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Abstract

A number of computer vision problems such as human
age estimation, crowd density estimation and body/face
pose (view angle) estimation can be formulated as a re-
gression problem by learning a mapping function between a
high dimensional vector-formed feature input and a scalar-
valued output. Such a learning problem is made difficult
due to sparse and imbalanced training data and large fea-
ture variations caused by both uncertain viewing conditions
and intrinsic ambiguities between observable visual fea-
tures and the scalar values to be estimated. Encouraged
by the recent success in using attributes for solving clas-
sification problems with sparse training data, this paper
introduces a novel cumulative attribute concept for learn-
ing a regression model when only sparse and imbalanced
data are available. More precisely, low-level visual fea-
tures extracted from sparse and imbalanced image sam-
ples are mapped onto a cumulative attribute space where
each dimension has clearly defined semantic interpretation
(a label) that captures how the scalar output value (e.g.
age, people count) changes continuously and cumulatively.
Extensive experiments show that our cumulative attribute
framework gains notable advantage on accuracy for both
age estimation and crowd counting when compared against
conventional regression models, especially when the la-
belled training data is sparse with imbalanced sampling.

1. Introduction
A number of computer vision problems concern with the

estimation of a scalar value given a high dimensional feature

input vector. Examples of such problems include age esti-

mation from facial images [10, 12, 15, 16, 33, 35], crowd

counting [4, 5, 8, 25], and human body/face pose (view an-

gle) estimation [14, 27, 34]. Such a scalar value can vary

continuously within a certain range but is often assumed

to be discrete (e.g. human age and people count), and its

estimation can be obtained by solving a multi-class clas-

sification problem [13, 21]. Such a multi-class labelling

��

��

���

���

���

���

���

���

���

���

���

�� �� �� 	� 
� ��� ��� ��� �	� �
� ��� ��� ��� �	� �
� ��� ��� ��� �	� �
� ��� ��� ��� �	� �
� ��� ��� ��� �	� �
� 	�� 	�� 	�� 		� 	
�

Number of Images 

Age 

��

���

���

���

���

���

	��

���

���

�� �� �� �� �� 	� �� �� �� ��� ��� ��� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� ��� ��� ��� ��� ��� ��� ��� ��� ���

Count 

Number of Frames 

Figure 1. Age estimation and crowd counting both suffer from

sparse and imbalanced training data distribution. Top: FG-NET

facial age dataset. Bottom: UCSD crowd dataset.

treatment of scalar value estimation assumes implicitly that

each scalar output value (a label) is independent from other

possible values (labels). On the contrary, human age and

people-count are strongly correlated and neighbouring val-

ues have closer similarities than those further apart, e.g. a

human face of 50 years old is more similar to that of 49

than that of 10. To exploit this observation, most existing

approaches to the problem consider a regression solution

in which a mapping function is learned explicitly between

high dimensional feature input vectors and scalar output

values [4, 5, 8, 10, 12, 15, 16, 33, 35]. However, there are

two major challenges for learning a good regression func-

tion for solving such a problem: (1) inconsistent and incom-

plete features, (2) sparse and imbalanced training data.

In general, regression based interpretation suffers from

large feature variations caused by both viewing conditions

and visual inconsistency in interpretation. For instance,

people of the same age can appear visually very differ-

ent, e.g. the images were taken under very different light-

ing conditions (extrinsic condition change) or images of
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Figure 2. The pipeline of our framework compared with conven-

tional regression framework.

very different people of the same age (intrinsic condition

change). In addition to lighting and viewing angles, oc-

clusion can also cause crowd frames of the same people-

count to appear significantly different. Existing regression

techniques have mostly focused on addressing the challenge

of feature inconsistency by constructing a low-level feature

representation robust against both the intrinsic and extrin-

sic condition changes [16, 34]. There are less efforts on

addressing the second challenge on sparse and imbalanced

data.

