in the 

absence of replication, consistent with previous reports (Cheong et al., 2008; 

Ueno et al., 2000). The ability of virus to accumulate cells in S-phase was not 

affected in the presence of drugs, which could have also enhanced the effects 

of the drug. Moreover while both virus and mitoxantrone increased 

topoisomerase II expression, their combination did not further increase 

expression, excluding it as the mechanism of chemosensitisation 

(Radhakrishnan et al., 2010).  

 

Combination with anti-metabolites  

 

In esophageal squamous cell carcinoma cells a replication-selective adenovirus 

lacking E1B55K (Ad-delE1B55) enhanced cytotoxicity in combination with 5-FU, 

etoposide and mitomycin C, but not cisplatin (Ma et al., 2010). The lack of 

enhanced cytotoxicity upon Ad-delE1B55 and cisplatin combination was 

attributed to a cisplatin-induced G1 arrest, as all other agents induced S-phase 

cell accumulation followed by progression to G2/M (Ma et al., 2010). The study 

also evaluated different treatment schedules; simultaneous administration of 
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Ad-delE1B55 and 5-FU and Ad infection before or after 5-FU treatment. 

Simultaneous treatment with Ad-delE1B55 and 5-FU was more efficacious in 

inducing apoptosis compared to the sequential treatments. Regarding drug-

mediated effects on virus, 5-FU initially decreased viral replication, although 

long-term viral progeny production was not significantly inhibited; E1A 

expression was unaffected (Ma et al., 2010).  

 

Combination of Ad5/3-Δ24 with gemcitabine in an orthotopic murine model of 

peritoneally spread ovarian cancer, significantly increased survival as compared 

to either monotherapy and ~60% of mice remained alive at the end of the 

experiment (Raki et al., 2005). Of note, gemcitabine decelerated Ad5/3-24 

replication, but total virus yield was not reduced. The authors suggested that 

slower replication could benefit anti-tumour efficacy by enhancing tumour 

penetration and viral spread before oncolysis. Another proposed mechanism for 

the observed synergistic effect, was virus-mediated enhancement of 

chemotherapy-induced cytotoxicity, although this was not further examined 

(Raki et al., 2005). Lee et al studied the synergistic cytotoxic effect of an E1B- 

and E3-deleted adenovirus (AdE1A) and gemcitabine in hepatocellular 

carcinoma cell lines. By stably transfecting cells with E1A, they demonstrated 

that E1A sensitised cells to gemcitabine through enhancement of apoptosis 

(Lee et al., 2003). Gemcitabine treatment increased expression of NF-κB and 

PARP and enhanced caspase-mediated PARP cleavage. However, in the 

presence of E1A gemcitabine-induced upregulation of NF-κB expression and 

PARP expression and cleavage were suppressed. Overexpression of NF-κB or 

PARP decreased apoptosis, suggesting a protective role for these two factors in 

gemcitabine-induced apoptosis (Lee et al., 2003).  

 

Combination of an hTERT-promoter dependent oncolytic adenovirus 

(Ad5/3hTERTE1) with gemcitabine enhanced cytotoxicity in pancreatic cancer 

cells and in vivo xenografts (Onimaru et al., 2010b). It was shown that 

gemcitabine increased hTERT promoter activity and subsequently E1 

expression and infectivity, which led to increased E1-induced 

chemosensitization (Onimaru et al., 2010b). The same group also demonstrated 

that gemcitabine can increase CMV promoter activity in an adenoviral vector, 

thus increasing gene expression (Onimaru et al., 2010a). Interestingly, this 
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group later reported that adenovirus infectability and cytotoxicity were higher in 

gemcitabine-resistant cells compared to sensitive cell clones (Yasui et al., 

2011).  

 

Another group proposed that the increased anti-tumour efficacy of gemcitabine 

combined with an E1ACR2-mutated and E1B55K-deleted adenovirus (AxdAdB-

3) in renal cell carcinoma and bladder cancer cells could be attributed to the 

ability of the virus to increase S-phase entry, although this was not examined in 

the presence of gemcitabine (Wang et al., 2013; Wang et al., 2011). The 

hTERT promoter-driven virus OB-301 exhibited a therapeutic synergism in 

combination with gemcitabine in xenograft models of lung cancer (Liu et al., 

2009). In contrast to other studies, gemcitabine did not affect viral replication or 

expression of E1A. OB-301 accumulated cells in S-phase, which was attributed 

to the increased phosphorylation of Akt and increased expression of E2F1, 

leading to downregulation of Rb levels. The authors proposed that the cell-cycle 

effects of OB-301 could account for the increased gemcitabine cytotoxicity, 

however S-phase accumulation was not studied in combination-treated cells 

(Liu et al., 2009). 

 

Combination with radiotherapy 

 

Insights into the mechanisms underlying synergy of oncolytic adenoviruses with 

DNA-damaging therapeutics can be also gained from studies combining viruses 

with radiation. Similar to DNA-damaging chemotherapeutic drugs, irradiation 

induces DNA-damage in the form of DSBs (Jakob et al., 2009; Sokolov et al., 

2005). One study in prostate cancer cells using radiotherapy in combination 

with Ad5/3-Δ24-hCG (Ad3 receptor-retargeted Ad5Δ24 virus expressing the 

secretable marker human chorionic gonadotropin (hCG)) reported that the virus 

reduced Mre11 levels and Chk2 activation and downregulated DNA-repair 

proteins in combination-treated cells, which also exhibited enhanced autophagy 

(Rajecki et al., 2009). Cell-cycle and mTOR pathways were also deregulated. 

The authors suggested that Ad5/3-Δ24-hCG prevented repair of irradiation-

induced DSBs and accumulated DNA-damage which eventually led to induction 

of autophagy, but not apoptosis (Rajecki et al., 2009). In agreement, Kuroda et 

al. showed that OBP-301 (hTERT promoter-driven E1 expression) synergizes 
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with irradiation via inhibition of DNA-repair pathways, exerted by E1B55K-

mediated degradation of the MRN complex in oesophageal and lung cancer cell 

lines (Kuroda et al., 2010).  

 

Combination with mitotic inhibitors 

 

A group examined the mechanism underlying synergy of dl922-947 with the 

microtubule-stabilizing chemotherapeutic drug paclitaxel in ovarian cancer cells 

(Ingemarsdotter et al., 2010). They demonstrated that the combination 

treatment induced mitotic aberrations coupled with increased cdk1-cyclin B 

activity, which led the authors to suggest that synergy was mediated through 

induction of mitotic slippage and caspase-dependent apoptosis, as shown by 

Annexin V staining and caspase-3 activation (Ingemarsdotter et al., 2010). 

 

Adenovirus-mediated sensitization to the microtubule-stabilizing agent 

docetaxel, has been mainly attributed to E1A-mediated cell-cycle effects 

(Radhakrishnan et al., 2010; Yu et al., 2001). Accordingly, our team has 

demonstrated that E1A12S expression is sufficient for prostate cancer cell 

sensitization to docetaxel (Miranda et al., 2012).  

 

Libertini et al. demonstrated that combining the Aurora-B inhibitor AZD1152 with 

dl922-947 in anaplastic thyroid carcinoma (ATC) cells and in vivo models 

results in enhanced anti-tumour efficacy (Libertini et al., 2011). Cell death 

induced by the combination treatment did not show the classical features of 

apoptosis, despite caspase-3 activation and appearance of cells with less than 

2N DNA content (sub-G1). AZD1152 with or without dl922-947 arrested cells in 

G2/M and the increased sub-G1 fraction observed with the combination 

treatment correlated with a decrease in polyploid (>4N DNA content) cells, 

suggesting mitotic catastrophe. AZD1152 decreased phosphorylation of histone 

H3, a mitotic marker and Aurora-B substrate, consistent with Aurora-B inhibition 

leading to premature mitotic exit. Interestingly, dl922-947 also decreased 

phosphorylation of histone H3 24h post-infection and together with AZD1152 

phosphorylation was diminished. The authors suggested that adenovirus 

prematurely ends mitosis in order to switch the cell machinery to viral replication 

(Libertini et al., 2011).  



116 
 

Conclusions  

 

Studies combining oncolytic adenoviruses and chemotherapy have clearly 

demonstrated enhanced cytotoxicity compared to either single agents and have 

highlighted the importance of optimising the treatment schedules. Collectively, 

the mechanisms responsible for enhanced anti-tumour efficacy when 

replication-selective oncolytic adenoviruses are combined with cytotoxic drugs, 

are predominantly cell-cycle dependent, but vary with different 

chemotherapeutic agents. Several studies reported that drug-induced S-phase 

or G2 arrest can favour viral replication and, vice versa, adenovirus-induced S-

phase accumulation can enhance the efficacy of drugs. In some instances 

abrogation of cell-cycle checkpoints was implicated in virus-mediated 

chemosensitization. A number of reports also demonstrated drug-mediated 

beneficiary effects on adenovirus, such as increased E1A expression, viral 

uptake or promoter activity, whereas other studies reported that drugs can 

attenuate viral replication. Importantly, E1A is the main viral protein that has 

been implicated in chemosensitization and some groups reported E1A 

expression alone to be sufficient. Specific cellular targets of the combination 

treatments were not always investigated and/or identified. Regarding the type of 

cell death, both autophagy and apoptosis have been reported, although 

apoptosis seems to be the predominant mode of cell death when oncolytic 

adenoviruses are combined with chemotherapy.  

 

Clearly, more thorough investigations are warranted in order to gain insights 

into adenovirus-mediated chemosensitization. In light of the recent interest in 

evaluating several oncolytic adenoviral mutants in clinical trials in combination 

with already approved chemotherapeutic drugs, it is essential to determine how 

these agents synergise with virus. The dismal prognosis for pancreatic cancer 

patients highlights the importance of improving on current therapies by 

investigating whether selected adenoviral mutants could enhance cell killing by 

drugs such as gemcitabine. By establishing the cellular mechanisms for the 

improved inhibition of cancer growth it might also be possible to further improve 

on treatment strategies by developing alternative targeted therapies.  
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1.4. Research rationale 

 

 

1.4.1. Background to the project  

 

Replication-selective oncolytic adenoviruses represent a promising anticancer 

strategy, with demonstrated efficacy, tumour-selectivity and overall safety for 

several mutants, in preclinical and clinical studies (Kirn, 2000; Liu et al., 2007; 

Parato et al., 2005; Yamamoto and Curiel, 2010). Clinical trials with the 

prototype oncolytic mutant dl1520 indicated the need for more efficacious 

oncolytic adenoviruses. Deletion of the E1ACR2 region that takes advantage of 

the frequent inactivation of pRb/p16 pathways in tumours, was extensively 

demonstrated to increase both tumour selectivity and viral potency (Fueyo et 

al., 2000; Heise et al., 2000; Kirn et al., 1998; Lamfers et al., 2002; Lockley et 

al., 2006; Stolarek et al., 2004). However, E1ACR2-deleted mutants were also 

reported to replicate in normal proliferating cells (Heise et al., 2000). To 

enhance the efficacy and specificity of E1ACR2-deleted mutants our team has 

introduced the E1B19K deletion, which was demonstrated to enhance viral 

spread and anti-tumour efficacy and lower toxicity to normal tissue (Harrison et 

al., 2001; Leitner et al., 2009; Liu et al., 2004; Liu et al., 2005; Sauthoff et al., 

2000). The E1ACR2- and E1B19K-deleted adenovirus (AdΔΔ; (Oberg et al., 

2010)) takes advantage of the high anti-tumour potency of E1ACR2-deleted 

mutants and the improved efficacy and tumour-selectivity of the E1B19K-

deleted mutants.  

 

Since pancreatic cancers show prevalent genetic alterations in pRb/p16, cell 

cycle and cell death pathways, it was hypothesised that the E1B19K-deleted 

(AdΔ19K) and E1ACR2- and E1B19K-deleted (AdΔΔ) mutants would efficiently 

target and render pancreatic cancer cells susceptible to cytotoxic drugs. Indeed, 

our group demonstrated that both mutants have high anti-tumour efficacy in 

pancreatic cancer cell lines and in vivo xenografts (Cherubini et al., 2011; 

Leitner et al., 2009; Oberg et al., 2010). In addition, AdΔ19K potently sensitized 

pancreatic cancer cells to gemcitabine-induced apoptosis, both in vitro and in 

vivo (Leitner et al., 2009), and this ability was retained in the AdΔΔ mutant, 

which additionally was shown to potentiate irinotecan-induced cell death 



118 
 

(Cherubini et al., 2011). The enhanced anti-tumour efficacy that was 

demonstrated when DNA-damaging drugs are combined with E1B19K-deleted 

mutants, suggests that this combination treatment holds promise as an 

improved therapeutic strategy for pancreatic cancer. 

 

 

1.4.2. Aims and objectives of the project  

 

The current project is a continuation of the previously published results 

(Cherubini et al., 2011; Leitner et al., 2009; Oberg et al., 2010). The project 

aims to elucidate the mechanisms underlying the enhanced cell killing observed 

when E1B19K-deleted adenoviruses are combined with DNA-damaging 

chemotherapeutic drugs in pancreatic cancer cells and identify potential 

biomarkers of the treatment response. The overall goal is to identify cellular 

factors that can be targeted in future drug development of improved oncolytic 

viruses or small molecule anticancer therapeutics targeting pancreatic cancer. 

We hope that the findings from these studies will aid in the development of 

anticancer agents that can improve on the current dismal prognosis for patients 

afflicted with pancreatic cancer.  

 

The major purpose with the work in this thesis is to determine the mechanisms 

of action for the AdΔ19K mutant in combination with the DNA-damaging drugs 

gemcitabine and/or irinotecan in pancreatic cancer cells. Employing the Ad∆19K 

rather than the Ad∆∆ mutant, will allow the identification of potential factors 

specifically targeted during virus-mediated sensitization to the DNA-damaging 

chemodrugs. The study intends to delineate the sequence of events leading to 

cell death when AdΔ19K and DNA-damaging drugs are combined in the 

pancreatic cancer cell lines PT45 and MIAPaCa-2.  

 

The hypothesis is that cellular processes activated in response to the DNA-

damaging drugs and Ad∆19K converge on signalling pathways to synergistically 

induce cell killing. Particularly, we hypothesise that Ad∆19K and DNA-damaging 

drugs act synergistically to deregulate cell-cycle mechanisms. Therefore a 

major objective is to determine how Ad∆19K in combination with DNA-

damaging drugs affect cell cycle progression, with a particular focus on DNA 
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damage responses. First, using cell viability, death and apoptotic assays I will 

verify previous findings by our team, that the E1B19K deletion in wild-type 

adenovirus type 5 enhances drug-induced cell death. Then I will determine 

changes in cell-cycle progression in response to the combination of Ad∆19K 

with gemcitabine and/or irinotecan compared to single-agent treatments through 

the use of flow-cytometry. I intend to investigate DNA damage checkpoint 

responses to the combination treatment and particularly how the presence of 

adenovirus in drug-treated cells affects the expression of DNA-damage 

response factors. In addition, I will characterise the effects of the combination 

treatment on mitotic progression by employing a combination of 

immunofluorescence microscopy and live-cell imaging techniques. The 

identification of factors differentially regulated in combination-treated versus 

single-agent-treated cells will be verified using a battery of molecular tools, 

including siRNA-mediated knockdown and small molecule inhibitors.  
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CCHHAAPPTTEERR  22::  MMEETTHHOODDSS  

 

 

2.1. Chemical Reagents 

 

Gemcitabine (Gemzar®) was purchased from Eli Lilly (IN, USA) and 

reconstituted in 0.9% Sodium Chloride Injection solution (127mM; stored at 

4ºC). Irinotecan (Campto®) hydrochloride injection (20mg/ml; stored at 4ºC) 

was from Hospira UK Ltd and the pan-caspase inhibitor Calbiochem® Z-

VAD(OMe)-FMK (Caspase Inhibitor I; 5mM in dimethyl sulfoxide (DMSO)) was 

from Millipore (MA, USA). Staurosporine (1mM in DMSO), RNAse A solution 

(33mg/ml in Tris-HCl/glycerol), Tween-20, Triton-X100 and bovine serum 

albumin (BSA) were from SIGMA-ALDRICH (MO, USA). Propidium Iodide (PI; 

1mg/ml in water) and ProLong Gold antifade reagent with DAPI were purchased 

from Thermo Fisher Scientific (CA, USA). MG-132 (25mg/ml in DMSO) was 

from Enzo Life Sciences Ltd (UK), cycloheximide (25mM in water) was from 

Abcam Plc (UK) and thymidine (100mM in water) was from Alfa Aesar (MA, 

USA). The fixable viability dye (FVD) eFluor® 506 was purchased from 

eBioscience (CA, USA) and kept in aliquots at -80ºC. The small molecule 

inhibitor monastrol (20mM in DMSO) was from SIGMA-ALDRICH. The Plk1 

inhibitor BI-2536 (10mM in DMSO) and the Aurora-B inhibitor AZD1152-HQPA 

(Barasertib; 201mM in DMSO) were purchased from Selleckchem (TX, USA). 

The Mps1 inhibitor (10mM in DMSO) was a generous gift from Dr Spiros 

Linardopoulos (The Institute of Cancer Research, London UK).  

 

 

2.2. Cell lines, culture conditions and cell infection/treatment 

 

2.2.1. Origin of cell lines 

 

The human pancreatic adenocarcinoma cell lines PT45 (Prof H. Kalthoff, Kiel, 

Germany) and MIAPaCa-2 (ATCC, VA, USA) are derived from primary PDAC 
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tumours. The cell lines were STR-profiled (LGC Standards, UK and Cancer 

Research UK) and verified to be identical to the profiles reported by the 

suppliers and to the original vial. 

 

2.2.2. Cell culture conditions  

 

Cells were grown at 37°C and 5% CO2 in DMEM supplemented with 10% Fetal 

Bovine Serum (FBS) and 1% penicillin and streptomycin (Penicillin 10000 

units/ml, Streptomycin 10mg/ml; P/S). DMEM, FBS and P/S were purchased 

from PAA and after August 2013 from SIGMA-ALDRICH. DMEM contained 

4.5g/L glucose, L-glutamine, sodium pyruvate and sodium bicarbonate. Cells 

were sub-cultured twice a week, by removing medium, washing with phosphate 

buffered saline (PBS) and trypsinizing (1x Trypsin from PAA or later SIGMA-

ALDRICH). PT45 and MIAPaCa-2 cells were used at passage 18-30 and 3-15, 

respectively. Cells were frozen at 1x106 cells/ml in 10% DMSO/30% FBS in 

DMEM and stored in liquid N2.  

 

2.2.3. Cell seeding, infection/treatment and harvesting from 6-well plates 

 

In all experiments cells were seeded in 10% FBS/1% P/S DMEM at the 

specified densities for 16-24 hours (h). For cell infection with adenoviruses in 6-

well plates, the medium was changed to 1ml serum-free DMEM -/+ the 

indicated dose of virus. 2h later the medium was replaced with 10% FBS/1% 

P/S DMEM  -/+ the indicated dose of drug(s). At the specified times post-

infection cell harvesting from 6-well plates was done as follows: supernatant 

was collected, unless otherwise stated, cells were washed in PBS and 

trypsinised, followed by addition of 10% FBS/1% P/S DMEM to inactivate the 

trypsin. The supernatant was mixed with the cell suspension, followed by 

centrifugation at 1200rpm for 5 minutes (min) using an Allegra X-22 centrifuge 

(Beckman Coulter, Inc, CA, USA) and removal of supernatant, leaving the cell 

pellet. The cell pellet was washed in PBS and processed as specified.  
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2.3. Viruses 

 

The species C wild type adenovirus type 5 Ad5tg, was derived from pTG3602 (a 

kind gift from Dr Majid Mehtali  Transgéne, Strasbourg, France). Ad5tg and the 

corresponding mutant deleted in the anti-apoptotic E1B19K gene (Ad∆19K) 

were previously constructed and characterized by members of our team (Leitner 

et al., 2009; Oberg et al., 2010). Viruses were amplified in human embryonic 

kidney 293 (HEK293) cells and/or A549 human lung adenocarcinoma epithelial 

cells, purified and validated by Ms Heike Muller according to previously 

described methods (Oberg et al., 2010; Wang et al., 2003). PCR verification of 

Ad5tg and Ad∆19K viruses is shown in figure 10. Ad5tg and Ad∆19K had viral 

particle (vp) counts of 5.5x1011vp/ml and 2.3x1012vp/ml, respectively, and 

infectious units (plaque-forming units; pfu) of 1.97x1010pfu/ml and 

1.98x1011pfu/ml, respectively. The resulting ratios of particle to infectious units 

were 28 and 12 vp/pfu for Ad5tg and Ad∆19K, respectively.  

 

 

Figure 10: PCR verification of Ad5tg and Ad∆19K. Primers 1-8 (P1-8) 
identifying the adenoviral E1A, E1B55K, E1B19K, E3B and E3gp19K regions 
(Table 3) were used for PCR amplification of DNA extracted from wild-type 
Ad5tg and the Ad∆19K mutant. PCR products from these reactions were 
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compared with PCR fragments generated from the amplification of the control 
wild-type Ad5 DNA. Upper panel shows the comparison of Ad5tg (tg) with Ad5 
and bottom panel shows the comparison of Ad∆19K (∆19) with Ad5, with an 
asterisk denoting the mutated region. Courtesy of Ms Heike Muller.  
 
 
 
Table 3: Primer sets for Ad5 PCR verification  

 

 

2.4. KRAS, TP53 and CDKN2A PCR mutational analysis  

 

2.4.1. DNA extraction  

 

DNA was extracted from PT45 and MIAPaCa-2 cells using the QIAamp DNA 

Blood Mini Kit, according to the manufacturer’s instructions (QIAGEN, 

Netherlands). In brief, cell pellets were re-suspended in 200µl PBS, and 20µl 

QIAGEN protease was added per sample followed by addition of 200µl Buffer 

AL and 10min incubation at 56ºC. 200µl of 100% ethanol were added and DNA 

was purified using the spin protocol according to the manufacturer's 

instructions. DNA was eluted in 200µl Buffer AE and assessed for purity (ratio 

A260/A280=1.8-2.0 and ratio A260/A230=2.0-2.2) and concentration using the 

NanoDropTM1000 Spectrophotometer (Thermo Fisher Scientific). 

 

 

Primer 
5' binding 

site 
3' binding 

site 
Target region 

Expected band 
size 

1 476 853 E1A 377 bp 

2 767 1029 E1A 262 bp 

3 1069 1453 E1A 384 bp 

4 1554 2086 E1B19K 532 bp 

5 2073 2440 E1B55K 367 bp 

6 2383 3434 E1B55K 1051 bp 

7 29915 31038 E3B 1123 bp 

8 28715 29135 E3-gp19K 420 bp 
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2.4.2. Polymerase chain reaction (PCR) protocol 

 

PT45 and MIAPaCa-2 DNA was analysed for mutations in exon 1 of the KRAS 

gene, exons 1-3 of CDKN2A gene and exons 5-8 of TP53 gene. Primers for the 

cellular gene amplifications are given in table 4. Gene amplification was 

performed in a 50µl PCR reaction mix containing 1µM forward or reverse 

primer, 200µM NTP mix (Life Technologies, Thermo Fisher Scientific), 1 unit 

AmpliTaq Gold DNA Polymerase, 1x GeneAmp PCR Gold buffer, 1.5mM MgCl2 

(all from Applied Biosytems, Thermo Fisher Scientific) and 1µg DNA, in a PTC-

225 Peltier Thermal cycler (MJ Research, Inc, Canada), using the following 

program: 7min denaturation at 95ºC, 30 seconds(s) incubation at 95ºC, 45s 

annealing at the specified temperatures, 45s elongation at 72ºC and 30s 

incubation at 95ºC for 34 cycles and extension at 72ºC. A gradient (55-62ºC) of 

annealing temperatures was initially set-up to determine the optimal annealing 

temperature for each primer set (Figure 11), which was: 55.2ºC for KRAS, 57ºC 

for CDKN2A(p16) exons 1-3 and TP53 exon 8, and 56.2ºC for TP53 exon 5, 6 

and 7.  

 

 

 

 
Figure 11: Example of annealing temperature optimisation. PCR reactions  
were performed at the annealing temperatures indicated on the figure and a 
sample from each reaction was mixed with 6x blue/orange loading dye 
(Promega, WI, USA) and loaded on a 1% agarose gel (in 1x Tris-Borate EDTA). 
The example shown is for CDKN2A (p16) exon 1, 2a and 3 primers. The 
optimisation was performed using DNA from human umbilical vein endothelial 
cells (HUVEC). Hyphen indicates the negative control, which was a PCR 
reaction in the absence of DNA. DNA ladder numbers are in base pairs (bp).   
2.4.3. DNA sequencing 
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The purity and specificity/size of the amplified DNA was assessed by agarose 

gel electrophoresis (1% agarose gel in 1x Tris-Borate EDTA) before submission 

for Sanger sequencing at the Barts and the London Genome Centre. TP53 

exon 6 amplification resulted in more than one DNA fragment as visualised by 

agarose gel electrophoresis. Therefore, the specific DNA fragment was excised 

from the agarose gel, extracted and purified using the QIAquick gel extraction 

kit (QIAGEN), according to manufacturer's instructions, and then submitted for 

sequencing. DNA sequencing data were analysed using Chromas software 

(Technelysium Pty Ltd, Australia) and nucleotide sequences were aligned with 

National Center for Biotechnology Information (NCBI) reference sequences for 

each gene (NG_007524 for KRAS and NM_000546.5 for TP53) using 

nucleotide BLAST (NCBI). Identified nucleotide changes were translated to 

amino acid changes using translated and protein BLAST (NCBI). The PCR 

mutational analysis was performed in conjunction with Dr Yang Kee Stella Man. 

 

 

2.5. Cell viability assays 

 

PT45 and MIAPaCa-2 cells were seeded at 8x103 and 1x104 cells/well, 

respectively, in 200µl/well of 96-well plates for 16-24h. The medium was 

decanted and replaced with 90µl of 2% FBS/1% P/S DMEM -/+ drugs. Drug 

concentration was fixed at doses previously determined to kill 20-40% of cells. 

Ad5tg or Ad∆19K was added in 10µl medium containing the respective 10x 

concentration, to make up a total volume of 100µl/well. To generate virus dose-

response curves, 5-fold dilutions starting at 1x105 particles per cell (ppc) were 

prepared. Otherwise, fixed concentrations of both drugs and viruses were 

prepared. Each condition was in triplicate wells. 

 

72h post-infection cell-viability was assessed using the CellTiter 96® AQeous 

Non-Radioactive Cell Proliferation Assay (Promega) according to the 

manufacturer's instructions. The assay comprises of the tetrazolium compound [ 

3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-

tetrazolium] (MTS) and the electron coupling reagent phenazine methosulfate 

(PMS). Medium was decanted and replaced with 100µl serum-free DMEM 

containing 20% MTS and 1% PMS at 100µl/well, followed by cell incubation at 
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37°C and 5% CO2. In metabolically active cells, dehydrogenases convert MTS 

into a soluble formazan dye, which absorbs at 490nm and the absorbance of 

the dye is directly proportional to the number of live cells in the well (Dunigan et 

al., 1995). Cells were incubated with DMEM/MTS/PMS until the absorbance of 

the untreated cells reached 1.6-1.9 (typically 1-2h for MIAPaCa-2 cells and 3-6h 

for PT45 cells). Absorbance was read at 490nm using a microplate reader 

(Opsys MR from Dynex Technologies, VA, USA).  

 

Cell viability calculated from the absorbance values was expressed as 

percentages and used to indirectly calculate the percentages of cell death. The 

absorbance of the DMEM/MTS/PMS solution in the absence of cells 

(background absorbance; Abackground) was subtracted from the absorbance 

values of untreated and treated cells. In cell viability assays generating dose-

response curves, the percentage cell death of virus or drug was calculated by 

normalising the absorbance of virus- or drug-treated (Avirus or Adrug) cells to that 

of untreated cells (Auntreated), using the following formula:  

 

 

When virus was combined with drugs, the absorbance of the double treatment 

(Avirus+drug) was normalised to the absorbance of drug-treated cells (Adrug) as 

shown by the following formula:  

 

 

When two drugs were combined with virus, the absorbance was normalised to 

that of the cells treated with the two drugs. When cell viability assays were 

performed using fixed doses of both viruses and drugs, the absorbance of all 

treated cells was normalised to the absorbance of untreated cells only. Effective 

concentrations (EC) killing 50% of cells (EC50 values) were derived from 
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sigmoidal dose-response curves, generated using non-linear regression 

analysis (Graphpad Prism Software, CA, USA) with the following formula:  

 

 

(LogEC50 is the X value when the response is halfway between the Bottom and the Top of the curve)  

 

 

2.6. Trypan blue inclusion cell death assay 

 

PT45 cells were seeded at 1.5x105 cells/well in 6-well plates, infected, treated 

and harvested as described in section 2.2.3. Cell suspension was mixed with 

0.4% Trypan blue dye (Bio-Rad Laboratories, Inc, CA, USA) at 1:1 ratio and 

10µl in duplicates were loaded onto a dual-chambered counting slide (Bio-Rad). 

Cell count and viability were assessed using a TC20TM automated cell counter 

(Bio-Rad). Percentage cell viability was recorded and used to calculate cell 

death.  

 

 

2.7. Apoptotic assays 

 

PT45 or MIAPaCa-2 cells were seeded at 2x105 cells/well in 6-well plates, 

infected and treated as described in section 2.2.3. Where indicated, 25µM of 

zVAD was added simultaneously with gemcitabine. Staurosporine was used at 

1µM for 16h in PT45 cells and at 0.5µM for 24h in MIAPaCa-2 cells. 

 

2.7.1. TUNEL/PI assay 

 

72h post-infection cells were harvested, fixed and stained using the APO-BrdU 

kit (BD Biosciences Pharmingen, CA, USA) according to the manufacturer’s 

guidelines. Briefly, 1-2x106 cells were suspended in 1% w/v 

parafolmaldehyde/PBS, kept on ice for 1h, then washed in PBS and fixed in 

70% ethanol (30min on ice). Cells were washed in wash buffer and incubated 

(1h, 37°C) in DNA-labelling solution, containing Br-dUTP. Cells were washed in 

rinse buffer and incubated (30min, 22°C) in antibody-staining solution, 

containing FITC-labelled anti-BrdU antibody. 350µl of PI/RNAse staining buffer 
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was added (30min, 22°C) and cells were analysed by flow-cytometry as detailed 

below. All reagents were supplied by the kit (BD Biosciences).  

 

2.7.2. Cleaved Caspase-3/PI assay  

 

At the indicated times post-infection cells were harvested, fixed and stained 

using the FITC Active Caspase-3 Apoptosis Kit (BD Biosciences Pharmingen) 

according to the manufacturer’s guidelines. Briefly, cell pellet was washed with 

PBS twice and resuspended in BD Cytofix/Cytoperm™ solution at a 

concentration of 1x106 cells/ml. Following a 20min incubation on ice, cells were 

pelleted and washed twice with 1x BD Perm/Wash™ buffer. Cells were 

incubated in FITC Rabbit Anti-Active Caspase-3 antibody (supplied by the kit) 

diluted in BD Perm/Wash™ buffer solution (30min, 22°C). Following washing 

with BD Perm/Wash™ buffer, cell pellet was re-suspended in 250µl of PI 

(50µg/ml)/RNAse A (100µg/ml) solution and incubated for 30min at 22°C.  

 

2.7.3. Flow-cytometric analysis  

 

Flow-cytometric data acquisition was performed using BD CellQuestTM software 

operated on a BD FACSCalibur instrument (both from Becton Dickinson, NJ, 

USA). PI and FITC signals were detected in the FL-3 and FL-1 channel, 

respectively, of the 488nm argon laser. Dot plots of Side Scatter (SSC-H) vs 

Forward Scatter (FSC-H) were used to exclude debris, followed by doublet 

exclusion using the area and width of the FL2 channel. Acquisition stopped 

when 20000 events were acquired in the doublet-exclusion gate. Cell-cycle 

specific apoptosis was measured by plotting the FL1-H channel, where FITC 

was detected, against the FL3-H channel, where propidium iodide was 

detected, and gates for apoptotic G1, S, G2/M and >4N cells where applied. 

Post-acquisition data analysis was performed using the FlowJo v7.6.5 software 

(Tree star, Inc, OR, USA) and bar charts were plotted using GraphPad Prism v5 

software.  
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2.8. Viral genome amplification assay 

 

PT45 cells were seeded at 7.5x104 cells/well in 6-well plates, infected, treated 

and harvested (excluding supernatant) at 4, 24, 36, 48 and 72h post-infection, 

as described in section 2.2.3. Cell suspension was transferred to 

microcentrifuge tubes and spun at 1200rpm for 5min using a benchtop 

microcentrifuge (5415C from Eppendorf, Germany). Cell pellets were snap-

frozen and stored at -80ºC until all time-points were collected. DNA was 

extracted as described in section 2.4.1. Total DNA was diluted to 15ng/µl and 

used for quantitative PCR (qPCR) analysis of the viral E2A gene using the 

standard curve method. The cellular GAPDH gene was used as an internal 

control.  

 

2.8.1. Quantitative PCR protocol  

 

Two qPCR reactions were set-up per sample with each containing 1x SYBR® 

Green PCR master mix (Applied Biosystems), 200nM of forward and reverse 

primers and 60ng DNA (with the exception of standards) in 20µl volume. The 

primer sequences are given in table 4. qPCR was performed in MicroAmp® 

optical 96-well reaction plates covered with MicroAmp® optical adhesive film 

(Applied Biosystems), using an Applied Biosystems 7500 Instrument. Melting 

(dissociation) curves for each primer set were generated for primer quality 

control. A standard curve was generated for each gene tested, using 10-fold 

serial dilutions, and used for determination of E2A and GAPDH quantity in 

unknown samples. E2A quantity was normalised to GAPDH and the 

E2A/GAPDH quantity ratios in 24, 36, 48 and 72h samples were normalised to 

the average E2A/GAPDH quantity ratio of the duplicates at 4h post-infection 

(input DNA).  

 

 

2.9. Quantification of E1A protein expression by flow-cytometry  

 

PT45 and MIAPaCa-2 cells were seeded at 2.5x105 and 3x105 cells/well, 

respectively, in 6-well plates, infected, treated and harvested (excluding 

supernatant) as described in section 2.2.3. 0.5-1x106 cells/ml were 



130 
 

resuspended in ice-cold 3% BSA/1% sodium azide/PBS, pelleted and fixed in 

0.5ml 100% methanol. Samples were stored at -20°C (10min minimum 

incubation in methanol) until all time-points were collected. Cells were washed 

twice in 1% BSA/PBS and permeabilised in 0.5ml of 0.5% Triton-X100/PBS for 

15min at 22°C, followed by wash in 0.1% Triton/PBS and incubation with anti-

E1A antibody diluted in 3% BSA/PBS (30min at 22°C). Cells were washed once 

with PBS and incubated with anti-mouse FITC-conjugated antibody diluted in 

3% BSA/PBS (30min at 22°C). Details for the antibodies are given in table 6. 

Cells were washed twice in PBS, resuspended in 3% BSA/ 1% sodium 

azide/PBS and analysed by flow cytometry using a BD FACSCalibur instrument. 

Cell debris was excluded and 20000 events were acquired per sample. FITC 

was detected using the FL1 channel of the 488nm argon laser. Data were 

analyzed using the FlowJo v7.6.5 software (Tree star, Inc). 

 

 

2.10. mRNA analysis by reverse transcriptase qPCR  

 

PT45 cells were seeded at 2x105  cells/well in 6-well plates, infected, treated 

and harvested (excluding supernatant) as described in section 2.2.3. RNA was 

extracted using the RNeasy Mini Kit (QIAGEN) according to the manufacturer's 

instructions. Briefly, cell pellet was resuspended in 350µl of buffer RLT and the 

lysate was transferred to QIAshredder spin columns, centrifuged and mixed with 

350µl of 70% ethanol. Lysate was transferred to an RNeasy spin column, 

washed once with buffer RW1 and twice with buffer RPE, followed by elution in 

50µl of RNase-free water. RNA was assessed for purity (ratio A260/A280=1.8-2.0 

and ratio A260/A230=2.0-2.2) and concentration using the NanoDropTM1000 

Spectrophotometer (Thermo Fisher Scientific).  

 

RNA was diluted to the concentration of the least concentrated sample and 

purified from contaminating DNA using the DNA-freeTM kit (Ambion) according 

to the manufacturer's instructions. Briefly, RNA was treated with recombinant 

DNase I (rDNase I) in DNase I buffer and incubated at 37°C for 20min, followed 

by a 2min incubation with the DNase inactivation reagent, centrifugation and 

transferring of the pure RNA in fresh microcentrifuge tubes. 1µg of RNA was 

reversed transcribed using the TaqMan® Reverse Transcription Reagents Kit 
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(Applied Biosystems), according to the manufacturer's instructions. A 50µl 

reaction mix was set-up, containing 1x TaqMan® Reverse Transcription Buffer, 

5.5mM MgCl2, 500µM deoxyNTPs mixture, 2.5µM random hexamers, 

0.4units/µl RNase inhibitor, 1.25units/µl MultiScribe® Reverse Transcriptase and 

1µg RNA. Reverse transcription was performed using a DNA Engine Dyad® 

Peltier thermal cycler (MJ Research) by incubating at 25°C for 10min, followed 

by 30min incubation at 48°C and a 5min incubation at 95°C. 20ng of 

complementary DNA (cDNA) were used in qPCR analysis of viral E1A and 

Penton genes and the cellular Claspin and GAPDH genes. qPCR analysis using 

the standard curve method was performed as described in section 2.8.1. Primer 

sequences are shown in table 4. Claspin, E1A and penton quantities were 

normalised to GAPDH internal control. For E1A mRNA analysis, E1A/GAPDH 

ratio was normalised to penton/GAPDH ratio in order to remove the effect of 

viral replication and measure E1A expression as a function of viral late gene 

expression (indicative of replication).  

