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 Abstract 

Mobile ad hoc networks are of growing interest because of their unique characteristics 

and advantages in many practical applications. QoS provision acts as a major challenge 

in the routing protocol design in the real-world mobile ad hoc networks, especially for 

the real-time services. OFDM is a new technology which has many advantages over the 

other modulation schemes. Because of its prominent features, many popular wireless 

standards have adopted it as physical layer modulation, such as IEEE 802.11 series, 

WiMAX, 3GPP LTE etc, and it is extended to multiuser environment known as OFDMA. 

So far none of the existing ad hoc routing protocols fully account for the OFDMA based 

mobile ad hoc networks. In this thesis, a QoS routing protocol is proposed for OFDMA 

based mobile ad hoc networks. A signal strength-based sub-channel allocation scheme is 

proposed in the routing protocol aiming to reduce the signalling overhead and co-

channel interference. The performance of the proposed routing protocol is compared 

with other alternative proposals through simulations using OPNET simulator. Moreover, 

a partial time synchronization and a null subcarrier based frequency synchronization 

algorithms are also proposed for OFDMA based ad hoc network to further support and 

facilitate the proposed sub-channel allocation scheme and routing protocol.  
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Chapter 1 

Introduction 

1.1 Introduction to mobile ad hoc networks 

With the development of the Internet, wireless communications have attracted more 

and more attention. In the last few years, many wireless communication technologies 

have emerged. These technologies provide users access to a network and 

communication anytime and anywhere. Among them, mobile ad hoc networks (MANETs) 

are one of the most interesting and challenging wireless networks because of their 

unique properties. A mobile ad hoc network is an autonomous system which only 

comprises of mobile wireless nodes. In contrast to other wireless networks, there is no 

fixed infrastructure in a MANET. All mobile nodes are self-configured and self-controlled. 

This type of network can be rapidly and easily set up, and deployed at any place without 

central administration. A detailed comparison table between a cellular and an ad hoc 

network is shown in table 1 below. 

The distinct characteristics of ad hoc network from others have many advantages. First 

of all, it can avoid the cost, installation and maintenance of a network infrastructure. 
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Because there is no need for base stations, consequently this makes the network 

deployment much easier and more cost-effective. Secondly, ad hoc networks can be 

rapidly deployed and reconfigured. They can be formed from whatever wireless 

network nodes become available. This is especially important to specific applications 

such as in battlefield communications. Moreover, ad hoc networks are more robust due 

to their distributed nature and node redundancy. More than one route can be 

established simultaneously between two mobile nodes which prevail over single points-

of-failure. 

Table 1 Comparison of cellular and ad hoc networks 

Cellular network Ad Hoc wireless network 

Infrastructure network No infrastructure networks 

Static network topology Highly dynamic network topology 

Fixed cell sites and pre-located base 

stations 

No existence of a base station and rapid 

deployment 

Mostly single-hop communication with 

base station 

Single-hop or multi-hops communications 

between mobile nodes 

Relatively normal environment and more 

stable connectivity 

Hostile environment and irregular 

connectivity 

Detailed planning Automatically established and adapts to 

changes 

High setup cost Cost-effective 

Large setup time Short setup time 
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A commercial application, such as Bluetooth, is one of the recent developments utilizing 

the concept of ad-hoc networking. The IEEE 802.11x series based ad hoc networks are 

another alternative to Bluetooth but they are used in different markets. The 802.11x 

series can provide much higher data rate and larger coverage than Bluetooth.  And 

bluetooth will be used to connect devices in a small area [1]. Another important 

commercial application for mobile ad hoc networks is WiFi direct [2] which is the 

technique that can enable two or more wireless devices directly connect to each other 

over longer distance and with high transmission speed. 

1.2 Design and technical challenge for mobile ad hoc networks 

Although the mobile ad hoc architecture has many benefits, such as self-reconfiguration 

and adaptability to highly variable mobile characteristics, it poses several technical and 

research challenges that need to be addressed [3]. The main challenges faced in an ad 

hoc network are described below: 

 Security in an ad hoc network is one of the primary concerns in providing a 

protected communication between mobile users in a hostile environment [4]. The 

unique characteristics of the ad hoc networks pose many new nontrivial challenges 

in security design, such as open peer-to-peer network architecture, a shared 

wireless medium and rapidly changing network topology. These challenges raise the 

requirement of new security solutions to provide more powerful protection and 

maintain high system performance.  

 Limited spectrum availability is another challenge in ad hoc networks. The external 

environment and interference from other mobile nodes can further influence the 
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bandwidth availability. How to efficiently distribute the limited network resources 

among all the mobile users to avoid collision is still an open issue.  

 In most ad hoc networks, packets are forwarded from the source node to the 

destination node through multi-hop instead of single-hop routing. However, it is 

much more difficult to support high data rate and desirable end to end delay over 

multi-hop wireless channels than over single-hop wireless. This is a main challenge 

for applications with high data rate requirement and stringent end to end delay 

such as video, and voice conference. 

 Routing is the determination and maintenance of a path between a pair of nodes to 

exchange information in a network. In an ad hoc network, the topology is constantly 

changing. It is much more challenging to provide a smooth transmission across the 

network. A path might be broken in an ongoing session because the movement of 

one or more participant nodes. This makes the route maintenance mechanism more 

important and difficult.  

 Energy constrain is another big challenge in ad hoc networks [5]. All the mobile 

nodes can move freely, hence most of the mobile nodes are only powered by 

batteries which cannot be recharged. Therefore the power conservation is a key 

requirement which need to be taken into account in the design of an ad hoc 

network. Every mobile node in a MANET acts as a router in charge of forwarding the 

incoming packets to the next node towards the destination.  So, most of the time 

the mobile nodes should be at least in the reception mode waiting for the incoming 

packets. This standby operation can consume significant energy. The network 

design should take this aspect into account to optimize the energy consumption. 
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 The scalability to larger networks is the main drawback because of the requirement 

of multi-hop traffic relay. In addition, the nodes in the ad hoc network need the 

help of other nodes to reach the correspondence over one hop away from them 

and it is unlikely that these intermediate nodes are willing to sacrifice their precious 

resource (such as power) for others without any common interest [6]. This could be 

the main restriction to the commercial success for ad hoc networks. 

The physical time and clock synchronization are crucial in wireless communication so 

the nodes can successfully communicate with each other especially for real time 

services such as conference calls etc. However, there is no central controller in the ad 

hoc networks and they can be quite sparse in nature. Hence the traditional clock 

synchronization algorithms cannot be applicable in this setting. If OFDM modulation 

scheme is used in the physical layer, such as IEEE 801.11n [7], the synchronization 

becomes even harder because of the frequency offset in the physical layer. The mobile 

nodes by themselves must resolve both the time and frequency synchronization 

problems. 

1.3 Motivation of this thesis 

With the increasing interest in multi-media and other high bandwidth demanding 

applications, the provision of quality of service (QoS) support becomes one of the most 

important issues for MANETs system design. QoS is the performance level of a service 

provided by the network to the users [8]. The goal of the QoS provisioning is to 

guarantee the information transmission performance and optimise network resources 

utilization. A lot of efforts have been done in providing QoS support in both wired and 
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wireless networks. The QoS considered in this thesis is to find a route for a request 

session which satisfies the bandwidth and end-to-end delay requirements. 

Compared to a wired network, QoS provisioning in wireless networks is more difficult 

because of the vulnerable and unstable features of the radio link and the mobility of 

mobile nodes, especially in mobile ad hoc networks. For mobile ad hoc networks, the 

unique features, such as no central coordination, limited network resource availability 

and hidden terminal problem [8], further complicate the QoS provisioning. Especially for 

MANETs, more consideration must be given to the MAC and routing problem when 

design to support real-time services which have high demands on end-to-end delay, 

jitter and bandwidth. In the past few years many QoS routing protocols have been 

proposed for MANET [9]. But most of them are based on the CDMA/TDMA contention 

free MAC protocol or on the contention based MAC protocol like IEEE 802.11 DCF.  

Orthogonal Frequency Division Multiplexing (OFDM) is a digital modulation technique 

which has been widely adopted as primary physical layer technique in some of the 

major wireless standards (e.g. IEEE 802.11 [10], DVB-RCA [11], IEEE 802.16 [12], LTE-

3GPP [13]). It divides the spectrum into a number of orthogonal parallel narrowband 

sub-carriers so that the symbol duration becomes longer than the channel delay spread. 

Consequently multipath effects are mitigated and wireless channel’s multipath effects 

are alleviated. Due to its distinct advantages, an OFDM based multiple access scheme 

called OFDMA has been proposed as a medium access control scheme in many 

infrastructure based wireless networks, such as IEEE 802.16 [12], LTE-3GPP [13]. In 

OFDMA systems, sub-carriers can be further divided into many groups and each group is 
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called a sub-channel. These sub-channels can be assigned to different users and used at 

the same time without causing interference.  

Recently, OFDMA has been considered to be used in ad hoc network and many 

proposals have already been published on implementing OFDMA in mobile ad hoc 

networks [14]-[17]. The sub-channel allocation to different applications in a distributed 

manner becomes an important research topic [14] [15]. Therefore developing an QoS 

routing protocol for OFDMA based ad hoc network becomes a very interesting and 

challenging topic. Interference avoidance and highly efficient frequency reuse of 

subcarriers are important research aims in the design of QoS routing protocols for 

OFDM/OFDMA based MANETs. A good routing protocol needs to consider both network 

layer and MAC layer, also the support from the physical layer in order to provide 

effective QoS support and bandwidth reservation especially for real-time services. 

Moreover, OFDMA requires restrict time and frequency synchronization to realize 

concurrent transmissions, especially in ad hoc networks. Therefore, developing an 

efficient time and frequency synchronization scheme is necessary. 

1.4 Major contributions of this thesis  

There are three main contributions in this thesis. First of all a novel signal strength 

based medium access protocol (SSMAP) is proposed to orchestrate the channel access 

in OFDMA based mobile ad hoc networks. SSMAP introduces a sub-channel selection 

criterion which is based on the interference power of the sub-channels in the receiver 

side aiming to reduce the co-channel interference and the signalling overhead. The 

proposed sub-channel allocation scheme is fully distributed and each node does not 

need to exchange periodic update information with its neighbours. 
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Secondly, a cross layer SSMAP based QoS routing protocol is proposed. The detailed 

route discovery algorithm as well as route maintenance scheme are described. With 

SSMAP, the collision-avoidance handshake (RTS/CTS) is no longer needed and the 

signalling overhead can be largely reduced. Moreover, with proposed sub-channel 

allocation scheme, each node can have multiple concurrent transmissions and 

receptions which can largely increase the system throughput. 

Furthermore, to prove the feasibility of the proposed QoS routing protocol, a partial 

time synchronization scheme and a physical layer frequency synchronization scheme are 

proposed. With the partial time synchronization scheme, each node can successfully 

support concurrent transmissions. The proposed frequency synchronization scheme 

utilizes the null subcarriers inserted between adjacent sub-channels to estimate and 

compensate the frequency offsets. A system architecture of the receiver is proposed 

with reasonable synchronization complexity compared to other synchronization 

schemes in infrastructure based wireless networks. 

1.5 Organization of this thesis 

The rest of the thesis is organized as the following. Chapter 2 firstly describes the 

concept of OFDM and OFDMA, including the principles and implementation. Secondly 

some recent publications on implementing OFDMA in ad hoc networks have been 

described and analysed.  

In chapter 3, the most popular routing protocols for ad hoc networks are described. 

Then QoS is discussed and the challenges for QoS support in ad hoc networks are 

presented. Finally some of the most important QoS routing protocols found in the 

research literature are classified and described in detail. 
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Chapter 4 presents the proposed signal strength based medium access protocol. A 

SSMAP based QoS routing protocol is also described in detail including both the route 

discovery process and the route maintenance scheme.  

Chapter 5 describes the detailed proposed timing and frequency synchronization 

schemes including the system architecture and signal model. The synchronization 

scheme is to further support the proposed SSMAP based routing protocol from the 

physical layer point of view. A substantial literature review of OFDM and OFDMA based 

timing and frequency synchronization proposals is presented as well.  

Chapter 6 implements the simulation model of the SSMAP based routing protocol 

developed using OPNET Modeller. The modelling design is presented in details from the 

network model to process model. The modelling of the routing protocol is validated step 

by step using OPNET tracing file. The developed SSMAP based routing protocol is fully 

evaluated through simulations in different scenarios in chapter 7. Conclusion and future 

work is presented in chapter 8. 
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Chapter 2 

Implementing OFDMA in Ad 

Hoc networks 

2.1 OFDM 

The orthogonal frequency division multiplexing (OFDM) technique is a method in which 

an original data stream is split into multiple low frequency data streams and transmitted 

simultaneously. The technology was first conceived in the 1960s and 1970s during 

research into minimizing interference among channels near each others in frequency 

[99]. The key idea behind this is the orthoganality of the carrier frequency. In normal 

frequency division multiplexing (FDM) system, the concept of single carrier modulation 

is extended by using multiple subcarriers. These subcarriers in the frequency domain 

should not overlap with each other to avoid interference (Figure 1). 

If the FDM system above uses a set of subcarriers which are orthogonal to each other, 

then the subcarriers’ spectrums can overlap without causing interference. This is the 
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basic principle of OFDM modulation. It can be realised by splitting the original data 

stream into several low data rate sub streams and each sub stream is mapped to an 

orthogonal frequency basis. Finally these modulated sub streams are added together to 

form an OFDM signal. The Figure 2 (a) shows a simple representation of an OFDM 

system. The high data rate baseline stream is divided into many sub streams and each of 

them is multiplied by an orthogonal frequency basis Fn. Finally, all the sub streams are 

added together to form a low data rate OFDM data stream. 

 

 

Figure 2  Similarities of OFDM and CDM implementations 

Fa b

Bandwidth

C1 C2 C3

Figure 1  FDM frequency domain subcarrier division 
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The orthogonality of the subcarriers allows simultaneous transmission on multiple 

subcarriers in a tight frequency band without interfering with each other. This is very 

similar to the code division multiplexing (CDM) modulation (Figure 2 (b)). CDM is a 

networking technique in which multiple data signals are combined for simultaneous 

transmission over a common frequency band. When CDM is used to allow multiple users 

to share a single communications channel, the technology is called code division 

multiple access (CDMA). Figure 3 (a) shows a resultant frequency spectrum after OFDM 

implementation with four subcarriers. 𝑋 𝑛  is channel bandwidth, and 𝑧1 𝑛 , 𝑧2 𝑛 ,  

𝑧3 𝑛 , 𝑧4 𝑛  represent the modulated subcarriers. In the frequency domain as shown in 

Figure 3(a), the subcarriers are overlapping with each other. However, in the peak point 

of each subcarrier, the signals from other sub-carriers are zero. Therefore this 

overlapping will not affect the system recovery of the individual original signals. The 

subcarrier overlapping in the frequency domain can largely increase the overall system 

spectrum efficiency. The Figure 3 (b) illustrates the time domain OFDM signal. Because 

the OFDM signal is the combination of many subcarriers, it looks like noise in the time 

domain. 

 

(a) Frequency domain OFDM signal [18] 
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(b) Time domain OFDM signal 

Figure 3  Frequency and time domain OFDM signal 

In practice, IFFT is used to realise fast frequency mapping in OFDM implementation. The 

sinusoids of the IFFT form an orthogonal basis set which can be used as OFDM 

subcarrier frequency basis. The transform of IFFT is used to map the incoming signals to 

a set of orthogonal frequency subsets which is represented by the OFDM subcarriers. 

Similarly, in the receiver side, FFT is implemented to transfer the OFDM signal back to 

the original data stream. 

 

Figure 4  Inter symbol interference in OFDM 
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2.1.1 Advantages and disadvantages of OFDM 

There are three main benefits from an OFDM operating system. 

(1) A major problem in most wireless communication systems is the presence of a multi-

path channel which results in multiple delayed versions of the transmitted signal at 

the receiver side. In a single-carrier system, the received symbol probably would be 

distorted by the delayed copies from the previous symbol which is called inter-

symbol interference (ISI). However, in the OFDM modulation system, a high speed 

serial data is split into N low data rate streams which mean the OFDM symbol period 

is increased by a factor of N compared to the original serial data. In this case, the 

OFDM symbol duration Ls becomes much longer than the channel delay spread Lc 

which makes the effect of ISI neglectable. Figure 4 illustrates the ISI problem in an 

OFDM system, where Lc represents the channel delay spread and Gp is the guard 

time interval. Ls is the length of one OFDM symbol. Note that only the first Lc sample 

of the received OFDM symbol is affected. By introducing a guard interval Gp 

between contiguous OFDM symbols (as shown in Figure 4), the ISI can be easily 

removed.  

(2) An OFDM signal can perfectly resist frequency selective fading channel. Because an 

OFDM symbol consists of many sub-carriers, in a frequency selective fading 

environment, instead of the whole symbol being corrupted, only a few sub-carriers 

will be affected. With proper coding, this can be recovered.  

(3) Because of the orthogonality of the sub-carriers in a OFDM symbol, they can overlap 

without causing problems for the correct reception of each subcarrier in the receiver. 
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So eventually the bandwidth usage efficiency can be largely increased as can be seen 

from Figure 3. 

Although OFDM have many distinct advantages comparing to the other technologies, it 

has some weaknesses too. First of all the OFDM signal is the combination of many low 

frequency subcarriers. It has a noise like amplitude with a very large dynamic range in 

the time domain. As it can be seen from Figure 3 (b), at some point, many subcarriers 

may all contribute to the OFDM signal which results in very high amplitude at that time 

compared to other instants of time. Therefore, it requires RF power amplifiers with a 

very high peak to average power ratio. This can largely decrease the RF power amplifiers 

efficiency [19]. Because when the signal power is larger than a threshold, the output 

power from the amplifier is not linearly proportional to the input power. To amplify the 

OFDM signal without distortion, it has to make sure that the output power of the OFDM 

signal peak point is not lager than the threshold. In this case, the degree of the 

amplification cannot be high. 

 

Figure 5  Flow chart of the OFDM system diagram 
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Another disadvantage for the OFDM technique is that, the power consumption is higher 

than other techniques such as CDMA or TDMA. So, for the mobile users that have 

limited power supply, it is a greater challenge to extend the battery life. Furthermore, 

the OFDM signal is more sensitive to the carrier frequency offset than single carrier 

systems [19]. 

2.1.2 The implementation of an OFDM system 

The basic functional block diagram for the implementation of an OFDM system is shown 

in Figure 5. This block diagram depicts how the signal is modulated, transmitted and 

demodulated. First of all, the original serial data is partitioned into K parallel data 

streams from d0 to dN-1. An Inverse Fast Fourier Transform (IFFT) is applied to the K 

parallel data segments and finally combined together to become one OFDM symbol. The 

IFFT is one of the key components of OFDM, it was first proposed by Weinstein and 

Ebert in 1971. It correlates the input parallel data with its orthogonal basis functions. 

This correlation can be seen as mapping the input data on to relative orthogonal sub-

carriers. An OFDM symbol contains K subcarriers modulated by N parallel data streams. 

Each subcarrier can be written as: 

                                                             

𝐶𝑘 𝑛 = 𝑒𝑗2𝜋𝑛 𝑓𝑘                                                                (2.1) 

Where 𝑓𝑘  is the frequency of kth subcarrier. The subcarrier frequency 𝑓𝑘  is equally 

spaced so that all subcarriers are orthogonal to each other.  

𝑓𝑘 =
𝑘

𝑆𝑇
                                                                           (2.2) 
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Where 𝑆𝑇  is the duration of the OFDM symbol. The resultant OFDM signal after IFFT can 

be written as [20]: 

𝑆 𝑛 =
1

 𝑁
 𝑑𝑘𝐶𝑘 𝑛              0 ≤ 𝑛 ≤ 𝑁 − 1                                   2.3 

𝑁−1

𝑘=0

 

Where 𝑑𝑘  is the complex data symbol which will be transmitted in subcarrier 𝑘. 𝑁 is the 

number of subcarriers. Replacing equations (2.1) and (2.2) into (2.3), the final output 

OFDM symbol can be written as [20]: 

𝑆 𝑛 =
1

 𝑁
 𝑑𝑘

𝑁−1

𝑘=0

𝑒 𝑗2𝜋
𝑛𝑘
𝑁             0 ≤ 𝑛 ≤ 𝑁 − 1                                  (2.4) 

After the IFFT, a cyclic extension is added to the created OFDM symbol. In practice, the 

front of one received OFDM symbol probably will be distorted by the delayed copy of 

the previous OFDM symbol. To mitigate this noise at the front of the symbol, a guard 

interval is inserted which is longer than the time span of the channel for each OFDM 

symbol 𝐺𝑝 > 𝐿𝑐  as described in Figure 4. However, if a blank space is inserted as the 

guard interval for each OFDM, the problem of inter-carrier interference (ICI) will arise. 

This is because in order to successfully recover the OFDM signal in the receiver side 

using FFT, there must be integer number of cycles difference between sub-carriers 

within the FFT interval in the receiver part. So in this case the receiver cannot recover 

each sub-carrier from an OFDM symbol. To avoid this problem, the guard interval is 

replaced by a cyclic prefix in front of each OFDM symbol. This so called cyclic prefix is a 

replica of the last samples of the OFDM symbol which makes the OFDM symbol appear 

periodic. The cyclic extension actually is redundant information and will be removed at 
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the receiver. So like the case of the guard interval mentioned above, the ISI can be 

avoided as well. 

After that, the OFDM signal passes through a digital-to-analogue transformer which 

maps the OFDM signal to higher carrier frequency as shown in Figure 6, where 𝐹𝑐  is the 

carrier frequency and 𝐹𝑜  is the OFDM signal frequency. Then this signal will passes 

through a low pass band filter that removes the higher frequency component (𝐹𝑐 + 𝐹𝑜). 

On the receiver side, the reverse functional blocks will process the received signal so 

that the original serial data can be recovered at the end. 

Fc Fc+FoFc-Fo f

 

Figure 6  Frequency hopping for OFDM signal 

2.2 OFDMA 

Orthogonal Frequency-Division Multiple Access (OFDMA) is a multi-user version of 

OFDM which can support multiple user transmissions. In OFDM, a single user can 

occupy the entire bandwidth by using all subcarriers, while in OFDMA the subcarriers 

are divided into several subsets which can be assigned to individual users. Moreover, in 

many cases, the OFDMA is used along with the other multiple access techniques, such 

as TDMA. The OFDMA symbol is scheduled by TDMA and the subcarriers in OFDMA 
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symbol are allocated by OFDMA. An example of OFDMA/TDMA combination is showed 

in Figure 7. OFDMA/TDMA can make the subcarrier allocation scheme more flexible. 

………… TDMA frame MTDMA frame 1 TDMA frame 2

One OFDMA Symbol

…………………

User 2User 1 User N

One TDMA Symbol
 

Figure 7 Combination of OFDMA and TDMA 

Currently distributing the subcarriers over the sub-channels is a very open problem and 

many permutation modes in OFDMA have already been proposed. There are three 

possible subcarrier allocation schemes (SAS). They are illustrated in Figure 8. Figure 8 (a) 

is called subband SAS where each sub-channel consists of adjacent subcarriers.  This 

type of SAS makes the sub-channel estimation much easier and the users can choose 

the part of the bandwidth presenting the best conditions at the moment of transmission. 

Accordingly the overall system throughput can be increased. Another SAS is the 

interleave SAS where the subcarriers of each user are uniformly spaced over the signal 

bandwidth at a distance R from each other. Although this method can fully exploit the 

channel frequency diversity, the current trend in OFDMA favours a more flexible 

allocation strategy where users can select the best subcarriers. An example is shown in 

Figure 8(b). The last SAS is called generalized SAS as shown in Figure 8(c). In this scheme, 
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the sub-carriers are divided into several sub-channels which consist of sub-carriers 

randomly distributed over the entire bandwidth which is more flexible than the others. 

Each sub-channel can select the sub-carriers based on their current channel conditions. 

On the other standards, the subcarrier permutation is defined in a more specific way. 

For example in IEEE 802.16e, the subcarrier distribution modes can be classified into 

two main categories, diversity or distributed permutations and contiguous or adjacent 

permutations [21].  The diversity mode includes FUSC (Full Usage of the Sub-channels), 

PUSC (Partial usage of the sub-channels) modes and an example in contiguous mode is 

AMC (Adaptive Modulation and Coding) [21].  

 

Figure 8 Three possible subcarrier allocation schemes  

2.3  Implementation of OFDMA in ad hoc networks 

OFDMA has been widely used in various wireless mobile network systems, such as 3GPP 

LTE and WiMAX. However, there is less published literature on implementing OFDMA in 

ad hoc networks. This is because in ad hoc networks, without a central coordinator, the 

resource allocation becomes much more difficult than in infrastructure based wireless 
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networks. In this section, some recent proposals about implementing OFDMA in ad hoc 

networks are explained and compared. 

In [22], the authors propose an enhanced distributed coordination function (DCF) based 

on the IEEE 802.11 DCF to implement OFDMA for ad hoc networks. The aim of this 

proposal is by using OFDMA to realize concurrency in the physical layer and increase the 

capacity of the system when the number of contending devices is high. The main idea 

behind the proposed DCF is that the nodes are divided into several groups and one sub-

channel is assigned for each group. The contention avoidance mechanism (RTS/CTS) will 

take place in each group respectively through the assigned sub-channel. The contention 

cycle ends after each group has transmitted an RTS or a specified timeout occurs. The 

recipients respond with CTS using the sub-channel at which they have received their RTS 

message. In each group, there is only one CTS message at a time. Then the nodes divide 

the channel into equal sub-channels based on the number of CTS messages of the whole 

network and start to transmit data in parallel using the assigned sub-channel. 

The algorithm can be described as follows: 

1. Every node in an ad hoc network periodically broadcasts a called network discovery 

message (NDM) that contains information about the sub-channel it is using, along with 

other parameters.  

2. When a new node joins the network, it can transmit a Hello message. Other devices 

respond with an NDM. The new device can then select the least used sub-channel. The 

whole procedure will be repeated once the topology changes in the network. 
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3. Nodes in the same group share the same frequency sub-channel and contend among 

themselves to capture the channel using the same mechanism in IEEE 802.11 DCF. 

4. After transmitting a RTS, the sender waits for a CTS. Other nodes in its group halt 

their backoff until the next contention cycle starts. So, there can be no more than one 

successful RTS sent from each group in a contention cycle. 

5. When in backoff, nodes can listen for the channel. If a node receives an RTS message 

and detects that its intended receiver has transmitted that message, it halts its backoff 

and waits for the next contention cycle. Alternatively, if a device receives an RTS with its 

own address in the destination address field, it halts its backoff counter and replies with 

a CTS message when the contention cycle is over. 

6. The contention cycle ends as soon as either each group has sent one RTS, or a 

timeout occurred. No device will initiate a new RTS after the contention cycle is over, 

only the ongoing RTS transmissions will continue. When the contention cycle is over, 

nodes that have received an RTS message wait for the channel to remain idle for a Short 

Inter Frame Spacing (SIFS) time which is defined in IEEE 802.11 [99] and then transmit a 

CTS using the same sub-channel at which they have received that RTS. SIFS normally 

corresponds to the time that is required to switch the radio of a device between the 

reception and transmission. 

7.  Devices that have received a CTS message, calculate a sub-carrier assignment in a 

distributed way. They start transmitting data using the calculated sub-channels after 

waiting for a SIFS time. Devices can detect a collision by the absence of a CTS in 

response to its RTS. Then they wait for the beginning of another contention cycle using 
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the same binary exponential backoff rules used by IEEE 802.11 DCF. Finally, after waiting 

for a SIFS time, the receiving devices transmit an ACK using the same sub-channels at 

which they have received data. 

Although the author in [22] tried to propose a DCF to avoid collision and realize 

concurrency in an ad hoc network, the explanation of the sub-channel allocation 

algorithm is missing in the paper. Moreover, by using RTS/CTS mechanism in each group 

will significantly increase the system signalling overhead and reduce the overall 

throughput.  

In [23], the authors propose a link-oriented resource allocation algorithm for OFDMA 

based ad hoc networks. The main aim of the proposed scheme is to guarantee fairness 

in the resource allocation by maximizing the spatial reuse rate, which means trying to 

use the same network resources as many times as possible. The basic idea for this 

algorithm to realize fairness is to allocate a given network resource every three-hop. 

One of the main drawbacks for this proposal is that by reusing the network resources as 

many times as possible will significantly increase the overall network interference and 

reduce the system throughput. Moreover, in order to realize the optimal spatial reuse 

rate, each node in the network has to periodically exchange local information with other 

nodes to make the decisions on the best resource allocation. This will largely increase 

the system signalling overhead. 

Veyseh et. al. in [24] propose a Concurrent Transmission or Reception Multiple Access 

(CTRMA) protocol to allocate sub-channels in ad hoc networks. In their system model, 

each node is endowed with a single half-duplex radio and a single antenna. The aim of 

the proposed scheme is to develop a sub-channel allocation algorithm that takes 
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advantage of the ability of OFDMA to support concurrent transmissions. The advantage 

of the proposed scheme is that it can support dynamic bandwidth selection and 

enhance the channel reuse.  

CTRMA consists of three main components: (a) using OFDMA at the physical layer, (b) a 

channel priority assignment (CPA) algorithm, and (c) a joint negotiation algorithm. 

OFDMA enables the concurrent transmission or reception of multiple packets by a given 

node. CPA is responsible for allocating high-quality channels to each transmitter-

receiver pair so as to avoid multiple access interference, and it is executed when 

topology changes occur in the neighbourhood. The joint negotiation algorithm exploits 

the priorities assigned with the CPA to negotiate best channels immediately prior to 

data transmission. It improves throughput by reducing overhead and establishing 

multiple transmissions via a single round of control-message exchange. 

 

The CPA algorithm assigns a channel priority to each channel for each link when a link is 

defined for a pair of nodes that are immediate neighbours. A channel priority has two 

values, high (h) and low (l). A priority value of high denotes a low collision probability 

and a priority value of low means a high collision probability for the channel being 

utilized on the link. A channel with high priority on a link u must be assigned a priority 

low on all links within k hops away from the link u. k should be at least equal to 2 to 

avoid co-channel interference. Any channel assigned high priority can be utilized by the 

link. In CTRMA, a node can utilize multiple sub-channels concurrently which are assigned 

with a priority of high on a link to provide adaptive bandwidth selection for each 

transmission. By assigning priorities of all sub-channels for each link, the sub-channels 
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can be allocated among networks in a fully distributed way.  

The joint negotiation process is encapsulated in the RTS/CTS mechanism. The handshake 

is initiated by the transmitter. A transmitter would need to send a Request-To-Send (RTS) 

message on the dedicated control channel and if successful, all neighbouring idle nodes 

would be able to receive the message. The RTS contains a list of the targeted receivers 

and the selected corresponding channels. If neighbours confirm the selected channels, 

they reply on the control channel with a Clear-to-Send (CTS) message at the scheduled 

delayed time assigned by the transmitter to make sure no collision occurs. In here, 

perfect time and frequency synchronization is assumed. For the sake of synchronization 

each RTS includes a time reference clock indicating the beginning of the next time slot 

set by the transmitter. If a receiver confirms the selected channels, it includes the same 

reference clock in the CTS message. Any potential neighbour that receives the CTS, 

would be able to find the beginning of the next time slot adjusted according to the 

reference clock of the two-hop neighbouring transmitter. 

 

Although CTRMA can improve the system throughput by assigning a priority to each link 

to avoid collisions, it has many drawbacks. Firstly, to set the channel priorities for each 

link, each node must periodically exchange updated information with its one-hop 

neighbours, which will largely increase the network signalling overhead. Moreover, time 

slots are used in CTRMA to schedule the concurrent transmissions. This is based on the 

assumption that the network is perfectly synchronized by time which is one of the most 

difficult tasks in ad hoc networks. However, the time synchronization issue has not been 

addressed in this paper. Based on these drawbacks, this thesis proposes a more 
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effective MAC layer protocol which is aiming to improve the system throughput and 

reduce the overall signalling overhead. The OFDMA based medium access scheme 

proposed in this thesis will be later compared with the scheme described in [24] in 

terms of signalling overhead, system throughput and session success rate. 

2.4 Concluding remarks 

This chapter presents the fundamental concepts of OFDM and OFDMA. Section 2.1 

presents the OFDM signal in both time and frequency domain. The advantages and 

disadvantages of OFDM are also described in detail. Finally, the implementation of an 

OFDM system is presented and explained in detail. 

In section 2.2, the concept of OFDMA is described. Three common subcarrier allocation 

schemes (SAS) are illustrated which are called subband SAS, interleave SAS and 

generalized SAS respectively. 

Section 2.3 presents the recent research publications on implementing OFDMA in ad 

hoc networks.  The benefits and disadvantages of each presented scheme are described 

and analysed. The major published related work described in this chapter, the CTRMA 

protocol, is used as basis of comparison to the OFDMA based MAC layer protocol 

proposed in this thesis. The comparison will be shown in chapter 7. 

The next chapter presents the classic routing protocols proposed for mobile ad hoc 

networks.  
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Chapter 3 

Routing Protocols in Mobile 

Ad Hoc Network 

3.1 Introduction 

With the advances of wireless communication technologies, mobile networks have 

attracted significant attention in recent years. Compared to wired networks, node 

mobility in mobile networks may cause frequent topology changes which is rare in wired 

networks. Moreover, in contrast to the stable link capacity of wired networks, wireless 

link capacity is vulnerable to many factors such as transmission power, receiver 

sensitivity, fading, interference, and noise.  

