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Abstract 

Calcium aluminate compound, 12CaO.7Al2O3, was prepared via an improved 

sol-gel technique in the form of thin film on magnesium oxide (MgO) single 

crystal substrate as well as powder. The microstructures of the films were 

observed before and after crystallization, and the effect of solution processing 

parameters, including the molar fractions of the ingredients, on the continuity of 

the films and the formation of surface defects was studied. An optimized sol-gel 

process using a new solution recipe was developed based on the microstructural 

observations. Homogeneous thin films of 12CaO.7Al2O3 with high critical 

thickness )m65(~ μ− were produced using this optimized technique. 

The chemical composition of the films was determined using energy 

dispersive spectroscopy and X-ray photoelectron spectroscopy. Raman and 

Fourier transform infrared (FTIR) spectral analyses were employed in order to 

investigate the effect of heat treatment temperature on the crystallization of 

12CaO.7Al2O3 film on magnesium oxide substrate. The results of the phase 

analysis show that a single-phase film of 12CaO.7Al2O3 is formed at a 

temperature of 1300 oC. A crystallized structure with well-defined grain 

boundaries is obtained after 2 hr of heat treatment at this temperature under 

normal air atmosphere.  

The phase formation of 12CaO.7Al2O3 in powder form was investigated via 

room-temperature and high-temperature X-ray diffraction (XRD) and 

crystallization of 12CaO.7Al2O3 and CaO.Al2O3 powders started taking place 

simultaneously at a temperature of C900~ o .  
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A comparison between the FTIR results of the films with XRD results of the 

powder proved the crystallization of 12CaO.7Al2O3 thin film to start at a higher 

temperature compared to the powder. Furthermore, a single-phase 

12CaO.7Al2O3 tends to form in thin film on MgO substrate, whereas the 

formation of 12CaO.7Al2O3 is accompanied by the formation of secondary 

phases of CaO.Al2O3 and 3CaO.Al2O3.  

The optical absorption properties of the 12CaO.7Al2O3 films were 

investigated at different temperatures from room temperature to 300 oC and the 

experimental data were analysed in Tauc and Urbach regions. The optical band 

gap decreased from 4.088 eV at 25 oC to 4.051 eV at 300 oC, while Urbach 

energy increased from 0.178 eV at 25 oC to 0.257 eV at 300 oC.  

 The relationship between the optical band gap and the Urbach energy at 

different temperatures showed an almost linear relationship from which the 

theoretical values of 4.156 and 0.065 eV were evaluated for the band gap energy 

and Urbach energy of a 12CaO.7Al2O3 crystal with zero structural disorder at 

.K0  
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Chapter One 

 

Introduction 

 

Recent developments in the field of thin-film-based optoelectronic devices, 

such as thin film transparent transistors and solar cells, have led to an increasing 

interest in the fabrication of high quality thin films of insulating, 

semiconducting and conducting types, offering a high efficiency and improved 

chemical stability in different environments.  

12CaO.7Al2O3, or C12A7, has been widely known for several years as one of 

the main constituents of Portland cements. The unique crystal structure of this 

refractory oxide, however, has only recently been fully understood. The lattice 

structure of this compound is built up of nano-sized empty cages which can 

randomly incorporate negatively charged species, such as O2-, O-, ,O2
2
− OH- and 

even electrons, in order to compensate for the extra positive charge of the lattice 

[1]. The material exhibits different physical properties depending on the type of 

incorporated anions without a significant change in the structure of the lattice. 

C12A7 has gained much attention for potential applications in various fields, 

such as ion conducting solid electrolyte, reducing agent, cold-cathode electron 
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field emitter, oxidizing catalyst, ion emitter, and as a transparent conductive 

oxide (TCO) in flat panel displays, solar cells and transparent transistors [2, 3]. 

Optical transparency, chemical stability under air atmosphere and at room 

temperature, ionic and electronic conductivity, and natural abundance are some 

of the properties of this compound which are highly desired.  

The application of C12A7 in oxide-based electronic devices has led to a rising 

demand for a cost effective fabrication of high quality oxide thin films. While 

the fabrication of C12A7 single crystal and polycrystalline bulk has been 

studied extensively during the last few years, detailed investigation on the 

preparation of C12A7 thin films is rather limited. Two fabrication techniques, 

which have been previously suggested for the preparation of C12A7 thin films, 

include pulsed laser deposition [4] and sol-gel method. The former technique is 

relatively costly and requires a C12A7 target as the starting material for the 

deposition of the film, while obtaining a continuous defect-free film with a high 

critical thickness using sol-gel technique is found to be quite challenging [5].  

This thesis reports a significantly improved sol-gel derived fabrication 

technique for the production of high quality thin films of the refractory oxide, 

12CaO.7Al2O3, and an in-depth investigation into the physical properties of the 

films on magnesium oxide substrates. Continuous defect-free thin films of 

single phase C12A7 have been achieved by optimizing the sol-gel fabrication 

technique in relation to microstructural, structural and crystalline properties.  

This thesis has been organized into seven chapters.  

The following chapter starts with a critical review of the theoretical studies on 

the atomic and electronic structures of the anion/electron incorporated C12A7. 
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The physical properties of the compound are then discussed followed by 

experimental techniques for the preparation of C12A7 in form of single crystal, 

bulk and thin film with the main emphasis on sol-gel technique, as well as 

suggested processes for the incorporation of anions/electrons into the structure 

of the material. Some of the main potential applications of C12A7 are briefly 

introduced in the last section of this chapter.  

Chapter 3 describes the sample preparation technique employed in this 

research via sol-gel process. A simple and straight-forward procedure for the 

preparation of the solution is introduced. All the instruments and technical 

specifications used for microstructural observations, chemical composition 

analyses and absorption spectral analyses are presented in this chapter.  

Chapter 4 focuses on the microstructural observations of the thin film surfaces 

and the effect of the solution ingredients on the quality of the films. 

Optimization protocols for the sol-gel process have been explained suggesting 

an optimum solution recipe. The elemental and phase analysis of the products in 

form of powder and thin films are then presented and the effect of processing 

parameters on the formation of single-phase C12A7 are examined in detail.  

The results of Fourier transform infrared spectroscopy (FTIR) and Raman 

spectroscopy are presented in chapter 5. A direct characterization of the thin 

films was found to be exceptionally challenging due to the small thickness of 

the films compared to that of the substrate. The infrared spectral analysis of the 

films using a recently developed technique, based on total attenuated reflectance, 

provided promising results regarding the phase analysis of the films. A detailed 
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FTIR spectral analysis of C12A7 ultra-thin films has not been reported 

elsewhere up to our knowledge.  

Chapter 6 provides a detailed investigation on the optical properties of C12A7 

films at room and high temperatures. The optical parameters of the films, 

including the Urbach energy and band gap energy, have been determined as a 

function of temperature. The experimental results have been interpreted in terms 

of theoretical models in order to evaluate the best relationship which can explain 

the optical behaviour of C12A7 at different temperatures.  

The thesis is finally concluded with giving a summary in chapter 7 of the main 

observations and an outline of the future work.   

 

 

 

 

 

 

 

 

 

 



 25

 

 

Chapter 2 

 

Literature Review 

 

2.0 Introduction 

In this chapter, the properties and applications of the refractory oxide 

12CaO.7Al2O3 are presented. The atomic structure, as well as the physical and 

optical properties of the material, is explained in detail. The fabrication of this 

oxide via sol-gel method and the effect of subsequent heat treatment processes 

on the physical and optoelectronic properties of C12A7 are introduced. The 

potential applications of the material in various chemical and electronic fields 

are mentioned in the last section of this chapter.  

2.1 Structural and physical properties of C12A7 

2.1.1 Atomic structure 

Calcia-alumina binary compound, 12CaO.7Al2O3 or C12A7, is one of the 

main constituents of calcium aluminate cements. This complex oxide, also 

known by the name mayenite in the cement industry, is an intermediary stable 
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phase in the CaO-Al2O3 binary system [6]. It is chemically stable up to high 

temperatures with the melting point of 1415 oC, and therefore, considered as a 

refractory oxide [1, 7, 8, 9]. The position of this compound in the CaO-Al2O3 

binary diagram is shown in figure 2.1.  
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Figure 2.1 Position of C12A7 compound in the binary phase diagram of CaO-Al2O3 [10] 

The body centred cubic unit cell of C12A7 is comprised of two 

12CaO.7Al2O3 molecules with a lattice constant of nm989.1 [11]. The 

stoichiometric chemical composition of the unit cell is represented as 

[Ca24Al28O64]4+.2O2- in which [Ca24Al28O64]4+ is the positively charged 

framework with 12 sub-nanometer-sized cages [1, 7, 12], shown in figure 2.2(a). 

This means that each cage has a mean charge of +1/3. In order to compensate 

for the positive charge of the framework, two O2- oxygen ions are incorporated 

in each unit cell and distributed randomly inside 2 out of 12 cages [1]. These 

oxygen ions are held in place by the positive charge of the cage wall and are not 

bonded to any specific atom [13].  They are named as ''extra-framework'' or 
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''free'' oxygen ions to distinguish them from the framework oxygen ions located 

at the cage wall [13]. The empty cages have a concentration of 

approximately 321 cm105 −× , each with an empty space of around 0.6 nm in 

diameter [14, 15]. An empty cage consists of 16 oxygen ions, 8 tetrahedral 

aluminium ions and 6 octahedral calcium ions (figure 2.2(b)) and is directly 

connected to 12 neighbouring cages [16].  

C12A7 is considered to have an anti-zeolite-type of framework [2, 18]. The 

difference between C12A7 and zeolite is that in zeolite, cations are introduced 

into the structure to compensate for the extra negative charge of the lattice 

caused by the substitution of Si4+ with Al3+, but in C12A7, monovalent anion 

species substitute for the free oxygen ions and stabilize the structure [19, 20]. 

The framework of C12A7 contains AlO4 tetrahedra forming eightfold rings, i.e. 

it is considered as an aluminate framework rather than a calcium aluminate 

framework (which is often mentioned in the literature). A random distribution of 

calcium and free oxygen ions causes a short-range distortion of this framework 

[8, 21]. 
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Figure 2.2 Schematic structures of C12A7 (a) unit cell [17], (b) the connection between two 

neighbouring cages via the cage opening [12]. Cage A and B are shown from the top and 

side views respectively.  

The framework structure of C12A7 and the distortion of the lattice via the 

introduction of extra-framework oxygen ions have been previously studied. The 
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schematic structures of an empty and occupied cage based on neutron powder 

diffraction studies are shown in figure 2.3.  
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Figure 2.3 Schematic structures of (a) an empty cage and (b) an occupied cage filled with 

an O2-
 ion. Upon O2-

 occupation, one of the Ca2+ ions displaces towards the centre of the 

cage along the S4 axis. O(III) state is the position of extra-framework O2-ion inside the cage 

[25]. 

The line connecting the two Ca(I) ions positioned at the cage wall is the S4 

symmetry axis [12]. In the absence of the extra-framework oxygen ions, the 12 

empty cages of the unit cell form 3 groups of 4, each with S4 symmetry axes 

along x, y and z crystallographic axes [22]. The nature of the bonding between 

the cage-wall species is different for Al-O and Ca-O bonds. The bonding 

between the framework O2- ion and Al3+ ion has a covalent nature, but the 

bonding between the framework O2- and Ca2+
 ions is strongly ionic [23]. When 

O2- ion is introduced into the cage, one of the two Ca2+ ions is displaced from 

the original position, Ca(I), to the new position, Ca(II), with the other Ca2+ ion 

remaining near the original site Ca(I). The introduced O2- ion occupies a state in 

the middle of the two Ca states [23] with an inter-ionic distance of 1.5 times the 

sum of their radius [24]. As a result, the S4 symmetry of the cage is only partly 
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preserved [12]. The reason for the loss of symmetry is that the extra-framework 

oxygen ion can be positioned at one of the four equivalent 48e sites, which are 

all displaced from both the centre of the cage and the S4 axis [14]. The position 

of the free oxygen ion is affected by the presence of Al3+ ions as well as six Ca2+ 

ions at the cage wall, hence causing the displacement from the S4 axis [9, 14, 

19]. The off-centre shift of the free oxygen ions inside the cages increases with 

increasing temperature [8].  

The two different positions of polar Ca2+ ions, Ca(I) and Ca(II), are separated by 

an approximately 0.06 nm distance. The Ca(II) position has two equivalent sites 

around the S4 axis and the occupation of these sites depends on which of the 

four available 48e crystallographic sites inside the cage has been occupied by 

the free oxygen ion [14]. The structural parameters of C12A7, including the 

coordinates and occupancies of the atoms in C12A7, are listed in table 2.1. 

Table 2.1 Structural parameters of C12A7 [14, 26] 

Coordinates 
Atom Site 

x y z 
Occupancy Type 

Ca 24d 0 0.25 0.1397 1 Framework 

Al(I) 16c 0.0187 0.0187 0.0187 1 Framework 

Al(II) 12b -0.125 0 0.25 1 Framework 

O(I) 48e 0.151 -0.037 0.057 1 Framework 

O(II) 16c -0.064 -0.064 -0.064 1 Framework 

O(III) 48e 0.337 0 0.25 0.083 Extra-framework 

Although the introduction of an oxygen ion into a cage induces a slight 

displacement of all the ions at the cage wall, the displacement of the framework 
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O2- and Al3+ ions is mostly limited to thermal vibrations. However, the 

displacement of Ca2+
 ions is more significant. The reason is that the inner face 

of Ca2+
 ions inside the cage is not concealed by the framework O2- ions, and 

therefore, it is exposed to the extra-framework ions being electrostatically 

attracted to them [2,23].  

There are two types of Al3+
 ions at the cage wall. Al(I) is coordinated by one 

non-bridging oxygen ion, O(I), and two bridging oxygen species, O(II), with C3 

symmetry axis. Non-bridging oxygen ions are bonded to one Al3+ ion only, and 

the bridging oxygen species are coordinated with two Al3+ ions. Al(II) ion is 

bonded with four oxygen ions, all of which are bridging type with S4 symmetry 

axis [25, 26]. 

Each of the two neighbouring cages is joined via an intercage opening [12, 27]. 

The intercage opening (figure 2.2(b)) is a hexagonal ring including Ca(I)-O(I)-

Al(II)-O(I)-Al(I)-O(II) with the diameter of around 0.1 nm which should 

theoretically facilitate the diffusion of the species with similar or less diameters 

[7, 12]. Each of the oxygen ions located at the opening is connected to four 

cations: two in the same plane of the opening and two in the plane 

approximately perpendicular to the plane of the opening [12].  

The cage structure of each cage in C12A7 is comparable to CaO with rock salt 

structure. In CaO, six Ca2+ ions form a regular octahedral structure with Oh 

symmetry. In C12A7, however, the six Ca2+ ions form a distorted octahedral 

crystallographic structure with S4 symmetry and therefore, the distance between 

Ca2+ and extra-framework O2- ions is more than the separation distance in CaO, 

making O2- ions loosely bound to the cage [25].  
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Two stable calcium aluminate phases in the calcia-alumina binary system with 

closest chemical compositions to C12A7 are CaO.Al2O3 (CA) and 3CaO.Al2O3 

(C3A). The position of these two phases with respect to C12A7 is shown in 

figure 2.1. CA has a metastable orthorhombic unit cell 744.8a( =  Å, 093.8b =  

Å, 148.15c =  Å), which is formed at medium temperatures. The enthalpy of 

crystallization of the orthorhombic phase is reported to be 25 kJ/mol. This 

metastable phase is initially formed due to the kinetically limited crystallization 

at lower temperatures. As the temperature is further increased, however, the 

metastable phase lowers its free energy by progressing towards the formation of 

stable monoclinic phase [6], which is built up of a framework of cornered joint 

AlO4 tetrahedra [28] with lattice parameters of 693.8a =  Å, 076.8b =  

Å, 178.15c =  Å and o17.90=β [6] and p2/n space group [28].  

CA contains less weight percent of calcium oxide compared to C12A7. C3A, 

on the other hand, is a Ca-rich stable phase with a cubic unit cell ( 263.15a = Å) 

and space group Pa3. Each unit cell consists of 72 Ca, 48 Al and 144 O atoms. 

The structure is built up of sixfold hollow rings of distorted AlO4 tetrahedra 

(Al6O18). Each unit cell contains 80 rings, 72 of which are filled with Ca atoms 

[28]. The formation of C12A7 is sometimes accompanied by the simultaneous 

formation of CA and/or C3A as secondary phases. The effect of heat treatment 

temperature and duration on the formation of CA and C3A alongside C12A7 in 

powder and thin films will be discussed further in chapters 4 and 5. 

2.1.2 Thermal stability 

The thermal stability of C12A7 is only preserved under normal air and oxygen 

atmospheres [2, 29]. The presence of oxygen during the heat treatment promotes 
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the crystallization of the compound [29]. The framework is not stable at high 

temperatures in a reducing atmosphere [2] or a dry atmosphere of inert gas [30]. 

Solidification of the melt in a reducing atmosphere leads to the production of 

C5A3-C3A mixture below 1500 oC and CA-C3A mixture when cooling down 

from above 1600 oC [2]. Vacuum annealing at temperatures higher than 1100 oC 

also results in the decomposition of this compound [31]. 

The heat treatment of C12A7 in a moist atmosphere between C1050900~ o−  

[30, 32] results in the absorption of water in form of OH- species into the cages 

forming Ca12Al14O32(OH)2 rather than the stoichiometric Ca12Al14O33. The 

incorporation of OH- ions does not change the cage structure of the framework 

[33, 34]. However, it has been suggested that the non-stoichiometric compound 

should not be considered as part of the CaO-Al2O3 binary system [6]. The 

structure may contain from 1.30 to 1.40 wt% of water when heat treated in an 

atmosphere with normal humidity [21, 34]; although this phenomenon is 

reversible and a heat treatment in dry oxygen atmosphere leads to the release of 

OH- ions from the cages [20]. 

C12A7 exhibits high stability against energetic ion irradiation due to the 

ability of free oxygen ions to fill the framework oxygen vacancies that might 

form during irradiation and hence preserve the original lattice structure [7, 12]. 

The concentration of free oxygen ions is dependent upon temperature [8]. This 

amount often exceeds the stoichiometric value at room temperature due to the 

presence of peroxide, superoxide and hydroxide ions, such as OH-, O2
-, O2

2- and 

O-, giving the most stable composition of Ca12Al14O33.53. As the temperature 

increases, however, the excess oxygen radicals deform into O2- ions under a 
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vacuum atmosphere and are eliminated from the structure [8, 14]. At high 

enough temperatures (700oC and higher), the stoichiometric concentration of 

extra-framework oxygen species can be obtained [8]. 

2.1.3 Ionic conductivity and mechanisms of oxide-ion migration 

C12A7 has high oxide ion conductivity in a temperature range of 

C1200500~ o− [35]. A typical ionic conductivity of 1cm.S016.0~ −  has been 

reported for this material at 900 oC which is only about an order of magnitude 

lower than that of the well-known electrolyte based on yttria- stabilized zirconia 

[8, 12, 32, 35- 37].   

The migration of free oxygen ions requires an increase in the temperature and 

occurs via a hopping mechanism or tunnelling at higher temperatures [14]. The 

diffusion of O2
- is slow compared to that of O2- due to its high activation energy. 

The diffusion of O- ions, on the other hand, is faster than O2- species [12]. If 

held in a dry oxygen atmosphere, the compound shows even higher ionic 

conductivity compared to the stoichiometric material due to the incorporation of 

O- ions inside the structure and the higher mobility of this species compared to 

O2- ions [35]. A conductivity of 14 cm.S105 −−×  has been reported for C12A7 at 

C300~ o under an oxidizing atmosphere .)atm1~P(
2O The conductivity further 

increases with increase in temperature reaching its maximum of 1cm.S05.0 −  

near the melting point of the compound [35, 38]. 

Theoretical investigations, based on quantum mechanical calculations and 

embedded-cluster approach, have shown that the diffusion of O2- species 

involves a simultaneous displacement of four ions, known as the exchange 
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mechanism. The migration path of an extra-framework oxygen species from one 

cage to another is schematically illustrated in figure 2.4. 
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Figure 2.4 Two possible routes for the migration of an extra-framework O2- ion from one 

cage to another involving crystallographic states O(III)-O(I)-O'
(I)-O'

(III) [14] 

At the beginning of the diffusion, the extra-framework oxygen substitutes a 

framework oxygen ion nearby. Since there are three oxygen ions with different 

crystallographic states at the cage opening, there are three possible pathways for 

the extra-framework oxygen to replace the framework ion. During the next step, 

the displaced oxygen ion exchanges its position with a framework oxygen ion 

which is closer to an empty state in a neighbouring cage. The last stage of the 

diffusion includes the occupation of the displaced oxygen ion in the empty state 

of the second cage [12]. Taking into account the distances between the cage-

wall oxygen ions and the free oxygen ion, the most likely pathway for the 

migration is believed to be the substitution of a framework oxygen ion in the 
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O(I) state with a free oxygen, which then replaces the O'
(I) state in a neighbouring 

cage and migrates to the empty space inside the second cage. This pathway 

involves the movement of four oxygen ions [14]. It should be noted that a much 

more complex exchange mechanism might occur in reality and the given 

explanation is simplified in order to understand the basics of oxygen diffusion 

in the structure [12].  

The energy needed for the migration of oxygen ion via exchange mechanism 

is much smaller than the energy required for the interstitial mechanism, i.e. the 

movement of an extra-framework ion directly in between the cages through the 

cage opening. Hence, the latter mechanism is unlikely to happen and an 

exchange mechanism is found to be the dominant mechanism for O2- ion 

diffusion [8, 12, 14]. This means that in spite of having a nanoporous structure 

and large intercage openings, C12A7 still follows the same diffusion 

mechanism as other oxides, such as MgO, SiO2 and HfO2. The possible 

diffusion pathways for the free oxygen species and the calculated activation 

energies for each type of migration mechanism are summarized in table 2.2.  

Table 2.2 Summary of the migration mechanisms of the extra-framework oxygen ions 

near the inter-cage opening and the calculated activation energies [12] 

Diffusion Mechanism Activation Energy (eV) 

Interstitial 1.7 

Exchange via O(I) 1.9 

Exchange via O(II) 1.2 

Exchange via O(III) 1.0 
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2.2 Electronic structure of C12A7 and incorporation of ionic 

species 

The incorporated oxygen ions in C12A7 structure can be replaced by other 

monovalent anions or even by electrons [1]. The maximum theoretical 

concentration of monovalent anions is 2.32×1021 cm-3, i.e. if all the O2- ions are 

substituted with monovalent anions [20, 39]. The replacement of O2- ions with 

monovalent species stabilizes the structure through charge delocalisation [20, 

40].  

The incorporation of a monovalent anion inside an empty cage causes the Ca2+ 

ions along the S4 symmetry axis to displace towards the centre of the cage, 

although this displacement is not as much as in the case of O2- ion incorporation 

[15]. The larger distance between Ca2+ ions in a superoxide-ion incorporated 

cage is mainly due to the lower charge and higher ionic radius of the superoxide 

anions [2]. 

O2- ion produces the highest deformation of the cage structure compared to 

other species. All anions, except O2-, occupy a state close to the centre of the 

cage along S4 axis and even OH- ion is located at the centre with H oriented 

towards one of the cage-wall oxygen ions. O2- anion is the only species that 

occupies an empty state displaced from the centre of the cage [15].  

There are two types of conduction bands known for C12A7: one is the 

framework conduction band that is composed of Ca 5s orbitals. The second 

band, also known as the cage conduction band, is formed as a result of the 

overlap of the s-like states in empty cages and is located at around 2 eV below 

the framework conduction band [15, 41]. These states are not related to any of 
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the lattice atoms and can be defined as the states of entrapped particles in a box 

instead [15].  

The electronic transitions for different types of anions are shown 

schematically in figure 2.5.  
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Figure 2.5 Electronic transitions for C12A7 incorporated with different ionic species. The 

excitation energy for each transition is also given [15]. 

The excitation energy for each transition depends on the type of extra-

framework species occupied inside the cages. Since the O2- ion is located at a 

state which is displaced from the centre of the cage, the cage conduction band 

formed is different from that of the cages occupied with other types of species. 

The cage conduction band is not filled in the case of occupation with all types of 

species, except for the intrinsic O2- and OH- ions. The transition from the 

valence band to the cage conduction band occurs for empty cages only, and the 
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entrapped anions do not have an effect on the excitation energies of this type of 

transition. The transition from the valence band to the framework conduction 

band, however, is affected by the type and charge of the extra-framework 

species.  

Three types of electronic transitions can occur in the case of O2- ion 

incorporation: (i) occupied ion state to cage conduction band, (ii) occupied ion 

state to framework conduction band, and (iii) valence band to framework 

conduction band. 

The energy levels of active oxygen ions are lower than that of O2- ion, and a 

transition from these states to the framework conduction band is less likely to 

occur as it needs a high excitation energy. Hence, possible transitions for these 

anions are valence band to the unoccupied ion states and intra-molecular 

transitions from the occupied to the unoccupied states of each anion. 

O- and O2
- occupied states are positioned near the valence band, while O2

2- has 

two separate occupied states located above the top of the valence band, and 

therefore, the excitation energy needed for the transition of this ion is lower. 

Another type of transition associated with active oxygen ions (O2
2-, O2

- and O-) 

is the excitation from the 2p state of framework oxygen ions to the unoccupied 

states of the entrapped species.  

The unoccupied state of O2
2- is near the framework conduction band; therefore, 

a high excitation energy is needed for a transition from an occupied state to an 

unoccupied state. On the other hand, O2
- has an unoccupied state close to the top 

of the valence band and the excitation energy for the transition is relatively low.  
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In the case of OH- occupation, two types of transitions can occur which 

correspond to (i) an electron transfer from the anion to the cage conduction band 

of a neighbouring cage, and (ii) a transition from an occupied state of OH- near 

the top of the valence band to the framework conduction band which causes an 

absorption edge shift of the material. 

