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EXTENDED ABSTRACT

This thesis comprises three main chapters focusing on a number of issues

related to forecasting economic and �nancial time series.

Chapter 2 contains a detailed empirical study comparing forecast perfor-

mance of a number of popular term structure models in predicting the UK

yield curve. Several questions are addressed and investigated, such as whether

macroeconomic information helps in forecasting yields and whether predict-

ing performance of models change over time. We �nd evidence of signi�cant

time-variation in forecast accuracy of competing models, particularly during

the recent �nancial crisis period.

Chapter 3 explores density forecasts of the yield curve which, unlike the

point forecasts, provide a full account of possible uncertainties surrounding the

forecasts. We contribute by evaluating predictive performance of the recently

developed stochastic-volatility arbitrage-free Nelson-Siegel models of Chris-

tensen et al. (2010). The one-month-ahead predictive densities of the models

appear to be inferior compared to those of their constant-volatility counter-

parts. The advantage of modelling time-varying volatilities becomes evident

only when forecasting interest rates at longer horizons.

Chapter 3 deals with a more general problem of forecasting time series

under structural change and long memory noise. Presence of long memory in
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the data is often easily confused with structural change. Wrongly account-

ing for one when the other is present may lead to serious forecast failure.

In our search for a forecast method that can perform reliably in presence of

both features we extend the recent work of Giraitis et al. (2013). A forecast

strategy with data-dependent discounting is adopted and typical robust-to-

structural-change methods such as rolling window regression, forecast averag-

ing and exponentially weighted moving average methods are exploited. We

provide detailed theoretical analyses of forecast optimality by considering cer-

tain types of structural changes and various degrees of long range dependence

in noise. An extensive Monte Carlo study and empirical application to many

UK time series ensure usefulness of adaptive forecast methods.
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Chapter 1

Introduction

Time series forecasting is an integral part of economics and �nance. Reliable

predictions help making informed decisions and consequently, forecasting has

found important roles in a wide variety of economic and �nancial activities

which include monetary and �scal policy designing, business planning, �nan-

cial asset and risk management, among others. Ability to produce accurate

forecasts is valued as one of the principal attributes of a good dynamic model,

but it is hardly a guaranteed property. It is not unlikely that sophisticated

models which �t historical data extremely well often fail to outperform naive

models in terms of out-of-sample forecast performance. Several issues have

been held responsible in the literature (see, e.g., Egorov et al. (2006)). A

prominent one is the so called �data snooping�which says that parametrically

rich models often over�t past data without capturing the true data generating

process. Parameter proliferation can again cause substantial estimation uncer-

tainty which deteriorates forecasts. Presence of structural change in time series

data can in�ict parameter instability and therefore, have pernicious e¤ect on

out-of-sample forecasting performance of a model which previously exhibited
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good in-sample �t. Therefore, it may not be ideal to judge a time series model

on the basis of its in-sample performance alone. Careful assessment of out-

of-sample forecasts can often insure against data snooping problem and help

select the best data-explaining model.

The �eld of economic forecasting is vast and expanding rapidly. The ob-

jective of this thesis is to shed light only on a few very speci�c topics in this

respect. The focus is two-fold. The �rst part explicitly deals with certain

aspects of forecasting the term structure of interest rates and takes empirical

approaches to investigate them. The second part looks at a wider problem of

forecasting time series under structural change and long memory persistence

and combines theoretical justi�cations with empirical evidence.

We begin the �rst part by conducting a comprehensive empirical study

which focuses on forecasting the term structure of UK interest rates. There

are several papers which attempt to model the UK yield curve and capture

its historical variable dynamics (e.g., Lildholdt et al. (2007), Bianchi et al.