Mobile nodes in MANETs are autonomously self-organized without any infrastructure 

support. The arbitrary movement of nodes results in rapid and unpredictable topology 

changes. Additionally, since the wireless link normally has limited coverage, some nodes 

cannot communicate directly with each other. Therefore, an ad hoc network should be 

considered as a multi-hop network and each node in a mobile ad hoc network acts as 
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both host and router. All the characteristics lead to the requirement to build a new ad 

hoc suited routing protocol which is different from the traditional ones implemented in 

the current internet environment [25] [26]. 

As a promising wireless network for the future, MANETs have attracted more and more 

attention of researchers. Researches on MANETs have proposed many new solutions for 

better resource management, multiple access methods, and routing. In the last few 

years, many routing protocols have been proposed for dynamic multi-hop networks. In 

this chapter, some of the most classic routing protocols for mobile ad hoc networks are 

reviewed. 

3.1.1  Classification of Routing Protocols 

Routing is a fundamental issue for networks. Prior to the increased interests in wireless 

networks, a lot of routing algorithms have been proposed for wired networks. Among 

them, the Distance Vector routing [27] and the Link State routing [27] are two of the 

most popular routing algorithms in wired networks.  

In the distance vector routing protocol, every router stores the distance information to 

all reachable destinations in a local routing table. A router periodically exchanges the 

distance information with its neighbours to update its routing table. The metrics used to 

calculate the distance can be hop number, queue size and delay. The routing 

Information Protocol (RIP) [28] is based on the distance vector routing.  

In the link state routing, each node maintains an up-to-date view of the network by 

periodically broadcasting its current status of links to all routers in the network. If a link 

state change occurs, the related notifications will be flooded through the whole network 
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[27]. When each node receives the update information, it will recalculate the routes and 

choose the next-hop node for each destination by applying the shortest-path algorithm 

such as the Dijkstra’s algorithm. Open Shortest Path First (OSPF) [29] is an example that 

utilizes the link state routing protocol. 

The traditional distance vector and link state routing algorithms are not suitable for 

mobile ad hoc networks. This is because in mobile ad hoc networks, the network 

topology changes frequently due to node mobility. Frequent route updates which will 

consume a significant part of network resources and increase the channel contention. 

To overcome these potential problems, a number of routing protocols have been 

proposed for MANETs. These routing protocols can be classified into several types based 

on different criteria, such as network topology, and route discovery protocol. Normally, 

these routing protocols can be categorized into three major groups: global or proactive, 

on demand or reactive, and hybrid (table 2). 

Routing protocols for mobile ad hoc networks 

Proactive  Reactive Hybrid 

DSDV, WRP, LOSR etc. DSR, AODV etc.  ZRP etc.  

Table 2  Classification of the routing protocols in mobile ad hoc networks 

 In proactive routing protocols, every node in the network maintains up-to-date 

routes to all possible destinations by periodically broadcasting update 

information. When a network topology or link state change occurs, related 

notifications will be flooded throughout the whole network. Most proactive 

routing protocols for MANETs are deriving from the traditional routing 

algorithms [9] used in wired networks with necessary modifications to adapt to 
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the dynamic features of MANETs. Because every mobile node proactively 

maintains routes to all destinations and periodically broadcasts update 

information, the overhead to maintain the up-to-date network state is high. 

However, the proactive routing protocols save the time for route discovery, and 

consequently a mobile node can start to forward the packets to the destination 

as soon as a session is triggered based on its up-to-date routing table. The typical 

proactive routing protocols are the Destination Sequence Distance Vector (DSDV) 

[30] and the Wireless Routing Protocol (WRP) [31]. 

 Reactive routing protocols for MANETs are also called on-demand routing 

protocols. In a reactive routing protocol, routes are discovered only when 

needed. When a session is triggered in a mobile node, it invokes a route 

discovery process. Then a route request message is flooded from the source 

node to the destination. Once the destination node receives the route request 

message, it initiates a reply message and sends it back to the source node along 

the reverse path of the route request. The discovery process terminates either 

when a route is found or there is no route available. Once a route is established, 

a route maintenance procedure will be invoked until the end of the session. 

Compared to proactive routing protocols, the reactive routing protocols have 

less control overhead and better scalability. However, using reactive routing 

protocols, source nodes may suffer longer delay than proactive routing protocols 

for route discovery before they can start to forward the packets. Examples of on-

demand routing protocols include Dynamic Source Routing (DSR) [32] and Ad 

hoc On-demand Distance Vector routing (AODV) [33]. 



47 
 

 Hybrid routing protocols are proposed to overcome the shortcomings of both 

proactive and reactive routing protocols by combining their merits. Normally, 

hybrid routing protocols for MANETs exploit hierarchical network architecture 

and proactive and reactive routing protocols are implemented in different 

hierarchical levels. The Zone Routing Protocol (ZRP) [34] is typical example of 

hybrid routing protocol. It divides the network into several routing zones. 

Proactive routing protocols are implemented within each zone while reactive 

routing protocols are used for route discovery across zones. 

3.1.2 Proactive routing protocols 

3.1.2.1 Destination Sequenced Distance Vector (DSDV) routing protocol 

DSDV [30] is one of the earliest proactive uni-cast routing protocols developed for 

mobile ad hoc networks. DSDV uses Bellman-Ford Distance Vector routing algorithm 

with some necessary modifications to adapt to the dynamic characteristics of MANETs, 

increase the reliability of update information exchange and avoid formation of route 

loops. 

In DSDV, every node has a routing table which stores the next hops toward to each 

possible destination, the cost metric for the routing path to the destination which is 

represented by the number of hops for that destination and a destination sequence 

number for every destination. For example, as shown in Figure 9, the network contains 

8 mobile nodes. Originally, N1 was connecting with N2. Table 3 shows a possible routing 

table maintained in N4 before N1 is moving away. 



48 
 

The route update in DSDV can be either time-driven or event-driven. DSDV requires 

each node periodically broadcasts updates about its routing information to its 

neighbours so that every node in the network can keep an up-to-date view of the whole 

network. In this way, routes to all destinations are available at any time in each node, 

and every node can start to forward packets as soon as a session is requested. A 

destination sequence number is created by each destination to show the freshness of a 

route. The route with the higher sequence number is considered the fresher one and if 

two routes have the same sequence number, the route which has the lower distance is 

favoured. 

 
Figure 9  Example of DSDV in mobile ad hoc network 



49 
 

When a breakage is detected by a node, for example when a node moves out of the 

range of another, the node will set the distance to the affected destination to infinite (∞) 

and broadcast the related notification to all its neighbours. Any node who receives this 

notification will update its routing table and forward it to its neighbours again so that 

this information can propagate throughout the whole network. For example, assuming 

that N1, in Figure 9, is moving away from N2 and entering into the vicinity of N7 and N8. 

An immediate routing information update is triggered and the new routing information 

is broadcasted throughout the whole network. N4, upon receiving this new update 

information, would then update the local routing table correspondently. All the 

information kept in the routing table will be recalculated. The new routing table at N4 

will appear as shown in table 4. Note that, the metric to the destination 1 now is 

changing from 2 to 3. The sequence number is increased to 36. 

Table 3 Routing table kept in N4 before N1 moves 

Destination Next Hop Metric Sequence 

number 

N1 N2 2 32 

N2 N2 1 45 

N3 N2 2 67 

N4 N4 0 84 

N5 N6 2 125 

N6 N6 1 214 

N7 N6 2 353 

N8 N6 3 421 
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Table 4 Routing table kept in N4 after N1 moves 

Destination Next Hop Metric Sequence   

Number 

N1 N6 3 36 

N2 N2 1 45 

N3 N2 2 67 

N4 N4 0 84 

N5 N6 2 125 

N6 N6 1 214 

N7 N6 2 353 

N8 N6 3 421 

DSDV is a modified distance vector with triggered updates to adapt to the dynamic 

topology in MANETs. The route updates significantly increase the network overhead and 

consume the limited bandwidth which is precious network resources in MANETs.  

3.1.2.2  The Wireless Routing Protocol (WRP) 

The wireless Routing Protocol (WRP) [31] is also a proactive unicast routing protocol for 

mobile ad hoc networks. Just like DSDV, WRP is also based on Bellman-Ford Distance 

Vector routing algorithm. However, different mechanisms are used in WRP to improve 

routing performance in MANETs.  

In WRP, each node maintains a routing table, a distance table, a link-cost table, a 

Message Retransmission List (MRL) and an ack-status table. The routing table contains a 

distance to a destination, the predecessor and the successor nodes along the path to 

the destination. Storing predecessor and successor in the routing table can effectively 
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avoid loop and count-to-infinite problem which is the main shortcoming for the original 

distance vector routing protocol [31]. The link-cost table consists of an entry for each 

neighbour which contains the cost of the link to the related neighbour and the number 

of timeouts since an error-free message was received from those neighbours.  

In WRP, each node exchanges its routing table with its neighbours by using update 

messages. The routing update information exchange can be triggered either periodically 

or whenever a link state change occurs. MRL records every neighbour node which does 

not reply to the update message. If necessary the update messages will be 

retransmitted to the related neighbours. Upon receiving the update information, a node 

will recalculate the route and check if there are better route paths, then it will record to 

the distance table. The biggest shortcoming of WRP is that it consumes large memory 

storage and compute resources to maintain several tables in each node. As a proactive 

protocol, it has poor scalability and large control overhead which make it not suitable 

for large MANETs [35]. 

3.1.2.3 Optimized Link State Routing Protocol (OLSR) 

The Optimized Link State Routing Protocol (OLSR) [105] is developed for mobile ad hoc 

networks. It operates as a table driven and proactive protocol, thus exchanges topology 

information with other nodes of the network regularly. Other than in a pure link state 

protocol where all the links with neighbour nodes are declared and are flooded in the 

entire network, OLSR protocol is an optimization of a pure link state protocol for mobile 

ad hoc networks.  
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The basic idea of OLSR is using so called multipoint relays to forward the control 

messages. Each node in the network selects a set of nodes in its neighbourbood, which 

retransmits its packets. This set of selected neighbour nodes is called the multipoint 

relays (MPRs) of that node. The neighbours of any node N which are not in its MPR set, 

read and process the packet but do not retransmit the broadcast packet received from 

node N. For this purpose, each node maintains a set of its neighbours which are called 

the MPR Selectors of the node. Every broadcast message coming from these MPR 

Selectors of a node is assumed to be retransmitted by that node.  

Each node selects its multipoint relay set among its one hop neighbours in such a 

manner that the set covers (in terms of radio range) all the nodes that are two hops 

away. The multipoint relay set of node N, called MPR(N), is an arbitrary subset of the 

neighbourhood of N which satisfies the following condition: every node in the two hop 

neighbourhood of N must have a bi-directional link toward MPR(N). The smaller is the 

multipoint relay set, the more optimal is the routing protocol. 

There are two advantages for the OLSR protocol. Firstly, it reduces the size of control 

packets: instead of all links, it declares only a subset of links with its neighbours who are 

its multipoint relay selectors. Secondly, it minimizes flooding of this control traffic by 

using only the selected nodes, called multipoint relays, to diffuse its messages in the 

network. Only the multipoint relays of a node retransmit its broadcast messages. This 

technique significantly reduces the number of retransmissions in a flooding or broadcast 

procedure. However, with its nature of proactive routing protocols, each node in the 

network has to periodically exchange update information with each other which will 

largely increase the system overall signalling overhead. Moreover, in order to choose 
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the multipoint relays for each node, the information kept in each node will also increase 

compared to other solutions. 

3.1.3  Reactive routing protocols  

3.1.3.1 Dynamic Source Routing (DSR) Protocol 

DSR [32] is a reactive routing protocol based on source routing algorithm. In DSR, each 

packet contains complete routing information to reach its destination in its header. 

Additionally, each node uses caching technology to maintain all known routes that it has 

learnt.  

There are two phases in DSR: the route discovery phase and route maintenance phase. 

When a node has a packet to send, it firstly checks its route cache and see if there is 

already a route to the destination. If the required route exists, it will specify the 

complete path to the destination into the packet’s header with the address of each 

node along the path and forward the packet to the next hop. Otherwise, the source 

node invokes the route discovery process by broadcasting a route request message to 

all its neighbours. The route request message contains addresses of both the source 

node and the destination. Upon receiving the request message, a node will first check its 

route cache to see if it has the routing information to the destination. If the route to the 

required destination exists or the route request message reaches its destination, a route 

reply packet is generated and returned back to the source along the reversed path. 

Otherwise, the node appends its own address to the route request packet and forwards 

it to its neighbours.  
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One example is shown in Figure 10. Source node 1 triggered the route discovery process 

and broadcasted route request packet to its neighbouring nodes. Every node, upon 

receiving this routing request message will attach itself to the request packet and 

broadcast it to its neighbours. After the route discovery packet reaches the destination, 

a best reverse path will be selected and a route reply packet will be generated and sent 

back to the source with the whole path information as shown in Figure 10 (b). 

 

Once the source node receives the reply packet, a route is established and stored in the 

route cache with a time stamp. The node will start to forward the packets and the route 

maintenance process begins. When a failed link is detected in the link layer, an error 

message will be created and sent back to the source node. After receiving the error 

message, the source node initiates another route discovery process to find a new route. 

Figure 10  DSR route discovery process 
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Additionally, every immediate node along the path who receives the error message will 

remove all routes which contain the broken link from its route cache.  

Since every packet in DSR contains complete addresses of the immediate nodes along 

the path to the destination, the traffic overhead will increase significantly with the 

increase of the network size. This is the main disadvantage of DSR for mobile ad hoc 

networks [36]. 

3.1.3.2  Ad hoc On-demand Distance Vector (AODV) Routing Protocol 

AODV [33] is a reactive uni-cast routing protocol based on the distance vector algorithm. 

As a reactive routing protocol like DSR, AODV only requests a route when necessary and 

only maintain the routing information about the active paths. The major difference 

between AOVD and DSR is that each node in AODV only stores the next-hop information 

while in DSR every packet contains complete routing information for each flow. The 

next-hop information in AODV is stored in a next-hop routing table and updated 

periodically. The routing table expires if it is no longer to be used. Moreover, AODV 

adopts the destination sequence number technique used by DSDV to determine the 

freshness of a path.  

If a session is triggered and a node needs to send packets to another node, it firstly 

checks if there is an active route to the required destination. If so, it just forwards the 

packets to the next hop toward to that destination according to the routing table. 

Otherwise, it creates a new Route Request (RREQ) message and broadcasts to its 

neighbours. A RREQ packet contains the addresses of both source and destination, the 

current sequence number, the last seen sequence number of the destination and the 
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broadcast ID that is used as its identifier and increased each time the source node 

initiates a new RREQ. Also each RREQ includes a time to live (TTL) identifier that is used 

to control the propagation hops of a RREQ message. The RREQ starts with a small TTL 

value and increased each time a new RREQ message created if the destination is not 

found. Once a node receives a RREQ packet, it will discard it if it has seen it before. If the 

RREQ is fresh, it records the information and sets up a reverse route entry for the source 

node in its routing table. One example is shown in Figure 11. As illustrated in Figure 11 

(a), a discovery process is triggered in the resource node 1 and a RREQ message is 

broadcasted to the destination node 7. For each node receiving the RREQ, it reserves a 

reverse path and forwards a new RREQ to the next hop. 

 

Figure 11  Route discovery process in AODV 
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Only one reverse route is set up by each node. If the destination node receives a RREQ, 

it then creates RREP packet and sends it back to the resource along the reverse path. 

Since each node can only initiate one reverse route, there is only one path the RREP can 

follow. So in the Figure 11 (b) the reverse path is 1-2-8-7. 

 

 

Unlike DSR, AODV uses Hello messages to maintain connectivity of a node and its 

immediate neighbours, and it is also used to detect a failed link. A node periodically 

broadcasts and receives the Hello messages to and from its neighbours. If a node is not 

receiving the Hello messages from its neighbour for a period of time, it considers there 

is a link breakage between them and an error message is created and sent to the source 

and destination nodes. All nodes along the route that receive the error message will 

disable the related entries in their routing tables for that route. For example, in Figure 

Figure 12  Route maintenance scheme in AODV 
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12, the original path is broken because node 8 is moving away. So the affected node 2 

will create a RRER message and send back to the source node 1. After that, a new route 

discovery process will be triggered and a new path will be found. As it can be seen from 

Figure 12, the new path is 1-3-5-6-7. 

3.1.4  Hybrid routing protocols 

3.1.4.1 Zone Routing Protocol (ZRP) 

ZRP [34] is a zone based hierarchical routing protocol which is proposed to overcome 

the shortcomings of proactive routing protocols and reactive routing protocols. In ZRP, 

the network is divided into several independent zones according to the distance 

between the mobile nodes. Different routing approaches are used for inter-zone and 

intra-zone packets. A proactive routing protocol called Intra-zone Routing Protocol (IARP) 

is used within the routing zone and a reactive routing approach named Inter-zone 

Routing Protocol (IERP) is exploited between routing zones. Each node only needs to 

keep the topology of the network within its routing zone and if the transmission 

between source and destination node are in the same zone, a route can be available 

immediately. Most of the existing proactive routing protocols can be used as the IARP, 

such as DSDV described above. If the source and destination are residing in different 

zones, IERP will invoke a route discovery to broadcast the route request. The route 

discovery in IERP is similar to DSR with the exception that route request messages are 

broadcasted through the peripheral nodes. 

One example is shown in Figure 13. Source node D needs to send a packet to node Z. 

First it will see if the node Z is in its local zone by checking its routing table provided by 
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IARP. Since it is not found, then a route request message will be broadcasted to its 

peripheral nodes (the gray ones highlighted in Figure 13) by IERP. Upon receiving this 

route request message, each of them will search their routing tables for destination Z. 

Since the node Z is in the zone of peripheral node L (as shown in Figure 14), node L will 

attach the path from itself to node Z in the route request. And then a reply message 

which includes the reversed path will be created in node L and sent back to the source 

node D. 

 

 

 

Figure 13  Route discovery for ZRP in phase 1 

Figure 14  Route discovery for ZRP in phase 2 
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The prominent advantage of ZRP is that it reduces the control overhead of proactive 

routing protocols and at the same time decreases the overall latency for route discovery 

compared to reactive routing protocols. Moreover, the route discovery in ZRP is much 

faster than the one that takes place in reactive routing protocols, because only the 

peripheral nodes are queried in the route discovery process. However, the performance 

of a zone based routing protocol is highly related to the dynamics and size of the 

network. A breakage of a link may affect several routing zones and the control overhead 

for update information may be very high. 

3.2 QoS Routing Solutions for Mobile Ad Hoc Networks 

Recently there are more and more entertainment and other multimedia applications 

with high stringent delay and reliability requirements, resulting in a shift from best-

effort services to the support of higher and better-defined quality of services in MANETs 

research. However, provision of QoS guarantees in MANETs is much more challenging 

than in wired networks because of the high node mobility, lack of central coordination, 

dynamic network topology and limited available network resources. The QoS routing 

protocol is a crucial part of a QoS solution since it selects the proper paths that satisfy 

the application’s requirements. For the past few years, a lot of work has been done in 

providing QoS routing solutions for mobile ad hoc networks. Until now, most of the 

proposed QoS routing protocols in the literature have focused on providing QoS 

guarantees based on two metrics: bandwidth or throughput and end-to-end delay. This 

is because in most applications, throughput is considered as a minimum requirement. 

Some other applications such as video conference require certain level of throughput 
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guarantees in addition to other constraints. In the next section, the QoS routing 

protocols proposed in recent years are classified and described in detail. 

3.2.1  Issues and challenges in providing QoS in MANETs 

MANETs have several unique characteristics which pose great difficulties to provide QoS 

guarantees. The following is a summary of the major challenges in provisioning QoS in 

MANETs. 

 Unreliable shared radio channel: The wireless channel is prone to bit errors and 

suffers from several impairments such as interference from neighbouring 

transmissions, thermal noise, multi-path fading effects, attenuation and 

shadowing. These effects make it impossible to provide hard throughput and 

reliability guarantees. 

 Dynamic network topology: Mobile nodes in MANETs are moving arbitrarily and 

independently. This means that topology information has limited lifetime and 

should be updated frequently for an active route especially for multi-hop paths. 

Frequent link breakage may significantly degrade the network performance and 

introduce higher delay for re-establishing a new QoS path. An important general 

assumption should be mentioned here: the rate of network state information 

propagation should be greater than the rate of topology change. Otherwise, the 

routing information will always be stale which results in failure of the routing 

mechanism. Any network which satisfies this condition is called “combinatorially 

stable” *37]. 

 Lack of central coordination: In MANETs there is no base station or central 

controller to coordinate the activity of nodes and efficiently manage the network 
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resources. All mobile nodes are highly autonomous and self-configured. So any 

routing protocol operates in a completely distributed way by utilizing only local 

state information. This will further increase the overhead and complexity to 

provide QoS guarantees in MANETs. 

 Limited mobile device resources: Although many advances in technology have 

taken place and mobile devices are becoming more and more powerful and 

capable, generally such devices still have less memory stack, less computational 

capability and limited power supply compared to the fixed devices such as 

workstations and desktops. These limitations significantly affect the QoS 

assurance in MANETs. For example, high mobility and frequent link breakage 

lead to more frequent state information update and greater signalling overhead. 

These factors will quickly consume the limited mobile node’s battery. Moreover, 

limited memory capacity limits the amount of QoS information can be 

maintained in mobile nodes which results in more frequent signalling message 

exchange. 

 Limited network resources: Unlike wired network, network resources such as 

bandwidth are limited in wireless ad hoc networks. Therefore, a more efficient 

resource management is required to optimize the utilization of these scarce 

resources. 

In the next section, some recent publications will be presented and described in details. 
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3.2.3 QoS routing protocols for CDMA based Ad Hoc networks integrating a 

contention-free TDMA mechanism 

In earlier QoS routing protocols, the first problem concerned in QoS provision is to 

deliver packets over a path which satisfy the throughput requirement. This is because 

the fact that the assured throughput seems to be the minimum common requirement in 

multimedia applications. To provide throughput based QoS guarantee, the first part of 

the solution is to estimate the channel capacity availability to the nodes along a path.  

An earlier channel capacity estimation scheme for MANETs is proposed in [39]. A 

cluster-based network architecture is presented in which nodes are grouped into several 

clusters. Each cluster is employed a different spreading code based on a CDMA scheme 

and mobile nodes in a cluster are time-slotted under a TDMA scheme. So the channel 

capacity for a node can be measured in terms of time slots and the achievable 

throughput on a link is determined by the set of common free time slots between the 

transmitter and receiver. In the proposed scheme, the classical DSDV [30] routing 

protocol is used with the necessary modifications to provide QoS mechanism. The 

achievable throughput information is stored in the local routing table and time slots are 

reserved at nodes at the beginning of a session and released when no data packets are 

received for a period of time.  

However, the proposed routing protocol in [39] does not consider the CDMA spreading 

code allocation which is critical task in mobile ad hoc network. Because there is no 

central coordinator, every mobile node needs to allocate the spreading code in a totally 

distributed way. Based on this consideration, a cross layer routing protocol called CDMA 



64 
 

Bus Lane was proposed by Lin Xiao et al. [40]. His routing protocol is based on AODV and 

the code channel allocation is implemented in a distributed way. TDMA is used along 

with CDMA to schedule multiple sessions in a node. AODV Hello messages are used and 

modified to exchange code information between nodes as well as maintain the active 

routes. An example of the code allocation algorithm along a path is illustrated in Figure 

15.  

 

Where: 

 𝑅𝐶𝑖  is the reception code set of node i. 

 𝑇𝐶𝑖  is the transmission code set of node i. 

 𝑅𝐶𝑖+1  is the reception code set of node i+1. 

 𝑇𝐶𝑖+1  is the transmission code set of node i+1. 

 𝑁𝐵𝑖 is the neighbour nodes of node i. 

 𝑁𝐵𝑖+1 is the  neighbour node of node i+1. 

𝐿(𝑖, 𝑖 + 1) 

i-2 i-1 i i+1
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TC𝑇𝐶𝑖−2
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Figure 15  Example of code allocation for link 𝑳(𝒊, 𝒊 + 𝟏) on path p [40] 
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 𝑇𝐶𝑦  is the transmission code set of NBi+1 

 𝑅𝐶𝑥  is the reception code set of 𝑁𝐵𝑖+1. 

 𝑇𝐶𝑖
𝑝

 is the transmission code set of node i on path p. 

To decide the transmission code set 𝐴𝐶𝑖~𝑖+1
𝑝

 for link 𝑖~𝑖 + 1 on path p, the transmission 

and reception code set of the neighbour node should be considered. From the node i 

point of view, to avoid interference and collision, the codes in 𝑅𝐶𝑖 , 𝑇𝐶𝑖+1, 𝑇𝐶𝑖−1
𝑝

, 𝑇𝐶𝑖−2
𝑝

 

cannot be used for the link 𝑖~𝑖 + 1. However, because multiple sessions are scheduled 

in time by TDMA, the codes in 𝑇𝐶𝑖  or 𝑅𝐶𝑖+1  can be reused. For the neighbour nodes, the 

interference code set comes from the reception code set of the neighbour nodes. 

However, the reception codes of 𝑅𝐶𝑥  originated from transmissions of node i can be 

ignored because they belong to 𝑇𝐶𝑖 . The reception codes of the node i+1 can also be 

ignored because the reception of multiple sessions in node i+1 will be scheduled by 

TDMA. So for the NBi, the interference code set can be expressed as [40]: 

𝐼𝐶𝑖 = 𝑅𝐶𝑥 − 𝑇𝐶𝑖 − 𝑅𝐶𝑖+1                                                          (3.1)     

Similarly, the interference code set from the neighbour node 𝑁𝐵𝑖+1  can also be 

represented by [40]: 

𝐼𝐶𝑖+1 = 𝑇𝐶𝑦 − 𝑇𝐶𝑖 − 𝑅𝐶𝑖+1                                                         (3.2)   

Therefore, the total available transmission codes set for node i on the link  𝑖~𝑖 + 1 can 

be expressed as [40]: 

𝐴𝐶𝑖~𝑖+1
𝑝

= 𝑅𝐶𝑖 ∪ 𝑇𝐶𝑖+1 ∪ 𝐼𝐶𝑖 ∪ 𝐼𝐶𝑖+1
                                − 𝑇𝐶𝑖−1

𝑝
− 𝑇𝐶𝑖−2

𝑝
                    (3.3) 
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The code allocation is done in the route discovery stage with the modified RREQ 

messages. The code information about the surrounding nodes is periodically updated 

through Hello messages. However, this routing protocol increases the overall network 

overhead than the original AODV protocol because for the AODV protocol, the Hello 

messages are only broadcasted between the nodes which are in an active route. But in 

the CDMA Bus Lane, the Hello messages are used to exchange the code information. So 

every node should periodically broadcast their code information even though it is not in 

an active route.  

3.2.4 A mobility based mobile ad hoc network routing protocol 

A mobility based routing protocol in mobile ad hoc networks is proposed in [41]. The 

proposed routing protocol is based on traditional AODV routing protocol and designed 

for mobile environment where different nodes in an ad hoc network have different 

mobility characteristics. This paper presents a proposal of using the mobility 

characteristic of the nodes in the candidate routes as the criteria in setting up a route.  

The motivation of this proposal is based on the fact that in a real ad-hoc network, 

different nodes probably have many mobile speeds. For mobile ad-hoc network, such 

mobility difference is a significant difference among nodes, as it will impact the 

network’s packets delivery rate, control packets rate, packets delay time and the 

network’s throughput. Therefore, the mobility difference among the nodes shall be 

taken into account by the routing protocol. The detail algorithm is described as follows: 

The author introduces a node’s mobility indication which is defined as *41+: 

𝑀𝑖 = 𝐿𝑖1 × 70% + 𝐿𝑖2 × 30%                                             (3.4) 
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where 𝑀𝑖  is the mobility indication of node i. 𝐿𝑖1  is the number of link breakage of node 

i in the last 10 seconds. 𝐿𝑖2  is the number of link breakage of node i between the last 10 

seconds and the last 20 seconds. If 𝑀𝑖  is higher, link breakage happens more frequently 

in node i. If 𝑀𝑖  is lower or even zero, node i has no link breakage recently. When setting 

up a route, the routing protocol shall try to select the nodes with lower 𝑀𝑖  so to get a 

more “stable” route. 

During setting up a route, each node except for the source node and the destination 

node will compare its own mobility indication with the one carried in the RREQ or RREP 

packet. If a node’s mobility indication is greater than the one carried in the RREQ or 

RREP packet, it will replace the one in the RREQ or RREP packet. 

The route selection is made by comparing the mobility indication value in the candidate 

routes. When receiving multiple RREQ packets, if the difference of the mobility 

indication values between two candidate routes is greater than a given threshold (this 

paper defines it 25%), the destination node will select the route with a smaller mobility 

indication value. Otherwise the destination node will select a route according to the 

shortest path principle. The source node selects a route following the same way too. 

The greatest novelty in this paper is to use the number of link breakages as route 

selecting criteria to increase the packets delivery rate. However, this proposed routing 

protocol can only have good improvement in high mobility ad hoc networks. Moreover, 

the routing protocol does not support concurrent transmissions which will limit the 

overall system throughput. 
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3.2.5  A cross layer routing protocol in ad hoc networks 

Another QoS routing protocol is proposed in [44]. The goal of the proposed QoS routing 

protocol is to improve the performance of the existing AODV routing protocol by 

introducing a new routing metric. This routing metric is formed by the received signal 

strength (RSS) from the physical layer, the remaining energy from the MAC layer and the 

remaining queue length information from the network layer. This QoS routing protocol 

aims to find a route with the highest RSS, remaining battery power and remaining queue 

length. This strategy will lead to select the nodes that have the best connectivity with 

each other, and to decide about the most powerful nodes that can handle traffic and 

last longer before their energy resources are depleted. Therefore, the proposed routing 

strategy can lead to avoid core nodes remaining energy depletion quickly by excluding 

route selection that contains nodes having poor remaining energy. Moreover, the 

algorithm can also lead to select the less congested routes and thus lessening the 

packets dropped by the interface queue. 

The cross layer design can be seen from Figure 16. The proposed cross layer routing 

protocol relies on information (remaining energy, RSS and remaining queue length) 

obtained from the lower layers. Based on this information, the author defines a routing 

metric weight which is expressed in equation 3.5. 

𝑅𝑅𝐸𝑄𝑤𝑒𝑖𝑔 𝑕𝑡 =  𝛼 × 𝑅𝑆𝑆𝐼 +  𝛽 × 𝑅𝐸 +  𝛾 × 𝑅𝑄𝐿                              (3.5) 

Where RSSI represents the received signal strength percentage. RE represents the 

remaining energy percentage. RQL represents the remaining queue length percentage. 

𝛼,  𝛽  and 𝛾  represent the weight associated to each attribute and 𝛼 + 𝛽 + 𝛾 = 1. 
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During the route discovery process, any intermediate node that receives the route 

discovery message will calculate the reverse route weight according to the formula in 

equation 3.5. In the destination node, the path with the weakest hop weight will be 

selected as the reverse route. Therefore, the route selection mechanism allows avoiding 

routes that contain weaker nodes which may break the selected path, thus extending 

the link’s life between the source and the destination. However, the author did not 

specify how to choose the value of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 to get the best system performance. 

Moreover, it also does not support concurrent transmissions and the analysis of the 

extra signalling overhead introduced by the proposed routing protocol is missing. 

 

Figure 16 Cross layer design diagram [44] 

3.3 Concluding remarks 

This chapter presents different routing protocol designs for ad hoc networks. Section 3.1 

describes the classic routing protocols proposed in the literature. These routing 

protocols can be categorized into three classes: proactive routing protocols, reactive 

routing protocols and hybrid routing protocols. Proactive routing protocol, such as DSDV, 

does not need route discovery process which can save a plenty of time. On the other 
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hand, it introduces a lot of signalling overhead to maintain the up-to-date network state 

which is very energy-consuming. By contrast, the reactive routing protocol, such as 

AODV, is an on-demand routing protocol which does not need to maintain the network 

state information. Route discovery process is only triggered when there is a new session 

requirement. Compared to proactive routing protocols, it can largely reduce the system 

overhead. However, it will suffer longer delay for the route discovery process and it is 

not suitable for highly time constraint applications. Hybrid routing protocol, such as ZRP, 

is a compromise which combines the merits of proactive and reactive routing protocols. 

However, it requires more complex and intelligent system which is hard to realise in 

mobile terminals. Moreover, cooperating proactive and reactive routing protocols still 

need large signalling messages for negotiation between the mobile nodes.  

In Section 3.2, some recent publications for developing QoS routing protocols are 

presented and analysed. Most of the recent proposals are based on the classic routing 

protocols with different route selection criteria. [41] and [44] are two of the most recent 

publications on QoS routing protocol in ad hoc networks. However, these two proposals 

only focus on increasing the route reliability and reduce the link breakage rate. 