The presence of F- ion inside the cage changes the 2p states of the cage-wall 

oxygen ions and results in the upward shift of the top of the valence band to 

higher energy levels [15].  

2.3 Electron-incorporated C12A7 

2.3.1 An introduction to C12A7 electride 

Electride is an ionic compound in which electrons act as anions [1]. 

Stabilization of the electrons inside the structure can lead to the fabrication of 

conductive materials with unusual optical or magnetic properties [7]. There are 

various kinds of applications for electrides including reducing agents, cold-

cathode electron field emitters, thermionic power generators and refrigeration 

devices [1, 2, 7].  

Electrides can be composed of organic or inorganic materials. Common 

electrides are alkali metal adducts of organic cage compounds or inorganic 

molecular sieves [7, 9, 40]. Most of the organic electrides are not stable at room 

temperature and degrade upon exposure to air or moisture [1, 2, 7]. Although 

there are a few recently-found organic electrides that are more stable under 

these conditions, the instability of organic electrides has generally limited their 

applications [1]. Various transparent transition and post-transition metal oxides, 
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such as indium-tin oxide (ITO), are made conductive via ion doping, but this 

technique cannot be utilized for the abundant transparent main-metal oxides 

[24].  

Alumina and its complexes are also known to be good electrical insulators and 

their large band gap and strongly ionic bonding between cations and oxygen 

ions make them almost impossible to be transformed to conductors [42]. 

However, C12A7 can be converted to an electride due to its unique nanoporous 

cage structure. This compound has the advantage of chemical and thermal 

stability at room temperature [1, 2] and therefore can have various applications 

where a combination of optical transparency and electrical conductivity along 

with chemical stability is needed, such as flat panel displays and solar cells [2]. 

It is worth mentioning that according to the electride model, the electrons are 

highly localised inside the structure and act as anions. It has been suggested that 

for a low electron concentration in C12A7, the electrons follow the electride 

model, but as the concentration increases, the electrons are displaced from their 

original states and might not be strictly localised anymore. Therefore, a highly 

electron-incorporated C12A7 cannot be considered an electride due to 

delocalisation [2]. 

The introduction of electrons into the structure fills the cage conduction band 

and produces a persistent conductivity [27, 41, 43]. A high concentration of 

electrons in a material does not always guarantee an electrical conductivity; 

however, the electron-incorporated C12A7 is conductive mainly due to the 

presence of the cage conduction band below the framework conduction band 

[40].  
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The maximum number of electrons that can be accommodated inside the 

cages is 2.33×1021 cm-3 theoretically [1, 24]. In reality, the concentration of 

electrons can exceed this value by optimizing the process parameters, such as 

the partial pressure of oxygen, and/or modifying the process such as the 

inclusion of additives in the melt [1]. C12A7 electride has been reported to have 

high chemical stability at temperatures up to 300oC [44] and a low work 

function of approximately 2.4 eV [17]. 

2.3.2 Atomic and electronic structure 

Upon the introduction of electrons into the structure, the positively-charged 

cages act as trapping centres for electrons, similar to positive oxygen vacancies 

in some oxides. The properties of electrons in positively charged cages are 

comparable to the properties of electrons in anion vacancies or F centres. These 

defects can be neutral with respect to the lattice, like in alkali halides, or singly 

charged, such as F+ centre in MgO. Each electron inside the cage behaves like 

an anion with a spherical 1s wave function of an F+-like centre and migrates as a 

polaron [7, 45, 44]. The main difference between the cages in C12A7 and F+ 

centres in other oxides is that these cages are part of the material structure and 

are available at much greater concentration compared to oxygen vacancies in 

other oxides.  

The introduction of an electron inside a cage, and therefore the relaxation of 

the cage, is realised by the change of distance between the Ca(I) ions at opposite 

sides of the cage. The distance between Ca(I) ions in an empty cage is 

approximately 0.58 nm and it drops to 0.51 nm for an occupied cage, while 

other ions at the cage wall displace away from the cage centre. These 
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displacements are mainly caused by polaron effect and result in the stabilization 

of the electron inside the structure and lattice relaxation [23].  

The distance between calcium ions inside electron-filled cages is larger than 

that of oxy-mayenite and the substitution of extra-framework oxygen ions with 

electrons results in the expansion of the unit cell. The thermal expansion 

coefficient of the electride is smaller than the one of oxy-mayenite [2]. 

A schematic illustration of the cage and framework conduction bands and the 

position of electrons states in C12A7 is shown in figure 2.6. The framework 

conduction band is approximately 7.0 eV above the valence band. The cage 

conduction band, due to s-like states of each empty cage, is located at  eV4.5~  

above the valence band. When the electrons occupy the cages, the level of the 

occupied electronic state drops as much as 0.6 to 1.1 eV as a result of cage 

relaxation. This occupied state is located at eV3.4~  above the top of the 

valence band, although the distance can vary according to thermal fluctuations, 

the average distance from the occupied cages, and the effect of other entrapped 

electrons [23]. The presence of oxygen ion species inside the structure also 

affects the top of the valence band [43]. 
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Figure 2.6 Schematic illustration of cage and framework conduction bands energy levels 

and the position of electrons state in C12A7 electride [9] 

The electronic transitions in the material include the transitions from 

entrapped ions to the framework conduction band, from entrapped ions to the 

cage conduction band, from valence band to entrapped ions, and intra-ionic 

transitions [15]. The optical transition in infrared region (0.6-1.1 eV) is due to 

intercage transition of the electrons. The states of the excited electrons, which 

are occupied as a result of intracage transitions, are very close to the bottom of 

the framework conduction band. This may allow the electrons to migrate to the 

conduction band, hence exhibiting photoconductivity [23]. 

2.3.3 Electrical conductivity 

The temperature dependency of conductivity changes according to the level of 

conductivity in the material. The conductivity of semiconducting and 

conducting C12A7 as a function of temperature is shown in figure 2.7. When 

the conductivity is lower than 10-3 S.cm-1, it follows the Arrhenius-type thermal 

activation behaviour [46]. In this case, the conductivity increases with the 
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increase in temperature and the logarithm of conductivity is proportional to 1T −  

which represents a simple polaron conduction model [7, 42, 44, 47]. This type 

of behaviour shows that carrier transport occurs via hopping of the electrons 

between the cages [47]. As the conductivity increases, however, the temperature 

dependency of the conductivity decreases and the logarithm of conductivity 

deviates from Arrhenius behaviour showing linearity with T-1/4 [7, 46, 47]. This 

means that the conductivity is controlled by a mechanism similar to variable-

range hopping; i.e. when the concentration of the F+-like centres is high and 

they are randomly distributed, they migrate with varied hopping distances [7, 16, 

40, 42]. C12A7 with moderate conductivity is an n-type semiconductor [40] 

showing negative Seebeck coefficient 1K.V100(~ −μ− for a sample with a 

conductivity of 10 S.cm-1 at 300 K [48]). At higher conductivity values 

,)cm.S100(~ 1− the conductivity does not show a noticeable change against 

temperature [7, 46].  
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Figure 2.7 Temperature dependency of conductivity for semiconducting and conductive 

C12A7 [7] 
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In a highly conductive C12A7 (e.g. 800 S.cm-1), the conductivity is inversely 

proportional to the temperature. As the temperature increases, the mobility 

decreases, whereas the carrier concentration remains the same and the 

conductivity reduces as a result. This type of behaviour is observed in metallic 

conductors. Furthermore, highly conductive C12A7 exhibits superconductivity 

at low temperatures, typically between 0.2 to 0.4 K. The transition temperature 

depends on the carrier concentration. The increase in the number of electrons 

increases the transition temperature [47, 49]. The Seebeck coefficient also 

changes to positive values for highly conductive material ( 1K.V8 −μ+ for a 

sample with a conductivity of 1cm.S600~ − ) [48]. 

The temperature dependency of conductivity for an electron incorporated 

C12A7 (electron concentration of )cm107.9 320 −×  in comparison with ITO thin 

film is plotted in figure 2.8.  

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15

1000/T (K-1)

lo
g σ

 (S
.c

m
-1

)

ITO film (0.9 nm) 
ITO film (1.2 nm)
ITO film (1.3 nm)
ITO film (1.5 nm)
C12A7:e¯

 
Figure 2.8 Temperature dependency of conductive C12A7 [50] in comparison with ITO 

thin films in a temperature range of 70-500 K. ITO films were prepared in four different 

thicknesses using electron beam evaporation and subsequent heat treatment at 800 oC for 

3 hr [51]. 
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As can be observed from the above figure, the conductivity of C12A7 is 

comparable to the one of ITO film. However, the level of conductivity can vary 

with preparation method and microstructure. The conductivity of highest quality 

thin films of ITO (prepared via physical vapour deposition at a substrate 

temperature of 300-400 oC) has been reported to be in the range of 

13 cm.S10105 −×− [50]. This value is higher than the maximum reported 

conductivity for electron incorporated C12A7, i.e. 1500 S.cm-1 [17, 45]. ITO is 

still considered as the most successful and commonly used transparent 

conductive oxide. However, indium is likely to become a commodity in short 

supply. Although the electrical conductivity of highly electron-incorporated 

C12A7 is lower than ITO as a transparent conductive oxide, C12A7 exhibits 

unique physical properties such as low work function (minimum value of 2.4 eV 

compared to ~4.7 eV for a typical ITO film) and superconductivity [50].  

2.4 Optical properties of C12A7 

2.4.1 Optical absorption 

The interpretation of the optical absorption behaviour of C12A7 is one of the 

most beneficial methods in order to have a better understanding of the electronic 

structure of the material and evaluating the energy band diagram. The optical 

absorption curve of C12A7 consists of three main regions: 

(1) A high absorption region in which the value of absorption coefficient is 

more than 104 cm-1 and the photon energy absorbed by the material is higher 

than the energy band gap [52, 53]. In this region, the absorption coefficient as a 
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function of photon energy for a simple parabolic band can be expressed by 

Tauc's formula [22]: 

( ) r
gEh

h
B

−ν
ν

=α  (2.1) 

where νh  is the photon energy, gE  is the optical band gap and r is an exponent 

which can take values of 1, 2, 3, 1/2 or 3/2. The value of r shows the nature of 

the electronic transition responsible for the optical absorption of the material. 

The energy band gap of C12A7 as well as the best value for r can be determined 

from the linear ( ) ν−να hh r
1

 plot. B is a constant which is given by the 

following formula [53]: 

Enc
4

B o

Δ
πσ

=  (2.2) 

where c is the speed of light, oσ  is the extrapolated dc conductivity at ∞=T , 

∆E is a measure of the extent of band tailing and n is the refractive index.  

(2) An intermediate absorption region with an absorption edge between 1 to 

.cm10 14 −  In this region, the energy of the photons absorbed by the material is 

lower than the band gap energy and the absorption coefficient follows an 

exponential relationship with both the photon energy and the temperature 

according to Urbach's formula [54]: 

⎥⎦
⎤

⎢⎣
⎡ −νσ

α=να
kT

)Eh(
exp)T,h( o

o  (2.3) 

where oα  and oE are the characteristic parameters of the material, σ is the 

steepness parameter, k is the Boltzmann constant and T is the temperature. This 
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equation implies that below the energy band gap, the absorption is due to 

Urbach tail [15]. Urbach tail, also known as Urbach energy, is defined as the 

width of the band tails of the localised states which extend into the band gap 

[53]. The parameter 
σ

kT corresponds to the width of this exponential absorption 

tail [15]. The logarithm of absorption coefficient as a function of photon energy 

within the Urbach region, gives a straight line. The extrapolations of the lines 

for different temperatures usually converge at one single point, also known as 

the converging point, which gives the values of oE and oα for x and y 

coordinates respectively [55]. The steepness parameter, σ, which is determined 

from the slope of the straight line near the absorption edge, is expressed by the 

following equation [56]: 
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where oσ is a temperature independent (but material dependent) parameter 

characterizing the corresponding optical excitation and pωh  is the energy of the 

phonons associated with Urbach tail [55, 56].  

The structural disorder of C12A7 is attributed to the random distribution of 

extra-framework anions which alters the crystallographic location of the ions at 

the cage wall (Ca2+ ions in particular) and results in the distortion of the filled 

cages. A temperature increase leads to a further fluctuation of these ions. The 

structural disorder is more severe in the case of incorporation with doubly 

charged species such as O2- ions. In addition to the charge, the off-centre 

position of O2- ion inside the cage displaces the cage-wall Al3+ ions and 

increases the structural disorder.  
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In order to reflect the contribution of structural disorder as well as thermal 

disorder in C12A7, the following equation has been introduced for the Urbach 

energy [15]: 
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where X is a dimensionless measure of the structural disorder normalized to the 

zero-point vibration energy of 
2

pωh
. The Urbach tail in C12A7 is mainly due to 

structural disorder at low temperatures; however, at temperatures higher 

than C100~ o , the effect of thermal fluctuations becomes more dominant. The 

value of X, however, is not as significant as the structural disorder caused by 

anion vacancy formation in a typical crystal [15]. 

(3) A weak absorption region with an absorption coefficient of less than .cm1 1−  

The shape and magnitude of absorption in this region depend on the purity, 

thermal history and preparation conditions of the material [53].  

The fundamental optical absorption edge of C12A7 framework is close to 

eV8.6  with electronic transitions of eV6~ from the valence band to the tail of 

the conduction band. The presence of extra-framework species, however, shifts 

the absorption edge of the material towards lower energies. The absorption edge 

shift depends strongly on the type of the incorporated species.  

The smallest shift of the fundamental absorption edge corresponds to the 

incorporation of F- ion species inside C12A7 framework [15]. The value of 

eV1.6~ has been reported for the absorption edge of C12A7:F- [57]. In 

addition, the occupied F- states are located well below the top of the valence 
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band. Therefore, the optical absorption edge is mainly due to electronic 

excitation from the valence band to the framework conduction band and the F- 

ions do not contribute in the transition directly. Therefore, the absorption edge 

of C12A7:F- can also be considered as the fundamental absorption edge of 

C12A7 framework (i.e. without any extra-framework ions incorporated) [15].  

The absorption edge shifts to a lower value of eV7.5~ upon OH- ion 

incorporation [57]. The presence of a high concentration of OH- ions in C12A7 

can also lead to the appearance of an additional optical absorption band at 

eV44.0 [18, 47].   

The absorption edge shift to a lower energy of eV6.4~  is the result of anion-

to-framework conduction band transition in O2--incorporated C12A7. The 

transition to the cage conduction band has a low density and therefore does not 

affect the absorption edge energy considerably. 

The superoxide-incorporated C12A7 has a low absorption edge energy close 

to 3.7 eV. Upon heating the material above C200 o , the absorption edge shifts 

to even lower energy levels and enters the visible region which results in the 

appearance of an absorption peak at eV3~ and the sample colour changes to 

yellow. The presence of active oxygen radicals, such as O-, O2
- and ,O2

2
−  also 

leads to the formation of two additional absorption bands at 3.4~  and .eV7.4  

The appearance of these bands is attributed to the transitions from the valence 

band to the occupied state of the radicals and the intra-molecular transitions of 

these species [15].  

Figure 2.9 shows a comparison between the optical absorption spectra of the 

stoichiometric and electron-incorporated C12A7.  
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Figure 2.9 Comparison between the optical absorption spectra of the O2- and electron-

incorporated C12A7 [24] 

Two additional absorption bands are observed for the electron-incorporated 

material. The appearance of these additional absorption bands is attributed to the 

formation of F+-like centres. These centres are formed when electrons replace 

extra-framework O2- ions and produce partially positive centres in the structure. 

The intercage and intracage transitions of the electrons produce the optical 

absorption bands. Furthermore, the migration of these electrons is responsible 

for the electrical conductivity of the material [9].  

The position of the trapped electrons is eV7.43.4 − above the top of the 

valence band. There is a small barrier for the hopping of the electrons between 

the cages, i.e. the distance between the occupied states of the electrons and the 

cage conduction band. The optical absorption band at eV4.0 is attributed to this 

intercage s-to-s transition. 

The optical absorption band at 2.8 eV corresponds to the barrier for the 

electrons to migrate to the framework conduction band and is interpreted as the 
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intracage s-to-p transition [1, 9]. This absorption band is responsible for the 

green colour of the conductive C12A7 [7]. The intensity of the absorption band 

at 2.8 eV (intra-cage transitions and absorption of light in the visible region) is 

adversely related to optical transmittance and determines the optical 

transparency of the material [42]. The intensities of both bands change with the 

level of conductivity treatment [7]. A highly conductive C12A7 does not show a 

distinctive optical absorption band at 0.5 eV and exhibits a Drude-type 

absorption profile instead, due to the absorption of free carriers [47]. 

The value of optical absorption edge, and hence the energy band gap of the 

material, also depends on the temperature. The optical absorption shift as a 

function of temperature is shown in figure 2.10 for a hydroxide-loaded C12A7 

sample.  
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Figure 2.10 Dependence of optical absorption edge on temperature for C12A7 annealed in 

moist atmosphere. The absorption edge shifts towards lower energies with an increase in 

the temperature [15] 

The temperature dependency of the band gap energy can be expressed by the 

following equation [52]: 
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( ) ( )
o

2

gg TT
T0ETE
+
α

−=  (2.6) 

where ( )TEg  is the band gap energy at temperature T, ( )0Eg  is the band gap 

energy at 0 K and α  and To are material-dependent parameters.  

2.4.2 Reflectivity 

A comparison between the reflectivity spectrum of a C12A7 sample with the 

ones of CaO and Al2O3 is given in figure 2.11. In contrast to simple oxides like 

CaO and Al2O3, no sharp reflectivity peak is observed in C12A7, probably due 

to the large unit cell and lattice disorder which results in an inhomogeneous 

broadening of the peaks; although there is a significant increase in the 

reflectivity above eV5~  [43].  
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Figure 2.11 Reflectivity spectrum of a C12A7 single crystal [43] compared to the 

reflectivity of the constituents Al2O3 [58] and CaO [59] 
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2.4.3 Luminescence 

The nature of the species trapped inside the cages can change the 

luminescence behaviour of C12A7. The photoluminescence band at eV5.4 is 

only dominated in O2--incorporated C12A7, which has been heat treated in a 

moisture-free atmosphere. The material containing −OH species shows complex 

bands between 3.3 to 4.1 eV [60], while most of the other entrapped species, 

such as O2
-, show no luminescence due to strong electron-phonon interactions 

with the cage and non-radiative relaxation [27]. A comparison between the 

luminescence spectra of O2- and OH--incorporated C12A7 is depicted in figure 

2.12.  
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Figure 2.12 Comparison between the luminescence spectra of O2- and OH--incorporated 

C12A7 at 10 K excited by 6.9 eV photons [60]  

Au- ion has been reported to be the only known incorporated species in 

C12A7 that exhibits photoluminescence. This is due to a lower electron-phonon 

interaction between this anion and the framework, and therefore, less non-

radiative relaxation of this anion compared to other negative ionic species. The 



 56

reason for this behaviour can be attributed to the fact that Au- ion has a close 

diameter to that of the cage. 

The energy of the luminescence peak is equivalent to the energy difference 

between the excited and ground states [27]. The luminescence band for 

C12A7:O2- is located at ,eV3.3~  while the luminescence band at 4.9 eV 

appears only for the electron-loaded material. The latter energy is equal to the 

distance between the occupied states of the entrapped electrons and the top of 

the valence band. Therefore, this band can be related to the recombination of 

entrapped electrons with the valence band holes. Another sharp increase in the 

emission intensity is observed at 6.8 eV, which represents the framework band 

gap. The framework conduction band is dependent upon random distribution of 

the entrapped species and is estimated to be higher than 6.8 eV [43].  

2.4.4 Photochromism 

A glass phase formed as a result of quenching C12A7 melt in a reducing 

atmosphere (e.g. in a carbon crucible) exhibits photochromism. The as-formed 

glass is transparent; however, upon exposure to ultraviolet radiation, it turns 

grey and once the radiation is terminated, it changes back to transparent. 

Therefore, the product of quench under a reducing atmosphere is called a 

reduced glass. The heat treatment of the reduced glass under vacuum in a SiO2 

crucible produces an electrically conductive C12A7 which is green in colour [1]. 

The mechanism of this transformation is explained in section 2.8.3. 
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2.5 C12A7 fabrication techniques 

• Single crystal 

C12A7 single crystals are fabricated via two techniques: floating zone and 

Czochralski methods.  

In the floating zone method, C12A7 powder is first prepared via a 

conventional process, such as solid-state reaction, with CaCO3 and Al2O3 as the 

starting materials. The powder is pressed under a hydrostatic pressure and 

sintered in a temperature range of C13001250 o−  in an oxygen atmosphere for 

at least 12 hr. The sintered polycrystalline compound is then used as the seed for 

the growth of the single crystal [61]. The melting process is done by the 

electronic bombardment of the seed in an infrared heating furnace [62]. 

Although the solubility of oxygen gas in C12A7 melt is quite high, it reduces 

significantly upon rapid cooling. As a result, the dissolved O2-
 ions precipitate as 

oxygen molecules during the solidification of the melt and remain in the final 

product in the form of micropores [62, 63].   

In the Czochralski method, pure CaCO3 and Al2O3 are mixed and melted in an 

induction furnace using an iridium crucible. The crystal is then grown by 

pulling up a rotating seed (a C12A7 single crystal) from the melt at a constant 

rate. Since iridium is highly reactive at such high temperatures in an oxidative 

atmosphere, the amount of oxygen in the atmosphere should be kept at a 

minimum level in order to prevent the oxidation of the crucible [63]. The 

disadvantages of this method include technical issues due to prolonged 

annealing at temperatures above 1400 oC and the interaction between the melt 

and the crucible [37].  
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• Polycrystalline bulk 

Solid-state reaction is the most common technique used for the preparation of 

polycrystalline C12A7 bulk. High-purity powders of CaCO3 and Al2O3 or 

Al(OH)3 are usually chosen as the starting materials and mixed at a molar ratio 

of 12:7. The heat treatment is done at C1350 o for a minimum duration of hr8  

in an air or oxygen atmosphere [64]. The formation of C12A7 requires a long 

heat treatment time due to the poor homogeneity of the mixed powders [65]. 

Self-propagating combustion technique is an alternative method for bulk 

fabrication. Calcium and aluminium nitrate are dissolved in distilled water. Urea 

(CH4NO2) is then added to the solution and heated at a temperature of 

.C500~ o The dehydration and decomposition processes are normally complete 

within a few minutes. The product of the combustion, which is the precursor of 

C12A7, is then heat treated at 1100 oC for 48-72 hr in order to obtain a 

crystallized C12A7 compound [66]. An alternative solution contains aluminium 

nitrate, calcium carbonate and nitric acid as the starting ingredients. Ethylene 

glycol is then added to the mixture and gradually heated up to a temperature 

high enough to start the self-propagating reaction. The product is ground into 

powder and calcined at 700 oC for 1 hr. The calcination product is pressed into 

pellets and sintered at 1000 oC for 72 hr in air. A single-phase bulk is obtained 

via this technique with a density of typically 95 % of the theoretical density [37]. 

Although the heat treatment temperature is reduced compared to solid-state 

reaction method, the annealing time is still high [66].  
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• Thin film 

C12A7 thin film can be fabricated via pulsed laser deposition technique. An 

amorphous layer of C12A7 is deposited on a magnesium oxide single crystal 

substrate. The deposition is done at room temperature under an oxygen partial 

pressure of Pa101~ 3−×  followed by a crystallization heat treatment at 

C1100 o  in air atmosphere [4, 67]. A crystalline C12A7 bulk is also needed as 

the target for the deposition. The thin film preparation can alternatively be done 

via sol-gel technique. This method is explained in detail in the following section. 

2.6 Fabrication of C12A7 via sol-gel technique 

Sol-gel technique is a chemical method of fabricating amorphous C12A7 thin 

films. A crystalline structure is obtained via a subsequent heat treatment in air 

atmosphere [68]. A schematic outline of this process is shown in figure 2.13.  

The advantages of sol-gel method include excellent homogeneity of the films, 

controlled composition, low heat treatment temperature and high purity of the 

final product [3, 68, 69].  

In addition, some applications utilizing calcium aluminate glasses require low-

temperature production techniques due to a high tendency of these glasses to 

crystallize upon heating. Hence, the synthesis of the glass can be done using sol-

gel method [70].  
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Figure 2.13 Schematic outline of sol-gel process 

Two limiting factors of this process are relatively low critical thickness 

(usually less than 100 nm for oxide films other than silica) and rather short life 

time of the solution [5, 71]. Critical thickness is defined as the maximum 

thickness of a crack-free thin film produced via one-step coating [72, 73]. 

2.6.1 Ingredients for solution preparation 

• Aluminium and calcium precursors 

Calcium nitrate tetrahydrate and aluminium sec-butoxide (ASB) can be used 

as the precursors of calcium oxide and aluminium oxide respectively [68]. 



 61

Aluminium sec-butoxide is one of the most common aluminium alkoxides used 

as a precursor of aluminium oxide with the ability to remain in liquid state at 

room temperature and fabricate relatively pure and homogeneous materials at 

low temperatures. The main disadvantage of this compound is the high affinity 

for water absorption and fast hydrolysis which leads to precipitation and is 

attributed to its electronegative alkoxy groups [68, 74]. Therefore, an organic 

solution is usually used with a limited amount of added water in presence of a 

chelating agent, such as ethyl acetoacetate. Organic solutions, on the other hand, 

often produce highly porous films and hence, utilizing an aqueous solution can 

be advantageous in terms of obtaining compact structures. Therefore, chemical 

modification is needed in order to control the hydrolysis and condensation 

processes and ensure the formation of compact structures [74]. This process is 

explained in detail in section 2.6.2. 

