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Triadic closure as a basic generating mechanism of communities in complex networks

Ginestra Bianconi,1 Richard K. Darst,2 Jacopo Iacovacci,1 and Santo Fortunato2

1School of Mathematical Sciences, Queen Mary University of London, London, UK
2Department of Biomedical Engineering and Computational Science,

Aalto University School of Science, P.O. Box 12200, FI-00076, Finland

Most of the complex social, technological and biological networks have a significant community
structure. Therefore the community structure of complex networks has to be considered as a uni-
versal property, together with the much explored small-world and scale-free properties of these
networks. Despite the large interest in characterizing the community structures of real networks,
not enough attention has been devoted to the detection of universal mechanisms able to sponta-
neously generate networks with communities. Triadic closure is a natural mechanism to make new
connections, especially in social networks. Here we show that models of network growth based on
simple triadic closure naturally lead to the emergence of community structure, together with fat-
tailed distributions of node degree, high clustering coefficients. Communities emerge from the initial
stochastic heterogeneity in the concentration of links, followed by a cycle of growth and fragmenta-
tion. Communities are the more pronounced, the sparser the graph, and disappear for high values
of link density and randomness in the attachment procedure. By introducing a fitness-based link
attractivity for the nodes, we find a novel phase transition, where communities disappear for high
heterogeneity of the fitness distribution, but a new mesoscopic organization of the nodes emerges,
with groups of nodes being shared between just a few superhubs, which attract most of the links of
the system.

PACS numbers: 89.75.Hc, 89.75.Fb, 89.75.Kd, 89.75.-k, 05.40.-a
Keywords: Networks, triads, community structure

I. INTRODUCTION

Complex networks are characterized by a number of
general properties, that link together systems of very di-
verse origin, from nature, society and technology [1–3].
The feature that has received most attention in the lit-
erature is the distribution of the number of neighbors of
a node (degree), which is highly skewed, with a tail that
can be often well approximated by a power law [4]. Such
property explains a number of striking characteristics of
complex networks, like their high resilience to random
failures [5] and the very rapid dynamics of diffusion phe-
nomena, like epidemic spreading [6]. The generally ac-
cepted mechanism yielding broad degree distributions is
preferential attachment [7]: in a growing network, new
nodes set links with existing nodes with a probability
proportional to the degree of the latter. This way the
rate of accretion of neighbors will be higher for nodes
with more connections, and the final degrees will be dis-
tributed according to a power law. Such basic mech-
anism, however, taken alone without considering addi-
tional growing rules, generates networks with very low
values of the clustering coefficient, a relevant feature of
real networks [8]. Furthermore, these networks have no
community structure [9, 10] either.

High clustering coefficients imply a high proportion of
triads (triangles) in the network. It has been pointed out
that there is a close relationship between a high density
of triads and the existence of community structure, es-
pecially in social networks, where the density of triads
is remarkably high [11–15]. Indeed, if we stick to the
usual concept of communities as subgraphs with an ap-

preciably higher density of (internal) links than in the
whole graph, one would expect that triads are formed
more frequently between nodes of the same group, than
between nodes of different groups [16]. This concept has
been actually used to implement well known community
finding methods [17, 18]. Foster et al. [15] have studied
equilibrium graph ensembles obtained by rewiring links
of several real networks such to preserve their degree se-
quences and introduce tunable values of the average clus-
tering coefficient and degree assortativity. They found
that the modularity of the resulting networks is the more
pronounced, the larger the value of the clustering coef-
ficient. Correlation, however, does not imply causation,
and the work does not provide a dynamic mechanism ex-
plaining the emergence of high clustering and community
structure.

Triadic closure [19] is a strong candidate mechanism
for the creation of links in networks, especially social net-
works. Acquaintances are frequently made via interme-
diate individuals who know both us and the new friends.
Besides, such process has the additional advantage of
not depending on the features of the nodes that get at-
tached. With preferential attachment, it is the node’s
degree that determine the probability of linking, imply-
ing that each new node knows this information about all
other nodes, which is not realistic. Instead, triadic clo-
sure induces an effective preferential attachment: getting
linked to a neighbor A of a node corresponds to choos-
ing A with a probability increasing with the degree kA of
that node, according to a linear or sublinear preferential
attachment. This principle is at the basis of several gen-
erative network models [13, 20–29], all yielding graphs
with fat-tailed degree distributions and high clustering
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coefficients, as desired. Toivonen et al. have found that
community structure emerges as well [13].