Concurrent transmission and signalling overhead issues are not taken into account. Lin 

Xiao in [40] proposed a cross layer routing protocol called CDMA Bus Lane which uses 

CDMA to realize concurrent transmission to improve the system throughput. However, 

the proposed routing protocol is based on TDMA technique which is very hard to realize 

in a mobile ad hoc network. Moreover, the CDMA Bus Lane needs each node in an ad 

hoc network periodically exchange update information with its neighbour which will 

largely increase the overall system overhead. 
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In this next chapter, a novel signal-strength based cross layer QoS routing protocol for 

OFDMA based mobile ad hoc networks is presented. 
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Chapter 4 

A cross layer QoS routing 

solution for OFDMA based ad 

hoc networks 

4.1 Introduction 

In the mobile ad hoc network, the most important issues in QoS routing are the 

signalling overhead and collision. Conventionally, in order to distribute the global 

information among the mobile nodes to allocate the network resources effectively, 

periodic information exchange between the mobile nodes is needed before the sessions 

start. This information includes the network resources which are being used in the other 

nodes, such as the code set in a CDMA-based network or subcarriers in an OFDM-based 

network. This apriori signalling between the mobile terminals will significantly increase 

the network overhead and reduce the overall system performance. So how to reduce 

the signalling overhead is one of the most important challenges. In this chapter, a signal 
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strength-based sub-channel allocation scheme, SSMAP, is proposed to move the 

signalling from the up layers to the physical layer as much as possible. A SSMAP based 

QoS routing protocol is also proposed in this chapter to present a cross layer solution for 

OFDMA based ad hoc networks. The proposed cross layer routing protocol is aiming to 

support real-time applications in ad hoc networks, such as teleconference, voice and 

video transfer. Firstly the system model and some assumptions will be discussed. 

4.2 System architecture and assumptions 

Consider a wireless OFDMA-based ad hoc network with N subcarriers in total. These 

subcarriers are further divided into S sub-channels. A sub-channel represents the 

minimum transmission unit in the network. Each mobile node can transmit and receive 

on all sub-channels and each user can be allocated one or more sub-channels at a time 

for transmission or reception depending on the data rate requirements of the user 

application. For each active sub-channel (i.e., a sub-channel being used in current 

communication), the power used in its transmission is 𝑝𝑛 . If a sub-channel is not being 

used by the transmitter at the current transmission time, no power is allocated to this 

sub-channel. It is assumed that the network is homogeneous, which means all the radio 

parameters are the same in all mobile nodes.  

The system model considers the following assumptions:  

1. Every mobile terminal can sense the signal strength of each subcarrier and omni-

directional transmitting antennas are used by every mobile node. 
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2. A mobile node can transmit and receive packets at the same time with different 

sub-channels. Simultaneous transmissions are supported in the nodes by using 

OFDMA. 

3. One Two pairs of transceivers are equipped in each node, one for data packets and 

another for signaling messages. One OFDMA sub-channel is specifically selected at 

system level to be solely used for signaling messages such as route discovery and 

route repair through the signaling transceiver. This signaling sub-channel is known 

and shared among all users. The Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA) mechanism is implemented in the signaling channel to avoid 

collisions for routing discovery in one area. 

 

Figure 17 System architecture 

The OFDMA transmission system architecture is shown in Figure 17. A mobile node has 

N subcarriers. The overall subcarriers are divided into S sub-channels. There are K 

neighbours. The modulated symbol transmitted in the nth sub-channel is denoted by 𝑑𝑛 . 
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𝑝𝑛  is the power added to the nth sub-channel. If one sub-channel is not used by the 

transmitter at the current transmission session, there will be no power allocated to it.  

In the receiver side, it is assumed that each subcarrier is propagated through a flat-

fading channel with additive Gaussian noise. To simplify the problem, it is assumed that 

the system is in an open space environment and each sub-channel is experiencing open 

space path loss. In an open space environment, the path loss of a signal is usually 

modelled as the Two-Way Ground model [46]. Based on the Two-Way Ground model, 

when the transmitter is close to the receiver, the receiving signal power is inversely 

proportional to 𝑑2. 𝑑 is the distance between the transmitter and the receiver. When 𝑑 

is large (200 meters away or more), the receiving signal power is inversely proportional 

to 𝑑4 [46]. It is assumed that the mobile nodes are sufficient apart so that the received 

signal power 𝑃𝑟𝑐𝑣  for each sub-channel can be expressed as: 

𝑃𝑟𝑐𝑣 = 𝑃𝑡𝐺𝑡𝐺𝑟

𝑕𝑡
2𝑕𝑟

2

𝑑4
                                                     (4.1) 

Where 𝑃𝑡  is the transmission power. 𝐺𝑡  and 𝐺𝑟  are the antenna gains of the transmitter 

and receiver respectively, 𝑕𝑡 and 𝑕𝑟  are the height of the transmitter and receiver 

antennas respectively. In this thesis, the following antenna characteristics are 

considered: an omni-directional antenna is used in each node, the antenna gain is 1 and 

the height of the antenna is set to 1.5 meters.  It is assumed that the network is 

homogeneous which means all the radio parameters are the same in each mobile node. 

Equation (4.1) states that the received signal power decreases proportionally to the 

increase of the distance 𝑑 to the power 4, which means that the farther the transceivers 

are from each other, the lower is the received signal strength. Note that for the other 
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fading channels like the Rayleigh fading channel, this phenomenon still exists, but there 

is a more rapid attenuation in signal strength. 

4.3   Sub-channel allocation scheme 

OFDMA is used to realize concurrent transmission or reception in ad hoc networks to 

increase the system throughput and avoid the inherent channel-switching delays of 

traditional multi-channel MAC protocols such as FDMA. One of the most important 

considerations for OFDMA based ad hoc networks is how to allocate the sub-channel in 

a distributed way. This section firstly describes the potential possible multi-session 

topologies. Secondly, it gives some considerations while implementing the subcarrier 

allocation. Finally the proposed sub-channel allocation scheme is presented at the end. 

4.3.1 Multiple sessions in ad hoc networks 

In OFDMA based ad hoc networks, sub-channels are shared among users to support 

initiation of multiple transmissions at the same time. Basically, application sessions in ad 

hoc network can be divided into four scenarios [40]: a) Parallel path, b) Flying path, c) 

Cross path, d) Common path which can be seen from Figure 18. The red nodes represent 

the session 1 and the blue nodes denote the session 2. The black nodes represent the 

common nodes which will be shared between these two sessions. 

In a parallel path and a flying path, there are no common nodes. So the sub-channels 

used in each link should be different to avoid co-channel interference. Each node only 

participates in one session at a time. But in the cross path scenario, two or more 

sessions are crossing the same node. In this case, the common node will group the 
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multiple packets together to form an OFDM signal and forward to the related receiver at 

the same time. The detailed algorithm will be described in the next section. The same 

thing happens in the common path scenario where two or more sessions have several 

common nodes in their paths. 

 

Figure18 Different transmission scenarios for multiple sessions 

4.3.2 Considerations in OFDMA sub-channel allocation 

The channel bandwidth is a limited resource in ad hoc networks. Therefore, the 

proposed work in this thesis uses OFDMA to divide the total bandwidth into several sub-

channels to support multiple concurrent transmissions. However, it is impractical to 

allocate different sub-channels to all nodes in an ad hoc network, because the number 

of sub-channels is limited by the bandwidth, and the number of users is arbitrary. An 

effective way to support more active transmissions and avoid the co-channel 

interference is to use the channel reuse concept similar to the concept used in cellular 
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networks. Consequently, the MAC protocol should allow the allocation of sub-channels 

that minimizes co-channel interference. The sub-channels should be allocated among 

the mobile nodes in a fully distributed manner. In [47] and [48], Veyseh et al. proposed 

a distributed sub-channel allocation scheme for OFDMA based ad hoc networks, 

however each mobile node must exchange update information with its neighbours. 

Consequently, Veyseh’s method introduces large signalling overhead which reduces the 

system throughput.  

Another problem faced by traditional multiple access mechanisms used in local area ad 

hoc networks is the hidden terminal problem. The traditional collision avoidance 

mechanism RTS/CTS used to overcome this problem is not always effective and it also 

requires extra signalling messages. In this thesis, a novel Signal Strength based Medium 

Access Protocol (SSMAP) is proposed to allocate sub-channels in a fully distributed 

manner. The SSMAP can also eliminate the need of the RTS/CTS mechanism which can 

largely reduce the system signalling overhead. Before describing the proposed sub-

channel allocation scheme, firstly the effectiveness of the traditional collision avoidance 

mechanism RTS/CTS is investigated. 

4.3.2.1 How effective is the RTS/CTS in ad hoc networks to avoid hidden terminal 

and exposed terminal problems 

In wireless mobile networks, hidden and exposed terminal problems may happen 

frequently [42][43], which are illustrated in Figure 19. In Figure 19 (a), node A is 

transmitting packets to node B since it senses the media to be idle. But the media in 

node B is busy because of the transmission from node C. Hence the packets from node A 
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are lost in B due to collision. In Figure 19 (b), node C wants to transmit packets to node 

D. It senses that the media is busy due to the transmission from node B to A. So it backs 

off to wait the media to become free again. However, the backoff is unnecessary since 

interference from node C is too weak to affect the reception in node A. 

 

How to avoid these problems becomes one of the major considerations in MAC layer 

protocol. IEEE 802.11x family mainly relies on two techniques to avoid interference in 

the MAC layer: the physical carrier sensing and the RTS/CTS handshake. The RTS/CTS 

handshake is specifically designed to avoid the hidden terminal problem. It is based on 

the assumption that the nodes that are causing interference are in the transmission 

range of the receivers. However, this RTS/CTS handshake can largely increase the 

network overhead and the transmission delay. Moreover, in mobile ad hoc networks, 

due to the highly distributed network topology and the multi-hop operation, the 

RTS/CTS handshake is not always effective [49]. 

To illustrate the weakness of the RTS/CTS, an open space environment is assumed. 

Nodes within the interference range of a receiver node R are called hidden nodes of R. If 

D 

B 

C 

A 

B 

C 

D 

A 

(a) Hidden terminal problem (b) Exposed terminal problem 

Figure 19  Hidden and exposed terminal problem in wireless networks 
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node R is receiving packets while its hidden nodes are transmitting with the same sub-

channels, packet collisions occur. The Signal to Interference and Noise Ratio (SINR) is 

used to evaluate if a packet can be successfully received. However, compared to the 

level of the interference power, the noise can be neglected, therefore, as in [49] here 

only the Signal to Interference Ratio (SIR) is considered. Let’s denote SIRmin as the 

minimum SIR for a receiver R to successfully demodulate packets. In practice, the 

received SIR should be larger than SIRmin at the receiver R for the demodulation of a 

packet to be considered valid.  

𝑆𝐼𝑅𝑟𝑐𝑣 =
𝑃𝑟

 𝑃𝑖𝑘
≥ 𝑆𝐼𝑅𝑚𝑖𝑛                                                   (4.2) 

In equation (4.2), 𝑝𝑟  is the received signal power (at receiver R) of the signal from a 

transmitter node T, and  𝑝𝑖𝑘  is the total signal interference power from all the 

interfering nodes. The received signal power in an open space environment is described 

in equation (4.1). Therefore, the total signal interference in the receiver node R can be 

expressed as:  

 𝑃𝑖
𝑘

=  𝑃𝑡𝐺𝑡𝐺𝑟

𝑕𝑡
2𝑕𝑟

2

𝑟𝑘4

𝑘

                                              (4.3) 

Equation (4.2) can be rewritten as: 

𝑆𝐼𝑅𝑟𝑐𝑣 =
𝑃𝑡𝐺𝑡𝐺𝑟

𝑕𝑡
2𝑕𝑟

2

𝑑4

 𝑃𝑡𝐺𝑡𝐺𝑟
𝑕𝑡

2𝑕𝑟2

𝑟𝑘4𝑘    

=
𝑃𝑡𝐺𝑡𝐺𝑟

𝑕𝑡
2𝑕𝑟

2

𝑑4

𝑃𝑡𝐺𝑡𝐺𝑟𝑕𝑡
2𝑕𝑟

2  
1
𝑟𝑘

4𝑘

=
1

𝑑4  
1
𝑟𝑘

4𝑘

≥ 𝑆𝐼𝑅𝑚𝑖𝑛            (4.4) 
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Where 𝑟𝑘 is the distance between the interfering node 𝑁𝑘 to the receiver node R. When 

k is equal to 1,  𝑟 ≥  𝑆𝐼𝑅𝑚𝑖𝑛
4  𝑑.. This means that the receiver node R would be able to 

successfully receive a packet from a transmitter node T as long as an interfering node N 

is at a greater distance than   𝑆𝐼𝑅𝑚𝑖𝑛
4 d  from node R, where d is the distance between 

the transmitter node T and the receiver node R. However, the worst case scenario is 

depicted in Figure 20, where node R is in the coverage boundary of node T, and T wants 

to transmit packets to node R. The distance d between node R and node T is equal to 

the transmission range 𝑅𝑡𝑥  of the transmitter node T. Any interfering node whose 

distance to the receiver node R is between  𝑅𝑡𝑥  and  𝑆𝐼𝑅𝑚𝑖𝑛
4 𝑅𝑡𝑥  is hidden from the 

receiver node R and it will interfere with the packets being received by node R. The 

shaded area represents the interference area and any node in this shaded area is hidden 

from node R and cannot be detected by the RTS/CTS handshake. The transmission from 

any node (using the same sub-channels as node T to node R) in the shaded area will 

jeopardize the successful reception in node R.  

It is easy to understand that, when the number of interfering nodes 𝑁𝑘 increases, the 

interference range will also increase. As shown in Figure 20, nodes C and D are outside 

of the interference area. However, the combination of C and D interference signals in 

node R still may affect R’s successful reception of packets from node T. Therefore, in 

highly distributed ad hoc networks, the RTS/CTS handshake mechanism is only effective 

when the transmitters are very close to the receivers. Moreover, the RTS/CTS 

handshake is not solving the exposed terminal problem. 
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4.3.3 Signal strength based sub-channel allocation algorithm 

Based on the considerations described above and the fact that in OFDMA one node can 

transmit and receive multiple sessions at the same time, a new sub-channel allocation 

scheme is proposed in this thesis aiming to reduce the network signalling overhead and 

system co-channel interference.  

In OFDMA based ad hoc networks, the total bandwidth is divided into many sub-

channels and each sub-channel is composed of several orthogonal sub-carriers. The sub-

channel is the minimum transmission unit. These sub-channels can be shared by the 

mobile nodes to support concurrent transmissions in the same area. By using OFDMA, 

one node can transmit multiple sessions at the same time.  

Figure 20  Interference range against transmission range 
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SSMAP consists of two main parts: sub-channel sensing and sub-channel selection. The 

sub-channel sensing is responsible for recording the interference power levels of each 

sub-channel. The sub-channel selection is responsible for allocating the best suitable 

sub-channels for each session across a node and avoiding multiple access interference. 

Below the detailed algorithm is described. 

Table 5   The Free_Channel table 

Subcarrier index ORSS Availability Priority 

SC6 0 1 1 

SC7 0 1 2 

SC2 1.2386e-012 1 3 

SC1 4.4391e-011 1 4 

SC4 2.7936e-010 0 5 

SC5 7.3479e-010 0 6 

SC3 5.1696e-009 0 7 

Each mobile node periodically senses all the sub-channels and records their instant 

receiving power into a local Free_Channel table (see an example in table 5). The 

Free_Channel table consists of four components for each sub-channel: index, Overall 

Received Signal Strength (ORSS), availability and priority. ORSS records the overall 

received signal strength for that sub-channel. When a sub-channel’s ORSS value is lower 

than a pre-defined carrier sensing threshold 𝑇𝐻𝑠 , the availability flag for this sub-

channel becomes 1, which means this sub-channel is available. Otherwise, the value of 

its availability is 0. The priority of each sub-channel relates to its ORSS. The sub-channel 

with the lowest ORSS has the highest priority. From the previous sub-section 4.3.2 it is 
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easy to see that if the packets can be successfully received, the value of 𝑇𝐻𝑠 should 

satisfy equation (4.5): 

𝑃𝑟𝑐𝑣
𝑇𝐻𝑠

=
𝑃𝑡𝐺𝑡𝐺𝑟

𝑕𝑡
2𝑕𝑟

2

𝑑4

𝑇𝐻𝑠
≥ 𝑆𝐼𝑅𝑚𝑖𝑛 => 𝑇𝐻𝑠 ≤

𝑃𝑡𝐺𝑡𝐺𝑟
𝑕𝑡

2𝑕𝑟
2

𝑑4

𝑆𝐼𝑅𝑚𝑖𝑛
                        (4.5) 

Where 𝑆𝐼𝑅𝑚𝑖𝑛  is the minimum SIR for successfully receiving packets. All the variables 

are constant except for d, which is the distance between the transmitter and the 

receiver. For the worst case scenario, where the transmitter is in the boundary of the 

coverage of the target receiver, d is equal to 𝑅𝑡𝑥  . Based on this consideration, the 

maximum value of 𝑇𝐻𝑠 should be: 

𝑇𝐻𝑠 𝑚𝑎𝑥 =

𝑃𝑡𝐺𝑡𝐺𝑟
𝑕𝑡

2𝑕𝑟
2

𝑅𝑡𝑥
4

𝑆𝐼𝑅𝑚𝑖𝑛
                                            (4.6) 

 The equation (4.5) can also be written as: 

𝑃𝑟𝑐𝑣
𝑇𝐻𝑠

= 𝑆𝐼𝑅𝑇𝐻 ≥ 𝑆𝐼𝑅𝑚𝑖𝑛                                                 (4.7) 

Where 𝑆𝐼𝑅𝑇𝐻  is the SIR threshold to decide the availability of the sub-channels. 

To avoid the hidden and exposed terminal problems, the sub-channel selection 

procedure takes place at the receiver side of a link. The receiver of the link informs the 

correspondent transmitter what sub-channels should be used. This information is 

passed through a routing signalling message, because the SSMAP interfaces with the 

proposed QoS routing protocol in a cross layer integrated scheme. Once a new session 

request is triggered in one node, it will first check its local Free_Channel tables to see if 

it has enough available sub-channels to carry the new request. If it has available sub-
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channels, it will choose the sub-channels with the highest priorities, which are the sub-

channels with the lowest received interference signal strength. The sub-channels with 

the lowest signal strength are also the sub-channels which are being used at the farthest 

place from the receivers. Consequently, the interference in the local area is minimized. 

In this way, every mobile terminal can efficiently sense and select the available sub-

channels at the local area, without any communication between this node and its 

neighbours. If every node chooses the sub-channels with the lowest received signal 

strength, it will indirectly distribute the interference among all sub-channels and the 

system’s overall interference level will decrease. An example is illustrated in Figure 21. 

 

Figure 21 Sub-channel allocation scheme 

Where: 

𝑅𝑆𝐴:  The set of sub-channels used for reception in node A; 
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   𝐼𝑆𝐴: The set of sub-channels from interfering nodes received in node A; 

𝑇𝑆𝐴:   The set of sub-channels used for transmission in node A; 

𝑅𝑆𝐵 :   The set of sub-channels used for reception in node B; 

𝐼𝑆𝐵 :  The set of sub-channels from interfering nodes received in node B; 

𝑇𝑆𝐵 :   The set of sub-channels used for transmission in node B; 

The example assumes that node A wants to transmit packets to node B. The dashed 

arrows are the sub-channels being used for reception in both nodes and the dashed-

point arrows represent the sub-channels used for transmission. The solid arrows are the 

interference from the surrounding nodes. Both nodes A and B will sense the signal 

strength of all sub-channels and record the values in their local Free_Channel tables. 

Node B will decide which sub-channels are going to be used by node A for its 

transmission through routing signalling messages. B will first check whether there are 

enough available sub-channels in its local Free_Channel table. If it does, then it will 

choose the sub-channels with the highest priority from the available sub-channel list. 

One thing should be noted that one node can only transmit and receive packets 

simultaneously in different sub-channels. Therefore, whichever sub-channels node A has 

in its  𝑅𝑆𝐴  , these sub-channels cannot be used as transmission sub-channels to node B 

(𝑇𝑆𝐴 ). This can be solved in the route discovery process. Node A will attach 𝑅𝑆𝐴 in the 

route discovery message to inform node B that these sub-channels should be avoided. 

Through the proposed sub-channel allocation scheme, the hidden terminal problem can 

be completely avoided and the exposed terminal problem can also be relieved by 
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selecting an appropriate value of  𝑇𝐻𝑠 . Moreover, by increasing the sub-channel 

sensitivity and decreasing 𝑇𝐻𝑠 ,  CTS/RTS messages might be no longer needed for 

packet transmission. The implication is that the carrier sensing range for the sub-

channels will increase compared to normal CSMA/CA mechanism.  

4.4 The QoS routing protocol with the sub-channel allocation 

scheme 

In chapter 3, many routing protocols have already been described as well as recent QoS 

routing protocols. In mobile ad hoc networks, on-demand routing protocols have better 

performance than table driven routing protocols in terms of signalling overhead and 

power consumption. To support QoS in mobile ad hoc networks, especially for real-time 

service, it is necessary to find a route from source to destination with guaranteed 

constant bandwidth and stringent end to end delay. In this thesis, a QoS routing 

protocol with bandwidth and end to end delay consideration is proposed incorporating 

the proposed sub-channel allocation scheme to form a cross layer QoS routing solution. 

The proposed sub-channel allocation scheme is signal-strength based and when a new 

session is required the receiver will decide which sub-channel is going to use in the 

transmitter side. The signalling message can be encapsulated into the routing discovery 

message and transmitted from the transmitter to the receiver.  

When a new session is triggered, a route discovery message (RDIS) is broadcasted from 

the source node. This message contains the source node current sub-channel usage 

information including the reception sub-channels and available sub-channels. The QoS 

information can also be encapsulated into the RDIS messages to find the route which 
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meets the QoS requirement. The nodes which are receiving the information will check 

their local routing table and choose the receiving sub-channels and forward its local 

information to the next hop. 

The RDIS message is broadcasted from the source node. Each node receiving the route 

request message will modify the message according to the information attached to the 

RDIS message and its local data base, the node then will broadcast the modified RDIS to 

the next hop. This process will continue until it reaches the destination node. The 

destination node will wait for multiple routes to be received and then it will choose the 

one with the lowest interference level.  

This chapter describes the details of the proposed cross layer QoS routing protocol. It 

combines the sub-channel allocation scheme with the on-demand routing protocol. The 

network layer and the MAC layer cooperate with each other to support concurrent 

sessions with bandwidth and end-to-end delay restrictions. Firstly the formats of the 

necessary signalling messages exchanged among nodes and the information required to 

be maintained in each node are introduced. After that, methods to implement the 

proposed sub-channel allocation scheme with the on demand routing request are 

described. Finally, a route maintenance scheme is presented. 

4.4.1 The QoS routing signalling messages 

Without central control, all the calculations for the route discovery and scheduling are 

through negotiations among nodes in a distributed way. These negotiations can be done 

by signalling messages exchange through a special signalling sub-channel. The formats 

and functions of these signalling messages are described as follow: 
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1) Route Discovery Message (RDIS) 

The RDIS is a multi-hop message generated by the source node at the route discovery 

stage. Besides the attributes in the classic RREQ message of AODV, the RDIS also 

contains the bandwidth requirement, delay restriction, time delay information and sub-

channel usage information from the previous hop. Figure 22 shows the details of RDIS 

packet format. The time stamp is the current time of sending this RDIS message 

according to the local clock and the Cumulative Delay is the overall end to end delay 

from the source node to the previous node. The Reception Sub-channels indicates the 

sub-channels used by the previous node for reception. The Interference Level is the 

cumulative interference power level from the source to the previous node. This 

information will be used at the destination node to choose the best path. 

Type Hop Count Broadcast ID Cumulative DelayBandwidth Requirement

Node IP Address Destination IP AddressSource IP Address

Source Sequence Number

TTL

Destination Sequence Number 

Reception Sub-channels Interference Level

Time Stamp

Delay Restriction

 

Figure 22 RDIS packet format 

The node which receives the RDIS message will check the attached information with its 

local routing tables to allocate valid sub-channels for the link from the node where the 

RDIS message was sent. The allocated resources are just pre-reserved in the node and 

will be fully reserved only if a confirmation message is received from the destination 

node. 

2) Route Response Message (RRES) 
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Once the first RDIS is received in the destination node, it will wait for a short time to see 

if there are other alternative routes. These paths all satisfy the bandwidth requirement 

and end to end delay restriction with different interference level. Once it confirms a 

path, a RRES message will be generated and sent back to the source node through the 

backward path. The Figure 23 describes the detailed RRES message format.  

Type Hop Count Next Hop Node IP Address

Source IP Address

Destination Sequence Number

Destination IP Address

Transmission Sub-channels
 

Figure 23 RRES message format 

The Transmission Sub-channels tell the reverse path receiver node (up-stream) which 

sub-channel it should use for transmission during the request session (down-stream). 

When an intermediate node receives the RRES message, it will confirm the reserved 

sub-channels used for the new session. After that, it generates a new RRES message 

with its IP address and forward to the next hop in the reverse path. 

3) Sub-channel Reallocation Message (SREA) 

The SREA message is used when a down-stream node asks for a transmission sub-

channel reallocation. It happens when the interference level of a reception sub-channel 

is higher than a certain level. This is because a node which is transmitting with the same 

sub-channel is moving closer or a new session is starting in a neighbour node which is 

using the same sub-channel as transmitting sub-channels. The SREA message will be 

sent to the related transmitter with reallocated transmission sub-channels. Figure 24 

shows the detailed SREA packet. The Node IP Address is the affected node and the 
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Transmitting Node IP Address is the up-stream transmitting node which needs to change 

the transmission sub-channels.  

Type Transmitting Node IP Address Node IP Address

Source IP Address Destination IP Address

Reallocated Transmission Sub-channels
 

Figure 24 SREA packet format 

4) Sub-channel Reallocation Reply Message (SRRP) 

After the node receives the SREA message from the down-stream node, it will check 

with the local routing table to see if the new transmission sub-channels allocated by the 

down-stream receiver have already been used as receiving sub-channels. Then it will 

generate a SRRP message and sent back to the node where the SREA message was sent. 

The SRRP message format is described in Figure 25. 

Type Receiving Node IP Address Node IP Address

Session Source IP Address Session Destination IP Address

Receiving Sub-channels Confirmation Flag
 

Figure 25 SRRP message format 

If the reallocated sub-channels are not used as reception, the confirmation flag is 1. 

Otherwise the value of confirmation flag is 0. In this case, the node who sent a SREA 

message need to send a new SREA message back to the transmission node again with a 

new allocated transmission sub-channels according the returned SRRP message. 
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5) Route Error message (RERR) 

A RERR message is created when a link breakage occurs in a route. It happened because 

of the node movement or interference node approaching and the failure of local repair. 

Figure 26 shows the packet format for RERR. The nodes on both sides of the failed link 

generate a RERR message and forward to other nodes on the same route on both 

directions. 

Type Next Hop Node IP Address

Session Source IP Address Session Destination IP Address
 

Figure 26 RERR packet format 

The Next Hop gives the IP address of either up-stream or down-stream nodes which are 

still connected with the node on the route. Along the propagation of the RERR message, 

all the reserved network resources and route information for the related session are 

released. 

4.4.2 The information maintained in each node 

In the proposed routing protocol, some information needs to be kept in the mobile 

nodes for sub-channel allocation and QoS routing. The information kept in each node 

includes the QoS routing table, the Free_Channel routing table, slot scheduling 

information, resource pre-reservation information, route discovery state information and 

neighbour information. These tables are described in detail as follows: 

 



93 
 

1. QoS Routing table 

It records the routing information for all the sessions the nodes involved. Each session is 

identified by a source and destination node ID address. For each session entry, there is 

an ID assigned by the node and a flag to describe if it is an active entry. There is a 

destination sequence number for each route which shows the freshness of the route. 

There are other classic attributes such as the hops to the destination from this node, the 

next hop node address, a breakage flag to show if the route is currently broken and a 

repair flag to show if the route is at a repair stage. For each active route, there are two 

attributes to indicate the bandwidth supported and end to end delay. The routing table 

also contains the information about the transmission and reception sub-channels used 

for each active session.  

2. Free_Channel table 

This table records the signal strength information for each node. Each time slot has a 

Free_Channel table for all sub-channels. The active Free_channel table contains the 

signal strength for all sub-channels and the priority for each of them. The sub-channel 

with the lowest signal strength has the highest priority to be used as a reception sub-

channel. The availability attribute in the Free_channel table indicates the available sub-

channels which can be used as reception sub-channels without causing serious 

interference in this node. There is a pre-defined threshold to distinguish these available 

sub-channels which is explained in section (4.3.3). Each sub-channel whose signal 

strength is lower than the threshold is marked as available one. There is a tradeoff 

between the value of the threshold and the number of available sub-channels. The 
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higher the threshold value is the more available sub-channels this node can use, but the 

higher interference level it will face. It is necessary to set the threshold value to balance 

the sub-channel availability and interference to get maximum performance.  

3. Route discovery state table 

It is used at the route discovery stage. This table records the route discovery messages 

(RDIS) which have been successfully received and forwarded by this node. In the classic 

AODV routing protocol, a node will forward all the route request messages it has not 

seen before. The route request message (RREQ) is identified by its source and 

destination IP address and broadcast ID. Each new RREQ message will be recorded in 

the table to avoid sending the same message again. In this way, a dead loop at the route 

discovery stage can be avoided. Similar to the table in AODV, the route discovery state 

table in the proposed routing protocol records every new RDIS. However, it only 

forwards the new RDIS messages to the next hop only if it can satisfy the bandwidth and 

end to end delay requirement appended in the RDIS messages. If the bandwidth and 

delay requirement is satisfied, an interference power level for the selected sub-channel 

will be attached in the new RDIS message and forward to the next hop. 

4. Pre-reserved table 

Once a route discovery message is received at a mobile node, if it can satisfy the 

bandwidth and end-to-end delay requirement, it will pre-reserve transmission sub-

channels for the node where the RDIS came from. Unless a route reply message is 

received from the destination node or the route discovery process times out, the pre-
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reserved sub-channels cannot be used by the other sessions. The pre-reserved 

information is recorded in the pre-reserved table.  

5. Neighbour information table 

Since the reception transmission sub-channels cannot be used for transmission in the 

same node, the reception information is attached into the route discovery messages as 

well as the active transmission sub-channels. Once a node received this information, it 

records it into the local neighbour information table. This information is distinguished by 

the neighbour node’s ID and address. It only records the information for the active 

neighbour nodes which are involved in a route discovery process.  

4.4.3 The sub-channel allocation at route discovery and establishment stage 

The proposed sub-channel allocation scheme is performed in a completely distributed 

way. Each mobile node in an ad hoc network does not need to keep the transmission or 

reception sub-channels for all other nodes. Each node does not need to periodically 

exchange information with their neighbours for the sub-channel assignments. The sub-

channel allocation is only started when the route discovery process is triggered. A 

crucial issue to be solved is how to determine which node should take the responsibility 

for the sub-channel selection and assignment. As described in the previous section 4.3, 

the sub-channel allocation algorithm is based on the received signal SINR to minimize 

the overall interference level. The signal strength measured in the transmitter is 

probably different from the one measured in the receiver for the same sub-channel. If 

the sub-channel selection is made by the transmitter, it has to know the sub-channel 

information in the receiver side to make the decision. Therefore, in the proposed 
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routing protocol the receiver performs the sub-channel allocation process according to 

its local Free_Channel table. However, the transmitter still needs to inform the receiver 

its active transmission and receiving sub-channels to avoid collisions. This information is 

encapsulated into the route request messages.  

To provide QoS and support real time service, bandwidth and end to end delay are 

taken into account in the sub-channel and route selection. To guarantee the bandwidth 

requirement for each session, bandwidth calculation is taking place when a new session 

request is received. Assuming the total sub-carriers are divided into N sub-channels and 

the bandwidth for each sub-channel can be denoted as 𝐵𝑊𝑠 . The sub-channel is the 

minimum transmission unit. To simplify the scenario, it is also assumed that each sub-

carrier is perfectly orthogonal with the others and sub-channels are independent with 

each other so that they can be used simultaneously in the same area without causing 

interference. One or more sub-channels can be used for a session depending on the 

bandwidth requirement. Therefore, the number of sub-channels n which should be used 

for a session should satisfy the following condition: 

 n − 1 × BWs ≤ Rs ≤ n × BWs                                            (4.8) 

where Rs  is the bandwidth requirement of this session which is inserted in the RDIS 

message. Sub-channels are shared among the mobile nodes to support concurrent 

transmission. Each mobile node will only use certain amount of sub-channels and only 

apply transmission power to the sub-carriers which will be used for the current session. 

The remaining subcarriers will not be powered. 
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For the delay sensitive networks, some sessions may require stringent end to end delay. 

In order to discover a route which satisfies the end to end delay requirements of a 

requested session, a field called cumulative delay with value 𝐷𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒   is created in 

the RDIS message to record the time elapsed. The calculation can be expressed as follow:   

   𝐷𝑡𝑜𝑡𝑎𝑙 =  𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 − 𝑇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡  + 𝐷𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒                                       (4.9) 

where 𝐷𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒  is the cumulative delay from the source node to the previous hop 

recorded in the received RDIS packet. 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒  and 𝑇𝑡𝑟𝑎𝑛𝑠𝑚𝑖 𝑡  are the time stamps that 

the receiver node starts receiving a packet on the link and the previous node starts 

transmitting this packet  respectively. The value of 𝐷𝑡𝑜𝑡𝑎𝑙  should be less than the end-to-

end delay requirement indicated in the RDIS message for the node to forward the 

request. Once a new RDIS message needs to be created from this node, the calculated 

value of 𝐷𝑡𝑜𝑡𝑎𝑙  is assigned to the cumulative delay field in the new RDIS message. 