 

 

Table 4: Primer sequences used for PCR  

Gene Primer Primer sequence 

GAPDH Forward TGGGCTACACTGAGCACCAG 

Reverse GGGTGTCGCTGTTGAAGTCA 

E2A Forward GGATACAGCGCCTGCATAAAAG 

Reverse CCAATCAGTTTTCCGGCAAGT 

E1A Forward TGCCAAACCTTGTACCGGA 

Reverse CGTCGTCACTGGGTGGAAA 

Penton Forward GATCGGAAAACCTCTCGAGAAA 

Reverse CGTAGGAGGGAGGAGGACCTT 

CLSPN Forward ACAGTGATTCCGAAACAGA 

Reverse TGCTCCTCGGCACTGTCATA 

KRAS exon 1 Forward GGCCTGCTGAAAATGACTGA 

Reverse GTCCTGCACCAGTAATATGC 

CDKN2A exon 1 Forward TCTGCGGAGAGGGGGAGAGCAGGCA 

Reverse GCGCTACCTGATTCCAATTC 

CDKN2A exon 2A Forward ACAAGCTTCCTTTCCGTCATGCCG 

Reverse CCAGGCATCGCGCACGTCCA 
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CDKN2A exon 2B Forward TTCCTGGACACGCTGGTGGT 

Reverse CCAGGTCCACGGGCAGA 

CDKN2A exon 3 Forward CCGGTAGGGACGGCAAGAG 

Reverse CTGTAGGACCCTCGGTGACTGATGA 

TP53 exon 5 Forward TTCCTCTTCCTGCAGTACTCC 

Reverse GCCCCAGCTGCTCACCATCG 

TP53 exon 6 Forward CGATGGTGAGCAGCTGGGGC 

Reverse AGTTGCAAACCAGACCTCA 

TP53 exon 7 Forward TCCTAGGTTGGCTCTGAC 

Reverse CAAGTGGCTCCTGACCTGGA 

TP53 exon 8 Forward CCTATCCTGAGTAGTGGTAA 

Reverse CCTGCTTGCTTACCTCGCT 

 

 

2.11. Cell cycle and mitotic-index analysis in unsynchronised cells 

 

PT45 or MIAPaCa-2 cells were seeded at 2x105 cells/well in 6-well plates, 

infected, treated and harvested as described in section 2.2.3. Cells were fixed 

with 70% ethanol (30min, 4°C) and stored at 4°C. All centrifugations henceforth 

were performed at 2000rpm for 3min using the Allegra X-22 centrifuge. When 

all time-points had been collected, fixed cells were centrifuged, ethanol was 

removed and cells were washed with 1ml of PBS.  

 

For mitotic index analysis cells were washed with 1ml of 1% FBS/PBS and 

incubated in 100µl of anti-phospho-histone H3 antibody diluted in 1% FBS/PBS 

(30min at 22°C). Following wash in 3ml of 1% FBS/PBS, cells were incubated in 

100µl of Alexa Fluor® 488 antibody diluted in 1% FBS/PBS (30min at 22°C). 

Details for the antibodies are given in table 6. Cells were washed with 3ml of 

1% FBS/PBS. For PI staining, cells were incubated in 300µl of PI (50µg/ml) / 

RNAse A (100µg/ml) solution (30min, 22°C). Immediately after staining data 

were acquired as described in section 2.7.3. The exact gating strategy is shown 

in figure 12.  
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B. 

A.  

 

 

 
 
Figure 12: Gating strategy for cell cycle and mitotic index analysis. Dot 
plots of Side Scatter (SSC-H) vs Forward Scatter (FSC-H) were used to exclude 
debris, followed by doublet exclusion using the area and width of the FL2 
channel. Acquisition stopped when 20000 events were acquired in the singlets 
gate. (A) Cell cycle distribution was assessed by plotting a histogram of 
propidium iodide fluorescence (FL3-H channel of the 488nm argon laser). (B) 
For mitotic index analysis phospho-histone H3 (phH3) fluorescence (FL1-H 
channel of the 488nm argon laser) was plotted against propidium iodide (FL3-H 
channel). Gates for subG1, G1, S, G2, M and >4N cells where applied as 
indicated on the graph. The examples shown are from mock-infected PT45 
cells.  
 

 

2.12. Cell cycle and mitotic-index multicolour flow-cytometric analysis in 

synchronised cells 

 

2.12.1. Cell synchronisation and treatment  

 

PT45 cells were seeded at 2.5x105 cells/well in 6-well plates and 13-15h later 

treated with 2.5mM thymidine for synchronisation in early S-phase. 24h after 

treatment, cells were released from the thymidine block by washing twice with 

PBS (pre-warmed to 37ºC) and incubating in 1ml serum-free DMEM -/+ 300pcc 
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of Ad5tg or Ad∆19K. 2h later the medium was replaced with 10% FBS/ 1% P/S 

DMEM  -/+ 5nM gemcitabine.  

 

2.12.2. Cell harvesting, fixing and staining 

 

At the indicated times post-infection, supernatant and cells were harvested as 

described in section 2.2.3, washed with PBS and incubated with 250µl of the 

fixable viability dye (FVD) eFluor® 506 (equilibrated to 22 ºC) diluted 1:1000 in 

PBS. Following a 30min incubation at 4ºC, cells were washed in PBS and fixed 

with cold 70% ethanol (30min, 4ºC). Cells were stored at 4ºC until all time-

points had been collected. All centrifugations henceforth were performed at 

2000rpm for 3min. 

 

Cells were washed with 1ml of 1% FBS/PBS and permeabilised using cold 

0.25% Triton X-100 diluted in 1% FBS/PBS. Following a 10min incubation at 

4ºC, cells were centrifuged and incubated in 100µl of primary antibody solution 

for 30min at 22°C. The primary antibody solution consisted of rabbit polyclonal 

anti-phospho-histone H3 and mouse monoclonal anti-E1A antibodies diluted in 

1% FBS/PBS. Following two washes in 2ml of 1% FBS/PBS, cells were 

incubated in 100µl of secondary antibody solution for 30min at 22°C. The 

secondary antibodies used were anti-rabbit Alexa Fluor® 488 and anti-mouse 

Alexa Fluor® 647 diluted in 1% FBS/PBS. Cells were then washed with 3ml of 

1% FBS/PBS and incubated in 200µl of PI (50µg/ml) / RNAse A (100µg/ml) 

solution (30min, 22°C). Details for the antibodies are given in table 6. 

 

2.12.3. Multicolour flow-cytometric analysis 

 

Cells were immediately acquired using the BD FACSDivaTM software operated 

on the BD LSRFortessaTM cell analyzer (both from Becton Dickinson). PI and 

Alexa Fluor® 488 signals were detected in the B695/40 and B5300/30 filters, 

respectively, of the 488nm blue laser.  FVD eFluor® 506 and Alexa Fluor® 647 

signals were detected in the V525/50 filter of the 405nm violet laser and 

R670/14 filter of the 640nm red laser, respectively. Cell debris and doublets 

were excluded, followed by gating of live cells and acquisition of 20000 events, 
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as demonstrated in figure 13. Data were analyzed using the FlowJo v7.6.5 

software and plotted using GraphPad Prism v5 software.  

 

 

 
Figure 13: Gating strategy for multicolour flow-cytometry.  Dot plots of Side 
Scatter (SSC-A) vs Forward Scatter (FSC-A) were used to exclude debris (gate 
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1), followed by doublet exclusion using the height and width of the FSC channel 
(gate 2). Singlets were then gated on a dot plot of SSC-A vs V525/50-A, to 
exclude FDV eFluor®506 positive, that is dead, cells (gate 3). Acquisition 
stopped when 20000 events were acquired in the live-cells gate (gate 3). Live 
cells were next assessed for E1A expression by plotting SSC-A against R-
670/14-A. E1A-negative non-infected (untreated or gemcitabine-treated) cells 
(A) or E1A-positive infected cells (B) were then gated (A and B gate 4). Gated 
non-infected or infected cells were assessed for phospho-histone H3 and 
propidium iodide expression by plotting B-530/30-A against B-695/40-A. Gates 
for subG1, G1, S, G2, M and >4N cells where applied as indicated on the graph 
(gate 5). The example shown is from mock-infected (A) and Ad5tg-infected (B) 
PT45 cells 72h post-infection.  
 

 

2.13. Immunoblot analysis 

 

2.13.1. Protein extraction and quantitation 

 

PT45 and MIAPaCa-2 cells were seeded at 1.5x105 and 2x105 cells/well, 

respectively, in 6-well plates, infected, treated and harvested as described in 

section 2.2.3. Cells were lysed in RIPA buffer (50mM Tris pH 8.0, 150mM NaCl, 

1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 

protease inhibitor cocktail and PhosSTOP phosphatase inhibitor (Roche 

Diagnostics, Switzerland). Cell lysates were incubated on ice (15min), 

centrifuged (15min, 16100xg, 4°C) to remove pelleted debris and stored at -

80ºC.  

 

Cell lysates were quantitated for protein using the Bradford assay as follows: 

Samples from cell lysates were diluted (1:10-20) in water and 5µl of the diluted 

lysate were mixed with 195µl of 1x Bradford dye reagent (Bio-Rad) diluted in 

water, in duplicate wells of a 96-well plate. A standard curve was generated by 

serial dilutions of BSA (New England Biolabs, UK) starting from 1mg/ml. 

Absorbance was detected using the 560/8nm filter of the Victor3TM-1420 

multilabel plate reader (PerkinElmer, MA, USA). Background absorbance 

detected in the blank well (5µl water and 195µl Bradford dye reagent) was 

subtracted from all the absorbance values. The average of the duplicate 

absorbance from the BSA standards was used to construct a standard curve of 

Absorbance vs Protein concentration, from which the equation of the straight 

line was derived and used to calculate the protein concentration of the unknown 
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samples (multiplied by the dilution factor). Cell lysates were mixed with 2X 

sample Laemmli buffer (0.125M Tris-HCl pH6.8, 20% glycerol, 4% SDS, 0.01% 

bromophenol blue and freshly-added 10% β-mercaptoethanol) and incubated 

for 5min at 95ºC.  

 

2.13.2. SDS-PAGE and immunobloting 

 

Equal amounts (typically 30µg) of protein were resolved by SDS Polyacrylamide 

Gel Electrophoresis (SDS-PAGE). For immunoblot analysis of claspin 60µg of 

protein were loaded on gels. The percentage of SDS-PAGE resolving gels 

ranged from 6% to 15% according to the protein of interest, while the stacking 

gel was always 4%. SDS-PAGE gels were custom-made using ProtoGel 30% 

(w/v) acrylamide/methylene bisacrylamide solution (37.5:1 ratio), 4x ProtoGel 

Resolving buffer, 4x ProtoGel Stacking Buffer, TEMED (all from National 

Diagnostics, GA, USA) and 10% w/v ammonium persulfate (APS). A 

PageRulerTM prestained or PageRulerTM Plus prestained protein ladder 

(Fermentas, Thermo Fisher Scientific) was used as protein size standards. 

SDS-PAGE was performed at 120V using the Mini-PROTEAN® Tetra cell 

system (Bio-Rad) and in the presence of Tris-Glycine SDS-PAGE Buffer 

(National Diagnostics) diluted to 1x in water. Proteins were then transferred to 

nitrocellulose membranes (Hybond-ECL, GE Healthcare, UK) using the Trans-

Blot® SD semi-dry electrophoretic transfer cell (Bio-Rad) at 20V, typically for 

40min. For immunoblot analysis of claspin, wet protein transfer was performed 

using the Mini Trans-Blot® electrophoretic transfer cell system (Bio-Rad) at 

400mA for 2h.  

 

Membranes were blocked in 0.1% Tween-20/ 5% BSA or milk (Marvel 

Morrison’s) diluted in Tris-buffered saline (TBS) for 1h at 22°C, and incubated 

(overnight, 4°C) in primary antibodies diluted in blocking buffer. Membranes 

were washed three times (5min each) in 0.1% Tween-20/TBS, and incubated 

(1h at 22°C or 2h at 4°C) in secondary antibodies diluted in blocking buffer. 

Membranes were washed three to five times (5min each) in 0.1% Tween-

20/TBS and immunodetection was performed using enhanced 

chemiluminescence substrate ECL and ECL-Plus (PerkinElmer). Protein bands 

were visualised on X-ray films (FujiFilm) or using the G:Box iChemi-XT imaging 
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system (Syngene, UK). Densitometric analysis was done using the NIH ImageJ 

software. Details of the antibodies used are given in table 6. 

 

2.14. siRNA-mediated knockdown followed by immunoblotting and cell 

viability, viral genome amplification and cell cycle assays 

 

2.14.1. siRNA transfection  

 

PT45 cells were seeded at 2x105  cells/well in 6-well plates. 16-20h later cells 

were left untransfected or transfected with 25nM of siGENOME non-targeting 

(NT) siRNA #1 control, siGENOME SMARTpool Claspin (CLSPN) siRNA or 

siGENOME SMARTpool MRE11A siRNA, using 10µl DharmaFECT1 

transfection reagent (all purchased from Dharmacon, GE Healthcare) and 

according to the manufacturer's instructions. siRNA sequences are shown in 

table 5. Briefly, siRNAs and DharmaFECT were diluted separately in serum-free 

DMEM and incubated for 5min, followed by addition of siRNA to DharmaFECT 

solution and 20min incubation at 22ºC. Cell medium was replaced with 1.6ml of 

serum-free DMEM and 0.4ml of siRNA/DharmaFECT solution was added to 

each well. After 6h medium was replaced with 10% FBS/1% P/S DMEM.  

 

24-32h later non-transfected, siNT-, siCLSPN- and siMRE11-transfected cells 

were harvested as described in section 2.2.3, counted and re-seeded in 96-well 

plates for use in cell viability assays or 6-well plates for use in immunoblotting, 

cell-cycle analysis and viral genome amplification assays. Cell seeding was at 

8x103 cells/well in 96-well plates and 2x105  cells/well in 6-well plates for 16-24h. 

 

2.14.2. Cell viability, viral genome amplification and cell cycle assays  

 

For cell viability assays, cells were treated with Ad 19K -/+ drugs to generate 

dose-response curves as detailed in section 2.5. and cell viability was assessed 

at 72h post-infection by MTS assay (see section 2.5.). For viral genome 

amplification assessment, siNT-, siCLSPN- and siMRE11-transfected cells were 

infected, treated, harvested (at 48h) and DNA was extracted for use in viral 

genome amplification assays, as detailed in section 2.8. For cell cycle analysis, 

non-transfected, siNT-, siCLSPN- and siMRE11-transfected cells were infected 
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and treated as described in section 2.2.3. At 24h, 48h and 72h post-infection 

cells were harvested and processed as detailed in section 2.12.2. for use in cell-

cycle and mitotic index analysis by multicolour flow-cytometry (see section 

2.12.3.). 

 

2.14.3. Immunoblot analysis to monitor siRNA-mediated knockdown  

 

At 48, 72, 96 and 120h post-transfection, non-transfected, siNT-, siCLSPN- and 

siMRE11-transfected cells were harvested, lysed and processed for immunoblot 

analysis as detailed in section 2.13., with the exception of the electrophoresis 

procedure for Claspin detection.  During these studies Claspin and Vinculin 

were resolved in NuPAGE® Novex 3-8% Tris-Acetate pre-cast gels in the 

presence of NuPAGE® Tris-Acetate SDS Running Buffer using the XCell 

SureLock® Mini-Cell (all from Life Technologies Thermo Fisher Scientific). 

Protein transfer and immunodetection were carried out as before (see section 

2.13.2.).   

 

 

Table 5: siRNA sequences  

 

 

siRNA Catalogue No Target sequence 

siGENOME               
non-targeting #1 

D-001210-01-05  

siGENOME  
SMARTpool CLSPN 

D-005288-01 GGAAAUACCUGGAGGAUGA 

D-005288-03 GCAGAUGGGUUCUUAAAUG 

D-005288-02 GGACGUAAUUGAUGAAGUA 

D-005288-04 GAAUUUAUAUGCUGGGAAA 

siGENOME  
SMARTpool MRE11A 

D-009271-01 GAUGAGAACUCUUGGUUUA 

D-009271-02 GAAAGGCUCUAUCGAAUGU 

D-009271-03 GCUAAUGACUCUGAUGAUA 

D-009271-04 GAGUAUAGAUUUAGCAGAA 



140 
 

2.15. Immunofluorescence microscopy analysis  

 

2.15.1. Cell seeding and treatment 

 

For immunofluorescence microscopy analysis of mitotic cells, PT45 and 

MIAPaCa-2 cells were seeded at 5x104 cells/well on coverslips (Menzel-Gläser, 

Germany) in 6-well plates. For immunofluorescence microscopy analysis of 

interphase cells, PT45 cells were seeded on coverslips at 2.5x104  cells/well, or 

5x104 cells/well when cells would be treated with gemcitabine. 16-24h later cells 

were infected and treated as described in section 2.2.3. At the indicated times 

post-infection cells were processed as follows:  

 

2.15.2. Methanol Fixation Method 

 

Cells were fixed in 100% ice-cold methanol (20min, 4°C), followed by 20min 

blocking in 5% FBS/PBS and incubation (overnight, 4°C) in primary antibodies 

(Aurora-A, α-tubulin or Ad-E1A as specified) diluted in 5% FBS/PBS. Cells were 

washed three times in PBS and incubated (1h, 22°C) in secondary antibodies 

(anti-mouse AlexaFluor® 488 and anti-rabbit AlexaFluor® 594) diluted in 5% 

FBS/PBS. Coverslips were washed twice in PBS and once in distilled water. 

Details for the antibodies are given in table 6.   

 

2.15.3. Parafolmaldehyde Fixation Method 

 

Cells were washed twice in PBS and fixed (10min, 22°C) in 4% 

parafolmaldehyde/PBS (made from 16%(w/v) folmaldehyde (TAAB, UK)), 

followed by two washes in PBS and permeabilization (10min, 22°C) in Triton 

buffer (0.5% Triton X-100, 20mM Hepes KOH pH7.9, 50mM NaCl, 3mM MgCl2, 

300mM Sucrose). Cells were washed twice in PBS, blocked in 0.05% Tween-

20/3% BSA/PBS (15min, 22°C) and incubated (overnight, 4°C) in rabbit 

polyclonal anti-phospho-histoneH2A.X and mouse anti-Ad-DBP antibodies 

diluted in blocking buffer. Coverslips were washed twice in blocking buffer and 

incubated (1h, 22°C) in AlexaFluor® 488 goat anti-mouse and AlexaFluor® 594 

goat anti-rabbit IgG (H+L) antibodies diluted in blocking buffer. Details for the 
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antibodies are given in table 6. Coverslips were washed twice in blocking buffer, 

once in PBS and once in distilled water.  

 

2.15.4. Mounting and analysis 

 

Following staining, all coverslips were allowed to dry (30min, 22°C) and 

mounted on slides (ESCO optics, NJ, USA) using the ProLong Gold antifade 

reagent with DAPI. Slides were analysed using a Zeiss Axioplan epifluorescent 

microscope, where cell counting was performed. Images were acquired using 

the confocal laser scanning microscope Zeiss LSM510 META.  

 

2.15.5. H2AX analysis in interphase cells 

 

Images from 10-20 fields were acquired using the 40x objective of the confocal 

laser scanning microscope Zeiss LSM510 and used for cell counting. Cell 

counting in separate channels was performed using the NIH ImageJ software. 

Quantification of total H2AX fluorescence intensity was performed as follows: 

  

Channels were separated and converted to greyscale. The red ( H2AX) channel 

was used for measurements of area, mean grey value and integrated density. 

The mean grey value is defined as "the sum of the gray values of all the pixels 

in the selection, divided by the number of pixels" (Ferreira and Rasband, 2012). 

The integrated density is defined as "the sum of the values of the pixels in the 

image or selection. This is equivalent to the product of Area and Mean Gray 

Value" (Ferreira and Rasband, 2012). To measure background fluorescence, 

a region of the image containing no cells was selected and the mean grey value 

was measured. This was repeated twice and the mean grey values from the 

three selected regions were averaged to produce the average background 

fluorescence of the image. Then the area and integrated density of the entire 

image were measured. The corrected total H2AX fluorescence intensity 

was calculated by multiplying the area of the image by the average background 

fluorescence and subtracting the product from the integrated density of the 

entire image. This was then divided by the number of cells in the image to give 

the total H2AX fluorescence intensity per non-infected cell. In the 

presence of virus, area and integrated density were measured only in the 
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infected region of the image (as indicated by Ad-DBP expression) and corrected 

total H2AX fluorescence intensity was calculated using the above equation. 

This was then divided by the number of infected cells to give the total H2AX 

fluorescence intensity per infected cell. 

 

 

2.16. PT45 histone H2B-mCherry stable cell line generation 

 

PT45 cells were seeded in a T75 flask until 90% confluency was reached. Cells 

were transfected with 5µg of histoneH2B-mCherry construct (a gift from Dr 

Spiros Linardopoulos, The Institute of Cancer Research, London UK) using 16µl 

LipofectamineTM 2000 (Life Technologies Thermo Fisher Scientific), according 

to the manufacturer's instructions. The following day transfected cells were 

harvested, washed in PBS and fluorescently sorted using the BD FACSAriaTM 

cell sorter (Becton Dickinson) based on mCherry expression (detected in the 

YG610/20-A filter of the yellow-green 561nm laser). During the first cell sort 

20% of cells were positive for mCherry (Figure 14). Sorted cells were cultured in 

20% FBS/1% P/S DMEM and a week later the culture was up-scaled in 10% 

FBS/1% P/S DMEM. The PT45 histoneH2B-mCherry cells were fluorescently 

sorted by flow-cytometry another three times until more than 90% of cells 

expressed mCherry (Figure 14).  
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Figure 14: Fluorescently-assisted cell sorting of PT45 histone H2B-
mCherry cells. Dot plots of Side Scatter (SSC-A) vs Forward Scatter (FSC-A) 
were used to exclude debris (gate P1). Next, doublets were excluded using the 
height and area of the FSC channel (gate P2) and doublet exclusion was 
confirmed using the width and area of the SSC channel. Singlets were then 
assessed for mCherry expression by plotting SSC-A vs YG/610/20-A (where 
mCherry signal was detected). (A) First sort after cell transfection. The P4 gate 
shows the % cells positive for mCherry. (B) Fourth sort. The P3 gate shows the 
% cells positive for mCherry (C) Assessment of the FACS sorting purity for the 
fourth sort. P3 gate shows the % cells sorted as positive for mCherry.  
 

A. 

B. 

C. 
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2.17. Time-lapse microscopy 

 

PT45 cells stably expressing histone H2B-mCherry were seeded at 2x104 

cells/well in 6-well plates and 20-24h later treated with 2.5mM thymidine for 

synchronization. Cells were released from the thymidine block 24h later, 

washed twice with PBS (pre-warmed to 37ºC) and incubated in 1ml serum-free 

DMEM -/+ 300pcc of Ad∆19K. 2h later the medium was replaced with 10% FBS 

Leibovitz's L15 medium (Life Technologies) -/+ 5nM gemcitabine. L15 medium 

instead of DMEM was chosen due to the lack of CO2 supply in the time-lapse 

system. Leibovitz's L15 medium is designed to support the growth of cells in 

CO2-free systems and it is buffered by phosphates, instead of sodium 

bicarbonate and higher levels of free-base amino-acids, sodium pyruvate and 

galactose (instead of glucose).  

 

24h post-infection cells were subjected to a 72h time-lapse imaging by phase-

contrast and fluorescence microscopy. The time-lapse system comprised of a 

Zeiss Axiovert 200M fluorescence microscope with a camera and a motorised 

stage. Images from 3 different fields per condition were acquired every 15min 

from 24 to 96h post-infection using the 40x objective. Data from 3 independent 

experiments were analysed using AxioVision Rel. 4.9.1 (Carl Zeiss, Germany) 

and NIH ImageJ software.  
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Table 6: Antibodies used in immunoblotting (IM), immunofluorescence 

microscopy (IF) and flow-cytometry (FC); shown in alphabetical order 

 

Antigen Species Clone Origin Method Dilution 

Primary Antibodies 

Actin goat 
C-11 

polyclonal 

SantaCruz 
Biotechnology, 
Inc (TX, USA) 

IM 1:1000 

Ad-DBP mouse monoclonal Gift* IF 1:1000 

Aurora-A      
(IAK-1) 

mouse monoclonal BD Biosciences IF 1:500 

E1A mouse 
M58 

monoclonal 

Labvision, 
Thermo Fisher 

Scientific 

IF 1:400 

FC 1:200 

Claspin rabbit polyclonal 
Cell Signalling 

Technology 
(MA, USA) 

IM 1:1000 

Phospho-Chk1 
(Ser296) 

rabbit 
133D3 

polyclonal 
Cell Signalling 

Technology 
IM 1:1000 

Phospho-Chk2 
(Thr68) 

rabbit 
C13C1 

polyclonal 
Cell Signalling 

Technology 
IM 1:1000 

Phospho-
histoneH2A.X 

(Ser139) 
rabbit polyclonal 

Cell Signalling 
Technology 

IM 1:1000 

IF 1:150 

Phospho-
histoneH3 (S10) 

rabbit polyclonal Abcam plc 
IM 1:1000 

FC 1:250 

Mre11 rabbit polyclonal 
Genetex Inc. 
(CA, USA) 

IM 1:5000 

Nbs1 p95 rabbit polyclonal Abcam plc IM 1:1000 

Phospho-Plk1 
(T210) 

rabbit polyclonal 
Enzo Life 
Sciences 

IM 1:1000 

Plk1 mouse monoclonal Abcam plc IM 1:1000 

α-tubulin rabbit polyclonal Abcam plc 
IM 1:2000 

IF 1:400 

Vinculin 
(SPM227) 

mouse monoclonal Abcam plc IM 1:2000 
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Secondary Antibodies 

Alexa Fluor 488 
IgG (H+L) 

rabbit polyclonal 

Life 
Technologies, 

Thermo Fischer 
Scientific 

FC 1:125 

Alexa Fluor 488 
IgG (H+L) 

mouse monoclonal IF 1:1000 

Alexa Fluor 594 
IgG (H+L) 

rabbit polyclonal IF 1:1000 

Alexa Fluor 647 
IgG (H+L) 

mouse monoclonal FC 1:125 

Immunoglobuli
ns/FITC 

mouse monoclonal 
Dako 

(Denmark) 
FC 1:20 

immunoglobuli
ns/HRP 

goat, 

rabbit, or 

mouse 

polyclonal Dako IM 1:2000 

 

*anti-Ad-DBP (37.3) antibody was a gift from Dr Gioia Cherubini and originally 

from K. Benihoud, Institut Gustave Roussy, Villejuif, France. 
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CCHHAAPPTTEERR  33::  RREESSUULLTTSS  

 

 

3.1. E1B19K deletion in Ad5 enhances chemodrug-

induced pancreatic cancer cell killing 

 

 

3.1.1. Confirmation of KRAS, TP53 and CDKN2A mutations in PT45 and 

MIAPaCa-2 cell lines  

 

PT45 and MIAPaCa-2 cell lines are derived from primary PDAC tumours and 

were previously reported to exhibit activating KRAS mutations, inactivating 

TP53 mutations and homozygous CDKN2A (p16) deletion, while retaining a 

wild-type SMAD4/DPC4 gene (Berrozpe et al., 1994; Caldas et al., 1994; Moore 

et al., 2001; Sun et al., 2001). In addition to the STR-profiling (section 2.2.1), in 

order to confirm the presence of mutations, we performed PCR mutational 

analysis and the results are summarised in table 7. 

 

Assessment of the PCR-amplified p16 exons 1, 2 and 3 by agarose gel 

electrophoresis demonstrated the absence of this gene from PT45 and  

MIAPaCa-2 DNA. As shown in figure 15A, the p16 exon 3 PCR product is not 

detectable in PT45 and  MIAPaCa-2 cells, in contrast to other pancreatic cancer 

cell lines, such as Suit-2 and Panc04.03, as well as HUVEC cells (Figure 15A). 

Sequencing of PCR-amplified KRAS exon 1 revealed the presence of missense 

mutations in both cell lines. In PT45 cells, a heterozygous G to A substitution  

was detected at position 10574 (nucleotide reference sequence NG_007524), 

corresponding to a glycine (G) to aspartic acid (D) amino acid change at codon 

13 (protein reference sequence P01116) (Figure 15B, upper left panel). In 

MIAPaCa-2 cells, a homozygous G to T substitution was detected at position 

10570, which leads to a glycine (G) to cystine (C) amino acid change at codon 

12 (Figure 15B upper right panel). For TP53 mutational analysis we examined 
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exons 5, 6, 7 and 8. No mutations were detected in TP53 exons 5 and 6, while 

exon 7 and 8 exhibited missense mutations in MIAPaCa-2 and PT45 cells, 

respectively. PT45 cells exhibited a G to A substitution at position 1041 

(nucleotide reference sequence NM_000546.5) of the TP53 exon 8, creating an 

arginine (R) to lysine (K) amino acid change at codon 280 (Figure 15B, bottom 

left panel). In MIAPaCa-2 cells, a C to T substitution was evident at position 

944, corresponding to an arginine (R) to tryptophan (W) amino acid substitution 

at codon 248, which lies in exon 7 (Figure 15B bottom right panel).  

 

Taken together, the PCR mutational analysis revealed the absence of CDKN2A 

(p16) in PT45 and MIAPaCa-2 cells, in agreement with previous literature 

reports of a homozygous CDKN2A deletion (Moore et al., 2001). In addition, the 

activating G13D and G12C KRAS mutations in PT45 and MIAPaCa-2 cells 

respectively, and the inactivating R280K and R248W TP53 missense mutations 

in PT45 and MIAPaCa-2 cells respectively, were confirmed (Moore et al., 2001).  

 

 

Table 7: Summary of mutation analysis in PT45 and MIAPaCa-2 cells.  

 PT45 MIAPaCa-2 

CDKN2A exons1-3 Homozygous deletion Homozygous deletion 

 Effect on protein Absence Absence 

KRAS exon 1 G 13 D G 12 C 

 Effect on protein Constitutive activation Constitutive activation 

TP53 exon 5 - - 

 Effect on protein - - 

TP53 exon 6 - - 

 Effect on protein - - 

TP53 exon 7 - R 248 W 

 Effect on protein - Impaired DNA-binding 

TP53 exon 8 R 280 K - 

 Effect on protein Impaired DNA-binding - 

Hyphen (-) indicates absence of mutation  
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A. 

B. 

 
 
Figure 15: Confirmation of KRAS, TP53 and CDKN2A mutations in PT45 
and MIAPaCa-2 cell lines. DNA extracted from cells was PCR-amplified for 
exons 1,2 and 3 of CDKN2A gene, exon 1 of KRAS gene and exons 5-8 of 
TP53 gene, as detailed in the methods. (A) Agarose gel electrophoresis of 
PCR-amplified exon 3 of CDKN2A (p16) gene from pancreatic cancer cell lines 
BxPC3, Suit-2, Panc0403, PT45 and MIAPaCa-2 and HUVEC cells. Hyphen 
indicates a blank negative control and vertical black lines designate points of gel 
cropping. DNA ladder numbers are in base pairs (bp). (B) Amplified DNA was 
sequenced and aligned with NCBI reference sequences for each gene. The 
portion of the DNA sequencing chromatogram containing the specified 
mutations is shown. Arrows indicate base alterations and the subsequent amino 
acid substitutions at the specified codons are shown. The studies were 
performed in conjunction with Dr Yang Kee Stella Man.  
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3.1.2. E1B19K-deletion in Ad5 enhances pancreatic cancer cell killing 

induced by DNA-damaging drugs 

 

Our team previously demonstrated that the E1B19K deletion in wild-type Ad5 

promotes gemcitabine- and irinotecan-induced apoptosis in pancreatic cancer 

cells and that the enhanced cell death observed when Ad 19K is combined with 

cytotoxic drugs is inhibited by the pan-caspase inhibitor zVAD (Cherubini et al., 

2011; Leitner et al., 2009; Oberg et al., 2010). Ad∆19K-induced cell death was 

not inhibited by zVAD in the absence of drugs, while gemcitabine-induced cell 

killing could be attenuated (Cherubini et al., 2011; Leitner et al., 2009). In order 

to verify these findings and the conditions previously used, cell viability assays 

were carried out in PT45 and MIAPaCa-2 cells. Dose-response curves to Ad5tg 

and Ad 19K with or without addition of fixed doses of gemcitabine, irinotecan 

and the pan-caspase inhibitor zVAD were generated 72h post-infection and 

EC50 values were derived. The doses of drugs used were selected from 

previous data in the team (by Dr Gioia Cherubini) and verified to kill 

approximately 30% of cells.  

 

In PT45 cells Ad5tg had an average EC50 value of 121.2±31.7 ppc (Figure 16B). 

Addition of gemcitabine or irinotecan sensitized PT45 cells to Ad5tg, as shown 

by the shift of the curve to the left (Figure 16A left panel). However, the 

decreased EC50 values in the presence of gemcitabine or irinotecan (67.6±16.9 

and 72.5±26.8 ppc, respectively) were not significantly different from that of 

Ad5tg alone (Figure 16B). Gemcitabine and irinotecan sensitized PT45 cells to 

Ad5tg-induced cell death to the same extend, as indicated by the sensitization 

ratio (Figure 16C). In contrast to Ad5tg, the EC50 value of Ad 19K (207.3±19.0 

ppc) was significantly reduced to 52.8±12.2 and 34.5±16.2 ppc upon addition of 

gemcitabine and irinotecan, respectively (Figure 16B). Gemcitabine enhanced 

Ad 19K-induced cell death to a greater extent than irinotecan, as indicated by 

the sensitization ratio (Figure 16C). In the presence of the pan-caspase inhibitor 

zVAD the dose-response curves to Ad 19K combined with gemcitabine or 

irinotecan, shifted to the right suggesting de-sensitization (Figure 16A right 

panel). However, there was not a statistically significant increase of the average 

EC50 values or decrease of the sensitization ratios in the presence of zVAD 

(Figure 16B and C).  
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The cytotoxicity of Ad5tg and Ad 19K was 3-fold and 5-fold higher in MIAPaCa-

2 cells compared to PT45 cells (EC50 values of 44.6±17.2 and 41.6±7.5 ppc in 

MIAPaCa-2 cells compared to 121.2±31.7 and 207.3±19.0 ppc in PT45 cells), 

with no significant differences between viruses. In contrast to PT45 cells, 

addition of gemcitabine did not enhance Ad5tg-induced MIAPaCa-2 cell death 

(Figure 16D, left panel). In fact, there was a trend towards increased EC50 value 

(134.9±47.3 ppc) when Ad5tg and gemcitabine were combined (Figure 16E) 

and the sensitization ratio was below 1 (Figure 16F), suggesting gemcitabine 

de-sensitizes MIAPaCa-2 cells to Ad5tg. On the contrary, addition of irinotecan 

showed a trend towards a decreased Ad5tg EC50 value (20.5±10.9 ppc) (Figure 

16E). Addition of gemcitabine or irinotecan increased Ad 19K cytotoxicity 

(Figure 16D). The EC50 value of Ad 19K combined with gemcitabine was 

significantly lower in comparison to Ad5tg combined with gemcitabine, but not 

significantly lower from that of Ad 19K (Figure 16E). Irinotecan-mediated 

sensitization to Ad 19K appeared higher compared to gemcitabine and was 

abolished in the presence of the pan-caspase inhibitor zVAD (Figure 16F). 

Gemcitabine-induced enhancement of Ad 19K cytotoxicity showed a trend 

towards inhibition by zVAD (Figure 16E and F).  

 

These data confirm that E1B19K deletion in Ad5 increases sensitization of 

pancreatic cancer cells to gemcitabine- and irinotecan-induced cell death. 

However, zVAD-mediated inhibition of sensitization was not significant under 

the current conditions and was only clearly demonstrated in response to 

Ad 19K combined with irinotecan in MIAPaCa-2 cells. Overall, drug-

combinations with Ad∆19K resulted in more potent cell killing than combinations 

with the wild type virus. In addition, the two cell lines show different levels of 

sensitivity to both viruses and drugs. Firstly, MIAPaCa-2 cells were more 

sensitive to adenovirus compared to PT45. Secondly, gemcitabine-mediated 

enhancement of Ad 19K cytotoxicity was stronger than irinotecan in PT45 cells 

but weaker in MIAPaCa-2 cells.  
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A. 

B. C. 

D. 

E. F. 
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Figure 16: E1B19K deletion in Ad5tg increases sensitization of pancreatic 
cancer cells to death by DNA-damaging drugs. Cell viability assays of PT45 
and MIAPaCa-2 cells treated with Ad5tg or AdΔ19K -/+ addition of gemcitabine 
(Gem) or irinotecan (Iri). Where indicated, 25µM of the pan-caspase inhibitor 
zVAD was added. Survival was assessed by MTS assay 72h.p.i. (A and D) 
Representative Ad5tg and AdΔ19K dose-response curves (left and right panels, 
respectively) -/+ fixed doses of DNA-damaging drug(s) (PT45: 2nM Gem, 3µM 
Iri. MIAPaCa-2: 10nM Gem, 5µM Iri) with or without addition of 25µM of the 
pan-caspase inhibitor zVAD. Cell death was normalized to control (untreated 
cells or drug(s)-treated cells). Error bars indicate standard deviation (S.D.) of 
technical triplicates. (B and E) EC50 values (in ppc) derived from virus dose-
response curves -/+ fixed doses of drug(s). Error bars represent standard error 
of the mean (S.E.M.) of at least three independent experiments. *.p<0.05, 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test). Drug 
cytotoxicity (%) ± S.E.M. was: 27±3.4% and 29.3±6.5% with 2nM and 10nM 
gemcitabine, respectively, 26.5±2.9% and 30.9±1.7% with zVAD plus 2nM and 
10nM gemcitabine, respectively, 23.3±5.4% and 28.6±1.2% with 3µM and 5µM 
irinotecan, respectively and 19.1±6.5% and 29.9±4.4% with zVAD plus 3µM and 
5µM irinotecan, respectively. (C and F) Sensitization ratio (ratio of virus 
EC50/combination EC50). Red dotted lines indicate a ratio of 1 (= no 
sensitization). **.p<0.01 (one-way ANOVA with Bonferroni's multiple 
comparison test).  
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3.1.3. Ad 19K and gemcitabine induce pancreatic cancer cell killing in a 

more-than-additive manner 

 

Throughout the present studies different doses of AdΔ19K and gemcitabine 

causing less than 30% cell killing were used, dependent on differences in drug 

batches and changes with increasing passaging of cells. To demonstrate that 

the cell death induced by AdΔ19K and gemcitabine was at least additive at 

these different doses, I performed cell viability assays with the different fixed 

doses of AdΔ19K and gemcitabine and in the absence or presence of zVAD. All 

the conditions used in this thesis are summarised in figure 17.  

