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Paris Sud 11 and CNRS, Bât. 100, Orsay F-91405, France

E-mail: gregory.schehr@u-psud.fr

Abstract. We revisit the long time dynamics of the spherical fully connected spin-

glass model, i.e. the spherical p = 2-spin model, when the number of spins N is large

but finite. At T = 0 where the system is in a (trivial) spin-glass phase, and on long

time scale t & O(N2/3) we show that the behavior of physical observables, like the

energy, correlation and response functions, is controlled by the density of near-extreme

eigenvalues at the edge of the spectrum of the coupling matrix J , and are thus non

self-averaging. We show that the late time decay of these observables, once averaged

over the disorder, is controlled by new universal exponents which we compute exactly.
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1. Introduction and model

Non-equilibrium dynamics of spin-glass models has attracted much interest, both

theoretically and experimentally, during the last 40 years [1]. In particular, the low

temperature relaxational dynamics of such systems following a quench from a high-

temperature configuration is not only extremely slow but also displays “aging effects”.

This means that the response of the system (as well as temporal correlations) depend

strongly on the history of the sample since the temperature quench. It is useful and

now customary to characterize quantitatively such aging effects by studying two-time t, t′

observables, including in particular the local response R(t, t′) and the auto-correlation

function C(t, t′) (see below for a precise definition) [2].

The analytical computation of these observables for finite-dimensional spin glasses,

and more generally for disordered systems in finite dimension, is a very hard task and

consequently there exist very few exact results for such models (see, e.g., Ref. [3] in

the context of disordered elastic systems). However, it was demonstrated that it is

already instructive to study fully-connected (mean-field) spin-glasses, whose dynamical

responses and correlations were shown to exhibit quite rich structures, similar to some

extent to the ones observed in structural glasses for instance [1]. The purpose of the

present paper is to revisit the late time dynamics of the simplest model of that type,

namely the spherical two-spin model of large but finite number of spins, in light of recent

results obtained in the literature on random matrix theory (RMT).

The spherical two-spin model, which we focus on here, is defined by the Hamiltonian

H[{si}] = −1

2

∑
i 6=j

Jijsisj , (1)

where si, with i = 1, · · · , N , are continuous spin variables constrained such that

N∑
i=1

s2i = N (2)

and where J is a symmetric random matrix belonging to the Gaussian Orthogonal

Ensemble (GOE) of random matrices (corresponding to the Dyson index β = 1):

its elements are independently distributed Gaussian random variables with zero mean

and variance proportional to 1/N (with this choice, the model (1) has a meaningful

thermodynamic limit N → ∞). The model was originally introduced in Ref. [4] and

studied by many authors ever since, see e.g. chap. 4 of the book [5]. Although it

was shown to exhibit a phase transition at the critical temperature Tc = 1 from a

paramagnetic phase into a low temperature “spin-glass” phase the latter turns out to

be in fact a “ferromagnetic in disguise” [5]. Namely, the system possesses only two

ground states related by the symmetry si → −si and the calculation of the free energy

for this model using replicas does not involve a replica symmetry breaking which is a

hallmark of the true spin-glass thermodynamics. As the minimum of the quadratic form

(1) on a sphere is obviously given by (minus one half of) the largest eigenvalue λmax

of the matrix J , the statistics of the ground state are governed by the Tracy-Widom



Large time zero temperature dynamics of the spherical 2-spin model of finite size 3

distribution for GOE, which describes the fluctuations of the largest/smallest eigenvalue

in that ensemble [7]. Besides, it was recently proved that for T < Tc, the fluctuations

of the free energy are also given by the Tracy-Widom distribution, see [6].

Throughout this paper, we will be interested in the limiting case T = 0,

which already contains many interesting aspects. Although, as explained above, the

thermodynamics of the model in the low-temperature phase is too simple for a bona

fide spin-glass, the corresponding dynamics is rich and has features of aging [8, 9, 10, 11].