4.4.3.1 The event driven QoS routing protocol 

As each node is independent, the system can be modelled as an event driven system. 

Each action is triggered by an event from inside or outside of the node. These events 

can be the arrival of a new packet or a timer that expires. Moreover, the action 

triggered by an event depends on the state the node is in. After a node powers on, it can 

be in three different states: 

 Idle: The mobile node enters into this state right after it powers on. In this state, 

there is no active route across this node. 

 Waiting: When a new session request is received from the application layer or a 

RDIS message is received from a neighbouring node, the node moves from the idle 
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to the waiting state. If the session request is accepted in principle, a new RDIS 

message is generated and broadcasted to its neighbours. The node stays in the 

waiting state until a timer expires or a Route Response message RRES from the 

destination node is received. 

 Active: After the node receives a RRSP message from the destination node and the 

pre-reserved resources are still available, the node goes to the active state straight 

away. In this state, the network resources are concretely reserved and a new route 

entry is created. 

Idle

Waiting Active

Waiting time out/
Request deny/

Reallocation fail

RDIS received/
New request

RRES received

Job finished

Start

Active route 
found

 

Figure 27 The transition diagram for the route establishment 

The transition diagram for the route discovery and establishment stage is illustrated in 

Figure 27. The whole process of the route discovery and establishment can be explained 

by the event driven system. The detailed algorithm is explained as follows: 
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 Event: A node receives a data packet from the application layer directed to a given 

destination node with specific bandwidth and end to end delay requirements.  

 Actions: The node checks its routing table to see if it has already an active route 

entry for this destination that satisfies the bandwidth and end to end delay 

requirements. If it does, it enters in the Active state and starts to forward the 

packets to the next hop according to its routing table. Otherwise, a new route 

discovery is needed. If a route discovery process has already been carried out for 

this destination, the node inserts the packet into the corresponding buffer, until it 

receives the reply message sent from the destination node. Otherwise, it will enter 

into the waiting state and a new route discovery process is triggered.  

Once the node initiates a new route discovery process, it first checks its local 

Free_Channel tables to see if there are enough available sub-channels to carry out 

this request. If it does not have enough sub-channels to satisfy the bandwidth 

requirement, it will deny this request. Otherwise, a RDIS message is created with an 

IP address and a sequence number for both the source and the destination nodes. A 

time stamp is created and inserted into the RDIS message to inform the time this 

packet was created to the next hop node. The bandwidth and end-to-end delay 

requirement are also recorded and encapsulated into the RDIS message. The RDIS 

message also contains an initialized Time To Live (TTL) field in order to limit the 

hops of the desired route, and a broadcast ID. The TTL is increased by one each 

time the source node re-sends a route discovery message. To facilitate the next hop 

to decide the sub-channels to be used in the link on the path, the transmission and 

reception sub-channels currently in use for other on-going sessions on the node (if 
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any) are recorded into the RDIS message. After creating the RDIS, the source node 

broadcasts it to its neighbouring nodes and set up a timer (RRES_WAITING_TIME) 

for the RRES message. The node enters into the waiting state. Furthermore, a value 

for RDIS_RETRIES is set up indicating the maximum number of retries possible if no 

response is received. 

 Event: A node receives a RDIS message from its neighbour. 

 Action: When a node receives a RDIS from its neighbour, its actions depend on the 

type of node.  

1) The node is not the destination node: Firstly it checks its local route discovery state 

table to see if it has seen this request before. If so, it simply discards this message. If 

not, the node will then check if the node itself satisfies the bandwidth and end to 

end requirements for the requested session. If all QoS requirements are satisfied, 

the node selects the sub-channels with the highest priority from the Free_Channel 

table and reserves them for transmission node where the RDIS message came from 

on the reverse link and writes this information in its pre-reserved table. After that, 

the cumulative delay is recalculated and a new RDIS message is created. The node 

adds its IP address and current transmission time as well as its currently used 

transmission and reception sub-channels (if it has) into RDIS. The signal strength of 

the selected sub-channels is added to the Total_Interference_Level field in the RDIS 

message. After the node broadcasts the RDIS message to its neighbours, it sets a 

timer (RRES_WAITING_TIME) to wait for the reply message.   

2) The node is the destination of the requested session: It firstly checks if it has 

received the request from the same source node before. If not, it will check if it 
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satisfies the bandwidth and end to end requirements as described above. If the QoS 

requirements are satisfied, it will set a timer for this source node and wait for other 

possible requests from other routes, otherwise, it creates a Route Error (RERR) 

message sends back to the source node to indicate the failure of the session 

request.  If the node has already seen the request before, it just keeps this message 

and records the route information. Once the timer is expired, it will check the 

Total_Interference_Level in each request message and choose the one with the 

least value to send a RRES message back to the source node through the reverse 

path. The destination node assigns the transmission sub-channels to be used by the 

neighbouring node on the reverse link into the RRES message.  

 Event: A node receives a RRES message. 

 Action: Once a node receives RRES message, it checks if it has already set up a path 

for this session before. If the requested route entry has already been established in 

its routing table or there are no pre-reserved resources for this request, it simply 

ignores this message. If this reply message is what the node is waiting for, it 

transfers the pre-reserved resources to a route table entry it creates for this session. 

The actions are different for an intermediate node and the source node. 

1) If the node receiving the RRES is not the source node, it checks if the pre-reserved 

resources are still available. If so, the node creates a routing table entry for this 

session with the source and destination nodes’ IP addresses and the sub-channels it 

will use for reception on the session link path. Moreover, it reads the transmission 

information from the RRES to set up its sub-channels for transmission on the 

session link path. However, the pre-reserved sub-channels might be no longer 
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available. In this case, the node rechecks its Free_Channel tables to find other 

available sub-channels. If an alternative is found, the new assigned sub-channels are 

recorded into a new created RRES with updated information and forwarded to the 

next hop. If there are no enough resources available, an error message RERR is 

generated and broadcasted along the path in both directions. 

2) If the source node receives a RRES, it creates a routing table for this session with the 

bandwidth and end to end delay specifications. It reads the transmission 

information from the received RRES message and reserves these sub-channels in 

the routing table. Once the route entry is created, the node starts to transmit the 

packets to the destination node. 

 Event: RRES_WAITING_TIME has expired before a valid reply message arrives. 

 Action: If this event happened in the source node and the number of retries is less 

than or equal to RDIS_RETRIES, the node regenerates a new RDIS message and 

rebroadcasts it to find a route again. Otherwise, the node drops the data packets in 

the buffer, terminates the route discovery process and goes back to the idle state. 

When the source node retries the route discovery process, it increases the TTL value, 

the broadcast ID, the sequence number of both itself and destination node to 

distinguish from the previous route discovery message. After creating the new RDIS 

message, the node resets the timer RRES_WAITING_TIME and increases the retry 

counter. 

If the node is not a source node, it just releases all the network resources pre-

reserved for this session and goes back to the idle state.  
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 Event: Interference level of the active reception sub-channels are greater than a 

pre-defined threshold 

 Action: Because in the proposed subcarrier allocation scheme, the sub-channels 

selection is made on the receiver side. When a new session starts, it may affect the 

other on-going sessions. Moreover, in mobile ad hoc network, every node within 

the network can move arbitrarily. So if two nodes with the same sub-channels being 

used are approaching each other, the interference between then will increase. In 

here, a high_interference_trigger threshold is introduced to measure the 

interference level of specific sub-channels. If the interference level of the sub-

channels which are being used for the current session is higher than the 

high_interference_trigger, then the node starts to check its local Free_Channel table 

to search for available sub-channels for the current session. Once it finds alternative 

sub-channels, a Sub-channel Re-allocation Message (SREA) message will be created 

and it will be sent back to the transmitter to indicate the new transmission sub-

channels. If there is no available sub-channels in the Free_Channel table, a Route 

Error Message (RERR) message will be created and it will be sent back to the source 

node to launch a new route discover process. 
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Figure 28 Transit diagram for the route maintenance 

4.4.4 The route maintenance scheme 

Normally, the route maintenance scheme is one of the most difficult tasks in ad hoc 

networks because of the frequent topology changes and large signalling overhead. Once 

a route has been discovered and established for a given source/destination pair, it is 

maintained as long as it is needed. In the multi-channel OFDMA based ad hoc networks, 

the movement of the mobile nodes may cause either link breakage or co-channel 

interference. 

Traditionally, in a routing maintenance scheme such as the one in the AODV routing 

protocol, a so called Hello messages are used for maintaining the active route 

connectivity. Every node which is in an active route will periodically broadcast a Hello 

message to indicate its availability. However, this broadcasting mechanism will 

significantly increase the network overhead and decrease the system performance. Base 

on this consideration, this thesis proposes a new route maintenance scheme which 

avoids using the Hello messages. In the route maintenance scheme, there is one more 
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state called LRP (link repair) as shown in Figure 28. The node will enter into this state 

when it detects a forthcoming link breakage or the co-channel interference level is 

higher than a pre-defined threshold. The detailed algorithm is described below.  

1) Node in an active route is moving away 

A route has been setup for a session and this session is actively transferring packets. 

Instead of periodically broadcasting a Hello message, every mobile node participating in 

a session will continue sensing the signal strength of the sub-channels, especially the 

sub-channels used by the participant neighbouring nodes. Two signal strength 

thresholds are defined in here, a low_threshold_trigger and a high_interference_trigger. 

If the signal strength of the receiving sub-channel used by a neighbouring node reduces 

to less than the low_threshold_trigger and lasts for a pre-defined time span τ1, it means 

the neighbouring node is continuously moving away. Therefore, a forthcoming route 

breakage is expected. The receiver nodes will flood a route repair message to its 

neighbours to look for alternative nodes in the neighbourhood. If there is no such node 

available, a route error message (RERR) will be generated and sent to both sides of the 

route. The node receiving the RERR message will release all the reserved resources for 

the session and forward the RERR message to the source or destination node. Once the 

source node receives the RERR message, it will initiate a new RDIS message to look for a 

new route. In the high mobility environment, if a link is broken before the node can 

predict due to the high mobility, the affected receiver node will notice this for the 

sudden dropped signal strength of the receiving sub-channel and send the RERR 

message toward the destination node. The affected transmitter will notice this sudden 
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link breakage by missing the ACK messages sent back from the receiver for each data 

packet. It will then also create a RERR message and send toward the source node. 

There are two advantages for using this route maintenance mechanism. First of all, the 

mobile nodes do not need to periodically broadcast Hello messages. The network overall 

signalling overhead is largely reduced. Secondly, by continuously monitoring the 

signalling strength of the sub-channels, forthcoming link breakages are more predictable 

and the pro-active routing maintenance procedures can reduce the packet drop rate 

and increase the system throughput.  

2) Interfering nodes are approaching 

In the proposed subcarrier allocation scheme, the subcarriers can be reused by different 

nodes as long as they are away from each other by a certain distance, so that the two 

sessions will not interfere with each other. However, in mobile ad hoc network, every 

node within the network can move arbitrarily. So if two nodes with the same sub-

channels being used are approaching each other, the interference between then will 

increase. In here, the high_interference_trigge threshold is introduced to measure the 

interference level of specific subcarriers. If the interference level of the receiving sub-

channels which are being used for the current session is greater than the 

high_interference_trigger, then the node starts to check its local Free_Channel table to 

search for available sub-channels for the current session. Once it finds the alternative 

sub-channels, a SREA message will be created and sent back to the transmitter to 

indicate the new transmission sub-channels. If there is no available sub-channel in the 

Free_Channel table, a RERR message will be created and send back to the source node 

to launch a new route discover process. 
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Once a node receives the SREA message, it will check the reallocated sub-channels. If it 

accepts this assignment, a SRRP message will be generated and sent back to the node 

where SREA packet came from to confirm the reallocation. After that, the node will 

forward the data packets to the next hop through the new allocated sub-channels. 

4.5 Concluding remarks 

In this chapter, a signal strength based medium access protocol (SSMAP) and a SSMAP 

based QoS routing protocol are proposed aiming to reduce the overall signalling 

overhead and increase the system throughput. Section 4.2 describes the system 

architecture and the assumptions. Section 4.3 describes the SSMAP in details. Firstly, 

the effectiveness of the traditional RTS/CTS mechanism is investigated in detail. Based 

on the drawbacks of the RTS/CTS scheme, the SSMAP proposes a new sub-channel 

allocation scheme which can effectively overcome the hidden and exposed nodes 

problem in ad hoc networks. In order to maximize the system throughput and reduce 

the co-channel interference, the sub-channel selection criterion is based on the current 

interference level of each sub-channel. The one with the least interference level has the 

highest priority to be selected.  

In section 4.4 the SSMAP based QoS routing protocol is described and explained. Firstly 

the signalling messages used for route discovery and maintenance as well as the 

information kept in each node are described in details. Secondly, how the sub-channel 

allocation mechanism is performed within the route discovery process is presented. The 

route discovery process is described as an event driven system that each action is 

triggered by an event from inside or outside of the node. Finally, a signal strength based 
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pro-active route maintenance scheme is proposed which is developed to reduce the 

packet drop rate and perform fast route recovery process. In the next chapter, a time 

and synchronization is presented to further support the proposed SSMAP based QoS 

routing protocol. 
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Chapter 5 

A new time and frequency 

synchronization scheme in 

OFDMA based wireless 

networks 

5.1   Introduction 

As increasing demand for high-rate multimedia wireless communications, many current 

wireless standards have adopted a multicarrier air interface based on orthogonal 

frequency division multiplexing (OFDM). In OFDM systems, the high data-rate stream is 

splitted into multiple substreams which are mapped to orthogonal subcarriers through 

IFFT transform. These subcarriers are grouped together to form an OFDM symbol and 

transmitted in parallel. These subcarriers can be easily separated in the receiver side 

through a FFT transform (theoretically in absence of frequency and timing errors). 

However, because of the frequency offset between the transmitter and receiver’s local 

oscillator as well as the Doppler effect due to the movement of either transmitter or 

receiver, the orthogonality among the OFDM subcarriers is destroyed, resulting in inter-

carrier interference (ICI). Moreover, the receiver should correctly detect the beginning 
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of a new OFDM symbol, so that, it can align the FFT window to the correct position, in 

order to make sure all of the data samples are coming from the same OFDM symbol.  

Otherwise, it will cause inter-symbol interference (ISI). However, there is usually some 

tolerance for symbol timing error by using a cyclic prefix between adjacent OFDM 

symbols. With frequency and symbol timing offsets, the system performance can be 

largely degraded. Cimini [50] has shown that in order to maintain a signal-to-

interference ratio of 20 dB the frequency offset should be less than 4% of the inter-

carrier spacing. 

The orthogonal frequency division multiple access (OFDMA) combines frequency 

division multiple access (FDMA) and OFDM protocols. OFDMA divides the total 

subcarriers into multiple sub-channels which can be assigned to different users to 

realize concurrent transmission. Inherent from OFDM, one of the prominent technical 

challenges in OFDMA design is related to stringent requirements for timing and 

frequency synchronization. Similar to OFDM, OFDMA is extremely sensitive to frequency 

and timing errors. The frequency offset between the incoming waveform and the local 

oscillator will destroy the orthogonality of subcarriers and produce ICI as in OFDM. 

Symbol timing error should be compensated at the receiver to avoid inter-symbol 

interference. In OFDMA systems, the frequency and timing synchronizations are even 

more difficult than in OFDM systems since in the uplink the received signal is a 

combination of multiple waveforms from different transmitters with different frequency 

and timing errors.  

OFDM/OFDMA have been standardized in many commercial systems [10]-[13] and 

many corresponding synchronization algorithms have been proposed in recent years 



111 
 

[87]-[101]. However, there are only few proposals for implementing OFDMA in an Ad 

hoc wireless system and all of them do not consider the synchronization issues. This is 

because in a mobile ad hoc network the frequency and timing synchronization are much 

more difficult than in an infrastructure based wireless system. So far, to the author’s 

knowledge, the only proposal for synchronization in mobile ad hoc networks is [51]. 

However, they only consider the situation when a new user enters into the network and 

it needs to synchronize with the leader. How the network synchronizes with each other 

from the beginning is not mentioned. Moreover, the authors do not solve the problem 

of dealing with the multiple time and frequency errors from multiple transmissions. A 

SSMAP based QoS routing protocol in OFDMA based ad hoc network has been 

presented in the previous chapter. However, the proposed routing protocol needs a 

proper synchronization in the physical layer. Therefore, how to perform the 

synchronization in each mobile node to guarantee the feasibility of the proposal is a 

crucial issue. In this chapter, a proposed synchronization solution is presented 

cooperating with the proposed SSMAP to realize a complete cross layer solution. Before 

going to the details of the proposed synchronization solutions, a literature review about 

the recent popular synchronization solutions on OFDM/OFMDA is fully investigated. 

 Notations 

The following notations are used throughout this chapter. The superscripts (∗)𝑇 , (∗)𝐻, 

and (∗)∗ stand for transposition, conjugate transposition, and element-wise conjugation, 

respectively. 𝐸{∗} denotes the expectation operator. ℜ{∗} and ℌ{∗} denote the real and 

imaginary components of a complex-valued quantity respectively, while 𝑎𝑟𝑔{∗}  

and | ∗ |  are used for the corresponding argument and amplitude. N represents the 
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total number of sub-carrier for one OFDM/OFDMA symbol and S represents the total 

number of sub-channels. 

5.2   Timing and frequency synchronization in OFDM systems  

In OFDM systems, the transmission in many standards is normally organized in frames 

which consist of several OFDM blocks as well as some reference blocks with a particular 

training pattern appended in front of the data segment to assist the synchronization 

process. An example of the frame architecture is shown in Figure 29 [55].  

 

The synchronization process in OFDM system is normally carried out in two phases: 

acquisition and tracking. In the first phase, initial time and frequency estimation take 

place by exploiting the reference blocks to get coarse estimates of the synchronization 

parameters [52]-[63]. These estimates are further refined during the tracking phase to 

overcome the short-term variations introduced by the oscillator drift or by the time 

varying Doppler shifts. For this purpose, many synchronization techniques have been 

proposed. These synchronization techniques can be classified into two categories: data-

aided (DA) and non-data-aided (NDA) synchronization schemes. The DA technique 

exploits the redundancy of the cyclic prefix or pilot subcarriers inserted in each OFDM 

block to estimate the frequency and timing errors [64]-[68]. The latter can be referred 

One Frame 

Time 

Reference Blocks 

 . . . 

Data Block 

Figure 29 An example of frame structure 
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to so-called blind estimation methods which can be further divided into pre-FFT blind 

estimation [69][70] and post-FFT blind method [71]-[81]. All of these techniques are 

proposed for single user OFDM systems. Synchronization techniques for multiuser 

OFDMA systems will be described in detail in section 5.3. 

a. Timing Acquisition 

Timing acquisition is usually the first step of the synchronization process. There are two 

main tasks. The first one is to detect a new received frame in the received data stream. 

Second, once a new frame is detected, it calculates the coarse timing error so that the 

FFT data window can be aligned correctly with the useful part of the symbol. Since the 

frequency offset has not been compensated at this stage, the timing recovery scheme is 

desirable to be robust against possibly large frequency offsets.  

One of the first timing acquisition algorithms for OFDM transmission was proposed by 

Nogami and Nagashima (N&N) [82]. N&N was based on the use of a null reference block 

appended in the beginning of a frame. There is nothing to be transmitted in the 

reference block. The receiver will continuously detect the energy of the incoming data 

frame. The drop of the received power indicates arrival of a new frame. Unfortunately, 

N&N provides highly inaccurate timing estimation. Moreover, it is not suitable for burst-

mode transmission since the null reference block cannot distinguish from the idle period 

between the successive bursts. A popular method to overcome these problems is using 

a reference block which consists of two identical halves. The accurate timing estimation 

can be achieved by searching for the peak of the correlation among the two identical 

halves. This idea was originally proposed by Schmidl and Cox (S&C) [53], where a 
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reference block with two repetitive parts of length N/2 (N is the length of one OFDM 

block) is transmitted at the beginning of each frame.  

As long as the cyclic prefix is longer than the channel impulse response, the two 

identical half references will remain identical after passing through the transmission 

channel unless there is a phase shift caused by frequency offset. Since the first half of 

the block is the same as the second half, the multiplying of the conjugate of a sample 

from the first half with its corresponding identical sample from the second half will have 

a phase of approximately 𝜃 = 𝜋𝑇Δ𝑓, where 𝑇 is the duration of the reference block and 

Δ𝑓  is the frequency offset. The product of each pair of these samples will have 

approximately same phase. Therefore, the magnitude of the sum will be a large value. In 

particular, assuming there are L complex samples in each of the half of the reference 

symbol, the sum of the pairs of products is: 

𝑃 𝑑 =  𝑟∗ 𝑑 + 𝑚 × 𝑟(𝑑 + 𝑚

𝐿−1

𝑚=0

+ 𝐿)                                  (5.1) 

where 𝑟 𝑡  is the samples of the received signal at time instant t. d represents the time 

index corresponding to the first sample in a window of 2L samples. This window slides 

along in time as the receiver searches for the first training symbol. The timing metric to 

estimate the sampling starting point d is defined as: 

𝛤 𝑑 =
 𝑟∗ 𝑑 + 𝑚 × 𝑟(𝑑 + 𝑚𝐿−1

𝑚=0 + 𝐿)

 |𝑟(𝑑 + 𝑚𝐿−1
𝑚=0 + 𝐿)|2

                                      (5.2) 

where  |𝑟(𝑑 + 𝑚𝐿−1
𝑚=0 + 𝐿)|2  is the received energy for the second half reference 

symbol. The resulting timing estimate is thus given by [53]: 

𝑑 = 𝑎𝑟𝑔 max
𝑑

{ |Γ 𝑑 |}                                                         (5.3) 
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|Γ 𝑑 | is continuously monitored and the start of a frame is declared whenever it 

exceeds a pre-defined threshold. Once the presence of a new frame is detected, timing 

estimate d is computed by searching for the maximum of Γ 𝑑  as indicated in (5.3).  

One of the drawbacks of the S&C algorithm in [53] is that the timing metric reaches a 

plateau which has a length equal to the length of the guard interval minus the length of 

the channel impulse response since there is no ISI within this plateau to distort the 

signal. This plateau may largely reduce the estimation accuracy. One of the solutions to 

overcome this problem is proposed by Shi and Serpedin (S&S) in [63]. S&S used a 

training block which consists of four repetitive parts [+B +B –B +B] with a sign inversion 

in the third segment. The training block architecture can be seen in Figure 30.  

 

 

As shown in Figure 30, a training block of length N is composed of four vectors of 

samples 𝑟𝑗  𝑑 = {𝑟  𝑙 +
𝑗𝑁

4
+ 𝑑 ; 0 ≤ 𝑙 ≤

𝑁

4
− 1} with 𝑗 = 0,1,2,3. The timing metric is 

now calculated as: 

Γ 𝑑 =
 Λ1 𝑑  +  Λ2 𝑑  +  Λ3 𝑑  

3
2
 ||3

𝑗 =0 𝑟𝑗  𝑑 ||
2

                                             (5.4) 

Time 
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𝒓𝟏(𝒅) 

 

𝒓𝟐(𝒅) 

 

𝒓𝟑(𝒅) 
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Date Block 

Figure 30 Training symbol for S&S algorithm 
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Where:  Λ1 𝑑  = 𝑟0
𝐻 𝑑 𝑟1 𝑑 − 𝑟1

𝐻 𝑑 𝑟2 𝑑 − 𝑟2
𝐻 𝑑 𝑟3 𝑑  

                Λ1 𝑑  = 𝑟1
𝐻 𝑑 𝑟3 𝑑 − 𝑟0

𝐻 𝑑 𝑟2 𝑑  

                Λ1 𝑑  = 𝑟0
𝐻 𝑑 𝑟3 𝑑  

With this design, the plateau region in S&C timing metric is now significantly reduced. 

More accurate timing estimates are expected. The sharpness of the timing metric can be 

further improved by a reference block with more than four repetitive segments as 

indicated in [62].  

Besides the reference block based timing acquisition algorithms described above, blind 

methods are preferable in a continuous-mode transmission since any unnecessary 

overhead can be avoided. An example of a blind scheme can be found in [66], where 

autocorrelation properties induced by the CP on the time-domain samples are exploited 

for timing estimation. Specifically, the following N-lag autocorrelation function is used 

as the timing metric: 

Γ 𝑘 =  𝑟 𝑘 − 𝑞 𝑟∗ 𝑘 − 𝑞 − 𝑁                                         (5.5)

𝑁𝑔−1

𝑞=0

 

where k is the time index of the last received sample. Since the CP is just a duplication of 

the last 𝑁𝑔  samples of each OFDMA block, it is expected that the magnitude of Γ 𝑘  

may exhibit periodic peaks whenever samples 𝑟 𝑘 − 𝑞 − 𝑁  with 0 ≤ 𝑞 ≤ 𝑁𝑔 − 1 

belong to the CP. The peak locations indicate the beginning of the received blocks and 

are exploited to control the position of the DFT window. 

b. Fine timing tracking 
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After the timing acquisition, the receiver can correctly align its FFT window to the 

proper position to avoid inter-symbol interference. However, due to the oscillator drift 

and the instability of the sampling clock, there still is a small fractional timing error for 

the rest of the signal. Fortunately after timing acquisition, the rest timing error is 

relatively small compared to the length of the cyclic prefix. If the remaining timing error 

Δ𝜃 belongs to interval −𝑁𝑔 + 𝐿𝑐 + 1 ≤ Δ𝜃 ≤ 0 where 𝑁𝑔  is the length of the cyclic 

prefix and 𝐿𝑐  is the length of channel impulse response, this situation only results in a 

cyclic shift of the received OFDM block. Recalling the time-shift property of the Fourier 

transform, after FFT transform the time error only appears as a linear phase across 

subcarriers. It is like the phase shifts caused by the channel and can be easily 

compensated by the channel equalizer [83]. 

c. Frequency Acquisition 

After the detection and timing acquisition, each terminal must compute a coarse 

frequency estimation to compensate the frequency offset between the local oscillator 

and the received carrier frequency. One common approach is to employ a training block 

composed of some repetitive parts which remain identical after passing the 

transmission channel with the help of cyclic prefix except for a phase shift produced by 

the frequency error [52]-[63]. This method is originally proposed by Moose in [52], 

where the phase shift between two successive identical blocks is measured after the FFT 

output. In particular, assuming that the time synchronization has already been done and 

let 𝑅1 𝑛  and 𝑅2 𝑛  be the nth FFT outputs corresponding to the two reference blocks 

which can be expressed as: 

𝑅1 𝑛 = 𝑆 𝑛 + 𝑉1 𝑛                                                              (5.6) 
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𝑅2 𝑛 = 𝑆 𝑛 𝑒
𝑗2𝜋𝜀𝑁𝑇

𝑁 + 𝑉2 𝑛                                                        (5.7) 

where 𝑆 𝑛  is the signal component of the repetitive reference pattern which is the 

same for both reference blocks while 𝑉1 𝑛  and 𝑉2 𝑛  are noise terms. 𝑁𝑇  and 𝑁 

represent the length of one OFDM block with and without cyclic prefix respectively. 

From the above equations, an estimate of frequency error 𝜀 can be calculated as [52]: 

𝜀 =
1

2𝜋(
𝑁𝑇

𝑁
)

arg   𝑅2 𝑛 𝑅1
∗ 𝑛 

𝑁−1

𝑛=0

                                         5.8  

However, since the arg{} function returns values only in the range [−𝜋, 𝜋), |𝜀| ≤

𝑁/(2𝑁𝑇) which is less than one-half of the subcarrier spacing. Therefore, any frequency 

error outside the range cannot be recovered. An improving method to enlarge the 

acquisition range is proposed by Schmidl & Cox (S&C) in [53]. S&C decomposes the 

frequency offset into two parts. One is a fractional part which is less than one subcarrier 

spacing 1/(𝑁𝑇𝑠) in magnitude and the other is an integer part which is a multiple of 

2/(𝑁𝑇𝑠) where 𝑇𝑠  is one sample duration in one OFDM block. The normalized frequency 

error is thus rewritten as: 

𝜀 = 𝜈 + 2𝜂                                                                   (5.9) 

where 𝜈𝜖(−1,1] and 𝜂 is an integer. The S&C estimator relies on the transmission of two 

reference blocks. The first one consists of two identical halves which are used for the 

time acquisition. The second block contains a differentially encoded pseudo-noise 

sequence PN1 on even subcarriers and another pseudo-noise sequence PN2 on odd 

subcarriers. Since the main difference between the two halves of the first reference 

block is a phase difference of 𝜃 = 𝜋𝑇ν which can be estimated from equation (5.10) [53]: 
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𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑃 𝑑  = 𝑎𝑛𝑔𝑙𝑒( 𝑟∗ 𝑑 + 𝑚 × 𝑟(𝑑 + 𝑚

𝐿−1

𝑚=0

+ 𝐿) )             (5.10) 

near the best timing point. The fractional frequency offset can be calculated as [53]: 

ν =
𝜃 

𝜋𝑇
=

𝑎𝑛𝑔𝑙𝑒( 𝑟∗ 𝑑 + 𝑚 × 𝑟(𝑑 + 𝑚𝐿−1
𝑚=0 + 𝐿) ) 

𝜋𝑇
                   (5.11) 

The next step is to estimate the integer part of the frequency error. For this purpose, 

the samples from the two reference blocks are first compensated by the fractional 

frequency offset estimate, by multiplying the signal by 𝑒𝑥𝑝⁡(−
𝑗2𝜋𝜈 

𝑁
). Next, they are fed 

to the FFT unit. Let their FFT’s output be 𝑅1(𝑛)  and 𝑅2 𝑛  𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝑁 − 1. 

Assuming perfect compensation of ν, the FFT outputs are not affected by ICI since the 

uncompensated integer frequency offset will only result in phase shift in frequency 

domain by a quantity 2𝜂. The FFT outputs of these two reference blocks can be 

expressed as: 

𝑅1 𝑛 = 𝐻 𝑛 − 2𝜂 𝑑1 𝑛 − 2𝜂 + 𝑉1 𝑛                                         5.12  

𝑅2 𝑛 = 𝐻 𝑛 − 2𝜂 𝑑2 𝑛 − 2𝜂 + 𝑉2 𝑛                                         5.13  

where 𝐻 𝑛 is the channel response after FFT and 𝑑 𝑛  is the data vector. Re-calling that 

the differentially encoded PN sequence p(n) on the even subcarriers of the second block, 

𝑝 𝑛 = 𝑑2(𝑛)/𝑑1(𝑛). From (5.12) and (5.13) by neglecting the noise terms for simplicity, 

One can derive that: 

𝑅2 𝑛 = 𝑝 𝑛 − 2𝜂 𝑅1 𝑛                                                           (5.14) 

for any even n. Therefore, an estimate of 𝜂 can be calculated as [53]: 
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𝜂 = max
𝜂 

|  𝑅2 𝑛 𝑅1
∗ 𝑛 𝑝∗ 𝑛 − 2𝜂 𝑛 𝑒𝑣𝑒𝑛 |

 |𝑅2 𝑛 |2
𝑛 𝑒𝑣𝑒𝑛

                                      (5.15) 

d. Frequency tracking 

The coarse frequency offset estimate 𝜀  obtained from the frequency acquisition phase is 

applied to the received samples r(k) to produce the new sequence 

𝑟′ 𝑘 = 𝑟(𝑘)𝑒−𝑗2𝜋𝑘 𝜀 /𝑁 . Because of the time-varying Doppler shifts, the residual 

frequency error ∆𝜀 = 𝜀 − 𝜀  needs to be continuously tracked and compensated in order 

to avoid ICI at theFFT output. This operation is usually accomplished on a block-by-block 

basis by resorting to a closed-loop structure. The system architecture can be seen in 

Figure 31. Here, 𝑟𝑖
′ 𝑘  (−𝑁𝑔 ≤ 𝑚 ≤ 𝑁 − 1) are the coarse compensated time-domain 

samples including CP of ith received OFDM block. 𝑒𝑖  is an error signal that provides 

information on ∆𝜀𝑖 . The residual frequency error is updated block by block according to 

the following recursion: 

∆𝜀 𝑖+1 = ∆𝜀 𝑖 + 𝛼𝑒𝑖                                                            5.16  

Where ∆𝜀 𝑖  is the estimated residual frequency error over the ith block and 𝛼 is a step-

size which is needed to design properly to achieve a reasonable tradeoff between 

convergence speed and accuracy in the steady state. The input samples 𝑟𝑖
′ 𝑘  is finally 

compensated with the updated ∆𝜀 𝑖  to form the final FFT inputs 𝑥𝑖(𝑘). 
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Several frequency tracking protocols proposed in the literature are based on the closed-

loop structure in Figure 31, where the NCO stands for number-controlled oscillator. The 

only difference among them is the specific error signal 𝑒𝑖  [65]-[70]. These frequency 

tracking schemes can be categorized into frequency domain and time domain 

algorithms, depending on how the 𝑒𝑖  is calculated from 𝑥𝑖(𝑘)  or from 𝑅𝑖(𝑛) . A 

frequency domain scheme is given in [69], where 𝑒𝑖  is derived using a Maximum 

likelihood approach and reads: 

𝑒𝑖 = ℜ{ 𝑅𝑖
∗ 𝑛 [𝑅𝑖 𝑛 + 1 − 𝑅𝑖 𝑛 − 1 ]}

𝑁−1

𝑛=1

                                        (5.17) 

where ℜ{∗} represents the real part of the inside formula. A similar approach with 

improved performance is proposed in [70], which employs the following error signal: 

𝑒𝑖 = ℜ{ 
𝑅𝑖
∗ 𝑛  𝑅𝑖 𝑛 + 1 − 𝑅𝑖 𝑛 − 1  

1 + 𝜌 𝑅𝑖 𝑛  2
}

𝑁−1

𝑛=1

                                       (5.18) 

Figure 31 The framework for closed-loop fine frequency estimation 
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where 𝜌 is a design parameter related to the operating SNR. The time-domain schemes 

can be found in [65][66], where the phase shift between the CP and the last 𝑁𝑔  samples 

of each block is used as an indicator of the residual frequency offset. The resulting error 

signal is given by: 

𝑒𝑖 =
1

𝑁𝑔

ℌ{  𝑥𝑖
∗ 𝑚 𝑥𝑖(𝑚 + 𝑁)}

−1

𝑚=−𝑁𝑔

                                          (5.19) 

where 𝑥𝑖 𝑚  −𝑁𝑔 ≤ 𝑚 ≤ −1  are samples taken from the CP of the ith received 

OFDM block and ℌ ∗  represents the imaginary components of a complex-valued 

quantity. N is equal to the number of subcarriers for one OFDM symbol. 