• Solvent and water  

Organic solvents, such as Isopropyl alcohol, are good mutual solvents for 

aluminium alkoxide-ethyl acetoacetate mixture and calcium nitrate. Increasing 

the alcohol content of a solution can prolong the gel formation, although it does 

not have any effect on the homogeneity of the solution [68].  

The addition of water can also prolong gel formation, but it also has a 

negative effect on the homogeneity of the solution [68]. An increase in water-to-

alkoxide ratio results in an increase in the condensation rate and particle size 

[75]. 

The hydrolysis of aluminium alkoxide can be observed from the formation of 

alumina precipitates during solution making [69]. In order to prevent rapid 
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hydrolysis of the alkoxide and maintain a solution with a reasonable life time, 

the ratio of water to alkoxide should be kept either very low or very high 

(around 100:1) [69]. The slowest possible hydrolysis rate can be obtained 

without the addition of water. In this case, the solution is exposed to a moist 

atmosphere for the hydrolysis to take place gradually. The gelation process can 

take up to one day to complete and a highly homogenous gel is obtained [68]. 

The alumina content in a solution with a high amount of water is not enough for 

preparing thick films and any thick films produced normally contain cracks. 

Therefore, the presence of a modifier in the solution is necessary [69].  

• Substrate 

Several materials have been examined as the substrate for C12A7 thin film 

including MgO, YSZ, sapphire and SiO2. MgO single crystal is found to be the 

only material among others that forms single phase C12A7, while other 

substrates react with CaO component during the heat treatment [76].   

2.6.2 Chelation 

As mentioned earlier in this section, electronegativity of the alkoxy groups in 

aluminium sec-butoxide is the main reason for fast and irreversible reaction of 

the alkoxide with water, which results in the precipitation of alumina and sec-

butanol [77]. The hydrolytic instability of ionic bonds can be modified by 

addition of carboxylic acids, ketoesters−β or diketones−β  to the alkoxide. 

Organic ligands with unsaturated bonds are more reactive and can produce 

additional organic networks with the alkoxide [75]. The presence of a chelating 
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agent can reduce the hydrolysis rate and alkoxide-to-hydroxide transformation 

can be controlled during sol-gel process [68]. 

Ethyl acetoacetate (EAA) is a ketoester−β with saturated ligands [75] which 

predominantly consists of ketons in pure form and its enol content is rather low, 

but when added to aluminium alkoxide, the enol form reacts with the alkoxy 

groups bonded to Al and produces chelates, resulting in the formation of more 

enols. In other words, the chelation process stabilizes the enol form of the ester 

[68, 77].  

The chelation of aluminium sec-butoxide with enol, shown in figure 2.14, 

occurs via the following exothermic reaction [68]:  

( ) ( ) ( ) BuOHxMeCOCHOOEtBuOAlCOOEtxMeCOCHBuOAl s
xx3

s
23

s +→+ −  

The chelating ligands have less affinity for water compared to alkoxy groups 

and hence, the bonding of these ligands to Al reduces the extent of the 

hydrolysis and condensation reactions of aluminium alkoxide [68].  
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Figure 2.14 Chelation of aluminium sec-butoxide with ethyl acetoacetate [68, 75] 
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For an EAA-to-alkoxide ratio of 3:1, the chelation is nearly complete and the 

hydrolysis rate becomes extremely low. The practical ratio is normally kept at 

2:1 in order to control the rate of hydrolysis as well as the microstructure [77].  

Some of the EAA ligands might be released upon hydrolysis and even 

evaporate from the solid gel. The chelated portion of the mixture exhibits an 

organic nature [68]. The extent of gelation depends on the amount of chelates 

that break down during hydrolysis. The nature of the hydrolysis agent added to 

the solution can have an effect on the rate of chelate removal and therefore, the 

properties of the final product [77].  

If EAA is added after the addition of the hydrolysis agent, the chelation of 

alumina precipitates is more likely to occur rather than the chelation of 

aluminium sec-butoxide [69].  

2.6.3 Hydrolysis 

In order for the hydrolysis to take place completely, each mole of aluminium 

sec-butoxide requires at least 3 moles of water; otherwise, even if the gelation 

occurs, the hydrolysis will not be complete [77].   

The product of aluminium sec-butoxide hydrolysis is γ-aluminium oxy-

hydroxide Al(OH)3, or gibbsite, which goes through dehydration and phase 

transformation during the heat treatment resulting in the formation of stable 

Al2O3 [78]. The hydrolysis of aluminium sec-butoxide in the absence of a 

chelating agent occurs through the following chemical reaction [79]: 

( ) ( ) OHHC3OHAlOOHOH3HOCAl 9422394 +→+  
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The by-product of the hydrolysis is butyl alcohol accompanied by an increase 

in the pH of neutral and alkaline solutions and a decrease of pH in acidic 

systems [77]. 

The ratio of water to aluminium alkoxide also affects the product of the 

hydrolysis. If this ratio is increased to about 25:1, bayerite ( ) )OHAl( 3−α  is 

more likely to be formed instead of gibbsite. In other words, gibbsite has higher 

stability in low water content. The presence of impurities, such as high salt 

concentration of the solution, can also stabilize gibbsite. The hydrolysis of 

chelated aluminium sec-butoxide is shown schematically in figure 2.15.   
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Figure 2.15 Hydrolysis reaction of aluminium sec-butoxide chelated with ethyl 

acetoacetate [75] 

In the presence of a chelating agent, the extent of hydrolysis depends on the 

amount and type of chelates. Since the non-chelated alkoxy groups have higher 

affinity for water, the hydrolysis starts with free alkoxy groups and only a 
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fraction of mono/di substituted chelates are released during the process. The tri-

substituted chelates are completely resistant against hydrolysis.  

Upon the hydrolysis of EAA-modified aluminium sec-butoxide, 

( ) ( )[ ]nxx3 EAAOHAl −  oligomers are formed as well as ( )3EAAAl which is not 

hydrolyzed [68]: 

( ) ( ) ( ) ( ) ( )
( ) OHHCx3

MeCOCHOOEOHAlOHx3MeCOCHOOEBuOAl

94

xtx32xtx3
S

−

+→−+ −−

 

It has been reported that adding an excess amount of water as the hydrolysis 

agent or increasing the temperature of the solution to C260~ o (the 

decomposition temperature of EAA) can assist the hydrolysis and gelation 

processes. Since the latter process is impractical for aqueous solutions, the 

choice of a proper chelating agent with good hydrolysis/gelling capability is 

very important [77].  

2.6.4 Addition of acid 

Due to the high sensitivity of aluminium sec-butoxide to water, the hydrolysis 

process results in the rapid formation of alumina colloids which change the 

colour of the solution from transparent to white, making the solution unstable 

with a rather short lifetime [70]. Therefore, the addition of an acid, such as nitric 

or hydrochloric acid, is still necessary to peptize the colloids and obtain a clear 

solution [3, 70, 73, 80]. Even though the presence of a chelating agent, such as 

EAA, reduces the rate of hydrolysis, the addition of hydrochloric or nitric acid 

is still reported in the literature to produce a transparent solution, which shows 

that adding a chelating agent is not enough in order to obtain a clear solution 
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[70]. However, during the process of optimizing the solution preparation 

technique, which is one of the main objectives of this research, a new recipe was 

obtained with a significant improvement in the stability of the solution (up to a 

few months) without the need for the addition of acid. The details of the 

solution ingredients and preparation technique will be explained in detail in 

section 3.1.  

2.6.5 Thin film application 

Solution-processed thin films can be prepared by drop casting, dip coating or 

spin coating techniques. The formation of a thin film through spin coating 

consists of four stages: deposition which is the dispersion of the solution on the 

surface of the substrate, spin-up in which the solution flows toward the edges of 

the substrate, spin-off where the excess amount of solution is spread as droplets 

and leaves the surface of the substrate, and the last stage which is the 

evaporation of the solvent [81]. 

2.6.6 Heat treatment 

The heat treatment of the dried gels enables the remaining organic solvents 

and water to be removed completely, followed by condensation and 

crystallization of C12A7 through a chemical reaction between CaO and Al2O3. 

However, if the desired final product is to be amorphous, then the heat treatment 

should be avoided due to the high affinity of calcium aluminate glasses for 

devitrification. [70].  

The crystallization of a calcium aluminate single phase via heat treatment of 

the gel is difficult due to a number of reasons, including the variation of the 
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precursors compositions as a result of sol segregation, high number of possible 

phases in CaO-Al2O3 binary system that might be formed during the heat 

treatment, and limited long-term diffusion of ions at moderate temperatures [68]. 

A heat treatment at C1100~ o for about 3 to 6 hr under an air/dry oxygen 

atmosphere has been suggested in the literature for the crystallization treatment 

of the dried films [49, 67].  

Upon heating up, the remaining water and organic solvents in the dried gel 

start to evaporate. This process starts at around 100 oC [68]. The next stage is 

the dehydration of calcium nitrate tetrahydrate, which occurs between 100 and 

200 oC [82]: 

( ) ( ) OH4NOCaOH4.NOCa 223223 +→  

The decomposition of residual alkoxy groups also occurs at around the same 

temperature range [83]. 

The dehydration of gibbsite starts at around 300 oC leading to the formation of 

boehmite ( ) .AlOOH Further dehydration of boehmite at C400~ o occurs 

according to the following reaction [78]: 

OHOAlAlOOH2 232 +−γ→  

The decomposition of calcium nitrate occurs between 500 and C650 o  

forming calcium oxide. The crystallization of calcium oxide is complete at 

approximately .C820 o The decomposition happens through the following 

reaction [68]: 

( ) 2223 ONO4CaO2NOCa2 ++→  
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−γ alumina also goes through phase transformation and crystallization 

including the formation of metastable alumina phases, which take place as 

follows [84]: 

32
C1070~

32
C920~

32
C800~

32 OAlOAlOAlOAl
ooo

−α⎯⎯⎯ →⎯−θ⎯⎯ →⎯−δ⎯⎯ →⎯−γ  

The final stage of the heat treatment is the chemical reaction of CaO and 

32OAl−α at a temperature of approximately C1050 o which results in the 

formation of 12CaO.7Al2O3 compound.  

The decomposition of EAA takes place at temperatures between 100 to 

C250 o [83]. When chelated to Al2O3, however, the decomposition occurs in a 

wide temperature range between 200 and C700 o  leading to a long-lasting 

structural relaxation and gradual densification process, hence preventing the 

formation of cracks and increasing the critical thickness [69].  

2.7 Anion-incorporated C12A7 fabrication techniques 

2.7.1 Incorporation with superoxides 

The trapped O2- ions in C12A7 can be selectively replaced by other oxygen 

ion species [8]. By heating the material at 1350 oC and subsequent cooling in 

dry oxygen atmosphere, various superoxide ions, such as O-, O2
- and O3

-, can be 

introduced into the structure [19, 39]. O- ion is the most active oxygen ion 

among all oxygen species [40]. Superoxide-incorporated C12A7 can have 

potential applications as a strong oxidizing catalyst, oxygen ion conductor, 

field-induced oxygen ion emitter and in biochemical reactions [39, 40].  
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An −−O loaded C12A7 can produce a high intensity monochromatic O- ion 

beam under the effect of an extraction electric field [25]. The emission of O- 

ions from −− + 2OO:7A12C  is different from other ion-conducting materials 

such as yttria- stabilized zirconia (YSZ). A metal electrode is needed at the 

surface of YSZ to dissociate O2- ions. An electric field is applied to YSZ which 

results in the migration of the O2- ions from the bulk to the surface of the 

material. A metal electrode such as platinum is needed at the surface to help 

with the dissociation of these species into O- ions and electrons. The O- ions are 

then emitted thermionically from the surface of the oxide [41]. 

In O- + O2
- ion-incorporated C12A7, however, the concentration of the 

superoxides is high enough for the direct extraction of these ions from the 

surface, and the obtained current densities are considerably higher. Furthermore, 

there is no need for a metal electrode on the material surface [40]. 

The superoxide species can be incorporated inside the structure in large 

concentrations while retaining the chemical and thermal stability of the material, 

whereas they are very reactive in other metal oxides even at room temperature 

[15]. 

Active oxygen species, O- and O2
-, are formed in a dry oxygen atmosphere 

according to the following reaction [40]: 

( ) ( ) ( ) ( )
−−− +→+ cage2cageatmosphere2

2
cage OOOO  

The superoxide-incorporated C12A7 has more stability compared to the 

stoichiometric structure and O2- ions react easily with oxygen molecules to form 

superoxides inside the cages. Although the enthalpy of these reactions is 

negative, the amount is less than that of a gas-phase reaction, probably due to 
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the interaction of O2- ions with the lattice, since these ions are not totally free in 

solid phase.  

A schematic illustration of superoxide incorporation in C12A7 is shown in 

figure 2.16. The O- and O2
- formation mechanism consists of two stages: bulk 

diffusion and surface reaction. The O2- ions diffuse from the bulk to the surface 

of the material and the reaction with atmospheric O2 takes place at the surface. 

Then the resultant O- and O2
- ions diffuse into the bulk and occupy the empty 

cages [39]. 

O2+O2- O-+O2
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Inward 
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Cage O2- 

C12A7 surface 

O2 gas 
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Figure 2.16 Schematic illustration of superoxide formation. The extra-framework O2- is 

oxidized by oxygen molecules at the surface of the material and the products enter the 

empty cages by inward diffusion in order to compensate for the lack of negative charge in 

the framework [85] 

The concentration of oxygen ion species at the surface of the material during 

the annealing process is in equilibrium with the atmosphere. The flux within the 

surface and the bulk, however, is controlled by diffusion mechanism [85]. 

Therefore, the latter process has more influence on the superoxide ion formation 

and is the only rate limiting stage [39, 85]. 

The concentration of active oxygen ions is dependent upon the degree of 

humidity, the oxygen pressure and the temperature during heat treatment and 
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subsequent cooling. The maximum concentration of oxygen radicals increases 

with the decrease in temperature, and although the concentration of O2
- is 

always more than that of O- (probably due to less stability of O- compared to 

O2
-), the difference reduces as the total concentration reaches its maximum 

value [39].  

The presence of a large number of O2- ions in the structure is crucial for the 

formation of active oxygen species. Since O2- ions tend to react easily with H2O 

and form OH-, the heat treatment of C12A7 in a moist atmosphere leads to the 

entrapment of a large amount of OH- ions and, as a result, the formation of 

active oxygen anions will be limited [20, 40, 86]. Therefore, the heat treatment 

of C12A7 during crystallization and superoxide incorporation processes should 

be done in a moisture-free atmosphere [39]. If the material initially contains 

OH-, heat treatment at temperatures higher than 1100 oC in dry oxygen 

atmosphere leads to the desorption of this species and the concentration of 

active oxygen ions will increase as a result in the subsequent heat treatment [20].  

2.7.2 Incorporation with hydroxide 

OH- ions replace extra-framework O2- species via heat treatment in moist 

atmosphere and are the most stable incorporated ions in C12A7 [15].  

The stability of OH- species in C12A7, even after treatment at high 

temperatures, is a unique characteristic of this compound. No other material has 

been reported to have the ability to preserve high concentrations of OH- at 

temperatures as high as 1300 oC [18].  

C12A7 can absorb water during the annealing process via the following 

reaction [18]: 



 73

( ) ( ) ( )
−− →+ cage

2
cageatmosphere2 OH2OOH  

Therefore, the presence of water in the atmosphere results in OH- 

incorporation. If the material is sintered in dry oxygen atmosphere, the OH- ion 

is released and removed from the structure [18]: 

( ) ( ) ( )atmosphere2
2
cagecage OHOOH2 +→ −−  

The dehydroxylation of OH- ions in C12A7:OH- normally occurs at 

temperatures more than .C650~ o  The release of OH- species at the surface, 

however, starts at lower temperatures [16]. 

2.7.3 Incorporation with hydride 

H- ion is one of the strongest reducing species [25]. Applying an external 

electric field on C12A7:H- at high temperatures (approximately 700 oC) leads to 

H- ion emission from the material [24, 87].  

The ultraviolet irradiation of H-- incorporated C12A7 results in the 

photoionization of H- ions into Ho and electrons. The Ho atom is unstable and 

ionizes to H+ which in turn forms OH- ion with a cage-wall oxygen plus an 

electron which occupies the empty space inside the cage, or bonds with an 

extra-framework oxygen ion and adds to the number of entrapped OH- ions and 

electrons. The latter mechanism is more favoured in terms of energy [16, 88]. 

This phenomenon is further explained in section 2.8.1. 

2.7.4 Incorporation with heavy metal ions 

The introduction of heavy metal anions (M-) with compatible sizes to the cage 

space, such as Au-, can lead to new fields of applications such as low 
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temperature oxidation reactions. Au- anions are heavy metal species with unique 

catalytic properties suitable for oxidation reactions, such as low temperature 

formation of CO2 from CO [41].  

The M+ ions are incorporated into the C12A7 structure by hot implantation 

and in the presence of an electron source. The entrapped oxygen ions are 

released as oxygen gas and M- anions remain inside the lattice with one anion in 

each filled cage according to the following chemical reaction [41]: 

2
2 O

2
1M2e2OM2 +→++ −−−+  

The maximum concentration of these monovalent species is 4 ions per unit 

cell. If the concentration of the implanted anions exceeds this value, the rest of 

the empty cages will be filled with metal atoms (Mo) and if this concentration 

exceeds the amount of framework cages, i.e. 12 atoms per unit cell, metal 

clusters will form inside the structure. The formation of metal clusters can 

damage the structure of C12A7 [41].  

2.7.5 Incorporation with fluoride 

Fluoride anion has potential applications in various fields, such as 

semiconductor etching, filming and material modification. F- ion beam can also 

be used in hot ion implantation, inertial confinement fusion and particle 

acceleration [89]. Anion implantation has attracted attention recently, since 

anions have negative polarity and low affinity for electrons, and therefore, 

surface charging up of the implanted target is negligible compared to hot 

implantation of cations [64, 89]. 
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The unique structure of C12A7 allows for the storage of a high concentration 

of F- anions and emission of these species under suitable temperature and 

extraction electric fields. The F--incorporated C12A7 can be produced by the 

solid reaction of CaCO3, Al2O3 and CaF2. The solid ingredients are mixed with a 

molar ratio of 11:7:1. The mixture is pressed and sintered at 1350 oC for at least 

8 hr and the pressed sample is annealed at 780 oC under the flow of F2/Ar gas 

[89].  

The anion emission from C12A7 is increased by increasing the temperature 

and/or extraction electric field due to the enhancement of anion diffusion and 

desorption from the material surface. 

The emission decays with an increase in the emission time as a result of F- ion 

extraction from the material. Therefore, a fluorine gas source is required in 

order to introduce more F- anions into the structure and achieve a relatively pure 

and stable F- ion beam. A supplement of a fluorine/argon gas mixture and a 

source of electrons by applying a low direct electric field on one side of the 

material can produce F- ions at the surface, which diffuse into the lattice by 

field-enhanced thermal diffusion and provide the material with more F- anions 

to be emitted [64]. 

2.8 Electron-incorporated C12A7 fabrication techniques  

As mentioned earlier (section 2.3), the incorporation of electrons in place of 

extra-framework oxygen ions in C12A7 converts the material from an insulator 

to a semiconductor and conductor. In this section, various methods of electride 

formation are introduced and explained in detail.  
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2.8.1 Heat treatment in a reducing atmosphere of H2 plus UV irradiation 

This treatment starts with heating the sample up to C13001200 o− for 

typically hr1  in a 22 N%80H%20 − atmosphere [9, 90, 91]. At high enough 

temperatures, the hydrogen molecules in the atmosphere start reacting with the 

trapped O2- ions and H- species replace these ions inside the cages. Two 

chemical reactions can be responsible for the formation of H- ions in the 

structure as follows [40]: 

( ) ( ) ( ) ( )
−−− +→+ cagecageatmosphere2

2
cage HOHHO  

( ) ( ) ( ) ( )
−− +→+ cageatmosphere2atmosphere2

2
cage H2O

2
1HO  

The H--incorporated C12A7 is still colourless and insulating [9]. However, 

subsequent irradiation with ultraviolet light (wavelength of )nm300~ can 

ionize H- and produce Ho and electron inside the cage, hence transforming the 

material into a conductive oxide [88]. The entrapped electrons are loosely bound 

to the structure and can migrate via hopping [40]. Furthermore, by applying a 

high enough electric field, electrons are extracted from the cages and emitted at 

low temperatures. 

Since Ho atoms are unstable, they either join to form H2 molecules or 

dissociate into H+ and H- pairs. H+ ions are then bonded to nearby framework or 

extra-framework oxygen ions forming OH-, while H- ions are incorporated 

inside the empty cages leading to more photoionization and higher electron 

concentrations [40, 92]. Therefore, the concentration of OH- might also increase 

slightly as a result of this heat treatment [24].  
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The electrical conductivity persists even after the irradiation is deceased. The 

insulating-to-conducting transformation is accompanied by the appearance of 

two optical absorption peaks at 0.4 and 2.8 eV. The incorporation of H- ions 

inside the structure also shifts the optical absorption edge of the material from 

eV5 to eV4~  and changes the colour of the material from colourless to green 

[9, 24]. The absorption intensity and the conductivity increase with increasing 

the irradiated-photon dosage [24].  

Insulating-to-conducting transformation in C12A7:H- is also possible via 

electron beam irradiation as an alternative to UV irradiation. In this case, the 

energy dissipation of the primary electrons is responsible for the formation of 

electron-hole pairs inside the structure. The pairs act as intermediate states that 

transfer energy to the entrapped H- ions and result in the ionization of these 

species [45, 91]. 

Previous reports show that conductivities up to 1cm.S10 − can be achieved via 

this technique which maintains up to C320 o  [25]. However, a further increase 

in the temperature causes the H2 molecules to recombine with the entrapped 

electrons and the conductivity starts to decrease, although conductivities up to 

1cm.S5.0 −  are preserved at temperatures as high as C600 o  [40]. In other words, 

insulating-conducting conversion is reversible as long as the temperature is not 

high enough for the H- ions to be released. In general, the heat treatment of 

conductive C12A7 at 500 to C750 o  in an inert gas atmosphere transforms the 

material back to insulating [9, 24].  
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2.8.2 Heat treatment in a metal-vapour atmosphere 

The idea of this technique comes from the fact that at a high enough 

temperature, the affinity of some metals to react with oxygen and form a metal 

oxide is quite high. The heat treatment of C12A7 in the presence of a metal 

under vacuum results in the reaction of the metal with O2- ions inside the cages, 

while electrons are left behind in order to maintain the charge neutrality of the 

structure [93].  

A schematic illustration of insulating-conducting conversion of C12A7 is 

shown in figure 2.17. The heat treatment of the compound at a temperature of 

700 oC in presence of calcium results in the formation of CaO layer on top of 

C12A7. Once the top layer is removed, an electron-incorporated C12A7 is 

obtained. The reaction between C12A7 and calcium metal can be expressed as 

[93]: 

[ ] ( ) [ ] ( ) CaO2e4OAlCaCa2O2OAlCa 4
642824

24
642824 +→+ −+−+  

The transformation of C12A7 from an insulator to a conductor can be noticed 

by the change of the sample colour and could be proven by the appearance of 

optical absorption bands at 0.4 and 2.8 eV. 

Calcium heat treatment for 1-2 weeks can produce conductivities as high as 

1cm.S100 −  at room temperature, which is considerably higher than H2 heat 

treatment-plus-UV irradiation technique [25, 40].  
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Figure 2.17 Schematic illustration of electron incorporation mechanism in C12A7 via heat 

treatment in presence of calcium metal. The extra-framework oxygen ions diffuse to the 

ceramic-metal interface and oxidize Ca leaving electrons behind in order to compensate 

for the lack of negative charge of the ceramic framework [40]. 

This method is only applicable to single crystals and cannot be used for 

polycrystalline structures and thin films. In addition, the heat treatment process 

is time consuming and hence not efficient for large-sized sample fabrication 

[93].   

Titanium can also be used as the reducing agent. The heat treatment is carried 

out at a temperature of 1100 oC for 24 hr [94] and it has been proved to be more 

efficient in terms of replacing the oxygen ions and hence reducing the process 

duration [47, 93, 95]. The following reaction shows the chemical reduction of 

C12A7 in presence of titanium metal vapour [93]: 

( ) x)cage(
2
cage TiOex2TiOx +→+ −−  

An electron concentration of approximately 321 cm101 −× can be achieved 

through this process [93]. 

The heat treatment of C12A7 at C1000 o for 24 hr under a vacuum of 

approximately torr10 4− in presence of vanadium can produce similar results [2].  
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2.8.3 Melt-solidification and glass-ceramic processing in a reducing 

atmosphere 

It has been previously mentioned (section 2.1.2) that the presence of oxygen 

or hydroxide templates in the atmosphere is essential for the formation of 

C12A7 [2]. On the other hand, it is also possible to produce electron-

incorporated C12A7 directly from the melt under a reducing atmosphere. The 

choice of a proper reducing atmosphere that can provide the melt with a new 

template ion is of utmost importance. The previous reports show that −2
2C ion 

can act as a new template in a reducing atmosphere and leave electrons inside 

the structure, hence transforming C12A7 to an electride [1, 93]. 

The melt-solidification technique consists of two melt and solidification steps 

under a strongly reducing atmosphere (figure 2.18(a)). C12A7 powder is first 

melted in a carbon crucible by heating the powder up to 1600 oC in air and 

holding it at this temperature for approximately 1 hr. This temperature is high 

enough to produce a reducing atmosphere inside the carbon crucible [1].  