(2009)). However, forecasting the future movements of the UK yield curve

has received little attention in the literature. The contribution of this chap-

ter is explicitly to this end and it exploits two very popular classes of yield

curve models in predicting the future course of the bond yields, namely the

Nelson-Siegel models and no-arbitrage a¢ ne models. The chapter attempts to

answer several interesting questions related to forecasting bond yields. First,

it investigates whether incorporating macroeconomic information helps in im-

proving predictive performance of models that, otherwise, would rely only on

cross-sectional information of the yield curve. There is historical evidence of

advantageous e¤ects of adding economic fundamentals on interest rate pre-

diction (see Ang and Piazzesi (2003), Diebold et al. (2006), Moench (2008),

among others). Most of the studies, however, predominantly use the US yield

curves data and it is our interest to investigate whether documented �ndings

hold also for the UK. Second, the chapter examines whether predictive perfor-
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mance of models change over time. Following the onset of the recent �nancial

crisis in late 2007 the UK yield curve has undergone dramatic changes. The

short rates plummeted to their historical lows and the spread between the

short and long rates widened substantially. It is, therefore, unlikely that a

single term structure model will consistently produce the best forecasts of the

UK yield curve. Following recent literature we argue that a global measure

summarising model performance over a long forecast period may be misleading

when comparing competing models. We evaluate quality of forecasts across

sub-periods and apply the �uctuation test of Giacomini and Rossi (2010) to

detect signi�cant time-variation in predictability of di¤erent models.

While the focus of the �rst chapter in part one is purely point forecasts of

the conditional mean of bond yields, a second chapter contributes by exploring

density forecasts of the yield curve. The point forecasts are often considered

to be of limited value in the sense that they do not account for the uncer-

tainty associated with future forecasts. A more desirable course of action is

constructing density forecasts which predict the entire distribution of future

yields and acknowledge possible uncertainties. Density forecasts allow com-

putation of higher order moments such as variance, skewness and kurtosis,

knowledge of which play important role in risk management and derivative

pricing. Unfortunately, empirical literature on probability forecast of the yield

curve is narrow. To our knowledge the only contribution is Egorov et al.

(2006) who evaluate performance of widely popular no-arbitrage a¢ ne term

structure models (ATSMs) in forecasting the conditional predictive density

of bond yields. Provided that these authors document unsatisfactory density

forecasts from ATSMs, a better alternative forecasting model is to be sought

for. We contribute by computing and evaluating out-of-sample forecasts of a

recently developed class of models namely the stochastic-volatility arbitrage-

free Nelson-Siegel models of Christensen et al. (2010). While the models are

parallel to the ATSM in terms of theoretical consistency they enjoy several ad-
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vantages over the ATSM. They are more parsimonious, easier to estimate and

o¤er meaningful interpretations for latent state variables. These models have

been found to �t the conditional mean and variance of US yields reasonably

well (Christensen et al. (2010)), but, to our knowledge, they have not been

evaluated for forecast accuracy. We take this opportunity to compare several

variants of the models in terms of their predictive performance. The questions

which are of particular interest are whether enforcing no-arbitrage restriction

and/or modelling time-varying volatility improve predictive performance of

Nelson-Siegel models. We resort to various metrics used in recent literature

such as probability integral transforms, coverage rates, log predictive density

scores in order to extensively assess the quality of calibrated density forecasts.

In the second part we divert our concentration from the speci�c problem

of forecasting interest rates to a more general problem of forecasting time

series under structural changes. In economics and �nance literature struc-

tural change is considered as a common phenomenon (see Stock and Wat-

son (1996)) and often regarded as the principal cause of forecast failures (see

Hendry (2000)). This chapter addresses the broad problem of making reli-

able real-time forecasts of a time series in the presence of ongoing structural

changes and focuses on speci�c cases where the scenario is further complicated

by noises which are contaminated with long range dependence.

A major source of motivation behind conducting the research is an ongo-

ing argument about possible spurious relationship between long memory and

structural change (see, e.g., Diebold and Inoue (2001), Gourieroux and Jasiak

(2001), Granger and Hyung (2004)). It is being increasingly evident from

econometrics literature that the presence of long memory in the data can be

easily confused with structural change. Wrongly accounting for one when the

other is present or acknowledging only one when both are present may lead to

serious forecast failure. Given that it is often di¢ cult to distinguish between

the two, it is desirable to establish forecast methods that are robust to struc-
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tural change and also appropriately account for long memory persistence. Our

contribution is speci�cally to this end.