 

In both PT45 and MIAPaCa-2 cells, cell death induced by AdΔ19K, gemcitabine 

and their combination is dose-dependent (Figure 17A and B). In PT45 cells 

combinations of AdΔ19K and gemcitabine induced more-than-additive cell 

killing at all doses tested (theoretical additive value is shown in red dotted lines) 

(Figure 17A). Cell death induced by the combination was significantly higher 

compared to both single treatments when the high dose (300ppc) of AdΔ19K 

was combined with gemcitabine (Figure 17A). In response to 300ppc AdΔ19K 

and 5nM gemcitabine cell killing was significantly higher than the theoretical 

additive value (shown by a red asterisk). Besides a trend towards decreased 

cell death at 100ppc AdΔ19K and 2nM gemcitabine, zVAD did not appear to 

inhibit cell death induced by the combination treatment (Figure 17A). In 

MIAPaCa-2 cells, gemcitabine and AdΔ19K induced cell death in a more-than-

additive manner at most doses tested (theoretical additive value is shown in red 

dotted lines) (Figure 17B). Similar to PT45 cells, significantly higher cell death 

compared to both single treatments was evident when 300ppc AdΔ19K were 

combined with gemcitabine (Figure 17B). In the presence of zVAD, there was a 

trend towards decreased cell death induced by AdΔ19K and gemcitabine at all 

doses tested (Figure 17B).  

 

Collectively, in both cell lines most combinations of AdΔ19K and gemcitabine 

promoted cell death in a more-than-additive manner. Despite this, cell killing 

induced by the combination treatment was significantly higher compared to both 

single treatments only when the high dose (300ppc) of AdΔ19K was used.   
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Figure 17: Ad 19K and gemcitabine induce pancreatic cancer cell killing 
in a more-than-additive manner. Cell viability assays in (A) PT45 and (B) 
MIAPaCa-2 cells treated with AdΔ19K, gemcitabine (Gem) or their combination 
at the indicated doses. Where indicated, 25µM of the pan-caspase inhibitor 
zVAD was added. Cell viability was assessed by MTS assay at 72h.p.i. Error 
bars represent S.E.M. of 6 independent experiments. *.p<0.05, **.p<0.01 (one-
way ANOVA with Bonferroni's multiple comparison test). Red dotted lines 
indicate the theoretical additive mean ± S.E.M of the two treatments combined 
and red asterisks indicate significant difference of the actual mean from the 
theoretical additive mean (one-sample t-test).   
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3.1.4. The combination of AdΔ19K with DNA-damaging drugs induces 

more-than-additive and time-dependent cell killing  

 

In order to directly assess cell death over time, rather than cell viabilty (MTS 

assay) and confirm that E1B19K deletion enhances cell death induced by 

gemcitabine and irinotecan, the trypan blue inclusion test of cell death was 

employed. The trypan blue dye is not cell-membrane permeable and therefore 

only cells with non-intact membranes will incorporate the dye (Strober, 2001). 

Trypan-blue positive, that is dead cells, were quantified at 24, 48, 72, 96 and 

120h post-infection in PT45 cells.  

 

Cell death induced by AdΔ19K combined with gemcitabine or irinotecan was 

first detected at 48h, with 10% of cells dying (9.4±1.9% and 11.2±1.2% for 

AdΔ19K combined with gemcitabine or irinotecan respectively) (Figure 18A and 

B). At 72h cell death increased by 3-fold to reach 41.5±5.3% and 39.7±4.2% for 

AdΔ19K combined with gemcitabine and irinotecan, respectively (Figure 18A 

and B). A further increase in cell death in response to AdΔ19K and drugs was 

observed from 72h to 96h, with values reaching 66.9±3.6% and 75±1.4% for 

AdΔ19K combined with gemcitabine or irinotecan respectively (Figure 18A and 

B). The maximum cell death observed in response to gemcitabine and AdΔ19K 

was 69.3±2.9% (Figure 18A) while for irinotecan and AdΔ19K was 84.3±2.5% 

(Figure 18B), both at 120h. The combination of AdΔ19K with either drug, 

induced cell death in a more-than-additive manner at 48, 72 and 96h post-

infection and that was significantly higher than the theoretical additive value, 

indicated by a yellow dotted line (Figure 18A and B; yellow asterisks denote 

statistical significance). At 72h, 96h and 120h Ad5tg enhanced gemcitabine-

induced cell death, but was significantly lower compared to AdΔ19K combined 

with gemcitabine for the 72h and 92h time-points (Figure 18A). Cell death in 

response to AdΔ19K and irinotecan was also significantly higher compared to 

Ad5tg and irinotecan at 72, 96 and 120h (Figure 18B). AdΔ19K significantly 

enhanced gemcitabine and irinotecan-induced cell death from 48 to 120h 

(Figure 18A and B). 96h post-infection virus-mediated cell death became 

evident and increased by around 2-fold by 120h (Figure 18A and B). Overall, 

there was no significant induction of cell death by gemcitabine at this low dose, 
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while irinotecan induced cell death 96h and 120h post-treatment (Figure 18A 

and B).  

 

Collectively, cell death induced by AdΔ19K and DNA-damaging drugs started at 

48h and increased with time, reaching a plateau at 96h-120h, with the biggest 

increases observed between 48 and 72h post-treatment. AdΔ19K significantly 

enhanced drug-induced cell death from 48 to 120h and the combination of 

gemcitabine or irinotecan with AdΔ19K, but not Ad5tg, induced cell death in a 

more-than-additive manner at most time-points. The highest synergistic 

response was seen at 72h post-treatment.  

Figure 18: The combination of AdΔ19K with DNA-damaging drugs induces 
more-than-additive and time-dependent cell killing. PT45 cells were treated 
with 300ppc of Ad5tg or AdΔ19K -/+ addition of (A) 5nM Gem or (B) 5µM Iri. 
Cell death was assessed by trypan-blue dye incorporation at the indicated 
times. Error bars represent S.E.M. of 3-4 independent experiments. *.p<0.05, 
**.p<0.01, ***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison 
test). Yellow dotted lines indicate the theoretical additive mean ± S.E.M. of the 
two treatments combined and yellow asterisks indicate significant difference of 
the actual mean from the theoretical additive mean (one-sample t-test).   
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3.1.5. AdΔ19K and gemcitabine synergize to induce apoptosis of PT45 

cells 

 

Assessment of apoptosis in PT45 cells using the TUNEL assay  

 

Previous studies in our team suggested that cell death in response to AdΔ19K 

and gemcitabine occurs through enhancement of gemcitabine-induced 

apoptosis (Leitner et al., 2009). However, I did not observe significant inhibition 

of the enhanced cell death by the pan-caspase inhibitor zVAD in cell viability 

assays (Figure 16B and 17A). In order to examine whether cell death induced 

by AdΔ19K and gemcitabine is apoptotic, the TUNEL assay was employed. The 

TUNEL assay utilizes the TdT-dependent addition of Br-dUTP to the termini of 

single- and double-stranded DNA, thus labelling fragmented DNA, one of the 

last apoptotic events (Darzynkiewicz et al., 2008; Li and Darzynkiewicz, 1995). 

DNA fragmentation in PT45 cells was assessed by flow-cytometry 72h post-

infection, since the greatest more-than-additive induction of cell death was 

observed at this time-point (Figure 18A). Propidium iodide was used in 

conjunction with TUNEL to identify DNA fragmentation at specific DNA 

contents, thereby allowing association of apoptosis induction with specific cell-

cycle phases. Representative flow cytometry profiles for each condition can be 

found in Appendix 1 (section 5.1.; Figure 65A).  

 

Treatment with staurosporine, employed as a positive control for apoptosis 

induction, demonstrated that DNA fragmentation was successfully detected, 

despite some variability, while apoptosis was almost undetectable in mock-

infected cells (Figure 19A). When AdΔ19K was combined with gemcitabine, a 

synergistic increase in DNA fragmentation was observed which reached 

18.2±6% (Figure 19A). In contrast, no enhanced DNA fragmentation was 

observed upon combination of Ad5tg and gemcitabine. DNA fragmentation was 

less than 1% following infection with Ad5tg or AdΔ19K and just over 1% in cells 

treated with gemcitabine (Figure 19A).  

 

Detection of cell-cycle specific apoptosis using a combination of TUNEL and 

propidium iodide staining, revealed that in response to AdΔ19K and 

gemcitabine 56.5±1.8% of apoptotic cells display DNA fragmentation at the G1 
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A. B. 

phase (Figure 19B). This was significantly higher than the apoptotic G1 fraction 

of gemcitabine-treated cells (17.7±3.7%) as well as cells treated with a 

combination of Ad5tg and gemcitabine (19.7±10.8%) (Figure 19B).  A smaller 

fraction of cells treated with AdΔ19K and gemcitabine showed DNA 

fragmentation in S and G2/M phases (23.4±3.3% and 17.5±3.9%, respectively). 

The majority of gemcitabine-treated cells underwent DNA fragmentation in 

G2/M (44.8±8.4%) and S-phase (34.5±0.9%) and gemcitabine combined with 

Ad5tg showed a similar apoptotic profile to gemcitabine (Figure 19B). The 

modest DNA fragmentation seen with Ad5tg and AdΔ19K alone occurred mostly 

in G1 phase (Figure 19B). The sub-G1 cell-fraction was excluded from the 

analysis. 

 

Figure 19: AdΔ19K and gemcitabine induce DNA-fragmentation in PT45 
cells in a more-than-additive manner. PT45 cells were treated with 300ppc of 
Ad5tg or AdΔ19K, +/- addition of 10nM gemcitabine (Gem). Staurosporine-
treated and mock-infected cells were used as positive and negative controls, 
respectively. Apoptosis was assessed at 72h by flow-cytometric analysis of 
TUNEL and propidium iodide (PI) for DNA-content analysis as detailed in the 
methods. (A) Total apoptosis expressed as % of cells positive for TUNEL (B) 
Cell-cycle specific apoptosis. TUNEL expression was quantified in cells with 
DNA-content of 2N (G1-phase), 2-4N (S-phase), 4N (G2/M-phase) and >4N 
(polyploid cells), as determined by PI staining. Apoptosis in each cell-cycle 
phase was expressed as % of total apoptosis in the condition. Error bars 
represent S.E.M. of 3-4 independent experiments. *.p<0.05, **.p<0.01, 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test).  
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Table 8: Figure 19B statistical comparisons 

DNA content Treatment comparison Statistical significance 

>4N Mock vs Ad5tg ** .p<0.01 

2N (G1-phase) Mock vs Gem ***.p<0.001 

2N (G1-phase) Gem vs Gem + AdΔ19K **.p<0.01 

2N (G1-phase) Gem + Ad5tg vs Gem + AdΔ19K * .p<0.05 

 

 

Assessment of apoptosis in PT45 cells using the cleaved Caspase-3 assay  

 

In order to verify the observations of the TUNEL assay using a different 

apoptotic marker, a cleaved caspase-3 assay was utilised. Expression of 

cleaved and thus activated caspase-3 was assessed by flow-cytometry at 72h 

after treatment of PT45 cells with Ad5tg or AdΔ19K with or without 5nM or 

10nM gemcitabine. Cells were co-stained with propidium iodide to allow 

assessment of apoptosis at specific cell-cycle phases. Representative flow 

cytometry profiles for each condition can be found in Appendix 1 (section 5.1.;  

Figure 65B).  

 

38±4.8% of cells treated with AdΔ19K and 5nM gemcitabine activated caspase-

3 and this significantly increased when the dose of gemcitabine was increased 

to 10nM, reaching 52±3.2% (Figure 20A). Caspase-3 activation was clearly 

more-than-additive, since AdΔ19K only induced 6.2±1.2% apoptosis and 

gemcitabine less than 5% at either dose (Figure 20A). Ad5tg and gemcitabine 

also activated caspase-3 in a more-than-additive manner, but was significantly 

lower compared to the combination of AdΔ19K and gemcitabine (Figure 20A). 

Addition of the pan-caspase inhibitor zVAD significantly reduced apoptosis to 

11.7±3% in response to AdΔ19K and gemcitabine (Figure 20A). 

 

49.7±3.2% of AdΔ19K-infected cells with activated caspase-3 had a DNA 

content of >4N and 25.4±1.9% were in G2 or mitosis (Figure 20B). Similarly, the 

majority of Ad5tg-infected cells activating caspase-3 had a DNA content of >4N 

(36±1.7%) and 4N (29.9±4%) (Figure 20B). Induction of apoptosis by 

gemcitabine was equally distributed in G1, S and G2/M phases when used at 

5nM, whereas at 10nM of the drug, most caspase-3 cleavage occurred in S-

phase cells (50.4±4.4%) (Figure 20B). 45.3±4.1% of apoptotic cells following 
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treatment with AdΔ19K and gemcitabine had a DNA content of 4N, suggesting 

they were in G2 or mitosis (Figure 20B). This was significantly higher than the 

G2/M-apoptotic fraction of cells infected only with AdΔ19K. On the other hand, 

the >4N apoptotic fraction in AdΔ19K-infected cells was significantly reduced in 

the presence of gemcitabine at either drug dose (Figure 20B). The decrease of 

apoptosis by zVAD did not significantly change the apoptotic profile of cells 

treated with AdΔ19K and gemcitabine (Figure 20B). When the dose of 

gemcitabine was increased to 10nM and combined with AdΔ19K, cleaved 

caspase-3 expression was equally distributed between cells in S-phase and 

G2/M, as opposed to mostly G2/M seen with the lower dose of the drug (Figure 

20B). The combination of gemcitabine with Ad5tg activated caspase-3 mostly in 

cells with a DNA-content of 4N (G2/M) (47.6±3.3%) and, as with Ad5tg alone, 

34.6±2.2% of apoptotic cells had a DNA-content of >4N (Figure 20B).  

 

Taken together, assessment of apoptosis in PT45 cells suggested that cell 

death induced by AdΔ19K and gemcitabine after 72h is apoptotic. The TUNEL 

assay demonstrated that approximately 20% of PT45 cells treated with a 

combination of AdΔ19K and gemcitabine displayed DNA fragmentation with the 

majority of them apoptosing in the G1 phase. The cleaved-caspase-3 method 

showed that approximately 40% of PT45 cells treated with AdΔ19K and 

gemcitabine activate apoptosis after 72h. In contrast to cell-viability assays, 

apoptosis induced by AdΔ19K and gemcitabine was significantly inhibited by 

the pan-caspase inhibitor zVAD in PT45. The majority of caspase-3 cleavage in 

response to AdΔ19K and gemcitabine occurred in PT45 cells with a DNA 

content of 4N, as opposed to >4N or equally distributed between all phases with 

AdΔ19K or gemcitabine alone, respectively. In addition, increasing the dose of 

gemcitabine increased the number of cells activating caspase-3 in S-phase both 

with gemcitabine alone and in combination with AdΔ19K.  
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Figure 20: AdΔ19K and gemcitabine induce caspase-3 cleavage in PT45 
cells in a more-than-additive manner. PT45 cells were treated with 300ppc of 
Ad5tg or AdΔ19K -/+ addition of gemcitabine (Gem) at the indicated doses. 
Where indicated 25µM of the pan-caspase inhibitor zVAD was added. 
Staurosporine and mock-infection (no treatment) were used as positive and 
negative controls, respectively. Apoptosis was assessed at 72h by flow-
cytometric analysis of cleaved caspase-3 expression and PI for DNA-content 
analysis, as detailed in the methods. (A) Total apoptosis expressed as % of 
cells positive for cleaved caspase-3. (B) Cell-cycle specific apoptosis. Cleaved 
caspase-3 expression was quantified in cells with DNA-content of 2N (G1-
phase), 2-4N (S-phase), 4N (G2/M-phase) and >4N (polyploid cells), as 
determined by PI staining. Apoptosis in each cell-cycle phase was expressed as 
% of total apoptosis in the condition. Error bars represent S.E.M. of 3-4 
independent experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way ANOVA 
with Bonferroni's multiple comparison test).  

A. 

B. 
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Assessment of apoptosis in MIAPaCa-2 cells using the cleaved Caspase-3 

assay  

 

Assessment of apoptosis using the cleaved caspase-3 method was also utilised 

in MIAPaCa-2 cells. In this cell line, apoptosis was assessed at 48, 72 and 96h 

following treatment with Ad5tg or AdΔ19K -/+ gemcitabine. Representative flow 

cytometry profiles for each condition at 72h can be found in Appendix 1 (section 

5.1.; Figure 65C).  

 

At 48h, AdΔ19K and gemcitabine induced caspase-3 cleavage in 3.8±0.2% of 

cells (Figure 21A 48h). This number increased modestly with time reaching 

13.7±1.8% by 96h. Activation of caspase-3 in response to AdΔ19K and 

gemcitabine was more-than-additive only at 48h and there was no significant 

decrease in apoptosis in the presence of zVAD (Figure 21A). At all time-points 

tested cleaved caspase-3 expression was significantly higher when gemcitabine 

was combined with AdΔ19K, compared to gemcitabine alone, but was the same 

as AdΔ19K alone at 72h and 120h (Figure 21A). In addition, combining 

gemcitabine with AdΔ19K resulted in significantly higher caspase-3 cleavage 

than the combination of gemcitabine with Ad5tg, which induced caspase-3 

cleavage in a less-than-additive manner at all time-points tested (Figure 21A). 

Similarly, AdΔ19K-induced caspase-3 activation was significantly higher at 96h 

compared to Ad5tg alone (Figure 21A 96h).  

 

Assessment of cell-cycle specific apoptosis at 48h did not show any significant 

differences between the various treatments (Figure 21B 48h). In cells treated 

with AdΔ19K or gemcitabine, the highest percentage of caspase-3 cleavage 

was seen in G1-phase (44.9±16.7% and 34.3±3.4%, respectively) and the 

second highest in G2/M (27.2±8.4% and 28.5±6.5%, respectively) (Figure 21B 

48h). In response to their combination, 32.4±3.4% of cells with cleaved 

caspase-3 were in G2 or mitosis and 28.4±0.4% in G1-phase (Figure 21B 48h).  

 

At 72h and 96h the apoptotic DNA-content profile of the combination treatment 

resembled more that of AdΔ19K rather than gemcitabine; caspase-3 was 

activated in cells with >4N, 2N and 4N DNA content as opposed to mainly 2N 

seen with gemcitabine (Figure 21B 72h and 96h). 29.4±8% of apoptotic cells 
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had a DNA-content of >4N, 26.5±4% were in G1 and 25.5±1.7% were in G2/M 

72h following treatment with AdΔ19K and gemcitabine (Figure 21B 72h). 

Similarly, at 96h caspase-3 cleavage induced by AdΔ19K and gemcitabine was 

29.3±1.4% in G1-phase cells, 27.3±4.2% in G2/M-phase cells and 25.6±6.9% in 

cells with >4N DNA content (Figure 21B 96h). At this time-point the apoptotic 

G1 fraction was significantly higher in response to gemcitabine compared to its 

combination with AdΔ19K (Figure 21B 96h).  

 

In contrast, the apoptotic DNA-content profile of the combination of Ad5tg with 

gemcitabine resembled that of gemcitabine at 96h and a significant increase in 

the apoptotic G1 fraction was evident when gemcitabine was present in Ad5tg-

infected cells (Figure 21B 96h). In the absence of gemcitabine, AdΔ19K-

induced caspase-3 cleavage was equally distributed in 2N and >4N DNA-

content cells at 72h and 96h (Figure 21B). Ad5tg-induced apoptosis occurred 

mostly in G1 at 72h but, similar to AdΔ19K, was equally displayed in 2N and 

>4N DNA-content cells at 96h (Figure 21B).  

 

In summary, induction of apoptosis by AdΔ19K and gemcitabine in MIAPaCa-2 

cells increased with time but was overall modest and the effect was more-than-

additive only at 48h. Despite the weak induction of apoptosis by AdΔ19K and 

gemcitabine, this was still higher than apoptosis observed in response to Ad5tg 

and gemcitabine. Ad 19K and gemcitabine induced apoptosis throughout the 

cell cycle phases. The presence of Ad 19K in gemcitabine-treated cells did not 

appear to change the S-phase and 4N apoptotic profile, but promoted caspase-

3 activation in cells with >4N DNA content. The small reduction in apoptosis in 

the presence of zVAD appeared to occur in these polyploid cells (Figure 21B). 

Since such cells are most likely to occupy G2/M, the cumulative apoptosis in 4N 

and >4N cells (50%<) suggests that, similar to PT45 cells, caspase-3 activation 

following gemcitabine and Ad 19K treatment occurs preferentially in G2/M 

phase.  
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Figure 21: AdΔ19K and gemcitabine induce modest caspase-3 cleavage in 
MIAPaCa-2 cells.  MIAPaCa-2 cells were treated with 100ppc of Ad5tg or 
AdΔ19K -/+ 15nM gemcitabine (Gem). Where indicated 25µM of the pan-
caspase inhibitor zVAD was added. Staurosporine (0.5µM 24h) and mock-
infection (no treatment) were used as positive and negative controls, 
respectively. Apoptosis was assessed at 72h by flow-cytometric analysis of 
cleaved caspase-3 expression and PI for DNA-content analysis, as detailed in 
the methods. (A) Total apoptosis expressed as % of cells positive for cleaved 
caspase-3. (B) Cell-cycle specific apoptosis. Cleaved caspase-3 expression 
was quantified in cells with DNA-content of 2N (G1-phase), 2-4N (S-phase), 4N 
(G2/M-phase) and >4N (polyploid cells), as determined by PI staining. 
Apoptosis in each cell-cycle phase was expressed as % of total apoptosis in the 
treatment. Error bars represent S.E.M. of 2-3 independent experiments. 
*.p<0.05, **.p<0.01, ***.p<0.001 (one-way ANOVA with Bonferroni's multiple 
comparison test).  

A. 

B. 
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Conclusions from studies assessing cell death in PT45 and MIAPaCa-2 cells 

 

Cell viability, death and apoptotic assays demonstrated that suboptimal doses 

of Ad 19K and DNA-damaging drugs induce cell killing in a more-than-additive 

manner. Despite that in PT45 cell viability assays the pan-caspase inhibitor 

zVAD did not significantly inhibit cell death, apoptotic assays demonstrated that 

cell death induced by AdΔ19K and gemcitabine after 72h is apoptotic and can 

be prevented in the presence of zVAD. In MIAPaCa-2 cells, cell death induced 

by irinotecan and Ad 19K is caspase-dependent, since it was inhibited in the 

presence of zVAD. The observations that induction of caspase-3 cleavage by 

gemcitabine and Ad 19K in MIAPaCa-2 cells was modest and that cell killing by 

the combination treatment showed a trend towards inhibition in the presence of 

zVAD, suggests that MIAPaCa-2 cell killing in response to gemcitabine and 

Ad 19K is partly apoptotic.  

 

Assessment of cell-cycle specific apoptosis in PT45 and MIAPaCa-2 cells 

showed that addition of Ad 19K to gemcitabine-treated cells overall increases 

caspase-3 activation in cells with 4N and >4N DNA content compared to 

gemcitabine alone. This suggests that combination-treated cells are more likely 

to undergo apoptosis in G2 and/or mitosis. In addition, the increased DNA 

fragmentation in PT45 cells with 2N DNA content suggests that the final stages 

of apoptosis after Ad 19K and gemcitabine treatment might occur in cells that 

have gone through mitosis and entered G1. Furthermore, it was demonstrated 

that the enhanced cell killing is time-dependent and occurs predominantly 

between 48h and 96h after combination treatment. These findings are 

suggestive of a delayed onset of apoptosis that might require cell-cycle 

progression and/or accumulation of damaging factors that are eventually fatal.  
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3.1.6. The enhanced cell killing is not dependent on viral replication, as 

gemcitabine inhibits viral genome amplification  

 

Our group previously showed that the enhanced cell death observed when 

AdΔ19K is combined with gemcitabine is independent of viral replication, since 

gemcitabine strongly inhibited AdΔ19K genome amplification (Leitner et al., 

2009). In order to verify this finding with the conditions used in the present 

study, Ad5tg and AdΔ19K genome amplification was assessed in PT45 cells 

with or without gemcitabine treatment, 24, 36, 48 and 72h post-infection. Viral 

DNA at each time-point was normalized to the DNA present at 4h post-infection.  

 

As shown in figure 22, from 24h to 36h post-infection Ad5tg and AdΔ19K DNA 

increased by 5- and 9-fold, respectively, and after 12h there was another 2-fold 

increase for both viruses. By 72h post-infection both viruses had amplified their 

DNA by 20-fold (Figure 22). Interestingly, at 24h the DNA of AdΔ19K was 

significantly less compared to Ad5tg, but AdΔ19K showed a trend towards a 

higher rate of DNA amplification than Ad5tg at all other time-points tested 

(Figure 22). Treatment with gemcitabine significantly inhibited viral genome 

amplification at 24h and 72h and a trend towards inhibition was observed at all 

other time-points (Figure 22). Despite the observed inhibition in the presence of 

gemcitabine, some genome amplification did occur and by 72h post-infection 

Ad5tg and AdΔ19K had amplified their DNA by 3.4- and 6-fold, respectively 

(Figure 22). The greatly decreased viral genome amplification in the presence 

of gemcitabine confirmed that the enhanced cell killing in response to AdΔ19K 

and gemcitabine was largely replication-independent under the current 

experimental conditions.  
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Figure 22: Gemcitabine inhibits viral DNA replication. PT45 were treated 
with 300ppc of Ad5tg or AdΔ19K -/+ 5nM gemcitabine (Gem). DNA was 
extracted at 4, 24, 36, 48 and 72hpi and analysed by qPCR for viral genome 
amplification (Ad-E2A). Viral DNA was normalized to input DNA (4h) and 
cellular GAPDH and expressed as fold-change relative to Ad5tg 24h. Error bars 
represent S.E.M. of 2 independent experiments. *.p<0.05, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test).  
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3.1.7. Gemcitabine increases E1A mRNA and protein expression  

 

In addition to viral genome amplification, the expression of Ad-E1A was 

assessed both at mRNA and protein levels. Quantification of E1A expression at 

the protein level was performed by flow-cytometry in PT45 and MIAPaCa-2 cells 

16, 24 and 48h post-infection with Ad5tg or AdΔ19K in the absence or presence 

of gemcitabine.  

 

16h post-infection with Ad5tg or AdΔ19K, 14.7±2.4% and 15.5±2.5% of PT45 

cells, respectively, were positive for E1A (Figure 23A). The presence of 

gemcitabine had no effect on the number of E1A-positive cells at this time. At 

24h E1A-positive cells increased by 6% for Ad5tg and 14% for AdΔ19K (Figure 

23A). In the presence of gemcitabine there was a 2.7-fold increase in the 

number of E1A-positive AdΔ19K-infected cells from 16h to 24h. The frequency 

of E1A-positive cells in response to AdΔ19K and gemcitabine was significantly 

higher compared to Ad5tg and gemcitabine and showed a trend towards 

increase compared to AdΔ19K alone (Figure 23A). At 48h gemcitabine 

significantly increased E1A expression for both viruses (Figure 23A).  

 

In the MIAPaCa-2 cell line, 14.8±3.2% and 21±2.2% of cells showed E1A 

expression 16h after infection with Ad5tg and AdΔ19K respectively (Figure 

23B). Addition of gemcitabine to AdΔ19K-infected cells increased the number of 

E1A-positive cells to 30.9±0.2%, which was significantly higher than Ad5tg-

infected E1A-positve cells following addition of gemcitabine (16.5±3.1%) (Figure 

23B). From 16h to 24h, E1A expression had not significantly changed under 

any condition. At these time-points there was a trend towards increased E1A 

expression in AdΔ19K-infected cells compared to Ad5tg, regardless of 

gemcitabine treatment (Figure 23B). However, by 48h E1A expression was 

equal for Ad5tg and AdΔ19K infected cells (26.9±5.4% and 26.8±7.7%, 

respectively) (Figure 23B). At 48h, gemcitabine treatment showed a strong 

trend towards increased numbers of E1A positive cells, which reached 

39.8±4.6% and 45.9±3.6% following Ad5tg and AdΔ19K infection respectively 

(Figure 23B).  
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Figure 23: Gemcitabine increases E1A protein expression at specific 
times post-infection. (A) PT45 and (B) MIAPaCa-2 cells were treated with (A) 
300ppc or (B) 100ppc of Ad5tg or AdΔ19K -/+ (A) 5nM or (B) 10nM gemcitabine 
(Gem), harvested, permeabilised and fixed at the indicated times. E1A 
expression was assessed by flow-cytometry using an E1A primary antibody and 
a FITC-labelled secondary antibody. The dotted line indicates baseline 
(background) fluorescence. Error bars represent S.E.M. of 3-4 independent 
experiments. *.p<0.05 (one-way ANOVA with Bonferroni's multiple comparison 
test). 
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Assessment of E1A mRNA expression was performed by qPCR in PT45 cells 

16 and 24h post-infection. Normalisation of E1A mRNA levels to penton mRNA 

at each time-point allowed for accurate measurement of E1A transcript levels. 

As seen in figure 24, treatment of Ad5tg or AdΔ19K-infected cells with 

gemcitabine resulted in a trend towards increased E1A mRNA expression at 

16h. The difference became more evident at 24h, where gemcitabine 

significantly increased E1A mRNA levels in AdΔ19K-infected cells (Figure 24). 

E1A mRNA expression was significantly higher in response to gemcitabine and 

AdΔ19K compared to gemcitabine and Ad5tg (Figure 24). In the absence of 

gemcitabine, AdΔ19K exhibited a tendency for increased E1A mRNA levels 

compared to Ad5tg at both time-points (Figure 24). 

 

 

 

 

 

 

 

 

 

Figure 24: Gemcitabine increases AdΔ19K E1A mRNA expression in PT45 
cells. PT45 cells were treated with 300ppc of Ad5tg or AdΔ19K -/+ 5nM Gem. 
RNA was extracted at 16 and 24h post-infection for qPCR analysis. Ad5 E1A 
mRNA expression was normalised to Ad5 penton and GAPDH internal control 
and expressed as fold difference versus Ad5tg. Error bars represent S.E.M. of 3 
independent experiments. *.p<0.05 (one-way ANOVA with Bonferroni's multiple 
comparison test). 

 

To summarize, gemcitabine increased E1A protein expression in Ad5tg- and 

AdΔ19K-infected PT45 cells 48h after treatment. At 24h more E1A-positive 

PT45 cells were observed in response to the combination of gemcitabine with 

AdΔ19K compared to the combination with Ad5tg. The same effect was seen in 

MIAPaCa-2 cells at 16h. Assessment of E1A mRNA in PT45 cells suggested 

that gemcitabine promotes higher levels of E1A mRNA expression in AdΔ19K-

infected cells, which is also reflected in the higher E1A protein levels. 

Gemcitabine likely stimulates viral uptake in PT45 cells as previously shown in 

MIAPaCa-2 and other pancreatic cancer cell lines (Bhattacharyya et al.).  
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3.2 Adenovirus cannot prevent the DNA-damage 

response elicited by DNA-damaging drugs 

 

 

3.2.1. Cell-cycle distribution effects in PT45 and MIAPaCa-2 cells 

 

Previous work by our group had suggested that gemcitabine causes cell-cycle 

arrest at the G1/S transition and that addition of adenovirus increases the sub-

G1 fraction (Leitner et al., 2009). To confirm these findings in PT45 and 

MIAPaCa-2 cells, cell-cycle distribution was assessed over time by flow-

cytometric analysis of DNA content. Representative cell-cycle histograms can 

be found in Appendix 2 (section 5.1.; Figure 66).  

 

Time-course of cell-cycle distribution in PT45 cells 

 

In PT45 cells, gemcitabine caused an early S-phase arrest, with 54.5±5.4% of 

cells arrested in S-phase after 24h of treatment (Figure 25A). No significant 

changes in the number of S-phase arrested cells were observed in the 

presence of adenovirus (53.3±4.3% with Ad 19K and 54.5±6.5% with Ad5tg) 

(Figure 25B S-phase). As a result of the cell accumulation in S-phase, G1 and 

G2/M fractions were significantly reduced whenever gemcitabine was present 

(Figure 25B G1-phase and G2/M-phase).  

 

At 48h half of gemcitabine-treated cells were still arrested in S-phase (52.8±8%, 

Figure 25B S-phase) and again, addition of Ad5tg or Ad 19K did not alter the 

cell-cycle profile of gemcitabine-treated cells (Figure 25A). It should be noted 

that from 24h to 48h gemcitabine-treated cells move from early S-phase to mid-

S-phase, as it can be seen by the cell-cycle histograms (See Appendix 2 Figure 

66A; section 5.1.). Both at 24 and 48h, the G1 fraction of gemcitabine-treated 

cells was significantly reduced compared to cells receiving no gemcitabine 

treatment, irrespectively of the presence adenovirus (Figure 25B G1-phase). At 

48h an increased sub-G1 fraction became apparent in the presence of 

gemcitabine with or without infection with adenovirus (Figure 25B sub-G1).  
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At 72h 37.3±5.4% of gemcitabine-treated cells remained in S-phase, an 

accumulation that was significantly higher compared to mock-infected cells 

without gemcitabine, while the G2 fraction increased to 15.3±2.3% (Figure 25B 

S- and G2/M-phase). 72h following treatment with gemcitabine and Ad5tg or 

AdΔ19K, 31.4±6.1% and 36±4.8% of cells, respectively, were in S-phase and 

19.8±2% and 16.4±1.2% of cells, respectively, were in G2/M (Figure 25B S- and 

G2/M-phase). At the 72h time-point the G1 cell fraction modestly increased in 

the presence of gemcitabine compared to 48h suggesting passage of cells from 

G2/M to G1, although it was still significantly lower compared to cells without 

gemcitabine treatment (Figure 25B G1-phase). The sub-G1 cell fraction at 72h 

in the presence of gemcitabine, with or without adenovirus infection, was again 

significantly higher compared to cells without gemcitabine (Figure 25B sub-G1). 

From 72h onwards, the number of gemcitabine-treated cells with or without 

adenovirus infection present in the G1-phase remained the same up to 120h 

and was still significantly lower in comparison to cells receiving no gemcitabine 

treatment (Figure 25B G1-phase).  

 

At 96h and 120h the S-phase fraction in gemcitabine-treated cells (22.8±4.3% 

and 20.7±2.4%, respectively) remained significantly higher compared to mock-

infected cells (Figure 25B S-phase). In contrast, S-phase cells were not 

significantly more 96h and 120h after gemcitabine treatment combined with 

either virus, compared to virus alone (Figure 25B S-phase). In addition, there 

were more cells in G2/M at 96h following treatment with Ad5tg and gemcitabine, 

compared to Ad5tg without gemcitabine (Figure 25B G2/M). At 96h sub-G1 was 

significantly higher in response to gemcitabine or gemcitabine with AdΔ19K, 

compared to mock- or AdΔ19K-infected cells, respectively (Figure 25B sub-G1). 

Similarly, at 120h addition of gemcitabine to mock-, Ad5tg- or AdΔ19K-infected 

cells increased the sub-G1 cell fraction, but cells treated with a combination of 

gemcitabine and AdΔ19K had significantly more sub-G1 than cells treated only 

with gemcitabine (Figure 25B sub-G1). 

 

Infection with AdΔ19K significantly increased S- and G2/M-phase cells at 120h 

compared to mock-infection and subsequently less cells were present in G1 

(Figure 25B S-, G1- and G2/M-phase). Similar tendency was observed with 

Ad5tg. Moreover, following AdΔ19K infection there was a significant 
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accumulation of cells with a DNA content of >4N from 72h onwards, which was 

reduced 120h after addition of gemcitabine (Figure 25B >4N). Ad5tg also 

induced accumulation of cells with a DNA content of >4N by 120h, but this was 

significantly lower in comparison to AdΔ19K and remained unaffected by the 

presence of gemcitabine (Figure 25B >4N). 
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B.  

 

 

 

 

 

 

 

 
Figure 25: Time-course of cell-cycle distribution in PT45 cells. PT45 cells 
were treated with 100ppc of Ad5tg or AdΔ19K -/+ 10nM gemcitabine (Gem) and 
harvested at the indicated times post-infection for cell-cycle analysis. Mock-
infection represents untreated cells. (A) Cell-cycle distribution. (B) Separate 
plots of % cells in G1-phase, S-phase, G2/M-phase and with DNA content of 
<2N (sub-G1) and >4N. Error bars represent S.E.M. of at least 3 independent 
experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way ANOVA with 
Bonferroni's multiple comparison test). Experiments were performed in 
conjunction with Dr Gioia Cherubini.  
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Time-course of cell-cycle distribution in MIAPaCa-2 cells 

 

Similar to PT45 cells, MIAPaCa-2 cells accumulated in S-phase up to 72h 

following treatment with gemcitabine (Figure 26A), with subsequent reduction of 

the G1-phase (Figure 26B G1-phase). At 48h, 42.2±6.2% and 25.1±3% of cells 

were in S and G2/M respectively, following treatment with gemcitabine. Addition 

of Ad5tg or AdΔ19K did not significantly alter these frequencies. However, there 

was a tendency towards reduced S-phase fractions; 39.2±6.2% and 27.6±2.6% 

of cells were in S and G2/M following treatment with gemcitabine and Ad5tg, 

and 33.9±5.1% and 28.1±3.2% of cells were in S and G2/M following treatment 

with gemcitabine and AdΔ19K (Figure 26B S- and G1-phase). From 48h to 72h 

cells treated with gemcitabine or gemcitabine and Ad5tg showed an 

approximately 10% reduction in S-phase and about 10% increase in G1-phase, 

whereas cells treated with gemcitabine and AdΔ19K showed no reduction of S-

phase (Figure 26B S- and G1-phase). At 72h and 120h after treatment with 

gemcitabine or gemcitabine and  AdΔ19K, significantly more cells were seen in 

sub-G1 compared to mock- or AdΔ19K-infection, respectively (Figure 26B sub-

G1). After 120h of treatment with gemcitabine or gemcitabine and AdΔ19K, 

more S-phase cells were observed, in comparison to mock or AdΔ19K, 

respectively (Figure 26B S-phase). At 120h there were more cells accumulating 

in G1 following treatment with gemcitabine compared to treatment with 

gemcitabine and viruses (Figure 26B G1).  