Accurately labelled facial images for human age estima-

tion and public space video data for crowd counting are gen-

erally sparse and imbalanced due to inherent ambiguities in

annotation and a lack of sufficient samples for covering the

data distribution. For example, despite large quantities of

facial images available publically, e.g. from Flickr, anno-

tating the true age of a facial image can be very unreliable

[10, 28]. As a result, benchmarking datasets such as FG-

NET [7, 13, 15, 35] and MORPH [7, 13] contain very lim-

ited samples of each age group and consist of faces of true

ages rather than annotated age. Figure 1 shows that in the

FG-NET dataset, at most 46 images are available for each

age group and the distribution is highly imbalanced across

the age groups. This is rather sparse given that the faces

belong to different genders and ethnical groups (therefore

compounded by inconsistent visual features). Even though

annotating crowd images can be made more reliable, an-

notating people count exhaustively for all possible values

is laborious and often practically infeasible, e.g. a public

place as shown in Figure 1 may never exhibit fewer than 10

people or greater than 50 people in any realistic time gap.

Consequently existing crowd benchmarking datasets such

as UCSD [4, 5, 8] are also sparse. Moreover, the sparse-

ness in training data also implies that there are often gaps

in training samples where no imagery sample is available

for mapping onto certain output values causing difficulties

in learning the regression mapping function.

In this work, we consider that the two challenges above

are related in the sense that the feature inconsistency prob-

lem is compounded by sparse and imbalanced training data

and vice versa, and they need be tackled jointly in modelling

and explicitly in representation. To that end, we propose a

novel cumulative attribute based representation for learn-

ing a regression model. Attributes have been successfully

applied for solving various computer vision problems by

classification [11, 20, 22, 24], but have never been used for

regression to the best of our knowledge. Attribute models

are designed to solve the data sparsity problem by exploit-

ing shared characteristics between different classes. These

common characteristics are either defined manually by hu-

man a priori knowledge [20, 22] or discovered automati-

cally from data [11, 24]. Existing attribute learning meth-

ods cannot be directly applied to our regression problem

because: (1) Attributes need be discriminative to be useful.

For classification, it is natural to identify discriminative at-

tributes for differentiating classes. Discriminative attributes

can also be discovered by learning a discriminative model

[24]. However, for learning a regression model it is much

less clear what is discriminative and more importantly what

can be shared across different scalar output values when

those values change continuously. (2) Existing attribute def-

initions do not reflect nor exploit the unique characteristic

of neighbouring scalar output values sharing more similari-

ties than those further apart.

Our notion of cumulative attributes aims to explore the

spirit of the conventional discriminative attribute for ad-

dressing sparse training data, whilst is specifically designed

for addressing the regression problem. More specifically,

each attribute is not only discriminative but also cumula-

tive in constraining all other attribute values depending on

its relative positioning in value: each attribute separates all

training images into two groups (binary) by a label (e.g. an

age). For instance, for learning a regression model for age

estimation, if there are 70 age groups, there will be 69 bi-

nary attributes, each separating facial images above certain

age from all those below. By cumulative attributes, we con-

sider each attribute cumulatively conditioning all other at-

tributes. That is, for a person of 50, not only the correspond-

ing attribute 50 is positive, but also from 1 all the way to

49 are conditionally positive. This is designed specifically

to capture the unique correlation of data samples so that

those with neighbouring scalar output values share more

than those further away in our cumulative attribute space.

Critically, this cumulative nature is also able to cope with

sparse and imbalanced data distribution more effectively. In

particular, by utilising all data samples for discriminating

each attribute regardless the availability of labelled data for

that attribute (value) alone, sparsity problem is mitigated.

The cumulative nature of the attribute also greatly reduce

the ill-effect of imbalanced data, e.g. even if there was no

sample for a certain age value (attribute), that attribute is

positively assigned by any samples of lower age than the

considered value, thus can be learned indirectly using plenty

of neighbouring samples.