That richness is attributed to a relatively non-trivial energy landscape topology due to

the presence of many saddle points in the landscape with different indices k (the number

of unstable directions), each associated with the eigenvalues λi < λmax of the matrix

J . Note that the presence of a magnetic field in the system leads to a simplification

of the associated energy landscape, which gradually washes out the complexity of the

relaxational dynamics (see Refs. [12, 13] for this and related questions). Our studies of

the dynamics of the model (1) will be intimately related to the setting of the original

work by Cugliandolo and Dean [8] referred to as CD in the following. In particular, we

will use the same convention for the distribution of the matrix elements Jij such that

when N → ∞, the distribution of the eigenvalues of the random matrix J is given by

the Wigner semi-circle law on the bounded interval [−2, 2]:

ρ(λ) =
1

2π

√
4− λ2 . (3)

To study the relaxational dynamics of this model (1), it is convenient to diagonalize

the coupling matrix J and to work with the time dependent projections of the spin

configuration s(t) = {si(t)}1≤i≤N onto the eigenvectors of J , which are denoted by

sλ(t), λ belonging to the spectrum of J , λ ∈ Sp(J). The dynamics of the model is

then defined via a Langevin equation, which when projected onto the eigenvectors of J ,

yields a Langevin equation for the projections sλ(t) that reads

∂sλ(t)

∂t
= (λ− z(t))sλ(t) + hλ(t) + ξλ(t) , (4)

where hλ(t) represents an (infinitesimal) external magnetic field – which is used here to

compute the response function – and z(t) is a Lagrange multiplier which enforces the

spherical constraint (2). In Eq. (4), ξλ(t) is a Gaussian white noise of zero mean and

correlations

〈ξλ(t)ξλ′(t′)〉 = 2Tδλ,λ′δ(t− t′) , (5)

where T is the temperature and where 〈· · · 〉 denotes an average over the thermal noise.

2. Summary of main results of the paper

Here we consider the zero temperature dynamics, at T = 0, where the system is quenched

at initial time t = 0 from a high temperature configuration, described by a uniform initial

condition

sλ(0) = 1 , ∀λ ∈ Sp(J) , (6)
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which was shown to lead to a rich dynamical behavior [8]. In the large time limit,

it is easy to see that the Langevin dynamics (4) at T = 0, i.e. ξλ(t) = 0 (assuming

hλ(t) = 0), will drive the system to relax to the configuration with minimal energy per

spin (energy density) e(t→∞) = −1
2
λmax where

λmax = max
λ∈Sp (J)

λ , (7)

and correspondingly sλ(t → ∞) →
√
Nδλ,λmax . The question that we will address in

the present paper is the following: how does the system approach this final state of

minimal energy? For instance, how does the average energy density e(t) approach its

limiting value? To characterize the non-equilibrium dynamics of the system (4) it is

also useful to consider quantities depending on two times t, t′. Here we will focus on the

zero-temperature limit of the spin-spin correlation function C(t, t′) and on the response

function R(t, t′), t > t′:

C(t, t′) =
1

N

N∑
i=1

si(t)si(t
′) =

1

N

∑
λ

sλ(t)sλ(t
′) , (8)

R(t, t′) =
δsi(t)

δhi(t′)

∣∣∣∣∣
h=0

=
∑
λ

δsλ(t)

δhλ(t′)

∣∣∣∣∣
h=0

, (9)

and their corresponding disorder averaged values C(t, t′) and R(t, t′) where · · · denotes

an average over the disorder realizations, i.e. over the GOE random coupling matrix J .

In Eq. (8), and in the following, ‘
∑

λ’ denotes a sum over all the eigenvalues belonging

to the spectrum of J .