Here we propose a first systematic analysis of mod-
els based on triadic closure, and demonstrate that this
basic mechanism can indeed endow the resulting graphs
with all basic properties of real networks, including a
significant community structure. These models can in-
clude or not an explicit preferential attachment, they can
be even temporal networks, but as long as triadic clo-
sure is included, the networks are sufficiently sparse, and
the growth is random, a significant community structure
spontaneously emerges in the networks. In fact the nodes
of these networks are not assigned any “ a priori” hidden
variable that correlates with the community structure of
the networks.

We will first discuss a basic model including triadic
closure but not an explicit preferential attachment mech-
anism and we will characterize the community formation
and evolution as a function of the main variables of the
linking mechanism, i.e. the relative importance of clos-
ing a triad versus random attachment and the average
degree of the graph. We find that communities emerge
when there is a high propensity for triadic closure and
when the network is sufficiently sparse (low average de-
gree). We will also consider further models existing in
the literature and including triadic closure, and we show
that results concerning the emergence of the community
structure are qualitatively the same, independently on
the presence or not of the explicit preferential attachment
mechanism or on the temporal dynamics of the links. Fi-
nally, we will introduce a variant of the basic model, in
which nodes have a fitness and a propensity to attract
new links depending on their fitness. Here clusters are
less pronounced and, when the fitness distribution is suf-
ficiently skewed, they disappear altogether, while new pe-
culiar aggregations of the nodes emerge, where all nodes
of each group are attached to a few superhubs.

II. THE BASIC MODEL INCLUDING TRIADIC
CLOSURE

We begin with what is possibly the simplest model
of network growth based on triadic closure. The starting
point is a small connected network of n0 nodes and m0 ≥
m links. The basic model contains two ingredients:

• Growth. At each time a new node is added to the
network with m links.

• Proximity bias. The probability to attach the new
node to node i depends on the order in which the
links are added.
The first link of the new node is attached to a ran-
dom node i1 of the network. The probability that
the new node is attached to node i1 is then given
by

Π[0](i1) =
1

n0 + t
. (1)

neighbor of  j 

random 
link  

random 
link 

i 

j j 

i 

p 

(1-p) 

a b 

FIG. 1: (Color online) Basic model. One link associated to a
new node i is attached to a randomly chosen node j, the other
links are attached to neighbors of j with probability p, closing
triangles, or to other randomly chosen nodes with probability
1− p.

The second link is attached to a random node of the
network with probability 1 − p, while with proba-
bility p it is attached to a node chosen randomly
among the neighbors of node i1. Therefore in the
first case the probability to attach to a node i2 6= i1
is given by

Π[0](i2) =
(1− δi1,,i2)

n0 + t− 1
, (2)

where δi1,i2 indicates the Kronecker delta, while in

the second case the probability Π[1](i2) that the
new node links to node i2 is given by

Π[1](i2) =
ai1,i2
ki1

, (3)

where aij is the adjacency matrix of the network
and ki1 is the degree of node i1.

• Further edges. For the model with m > 2, further
edges are added according to the “second link” rule
in the previous point. With probability p, and edge
is added to a random neighbor without a link of the
first node i1. With probability 1 − p, a link is at-
tached to a random node in the network without a
link already. A total of m edges are added, 1 initial
random edge and m−1 involving triadic closure or
random attachment.

In Fig. 1 the attachment mechanism of the model is
schematically illustrated.

For simplicity we discuss here the case m = 2. In the
basic model the probability that a node i acquires a new
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link at time t is given by

1

t

(2− p) + p
∑
j

aij
kj

 . (4)

In an uncorrelated network, where the probability pij
that a node i is connected to a node j is pij =

kikj
〈k〉n (n

being the number of nodes of the network), we might
expect that the proximity bias always induces a linear
preferential attachment, i.e.∑

j

aij
kj
∝ ki, (5)

but for a correlated network this guess might not be cor-
rect. Therefore, assuming, as supported by the simula-
tion results (see Fig. 2), that the proximity bias induces
a linear or sublinear preferential attachment, i.e.