We approach the problem by exploiting an adaptive forecast strategy that

is recently advocated in Giraitis et al. (2013). This strategy is attractive in

many ways. First, it computes forecasts of a time series in a simplistic frame-

work of weighted average of past data and avoids complicated modelling of

structural breaks and consequent estimation of associated parameters. Sec-

ond, it utilises forecast methods which essentially function by downweighting

historical data. Such a class of methods includes rolling window forecasts,

forecast averaging across estimation windows, exponentially weighted moving

averages, among others and are largely considered to be robust to historical

and recent structural changes. Third, unlike most models which are designed

to tackle speci�c types of structural changes, predominantly breaks, the adap-

tive method makes minimal structural assumptions and is applicable to various

forms of structural changes ranging from breaks to smooth and cyclical trends.

By considering short-memory noise processes Giraitis et al. (2013) develop

an in-sample cross-validation based technique to tune the downweighting para-

meter and theoretically prove that such data-selected discount rate minimises

mean squared forecast error (MSFE) asymptotically. They con�rm empirical

usefulness of the methods by conducting a simulation study and applying it

to a large number of US time series. We extend their work by introducing

a more complex yet realistic forecasting environment where structural change

in a dynamic model is accompanied by noises with long memory persistence.

We consider a number of speci�c types of structural changes and provide de-

tailed theoretical justi�cation for asymptotic optimality of forecasts based on

the proposed methods. An extensive Monte Carlo study follows to illustrate

small sample performance of data-tuned robust methods. Finally, we take the

methods to real data and examine their e¤ectiveness by forecasting a number

of UK macroeconomic and �nancial time series.
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The thesis is organised in four chapters. Chapter 1 addresses the research

questions that are investigated in this dissertation and provides a brief sum-

mary of each chapter.

Chapter 2 reviews in details two well-known class of term structure models

�the no-arbitrage a¢ ne models and the Nelson-Siegel models, describes how

forecasts of future yields can be generated using the models and how macro-

economic information can be incorporated. Using monthly zero-coupon bond

yields of the UK, the predictive performance of the competing models, both

with and without macroeconomic information, are then compared. Detailed

robustness checks are conducted in order to check for time variation in models�

quality of forecasts.

Chapter 3 presents a survey of variants of Nelson-Siegel type yield curve

models � ranging from standard constant volatility atheoretical models to

arbitrage-free stochastic volatility models. We discuss how these models can

be exploited to produce density forecasts of interest rates. The models are

then evaluated in terms of their calibrated predictive density when applied in

forecasting the US yield curve. A number of criteria have been used to scruti-

nise quality of density forecasts and detailed results of out-of-sample forecast

exercise are reported.

Chapter 4 concentrates on a general problem of forecasting time series in

presence of structural change and long range persistence. A simple adaptive

forecast strategy which predicts by downweighting older data and relies on

data-dependent selection of a tuning parameter is revised and discussed. The-

oretical justi�cations for asymptotic optimality of such forecasts are presented

by considering processes with long memory noises. An extensive Monte Carlo

study con�rms good small sample performance of data-tuned discounting. A

detailed empirical forecast exercise using many UK time series show that the

methods are also practically useful.



Chapter 2

Forecasting the Term Structure

of UK Interest Rates

2.1 Introduction

The yield curve, often known as the term structure of interest rates, is one of

the most widely studied topics in both �nance and economics. It explicitly

looks at the relationship between di¤erent maturity periods of bonds (com-

monly government bonds which are free of default-risk) and interest rates

(yields) earned on them. Knowledge of the yield curve can be imperative for

researchers, policy makers and market participants for various reasons. Inter-

est rate models are the building blocks of fundamental �nancial activities such

as pricing assets, managing portfolios and hedging �nancial risks. The yield

curve has important implications in economics too. It has been documented

in the literature as one of the most reliable and consistent predictors of reces-

sion, in�ation and output growth (see Estrella and Mishkin (1998) and Stock
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and Watson (2003)). Its role as a successful economic indicator can be ef-

fectively exploited by central banks in formulating monetary policy decisions.