The pipeline of our framework is illustrated in Figure 2.
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Once cumulative attributes are constructed from the scalar

values of training samples, a two-layers regression frame-

work is employed. Firstly, given any low-level feature pre-

sentation of the image, we learn a multi-output regression

model to map the feature inputs to an intermediate attribute

space. To that end, a single structured output model is

learned to correlate explicitly different attributes. Secondly,

another regression model is learned to estimate the scalar

output using the attribute representation as input. Extensive

experiments are carried out using benchmarking age esti-

mation and crowd counting datasets and show that (1) our

cumulative attribute representation improves generally the

age estimation and crowd counting accuracy over the state-

of-the-art with standard image feature representations, (2)

the improvement is particularly significant when the train-

ing data is sparse and imbalanced.

2. Related Work

Age estimation –Most existing techniques for age estima-
tion from facial images fall into three categories: multi-

class classification [13], regression [16], and hybrid [15]

of the two, with regression models being the most widely

used. Guo et al. [15] proposed a locally adjusted regres-
sion method to search local regions for adjusting. They

further introduced BIF features for regression [16]. Re-

cently, Zhang et al. [35] proposed a multi-task wrapped
Gaussian Process Regression for personalized age estima-

tion that jointly learns personalized characteristics and com-

mon changes shared between people. Our approach is de-

signed to utilise any low-level features and regression mod-

els, with the key difference being that the input to the re-

gression model is represented by cumulative attributes in-

stead of the low-level features directly. More recently, a

ranking based age estimation method is proposed [7]. For

each age group, a ranker (a binary classifier) is learned to

separate people into two groups, older or younger than the

said age group. Given a testing image the output of the

rankers are aggregated directly for estimating the age. This

method shares similar spirit to our model in that learning

each ranker uses all the data in the dataset in order to mit-

igate any sparsity problem. However, different from our

method, the rankers are not cumulative therefore do not

share mutual information, and they do not benefit from

an intermediate representation. Moreover, such a ranking

based model is extremely expensive to both learn and apply

(see Section 4.6 on computational cost).

Crowd counting – Similar to age estimation, crowd count-
ing can be solved by either classification and regression

with most recent work adopting the regression approach.

Despite the low-level features being very different, the same

regression models such as support vector machine regres-

sion and Gaussian Processes have been employed for both

problems [4, 5, 8, 25]. Crowd counting in images may be

considered somewhat less ambiguous than age estimation

because the latter has to cope with different people of any

gender and race but with the same age, whilst most exist-

ing crowd counting models are scene specific, equivalent

to learning a person specific age estimator. Our cumulative

approach is shown to improve on existing methods on both

problems.

Attribute learning – Visual attributes have received in-
creasing interests in the past three years for classification

problems ranging from image categorisation [20, 29], per-

son re-identification [22], to action and video event recog-

nition [11]. Attributes are either user defined based on prior

knowledge [20, 22] or data driven or latent and discovered

from data [11, 24]. The former has clear semantic mean-

ing and the latter not necessarily so. On the other hand,

manually defined attributes may not be computable con-

sistently nor discriminative sufficiently despite additional

human annotation, from which data driven attributes do

not suffer. Our cumulative attributes are unique such that

each attribute has clear semantic meaning and by defini-

tion being discriminative, yet no additional annotation is

required. They are specifically designed for learning a re-

gression model whilst none of the existing attribute repre-

sentations is suitable. Moreover, it is more desirable to learn

attributes jointly as they are typically correlated [26]. How-

ever, computationally learning a large number of attributes

and modelling their correlation explicitly is a challenge. In

this paper, a multi-output regression model is formulated to

learn all attributes in a single model that is also extremely

efficient to compute. Note that recently proposed notion of

relative attribute [19, 29] defines attribute as the real-valued

strength of the presence of visual properties. However, rela-

tive attributes are learned as a ranking problem rather than a

regression problem because only pairwise-comparison data

are available [19, 29].