Intuitively, one expects that at large time, the dynamics in Eq. (4) will be

dominated by the near-extreme eigenvalues, i.e. the eigenvalues of the coupling matrix J

that are close to λmax [8, 14]. More precisely, we will see that the observables mentioned

above (energy density, response and correlation functions) can be written in terms of the

density of eigenvalues “seen” from λmax, the so called density of states (DOS) ρDOS(r,N)

defined as [15, 16]

ρDOS(r,N) =
1

N − 1

∑
λ6=λmax

δ(λmax − λ− r) . (10)

The DOS (10) was recently studied in detail for matrices belonging to the Gaussian

Unitary Ensemble (GUE, corresponding to the Dyson index β = 2) [16], using semi-

classical orthogonal polynomials, as well as for more general Gaussian β-ensembles [17],

using mainly scaling arguments. In particular, it was shown that the behavior of the

average DOS ρDOS(r,N) exhibits two distinct behaviors depending on whether r ∼ O(1),

or r ∼ O(N−2/3). In the former case ρDOS(r,N) is simply given by a shifted Wigner semi-

circle law (see also [14]), whereas in the latter ρDOS(r,N) takes a non-trivial scaling form

reflecting the fluctuations at the edge of the Wigner semi-circle. This can be summarized
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as follows [16, 17]

ρDOS(r,N) ∼


ρ̃bulk(r) = 1

2π

√
r(4− r) , r ∼ O(1) ,

N−1/3ρ̃edge(N
2/3r) , r ∼ O(N−2/3) ,

(11)

The scaling function ρ̃edge(x) is presently known exactly only for complex Hermitian

random matrices belonging to GUE [16]. For general Gaussian β-ensembles, including

the case β = 1 mostly relevant for the spin-glass model studied here (1), the exact

evaluation of ρ̃edge(x) remains an open problem. At the same time the asymptotic

behaviors of such a scaling function was derived in [17] and is given by

ρ̃edge(x) ∼


aβ x

β , x→ 0 ,

1
π

√
x , x→∞ .

(12)

The small-x asymptotics in (12) is controlled by the repulsion between two neighboring

eigenvalues, and the exact value of the amplitude aβ is known only for β = 2 where

a2 = 1/2. On the other hand, the large argument behavior can be obtained by matching

the edge regime with the bulk regime given by the shifted Wigner semi-circle.

In Ref. [8] (see also Ref. [10, 11] for a rigorous proof of these results), the authors

studied the dynamics of the spherical 2-spin model in the thermodynamic limit N →∞.

Most importantly the limit of large times t was studied after performing the limit

N → ∞. In this order of limits the large time behavior of physical observables can

be obtained by replacing ρDOS(r,N) (which is self-averaging for r ∼ O(1)) by a shifted

Wigner semi-circle ρ̃bulk(r) given by the first line of (11). Indeed, in the limit N → ∞
the contribution from the edge regime turns out to be negligible. In particular, it was

shown that the average energy density e(t) approaches its limiting value algebraically

as

e(t) +
1

2
λmax ∼

3

8 t
, (13)

for large time t. Such algebraic decay reflects the complexity of the energy

landscape, with infinitely many saddle-points being operative in trapping the descending

trajectories for a long time. Such saddle points typically have a “mesoscopic” index, that

is the number k of unstable directions satisfy 1� k � N , corresponding to eigenvalues

of the matrix J mesoscopically far from the spectral edge.

Instead, we are interested in clarifying what happens for such a system of large but

finite size N . In this case, we actually demonstrate that there exists a crossover time

scale tcross ∼ O(N2/3) which separates two distinct relaxation regimes: the CD regime 1

as described above for the system in the thermodynamic limit N →∞ and taking place

for times t � tcross from the later time regime 2 operative for t � tcross. This latter

regime is controlled by the small argument behavior of ρ̃edge(x) in Eq. (12), yielding in

particular new exponents which we compute here. At this later stage the relaxation is
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Figure 1. Plot of N2/3∆e(t) as a function of t/N2/3 for different values of N =

50, 100, 200 and 400. The data have been obtained by evaluating numerically the exact

formula in Eqs. (24) and (32), and the averages have been performed by sampling 200

independent GOE random matrices. The collapse of the curves for different values

of N on a single master curve (for t sufficiently large) is in good agreement with our

analytical predictions in Eqs. (14) and (15).

dominated by just a few saddle-points in the landscape close in energy to the ground

state and having of order of one unstable directions.

For t ∼ O(N2/3), single time quantities like the average energy e(t) are characterized

by a scaling function of the scaling variable t/N2/3 which interpolates between these two

regimes. For instance, we show that average excess energy ∆e(t) = e(t)+λmax/2 behaves

as

∆e(t) ∼


e1(t) , t� N2/3 ,

N−2/3E
(

t

N2/3

)
, t & O(N2/3) .