Debt policies can also be bene�ted from the term structure of interest rates

as it can help in deciding maturity lengths of newly issued bonds. It is not

surprising, therefore, that the yield curve has attracted a lot of interest from

researchers around the world and enormous amount of e¤orts has been devoted

to modelling and forecasting the term structure of interest rates. Despite sig-

ni�cant progress in the modelling aspect the task of accurately predicting the

yield curve, however, remains to be a challenging endeavour even today. Many

sophisticated yield curve models which show impressive �t to historical data

fail to produce forecasts better than mere �no-change�forecasts.

Academic literature has evolved mainly around two classes of term struc-

ture models, namely the a¢ ne term structure models and the Nelson-Siegel

models. Early development comes through the hands of a¢ ne models (Vasicek

(1977), Cox et al. (1985) and Du¢ e and Kan (1996)). These models express

yields as linear functions of a small number of state variables which are ex-

tracted from the cross-section of a spectrum of yields with di¤erent maturities.

An attractive feature of a¢ ne models is that they impose, by construction,

cross-equation restrictions to rule out risk-free arbitrage opportunities. Given

that most bond markets are well-organised and highly liquid, any arbitrage

opportunity is expected to be traded away by the market participants. By

ensuring absence of arbitrage a¢ ne models, thus, comply with a desirable the-

oretical requirement. De Jong (2000) and Dai and Singleton (2000) con�rm

the models�good ability to �t the yield curve in-sample, but Du¤ee (2002)

reports rather disappointing forecasting performance out-of-sample. An excel-

lent revision of a¢ ne term structure models is provided in Piazzesi (2010).

A second class of models proposed by Nelson and Siegel (1987) takes a

more statistical approach to approximating the yield curve in a factor model

framework by imposing a particular exponential structure on the factor load-
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ings. They show that despite having a concrete theoretical foundation their

parsimonious three-factor model is able to replicate various shapes of the yield

curve such as monotonic, concave, S-shaped etc. Several more �exible ex-

tensions of the model are later proposed by including additional factors (see

Svensson (1994), Björk and Christensen (1999)). Diebold and Li (2006) intro-

duce dynamics in the original static versions of the model. By using monthly

U.S. government bond yields they show that the dynamic Nelson-Siegel model

not only �ts the data very well in-sample but also produces accurate forecasts,

particularly over long forecast horizons. De Pooter (2007) compares predic-

tive performance of several multi-factor variants of the Nelson-Siegel model

and �nds that a more �exible four-factor model with two distinct slope factors

outperforms its two- and three-factor counterparts in terms of better in-sample

�t and out-of-sample forecasting. The Nelson-Siegel model has long been crit-

icised for not being arbitrage-free by design until Christensen et al. (2011)

develop a no-arbitrage version of the model. They demonstrate that imposing

freedom of arbitrage improves forecasts of dynamic Nelson-Siegel models when

predicting the U.S. yield curve.

The early and most basic versions of the term structure models have been

developed purely from �nancial interests and have long been studied without

considering any possible relationships of bond yields with wider economy. The

models typically employ only a small set of unobserved factors, often linked

to physical attributes of the yield curve such as its level, slope and curvature,

to explain movements along the term structure of interest rates and ignore

potential economic forces that could drive such movements. According to the

expectations theory of the term structure of interest rates long rates are ex-

pected values of the risk-adjusted future short rates. Short rates themselves

are popular policy instruments and are usually controlled by central banks

and other monetary authorities in response to change in macroeconomic con-
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ditions.1 It is, therefore, reasonable to infer that the entire yield curve responds