5.3   Timing and frequency synchronization in OFDMA systems 

The downlink timing and frequency synchronization for OFDMA systems is similar to the 

way in single-user OFDM systems. Therefore, this report mainly focuses on the timing 

and frequency synchronization schemes in the OFDMA uplink. Multiuser uplink 

synchronization is a much more difficult task than in corresponding downlink situation 

since the uplink received signal at the BS is a combination of all of the users’ signals each 

of which has distinct timing and frequency errors. Accordingly, the BS has to estimate 

much more parameters than in the downlink. Moreover, the frequency and timing 

offset compensation are different than that in downlink. In the downlink situation, the 

frequency correction is easily accomplished by multiplying the downlink time domain 

signal by 𝑒2𝜋𝜀𝑚 /𝑁  and timing adjustment is achieved by shifting the FFT window by 𝜃𝑚  

sampling interval. However, because the uplink received signal is composed of multiple 

users’ signals with different frequency and timing error, compensation of one user’s 
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timing and frequency offset will affect the other initially aligned users. Based on this 

consideration, this report categorizes the uplink timing and frequency synchronization 

scheme into two phased timing and frequency offset estimation and timing and 

frequency offset compensation. 

a. Timing and frequency offset estimation 

The most common methods to simplify the synchronization process in the uplink 

transmission are to use sub-band subcarrier allocation strategy where each sub-channel 

contains adjacent subcarriers. A specified number of null subcarriers is inserted in the 

beginning of each sub-channel to provide adequately large guard intervals. If the 

frequency offset is significantly small compared to the guard interval, users’ signals can 

be easily separated by using a bank of digital band-pass filters. This filtering operation 

allows the BS to perform the timing and frequency estimation independently for each 

user. Therefore, the time and frequency estimation can be obtained by using the similar 

approaches in the downlink transmission. One possibility is using the method 

mentioned in [66] by exploiting the CP. In particular, assuming that the output signal 

from the filter tuned on the mth sub-channel is denoted as 𝑥𝑚 (𝑘), the timing and 

frequency estimates can be expressed as: 

𝜃𝑚 = 𝑎𝑟𝑔max
𝜃 

  Γm 𝜃                                                       (5.20)  

𝜀𝑚 =
1

2𝜋
arg 𝛤𝑚  𝜃𝑚                                                          (5.21) 

Where: 
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Γm 𝜃  =  𝑥𝑚  𝑘 + 𝑁 

𝜃 −1

𝑘=𝜃 −𝑁𝑔

𝑥𝑚
∗  𝑘                                       (5.22) 

Is the N-lag autocorrelation of sequence 𝑥𝑚  𝑘 . Another proposal based on this is 

presented in [84+ which shows that the estimator’s performance depends heavily on the 

number of the subcarriers in one sub-channel. The performance will deteriorate as the 

number of subcarrier decreases because of the increased correlation among samples 

𝑥𝑚 (𝑘). It also points out that the accuracy of the timing and frequency estimates can be 

improved by averaging Γm 𝜃   over several successive blocks which can be expressed 

using mathematics as: 

Γm
  𝜃  =  Γm 𝜃 + 𝑞𝑁𝑇 

𝑄

𝑞=0

                                          (5.23) 

which is used in equation (5.20) (5.21) in place of Γm 𝜃  . 

Another timing and frequency estimation scheme based on sub-band subcarrier 

allocation strategy is proposed in [85]. This method utilizes the null subcarriers which 

are inserted in the beginning of each sub-channel to estimate the time and frequency 

offset. The basic idea behind this method is to estimate the timing and frequency offset 

to minimize the energy of the FFT outputs of the null subcarriers which can be 

expressed as: 

 𝜃𝑚 , 𝜀𝑚  = arg min
𝜃𝑚 ,𝜀𝑚 

{𝐽 𝜃𝑚 , 𝜀𝑚  }                                          (5.24) 

where 𝐽 𝜃𝑚 , 𝜀𝑚   is the cost function representing the energy falling in the null 

subcarriers and 𝜃𝑚 , 𝜀𝑚  are trial values of timing and frequency offsets respectively. One 
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of the drawback of this method is that perfect users’ separation cannot be achieved by 

using band-pass filter in presence of frequency offsets and the idea brickwall filters is 

not possible in practice. One improved method based on [85] is presented in [86].  

In [86] the author also proposed a null-subcarrier based carrier frequency offset 

estimation for OFDMA uplink systems. It assumes that each sub-channel consists of 

contiguous subcarriers and the null subcarriers are placed in the middle of each sub-

channel. The sub-channel architecture is shown in Figure 32. It also assumes that all the 

users are synchronized in time so that the time offset for each user is perfectly 

compensated. The main idea behind the proposed carrier frequency offset (CFO) 

estimation is that it places the null subcarriers in the sub-band in such a way that the 

multiuser interference is minimized and by calculating and minimizing the energy falling 

in the null subcarriers in each sub-channel, the frequency offset for each user can be 

estimated without separating the received signal using band-pass filter. However, this 

algorithm can only apply to the situation that there is no timing offset. Moreover, the 

author did not mention how these estimated frequency offsets can be compensated 

without separating the users’ signals. 

The synchronization algorithms described above are all based on the sub-band 

subcarrier allocation strategy (SAS). One of the prominent advantages of SAS is that it 

offers the possibility of successfully separating the signals from different users through a 

simple filter bank even in a completely asynchronous scenario with arbitrarily large 

timing errors. Many other synchronization schemes are also proposed for other SAS. 

However, synchronization in other SAS especially in generalized SAS is much more 

difficult than sub-band SAS.  
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Pengfei and Morelli [87] proposed a carrier frequency offset tracking scheme for an 

OFDMA based IEEE 802.16e uplink by exploiting a set of pre-located pilot tones in each 

users sub-channel. It assumes that a course frequency offset estimation has already 

been done in the BS and it only focus on the remaining frequency offsets introduced by 

a consequence of estimation errors and/or time-varying Doppler shifts caused by 

terminals’ mobility. The total subcarriers are divided into K sub-channels and each sub--

channel has 48 data subcarriers and 24 fixed-position pilots. Any sub-channel is 

constructed from six tiles. Figure 33 illustrates the structure of a given tile. From Figure 

33 it can be seen that the pilot tones are inserted at the tile edges in each of the outer 

most blocks. The least-squares algorithm is used as the main frequency offset tracking 

manner. The main drawback of this method is the use of large number of pilot 

subcarriers which significantly reduces the system throughput. 

One of the first synchronization schemes for OFDMA system with generalized SAS was 

proposed by Morelli in [88]. This method employs the maximum likelihood (ML) 

Figure 32 The sub-channel architecture with null subcarriers in the middle 

Null subcarrier 

Data subcarrier 

. . . . . . 

Sub-channel m Sub-channel m+1 Sub-channel m+2 
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principle to compute estimates of the timing and frequency offset of a new coming user 

entering the network. However, it relies on the fact that the system is already  

 

 

synchronized and all the existing users are perfectly synchronized with each other. 

Another ML based synchronization scheme for generalized SAS are described in [89] [90]. 

This method estimates the timing and frequency offsets based on a training block which 

is transmitted by each user at the beginning of the uplink frame. However, such 

solutions are too computationally demanding as they require a complete search in order 

to locate the maximum of the likelihood function. An improved version has been 

proposed by Na and Minn in [91]. It reduces the synchronization complexity by replacing 

the exhaustive search with a line search. However, this is based on the sacrifice of 

convergence speed. Based on this consideration, Luca [92] has proposed a low-

complexity scheme for frequency estimation in uplink OFDMA system. Specifically, the 

transmission is organized in frames and each uplink frame is preceded by at least two 

Uplink Tile 

Block 0 

Block 1 

Block 2 

Pilot carrier Data carrier 

Figure 33 Tile structure proposed in [45] 
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identical training blocks. The subcarriers are partitioned into disjoint sub-channels and 

each sub-channel is further divided into a given number of sub-bands which consists of a 

small group of adjacent subcarriers carrying known pilot symbols. The frequency offset 

can be retrieved by measuring the phase shift between the pilot tones transmitted over 

adjacent OFDMA blocks. It assumes a quasi-synchronous system where no interblock-

interference is present at the BS receiver. In particular, denoting by 𝑌𝑗 (𝑚, 𝑛) the 

discrete FFT output over the nth subcarrier of the mth training block: 

𝑌𝑗  𝑚, 𝑛 = 𝑒
𝑗2𝜋𝑚 𝜀𝑗𝑁𝑇

𝑁 𝑋𝑗  𝑛 + 𝑊𝑗  𝑚, 𝑛                                        (5.25) 

where 𝑋𝑗  𝑛  is the signal component of the jth user over the nth subcarrier and 

𝑊𝑗 (𝑚, 𝑛) accounts for background noise. Then the frequency offset 𝜀𝑗  can be obtained 

as: 

𝜀𝑗 =
𝑁

2𝜋𝑁𝑇
arg⁡{  𝑌𝑗  𝑚 + 1, 𝑛 𝑌𝑗

∗(𝑚, 𝑛)}

𝑀−2

𝑚=0𝑛𝜖 𝜁𝑗

                        (5.26) 

where 𝜁𝑗  is a set of subcarriers belonging to jth sub-channel and M is the number of 

training blocks. 

b. Timing and frequency offset compensation 

As mentioned above, the timing and frequency compensation in uplink is much more 

complex than that in downlink since timing and frequency offset correction will 

influence other users. One solution is proposed in [84] that the estimated frequency and 

timing offsets are transmitted back to the corresponding users so that they can adjust 

their transmitted signals. Another solution is described in [85+ where each user’s signal 
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is separated in the BS through a bank of band-pass filter so that the time and frequency 

compensation can be done independently for each user in a way similar to the downlink 

transmission. Multiple FFT units are needed since each user needs one distinct N-point 

FFT operation. One of possible shortcomings of this approach is that perfect signal 

separation is not possible due to the non-ideal brick-wall filters and frequency leakage 

caused by synchronization error.  

Another frequency compensation method is proposed in [93] by Choi-Lee-Jung-Lee 

(CLJL). The system architecture is shown in Figure 34. This solution avoids multiple FFT 

operations but cannot perform timing adjustment. Therefore, it can only apply to quasi-

synchronous scenario where all of the users are already aligned in time. The detail 

algorithm is explained as follow: 

 

Figure 34 Frequency correction for OFDMA uplink 

Assuming the N received samples 𝑟𝑖 𝑘  0 ≤ 𝑘 ≤ 𝑁 − 1 belonging to the ith FFT window, 

which can be written as: 
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𝑟𝑖 𝑘 =  𝑧𝑚,𝑖(𝑘)𝑒𝑗2𝜋𝜀𝑚 𝑘/𝑁

𝑀

𝑚=1

+ 𝑤𝑖 𝑘 ,    0 ≤ 𝑘 ≤ 𝑁 − 1                 (5.27) 

where 𝑤𝑖 𝑘  is the thermal noise and 𝑧𝑚,𝑖(𝑘) is the multipath distorted version of the 

mth user signal for ith FFT window. 𝑀 is the number of users. For convenience the index 

i is omitted in the following. Since a multiplication in the time domain corresponds to a 

circular convolution in the frequency domain, the FFT output of 𝑟𝑖 𝑘  can be written as: 

𝑹 =  𝒁𝑚 ⊗𝑪(

𝑀

𝑚=1

𝜀𝑚 ) + 𝑾                                                (5.28) 

where 𝑪(𝜀𝑚 )  is the N-point FFT of 𝑒𝑗2𝜋𝜀𝑚𝑘/𝑁  and ⊗  represents N-point circular 

convolution. 𝒁𝑚  represents the contribution of the mth uplink signal to the FFT output 

in the absence of any interference. The goal is to recover 𝒁𝑚  from 𝑹. CLJL achieves this 

through two steps as it can be seen from Figure 34. First, it computes the N-dimensional 

vector {𝑿𝑚 }𝑚=1
𝑀  for mth user from FFT output by selecting the entries of 𝑹 with indexes 

𝑛 ∈ 𝜁𝑚  while forcing the others to zero. This is accomplished by setting 𝑿𝑚 = 𝑷𝑚𝑹, 

where 𝑷𝑚  is a diagonal matrix whose (n, n)th entry is unitary of 𝑛 ∈ 𝜁𝑚  and is zero 

otherwise. Actually, 𝑷𝑚  acts as a band-pass filter which isolates the mth user’s FFT 

output from others. By ignoring for simplicity the effect of the frequency leakage, 𝑿𝑚  

can be expressed as: 

𝑿𝑚 ≈ 𝒁𝑚 ⊗𝑪 𝜀𝑚  + 𝑾𝑚                                                      (5.29) 

One can easily observe that 𝒁𝑚 ⊗𝑪 𝜀𝑚  ⊗ 𝑪 −𝜀 𝑚  = 𝒁𝑚  for the perfect frequency 

offset estimation. Therefore, an estimate of 𝒁𝑚  can be obtained from the following 

equation [93]: 
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𝒁 𝑚 = 𝑷𝑚  𝑿𝑚 ⊗𝑪 −𝜀 𝑚   = 𝒁𝑚 + 𝑷𝑚  𝑾𝑚 ⊗𝑪 −𝜀 𝑚                        (5.30) 

The frequency compensation scheme described above is only suitable for sub-band 

(SAS). This is because the bank of matrices 𝑷𝑚  can successfully separate the users as 

long as the subcarriers from one user are grouped together and sufficiently large guard 

intervals are inserted among adjacent sub-channels. However, for interleaved or 

generalized SAS, CLJL cannot significantly reduce the multiple access interference (MAI) 

induced by frequency errors. Under this consideration, Huang and Letaief (HL) in [94] 

has proposed an improved version which uses an interference cancellation scheme 

proposed by [95]. The method operates in the following iterative fashion, where 𝒁 𝑚
𝑗

 is 

the restored signal of mth user after the jth iteration: 

1) Initialization: Use the CLJL vectors defined in (5.30) as initial estimates of {𝒁𝑚 }𝑚=1
𝑀  

i.e. 

𝒁 𝑚
0 = 𝑷𝑚  (𝑷𝑚𝑹) ⊗ 𝑪 −𝜀 𝑚                                                    (5.31) 

2) jth iteration: for each active user (m=1, 2, 3……,M), perform interference 

cancellation in form of: 

𝒁 𝑚
𝑗

= 𝑹 −  𝒁 𝑚
𝑗−1

⊗𝑪 𝜀 𝑚  

𝑀

𝑘=1,𝑘≠𝑚

, 1 ≤ 𝑚 ≤ 𝑀                        (5.32) 

And then compensate for 𝜀𝑚  in a way similar to CLJL as: 

𝒁 𝑚
𝑗

= 𝑷𝑚  (𝑷𝑚𝒁 𝑚
𝑗

) ⊗ 𝑪 −𝜀 𝑚             1 ≤ 𝑚 ≤ 𝑀                      (5.33)  
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5.4   The proposed time and frequency synchronization algorithm 

for ad hoc networks 

5.4.1 The system architecture 

Multiple access systems based on OFDM technique, namely OFDMA, has received a lot 

of attention in the past due to its capability of providing perfect elimination of multiuser 

interference (MUI) and inter-symbol interference (ISI) in transmissions using a simple 

fast Fourier transform-based receiver. However, compared to CDMA, OFDM systems are 

more sensitive to time and frequency synchronization errors. There are two deleterious 

effects caused by frequency offset; one is the reduction of signal amplitude in the 

output of the filters matched to each of the subcarriers and the second is the 

introduction of ICI from the other subcarriers which are now no longer orthogonal to 

the filter [96]. On the other hand, with time offset the FFT windows may not align with 

the right part of the received signals and in result inter-symbol interference. In the 

previous chapter 5.2 and chapter 5.3, a lot of synchronization schemes which are used 

in infrastructure based cellular networks are presented. However, the task for 

synchronization in mobile ad hoc networks is more difficult compared to the one in 

cellular networks. Firstly, complex signal processing algorithms, such as the maximum 

likelihood used in [88] [91], are not suitable for mobile ad hoc networks because of the 

hardware limitation of the mobile equipment itself. Secondly, global time 

synchronization is extremely difficult in mobile ad hoc networks. Therefore, each mobile 

terminal in the network should synchronize with each other in a fully distributed 

manner, which is much more complex than the base station controlled synchronization 

found in cellular networks. Based on these considerations, in this thesis, a time and 
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frequency synchronization schemes are proposed specifically for mobile ad hoc 

networks. 

In this thesis, a Rayleigh multipath fading mode is assumed in the proposed 

synchronization schemes and a frame transmission is used among the mobile users. 

Each frame consists of one training block which is used for coarse time synchronization 

and channel estimation, and several data blocks. Each transmitted block contains one 

OFDM symbol which is composed of N+L samples. As shown in the Figure 35, the first L 

samples are the same as the last L ones which are the cyclic prefix. The maximum 

number of orthogonal sub-carriers is N. The total sub-carriers are divided into S sub-

channels. Each sub-channel is the minimum data transmission unit for a user to transmit 

data. For easily illustrating the proposed synchronization scheme, this system uses equal 

energy for each data sub-carriers although it can be easily extended to any other energy 

allocation scheme. A contiguous permutation is used in this model. In particular, each 

sub-channel contains a set of sub-carriers with contiguous frequencies so that the 

spectrum between different sub-channels is maximized. Each node can be allocated one 

or more contiguous sub-channels according to its QoS requirements. In the beginning of 

each sub-channel, there are some sub-carriers which do not carry any information 

symbol. These sub-carriers are called Null sub-carriers. Specifically, in the 𝑝th OFDMA 

block, the 𝑠th sub-channel is assigned the set of frequency indexes: (𝑠𝐽 + 𝑙), 𝐽 = 𝐽𝑎 + 𝐽0, 

where 𝐽𝑎  is the number of subcarriers used in one sub-channel to carry useful 

information and 𝐽0  is the number of Null sub-carriers within one sub-channel. 𝑙 is the 

index of the sub-carriers in one sub-channel which is between 0 to N/S. Figure 35 shows 
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the frame architecture and an example of subcarrier allocation scheme with 6 data 

subcarriers and 2 null subcarriers in one sub-channel.  

 

Figure 35 The frame architecture and subcarrier allocation strategy 

Denoted by Uk(p;b;l;sk
m) the transmitted symbol modulated on the 𝑙th sub-carrier of 

𝒔𝒎
𝒌 th sub-channel within the pth block of bth frame for the kth transmitter to a common 

receiver, where 𝒔𝒎
𝒌 ∈ [𝟎, 𝑺). k is the index of the transmitters for the same potential 

receiver and m is the  index of the receiver. Inter-block interference is relieved by the 

use of a cyclic prefix that is added in the beginning of each OFDM block. The cyclic prefix 

has the length 𝐿 that is equal to or greater than the channel order. After N IFFT mapping, 

and the addition of the cyclic prefix, a pth block of length N+L OFDMA symbol in bth 

frame generated from the kth transmitter can be expressed as follow: 

𝑥𝑘 𝑝; 𝑏; 𝑙; 𝑛 =   𝑈𝑘  𝑝; 𝑏; 𝑙; 𝑠𝑚𝑘  

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

𝑒 𝑗
2𝜋
𝑁

(𝑠𝑚
𝑘 𝐽+𝑙)𝑛 ,   𝑛 ∈  −𝐿,𝑁 − 1            (5.34) 
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Where {𝒔𝒎
𝒌 } is the set of sub-channels used by the kth transmitter to send data to the 

mth reciever. 𝑛 represents the time domain of one OFDMA sample. The total length of 

an OFDMA symbol is 𝑵 + 𝑳 which consists of the duration of 𝑵 data samples and the 

duration of 𝑳  cyclic prefix. In the equation (5.34) the complex exponentials has 

periodicity of order N and 𝒙𝒌 𝒑; 𝒃; 𝒍; 𝒏  is the output OFDMA symbol from the IFFT 

transformation which transfers the signal from frequency domain to time domain. The 

last L samples of 𝒙𝒌 𝒑; 𝒃; 𝒍; 𝒏  is the same as the first L ones. 

The system model in this thesis considers the following assumptions: 

1. A mobile node can transmit or receive packets to or from multiple receivers or 

transmitters at the same time with different sub-channels. Simultaneous 

transmissions are supported in the nodes by using OFDMA. 

2. Contiguous permutation is used in the system model that each sub-channel consists 

of contiguous sub-carriers. 

3. Each mobile terminal can access to any sub-channel and can assign any sub-

channels for each potential receiver. 

4. There are transmit/receive duplexer filters in each mobile which can pass the 

desired frequency and reject as much of the undesired frequencies as possible. The 

cavity duplexer filter [97] is one of the options to fulfil the requirements and other 

duplexer filter designs are also proposed in recent years [98]. 
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5.4.2 The received signal in the receiver side and the proposed partial time 

synchronization scheme 

As shown in Figure 36, the receiver may have total K corresponding transmitters. Each 

of them travels through a different channel and has distinct channel impulse response. 

In practice, the received signal at the receiver side is the combination of the signals 

transmitted from all related transmitters. Let’s define 𝑔𝑇 𝑡 and 𝑔𝑅 𝑡  the pulse shaping 

and the match filter at the transmitter and the receiver sides respectively. 𝑕𝑘(𝑡) is the 

channel impulse response for kth transmitter. So the transmitter-channel-receiver filter 

Figure 36  System architecture 
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impulse response for kth transmitter is 𝐶𝑘(𝑡) = 𝑔𝑇 𝑡 ⨂𝑕𝑘 𝑡 ⨂𝑔𝑅 𝑡 , where ⨂ 

represents convolution. The ad hoc network can be based on any of the wireless ad hoc 

standards, such as IEEE 802.11n. In 802.11n [7], the subcarrier spacing ∆𝑓 is equal to 

312.5 kHz. Therefore, one OFDM symbol duration 𝑇𝑠  is equal to 
1

∆𝑓
+ 𝑇𝑔 = 3.2𝜇𝑠 +

0.8𝜇𝑠 = 4𝜇𝑠, where 𝑇𝑔  is the length of the cyclic prefix. One frame duration 𝑇𝑓 = 9 ∗

𝑇𝑠 = 80𝜇𝑠. The carrier frequencies 𝑓𝑐  for 802.11n is 2.4GHz or 5GHz. Assuming the 

central frequency is equal to 2.4 GHz and the velocity 𝑣 of the moving transmitter and 

receiver is 10m/s, according to [54], 𝐵𝑑 ≤
𝑣

𝑐
∗ 𝑓𝑐 , where 𝐵𝑑  is the Doppler shift and 𝑐 is 

the velocity of light which is 3.0 ∗ 108𝑚/𝑠 in the air. Recalling that the coherence time 

of the channel 𝑇𝑐  is equal to 1/𝐵𝑑  [99], it can derive that 𝑇𝑐 =
1

𝐵𝑑
≥

𝑐

𝑣∗𝑓𝑐
=

3.0∗108

10∗2.4∗109 =

12.5𝑚𝑠. From the derivation above it can be seen that the channel coherence time 𝑇𝑐  is 

much larger than one frame duration 𝑇𝑓 . Therefore, for each frame, the channel impulse 

response can be seen as invariant. 

With perfect synchronization the received baseband continuous-time waveform 

received by the receiver node from the kth transmitter can be expressed as: 

𝑦𝑘 𝑡 = 𝑥𝑘 𝑡 ⨂𝐶𝑘 𝑡 + 𝑣𝑘 𝑡 =  𝑥𝑘 𝜏 

+∞

𝜏=−∞

𝐶𝑘(𝑡 − 𝜏) + 𝑣𝑘 𝑡                     (5.35) 

Where 𝜏  is the channel delay spread which can be expressed as  𝜏 = 𝑝 𝑁 + 𝐿 𝑇 + 𝑛𝑇. 

1/T is the transmission rate and 𝑣𝑘 𝑡  is the additive noise which in this thesis is zero-

mean white Gaussian noise with power spectra density 𝜍𝑣
2. However, because the 

mismatch between the kth transmitter and receiver node’s local oscillators as well as 

Doppler effect, there is a carrier offset  𝑓𝑘  added to the received signal and the shift 𝑓𝑘  
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in the frequency domain can be seen as the time domain signal multiplied by 𝑒𝑗2𝜋𝑓𝑘𝑡 . So 

the equation (5.35) can be rewritten as: 

𝑦𝑘 𝑡 =   𝑥𝑘 𝑝; 𝑛 

𝑁−1

𝑛=−𝐿

+∞

𝑝=−∞

𝐶𝑘(𝑡 − 𝑝 𝑁 + 𝐿 𝑇 − 𝑛𝑇) × 𝑒𝑗2𝜋𝑓𝑘𝑡 + 𝑣𝑘 𝑡        5.36  

The first sum in equation (5.36) operates across successive OFDMA blocks and the 

second sum runs within each OFDMA block. 𝑝 𝑁 + 𝐿 𝑇 + 𝑛𝑇 is the channel delay. 

Therefore the combined received signal from all related transmitters at the receiver side 

is: 

     𝑦 𝑡 =  𝑦𝑘 𝑡 

𝐾

𝑘=0

 

=    𝑥𝑘 𝑝; 𝑛 

𝑁−1

𝑛=−𝐿

+∞

𝑏=−∞

𝐶𝑘 𝑡 − 𝑝 𝑁 + 𝐿 𝑇 − 𝑛𝑇 × 𝑒𝑗2𝜋𝑓𝑘 𝑡

𝐾

𝑘=0

+  𝑣𝑘 𝑡      

𝐾

𝑘=0

(5.37) 

Because the signal from different transmitters have different channel impulse response 

and frequency offsets, it is better to separate the waveform from different transmitters 

so that the synchronization can be performed individually. One OFDM symbol duration 

without cyclic prefix is NT and the sub-carrier spacing is 1/NT. Each sub-channel consists 

of contiguous sub-carriers and there are 𝐽0  null sub-carriers in the end of each sub-

channel. Therefore, the spectral gap between two adjacent sub-channel is 𝐽0/𝑁𝑇. The 

minimum spectral gap between two transmitters is  𝐽0/𝑁𝑇. Multiple sub-channels used 

by one transmitter should be adjacent to each other. Therefore, if the frequency offset 

of each transmitter is smaller than this spectral gap, the received signal can be 

successfully separated by using a set of bandpass filters. By doing this, a separate 
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synchronization algorithm can be applied to each transmitter. In order to successfully 

separate the individual signals from different transmitters, the sub-channels used by the 

transmitters to a common receiver must be different. The number of concurrent 

transmissions allowed in a node is equal to the number of bandpass filters existing in 

this node. The effect on the system throughput caused by the number of bandpass 

filters a node has is investigated later. 

With the help of the bandpass filters, the signals from different transmitters do not 

need to arrive at the common receiver at the same time. To successfully receive an 

OFDMA packet the receiver needs to determine the correct symbol starting position, so 

that it can align the FFT window for each transmitter. This task can be achieved by using 

a training symbol with repetitive parts [100]. In this thesis, a frame transmission is used 

among the ad hoc users as described before. Each frame consists of one training block 

at the beginning, which is used for time synchronization and channel estimation, 

followed by data blocks. Each block contains one OFDMA symbol which is composed of 

N+L samples where L is the length of the cyclic prefix.  Each transmitter will create its 

own training blocks using the assigned subcarriers. Without global synchronization, each 

node needs to continuously monitor all the sub-channels. This excessively consumes 

energy. In this thesis, a cross layer solution that uses a separate common signalling 

channel is proposed. The synchronization in the physical layer will be jointly coordinated 

with the proposed SSMAP based routing protocol through a cross layer signalling. The 

signalling common channel consists of one sub-channel which is shared by all ad hoc 

nodes. Two sets of transceivers are required in each node: one for the data traffic, and 

the other for the signalling sub-channel. The partial time synchronization scheme is 
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described as follow:  

In an ad hoc network, each node only needs to continuously monitor the signalling 

channel looking for the training symbol. In the route discovery process, when a source 

node wants to transmit data to a destination node, each transmitter along a multi-hop 

path will inform its expected transmission time and its local time reference to its 

potential receiver. This information is encapsulated in the RDIS messages (section 4.4.1). 

Accordingly, each node will create a time reference table which records the time 

reference for each one hop transmitter. Since the transmission range for each node is 

limited (around 100m to 250m), the time offset due to the propagation delay can be 

neglected. In this case, global time synchronization becomes not necessary. Each node 

will only need to set proper filters and look for the training block for a specific sub-

channel at a proper timing according to the estimated transmission time and time 

reference for each transmitter. 

The received signal is passed through the bandpass filters for each transmitter and the 

receiver will get the time acquisition by looking for the training block. After successful 

time acquisition, the receiver will sample the filtered signal for FFT transfer. The 

sampling rate should be the same as the transmission rate of the transmitter which is 

set to 1/T. The qth block of dth frame of the filtered received signal from the kth 

transmitter 𝒚𝒌 𝒕  collected by the receiver with sampling rate 1/T is composed of 

samples taken at instant 𝑡 = (𝑞 + 𝑑𝐵) 𝑁 + 𝐿 𝑇 + 𝑖𝑇 − 𝜏𝑘 , where 𝜏𝑘  is the remaining 

time offset from the partial time synchronization.  Replacing (5.34) into (5.36), the 

entries of the qth block of dth frame of the received kth transmitter signal become: 
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𝑦𝑘 𝑞; 𝑑; 𝑖 = 𝑒𝑗2𝜋𝑓𝑘 ( 𝑞+𝑑𝐵  𝑁+𝐿 𝑇+𝑖𝑇−𝜏𝑘)

×     𝑈𝑘(𝑝; 𝑏; 𝑙; 𝑠𝑚
𝑘 )𝑒 𝑗

2𝜋
𝑁

 𝑠𝑚
𝑘 𝐽+𝑙 𝑛

𝐽𝑎−1

𝑙=0
{𝑠𝑚

𝑘 }

𝑁−1

𝑛=−𝐿

+∞

𝑝=−∞

× 𝐶𝑘( 𝑞 − 𝑝  𝑁 + 𝐿 𝑇 +  𝑖 − 𝑛 𝑇 − 𝜏𝑘) + 𝑣𝑘 𝑞; 𝑖                    (5.38) 

Although the proposed partial time synchronization scheme can effectively solve the 

global time synchronization problem to realize OFDMA in an ad hoc network, there 

might still be some small scale time offset due to the misalignment of the received 

signal with the FFT window.  The time offset effects can be illustrated in Figure 37. 

 

Figure 37 Effects of different sampling positions 

The blue part is the data symbol in one OFDMA symbol which has duration of 𝑇𝑈 . The 

guard time interval (cyclic prefix duration) is 𝑇𝐶𝑃  which is equal to 𝐿𝑇 and the grey part 

represents the channel delay spread for the kth transmitter which has duration of 𝜏 𝑘 . 

The guard time interval should be set properly so that it is longer than the total channel 
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delay spread which means 𝜏 𝑘 ≤ 𝑇𝐶𝑃 , ∀𝑘. One OFDMA symbol is composed of both 

guard time interval and data symbol. The 𝜏𝑘  is denoted as time offset between kth 

transmitter and receiver. There are four possible sampling starting positions as shown in 

Figure 37.  

 Case one: For sampling position A there is no time offset and the FFT window is 

exactly match the data part of the OFDMA symbol. In this case the cyclic prefix can 

be removed completely and there is no error on the outputs after FFT transform.  

 Case two: For sampling position B, the symbol timing offset 𝜏𝑘  is greater than the 

zero but less than  𝑇𝐶𝑃 − 𝜏 𝑘 . The FFT samples are taken from part of cyclic prefix 

and part of the useful data symbol. Since the samples in cyclic prefix are copies from 

the tails of the useful date part. The set of samples from the data window at 

position B is effectively a shifted version from the original data symbol. The only 

effect due to this time offset is a phase shift in the frequency domain for all sub-

carriers which will not cause inter-symbol interference. Therefore, the time offsets 

can be seen as part of the unknown channel impulse response which can be 

compensated through the equalization performed at the receiver. In this case, it 

considerably reduces the system synchronization complexity since the time offsets 

are incorporated as part of the channel impulse response and the only element that 

needs to be considered is frequency offset. 