 

Ad5tg significantly increased S- and G2/M-phase cells 120h post-infection and 

a similar trend was observed with AdΔ19K (Figure 26B S- and G2/M-phase). By 

120h adenovirus severely perturbed the cell cycle, as it can be appreciated by 

the cell-cycle histograms found in Appendix 2 (section 5.1.; Figure 66B). Both 

viruses accumulated cells with a DNA content of >4N, although with AdΔ19K 

the accumulation was earlier and stronger than Ad5tg and reached 62.2±3.3% 

by 120h (Figure 26B >4N). As seen in figure 26B, the presence of gemcitabine 

in AdΔ19K-infected cells inhibited the accumulation of >4N cells from 72h 

onwards. Reduced >4N cell-fraction was also observed 120h following addition 

of gemcitabine to Ad5tg-infected cells (Figure 26B >4N). 

 



177 
 

B. 

A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



178 
 

Figure 26: Time-course of cell-cycle distribution in MIAPaCa-2 cells. 
MIAPaCa-2 cells were treated with 300ppc of Ad5tg or AdΔ19K -/+ 10nM 
gemcitabine (Gem) and harvested at the indicated times post-infection for cell-
cycle analysis. Mock-infection represents untreated cells. (A) Cell-cycle 
distribution. (B) Separate plots of % cells in G1-phase, S-phase, G2/M-phase 
and with DNA content of <2N (sub-G1) and >4N. Error bars represent S.E.M. of 
at least 3 independent experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test).  
 

 

Summary  

 

In conclusion, in PT45 cells gemcitabine caused an S-phase arrest which was 

gradually relieved, with cells passing to G2/M and G1-phases and some dying, 

as suggested by the gradual increase of sub-G1 cell fraction. Addition of either 

Ad5tg or AdΔ19K did not significantly affect the cell-cycle distribution of 

gemcitabine-treated cells, with the exception of a sub-G1 increase in the 

presence of AdΔ19K. Furthermore, infection with AdΔ19K increased the 

frequency of S- and G2/M-phase cells and accumulated a cell fraction with >4N 

DNA content, that was reduced in the presence of gemcitabine. Similarly, 

following treatment with gemcitabine, MIAPaCa-2 cells arrested in S-phase and 

gradually moved to G2/M and G1. Up to 72h no significant differences were 

seen between cells treated with gemcitabine and cells treated with gemcitabine 

and viruses, while at 120h there were more cells in G1-phase in response to 

gemcitabine compared to gemcitabine with viruses. Both viruses perturbed the 

cell-cycle resulting in an accumulation of a >4N cell-fraction, but with AdΔ19K 

the accumulation was more potent.  
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3.2.2. Combining AdΔ19K with gemcitabine or irinotecan does not prevent 

the activation of the DDR elicited by the drugs, but increases DNA damage  

 

PT45 cells  

 

Arrest of cells in S-phase following treatment with gemcitabine led us to assess 

activation of the DNA-damage response. Firstly, we examined whether any 

DNA damage was present, using the DNA-damage marker phospho-histone 

H2A.X (Ser139). Immunoblot analysis of phospho-histone H2A.X (pH2AX) in 

PT45 cells showed that 24h after gemcitabine treatment there was a 2-fold 

increase in pH2AX protein levels, that modestly increased up to 72h (Figure 

27A). The presence of AdΔ19K in gemcitabine-treated cells significantly 

increased phosphorylation of histone H2AX at 48h, with a trend towards 

increases also at 24h and 72h (Figure 27A). The presence of Ad5tg in 

gemcitabine-treated cells showed a tendency towards elevated phosphorylation 

of histone H2AX at 48h (Figure 27A).  Infection with Ad5tg or AdΔ19K alone 

appeared to increase pH2AX protein levels at 48h and 72h, but did not reach 

statistical significance (Figure 27A).   

 

In order to assess activation of the DNA-damage response we examined 

phosphorylation of the checkpoint kinases Chk1 and Chk2. As shown in Figure 

27B, gemcitabine induced Chk1 phosphorylation at 24h, with a gradual 

decrease from 24h to 72h. In response to gemcitabine combined with either 

Ad5tg or AdΔ19K pChk1 was induced to a similar extend as with gemcitabine 

alone (Figure 27B). No Chk1 phosphorylation was apparent following infection 

with Ad5tg or AdΔ19K (Figure 27B). Chk2 phosphorylation increased 48h and 

72h after treatment with gemcitabine and this pattern was also seen when 

gemcitabine was combined with Ad5tg or AdΔ19K (Figure 27C). A trend 

towards increased phospho-Chk2 protein levels was observed when AdΔ19K 

was present in gemcitabine-treated cells, compared to gemcitabine without 

AdΔ19K (Figure 27C). No obvious Chk2 phosphorylation could be detected in 

Ad5tg- or AdΔ19K-infected cells (Figure 27C).  
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Figure 27: Combining AdΔ19K with gemcitabine does not prevent the 
activation of the DNA-damage response elicited by the drug, but increases 
DNA damage in PT45 cells. PT45 cells were treated with 100ppc Ad5tg or 
AdΔ19K -/+ 10nM gemcitabine (Gem) and harvested at the indicated times for 
immunblot analysis of pH2AX, pChk1 and pChk2. (A) Average phospho-
histoneH2A.X (pH2AX, Ser139) protein levels expressed relative to the loading 
control, as quantified by densitometric analysis. A representative immunoblot of 
pH2AX (15kDa) with vinculin (130kDa) as a loading control is also shown. 
Numbers indicate MW size marker (kDa) (B) Average phospho-Chk1 (pChk1, 
Ser345) protein levels expressed relative to the loading control, as quantified by 
densitometric analysis. A representative immunoblot of pChk1 (56kDa) with 
vinculin (130kDa) as a loading control is also shown. (C) Average phospho-
Chk2 (pChk1, Thr68) protein levels expressed relative to the loading control, as 
quantified by densitometric analysis. A representative immunoblot of pChk2 
(56kDa) with vinculin (130kDa) as a loading control is also shown. Vertical lines 
on immunoblots indicate points of cropping. Error bars represent S.E.M. of 2-3 
independent experiments. *.p<0.05, **.p<0.01 (one-way ANOVA with 
Bonferroni's multiple comparison test). The sample preparation and 
immunobotting was performed in collaboration with Dr Gioia Cherubini.  
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We next sought to examine whether the inability of adenovirus to prevent the 

activation of the DNA-damage response elicited by gemcitabine was also 

evident in response to the DNA-damaging drug irinotecan. Preliminary 

immunoblot analysis in PT45 cells showed that irinotecan induces 

phosphorylation of histoneH2AX that increases from 24h to 72h post-treatment, 

phosphorylation of Chk1 that peaks at 48h and phosphorylation of Chk2 that 

remains constant from 24 to 72h (Figure 28). In contrast to gemcitabine, the 

presence of Ad5tg or AdΔ19K in irinotecan-treated cells did not seem to further 

increase phosphorylation of histoneH2AX (Figure 28). The preliminary data 

suggested that irinotecan-induced phosphorylation of Chk1 might be increased 

in the presence of viruses at 24h and reduced at 48h (Figure 28). Irinotecan-

induced Chk2 phosphorylation seemed to increase in the presence of viruses 

after 72h (Figure 28). Therefore, these preliminary studies suggested that 

similar to the findings with gemcitabine, adenovirus cannot prevent activation of 

the DNA-damage response elicited by irinotecan.  
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Figure 28: Preliminary data in PT45 cells suggest that combining AdΔ19K 
with Irinotecan does not prevent the activation of the DNA-damage 
response elicited by the drug. PT45 cells were treated with 100ppc Ad5tg or 
AdΔ19K -/+ 12.5µM irinotecan (Iri) and harvested at the indicated times for 
immunblot analysis of pH2AX, pChk1 and pChk2. (A) Immunoblot of pH2AX 
(Ser139, 15kDa), pChk1 (Ser345, 56kDa) and pChk2 (Thr68, 62kDa) with 
vinculin (130kDa) as a loading control. (B) Quantification of pH2AX, pChk1 and 
pChk2 protein levels by densitometric analysis (expressed relative to the 
loading control). n =1. The sample preparation and immunoblotting were 
performed by Dr Gioia Cherubini and Ms Ana Mozetic.  
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MIAPaCa-2 cells 

 

In order to examine whether adenovirus affects the activation of the DNA-

damage response following gemcitabine or irinotecan treatment in MIAPaCa-2 

cells, immunoblot analysis for phosphorylation of Chk1 and histoneH2AX was 

performed at 24h and 48h.   

 

Gemcitabine induced phosphorylation of histoneH2AX at 24h, which increased 

by 3-fold at 48h post-treatment (Figure 29A and B). In the presence of AdΔ19K 

gemcitabine-induced histoneH2AX phosphorylation significantly increased; 2-

fold compared to gemcitabine at 48h (Figure 29A and B). In contrast, the 

presence of Ad5tg did not affect gemcitabine-induced histoneH2AX 

phosphorylation and similar phospho-histoneH2AX protein levels were 

observed between gemcitabine and gemcitabine combined with Ad5tg (Figure 

29A and B). Phospho-histoneH2AX levels were significantly higher in cells 

treated with gemcitabine and AdΔ19K, compared to gemcitabine and Ad5tg 

(Figure 29B). Similar to gemcitabine, irinotecan induced histoneH2AX 

phosphorylation at 48h but to a greater extent, with a 9-fold increase compared 

to 24h (Figure 29A and C). In the presence of either Ad5tg or AdΔ19K 

irinotecan-induced histoneH2AX phosphorylation at 48h was significantly 

increased (2-fold; Figure 29A and C). In addition, there was a trend towards 

increased phospho-histoneH2AX levels at 24h following treatment with 

irinotecan and either Ad5tg or AdΔ19K (Figure 29C). In the absence of drugs, 

infection with Ad5tg or AdΔ19K appeared to increase histoneH2AX 

phosphorylation by 2-3-fold compared to mock-infected cells but was not 

statistically significant (Figure 29B and C).  
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Figure 29: Combining AdΔ19K with gemcitabine or irinotecan increases 
DNA-damage in MIAPaCa-2 cells. MIAPaCa-2 cells were treated with 300ppc 
Ad5tg or AdΔ19K -/+ 20nM gemcitabine (Gem) or 15µM Irinotecan (Iri) and 
harvested at the indicated times for immunoblot analysis of phosphorylated 
histoneH2A.X (Ser139). (A) Representative immunoblots of pH2AX (Ser139, 
15kDa) with actin (42kDa) as a loading control. (B) Average pH2AX protein 
levels in mock-, Ad5tg- or AdΔ19K-infected cells -/+ gemcitabine. (C) Average 
pH2AX protein levels in mock-, Ad5tg- or AdΔ19K-infected cells -/+ irinotecan.  
The pH2AX protein levels were quantified by densitometric analysis and 
expressed relative to the loading control. Error bars represent S.E.M. of 2 
independent experiments. **.p<0.01, ***.p<0.001 (one-way ANOVA with 
Bonferroni's multiple comparison test). 
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Chk1 was phosphorylated 24h post-treatment with gemcitabine and the 

phosphorylation appeared to increase at 48h (Figure 30A and B). Similar 

upregulation of phospho-Chk1 levels was observed in response to the 

combination of gemcitabine with either Ad5tg or AdΔ19K (Figure 30A and B). 

Analogous to gemcitabine, irinotecan induced phosphorylation of Chk1, which 

peaked at 48h (Figure 30A and C). In the presence of viruses irinotecan-

induced Chk1 phosphorylation showed a tendency towards decreased levels at 

24h, especially in the presence of AdΔ19K (Figure 30A and C). At 48h similar 

phospho-Chk1 levels were observed in cells treated with irinotecan and 

irinotecan combined with either virus (Figure 30A and C). No Chk1 

phosphorylation was detectable following infection with adenoviruses in the 

absence of drugs (Figure 30A-C).  
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Figure 30: Combining AdΔ19K with gemcitabine or irinotecan does not 
prevent the activation of the DNA-damage response elicited by the drugs 
in MIAPaCa-2 cells. MIAPaCa-2 cells were treated with 300ppc Ad5tg or 
AdΔ19K -/+ 20nM gemcitabine (Gem) or 15µM Irinotecan (Iri) and harvested at 
the indicated times for immunoblot analysis of phospho-Chk1 (Ser345). (A) 
Representative immunoblots of pChk1 (Ser345, 56kDa) with vinculin (130kDa) 
as a loading control. (B) Average phospho-Chk1 protein levels in mock-, Ad5tg- 
or AdΔ19K-infected cells -/+ gemcitabine. (C) Average phospho-Chk1 protein 
levels in mock-, Ad5tg- or AdΔ19K-infected cells -/+ irinotecan. Phospho-Chk1 
protein levels were quantified by densitometric analysis and are expressed 
relative to the loading control. Error bars represent S.E.M. of 2 independent 
experiments.  
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Summary  

 

In PT45 cells gemcitabine induces phosphorylation of Chk1 at 24 and 48h post-

treatment and Chk2 phosphorylation at 48 and 72h, indicating activation of the 

DNA-damage response. In contrast, adenovirus infection efficiently prevented 

activation of the DNA-damage response. However, in the presence of 

gemcitabine, Ad5tg or AdΔ19K could not prevent phosphorylation of Chk1 and 

Chk2 and overall, gemcitabine-induced activation of the DNA-damage response 

was not significantly affected by the presence of viruses. Despite this, AdΔ19K 

significantly increased gemcitabine-induced histoneH2AX phosphorylation at 

48h, suggesting increased DNA damage. Preliminary data suggested that 

similar to gemcitabine, adenovirus cannot prevent activation of the DNA-

damage response elicited by irinotecan in PT45 cells. In MIAPaCa-2 cells, both 

gemcitabine and irinotecan activated Chk1 24-48h post-treatment. The 

presence of adenovirus in gemcitabine- or irinotecan-treated cells did not 

significantly alter drug-induced induction of phospho-Chk1, suggesting that, like 

in PT45 cells, adenovirus is unable to prevent activation of the DNA-damage 

response elicited by the drugs. However, AdΔ19K did increase gemcitabine and 

irinotecan-induced phosphorylation of histoneH2A.X. Therefore, it can be 

concluded that in response to AdΔ19K and DNA-damaging drugs the ATR/Chk1 

and ATM/Chk2 pathways are activated to similar extent as with drugs alone, but 

the combination treatment leads to augmented phospho-histoneH2A.X 

expression, implying increased DNA damage and/or replication stress.  
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3.2.3. Ad 19K-mediated Mre11 and Nbs1 downregulation persists in the 

presence of gemcitabine and irinotecan  

 

Upon infection adenovirus efficiently blocks the activation of the DNA-damage 

response, by degrading the Mre11 and Nbs1 components of the MRN complex 

(Turnell and Grand, 2012). Following the finding that adenovirus is unable to 

block the DNA-damage response elicited by gemcitabine or irinotecan, we 

wondered whether it was still able to degrade the MRN complex. Immunoblot 

analysis for Mre11 and Nbs1 was therefore carried out in PT45 cells.  

 

In the absence of drugs, adenovirus efficiently downregulated Mre11 

expression, with significant decreases seen at 48h and 72h post-AdΔ19K 

infection and 72h post-Ad5tg infection (Figure 31A and B). Similarly, Nbs1 

protein levels were significantly reduced from 24h to 72h post-infection with 

either virus (Figure 31A and C). Gemcitabine did not seem to affect Mre11 or 

Nbs1 protein levels compared to mock-treated cells (Figure 31A-C). However, 

72h after treatment with gemcitabine and AdΔ19K, Mre11 expression was 

significantly decreased compared to gemcitabine (Figure 31A and C). In the 

presence of gemcitabine, AdΔ19K and Ad5tg showed a trend towards Mre11 

and Nbs1 downregulation at all time-points tested.  

 

Similar results were obtained in response to irinotecan (Figure 32A-C). Mre11 

and Nbs1 protein levels were significantly decreased 24h and 72h post-Ad5tg 

infection, with a trend towards a decrease at 48h (Figure 32A-C). AdΔ19K 

significantly reduced Mre11 expression after 48h and 72h, and Nbs1 expression 

at 48h, with a trend towards decreases at all other time-points (Figure 32A-C). 

Analogous to gemcitabine, irinotecan did not alter the protein levels of Mre11 or 

Nbs1 (Figure 32A-C). In the presence of irinotecan, AdΔ19K downregulated 

Mre11 expression and a significant decrease in Mre11 protein levels compared 

to irinotecan was seen at 72h (Figure 32A and B). A tendency towards Mre11 

downregulation was also seen 24 and 48h following irinotecan and Ad5tg 

treatment (Figure 32A and B). No significant decreases in Nbs1 protein levels 

were detected in cells treated with AdΔ19K and irinotecan, despite a trend 

towards reduced levels compared to irinotecan, particularly at 72h (Figure 32A 



190 
 

 Ad 19K 

+ Gem 

100 

100 

55 α-tubulin 
2
4
h

 

4
8
h

  

7
2
h

 

2
4
h

 

4
8
h

  

7
2
h

 

2
4
h

 

4
8
h

  

7
2
h

 

2
4
h

 

4
8
h

  

7
2
h

 

2
4
h

 

4
8
h

  

7
2
h

 

2
4
h

 

4
8
h

  

7
2
h

 

 

 Mock 

Mre11 

Nbs1 

  Gem Ad 19K 

 Ad5tg 

+ Gem  Ad5tg 

B. 

A. 

C. 

and C). In the presence of irinotecan Ad5tg did not seem to be as potent as 

AdΔ19K in downregulating Nbs1 expression (Figure 32C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Ad 19K-mediated Mre11 and Nbs1 downregulation persists in 
the presence of gemcitabine. PT45 cells were treated with 300ppc Ad5tg or 
AdΔ19K -/+ 5nM gemcitabine (Gem) and harvested at the indicated times for 
immunblot analysis of Mre11 and Nbs1. (A) Representative immunoblot of 
Mre11 (81kDa) and Nbs1 (95kDa). α-tubulin (55kDa) was used as a loading 
control. Numbers indicate MW size marker (kDa). Vertical lines on the 
immunoblot indicate points of cropping. (B and C) Quantification of protein 
levels by densitometric analysis. Mre11 and Nbs1 protein levels were 
expressed relative to the loading control.  Error bars represent S.E.M. of 3 
independent experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way ANOVA 
with Bonferroni's multiple comparison test).  
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Figure 32: Ad 19K-mediated Mre11 and Nbs1 downregulation persists in 
the presence of irinotecan. PT45 cells were treated with 300ppc Ad5tg or 

AdΔ19K -/+ 5µM irinotecan (Iri) and harvested at the indicated times for 

immunblot analysis of Mre11 and Nbs1. (A) Representative immunoblot of 
Mre11 (81kDa) and Nbs1 (95kDa). α-tubulin (55kDa) was used as a loading 
control. Vertical lines on the immunoblot indicate points of cropping. (B and C) 
Quantification of protein levels by densitometric analysis. Mre11 and Nbs1 
protein levels were expressed relative to the loading control.  Error bars 
represent S.E.M. of 3 independent experiments. *.p<0.05, **.p<0.01, 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test).  
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Mre11 and Nbs1 expression was also assessed in MIAPaCa-2 cells following 

mock, Ad5tg or Ad 19K infection in the absence or presence of gemcitabine. 

As shown in figure 33, Ad 19K downregulated Mre11 and Nbs1 protein levels 

only at 48h post-infection, whereas Ad5tg decreased Mre11 and Nbs1 

expression 24h though to 72h post-infection. In response to gemcitabine, a 

modest upregulation of Mre11 and Nbs1 was observed at 24h, while no obvious 

change was seen after 48h and 72h compared to mock-infected cells (Figure 

33A-C). In cells treated with a combination of gemcitabine and Ad 19K, Mre11 

and Nbs1 protein levels were reduced at 48h (Figure 33A-C). In contrast, no 

downregulation of Mre11 and Nbs1 was observed upon treatment with 

gemcitabine and Ad5tg (Figure 33A-C).  
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Figure 33: Preliminary data in MIAPaCa-2 cells suggest that Ad 19K 
induces Mre11 and Nbs1 downregulation at 48h, that persists in the 
presence of gemcitabine. MIAPaCa-2 cells were treated with 300ppc Ad5tg or 
AdΔ19K -/+ 20nM gemcitabine (Gem) and harvested at the indicated times for 
immunoblot analysis of Mre11 and Nbs1. (A) Immunoblot of Mre11 (81kDa) and 
Nbs1 (95kDa). Actin (42kDa) was used as a loading control. (B and C) Mre11 
and Nbs1 protein levels were quantified by densitometric analysis and 
expressed relative to the loading control. One experiment.  
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It can be concluded that both viruses downregulate Mre11 and Nbs1 protein 

levels in PT45 cells and in the presence of gemcitabine or irinotecan AdΔ19K is 

still able to downregulate Mre11 expression up to 72h after treatment. 

Preliminary data suggest that Ad5tg-mediated downregulation of Mre11 and 

Nbs1 expression in MIAPaCa-2 cells is more efficient compared to Ad 19K in 

the absence of gemcitabine. However, in the presence of gemcitabine Ad 19K, 

but not Ad5tg, decreased Mre11 and Nbs1 protein levels 48h post-treatment. 

Taken together, the immunoblot analysis for DDR proteins suggested that in 

both cell lines drug-induced activation of the DDR is not impaired by adenovirus 

but persistent virus-induced degradation of the MRN complex in the presence of 

drugs might inhibit DNA repair leading to increased DNA damage and/or 

replication stress.  

 

 

3.2.4. Mre11 knockdown increases cell death induced by AdΔ19K and 

DNA-damaging drugs  

 

Observing that in the presence of gemcitabine or irinotecan Ad 19K can still 

downregulate Mre11 and Nbs1 expression, prompted me to investigate whether 

this downregulation was important for Ad 19K-mediated sensitization of PT45 

cells to DNA-damaging drugs. A 6-day experiment was setup, during which 

cells were transfected with a non-targeting siRNA or siRNA against Mre11, 

harvested and seeded for use in cell viability assays and immunoblot analysis 

for monitoring Mre11 knockdown. Cell viability was assessed 72h post-infection 

with Ad 19K in the absence or presence of fixed doses of gemcitabine or 

irinotecan. The time of cell viability assessment corresponded to 120h post-

transfection. As shown in figure 34, Mre11 was efficiently knocked-down 

throughout the course of the experiment, with 80-90% knockdown being 

achieved 48h to 120h post-transfection, compared to the non-targeting siRNA 

control.  

 

Assessment of cell viability demonstrated that Mre11 knockdown decreased the 

EC50 value of Ad 19K by 2-fold compared to the non-targeting siRNA control 

(Figure 35A). The EC50 value of Ad 19K in combination with 2nM or 5nM 
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gemcitabine significantly dropped by 3- and 5-fold, respectively, following Mre11 

knockdown (Figure 35A). Similarly, a significant 4-fold decrease in the EC50 

value of Ad 19K and irinotecan was observed when Mre11 was knocked-down 

(Figure 35A).  

 

The sensitization ratio in response to Ad 19K and 2nM gemcitabine showed a 

trend towards increase in cells where Mre11 was knocked-down compared to 

the control siRNA (Figure 35B). When Ad 19K was combined with the higher 

dose of gemcitabine or irinotecan the sensitization ratio significantly increased 

following Mre11 knockdown (Figure 35B). Interestingly, knocking-down Mre11 

enhanced gemcitabine-induced cytotoxicity and showed a tendency to enhance 

irinotecan-induced cell death (Figure 35C).  

 

In conclusion, knockdown of Mre11 enhanced Ad 19K-mediated cytotoxicity 

both in the absence and presence of drugs, although greater reductions in the 

EC50 values following Mre11 knockdown were observed when Ad 19K was 

combined with drugs. Moreover, gemcitabine- and irinotecan-mediated 

sensitization to Ad 19K was significantly enhanced when Mre11 was knocked-

down compared to the same treatment in cells with the non-targeting siRNA. 

Besides Ad 19K, gemcitabine-induced cytotoxicity was also enhanced following 

Mre11 knockdown. Therefore, Ad 19K-mediated downregulation of Mre11 is 

important for cell death induced by Ad 19K and DNA-damaging drugs.  
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Figure 34: Mre11 is efficiently knocked-down for up to 120h post-
transfection. PT45 cells were transfected with siRNA against MRE11 
(siMRE11) or non-targeting siRNA (siNT). 24h post-transfection cells were 
pooled, re-seeded in 6-well plates and harvested for immunoblot analysis at the 
indicated hours post-transfection (hpt). (A) Representative immunoblot of Mre11 
(81kDa). Vinculin (130kDa) was used as a loading control. Numbers indicate 
MW size marker (kDa). (B) Quantification of protein levels by densitometric 
analysis. Mre11 protein levels were normalised to the loading control and 
expressed as % of siNT at each time-point Error bars represent S.E.M. of 4 
independent experiments. *.p<0.05, ***.p<0.001 (one-sample t-test comparing 
to 100%).  
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Figure 35: Mre11 knockdown increases cell death induced by AdΔ19K and 
DNA-damaging drugs. PT45 cells were transfected with siRNA against 
MRE11 (siMRE11) or non-targeting siRNA (siNT)  24h post-transfection cells 
were pooled and re-seeded in 96-well plates. 24h later (i.e. 48h post-
transfection) cells were treated with 5-fold dilutions of AdΔ19K -/+ fixed doses of 
gemcitabine (Gem) or irinotecan (Iri) to generate dose-response curves. Cell 
viability was assessed by MTS assay at 72h post-infection, which corresponded 
to 120h post-transfection. (A) EC50 values for AdΔ19K -/+ gemcitabine (Gem) or 
irinotecan (Iri) at the indicated doses in cells transfected with MRE11 or NT 
siRNA. (B) Sensitization ratio (AdΔ19K EC50 / AdΔ19K+Gem or Iri EC50). (C) 
Drug cytotoxicity. % cell death induced by gemcitabine or irinotecan in cells 
transfected with siMRE11 or siNT. Error bars represent S.E.M. of 4 independent 
experiments. *.p<0.05, **.p<0.01 (Unpaired t-test).  
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3.2.5. Mre11 knockdown does not significantly affect viral DNA 

amplification 

 

Following the observation that Mre11 knockdown enhances AdΔ19K-mediated 

cytotoxicity, we wondered whether this was a result of increased viral 

replication.  qPCR analysis for Ad-E2A was performed in PT45 cells transfected 

with an siRNA against MRE11 or a non-targeting siRNA and treated with 

AdΔ19K with or without gemcitabine for 48h. The time for the qPCR-analysis of 

viral genome amplification corresponds to 96h post-transfection.  

 

Knocking-down Mre11 did not significantly affect AdΔ19K DNA amplification, 

although there was a trend towards increased DNA in the absence of 

gemcitabine (Figure 36). Surprisingly, treatment with gemcitabine in cells 

transfected with the non-targeting siRNA control did not decrease viral genome 

amplification (Figure 36). In response to the combination of AdΔ19K with 

gemcitabine, genome amplification showed a tendency towards decrease when 

Mre11 was silenced compared to the control siRNA (Figure 36). Therefore, 

under these experimental conditions knocking-down Mre11 does not seem to 

significantly affect AdΔ19K DNA amplification regardless of the presence of 

gemcitabine.  

 

Figure 36: Mre11 knockdown does not significantly affect viral DNA 
amplification. PT45 cells were transfected with siRNA against MRE11 or a 
non-targeting (NT) siRNA. 48 hours post-transfection cells were treated with 
300ppc AdΔ19K -/+ 5nM gemcitabine (Gem). DNA was extracted at 4 and 
48hpi and analysed by qPCR for viral genome amplification (Ad-E2A). Viral 
DNA was normalized to input DNA (4h) and cellular GAPDH. Error bars 
represent S.E.M. of 2 independent experiments. 
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A. 

3.2.6. Mre11 knockdown has no significant effect on cell-cycle distribution 

 

Concluding that enhanced viral replication was likely not responsible for the 

enhanced cell death induced by AdΔ19K and gemcitabine when Mre11 is 

knocked-down, led me to investigate any changes in the cell-cycle distribution 

of AdΔ19K and gemcitabine treated cells. Following transfection of cells with 

siRNA against Mre11 or control siRNA and treatment with AdΔ19K and 

gemcitabine, cell-cycle and mitotic index analysis were performed 24, 48 and 

72h post-treatment (corresponding to 72, 96 and 120 h post-transfection).  

 

Knocking-down Mre11 did not significantly alter the cell-cycle distribution of 

cells treated with AdΔ19K, gemcitabine or their combination (Figure 37A-D). 

After 24h of knocking-down Mre11 resulted in a very modest tendency towards 

enhanced and attenuated S-phase fraction in cells treated with gemcitabine or 

gemcitabine and AdΔ19K, respectively (Figure 37B). The same trend was 

observed at 72h (Figure 37B). In addition, Mre11 knockdown resulted in a 

moderate trend towards higher mitotic index 24h to 72h post-AdΔ19K infection 

(Figure 37D). It can thus be concluded that knockdown of Mre11 does not 

significantly affect the cell-cycle distribution in response to AdΔ19K and 

gemcitabine.  
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Figure 37: Mre11 knockdown has no significant effect on cell-cycle 
distribution. (A-D) PT45 cells were transfected with siRNA against MRE11 
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(siMRE11) or non-targeting (NT) siRNA (siNT) and treated with 300ppc AdΔ19K 
-/+ 5nM gemcitabine (Gem) 48h post-transfection. At 24, 48 and 72hpi cells 
were stained with a fixable-viability dye (FVD) and fixed for cell-cycle analysis. 
Cells were stained with propidium iodide (for DNA-content analysis), an anti-
phospho-histone H3 antibody (for mitotic index analysis) and an anti-E1A 
antibody (for identification of infected cells) and analysed by flow-cytometry. 
Dead cells, as identified from their incorporation of FVD, were excluded from 
the analysis. In the presence of AdΔ19K only E1A-positive cells were analysed 
for propidium iodide and phospho-histone H3 expression. (A) % cells in G1 
phase (B) % cells in S phase (C) % cells in G2 phase (D) % cells in mitosis. 
Error bars represent S.E.M. of 2 independent experiments. *.p<0.05 (one-way 
ANOVA with Bonferroni's multiple comparison test). 
 

 

3.2.7. H2AX foci mark the sites of Ad 19K- and gemcitabine-induced DNA 

damage 

 

Immunoblot analysis for the DNA-damage marker phospho-histoneH2A.X had 

suggested that the presence of AdΔ19K in gemcitabine-treated cells increases 

DNA damage. To confirm this observation we performed immunofluorescence 

microscopy studies of phospho-histoneH2A.X, which would allow visualization 

of the foci that phospho-histoneH2A.X forms at sites of DNA-damage ( H2A.X 

foci). In these studies an Ad-DBP antibody was used to allow identification of 

infected cells.  The analysis was performed 24h and 36h post-treatment with 

AdΔ19K with or without gemcitabine. Representative immunofluorescence 

microscopy images for each condition at 24h and 36h are shown in figure 38A.  

 

Firstly, quantification of the number of cells displaying more than 5 (5<) H2A.X 

foci was performed (Figure 38B). Gemcitabine induced the formation of H2A.X 

foci in 44.2±3.6% of non-infected cells 24h post-treatment, a significant increase 

compared to mock-infected cells (Figure 38B left panel). The proportion of cells 

displaying H2A.X foci in response to gemcitabine increased to 58.9±5.4% by 

36h, again significantly higher than untreated cells (Figure 38B left panel). In 

response to AdΔ19K, 24.3±0.8% of infected cells showed H2A.X foci 24h post-

infection and this was significantly increased to 47.8±5.1% when gemcitabine 

was added  (Figure 38B right panel). However, the number of H2A.X-positive 

cells was similar between gemcitabine and gemcitabine combined with AdΔ19K 

(Figure 38B). At 36h the number of AdΔ19K-infected cells displaying H2A.X 
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foci increased by 3-fold to reach 72.8±3.8% and addition of gemcitabine did not 

further increase this percentage (Figure 38B right panel). Once more, the 

proportion of cells having H2A.X foci following treatment with gemcitabine with 

or without AdΔ19K was similar (61.9±2.7% and 58.9±5.4%, respectively) 

(Figure 38B).  

 

Having seen that there was no increase in the number of cells positive for 

H2A.X when AdΔ19K was present in gemcitabine-treated cells, I speculated 

whether an increase in total H2A.X fluorescence intensity could be detected. It 

is possible that more and/or brighter H2A.X foci occur per cell and such effect 

would have not been detected when counting the number of cells positive for 

H2A.X. A second analysis was thus performed, in which total H2AX 

fluorescence intensity was measured in non-infected or AdΔ19K-infected cells 

and expressed as fluorescence intensity per cell (Figure 38C).  

 

The total H2AX fluorescence intensity 24h after treatment with gemcitabine 

was 2.4-fold higher compared to untreated cells, but the difference was not 

statistically significant (Figure 38C left panel). At 36h total H2AX fluorescence 

intensity in response to gemcitabine significantly increased compared to 24h 

and was 3.7-fold higher than untreated cells (Figure 38C left panel). The 

presence of gemcitabine in AdΔ19K-infected cells resulted in a trend towards 

increased H2AX fluorescence intensity (2-fold) at 24h and it significantly 

increased the H2AX fluorescence intensity at 36h (Figure 38C right panel). 

H2AX fluorescence intensity at 24h was 18,361±4,925 in gemcitabine-treated 

cells compared to 29,162±12,008 in cells treated with gemcitabine and AdΔ19K, 

suggesting there could be an increase (Figure 38C). At 36h similar H2AX 

fluorescence intensity was observed in gemcitabine-treated cells with or without 

AdΔ19K (Figure 38C). Regarding the infectability of cells, 9.1±2.7% and 

14.1±1.8% of cells were positive for Ad-DBP 24h and 36 post-infection, 

respectively, whereas in the presence of gemcitabine the number of Ad-DBP-

positive cells increased to 21±4.7% and 42.9±11.1% for 24h and 36h, 

respectively (Figure 38D). 
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In conclusion, gemcitabine and AdΔ19K individually induced the formation of 

H2AX foci. Their combination increased the number of H2AX-positive cells 

and the fluorescence intensity compared to AdΔ19K but not compared to 

gemcitabine. Therefore, these studies showed that AdΔ19K does not increase 

gemcitabine-induced DNA damage up to 36h.  
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Figure 38: Ad 19K and gemcitabine induce DNA-damage. PT45 cells were 
treated with 300ppc of AdΔ19K -/+ 5nM gemcitabine (Gem) and fixed at the 

indicated times for immunofluorescence microscopy analysis of H2AX and Ad-
DBP. Images from 10-20 fields were acquired using the 40x objective of the 
confocal laser scanning microscope Zeiss LSM510 and used for counting at 

least 200 cells per treatment. (A) Representative DAPI, Ad-DBP, H2AX and 
merged images from each treatment at 24h and 36h. (B) Quantification of non-

infected or AdΔ19K-infected cells displaying more than 5 (5<) H2AX foci, 
expressed as % of total non-infected or infected cells respectively. (C) 

Quantification of total H2AX fluorescence intensity per non-infected or 

AdΔ19K-infected cell (expressed as H2AX fluorescence in non-infected or 
infected area normalised to the area background fluorescence divided by the 
number of cells in the area). (D) Quantification of AdΔ19K positive cells, as 
measured by Ad-DBP expression, expressed as frequency (%). Quantification 
was done using NIH ImageJ software as described in the methods. Error bars 
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represent S.E.M. of 3 independent experiments. *.p<0.05, **.p<0.01, 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test). 
 
 

3.2.8. Cells treated with adenovirus and gemcitabine display DNA damage 

in mitosis 

 

In order to understand whether DNA damage induced by AdΔ19K and 

gemcitabine is repaired, immunofluorescence microscopy analysis of 

phosphorylated histoneH2A.X was carried out in mitotic cells, as persistence of 

H2AX foci in mitosis would suggest failure to repair DNA damage. PT45 cells 

treated with Ad5tg or AdΔ19K with or without gemcitabine were subjected to 

immunofluorescence microscopy analysis of phospho-histoneH2A.X and Ad-

DBP, as a marker for infected cells, 48h and 72h post-treatment. The H2AX 

analysis was categorised into cells displaying more than 5 (5<) foci and cells 

displaying a pan-chromosomal H2AX signal, in which H2AX staining occupied 

the majority of mitotic DNA. Representative images of non-infected and infected 

mitotic cells displaying H2AX foci or a pan-chromosomal H2AX staining are 

shown in figure 39A.  

 

Ad-DBP expression demonstrated that less than 5% of mitotic cells were 

infected with either Ad5tg or AdΔ19K at 48h or 72h (Figure 39D). In the 

presence of gemcitabine 12.9±3.8% and 12.9±3.6% of mitotic cells were 

infected with Ad5tg and AdΔ19K, respectively, at 48h, and 4.5±2.3% and 

5.2±0.4% of mitotic cells were infected with Ad5tg and AdΔ19K, respectively, at 

72h (Figure 39D). 