(14)

The function e1(t) was computed by CD in Ref. [8] and has the asymptotic behavior,

for large t, given in Eq. (13) while E(x) has the following asymptotic behaviors

E(x) ∼


3

8x
, x→ 0 ,

A

x3
, x→∞ ,

(15)

where A is an (unknown) numerical constant. The regime x → 0 naturally matches
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Regime I

Regime II

Regime III

t0

t

O(N2/3)

O(N2/3)

Figure 2. The three different regimes of the temporal behavior of the response

function R(t, t′) in the (t, t′) plane (note that the region t < t′ is forbidden as a

consequence of causality). The regime I corresponds to the regime studied by CD in

[8] while the two regimes had not been studied before. In particular, in the regime III

where the dynamics is stationary, the response function is completely determined by

the density of near extreme eigenvalues of the coupling matrix J [see Eq. (16) ]. The

dot indicates the region where the response function takes the scaling form given in

Eq. (20) which interpolates between the three regimes.

the CD regime in Eq. (13), while the other regime for x → ∞, characterized by a

different exponent, describes the late time behavior for a system of large but finite size.

In Fig. 1 we show a plot of N2/3∆e(t), evaluated numerically from the exact formula

derived in Eqs. (24) and (32) below, as a function of t/N2/3 for different values of N ,

which confirms our analytical predictions in Eqs. (14) and (15). It is important to stress

that while in the regime 1, for t � N2/3 the quantities we study are self-averaging, we

will argue that it is not the case for the late regime 2, for t & N2/3.

Similarly, two-time observables like the response R(t, t′) and the correlation C(t, t′)

display different asymptotic behaviors in the three regions I, II and III in the (t, t′) plane

depicted in Fig. 2. The first region I for times 1� t, t′ � N2/3 studied by CD [8], the

region II for 1� t′ � N2/3 � t and finally the region III for N2/3 � t, t′. In particular,

in the region III the response function is stationary, i.e. it only depends on the time

difference t− t′, and R(t, t′) is given by

R(t, t′) ∼ RIII(t− t′) =

∫ ∞
0

ρDOS(r)e−r(t−t
′) dr , (16)

which shows the physical relevance of the DOS in this problem. The scaling form for
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the DOS in Eq. (11) induces the following scaling form for the response function RIII(τ)

RIII(τ) ∼


r1(τ) , τ � N2/3

N−1 r̃
( τ

N2/3

)
, τ & N2/3 ,

(17)

where the function r1(τ) was computed by CD [8] while r̃(x) is given by

r̃(x) =

∫ ∞
0

e−xrρ̃edge(r) dr . (18)

Its small and large argument asymptotic can be easily obtained from the ones for ρ̃edge(r)

in Eq. (11) and are given by

r̃(x) ∼


1

4
√

2π

1

x3/2
, x→ 0 ,

B

x2
, x→∞ ,

(19)

where B is an (unknown) constant. The limit x → 0 naturally matches the result of

CD while the large-x behavior gives rise to a different algebraic decay. This late time

regime III corresponds to the final stage of relaxation within the multidimensional energy

landscape dominated by both the global minimum and the small-index saddle-points.

Finally, for t ∼ N2/3 and t′ ∼ N2/3, the response and the correlation functions

are characterized by scaling functions of the two variables t/N2/3 and t′/N2/3 whose

asymptotic behaviors match smoothly with the various regimes described above. For

instance, the response function R(t, t′) takes the scaling form

R(t, t′) =
1

N
R
(
t̃ =

t

N2/3
, t̃′ =

t′

N2/3

)
, t > t′ , (20)

which is in general not stationary. Such a non-stationarity is usually interpreted as

a form of ‘aging’ typical for complex systems [8]. However, in the limit t̃, t̃′ � 1

stationarity is restored so that R(t̃, t̃′) ∼ r̃(t̃− t̃′), where r̃(x) is given in Eq. (18).