 Case three: For sampling position C, the symbol time offset is greater than 𝑇𝐶𝑃 − 𝜏 𝑘 . 

The sum of the channel delay spread and time offset exceeds the guard interval. As 

a consequence, some samples in the FFT window will come from the region that is 

corrupted by the channel delay components. This will cause inter-symbol 
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interference. As a result, the demodulated data from one sub-carrier is affected by 

adjacent sub-carriers and they are not orthogonal to each other anymore. This will 

lead to inter-carrier interference. 

 Case four: For sampling position D the data window is covering two adjacent 

OFDMA symbols which will introduce strong inter-symbol interference. In this case, 

there is an ambiguity about which symbol is being observed. This can be resolved by 

using extra an OFDMA symbol detection technique introduced in [96] [101]. The 

effect of the time offset under this situation is beyond the scope of this thesis and 

will not be studied. 

In ad hoc networks considered in this thesis, the transmission range for two nodes is less 

than 300 meters. Therefore, if a proper size of the cyclic prefix is used, the sum of the 

time offset and channel delay spread will be less than the guard time interval so that the 

time offset can be considered as part of the unknown channel impulse response. In this 

case, the receiver only needs to consider the frequency offset. In particular, the time 

offset 𝜏𝑘  in equation (5.38) is set to zero. As defined above, the channel impulse 

response for any transmission channel is less than the guard time interval. Therefore, 

the overall channel delay spread has at most duration 𝐿𝑇 which means for any t<0 or 

t>LT, the channel impulse response 𝐶𝑘(𝑡) is equal to zero. Therefore, in equation (5.38), 

for 𝐶𝑘( 𝑑 − 𝑏  𝑁 + 𝐿 𝑇 +  𝑖 − 𝑛 𝑇 − 𝜏𝑘), 𝜏𝑘 = 0 and the only non-zero term comes 

from the qth term while  𝑞 = 𝑝 and 0 ≤  𝑖 − 𝑛 𝑇 ≤ 𝐿𝑇 − 1. Setting  𝑟 = 𝑖 − 𝑛  and 

removing the cyclic prefix to avoid the inter-symbol interference, the qth block samples 

of length N in dth frame from kth transmitter becomes: 
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𝑦𝑘 𝑞; 𝑑; 𝑖 = 𝑒𝑗2𝜋((𝑞+𝑑𝐵) 𝑁+𝐿 𝑇+𝑖𝑇)𝑓𝑘 ×   𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚
𝑘  × 𝑒 𝑗

2𝜋
𝑁

 𝑠𝑚
𝑘 𝐽+𝑙 𝑖

𝐽𝑎−1

𝑙=0 𝑠𝑚
𝑘  

+ 𝑣𝑘 𝑞; 𝑑; 𝑖    𝑖𝜖 0,… , 𝑁

− 1                                                                                                                    (5.39) 

where: 𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚
𝑘  = 𝑈𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  ×  𝐶𝑘 𝑟𝑇 × 𝑒 𝑗
2𝜋

𝑁
 𝑠𝑚

𝑘 𝐽+𝑙 𝑟                     𝐿−1
𝑟=0  5.40  

As it can be seen from equation (5.39) that the sum   𝑁−1
𝑛=−𝐿

+∞
𝑝=−∞ is replaced by 

 𝐿−1
𝑟=0  and 𝑛  is replaced by 𝑖 − 𝑟 .  𝐶𝑘 𝑟𝑇 × 𝑒 𝑗

2𝜋

𝑁
 𝑠𝑚

𝑘 𝐽+𝑙 𝑟   𝐿−1
𝑟=0 can be seen as kth 

channel transfer function for kth transmitter.  

 

 Figure 38  The receiver architecture for frequency synchronization 
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5.4.3 The frequency synchronization algorithm 

As it can be seen from the equation (5.39) that the effect due to the frequency offset is 

equivalent to multiply the time domain signal by a sequence 𝑒−𝑗2𝜋(𝑖𝑇+(𝑞+𝑑𝐵) 𝑁+𝐿 𝑇)𝑓𝑘 . 

Therefore, the main task of frequency synchronization is to find and compensate the 

frequency offset 𝑓𝑘 . The proposed frequency synchronization exploits the property of 

the null subcarriers inserted in each sub-channel [85] and adapts to ad hoc networks. 

The main idea of the proposed frequency synchronization is: for each sub-channel in kth 

received OFDMA signal, there are 𝐽0 null sub-carriers. The receiver will continuously 

measure the average energy falling across these null subcarriers in every sub-channel 

for each transmitter. Without frequency offset and noise, there will be no energy falling 

in these null sub-carriers. If there is some energy detected, the receiver will run an 

iterative search which creates an estimated frequency offset 𝑓𝑘  𝑛  and applies it to the 

filtered kth transmitter signal by multiplying the filtered signal by the sequence 

𝑒−𝑗2𝜋 (𝑖𝑇+(𝑞+𝑑𝐵) 𝑁+𝐿 𝑇)𝑓𝑘  𝑛 . The initial guess of the kth frequency offset 𝑓𝑘  0  is set to 

zero. In each round the receiver will calculate the energy for the null sub-carriers and 

update the estimated frequency offset 𝑓𝑘  𝑛  accordingly. The detailed frequency offset 

searching algorithm will be discussed below. The receiver architecture for the frequency 

synchronization is shown in Figure 38, where 𝜃𝑘  𝑛 = 𝑓𝑘  𝑛 × 𝑇 . Therefore, the 

compensated kth transmitter signal can be expressed as: 
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𝑦 𝑘 𝑞; 𝑑; 𝑖 = 𝑦𝑘 𝑞; 𝑑; 𝑖 × 𝑒−𝑗2𝜋((𝑞+𝑑𝐵) 𝑁+𝐿 𝑇+𝑖𝑇)𝑓𝑘  

=   𝑈 𝑘(

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

𝑞; 𝑑; 𝑙; 𝑠𝑚
𝑘 ) × 𝑒 𝑗

2𝜋
𝑁

 𝑠𝑚
𝑘 +𝑙 𝑖 × 𝑒𝑗2𝜋𝑓𝑘 (𝑞+𝑑𝐵) 𝑁+𝐿 𝑇+𝑖𝑇 

× 𝑒−𝑗2𝜋 𝑖𝑇+(𝑞+𝑑𝐵) 𝑁+𝐿 𝑇 𝑓 𝑘 + 𝑣 𝑘 𝑞; 𝑖 

=    𝑈 𝑘(

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

𝑞; 𝑑; 𝑙; 𝑠𝑚
𝑘 ) × 𝑒 𝑗

2𝜋
𝑁

 𝑠𝑚
𝑘 +𝑙 𝑖 ×× 𝑒𝑗2𝜋 (𝑞+𝑑𝐵) 𝑁+𝐿 𝑇+𝑖𝑇 ∆𝑓𝑘

+ 𝑣 𝑘 𝑞; 𝑖                                                                                              (5.41) 

where △ 𝑓𝑘 = 𝑓𝑘 − 𝑓𝑘  and 𝑣𝑘  𝑞, 𝑖 = 𝑣𝑘 𝑞, 𝑖 × 𝑒−𝑗2𝜋𝑓𝑘  (𝑞+𝑑𝐵) 𝑁+𝐿 𝑇+𝑖𝑇 . Then 

according to Figure 38, after passing through the FFT window the signal becomes: 

𝑌𝑘 𝑞; 𝑑; 𝑙′ ; 𝑠𝑚
𝑘 ′
 =

1

𝑁
 𝑦 𝑘

𝑁−1
𝑖=0  𝑞; 𝑑; 𝑖 𝑒

−𝑗
2𝜋

𝑁
 𝑠𝑚

𝑘 ′
𝐽+𝑙′  𝑖

  

𝑠𝑚
𝑘 ′

∈  0, 𝑆 − 1 ,   𝑙′ ∈  0, 𝐽 − 1                         (5.42) 

where S is the total number of sub-channels in one OFDMA symbol. Substituting (5.41) 

into (5.42), it becomes: 

𝑌𝑘 𝑞; 𝑑; 𝑙′ ; 𝑠𝑚
𝑘 ′
 

=
1

𝑁
   𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  × 𝑒 𝑗
2𝜋
𝑁

 𝑠𝑚
𝑘 𝐽+𝑙 𝑖 × 𝑒𝑗2𝜋 𝑞+𝑑𝐵  𝑁+𝐿 𝑇+𝑖𝑇)∆𝑓𝑘

𝐽𝑎−1

𝑙=0 𝑠𝑚
𝑘  

𝑁−1

𝑖=0

× 𝑒−𝑗
2𝜋
𝑁

 𝑠𝑚
𝑘 ′

𝐽+𝑙′  𝑖 + 𝑉
𝑠𝑚
𝑘 ′
𝑘  𝑞; 𝑙′  

=
1

𝑁
   𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  

𝐽𝑎−1

𝑙=0 𝑠𝑚
𝑘  

𝑁−1

𝑖=0

× 𝑒 𝑗
2𝜋
𝑁

 𝑠𝑚
𝑘 𝐽+𝑙 𝑖+𝑗

2𝜋
𝑁

𝑖𝑇∆𝑓𝑘𝑁−𝑗
2𝜋
𝑁

 𝑠𝑚
𝑘 ′

𝐽+𝑙′  𝑖+𝑗
2𝜋
𝑁

 𝑞+𝑑𝐵  𝑁+𝐿 𝑇∆𝑓𝑘𝑁 + 𝑉
𝑠𝑚
𝑘 ′
𝑘  𝑞; 𝑙′  
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=
1

𝑁
𝑒2𝜋 𝑞+𝑑𝐵  𝑁+𝐿 𝑇∆𝑓𝑘   𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

×  𝑒 𝑗
2𝜋
𝑁

  𝑠𝑚
𝑘 −𝑠𝑚

𝑘 ′
 𝐽+ 𝑙−𝑙′  +𝑇𝑁∆𝑓𝑘  𝑖

𝑁−1

𝑖=0

+ 𝑉
𝑠𝑚
𝑘 ′
𝑘  𝑞; 𝑙′                                                                                                  (5.43) 

where 𝑉
𝑠𝑚𝑘

′
𝑘  𝑞; 𝑙′ = (

1

𝑁
) 𝑣 𝑘 𝑞, 𝑖 × 𝑒

−𝑗2𝜋
𝑁
 𝑠𝑚

𝑘 ′
𝐽+𝑙′ 𝑖

𝑁−1
𝑖=0  is the FFT output noise which 

remains zero-mean white complex Gaussian with variance 𝜍𝑣
2 . Setting 𝜛𝑘 =

 (𝑠𝑚𝑘 − 𝑠𝑚𝑘
′
 𝐽 +  𝑙 − 𝑙′ + 𝑇𝑁Δ𝑓𝑘]/𝑁 , 𝑒 𝑗

2𝜋

𝑁
  𝑠𝑚

𝑘 −𝑠𝑚
𝑘 ′

 𝐽+ 𝑙−𝑙′  +𝑇𝑁∆𝑓𝑘  𝑖 can be written as 

 𝑒𝑗2𝜋𝜛𝑘 𝑖𝑁−1
𝑖=0 . This is the discrete version of the express  𝑒𝑗2𝜋𝜛𝑘 𝑖

𝑁−1

0
𝑑𝑖  which is equal 

to  
sin ⁡(𝜋𝜛𝑘𝑁)

𝜋𝜛𝑘
𝑒𝑗𝜋𝜛𝑘𝑁 . Thus, the equation (5.43) can be rewritten as:  

𝑌𝑘 𝑞; 𝑑; 𝑙′ ; 𝑠𝑚
𝑘 ′
 

=
1

𝑁
𝑒2𝜋 𝑞+𝑑𝐵  𝑁+𝐿 𝑇∆𝑓𝑘   𝑈 𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

×
sin⁡(𝜋𝜛𝑘𝑁)

𝜋𝜛𝑘
𝑒𝑗𝜋 𝜛𝑘𝑁

+ 𝑉
𝑠𝑚
𝑘 ′
𝑘  𝑞; 𝑙′                                                                                                   (5.44) 

In equation (5.44), if there is no noise and there is no frequency offset, 𝑌𝑘 𝑞; 𝑑; 𝑙′ ; 𝑠𝑚
𝑘 ′
  

is different from zero only when 𝑠𝑚
𝑘 = 𝑠𝑚

𝑘 ′
 and 𝑙 = 𝑙′ : 

𝑌𝑘 𝑞; 𝑑; 𝑙′ ; 𝑠𝑚
𝑘 ′
 =  𝑈 

𝑘 𝑞; 𝑑; 𝑙′; 𝑠𝑚
𝑘 ′
 ,    𝑓𝑜𝑟 𝑠𝑚

𝑘 = 𝑠𝑚
𝑘 ′

 and 𝑙 = 𝑙′ 

0,                                                𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

                          (5.45) 

From (5.45) it can be seen that, for perfect synchronization and no noise, for any null 

sub-carriers where 𝑈 
𝑘  𝑞; 𝑑; 𝑙′ ; 𝑠𝑚𝑘

′
  is equal to 0 there is no energy detected. However, 

for non perfect synchronization, there is inter-symbol interference among OFDM 

symbols. Therefore, there will be a non null energy falling in the band of null sub-
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carriers. Based on this, this thesis introduces an energy detection function ℶ which is the 

summation of the energy of the null sub-carriers for the kth transmitter. The energy 

detection function calculates the energy in null sub-carriers for each OFDMA block and 

average over 𝑁𝑏  blocks. The ℶ can be expressed as: 

ℶ𝑁𝑏

𝑘  ∆𝑓𝑘 =
1

𝑁𝑏
   |𝑌𝑘  𝑞; 𝑑; 𝑙′ ;𝑠𝑚𝑘

′
 |2

𝐽−1

𝑙′ =𝐽𝑎𝑠𝑚𝑘
′
∈{𝑠𝑚𝑘 }

𝑁𝑏

𝑞=0

                                     (5.46) 

Many methods can be used here to find the value of 𝑓𝑘  to minimize ℶ𝑁𝑏

𝑘  ∆𝑓𝑘  such as a 

steepest-gradient-descent algorithm used in [85]. In this thesis, the similar approach is 

used to find the 𝑓𝑘 : 

                                     𝑓𝑘 = 𝑎𝑟𝑔𝑚𝑖 𝑛
∆𝑓𝑘

 ℶ𝑁𝑏

𝑘  ∆𝑓𝑘                                                                        (5.47) 

In case of perfect synchronization and no noise, the value of ℶ is null. However, with 

noise and frequency offset, there is some energy falling in the null sub-carriers band. 

This thesis averages the energy detection function over successive OFDMA blocks.  

When the number of the OFDMA blocks calculated over several OFDMA blocks, the 

detection function becomes: 
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ℶ𝑁𝑏

𝑘  ∆𝑓𝑘 =
1

𝑁𝑏
   |𝑌𝑘  𝑞; 𝑑; 𝑙′ ;𝑠𝑚

𝑘 ′
 |2

𝐽−1

𝑙 ′ =𝐽𝑎𝑠𝑚
𝑘 ′

∈{𝑠𝑚
𝑘 }

𝑁𝑏

𝑞=0

=   𝐸{|𝑌𝑘  𝑞; 𝑑; 𝑙′ ;𝑠𝑚
𝑘 ′
 |2

𝐽−1

𝑙 ′ =𝐽𝑎𝑠𝑚
𝑘 ′

∈{𝑠𝑚
𝑘 }

}

=   𝐸{|
1

𝑁
𝑒𝑗2𝜋 𝑞+𝑑𝐵 𝑇(𝑁+𝐿)∆𝑓𝑘   𝑈𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚

𝑘  

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

𝐽−1

𝑙 ′ =𝐽𝑎𝑠𝑚
𝑘 ′

∈{𝑠𝑚
𝑘 }

×  𝐶𝑘  𝑟𝑇 × 𝑒𝑗
2𝜋
𝑁

 𝑠𝑚
𝑘 𝐽+𝑙 𝑟

𝐿−1

𝑟=0

×
sin⁡(𝜋𝜛𝑘𝑁)

𝜋𝜛𝑘
𝑒𝑗𝜋 𝜛𝑘𝑁|2}

+   𝐸{|𝑉
𝑠𝑚
𝑘 ′
𝑘  𝑞; 𝑙′ |2

𝐽−1

𝑙 ′ =𝐽𝑎𝑠𝑚
𝑘 ′

∈{𝑠𝑚
𝑘 }

                                                                         (5.48) 

where 𝐸 ∗  is the expected value operator. According to the system model described in 

the beginning of this chapter, equal energy is allocated for each data sub-carriers. 

Therefore𝐸{|𝑈𝑘 𝑞; 𝑑; 𝑙; 𝑠𝑚
𝑘  |2 can be represented by the signal power spectra density 

which is equal to 2

u . Since |𝑒𝑗𝜃 |2 is equal to 1, for ∀𝜃, the equation (5.48) can be 

rewritten as: 

ℶ𝑁𝑏

𝑘  ∆𝑓𝑘 = 𝑁𝜍𝑢
2     |𝐶𝑘 𝑠𝑚𝑘 ; 𝑙 |

2
× 𝑠𝑖𝑛𝑐2(𝜋𝜛𝑘𝑁)

𝐽𝑎−1

𝑙=0{𝑠𝑚
𝑘 }

𝐽−1

𝑙′ =𝐽𝑎𝑠𝑚𝑘
′
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𝐽
                                                                    (5.49) 

where 𝐶𝑘 𝑠𝑚𝑘 ; 𝑙 =  𝐶𝑘(𝑟𝑇) × 𝑒−𝑗
2𝜋
𝑁
 𝑠𝑚

𝑘 𝐽+𝑙 𝑟𝐿−1
𝑟=0  and 𝑠𝑖𝑛𝑐 𝑥  is defined as

sin ⁡(𝑥)

𝑥
. 

From equation (5.49) it can be seen that, ℶ𝑘  ∆𝑓𝑘  is composed of all positive terms and 

it reaches its absolute minimum value when all the 𝑠𝑖𝑛𝑐(∗) terms are zero. This will 

happen only when ∆𝑓𝑘  is equal to zero. Moreover, the additive white noise is not going 
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to affect the global minimum position of ℶ𝑘  ∆𝑓𝑘 . It only add a pedestal to the energy 

detection function ℶ𝑘  ∆𝑓𝑘 . 

 

 

One thing has to be noted from equation (5.49) that ℶ𝑘  ∆𝑓𝑘  has several minimum 

points when ∆𝑓𝑘  is integral multiple of the sub-carrier spacing 1/NT. Therefore, any 

iterative carrier offset estimation can guarantee to find the global minimum point as 

long as the frequency offset is less than 1/2NT [85].  If the frequency offset is greater 

than 1/2NT, then one has to try multiple initializations of the initial frequency offset 

Figure 39 The flowchart for frequency offset estimation procedure 
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differing by integer multiples of 1/NT, and choose the frequency offset which gets the 

minimum value of ℶ𝑘  ∆𝑓𝑘 . 

The main task is to find out the value of 𝑓𝑘  that makes the energy detection function to 

reach its global minimum value. In this thesis, a conventional steepest-gradient-descent 

algorithm is used to find the frequency offset. Specifically, at the nth step, the received 

signal is multiplied by 𝑒−𝑗2𝜋(𝑖𝑇+(𝑞+𝑑𝐵) 𝑁+𝐿 𝑇)𝑓𝑘  𝑛 , where 𝑓𝑘  𝑛  is the estimated 

frequency offset at step n. This algorithm starts with 𝑓𝑘 (0) = 0. Each round the 

algorithm calculates the energy level of the detection function and its 

gradient  𝜕ℶ𝑘(𝑓𝑘 (𝑛))/𝜕𝑓𝑘 (𝑛)  averaging over a finite number of blocks 𝑁𝑏  . If the 

modulus of the gradient exceeds a predefined threshold 𝜑𝑇𝐻 , 𝑓𝑘 (n) is upgraded as 

follows: 

𝑓𝑘  𝑛 + 1 = 𝑓𝑘  𝑛 − 𝜇
𝜕ℶ𝑘(𝑓𝑘 (𝑛))

𝜕𝑓𝑘 (𝑛)
                                                  (5.50) 

Otherwise the algorithm exits from the loop. The detail procedure can be illustrated in 

Figure 39. The step size 𝜇 is selected as a compromise between convergence speed and 

tracking capability. Larger 𝜇  will converge rapidly but with large variance for the 

frequency offset. Small 𝜇 will increase the number of repetitional iteration searching for 

the 𝑓𝑘  and therefore increasing the computational complexity. The effect of different 

values of 𝜇 to the estimation performance will be evaluated through the simulation later. 

One thing has to be noted that the proposed synchronization scheme is different from 

the traditional Costas loop [106]. The proposed synchronization scheme is detecting and 

compensating the energy falling in the null sub-carriers to compensate the frequency 

and time offsets where the Costas loop is a phase-locked loop based circuit which uses 
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local oscillator to generate generates an output signal whose phase is related to the 

phase of an input "reference" signal and adjusts the frequency of its oscillator to keep 

the phases matched. 

5.4.4 The effect of the number of bandpass filters in a node on the system 

throughput 

As described before, the most distinguished advantages of OFDMA over other MAC 

layer protocols such as multi-band MAC protocol is that with OFDMA concurrent 

transmissions can be realized across a node. However, more concurrent transmissions 

that can be supported in a node means that more bandpass filters are needed, 

increasing the node complexity. Unlike the infrastructure based cellular networks, in ad 

hoc networks, the number of active corresponding transmitters for each node is limited. 

The number of concurrent transmissions supported by a node can be adapted 

depending on the number of bandpass filters equipped in each node. In this section, the 

system throughput of an ad hoc network where the nodes are equipped with different 

number of bandpass filters is investigated to see its effect on system performance. All 

the experiments are based on the proposed routing scheme described in chapter 4. 

The uniform node distribution scenario is used in this simulation. 30 nodes are 

uniformly distributed in an area of 1000 by 1000 meters. The transmission range for 

each node is 250 meters. Each active source node randomly selects a destination node 

and starts a session at a random time from 0 to 10 seconds. Each session lasts until the 

end of the simulation. The simulation time is set to 2 minutes. The simulation 

parameters are shown in Table 6. The number of sub-channels is set to 8 and the 

http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Phase_(waves)
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number of data sub-channel is 7. The proposed OFDMA scheme is compared with the 

signal interface multiband [102] and the multi-interface multiband [103]. 

Table 6     Simulation configurations 

Attribute Name Value 

Transmit power (dBm) 0 

Number of subcarriers 64 

Subcarrier frequency spacing 0.3125 (20M/64) 

Receiver sensitivity (dBm) -65 

Packet size (B) 1024 

Path loss model Open space 

Modulation scheme QPSK 

Error correction threshold 0 

Noise figure 1 

Bandwidth (MHz) 20 

SIRmin 20dB [99] 

Minimum frequency band (GHz) 2.4 

 

In the first simulation, each node has only two bandpass filters. In this case, each node 

can only support two concurrent transmissions at the same time. Figure 40 shows the 

simulation results for the system throughput. If in OFDMA based networks, a node 

cannot support concurrent transmissions, the system is the same as the multi-band 

based networks. The simulation results show that allowing concurrent transmissions, 

the system throughput can be largely increased compared to other MAC protocols. 
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Figure 40 Comparison with two bandpass filters in each node 

 

Figure 41  Comparison with three bandpass filters in each node 

Figure 41 shows the simulation results for the throughput comparison between an 

OFDMA based system with three bandpass filters in each node and the multi-band MAC 

systems. Compared to Figure 40, when increasing the number of bandpass filters, the 

system throughput also increases accordingly. If the network is not heavily loaded (the 

number of concurrent active routes is smaller than 15), the system throughput with 
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three bandpass filters per node is not significantly greater than the system with two 

bandpass filters per node. Therefore, there are two conclusions from the above 

experiments: (1) By allowing concurrency, the performance of OFDMA system is 

significantly better than the other MAC protocols. (2) A small number of bandpass filters 

is sufficient to provide a substantial increase in system performance. 

5.4.5 Performance evaluation of the proposed frequency offset estimation 

algorithm  

In this section, several experiments are taken place to test the performance of the 

proposed frequency offset estimation algorithm. In here, a receiver is simultaneously 

receiving signals from two transmitters. There are 64 sub-carriers in total and the sub-

carriers are divided into 𝑆 = 8 sub-channels with 𝐽 = 8 sub-carriers per sub-channel. 

Therefore, 𝑁 = 𝑆 × 𝐽 = 64. The system parameters are the length of the cyclic prefix 

 𝐿 = 2,  the sub-channels used for user traffic 𝐽𝑎 = 6, and the null sub-carriers 𝐽0 = 2. 

The frequency offset for these two transmitters are generated as independent random 

variables, distributed uniformly in (-1/2NT, 1/2NT) [85]. As mentioned in section 5.4.3, if 

the frequency offset is less than 1/2NT, the steepest-gradient-descent algorithm 

converges to the global minimum point of the energy detection function. A Rayleigh 

multipath fading mode is used in this simulation with overall channel delay spread less 

than the length of cyclic prefix LT.  

 

 

a) The effectiveness of the proposed frequency offset estimation algorithm 
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Figure 42 shows the simulation results of the frequency estimation errors of these two 

transmitters as a function of the iteration index for a received SNR=20dB, where SNR is 

defined as 𝜍𝑢
2𝐸{|𝐶𝑘  𝑐𝑚  , 𝑙 |2}/𝜍𝑣

2. The step size is set to 0.05. From Figure 42, it can be 

seen that for both transmitters the frequency estimation errors converge approximately 

on the 30th step and forward. The final estimated error is slightly different for the two 

transmitters because the initial frequency offset for each transmitter is different from 

each other, consequently each frequency offset induces a different interference level 

for each transmitter. From the simulation results it can be seen that the proposed 

frequency offset estimation algorithm has good performance. The frequency estimation 

errors for both transmitters are less than 0.01 times the sub-carrier spacing 1/NT.  

 

Figure 42 Frequency estimation error for step size 𝝁 = 0.05 

Figure 43 shows the simulation results of the frequency offset estimation error with 

step size increased to 0.1. In order to compare the results with the previous experiment, 

the same seed is used to create the random frequency offsets for the two transmitters. 
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The simulation results show that with a larger step size the algorithm can converge 

much faster. However, the final frequency estimation errors for both transmitters 

increase. There is a tradeoff between the convergence speed and the tracking precision. 

In the next experiment, the frequency estimation error variance is evaluated for 

different SNRs. 

 

Figure 43 Frequency estimation error for step size 𝝁 = 0.1 

 

 

 

 

 

 

 

b) The frequency offset estimation error variance for different SNRs 
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Figure 44 The estimation error variance 

In order to quantify the frequency errors for different users and evaluate the SNR 

influence to the frequency estimation, the frequency offset estimation error variance 

for these two transmitters are evaluated in terms of different SNRs. The step size 

μ = 0.05 is used. Figure 44 shows the simulation results of the frequency estimation 

error variance for different received SNRs. From the simulation results it can be seen 

that the error variance is largely decreased with the increase of the received SNR. This is 

because the higher SNR will reduce the effect of the interference between these two 

transmitters due to imperfect filtering. To evaluate the frequency synchronization 

scheme, in the simulation, the two transmitters are moving with different speeds and 

the distances between the transmitters and the receiver are different. The 

synchronization processes are applied individually with bandpass filters in the receiver. 

These result in the variance of the simulation results for these two transmitters. 
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However, with the increase of the received SNR the frequency estimation error 

variances for both transmitters are the same. 

5.5  Concluding remarks 

This chapter presents a novel time and frequency synchronization scheme to realise 

concurrent transmission in OFDMA based ad hoc networks. Section 5.2 describes some 

of the most popular time and frequency synchronization schemes in an OFDM system 

while in section 5.3, some classic time and frequency synchronization proposals in an 

OFDMA system are presented in details. Most of the proposed synchronization 

approaches in the literature are based on cellular networks which have centralized 

coordinators (the base station). From the extensive literature review, the only proposal 

for synchronization for ad hoc networks is found in [51]. However, they only consider 

the situation when a new user enters into the network and it needs to synchronize with 

the leader. Moreover, the authors do not consider the situations with multiple 

concurrent transmissions.  

Based on this consideration, section 5.4 presents a partial time synchronization scheme 

as well as a null sub-carrier based frequency synchronization algorithm to support 

concurrency in ad hoc networks. A new system architecture is also presented in section 

5.4. With the proposed partial time synchronization scheme, global time 

synchronization becomes unnecessary. For the frequency synchronization algorithm, 

null sub-carriers are inserted in the end of each sub-channel. By continuously detecting 

and compensating the energy falling in the null sub-carriers, the frequency offsets can 

be successfully estimated and compensated. The performance of the proposed 
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frequency offset estimation mechanism is evaluated through the simulation in the end 

of section 5.4. 

The next chapter presents the simulation modelling for the proposed SSMAP based 

cross layer routing protocol and validations. 
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Chapter 6 

SSMAP based QoS routing 

protocol simulation 

modelling and validations 

6.1  Simulation modelling for the signal strength based OoS 

routing protocol  

The proposed signal strength based medium access protocol as well as the QoS routing 

protocol will be evaluated though simulations using OPNET Modeller 14.5 PL1. The 

OPNET simulator is used as the main implementation and investigative tool which has 

been recently widely used as primary simulation tool for performance evaluation in 

various wired and wireless communication scenarios. OPNET is an event driven software 

tool which includes a hierarchical structure of models composed of a network model, 

node models and process models. Each node in the network level is composed of 

interconnected modules in the node level. Each module is defined as a process of a set 
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of processes in the process level. A process is described by a finite state machine (FSM). 

The C/C++ language is used as programming language in description of the functionality 

of each state at the code level of OPNET. 

In this thesis, the proposed SSMAP is compared with other techniques such as, single 

radio multi-channel, multi-radio multi-channel and other OFDMA based medium access 

algorithm in an ad hoc environment. The implemented QoS routing protocol will be 

simulated both in a static ad hoc network and a mobile network. Before illustrating the 

simulation performance, the details of the simulation model along with the simulation 

validation are described in this chapter. 

6.1.1 The network model 

 

Figure 45  Network architecture and topology 
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A network model describes a network structure and its topology. Figure 45 shows an 

example of an ad hoc network with 30 nodes distributed in a 1000 𝑚×1000 𝑚 area. 

These 30 nodes can move inside the network area and each node in the network is 

distinguished by a unique IP address. Every node has the same functionality and each 

node is built from one type of node model. The detail node model will be described in 

the following sub-section.  

6.1.2 The node model 

As shown in Figure 46, the node model is composed of four layers (from application 

layer to physical layer). The proposed sub-channel allocation scheme and routing 

protocol mainly focus on the MAC layer and the network layer. Therefore, some of the 

upper layers have been legitimately omitted for simplicity. There are some statistic 

wires starting from the transmitter and receiver to OFDMA_based_mac module in the 

MAC layer. These connections are used by the CSMA-CA process to verify the busy 

status of the signalling channel and monitoring the signal strength of each subcarrier. 

a) The application layer: In the application layer, there are three modules. The Src 

module is a simple traffic generator which can generate data with constant bit rate 

to simulate a source for a real-time application. The generated data packets are 

transmitted directly to the uplayer_manager module which will check the data rate 

of the packet and install an interface control information (ICI) with the bandwidth 

requirement or/and end to end delay constraints. When the first packet is 

generated, it randomly assigns a destination address to the packet and sends it to 

the lower layer with the associated ICI. After that, the other packets are assigned 
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the same destination address as the first packet. When a packet arrives from the 

lower layer instead, the uplayer_manager will forward it to the app_sink module to 

destroy the packet. The app_sink module is also designed to collect and record the 

statistics from the simulation. 

 

Figure 46  Node model 

b) The network layer: The network layer only consists of one process module called 

hongyi_QoS_routing, where the proposed QoS routing protocol is implemented. 

There are two main tasks in this module. First it receives the packets from the upper 
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layer and retrieves the QoS requirement from the ICI. It will calculate the number of 

subcarriers needed for this session and send this information to the lower layer 

along with the packets. Secondly it also deals with the received packets from the 

lower layer. The entire routing algorithm is designed in this module according to the 

routing algorithm described in the previous chapter. 

c) The MAC layer: The functions of the MAC layer are implemented in the 

OFDMA_based_MAC module. It is constructed based on the proposed signal-

strength based medium access control. In this module, the subcarrier allocation 

algorithm is implemented. The subcarriers are divided into n Cluster of Sub-carriers 

(CoS) and each of them can be used to transmit data packets. The receiver in the 

physical layer will continuously monitor every sub-channel and record its 

instantaneous signal strength. Once a packet is received from the upper layer, the 

OFDMA_based_MAC can decide which sub-channel will be used to transmit the 

current data packet depending on the signal strength of each sub-channel. If there 

is no sub-channel available, the packet will be discarded. Accordingly, the 

OFDMA_based_MAC cooperates with hongyi_QoS_routing module to setup a QoS 

route and achieve optimal subcarrier allocation based on the information obtained 

from the physical layer.  

d) The physical layer:  Two sets of transceiver modules are implemented in this layer. 