Θi = p
∑
j

aij
kj
' ckθi , (6)

with θ = θ(p) ≤ 1 and c = c(p), we can write the mas-
ter equation [30] for the average number nk(t) of nodes
of degree k at time t. from the simulation results it is
found that the function θ(p) is an increasing function of
p for m = 2. Moreover the exponent theta is also an in-
creasing function of the number of edges of the new node
m. Assuming the scaling in Eq. (6), the master equation
for m = 2 reads

nk(t+ 1) = nk(t) +
2− p+ c(k − 1)θ

t
nk−1(t)(1− δk,2)

−2− p+ ckθ

t
nk(t) + δk,2. (7)

In the limit of large values of t, we assume that the degree
distribution P (k) can be found as nk/t → P (k). So we
find the solution for P (k)

P (k) = C
1

3− p+ ckθ

k−1∏
j=1

(
1− 1

3− p+ cjθ

)
, (8)

where C is a normalization factor. This expression for
θ < 1 can be approximated in the continuous limit by

P (k) ' D 1

3− p+ ckθ
e−(k−1)G(k−1,θ,c) , (9)

where D is the normalization constant and G(k, θ, c) is
given by

G(k, θ, c) = −θ 2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

3− p

)
+θ 2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p

)
+ log

(
1− 1

3− p+ ckθ

)
. (10)
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FIG. 2: (Color online) Scaling of Θ = 〈Θi〉ki=k, the average of
Θi, performed over nodes of degree ki = k, versus the degree
k. This scaling allows us to define the exponents θ = θ(p)
defined by Eq. (6). The figure is obtained by performing 100
realizations of networks of size n = 100 000.

In this case the distribution is broad but not power law.
For θ = 1, instead, the distribution can be approximated
in the continuous limit by a power law, given by

P (k) ' D 1

(3− p+ ck)1/c+1
, (11)

where D is a normalization constant. Therefore we find
that the network is scale free only for θ = 1, i.e. only
in the absence of degree correlations. In order to con-
firm the result of our theory, we have extracted from the
simulation results the values of the exponents θ = θ(p)
as a function of p. With these values of the exponents
θ = θ(p), that turn out to be all smaller than 1, we have
evaluated the theoretically expected degree distribution
P (k) given by Eq. (9) and we have compared it with
simulations (see Fig. 3), finding optimal agreement.

We remark that this model has been already studied
in independent papers by Vazquez [22] and Jackson [24],
who claimed that the model yields always power law de-
gree distributions. Our derivation for m = 2 shows that
this is not correct, in general, and in particular it is not
correct when the growing network exhibits degree corre-
lations, in which case we do not expect that the proba-
bility to reach a node of degree kA by following a link is
proportional to kA. When the network is correlated we
always find θ < 1, i.e. the effective link probability is
sublinear in the degree of the target node.

We note however, that the duplication model [25–28],
in which every new node is attached to a random node
and to each of its neighbor with probability p, displays at
the same time degree correlations and power-law degree
distribution.

We also find that the model spontaneously generates
communities during the evolution of the system. To
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FIG. 3: (Color online) Degree distributions of the basic model,
for different values of the parameter p. The continuous lines
indicate the theoretical predictions of Eq. (9), the symbols
the distributions obtained from numerical simulations of the
model. The figure is obtained by performing 100 realizations
of networks of size n = 100 000.

quantify how pronounced communities are, we use a mea-
sure called embeddedness, which estimates how strongly
nodes are attached to their own cluster. Embeddedness,
which we shall indicate with ξ, is defined as follows:

ξ =
1

nc

∑
c

kcin
kctot

, (12)

where kcin and kctot are the internal and the total degree of
community c and the sum runs over all nc communities of
the network. If the community structure is strong, most
of the neighbors of each node in a cluster will be nodes of
that cluster, so kcin will be close to kctot and ξ turns out to
be close to 1; if there is no community structure ξ is close
to zero. However, one could still get values of embedded-
ness which are not too small, even in random graphs,
which have no modular structure, as kcin might still be
sizeable there. To eliminate such borderline cases, we
introduce a new variable, the node-based embeddedness,
that we shall indicate with ξn. It is based on the idea
that for a node to be properly assigned to a cluster, it
must have more neighbors in that cluster than in any of
the others. This leads to the following definition