 

At 48h following treatment with gemcitabine 68±3.2% and 25.6±2.8% of mitotic 

cells showed H2AX foci and pan-chromosomal H2AX staining, respectively, 

suggesting that gemcitabine-induced DNA damage is passed on to mitosis 

(Figure 39B). Very similar frequencies were observed 72h post-treatment with 

gemcitabine (Figure 39B). At both time-points the H2AX signal was 

significantly stronger compared to cells without gemcitabine (Figure 39B). 48h 

post-infection with AdΔ19K 100% of mitotic cells were positive for H2AX, with 

38.2±6.1% of them having a pan-chromosomal H2AX staining (Figure 39C). 
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This was significantly higher compared to mock-infected cells, as denoted by 

the red asterisks (Figure 39C). The presence of gemcitabine increased the 

number of AdΔ19K-infected cells displaying a pan-chromosomal H2AX staining 

to 53.2±2.1%, which was significantly higher compared to gemcitabine and 

gemcitabine combined with Ad5tg at 48h (Figure 39C). In contrast to AdΔ19K, 

Ad5tg infection did not result in 100% of mitotic cells being positive for H2AX 

and the number of Ad5tg-infected cells displaying a pan-chromosomal H2AX 

staining did not increase when gemcitabine was added, nor was it higher than 

gemcitabine alone at 48h (Figure 39C). In contrast to 48h, the presence of 

gemcitabine 72h post-Ad5tg infection significantly increased the pan-

chromosomal H2AX staining, which was also significantly higher than 

gemcitabine without virus (Figure 39C). At 72h AdΔ19K induced more pan-

chromosomal H2AX signal than Ad5tg (Figure 39C). Addition of gemcitabine to 

AdΔ19K significantly increased the proportion of cells having pan-chromosomal 

signal to 65.2±1.6% and this was significantly more than gemcitabine or 

gemcitabine with Ad5tg (Figure 39C).  

 

In conclusion, gemcitabine- and AdΔ19K-induced DNA damage was not 

repaired before mitotic entry and all mitotic cells were positive for H2AX at 48h 

and 72h post-treatment. However, treatment with a combination of gemcitabine 

and AdΔ19K did result in an increased pan-chromosomal H2AX staining 

compared to either single treatment or a combination of gemcitabine with Ad5tg.  
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Figure 39: Cells treated with adenovirus and gemcitabine display DNA 
damage in mitosis. PT45 cells were seeded on coverslips, treated with 300ppc 
of Ad5tg or AdΔ19K -/+ 10nM gemcitabine (Gem) and fixed at the indicated 

times for immunofluorescence microscopy analysis of H2AX and Ad-DBP. At 
least 150 mitotic cells were counted per treatment using a Zeiss Axioplan 
epifluorescent microscope and categorised into γH2AX-negative mitoses, 
mitoses with more than 5 (5<) γH2AX foci and pan-chromosomal γH2AX 
staining (A) Examples of non-infected or infected mitotic cells with 5< γH2AX 

foci and pan-chromosomal γH2AX staining. DAPI, Ad-DBP, H2AX and merged 
images are shown. Images were acquired using the 60x objective of the 
confocal laser scanning microscope Zeiss LSM510. (B) Quantification of 
γH2AX-positive non-infected mitoses, expressed as % of total non-infected 

B. 

C. 

D. 
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mitoses. **.p<0.01, ***.p<0.001. (Unpaired t-test). (C) Quantification of γH2AX-
positive infected mitoses, expressed as % of total infected mitoses. *.p<0.05, 
**.p<0.01, ***.p<0.001. (one-way ANOVA with Bonferroni's multiple comparison 
test). Red asterisks indicate statistical significance in comparison to non-
infected cells. (D) Quantification of infected mitoses as measured by Ad-DBP 
expression, expressed as frequency. Error bars represent S.E.M. of 2 
independent experiments, each with 2 technical replicates.  
 

 

3.2.9. AdΔ19K does not accelerate the slippage of gemcitabine-arrested S-

phase cells, but promotes mitotic entry and prevents their gradual G1-

arrest after escape  

 

We next questioned whether AdΔ19K could accelerate the progression of 

gemcitabine-treated cells through the cell-cycle, since it was previously reported 

that adenovirus can override cell-cycle checkpoints (Cherubini et al., 2006; 

Connell et al., 2008). In order to answer this question, cell-cycle synchronisation 

was necessary. Cells were synchronised in early S-phase using a thymidine 

block and released into medium containing Ad5tg or AdΔ19K with or without 

gemcitabine. In these studies a viability dye was employed to allow exclusion of 

dead cells and an E1A antibody was used to identify infected cells. Cell-cycle 

and mitotic index analysis was performed by multicolour flow-cytometry at 6, 12, 

24, 30, 36, 48, 54, 60 and 72h post-treatment. For assessment of cell 

synchronisation, the cell-cycle distribution of total cells (both infected and non-

infected in conditions where virus was present) 6h and 12h post-thymidine 

release is shown in figure 40A. Figure 40B shows the cell-cycle distribution of 

only E1A-positive cells (in conditions where virus was present). Representative 

flow-cytometry profiles can be found in Appendix 3 (section 5.1.; Figure 67).   

 

At 6h post-thymidine release the majority of cells had progressed from S- to G2-

phase in all conditions (Figure 40A; 6h). At 12h post-thymidine release 

49.6±1.1% of mock-infected cells progressed to G1-phase, while a 34.4±2.5% 

remained in G2 (Figure 40A; 12h). In response to Ad5tg and AdΔ19K cell 

passage from G2 to mitosis and then G1 appeared to be slower than in mock-

infection (Figure 40A; 12h). At 12h post-thymidine release Ad5tg- or AdΔ19K-

infected E1A-positive cells were accumulated in G2-phase (Figure 40B; 12h). 

By 24h cell-cycle distribution was similar between mock-, Ad5tg- and AdΔ19K-
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infected cells (Figure 40B; 24h). However, from 36h and 48h onwards the S- 

and G2-phase cell-fraction, respectively, in Ad5tg- and AdΔ19K-infected cells 

was significantly higher than mock-infected cells (Figure 40B).  

  

Gemcitabine-induced S-phase arrest initiated at 12h and peaked at 36h 

reaching 57.3±5.9% (Figure 40B). From 36 to 48h approximately 35% of 

gemcitabine-treated cells progressed from S to G2 and mitosis and another 

fraction entered G1 (Figure 40B). From 48h onwards gemcitabine-treated cells 

kept entering G1 and by 72h 61±1.9% of cells had accumulated in G1 (Figure 

40B).  

 

At 12h post-thymidine release gemcitabine addition significantly increased the 

S-phase fraction of Ad5tg- and AdΔ19K-infected E1A-positive cells, which also 

appeared to be higher compared to gemcitabine (Figure 40B; 12h). This 

suggested that gemcitabine-induced S-phase arrest might be initially stronger in 

the presence of viruses. In addition, the presence of Ad5tg or AdΔ19K in 

gemcitabine-treated cells increased the G2 cell-fraction, since, as also observed 

in the absence of gemcitabine, E1A-positive cells appeared to have moved 

slower from G2 to G1 (Figure 40B 12h). Surprisingly, despite a trend towards 

higher S-phase at 12h, the presence of viruses significantly decreased 

gemcitabine-induced S-phase arrest at 24h and 30h (Figure 40B). Moreover, up 

to 36h AdΔ19K infection in the presence of gemcitabine resulted in increased 

G2-phase compared to gemcitabine (Figure 40B). At 36h cells treated with a 

combination of gemcitabine and AdΔ19K had reached maximum S-phase arrest 

(48.3±4.9%). From 36 to 48h a fraction of gemcitabine and AdΔ19K-treated 

cells progressed from S to G2 and another fraction had entered S-phase, as 

suggested by the decrease in G1 (Figure 40B; 36h versus 48h). From 48h to 

72h small fractions of gemcitabine and AdΔ19K-treated cells kept progressing 

through the different phases, but overall no significant changes in their cell-

cycle distribution were observed during this 24h period (Figure 40B). 

Significantly less and more cells were present in G1 and S-phase, respectively, 

48 to 72h after gemcitabine was combined with viruses, compared to 

gemcitabine (Figure 40B). In addition, significantly more cells were present in 

G2-phase 60 to 72h after gemcitabine was combined with viruses, compared to 

gemcitabine (Figure 40B). 
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Both viruses showed a trend towards increased mitotic index from 30h onwards, 

with significant increases at 48h and 54h post-Ad5tg infection and at 60h post-

Ad 19K infection (Figure 40C). Gemcitabine significantly decreased the mitotic 

index at 12h and remained low until 36h since cells were arrested in S-phase 

(Figure 40C 36h). 48h following gemcitabine treatment the mitotic index 

reached 3.5±0.4%, as cells escaped from the S-phase block (Figure 40C; 48h). 

The presence of either virus in gemcitabine-treated cells showed a tendency to 

increase the mitotic index throughout the time-course and significant increases 

were seen from 48h to 72h (Figure 40C). The mitotic index in response to 

gemcitabine and Ad 19K was 2 to 4-fold higher than gemcitabine throughout 

the time-course, with the biggest difference observed at 60h (Figure 40C).  

 

To summarize, in response to either virus, the E1A-positive cells accumulated 

in S and G2 phases throughout the time-course. Gemcitabine-induced S-phase 

arrest peaked at 36h and was followed by cell progression to G2 and mitosis 

and gradual cell arrest in G1. In contrast, following the S-phase arrest, cells 

treated with gemcitabine and AdΔ19K did not accumulate in G1, but rather 

occupied S and G2 with some progression through the different phases being 

observed. Notably, AdΔ19K significantly increased the mitotic index of 

gemcitabine-treated cells from 48h to 72h. In conclusion, AdΔ19K did not 

accelerate the slippage of gemcitabine-arrested S-phase cells to G2. However, 

it prevented the gradual G1 arrest of gemcitabine-treated cells by keeping them 

accumulated in S and G2 phases and at the same time it promoted their mitotic 

entry.  
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Figure 40: AdΔ19K does not accelerate the slippage of gemcitabine-
arrested S-phase cells, but promotes mitotic entry and prevents their 
gradual G1-arrest after escape. PT45 cells were treated with 2.5mM 
thymidine for 24h and released from the thymidine block in 0% FBS DMEM -/+ 
300ppc Ad5tg or AdΔ19K. 2h later medium was replaced with 10% FBS DMEM 
-/+ 5nM gemcitabine (Gem). At the indicated times post-infection cells were 
stained with FVD eFluor506 and fixed for cell-cycle analysis. Cells were stained 
with propidium iodide (for DNA-content analysis), a phospho-histone H3 
antibody (for mitotic index analysis) and an E1A antibody (for identification of 
infected cells) and analysed by flow-cytometry. Dead cells, as identified from 
their incorporation of FVD, were excluded from the analysis. (A) Cell-cycle 
distribution of total cells (non-infected and infected) at 6h and 12h post-
treatment, shown as % cells in G1-phase, S-phase, G2-phase and mitosis (M). 
(B) Cell-cycle distribution of non-infected or infected cells, shown as % cells in 
G1-phase, S-phase, G2-phase and mitosis (M). (C) Mitotic Index (% cells in 
mitosis). Error bars represent S.E.M. of 4 independent experiments. *.p<0.05 
**.p<0.01, ***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison 
test). 
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3.3. AdΔ19K inhibits Gemcitabine-induced 

accumulation of Claspin, which 

contributes to the enhanced cell death 

 

 

 

3.3.1. Ad 19K inhibits drug-induced upregulation of Claspin at the protein 

level  

 

Based on the observation that AdΔ19K and Ad5tg enhance the mitotic entry of 

gemcitabine-treated cells that enter mitosis in the presence of DNA damage, we 

questioned whether adenovirus abrogates the G2/M checkpoint. We explored 

whether adenovirus could regulate Claspin, a checkpoint protein that was 

previously demonstrated to play a role in G2/M checkpoint abrogation in cells 

infected with HPV (Spardy et al., 2009). In response to replication stress or 

DNA-damage, Claspin accumulates and mediates ATR-dependent 

phosphorylation and activation of Chk1 (Chini and Chen, 2004; Kumagai and 

Dunphy, 2000). For cells to recover from the DNA-damage checkpoint response 

and enter mitosis Claspin needs to be degraded, by a mechanism involving the 

ubiquitin ligase complex β-TrCP-SCF, Aurora-A and Plk-1 (Freire et al., 2006; 

Macurek et al., 2008; Mamely et al., 2006). The E7 oncoprotein of HPV was 

shown to increase the proteasomal degradation of claspin, thereby attenuating 

DNA damage responses and promoting mitotic entry (Spardy et al., 2009). To 

gain insight into the mechanism underlying the enhanced mitotic entry of 

gemcitabine-treated DNA-damaged cells, we examined Claspin expression by 

immunoblot analysis in PT45 cells. 

 

Gemcitabine significantly increased claspin expression 24h and 48h post-

treatment (Figure 41A and B, left panels). AdΔ19K infection in gemcitabine-

treated cells significantly decreased gemcitabine-induced upregulation of 

claspin to almost basal levels at both 24h and 48h (Figure 41A and B, left 

panels). A trend towards attenuation of gemcitabine-induced claspin 

upregulation was also observed when Ad5tg was present in gemcitabine-

treated cells (Figure 41A and B, left panels). No significant changes in Claspin 
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expression were detected following Ad5tg or AdΔ19K infection in the absence 

of gemcitabine, although AdΔ19K showed a tendency towards decreased 

Claspin protein levels (Figure 41A and B, left panels).  

 

Preliminary immunoblot analysis of Claspin expression following treatment with 

irinotecan, suggested that similar to gemcitabine, irinotecan upregulated claspin 

protein levels at 24h and 48h post-treatment (Figure 41A and B, right panels). 

The presence of AdΔ19K in irinotecan-treated cells inhibited irinotecan-induced 

Claspin accumulation at 24h and 48h post-treatment, with a stronger inhibition 

observed at 48h (Figure 41A and B, right panels). Ad5tg did not affect 

irinotecan-induced upregulation of Claspin expression at 24h, but it appeared to 

attenuate it at 48h (Figure 41A and B, right panels).  

 

Therefore, gemcitabine-induced upregulation of claspin expression is strongly 

inhibited in the presence of AdΔ19K in PT45 cells. Preliminary data suggest that 

AdΔ19K also inhibits irinotecan-induced upregulation of claspin protein levels in 

PT45 cells.  
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Figure 41: Ad 19K inhibits drug-induced upregulation of Claspin at the 
protein level in PT45 cells. PT45 cells were treated with 300ppc Ad5tg or 
AdΔ19K -/+ 10nM gemcitabine (Gem) or 5µM irinotecan (Iri) and harvested at 
the indicated times for immunblot analysis of Claspin. (A) Representative 
immunoblots of Claspin (250kDa) with vinculin (130kDa) as a loading control. 
Numbers indicate MW size marker (kDa). (B) Quantification of protein levels by 
densitometric analysis. Claspin protein levels were expressed relative to the 
loading control.  Error bars represent S.E.M. of 3 independent experiments. 
**.p<0.01, ***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison 
test). Immunoblotting for Claspin in response to irinotecan was done once.  
 

 

 

We next asked whether Ad 19K-mediated inhibition of drug-induced Claspin 

accumulation also occurs in MIAPaCa-2 cells. Immunoblot analysis of claspin 

expression demonstrated that, analogous to PT45 cells, treatment of MIAPaCa-

2 cells with gemcitabine results in a significant upregulation of Claspin protein 

levels at 24h and 48h post-treatment (Figure 42A and B, left panels). The 

presence of Ad 19K or Ad5tg in gemcitabine-treated cells showed a trend 

towards attenuation of gemcitabine-induced claspin upregulation, but unlike 

PT45 cells no significant inhibition was detected (Figure 42A and B, left panels). 

Claspin protein levels were significantly higher 24h after treatment with 

gemcitabine and either virus, compared to Ad 19K or Ad5tg (Figure 42A and B, 
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left panels). Similar to PT45 cells, irinotecan significantly increased the 

expression of claspin in MIAPaCa-2 cells 24 to 48h after treatment (Figure 42A 

and B, right panels). Once more, Ad 19K or Ad5tg infection of irinotecan-

treated cells showed a tendency towards attenuation of irinotecan-induced 

claspin upregulation (Figure 42A and B, right panels). No significant changes in 

Claspin expression were observed in response to Ad 19K or Ad5tg infection 

(Figure 42A and B). Thus, in contrast to PT45 cells drug-induced upregulation 

of Claspin expression in MIAPaCa-2 cells is not significantly inhibited by 

Ad 19K, although a trend towards attenuation was observed. 

 

 

 

 

 

 

 

 
 

 

Figure 42: Infection of MIAPaCa-2 cells with Ad 19K shows a trend 
towards attenuation of drug-induced upregulation of Claspin expression. 
MIAPaCa-2 cells were treated with 300ppc Ad5tg or AdΔ19K -/+ 20nM 

gemcitabine (Gem) or 15µM irinotecan (Iri) and harvested at the indicated times 

for immunblot analysis of Claspin. (A) Representative immunoblots of Claspin 
(250kDa) with vinculin (130kDa) as a loading control. Numbers indicate MW 
size marker (kDa). (B) Quantification of protein levels by densitometric analysis. 
Claspin protein levels were expressed relative to the loading control.  Error bars 
represent S.E.M. of 3 independent experiments. *.p<0.05, **.p<0.01, 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test).  
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3.3.2. AdΔ19K induces the phosphorylation of Plk1 that persists in the 

presence of DNA-damaging drugs  

 

The interesting observation that Ad 19K inhibited drug-induced upregulation of 

Claspin expression in PT45 cells, prompted us to further investigate the 

mechanism underlying this inhibition. We hypothesised that Ad 19K might 

inhibit drug-induced upregulation of claspin expression by increasing the 

proteolytic turnover of Claspin. To test this hypothesis, we first examined the 

expression of Plk1, since during checkpoint recovery phosphorylated Plk1 

(Thr210) targets Claspin for degradation (Freire et al., 2006; Macurek et al., 

2008; Mamely et al., 2006).  

 

Immunoblot analysis of phospho-Plk1 (Thr210) in PT45 cells revealed that 

Ad 19K and Ad5tg induce the phosphorylation of Plk1 at 48h post-infection 

(Figure 43A and B). Ad 19K-induced upregulation of phospho-Plk1 levels was 

significantly stronger than Ad5tg (Figure 43A and B). No Plk1 phosphorylation 

was observed in response to gemcitabine (Figure 28A and B, left panels). In 

response to the combination of gemcitabine with Ad 19K phospho-Plk1 

expression was significantly higher than gemcitabine without Ad 19K, 

suggesting that Ad 19K-induced phosphorylation of Plk1 persists in the 

presence of gemcitabine (Figure 43A and B, left panels). Significantly higher 

phospho-Plk1 levels were observed when gemcitabine was combined with 

Ad 19K in comparison to its combination with Ad5tg (Figure 43A and B, left 

panels). As observed with gemcitabine, treatment with irinotecan did not induce 

Plk1 phosphorylation (Figure 43A and B, right panels). When irinotecan was 

combined with Ad5tg or Ad 19K phospho-Plk1 expression showed a trend 

towards upregulation, but no significant differences were detected compared to 

irinotecan alone (Figure 43A and B, right panels).  

 

Therefore, at 48h post-treatment, Ad 19K, but not DNA-damaging drugs, 

induce the phosphorylation of Plk1 that persists in the presence of drugs. 

Upregulation of phospho-Plk1 expression after checkpoint activation suggests 

that Claspin is targeted for degradation in the presence of Ad 19K and DNA-

damaging drugs.    
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Figure 43: AdΔ19K induces the phosphorylation of Plk1 that persists in 
the presence of DNA-damaging drugs. PT45 cells were treated with 300ppc 
Ad5tg or AdΔ19K -/+ 10nM gemcitabine (Gem) or 5µM irinotecan (Iri) and 
harvested at the indicated times for immunblot analysis of phosphorylated 
(Thr210) and total Plk1. (A) Representative immunoblots of phopsho-Plk1 
(pPlk1) and total Plk1 (68kDa) with vinculin (130kDa) as a loading control. 
Numbers indicate MW size marker (kDa). (B) Quantification of protein levels by 
densitometric analysis. phospho-Plk1 protein levels were expressed relative to 
total Plk1 and the loading control. Error bars represent S.E.M. of 2 independent 
experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way ANOVA with 
Bonferroni's multiple comparison test).  
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3.3.3. The presence of Ad 19K in gemcitabine-treated cells promotes 

Claspin degradation 

 

The observation that Ad 19K induces the phosphorylation of Plk1 both in the 

absence and presence of DNA-damaging drugs, suggested that Ad 19K might 

regulate the degradation of Claspin. We therefore sought to investigate the 

stability of Claspin using a cycloheximide chase assay. Cycloheximide blocks 

protein synthesis and thereby allows the study of protein degradation. At 24h 

and 48h following mock, Ad5tg or Ad 19K infection in the absence or presence 

of gemcitabine, PT45 cells were treated with cycloheximide for 0, 2, 4 and 6h 

and subjected to immunoblot analysis of Claspin expression (Figure 44A and 

45A; 24h and 48h, respectively). Claspin half-life was determined by plotting the 

quantified protein levels against the time after cycloheximide treatment (Figure 

44B and 45B; 24h and 48h, respectively).  

 

Assessment of claspin degradation demonstrated that the half-life of claspin 

under basal conditions is 207±37min 24h post-mock infection (Figure 44C). 

Infection with Ad5tg did not affect the half-life of claspin (200±20min) at 24h, 

whereas Ad 19K infection showed a tendency to decrease Claspin half-life 

(178±36min) at 24h. Treatment with gemcitabine, regardless of the presence of 

viruses, resulted in a trend towards increased claspin half-life at 24h (Figure 

44C). Nevertheless, no significant changes were observed in the stability of 

claspin at 24h post-treatment. At 48h post-mock infection claspin half-life was 

289±24min (Figure 45C). Analogous to 24h, Ad5tg did not significantly change 

the half-life of Claspin 48h post-infection, while infection with Ad 19K showed a 

tendency towards reduced Claspin half-life (184±41min) (Figure 45C). In 

contrast to 24h, at 48h there was no trend towards stabilisation of Claspin 

following treatment with gemcitabine (Figure 45C). The combination of 

gemcitabine with Ad5tg did not affect the degradation of claspin, which had a 

similar half-life to mock-infected cells (245±5min) (Figure 45C). On the contrary, 

treatment with a combination of gemcitabine and Ad 19K resulted in a claspin 

half-life of 152±23min, which was significantly decreased compared to mock-

infected cells (Figure 45C). In conclusion, claspin stability was significantly 

decreased 48h following treatment with Ad 19K and gemcitabine, suggesting 
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that Claspin degradation is accelerated in response to Ad 19K and 

gemcitabine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Gemcitabine and adenovirus have no effect on the half-life of 
claspin at 24h. PT45 cells were treated with 300ppc of Ad5tg or AdΔ19K -/+ 
addition of 10nM gemcitabine (Gem). At 24h post-infection, 3μM of the protein 
synthesis inhibitor cycloheximide (CHX) was added to study protein 
degradation. Cells were harvested at 0, 2, 4 and 6 hours post-cycloheximide 
treatment and prepared for immunoblot analysis of claspin expression. (A) 
Representative immunoblots of Claspin (250kDa) with vinculin (130kDa) as a 
loading control. Numbers indicate MW size marker (kDa). (B) Example of 
determination of claspin half-life. Claspin protein levels were quantified by 
densitometric analysis, normalised to the loading control and expressed relative 
to the 0h time-point of each treatment (set to 1). Half-life was derived from 
plotting claspin protein levels against time post-CHX treatment (minutes) and 
determining the time at which protein level was at 0.5 (indicated by dotted 
lines). (C) Average claspin half-lives (minutes) from 2 independent experiments. 
Error bars represent S.E.M.  
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Figure 45: The combination of gemcitabine and AdΔ19K decreases the 
half-life of claspin at 48h. PT45 cells were treated with 300ppc of Ad5tg or 
AdΔ19K -/+ addition of 10nM gemcitabine (Gem). At 48h post-infection, 3μM of 
the protein synthesis inhibitor cycloheximide (CHX) was added to study protein 
degradation. Cells were harvested at 0, 2, 4 and 6 hours post-cycloheximide 
treatment and prepared for immunoblot analysis of claspin expression. (A) 
Representative immunoblots of Claspin (250kDa) with vinculin (130kDa) as a 
loading control. Numbers indicate MW size markers (kDa). (B) Example of 
determination of claspin half-life. Claspin protein levels were quantified by 
densitometric analysis, normalised to the loading control and expressed relative 
to the 0h time-point of each treatment (set to 1). Half-life was derived from 
plotting claspin protein levels against time post-CHX treatment (minutes) and 
determining the time at which protein level was at 0.5 (indicated by dotted 
lines). (C) Average claspin half-lives (minutes) from 3-4 independent 
experiments. Error bars represent S.E.M. *.p<0.05 (one-way ANOVA with 
Bonferroni's multiple comparison test).  
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3.3.4. AdΔ19K inhibits gemcitabine-induced Claspin synthesis 

 

The accelerated degradation of claspin 48h after treatment with AdΔ19K and 

gemcitabine did not seem sufficient per se to explain the strong inhibition of 

gemcitabine-induced Claspin accumulation by AdΔ19K. We therefore asked 

whether AdΔ19K and gemcitabine could also affect Claspin protein synthesis. 

To gain insight into this question, we utilized the proteasomal inhibitor MG-132 

to study protein synthesis. MG-132 was added 48h following treatment of PT45 

cells with AdΔ19K and gemcitabine and the accumulation of newly synthesized 

Claspin was assessed by immunoblot analysis at 0, 2 and 6h post-MG-132 

treatment as shown in figure 46A and B.  

 

When proteasomal degradation was blocked following treatment with MG-132 

newly synthesised claspin accumulated in mock- and AdΔ19K-infected cells 

(Figure 46B). Gemcitabine treatment showed a tendency towards increased 

accumulation of claspin (Figure 46B). In contrast, in response to a combination 

of gemcitabine with AdΔ19K Claspin protein levels did not increase following 

MG-132 treatment and were rather reduced (Figure 46B). After 6h of MG-132 

treatment significantly decreased Claspin levels were observed in cells treated 

with a combination of gemcitabine with AdΔ19K compared to gemcitabine 

without AdΔ19K (Figure 46B). This suggested that the presence of AdΔ19K in 

gemcitabine-treated cells prevents gemcitabine-induced accumulation of newly 

synthesized Claspin.  

 

 

 

 

 

 

 

 

 

 

 

 



225 
 

B. 

Vinculin 

Claspin 

130 

250 

 0   2   6  0   2   6   0  2  6  0  2  6   h 

 +   +  +  +   +   +   +   +  +  +  +  +   MG-132 

Ad 19K Mock Gem 
Ad 19K 

+ Gem 

A. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 46: AdΔ19K prevents gemcitabine-induced accumulation of newly 
synthesized Claspin following proteasomal inhibition. PT45 cells were 
treated with 300ppc of AdΔ19K -/+ addition of 10nM gemcitabine (Gem). At 48h 
post-infection, 10μM of the proteasome inhibitor MG-132 was added to study 
protein synthesis. Cells were harvested at 0, 2 and 6 hours post-MG-132 
treatment and prepared for immunoblot analysis of claspin expression. (A) 
Representative immunoblots of Claspin (250kDa) with vinculin (130kDa) as a 
loading control. Numbers indicate MW size marker (kDa). (B) Averages of 
newly synthesised Claspin protein levels at 0, 2 and 6h post-MG-132 treatment. 
Claspin protein levels were quantified by densitometric analysis, normalised to 
the loading control and expressed relative to the 0h time-point of each treatment 
(set to 1). Error bars represent S.E.M. of 3 independent experiments. **.p<0.01 
(two-way ANOVA with Bonferroni's multiple comparison test).  
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Based on the observation that AdΔ19K prevented gemcitabine-induced 

accumulation of newly synthesized Claspin following proteasomal inhibition, I 

sought to further investigate changes in Claspin synthesis. Claspin mRNA 

levels were therefore assessed by qPCR analysis.  

 

At 24h post-treatment with gemcitabine, Claspin mRNA levels appeared to be 

upregulated (Figure 47). The presence of either Ad5tg or AdΔ19K in 

gemcitabine-treated cells did not affect gemcitabine-induced upregulation of 

Claspin mRNA expression at 24h (Figure 47). At 48h post-treatment with 

gemcitabine Claspin mRNA expression was significantly increased (Figure 47). 

Addition of Ad5tg to gemcitabine-treated cells did not affect gemcitabine-

induced upregulation of Claspin mRNA levels (Figure 47). On the contrary, the 

combination of AdΔ19K with gemcitabine significantly decreased Claspin mRNA 

levels compared to gemcitabine (Figure 47). Infection alone with Ad5tg or 

AdΔ19K did not appear to affect the mRNA expression of Claspin at any time 

(Figure 47). These results therefore suggest that at 48h post-infection AdΔ19K 

inhibits gemcitabine-induced upregulation of Claspin mRNA expression but 

does not affect basal claspin mRNA expression.  

 

 

 

Figure 47: AdΔ19K inhibits gemcitabine-induced upregulation of Claspin 
mRNA expression. PT45 cells were treated with 300ppc of Ad5tg or AdΔ19K -
/+ addition of 5nM gemcitabine (Gem). RNA was extracted at 24 and 48hpi for 
qPCR analysis of claspin mRNA expression. GAPDH mRNA expression was 
used as an internal/loading control. Claspin mRNA expression was normalised 
to that of GAPDH and expressed relative to mock-infection (set to 1). Error bars 
represent S.E.M. of 3 independent experiments. *.p<0.05, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test). 
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3.3.5. Claspin knockdown increases cell death induced by AdΔ19K and 

DNA-damaging drugs 

 

The above studies demonstrated that infection with AdΔ19K inhibits 

gemcitabine-induced Claspin accumulation, through downregulation of Claspin 

synthesis and acceleration of Claspin degradation. In order to understand 

whether AdΔ19K-mediated downregulation of Claspin accumulation in response 

to gemcitabine is important for AdΔ19K- and gemcitabine-induced cell death, 

we decided to knock-down Claspin using siRNA. PT45 cells were transfected 

with non-targeting (NT) or an anti-Claspin (CLSPN) siRNA and analysed in cell 

viability assays. The transfected cells were also analysed by immunoblotting for 

monitoring of Claspin knockdown. Cell viability was assessed 72h post-infection 

with Ad 19K in the absence or presence of fixed doses of gemcitabine or 

irinotecan. The time of cell viability assessment corresponded to 120h post-

transfection. 

 

Unexpectedly the expression of Claspin at 48h post-transfection was very low, 

possibly due to cells having been re-seeded only 24h before (Figure 48; siNT). 

Nevertheless, the knockdown of Claspin was 30% at 48h post-transfection, 

which corresponded to the time of virus infection in cell-viability assays. At 72h 

post-transfection the maximum knockdown was reached, which was 

approximately 70% compared to the non-targeting siRNA control (Figure 48). 

After this time Claspin knockdown appeared to be less effective, with 40% and 

30% knockdown observed at 96h and 120h post-transfection, respectively 

(Figure 48). 

 

Assessment of cell viability in cells with Claspin knockdown showed a trend 

towards decreased AdΔ19K EC50 values, both in the absence and presence of 

gemcitabine or irinotecan (Figure 49A). The sensitization ratio in response to 

AdΔ19K and 2nM or 5nM gemcitabine significantly increased when Claspin was 

silenced, compared to the siRNA control (Figure 49B). Moreover, in response to 

AdΔ19K combined with irinotecan, Claspin knockdown showed a tendency 

towards increased sensitization ratio (Figure 49B). Knocking-down claspin did 

not affect drug-induced cytotoxicity (Figure 49C). It can be concluded that 

Claspin knockdown enhances cell death induced by gemcitabine and AdΔ19K, 
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suggesting that downregulation of claspin in response to AdΔ19K is important 

for induction of increased cell death by the combination treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 48: Claspin knockdown peaks at 72h post-transfection and protein 
levels remain low up to 120h post-transfection. PT45 cells were transfected 
with siRNA against claspin (siCLSPN) or non-targeting siRNA (siNT). 24h post-
transfection cells were pooled, re-seeded in 6-well plates and harvested for 
immunoblot analysis at the indicated hours post-transfection (hpt). (A) 
Representative immunoblot of claspin (250kDa). Vinculin (130kDa) was used as 
a loading control. Numbers indicate MW size marker (kDa). (B) Quantification of 
protein levels by densitometric analysis. Claspin protein levels were normalised 
to the loading control and expressed as % of siNT at each time-point. Error bars 
represent S.E.M. of 5 independent experiments. *.p<0.05, **.p<0.01 (one-
sample t-test comparing to 100%).  
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Figure 49: Claspin knockdown increases cell death induced by AdΔ19K 
and DNA-damaging drugs. PT45 cells were transfected with siRNA against 
claspin (siCLSPN) or non-targeting (NT) siRNA. 24h post-transfection (6-wells), 
cells were pooled, re-seeded in 96-well plates and treated with 5-fold dilutions 
of AdΔ19K -/+ fixed doses of gemcitabine (Gem) or irinotecan (Iri) to generate 
dose-response curves. Cell viability was assessed by MTS assay at 72hpi 
(corresponding to 120h post-transfection). (A) EC50 values for AdΔ19K -/+ 
gemcitabine (Gem) or irinotecan (Iri) at the indicated doses in cells transfected 
with CLSPN or NT siRNA. (B) Sensitization ratio (AdΔ19K EC50 / AdΔ19K+Gem 
or Iri EC50). (C) Drug cytotoxicity. % cell death induced by gemcitabine or 
irinotecan in cells transfected with CLSPN or NT siRNA. Error bars represent 
S.E.M. of 5 independent experiments. *.p<0.05 (Unpaired t-test).  
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3.3.6. Claspin knockdown in combination-treated cells does not affect 

viral replication, but attenuates the S-phase arrest and increases the 

mitotic index  

 

In order to examine whether the enhanced cell death with AdΔ19K and 

gemcitabine in Claspin knockdown cells, was a result of enhanced viral 

replication, AdΔ19K genome amplification was assessed. qPCR analysis of Ad-

E2A demonstrated that Claspin knockdown does not significantly affect AdΔ19K 

genome amplification in the absence of gemcitabine (Figure 50). In the 

presence of gemcitabine, AdΔ19K genome amplification showed a trend 

towards decrease when Claspin was knocked-down compared to the control 

siRNA (siNT) (Figure 50). Therefore, the enhanced cell death induced by 

AdΔ19K and gemcitabine when claspin was knocked-down, was not a result of 

enhanced viral replication.  

 

 

 

Figure 50: Claspin does not significantly affect AdΔ19K DNA 
amplification. PT45 cells were transfected with siRNA against Claspin 
(CLSPN) or non-targeting (NT) siRNA. At 48h post-transfection cells were 
treated with 300ppc AdΔ19K -/+ 5nM gemcitabine (Gem). DNA was extracted at 
4 and 48hpi and analysed by qPCR for viral genome amplification (Ad-E2A). 
Viral DNA was normalized to input DNA (4h) and cellular. Error bars represent 
S.E.M. of 2 independent experiments. 
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A. 

To investigate whether Claspin knockdown results in changes in the cell-cycle 

distribution of cells treated with AdΔ19K and gemcitabine, cell-cycle and mitotic 

index analysis was performed in PT45 cells transfected with control or anti-

claspin siRNA. Knocking-down Claspin significantly increased the G1 cell-

fraction and decreased the S-phase fraction 24h post-treatment with AdΔ19K 

and gemcitabine (Figure 51A and B). This suggests that gemcitabine-induced 

S-phase arrest of AdΔ19K-infected cells is either delayed or weakened when 

Claspin is knocked-down. Moreover, the mitotic index of cells treated with 

AdΔ19K and gemcitabine was significantly higher (2-fold) following Claspin 

knockdown compare to the non-targeting knockdown (Figure 51D). No other 

changes in the cell-cycle distribution were observed when claspin was knocked-

down (Figure 51A-D). Therefore, the enhanced cell death induced by AdΔ19K 

and gemcitabine following the knockdown of Claspin might be a result of cell-

cycle changes, that is an attenuated S-phase arrest followed by an increased 

mitotic index.   
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Figure 51: Claspin knockdown decreases S-phase arrest at 24h and 
increases the mitotic index at 48h post-treatment with AdΔ19K and 
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gemcitabine. PT45 cells were transfected with siRNA against Claspin (CLSPN) 
or non-targeting (NT) siRNA and treated with 300ppc AdΔ19K -/+ 5nM 
gemcitabine (Gem) 48h post-transfection. At 24, 48 and 72hpi cells were 
stained with FVD and fixed for cell-cycle analysis. Cells were stained with 
propidium iodide (for DNA-content analysis), an anti-phospho-histone H3 
antibody (for mitotic index analysis) and an anti-E1A antibody (for identification 
of infected cells) and analysed by flow-cytometry. Dead cells, as identified from 
their incorporation of FVD, were excluded from the analysis. In the presence of 
AdΔ19K only E1A-positive cells were analysed for propidium iodide and 
phospho-histone H3 expression. (A) % cells in G1 phase (B) % cells in S phase 
(C) % cells in G2 phase (D) % cells in mitosis. Error bars represent S.E.M. of 2 
independent experiments. *.p<0.05 (one-way ANOVA with Bonferroni's multiple 
comparison test). 
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3.4. Cells treated with gemcitabine and AdΔ19K  

go through aberrant mitosis  

 

 

3.4.1. Adenovirus and gemcitabine induce spindle multipolarity 

 

Based on the observation that AdΔ19K promotes the mitotic entry of 

gemcitabine-treated cells that have unrepaired DNA damage, we sought to 

investigate whether these mitotic cells exhibit any aberrations. In order to 

assess mitotic cells, immunofluorescence microscopy analysis of α-tubulin, to 

mark the mitotic spindle and Aurora-A, to mark spindle poles was performed 

48h post-treatment. In the presence of gemcitabine I observed the appearance 

of cells with multipolar, instead of bipolar, spindles. Example images of bipolar 

and multipolar spindles are shown in figure 52A.  

 

Quantification of spindle multipolarity in PT45 cells demonstrated that 20±4% of 

mitotic cells exhibit multipolar spindles in response to gemcitabine (Figure 52B). 