One is for signalling transmission and the other transceiver is for data transmission. 

The modeling of a radio transceiver in OPNET is achieved through a mechanism 

known as pipeline stages. In each stage, a certain effect of the radio channel is 

attached to a transmitted or received packet. The cumulative effects of previous 
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pipeline stages determine if a packet proceeds to the next pipeline stage or is 

dropped. There are 14 pipeline stages and each stage is detailed in the following. 

The first pipeline stage is known as receiver group, this stage is used to facilitate the 

simulation by limiting the number of nodes to receive the packets.  By default, a 

packet generated in one node will be transmitted to all other nodes. This will largely 

decrease the simulation efficiency because each node will calculate 14 pipeline 

stages to determine if the packet is received or not. By using a receiver group, the 

node can choose the preferred nodes to transmit. However, this is achieved as the 

expense of decreasing the simulation result accuracy. 

The next stage is known as link closure, this stage verifies if a transmitted packet is 

able to get to the destinations giving the effects of the physical terrain. The effects 

taken into consideration include obstacles on the path between the transmitter and 

receiver, interfering transmissions and so on. If any of these characteristics is found, 

the packet will be destroyed immediately. Otherwise it proceeds to the next stage. 

Two stages referred to as the transmission delay and propagation delay are used to 

compute the end to end delay. Also they will be used later to calculate the packet 

path loss and the receiver power. 

The next stage is the channel match stage. In this stage, the receivers check to see if 

the packet transmission frequency band matches their receiver frequency band. If a 

packet does not pass the channel match stage it is not dropped, but it is regarded 

as noise and would be used for later computations. In this model, the default 

setting is modified to implement OFDMA. 48 channels are used in the physical layer 
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to simulate 48 subcarriers. The subcarrier frequency spacing is 0.3125 MHz as 

specified by the IEEE 802.11 standard [10]. If the bandwidth mismatch is equal to 

the subcarrier frequency spacing then this signal is considered as orthogonal and 

will not generate interference to the system. Otherwise, the packet will be 

considered as interference noise. 

Another two stages referred to as the transmitter and receiver antenna gain are 

used to compute the transmission and reception gain. This is based on the angles 

and directions of the transmitter and the receiver antennas, in relation to one 

another. This information is used along with other parameters to calculate the 

received power of the packet at the later stage. 

The next stage is the received power stage. In this stage, the power of the received 

packet is computed based on the distance between the transmitter and receiver, 

the frequency band, the receiver and transmitter antenna gain, the implemented 

path loss model, the deployment terrain etc. If the power is below the receiver 

sensitivity the packet is rejected and will not proceed to the next stage. 

The Interference Noise stage computes the amount of noise experienced by a 

packet during its reception. The information obtained from the channel match 

stage is one of the inputs to this stage. The computed noise information is attached 

to the packet, and then handed off to the next pipeline stage. 

The background noise stage is similar to the interference noise stage. It collects 

other common noises which are not captured by the interference noise stage, such 
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as thermal noise of the receiver, emissions from surrounding electronics etc. The 

calculated information is attached to the packet and sent to the next stage. 

The next stage is the signal-to-noise ratio (SNR) stage. In this stage the information 

obtained from the receiver power stage and those from the interference noise and 

background noise stages are used to compute the SNR. The computed SNR 

information is used as input to the next stage. 

The following pipeline stage is the bit error rate (BER) stage. The probability of 

errors contained in the packet based on the SNR is computed and attached to the 

packet. The BER computation will be based on the type of modulation implemented 

by the transceivers. 

The next is the error allocation stage that assigns the bit errors to the packet based 

on the information from the BER stage. 

The last stage is the error correction stage. In this stage, the bit errors in a received 

packet are corrected based on the forward error correction (FEC) scheme chosen 

for the wireless receivers. If the error correction scheme is unable to correct the 

errors the packet is dropped, otherwise it is passed to the upper layer. 

6.1.3 The process model 

The functionality of each module is described by the process model. In a process model, 

a specific circular icon represents a state, and the lines represent transitions between 

states. Green circles represent a forced state, which means once the functions are 

performed in this state, the process automatically transits to the next appropriate state. 
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Red circles represent unforced states, which means once all functions are performed, 

the process pauses in this state and waits for a next specific event. The operations 

performed in each process are coded using C or C++ language. In the following, the main 

process models are described in detail. 

1. The uplayer_manager 

This process module is in charge of assigning the destination address and QoS 

requirement for the received packets from the src module. It also forwards the received 

packets from the lower layer to the sink module. The Finite State machine (FSM) of the 

uplayer_manager module is shown in Figure 47. 

 

Figure 47 uplayer manager 
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First, each mobile node at the init state initialize the attributes of the node itself, such as 

the initial starting time of the session and the IP address of this node. Then it transits 

into the idle state waiting for a new coming packet. When a packet is received from the 

resource process, if this is the first packet received from the resource process, a new 

session is triggered and it will assign the destination node and QoS requirement for this 

new session. Once the destination address and QoS requirement are assigned, it transits 

to xmt state in order to start the session with assigned parameters. This process will 

install an ICI to carry the destination address and QoS requirement information of this 

session for the received packet and forward it to the lower layers along with the packet. 

Once the session is triggered, any following packet from this session received from the 

resource process will be directly forwarded to the lower layer with destination address 

and QoS requirement. On the other hand, if a packet is received from the lower layer. It 

will just simply forward it to the sink module for recording the simulation statistics. 

2. hongyi_QoS_routing 

The hongyi_QoS_routing process module is the most important process which includes 

all the functionality for the proposed QoS routing protocol. There are nine forced states 

and an idle state. Each state is described by a set of actions and triggered by an event. 

Figure 48 shows the OPNET model for the hongyi_QoS_routing process.  
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Figure 48 The hongyi_QoS_routing process 

 Init state: In this state, the user attributes and different variables are initialized, 

such as the routing table, Free_Channel table, transmission and reception sub-

channels, statistic tables, etc. After all the initializations, the process goes to Idle 

state to wait for the next trigger event. 

 Data_Transmission: When a data packet is received from the application layer, the 

process transmits to Data_Transmission state. In this state, the process will extract 

the ICI associate with the received packet to get the QoS information as well as the 

destination address. Then it will check its local routing table and the Free_Channel 

table to decide if it needs to trigger a route discovery process or not. All the routing 

functions are implemented according to the previous chapter. 

 Data_Rcv: On the other hand, if a data is received from the MAC layer, the process 
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transits to this state. First, the type of the packet is checked. It can be either a 

signalling message (RDIS, RRES, etc.) or a data packet. A corresponding function is 

called according to the packet type that sets up, maintains and releases routes or 

updates the routing and Free_Channel table. If it is a data packet, the process just 

forwards it to the next hope or transmits to the upper layer if it is the final 

destination. 

 Renew_Request: If a route discovery message (RDIS) is sent out to look for a new 

route, the process will keep a timer to wait for the RRES message. If the timer is 

expired and this node still did not receive the route reply message, the process will 

check whether it will re-broadcast a new RDIS message or not, depending on the 

number of retries threshold. If the maximum number of retries is exceeded, the 

current state will cancel the route discovery process for that destination and discard 

all the related queued packets. Otherwise, a new route discovery message for that 

destination is generated. 

 Link_Repair: The process transits to this state when a NACK message is received 

from the lower layer which means that either there is a forthcoming link breakage 

on one of the active route or an interference node is approaching. An appropriate 

function will be triggered either to start a local repair or reallocate the transmission 

sub-channel for the previous hop link. 

 Route_Manage: When an active route is expired, this state is triggered. The route 

entry for that destination will be deleted from the routing table and all the reserved 

network resources will be released. The Free_Channel table will be updated 

accordingly. 

 Stat_Collect: After the simulation is finished, the process will transit to this state to 
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collect and handle the simulation results. The statistics are written into a file which 

is created at the beginning of the simulation. 

 Rcv_ACK and ACK_Timeout: These two states are only triggered when TCP 

transmission is used. There is a TCP_flag attribute which is needed to be initialized 

when the simulation starts to indicate the data transmission is based on TCP or 

best-effort. 

3. OFDMA_based_MAC 

This process is in charge of sub-channel allocation, and sub-channel monitoring. Figure 

49 shows the OPNET OFDMA_based_MAC process model. The Init state initializes the 

process and the idle state waits for events. The other four states are described as follow: 

 Xmt: When a packet is received from the upper layer, the process transits to this 

state. It just forwards the packet to the physical layer to the next hop. 

 Rcv: When a packet is received from the physical layer, the process transits to the 

Rcv state. It will first extract the sub-channel occupation information, destination IP 

address and packet type, and received signal strength from the received packet. 

After that, the Free_Channel table is updated according to the obtained information. 

Finally, the packet will be transferred to the upper layer for further processing.  

 Interf_Dealing: Once the Free_Channel table is updated and the interference signal 

strength on an active route exceeds a pre-defined threshold, the process will transit 

to this state. A hongyi_subchannel_reallocation function will be called to look for 

alternative available sub-channels in the Free_Channel table for the affected route 

and send a SREA message to the previous hop transmission node.  
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Figure 49 The OFDMA_based_MAC process 

 Link_Failure: If the signal strength of the received packet from the previous hop 

node is lower than a pre-defined threshold for a period of time, the process will 

enter into this state. This means that a forthcoming link breakage is predicted and 

the local link repair function is called to fix the problem. 

6.2 Validation of the SSMAP based QoS routing protocol 

modelling and explanation of partial time synchronization 

The simulation model described in this chapter aims to evaluate the performance of the 

proposed signal-strength based sub-channel allocation scheme and the proposed 

routing protocol. Therefore, a validation is required to prove the proposed protocol is 

correctly implemented in the simulation model and a verification is needed to prove the 

simulation results are correct. Model validation is usually defined as the “substantiation 
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that a computerised model within its domain of applicability possesses a satisfactory 

range of accuracy consistent with the intended application of the model” and model 

verification is often defined as “ensuring that the computer program of the 

computerised model and its implementation are correct” *107]. 

The validation will prove the correctness of three major implementations. Firstly, the 

validation will prove that the routes can be successfully established through the route 

discovery process. Secondly, it will prove that the route maintenance mechanism works 

as required. Finally, it will prove that the proposed sub-channel allocation scheme is 

implemented correctly during the route discovery process. The verification will be 

investigated in chapter 7 through simulations. In order to validate the SSMAP based 

routing protocol, a series of simulations were carried out through different scenarios. 

Event traces are used in [104] and [40] to verify routing protocols implemented using NS 

(network simulator) and OPNET respectively. In this thesis, a similar technique is used to 

validate the SSMAP based routing protocol using OPNET. Trace files are created by the C 

code in OPNET to trace the signalling messages and record the living states of the 

different layers in each node. 

6.2.1 Validation of route discovery process and sub-channel allocation 

mechanism 

The validation of the route discovery process should consider three issues. Firstly, for 

each routing request, a path can be successfully set up for a required destination. 

Secondly, the sub-channel can be allocated properly for each link with the RDIS message 

reaching the source node through the reverse path and the partial time synchronization 
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mechanism is running successfully. Finally, once the route has been successfully set up, 

the route maintenance scheme is running successfully to deal with the link breakage 

and co-channel interference when nodes are moving. 

To successfully receive an OFDM packet, the first task for each receiver is to determine 

the correct symbol starting position so that the FFT window can align to the right part of 

the symbol. As described previously, this task can only be achieved by using additional 

information. In this simulation, a training symbol with two identical halves is used. To 

support the routing discovery and maintenance mechanism, one separate common sub-

channel is needed to perform the signalling message and time reference exchanges. This 

sub-channel is distinct and orthogonal to other sub-channels that are used to transmit 

data information. In the ad hoc network, the time acquisition is done by exploiting the 

repetition structure of the training blocks. Each mobile node needs to continuously 

monitor the common signalling sub-channel in order to get the update session request 

information. By monitoring the signalling sub-channel the mobile node is able to find 

the training block and perform the synchronization procedure. Two sets of transceivers 

are equipped in each mobile terminal: one for the data traffic and the other for the 

signalling messages. Each mobile node will continuously monitor the signalling sub-

channel by finding the beginning of a new frame and the right position for FFT windows. 

Any received time-domain signal will be sampled and the samples are fed into a sliding 

window correlator of lag N/2 (where N is the length of the training symbol). The 

correlation of two continuous N/2 samples is calculated. Once the correlation exhibits a 

peak, it represents the sliding window is perfectly aligned with the received training 

block that shows the right FFT window starting point. The data structure for both 
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signalling channel and data channel is frame based where each frame consists of one 

training symbol followed by 20 data symbols. The first training symbol is specifically 

designed and used to detect the beginning of each frame to coarse timing 

synchronization.  
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Figure 50 The overage of each node 

Therefore, an independent channel is needed to be in charge of the signalling messages. 

In this thesis, an additional transceiver is proposed to carry out the signalling through 

the specific sub-channel as described in section 6.1.2. Two sets of transceivers are 

required in each mobile node: one for the data traffic, and the other for the signalling 

sub-channel. The first transceiver is only in charge of the signalling messages. This 

signalling channel is also OFDM based and uses a different sub-channel from the other 

data sub-channels. Since the two transceivers are using different sub-channels, the 
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signalling and data packets can be transmitted simultaneously without interfering with 

each other. 

A simulation scenario is setup for the validation. An ad hoc network with 20 nodes is 

generated in an area of 1000m×1000m as shown in Figure 50. The dash circle is the 

transmission range for each node. The network model in OPNET is shown in Figure 51. 

Each mobile node in the network can only communicate with the other nodes within 

one hop distance. For example, node 1 can only directly communicate with nodes 2, 20 

and 18. The total bandwidth is 20 MHz and the total spectrum is divided into 8 sub-

channels from 0 to 7. Each sub-channel has bandwidth of 2 MHz. Sub-channel 0 is for 

signalling messages and the other 7 sub-channels are used to transmit data packets. In 

the simulation, 5 sessions are requested by the nodes 1, 2, 3, 6, 8 to the destination 

nodes 12, 4, 16, 8, 17 respectively. The simulation is set to 2 minutes and the route 

requests are triggered in nodes at a sequence of node 1, 2, 3, 6, 8. Once a route is 

established, each session will last until the end of the simulation. The five selected 

routes are shown in Figure 51 with five different colours.  

A file is created to trace the partial time synchronization and the sub-channel allocation 

with the travel of the RDIS and RRSP packets. The file firstly records the route request 

from a source node to a destination node with the partial time synchronization. Once 

the destination node receives the RDIS packet, it sends a RRSP packet back along the 

reverse path. Each node receives the RRSP packet will write the file with the sub-

channel allocation information until the RRSP packet reaches the source node.  
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Figure 51 Network topology with five selected routes 
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Figure 52 Route discovery process for node 1 



180 
 

At the very beginning of the simulation, all the nodes in the network are silent. At one 

time, node 1 needs to transmit packets to node 12. It firstly sees if the signalling channel 

is free by monitoring the signalling channel using the separate transceiver. Once the 

signalling channel is free, the node starts to broadcast a RDIS message to its 

neighbouring nodes through the signalling transceiver using the specific signalling sub-

channel 0 (as shown in Figure 52) with its local time reference. The current active sub-

channel information which is used for transmission in node 1 is still encapsulated into 

the RDIS packet. The signalling message sent by node 1 is framed based with the 

training preamble followed by 20 data blocks. Since every node in the network is 

continuously monitoring the signalling channel. Upon receiving the signal from the 

signalling sub-channel, nodes 2, 18 and 20 will sample the received signal and look for 

the preamble by calculating the correlation until they find the peak. After they get the 

right position of the FFT window, they will perform the frequency synchronization 

according to the algorithm described in chapter 5. In this work, it is assumed that the 

cyclic prefix is longer than the channel delay spread. Because there is only one shared 

signalling channel, for this signalling channel each node will perform the CSMA/CA 

mechanism to avoid collisions. This means that each node will broadcast the routing 

discovery message only when the signalling channel is idle. When a node wants to 

transmit, if the signalling channel 0 is being used by other nodes inside the waiting 

node’s coverage area, the waiting node will backoff and try again after the backoff timer 

has expired. 

After successful time and frequency synchronization, the route discovery message is 

successfully received in nodes 2, 20, 18. After that, these nodes will decide if they 
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should generate a new route discovery message or not depending on the local available 

resources. If they can fulfil the request, they will record the time reference of node 1 

from the RDIS packet and generate a new route discovery message in the frame format 

with a predesigned preamble in front of data blocks using the signalling sub-channel and 

broadcast it to its neighbours. Nodes 2, 18, 20 will compete to send the route discover 

message using CSMA/CA mechanism with the signalling channel.  

The route discovery messages will continuously been broadcasted until it reaches the 

destination node 12. After node 12 receives the RDIS packet, it will check its local 

Free_Channel table to see if it has available sub-channel to carry this request. If it does, 

it will assign the transmission sub-channel for node 19 and encapsulate this information 

into a RRSP packet. The RRSP packet will be sent back to node 1 through the reverse 

path. Each node along the reverse path receives the RRSP packet and writes down the 

assigned transmission sub-channel and forward this packet to the next reverse hop until 

it reaches node 1. In order to validate the route discovery process, a trace file is created. 

The content of the trace file for this session along the path is as follows: 

--------**************************************------- 

Session from node 1 to node 12: 

route request is initiated by node 1: 

***** The node address is 1 ***** 

****** The start time is 0.172461 ***** 

****** The dest node is 12 ***** 

***** The rdis packet is created ***** 
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***** The rdis packet is created ***** 

RDIS reaches the node 20: 

***** node 20 ***** time: 0.176814 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 1 ***** 

***** There are 7 sub-channels available in Free_channel 

table***** 

***** subchannel 1 is reserved for receiving***** 

***** The rdis packet is created ***** 

 

RDIS reaches the node 19: 

***** node 19 ***** time: 0.180963 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 20 ***** 

***** There are 6 sub-channels available in Free_channel 

table***** 

***** subchannel 2 is reserved for receiving***** 

***** The rdis packet is created ***** 

RDIS reaches the destination node 12: 

***** node 12 ***** time: 0.184793 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 19 ***** 
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***** There are 5 sub-channels available in Free_channel 

table***** 

***** subchannel 4 is reserved for receiving***** 

***** The rres packet is created ***** 

subchannels are allocated in node 19 when receiving a rres: 

***** node 20 --> node (19) --> node 12 ***** time: 0.188781 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 12 ***** 

***** Transmission subchannel is 4 ***** 

***** Receiving subchannel is 2 ***** 

subchannels are allocated in node 20 when receiving a rres: 

***** node 1 --> node (20) --> node 19 ***** time: 0.193214 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 19 ***** 

***** Transmission subchannel is 2 ***** 

***** Receiving subchannel is 1 ***** 

subchannels are allocated when rres reaches the source node 1: 

***** node (1) --> node 20 ***** time: 0.196871 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 20 ***** 

***** Transmission subchannel is 1 ***** 

The route has been built for node 1 
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--------**************************************------- 

The trace file shows the simulation results match the expected behaviour of the 

network. The route for the session from node 1 to node 12 has been successfully 

established with proper sub-channel allocation along the path. 

Once the first route (node 1 to node 12) is established, node 1 starts to forward the data 

packets through the allocated channel. Similar process is taken place for the session 

from node 2 to node 4. It will first check if the signalling channel is busy. If not, it will 

generate a route discovery message and put it into the frame format with a predesigned 

training symbol in front of each frame. After that, it will broadcast the route discovery 

message to nodes 1, 20, 11 and 3 through the signalling channel (as shown in Figure 53). 

Since each node in the network will continuously monitor the signalling channel, nodes 

1, 20, 11 and 3 can successfully receive the broadcast message by looking for the 

training symbol. Upon receiving the broadcasted signal the receiving node will perform 

the time and frequency synchronization accordingly to the signalling channel the same 

as the synchronization procedure described in the route establish process of the first 

session.  

Although there is one session going on between nodes 1 and 12, the channel used to 

transmit data packets is different from the signalling channel. Therefore, there is no 

interference between them which means the routing discovery process and the data 

transmission can be carried on simultaneously. A similar trace file is built for the route 

discovery process of the route from node 2 to node 4. Once the route is established 

node 2 will start forwarding the queued packets to node 4 through the data channel as 
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shown in Figure 54. To successfully receive the data frame from the one hop transmitter, 

as described previously, the transmitter will inform the corresponding receiver roughly 

what time it will transmit the data frame according to the transmitter’s local time 

reference through the route discovery signalling messages. Therefore, each hop receiver 

will know when it should prepare to calculate the correlation of the receiver signal to 

successfully get the forthcoming data frame.  
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Figure 53 A new session starts 
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Figure 54 Second route is established 

One thing should be noted that, node 20 is a cross node which participates in both 

sessions. Since the signals from nodes 1 and node 2 will have different frequency offsets, 

the received data signals from different sources should be separated in node 20 before 

performing the time and frequency synchronization procedure. According to the 

proposed routing protocol, the sub-channel used by node 1 and node 2 will be different 

and orthogonal to each other to avoid co-channel interference. Therefore, two 

bandpass filters are used in node 20 to separate the signals so that the time and 

frequency synchronization can be done individually for each of the transmitters. One of 

the advantages of the proposed synchronization scheme is that, the transmitted signals 

from nodes 1 and 2 do not need to arrive at node 20 at the same time which can largely 

relieve the time synchronization task. Similarly, the routes for the sessions from node 3 

to node 16, node 6 to node 8 and node 8 to node 17 will be established sequentially 
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through the route discovery process. The trace file for these four routes establishments 

is as follows:  

--------**************************************------- 

Session from node 2 to node 4: 

route request is initiated by node 2: 

***** The node address is 2 ***** 

****** The start time is 2.471658 ***** 

****** The dest node is 4 ***** 

***** The rdis packet is created ***** 

RDIS reaches the node 20: 

***** node 20 ***** time: 2.474292 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 2 ***** 

***** There are 4 sub-channels available in Free_channel 

table***** 

***** subchannel 3 is reserved for receiving***** 

***** The rdis packet is created ***** 

RDIS reaches the destination node 4: 

***** node 4 ***** time: 2.476941 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 20 ***** 
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***** There are 3 sub-channels available in Free_channel 

table***** 

***** subchannel 5 is reserved for receiving***** 

***** The rres packet is created ***** 

subchannels are allocated in node 20 when receiving a rres: 

***** node 2 --> node (20) --> node 4 ***** time: 2.480721 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 4 ***** 

***** Transmission subchannel is 5 ***** 

***** Receiving subchannel is 3 ***** 

subchannels are allocated when rres reaches the source node 2: 

***** node (2) --> node 20 ***** time: 2.483122 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 20 ***** 

***** Transmission subchannel is 3 ***** 

The route has been built for node 2 

 

Session from node 3 to node 16: 

route request is initiated by node 3: 

***** The node address is 3 ***** 

****** The start time is 4.114623 ***** 
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****** The dest node is 16 ***** 

***** The rdis packet is created ***** 

RDIS reaches the node 10: 

***** node 10 ***** time: 4.116821 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 3 ***** 

***** There are 3 sub-channels available in Free_channel 

table***** 

***** subchannel 6 is reserved for receiving***** 

***** The rdis packet is created ***** 

RDIS reaches the node 9: 

***** node 9 ***** time: 4.118913 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 10 ***** 

***** There are 5 sub-channels available in Free_channel 

table***** 

***** subchannel 7 is reserved for receiving***** 

***** The rdis packet is created ***** 

RDIS reaches the destination node 16: 

***** node 16 ***** time: 4.122103 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 9 ***** 
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***** There are 5 sub-channels available in Free_channel 

table***** 

***** subchannel 1 is reserved for receiving***** 

***** The rres packet is created ***** 

subchannels are allocated in node 9 when receiving a rres: 

***** node 10 --> node (9) --> node 16 ***** time: 4.124982 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 16 ***** 

***** Transmission subchannel is 1 ***** 

***** Receiving subchannel is 7 ***** 

subchannels are allocated in node 20 when receiving a rres: 

***** node 3 --> node (10) --> node 9 ***** time: 4.127611 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 9 ***** 

***** Transmission subchannel is 7 ***** 

***** Receiving subchannel is 6 ***** 

subchannels are allocated when rres reaches the source node 3: 

***** node (3) --> node 10 ***** time: 4.129976 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 10 ***** 

***** Transmission subchannel is 6 ***** 

The route has been built for node 3 
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Session from node 6 to node 8: 

route request is initiated by node 6: 

***** The node address is 6 ***** 

****** The start time is 6.614298 ***** 

****** The dest node is 8 ***** 

***** The rdis packet is created ***** 

RDIS reaches the destination node 8: 

***** node 8 ***** time: 6.617563 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 6 ***** 

***** There are 4 sub-channels available in Free_channel 

table***** 

***** subchannel 5 is reserved for receiving***** 

***** The rres packet is created ***** 

subchannels are allocated when rres reaches the source node 6: 

***** node (6) --> node 8 ***** time: 6.620124 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 8 ***** 

***** Transmission subchannel is 5 ***** 

The route has been built for node 6 
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Session from node 8 to node 17: 

route request is initiated by node 8: 

***** The node address is 8 ***** 

****** The start time is 8.342153 ***** 

****** The dest node is 17 ***** 

***** The rdis packet is created ***** 

RDIS reaches the node 15: 

***** node 15 ***** time: 8.344324 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 8 ***** 

***** There are 3 sub-channels available in Free_channel 

table***** 

***** subchannel 3 is reserved for receiving***** 

***** The rdis packet is created ***** 

RDIS reaches the destination node 17: 

***** node 17 ***** time: 8.347524 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 15 ***** 

***** There are 3 sub-channels available in Free_channel 

table***** 

***** subchannel 2 is reserved for receiving***** 
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***** The rres packet is created ***** 

subchannels are allocated in node 15 when receiving a rres: 

***** node 8 --> node (15) --> node 17 ***** time: 8.349924 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 17 ***** 

***** Transmission subchannel is 2 ***** 

***** Receiving subchannel is 3 ***** 

subchannels are allocated when rres reaches the source node 8: 

***** node (8) --> node 15 ***** time: 8.353124 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 15 ***** 

***** Transmission subchannel is 3 ***** 

The route has been built for node 8 

--------**************************************------- 

 From the trace file it can be seen that the simulation results match the expected 

behaviour described above. The five routes are established successfully through the 

route discovery process and the sub-channels are allocated for each session correctly. 

The allocated sub-channels avoid collisions within the transmission range of 

neighbouring nodes. At a cross node, different sub-channels are used to support 

concurrent transmissions. In a node, the transmission and reception can be performed 

at the same time by using different sub-channels.  
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6.2.2 Validation of route maintenance scheme 

The implementation of the route maintenance scheme (described in section 4.4.4) 

should be validated. The mobility of nodes can cause link breakage or sub-channel 

collision. Both cases need to be simulated and validated. In order to validate the route 

maintenance scheme, another simulation is taking place. At the beginning of the 

simulation, 5 routes are established and the source nodes are starting to forward the 

packets as shown in Figure 51. At 1 minute simulation time, all the nodes in the network 

move at speeds from 2m/s to 10m/s. The links break because of the movement of nodes. 

The route breakage and the rebuilding of a route are traced in a file. Sub-channel 

collisions and reallocations are also traced and recorded in another file. As shown in 

Figure 56, Node 2 is the source node of the route to node 4 (2 -> 20 -> 4) at the 

beginning of the simulation. However, link 𝑙 2, 20  breaks because of the mobility of the 

nodes. That is traced in a file as follows: 

 

------************************------ 

The node 20 detects a forthcoming breakage from 2 at 7.985471 

**** The node 20 detects a link breakage from node 2 at 7.985471 

on session 2 **** 

**** No alternative node found. Link repair failed **** 

**** The RERR packet is created **** 

**** The reserved subchannels for session 2 will be released at 

8.485471 **** 
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RERR is received by node 2 at 7.990471 

*****Preamble detected. Packet received successfully***** 

***** The RERR comes from 20 ***** 

**** The node 2 is the source node. Rebuild a route for the 

session **** 

**** The RDIS packet is created **** 

RERR is received by node 4 at 7.990471 

*****Preamble detected. Packet received successfully***** 

***** The RERR comes from 20 ***** 

**** The node 4 is the destination node **** 

**** The reserved subchannels for session 2 will be released at 

8.490471 **** 

------************************------ 

The forthcoming route breakage is reported to both sides of the route. The node 

receiving the RERR message releases all the resource reservation for the session and 

forwards the RERR message to the source or destination nodes. Node 2 is the source 

node. It releases the resources as well, and rebroadcasts a RDIS message to search for a 

new path to the destination node 4. The new path (2 -> 19 -> 4) is found as follow: 

 

RDIS reaches the node 19: 

***** node 19 ***** time: 8.004324 

*****Preamble detected. Packet received successfully***** 



196 
 

***** The rdis comes from 2 ***** 

***** There are 2 sub-channels available in Free_channel 

table***** 

***** subchannel 7 is reserved for receiving**** 

***** The rdis packet is created ***** 

 

RDIS reaches the destination node 4: 

***** node 4 ***** time: 8.007324 

*****Preamble detected. Packet received successfully***** 

***** The rdis comes from 19 ***** 

***** There are 2 sub-channels available in Free_channel 

table***** 

***** subchannel 6 is reserved for receiving***** 

***** The rres packet is created ***** 

subchannels are allocated in node 19 when receiving a rres: 

***** node 4 --> node (19) --> node 2 ***** time: 8.010324 

*****Preamble detected. Packet received successfully***** 

***** The rres comes from 4 ***** 

***** Transmission subchannel is 6 ***** 

***** Receiving subchannel is 7 ***** 

subchannels are allocated when rres reaches the source node 2: 

***** node (2) --> node 19 ***** time: 8.013324 
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*****Preamble detected. Packet received successfully***** 

***** The rres comes from 19 ***** 

***** Transmission subchannel is 7 ***** 

The route has been built for node 2 

--------**************************************------- 

The trace file shows that the route breakage detection and route re-establishment 

scheme have been implemented successfully. 

Another problem comes from the co-channel interference. Node 15 forwards packets to 

node 17 using sub-channel 2. Node 17 detects that a node (node 20) using the same 

transmission sub-channel is moving toward to it. That is traced in a file as follows: 

------************************------ 

The node 17 detects a co-channel collision at 12.827653 

**** The node 17 detects interference on receiving subchannel 2 

at 12.827653 **** 

**** There are 2 subchannel available in Free_channel table, 

subchannel reallocation successful **** 

**** Sub-channel 4 is selected for the new receiving subchannel 

**** The SREA packet is created and sent to node 15**** 

------************************------ 

The SREA packet is created in node 17 and sent back to the previous hop node 15 for 
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the sub-channel re-allocation. After the calculation, the node 15 confirms the sub-

channel re-allocation and starts to forward the packets to node 17 through the new 

allocated sub-channel which is traced in the file as follows: 

------************************------ 

The node 15 receives the SREA from node 17 at 12.830653 

*****Preamble detected. Packet received successfully***** 

***** The SREA comes from 17 ***** 

**** subchannel reallocation accept, transmission subchannel to 

node 17 is changing to 4 **** 

**** The SRRP packet is created **** 

------************************------ 

After node 15 sends the SRRP packet back to node 17 to confirm the sub-channel 

reallocation, it starts to forward the data packets to node 17 through the new allocated 

sub-channel 4. The co-channel interference is repaired successfully. The simulation 

shows the co-channal collision repair scheme is implemented correctly in the simulation 

model. 

In summary, the functions of the proposed SSMAP based cross layer routing protocol 

have been implemented and validated step by step. The simulation model proved to be 

implemented correctly and it does behave as expected. 
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6.3 Concluding remarks 

This chapter firstly presents the simulation modelling for the proposed SSMAP based 

cross layer routing protocol using OPNET simulation tools. The system design is divided 

into network model, node model and process model. Each model is described in detail. 

The functionality of the sub-channel allocation scheme and routing protocol are 

implemented in the process model. 

In order to validate if the simulation model is implemented correctly, a series of 

simulations are carried out in section 6.2. Trace file is used to validate the 

implementation of the sub-channel allocation scheme and the routing protocol. The 

trace files are created by C code in OPNET to trace the signalling messages and record 

the living states of the different layers in each node.  

Section 6.2.1 validates the route discovery mechanism as well as the sub-channel 

allocation scheme along with the routing discovery process. Five sessions are triggered 

sequentially. The trace files show that the route discovery process is implemented 

correctly for each session. The route can be found successfully for each session. The 

simulation results also show that the sub-channel allocation scheme is implemented 

correctly in the route discovery process.  

In section 6.2.2, the route maintenance scheme is validated. In this simulation, all nodes 

in the network are moving. Two trace files are created to trace the link breakage and co-

channel interference respectively. The simulation results show that the node can 

successfully detect the forthcoming link breakage by monitoring the active sub-channel 

and a new route can be established before the link’s real breakage. Moreover, the trace 



200 
 

file also shows that when an interference node is approaching, the sub-channel 

reallocation is running successfully through the SREA/SRRP mechanism. 