ξn =
1

n

∑
i

ki,in − kmax
i,ext

ki
, (13)

where ki,in is the number of neighbors of node i in its
cluster, kmax

i,ext is the maximum number of neighbors of i
in any one other cluster and ki the total degree of i. The
sum runs over all n nodes of the graph. For a proper com-
munity assignment, the difference ki,in−kmax

i,ext is expected
to be positive, negative if the node is misclassified. In a
random graph, and for subgraphs of approximately the
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FIG. 4: (Color online) Heat map of node-based embedded-
ness (a) and average clustering coefficient (b) as a function of
p and m for the basic model. Community structure (higher
embeddedness and clustering coefficient) is pronounced in the
lower left region when m is not too large (sparse graphs) and
when the probability of triadic closure p is very high. For
each pair of parameter values we report the average over 50
network realizations. The white area in the upper right cor-
responds to systems where a single community, consisting of
the whole network, is found. Here one would get a maximum
value 1 for ξn, but it is not meaningful, hence we discard this
portion of the phase diagram, as well as in Figs. 7 and 8.

same size, ξn would be around zero. In a set of discon-
nected cliques (a clique being a subgraph where all nodes
are connected to each other), which is the paradigm of
perfect community structure, ξn would be 1.

In Fig. 4a we show a heat map for ξn as a function of
the two main variables of the model, the probability p
and the number of edges per node m, which is half the
average degree. Communities were detected with non-
hierarchical Infomap [31] in all cases. Results obtained
by applying the Louvain algorithm [32] (taking the most
granular level to avoid artifacts caused by the resolution
limit [33]) yield a consistent picture. All networks are
grown until n = 50 000 nodes. We see that large val-
ues of ξn are associated to the bottom left portion of the
diagram, corresponding to high values of the probabil-
ity of triadic closure and to low values of degree. So, a
high density of triangles ensures the formation of clusters,
provided the network is sufficiently sparse. In Fig. 4b we
present an analogous heat map for the average clustering
coefficient C, which is defined [8] as

C =
1

n

∑
i

∑
j,k

aijajkaki
ki(ki − 1)

(14)

where aij is the element of the adjacency matrix of the
graph and ki is again the degree of node i. Fig. 4b con-
firms that C is the largest when p is high and m is low,
as expected.

The mechanism of formation and evolution of commu-
nities is schematically illustrated in Fig. 5. When the first
denser clumps of the network are formed (a), out of ran-
dom fluctuations in the density of triangles newly added
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(a) (b) (c)

FIG. 5: (Color online) Schematic illustration of the forma-
tion and evolution of communities. Initial inhomogeneities in
the link density make more likely the closure of triads in the
denser parts, that keep growing until they become themselves
inhomogeous, leading to a split into smaller communities (dif-
ferent colors).
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FIG. 6: (Color online) Evolution of node-based community
embeddedness ξn along the growth of the network. The curves
refer to the extreme cases of absence of triadic closure (lower
curve), yielding a random graph without communities, and
of systematic triadic closure (upper curve), yielding a graph
with pronounced community structure. For the latter case,
we magnify in the inset the initial portion of the curve, to
highlight the sudden drops of ξn, indicated by the arrows,
which correspond to the breakout of clusters into smaller ones.

nodes are more likely to close triads within the protoclus-
ters than between them (b). As more nodes and links are
added, the protoclusters become larger and larger and
their internal density of links becomes inhomogenous, so
there will be a selective triadic closure within the denser
parts, which yields a separation into smaller clusters (c).
This cycle of growing and splitting plays repeatedly along
the evolution of the system.

In Fig. 6 we show the time evolution of the node-based
embeddedness ξn during the growth of the system, until
500 nodes are added to the network, m = 2. We consider
the two extreme situations p = 0, corresponding to the
absence of triadic closure and p = 1, where both links
close a triangle every time and there is no additional
noise. In the first case (green line), after a transient,
ξn sets to a low value, with small fluctuations; in the
case with pure triadic closure, instead, the equilibrium

value is much higher, indicating strong community struc-
ture, and fluctuations are modest. In contrast with the
random case, we recognize a characteristic pattern, with
ξn increasing steadily and then suddenly dropping. The
smooth increase of ξn signal that the communities are
growing, the rapid drop that a cluster splits into smaller
pieces: in the inset such breakouts are indicated by ar-
rows. Embeddedness drops when clusters break up be-
cause the internal degrees ki,in of the nodes of the frag-
ments in Eq. 13 suddenly decrease, since some of the old
internal neighbors belong to a different community, while
the values of kmax

i,ext are typically unaffected.