to macroeconomic shocks. Nonetheless, it is not more than a decade ago that

researchers have begun to exploit macroeconomic information in modelling

and forecasting the yield curve. Ang and Piazzesi (2003) incorporate two

macroeconomic factors, one related to in�ation and the other to real activ-

ity, in a standard no-arbitrage a¢ ne framework and constrain macro-yields

relationship to be unidirectional by allowing yields to depend on macro fac-

tors and not vice versa. They �nd that macroeconomic information not only

explains a healthy proportion of movements in the yield curve, particularly

in the short and medium rates, but also signi�cantly improves historically

documented poor forecasting performance of these classes of models. How-

ever, the forecast gains over the random walk is small and evaluated only at

one-month horizon. Diebold et al. (2006) analyse a more generic bidirec-

tional interactions between the yield curve and economy by augmenting three

macroeconomic variables (representing policy instrument, in�ation and real

activity) with the latent Nelson-Siegel factors. They report a number of im-

portant �ndings: there are strong correlations between in�ation and the level

factor and also between real activity and the slope factor and there is strong

evidence of causality from macro variables towards yield curve movements but

a weaker evidence of a reverse in�uence. Their focus, however, is entirely

on modelling the yield curve dynamics in-sample rather than out-of-sample

forecasting. A group of researchers adopts more structural approaches to ex-

plaining yield curve movements where they combine macroeconomic models

to no-arbitrage yield curve models. Important contributions come from Wu

(2006), Hördahl et al. (2006) and Rudebusch and Wu (2008). Amongst these

studies only Hördahl et al. (2006) test their model�s predictive ability with

1 The analogy dates back to Taylor (1993) who proposes a monetary policy rule to
determine how much the central banks should change the nominal interest rate in response
to changes in in�ation and output.
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a pseudo out-of-sample forecast exercise and report its superior performance

when forecasting German zero-coupon bond yields.

Recently another strand of literature has emerged motivated by an ar-

gument that central banks today set policy rate depending on a large set of

macroeconomic variables rather than only a few key indicators (Bernake and

Boivin (2003)). This would mean that a shock in one or more of the vari-

ables in the set would a¤ect the movements in the short end of the yield curve

and such e¤ects would then feed into the long end. Several papers explore

modelling and forecasting the U.S. yield curve in a data-rich environment by

exploiting the so called dynamic factor models and extracting a number of

factors from a large panel of macroeconomic time series. Favero et al. (2012),

Moench (2008) and De Pooter et al.(2010) using either Nelson-Siegel or no-

arbitrage a¢ ne models or using both models show that considering a broader

set of economic information is bene�cial for forecasting yields.

The principal objective of this thesis chapter is providing an empirical com-

parison of state-of-the-art models of term structure of interest rates based on

their performance in forecasting the UK yield curve. Although the literature

on yield curve modelling is rich with contributions of researchers around the

world, relatively few papers explore dynamic behaviour of the UK yield curve

with major contributions coming from the central bank researchers. Lildholdt

et al. (2007), using an a¢ ne macro-factor model, investigate historical �uctua-

tions in the UK yield curve and attribute the movements at the short-end of the

yield curve to change in monetary policy and that at the long-end to changes

in in�ation target. Kaminska (2012) augments a structural framework with a

standard no-arbitrage a¢ ne term structure model to argue that risk premia is

driven by structural macroeconomic shocks rather than by non-structural risk

components. Bianchi et al. (2009) adopted time-varying parameters and sto-

chastic volatilities in a standard Nelson-Siegel model with an aim to modelling

interaction between interest rates and macroeconomy and �nd that the bilat-
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eral relationship changes substantially across di¤erent policy regimes. While

all these studies con�rm material changes in dynamic properties of the UK

yield curve and their proposed models�reasonably good �t to historical data,

they remain silent about the models�ability to forecast future yields. This

essay contributes by exploring dynamic behaviour of the UK yield curve from

an out-of-sample forecasting perspective.

In its build up the chapter addresses several interesting issues related to

yield forecasting. A crucial one is possible time-variation in predictive perfor-

mance of term structure models. The time path of the UK yield curve has

undergone signi�cant changes. For example, following the adoption of in�a-

tion targeting policy in 1992 there is a large decline in its volatility. A latest

example is the recent �nancial crisis period of 2008-2010 which sees short-term

interest rates to plummet to their historical low and spread between short and

long rates to become extremely wide. It is, therefore, likely that a previously

well-performing model may forecast poorly during this changed environment

while a previously ill-performing model generates accurate forecasts. We shed

light on this by evaluating e¤ects of instability on quality of model forecasts.