3. Zero temperature dynamics

The general solution of (4), starting from a given initial condition sλ(0) at t = 0 for

λ ∈ Sp(J) was found by CD and reads [8]:

sλ(t) = sλ(0) exp(λt) exp

[
−
∫ t

0

z(τ)dτ

]
(21)

+

∫ t

0

dt′′ exp [λ(t− t′′)] exp

[
−
∫ t

t′′
z(τ ′)dτ ′

]
(hλ(t

′′) + ξλ(t
′′)) ,

which will be the starting point of our analytical computations. In the following, we

will focus on the uniform initial condition sλ(0) = 1, see Eq. (6).
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3.1. Lagrange multiplier z(t) and energy density e(t)

At T = 0, the expression of z(t) is simply obtained from the spherical condition

C(t, t) = 1. Using the definition of C(t, t) in Eq. (8) together with the exact solution

of the Langevin dynamics in Eq. (21), then setting hλ(t
′) = ξλ(t

′) = 0 for all 0 < t′ ≤ t

(and all λ’s) one obtains:

N =
∑
λ

exp

[
−2

∫ t

0

(z(τ)− λ)dτ

]
. (22)

After simple algebra the spherical condition (22) can be represented as:

z(t) =
1

2

d

dt
ln

(
1

N

∑
λ

exp (2λt)

)
, (23)

which by separating the contribution from the maximal eigenvalue λmax can be

conveniently rewritten in the form

z(t) = λmax +
1

2

d

dt
ln gN(t) , (24)

gN(t) =
1

N

∑
λ

e2(λ−λmax)t =
1

N
+

1

N

∑
λ 6=λmax

e2(λ−λmax)t . (25)

From Eq. (24) it is obvious that

lim
t→∞

z(t) = λmax . (26)

The finite time behavior of z(t) is therefore controlled by the random function gN(t)

in (24). It is useful to write the latter function in terms of the density of near-extreme

eigenvalues given in Eq. (10) as

gN(t) =
1

N
+
N − 1

N
hN(t) , hN(t) =

∫ ∞
0

e−2rtρDOS(r,N)dr . (27)

From the results for ρDOS(r,N) [17] stated above in Eq. (11), we expect a very different

behavior of hN(t) for t ∼ O(1) (and more generally for times of order of t� N2/3), and

for longer times t & O(N2/3).

Indeed, for t ∼ O(1), the integral in Eq. (27) is dominated by the region r ∼ O(1)

where the DOS is (i) self-averaging and (ii) given by the shifted Wigner semi-circle law

ρ̃bulk(r) in Eq. (11). Therefore for this range of times we have:

lim
N→∞

hN(t) = hN(t) = h̄(t) =

∫ 4

0

e−2rtρ̃bulk(r) dr, for t ∼ O(1) . (28)

The integral over r can be performed explicitly [8] which yields ‡

h̄(t) =

∫ 4

0

dr

2π
e−2rt

√
r(4− r) =

e−4t

2t
I1(4t) , (29)

‡ Note that h̄(t) = e−4tΓ(t) in the notation of Ref. [8].
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where Iν(x) is the modified Bessel function of index ν. Eq. (29) implies that h̄(t) is a

monotonically decreasing function of t whose asymptotic behaviors are given by

h̄(t) ∼


1− 4t , t→ 0 ,

1

4
√

2π
t−3/2 , t� 1 .

(30)

On the other hand, for t ∼ O(N2/3) one expects that the integral in Eq. (27) will be

dominated by r ∼ O(N−2/3) where the DOS behaves differently, see Eqs. (11) and (12).

For such values of r one expects that the DOS is not a self-averaging quantity, which

implies that hN(t), for t ∼ O(N2/3) is not self averaging either – and we have checked

this statement numerically in Appendix. Finally, for very large times , t � O(N2/3),

the function hN(t) is obviously dominated by the first gap between the two largest

eigenvalues g = λ1 − λ2, where we have used the ordering λmax = λ1 > λ2 > · · · > λN .