III. PREFERENTIAL ATTACHMENT OR
TEMPORAL NETWORK MODELS INCLUDING

TRIADIC CLOSURE

The scenario depicted in Section II is not limited to the
basic model we have investigated, but it is quite general.
To show this, we consider here two other models based
on triadic closure.

The model by Holme and Kim [20] is a variant of the
Barabási-Albert model of preferential attachment (BA
model) which generate scale-free networks with cluster-
ing. The new node joining the network sets a link with
an existing node, chosen with a probability proportional
to the degree of the latter, just like in the BA model. The
other m − 1 links coming with the new node, however,
are attached with a probability Pt to a random neighbor
of the node which received the most recent preferentially-
attached link, closing a triangle, and with a probability
1 − Pt to another node chosen with preferential attach-
ment. By varying Pt it is possible to tune the level of
clustering into the network, while the degree distribution
is the same as in the BA model, i.e. a power law with
exponent −3, for any value of Pt. In Fig. 7 we show the
same heat map as in Fig. 4 for this model, where we now
report the probability Pt on the y-axis. Networks are
again grown until n = 50 000 nodes. The picture is very
similar to what we observe for the basic model.

The model by Marsili et al. [23], at variance with most
models of network formation, is not based on a growth
process. The model is a model for temporal networks
[34], in which the links are created and destroyed on the
fast time scale while the number of nodes remains con-
stant. The starting point is a random graph with n nodes.
Then, three processes take place, at different rates:

1. any existing link vanishes (rate λ);

2. a new link is created between a pair of nodes, cho-
sen at random (rate η);

3. a triangle is formed by joining a node with a ran-
dom neighbor of one of his neighbors, chosen at
random (rate ξM ).

In our simulations we start from a random network of
n = 50 000 nodes with average degree 10. The three rates
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FIG. 7: (Color online) Heat map of node-based embeddedness
(a) and average clustering coefficient (b) as a function of Pt

and m for the model by Holme and Kim [20]. For each pair
of parameter values we report the average over 50 network
realizations. The white area in the upper right corresponds
to systems where a single community, consisting of the whole
network, is found, which is not interesting. The diagrams look
qualitatively similar to that of the basic model (Fig. 4), with
highest embeddedness and clustering coefficient in the lower
left region.

λ, η and ξM can be reduced to two independent parame-
ters, since what counts is their relative size. The number
of links deleted at each iteration is proportional to λM ,
where M is the number of links of the network, while
the number of links created via the two other processes
is proportional to ηn and ξMn, respectively. The num-
ber of links M varies in time but in order to get a non-
trivial stationary state, one should reach an equilibrium
situation where the numbers of deleted and created links
match. A variety of scenarios are possible, depending on
the choices of the parameters. For instance, if ξM is set
equal to zero, there are no triads, and what one gets at
stationarity is a random graph with average degree 2η/λ.
So, if η � λ, the graph is fragmented into many small
connected components. In one introduces triadic closure,
the clustering coefficient grows with ξM if the network
is fragmented, as triangles concentrate in the connected
components. Moreover the model can display a veritable
first order phase transition and in a region of the phase
diagram displays two stable phases: one corresponding to
a connected network with large average clustering coeffi-
cient and the other one corresponding to a disconnected
network. Interestingly, if there is a dense single compo-
nent, the clustering coefficient decreases with ξM . The
degree distribution can follow different patterns too: it
is Poissonian in the diluted phase, where the system is
fragmented, and broad in the dense phase, where the sys-
tem consists of a single component with an appreciable
density of links. In Fig. 8 we show the analogous heat
map as in Figs. 4 and 7, for the two parameters λ and
ξM . The third parameter η = 1. We consider only con-
figurations where the giant component covers more than
a half of the nodes of the network. The diagrams are now
different because of the different role of the parameters,
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ξ M
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FIG. 8: (Color online) Heat map of node-based embedded-
ness (a) and average clustering coefficient (b) as a function
of the rates λ and ξM for the model by Marsili et al. [23]
(η = 1). For each pair of parameter values we report the
average over 50 network realizations. The white area in the
upper right corresponds to systems where a single commu-
nity, consisting of the whole network, is found, which is not
interesting. These diagrams have better communities (higher
embeddedness and clustering coefficient) towards the upper
right, different from those in Figs. 4 and 7, because of the dif-
ferent meaning and effect of the parameters. However, there
is a strong correspondence between high clustering coefficient
and strong community structure, as in the other models.

but the picture is consistent nevertheless. The clustering
coefficient C is highest when the ratio of λ and ξM lies
within a narrow range, yielding a sparse network with a
giant component having a high density of triangles and
a corresponding presence of strong communities.