Following recent literature, we also assess the role of macroeconomic informa-

tion in predicting yields. Like the bond yields many macroeconomic indicators

of the UK went through dramatic change during the 2008-2010 crisis, signalling

a recession. We contribute by investigating whether variations in macroeco-

nomic fundamentals can help in forecasting recent changes in yield dynamics.

To summarise, the objective of the paper is three-fold: �rst and foremost,

compare forecasting performance of models widely used in literature in pre-

dicting UK nominal zero-coupon bond yields. Second, determine whether the

forecasting performance of models evolve over time. And �nally, assess poten-

tial forecasting bene�t, if any, from incorporating macroeconomic variables in

standard model frameworks.

The �ndings of the paper can be summerised as follows: i) forecasting abil-



24

ity of models vary signi�cantly over time, ii) models without macroeconomic

information forecast well during periods when interest rates are relatively sta-

ble, iii) an a¢ ne model augmented with macro-factors consistently produces

accurate forecasts during the recent crisis period of near-zero short rates and

wide spread and iv) choice of expanding-window and rolling-window forecast-

ing schemes can a¤ect forecasting performance of certain models.

The chapter is organised as follows. Section 2.2 provides a comprehen-

sive description of the term structure models used for forecasting. Besides

presenting the econometric frameworks we explain how the models accommo-

date macroeconomic information and how they are estimated. Section 2.3

introduces and summarises empirical data containing both yields and macro-

economic variables for the UK. Results of in-sample �t of the models are

presented in section 2.4. Section 2.5 discusses the forecast methodology and

evaluation of forecasts generated by competing models. Section 2.6 concludes.

2.2 Term Structure Models

We compare predictive performance of two classes of multi-factor term struc-

ture models that are the most popular among academicians as well as prac-

titioners. The �rst class, the Nelson-Siegel model, functions by imposing a

speci�c exponential structure on the loadings of the factors and has been de-

veloped with an aim to capture various shapes of a typical yield curve. The

other class, the a¢ ne term structure model, is more founded on �nancial theory

and builds on cross-equation no-arbitrage restrictions. Variants of both mod-

els where some macroeconomic variables are entertained as yield-explaining

factors are also considered. We also include simple unrestricted linear dynam-

ics such as AR(1) on yield levels and random walk to serve as benchmarks. In

what follows we discuss in details the frameworks of the models, how macro-



25

economic information is incorporated and how the models are estimated.

2.2.1 The Dynamic Nelson-Siegel Model

The Yields-Only Model

Nelson and Siegel (1987) has proposed modelling the yield curve in an expo-

nential components framework using a mathematical approximating function

(a Laguerre polynomial) and showed that their parametrically parsimonious

speci�cation can provide enough smoothness and �exibility to capture varieties

of yield curve shapes. If ymt denotes the continuously compounded yield-to-

maturity of an m-period bond at time t, the functional form linking the yield

curve to maturities can be written as

y(m) = �1 + �2
1� e��m
�m

+ �3

�
1� e��m
�m

� e��m
�
; (2.2.1)

where �1, �2, �3 and � are the parameters of the model. � determines the

rate of exponential decay of the loadings on �2and �3. Although the Nelson-

Siegel model does not inherently enforce no-arbitrage assumption it certainly

complies with several desirable properties of zero-coupon yields. For example,

as maturity m tends to zero, the yield-to-maturity reduces to instantaneous

short rate, r and whenm increases inde�nitely, the yield-to-maturity converges

to �1, a constant.

The original Nelson-Siegel model is static in de�nition and is meant to �t

the cross section of yields of di¤erent maturities at a particular point in time.