1 hr 1 hr
1600
1450

C12A7: O2- C12A7: e-CA+ C3A 

T (oC)

1 hr

1 hr 
1600
1450
1000

900

C12A7: O2- Glass C12A7: e- 

(a) (b) 

T (oC)

Figure 2.18 Schematic illustration of (a) melt-solidification treatment [96], and (b) glass-

ceramic processing [49] of C12A7 under the reducing atmosphere. The temperatures of 

900 and 1450oC are the crystallization temperature and the melting point of C12A7 

respectively. 
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During the first step of the process, the trapped oxygen ions are extracted from 

the structure due to the reducing nature of the atmosphere. The absence of 

oxygen templates and the lack of any other templates in the reducing 

atmosphere eventually lead to the decomposition of C12A7 and the formation of 

a binary eutectic phase of C3A and CA. At the same time, −2
2C  is introduced 

into the melt and forms CaC2 in the resulting solid [1, 49, 93]. 

During the second step, however, −2
2C  ion is dissolved in the melt and acts as 

a template for the formation of C12A7 in the reducing atmosphere. The 

suggested mechanism is that −2
2C  ions replace the role of oxygen templates to 

form C12A7, but −2
2C  ions are only stable during the initial stage of 

crystallization and disappear from the final crystal after the completion of the 

second melt-solidification step. These ions are instead extracted from the cages 

either as solid carbon atoms or CO gas and leave electrons behind inside the 

cages. A schematic illustration of C12A7 electride formation is shown in figure 

2.19.  
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Figure 2.19 Schematic illustration showing the formation of C12A7 electride in a reducing 

atmosphere with C2
2-

 ions acting as templates for oxygen ion removal [1] 
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The incorporation of electrons occurs through the following reactions [1, 93]: 

( ) ( ) ( )
−− +→ cagesolid

2
cage2 e2C2C  

( ) ( ) ( ) ( )
−−− +→+ cageatmosphere

2
cage

2
cage2 e6CO2O2C  

This technique can be used for efficient fabrication of bulk polycrystalline 

C12A7 electrides [1]. 

Glass-ceramic processing is another two-step method to produce a C12A7 

electride from the insulating powder in a reducing atmosphere. This process is 

shown schematically in figure 2.18(b). The first step includes melting C12A7 

powder in a carbon crucible at a temperature of 1600 oC, which is almost similar 

to the melt-solidification process except for the fact that the melt is quenched 

from high temperature and a transparent glass is formed. The −2
2C  ions are also 

introduced into the glass. 

The glass formed during the first step of the process can transform into 

crystalline C12A7 via heat treatment under vacuum for 1 hr at 

,C1000900 o− which is higher than the glass-transition temperature, while −2
2C  

ions act as templates for the incorporation of electrons inside C12A7 crystal [93, 

96].  

2.8.4 Heat treatment in a reducing gas atmosphere of CO/CO2 

As mentioned in section 2.8.1, the heat treatment of C12A7 in a reducing 

atmosphere containing H2 followed by UV irradiation makes the material 

conductive. Another way of substituting oxygen ions with electrons is the heat 

treatment of C12A7 in a reducing gas atmosphere of CO/CO2 gas mixture. The 
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heat treatment is carried out using a carbon crucible at a temperature between 

1000 and 1200 oC for typically 24 hr under the flow of an inert gas. The carbon 

crucible can produce a strongly reductive atmosphere of CO/CO2 (with partial 

pressure of oxygen less than 10-15 atm) upon heating.  

At a high enough temperature, CO gas in the atmosphere starts reacting with 

oxygen ions inside the structure forming CO2, while the oxygen vacancies are 

filled with electrons instead in order to neutralize the positive charge of the 

framework. The reaction process takes place as follows [93]: 

( ) ( ) ( ) ( )
−− +→+ cagegas2gas

2
cage e2COCOO  

This process can be used for different types of C12A7 including single crystal, 

powder, and thin films [93].  

2.8.5 Hot implantation of inert-gas ions 

The implantation of energetic gas ions, such as Ar+ or Xe+, at high 

temperatures is a non-equilibrium physical process that can be used to transform 

an insulating C12A7 to an electride [27]. In this technique, the material in form 

of a thin film is put under vacuum and Ar+ ions are shot at temperatures as high 

as 600 oC. The ions hitting the material collide with the trapped oxygen ions and 

extract them, leaving free electrons behind inside the cages [47, 93], according 

to the following reaction: 

( ) ( )
−− +→ cage)gas(2

2
cage e2O

2
1O  

This process does not damage the structure of the lattice [27, 42, 47, 93], but 

the stability of the structure is only retained if the implantation is done at high 
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temperatures and a room-temperature implantation will result in the conversion 

of the material to an amorphous [93].  

In order for oxygen ions to leave the lattice, the fluence of Ar+ ions should not 

be less than .cm101 217 −× Although the ion-implanted C12A7 with low Ar+ 

fluence shows insulating properties, the conductivity increases after UV 

irradiation (similar to the material heat treated in H2 atmosphere) [47]. 

2.8.6 Chemical reduction treatment using oxygen-deficient amorphous 

C12A7 

In this technique, a layer of C12A7 film is produced on an MgO single crystal 

substrate via pulsed laser deposition of a C12A7 target plus a subsequent 

crystallization heat treatment. Then, a thin layer of amorphous C12A7 is 

deposited on top of the polycrystalline film at 700 oC under the vacuum (oxygen 

pressure of less than 10 -3 Pa). The templates needed for the crystallization of 

this amorphous layer is provided by the crystalline film. However, the electrons 

are left behind in order for both layer structures to maintain their charge stability. 

The top layer is then removed via chemical-mechanical polishing [49]. 

Conductivities as high as 1cm.S800 − can be achieved using this method [47]. 

2.8.7 Hot proton implantation plus UV irradiation 

Another method of H- ion incorporation into C12A7 structure is H+ ion 

(proton) implantation. In this technique, a C12A7 target is bombarded with H+ 

ions at around 600 oC and irradiated with UV light. The ion incorporation 

process is thermally assisted. A number of implanted H+ ions react with OH- 

species inside the cages while the remaining implanted H+ ions capture two 
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electrons to compensate for the positive charge of the lattice and stabilize the 

structure. 

The H- species entrapped inside the structure are photoexcited via UV light 

irradiation and are released as H2 molecules, leaving electrons behind. 

The electrical conductivity increases with the increase in temperature up to 

room temperature. At implantation temperatures higher than 600 oC, the 

material is fully incorporated with H+ species and becomes saturated [42]. 

2.9 Applications of C12A7 

• Amorphous and crystalline C12A7 

Calcium-aluminate glasses have potential applications for mid-infrared optical 

fibres and information storage devices [6, 74]. These materials have a superior 

infrared transmittance compared to other oxide glasses plus the scattering loss 

for these oxides is small. These advantages make them good candidates for use 

as mid-infrared fibres. Other potential applications of these glasses include 

photometric devices for information storage due to photosensitivity [70].  

Crystalline C12A7 can be used in solid oxide fuel cells. The body used in 

such an application should be dense enough to prevent the penetration of gases 

[18]. The application of C12A7 as a support for partial oxidation of methane 

into syngas has also been considered. The product of the oxidation has a H2/CO 

molar ratio of 2:1 and therefore can be used as a feedstock for methanol and 

Fischer-Tropsch syntheses [97].  
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The transparency of C12A7 is advantageous in optical windows for light 

sources [18]. This compound is also an ionic conductor [8] with potential 

applications as an ion conducting solid electrolyte [39]. 

C12A7-doped indium tin oxide (C12A7:ITO) is a new transparent cathode 

with applications in top-emission and transparent organic light-emitting diodes 

(OLEDs) [98].  

• Electron-incorporated C12A7 

C12A7 can be converted to an electride because of its unique nanoporous cage 

structure while retaining its chemical and thermal stability at room temperature 

[1, 2]. Different types of applications for electrides include reducing agents, 

cold-cathode electron field emitters, thermionic power generators and 

refrigeration devices [1, 2, 25, 46].  The conductive C12A7 can also be used for 

direct optical signature of conducting wires in insulating transparent media and 

high density optical memory [19]. Electron-incorporated C12A7 is known as a 

transparent conductive oxide (TCO) with various applications such as in flat 

panel displays, solar cells, transparent transistors, electrochromic devices, smart 

windows and flexible electronics, although the mechanism of conductivity in 

this material is quite different from other common TCOs [2, 8, 23, 40, 42]. This 

compound has also been successfully used as a cathode material in OLEDs [99]. 

Semiconductive C12A7 can be used in conventional field effect transistors 

(FETs) [46]. 

The reversible insulating-to-conducting conversion in UV-induced 

semiconducting C12A7:H- is desirable in optoelectronic applications such as in 

rewritable electric circuits [42]. Another advantage of this technique is that 
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conductive wires can be applied on insulating transparent media by direct 

optical writing and a high optical memory can also be achieved [24].  

• Ion-incorporated C12A7 

Different types of anion species can be stored inside the cage structure of 

C12A7 and can be emitted under appropriate temperatures and extraction fields. 

The anion-incorporated C12A7 has potential applications in a one-step synthesis 

of phenol from benzene, reduction of NO, fast micro-organisms inactivation, 

steam reforming or oxidation of oxygenated organic compounds, increasing the 

surface hydrophilicity of polymers by producing hydrophilic hydroxyl and 

carbonyl compounds, and low-temperature surface oxidation of silicon [89, 100]. 

Superoxide-incorporated C12A7 is a powerful oxidizing catalyst with 

potential applications in organic compounds (hydrocarbons) combustion, 

biochemical reactions and as a solid electrolyte with catalytic activity [8, 20, 24, 

39]. Mg-doped C12A7:O- has been reported to have a very high activity for 

hydrogen generation from the catalytic steam reforming of bio-oil, naphtha and 

methane at relatively low temperatures [101, 102]. C12A7:O- doped with 

potassium has also been considered for the production of hydrogen from the 

steam reforming of ethanol as well as NO gas reduction [103, 104]. 

Nano/micro particles of C12A7 with entrapped oxygen radicals are more 

appropriate for catalyst applications because of the high oxidizing power and 

the large surface area of the particles. A solution process can be used in order to 

fabricate these particles [29]. 

C12A7 is also a promising material as a source of O- ion emission [3, 39], 

which can be utilized in desulfurization of flue gas. The ions consumed in the 
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process can also be recovered using electrocatalytic reactions and make the 

material reproducible [3].  

Fluoride anion emission from C12A7:F- can be utilized in semiconductor 

etching, filming, material surface modifications, inertial confinement fusion, 

atmospheric chemistry and particle acceleration [64, 89]. Introduction of heavy 

metal anions (M-) with compatible sizes to the cage space can lead to new fields 

of applications such as low-temperature oxidation of methane [27]. 
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Chapter 3 

 

Experimental procedure 

 

3.0 Introduction 

This chapter presents the sample fabrication procedure via sol-gel technique, 

giving full explanation of the variables considered in solution preparation. All 

the methods and instruments used in the microstructural and chemical 

composition analyses and the optical characterization of the final products are 

described. The selected parameters for all the measurements are also provided in 

this chapter.  

3.1 Solution preparation 

The solutions were prepared using aluminium sec-butoxide and calcium 

nitrate tetrahydrate as the main precursors of aluminium oxide and calcium 

oxide respectively [68].  The preparation steps are shown in figure 3.1. 

 



 90

Solvent 

Final Solution 

Stirring for 30 min 

Ethyl Acetoacetate 

Stirring for 1 hr 

Al(OsBu)3 

Deionized Water 

Solvent 

Ca(NO3)2.4H2O 

 

Figure 3.1 Schematic illustration of solution preparation  

Weight percent of the main ingredients, aluminium-sec butoxide (ASB) and 

calcium nitrate tetrahydrate, were calculated according to the position of C12A7 

in CaO-Al2O3 binary diagram (figure 3.2) and used as the measuring unit for the 

preparation of the solution. Requisite variable parameters considered in solution 

preparation are shown in table 3.1. 
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Figure 3.2 Partial phase diagram of the binary CaO-Al2O3 system [10] 
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Table 3.1 Molar ratios of the ingredients used for solution preparation. The ratios marked 

with * belong to the molar ratios of isopropyl alcohol; while methanol is used as the solvent 

in the rest of the solutions. 

Variable solution  molar  ratios Number 
of 

solutions EAA to ASB Solvent to ASB Solvent to Ca(NO3)2 H2O to ASB

Sol1 3:1 40:1 40:1 10:1 

Sol2 3:1 20:1 20:1 10:1 

Sol3 2:1 20:1 20:1 10:1 

Sol4 2:1 20:1 20:1 5:1 

Sol5 2:1 10:1* 10:1* 5:1 

Sol6 2:1 5:1 5:1 5:1 

Ethyl acetoacetate (EAA) was chosen as the chelating agent with two different 

ratios of EAA to ASB in order to investigate the role of chelation on hydrolysis 

and solution stabilization. First step of the solution preparation consisted of the 

addition of aluminium sec-butoxide to ethyl acetoacetate (figure 3.1). Since the 

affinity of aluminium sec-butoxide to absorb water is quite high, the addition of 

alkoxide to EAA was done using a syringe to minimize the exposure of the 

precursor to air.  

EAA-to-alkoxide molar ratios of 3:1 and 2:1 were chosen based on previous 

studies [68, 77]. The mixture was kept stirring for 30 min at ambient 

temperature before the addition of other ingredients.  

Since aluminium sec-butoxide is highly sensitive to the presence of water, the 

addition of water to the solution results in rapid hydrolysis of the alkoxide and 

precipitation of alumina. Therefore, the addition of an organic solvent is 

important in order to control the hydrolysis rate. Methanol was initially chosen 

as the solvent for aluminium sec-butoxide and calcium nitrate. However, the 
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solvent was later changed to isopropyl alcohol due to a better solubility of the 

main precursors in this organic solvent [68] which lead to a significant 

improvement in the quality of the final products. The solvent-to-alkoxide molar 

ratios of 40:1, 20:1, 10:1 and 5:1 were chosen for different solution recipes. The 

choice of these molar ratios was made based on the microstructural observations 

of the surfaces. The effect of the amount of solvent on the quality of the films 

was investigated with a view to optimizing the solution recipe. The solvent was 

added to the alkoxide-EAA mixture dropwise and the solution was left stirring 

for 1 hr in each case.  

Deionized water was added to the solution as the hydrolysis agent for the 

alumina precursor. The minimum water-to-alkoxide molar ratio has been 

reported to be 3:1 theoretically for a complete hydrolysis to take place [77]. 

Two water-to-alkoxide molar ratios of 10:1 and 5:1 were chosen to ensure a 

complete hydrolysis of the precursor and observe the effect of water content on 

the microstructure and the extent of hydrolysis. The water content of calcium 

nitrate tetrahydrate was also taken into account for the calculations. 

The amount of calcium nitrate tetrahydrate for C12A7 fabrication in the form 

of powder and thin films was calculated based on the stoichiometric weight 

percent of CaO and Al2O3 in C12A7. The weight ratio of aluminium sec-

butoxide to calcium nitrate was determined to be 1.2169.  

The molar ratio of solvent to nitrate was also kept the same as the solvent-to-

alkoxide molar ratio and the water needed for hydrolysis was added to the 

nitrate solution. Upon the dropwise addition of this solution to the aluminium 

sec-butoxide solution, white colloids were observed which showed that the 

hydrolysis was taking place. It has been mentioned in previous studies that the 
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addition of hydrochloric acid or nitric acid to the hydrolyzed mixture is 

necessary in order to peptize the precipitates and obtain a clear solution [70, 73, 

80]. However, in all cases of this investigation, a transparent solution was 

obtained after 1-2 min of stirring and the there was no need for the addition of 

acid to the solution. In the case of solution preparation using isopropyl alcohol 

as the solvent, the precipitates were barely noticeable and the solution remained 

transparent during the whole process. All the solutions were tested to remain 

stable for at least 2 months without any loss of transparency. 

3.2 Sample preparation  

Samples were prepared in form of thin film and powder. Spin coating 

technique was utilized for thin film preparation and drop casting was also 

applied in order to obtain films with higher thicknesses.  

• Substrate cleaning 

Magnesium oxide single crystal was chosen as the substrate for C12A7 film 

preparation. All the substrates were squares in shape with dimensions 

of mm10mm10 ×  and thickness of 0.5 mm. All the substrates were washed 

thoroughly with distilled water and methanol and then sonicated in deionized 

water for 5 min. The substrates were then dried and kept in sealed Petri dishes to 

minimize contamination before the thin film application.  

• Thin film  

Thin films were prepared using a KW-4A spin coater provided by SPI 

Supplies. Spin coating rates of 1000, 2000 and 3000 rpm and spinning time of 
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30 s were used for the preparation of spin-coated samples. All the samples were 

left drying slowly in sealed Petri dishes for at least 2 days prior to the heat 

treatment.  

Samples were also prepared using drop casting technique. A few drops of 

solution were applied to the surface of the substrates until the whole surface was 

covered with the solution. These samples were also kept in sealed Petri dishes 

for minimum 2 days.  

• Thickness measurement 

The thickness of the films on MgO substrates were measured by means of a 

Dektak 150 surface profiler provided by Bruker and a Woolam M − 2000 VTM 

spectroscopic ellipsometer.  

A profiler utilizes a surface contact measurement technique for measuring step 

heights or trench depths on a surface by dragging a very low force stylus across 

the surface.  

Ellipsometry is a non-destructive and sensitive technique for measuring the 

optical properties of materials. In this method, the changes in the polarization of 

the light reflected from a sample surface are measured. The polarization change 

of the reflected light is characteristic of the surface structure of the sample. 

These changes, in terms of psi (Ψ) and delta (Δ), are then utilized in order to 

extract the optical parameters of the sample and determine the thickness of the 

film. The measured Ψ and Δ are fitted to the proper dispersion model. A 

computer program is normally used in order to search for a set of variable 

parameters of the dispersion model such that the calculated Ψ and Δ would 
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match the measured data. The optical parameters and thickness of the film are 

then extracted using the calculated data [105]. 

Spectroscopic ellipsometric measurements of C12A7 films were performed in 

the spectral wavelength range of .nm1000360 −  The angle of incidence was 

fixed at 60o. The instrument consisted of a quartz tungsten halogen lamp source, 

a stepper motor driven rotational stage housing a polarizer and CCD detector 

unit.  

• Powder  

In order to produce samples in powder form, some amount of solution was 

exposed to air at room temperature for at least one day. The gelation occurred 

gradually and a clear gel was obtained. The dried gel was then crushed and 

milled into white powder.  

3.3 Heat treatment 

The thin films were isothermally annealed at 1100 and 1300 oC under air 

atmosphere. The heat treatment durations were chosen practically based on the 

results of the phase analysis. The heating rate was kept at 10 oC/min and the 

samples were kept in the furnace after the completion of the heat treatment in 

order to minimize the cooling rate. 

A subsequent heat treatment was also applied to a few of the crystallized thin 

films at C1300 o for 2 hr under a reducing atmosphere of 5%H2-95%N2 and 

rapid cooling to room temperature.  
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The dried powder was heat treated in a temperature range of 700 to 1300 oC 

for at least 6 hr in order to investigate the effect of heat treatment temperature 

and time on the formation of C12A7 and other possible secondary phases.  

The crucible was selected according to the effect of the crucible material on 

the surrounding atmosphere. An alumina crucible was used for the 

crystallization heat treatment of the thin films and powder. Crucible materials 

which provide a reducing atmosphere, such as graphite, will result in the 

formation of C3A+CA eutectic mixture instead of crystalline C12A7. A silica 

crucible was employed for the heat treatment under the 5%H2-95%N2 reducing 

atmosphere.  

3.4 Microstructural observations 

The surface of the thin films was observed using JEOL JSM-6300 field-

emission scanning electron microscope (FESEM) in a magnification range 

of X5000050 −  in order to investigate the effect of the amount of solvent, the 

chelating agent (Ethyl acetoacetate) and water on the quality of the films and the 

formation of defects such as discontinuities and cracks.  

The essential components of a scanning electron microscope are shown 

schematically in figure 3.3.  

Scanning electron microscopy is a non-destructive surface imaging and 

analysis technique in which the sample surface is scanned with an electron beam. 

The energy of the beam can be adjusted in the range of 0.5-40 KeV. The 

interaction of electrons with atoms produces different types of signals, mostly in 

form of secondary electrons, which give information about surface topography, 

chemical composition and other properties of the material. The interaction 
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volume depends on the energy of the beam as well as the atomic number and the 

density of the specimen. The data is normally collected over a selected area of 

the sample surface and a two-dimensional image is produced.  
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Figure 3.3 Schematic illustration of scanning electron microscope components [106] 

In a standard electron microscope, electrons are mostly generated by heating a 

cathode. In a field-emission scanning electron microscope, however, a cold 

source is employed, i.e. the emission of electrons is caused by a strong electric 

field applied to the cathode. Since the electron beam produced by a field-

emission source is considerably smaller in diameter compared to the one of a 

normal electron microscope, a much higher resolution is obtained and the 

quality of the images is significantly improved.  

The JEOL-6300 SEM uses a field emission gun with a cold cathode. The 

resolution is 1.5 nm in secondary electron imaging (SEI) and 3.0 nm in 

backscattered electron imaging (BEI) at 30 kV. The airlock specimen chamber 
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allows up to a 32 mm diameter sample, and the size can also be up to 150 mm 

without the airlock. 

Since magnesium oxide substrates and the ceramic thin films both have 

insulating properties, the edges of each sample was joint to the sample holder 

using conductive carbon cement and the surface was coated with carbon in order 

to prevent the charging up of the surface during imaging.  

3.5 Chemical analysis 

3.5.1 Energy dispersive spectroscopy 

The relative quantities of aluminium and calcium were measured using energy 

dispersive X-ray spectroscopy (EDS). The measurements were done using 

JEOL JSM-6300 field emission scanning electron microscopy.  

Energy dispersive X-ray spectroscopy is an elemental analysis technique in 

which an electron beam hits the sample resulting in the excitation of an inner-

shell electron. The hole formed as a result is then filled with an outer-shell 

electron and the energy difference between the outer and inner shells is released 

as an X-ray. A detector converts the emitted X-rays into voltage signals which 

are measured and analysed. The accuracy of the analysis is affected by various 

factors such as over-voltage settings, overlapping of the peaks and the nature of 

the sample. In addition, elements with atomic numbers less than 4 cannot be 

detected by this method. This type of analysis is especially useful in quantitative 

or semi-quantitative determination of the chemical composition.  

The samples used for this purpose were coated with carbon to prevent the 

overlapping of the peaks of the conductive coating with those of the actual 
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material being tested. An electron-beam voltage of 10 KV was chosen for 

imaging and chemical analysis. 

3.5.2 X-ray diffraction 

X-ray diffraction (XRD) analysis was employed for the crystallized samples 

in powder form using Siemens D5000 X-Ray diffractometer. In addition, the 

diffraction patterns of the dried gel were obtained in a temperature range of 

C120025 o−  in the course of crystallization treatment using a Panalytical Xpert 

Pro diffractometer. 

X-ray diffraction is a non-destructive technique to determine the 

crystallographic structure, chemical composition and physical properties of 

materials by analysing the intensity of the scattered X-ray beam as a function of 

the incident beam and scattered beam angle [107]. 

In powder diffraction method, a fine powder is prepared from the crystal and 

placed in a beam of monochromatic X-ray. The reason for using an X-ray beam 

is that the diffraction only occurs when the wavelength of the incident beam is 

of the same order of magnitude as the distance between the atomic arrays in the 

crystal (typically ~1-1000 Å). Each powder particle acts as a tiny crystal. For 

each crystallographic plane, there are some particles in the correct orientation to 

reflect the beam. Upon the X-ray strike, arrays of atoms forming the crystal 

produce secondary waves in different directions. The secondary waves mostly 

cancel each other. However, a few of the scattered waves in specific directions 

are added together forming a scattered beam. A schematic illustration of 

destructive and constructive scattering is shown in figure 3.4. 
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Figure 3.4 Schematic illustration of (a) constructive scattering which satisfies Bragg’s law 

and (b) destructive scattering of waves which cancel each other [108] 

The diffraction takes place only at those particular angles of incidence which 

satisfy the Bragg’s law [107]: 

θ=λ sind2n  (3.1) 

where d is the distance between the scattering planes, θ is the incident angle, n 

is an integer with the minimum value of 1 and λ is the wavelength of the 

incident beam.  

In order to devise the Bragg’s law, either the incident angle or the wavelength 

is continuously varied during the experiment. In powder diffraction method, the 

wavelength is fixed and the incident angle is the variable. The angle between the 

diffracted and the transmitted beam is always 2θ, also known as the diffraction 

angle, and this angle is usually measured experimentally. 

Samples in powder form were selected for XRD measurements. Since the 

thickness of the thin films was very small compared to that of the substrate, the 

X-ray diffraction spectra of the thin film samples showed the diffraction 
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patterns of the magnesium oxide substrate rather than those of the film. 

Therefore, the X-ray diffraction technique was only applicable to the powder.  

3.5.3 X-ray photoelectron spectroscopy 

Thin film samples were analysed using X-ray photoelectron spectroscopy 

(XPS) in order to determine the chemical composition of the ceramic films. The 

measurements were done using a VG ESCALAB 210 Photoelectron 

Spectrometer (figure 3.5).  

 

Figure 3.5 X-ray photoelectron spectrometry setup 

X-ray photoelectron spectroscopy technique uses X-rays within the photon 

energy range of 200 to 2000 eV in order to analyse the chemical composition 

and electronic state of the materials. The sample is hit by an X-ray source with a 
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fixed energy. The photon is absorbed by an atom causing the ionization of the 

atom and the emission of an inner-shell electron. A schematic illustration of this 

phenomenon is shown in figure 3.6. 
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Figure 3.6 Schematic illustration of X-ray photoelectron spectroscopy [109]  

An ultra-high vacuum is essential in order to prevent the collision of emitted 

electrons with the gas molecules. The obtained spectrum is a plot of the number 

of electrons detected per unit of time versus the binding energy of the electrons. 