We then arrive at the following asymptotic behaviors for hN(t):

hN(t) ∼


1

4
√

2π
t−3/2 , 1� t� N2/3 ,

1

N
e−2gt , t� N2/3 ,

(31)

while in the crossover regime t ∼ O(N2/3), hN(t) is a non-trivial random variable

whose exact statistics is related to ρDOS(r,N) at the edge and is presently not available

analytically. Again we emphasize that hN(t) is self averaging only for t� O(N2/3).

Before analyzing two-time quantities, it is already interesting to study the average

value of the Lagrange multiplier z(t) which is related to the average energy density

e(t) = H[{si(t)}]. One has indeed the following relation (see also [8]):

e(t) = −z(t)

2
= −λmax

2
− 1

4

h′N(t)

1/(N − 1) + hN(t)
. (32)

For t � O(N2/3), one can replace hN(t) by its large N value h̄(t) given in Eq. (29),

to obtain the result given in introduction in Eq. (14) with the function e1(t) simply

given by

e1(t) = −1

4

h̄′(t)

h̄(t)
= 1 +

2

t
− I0(4t)

I1(4t)
, (33)

which has the asymptotic behavior given in Eq. (13).

Let us now analyze this formula (32) in the limit t � N2/3 where hN(t) can be

replaced by its asymptotic behavior given in (31):

∆e(t) ∼ 1

2
g e−2gt . (34)

The computation of this average requires the knowledge of the probability distribution

function pgap(g,N) of the first gap g, and in particular its small argument behavior since
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the average in Eq. (34) will be dominated, for large t, by small gaps g. From Ref. [17]

one has (see also [18])

pgap(g,N) ∼ N2/3p̃gap(gN2/3) , p̃gap(x) ∝ x , for x→ 0 . (35)

Hence one obtains that ∆e(t) ∝ N4/3/t3, for t � N2/3 as announced in Eq. (14). In

the crossover regime t ∼ O(N2/3), ∆e(t) is a non-trivial function interpolating between

the two limiting regimes (14), which is however hard to compute analytically. Thus we

have demonstrated that the very late time dynamics is dominated by the first gap g

between the two first eigenvalues of the coupling matrix. Interestingly, the same first

gap governs the fluctuations of the overlap between two spin-configurations, see [19].

3.2. Response function

In this section, we compute the response function R(t, t′) defined in Eq. (8). From

Eq. (21) we obtain an explicit expression for such a response function as

R(t, t′) =
δ〈si(t)〉
δhi(t′)

∣∣∣∣∣
h=0

, (36)

which gives

R(t, t′) =

√
gN(t′)

gN(t)

1

N

∑
λ 6=λmax

e−(λmax−λ)(t−t′) (37)

+
1

N

√
gN(t′)

gN(t)

[
1−

∑
λ e2λt−(λmax−λ)(t−t′)∑

λ e
2λt

]
, t > t′ . (38)

Starting from the above formula we will be able to demonstrate the existence of three

different time regimes, as already mentioned in the introduction, which we analyze here

in detail.

• Regime I where 1� t′ � N2/3 and 1� t� N2/3. In this case, gN(t′) and gN(t)

are self-averaging and one can easily check that the term in Eq. (38) is of order O(1/N)

while the term in Eq. (37) is actually of order O(1). One obtains in this case [8]:

lim
N→∞

R(t, t′) = RI(t, t
′) =

(
t

t′

)3/4

h̄

(
t− t′

2

)
, (39)

where the function h̄(x) is given in Eq. (29). As already demonstrated in Ref. [8], the

dynamics for t, t′ � N2/3 still displays two different regimes of times, as can be seen

from the structure of the response function in Eq. (39). The first regime corresponds to

1� t, t′ � N2/3 keeping t− t′ = τ > 0 fixed. In such a regime the response function is

time translationally invariant, RI(t, t
′) ∼ h̄(τ/2), and so is the correlation function. In

addition it was shown [8] that in that regime the response and the correlation function

satisfied the fluctuation-dissipation theorem (FDT). For that reason this regime is called

a “quasi-equilibrium regime”. However, it is important to note that in such a regime I

the system is not at equilibrium. Indeed, taking t, t′ � 1 but keeping 0 < t′/t < 1 fixed
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one can see that the response function is clearly non-stationary. This is the so-called

“aging regime” where, for t� t′, one has:

R(t, t′) ∼ 1

4
√

2π

1

(tt′)3/4
. (40)

One can further show that in the aging regime the FDT does not hold [8].