Less than 2% of mitotic cells displayed spindle multipolarity following infection 

with Ad5tg or AdΔ19K (Figure 52B). When gemcitabine was combined with 

Ad5tg or AdΔ19K 35±7% and 33±3% of mitotic cells, respectively, exhibited 

multipolar spindles and this was significantly higher compared to either virus 

without gemcitabine (Figure 52B). Preliminary immunofluorescence microscopy 

analysis in MIAPaCa-2 cells demonstrated similar results (Figure 52C). 

Gemcitabine induced spindle multipolarity in 18% of mitotic MIAPaCa-2 cells 

and infection with Ad5tg or AdΔ19K increased gemcitabine-induced spindle 

multipolarity to 43% and 51%, respectively (Figure 52C). Hence, treatment with 

gemcitabine induces the formation of multipolar spindles in mitotic cells, which 

is increased in the presence of adenoviruses in PT45 cells.  Preliminary data 

demonstrate a similar trend in MIAPaCa-2 cells. 
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Figure 52: Adenovirus and gemcitabine induce spindle multipolarity. Cells 
were seeded on coverslips and treated with 300ppc of Ad5tg or AdΔ19K -/+ 
addition of (B) PT45 cells, 10nM or (C) MIAPaCa-2 cells, 20nM gemcitabine 
(Gem). At 48h.p.i cells were prepared for immunofluorescence microscopy 
analysis of nuclear DAPI, Aurora-A and α-tubulin. At least 150 mitotic cells were 
counted per treatment and spindle multipolarity was quantified. (A) Example of 
nuclear DAPI (blue), Aurora-A (green), α-tubulin (red) and merged images in 
PT45 cells with bipolar or multipolar spindles. Images were acquired using the 
60x objective of the confocal laser scanning microscope Zeiss LSM510. (B) 
Quantification of spindle multipolarity in PT45 cells, expressed as frequency 
(%). Error bars represent S.E.M of two independent experiments. **.p<0.01 
(one-way ANOVA with Bonferroni's multiple comparison test). (C) Quantification 
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of spindle multipolarity in MIAPaCa-2 cells, expressed as frequency (%). One 
experiment.  
 
 

3.4.2. Adenovirus inhibits time-dependent accumulation of   

multinucleated cells induced by gemcitabine 

 

During the immunofluorescence microscopy studies I observed the appearance 

of cells with micronuclei and multiple fragmented nuclei, an indication of 

aberrant mitosis. In order to assess cell multinucleation in response to 

treatments I performed another immunofluorescence microscopy analysis for α-

tubulin and Ad-E1A, to mark infected PT45 cells. A pilot time-course experiment 

suggested that the frequency of cell multinucleation was low before 60h post-

treatment, thus I performed the analysis at 60, 72h and 96h post-treatment. 

Example images of multinucleated non-infected or infected cells are shown in 

figure 53A.  

 

Very few multinucleated cells were detected following mock-, Ad5tg or AdΔ19K 

infection (Figure 53B and C). In response to gemcitabine 7±1.5%, 9.4±0.4% 

and 13.4±2.1% of cells were multinucleated at 60, 72h and 96h post-treatment, 

respectively (Figure 53B). Gemcitabine-induced multinucleation was 

significantly higher in comparison to mock-infected cells without gemcitabine 

(Figure 53B). Moreover, gemcitabine-induced formation of multinucleated cells 

increased from 60h to 96h post-treatment, suggesting a time-dependent 

accumulation of these aberrant cells (Figure 53B). Infection of gemcitabine-

treated cells with Ad5tg resulted in 5.8±0.4%, 9±1.6% and 7.8±1.9% of 

multinucleated cells at 60, 72h and 96h post-treatment, respectively, 

demonstrating that multinucleated cells did not accumulate over time (Figure 

53C). Similarly, no time-dependent accumulation of infected multinucleated 

cells was observed in response to the combination of gemcitabine and AdΔ19K; 

10.3±1.5%, 7.7±1% and 8.3±2.2% of cells exhibited multinucleation at 60, 72h 

and 96h post-treatment, respectively (Figure 53C). The presence of Ad5tg or 

AdΔ19K in gemcitabine treated cells significantly decreased the number of 

multinucleated cells at 96h post-treatment (Figure 53B vs C, red asterisks). 

Therefore, after 60h post-treatment gemcitabine induces an accumulation of 

multinucleated cells, which is inhibited in the presence of Ad5tg or AdΔ19K.  
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Figure 53: Adenovirus inhibits time-dependent accumulation of   
multinucleated cells induced by gemcitabine. Cells were seeded on 
coverslips and treated with 300ppc of Ad5tg or AdΔ19K -/+ addition of 5nM 
gemcitabine (Gem). At the indicated times post-infection cells were prepared for 
immunofluorescence microscopy analysis of nuclear DAPI, Ad-E1A and α-
tubulin. At least 300 cells were counted per treatment and multinucleation was 
quantified. (A) Example of nuclear DAPI (blue), Ad-E1A (green), α-tubulin (red) 
and merged images in non-infected and infected multinucleated cells. Images 
were acquired using the 60x objective of the confocal laser scanning 
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microscope Zeiss LSM510. (B) Quantification of multinucleation in non-infected 
and infected cells, expressed as % of total non-infected and infected, 
respectively. *.p<0.05, **.p<0.01, ***.p<0.001 (two-way ANOVA with 
Bonferroni's multiple comparison test). Red asterisks indicate statistical 
significance in comparison to non-infected cells. Error bars represent S.E.M of 
at least three independent experiments.  
 

 

3.4.3. Mitotic accumulation enhances cell death in response to AdΔ19K 

and gemcitabine 

 

Following the observation that cells treated with AdΔ19K and gemcitabine 

develop various mitotic aberrations, we sought to understand whether passage 

through mitosis was important for the enhanced cell death observed in 

response to AdΔ19K and gemcitabine. To explore this, we utilised various 

mitotic inhibitors to perturb different mitotic stages and events and assessed cell 

viability in response to AdΔ19K and gemcitabine.  

 

The Eg5 inhibitor monastrol increases mitotic index and enhances gemcitabine-

induced sensitization to AdΔ19K 

 

Monastrol is a selective inhibitor of the mitotic kinesin Eg5. By inhibiting Eg5 

monastrol prevents separation of spindle poles resulting in monoastral spindles, 

activation of the spindle assembly checkpoint (SAC) and subsequent mitotic 

arrest (Kapoor et al., 2000; Mayer et al., 1999). We utilised monastrol in cell-

viability assays to understand whether activation of the SAC and mitotic arrest 

affects cell death in response to AdΔ19K and gemcitabine. Monastrol was 

added simultaneously to AdΔ19K and gemcitabine, at a dose that killed no 

more than 30% of cells. To examine whether the selected dose was sufficient to 

induce a mitotic arrest, immunoblot analysis of phopsho-histone H3 in cells 

treated with monastrol was carried out. Phopsho-histone H3 levels were 

increased 24h and 48h post-treatment with monastrol, suggesting mitotic 

enrichment (Figure 54D).  

 

Cell viability assays 72h post-treatment with AdΔ19K and monastrol 

demonstrated that addition of monastrol significantly sensitizes cells to AdΔ19K-

induced cytotoxicity (Figure 54A). Notably, a 90% reduction in the EC50 value of 
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AdΔ19K was observed when monastrol was present (Figure 54A). Similarly, 

addition of monastrol to cells treated with AdΔ19K and gemcitabine, significantly 

decreased the EC50 value (by 3.5-fold) (Figure 54A). Consequently, the 

sensitization ratio in response to AdΔ19K and gemcitabine significantly 

increased upon addition of monastrol, suggesting that monastrol enhanced cell 

death induced by AdΔ19K and gemcitabine (Figure 54B). Gemcitabine-induced 

cytotoxicity was unaffected by the addition of monastrol  (Figure 54C).  

 

In order to understand how monastrol affects the cell-cycle distribution in 

response to AdΔ19K and gemcitabine, cell-cycle and mitotic index analysis was 

performed 24h, 48h and 72h post-treatment. Monastrol-induced mitotic arrest 

was 15.6±5.1% after 24h and it decreased to 7.7±1.3% and 3.6±1% by 48h and 

72h respectively (Figure 54E). Moreover, monastrol significantly increased the 

G2 cell-fraction after 48h and 72h, compared to mock-infected cells without 

monastrol (Figure 54E). In cells treated with a combination of AdΔ19K, 

gemcitabine and monastrol, the mitotic index was 9.8±2% after 24h, as 

opposed to 0.6±0.2% observed in the absence of monastrol (Figure 54E). 

Interestingly, the presence of monastrol significantly decreased the S-phase 

arrest from 54±2% to 29.3±4.7%, 24h post-treatment with AdΔ19K and 

gemcitabine (Figure 54E). Besides a trend towards increased mitotic index no 

significant changes in the cell-cycle distribution were observed at 48h and 72h 

when monastrol was present in AdΔ19K and gemcitabine treated cells (Figure 

54E). It is possible that this increase in the number of cells in mitosis is 

contributing to the sensitisation in response to monastrol. 
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Figure 54: The Eg5 inhibitor monastrol increases mitotic index and 
enhances gemcitabine-induced sensitization to AdΔ19K. (A-C) Cell viability 
assays in PT45 cells treated AdΔ19K -/+ 5nM gemcitabine (Gem) and/or 200µM 
monastrol (Mon). Cell viablity was assessed by MTS assay 72h.p.i. Error bars 
represent S.E.M. of three independent experiments. *.p<0.05, ***.p<0.001 (one-
way ANOVA with Bonferroni's multiple comparison test). (A) EC50 values (ppc) 
derived from AdΔ19K dose-response curves -/+ fixed doses of drug(s). Cell 
death was normalized to control (untreated cells or drug(s)-treated cells). EC50 
values are expressed as % of AdΔ19K EC50. (B) Sensitization ratio (ratio of 
virus EC50/combination EC50). (C) Drug cytotoxicity (% cell death). (D) PT45 
cells were treated with 200µM monastrol (Mon) or left untreated and harvested 
at 24, 48 and 72h post-treatment for immunoblot analysis of phospho-histone 
H3 (phH3; Ser10, 17kDa) with actin (42kDa) as loading control. Numbers 
indicate MW size marker (kDa). Phospho-histone H3 protein levels were 
quantified by densitometric analysis, normalised to the loading control and 
expressed relative to untreated cells at 24h. One experiment. (E) Cell-cycle 
distribution; PT45 cells were treated with 300ppc AdΔ19K (Δ19K) -/+ 5nM 
gemcitabine (Gem) and/or 200µM monastrol (Mon) and fixed at 24, 48 and 72h 
post-infection for cell-cycle and mitotic index analysis. Error bars represent 
S.E.M. of three independent experiments. **.p<0.01, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test).   
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An Mps1 inhibitor accelerates mitosis and inhibits gemcitabine-induced 

sensitization to AdΔ19K 

 

We next utilised a selective inhibitor of Mps1 (Naud et al., 2013), a mitotic 

kinase required for the activation and maintenance of the SAC (Lan and 

Cleveland, 2010; Liu and Winey, 2012). Inhibition of Mps1 has been reported to 

result in abrogation of the SAC and premature mitotic exit (Jemaa et al., 2013; 

Kwiatkowski et al., 2010; Liu and Winey, 2012; Tardif et al., 2011). As with 

monastrol, the Mps1 inhibitor was added simultaneously to AdΔ19K and 

gemcitabine in cell-viability assays, at a dose that killed approximately 30% of 

cells.  

 

Immunoblot analysis demonstrated that the selected dose of the Mps1 inhibitor 

indeed suppressed phosphorylation of histone H3, suggesting acceleration of 

mitosis (Figure 55D). In cell viability assays 72h post-treatment with AdΔ19K 

with or without gemcitabine, addition of the Mps1 inhibitor showed a trend 

towards increased AdΔ19K EC50 value, suggesting de-sensitization to AdΔ19K-

induced cell death (Figure 55A). The presence of the Mps1 inhibitor in cells 

treated with a combination of AdΔ19K with gemcitabine significantly increased 

the EC50 value to the levels of AdΔ19K without gemcitabine (Figure 55A). This 

suggested that the Mps1 inhibitor blocks gemcitabine-induced sensitization to 

AdΔ19K (Figure 55A). Subsequently, the sensitization ratio of gemcitabine and 

AdΔ19K dropped to 1.1±0.1, a ratio that suggests no enhancement of AdΔ19K-

induced cytotoxicity (Figure 55B). Mps1 inhibition had no effect on gemcitabine-

induced cell death (Figure 55C). 

 

We then examined any effects of Mps1 inhibition on the cell-cycle distribution of 

cells treated AdΔ19K and gemcitabine. Cell-cycle and mitotic index analysis 

indicated that the Mps1 inhibitor significantly diminishes the mitotic index 24h 

post-treatment and shows tendency towards decreased mitotic index at later 

time-points (Figure 55D). After 72h the Mps1 inhibitor had increased the 

proportion of cells in G2-phase and the fraction of cells with >4N DNA content, 

as compared to mock-infected cells (Figure 55D). The presence of the Mps1 

inhibitor did not significantly change the cell-cycle distribution of cells treated 

with gemcitabine and AdΔ19K (Figure 55D). However, a trend towards 
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decreased mitotic index was observed when the Mps1 inhibitor was combined 

with gemcitabine and AdΔ19K, compared to gemcitabine and AdΔ19K without 

Mps1 inhibitor at 48h and 72h (Figure 55D). It is possible that acceleration of 

mitosis contributes to the inhibition of cell death when the Mps1 inhibitor is 

present in cells treated with gemcitabine and AdΔ19K . 

 

 

 

 

 

 
Figure 55: An Mps1 inhibitor accelerates mitosis and inhibits gemcitabine-
induced sensitization to AdΔ19K. (A-C) Cell viability assays in PT45 cells 
treated with 5-fold dilutions of AdΔ19K -/+ 5nM gemcitabine (Gem) and/or 
2.5µM Mps1 inhibitor (MpsI). Cell viability was assessed by MTS assay 72h.p.i. 
Error bars represent S.E.M. of three independent experiments. *.p<0.05, 
**.p<0.01 (one-way ANOVA with Bonferroni's multiple comparison test). (A) 
EC50 values (ppc) derived from AdΔ19K dose-response curves -/+ fixed doses 
of drug(s). Cell death was normalized to control (untreated cells or drug(s)-
treated cells). EC50 values are expressed as % of AdΔ19K EC50. (B) 
Sensitization ratio (ratio of virus EC50/ combination EC50). (C) Drug cytotoxicity 
(% cell death). (D) PT45 cells were treated with 2.5µM Mps1 inhibitor (MpsI) or 
left untreated and harvested at 24, 48 and 72h post-treatment for immunoblot 
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analysis of phospho-histone H3 (phH3; Ser10, 17kDa) with actin (42kDa) as 
loading control. Numbers indicate MW size marker (kDa) and lines indicate blot 
cropping. Phospho-histone H3 protein levels were quantified by densitometric 
analysis, normalised to the loading control and expressed relative to untreated 
cells at 24h. One experiment. (E) Cell-cycle distribution. PT45 cells were treated 
with 300ppc AdΔ19K (Δ19K) -/+ 5nM gemcitabine (Gem) and/or 2.5µM Mps1 
inhibitor (MpsI) and fixed at 24, 48 and 72h post-infection for cell-cycle and 
mitotic index analysis. Error bars represent S.E.M. of three independent 
experiments. *.p<0.05, **.p<0.01 (one-way ANOVA with Bonferroni's multiple 
comparison test). 
 
 

An Aurora-B inhibitor accelerates mitosis but its effect on gemcitabine-induced 

sensitization to AdΔ19K is inconclusive 

 

AZD1152-HQPA is the active metabolite of AZD1152, a selective inhibitor of 

Aurora-B (Azzariti et al., 2011; Keen et al., 2005). Consistent with a function of 

Aurora-B in mitotic exit, treatment with AZD1152 accelerates mitosis and 

induces polyploidy (Azzariti et al., 2011; Mortlock et al., 2007). Following the 

observation that Mps1 inhibition, which accelerates mitosis, strongly inhibited 

cell death induced by AdΔ19K and gemcitabine we utilized AZD1152-HQPA as 

an alternative inhibitor that accelerates mitotic progression. AZD1152-HQPA 

was used at a dose that killed no more than 30% of cells in cell-viability assays. 

Immunoblot analysis confirmed that at 1µM the Aurora-B inhibitor efficiently 

diminishes phosphorylation of histone H3, suggesting acceleration of mitosis 

(Figure 56A).  

 

Cell viability assays revealed that, in contrast to the Mps1 inhibitor, the Aurora-B 

inhibitor significantly decreased the EC50 value of AdΔ19K, indicating 

enhancement of AdΔ19K-induced cytotoxicity (Figure 56B). Aurora-B inhibition 

did not significantly change gemcitabine-induced cytotoxicity (Figure 56D). 

When AdΔ19K was combined with gemcitabine, addition of the Aurora-B 

inhibitor showed a tendency towards a modest increase of the EC50 value, 

suggesting it might attenuate cell death induced by AdΔ19K and gemcitabine 

(Figure 56B). The sensitization ratio in cells treated with AdΔ19K, gemcitabine 

and AZD1152-HQPA was variable, as in two experiments AZD1152-HQPA 

decreased the sensitization ratio of AdΔ19K and gemcitabine whereas in 

another two experiments it increased it (Figure 56C).  Therefore, the effect of 
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the Aurora-B inhibitor on gemcitabine-mediated sensitization to AdΔ19K cell 

death is inconclusive and would require further investigation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 56: An Aurora-B inhibitor accelerates mitosis but its effect on 
gemcitabine-induced sensitization to AdΔ19K is inconclusive. (A) PT45 
cells were treated with 1µM Aurora-B inhibitor (AurBI) or left untreated and 
harvested at 24, 48 and 72h post-treatment for immunoblot analysis of 
phospho-histone H3 (phH3 Ser10 17kDa) with actin (42kDa) as loading control. 
Numbers indicate MW size marker (kDa) and lines indicate blot cropping. 
Phospho-histone H3 protein levels were quantified by densitometric analysis, 
normalised to the loading control and expressed relative to untreated cells at 
24h. One experiment. (B-D) Cell viability assays in PT45 cells treated with 5-
fold dilutions of AdΔ19K -/+ 5nM gemcitabine (Gem) and/or 1µM Aurora-B 
inhibitor (AurBI). Cell viability was assessed by MTS assay 72h.p.i. Error bars 
represent S.E.M. of four independent experiments. *.p<0.05, **.p<0.01 (one-
way ANOVA with Bonferroni's multiple comparison test). (B) EC50 values (ppc) 
were derived from AdΔ19K dose-response curves -/+ fixed doses of drug(s). 
Cell death was normalized to control (untreated cells or drug(s)-treated cells). 
EC50 values are expressed as % of AdΔ19K EC50. (C) Sensitization ratio (ratio 
of virus EC50/combination EC50). (D) Drug cytotoxicity (% cell death).  
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Plk1 inhibition arrests cells in mitosis and shows a trend towards enhanced 

gemcitabine-induced sensitization to AdΔ19K 

 

BI-2536 is a selective inhibitor of Plk-1 and it has been reported to result in the 

formation of monopolar spindles, followed by activation of the SAC and mitotic 

arrest (Lenart et al., 2007; Steegmaier et al., 2007). The Plk1 inhibitor was of 

particular interest for two reasons. Firstly, Plk1 inhibition could prevent Claspin 

degradation at the G2/M transition and provide insight into whether the 

accelerated degradation of claspin observed in response to gemcitabine and 

AdΔ19K contributes to enhanced cell death. Secondly, SAC activation and 

mitotic arrest in monastrol-treated cells demonstrated enhancement of 

gemcitabine- and AdΔ19K-induced cell death. Thus BI-2536 could be utilized as 

an alternative activator of the SAC that causes mitotic arrest to confirm the 

results obtained with monastrol.  

 

Incorporation of BI-2536 in cell viability assays revealed that Plk1 inhibition 

significantly decreases the EC50 value of AdΔ19K by 40%, suggesting 

enhancement of AdΔ19K-mediated cytotoxicity (Figure 57A). Addition of the 

Plk1 inhibitor in cells treated with gemcitabine and AdΔ19K showed a trend 

towards a reduced EC50 value of gemcitabine and AdΔ19K (Figure 57A). 

Similarly, the sensitization ratio of gemcitabine and AdΔ19K showed a tendency 

towards an increase in the presence of the Plk1 inhibitor, but did not reach 

statistical significance (Figure 57B). The Plk1 inhibitor caused less than 30% 

cell death and did not affect gemcitabine-induced cytotoxicity (Figure 57C). 

 

In order to assess the cell-cycle effects of the Plk1 inhibitor, cell-cycle and 

mitotic index analysis was carried out. BI-2536 caused 32% of cells to arrest in 

mitosis 24h after treatment (Figure 57D). The arrest was gradually alleviated 

with 12% and 6% of cells remaining in mitosis after 48h and 72h, respectively, 

and was accompanied by an increase in the fraction of cells having >4N DNA 

content (Figure 57D). This preliminary study suggested that addition of the Plk1 

inhibitor in cells treated with gemcitabine and AdΔ19K decreases the S-phase 

arrest and increases mitotic-index at 24h post-treatment (Figure 57D). At 48h 

and 72h increased mitotic index and >4N cell fraction were observed in cells 
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treated with gemcitabine, AdΔ19K and BI-2536, compared to gemcitabine and 

AdΔ19K (Figure 57D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: A Plk1 inhibitor arrests cells in mitosis and enhances 
gemcitabine-induced sensitization to AdΔ19K. (A-C) Cell viability assays in 
PT45 cells treated with 5-fold dilutions of AdΔ19K -/+ 5nM gemcitabine (Gem) 
and/or 4nM Plk1 inhibitor (Plk1I). Cell viability was assessed by MTS assay 
72h.p.i. (A) EC50 values (ppc) were derived from AdΔ19K dose-response curves 
-/+ fixed doses of drug(s). Cell death was normalized to control (untreated cells 
or drug(s)-treated cells). EC50 values are expressed as % of AdΔ19K EC50. (B) 
Sensitization ratios (ratio of virus EC50/ combination EC50). (C) Drug cytotoxicity 
(% cell death). Error bars represent S.E.M. of three independent experiments. 
*.p<0.05, **.p<0.01 (one-way ANOVA with Bonferroni's multiple comparison 
test). (D) PT45 cells were treated with 300ppc AdΔ19K (Δ19K) -/+ 5nM 
gemcitabine (Gem) and/or 4nM Plk1 inhibitor (Plk1I) and fixed at 24, 48 and 72h 
post-infection for cell-cycle analysis. Cells were stained with propidium iodide 
(for DNA-content analysis), and anti-phospho-histone H3 antibody (for mitotic 
index analysis) and analysed by flow-cytometry. One experiment.  
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Summary of the effects of mitotic inhibitors  

 

To summarize, Eg5 inhibition by monastrol and subsequent SAC activation 

strongly enhanced AdΔ19K-induced cytotoxicity both in the absence and 

presence of gemcitabine. The monastrol-induced enhancement of cell killing in 

response to AdΔ19K and gemcitabine might be mediated through a decrease of 

S-phase arrest and an increase of mitotic index. Similar to the findings with 

monastrol, Plk1 inhibition enhanced AdΔ19K-mediated cytotoxicity and showed 

a tendency towards enhancement of gemcitabine- and AdΔ19K-induced cell 

death. The presence of the Plk1 inhibitor in cells treated with gemcitabine and 

AdΔ19K appeared to decrease the S-phase arrest and increase the mitotic 

index and >4N cell-fraction. The cell-viability and cell-cycle effects of the Plk1 

inhibitor resembled those observed with monastrol, suggesting that the two 

inhibitors share similar mechanisms of action on cells treated with gemcitabine 

and AdΔ19K. Interestingly, the same cell-cycle effects were observed in 

response to Claspin knockdown that also promotes AdΔ19K- and gemcitabine-

mediated cell death.  

 

On the other hand, inhibition of the SAC protein Mps1 prevented the enhanced 

cell death observed in response to gemcitabine and AdΔ19K, through 

attenuation of AdΔ19K-mediated cytotoxicity and acceleration of mitosis. 

However, acceleration of mitosis in response to Aurora-B inhibition only showed 

a modest trend towards decreased cytotoxicity of the AdΔ19K and gemcitabine 

combination and rather yielded inconclusive effects on the sensitization ratio. 

Moreover, in contrast to the impaired AdΔ19K cytotoxicity observed when Mps1 

was inhibited, AdΔ19K-mediated cell killing was enhanced by Aurora-B 

inhibition. Since both inhibitors decreased the mitotic index, this suggests that 

accelerated mitosis per se is likely not responsible for the effects on AdΔ19K-

mediated cytotoxicity.  
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3.4.4. Gemcitabine prolongs mitosis and induces segregation errors, 

multipolar divisions and cytokinesis failure that are enhanced by AdΔ19K  

 

AdΔ19K does not affect the time of mitotic entry or mitotic duration, while 

treatment with gemcitabine delays and prolongs mitosis 

 

Based on the observations that the combination of AdΔ19K with gemcitabine 

induces mitotic aberrations and that cell death in response to AdΔ19K and 

gemcitabine is sensitive to SAC and mitotic perturbations, I wished to further 

characterize mitotic progression and its importance for AdΔ19K- and 

gemcitabine-induced cell death. I stably transfected PT45 cells with a histone 

H2B-mCherry construct, to fluorescently mark chromatin, synchronised the cells 

using thymidine block and performed time-lapse video microscopy experiments 

from 24h to 96h post-treatment with AdΔ19K and gemcitabine. The objectives 

of the study were first, to characterize mitotic progression, that is time of mitotic 

entry, mitotic duration, chromosome segregation and mitotic exit, and secondly, 

to assess whether cell death induced by AdΔ19K with gemcitabine occurs 

before or after mitotic progression.  

 

Assessment of the mitotic index showed that mock- or AdΔ19K-infected cells 

divided mostly between 24h and 40h post-infection, with a reduced mitotic index 

being observed from 40h through to 96h post-infection (Figure 58A). In contrast 

to previous phospho-histoneH3 analysis by flow cytometry, infection with 

AdΔ19K did not increase the mitotic index (Figure 58A). As expected, treatment 

with gemcitabine significantly decreased the mitotic index until 40h post-

treatment (Figure 58A). The mitotic index in response to gemcitabine was less 

than 5% until 56h post-treatment, after which it increased for 16h (56-72h post-

treatment) and dropped again until the end of the time-course (Figure 58A). In 

contrast to previous observations, the presence of AdΔ19K in gemcitabine-

treated cells did not significantly increase the mitotic index and the number of 

mitotic cells was overall similar to gemcitabine without AdΔ19K (Figure 58A).  

 

Regarding the time of mitotic entry, mock-infected cells entered mitosis 

throughout the time-course, with the median time of mitotic entry being 35h 

post-infection (Figure 58B). Addition of gemcitabine increased the median time 
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of mitotic entry to 54h, with the majority of cells entering mitosis between 38 and 

64h post-treatment (Figure 58B). The median time that AdΔ19K-infected cells 

entered mitosis was 36h, while addition of gemcitabine to AdΔ19K-infected cells 

increased the median time of mitotic entry to 61h (Figure 58B).  Most cells 

treated with a combination of AdΔ19K and gemcitabine entered mitosis 

between 51 and 70h post-infection, which appeared delayed compared to 

gemcitabine (Figure 58B).  

 

Mock- and AdΔ19K-infected cells divided with a median mitotic duration of 

45min, despite that several cells were observed to deviate from that median 

time and remain in mitosis for up to 11h or even 22h (figure 58C). Treatment 

with gemcitabine prolonged mitotic duration, which ranged from 30min to 32h 

(figure 58C).  The majority of gemcitabine-treated cells spent 1.25h to 7.5h in 

mitosis, with a median mitotic duration of 2.75h (figure 58C). Infection of 

gemcitabine-treated cells with AdΔ19K increased the median mitotic duration to 

4.5h, but the range of mitotic duration appeared smaller compared to 

gemcitabine and was 30min to 14.5h (figure 58C).  
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Figure 58: AdΔ19K does not affect the time of mitotic entry or mitotic 
duration, while treatment with gemcitabine delays and prolongs mitosis. 
PT45 cells stably expressing histone H2B-mCherry were subjected to thymidine 
block and released in 0% FBS DMEM -/+ 300ppc AdΔ19K. 2h later, medium 
was replaced with 10% FBS L15 -/+ 5nM gemcitabine (Gem). 24h post-infection 
cells were subjected to a 72h time-lapse imaging by phase-contrast and 
fluorescence microscopy as detailed in the methods. Images from 3 different 
fields per condition were acquired every 15min from 24 to 96h post-infection.  
(A) Mitotic index. Mitotic cells were quantified within each 8h time period 
indicated and expressed as % of total cells counted in the beginning of the 8h 
time period. Error bars represent S.E.M of three independent experiments. 
*.p<0.05, **.p<0.01 (one-way ANOVA with Bonferroni's multiple comparison 
test). (B) Time of mitotic entry. Tukey's box-and-whisker plots (with whiskers 
spanning 1.5xIQR and outliers shown) showing the time of mitotic onset, 
defined as the time of nuclear envelope breakdown. Mitotic cells from each 
independent experiment were pooled together. At least 100 mitotic cells were 
analysed. (C) Time in mitosis. Tukey's box-and-whisker plots (with whiskers 
spanning 1.5xIQR and outliers shown) showing the duration of mitosis, defined 
from the time of nuclear envelope breakdown until the time of sister chromatid 
separation. Mitotic cells from each independent experiment were pooled 
together. At least 100 mitotic cells were analysed.  
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Gemcitabine induces segregation errors, multipolar divisions and cytokinesis 

failure with a trend towards further increases in the presence of AdΔ19K 

 

As mentioned above, gemcitabine-treated cells frequently exhibited spindle 

multipolarity and severe chromosome alignment issues. Such aberrant cells 

often divided with multipolar, instead of bipolar, anaphases. Examples of bipolar 

and mulitpolar divisions are shown in figure 59A. Quantification of bipolar and 

multipolar divisions showed that the frequency of multipolar divisions in mock- 

and AdΔ19K-infected cells was low (5.3±3% and 8.2±2%, respectively) and 

these were mostly tripolar divisions (Figure 59B). In response to gemcitabine, 

42.9±10.6% of divisions were multipolar; significantly higher than mock-infected 

cells (Figure 59B). The presence of AdΔ19K in gemcitabine-treated cells 

showed a tendency towards increased frequency of multipolar anaphases 

(63.4±6.8%). Multipolar anaphases were significantly more frequent in cells 

treated with gemcitabine and AdΔ19K, compared to AdΔ19K (Figure 59B). 

 

Assessment of chromosome segregation revealed errors, that is, anaphase 

bridges and lagging chromosomes (Figure 59A). The frequency of segregation 

errors in mock-infected cells was relatively high (37.8±1.7%) and significantly 

increased to 88.5±2.7% when gemcitabine was added (Figure 59C). 

Chromosomse segregation errors exhibited a trend towards an increase in the 

presence of AdΔ19K (44.1±7.6%) and when gemcitabine was present the 

frequency significantly increased to 98.8±1.2% (Figure 59C). Virtually all 

combination-treated cells divided with segregation errors. The frequency of 

chromosome segregation errors was 10% higher in cells treated with a 

combination of gemcitabine and AdΔ19K, compared to gemcitabine (Figure 

59C). 

 

A small percentage of cytokinesis failure (Figure 59A) was observed in mock- 

and AdΔ19K-infected cells (Figure 59D). In response to gemcitabine, the extent 

of cytokinesis failure was highly variable between the 3 independent 

experiments. The mean frequency of cytokinesis failure in gemcitabine-treated 

cells was 15.3±8.8% in the absence of AdΔ19K, and almost doubled to 

31.1±11.4% when AdΔ19K was present (Figure 59D).  
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C. D. 

B. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 59: Gemcitabine induces segregation errors, multipolar divisions 
and cytokinesis failure with a trend towards increases in the presence of 
AdΔ19K. PT45 cells stably expressing histone H2B-mCherry were subjected to 
thymidine block and released in 0% FBS DMEM -/+ 300ppc AdΔ19K. 2h later 
medium was replaced with 10% FBS L15 -/+ 5nM gemcitabine (Gem). 24h post-
infection cells were subjected to a 72h time-lapse imaging by phase-contrast 
and fluorescence microscopy as detailed in the methods. Images from 3 
different fields per condition were acquired every 15min from 24 to 96h post-
infection. At least 100 mitotic cells were analysed for aberrations during 
chromosome segregation and cytokinesis. (A) Example images of bipolar and 
multipolar anaphases, segregation errors (anaphase bridges or lagging 
chromosomes) and cytokinesis failure. Numbers indicate time (in min). (B) 
Frequency (%) of bipolar and multipolar anaphases. (C) Frequency (%) of 
chromosome segregation errors. (D) Frequency (%) of cytokinesis failure. Error 
bars represent S.E.M of three independent experiments. *.p<0.05, **.p<0.01 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test). 
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Gemcitabine-induced mitotic aberrations result in formation of micro- and multi-

nucleated cells that are increased in the presence of AdΔ19K 

 

To assess the consequences of mitotic abnormalities, daughter cells were 

analysed for the presence of micronuclei and multinucleation. Daughter cells 

were categorised into mononucleated when one intact nucleus was observed, 

micronucleated when one or more small nuclei were associated with the 

daughter cell nucleus and multinucleated when two or more nuclei were present 

(Figure 60A). As expected, in mock-infected cells the majority (71±2.1%) of 

daughter cells were mononucleated and 26.4±1.6% had micronuclei, explaining 

the high frequency of the observed segregation errors (Figure 60B). Similarly, 

67±1.8% of dividing AdΔ19K-infected cells generated mononucleated daughter 

cells and 29.5±1.5% resulted in the formation of micronuclei (Figure 60B). The 

frequency of multinucleated cells was low in both mock- and AdΔ19K-infected 

cells.  

 

Treatment with gemcitabine significantly increased the frequency of 

multinucleation in mock-infected cells (Figure 60B), as previously observed 

(Figure 53B). Significantly less mononucleated daughter cells were also 

observed and overall the most frequent phenotype of gemcitabine-treated 

daughter cells was micronucleation (45.9±10.1)  (Figure 60B). In cells treated 

with a combination of gemcitabine and AdΔ19K, equal frequencies of 

micronucleated and multinucelated daughter cells were observed (45.6±.6.8% 

ad 43.9±8.7%, respectively). Mononucleated daughter cells were significantly 

decreased when AdΔ19K was added to gemcitabine-treated cells, as the 

frequency of multinucleated daughter cells increased (Figure 60B). The 

occurrence of micronucleation was the same between gemcitabine and 

gemcitabine combined with AdΔ19K (Figure 60B). Therefore, the high rate of 

segregation errors following gemcitabine treatment results in micronucleated 

and multinucleated daughter cells and only a minority of daughter cells has a 

single intact nucleus. Addition of AdΔ19K, appeared to increase the frequency 

of gemcitabine-induced multinucleation and nearly all daughter cells were either 

micro- or multi-nucleated.  
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Figure 60: Gemcitabine-induced mitotic aberrations result in formation of 
micro- and multi-nucleated cells that are increased in the presence of 
AdΔ19K. PT45 cells stably expressing histone H2B-mCherry were subjected to 
thymidine block and released in 0% FBS DMEM -/+ 300ppc AdΔ19K. 2h later, 
medium was replaced with 10% FBS L15 -/+ 5nM gemcitabine (Gem). 24h post-
infection cells were subjected to 72h time-lapse imaging by phase-contrast and 
fluorescence microscopy as detailed in the methods. Images from 3 different 
fields per condition were acquired every 15min from 24 to 96h post-infection. At 
least 150 daughter cells were analysed for the presence of micronuclei or 
multiple nuclei. (A) Example images of mononucleated, micronucleated and 
multinucleated daughter cells. Numbers indicate time (in min). (B) Frequency 
(%) of mononucleated, micronucleated and multinucleated daughter cells. Error 
bars represent S.E.M of three independent experiments. *.p<0.05, **.p<0.01 
***.p<0.001 (one-way ANOVA with Bonferroni's multiple comparison test). 
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The majority of cell death induced in response to AdΔ19K and gemcitabine 

occurs before mitotic entry 

 

I next quantified cell death in response to the various treatments and assessed 

the proportion of cells dying before mitotic entry (pre-mitotic cell death), during 

mitosis (mitotic cell death) or after passage through mitosis (post-mitotic cell 

death) as well as the time of cell death (Figure 61). A total of 32% of mock-

infected cells died throughout the time-course, suggesting some toxicity of the 

experimental conditions (Figure 61A). AdΔ19K-induced cell death was 

significantly higher than in mock-infected cells from 88h to 96h post-infection, 

whereas gemcitabine-induced cell death was not significantly different from cell 

death occurring in mock-infected cells without gemcitabine (Figure 61A). In 

response to the combination of gemcitabine with AdΔ19K cell death initiated at 

48h and gradually increased, peaking at 88-96h during which 34.8±5.3% of 

cells died (Figure 61A). As expected, AdΔ19K significantly increased cell death 

in response to gemcitabine from 72h onwards (Figure 61A).  

 

In mock- and AdΔ19K-infected cells the majority of cells died after cell division 

with 0% and 1% of cells dying during mitosis in mock-infected and AdΔ19K-

infected, respectively (Figure 61B). Following treatment with gemcitabine 

55.6±16.2% of cells died before mitotic entry and 39.9±11.7% of cells died after 

division (Figure 61B).  Approximately 5% of gemcitabine-treated cells were also 

observed to die during mitosis (Figure 48B). When gemcitabine was combined 

with AdΔ19K the great majority of cell death (81.9±6.5%) occurred before cells 

entered mitosis and 17.2±5.6% of cells died after completing mitosis (Figure 

61B). Post-mitotic cell death was significantly reduced in AdΔ19K-infected cells 

treated with gemcitabine, compared to Ad∆19K infection alone (Figure 61B).  