Contributions – Our contributes are three-fold: (1) For
the first time, an attribute representation is constructed for

learning a regression model. (2) A novel concept of cu-

mulative attributes is proposed with both clear semantic

meaning and also discriminative, with added advantages of

efficiently computable and requiring no additional annota-

tion. (3) Extensive experiments on both age estimation and

crowd counting benchmark datasets demonstrate the supe-

riority of our method over the state-of-the-arts, especially

when the data is sparse and imbalanced.

3. Methodology

As shown in Figure 2, our cumulative attributes can be

considered as an intermediate-level semantic representation

that bridges the gap between any low-level features and a

regression model given sparse annotation. During training
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our cumulative attribute based regression framework con-

sists of the following steps:

1. Given a set of training images, we extract low-level

imagery features and the scalar output value (e.g. age

or people count) is converted into a binary cumulative

attribute vector (Section 3.1).

2. A cumulative attribute representation is computed so

that given an image, its cumulative attributes can be

assigned and used as an intermediate representation

of the image. Specifically, a single multi-output re-

gression model is learned to evaluate and assign all at-

tributes simultaneously (Section 3.2).

3. A second layer single output regression model is

learned to map the attribute representation to the scalar

output value (Section 3.3).

During testing, given an unseen image, the cumulative at-

tribute vector is first computed using the multi-output re-

gression model with the low-level imagery features as input.

The cumulative attribute vector is then fed into the single

output regression model to estimate the scalar output value.

3.1. Cumulative Attribute

Given a training image/frame i, where i = 1,2 . . .N and
N denotes the total number of training images/frames, we

firstly extract low-level imagery features xi from the whole
image/frame. This can be Active Appearance Model fea-

tures [9] for age estimation and foreground & edges &

GLCM features [4, 8] for crowd counting. Any other fea-

tures in the literature can be equally applied. Secondly, nor-

malization on the feature data including scale normalization

and extra perspective normalization [4] for crowd counting

are carried out.

Now for the ith training data point, the known scalar
value yi (e.g. age and people count) is converted into a cu-
mulative attribute vector ai. The dimensionality of the vec-
tor ai, denoted as m, depends on the value range of y. Typi-
cally, for age or crowd count, there is an upper limit, e.g. 70

for a certain age dataset and 100 for a certain crowd scene.

This upper limit will be used as the value of m. Formally,
given N training sample {(x,y)}i , i = 1,2 . . .N, the jth el-
ement of the cumulative attribute vector for the ith sample
assumes a binary value:

a ji =

{
1, when j � yi,
0, when j > yi,

where j = 1,2, · · · ,m. Evidently, for the ith attribute vector
ai, the first yi attribute elements are all “ones” and the rest
m− yi elements are all “zeros”.
In comparison , a non-cumulative attribute (NCA) is con-

structed as follows:

a ji =

{
1, when j = yi,
0, when j �= yi.

Note, only one element of a non-cumulative attribute vec-

tor ai is one and all the rest elements are zeros. There is
thus a critical difference between our CA representation and

the conventional NCA representation: with the CA repre-

sentation, data points with neighbouring scalar values are

represented by a very similar attribute set, whilst with con-

ventional NCA representations, the difference between the

attributes of two data points of any scalar value is the same.

For example, a face of age 40 and another face of age 41

represented using a 69D CA vector will have only one el-

ement that is different, whilst the number of different at-

tribute elements increases to 30 for a face of age 10. On the

other hand, using a NCA representation, there is always a

single element difference no matter how different the ages

are and how the two faces look like. Our cumulative at-

tributes thus capture a better representation of a continu-

ously changing value for object appearance, corresponding

directly to a scalar output value change continuously for

learning a regression function. Our experiments in Section

4.3 show the distinct advantages of using CA over NCA for

both age estimation and crowd counting.