The electrons that escape from 1 to 10 nm of the material surface are counted. 

Each element has a characteristic set of peaks in the spectrum which is 

determined by the photon energy and respective binding energies. The intensity 

of the peaks is also related to the concentration of the elements. Therefore, this 

technique is considered as a quantitative composition analysis.  

The electron binding energy of the emitted electrons can be determined by 

Rutherford equation [110]: 
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( )ϕ+−= KineticPhotonBinding EEE  (3.2) 

where BindingE  is the binding energy of the electron, PhotonE  is the energy of the 

incident X-ray photons, KineticE  is the kinetic energy of the emitted electrons and 

φ is the work function of the spectrometer. 

The thin films were tested before and after heat treatment to verify the 

presence of the compounds which are theoretically expected to be formed in the 

dried gel and the final product. The X-ray source was a non-monochromatic Al 

Kα source (1486.6 eV), operated with an X-ray emission current of 20 mA and 

an acceleration voltage of 12 kV. The take-off angle was fixed at 90o with the 

nominal analysis depth of 10 nm. The area corresponding to each acquisition 

was a rectangle of mm2mm5 × . Each analysis consisted of wide survey scans 

(pass energy 50 eV, 1.0 eV step size) and high-resolution scans (pass energy 

,eV50  eV05.0  step size) for component speciation. The numbers of scans were 

10 and 5 for the survey spectra and each expansion respectively. The binding 

energies of the peaks were normalized using the position of the C1s peak at 

284.5 eV. 

3.5.4 Fourier transform infrared spectroscopy: Attenuated total 

reflectance 

The phase formation of the thin films as a function of crystallization treatment 

was further investigated via a Spotlight 400 and a Spectrum 100 FTIR systems 

provided by Perkin Elmer and equipped with diamond attenuated total 

reflectance (ATR) accessories. The effect of heat treatment in a reducing 

atmosphere of H2-N2 on the FTIR response of the material was also studied.  



 104

Fourier transform infrared spectroscopy is a technique in which an infrared 

spectrum of absorption, emission, photoconductivity or Raman scattering of a 

sample is obtained. The main difference between this method and absorption 

spectroscopy is that an incident beam containing different frequencies is used 

rather than a monochromatic light beam. During each step of the measurement, 

the intensity of the absorbed beam is measured for a set of incident beam 

frequencies selected by the device. Once the absorption measurement is 

complete for the whole frequency range of the incident beam, the obtained raw 

data is processed and given as the light absorption intensity for each 

wavelength. The process required to convert the raw data to the final result is in 

fact an algorithm known as Fourier transform.  

Traditionally, infrared spectrometers work by means of transmitting the 

infrared light through the sample. The attenuated total reflectance technique, 

which has developed in recent years, overcomes the challenging issues 

surrounding the traditional infrared spectroscopy, which mainly include sample 

preparation and spectral reproducibility. 

An attenuated total reflectance accessory measures the changes in a totally 

internally reflected beam during the light-sample interaction. The principle of 

ATR system operation is shown schematically in figure 3.7.   
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Figure 3.7 Schematic illustration of ATR system operation [111] 

In this technique, an infrared beam is directed to a dense crystal with a high 

refractive index, such as diamond, at a certain angle. The internal reflectance of 

this crystal creates an evanescent wave that enters the sample, which is in 

contact with the crystal. The penetration of the wave into the sample does not 

normally exceed a few microns ( )m55.0 μ− . The absorption of the infrared 

beam in certain wavelengths causes the attenuation of the wave, the energy of 

which is passed back to the infrared beam and exits from the opposite side of 

the crystal. In order for this method to be effective, the sample must be in direct 

contact with the crystal. In addition, the refractive index of the crystal must be 

significantly higher than that of the sample being tested. 

Since FTIR-ATR technique mostly gives information about the surface of the 

material and the depth of penetration is very small, it was found to be very 

useful in studying the phase analysis of the spin-coated thin films with 

thicknesses smaller than .m5~ μ  The infrared spectra of the films were 

obtained in a range of 1cm4000400 −−  with a resolution of 1cm4 − and 

accumulation of 100 scans per test. A sample area of mm3mm3 × was in 

contact with the diamond for each measurement and the data was collected at 
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least 5 times from randomly selected areas of the surface in order to ensure the 

reproducibility of the results. The ATR stage and the surface of the diamond 

crystal were cleaned with ethanol before each measurement to prevent the 

contamination from affecting the results.  

3.5.5 Raman spectroscopy 

The chemical composition of the drop-casted thin films and powder was 

studied by means of Nicolet Almegra XR Raman spectrometer provided by 

Thermo Scientific. The spectra were obtained in a range of 1cm420040 −−  for 

wavenumbers using wavelengths of 532 and 785 nm for the laser beam. The 

formation of C12A7 and other possible calcium aluminate phases in the powder 

and thin films as a function of crystallization treatment temperature were 

determined.  

Raman spectroscopy is a non-destructive spectroscopic technique used to 

study the vibrational, rotational and other low-frequency modes in a system 

based on the inelastic scattering of a monochromatic light. A laser light, usually 

in the visible, near-infrared or near-ultraviolet range, is used as the incident 

beam and interacts with molecular vibrations, phonons and other excitations. 

The result of these interactions is an upward or downward shift of the laser 

energy which gives information about the vibrational modes of the system.  

The scattered beam is collected by a lens and the wavelengths close to the 

laser line, which are attributed to the elastic Rayleigh scattering of the laser 

beam, are filtered via a spectrophotometer.  The remaining wavelengths are then 

sent to a detector.  
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The interaction between the laser beam and the electrons and bonds of a 

molecules results in an excitation of the molecule from the ground state to a 

virtual energy state. The relaxation of the molecule is accompanied by the 

emission of a photon and a change of rotational or vibrational state of the 

molecule. The energy difference between this new state and the original state 

causes a shift in the emitted photon frequency.  

A schematic illustration of vibrational energy states involved in Raman 

scattering is shown in figure 3.8.  
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Figure 3.8 Schematic illustration of the vibrational energy states involved in Raman signal. 

The thickness of the arrows is a rough indication of the signal strength [112] 

Raman scattering is considered to be an inelastic scattering due to an energy 

transfer during the photon-molecule interaction. When the incident photon with 

frequency of 0ν is absorbed by a Raman-active molecule in the ground 

vibrational state, some of the photon energy with frequency of mν is transferred 

to the molecule and the scattered light is shifted to a lower frequency 

of .m0 ν−ν  This shift in the frequency is also known as Stokes shift.  
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If the photon energy is absorbed by a molecule which is already in the excited 

state, the excess amount of energy is released from the molecule upon relaxation 

and the resulting frequency of the scattered light is increased to ,m0 ν+ν or anti-

stokes frequency.   

The Raman shift is typically expressed in wavenumbers. The following 

formula relates the wavenumbers of shift in the spectrum to the spectral 

wavelengths: 
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where ωΔ is the Raman shift in cm-1, and oλ and 1λ are the excitation and 

Raman spectrum wavelengths  in nm, respectively.  

Since the vibrational information obtained from Raman spectroscopy is 

specific to the chemical bonds and the symmetry of the molecules, it can be 

useful in order to identify the chemical composition of the material.  

3.6 Differential scanning calorimetry/ thermal gravimetric 

analysis  

The phase transformations/reactions during the crystallization treatment of the 

dried gel were identified in a temperature range of C120025 o− via differential 

scanning calorimetry/ thermal gravimetric technique using a  Q600 SDT 

(simultaneous DSC/TGA) provided by TA Instruments.  



 109

Differential scanning calorimetry (DSC) is a thermo-analytical technique that 

measures the difference in the amount of heat required to increase the 

temperature of a sample and a reference as a function of temperature.  

When a sample goes through a physical transformation, such as a phase 

transition, the amount of heat flow needed to increase the sample temperature 

with the same rate as the reference will change. The change in the heat flow 

depends on whether the transformation is exothermic or endothermic. An 

endothermic transformation results in more heat flow towards the sample and 

vice versa. The amount of the absorbed or released heat flow during each 

transition can be measured.  

Thermal gravimetric analysis (TGA) determines the changes in the weight as a 

function of temperature. A derivative weight loss curve can also be obtained 

that emphasizes the points in which weight loss is more significant. This 

technique is specifically useful in order to determine the amount of absorbed 

moisture, the level of organic and inorganic components, and the decomposition 

of solvent residues in materials. 

3.7 Optical properties 

3.7.1 Absorbance and reflectance measurements at room temperature 

The absorbance and reflectance spectra of the C12A7 thin films were obtained 

at room temperature in the wavelength range of 200-900 nm (corresponding to 

the photon energy of 1.38 to 6.2 eV) using Lambda 950 UV/Vis/NIR 

spectrometer provided by Perkin Elmer.  
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Absorption spectroscopy is a technique which measures the optical absorption 

of materials as a function of frequency or wavelength. Ultraviolet-visible 

spectroscopy, also known as UV-Vis spectroscopy, is referred to absorption 

spectroscopy in the ultraviolet-visible spectral range. In other words, the 

incident light wavelength is varied in the range of visible and near-ultraviolet or 

near-infrared regions.  

The molecules undergo electronic transitions upon absorption of light and the 

photon energy of the electrons excitation from the ground state to the excited 

state is measured. The absorption spectrum is normally a plot of absorbance or 

transmittance versus wavelength. The relationship between the absorbance and 

incident/transmitted light can be expressed by Beer-Lambert law [113]: 

⎟⎟
⎠

⎞
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⎝

⎛
−=

o
10 I

IlogA  (3.4) 

where A is the absorbance and I and Io are the transmitted and incident light 

intensities respectively. 

The absorbance is related to transmittance according to the following 

equation: 
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T%logA 10  (3.5) 

where T is the transmittance usually expressed in percentage. 

Some of the transmitted beam might deviate in relation to the incident beam. 

A correct transmittance measurement is only possible when the deviated 

transmitted beam is also taken into account, otherwise the transmitted beam 

might not be fully picked up resulting in a loss of output signal. The overall 
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transmittance measurement, i.e. the sum of direct and diffuse transmittance can 

only be measured using an integrating sphere. The use of an integrating sphere 

is also necessary when measuring the total reflectance. A schematic 

configuration of the integrating sphere in transmission and reflection modes 

and the position of the sample in each type of measurement are shown in figure 

3.9. 
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Figure 3.9 Integrating sphere configuration and the sample position in transmission and 

reflection modes [114] 

Once the transmittance and reflectance are measured, the value of absorption 

percentage, which is the percentage of the incident beam that is neither reflected 

nor transmitted, can be calculated. 

3.7.2 High-temperature optical absorption 

The absorbance of the thin films was measured in a temperature range of 

C30025 o−  in order to investigate the effect of temperature on the optical 

absorption properties of the films. A U-3010 UV-Vis spectrometer provided by 
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Hitachi and equipped with a hot chamber and a Mettler FP 80 central processor 

was used for this type of measurement. The absorbance spectra of the samples 

were obtained for temperature intervals of 10 oC in a wavelength range 

of .nm900200 −  Figure 3.10 shows the setup used for this type of measurement.  

Temperature
Controller 

Hot 
Chamber 

 

Figure 3.10 High-temperature UV-Vis spectrometry setup 
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Chapter 4 

 

Microstructure and chemical 

composition 

 

4.1 Chemical stability of the solution 

The transparency of a solution over time is shown in figure 4.1. The molar 

ratios of the ingredients used for the preparation of this solution are also given. 

   
1 day after preparation 1 week after preparation 1 month after preparation 

Solution ingredient EAA to ASB Solvent to ASB Solvent to Ca(NO3)2 H2O to ASB 

Molar ratio 2:1 10:1 10:1 5:1 

Figure 4.1 Transparency of the prepared solution versus time, the solution ingredients and 

the molar ratios used for solution preparation. 
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As is clear from the figure, the transparency of the solution was preserved for 

at least one month after the preparation. No special routine, such as addition of 

acid, sonicating or continuous stirring, was required in order to maintain the 

chemical stability of the solution. Similar results were obtained for solutions 

prepared with different amounts of ethyl acetoacetate, water or solvent, and only 

the quality of the films (after complete gelation) was affected by different 

amounts of ingredients. All the variables considered in the solution recipe are 

given in section 3.1.  

4.2 Thin film surface microstructure 

The microstructures of the spin-coated thin films on MgO substrates were 

observed by scanning electron microscopy. Figure 4.2 shows the microstructure 

of the thin films prepared with two different methanol-to-ASB molar ratios of 

40:1 and 20:1 and water-to-ASB molar ratio of 20:1. The solvent-to-Ca(NO3)2 

molar ratios used for all solution recipes were the same as solvent-to-ASB 

ratios.  

As shown in figure 4.2(a), the thin film prepared with a molar ratio of 40:1 for 

methanol-to-ASB forms islands on the surface of the substrate and the film is 

discontinuous. 

The discontinuity of the film might be attributed to the high molar fractions of 

the solvent and water in the solution. If the amount of solvent and water added 

to the solution is more than the required amount for sol stabilization and 

hydrolysis, the excess solvent and water dilute the solution and reduce the 

amount of main precursors. 
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Figure 4.2 Microstructures of the thin films prepared with methanol-to-ASB molar 

ratios of (a) 40:1 and (b) 20:1. The molar ratios of 3:1 for EAA-to-ASB and 20:1 for water-

to-ASB were used for both solutions. The films were heat treated at 1300 oC for 2 hr in air 

atmosphere. 

The dried gel goes through several phase transformations and chemical 

reactions during the heat treatment, such as the evaporation of water and 

solvent, dehydration and decomposition of the ingredients and oxidation of the 

chelating agent. A diluted solution does not contain sufficient ingredients 

needed for the formation of a continuous crystalline film. As a result, the 

Precipitates 

Dendrites 
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thickness of the film is significantly reduced and separate islands of crystals are 

formed on the substrate instead of a continuous film [115].  

The microstructure of a film prepared from the solution with solvent-to-ASB 

molar ratio of 20:1 is shown in figure 4.2(b). There are some clear differences 

observed between the microstructures of the two samples. The decrease in the 

amount of added solvent, i.e. an increase in the molar fractions of the main 

ingredients, results in a higher surface area of the substrate to be covered by the 

crystallized material. However, a continuous film is still not formed. 

Furthermore, a dendritic structure is observed. Dendritic crystal growth is a type 

of non-equilibrium pattern formation which is caused by the shape instability 

during the diffusion of chemical constituents toward and away from the crystal 

front and results in the formation of small bumps. These bumps concentrate the 

diffusive fluxes ahead of them and grow faster than a flat surface and form into 

fingers, also known as dendrites [116].  

The heat treatment of a gel at high temperatures results in the chemical 

evolution of the gel as well as the crystallographic reorganization of the solid 

network. The heat treatment at intermediate temperatures (typically 100 

to )C1000 o  produces a crystalline metastable phase which eventually 

transforms to the most stable phase at higher temperatures. The formation of 

stable thermodynamic phases from the intermediate phases often occurs via 

nucleation and growth mechanism, while the formation of metastable phases at 

intermediate temperatures is less likely to occur through nucleation and growth. 

The nucleation of a new phase involves the diffusion of both cations and anions, 

and anions such as oxygen require high activation energy for diffusion due to 

their big size. Therefore, new crystalline phases which are formed at 



 117

intermediate temperatures maintain the same crystallographic orientation as the 

initial phases in the original gel [117]. 

Several aggregation models have been proposed in order to explain the 

formation of dendrites and the mechanisms responsible for the dendrites to 

appear in different shapes. A schematic illustration of different types of 

dendritic growth is shown in figure 4.3.  
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Figure 4.3 Schematic illustration of different types of aggregation growth [118] 

 

In monomer-cluster aggregation growth, the monomers get separated 

randomly far from a central cluster and travel by diffusion mechanism joining 

the growing cluster. In a diffusion-limited aggregation of this type, the 

monomers cannot penetrate deep into the cluster and the depth of penetration is 

effectively controlled by the arms of the growing cluster. Therefore, the growth 

occurs preferentially at the exterior sites and the density of the cluster decreases 
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radially from the centre of the mass. In a reaction-limited aggregation, however, 

there is a barrier to bond formation between a monomer and the cluster which 

reduces the condensation rate. This means that not all the collisions between a 

monomer and a cluster will result in the formation of a bond between them. The 

unoccupied sites are selected randomly and occupied with equal probability, and 

compact, smooth clusters are formed as a result.  

In cluster-cluster aggregation growth, on the other hand, a sea of monomers 

with random movements join and form a collection of clusters that grow by 

condensation reactions with each other and other monomers. The result of this 

type of growth is the formation of very open structures with no obvious centres 

[118].  

A comparison between the microstructure of the sample (figure 4.2(b)) with 

the aggregation models (figure 4.3) shows that dendrites are mostly formed via 

monomer-cluster aggregations. Furthermore, precipitates and cracks seem to be 

the preferential sites for the nucleation of the monomers which grow into 

dendrites as the heat treatment continues [119]. In order to verify this 

observation, the microstructures of the films were obtained before and after heat 

treatment, as shown in figure 4.4.  
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Figure 4.4 Microstructure of the thin film (a) before and (b) after heat treatment at 

C1300 o for 2 hr. The molar ratios of 20:1 for methanol-to-ASB, 3:1 for EAA-to-ASB, and 

20:1 for water-to-ASB ratios were chosen for the preparation of the solution. 

 

The microstructure of the dried gel in the as-prepared state clearly shows the 

presence of cracks, while the precipitates seem to be formed during the heat 

treatment of the film. The formation of cracks can be attributed to the presence 

of network structures in the solution and the cohesive force within the film 

being stronger than the adhesive force at the interface between the film and the 
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substrate. The reason for this behaviour is that the OH groups in the film, which 

are necessary for the adhesion to the substrate, are reduced considerably via 

hydrolysis and condensation [120]. The presence of cracks at this point can 

further develop the discontinuity of the film during the heat treatment as a large 

amount of the remaining ingredients are removed through evaporation and 

decomposition. In order to prevent or minimize the formation of cracks, the 

tensile stress of the film needs to be reduced. Organic modification of alkoxides, 

application of chelating agents in the solution, and low degree of alkoxide 

hydrolysis are some of the possible methods suggested for the structural 

relaxation and hence the prevention of cracks from appearing during the drying 

and heat treatment processes [81].  

The formation of precipitates, on the other hand, might be due to the removal 

of the remaining chelating agent and the precipitation of aluminium alkoxide. 

Since the amount of water is the main factor in controlling the hydrolysis of the 

alkoxide, a decrease in the molar fraction of water in the solution might prevent 

the localised precipitation. On the other hand, a decrease in the amount of 

solvent with respect to the main ingredients, aluminium sec-butoxide and 

calcium nitrate, from which calcium aluminate compound is formed, might 

improve the continuity of the film.  

During the first step of the modification based on these observations, water-to-

ASB molar ratio was reduced while keeping methanol-to-ASB ratio constant 

(20:1). The EAA-to-ASB molar ratio of 3:1 was found to have no significant 

advantage over the molar ratio of 2:1 in terms of improving the quality of the 

films. Therefore, this molar ratio was fixed to a practical ratio of 2:1 mentioned 
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in the literature [77]. Figure 4.5 shows the microstructure of a heat treated film 

which was prepared using the new solution recipe.  

 

Figure 4.5 Microstructure of the thin film with a water-to-ASB molar ratio of 5:1 and 

methanol-ASB ratio of 20:1. The film was heat treated at 1300 oC for 2 hr in air 

atmosphere. 

Although the precipitates are absent from the structure, the film remains 

discontinuous with dendrites developing on the surface of the substrate. It seems 

that reducing the amount of water from 20:1 to 5:1 improves the uniformity of 

the film by increasing the homogeneity of the solution and preventing the 

undesirable precipitation of the products during the heat treatment. However, 

the water-to-ASB molar ratio of 5:1 does not seem to improve the continuity of 

the films.  

In order to investigate the effect of solvent on the quality of the films, the 

molar ratio of methanol to ASB was reduced to 5:1 while keeping the water-to-

ASB ratio at 5:1. The microstructure of the obtained thin film after the 

crystallization treatment is shown in figure 4.6.   



 122

 

Figure 4.6 Microstructure of the thin film prepared with a solution containing a molar 

ratio of 5:1 for methanol-to-ASB and water-to-ASB. The film was heat treated at 1300 oC 

for 2 hr in air atmosphere. 

The result of the microstructural observation shows that decreasing the molar 

ratio of methanol to ASB from 20:1 to 5:1 leads to a formation of a continuous 

film. The uniformity of the film, however, is drastically deteriorated. The film is 

scaled with a loss of transparency, probably due to a high concentration of the 

ingredients. It was concluded that the molar ratio of solvent to ASB should lie in 

between 20:1 and 5:1.  

In another attempt to improve the uniformity and continuity of the film, 

isopropyl alcohol was used as an alternative to methanol which has been 

reported to be a good mutual solvent for aluminium sec-butoxide and calcium 

nitrate [68]. The microstructure of the film using isopropyl alcohol as the 

solvent with a solvent-to-ASB molar ratio of 10:1 is shown in figure 4.7.   
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Figure 4.7 Microstructure of the thin film prepared with a solution containing isopropyl 

alcohol as the solvent. The molar ratio of 10:1 and 5:1 were chosen for isopropyl alcohol-

to-ASB and water-to-ASB respectively. The film was heat treated at 1300 oC for 2 hr in air 

atmosphere. The figures were taken from the same sample with different magnifications. 
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At a high enough temperature, the transformation of the intermediate phases 

progresses towards the most stable thermodynamic phase via nucleation and 

growth mechanism, the temperature of which depends on the type of ceramic as 

well as the sol-gel process selected. The transformation to the most stable phase 

often involves a significant change in the anion packing. When the temperature 

is high enough for the anions to diffuse and reorganize, the grains of the stable 

phase grow quickly at the expense of the small crystallites of the previous 

metastable phase [117]. As can be seen from the above figures, the quality of 

the film is significantly improved by using a proper amount of isopropyl alcohol 

as the solvent. This can be attributed to the better solubility of aluminium sec-

butoxide in an alcohol with a chemical composition close to the one of the 

parent alcohol (butyl alcohol) [117]. The surface continuity of the film is 

preserved even after the heat treatment and no cracks or scales are observed. A 

completely crystallized structure is formed with well-defined grain boundaries 

and no trace of dendrite structure. Therefore, the solution recipe containing 

isopropyl alcohol is chosen as the proper solution for the fabrication of uniform 

continuous films. The details of the ingredients used in the preparation of this 

solution are listed in table 4.1.  

The thickness of the films prepared by the optimum solution recipe was 

determined to be a few microns m5.6( μ for a thin film spin coated at a spinning 

rate of 1000 rpm) which is considerably higher than the critical thicknesses 

generally reported for sol-gel derived thin films [3, 71].  
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Table 4.1 Molar ratios and the total weight for the improved solution recipe 

Solution 
ingredient 

Molar ratio with 
respect to ASB 

Molar ratio with 
respect to Ca(NO3)2 

Total weight 

(g) 

Aluminium sec-
butoxide (ASB) - 1.67: 1 4 

Ca(NO3)2 1:1.67 - 3.3 

Ethyl acetoacetate 
(EAA) 2:1 - 4.24 

Water 5:1 - 1.46 

Isopropyl alcohol 10:1 10:1 18 

 

4.3 Chemical analysis of the thin films and powder 

4.3.1 Energy dispersive spectroscopy 

The energy dispersive spectrum of a crystalline thin film is shown in figure 

4.8. The weight percent of the identified elements are given in table 4.2. 
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Figure 4.8 Energy dispersive spectrum of C12A7 thin film 
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Table 4.2 Weight percent of the elements in the thin film identified by energy dispersive 

spectroscopy 

Element O Mg Al Ca 

Weight percent, wt% 41.46 49.23 4.36 4.95 

 

According to the above spectrum, the film mainly consists of aluminium, 

calcium and oxygen. The presence of magnesium is attributed to the signal 

obtained from the MgO substrate. The aluminium-to-calcium weight ratio at 

0.88 is comparable to the theoretical value of 0.785 for C12A7.  

4.3.2 X-ray photoelectron spectroscopy 

The X-ray photoelectron spectra of the dried gel and the crystallized film are 

shown in figures 4.9 and 4.10. The results were obtained for the samples before 

and after heat treatment in order to determine the phases present in the dried gel 

and the final material.  

A comparison between the results obtained from this experiment and the 

binding energies reported in the literature is presented in table 4.3.  

The results of the analysis show that aluminium hydroxide ( ( )3OHAl ) is 

formed in the dried film before the annealing treatment is carried out. The 

presence of aluminium hydroxide is expected as the product of aluminium sec-

butoxide hydrolysis. The peak at 289.46 eV belongs to the O-C=O bond of ethyl 

acetate (MeCOOEt), which is formed as a result of aluminium sec-butoxide 

chelation with ethyl acetoacetate and remains bonded to aluminium after 

exposure to air.  
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Figure 4.9 X-ray photoelectron spectrum of the thin film before heat treatment 
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Figure 4.10 X-ray photoelectron spectrum of the thin film after a heat treatment at 

1300 oC for 2 hr in air atmosphere 
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Table 4.3 Binding energy peaks and the phases formed in the film before and after heat 

treatment 

XPS peaks 
Sample treatment Element 

Experiment Reference 
Phase 

Al 2p 73.5 73.9 [121] Al(OH)3 

Ca 2p 347.5 348.2 [122] 

N 1s 407.5 407.4 [122] 
Ca(NO3)2 

C 1s 289.46 289.2 [123] MeCOOEt 

Before annealing 

Mg2p 50.4 50.2 [124] MgO 

Al 2p 74.381 74.5 [125] 

Ca 2p 347.0 347.2 [125] 

O 1s 531.4 531.5 [125] 

12CaO.7Al2O3 

After annealing 

Mg 2p 50.7 50.5-50.8 
[126] MgO 

 

The XPS spectrum of the thin film after annealing treatment corresponds to 

the binding energies of C12A7 compound. The peak related to O-C=O bond has 

completely disappeared which shows the decomposition of the chelating agent 

during the heat treatment (as previously mentioned in section 2.6.6). No 

separate peak was observed for the extra-framework oxygen site probably due 

to the binding energies of the O2- 1s level being too close to that of the lattice 

and/or the concentration of these species being too small compared to the ones 

of the framework oxygen ions [11]. 