 

The median time of cell death was 75h and 86h post-infection for mock-infected 

cells dying before or after mitosis, respectively (Figure 61C). In response to 

AdΔ19K, the majority of pre-mitotic cell death occurred from 54h to 80h post-

infection with a median time of 68h that was lower than in mock-infected cell  

(Figure 61C). Post-mitotic cell death also occurred earlier in AdΔ19K- compared 

to mock-infected cells, with a median time of 79h and a range of 45 to 96h post-

infection (Figure 61C). In response to gemcitabine the majority of pre-mitotic 
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A. 

cell death occurred from 66h to 90h post-treatment with a median time of 81h 

(Figure 61C). When AdΔ19K was present gemcitabine-treated cells died earlier, 

with a median pre-mitotic cell death time of 71h (Figure 61C). The timing of 

post-mitotic cell death in response to gemcitabine was similar between 

gemcitabine and gemcitabine with AdΔ19K and had a median value of 86h and 

83h in the absence or presence of AdΔ19K, respectively (Figure 61C). 

Gemcitabine-treated cells died in mitosis from 71 to 90h post-treatment (median 

time 80h). When AdΔ19K was present, mitotic death of gemcitabine-treated 

cells started as early as 44h and showed a median time of 76h (Figure 61C).  

 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 61: The majority of cell death induced in response to AdΔ19K and 
gemcitabine occurs before mitotic entry. PT45 cells stably expressing 
histone H2B-mCherry were subjected to thymidine block and released in 0% 
FBS DMEM -/+ 300ppc AdΔ19K. 2h later medium was replaced with 10% FBS 
L15 -/+ 5nM gemcitabine (Gem). 24h post-infection cells were subjected to a 
72h time-lapse imaging by phase-contrast and fluorescence microscopy as 
detailed in the methods. Images from 3 different fields per condition were 
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acquired every 15min from 24h to 96h post-infection. (A) Frequency of cell 
death. Dying cells were quantified within each 8h time period indicated and 
expressed as % of total cells counted in the beginning of the 8h time period. 
100-400 total cells were counted per experiment. Error bars represent S.E.M of 
three independent experiments. *.p<0.05, **.p<0.01, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test). (B) Dying cells from 24h to 
96h were categorized into cells dying before mitotic onset (pre-mitotic death), 
cells dying during mitosis (mitotic death) and cells dying after completion of 
mitosis (post-mitotic death) and expressed as % of total cells dying. *.p<0.05 
(one-way ANOVA with Bonferroni's multiple comparison test). (C) Tukey's box-
and-whisker plots (with whiskers spanning 1.5xIQR and outliers shown) 
showing the time (in hours post-infection) of pre-mitotic, mitotic and post-mitotic 
cell death for each condition. 100-600 dead cells per condition were recorded.  
 

 

In addition to cell death, the overall fate of cells in response to each treatment 

was analysed. Fate was categorised into cells that divided and died (no division 

- death), cells that divided and survived (no division - survival), cells that divided 

and survived (division - survival) and cells that divided and died in interphase or 

mitosis (division - death in interphase and division - death in mitosis, 

respectively). Examples of each cell fate are shown in figure 62A. The fate 

profiles of 100 cells from each condition are shown in figure 62C.  

 

As expected, in mock-infected cells the most frequent fate was division followed 

by survival (51.6±10.3%) (Figure 62B). 23.5±6.1% of mock-infected cells 

survived without division and around 26% died either before or after division 

(Figure 62B). In response to AdΔ19K 12.4±8.3% and 34.6±16.2% of cells 

survived with no division or following division, respectively (Figure 62B). A total 

of 53% of AdΔ19K-infected cells died, mostly in interphase following division 

(Figure 49B). The most frequent fate of gemcitabine-treated cells was survival 

without division, which was observed in 44.3±6% of cells (Figure 62B). 

Compared to mock-infection, the frequency of cells surviving after division was 

significantly reduced when gemcitabine was present (Figure 62B). A total of 

41% of cells died following treatment with gemcitabine and death occurred more 

frequently before division (Figure 62B). In response to gemcitabine and AdΔ19K 

the majority of cells that were tracked died without division (58±4.2%), a 

frequency that was significantly higher than each single treatment (Figure 62B). 

A total of 29% of cells survived treatment with gemcitabine and AdΔ19K and 

12.3±4.2% died following division (Figure 62B).  
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Figure 62: Fate profiles. PT45 cells stably expressing histone H2B-mCherry 
were subjected to thymidine block and released in 0% FBS DMEM -/+ 300ppc 
AdΔ19K. 2h later medium was replaced with 10% FBS L15 -/+ 5nM 
gemcitabine (Gem). 24h post-infection cells were subjected to a 72h time-lapse 
imaging by phase-contrast and fluorescence microscopy as detailed in the 
methods. Images from 3 different fields per condition were acquired every 
15min from 24 to 96h post-infection. At least 400 cells per condition were 
analyzed for their fate. (A) Example images of each cell fate. Numbers indicate 
time (in min) (B) Frequency of each cell fate per condition. Error bars represent 
S.E.M of three independent experiments. **.p<0.01, ***.p<0.001 (one-way 
ANOVA with Bonferroni's multiple comparison test). (C) Representative cell fate 
profiles (showing 100 cells) in each condition. Each line represents a cell.  
 

 

Conclusions from time-lapse microscopy studies  

 

AdΔ19K infection had no effect on the time of mitotic entry or time in mitosis 

(duration). In contrast, gemcitabine treatment, regardless of the presence of 

virus, delayed mitotic entry and prolonged mitotic duration, suggesting 

activation of the SAC. It was observed that the majority of cells with prolonged 

mitosis exhibited chromosome alignment issues partly due to spindle 

multipolarity. The presence of AdΔ19K in gemcitabine-treated cells enhanced 

the effects of gemcitabine, by delaying mitotic entry and increasing the time in 

mitosis. This suggested that combination-treated cells exhibited more severe 

chromosome alignment issues thus taking longer to satisfy the SAC.  

 

In response to gemcitabine, a high frequency of segregation errors, multipolar 

divisions and cytokinesis failure occurred. Addition of AdΔ19K to gemcitabine-

treated cells resulted in a tendency towards increased segregation errors, 

multipolar divisions and cytokinesis failure, with virtually all combination-treated 

cells exhibiting chromosome segregation abnormalities and the majority of cells 

undergoing multipolar divisions. The high rate of segregation errors following 

gemcitabine treatment resulted in micronucleated and multinucleated daughter 

cells and only a minority of daughter cells had a single intact nucleus. Addition 

of AdΔ19K appeared to increase the frequency of gemcitabine-induced 

multinucleation and nearly all daughter cells were either micro- or multi-

nucleated.  
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Regarding cell death, AdΔ19K-induced cell killing occurred almost equally 

before or after mitosis and earlier compared to mock-infected cells. More than 

half of gemcitabine-treated cells died before mitotic entry and addition of 

AdΔ19K both increased and accelerated pre-mitotic cell death. In response to 

gemcitabine, post-mitotic cell death occurred at later times post-treatment, 

consistent with the delayed mitotic entry, and addition of AdΔ19K did not 

significantly change the timing of post-mitotic cell death. Furthermore, 

gemcitabine treatment caused some mitotic cell death, which appeared 

accelerated in the presence of AdΔ19K. Importantly, the majority of enhanced 

cell death observed when AdΔ19K was combined with gemcitabine occurred 

before passage through mitosis. No major cell fate was observed in response to 

AdΔ19K alone but the two most frequent cell fates were division with or without 

death. Gemcitabine treatment resulted in most cells surviving without division, 

whereas when gemcitabine was combined with AdΔ19K the majority of cells 

died before division.  
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CCHHAAPPTTEERR  44::  DDIISSCCUUSSSSIIOONN  

 

 

Pancreatic cancer is an aggressive disease with poor prognosis and a high 

fatality rate. Gemcitabine, the standard first-line chemotherapy for advanced 

disease, has negligible effects, necessitating the development of new therapies. 

We previously demonstrated that deletion of the anti-apoptotic protein E1B19K 

in a replication-selective adenoviral mutant (Ad∆∆; E1ACR2- and E1B19K-

deleted) caused synergistically-enhanced cell killing when combined with low-

dose DNA-damaging drugs in pancreatic cancer cell models and greatly 

improved efficacy in vivo in tumour xenograft models (Cherubini et al., 2011). 

These findings were reproduced by a virus deleted only in the E1B19K gene 

(AdΔ19K) establishing that this deletion is responsible for the synergistic cell 

killing in combination with DNA-damaging drugs (Leitner et al., 2009). To 

delineate the cellular pathways targeted by the combination treatment we 

employed Ad∆19K combined with either gemcitabine or irinotecan with the goal 

of identifying cellular factors that are essential for the synergistic cell killing. We 

hypothesised that Ad∆19K and DNA-damaging drugs act synergistically to 

deregulate cell-cycle mechanisms.  

 

The present study has confirmed previous findings by our team that pancreatic 

cancer cell death induced by AdΔ19K and gemcitabine is apoptotic (Leitner et 

al., 2009). This study has further showed that induction of cell killing by the 

combination treatments is more-than-additive and time-dependent. The data 

suggested that neither Ad∆19K nor Ad5tg could block DNA-damage responses 

elicited by the drugs, despite virus-mediated degradation of the DNA-damage 

response and repair factor Mre11. Mre11 siRNA-mediated knockdown 

augmented the synergistic cell death induced by Ad∆19K and DNA-damaging 

drugs, suggesting that virus-mediated Mre11 downregulation contributes to the 

enhanced cell killing. Mitotic index analysis in synchronised cells and 

immunofluorescence microscopy suggested that Ad∆19K promotes mitotic entry 

of gemcitabine-treated DNA-damaged cells. Moreover, AdΔ19K inhibited drug-
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induced mRNA and protein accumulation of Claspin, a DNA-damage response 

protein whose degradation is required for G2/M checkpoint recovery. Treatment 

with Ad∆19K and gemcitabine accelerated Claspin degradation in 

cycloheximide-chase assays and siRNA-mediated Claspin knockdown 

enhanced the synergistic cell death. Time-lapse microscopy in histone H2B 

mCherry-expressing cells, as well as immunofluorescence microscopy studies, 

revealed that Ad∆19K enhanced gemcitabine-induced aberrant mitosis, 

characterised by spindle multipolarity, chromosome alignment issues and 

subsequent SAC activation, chromosome missegregation errors, cytokinesis 

failure and formation of micro- and multi-nucleated cells. Importantly though, 

Ad∆19K prevented the gemcitabine-induced accumulation of multinucleated 

cells. Despite that the majority of cell killing in response to gemcitabine and 

Ad∆19K appeared to occur in S/G2-arrested cells before mitotic entry, passage 

through a prolonged aberrant mitosis enhanced induction of cell death.  

 

 

4.1. Differential sensitivity of PT45 and MIAPaCa-2 cells to virus and drug 

 

PT45 and MIAPaCa-2 cells exhibited different sensitivity to chemodrugs and 

adenovirus infection in cell-viability assays. Dose-response curves to viruses 

demonstrated that MIAPaCa-2 cells are 3-5-fold more sensitive to adenovirus 

compared to PT45 cells (Figure 16), but more resistant to gemcitabine and 

irinotecan, since higher drug doses were required to cause 30% cell death 

(Figure 16). The sensitivity of MIAPaCa-2 to gemcitabine was almost 5-fold 

lower compared to PT45 cells, in agreement with previous published results 

from our group (Cherubini et al., 2011). Moreover, gemcitabine-mediated cell 

sensitization to Ad 19K was weaker than in PT45 cells (Figure 16C and F).  

 

Both cell lines lack p16 and have constitutively active K-Ras and 

transcriptionally non-functional p53, as confirmed by PCR mutational analysis 

(Figure 15). Thus the differential sensitivity to virus and drug in the two cell lines 

cannot be attributed to differences in the most frequent genetic alterations 

occurring in PDAC However other unidentified genetic variations are likely to 

contribute to the dissimilar sensitivities. In addition to genetic variation, 

differential virus sensitivity might be a result of discrepancies in the rate of viral 
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uptake, spread and genome amplification between the two cell lines. Hamdan et 

al. reported that CAR and αvβ5 expression levels are comparable between 

PT45 and MIAPaCa-2 cells and despite increased αvβ3 expression in PT45 

cells, adenovirus uptake was almost 4-fold higher in MIAPaCa-2 cells (Hamdan 

et al., 2011). Augmented viral transduction might therefore be responsible for 

the increased adenovirus sensitivity of these cells compared to PT45 cells. 

Moreover, previous published data from our team indicated that the rate of 

adenovirus production, including intracellular and released viral particles, was 

higher at 24-48h in MIAPaCa-2 cells compared to PT45, suggesting that viral 

spread is accelerated in MIAPaCa-2 cells at these times post-infection 

(Cherubini et al., 2011). Hence, increased viral uptake and spread can explain 

the increased sensitivity of MIAPaCa-2 cells to adenovirus. Despite that 

MIAPaCa-2 cells were more sensitive to virus, the degree of sensitisation in 

combination with gemcitabine was higher in the PT45 cells. It is possible that 

the less efficient gemcitabine-mediated cell killing in MIAPaCa-2 cells could not 

further improve on virus-induced cell death.  

 

 

4.2. E1B19K deletion in Ad5 permits apoptosis induction 

 

Cell viability, cell death and apoptotic assays confirmed previous findings by our 

group that deleting E1B19K in wild-type Ad5 potently sensitizes pancreatic 

cancer cells to chemodrug-induced apoptosis (Cherubini et al., 2011; Leitner et 

al., 2009). Dose-response curves to virus demonstrated lower EC50 values 

when Ad 19K was combined with suboptimal doses of DNA-damaging drugs 

compared to Ad5tg (Figure 16). In MIAPaCa-2 cells particularly, the 

combination of gemcitabine with Ad5tg appeared antagonistic and this was 

efficiently overcome by combining gemcitabine with Ad 19K, in agreement with 

previous reports by our group (Cherubini et al., 2011). Moreover, in PT45 cell 

death assays, the cytotoxicity of the combination of Ad 19K with either 

gemcitabine or irinotecan was significantly higher than the combination of Ad5tg 

with either drug (Figure 18). Similarly, apoptotic assays demonstrated that DNA 

fragmentation and caspase-3 activation are induced to significantly higher 

extent in response to Ad 19K and gemcitabine, compared to Ad5tg and 

gemcitabine (Figures 19-21).  
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The enhanced apoptotic responses observed when chemotherapeutic agents 

are combined with E1B19K-deleted mutants as opposed to wild-type Ad5 can 

be rationally attributed to the anti-apoptotic functions of E1B19K. Firstly, 

deleting E1B19K attenuates the ability of the virus to antagonise extrinsic, 

intrinsic, p53-dependent or -independent apoptosis that can be induced in 

response to viral infection and cytotoxic drugs. Secondly, the ability of E1A to 

induce p53-dependent and -independent apoptosis can be counteracted by 

E1B19K, as previously reported (Rao et al., 1992; White, 2001; White et al., 

1991). Therefore, deleting E1B19K should stimulate E1A-induced apoptosis. 

Indeed, it has been reported that deletion of E1B19K produces a large plaque 

phenotype indicative of accelerated viral spread and this effect was due to early 

cell lysis and subsequent earlier release of progeny virions (Chinnadurai, 1983; 

Gros and Guedan, 2010; Sauthoff et al., 2000; Subramanian et al., 2006; 

Takemori et al., 1984). Although E1A-induced p53-mediated apoptosis can also 

be counteracted by E1B55K, in the context of tumour cells with non-functional 

p53 E1A-induced apoptosis is expected to occur independently of p53.  

 

In line with the ability of E1B19K to counteract E1A functions, White et al. 

reported that deletion of E1B19K increased E1A expression and subsequently 

E1A-dependent transcription of viral genes, leading to increased viral replication 

(White et al., 1988; White et al., 1986). Other studies also reported increased 

viral replication in pancreatic tumour cells infected with other E1B19K-deleted 

mutants that had additional gene deletions (Liu et al., 2004; Liu et al., 2005). 

Previous studies by our group using the Ad 19K and Ad  mutants in PT45 

and MIAPaCa-2 cells did not detect significant differences in viral replication or 

production compared to wild-type Ad5 (Cherubini et al., 2011; Leitner et al., 

2009).  

 

In my studies, I observed a trend towards higher levels of viral DNA 

amplification for Ad∆19K compared to Ad5tg up to 72h after infection in PT45 

cells. I also observed a slight trend towards increased E1A mRNA expression in 

Ad 19K- versus Ad5tg-infected cells at 16h-24h (Figure 24). This increase was 

paralleled by a trend towards more cells expressing the E1A protein when 

infected with Ad 19K compared to Ad5tg at 16h-24h post-infection in MIAPaCa-



267 
 

2 cells and at 24h in PT45 cells (Figure 23). However, Leitner et al, reported 

that E1A expression was not increased in Ad 19K-infected PT45 cells 

compared to Ad5 up to 72h post-infection, although quantification of the 

immunoblot data was not performed (Leitner et al., 2009). Furthermore, I 

observed that the differences in E1A mRNA and protein expression between 

Ad5tg and Ad 19K became significant in the presence of gemcitabine (Figure 

22-23). A possible explanation for the discrepancies between my study and that 

of Leitner et al. regarding the E1A expression might be the timing, the methods 

of analysis and the use of a wild type Ad5 from a different source. Ad5tg is the 

backbone for Ad∆19K (not the commercial Ad5), which was obtained from Dr M. 

Mehtali in the form of a plasmid (pTG3602) (Chartier et al., 1996). We found 

that Ad5tg is slightly less adapted to growth in cultured cells than the serially 

passaged wild type Ad5 (unpublished findings). Furthermore, in my E1A mRNA 

experiments I normalised E1A mRNA expression to penton mRNA to accurately 

measure the relative increase in E1A per virus particle, independently of 

replication. In the study by Leitner et al, E1A was normalised to cellular 18S 

RNA (Leitner et al., 2009) also at later time-points than in my study. In addition, 

I analysed E1A protein expression in live cells only, using flow-cytometry, which 

is a more accurate quantitative method than immunoblotting. The immunoblot 

data presented by Leitner et al might have included protein from dead cells 

(which would be more frequent with the Ad∆19K infection) and possibly 

underestimated the E1A levels when normalising to actin. Interestingly, I found 

that E1A levels were higher with Ad∆19K-infection than with Ad5tg at the early 

time-points (before 24h), while at 48h the levels were similar. These results 

indicate that E1A is expressed more potently at earlier stages from the Ad∆19K 

virus than from Ad5tg and might more efficiently initiate the higher levels of cell 

killing in combination with DNA-damaging drugs. It has been established that 

E1A induction of viral transcription/replication is not dose-dependent once a 

sufficiently high threshold level has been reached, however, it is likely that the 

initial higher levels of E1A expressed from Ad∆19K play an important role in 

modulating the cellular responses to other factors involved in the enhanced cell 

killing with drugs. 

 

An increased viral spread and E1A expression upon E1B19K deletion would 

explain the significantly higher accumulation of cells with >4N DNA content 
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observed following infection with Ad 19K as compared to Ad5tg (Figures 25-

26). E1A was previously shown to induce DNA re-replication leading to 

accumulation of cells with >4N DNA content (Singhal et al., 2013). In addition, 

this virus-induced host DNA over-replication has been associated with oncolytic 

adenovirus cytotoxicity in ovarian cancer cells (Connell et al., 2011). Indeed, the 

more virus-sensitive MIAPaCa-2 cell line supported higher levels of >4N cell 

accumulation compared to the PT45 cell line (compare Figures 25 and 26). This 

also implies that Ad 19K should be more cytotoxic than Ad5tg. Cell viability and 

death assays did not support such notion (Figures 16 and 18), however in 

apoptotic assays Ad 19K appeared to induce more caspase-3 cleavage than 

Ad5tg (Figures 20A and 21A). Moreover, virus-induced apoptosis occurred 

preferentially in cells with >4N DNA content (Figures 20B and 21B). Therefore it 

can be perceived that E1B19K deletion permits apoptosis induction in the 

infected cells but this does not translate to overall increased virus cytotoxicity in 

the absence of chemotherapeutic drugs.   

 

 

4.3. Effects of gemcitabine on adenovirus   

 

Data presented in this thesis demonstrated that gemcitabine inhibits viral DNA 

replication but increases E1A mRNA and protein expression levels (Figures 22-

24). The inhibitory effect of gemcitabine on adenoviral DNA replication, late 

gene expression and virion production was previously demonstrated by our and 

other groups and was observed to be relieved at later times post-infection (72h-

96h) (Bhattacharyya et al.; Cherubini et al., 2011; Leitner et al., 2009; Raki et 

al., 2005). The inhibitory effect is believed to be the result of blocked host DNA 

replication, as other DNA replication inhibitors, such as aphidocholin and the 

gemcitabine analogue arabinofuranosylcytosine (Ara-C), can also suppress viral 

replication (Feldman and Rapp, 1966; Habara et al., 1980; Leitner et al., 2009; 

Michaelis et al., 2002; Musk et al., 1990). In addition, blockage of DNA 

replication by gemcitabine inhibited the ability of the virus to induce DNA re-

replication, as significant decreases in Ad 19K-mediated accumulation of cells 

with >4N DNA content were evident in the presence of gemcitabine (Figure 25B 

and 26B). 
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Increased E1A expression as well as increased frequency of Ad-DBP positive 

cells observed in immunofluorescence studies (Figure 38) following Ad 19K 

infection are likely the result of enhanced viral uptake in the presence of 

gemcitabine. Our group previously reported that gemcitabine increases 

adenoviral uptake in MIAPaCa-2, Suit-2 and other pancreatic cancer cell lines, 

most likely through increased integrin expression (Bhattacharyya et al.). 

Onimarou et al. also reported increased infectivity of Suit-2 cells by the oncolytic 

virus Ad5/3hTERTE1 in the presence of gemcitabine (Onimaru et al., 2010b). 

Gemcitabine inhibited Ad5tg and Ad 19K DNA replication to similar extent, 

suggesting that the enhanced cell death induced by gemcitabine and Ad 19K is 

largely independent of viral replication. However, gemcitabine-induced 

increases in viral uptake and increased E1A expression is expected to 

contribute to Ad 19K-mediated potentiation of gemcitabine-induced cell death.  

 

 

4.4. Ad 19K and DNA-damaging drugs induce more-than-additive and 

time-dependent apoptotic cell killing  

 

Cell viability, death and apoptotic assays demonstrated that suboptimal doses 

of Ad 19K and DNA-damaging drugs induce cell killing in a more-than-additive 

manner (Figures 17-21). Cell death induced by Ad 19K and DNA-damaging 

drugs is time-dependent (Figures 18, 21 and 61A). In PT45 cells, the highest 

synergistic response was observed at 72h and the biggest increase in the more-

than-additive cell death occurred between 48h and 72h and to a lesser extent 

between 72h and 96h post-treatment. 72h following treatment of PT45 cells with 

300ppc Ad 19K and 5nM gemcitabine cell killing reached 53.2±5.7% as 

measured by cell-viability assays (Figure 17A) and 41.5±5.3% as measured by 

cell-death assays (Figure 18A). The higher cytotoxicity detected in cell-viability 

assays compared to cell-death assays was also observed in response to single 

treatments. For example, gemcitabine-induced cell death was 17.6±6.3% as 

assessed by cell-viability assays (Figure 17A), whereas in cell death assays 

gemcitabine did not result in significant cell killing (Figure 18A). Live-cell 

imaging studies confirmed that these doses of gemcitabine are mainly 

cytostatic, with some cell death occurring after 80h of treatment  (Figure 61A). 
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The differences among cell viability and death assays can be explained by the 

fact that the MTS cell viability assay measures dehydrogenase activity as an 

indirect measurement of cell viability, whereas the trypan-blue dye incorporation 

assay provides a direct assessment of cell death. Decreased mitochondrial 

activity likely does not always translate to cell killing. 

 

In cell viability assays, addition of the pan-caspase inhibitor zVAD in dose-

response curves to the virus with fixed dose of drug, showed a trend towards 

inhibition of the cell death induced by Ad 19K and gemcitabine or irinotecan in 

PT45 cells, while more potent inhibition was observed in MIAPaCa-2 cells 

(Figure 16). Previous published results from our group, using the same 

technical conditions, demonstrated almost complete abrogation of the enhanced 

cell death when Ad 19K or Ad  were combined with gemcitabine or irinotecan 

in PT45 cells; addition of zVAD reversed the shift of the virus dose-response 

curve induced by addition of drug (Cherubini et al., 2011; Leitner et al., 2009). In 

the present study, zVAD-induced attenuation of the sensitization was evident 

from the dose-response curves (Figures 16A and 16D, left panels), however 

significant increase in the average EC50 values derived from multiple 

experiments was not achieved following addition of zVAD (Figures 16B and 

16E). The underlying cause for this discrepancy is not known but could be 

influenced by cell passage number or source and batch of reagents. 

Nevertheless, subsequent apoptotic assays clearly demonstrated that the 

enhanced cell killing in PT45 cells is apoptotic (Figures 19 and 20) and is 

inhibited in the presence of zVAD (Figure 20). This is evidenced, for example, 

by the observation that gemcitabine and Ad 19K induced caspase-3 cleavage 

to the same extent (38±4.8%; Figure 20) as membrane permeabilization 

detected by the trypan-blue dye incorporation assay (41.5±5.3%; Figure 18A). 

The observation that the frequency of DNA fragmentation at 72h (Figure 19) 

was half the frequency of caspase-3 activation (Figure 20) can be attributed to 

the fact that DNA fragmentation is downstream of caspase-3 cleavage. Delayed 

occurrence of nuclear fragmentation following caspase-3 activation was 

previously reported (Davoli et al., 2002; Sasaki et al., 2000). The findings in 

MIAPaCa-2 cells, suggest that cell killing in response to irinotecan and Ad 19K 

is caspase-dependent, and in response to gemcitabine and Ad 19K cell death 

shows at least partial dependency on caspases (Figures 16-17 and 21A). 
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Overall, the presence of Ad 19K in gemcitabine-treated promoted caspase-3 

activation in cells with 4N and >4N DNA content, suggesting preference for 

induction of apoptosis in G2/M phases (Figures 20B and 21B).  

 

 

4.5. Ad 19K cannot prevent the DNA damage response elicited by the 

cytotoxic drugs  

 

Treatment of PT45 cells with Ad 19K and gemcitabine results in S-phase arrest 

that, as with gemcitabine alone, peaks at 36h (Figure 40B), which is in 

agreement with published data on the kinetics of gemcitabine-induced arrest 

(Shi et al., 2001). However, in contrast to gemcitabine-treated cells that escape 

the block and gradually arrest in G1 by 72h, Ad 19K-infected gemcitabine-

treated cells preferentially occupied S and G2/M phases preventing the G1 

accumulation (Figure 40B). From 36h to 72h, fractions of Ad 19K-infected 

gemcitabine-treated cells progressed through the cell-cycle, either from G1 to S 

or from S to G2/M phases (Figure 40B). Therefore in the presence of 

gemcitabine Ad 19K promotes progression through some cell-cycle phases but 

avoids a G1 arrest. While the presence of Ad5tg in gemcitabine-treated cells 

resulted in similar cell-cycle distribution, Ad 19K was overall more potent in 

promoting S-phase occupancy, suggesting that this might be a key event in 

triggering cell death. In this regard, a higher E1A activity, responsible for the 

more potent S-phase induction in Ad 19K-infected cells, would be central to 

Ad 19K-mediated sensitization to gemcitabine. Despite that the cell-cycle 

distribution analysis in MIAPaCa-2 cells was not performed as comprehensively 

as in PT45 cells, the data suggest that a similar sequence of events might 

occur. At the latest times post-treatment the presence of Ad 19K significantly 

reduced G1 occupancy of gemcitabine-treated cells and promoted >4N cell 

accumulation (Figure 26), suggesting G2/M preference and again pointing 

towards a role of E1A.    

 

In both PT45 and MIAPaCa-2 cells drug-induced cell-cycle arrest was 

accompanied by activation of the ATR/Chk1 pathway and histone H2AX 

phosphorylation (Figures 27-30). The kinetics of Chk1 phosphorylation 
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however, differed between cell lines and drugs. For example, in PT45 cells 

gemcitabine-induced Chk1 phosphorylation peaked at 24h and subsided 

through to 72h with concomitant increase in Chk2 phosphorylation (Figure 27), 

while irinotecan-induced Chk1 and Chk2 phosphorylation persisted from 24h to 

72h (Figure 28). In MIAPaCa-2 cells Chk1 phosphorylation induced by either 

drug peaked at 48h (Figure 30). This suggests that the kinetics of DNA-damage 

response (DDR) activation do not define the ability of virus to chemosensitize 

cells. Activation of the ATR/Chk1 and ATM/Chk2 pathways by gemcitabine and 

irinotecan is in agreement with published reports (Ewald et al., 2007; Ewald et 

al., 2008; Karnitz et al., 2005; Morgan et al., 2005; Parsels et al., 2009; Rudolf 

et al., 2012; Tse et al., 2007).  

 

Drug-induced Chk1 phosphorylation was largely unaffected by the presence of 

Ad 19K (Figures 27-30), however interestingly, there was a trend towards more 

potent activation of Chk2 at 72h (Figure 27-28). The increase in Chk2 

phosphorylation in drug- and Ad 19K-treated PT45 cells occurred at a time 

where Ad 19K efficiently downregulated Mre11 and Nbs1, diminishing their 

expression (Figures 31-32). Adenovirus-induced Mre11-Rad50-Nbs1 (MRN) 

degradation in the context of viral infection prevents activation of the DNA 

damage and repair that would otherwise lead to concatemerization of viral DNA 

(Turnell and Grand, 2012; Weitzman and Ornelles, 2005). However, in the 

presence of gemcitabine and irinotecan adenovirus-mediated degradation of the 

MRN complex was not sufficient to prevent activation of the DDR, as evidenced 

by the Chk1/2 phosphorylation. In parallel experiments, using an adenovirus 

deleted in the E4 region, we observed activation of Chk1/2 , and no degradation 

of the MRN complex (Dr Gioia Cherubini, unpublished data).  

 

The observation that Chk2 activation might increase 72h following treatment 

with Ad 19K and drugs at a time when the MRN complex is degraded seems 

conflicting. Chk2 is primarily activated by ATM and MRN is required for ATM 

activation (Warmerdam and Kanaar, 2010). It is possible that residual MRN 

expression is sufficient to activate ATM/Chk2. Alternatively, Chk2 

phosphorylation could be mediated by ATR. Although the evidence for ATR-

mediated Chk2 phosphorylation in vivo is limited, it has been suggested that in 

the absence of active ATM Chk2 might be activated by ATR (Matsuoka et al., 
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2000; Pabla et al., 2008; Wang et al., 2006). DNA-PK-mediated phosphorylation 

of Chk2 and H2AX cannot be ruled out either, since both are substrates of this 

kinase (An et al., 2010; Li and Stern, 2005). Interestingly, DNA-PK and p53 

recruitment to gemcitabine-stalled replication forks was previously associated 

with induction of apoptosis (Achanta et al., 2001) and irinotecan also activates 

DNA-PK (Davidson et al., 2012). Regardless of the upstream kinase, a 

strengthened Chk2 signal at a time when cell death is significantly induced 

would suggest accumulation of DNA damage. In immunoblot analysis, 

phosphorylation of histone H2AX, as a marker for DNA damage, appeared 

stronger in the combination treatment compared to gemcitabine or Ad 19K 

alone at 72h but a significant increase was only evident at 48h (Figure 27A). On 

the other hand, preliminary data with irinotecan in PT45 cells suggested that the 

increased Chk2 activation was not accompanied by an increase in histone 

H2AX phosphorylation (Figure 28). In MIAPaCa-2 cells, Chk2 phosphorylation 

was not evaluated, however, the combination of Ad 19K with either 

gemcitabine or irinotecan significantly increased histone H2AX phosphorylation 

at 48h compared to single treatments (Figure 29), suggesting that DNA damage 

might accumulate. In this cell line, preliminary data suggested that Ad 19K 

downregulates Mre11 and Nbs1 at 48h post-infection both in the absence and 

presence of drugs (Figure 33). Nevertheless, whether an increase in Chk2 

phosphorylation is associated with increased DNA damage and is implicated in 

the enhanced cell death, awaits further investigation.  

 

Interestingly, in both cell lines increased phospho-histone H2AX was not readily 

observed in cells treated with Ad5tg and gemcitabine (Figure 27A and 29B), nor 

was Ad5tg-mediated downregulation of Mre11 significant in the presence of 

either gemcitabine or irinotecan, although slight decreases were observed 

(Figures 31-33). Hence, at least in the presence of gemcitabine it appears that 

Ad 19K-induced Mre11 downregulation accompanied by an increase in histone 

H2AX signal correlates with the enhanced cell death. This notion is further 

supported by the finding that siRNA-mediated knockdown of Mre11 significantly 

enhanced cell death induced by gemcitabine and Ad 19K in PT45 cells (Figure 

35). Mre11 knockdown also potentiated cell death in response to irinotecan and 

Ad 19K (Figure 35). Since knocking-down Mre11 also increased Ad 19K 
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cytotoxicity and it was previously reported that Mre11 negatively affects viral 

DNA replication (Mathew and Bridge, 2007), we examined viral DNA 

amplification following Mre11 knockdown. The data suggested that in the 

absence of drugs silencing Mre11 shows a trend towards increased Ad 19K 

replication, whereas in the presence of gemcitabine viral DNA replication 

showed a trend towards attenuation (Figure 36). Surprisingly however, when 

cells were transfected with non-targeting siRNA, gemcitabine-induced decrease 

in viral DNA amplification was not evident and this might imply some 

interference of the siRNA transfection. Therefore, the possibility that Mre11 has 

no significant effect on viral DNA replication regardless of the presence of 

drugs, needs to be further investigated, in order to determine whether the 

experimental conditions cause the effect or whether it is a true effect.  

 

Silencing Mre11 did not affect cell-cycle distribution of combination-treated cells 

(Figure 37), implying that gemcitabine-induced cell-cycle arrest does not involve 

Mre11. These findings point towards a more central role of the ATR/Chk1 rather 

than the ATM/Chk2 pathway in mediating gemcitabine-induced DDR, 

regardless of the presence of virus. This is further supported by the observation 

that gemcitabine-induced Chk1 activation preceded that of Chk2 and Chk2 

phosphorylation increased as the Chk1 signal subsided (Figure 27). In 

agreement with another study (Ewald et al., 2008), silencing Mre11 increased 

gemcitabine cytotoxicity, albeit by only 10% (Figure 35C) suggesting some role 

of Mre11 in survival after gemcitabine treatment. Ewald et al. did not find that 

MRN recruitment to gemcitabine-induced stalled replication forks was 

associated with the presence of strand breaks (Ewald et al., 2008). It has now 

been shown that MRN recruitment to stalled replication forks is involved in the 

re-start of stalled or collapsed forks (Costanzo, 2011). Therefore, Mre11 

recruitment to gemcitabine-induced stalled forks mediates repair and recovery 

from the replication stress and this explains the survival role of Mre11 in 

response to gemcitabine. With this in mind, Ad 19K-induced Mre11 

degradation should impair the recovery from gemcitabine-induced stalled forks 

potentially leading to replication fork collapse and formation of strand breaks, 

which would explain the increase in Chk2 signal at 72h. This hypothesis was 

not examined in the present study but since silencing of Mre11 potentiates the 

cytotoxicity of the Ad 19K and gemcitabine combination it is plausible that this 
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is due to accumulation of unrepaired DNA damage. A similar mechanism is 

expected to account for the increased cytotoxicity when Mre11 is silenced in 

cells treated with irinotecan and AdΔ19K, although it is unknown whether Mre11 

is involved in DNA repair of irinotecan-induced damage; the DNA repair events 

occurring in response to irinotecan remain largely undefined.  

 

It should be noted that the potential effect of AdΔ19K on DNA repair of drug-

induced DNA damage is currently a speculation, as there is no evidence so far 

to suggest that DNA repair occurs following gemcitabine or irinotecan 

treatments. Chk1/2 signals persist up to 72h post-drug treatment, suggesting 

lack of DNA damage checkpoint recovery. In addition, immunofluorescence 

microscopy assessment of H2AX in mitosis demonstrated that nearly all 

gemcitabine-treated mitotic cells exhibit H2AX foci 48-72h post-treatment 

(Figure 39B) suggesting failure to repair DNA damage before mitotic entry. 

Addition of AdΔ19K significantly increased the pan-chromosomal H2AX signal 

in gemcitabine-treated cells (Figure 39C), which could suggest a global 

accumulation of DNA damage prior to apoptosis. This is further supported by 

the observation that the pan-chromosomal H2AX staining in cells treated with 

AdΔ19K and gemcitabine was increased from 48h to 72h and was significantly 

stronger compared to Ad5tg combined with gemcitabine. Co-localisation studies 

with other DDR proteins and utilisation of pan-caspase inhibitors should provide 

some insights into the significance of the pan-chromosomal H2AX staining in 

mitotic cells in response to AdΔ19K and gemcitabine in future studies. Pan-

chromosomal H2AX staining patterns in mitotic cells are largely unexplored 

and the only literature reports describing a global H2AX phosphorylation pattern 

refer to interphase cells. The pan-nuclear H2AX phosphorylation in interphase 

cells has been associated with DNA repair following UV radiation, pre-apoptotic 

responses, replication stress or checkpoint abrogation (Ewald et al., 2007; Marti 

et al., 2006; Murga et al., 2009; Solier and Pommier, 2014).  

 

In immunofluorescence microscopy analysis of phospho-histone H2AX in 

interphase cells, H2AX foci marked sites of gemcitabine-induced stalled 

replication forks (Figure 38), as the number of cells displaying H2AX foci was 

equal to the number of cells arrested in S-phase at the time, in agreement with 
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literature reports (Ewald et al., 2007; Karnitz et al., 2005; Parsels et al., 2009). 

H2AX foci were also detected in AdΔ19K-infected cells (Figure 38). The 

presence of foci is in contrast to the widespread nuclear-wide accumulation of 

phospho-histone H2AX in adenovirus-infected cells reported by Nichols et al. 