• Regime II where 1� t′ � N2/3 and t� N2/3. In this case hN(t′) is self-averaging

and given by hN(t′) ∼ 1/(4
√

2π)t′−3/2 while hN(t) ∼ 1/N to leading order. On the order

hand, for t� N2/3, one easily sees that the second term in (37) decreases exponentially

with time t. Finally, as t− t′ � N2/3 in this regime the sum over λ 6= λmax in the first

term in Eq. (37) is actually dominated by the first gap g at the edge of the spectrum

of the coupling matrix J :

R(t, t′) ∼ 1√
4N
√

2π

1

t′3/4
e−gt . (41)

After averaging over the distribution of the first gap g one obtains, for t� N2/3, using

Eq. (35):

R(t, t′) ∼ A1√
4
√

2π

N5/6

t′3/4t2
. (42)

This form (42) is however not very illuminating. Instead, it is more convenient to rewrite

R(t, t′) in the scaling form valid for 1� t′ � N2/3 and t ∼ O(N2/3):

R(t, t′) ∼ 1

t′3/4
1√
N
fR

(
t

N2/3

)
, (43)

where fR(x) has the following asymptotic behaviors

fR(x) ∝


x−3/4 , x� 1 ,

x−2 , x� 1 .

(44)

Note that the small x behavior indeed matches the one given in (40), as it should, while

the large x behavior is a new result. In this regime II only an aging regime is present

as the time t is necessarily much larger than t′.

• Regime III where both t′ � N2/3 and t� N2/3. In this regime hN(t) ∼ hN(t′) ∼
1/N while the term in (38) decays exponentially with t. Hence in this regime one finds

that the response function is stationary and given by

R(t, t′) ∼ RIII(t− t′) =
1

N

∑
λ 6=λmax

e−(λmax−λ)(t−t′) =

∫ ∞
0

ρDOS(r)e−r(t−t
′) dr . (45)

Hence one obtains the result announced in the introduction (16).
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3.3. Correlation function

The correlation function C(t, t′) can be computed straightforwardly at zero temperature

T = 0 from Eqs. (21) and (8). The resulting expression is

C(t, t′) =

gN

(
t+ t′

2

)
√
gN(t)gN(t′)

, (46)

where the function gN(t) is given in Eq. (27). As for the response function, there are

three different regimes, in the (t, t′) plane.

• Regime I where 1� t′ � N2/3 and 1� t� N2/3: In this case, gN(t), gN(t′) and

gN((t+ t′)/2) are self-averaging and one finds

C(t, t′) ∼
(
t

t′

)−3/4
, (47)

which is the result of Ref. [8]. In this region of times the full function C(t, t′) is self-

averaging.

• Regime II where 1 � t′ � N2/3 and t � N2/3: In this case, only gN(t′) is

self-averaging. By analyzing the above formula (46), one obtains the scaling form

C(t, t′) ∼
(

t′

N2/3

)3/4

fC

(
t

N2/3

)
. (48)

The exact computation of the full scaling function fC(x) remains a challenge but its

asymptotic behaviors are known:

fC(x) ∝


x−3/4 , x� 1 ,

1 , x� 1 .

(49)

• Regime III where t′ � N2/3 and t � N2/3. In this regime one has gN(t) ∼
gN(t′) ∼ gN((t + t′)/2) ∼ 1/N . We then see that to the leading order the (zero-

temperature) correlation function trivializes:

C(t, t′) ∼ 1 . (50)

This very simple result reflects the fact that the regime III corresponds to the

relaxational dynamics within the well of the global equilibrium.