3.2. Joint Attribute Learning

Now the training set is represented as {(x,a,y)}i , i =
1,2 . . .N. We need to learn the mapping relationships be-
tween both x and a, and a and y. In this section we focus on
the former. Most existing attribute learning methods aim to

establish a mapping between x and each element of a inde-
pendently using a binary classifier such as a support vector

machine. However, this is not only making the false as-

sumption that different attributes are independent from each

other, but also computationally expensive. In our work, we

estimate the mappings of all m attributes simultaneously by
learning a multi-output regression function, in particular, a

multivariate ridge regression function [1, 17]. In its con-

ventionally form, a ridge regression function learns a sin-

gle output mapping. Recently, multivariate ridge regression

[1, 8] has been exploited for simultaneous output estima-

tion. Following established design principle of multi-task

learning [2, 3, 18, 30], we formulate the following multi-

output attribute learning problem. Given xi and a ji being
low-level features of the ith image and the jth element of
its corresponding attribute vector, the objective function for

the jth attribute is written as:

min
1

2
‖w j‖22+C

N

∑
i=1
loss(a ji , f

j(xi)),

where f j(u) = w ju+ b j and loss(·) denotes the loss func-
tion. Hence, a joint attribute learning by multi-output re-

gression is formulated as

246824682470



min
m

∑
j=1
(
1

2
‖w j‖22+C

N

∑
i=1
loss(a ji , f

j(xi))).

For simplifying the above without losing generality,

quadratic loss function is considered. The objective func-

tion of the joint attribute learning is then given as:

min
1

2
‖W‖2F +C

N

∑
i=1

‖aTi − (xTi W+b)‖2F , (1)

where W = [w1,w2, · · · ,w j, · · · ,wm] is the weight matrix,
ai = [a1i ,a2i , · · · ,ami ]

T is the training attribute vector, and

b = [b1,b2, · · · ,bm] is the bias term. The model param-
eters W are estimated by solving an equality-constrained

Quadratic Programming Problem, which has a closed-form

global optimal solution as follows:[
W
b

]
=−(QTQ)−1QTP,

where positive semi-definite matrix Q and matrix P are

given as

Q=
[
2C∑Ni=1 xixTi + I 2C∑Ni=1 xi
2C∑Ni=1 xTi 2CN

]
,

P=
[−2C∑Ni=1 xiaTi
−2C∑Ni=1 aTi

]
.

The trade-off parameterC is determined by cross validation.
The weight matrix W plays an important role in trans-

ferring information between tasks thus modelling the cor-

relation between different attributes. In particular, with

the same feature representation, for each attribute a ji , j =
1,2, · · · ,m, we formulate our model to jointly weigh each
attribute. In Equation (1), the jth column of matrix W is

employed to weigh the imagery feature vector xi for the jth
binary attribute in corresponding attribute learning, i.e. the

jth element of ai. Since the residual error of all attribute
learning tasks are penalized jointly by the Frobenius-norm,

this multi-output model can capture the correlation between

different attributes explicitly.

3.3. Mapping Attributes to Scalar Output

To estimate the mapping between a and y, first the low-
level feature x is mapped onto our cumulative attribute
space using the learned multi-output regression model

above. With each image now represented as âi ∈ R
m and

the corresponding label (ground truth) yi ∈ R, where i =
1,2 . . .N, a second-layer output regression model is learned.
Note, this regression model has a single scalar output and

any existing regression models used in the literature for ei-

ther age estimation or crowd counting can be readily ap-

plied.

4. Experiments
4.1. Datasets & Settings

Datasets – For age estimation, two widely used benchmark-
ing datasets FG-NET [7, 13, 15, 35] and MORPH [7, 13]

were used. Both datasets are designed primarily for learn-

ing person-independent age estimator and contain people of

different ethnical origins. For crowd counting, experiments

were conducted on the benchmarking UCSD [4, 5, 8] and

the Mall [8] datasets which feature an outdoor and an indoor

scene respectively. Details in Table 1 show that among the

four datasets, FG-NET is the most sparse in terms of the av-

erage number of samples per scalar output value (MORPH

is 5 times more densely sampled).

Data Ni/f R
FG-NET [13] 1002 0–69

MORPH [7] 5475 16–77

UCSD [4] 2000 11–46

Mall [8] 2000 13–53

Table 1. Dataset details: Ni/f = number of images/frames, R =

range of scalar output value.