Diebold and Li (2006) extend it to a dynamic factor model:

yt(m) = �1t + �2t
1� e��m
�m

+ �3t

�
1� e��m
�m

� e��m
�
; (2.2.2)

where �1t, �2t and �3t are now time-varying latent factors with associated

loadings of 1; 1�e
��m

�m
and 1�e��m

�m
� e��m. Depending on di¤erent limiting
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behaviours of the loadings Diebold and Li (2006) interprete �1t, �2t and �3t
as the level, the slope and the curvature of the yield curve, respectively. For

example, the loading on �1t is constant at 1 for all maturities. Consequently,

changes in �1t a¤ect all yields uniformly and thus control the level of the curve.

Loadings on �2t goes to one as m ! 0 but decays fast to zero as m ! 1:
Shocks in �2t, therefore, primarily a¤ect the short end of the yield curve and

thus induce variations in yield spreads. Finally, the loadings on �3t converges

to zero as m! 0 and m!1 but is concave in m. Accordingly, shocks in �3t
have a dominant e¤ect on yields with mid-term maturities and consequently,

on curvature of the entire yield curve. Diebold and Li (2006) consider factor

independence by allowing separate AR(1) dynamics for each factor and a more

general case of correlated factors by allowing also a single VAR(1) process.

Diebold et al. (2006) identify that the latent nature of the factors allows

the dynamic Nelson-Siegel model to be represented in a state-space system,

a framework which can explicitly handle time series models with unobserved

variables in a uni�ed methodology. The measurement equation is formulated

simply by adding maturity-speci�c stochastic error terms "t(m) on the right-

hand side of the yield equation (2.2.2). In matrix notations this can be written

as

Yt = �(�)�t + "t; t = 1; 2; :::; T; (2.2.3)

where Yt = [yt(m1); ::::::; yt(mN)]
0 is the vector of yields, �t = [�1t; �2t; �3t]

0 is

the vector of latent factors and "t = ["t(m1); ::::; "t(mN)]
0 is the vector of mea-

surement errors. These errors can arise from various sources such as methods

of yield extraction, mistakes in data entry, lack of synchrony in sampled data

etc. �(�) is a 3 � 3 matrix of factor loadings with its (i; j)-th element given
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by

�ij(�) =

8>>>>>><>>>>>>:
1;

(1� e��mi)=�mi;

1�e��mi
�mi

� e��mi ;

j = 1

j = 2

j = 3:

The state equation de�nes a VAR(1) factor dynamics which essentially

nests an AR(1) process:

�t = �+ ��t�1 + �t; �t v N(0;��); t = 1; 2; :::; T; (2.2.4)

where � is a 3�1 vector of factor means, � is a 3�3matrix of VAR coe¢ cients,
�t is a 3 � 1 vector of disturbances and �� is the variance-covariance matrix
of disturbances. Note that for an AR(1) dynamics � and �� are assumed to

be diagonal. A �nal assumption is that the measurement- and state-equation

disturbances are orthogonal to each other, i.e.,2664 "t

�t

3775 � NID
0BB@
2664 0N�1
03�1

3775 ;
2664 �"
��

3775
1CCA : (2.2.5)

The Yields-Macro Model

When extending the yields-only model to incorporate macroeconomic informa-

tion we closely follow Diebold et al. (2006) and include three variables, namely

o¢ cial bank rate (BRt), annual CPI In�ation (INFt) and unemployment rate

(Ut) as measures of policy instrument, in�ation rate and economic activity,

respectively.2 The macroeconomic variables enter the set of state variables

alongside the latent factors. A new state-space system is constructed with

2 According to Diebold et al. (2006) this is the minimal set of indicators that can explain
fundamental macroeconomic dynamics. Note, however, that while they use manufacturing
capacity utilisation of the US as one of the variables, due to unavailability of such a variable
for the UK we exploit unemployment rate to represent real activity in the economy.
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equations (2.2.3)-(2.2.5) substituted by

Yt = �(�)ft + "t; t = 1; 2; :::; T; (2.2.6)

ft = �+ �ft�1 + �t; �t v N(0;��); t = 1; 2; :::; T; (2.2.7)2664 "t

�t

3775 � NID
0BB@
2664 0N�1
06�1

3775 ;
2664 ��
��

3775
1CCA ; (2.2.8)

where ft = [BRt; INFt; Ut; �1t; �2t; �3t]
0 with dimensions of �, �, �t, � and

�� are increased accordingly to account for additional three macroeconomic

variables.3 We maintain the assumption of bidirectional causality between

yields and macroeconomic variables by allowing � and �� to be full matrices.