4.3.3 Room-temperature powder X-ray diffraction analysis  

The effect of heat treatment temperature on the formation of C12A7 powder 

from the dried gel was investigated in a temperature range between 700 to 

C1300 o  using powder X-ray diffraction technique. 
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The X-ray diffraction pattern of the dried gel after a heat treatment at C700 o  

for 15 hr is depicted in figure 4.11.  
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CaO
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C12A7

 
Figure 4.11 X-ray diffraction pattern of the dried gel after a heat treatment at 700 oC for 

15 hr 

The result of the XRD analysis shows that the powder mainly contains 

crystallized C12A7 and CaO, while some of the powder remains in the 

amorphous state even after a long heat treatment duration of 15 hr. It seems that 

the temperature of 700 oC is high enough for the C12A7 phase to start forming. 

However, a complete transformation from the dried gel to a crystallized phase is 

unlikely to occur in a reasonable heat treatment duration. It has been mentioned 

earlier (section 2.6.6) that the conversion of calcium nitrate to calcium oxide 

starts at C500~ o followed by the crystallization of the oxide [68]. Therefore, 

the presence of crystalline CaO is expected at this temperature. No free 

aluminium oxide phase is observed which shows that the oxide formed at the 

initial stage of the heat treatment is completely converted to C12A7. Since 
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calcium aluminate compounds are thermodynamically more stable at higher 

temperatures, it is reasonable to expect that an increase in the heat treatment 

temperature will result in the complete crystallization of the powder and 

formation of calcium aluminate compounds instead of CaO. Figure 4.12 shows 

the X-ray diffraction pattern of the dried gel after a heat treatment at 1100 oC for 

6 hr.  
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Figure 4.12 X-ray diffraction pattern of the dried gel after a heat treatment at 1100 oC for 

6 hr 

Increasing the heat treatment temperature to 1100 oC resulted in a significant 

change in the X-ray diffraction pattern of the product. A major increase in the 

intensity of the C12A7 diffraction peaks shows that increasing the heat 

treatment temperature is in favour of C12A7 formation. The disappearance of 

CaO and the formation of secondary phases, CA and C3A, further confirm the 

formation of crystallized calcium aluminate phases instead of free calcium oxide 

and aluminium oxide.  The crystal structures of these two calcium aluminate 

compounds are introduced in section 2.1.1. 
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The X-ray diffraction pattern of the dried gel after a heat treatment at C1300 o  

for 6 hr is depicted in figure 4.13.  
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Figure 4.13 X-ray diffraction pattern of the dried gel after a heat treatment at 1300 oC for 

6 hr 

The results of the analysis showed the formation of C12A7 along with CA and 

C3A. Although the X-ray diffraction patterns after two different heat treatments 

seem to be quite similar, there are some differences observed. A comparison 

between the two graphs is shown in figure 4.14.  

As can be seen from the figure, an increase in the heat treatment temperature 

from 1100 to 1300 oC resulted in the preferable formation of C12A7 and CA 

compared to C3A.  

According to previous investigations [127], C12A7 is the first product of the 

diffusion and crystallization. As the temperature is increased, further diffusion 

of anions and cations results in the formation of CA. When all the free alumina 

is converted into CA, C3A begins to form.  
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Figure 4.14 Comparison between the X-ray diffraction patterns of the dried gel after heat 

treatment at 1100 and 1300 oC 

The conversion into stoichiometric phases continues until all free CaO and 

Al2O3 are consumed, at which point C12A7 is formed at the expense of CA and 

C3A (figures 4.13 and 4.14). A complete transformation of CA and C3A to 

C12A7 requires a heat treatment at a temperature of 1350 oC or higher for at 

least 48 hr, and even after long-term treatments, the product might still contain 

secondary phases due to agglomeration, irregularity of the powder and poor 

sinterability [128]. 

Table 4.4 shows the d-spacings calculated from the X-ray diffraction pattern 

of the powder after a heat treatment at 1300 oC in comparison with the ones 

reported in the literature. The lattice indices have also been determined.  
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Table 4.4 D-spacings and the lattice indices of the dominant reflections of C12A7 [129] for 

the dried gel after a heat treatment at 1300 oC for 6 hr. The angles marked with * and ** 

belong to the diffraction peaks of CA [130] and C3A [131] phases respectively.  

2θ (degrees)  d (Å) Indices 

Observed Reference Observed Reference h k l 

18.023 18.052 4.916 4.910 2 1 1 

18.996* 19.012 4.666 4.664 -1 1 2 

20.867 20.935 4.254 4.240 2 2 0 

21.720** 21.749 4.087 4.083 2 3 0 

23.352 23.391 3.805 3.800 3 1 0 

27.764 27.769 3.209 3.210 3 2 1 

29.727 29.726 3.001 3.003 4 0 0 

30.057* 30.085 2.969 2.968 2 2 0 

31.378* 31.350 2.847 2.851 -3 0 1 

33.286 33.280 2.689 2.690 4 2 0 

35.019 34.967 2.559 2.564 3 2 2 

36.578 36.588 2.454 2.454 4 2 2 

37.367* 37.468 2.404 2.398 3 1 3 

38.211 38.117 2.352 2.359 4 3 1 

41.128 41.069 2.192 2.196 5 2 1 

46.530 46.485 1.949 1.952 6 1 1 

47.612** 47.596 1.908 1.909 8 0 0 

49.144 49.071 1.852 1.855 5 4 1 

52.758 52.650 1.733 1.737 4 4 4 

53.840 53.819 1.701 1.702 7 1 0 

55.069 54.972 1.666 1.669 6 4 0 

56.261 56.103 1.633 1.638 7 2 1 

57.325 57.168 1.605 1.610 6 4 2 

59.215** 59.223 1.559 1.559 8 4 4 

60.655 60.503 1.525 1.529 5 6 1 

61.737 61.526 1.505 1.506 8 0 0 

62.755 62.634 1.479 1.482 7 4 1 

66.983 66.817 1.395 1.399 8 3 1 

69.909 69.820 1.344 1.346 8 4 2 
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The mean crystallite size and the microstrain of the lattice can be determined 

by relating these parameters to the width of the diffraction peaks.  

A careful observation of the diffraction patterns of the material shows that the 

diffraction peaks are broad in width. The broadening of the diffraction peaks 

can be related to a number of reasons including the nature of the crystal and the 

instrumental factors. For instance, the size of the crystallites and the lattice 

strain due to the presence of defects can lead to diffraction peak broadening. 

Scherrer has proposed a simple relationship between the crystallite size and the 

broadening of the diffraction peaks as follows [132]: 

θ
λ

=β
cosL
K

size  (4.1) 

where K is the shape factor with a value close to unity, λ  is the X-ray 

wavelength (0.154 nm for αKCu ), θ is the Bragg angle and sizeβ  is the full 

width at half maximum (FWHM) intensity of the diffraction peaks in radians 

due to size effects. A rather simple formula is also suggested by Stokes and 

Wilson, which accounts for the effect of lattice microstrain on the broadening of 

the diffraction peaks [133]: 

θη=β tanstrain  (4.2) 

where η  is the lattice microstrain, θ  is the Bragg angle and strainβ  is the full 

width at half maximum intensity due to strain effects. 

It is often possible to express the total peak broadening as the sum of size 

broadening and strain broadening as suggested by Williamson and Hall [134]: 
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θη+
θ

λ
=β+β=β tan

cosL
K

strainsize  (4.3) 

Multiplying the above expression by θcos gives the following relation: 

θη+
λ

=θβ sin
L

Kcos  (4.4) 

The plot of θβcos  versus θsin , also known as the Williamson-Hall plot, 

gives a straight line in which the lattice microstrain is the slope and the mean 

crystallite size can be determined from the intercept of the line. Figure 4.15 

shows the Williamson-Hall plot for C12A7 after a heat treatment at 1300 oC for 

6 hr.  
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Figure 4.15 Williamson-Hall plot for C12A7 powder. The data was obtained from the 

diffraction peaks of the compound after a heat treatment at 1300 oC for 6 hr. 

The values of mean crystallite size and lattice microstrain were obtained from 

the plot to be 57 nm and 0.47 % respectively. The crystallite size and the lattice 

microstrain were determined for C12A7 compound after heat treatment 

durations of 3, 4 and 6hr at 1100 oC. The variations of these parameters with 

heat treatment time are depicted in figure 4.16.  
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Figure 4.16 Effect of heat treatment time on the crystallite size and lattice strain of C12A7 

for a heat treatment temperature of 1100 oC 

As can be seen from the plots, the crystallite size and the lattice strain have 

increased with the increase in heat treatment duration at 1100 oC and slow 

cooling to room temperature. It seems that crystal growth is a more dominant 

mechanism compared to nucleation at this temperature, probably because the 

diffusion is facilitated, leading to an increase in the size of the crystallites. The 

increase in the lattice strain of C12A7 might be attributed to the presence of 

secondary phases, such as CA and C3A, which crystallize along with C12A7 

and are thermodynamically more stable than C12A7 at the temperature of 

.C1100 o At higher temperatures (1300 oC and more), C12A7 becomes the most 

stable compound and C12A7 is crystallized at the expense of CA and C3A 

[127]. Therefore, a different behaviour in terms of lattice strain might be 

expected at higher temperatures and this result is simply limited to the heat 

treatment temperature of 1100 oC.  
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4.3.4 High-temperature powder X-ray diffraction analysis  

In order to investigate the crystallization phenomenon of C12A7 and other 

possible calcium aluminate phases with the increase in the temperature, the X-

ray diffraction patterns of the dried gel were obtained at high temperatures in 

the range of 700 to 1200 oC. These patterns are depicted in figure 4.17.   
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Figure 4.17 High-temperature X-ray diffraction patterns of the dried gel in a temperature 

range of 700-1200 oC 

Since the powder is kept at each selected temperature for only a short period 

of time, the powder remains in amorphous state up to C900~ o . As mentioned 

earlier, if the dried gel is kept at lower temperatures for several hours, 

crystalline C12A7 and CaO are formed even at a temperature as low as 700 oC 

(figure 4.11). As the heat treatment temperature is further increased to 900 oC, 

C12A7 and CA begin to form. Although C12A7 was originally predicted to be 

the first product of the CaO-Al2O3 reaction [127], the results show that both 

phases form simultaneously at this temperature. The concurrent formation of 
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C12A7 and CA has also been reported in an earlier investigation [119]. It seems 

that if the powder is held at a temperature of 700 oC for enough heat treatment 

duration, C12A7 is the only calcium aluminate compound formed. However, if 

the heat treatment temperature is continuously increased, it is more likely for the 

crystalline C12A7 to be formed at a higher temperature of 900 oC along with 

CA. 

Further increase in the temperature from 900 to 1200 oC promotes the 

formation of C12A7 and CA. An interesting observation, however, is the 

absence of C3A which exists after the powder is kept at temperatures higher 

than 1000 oC for several hours. It seems that C3A is not formed unless the heat 

treatment duration is long enough for all the free Al2O3 and CaO to be converted 

into crystalline C12A7 and CA [127]. The final product of the crystallization 

treatment after several hours eventually contains C12A7 as the main phase 

along with CA and C3A as impurities with no trace of calcium oxide or 

aluminium oxide left in the powder (as reported in the previous section). 

4.3.5 Differential scanning calorimetry and thermal gravimetric analysis  

The DSC-TGA plots of the powder are depicted in figure 4.18 for a 

temperature range of .C120025 o−  
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Figure 4.18 TGA-DSC plots versus temperature for the dried gel during heat treatment at 

a heating rate of 10 oC/min.  A positive heat flow indicates an exothermic process and vice 

versa. 

The interpretation of TGA-DSC plots along with high-temperature XRD 

analysis can give a detailed knowledge of the chemical reactions and phase 

transformations involved during the crystallization treatment of the dried gel. 

The derivatives of weight percent and heat flow as a function of temperature are 

plotted in figure 4.19 in order to identify the temperatures at which the weight 

loss and heat flow changes are more apparent. The chemical reactions and phase 

transformations predicted to occur during the crystallization treatment of C12A7 

based on the TGA-DSC analysis are listed in table 4.5. 



 140

-5

-3

-1

1

3

5

0 200 400 600 800 1000 1200

Temperature, oC

D
er

iv
at

iv
e 

he
at

 fl
ow

, m
W

/  o C

-4

-2

0

2

4

6

8

10

D
er

iv
at

iv
e 

w
ei

gh
t, 

%
/ o C

Deriv. heat flow
Deriv. wt%

 

Figure 4.19 Derivatives of weight percent and heat flow versus temperature for the dried 

gel during heat treatment at a heating rate of 10 oC/min. A positive heat flow rate indicates 

an exothermic process. 

Table 4.5 Results of DSC-TGA analysis in a temperature range of 25-1200 oC at a heating 

rate of 10 oC/min  

Temperature  

(oC) 

Weight 

Percent 

(%) 

Thermal 
behaviour Phenomenon Reference 

25-250 63 Endothermic 
Evaporation of water and 

organic solvents, dehydration 
of calcium nitrate tetrahydrate 

[68, 82] 

255 53 Exothermic Oxidation of residual organic 
compounds [69] 

260-350 43 Endothermic Dehydration of Gibbsite and 
formation of Boehmite [78, 84] 

350-500 35 Endothermic 
Dehydration of Boehmite and 

formation of γ-Al2O3  [78, 84] 

502 32 Endothermic Decomposition of calcium 
nitrate and into calcium oxide [68] 

502-570 27 Endothermic Further decomposition of 
calcium nitrate  [68] 

1050 36 Exothermic Crystallization of C12A7 and 
CA [47] 
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Although a slight increase in the heat flow is observed at ~1050 oC (figure 

4.19), the whole crystallization phenomenon seems to the happening in a wide 

temperature range rather than a single temperature, leading to a gradual increase 

in the heat flow. As mentioned in section 4.3.4, the high-temperature XRD 

results showed that crystalline C12A7 is more likely to be formed rather than 

crystalline CaO and Al2O3 which is in agreement with DSC-TGA results. No 

apparent exothermic peaks were observed at ~850 and ~950 oC that could be 

attributed to the crystallization of free CaO [68] and Al2O3 [78]. CA phase also 

showed no separate crystallization peak probably due to simultaneous 

crystallization with C12A7 [119]. This conclusion is also in accordance with 

high-temperature XRD observations (section 4.3.4).  
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Chapter 5 

 

FTIR and Raman spectral analysis of 

C12A7 thin film and powder 

 
5.0 Introduction 

This chapter presents the Fourier transform infrared (FTIR) and Raman 

spectroscopy investigations into the effect of heat treatment temperature and 

duration on the formation of C12A7 in the powder and the thin films. 

Two temperatures of 1100 [47, 135] and 1300 oC were chosen as the 

crystallization treatment temperatures, the latter being reported as a suitable 

temperature for the solid-state reaction of Al2O3 and CaO mixture [15, 64, 65, 

136].  

The phase analysis of the spin-coated films was not possible except by Fourier 

Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy. 

Raman technique could only be applied to relatively thick films of drop-casted 

samples with a thickness of m10 μ and higher and X-ray diffraction 

spectroscopy was not even applicable to very thick films. Two main reasons for 

the lack of response from the films can be: (1) the films are too thin to be 
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detected unless a special equipment, such as high-resolution X-ray 

diffractometer or polarized Raman spectrometer, is used; and (2) the 

interference from the substrate is too strong. FTIR and Raman spectra only give 

the vibration bands of MgO substrate and not the film. Therefore, FTIR-ATR 

technique was utilized in order to analyse the spin-coated and drop-casted films 

without the interference of the substrate.  

5.1 FTIR-ATR spectral analysis of the thin films 

Figure 5.1 shows the Infrared (IR) spectrum of a spin-coated film (with a 

thickness of )m5.5~ μ before the crystallization heat treatment.  
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Figure 5.1 FTIR-ATR spectrum of the as-prepared thin film before the crystallization heat 

treatment 

The results of the IR spectral analysis in comparison with the peak positions 

reported in the literature are listed in table 5.1. It is to be noted that the 
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absorption peaks in the range of 2000-2500 cm-1, which appear due to 

environmental effects, were not included in this table.  

Table 5.1 FTIR-ATR absorption bands and the vibrational assignments for the spin-

coated films before the crystallization heat treatment 

IR peak 
position 
(cm-1) 

Composition 
Reference 

(cm-1) 
Vibration mode 

743 Free enolic EAA 740 [68] C-H bending of alkene 

 Chelated EAA  740 [68]  

 Ca(NO3)2.4H2O 743 [137] In-plane bending of NO3
- [138] 

 Butyl alcohol 749 [139] C3C-O symmetric stretching [140] 

819 Ca(NO3)2.4H2O 820 [137]  

 Chelated EAA  818 [68] CH3 rocking vibrations 

844 Aluminium hydroxide 840 [141] Out-of-plane bending of Al-OH [68, 
142] 

864 Free enolic EAA 860 [68] C-H bending of alkene 

895 Butyl alcohol 911 [139] CH3 rocking [140] 

1056 Free ketonic EAA 1040 [48] O-C-C stretching 

  1042 [69]  

 Ca(NO3)2.4H2O 1045 [137] Symmetric stretching of N-O [138] 

 Aluminium hydroxide 1060 [141] In-plane bending vibrations of Al-OH 
bonds [141, 142] 

  1069 [143]  

 Chelated aluminium 
hydroxide 1059 [68]  

1161 Chelated aluminium 
hydroxide 1176 [143] In-plane bending vibrations of Al-OH 

bonds [142] 

  1167 [68]  

  1168 [69]  

 Free ketonic EAA 1153 [143]  

  1155 [68] -C-C-O stretching of ketonic form 

  1160 [69]  

 



 145

Table 5.1 Continued 

IR peak 
position 
(cm-1) 

Composition 
Reference 

(cm-1) 
Vibration mode 

1254 EAA 1256 [143] -CH2- vibration (or -CH3 or -CH2) 

  1254 [68] Methylene (CH2) twisting and wagging 
vibrations 

 Butyl alcohol 1236 [139]  

  1238  [140] CC4 skeletal stretching  
1380 Chelated EAA 1382 [143] -CH2 vibration (or -CH3 or -CH2-) 

  1379 [69]  

1409 Free enolic EAA 1415 [143]  

  1415 [68] C-H rocking vibration of alkene 

  1411 [69]  

1528 Chelated EAA 1525 [68] C-C vibration of six-membered ring of 
the chelate 

  1530 [143]  

  1530 [69]  

1617 Chelated EAA 1610 [68] C-O of enolic EAA bonded to Al 

  1619 [143]  

  1624 [69]  

1713 Free ketonic EAA 1718 [68] C=O stretching vibrations of two 
carbonyl groups  

  1720 [69]  

  1731 [143]  

2901 Free ketonic EAA 2881 [68] Symmetrical C-H stretching of CH3  

2971 Butyl alcohol 2971 [139]  

   [140] CH3 asymmetric stretching 

2984 Free ketonic EAA 2980 [68] Symmetrical stretching of C-H bonds 
in methyl group 

 Chelated EAA 2986 [68]  

  2990 [69]  

3677 Aluminium hydroxide 3670 [141] Stretching vibrations of hydroxyl 
groups bonded to aluminium [68] 
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Similar IR peaks have been observed for the dried gel prepared with Ethyl 

acetoacetate-to-Aluminium sec-butoxide (EAA-to-ASB) molar ratios of 3:1 and 

2:1.  

A few absorption peaks are in good match with the absorption peaks of non-

chelated aluminium hydroxide. The presence of “free” aluminium hydroxide in 

the dried gel might be due to two possible reasons: (1) aluminium butoxide is 

not completely chelated in the solution and is hydrolyzed in non-chelated form, 

and/or (2) some of the ethyl acetoacetate is released upon hydrolysis [68] which 

leads to the formation of free aluminium hydroxide. However, the former 

phenomenon is less likely to occur due the relatively high EAA-to-ASB ratio. 

Free aluminium hydroxide is also present in the dried gel obtained from a 

solution with the EAA-to-ASB molar ratio of 3:1. It has been reported in the 

literature [77] that a high EAA-to-ASB ratio of 3:1 might even prevent a 

complete hydrolysis due to the strong bonding between the alkoxide and the 

chelating agent. In addition, the presence of free aluminium butoxide in the 

solution results in a rapid precipitation of aluminium hydroxide upon the 

addition of water, causing the solution to lose its transparency and become 

unstable. However, solutions with the EAA-to-ASB molar ratios of 2:1 and 3:1 

showed no signs of uncontrollable precipitation upon the addition of water and 

remained transparent and stable. Therefore, it is concluded that the partial 

release of ethyl acetoacetate during hydrolysis is more likely to be the reason for 

the presence of free aluminium hydroxide. The appearance of some peaks that 

only exist for ester in the free ketonic or enolic form, such as 740 and 2980 cm-1, 

further confirms the partial release of ethyl acetoacetate. As long as the bonding 

between the alkoxide and the chelating agent is partially preserved, the solution 



 147

remains transparent and stable. The sol-to-gel transformation further promotes 

the hydrolysis and the release of the chelating agent.  

No matching peaks were observed for the solvent used in the solution which 

shows that the solvent is evaporated almost completely during the drying 

process. The absorption peaks at 2971, 1254, 844 and 743 cm-1 show the 

possible presence of Butyl alcohol which is predicted to be the by-product of the 

hydrolysis of chelated (and non-chelated) aluminium butoxide [77].  

Some peaks can be assigned to more than one possible component (given in 

table 5.1), while some peaks might be located at regions which are overlapped 

by other high-intensity peaks [68].  

The IR spectrum of a thin film which was heat treated at 1100 oC for 4 hr is 

shown in figure 5.2. 
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Figure 5.2 FTIR-ATR spectrum of the thin film after heat treatment at 1100 oC for 4 hr 

under air atmosphere. The structure mainly consists of C5A3. The reference spectrum 

[144] is obtained from a C5A3 sample synthesized through a melt-solidification process at 

1600 oC in a carbon crucible under the flow of argon. 



 148

A comparison between the IR absorption peaks of the thin film and the ones 

previously reported in the literature shows that the main phase forming after the 

heat treatment at 1100 oC is in fact C5A3 and not C12A7. The reason may be 

attributed to a restrained crystallization of C12A7 on MgO substrate [145]. 

C12A7 and C5A3 are quite similar in chemical composition with 48.5 and 

47.8 % mass of CaO respectively [27, 144]. However, they are not considered 

as polymorphs and are believed to form under different heat treatment 

atmospheres [144]. The main difference between these two phases is the 

absence of a nanoporous structure in C5A3 [27]. Schematic configurations of 

the Ca polyhedra in C12A7 and C5A3 are shown in figure 5.3. The AlO4 

tetrahedra in C5A3 form a network of five-membered rings with a layered 

arrangement of Ca atoms. In C12A7, however, three irregular Ca octahedra 

share an edge and are joined with an Al tetrahedron through a four-coordinated 

oxygen atom forming a two-dimensional sheet structure [146]. 
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Figure 5.3 Schematic configuration diagrams of Ca polyhedra in (a) crystalline C12A7, 

and (b) crystalline C5A3 [146] 
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In order to investigate the possibility of a phase transformation from C5A3 to 

C12A7, C5A3 thin films were additionally heat treated at 1100 and 1300 oC for 

.hr5  The IR spectrum of a thin film heat treated at 1100 oC for a further 

duration of hr5 is depicted in figure 5.4.  
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Figure 5.4 FTIR-ATR spectrum of the thin film treated at 1100 oC initially for 4 hr and 

then for a further 5 hr under air atmosphere. The structure consists of C5A3 and C12A7. 

The reference spectrum [144] is obtained from an originally C12A7 bulk which was heat 

treated at 1300 oC under a vacuum atmosphere and consists of a C12A7-C5A3 mixture. 

 

The phase analysis of the film in comparison with a reference spectrum 

(obtained from a two-phase bulk) showed a progress towards the formation of 

C12A7, and a C5A3-C12A7 mixture is formed. Two new peaks appearing at 

465 and 832 cm-1 are in good match with the IR peaks observed for C12A7 [144, 

147].  In spite of the appearance of C12A7 absorption peaks, the IR peaks of 
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C5A3 at 589, 780, 864 and 919 cm-1 are still present which means that the co-

existence of this phase in the structure cannot be neglected. The difference 

between the intensity of the peaks obtained from the sample and the reference 

might be attributed to the different volume fraction of the two phases in each 

mixture.  

It has been reported that C5A3 transforms into C12A7 in the presence of 

oxygen in the atmosphere. In this case, however, a complete transformation 

from C5A3 to C12A7 under normal air atmosphere might need long hours of 

heat treatment. In addition, the substrate can be a restricting factor in the phase 

transformation of the film. Therefore, it is concluded that in order to favour the 

formation of C12A7 over C5A3, either the heat treatment temperature or 

atmosphere should be changed. Since the presence of oxygen is essential as the 

template for the formation of the C12A7 cage structure and the entrapment of 

oxygen ions inside the cages [2, 29], the formation of this phase is facilitated 

under an oxygen-enriched atmosphere. However, increasing the volume fraction 

of oxygen is extremely risky due to a possible exothermic reaction of oxygen 

with hydrogen at such high temperatures. In addition, the aim is to utilize a 

simple and cost-effective technique for the fabrication of thin films. Therefore, 

the heat treatment atmosphere was kept unchanged and the effect of heat 

treatment temperature on the phase formation was investigated instead. 