The next chapter evaluates the SSMAP based QoS routing protocol in various scenarios 

and presents the simulation results. 
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Chapter 7 

Performance evaluation and 

analysis of the proposed 

SSMAP based QoS routing 

protocol 

In this thesis, the proposed routing scheme is tested in two different scenarios with 

different node topologies: random distribution topology where each node is arbitrarily 

distributed in the network and uniform distribution topology where two restrictions are 

added upon the random distribution topology: firstly there is no isolated node and 

secondly the maximum number of neighbouring nodes for each node is 6. All the 

simulations are processed at packet level. 
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Table 7     Simulation configurations 

Attribute Name Value 

Transmit power (dBm) 0 

Number of subcarriers 64 

Subcarrier frequency spacing 0.3125 (20M/64) 

Receiver sensitivity (dBm) -65 

Packet size (B) 1024 

Path loss model Open space Two-Way Ground model 

Modulation scheme QPSK 

Error correction threshold 0 

Noise figure 1 

Bandwidth (MHz) 20 

SIRmin 20dB [99] 

Minimum frequency band (GHz) 2.4 

 

7.1   Simulation environment 

In this section, an ad hoc network of 30 nodes is generated in an area of 1000 by 1000 

meters. The transmission range for each node is 250 meters. Packets are generated 

according to a Poisson distribution with a Maximum Transmission Unit (MTU) of 1024B. 
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The simulation results are the average of 10 different random seeds and open space 

environment is assumed. Some important parameters are shown in Table 7 which are 

selected to closely match one optional specification in the IEEE 802.11n standard [7]. 

7.2    Performance analysis of the SSMAP in ad hoc networks 

7.2.1 System performance evaluation for SSMAP 

The simulations of the signal strength based medium access control algorithm are 

implemented using OPNET simulator. First of all, the simulations are taking place in a 

uniform node distribution scenario. 30 nodes are distributed in a 1000 by 1000 meters 

area. In this experiment, the total subcarriers are divided into 8 sub-channels. The 

minimum reception 𝑆𝐼𝑅𝑚𝑖𝑛 in this experiment is set to 20 dB. Each node in the network 

starts a session at a random time from 0 to 10 seconds and the session lasts until the 

end of the simulation. The simulation time is set to 10 minutes. Figure 55 shows the 

average network throughput with different values of signal-to-interference ratio 

( 𝑆𝐼𝑅𝑇𝐻 ). The throughput calculated here is actually equal to system throughput 

because the packet counted is the data packet received in each receiver. From the 

simulation results it can be seen that, when the 𝑆𝐼𝑅𝑇𝐻  is equal to the minimum 

reception 𝑆𝐼𝑅𝑚𝑖𝑛 , there is packet loss due to the co-channel interference. A value of 

𝑆𝐼𝑅𝑇𝐻  increases, the system throughput also increases. However, when the 𝑆𝐼𝑅𝑇𝐻  

continues increasing, the system throughput starts decreasing. This is because when the 

𝑆𝐼𝑅𝑇𝐻  is more than a certain value, the number of available sub-channels for each 

mobile node decreases. If a node cannot find suitable sub-channels for the requested 
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session, the packets will be discarded. From the simulation results it can be seen that, 

the system throughput reaches its maximum value when 𝑆𝐼𝑅𝑇𝐻 = 1.2 × 𝑆𝐼𝑅𝑚𝑖𝑛 . 

 

Figure 55  System throughput for different SIR threshold in uniform distribution scenario 

After evaluating the SSMAP for an initial uniformly distributed network topology, 

another simulation is executed to investigate the system performance for the case 

where the nodes are initially randomly placed in the network. In this scenario, 30 nodes 

are randomly distributed in an area of 1000 by 1000 meters. The simulation parameters 

are the same as the ones shown in Table 6. The simulation time is set to 10 minutes as 

well. The simulation results are averaged over ten different simulations with different 

seeds. 
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Figure 56 System throughput for different SIR threshold in random node distribution scenario 

Figure 56 illustrates the simulation results for the random node distribution scenario 

with different signal to interference ratios. Each node in the network starts a session at 

a random time from 0 to 10 seconds and the session lasts until the end of the simulation. 

Compared to Figure 55, the system throughput is largely reduced. This is because with 

the random node distribution, there are some isolated nodes whose transmission 

coverage does not reach any other node. Any session started or ended in those nodes 

will fail. Moreover, there are some areas where many nodes are close to each other 

increasing the congestion and subsequently increasing the interference and reducing 

the availability of sub-channels. Consequently, the packet dropping rate will increase as 

well. However, it can be seen from Figure 56 that, similarly to the uniform node 

distribution case, the system throughput reaches its highest point when the pre-defined 

carrier sensing threshold  𝑆𝐼𝑅𝑇𝐻  is equal to 1.2 𝑆𝐼𝑅𝑚𝑖𝑛 . Therefore the value  𝑆𝐼𝑅𝑇𝐻 =

1.2 𝑆𝐼𝑅𝑚𝑖𝑛  will be used for the remaining experiments. 
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7.2.2 Comparison of SSMAP with other multi-band MAC protocols in an 

uniform node distribution topology 

In order to compare the proposed OFDMA based SSMAP with other multi-band medium 

access control protocols. Another experiment is designed. The experiment compares the 

performance of the SSMAP with the performance of a single-radio multi-channel MAC 

protocol (SM), a multi-radio multi-channel MAC protocol (MM) and other OFDMA based 

medium access protocol. For the SM, the approach described in MMAC [102] is used 

and for MM, the approach MM-MAC in [103] is adopted with similar input parameters. 

The CTRMA (Concurrent Transmission or Reception Multiple Access) [17] is used as an 

OFDMA based MAC for ad hoc networks to be compared with SSMAP. In this 

experiment, only the MAC protocol will be tested and compared. 30 nodes are firstly 

uniformly distributed in a 1000 by 1000 meters ad hoc network. The number of sessions 

requested by the nodes varies from 5 to 25. Each session randomly starts from 0 to 8 

minutes and lasts 2 minutes. The simulation time is 10 minutes. Each active node 

randomly selects a destination node and the shortest path from the source node to the 

destination node is chosen as the route between them to forward the data packet.  
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Figure 57 Throughput comparison in uniformly distributed network with 16 available channels 

Figure 57 shows the achievable throughput of SSMAP, SM, MM and CTRMA. The 

number of total data sub-channels for SSMAP and CTRMA and the number of frequency 

band for SM and MM is set to 16. When the number of session is small, all schemes 

have good performance since there are enough available channels. However, when the 

number of sessions continuously increases, the system throughputs for SM and MM are 

significantly reduced due to the lack of efficient resource allocation scheme and 

increased co-channel interference and collisions. From the system throughput point of 

view, the performance of CTRMA is just slightly worse than SSMAP in most of cases.  
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Figure 58 Throughput comparison in uniformly distributed network with 8 available channels 

 

Figure 59 Session success rate in uniformly distributed network with 16 channels 
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Figure 60 Session success rate in uniformly distributed network with 8 channels 

Figure 58 shows the comparison of the system throughput when the number of 

available orthogonal channels for all schemes reduces to 8. From the simulation results 

it can be seen that the system performance for all schemes is reduced especially when 

the number of sessions is more than 15. However, with the proposed sub-channel 

allocation scheme, the system performance for SSMAP can still maintain reasonable 

level even when the number of sessions is more than 15.  

Figure 59 shows the simulation results for the session success rate metric. The total 

available number of channels is set to 16. Because the path from the source node to the 

destination node has already been established when a session starts, the reason for a 

failed session can only be the lack of available channels along the path and collisions 

due to the co-channel interference. From the simulation results it can be seen that 

because of their sub-channel allocation schemes the SSMAP and the CTRMA have a 

higher session success rate than SM and MM. When the number of session increases, 
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the session success rate is reduced for SM and MM due to lack of the available channels. 

Although the session success rates for both SSMAP and CTRMA are more than 80 

percent while the number of sessions is small, when the number of sessions is more 

than 15, the session success rate for SSMAP is much greater than CTRMA. Figure 60 

shows the session success rate comparison for only 8 available channels for each 

scheme. When the number of available channel is reduced to 8, the session success rate 

for all schemes is degraded. However, the degradation for SM and MM is much more 

severe than SSMAP and CTRAM. 

 

Figure 61 Signalling overhead comparison in uniform distributed network with 16 channels 
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Figure 62 Signalling overhead comparison in uniform distributed network with 8 channels 

Finally, the system signalling overhead is investigated. Figures 61 and 62 show the 

simulation results for the comparison of SSMAP and CTRMA in terms of overall signalling 

overhead for number of available channels equal to 16 and 8 respectively. The 

simulation results show a significant improvement for SSMAP over CTRMA in terms of 

signalling overhead. This is because SSMAP is an on-demand sub-channel allocation 

scheme. Each node does not need to periodically exchange local information with its 

neighbours which is a necessary procedure in CTRMA. Moreover, once the route is 

established, the active nodes do not need to process the RTS/CTS mechanism. 

7.2.3 Comparison of SSMAP with other multi-band MAC protocols in a 

random node distribution topology 

In the previous section the proposed SSMAP was compared with other relative schemes 

in an initial uniformly distributed network topology. In this scenario, the system 
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performance will be investigated for the case where the nodes are initially randomly 

placed in the network. 30 nodes are randomly distributed in an area of 1000 by 1000 

meters. The other simulation settings are the same as the ones in section 7.2.2. The 

simulation time is set to 10 minutes. The number of sessions requested by the nodes 

varies from 5 to 25. Each session randomly starts from 0 to 8 minutes and lasts 2 

minutes. The simulation results are averaged over ten different simulations with 

different seeds. 

 

Figure 63 Throughput comparison in randomly distributed network with 16 channels 

Figure 63 shows the achievable system throughput for SM, MM, CTRMA and SSMAP for 

16 available channels. Compared to Figure 57, the system throughput is largely reduced 

for all schemes. This is because in the random node distribution topology, there are 

some isolated nodes whose transmission coverage does not reach any other node. Any 

session started or ended in those nodes will fail. Moreover, there are some areas where 

many nodes are close to each other increasing the congestion and subsequently 
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increasing the interference and reducing the availability of sub-channels. Consequently, 

the packet dropping rate will increase. This is even worse when the number of available 

channels is reduced to 8 (see Figure 64). However, in any of the cases, SSMAP always 

has the highest system throughput. 

 

Figure 64 Throughput comparison in randomly distributed network with 8 channels 

 

Figure 65  Session success rate comparison in randomly distributed network with 16 channels 
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Figures 65 and 66 show the simulation results for the session success rate when the 

number of available channel is 16 and 8 respectively. Similar to the system throughput 

performance, because of the isolated nodes and high congestion area, the session 

success rate for all schemes is largely reduced compared to the ones in uniform 

distribution scenario.  

Figures 67 and 68 show the simulation results for the signalling overhead comparison 

between CTRMA and SSMAP in a random node distribution scenario. Compared to 

Figures 61 and 62, the signalling overhead for SSMAP is even lower than the ones in 

uniform distribution scenario in both cases. This is because SSMAP is an on-demand sub-

channel allocation scheme and if one session is failed, the sub-channel allocation 

mechanism will not be triggered. By contrast, the signalling overheads for CTRMA in 

both scenarios maintain a high level, because every node in CTRMA has to periodically 

broadcast update information with its neighbours when the network is established. 

 

Figure 66 Session success rate in randomly distributed network with 8 channels 



215 
 

 

Figure 67 signalling overhead comparison in randomly distributed network with 16 channels 

 

Figure 68 Signalling overhead comparison in randomly distributed network with 8 channels 
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7.3    Simulations and results of the proposed signal strength based 

QoS routing protocol 

The performance of the proposed SSMAP based QoS routing protocol is evaluated with 

the simulation results in this section. The system model has been described in the 

previous chapter. Each mobile node is configured according to the node model 

described in 6.1.2. This chapter will first investigate the performance of the QoS routing 

protocol with other alternative proposals in static environment where every node in the 

network is fixed. Then the performance of the proposed routing protocol in a mobile 

environment will be analysed through simulations. 

7.3.1 QoS performance analysis for the proposed routing protocol 

Firstly, the QoS performance for the proposed scheme is evaluated and analysed. Once 

a session is generated at one node, the application process will assign an end-to-end 

delay requirement for that session by setting a maximum delay constraint in the route 

to the destination node the session can tolerant. There are 30 nodes randomly 

distributed in a 1000*1000 𝑚2 ad hoc network. Each node in the network starts a 

session at a random time from 0 to 10 seconds and the session lasts until the end of the 

simulation. The simulation time is set to 2 minutes. When a session is triggered in one 

node, the application process will set up the bandwidth and end-to-end delay 

requirement for this session and encapsulate this information into every packet of this 

session. Simulation results are shown in Figure 69. 
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Figure 69 QoS evaluation for the bandwidth and end-to-end constraint 

Two groups of simulations are performed. Each group runs five simulations with 

different end-to-end delay requirements from 20ms to 140ms. In the first group, the 

bandwidth requirement for each session is set to the minimum value where each 

session only needs one sub-channel. For the second group of simulations, each node 

assigns dynamic bandwidth requirement which the number of sub-channel needed is 

randomly chosen from 1 to 4 when the session is generated. From the simulation results 

in Figure 69 it can be seen that, for the case where the maximum time constraint is 

small (such as 20ms), both two scenarios have high blocking rate. This is because the 

destination which is far away from the source node will never receive packets from the 

source. As the maximum time constraint is increased, the blocking rate decreases 

significantly for both cases.  

The simulation results show that the proposed routing protocol can successfully support 

both bandwidth and end-to-end delay requirements. However, if the QoS requirement 

increases, the success rate to find a proper route will decrease accordingly.  
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7.3.2 Comparison of the proposed QoS routing protocol with other 

alternative proposals in uniform distribution topology 

In this experiment, 30 nodes are uniformly distributed in a 1000*1000 𝑚2 ad hoc 

network. Each active node in the network starts a session at a random time from 0 to 10 

seconds and the session lasts until the end of the simulation. The simulation time is set 

to 2 minutes. The proposed SSMAP based routing protocol will be compared with SM, 

MM and CTRMA using the AODV routing protocol on top, since AODV is also an on-

demand routing protocol and its functionality is close to the proposed QoS routing 

protocol. Figure 70 shows the comparison of signalling overhead between SSMAP based 

routing scheme with the other MAC layer protocols (SM, MM, CTRMA) that are using 

the AODV routing protocol on top. In this experiment, the number of sessions varies 

from 5 to 25 and the number of available channels for each scheme is set to 7. Each 

active node will randomly select a destination node and trigger the route discovery 

mechanism. 

 

Figure 70 Signalling overhead comparison in uniform distribution topology 
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From the simulation results it can be seen that the signalling overhead of the proposed 

SSMAP based routing protocol is considerably lower than the other solutions. This is 

because in the case of the proposed routing scheme, each node does not need to 

exchange local information with its neighbours for sub-channel allocation while in any of 

the other schemes, periodic updates are exchanged among nodes. 

 

Figure 71 Comparison in terms of throughput in uniform distribution network 

Next, the proposed SSMAP based routing scheme is compared with other proposals in 

terms of overall system throughput. Figure 71 shows the achievable throughput for the 

different schemes using different MAC layer protocols. In this experiment, the number 

of sessions varies from 2 to 16 and the number of available channels for each scheme is 

set to 7. From Figure 71, it can be seen that for any number of concurrent sessions, all 

the other schemes cannot match the performance of the SSMAP based routing protocol. 

Without proper sub-channel allocation strategies, when the number of concurrent 

sessions increases, the achievable throughput of SM and MM is significantly reduced 
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due to the lack of available sub-channels and increased co-channel interference and 

collisions. 

7.3.3 Comparison of the proposed QoS routing protocol with other 

alternative proposals in a random node distribution topology 

In this scenario, the SSMAP based routing protocol is compared with SM, MM, CTRMA 

using the AODV routing protocol on top. 30 nodes are randomly distributed in an area of 

1000 by 1000 meters. The simulation parameters are the same as in the uniform 

distribution scenario. To compare the simulation results with the ones in the uniform 

distribution topology, the system throughput and the signalling overhead are also used 

as the criteria to evaluate the system performance. Figure 72 shows the simulation 

results for the signalling overhead of each compared scheme in the random node 

distribution scenario. Figure 72 shows that the total signalling overhead in the random 

node topology is higher than the one where the nodes were uniformly distributed for all 

of the proposed schemes. This is because in the random node distribution scenario, a 

route from source probably needs more hops to reach the destination node, 

consequently the route discovery signalling messages increase. However, the simulation 

results shows that in the random node distribution scenario the proposed SSMAP based 

routing scheme still has the least signalling overhead.  

Figure 73 compares SSMAP with the other solutions in terms of overall system 

throughput in the randomly distributed node topology. Similarly, due to the isolation of 

some nodes and the high congestion in some areas, the system throughput for all the 

schemes is smaller than their own results in the uniform node distributed network. This 

effect is significantly worse for the SM and the MM based routing solutions. The reason 
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for that is because both SM and MM do not have a sub-channel allocation scheme. 

Moreover, in highly congested areas, large numbers of packets are dropped. 

 

Figure 72 Signalling overhead in the random node distribution scenario 

 

Figure 73 System throughput for different routing schemes in the random node distribution 

scenario 
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7.3.4  Performance analysis of the proposed routing protocol in a mobile 

environment in uniform distribution topology 

The previous simulations are taking place in a static environment. In this section, the 

system performance will be evaluated in a mobile environment to evaluate the 

proposed routing maintenance scheme. A hundred nodes are distributed in an area of 

2000 × 2000 𝑚2 ad hoc network. The location of a node is generated using a uniform 

distribution. Then transmission range for each node is 250m. Each active source node 

randomly selects a destination node and starts a session at a random time from 0 to 8 

minutes. Each session lasts 2 minutes. The simulation time is set to 10 minutes. Every 

node in the network can move arbitrarily inside the network. The mobility model is 

described as follow. Each node will randomly generate a destination position within the 

simulation area. It will move to the destination with a pre-defined speed and waits there 

for a random period of time (0 to 5 seconds) and move to the next randomly generated 

destination position in a pre-defined speed.  

 

Figure 74 Session success rate with speed of 3m/s 
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Figure 75  Session success rate with speed of 5m/s 

 

Figure 76  Session success rate with speed of 10m/s 

The proposed QoS routing protocol is compared with CTRMA using the AODV routing 

protocol with normal AODV routing maintenance scheme. Three groups of simulations 

are set up with node’s moving speed from 3 m/s to 10 m/s. The number of sessions 

varies from 20 to 100. The session is only considered successful if 90% of its packets are 
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received successfully in the receiver. The simulation results are illustrated in Figures 74, 

75, 76 for different moving speeds. The number of sub-channels for two schemes is 16. 

From the simulation results it can be seen that in any case, especially when the node’s 

moving speed is high, the proposed route maintenance scheme can significantly 

increase the session success rate in a reasonably mobile scenario due to the pro-active 

procedures taken before any link breakage compared to the reactive manner used by 

AODV. However, when the speed of the nodes increases the packet dropping rate 

significantly increases for both schemes. This is because when the speed of the nodes 

reaches a certain value, the link breakage rate increases and the link recovery fails more 

often because of the lack of the available nodes for the new needed links. 

7.3.5 Performance analysis of the proposed routing protocol in a mobile 

environment in random distribution topology 

In this scenario, a hundred nodes are randomly distributed in an area of 2000 ×

2000 𝑚2  network. The simulation parameters are set to the same as in uniform 

distribution scenario. In this simulation, the proposed routing maintenance scheme is 

also compared with CTRMA based AODV routing maintenance scheme in terms of 

session success rate for different mobile node speeds. The speed also varies from 0 m/s 

to 10 m/s. The number of sessions also varies from 20 to 100. The simulation results are 

averaged over ten experiments with different seeds.  

Figures 77, 78, 79 show the simulation results with different velocities.  From the 

simulation results it can be seen that in the random node distribution scenario, the 

system performance of the proposed scheme does not reduce significantly compared to 
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the uniform node distribution scenario. This is because even though there are some 

isolated nodes, they might move away from the isolated area. 

 

Figure 77 Session success rate with velocity 3m/s in random distribution network 

 

Figure 78 Session success rate with speed of 5m/s in random distribution network 



226 
 

 

Figure 79 Session success rate with speed of 10m/s in random distribution network 

7.3.6 System performance evaluation in a large scale network 

In the previous simulations, it shows that the proposed SSMAP based routing protocol 

has a good performance compared with other alternatives in a small ad hoc network 

with 30 nodes. In order to fully investigate the proposed solution in various situations, in 

this section, SSMAP will be evaluated in a large scale network. In this scenario, 1000 

nodes are uniformly distributed in an 8000 by 8000 meters area. The transmission range 

for each node is 250 meters. The total number of sub-channels is 16. The number of 

active sessions varies from 10 to 50. This experiment only evaluates the SSMAP 

performance in a large scale network. Therefore, each active node will find a destination 

node and choose the shortest path from the source node to the destination node. 

SSMAP will perform the resource allocation alone the path. Once the sub-channels have 

been successfully allocated along the path, the source node will start to forward the 

data packets. Otherwise if there are not enough sub-channels, this session will fail. Each 

session will be triggered from a random time between 0 to 30 minutes and last 10 
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minutes. The simulation time is 60 minutes. Two sets of simulations are taking place in 

this experiment. In the first experiment, each active node will randomly select a 

destination node and in the second experiment, each active node will only select a 

destination node which is within 4 hops away from it.  

 

Figure 80 Session success rate in large scale network with random destination node selection 

 

Figure 81  Session success rate in large scale network with limited destination node selection 
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Figures 80 and 81 show the simulation results for these two experiments respectively in 

terms of session success rate. From the results it can be seen that, in a large scale 

network, when the number of sessions is small, both schemes can have good 

performance. However, when the number of sessions increases, the collisions occur and 

the session success rate reduces in both cases. Moreover, for both schemes, the session 

success rates are higher in experiment two where the destination node is within four 

hops away from the source node. The reason for that is if the destination node is far 

away from the source node, this session might occupy more network resources which 

leaves less resources for others. 

Figure 82 Session success rate with 8 total sub-channels for limited destination node selection 
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Figure 83 Session success rate with 8 total sub-channels for random destination node selection 

Figures 82 and 83 are the simulation results when the total available sub-channels is 

reduced to 8. Compared to Figures 80 and 81, the session success rate is reduced in 

both cases. However, when the number of sessions is small (less than 20), the session 

success rate for the SSMAP with 8 sub-channals can still maintain a good level. However, 

as the number of sessions continuously increases, the session success rate is reducing 

rapidly due to the lack of available sub-channels to fulfil all the requirements.  

7.4   Concluding remarks 

In this chapter, the proposed SSMAP based routing protocol has been fully evaluated 

through various simulations in different scenarios. Section 7.1 presents the simulation 

parameters used in the simulations which is based on one of the options of the IEEE 

802.11n standard. 

In section 7.2, the signal strength based medium access protocol has been evaluated in 

both uniform and random node distribution scenarios. The proposed SSMAP is 
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compared with other multi-band MAC protocols and OFDMA based MAC protocol in 

terms of system throughput and session success rate. The simulation results show that 

the performance of the proposed SSMAP MAC protocol is better than other alternatives 

in all cases. Moreover, compared with another OFDMA based MAC protocol (CTRMA) 

which is one of the most recent proposals, the signalling overhead is much less in 

SSMAP than the one in CTRMA. 

Section 7.3 presents the simulation results for the comparison of SSMAP based routing 

protocol with other alternative routing protocols. Sections 7.3.2 and 7.3.3 compare the 

SSMAP based routing protocol with other alternatives in uniform node distribution 

topology and random node distribution topology respectively. The simulation results 

show that SSMAP based routing protocol has the highest throughput compared to other 

schemes in both topologies, especially when the number of sessions increases. The 

simulation results also show that SSMAP based routing protocol has less signalling 

overhead than other schemes in either uniform distribution topology or random 

distribution scenario. In sections 7.3.4 and 7.3.5, the proposed route maintenance 

scheme is evaluated in a mobile environment. The simulation results show that the 

route maintenance scheme can have good performance when the nodes have low 

moving speed. However, when the nodes’s velocity increases up to 5 m/s or higher, the 

packets are largely dropped because of the frequent link breakage and co-channel 

interference. This is one of the issues that needs to be improved in the future work. In 

the end of this chapter, the proposed routing scheme is also tested in a large scale 

network with 1000 nodes.  

Discussion and conclusion are presented in the next chapter. 



231 
 

 

 

Chapter 8 

Conclusions 

8.1 Discussion 

This thesis develops a cross layer QoS routing protocols for OFDMA based ad hoc 

networks. The major contributions of this research can be divided into three parts. First 

of all a signal-strength based medium access protocol (SSMAP) is proposed to allocate 

sub-channels among users in OFDMA based ad hoc networks in a fully distributed way. 

Secondly, a SSMAP based QoS routing protocol is developed including the route 

discovery and route maintenance scheme. Finally, the implementation of OFDMA in ad 

hoc network needs more stringent time and frequency synchronization. Therefore, this 

thesis proposed a novel time and frequency synchronization scheme to realize 

concurrent transmissions in ad hoc networks by using OFDMA. 

OFDMA has been widely used in several wireless standards. In recent years, more and 

more researchers consider implementing OFDMA in wireless ad hoc networks. One of 

the most important issues to use OFDMA in ad hoc networks is how to distribute the 
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sub-channels among the mobile nodes. Many publications propose different sub-

channel allocation schemes, such as CTRMA [17]. However, these proposals need extra 

signalling messages periodically exchanging among nodes which will largely increase the 

system overall signalling overhead. SSMAP proposes an on-demand sub-channel 

allocation scheme which assigns sub-channels according to the current interference 

level of each sub-channel. The interference level for each sub-channel is recorded in a 

local Free_channel  table. Each sub-channel has different priority. The sub-channel that 

has the least receiving interference level has the highest priority.  By always assigning 

the sub-channels that have the least interference level the system throughput can 

largely increase. Moreover, each node in the network does not need to periodically 

exchange updating information with its neighbours which can largely reduce the 

signalling overhead.  

SSMAP based QoS routing protocol has been proposed for OFDMA based ad hoc 

networks (section 4.4). The routing protocol consists of a route discovery process and a 

route maintenance scheme. Sub-channel allocation is encapsulated in the route 

discovery process. One separate sub-channel is used only for signalling through a 

separate transceiver. Once a node receives a route discovery message, it will check its 

local Free_channel table and assign the receiving sub-channels for the previous hop 

according to the interference level of each sub-channel. It will inform the transmitter 

the allocated transmission sub-channel through the route reply message (RRES).  

Bandwidth and end to end delay requirements are considered in the route discovery 

process. The bandwidth aware routing protocol always calculates the bandwidth 

availability on each hop with a route request packet broadcast at the route discovery 
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stage. The discovered route must satisfy the bandwidth requirement. For the delay 

aware routing protocol, each node that receives the route discovery message will 

calculate the cumulative delay for the previous hops. It only forwards the route 

discovery message if the cumulative delay so far does not exceed the QoS delay 

requirement. 

The route maintenance scheme is designed aiming to reduce the packet drop rate and 

increase the system throughput. Two signal strength thresholds are used in the route 

maintenance scheme to detect the link breakage and co-channel collisions: 

low_threshold_trigger and high_interference_trigger. If the signal strength of the 

receiving sub-channel used by a neighbouring node reduces to lower than the 

low_threshold_trigger and lasts for a pre-defined time span τ1, a forthcoming route 

breakage is expected. A new route will be built before the real breakage of the current 

route to reduce the packet drop rate. The link can be repaired locally by SREA/SRRP 

messages when co-channel collision happens. The receiver will reallocate the 

transmitting sub-channel for the previous hop when it detects an inteferring node 

approaching and informs the previous hop node about the new allocated sub-channel 

through a SREA message. The simulation results show that the route maintenance 

scheme can have good performance in walking speed. However, when the speed 

dramatically increases, the current link may break before the new route is established 

which will result in many packets being dropped. This is even worse when the nodes’ 

moving speed is more than 10 m/s. Therefore, future research is required to further 

improve the route maintenance scheme. 

Implementing OFDMA in ad hoc networks needs restricted time and frequency 
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synchronization. Although there are many time and frequency synchronization schemes 

proposed in the literature for both OFDM and OFDMA, there is no publication to fully 

address the OFDMA synchronization problem in ad hoc networks. This thesis fully 

addresses the OFDMA synchronization for ad hoc, in order to support the proposed 

OFDMA based routing protocol, a time and frequency synchronization scheme is 

proposed in chapter 5. With the proposed time synchronization scheme, global time 

synchronization is no longer needed. Each node only needs to synchronize with one-hop 

neighbours. The basic idea behind the frequency synchronization scheme is using null 

sub-carriers inserted in each sub-channel. The frequency offset can be compensated by 

detecting and compensating the energy falling in the null sub-carriers. Bandpass filters 

are used in each node to separate the OFDMA packets from different transmitters so 

that a separate synchronization algorithm can be applied for each transmitter. The 

effect of number of bandpass filter in a node on the system throughput is also 

investigated. The simulation results show that due to the limitation on the number of 

total available sub-channels two bandpass filters are enough for sessions transmissions 

in ad hoc networks. 

The proposed SSMAP and the QoS routing protocol have been fully evaluated through 

simulations. The simulation model is built using a commercial simulation tool OPNET. 

The network model, node model and process model are designed and presented in 

details in section 6.1. In order to prove the SSMAP based routing protocol is correctly 

implemented in the simulation model and the simulation results are correct, a full 

validation is presented in section 6.2 for both route discovery process and route 

maintenance scheme. The time synchronization scheme is explained step by step in the 
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validation as well.  

The performance of the SSMAP based routing protocol has been evaluated in both 

uniform and random node distribution topologies. Firstly, the simulation results 

obtained from the SSMAP were compared with those of other multi-band based MAC 

protocol and other OFDMA based sub-channel allocation schemes. The network 

performance characteristics used for comparisons were the system throughput, 

signalling overhead, and session success rate. The simulation results show that the 

OFDMA based MAC protocols have better system performance in system throughput 

than other multi-band based MAC layer protocol, because the OFDMA can support 

concurrent transmissions. Compared with other OFDMA based MAC protocols such as 

CTRMA, SSMAP has much lower signalling overhead while the system throughput for 

SSMAP is still better than the one in CTRMA. For the SSMAP based routing protocol, the 

system has better performance than other routing schemes in a static ad hoc network. 

In a low speed mobile ad hoc network, the route maintenance scheme can successfully 

predict the forthcoming link breakage and rebuild the route before the link’s real 

breakage. Therefore, the session success rate can still maintain a good performance. 

However, in a fast mobile ad hoc network, the system throughput and session success 

rate drop significantly with the increase in node speed. A mobile ad hoc network with 

fast moving speed suffers more from link breakage and co-channel collisions. A longer 

route is more easily affected by these problems. Therefore, a further study is required 

to improve the route maintenance scheme to reduce the packet drop in a high mobile 

ad hoc network. 
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8.2 Conclusion 

Wireless mobile ad hoc networks have received more and more attention in recent 

years and it will become more important in the future communication networks. Many 

new standards have been created which can support ad hoc networks such as the IEEE 

802.11x, Bluetooth and WiMAX. QoS routing support poses a great challenge in the ad 

hoc wireless network design because of the vulnerable nature of the wireless link and 

the frequent changes of the network topology. In this thesis, a novel signal strength 

based medium access protocol (SSMAP) is proposed with sub-channel allocation scheme 

in OFDMA based mobile ad hoc networks to realize concurrent transmission and 

reception. Based on SSMAP, a cross layer QoS routing protocol is proposed which is 

aiming to reduce the signalling overhead and co-channel interference. The novel 

proposed sub-channel allocation scheme and QoS routing protocol are evaluated 

through simulations using OPNET simulation tool. 

Moreover, one of the greatest challenges to implement OFDM/OFDMA in ad hoc 

netoworks is its sensitivity to time and frequency offsets. Therefore, a proper 

synchronization scheme needs to be proposed to compensate these timing and 

frequency errors. In mobile ad hoc networks, synchronization is much more complex 

than in other infrastructure based wireless systems. In order to support the proposed 

SSMAP based routing protocol, a new timing and frequency synchronization algorithm is 

proposed in this thesis specifically designed for mobile ad hoc networks. The 

performance of the proposed synchronization scheme is evaluated through the 

simulations. The simulation results show that the proposed synchronization scheme can 
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achieve good performance in estimating and compensating the time and frequency 

errors.  

Overall, this thesis presents a systematic research approach to address the challenges in 

developing a cross layer solution in OFDMA based mobile ad hoc networks. The 

proposed solutions are feasible and successful in achieving the aims of this research. 

8.3 Future work 

In this thesis, the route maintenance scheme is proposed in section 4.4.4. Although the 

proposed route maintenance scheme can predict the forthcoming link breakage and 

rebuild the route before the real link breakage in walking speed, the ability to fast 

rebuild the route in a high mobile ad hoc network needs to be further improved to 

reduce the packet loss and increase the session success rate.  

The proposed time synchronization scheme is using preambles to realise one-hop coarse 

time synchronization and leave the rest small time offsets to be compensated by 

equalizers. A future research should take into account these time offsets and further 

refine the synchronization scheme. Moreover, the frequency synchronization scheme is 

evaluated only in one scenario in this thesis. In the future work, the synchronization 

algorithm can be investigated in other scenarios.  

In this thesis, the SSMAP based routing proposed is aiming to maximize the overall 

system throughput and reduce the interference. User fairness is not taken into account 

in the proposed routing protocol. There is a tradeoff between the system throughput 

and user fairness. In the future work, a further research should focus on find a balance 
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between the system throughput and the user fairness. Moreover, admission control and 

service degradation could be also taken into account in the proposed routing protocol.   
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