IV. THE BASIC MODEL INCLUDING TRIADIC
CLOSURE AND FITNESS OF THE NODES

In this Section we introduce a variant of the basic
model, where the link attractivity depends on some in-
trinsic fitness of the nodes. We will assume that the
nodes are not all equal and assign to each node i a fit-
ness ηi representing the ability of a node to attract new
links. We have chosen to parametrize the fitness with a
parameter β > 0 by setting

ηi = e−βεi , (15)

with ε chosen from a distribution g(ε) and β representing
a tuning parameter of the model. We take

g(ε) = (1 + ν)εν , (16)

with ε ∈ (0, 1). When β = 0 all the fitness values are the
same, when β is large small differences in the εi cause
large differences in fitness. For simplicity we assume that
the fitness values are quenched variables assigned once
for all to the nodes. As in the basic model without fit-
ness, the starting point is a small connected network of
n0 nodes and m0 ≥ m links. The model contains two
ingredients:
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• Growth. At time t a new node is added to the
network with m ≥ 2 links.

• Proximity and fitness bias. The probability to at-
tach the new node to node i1 depends on the order
in which links are added.
The first link of the new node is attached to a ran-
dom node i1 of the network with probability pro-
portional to its fitness. The probability that the
new node is attached to node i1 is then given by

Π[0](i1) =
ηi1∑
j ηj

. (17)

For m = 2 the second link is attached to a node
of the network chosen according to its fitness, as
above, with probability 1 − p, while with proba-
bility p it is attached to a node chosen randomly
between the neighbors of the node i1 with proba-
bility proportional to its fitness. Therefore in the
first case the probability to attach to a node i2 6= i1
is given by

Π[0](i2) =
ηi2(1− δi1,i2)∑

j 6=i1 ηj
, (18)

with δi1,i2 indicating the Kronecker delta, while in

the second case the probability Π[1](i2) that the
new node links to node i2 is given by

Π[1](i2) =
ηi2ai1,i2∑
j ηjai1,j

, (19)

where aij indicates the matrix element (i, j) of the
adjacency matrix of the network.

• Further edges. For m > 2, further edges are added
according to the “second link” rule in the previous
point. With probability p an edge is added to a
neighbor of the first node i1, not already attached
to the new node, according to the fitness rule. With
probability 1 − p, a link is set to any node in the
network, not already attached to the new node, ac-
cording to the fitness rule.

For simplicity we shall consider here the case m = 2.
The probability that a node i acquires a new link at time
t is given by

e−βεi

t

(2− p) + p
∑
j

aij∑
r ηrajr

 . (20)

Similarly to the case without fitness, here we will assume,
supported by simulations, that

Θi = p
∑
j

ηjaij∑
r ηrajr

' ckθ(ε)i , (21)

where, for every value of p, θ = θ(ε) ≤ 1 and c = c(ε).

We can write the master equation for the average num-
ber nk,ε(t) of nodes of degree k and energy ε at time t,
as

nk,ε(t+ 1) = nk,ε(t)

+
e−βε[2− p+ c(ε)(k − 1)θ]

t
nk−1,ε(t)(1− δk,2)

−e
−βε[2− p+ c(ε)kθ(ε)]

t
nk,ε(t) + δk,2g(ε) . (22)

In the limit of large values of t we assume that nk,ε/t→
P ε(k), and therefore we find that the solution for P ε(k)
is given by

P ε(k) = C(ε)
1

1 + e−βε[2− p+ c(ε)kθ(ε)]

×
k−1∏
j=1

{
1− 1

1 + e−βε[2− p+ c(ε)jθ(ε)]

}
, (23)

where C(ε) is the normalization factor. This expression
for θ(ε) < 1 can be approximated in the continuous limit
by

P ε(k) ' D(ε)
e−(k−1)G[k−1,ε,θ(ε),c(ε)]

1 + e−βε[2− p+ c(ε)kθ(ε)]
, (24)

where D(ε) is the normalization constant and G(k, ε, θ, c)
is given by

G(k, ε, θ, c) = −θ2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p+ eβε

)
+θ2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p

)
+ log

(
1− 1

1 + eβε

2−p+ckθ

)
. (25)

When θ(ε) = 1, instead, we can approximate P ε(k) with
a power law, i.e.