Features – For age estimation, the low level image fea-

tures are Active Appearance Model features [9]. This

feature representation is widely used in recent approaches

[7, 13, 15, 32, 33, 35]. For crowd counting, three types of

image features, i.e. foreground segments, edge features, and

local texture features, are adopted as in [4, 8]. Note that, to

use these features, all frames of crowd databases were trans-

formed to gray-scale prior to feature extraction.

Settings – For FG-NET, we followed the same leave-one-
person-out setting as in [7, 15, 32, 33, 35]. For MORPH we

randomly split the dataset into 80% training data and the

rest 20% testing data and repeated the experiments 30 times

as in [7]. For crowd counting, we followed the same train-

ing and testing partitions as in [8], i.e. we employed Frames
601− 1400 in UCSD dataset and Frames 1− 800 in Mall
dataset respectively for training, while the rest frames were

used for testing. For the single output regression model

(Section 3.3), Support Vector Regression (SVR) with RBF

kernel and Ridge Regression (RR) were employed for age

estimation and crowd counting respectively, owing to their

strong performance reported in the literature for age [15, 16]

and crowd [8] respectively. However, any regression mod-

els can be used.

Evaluation Metrics – For age estimation, we employed
two evaluation metrics, namely mean absolute error (mae)
and cumulative score (cs), which was first defined in [13]
and we set the same error level 5 as in [7]. Three metrics

employed in [8], namely mean absolute error (mae), mean
squared error (mse), and mean deviation error (mde) were
employed for evaluating the performance of crowd count-

ing. Among all five metrics, only for cs higher value means

better performance.
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4.2. Comparison with State-of-the-Arts

Method FG-NET [13] MORPH [7]

mae cs mae cs

AGES [13] 6.77 – 8.83 –

RUN [33] 5.78 – – –

Ranking [32] 5.33 – – –

RED-SVM [6] 5.24 – 6.49 –

LARR [15] 5.07 – – –

MTWGP [35] 4.83 – 6.28 –

OHRank [7] 4.85 74.4% 5.69 56.3%

SVR [15] 5.66 68.0% 5.77 57.1%

CA-SVR 4.67 74.5% 5.88 57.9%

Table 2. Age estimation performance comparison.

Age estimation – Our model (CA-SVR) is compared with
a number of recently published results in Table 2. Most of

the methods compared are regression based except AGES

[13], RED-SVM [6] and OHRank [7], and use the same

AAM features except AGES [13]. For FG-NET dataset, our

model obtained the best results so far on both mae and cs

metrics. Note that compared with SVR [15], identical low

level feature and single output regression models were used.

The only difference is in the input to the regression model:

low level feature directly for SVR and our cumulative at-

tributes for CA-SVR. This change of representation brings

an significantly improvement (17.5% decrease in mde and

9.6% relative increase in cs). The best performance reported

so far on FG-NET is the Ordinal Hyperplane Rank model

(OHRank) [7]. As discussed in Section 2, OHRank can also

cope with the sparse data problem. However, as shown in

Section 4.6, it is in the order of four magnitudes slower than

our model in model training1. On the MORPH dataset, our

CA-SVR gives comparable result to the best reported so far

(OHRank) on mae, but best performance measured by cs.

As the key difference between the FG-NET and MORPH

dataset is data sparsity and the number of age groups with-

out samples, it is evident from these results that the advan-

tage of our cumulative attribute based regression model is

more significant given sparse and imbalanced data. This is

further supported by our missing data experiments reported

in Section 4.4.

Method UCSD [4] Mall [8]

mae mse mde mae mse mde

LSSVR [31] 2.20 7.29 0.107 3.51 18.2 0.108

KRR [1] 2.16 7.45 0.107 3.51 18.1 0.108

RFR [23] 2.42 8.47 0.116 3.91 21.5 0.121

GPR [4] 2.24 7.97 0.112 3.72 20.1 0.115

RR [8] 2.25 7.82 0.110 3.59 19.0 0.110

CA-RR 2.07 6.86 0.102 3.43 17.7 0.105

Table 3. Crowd counting performance comparison.