(Nichols et al., 2009). However other studies did observe foci formation instead 

of the diffused nuclear signal (Connell et al., 2011; Karen and Hearing, 2011). 

The reason behind the discrepancies in H2AX signal distribution after 

adenovirus infection is not well understood; the H2AX phosphorylation patterns 

might be cell-context specific. Nevertheless, the H2AX discrete nuclear foci 

detected in AdΔ19K-infected cells are consistent with DDR foci, and might 

suggest the presence of strand breaks or replication stress. Indeed it was 

previously shown that adenovirus can induce host DNA strand breaks, 

attributed to E1A activity (Caporossi and Bacchetti, 1990; Connell et al., 2011). 

The presence of AdΔ19K in gemcitabine-treated cells did not increase the 

number of cells displaying H2AX foci nor the total H2AX signal intensity up to 

36h post-treatment (Figure 38). Yet, since H2AX foci likely marked sites of 

gemcitabine-induced stalled replication forks, addition of AdΔ19K should not be 

expected to increase replication stalling. If DNA replication was affected by 

AdΔ19K the effect would rather be increased replication fork progression 

(Singhal et al., 2013). H2AX foci assessment by immunofluorescence 

microscopy was not performed at 48h, which was the time histone H2AX 

phosphorylation increased in immunoblotting in AdΔ19K and gemcitabine 

treated cells. However pilot immunofluorescence microscopy evaluation of 

H2AX foci at this time suggested signal saturation with difficulties in observing 

additive effects between AdΔ19K and gemcitabine. In retrospect, with the 

presence of stalled replication forks it is difficult to assess occurrence of DNA 

damage in the form of strand breaks using H2AX foci assays. Moreover, the 

presence of viral DNA, stalled replication forks and the initiation of cell death at 

48h post-treatment generating DNA fragments would likely interfere with 

assessment of DNA strand breaks when other methods, besides H2AX 

assays, are used; for example TUNEL and comet assays.   

 

Overall, it appears that a fraction of gemcitabine-arrested cells escape the cell-

cycle block without apparent DNA repair as they enter mitosis with H2AX foci. 
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This suggests adaptation to the checkpoint response. The possibility that DNA 

repair is attempted but not successfully completed or that NHEJ or NER repair 

occurs at later times in G1 phase is not excluded. Cells treated with 

gemcitabine and AdΔ19K might accumulate more DNA damage, although 

further research is required to confirm this. Any attempted DNA repair, either 

Mre11- or NHEJ-dependent, is expected to be inhibited by the presence of 

AdΔ19K further accumulating DNA damage.  

 

 

4.6. Claspin as a target of AdΔ19K and gemcitabine treatment  

 

The present study has identified the DDR protein Claspin as cellular factor 

targeted during treatment with AdΔ19K and gemcitabine (Figure 63). In PT45 

cells, gemcitabine induced a 2-3-fold increase in Claspin mRNA transcript levels 

paralleled by increased protein levels (Figures 41 and 47). Similarly, irinotecan 

treatment in PT45 cells, and gemcitabine and irinotecan treatments in 

MIAPaCa-2 cells upregulated claspin expression (Figures 41-42). In drug-

treated PT45 cells the presence of AdΔ19K, but not Ad5tg, prevented Claspin 

accumulation at both 24h and 48h post-treatment (Figure 41). The inhibition 

was demonstrated to be the result of both decreased Claspin synthesis and 

stability. Addition of AdΔ19K in gemcitabine-treated PT45 cells prevented 

accumulation of newly synthesised claspin following MG132-mediated 

proteasomal inhibition (Figure 46). Analysis of Claspin mRNA expression 

confirmed that AdΔ19K, but not Ad5tg, impairs gemcitabine-induced 

upregulation of claspin mRNA at 48h  (Figure 47). Claspin expression is cell-

cycle regulated, with levels peaking in S/G2-phases followed by a rapid 

proteasomal degradation before the onset of mitosis (Bennett and Clarke, 2006; 

Chini and Chen, 2003). Therefore the drug-induced upregulation of claspin 

expression can be attributed to the S-phase arrest and activation of the 

ATR/Chk1 pathway (Figure 63). However, the decrease in claspin expression 

observed when AdΔ19K is present in gemcitabine-treated cells cannot be the 

result of cell-cycle changes since combination-treated cells show the same cell-

cycle distribution as gemcitabine. Claspin transcription is regulated by the NF-

B and E2F1 transcription factors (Iwanaga et al., 2006; Kenneth et al., 2010). 

Whereas E2F1-mediated transcription is induced by adenovirus, NF- B-
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dependent transcription is repressed through suppression of IKK activity by E1A 

(Cook et al., 2002; Shao et al., 1999; Shao et al., 1997). Consequently, it is 

likely that AdΔ19K-mediated suppression of Claspin synthesis in the presence 

of gemcitabine is mediated through E1A-dependent inhibition of NF- B (Figure 

63). The higher E1A expression from AdΔ19K compared to Ad5tg could then 

explain the failure of Ad5tg to inhibit Claspin expression. The possibility that 

decreased Claspin expression could be the mere consequence of combination-

treated cells entering mitosis, since Claspin expression is lost in mitotic cells 

(Mamely et al., 2006), is not excluded, but seems unlikely. The higher mitotic 

index observed in combination-treated synchronised cells compared to 

gemcitabine alone (Figure 40D) was seen with both Ad5tg and AdΔ19K 

combinations with gemcitabine, however, claspin expression was only 

decreased in response to AdΔ19K and gemcitabine.  

 

In addition to claspin expression, cycloheximide-chase assays demonstrated 

that claspin stability is significantly reduced in PT45 cells treated with AdΔ19K 

and gemcitabine (Figure 45). Following DNA damage and/or replication stress 

Aurora-A-dependent activation of Plk1 targets Claspin for degradation through 

the ubiquitin ligase complex β-TrCP-SCF and this event is required for 

checkpoint recovery and mitotic entry (Bennett and Clarke, 2006; Freire et al., 

2006; Macurek et al., 2008; Mailand et al., 2006; Mamely et al., 2006). AdΔ19K 

induced phosphorylation of Plk1 at 48h that persisted to a lesser extent in the 

presence of drugs (Figure 43). Therefore the reduced stability of claspin in 

response to AdΔ19K and gemcitabine is likely the consequence of accelerated 

Plk1-mediated claspin degradation. This suggests that following DDR activation 

AdΔ19K promotes mitotic entry of gemcitabine-treated cells by accelerating the 

degradation of claspin (Figure 63).   

 

Ad5tg was also able to induce Plk1 phosphorylation, albeit to significantly 

smaller degree than AdΔ19K, and in the presence of gemcitabine significant 

Plk1 phosphorylation was not observed. To the best of my knowledge, Plk1 

phosphorylation during adenovirus infection has not been previously reported. 

The phosphorylation was specifically induced at 48h post-infection and is 

probably associated with increased mitotic entry as compared to mock-infected 

synchronised cells (Figure 40D). Preliminary data also suggested that Plk1 
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phosphorylation was paralleled by Aurora-A stabilization (data not shown). One 

possibility is that the induced Plk1 phosphorylation is merely the consequence 

of mitotic entry. However the same mitotic index was observed in combination-

treated cells that did not display as strong Plk1 phosphorylation as adenovirus 

alone. In addition, there were no differences in the mitotic index of Ad5tg 

compared to AdΔ19K at a time when Plk1 phosphorylation was stronger in 

AdΔ19K-infected cells (Figure 40D). Alternatively, adenovirus-mediated 

potential disruption of PP2A phosphatase activity through E4orf4 could stabilize 

phospho-Plk1, as PP2A was shown to de-phosphorylate Plk1, at least in 

response to DNA damage (Jang et al., 2007).  

 

Despite that AdΔ19K blocked gemcitabine-induced claspin protein accumulation 

both at 24h and 48h, reduction in claspin mRNA levels or stability was not 

observed at 24h post-treatment. The mechanism leading to decreased protein 

levels at 24h remains to be elucidated. Nonetheless, the observation that in the 

presence of drugs AdΔ19K, but not Ad5tg, exerted the effects on claspin 

expression and stability suggests that this mechanism might be associated with 

the enhanced cell death. Indeed siRNA-mediated silencing of Claspin 

potentiated cell death induced by AdΔ19K and DNA-damaging drugs (Figure 

49). The knockdown did not significantly affect drug cytotoxicity but appeared to 

enhance AdΔ19K-induced cell death. Assessment of viral DNA amplification 

suggested that the enhanced cytotoxicity of the combination treatment when 

Claspin is silenced, is independent of viral DNA replication (Figure 50). Cell 

cycle analysis in claspin knocked-down cells revealed an increase in the G1 cell 

fraction accompanied by a decrease in S-phase arrest at 24h and an increase 

in the mitotic index at 48h post-treatment with AdΔ19K and gemcitabine (Figure 

51). Remarkably, the effect of claspin knockdown on cell-cycle distribution was 

specific for AdΔ19K and gemcitabine. The inhibition of S-phase entry suggests 

that Claspin is important for the S-phase induction in cells treated with AdΔ19K 

and gemcitabine. Moreover, Claspin appears to regulate mitotic entry of 

combination-treated cells, since Claspin knockdown increased the mitotic index. 

These findings further support the notion that AdΔ19K-induced inhibition of 

Claspin accumulation in the presence of gemcitabine mediates the increased 

mitotic entry of combination-treated cells.  

 



280 
 

In contrast to the findings with Claspin knockdown, pharmacological inhibition of 

Plk1 did not inhibit cell death induced by AdΔ19K and gemcitabine and rather 

appeared to enhance their cytotoxicity (Figure 57). However, similar to claspin 

knockdown the inhibitor decreased the S-phase arrest and increased the mitotic 

index of combination-treated cells and additionally enhanced the formation of 

polyploid (>4N) cells (Figure 57D). This could suggest that the activity of Plk1 

and by extension the degradation of claspin is not important for the combination 

treatment to induce cell death. On the other hand, the cell-cycle effects of Plk1 

inhibition might have been sufficient to increase cytotoxicity and perhaps 

masked the effects of merely inhibiting Plk1-induced claspin degradation on cell 

death. Expression of a degradation-resistant Claspin mutant would aid to 

understand whether Claspin degradation is an important event in the enhanced 

cell death.   

 

A perplexing issue in these studies is the Claspin-Chk1 relationship. Since 

Claspin is required for efficient ATR-dependent Chk1 activation, Claspin 

downregulation is expected to impact Chk1 activation; yet Chk1 phosphorylation 

was largely unaffected in response to AdΔ19K and gemcitabine. However, viral 

infection is limited to 30-50% of cells and it is likely that the remaining cells 

express high levels of Chk1. Activation of Chk1 was not determined when 

Claspin was knocked-down. Of note, a study reported that Claspin depletion 

does not perturb initial Chk1 phosphorylation but it rather affects the 

sustainability of Chk1 signal at later times in the DDR (Chini et al., 2006). 

Certainly phospho-Chk1 levels were not normalised to total Chk1 expression, 

which has not been assessed in these studies, thereby increases or decreases 

in Chk1 phosphorylation might have been missed. In addition, the immunoblot 

analysis was performed in the presence of 100ppc of adenovirus, while during 

the Claspin studies a higher dose of virus (300ppc) was used. It is therefore 

possible that at higher virus doses the effects on Chk1 phosphorylation might 

become apparent.  

 

In MIAPaCa-2 cells AdΔ19K-induced downregulation of claspin in the presence 

of drugs was far less potent than in PT45 cells and was similar to the effect of 

Ad5tg (Figure 42). It is possible that adenovirus is less efficient in suppressing 

NF- B-dependent transcription in these cells. It is interesting that MRN 
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downregulation was also less efficient in these cells compared to PT45. 

Therefore it seems that adenovirus-mediated cell-cycle effects in the presence 

of drugs are attenuated in MIAPaCa-2 compared to PT45 cells. Certainly, the 

possibility that Mre11 and Caspin downregulation might not be crucially involved 

in the potent cell death induced by AdΔ19K and DNA damaging-drugs in 

MIAPaCa-2 cells cannot be ruled out. Mre11 and Claspin knockdown studies in 

these cells should provide some answers.  

 

An obvious question arising though these studies is whether adenovirus 

regulates claspin in the absence of drugs. I did not observe significant changes 

in the expression or stability of Claspin in virus-infected cells without drug 

treatment. There was a trend towards decreased claspin half-life in AdΔ19K-

infected cells, but it is probably the consequence of increased Plk1 

phosphorylation. It is possible that significant upregulation of Claspin is 

necessary for virus-induced effects to become apparent, since basal Claspin 

levels are relatively low. Alternatively, the increased viral uptake and 

subsequent higher E1A expression in the presence of gemcitabine potentiates 

the virus-induced effects on Claspin. The E7 oncoprotein of human 

papillomavirus  (HPV) was recently shown to increase the proteasomal 

degradation of claspin, thereby attenuating DNA damage responses and 

promoting mitotic entry (Spardy et al., 2009). Whether claspin is a target of 

adenovirus during infection requires further investigation.  
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Figure 63: Proposed model of Claspin regulation in response to 
gemcitabine and AdΔ19K. In response to gemcitabine-induced DNA 
damage/replication stress Claspin accumulates and sustains the ATR-mediated 
phosphorylation of Chk1 limiting mitotic entry. In the presence of AdΔ19K 
gemcitabine-induced accumulation of Claspin is prevented, as a result of both 
decreased expression and increased proteolytic turnover through the Bora-

Aurora-A/Plk1 pathway. AdΔ19K might act to suppress NF- B-mediated 
transcriptional activation of Claspin, thereby keeping Claspin expression at 
basal levels. In addition, AdΔ19K induces the phosphorylation of Plk1. This 
might occur through AdΔ19K-mediated disruption of PP2A phosphatase activity 
towards Plk1, leading to constitutive phosphorylation and activation of Plk1. 
Alternatively, AdΔ19K might act to stabilize Aurora-A and its binding partner 
Bora, leading to overactivation of the Aurora-A/Plk1 pathway. The protein 
stabilization could potentially occur through interference with the activity of 
APC/C. 
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4.7. Effects of the combination treatment on mitosis  

 

Phospho-histone H3 analysis by flow-cytometry in synchronised PT45 cells 

demonstrated that the presence of AdΔ19K in gemcitabine-treated cells 

increased the mitotic index following escape from the cell-cycle block (Figure 

40D). The effect was also observed in mitotic index analysis in unsynchronised 

cells (Figures 37D and 51D). This is in line with accelerated Claspin 

degradation which promotes mitotic entry. Claspin knockdown further increased 

the mitotic index of combination-treated cells. Despite these consistent 

observations during phospho-histone H3 analysis, live-cell imaging did not 

confirm accelerated mitotic entry of combination-treated cells compared to 

gemcitabine alone (Figure 58). In fact, gemcitabine-treated cells appeared to 

initiate mitosis earlier whereas the bulk of mitotic entry in combination-treated 

cells occurred at later times (Figure 58A and B). It is true that there was high 

variability between the three independent time-lapse studies in terms of mitotic 

index and cell death capacity, primarily arising from variations in cell behaviour. 

In addition, the experimental conditions were toxic to a certain extent as judged 

by the increased cell killing of mock-infected cells (Figure 61A). The toxicity 

might had an impact on the mitotic index, particularly in the instance of multiple 

growth-limiting conditions; thymidine pre-treatment for cell synchronisation, 

virus infection and gemcitabine treatment. Another possibility is that the lack of 

a marker for infection in the time-lapse microscopy studies prevented 

differences between gemcitabine and infected gemcitabine-treated cells from 

becoming apparent. In the phospho-histone H3 mitotic index analysis staining 

for E1A expression permitted the selective assessment of E1A-positive cells as 

opposed to total infected and uninfected cells in the population.  

 

Perhaps the scenario of false positive phospho-histone H3 cells detected by 

flow cytometry should not be ruled out either. Histone H3 becomes 

phosphorylated on Ser10 by Aurora-A/B during mitotic chromosome 

condensation (Crosio et al., 2002; Prigent and Dimitrov, 2003), and phospho-

histone H3 is a widely used marker of mitosis. However, histone H3 

phosphorylation has been also detected in apoptotic cells and was associated 

with chromatin condensation (Park and Kim, 2012). The increases in the 

phospho-histone H3 phosphorylation in combination-treated cells versus 
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gemcitabine occurred at a time (48-72h) where cell death is induced and 

apoptotic assays showed caspase-3 activation in G2/M cells. On the other 

hand, histone H3 phosphorylation was specifically detected in cells with 4N and 

>4N DNA content (see Appendix 3; section 5.1.) when cells with non-intact 

plasma membranes, that is dying cells, had been excluded from the analysis; 

this supports the notion that phosphorylation represents mitotic entry rather than 

apoptosis.  

 

The consequences of mitotic entry following escape from the gemcitabine-

induced cell-cycle block were detrimental. Time-lapse microscopy experiments 

revealed that the majority of gemcitabine-treated cells arrested in mitosis for 

hours (Figure 58C) with difficulties in chromosome alignment, suggesting 

activation of the SAC. Chromosome alignment issues are likely the result of 

damaged DNA compromising the correct stable attachment of kinetochores to 

microtubules (Hayashi and Karlseder, 2013; Rieder and Maiato, 2004). Another 

abnormality that might have contributed to mitotic delay is the presence of 

multipolar spindles. Immunofluorescence microscopy studies had suggested 

that a fraction of cells treated with gemcitabine exhibit multipolar spindles 

(Figure 52). Multipolar spindles can arise though over-duplication or splitting of 

centrioles, the paired structure that makes up each centrosome (Gergely and 

Basto, 2008; Maiato and Logarinho, 2014). Several studies reported that S/G2 

arrest following DNA damage can result in uncoupling of DNA replication and 

centrosome duplication, resulting in centrosome over-duplication (Balczon et al., 

1995; Collins et al., 2010; Kuriyama et al., 2007; Nigg, 2002; Prosser et al., 

2009). A role for Plk1 in coordinating the centriole duplication cycle with the cell 

cycle has been suggested (Loncarek et al., 2010). Centriole splitting 

(‘disengagement’), which can also result from DNA damage, can permit the 

duplication of centrioles leading to centrosome amplification (Saladino et al., 

2009). Damaged DNA and mitotic arrest can also lead to centrosome splitting 

during mitosis (Hut et al., 2003; Maiato and Logarinho, 2014). The literature 

therefore suggests that gemcitabine-induced spindle multipolarity could either 

be the result of centriole splitting during mitosis or centriole splitting and/or 

overduplication during the S-phase arrest. Multipolar spindles per se do not 

trigger SAC activation, but can delay mitosis through the perturbation of the 
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microtubule-kinetochore attachment (Gergely and Basto, 2008; Kwon et al., 

2008; Rieder and Maiato, 2004).  

 

Adenoviral infection  in the presence of gemcitabine appeared to increase the 

frequency of spindle multipolarity by nearly 2-fold both in PT45 and MIAPaCa-2 

cells (Figure 52) and the induction of spindle multipolarity by the combination 

treatment could be regarded as a more-than-additive effect. Adenovirus E1A is 

able to induce centrosome amplification through deregulation of the 

RanGTPase network (De Luca et al., 2003), thus accounting for the increased 

spindle multipolarity in the combination treatments. In time-lapse microscopy 

experiments the presence of AdΔ19K in gemcitabine-treated cells enhanced the 

mitotic arrest (median mitotic duration 4.5h versus 2.75h in gemcitabine-treated 

cells; Figure 58C), suggesting that combination-treated cells took longer to 

satisfy the SAC. This could be a consequence of increased frequency of cells 

exhibiting multipolar spindles observed in immunofluorescence microscopy 

studies and/or increased DNA damage. On the other hand, adenovirus infection 

might be sufficient to increase mitotic delay. A study reported prolonged mitosis 

following E1A expression (Hernando et al., 2004) and E1A-mediated 

perturbation of p300/CBP-APC/C complexes could result in prolonged mitosis 

due to failure of APC/C to target Cyclin B and other mitotic proteins for 

degradation required for mitotic exit (Turnell and Mymryk, 2006). Moreover, 

given that TIF1  knockdown was reported to disrupt APC/CCdc20 function leading 

to SAC activation, prolonged mitosis and chromosome alignment errors 

(Sedgwick et al., 2013), E4orf3-mediated degradation of TIF1  is likely to result 

in a similar phenotype.  

 

Consistent with the presence of spindle multipolarity, nearly half of gemcitabine-

treated mitotic cells underwent multipolar instead of bipolar divisions (Figure 

59B). Despite that it has been reported that supernumerary centrosomes can 

often cluster to favour bipolar divisions, the cell capacity of this mechanism 

varies between cell lines (Marthiens et al., 2012) and it appears that PT45 cells 

are not efficient in clustering their extra centrosomes. The presence of AdΔ19K 

in gemcitabine-treated cells enhanced the frequency of multipolar anaphases 

(Figure 59B), consistent with the observation that combination-treated cells 

show increased frequency of spindle multipolarity. In addition to multipolar 
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divisions, gemcitabine treatment resulted in a very high frequency of 

segregation errors, such as anaphase bridges and lagging chromosomes, and 

in the presence of AdΔ19K all mitotic cells exhibited such errors (Figure 59B). 

This was somewhat expected, given that accumulating experimental evidence 

suggests that such errors can arise from unresolved S-phase DNA structures 

and replication stress (Chan et al., 2009; Ichijima et al., 2010; Mankouri et al., 

2013). Regarding adenovirus, Hernando et al. previously reported that E1A 

expression resulted in chromosome segregation defects (Hernando et al., 

2004). Other studies reported that adenovirus can cause DNA strand breaks 

(Caporossi and Bacchetti, 1990; Connell et al., 2011) and together with the 

stress E1A imposes on DNA replication (Singhal et al., 2013), it is highly likely 

that adenovirus-infected mitotic cells would exhibit chromosome segregation 

errors further contributing to gemcitabine-induced aberrant mitosis.  

 

Cytokinesis failure was another feature of gemcitabine-induced aberrant mitosis 

that showed a trend towards increase in the presence of AdΔ19K (Figure 59C). 

The observed failed cytokinesis was predominantly a defect in midbody 

abscission and could have resulted from lagging or bridging chromosomes 

trapped in the cleavage furrow (Ganem and Pellman, 2012; Hayashi and 

Karlseder, 2013; Janssen et al., 2011). Cytokinesis failure was mainly 

associated with multipolar divisions, which explains the increased frequency of 

cytokinesis failure in combination-treated cells. Infection with the dl922-947 

oncolytic mutant was previously reported to result in spindle multipolarity and 

cytokinesis failure (Connell et al., 2008). As a consequence of gemcitabine-

induced chromosome segregation defects, micronucleated and multinucleated 

daughter cells were generated (Figure 60). Multinucleation was frequently 

associated with cytokinesis failure, but not restricted to it; multiple fragmented 

nuclei, arising from chromosome breakage during segregation, were also being 

generated, suggestive of compromised DNA integrity. In combination-treated 

cells only a minority of daughter cells were mononucleated and a higher 

frequency of multinucleation was observed compared to gemcitabine. The 

literature suggests that multinucleated cells can be eliminated through death but 

can also survive and either arrest in G1 or continue cycling, particularly in a 

p53-deficient cell-context (Decordier et al., 2008). In the current studies I did 

occasionally observe both micronucleated and multinucleated cells entering 
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mitosis. In immunofluorescence microscopy experiments these multinucleated 

cells were observed to accumulate over time in response to gemcitabine alone 

(Figure 53B), suggesting that they fail to die at least up to 96h post-treatment. It 

is highly likely that multinucleated cells generated following gemcitabine 

treatment arrest in G1, given the gradual increase of G1 cell fraction in 

response to gemcitabine (Figure 40). Up to 96h the post-division survival of 

gemcitabine-treated cells was approximately 20% (Figure 62B). Considering the 

high frequency of mitotic errors, the generation of micro- and multi-nucleated 

daughter cells and the evidence of post-mitotic survival, gemcitabine treatment 

could lead to generation of aneuploid and polyploid cells. The presence of 

AdΔ19K in gemcitabine-treated cells prevented accumulation of multinucleated 

cells (Figure 53B) and the post-mitotic survival of combination-treated cells was 

diminished (Figure 62B). This evidence together with the fact that infected cells 

are eventually lysed, suggests that combination of gemcitabine with AdΔ19K 

would be essential for preventing the survival of polyploid and aneuploid cells. 

 

It should be noted that throughout the time-lapse microscopy studies AdΔ19K 

alone did not significantly affect mitotic progression. However, modest trends 

towards increased frequency of segregation errors and multipolar divisions were 

observed. An obvious drawback of the study was the lack of a marker for 

infection, which would have permitted selective assessment of infected cells 

and accurate evaluation of the effects of adenovirus on mitosis. Nevertheless, 

the effects of adding AdΔ19K in gemcitabine-treated cells were apparent in 

most instances, perhaps due to increased viral uptake and gene expression. 

Some of the mitotic aberrations observed in the presence of AdΔ19K, such as 

cytokinesis failure and multinucleation, might be a consequence of E4orf4-

mediated disruption of PP2A activity. Overexpression of AdE4orf4 was shown 

to induce G2/M arrest followed by formation of micro- and multi-nucleated cells, 

cytokinesis failure, mitotic catastrophe and cell death (Cabon et al., 2013; Li et 

al., 2009b), and E4orf4 cytotoxicity was previously shown to depend on its 

interaction with PP2A (Li et al., 2009a; Li et al., 2009b; Shtrichman et al., 1999; 

Shtrichman et al., 2000). The current study has not addressed whether wild 

type Ad5 induces similar mitotic aberrations, but it is possible that, due to higher 

E1A expression, AdΔ19K expresses higher levels of E4orf4 and therefore 

induces more mitotic aberrations than wild type Ad5.  
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Cell viability assays suggested that pharmacological induction of mitotic arrest 

by small molecule inhibitors of Eg5 and Plk1 enhanced cell death induced by 

the combination of AdΔ19K and gemcitabine (Figure 54 and 57). Both inhibitors 

increased the mitotic index and decreased S-phase arrest of combination-

treated cells (Figure 54E and 57D). Importantly, the inhibitors did not affect the 

cytotoxicity of gemcitabine in the absence of virus (Figure 54C and 57C). These 

findings suggest that mitotic accumulation of combination-treated cells is 

important for cell death induction. It is possible that prolonged mitosis enhances 

the cell death by further causing DNA damage, as suggested by accumulating 

evidence in the literature (Ganem and Pellman, 2012; Heijink et al., 2013). 

Despite that pharmacological induction of mitotic arrest consistently augmented 

cell killing in response to AdΔ19K and gemcitabine, the reverse, that is 

acceleration of mitosis, did not yield as consistent effects on the cytotoxicity of 

the combination treatment. SAC impairment and acceleration of mitosis by an 

Mps1 inhibitor almost completely prevented the enhanced cell death (Figure 

55A/B), whereas acceleration of mitosis through inhibition of Aurora-B only 

showed a modest trend towards attenuation of cell death induced by AdΔ19K 

and gemcitabine (Figure 56B). While the inhibitors did not significantly affect 

gemcitabine cytotoxicity, AdΔ19K cytotoxicity was affected in opposite manners 

by the inhibitors; Mps1 inhibition impaired AdΔ19K cytotoxicity and Aurora-B 

inhibition enhanced it (Figure 55-56). These opposing effects on virus-induced 

cell death might explain the differential impact of the inhibitors on the killing of 

combination-treated cells. Nonetheless, since both inhibitors accelerated 

mitosis, it is possible that abrogation of prolonged mitosis per se does not 

impair cell death in response to AdΔ19K and gemcitabine. In this regard, 

abrogation of the enhanced cell death through Mps1 inhibition might indicate 

that Mps1 is involved in the induction of cell death by AdΔ19K and gemcitabine 

independently of its functions in mitosis. Interestingly, some literature reports 

implicated Mps1 in the DDR (Liu and Winey, 2012). Mps1 was shown to be 

important for efficient checkpoint-mediated arrest by phosphorylating and 

activating Chk2 (Wei et al., 2005) Additionally, in response to IR Chk2 

phosphorylates and stabilizes Mps1, which forms nuclear foci that colocalize 

partially with γ-H2AX (Yeh et al., 2009). In my studies, Mps1 inhibition showed a 

modest trend towards increased S-phase arrest of combination-treated cells at 

48-72h, but this weak cell-cycle effect is unlikely to account for the 2-3-fold 
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effect on cell death (Figure 55). It is currently not well understood how Aurora-B 

or Mps1 inhibition might impact on cell death in response to the combination 

treatment and clearly further investigation is required.  

 

Finally, an interesting finding of the present study is that the combination of 

AdΔ19K with the Eg5 inhibitor monastrol greatly enhances cell killing of 

pancreatic cancer cells. Remarkably, monastrol reduced the EC50 value of 

AdΔ19K by 90% and displayed greater synergy with AdΔ19K than gemcitabine 

(Figure 54A/B). Plk1 and Aurora-B inhibitors also potentiated cell death when 

combined with AdΔ19K, albeit to a lesser extent than monastrol. The same 

Aurora-B inhibitor was previously shown to significantly inhibit the growth of 

anaplastic thyroid carcinoma xenografts in combination with the oncolytic 

adenovirus dl922-947 (Libertini et al., 2011). Therefore, the combination of 

oncolytic adenoviruses with mitotic inhibitors could be a promising therapeutic 

avenue for pancreatic cancers.   

  

 

4.8. Concluding remarks 

 

Data presented in the current study suggest that the more-than-additive and 

time-dependent cell death in response to AdΔ19K and DNA-damaging drugs 

occurs both in cells blocked in S and G2 phases and following an aberrant, 

prolonged passage through mitosis (Figure 64). The findings indicate that 

AdΔ19K cannot prevent the activation of the DNA damage checkpoint 

responses elicited by the drugs, but it downregulates the DNA damage 

response factors Mre11 and Claspin, contributing to the induction of cell death. 

Mre11 downregulation is likely to prevent any attempted DNA repair and this 

might accumulate DNA damage, whereas AdΔ19K-mediated downregulation of 

Claspin in the presence of drugs contributes to cell death by promoting mitotic 

entry (Figure 64). Moreover, AdΔ19K enhances gemcitabine-induced aberrant 

mitosis, characterised by spindle multipolarity, chromosome alignment issues 

and subsequent SAC activation, chromosome missegregation errors, 

cytokinesis failure and formation of micro- and multi-nucleated cells (Figure 64). 

Importantly though, Ad∆19K prevents the gemcitabine-induced accumulation of 

multinucleated cells and diminishes post-mitotic survival of daughter cells. 
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Through these studies cellular pathways and factors involved in the synergistic 

cell killing were identified that could be explored in the future to develop 

improved targeted therapies for pancreatic cancer. Moreover, these studies 

revealed potential novel cellular factors that are affected by adenovirus and 

demonstrated the potential synergistic cytotoxicity of Ad∆19K combined with 

mitotic inhibitors, such as the Eg5 inhibitor monastrol or the Plk1 inhibitor BI-

2536, in pancreatic cancer cells. 

 

I conclude that the ability of Ad∆19K to deregulate DNA damage and repair 

responses and promote aberrant mitosis is crucial for triggering cell killing in 

response to low doses of DNA-damaging drugs (Figure 64). This conclusion is 

in agreement with other studies reporting that adenovirus-induced 

chemosensitization is mediated through abrogation of DNA repair mechanisms 

(Kuroda et al., 2010; Rajecki et al., 2009) or induction of mitotic aberrations 

(Ingemarsdotter et al., 2010). A number of studies reported that adenovirus-

induced S-phase accumulation enhances the efficacy of DNA-damaging drugs, 

although most studies did not assess S-phase in cells treated with the 

combination of drug and virus (Liu et al., 2009; Ma et al., 2010; Wang et al., 

2013; Wang et al., 2011). The presence of Ad∆19K in gemcitabine-treated cells 

increased S-phase cell occupancy at 12h and after 48h post-treatment (Figure 

40B). The initial increase in S-phase could have enhanced the efficacy of 

gemcitabine. In addition, drug-induced increased viral uptake and subsequent 

increased expression of E1A and other early viral proteins, likely enhances the 

cell-cycle effects of Ad∆19K contributing to the more-than-additive cell death in 

response to the combination treatment. Increased E1A activity in particular, is 

possibly essential for enhancing the apoptotic cell death, since several studies 

demonstrated that E1A is sufficient for chemosensitization (Cheong et al., 2008; 

Lee et al., 2003; Miranda et al., 2012; Radhakrishnan et al., 2010; Ueno et al., 

2000).  
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Figure 64: Proposed sequence of events leading to cell death in response 
to gemcitabine and AdΔ19K. Treatment with AdΔ19K and gemcitabine 
induces activation of the DNA damage response and causes S-phase arrest 
(step 1). AdΔ19K induces the degradation of Mre11, possibly leading to 
abrogation of DNA repair and accumulation of DNA damage (step 2). This 
contributes to cell death. The presence of AdΔ19K in gemcitabine-treated cells 
prevents accumulation of Claspin through decreased synthesis and increased 
degradation, thereby promoting mitotic entry of combination-treated cells (step 
3). During mitosis, AdΔ19K enhances gemcitabine-induced mitotic aberrations, 
leading to increased spindle multipolarity, chromosome alignment issues and 
subsequent SAC activation, chromosome missegregation errors, cytokinesis 
failure and formation of micro- and multi-nucleated cells. Passage through 
mitosis further enhances cell death in response to AdΔ19K and gemcitabine. 
Not depicted on the figure is the increased expression of adenovirus E1A, which 
is expected to contribute to the cell-cycle deregulation and increased apoptosis.   
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4.9. Future directions 

 

To support the proposed mechanisms for the enhanced cell killing in response 

to AdΔ19K and DNA-damaging drugs, it will be essential to establish that the 

combination treatment results in increased DNA damage. Methods other than 

H2AX assays should be employed, for example pulsed-field gel 

electrophoresis. In addition, it will be important to demonstrate DNA repair 

responses following drug treatment, in order to reinforce the notion that 

AdΔ19K-induced abrogation of DNA repair processes contributes to 

chemosensitization. Moreover, the effects of AdΔ19K-induced downregulation 

of Claspin on activation and sustainability of the ATR/Chk1 signalling should be 

further investigated, for example through a comprehensive time-course analysis 

of Claspin and Chk1 phosphorylation status. It will be interesting to further 

investigate the significance of the increased Chk2 signal in response to the 

combination treatment, for example by using small molecule inhibitors. Finally, 

the proposed AdΔ19K-induced increased mitotic entry of drug-treated cells 

should be confirmed using other mitotic markers and immunofluorescence 

microscopy methods and examined in the presence of irinotecan.   

 

In future studies, it will be interesting to determine DNA replication dynamics in 

the presence of AdΔ19K and gemcitabine in order to better understand the 

mechanisms of action of the combination treatment. Identifying other DDR 

factors affected by the adenovirus in the presence of drugs, is intriguing too. For 

instance, the RecQ helicase BLM has been implicated in the processing and 

recovery of stalled replication forks (Davies et al., 2007; Ouyang et al., 2013; 

Wu, 2007) and BLM is degraded by adenovirus (Orazio et al., 2011). Future 

work should also examine the possibility that Mps1 is an essential factor for the 

enhanced cell death, using siRNA-mediated knockdown and overexpression 

assays, and delineate the mechanisms involved. At last, it will be interesting to 

determine whether Claspin and/or the Aurora-A/Plk1 pathway are targets of 

adenovirus in the absence of drugs.  

 

In light of the findings presented in this thesis, the replication-selective oncolytic 

adenovirus AdΔΔ could be further engineered in order to potentiate the ability of 

the E1B19K deletion to enhance chemodrug-induced cell death. Knockdown or 
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overexpression of identified targets of the combination treatment through 

insertion of target sequences into the AdΔΔ backbone could be employed. The 

deletion of E1B19K in the AdΔ19K and AdΔΔ viruses is quite small 

(approximately 220bp), therefore a further deletion of a viral gene should be 

introduced in order to accommodate target sequences. One possibility is to 

delete the E3gp19K gene, which would allow the insertion of an approximately 

2000 bp sequence under the control of the E1A-dependent E3 promoter. 

Deletion of E3gp19K was previously shown to result in increased viral 

replication and antitumor efficacy, due to activation of cytotoxic T-cells (Wang et 

al., 2003), and it therefore seems to be beneficiary. Since downregulation of 

Mre11 and Claspin was demonstrated in this study to enhance cell death 

induced by E1B19K-deleted adenoviruses and DNA damaging drugs, 

incorporation of shRNA sequences against Mre11 and Claspin could further 

increase the cytotoxicity of the combination treatment. In addition, since 

pharmacological inhibition of Eg5 and Plk1 also potentiated cell death induced 

by AdΔ19K and gemcitabine, shRNAs targeting Eg5 and Plk1 could also be 

considered for incorporation into the AdΔΔ virus. Alternatively, insertion of 

genes whose expression can promote mitotic entry or induce activation of the 

Aurora-A/Plk1 pathway resulting in Claspin degradation, could enhance mitotic 

catastrophe induced by the combination treatment. Examples of such genes are 

the Aurora-A activating cofactors Bora and TPX2.  
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CCHHAAPPTTEERR  55::  AAPPPPEENNDDIIXX  &&  RREEFFEERREENNCCEESS  

 

5.1. Appendices 

 

 

 

APPENDIX 1: Cell-cycle specific apoptosis - Representative experiments 
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Figure 65: Cell-cycle specific apoptosis representative experiments (A) 

TUNEL/PI assay in PT45 cells (B) Cleaved Caspase-3/PI assay in PT45 cells 

(C) Cleaved Caspase-3/PI assay in MIAPaCa-2 cells (72h) 
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APPENDIX 2: Cell-cycle profiles - Representative experiments 
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Figure 66: Representative experiments of cell-cycle profiles (A) PT45 (B) 

MIAPaCa-2 cells 
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APPENDIX 3: Cell-cycle analysis in synchronised cells - Representative 

dot-plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67: Representative dot-plots from cell-cycle and mitotic index 

analysis in synchronised cells. Example time-point is 36h 
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