P ε(k) ' D(ε)
[
1 + e−βε (2− p+ c(ε)k)

]− e−βε
c(ε)
−1
. (26)

Therefore, the degree distribution P (k) of the entire net-
work is a convolution of the degree distributions P ε(k)
conditioned on the value of ε, i.e.

P (k) =

∫
dεP ε(k) . (27)

As a result of this expression, we found that the degree
distribution can be a power law also if the network ex-
hibits degree correlations and θ(ε) < 1 for every value of
ε. Moreover we observe that for large values of the pa-
rameter β the distribution becomes broader and broader
until a condensation transition occurs at β = βc with the
value of βc depending on both the parameters ν and p
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FIG. 9: (Color online) Degree distribution of the model with
fitness, for three values of the parameter β, which indicates
the heterogeneity of the distribution of the fitness of the
nodes. Symbols stand for the results obtained by building
the network via simulations, continuous lines for our analyt-
ical derivations. The figure is obtained by performing 100
realizations of networks of size n = 100 000 with ν = 6.

of the model. For β > βc successive nodes with maxi-
mum fitness (minimum value of ε) become “superhubs”,
attracting a finite fraction of all the links, similarly to
what happens in Ref. [35]. In Fig. 9 we see the degree dis-
tribution of model, obtained via numerical simulations,
for different values of β. The continuous lines, illustrat-
ing the theoretical behavior, are well aligned with the
numerical results, as long as β < βc.

In Fig. 10 we show the heat map of ξn and C for the
model, as a function of the parameters p and β. The num-
ber of edges per node is m = 2, and the networks consist
of 50 000 nodes. Everywhere in this work, we set the pa-
rameter ν = 6. For β = 0 all nodes have identical fitness
and the model reduces itself to the basic model. So we
recover the previous results, with the emergence of com-
munities for sufficiently large values of the probability of
triadic closure p, following a large density of triangles in
the system. The situation changes dramatically when β
starts to increase, as we witness a progressive weakening
of community structure, while the clustering coefficient
keeps growing, which appears counterintuitive. In the
analogous diagrams for m = 5, we see that this pattern
holds, though with a weaker overall community structure
and lower values of the clustering coefficient.

When β is sufficiently large, communities disappear,
despite the high density of triangles. To check what
happens, we compute the probability distribution of the
scaled link density ρ̃ and the node-based embeddedness
ξn of the communities of the networks obtained from 100
runs of the model, for three different values of β: 0, 6
and 20. All networks are grown until 100 000 nodes. The
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FIG. 10: (Color online) Heat map of node-based embedded-
ness (a) and average clustering coefficient (b) as a function
of the probability of triadic closure p and the heterogeneity
parameter β of the fitness distribution of the nodes, for the
model with fitness. The number of new edges per node is
m = 2. For each pair of parameter values we report the av-
erage over 50 network realizations. When β = 0 we recover
the basic model, without fitness. We see the highest values
of embeddedness in the lower left, while highest values of the
clustering coefficient are in the lower right. When β increases,
we see a drastic change of structure in contrast to the previ-
ous pattern: communities disappear, whereas the clustering
coefficient gets higher.
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FIG. 11: (Color online) Same as Fig. 10, but for m = 5. The
picture is consistent with the case m = 2, but communities
are less pronounced.

scaled link density ρ̃ of a cluster is defined [36] as

ρ̃ =
2lc

nc − 1
, (28)

where lc and nc are the number of internal links and of
nodes of cluster c. If the cluster is tree-like, ρ̃ ≈ 2, if it is
clique-like it ρ̃ ≈ nc, so it grows linearly with the size of
the cluster. The distributions of ξn and ρ̃ are shown in
Fig. 12. They are peaked, but the peaks undergo a rapid
shift when β goes from 0 to 20. The situation resembles
what one usually observes in first-order phase transitions.
The embeddedness ends up peaking at low values, quite
distant from the maximum 1, while the scaled link den-
sity eventually peaks sharply at 2, indicating that the
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FIG. 12: (Color online) Probability distributions of the scaled link density ρ̃ (left) and node-based embeddedness ξn (right) of
the communities of the fitness model, for m = 2 and β = 0, 6, 20. For each β-value we derived 100 network realizations, each
with 100 000 nodes. We see that at β = 0, the detected communities satisfy the expectations of good communities, while at
β = 20 they do not.

subgraphs are effectively tree-like.