Crowd counting – Table 3 compares crowd estimation per-
formances of six different methods, all based on regression,

1The results of OHRank were based on our implementation and are

slightly lower than those reported in [7].

using the two benchmarking datasets. The result shows that

the cumulative attribute based model (CA-RR) performs the

best for both datasets and using all three metrics. The most

direct effect of using our cumulative attribute representa-

tion can be seen by comparing RR [8] with CA-RR. CA-RR

clearly outperforms RR using all three measures. Since both

have the same low level feature input and use the same sin-

gle output regression model, the performance gain can only

be explained by the superior representation by our cumula-

tive attribute space. Improved performance can also been

seen by comparing CA-RR with a number of recently pro-

posed models [1, 4, 23, 31], all of which use the same fea-

tures as input and differ only in the regression model used.

4.3. Cumulative vs. Non-Cumulative Attributes

Methods FG-NET [13] MORPH [7]

mae cs mae cs

NCA-SVR 8.95 41.8% 7.28 44.2%

CA-SVR 4.67 74.5% 5.88 57.9%

Table 4. Cumulative vs. non-cumulative attributes on age estima-

tion.

Methods UCSD [4] Mall [8]

mae mse mde mae mse mde

NCA-RR 2.85 11.9 0.137 4.31 25.8 0.131

CA-RR 2.07 6.86 0.102 3.43 17.7 0.105

Table 5. Cumulative vs. non-cumulative attributes on crowd count-

ing.

A key novelty of our model is the cumulative attribute

representation. As explained in Section 3.1, compared

with the conventional non-cumulative (NCA) attributes, the

unique characteristics of our cumulative attributes (CA) is

that data points of neighbouring scalar value are designed

to be close to each other in the attribute space. It is evi-

dent from Tables 4 and 5 that constructing such cumulative

attributes is a significant advantage for a regression model

that performs age estimation and crowd counting.

4.4. Against Sparse and Imbalanced Data

(a) FG-NET (b) MORPH

Figure 3. Age estimation performance with sparse and imbalanced

data measured using cumulative scores (the higher the better).

Figures 3 and 4 evaluate our model when the training

data becomemore and more sparse and imbalanced. Data of

certain age groups and certain crowd counts were removed
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(a) UCSD (b) Mall

Figure 4. Crowd counting performance measured by mean devia-

tion error (the lower the better).

to make the data more sparse and imbalanced. For age esti-

mation, since the two dataset have few missing age groups,

we randomly selected a fixed number of age groups, each

time to remove and then train the model. For the crowd

counting dataset, this way of removing data would be less

effective because the mapping between the low level fea-

tures and the scalar count numbers is more linear. There-

fore, a different strategy for removing samples is adopted.

That is, we start from the middle of count number (26−30
for missing 10% count groups in our case) and then re-

move an entire chunk of count groups. It is evident from

Figures 3 and 4 when more training data were removed,

the performance of all the models degrades. However, our

model’s performance degraded more gracefully, resulting

in the bigger performance gain over both the non-attribute

based models (SVR and RR for age and crowd respectively)

and non-cumulative attribute methods. These results fur-

ther validate our early observation that the construction of

a cumulative attribute space is uniquely effective for coping

with sparse and imbalanced training data, a common prob-

lem in learning regression functions.

4.5. Learning Attributes Jointly vs. Independently

Methods FG-NET [13] UCSD [4]

Original Dataset mae cs mae mse mde

i-CA 4.73 73.7% 2.07 7.09 0.102
j-CA 4.67 74.5% 2.07 6.86 0.102
Missing 75% labels mae cs mae mse mde

i-CA 6.45 55.6% 2.87 13.3 0.139

j-CA 5.51 66.9% 2.79 12.6 0.137

Table 6. Jointly learning cumulative attributes (j-CA) vs. indepen-

dently learning cumulative attributes (i-CA).