During the first step of the investigation, the thin films of C5A3 were 

additionally heat treated at a higher temperature of 1300 oC for 2 hr. The IR 

absorption spectrum of the film is shown in figure 5.5.  
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 Figure 5.5 FTIR-ATR spectrum of the thin film initially heat treated at 1100 oC for 4 hr 

and then at 1300 oC for 2 hr under an air atmosphere. The structure consists mainly of 

C3A and C5A3. The reference spectrum [21] is obtained from a C3A bulk which was 

synthesized through a self-combustion technique.  

 

The heat treatment of C5A3 thin films at 1300 oC resulted in a partial 

transformation of this phase to C3A. Since C3A is thermodynamically more 

stable than C12A7 [37], increasing the heat treatment temperature to 1300 oC in 

an air atmosphere seems to be in favour of a conversion from C5A3 to C3A 

rather than C12A7. Another possible explanation for the preferable formation of 

C5A3-C3A mixture over single phase C12A7 might be the lack of essential 

templates in the atmosphere during the heat treatment at this temperature [2]. It 

is to be noted that this conclusion might only be valid for thin films and a 

different phenomenon might occur for the compound in bulk or powder form.  

In the second step of the investigation, a new set of thin films were prepared 

and heat treated at 1300 oC for 2 hr. Since the effect of a temperature as high as 
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1300 oC on the interaction between the thin film and the MgO substrate has not 

been reported elsewhere, the heat treatment duration was kept at 2 hr in order to 

minimize any possible chemical reactions at the film/substrate interface and 

ensure the crystallization of the film. The FTIR-ATR spectrum of the film is 

depicted in figure 5.6.  
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Figure 5.6 FTIR-ATR spectrum of the thin film after heat treatment at 1300 oC for 2 hr 

under an air atmosphere. The structure mainly consists of C12A7. The reference spectrum 

[144] is obtained from a melt-solidification process at 1300 oC under dry oxygen 

atmosphere. 

The result of the phase analysis shows the formation of a single-phase C12A7 

after a heat treatment at 1300 oC under air atmosphere. The appearance of two 

high-intensity absorption peaks at 465 and 848 cm-1 and the non-existence of all 

C5A3 medium-to-high intensity peaks at 448, 516, 587, 681, 707, 764 and 

1cm911 − confirm that the temperature of 1300 oC is high enough for the 
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preferable formation of C12A7 even at lower heat treatment duration of 2 hr 

compared to the previous heat treatments employed.  The only main difference 

between the absorption spectrum of the thin film and the one of the reference 

(figure 5.6) is the appearance of a peak at 982 cm-1 which has been reported to 

appear occasionally as well as two additional peaks at 1020 and 1500 cm-1 [147]. 

Although some of the absorption peaks of C12A7 and C5A3 might be 

positioned at similar frequencies, the sharp absorption peak at 848 cm-1 is 

characteristic of C12A7 which makes it quite easy to be distinguished from 

C5A3 [144]. This absorption peak is the fundamental absorption band of C12A7 

and corresponds to the vibration modes of the bonded tetrahedra Al-O bonds 

[147].  

In C12A7 lattice, aluminium atoms form distorted tetrahedra with oxygen 

atoms, while some of the AlO4 groups transform to AlO5 [147]. The 

fundamental absorption band of calcium aluminate compound shifts to higher or 

lower frequencies depending on the type of calcium aluminate phase. This shift 

can be explained by the change in the coordination number of aluminium as the 

concentration of CaO in the compound changes.   

Aluminium can form different structural functions with the coordination 

number varying from 4 to 6 through an irregular 5 coordination. This element is 

the only structurally-decisive element in calcium aluminate binary compounds 

[147]. The range of vibration frequencies for isolated and bonded Al-O bonds is 

listed in table 5.2. 
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Table 5.2 Vibration frequencies of isolated and bonded Al-O octrahedra and tetrahedra 

[147, 148] 

OAl IV −  tetrahedra 

(cm-1) 

OAlVI −  octahedra 

(cm-1) 
Status 

700-900 500-680 Bonded 

650-800 400-540 Isolated 

As the concentration of CaO in Al2O3 increases, CA becomes stable 

(according to the CaO-Al2O3 phase diagram, figure 2.1). The structure of this 

phase consists of a skeleton of Al-O tetrahedra. The presence of CaO in the 

structure and the strong stress of the lattice induced by excess charge cause the 

deformation and stretching of the Al-O bonds. Additional bands appearing at 

low frequencies in the spectrum of CA are due to an extremely stressed 

structure. In this case, significant deformation and bond stretching of the lattice 

make the whole spectrum to shift towards lower frequencies. The absorption 

bands mainly appear in three regions and are attributed to the vibrations of the 

isolated tetrahedra )cm730650( 1−−  and the bonds with coordination numbers 

of 5 )cm620580( 1−−  and 6 )cm560540( 1−−  [147]. 

A further increase in CaO concentration leads to an increase in the lattice 

stress up to point where the skeleton of CA breaks down and C12A7 structure is 

formed instead. The reorganisation of the structure causes the aluminium with 

coordination numbers of 4 and 5 to be stabilized. As a result, the deformation 

and bond stretching is decreased and the lattice becomes more relaxed. The 

appearance of medium-to-high intensity absorption bands at 850 and 

1cm620580 −− accompanied by the disappearance of low-frequency absorption 
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bands further confirm the lattice relaxation through the formation of a new 

phase [147].  

Since the absorption bands of bonded tetrahedra and octahedra are in the 

regions of 1cm900700 −− and 1cm700500 −− respectively (table 5.2), it is 

reasonable to expect the Al-O bond in C12A7 with an Al coordination number 

of 5 to show an absorption band lying in between the vibrational frequencies of 

tetrahedron and octahedron [147].  

A further increase in the concentration of CaO results in the formation of C3A. 

It was previously believed that upon the formation of this phase, the 

coordination number of aluminium partially increases to 6 and a combination of 

AlO4 and AlO6 exist in the crystal structure [147]. However, Mondal et al 

suggested that the unit cell of C3A is actually built up of six-fold rings, each 

composed of six distorted AlO4 tetrahedra, with Ca2+ ions holding the rings 

together [149].   

It has been previously mentioned (sections 2.7.3 and 2.8.1) that the heat 

treatment of C12A7 in a reducing atmosphere of H2-N2 results in the 

substitution of extra-framework oxygen ions with hydride (H-) and hydroxide 

(OH-) species, most of which are believed to be H- ions [9, 40, 90, 91].  In order 

to investigate the IR absorption behaviour of C12A7 after a heat treatment in a 

hydrogen atmosphere, the FTIR-ATR spectra of the thin films were obtained 

after a heat treatment at 1300 oC for 2 hr under a reducing atmosphere of 5%H2-

95%N2 and rapid cooling to room temperature. Figure 5.7 shows a comparison 

between the IR spectra of a C12A7 thin film before and after such heat 

treatment.  
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Figure 5.7 FTIR-ATR spectra of the C12A7 thin film in the as-prepared state and after 

heat treatment at 1300 oC for 2 hr under a 5%H2-95%N2 atmosphere. The vibration bands 

shift towards higher frequencies after H2 treatment. 

The whole spectrum seems to have shifted towards higher frequencies with a 

new high-intensity band appearing at 892 cm-1. The position of the FTIR 

absorption bands is affected by several inter-related factors such as Al 

coordination number, the state of the coordination group (being isolated or 

condensed), and the vibrational frequencies between the neighbouring groups 

[37]. In general, any factor that has an effect on the force constant of a bond can 

change the vibration frequency of that bond [150]. It is, therefore, reasonable to 

expect a shift in the IR absorption bands due to a partial substitution of extra-

framework oxygen ions with hydrogen species. Although the FTIR spectral 

behaviour of C12A7:H- has not been investigated elsewhere, a shift in Raman 
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peaks compared to the ones of the stoichiometric C12A7  has been reported due 

to the incorporation of 16O and 18O species inside the cage structure [26]. In that 

case, a red-shift of the Raman peaks was observed and attributed to the presence 

of species with higher mass compared to stoichiometric O2- ions. In our case, 

the appearance of 892 cm-1 peak can be related to a shift from the 844 cm-1 

fundamental absorption band of the Al-O bonds at the cage wall due to the 

incorporation of new species inside the cages [40]. Since H- ions have smaller 

radius and lower negative charge compared to O2-, a blue-shift of the absorption 

bands is a reasonable behaviour. A peak at 844 cm-1 is also observed which 

might be attributed to the vibrational frequency of the unaffected Al-O bonds, 

although the intensity of this band is much lower compared to the one appearing 

before the heat treatment.   

In order to determine whether this type of behaviour is exclusive to C12A7, a 

similar heat treatment procedure was applied to the C5A3 thin film which has a 

quite similar chemical composition, but no cage structure. The FTIR-ATR 

spectra of a thin film before and after heat treatment under the reducing 

atmosphere are depicted in figure 5.8.   
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Figure 5.8 FTIR-ATR spectra of the C5A3 thin film in the as-prepared state and after heat 

treatment at 1300 oC for 2 hr under a 5%H2-95%N2 atmosphere. The vibration bands 

have remained in the original positions. 

 

It is clearly observed that the heat treatment in a H2-N2 reducing atmosphere 

has no significant effect on the position of the absorption peaks or the chemical 

composition of C5A3 film. Therefore, the shift of the absorption peaks in 

C12A7 must be related to the cage structure of this compound.  

5.2 Raman spectral analysis of the powder and the thin films 

Since the thickness of the spin-coated films was too small for Raman 

spectroscopy, this technique was only employed for the phase analysis of the 

drop-casted films (with thicknesses higher than m10 μ ) and the powder. The 

Raman spectrum of the dried gel in powder form before the crystallization 

treatment is depicted in figure 5.9.  
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Figure 5.9 Raman spectrum of the dried gel before the crystallization heat treatment 

The results of the Raman spectral analysis along with the vibrational 

assignments for the observed peaks are given in table 5.3.  

Table 5.3 Raman absorption bands and the vibrational assignments for the dried gel 

before the crystallization heat treatment 

Raman peak 
position 

(cm-1) 
Composition 

Reference 

(cm-1) 
Vibration mode 

222 Aluminium 
hydroxide 228 [142] Al-O stretching 

323 Aluminium 
hydroxide 322 [142] Al-O stretching 

363 Aluminium 
hydroxide 360 [142, 151] Al-O stretching [142] 

442 Aluminium 
hydroxide 444 [142] Al-O stretching 

  447 [151]  
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Table 5.3 Continued 

Raman peak 
position 

(cm-1) 
Composition 

Reference 

(cm-1) 
Vibration mode 

508 Aluminium 
hydroxide 506 [142] Al-OH bending 

610 Aluminium 
hydroxide 617 [141, 142] Al-OH bending [142] 

738 Ca(NO3)2.4H2O 740 [137] In-plane bending of NO3
- [138] 

753 Butyl alcohol 752 [140] C3C-O symmetric stretching 

 Aluminium 
hydroxide 755 [141]  

  751 [142] Out-of-plane OH bending 

795 Aluminium 
hydroxide 788 [142] Out-of-plane OH bending 

870 EAA 878 [152] Skeletal vibrations of C-C bonds 

988 Aluminium 
hydroxide 980 [142] In-plane OH bending 

1053 Ca(NO3)2.4H2O 1050 [137] Symmetric stretching of N-O 
[138] 

 Aluminium 
hydroxide 1051 [142] In-plane OH bending 

 EAA 1053 [152] O-CH2 stretching 

1121 EAA 1114 [152] Out-of-plane stretching of C-C 

1181 EAA 1185 [152] C-C backbone bending 

1304 EAA 1298 [152] CH2 twisting 

1374 Butyl alcohol 1365 [140] CH3 symmetric deformation 

 EAA 1380 [152] In-plane bending of C-Me2 

1428 Ca(NO3)2.4H2O 1450 [137] Out-of-Plane stretching of N-O 
[138] 

1526 Chelated EAA 1528 [68] Corresponding to 1530cm-1 IR 
band 

2920 EAA 2916 [152] Asymmetric stretching of CH3 

2939 EAA 2939 [152] Symmetric stretching of CH2 
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Since the Raman absorption data of chelated aluminium hydroxide and 

chelated ethyl acetoacetate has not been previously reported in the literature, the 

comparison is made with the Raman absorption data available for non-chelated 

“free” aluminium hydroxide and ethyl acetoacetate. Three absorption peaks at 

753, 1053 and 1374 cm-1 can be assigned to more than one chemical bond.  

A comparison between the observed Raman and IR absorption peaks reveals 

that some of the vibration modes are both Raman and IR active. The position of 

these bands is given in table 5.4 along with the vibrational assignments.  

Table 5.4 Comparison between the results of the spectral analyses for similar Raman-

active and FTIR-active peak positions 

Raman-active peak position (cm-1) FTIR-active peak position (cm-1) 

738 Ca(NO3)2.4H2O [137] 743 Ca(NO3)2.4H2O [137] 

870 Free EAA [152] 864 Free EAA [68] 

1053 Free EAA [152] 1056 Free EAA [68] 

 Ca(NO3)2.4H2O [137]  Ca(NO3)2.4H2O [137] 

 Aluminium hydroxide [142]  Aluminium hydroxide[141] 

1374 EAA [152] 1380 Chelated EAA [143] 

1526 Chelated EAA according to the 
observed FTIR peak 1528 Chelated EAA [68] 

 

From the comparison in table 5.4, it is apparent that the Raman and IR 

spectral analyses are in accordance with each other. This type of comparison is 

useful in order to confirm the presence of an unknown compound. The identity 

of the Raman absorption peak at 1526 cm-1 has been determined by comparing 

the position of this peak with a similar FTIR peak position of chelated ethyl 

acetoacetate [68].  
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Figure 5.10 shows the Raman spectrum of the powder prepared by the heat 

treatment of the dried gel at a temperature of 1300 oC for 4 hr. A reference 

spectrum of a single-phase C12A7 bulk [144] has also been included for 

comparison.   
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Figure 5.10 Raman spectrum of C12A7 powder obtained from the heat treatment of the 

dried gel at 1300 oC for 4 hr. The reference spectrum [144] is from a crystalline C12A7 

bulk which was prepared by a melt-solidification process at 1500  oC in a dry oxygen 

atmosphere. 

As can be seen from the figure, the Raman peaks of the powder match quite 

well with the ones of the reference confirming the formation of C12A7. 

However, the results of the phase analysis show the co-existence of secondary 

phases in the crystallized powder which is mainly due to a non-uniform mixture 

of the ingredients. The Raman spectra of these secondary phases are depicted in 
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figure 5.11 in comparison with the Raman spectrum of C12A7 (also obtained 

from the powder).  
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Figure 5.11 Raman spectra of the secondary phases, CA and C3A, which were formed 

during the solid-state reaction treatment of the powder. The Raman spectrum of C12A7 is 

also obtained from the powder.  

As can be seen from the figure, apart from C12A7, two additional phases, CA 

and C3A, are identified to be present in the powder. The Raman spectra of these 

three phases can be easily distinguished from each other by the position of two 

main absorption bands in the regions of ~500-530 cm-1 and ~750-850 cm-1 

belonging to the stretching modes of Al-O bonds [153]. The presence of 

secondary phases, such as CA and C3A, has been reported in the literature even 

after very long hours of heat treatment and has been mentioned to be almost 

inevitable in the solid-state reaction technique [37, 65].  
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As mentioned previously (section 5.1), the IR phase analyses of the 

crystallized films show that the films mainly consist of C5A3 and C12A7 after 

heat treatment at 1100 and 1300 oC respectively. The Raman behaviour of the 

films was also investigated in order to confirm results of the FTIR spectral 

analysis. The Raman spectrum of a thin film heat treated at 1100 oC for 4 hr is 

shown in figure 5.12. A reference spectrum [144] has also been included for 

comparison. 
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Figure 5.12 Raman spectrum of the drop-casted film after a heat treatment at 1100 oC for 

4 hr in air atmosphere.  The reference spectrum [144] is obtained from a crystalline C5A3 

bulk which was prepared by a melt-solidification process at 1500 oC in an atmosphere of 

argon. 

The result of the Raman spectral analysis shows the formation of C5A3 after a 

heat treatment at 1100 oC which is in accordance with FTIR results (figure 5.2). 
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Although some of the Raman-sensitive peak positions of C5A3 are rather 

similar to C12A7, the appearance of a high-intensity peak at 1cm600~ −  is 

characteristic of C5A3 phase [144]. A few additional bands are also observed in 

the spectrum of C5A3, such as 348, 440 and 1cm753 − , which can be useful in 

order to distinguish between the two phases.  

The Raman spectrum of a thin film after a heat treatment at 1300 oC for 2 hr is 

depicted in figure 5.13.  
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Figure 5.13 Raman spectrum of the drop-casted film after a heat treatment at 1300 oC for 

2 hr in air atmosphere.  The reference spectrum [144] is obtained from a crystalline 

C12A7 bulk which was prepared through a melt-solidification process at 1500oC in a dry 

oxygen atmosphere. 

The result of the Raman spectroscopy of the film is in accordance with the 

FTIR analysis. Both spectra confirm the formation of C12A7 after a heat 
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treatment at 1300 oC under air atmosphere. The high-intensity band at 

1cm520~ − and medium-intensity band at 1cm779~ − are exclusively 

characteristic of C12A7 phase.  

A summery of the observed Raman and FTIR absorption bands of the C12A7 

thin films along with the possible vibrational modes and the origin of these 

vibrations are given in table 5.5. 

Table 5.5 Raman and FTIR peak positions for C12A7 thin films. The related symmetry 

and origin of the peaks [26] are also included. 

Absorption band position 

(cm-1) 
Symmetry Origin Observed in 

224 A1(+E?) Framework Ca Raman 

312 A1+F2 Framework O Raman  

326 E Framework O Raman 

465 F2 ? FTIR 

517 A1 Framework Al and O Raman 

585 F2 Framework Al and O Raman + FTIR 

631  Extra-framework O Raman 

779 A1(+F2?) Framework Al and O Raman + FTIR 

848 (A1+F2?) Framework Al and O Raman + FTIR 

879 A1 Framework O Raman 

982 F2 ? FTIR  

The symmetries determined for each vibrational frequency (table 5.5) can be 

represented via the following relation suggested for the total number of 

vibrational modes for C12A7 framework [144]: 
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)Raman,IR(F22F22)Raman(E13A7)Raman(A6 2121
opt ++++=Γν  (5.1) 

Among these vibration modes, A1, E and F2 are Raman active and only F2 is 

IR active. Since the number of Raman-sensitive vibrational modes in C12A7 

framework is higher than the FTIR-sensitive modes, more information can be 

obtained from the Raman spectrum of this compound compared to FTIR 

spectrum [144].  

It is to be noted that due to the limitations of the FTIR-ATR equipment, the IR 

spectrum was only obtained down to a wavenumber of 400 cm-1 and therefore, it 

was not possible to compare the peaks of Raman spectroscopy to the ones of 

FTIR spectrum at relatively low frequencies. The lower-energy absorption 

peaks (below 400 cm-1) are mainly attributed to the vibrational modes of Ca and 

O atoms at the cage wall [26].  

The symmetry of the vibrational modes at 224, 779 and 848 cm-1 along with 

the main origin of IR bands at 465 and 982 cm-1 are not assuredly determined. 

According to Kajihara et al, the absorption peaks at 779 and 1cm848 − belong to 

the fully symmetrical mode of A1 [26]. However, the appearance of this peak in 

the FTIR spectrum of the film shows that F2 symmetry might also exist for these 

types of vibrations.  

In general, the high-intensity Raman absorption peaks at ~520 and 780 cm-1 

and high-intensity FTIR peaks at ~465 and 848 cm-1 [136] are the most 

characteristic features of C12A7 vibrational behaviour .  

It is worth mentioning that the type of extra-framework species occupying the 

cages in the C12A7 framework can have a significant effect on the peak 

positions. The vibrational behaviour of the atoms at the cage wall is affected by 
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the presence of the species occupying the cage, the extent of which depends on 

the radius, mass and charge of the occupying species as well as the nature and 

the crystallographic position of the vibrating atom at the cage wall. For instance, 

it has been reported that upon the substitution of the extra-framework 16O atom 

with 18O, the Raman absorption bands of the material can shift as much as 

1cm50 −  [26]. 
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Chapter 6 

 

Optical absorption properties of 

C12A7 thin films 

 

6.1 Optical properties at room temperature 

6.1.1 Optical absorption and its relationship with transmittance and 

reflectance 

The optical absorption spectrum of a C12A7 thin film in the wavelength range 

of nm900200 − is depicted in figure 6.1.  

6 5 4 3 2 1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 A
bs

or
ba

nc
e,

 a
.u

.

 Photon energy, eV

 

 200 300 400 500 600 700 800 900 1000

 Wavelength, nm

 
Figure 6.1 Absorbance spectrum of C12A7 thin film 
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As shown in the above figure, no absorption peak is observed in the visible 

wavelength range. However, two absorption peaks appeared in the ultraviolet 

region. These peaks belong to the electronic transitions attributed to the 

presence of extra-framework O2- species in the structure of the material [13]. It 

has been mentioned previously (section 2.2) that a conduction band associated 

with the s-like states of the empty cages is formed in C12A7 in addition to the 

framework conduction band (FCB). This band is known as the cage conduction 

band (CCB). Since the extra-framework O2- ions are located in a position which 

is displaced from the centre of the occupied cage, an empty electronic state is 

formed inside the same cage so called as the perturbed cage conduction band 

(shown schematically in figure 6.2). Therefore, an electronic transition is 

expected to occur from the occupied electronic state of O2- ion to the cage 

conduction band.  
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Figure 6.2 Band structure of C12A7 [50] 



 171

Such a transition is unlikely to occur in the case of occupation with other ionic 

species (except for electrons in conductive C12A7). The excitation energy for 

this type of transition has been calculated to be in the range of 3.6-4.4 eV [15]. 

The second transition in the range of 4.6-5.6 eV is attributed to the excitation 

from the occupied state of O2- to the framework conduction band [57]. It is 

believed that the two absorption peaks observed for C12A7 films in the 

ultraviolet region are due to the excitation of O2- ions trapped inside the 

structure of C12A7:O2-. The energy values of these electronic transitions were 

evaluated from the absorbance spectrum to be 4.5 and 5.39 eV for O2-→CCB 

and O2-→FCB transitions respectively.  

It is to be noted that the absorption percentage is defined as the fraction of 

light which is neither transmitted nor reflected from the sample. Therefore, it 

can be quite different from the absorbance measured in arbitrary units (figure 

6.1). 

The percentage of absorption can be calculated from the measured values of 

transmittance (T) and reflectance (R) according to the following relation [154]: 

% Absorption = 100 % - % R - % T (6.1) 

Figure 6.3 shows the optical properties of C12A7 thin film in terms of the 

percentages of reflectance (% R), transmittance (% T) and absorption (% A).  
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Figure 6.3 UV-visible optical properties of C12A7 thin film 

6.1.2 Determination of the refractive index, extinction coefficient and 

dielectric constant 

The reflectance (R) and the extinction coefficient )(κ  are related through the 

following equation [155]: 

( )
( ) 22

22

1n
1nR

κ++
κ+−

=  (6.2) 

where n is the refractive index of the material. The extinction coefficient at a 

certain wavelength can be expressed by [156]: 

π
αλ

=κ
4

 (6.3) 
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where α is the absorption coefficient and λ is the wavelength of the incident 

light.  

The values of κ  and n can be determined from the reflectance and 

transmittance measurements using the above relations. These values were 

plotted in figure 6.4 as a function of wavelength.  
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Figure 6.4 Calculated values of refractive index and extinction coefficient as functions of 

wavelength for C12A7 thin film 

The complex dielectric constant of the material is expressed by [156]: 

ir
* iε+ε=ε  (6.4) 

where rε  and iε  are the real and imaginary parts of the complex dielectric 

constant respectively. These two parameters are related to the extinction 

coefficient and the refractive index according to the following equations [156]: 

22
r n κ−=ε  (6.5) 

and 
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κ=ε n2i  (6.6) 

Once the values of the refractive index and extinction coefficient are known, 

the complex dielectric constant of the material can be easily obtained using 

equations 6.5 and 6.6. Figure 6.5 shows the real and imaginary parts of the 

complex dielectric constant versus wavelength which were calculated using the 

above equations. 
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Figure 6.5 Real and imaginary parts of the complex dielectric constant as functions of 

wavelength for C12A7 thin film 

For photon energies less than the band gap energy, the variation of the 

refractive index as a function of photon energy can be fitted into a straight line 

according to the first approximation of the Cauchy-Sellmair equation [157]: 

( ) ( )2
1o hanhn ν+=ν  (6.7) 

where νh  is the photon energy in eV, on  is the long-wavelength limit )0h( =ν  

of the refractive index and 1a  is a constant. This relation shows that the plot of n 
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against 2)h( ν  below the band gap energy, should give a straight line with the 

slope of 1a  and intercept of on . The plot of the refractive index as a function of 

2)h( ν  is depicted in figure 6.6. The inset shows a straight line which was fitted 

to the data in the wavelength range below the band gap energy.  
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Figure 6.6 Refractive index of C12A7 thin film as a function of the square of the photon 

energy. The inset shows the values of the refractive index below the band gap energy and 

the fitted straight line. 