What kind of objects are we looking at? To answer
this question, in Figs. 13 and 14 we display two pictures
of networks obtained by the fitness model, for β = 0 and
β = 20, respectively. The number of nodes is 2 000, and
the number of edges per node m = 2. The probability
of triadic closure is p = 0.97, as we want a very favor-
able scenario for the emergence of structure. The sub-
graphs found by our community detection method (non-
hierarchical Infomap, but the Louvain method yields a
similar picture) are identified by the different colors. The
insets show an enlarged picture of the subgraphs, which
clarify the apparent puzzle delivered by the previous di-
agrams. For the basic model β = 0 (Fig. 13), the sub-
graphs are indeed communities, as they are cohesive ob-
jects which are only loosely connected to the rest of the
graph. The situation remains similar for low values of β.
However, for sufficiently high β (Fig. 14), a phenomenon
of link condensation takes place, with a few superhubs at-
tracting most of the links of the network [35]. Most of the
other nodes are organized in groups which are “shared”
between pairs (for m = 2, more generally m-ples) of su-
perhubs (see figure). The community embeddedness is
low because there are always many links flowing out of
the subgraphs, towards superhubs. Besides, since the su-
perhubs are all linked to each other, this generates high
clustering coefficient for the subgraphs, as observed in
Figs. 10 and 11. In fact, the clustering coefficient for
the non-hubs attains the maximum possible value of 1,
as their neighbors are nodes which are all linked to each
other.

V. CONCLUSIONS

Triadic closure is a fundamental mechanism of link for-
mation, especially in social networks. We have shown
that such mechanism alone is capable to generate sys-
tems with all the characteristic properties of complex net-
works, from fat-tailed degree distributions to high clus-
tering coefficients and strong community structure. In
particular, we have seen that communities emerge nat-
urally via triadic closure, which tend to generate cohe-
sive subgraphs around portions of the system that hap-
pen to have higher density of links, due to stochastic
fluctuations. When clusters become sufficiently large,
their internal structure exhibits in turn link density inho-
mogeneities, leading to a progressive differentiation and
eventual separation into smaller clusters (separation in
the sense that the density of links between the parts is
appreciably lower than within them). This occurs both in
the basic version of network growth model based on tri-
adic closure, and in more complex variants. The strength
of community structure is the higher, the sparser the net-
work and the higher the probability of triadic closure.

We have also introduced a new variant, in that link at-
tractivity depends on some intrinsic appeal of the nodes,
or fitness. Here we have seen that, when the distribution
of fitness is not too heterogeneous, community structure
still emerges, though it is weaker than in the absence
of fitness. By increasing the heterogeneity of the fit-
ness distribution, instead, we observe a major change in
the structural organization of the network: communities
disappear and are replaced by special subgraphs, whose
nodes are connected only to superhubs of the network,
i.e. nodes attracting most of the links. Such structural
phase transition is associated to very high values of the
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FIG. 13: (Color online) Picture of a network with 2 000 nodes generated by the fitness model, for p = 0.97, m = 2 and β = 0.
Since β = 0 fitness does not play a role and we recover the results of the basic model. Colors indicate communities as detected
by the non-hierarchical Infomap algorithm [31].

clustering coefficient.
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FIG. 14: (Color online) Picture of a network with 2 000 nodes generated by the fitness model, for p = 0.97, m = 2 and β = 20.
The growing process is the same as in Fig. 13, but the addition of fitness changes the structural organization of the network. As
seen in the inset, node aggregations form around hub nodes with high fitness. Looking at the inset we see that such aggregations
do not satisfy the typical requirements for communities: they are internally tree-like, and there are more external edges (blue
or light gray) than internal (red or dark gray) touching its nodes. In particular, internal edges only go from regular nodes to
superhubs.
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