4. Conclusion

To conclude, we have studied the zero temperature relaxational dynamics of the spherical

p = 2-spin model of size N when N is large but finite. We have identified a crossover

time scale tcross ∼ O(N2/3) beyond which the relaxation occurs within the “well” close

to the global minimum of the energy landscape and is dominated by saddle points with

a few unstable directions. This last stage of the dynamics is controlled by the so called
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density of near-extreme eigenvalues ρDOS(r,N) (10) of the coupling matrix, see e.g.

Eq. (17), which was recently studied in the context of RMT [16, 17].

The problem of the long time dynamics of the same model for finite N and finite

temperature, T > 0, was addressed in Ref. [20]. The presence of finite temperature

introduces a new relaxation time scale, which turns out to be the longest one in the

system, related to the activation over the energy barrier separating the two ground

states, that are related by spin inversion. Based on a heuristic argument, the authors

argued that the height of this barrier scales, in a finite system, like N1/3. They further

suggested that this property will be reflected in the asymptotic behavior of the finite

temperature spin-spin autocorrelation function. We hope that the approach presented

here can be useful to provide a detailed analysis of such an observable for finite N . We

leave this challenging question for future investigations.

In this paper, we restricted our study to the spherical p = 2-spin model. Of course,

it is natural to wonder whether our results will, at least to some extent, hold for the

spherical p-spin model with p > 2. This is a challenging open question as, for p > 2, the

geometry of the energy landscape is much more complicated than for p = 2, with many

(exponentially with N) minima [21, 22] (for a rigorous proof see [23]). Similar questions

can be naturally asked about relaxation in other mean-field models with finite number

N of continuous degrees of freedom and exponentially many minima in the landscape,

like those considered in [24, 25].
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Appendix A. The questions related to self-averaging

In this appendix we study the property of being self-averaging for the density of near-

extreme eigenvalues ρDOS(r,N). For our purpose, the concrete question is whether gN(t),

or equivalently hN(t), is self-averaging. We have studied this question in detail in the

case of GUE, as we have a full analytical description of the average DOS, ρDOS(r,N),

in that case. The same qualitative behavior is supposed to be valid for GOE as well.

The full computation of ρDOS(r,N) was performed for the Gaussian Unitary Ensemble

in Ref. [16]. From it, one can infer the scaling form of ρDOS(r,N) depending on the

scaling of r with N . If r ∼ O(1), ρDOS(r,N) is given by a shifted Wigner semi-circle law,

which was the case analyzed in [8]. On the other hand, if r ∼ O(N−2/3), one expects

that ρDOS(r,N) will have a different form, which is in principle hard to compute.

We have tested numerically if the following statement holds:

lim
N→∞

hN(t) =

∫ ∞
0

e−2rtρDOS(r,N)dr , (A.1)

where . . . means an average over the random matrix ensemble. Our analysis shows that

hN(t) is indeed self-averaging for t ∼ O(1), for which the integral over r is dominated
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Figure A1. Plot of NhN (t) as a function of t/N2/3 for N = 50 for GUE. In blue: 10

different simulations for hN (t). In red: hN (t) on 103 simulations. The straight lines

correspond to the algebraic behaviors t−3/2 and t−1−β , with β = 2 here for GUE.

.

by the region r ∼ O(1) i.e.

lim
N→∞

hN(t) = h̄(t) =

∫ 4

0

dr

2π
e−2rt

√
r(4− r) =

e−4t

2t
I1(4t) , t ∼ O(1) .(A.2)

As we show now, self-averaging, as stated in (A.1) does not hold when t ∼ O(N2/3),

i.e. when the integral over r is dominated by r ∼ O(N−2/3). Indeed, if self-averaging

(A.1) held we would have

hN(t) ∼ 1

N
h̃

(
t

N2/3

)
, h̃(x) =

∫ ∞
0

e−2xuρ̃edge(u)du . (A.3)

In Fig. A1, we show a plot of NhN(t) as a function of t/N2/3 for 10 different realizations

of N ×N GUE random matrices, with N = 50. We see clearly that the different curves

do coincide for t/N2/3 � 1 – corresponding to the bulk regime (A.3) but these curves

clearly differ as soon as t/N2/3 ∼ 1, which is a clear indication that self-averaging does

not hold in this regime.
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