The refractive index dispersion of the thin films was also studied below the 

absorption edge in order to check the validity of the single-effective oscillator 

model. The following equation has been introduced for the real part of the 

dielectric constant: 
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22
s

r )h(E
F1
ν−

+=ε  (6.8) 

where Es  (also known as single-effective oscillator energy) and F are two 

parameters related to the electric dipole strength and the corresponding 

transition frequencies of the oscillators. The dispersion energy, Ed, has been 

introduced by Wemple and Di Domenico in the form [158]: 

s
d E

FE =  (6.9) 

Now combining the equations 6.5, 6.8, and 6.9 will give the following relation 

between the square of the refractive index and the square of the photon energy 

[158]: 

22
s

sd2

)h(E
EE

1n
ν−

+=  (6.10) 

This formula is only valid in the transparent region where the value of the 

extinction coefficient is negligible. The plot of 12 )1n( −− as a function of 2)h( ν  

should give a straight line from which the values of Es and Ed can be determined. 

This plot is depicted in figure 6.7 for C12A7 thin films. The inset shows the 

straight line fitted to the actual data below the absorption edge in the transparent 

region.  
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Figure 6.7 Plot of 1/(n2-1) - (hν)2 for C12A7 thin film. The inset shows a linear relationship 

below the absorption edge of the material.  

The values of the parameters introduced in the single-effective oscillator and 

Cauchy-Sellmair models are given in table 6.1.  

Table 6.1 Calculated values of the single-effective oscillator and Cauchy-Sellmair model 

parameters 

Model Parameter Calculated value 

Ed 9.609eV 
Single-effective oscillator 

Es 6.086eV 

no 1.278 

a1 0.0463 (eV)-2 Cauchy-Sellmair  

no 1.22 
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6.1.3 Absorption coefficient and Tauc’s law 

If the reflection is completely neglected, the relation between the 

transmittance (T) and the absorption coefficient (α) can be expressed as follows 

[159]: 

T
1ln

d
1

=α  (6.11) 

where d is the thickness of the film.  

The absorption coefficient of the material can also be related to the 

absorbance according to the following formula [160, 161]: 

d
A303.2

I
I

log
d
303.2 o =⎟

⎠
⎞

⎜
⎝
⎛=α  (6.12) 

where A is the absorbance, d is the film thickness, and Io and I are the intensities 

of the incident and transmitted light respectively. 

If the reflection from the surface of the sample is to be considered, the 

relationship between the transmittance, absorption coefficient and reflectance of 

a material can be expressed by the following equation [162]: 

( ) ( )dexp
R1
R1T 2

2

α−
−
−

=  (6.13) 

Near the optical band gap energy of the material where dα  is large, the above 

relation can be simplified into the following equation [126, 159, 163]: 

( )
T
R1ln

d
1 2−

=α  (6.14) 

As mentioned earlier (section 2.4.1), the absorption coefficient of the material 

above the threshold of the absorption edge follows Tauc's law [164]: 
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r
g )Eh(

h
B)h( −ν
ν

=να  (6.15) 

where α is the absorption coefficient, νh  is the photon energy in eV, B is a 

constant, gE is the energy band gap of the material and r is a constant  that can 

take one of the four values of 1/2, 3/2, 2 and 3 depending on the type of the 

electronic transition responsible for the absorption [165]. In order to determine 

the nature of the transition and evaluate the band gap energy, the value of r must 

be determined.  

The second derivative of the absorption coefficient with respect to νh  for a 

direct transition, i.e. when 
2
1r = , gives the following expression: 

( )
( ) ( )

( ) ( )2
3

g
3

2
gg

2

2
direct

2

Ehh4

E8hE12h3
B

hd
d

−νν

+ν−ν
×=

ν
α

(6.16) 

Assuming that the band gap energy lies somewhere in the range of 

eV5.45.3~ − (roughly estimated from the plot of absorbance, figure 6.1), the 

above relation was found to be negative in Tauc region.  

As for an indirect transition with ,2r =  the second derivative of the 

absorption coefficient is expressed as follows: 

( ) ( )3
2
g

2
indirect

2

h

E2
B

hd
d

ν
×=

ν

α
 (6.17) 

which gives positive values. Therefore, the nature of the electronic transition 

and the value of r can be determined by verifying the second derivative values 

of the absorption coefficient [166]. It is to be noted that both the above relations 

are only valid for photon energy ranges higher than the band gap energy, where 
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the absorption coefficient as a function of photon energy can be expressed by 

Tauc's formula.  

The second derivative of the absorption coefficient with respect to photon 

energy in Tauc region is plotted in figure 6.8.  
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Figure 6.8 Plot of the second derivative of the absorption coefficient with respect to photon 

energy in Tauc region 

Considering the negative values obtained for the second derivative ofα , it 

was concluded that the electronic transition of C12A7 responsible for absorption 

has a direct nature. A comparison between the plots of ( ) r/1hνα versus photon 

energy for all possible values of r also confirmed that the ν−να h)h( 2 plot gives 

the best linear relation in the Tauc region. This plot is given in figure 6.9. 
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Figure 6.9 (αhν)1/r plot versus hν for r = 0.5. The plot shows a linear relationship in the 

photon energy range of ~4.2 to 4.6 eV. 

An extrapolation of the above plot in the linear region gives the band gap 

energy of the material. The band gap was also estimated from the absorbance 

spectrum and compared to the value obtained from Tauc’s law (the plot of 

figure 6.9). These values are given in table 6.2 along with the absorption edge 

and r. 

Table 6.2 Values of band gap energy obtained from the optical absorption spectrum and 

tauc's law 

r Absorption 
edge 

Band gap energy 
obtained from 

g
g

hcE
λ

=  
Band gap energy based 

on Tauc's formula 

0.5 327 nm 3.8 eV 4.088 eV 
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The value of 5.0r = identifies the nature of the excitation to be an allowed 

direct type of transition [53, 90]. The absorption edge of C12A7 framework has 

been reported to be eV8.6~  corresponding to the fundamental absorption of 

the material. However, the presence of extra-framework species has a 

significant effect on the absorption edge. The absorption edge shifts to lower 

values as a result of transition from an occupied state of the species to the 

framework conduction band. The transitions from the occupied states to the 

cage conduction band have much lower intensities, and therefore, the effect of 

these types of transitions on the absorption band shift is negligible. The extra-

framework O2- ions have the most significant effect on the absorption edge shift 

among all types of extra-framework species [57]. The absorption edge evaluated 

from the absorbance spectrum (figure 6.1) is eV8.3~  which is in the range of 

absorption edge reported for O2--incorporated C12A7 .)eV3.475.3(~ −   The 

linearity of the ( ) ν−να hh 2 plot is limited due to the presence of Urbach tail.  

6.1.4 Absorption tail and Urbach’s law 

According to Urbach [54] and Martienssen [167], in the energies lower than 

the band gap energy, the absorption coefficient shows a tail which can be 

expressed by an exponential equation as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −ν
α=α

U

o
o E

Eh
exp  (6.18) 

where oα  and oE  are constants and UE  is the Urbach energy of the material.  

oE  nearly corresponds to the energy of the lowest free exciton state at zero 

lattice temperature. This type of exponential variation with photon energy is 

also known as Urbach-Martienssen tail [159].  
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The exponential absorption edge seems to be a fundamental optical property 

of many ionic and covalent materials in both crystalline and amorphous states 

[168, 169]. A high value of Urbach energy is mostly found with amorphous or 

partially crystalline materials [159]. It has been shown that the width of the 

absorption edge in crystalline semiconductors is proportional to thermal and 

structural disorder factors, T
2U 〉〈 and x

2U 〉〈 , i.e. the mean square 

displacements of the atoms from their original positions due to thermal or 

structural disorder respectively [56, 169].  

Various mechanisms have been suggested in order to explain such behaviour. 

Among the proposed theories, the effect of the momentary localisation of the 

excitons in the randomly fluctuating field of optical phonons and ionization of 

the excitons’ electric fields are the most accepted phenomena [159, 169]. 

According to a model proposed by Toyozawa et al. [170], the influence of 

phonon fields on the centre-of-mass motion of the excitons (i.e. momentary self-

trapping of excitons) is responsible for the Urbach behaviour of the material.  

According to Urbach’s formula, the ν−α hln  plot should exhibit a linear 

relationship below the absorption edge. This plot is depicted in figure 6.10 for 

C12A7 thin film. 



 184

4

4.5

5

5.5

6

6.5

7

7.5

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

Photon energy, eV

ln
α 

(α
 in

 c
m-1

)

 

Figure 6.10 Semi-logarithmic plot of the absorption coefficient as a function of photon 

energy for C12A7 thin film 

As can be seen from the plot, the data follows the Urbach’s rule up to a 

photon energy of eV09.4~  from which it starts deviating from the straight 

line. The value of Urbach energy was calculated from the slope of the line to be 

0.1781 eV. The Urbach tail in C12A7 is attributed to the structural disorder at 

lower temperatures, while thermal disorder dominates at temperatures higher 

than C100~ o  [15]. A detailed study of the Urbach tail dependency upon 

temperature will be explained in section 6.2.2. 

6.2 Absorption properties at high temperatures 

6.2.1 Variation of the absorption coefficient with temperature 

The study of the optical absorption near the band edge and its dependency 

upon temperature can provide information on the electron/exciton-phonon 

interactions of the material [159, 165].  
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The absorption edge generally shifts towards lower photon energies with the 

increase in temperature. This type of behaviour is attributed to the change in the 

relative positions of the valence and conduction bands as a result of the 

temperature dilation of the lattice and the electron-phonon interactions being 

dependent upon temperature [165].  

As mentioned in the previous section, the tail of the absorption edge can be 

determined from the exponential dependence of the absorption coefficient on 

photon energy according to Urbach’s formula. If the tails of the absorption edge 

at different temperatures are Urbach type, the linear plots should converge to a 

single point with coordinates ( )oo ln,E α [165]. The semi-logarithmic plots of 

the absorption coefficient as functions of photon energy are shown in figure 

6.11 for a temperature range of .C30025 o−  
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Figure 6.11 Semi-logarithmic plots of the absorption coefficient as functions of photon 

energy in the Urbach region in a temperature range of 25 to 300 oC 
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The extrapolations of the plots converge to a single point with the coordinates 

eV229.4Eo = and 24.7ln o =α . Therefore, the Urbach formula for the sol-gel 

prepared C12A7 thin films at room temperature can be expressed a follows: 

⎟
⎠
⎞

⎜
⎝
⎛ −ν

×=α
1911.0

229.4hexp10394.1 3  (6.19) 

in which the value of 0.19911 eV for the Urbach energy was determined from 

the slope of the plot at room temperature (as explained in section 6.1.4). 

6.2.2 Variation of the Urbach energy with temperature 

The Urbach energy is a function of temperature and the structural disorder of 

the material as well as material-dependent parameters such as phonon energy 

.)h( oν  Therefore, for the same material which is prepared using different 

chemical methods, the value of Urbach energy can differ [159, 171]. The 

temperature dependency of the Urbach tail is associated with the phonon-

exciton interactions [171].  

According to Cody et al, the contribution of temperature and structural 

disorder on the Urbach energy is expressed by the following relation [172]: 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ν

σ
ν

= X
kT2

h
coth

2
h

E o

o

o
U  (6.20) 

where oσ  is an Urbach parameter depending on the ionicity of the material, 

ohν is the average phonon energy contributing to the Urbach tail, oν  is the 

effective phonon frequency and T is the temperature in K [159, 169, 171]. This 

formula is a modified version of the Urbach and Martienssen models in 
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which 0X = . X is a measure of the degree of the structural disorder of the 

material and is defined by the following relation [159, 169]: 

o
2

2
x

U
U

X
〉〈
〉〈

=  (6.21) 

where 〉〈 2
xU  is the mean square deviation of the atomic positions caused by the 

actual structural disorder and o
2U 〉〈 is the zero-point uncertainty in the atomic 

positions [159]. The structural disorder can be caused by intrinsic defects such 

as vacancies or dislocation, or extrinsic factors such as radiation and/or doping 

[159, 171] 

According to Cody's studies, the thermal and structural disorders are additive 

and the Urbach energy can be expressed as the sum of two terms, one being 

temperature dependent and one being temperature independent [159, 169]: 

( ) ( ) ( )TEXET,XE UUU +=  (6.22) 

Cody et al. have proposed a formula which indicates the contribution of these 

two terms in the form [172]: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−Θ

+
+

σ
Θ

=
1T/exp

1
2

1XkT,XE
Eo

E
U  (6.23) 

where ΘE (also known as Einstein temperature [61]) is the average temperature 

of the interacting phonons representing the Einstein model for solids  [159]. It 

could be assumed that the Debye phonon spectrum with temperature ΘD is 

responsible for an Einstein oscillator with a temperature of ΘE. The former 

temperature can be related to the latter according to following expression: 
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E
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D
6
Θ

π
=Θ  (6.24) 

The Debye temperature was calculated to be 471.5 K for C12A7 films. An 

alternative relation has been suggested by Yang et al. in the form [173]: 

( ) ( ) B
1T/exp

1AT,XE
E

U +⎥
⎦

⎤
⎢
⎣

⎡
−Θ

=  (6.25) 

in which the first term is temperature dependent and represents the exciton-

phonon interaction and the second term is due to the mean-square deviation of 

the atomic positions of a perfectly ordered lattice caused by structural disorder 

[159]. 

The value of Urbach energy as a function of temperature along with the fitted 

curves of Cody and Yang models are depicted in figure 6.12.  
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Figure 6.12 Temperature dependency of the Urbach energy and the fitted models 

proposed by Cody and Yang. The first model by Cody represents the dependency of the 

Urbach energy on the phonon energy (equation 6.20) while the second model is based on 

the Einstein temperature (equation 6.23). 
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The unknown parameters of the Urbach, Cody and Yang’s models were 

determined by fitting the formulas to the actual data. These values are presented 

in table 6.3.  

Table 6.3 Fitting parameters of the Urbach energy-temperature models proposed by 

Urbach, Cody and Yang 

Parameter Fitted value Model 

0.083 Urbach 
hνo (eV) 

0.032 Cody 

0.228 Urbach 
σo 

0.25 Cody 

0 Urbach 
X 

0.94 Cody 

ΘE (K) 380 Cody 

A (eV) 0.13 Yang 

B 0.127 Yang 

 

The difference between the values of the fitting parameters obtained from 

Urbach and Cody’s models comes from the fact that the effect of the structural 

disorder is not considered in the Urbach formula [159]. The fitted line of the 

Cody’s formula is best described with the phonon energy of 32 meV which is 

equivalent to the Raman band of 258 cm-1 [26]. This Raman band is associated 

with the vibration modes of the framework Ca2+ ions and has been reported to 

be responsible for the occurrence of Urbach tail in C12A7 [15]. Since the values 

of Urbach energy were obtained at room temperature and higher, the effect of 
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structural disorder cannot be neglected. Therefore, the parameters obtained from 

Cody’s model will be used from now on for more accuracy.  

6.2.3 Variation of the steepness parameter with temperature 

The steepness parameter, ,σ  is proportional to the slope of the straight line in 

the semi-logarithmic absorption coefficient plot. This parameter can be 

determined using Urbach’s formula given by [15]: 

UE
kT

=σ  (6.26) 

where k is the Boltzmann constant, T is the temperature in K, and EU is the 

Urbach energy. According to Toyozawa’s theory, which was later modified by 

Cody, the temperature dependence of the steepness parameter can also be 

expressed by the following relation [174]: 

⎟
⎠
⎞

⎜
⎝
⎛ ν

ν
σ

=σ
kT2

h
tanh

h
kT2 o

o

o  (6.27) 

where ohν  is the phonon energy interacting with the optical transitions. The 

constant oσ  indicates the strength of the electron-phonon interaction (g) 

according to the following relationship [175]:  

1
o3

2g −σ=  (6.28) 

Expanding the expression )kT/h(tanh oν  in a power series of )kT/h( oν  

using Taylor’s series approximation gives: 
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The value of the effective phonon frequency as well as the constant oσ  can be 

easily determined by plotting the values of σ  against 1/T2 [165]. The plot of the 

steepness parameter as a function of 1/T2 is depicted in figure 6.13.  
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Figure 6.13 Steepness parameter of C12A7 thin film as a function of T-2 and the fitted 

Taylor’s series approximation 

The fitting parameters were found to be 23.0o =σ  and eV079.0h o =ν using 

equation 6.29. The value of g was also calculated to be 9.2~  using equation 

6.28. Since the values of the fifth term onwards in the Taylor’s series are 

relatively small, these terms have not been considered in the calculations. Figure 

6.14 shows the temperature dependency of the steepness parameter of a C12A7 
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thin film along with the Urbach model fitting using the parameters obtained 

from equation 6.29. 
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Figure 6.14 Temperature dependency of the steepness parameter and the fitted model 

represented by Urbach. Taylor’s series fitting is an approximation to the Urbach’s model. 

6.2.4 Variation of the band gap energy with temperature 

According to Manoogian-Woolley model, the temperature dependency of the 

band gap energy is expressed by the following equation [176]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= 1

kT2
E

coth
k

E
VUT)0(E)T(E pps

gg  (6.30) 

where k is the Boltzmann constant, T is the temperature in K, and )0(Eg , U, S, 

V and pE  are the fitting parameters. The effects of lattice dilation and exciton-

phonon interaction have been considered separately [171].  

The temperature dependency of the band gap energy can also be expressed by 

Varshni equation as follows [177]: 
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( ) ( )
o

2

gg TT
T0ETE
+
α

−=  (6.31) 

where α  is the Varshni coefficient determined from the least squares fitting to 

the actual data [159].  

An alternative to the above models is the Bose-Einstein model which 

considers the electron interaction with the phonon bath inside the crystal in 

order to explain the variations of the band gap with temperature [178]: 

( ) ( )
1

T
exp

a20ETE
E

B
gg

−⎟
⎠
⎞

⎜
⎝
⎛ Θ

−=  
(6.32) 

where ( )0Eg  is the band gap energy at 0 K, ΘE is the Einstein temperature, and 

Ba  is a measure of the electron-phonon interaction coupling. Figure 6.15 shows 

the values of the band gap energy of a C12A7 thin film obtained at different 

temperatures along with the fitted models. 
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Figure 6.15 Temperature dependency of the band gap energy and the fitted models 

proposed by Manoogian-Woolley, Varshni and Bose-Einstein  
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The constant parameters of the models suggested by Manoogian-Woolley, 

Varshni, and Bose-Einstein were determined by fitting each model to the actual 

data (shown in figure 6.15). These values are listed in table 6.4.  

Table 6.4 Fitting parameters of the band gap energy-temperature models proposed by 

Manoogian-Woolley, Varshni, and Bose-Einstein 

Parameter Fitted value Model 

4.127 Manoogian-Woolley 

4.122 Varshni Eg(0) (eV) 

4.122 Bose-Einstein 

U (eV.K-1.05) 2.7×10-5 Manoogian-Woolley 

s 1.05 Manoogian-Woolley 

V (eV.K-1) 7.1×10-5 Manoogian-Woolley 

α (T-1) 2.32×10-4 Varshni 

To (K) 450 Varshni 

aB 0.035 Bose-Einstein 

 

A comparison between the parameter K450To =  and the Debye temperature 

K5.417D =Θ (determined from equation 6.24) shows a close relation between 

the two parameters which has also been reported for other types of materials 

[179].  

6.2.5 The relationship between the band gap energy and Urbach energy 

According to Cody et al. the dependence of the band gap energy on Urbach 

energy should be linear [159]. The following equation relates the band gap 

energy to the Urbach energy in the form [172, 180]: 
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U

U
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where ( )0,0Eg  and ( )0,0E U are the bang gap energy and the Urbach energy of a 

defect-free crystal at K0 , o
2U 〉〈 is the zero point uncertainty in atomic 

positions, D is the second-order deformation potential that determines the effect 

of temperature on the band gap energy, and ( )T,XEg and ( )T,XE U  are the band 

gap energy and the Urbach energy of the material with finite degree of structural 

disorder at a fixed temperature [159, 171].  

The relationship between the band gap energy and the Urbach energy of a 

C12A7 thin film is shown in figure 6.16 for a temperature range of 

C30025 o− .  
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Figure 6.16 Relationship between the band gap energy and Urbach energy obtained at 

different temperatures 
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As can be seen from the plot, the relation nearly follows a straight line. The 

unknown parameters of the Cody's model were determined by fitting the 

formula to the actual data. These values are presented in table 6.5. ( )0,0E U  can 

be calculated using the following formula [159]: 

o

E
U 2

k)0,0(E
σ
Θ

=  (6.34) 

The above equation is actually a simplified form of the Cody’s formula 

(equation 6.23) in which the values of temperature and structural disorder 

constant (X) are zero.  

 
Table 6.5 Fitting parameters of the band gap energy-Urbach energy model proposed by 

Cody 

Parameter Fitted value 

Eg(0,0) (eV) 4.156 

EU(0,0) (meV) 65.49 

DU o
2 〉〈 (meV) 36.5 
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Chapter 7 

 

Conclusion and future work 

 

The present study was set out to determine the appropriate processing 

parameters for the fabrication of sol-gel derived homogenous 12CaO.7Al2O3 

(C12A7) films on magnesium oxide (MgO) substrates by systematic 

optimization. 

The effect of the type and molar fraction of solvent, as well as the molar 

fraction of water, on the morphology and surface quality of the films was 

thoroughly studied and an optimum solution processing, including the 

appropriate types and molar fractions of the ingredients, was proposed based on 

the microstructural observations. The molar ratios of solvent and water with 

respect to the main precursors were considered as the variable solution 

ingredients and two alcohols, methanol and isopropyl alcohol, were chosen for 

solution preparation.  

The effect of heat treatment temperature and duration under normal air 

atmosphere on the formation of C12A7 and other possible phases was 

investigated by means of X-ray diffraction (for powder) and FTIR-ATR and 
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Raman spectral analyses (for thin films), and the suitable heat treatment 

procedure was suggested for the fabrication of single-phase C12A7 in form of 

powder and films on MgO substrate.  

The optical characteristics of C12A7 thin films were studied in a temperature 

range of 25-300 oC. The variations of the band gap energy and Urbach energy 

with respect to temperature were examined and compared to different 

theoretical models by the evaluation of the unknown parameters from fitting 

each model to the actual data. The theoretical relations that could best describe 

the variations of the band gap energy and Urbach energy with temperature, as 

well as the relationship between the two energies at different temperatures, were 

suggested for C12A7 thin films on MgO substrate.  

A summary of the achievements are listed as follows: 

1- The molar ratios of 10:1 for solvent to the main ingredients and 5:1 for 

water to aluminium sec-butoxide were found to be the optimum molar fractions 

in order to obtain a clear solution and high quality continuous films on MgO 

substrate. 

2- The solution stability was increased substantially using the improved recipe 

and solutions with long life-times (1 to 2 months) were obtained without the 

need for the addition of acid. 

3- The use of isopropyl alcohol as solvent improved the quality of the films 

compared to methanol. 

4- The critical thickness of the films was increased to a few microns (up 6.5 

µm) using the proposed solution recipe which is significantly higher than the 
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values reported for sol-gel processed thin films other than SiO2 (typically no 

more than 10 nm). 

5- The heat treatment of the thin film at 1100 oC, which has been previously 

reported in the literature [47, 135], was not high enough for the formation of 

C12A7 on MgO substrate under normal air atmosphere and heat treatment at 

this temperature even for several hours did not produce C12A7 crystals. 

6- Based on FTIR and Raman spectral analyses, the heat treatment of the films 

at a temperature of 1300 oC for 2 hr under air atmosphere was suggested in order 

to fabricate single-phase C12A7 film on MgO substrate without any adverse 

effect on the film-substrate interaction or the surface quality of the films.  

7- The phase formation temperature of C12A7 films was found to be different 

from powder. While the crystallization of C12A7 powder started at C900~ o , 

there was no trace of this phase forming on MgO substrate even at a temperature 

as high as 1100 oC. In addition, the crystallization of C12A7 powder was 

accompanied by the formation of CA secondary phase which remained in the 

mixture even after long heat treatment durations. The thin films, however, 

consisted of a single-phase calcium aluminate phase with a favourable 

formation of C5A3 at lower temperatures and C12A7 at a higher temperature of 

1300 oC. 

8- The results of the FTIR spectral analysis of C12A7 films after a heat 

treatment in H2-N2 reducing atmosphere showed a shift of the infrared 

absorption bands towards higher frequencies after the heat treatment in the 

reducing atmosphere. Since the shift of infrared peaks was not observed for the 
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thin films of C5A3 and C3A, it was concluded that the shift of absorption peaks 

is characteristic of C12A7 cage structure.  

9- The optical characterization of C12A7 films showed a reduction in the band 

gap energy from 4.088 eV at room temperature to 4.051 eV at 300oC, while the 

Urbach energy increased from 0.178 eV at 25 oC to 0.257 eV at .C300 o   

10- A linear relationship was observed between the optical band gap energy 

and the Urbach energy at different temperatures. 

The optimized sol-gel technique is found to be an elegant and economical 

method for the production of continuous crack-free thin films of homogeneous 

C12A7 phase as evident from morphological, compositional and optical studies. 

Therefore, an efficient post-fabrication technique can now be developed in order 

to produce sol-gel derived semiconductive and conductive C12A7 thin films. 

This will lead to the production of a new generation of thin-film-based 

optoelectronic devices as electron field emitters, and as transparent conductive 

oxide layers for solar cells and transparent transistors.  

It is recommended that additional research be undertaken in the following 

categories: 

1- The study on the effect of  heat treatment under the reducing atmosphere of 

H2-N2 on the incorporation of electrons in sol-gel derived C12A7 thin films and 

the insulating-to-conducting conversion of the compound.  

2- Investigation on the fabrication of electrically conductive C12A7 films via 

heat treatment of the insulating films in presence of titanium. 
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3- Investigation on the possibility of fabricating conductive sol-gel derived 

C12A7 thin films via the deposition of a second amorphous C12A7 layer and 

subsequent heat treatment under vacuum. 

4- Study on the effect of heat treatment under a reducing atmosphere of 

CO/CO2 on the insulating-conducting conversion of C12A7 thin films. 
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