Instead of learning all attributes jointly using our multi-

out regression model, experiments were conducted to learn

each attribute independently using a single out ridge regres-

sion model. Table 6 shows that comparing with the jointly

learned attributes, the independently learned attributes led

to poorer performance. In particular, for more imbalanced

data with the removal of 75% labels from the original train-

ing dataset, our joint learning model yields more significant

advantage on both the FG-NET age dataset and the UCSD

crowd dataset. This is because that for sparse data, infor-

mation sharing between attributes can contribute to improve

robustness because of jointly penalizing the errors in differ-

ent attributes.

4.6. Computational Cost

Methods Age (mins) Crowd (secs)

FG-NET [13] MORPH [7] UCSD [4] Mall [8]

OHRank 1.30×104 3.02×104 – –

SVR [15] 2.69×100 2.08×101 – –

RR [8] – – 0.70 0.67
CA 8.91×10−1 6.10×100 1.57 1.52

Table 7. Model training time required by different models.

Table 7 shows the training time for four different models.

It is evident that the proposed cumulative attribute based

model is extremely fast to learn owing to its closed form

solution based on a multi-output regression model (see Sec-

tion 3.2). For age estimation, it is even faster to train than

the non-attribute based model with the same single output

regression. The closest competitor for age estimation accu-

racy, OHRank [7] is four orders of magnitude (104) slower

than our model (under 7 mins). This is because after map-

ping the low level image features to the cumulative attribute

space, dimensionality reduction is achieved as a by-product

resulting faster single output regression model training. For

crowd counting, RR [8] is faster than CA. This is because

the cumulative attribute space has a similar dimension as the

original low-level feature and CA has the additional step of

estimating the attribute values. Nevertheless, both are very

fast to train (under 2 sec).

4.7. What is Learned by Cumulative Attributes?

To answer this question, Figures 5(a) and (c) visualise

the weight matrixW in Formulation (1) which shows how

different low level features are weighted for different scalar

value groups. For age estimation, the AAM features capture

the shape and texture characteristics of a human face. It is

known [10] that at earlier ages, the human aging process

is mainly reflected by the facial bone change (getting ma-

ture) resulting in shape changes. Entering adulthood, tex-

ture change gradually starts to play a more important role

because aging is now more concerned with skin changes

(e.g. having more wrinkles). Figures 5(a) and (b) show that

our learned cumulative attribute indeed capture this phe-

nomenon rather well. In particular, the shape features are

the most important ones that separate attributes correspond

to young ages (< 20), while texture features become more

and more important for elder ages. For crowd counting, the

30 low level features contain foreground segment area, edge

features and texture features. Segment and edge features

would in general be more sensitive to the different crowd-

edness levels compared to the texture feature. That is, more
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(a) Weight Heat Map of FG-NET (b) Feature-Ratio of FG-NET
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(c) Weight Heat Map of UCSD (d) Feature-Ratio of UCSD

Figure 5. Visualization of the importance of different features for cumulative attributes. Weights of each type of features were averaged for

computing the weight ratio between different types of features.

people in the scene normally means larger foreground re-

gions and more edges. This is also reflected by the learned

weights shown in Figures 5(c) and (d).

5. Conclusion
We have introduced a novel cumulative attribute based

framework for solving a number of computer vision prob-

lems invoking the need for regression estimation. Noisy

and sparse low level visual features are mapped onto a cu-

mulative attribute space where each dimension is designed

specifically to give a clear semantic meaning that captures

how the scalar output (e.g. age, people count) changes con-

tinuously. It requires no additional human annotation to as-

sign attributes and can be estimated efficiently and robustly

given sparse and imbalanced training data. Extensive ex-

periments show the effectiveness and efficiency of the pro-

posed model for both age estimation and crowd counting.

This advantage of our approach is particularly significant

when the training data is sparse and imbalanced.
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