Estimation

For estimating the yields-only model we use both a two-step approach following

Diebold and Li (2006) and a one-step approach following Diebold et al. (2006).

The two-step approach requires � to be �xed which allows us to compute

the maturity-speci�c factor loadings in �(�).4 At each period t the measure-

ment equation (2.2.3) then reduces to a linear regression model and OLS is ap-

plied in the �rst step to obtain period by period estimates of �t = [�1t; �2t; �3t]
0

using the cross-section of the spectrum of yields. In step two, we specify the

dynamics of the latent factors by �tting the transition equation (2.2.4) and

estimating related parameters. We label these latent-factor models, estimated

in two stages, as NS2_AR and NS2_V AR depending on whether an AR(1)

3 � is now a 6 � 1 vector, � is a 6 � 6 matrix and � is an N � 6 matrix. We adopt
the same parsimonious representation as in Diebold et al. (2006) and restrict the three left
most columns of � to contain only zeros meaning that the macroeconomic variables have
no direct in�uence on yields and that three latent factors are su¢ cient to explain interest
rate dynamics.

4 Following Diebold and Li (2006) we set � = 0:0609 which maximizes the loading on �3
at a 30-month maturity.
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or a VAR(1) process has been considered for describing the evolution of the

factors.

The one step approach uses the state-space system of equations (2.2.3)-

(2.2.5) and applies a Kalman �lter-induced maximum likelihood method to

estimate all the parameters of the state and the measurement equations si-

multaneously, namely �, �, ��, �(�) and �". Thus, � is not �xed and esti-

mated together with other parameters. We consider a VAR(1) dynamics for

the factors by assuming that both � and �� are full matrices. We refer to this

one-step-estimated yields-only model as NS1.

Finally, for the model with macroeconomic variables we only apply the

one-step maximum likelihood approach to estimate the models in the state-

space system de�ned by equations (2.2.6) - (2.2.8) and denote this model as

NS_M .

2.2.2 A¢ ne Term Structure Model

The Yields-Only Model

While the structure imposed on factor loadings in a Nelson-Siegel model is

based on a convenient mathematical function used primarily to ensure smooth-

ness across yields, such a structure in an a¢ ne model is founded on some

cross-equation restrictions adopted for enforcing a theoretically desirable re-

quirement of freedom of arbitrage. Whether imposing such restrictions helps

in forecasting yields is still a debatable issue, but they can certainly help in

pricing bonds and other �nancial instruments and estimating yields of un-

observed intermediate maturities in a �nancially consistent manner. A¢ ne

models have been developed and have long been studied in a continuous-time

environment with specifying a di¤usion process for latent factor dynamics

(Du¢ e and Kan (1996)). In our analysis we, however, adopt a discrete-time
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version of the models proposed in Ang and Piazzesi (2003). In particular, we

assume a zero-mean Gaussian VAR(1) dynamics for a set of K latent factors,

F = [l1; l2; ::; lK ]
0 which drive the movements of the yield curve:

Ft = 	Ft�1 + ut; (2.2.9)

where, ut v N(0;��0) with � being a lower triangular Cholesky matrix and
	 is a K � K matrix of coe¢ cients which govern the dynamics. The short

rate is assumed to be an a¢ ne function of the factors:

rt = �0 + �
0

1Ft; (2.2.10)

where �0 is a scalar and �1 is a K�1 vector. The nominal pricing kernel which
is assumed to price all assets in the economy, is modelled as5

Mt+1 = exp(�rt � 0:5�
0

t�t � �
0

tut+1); (2.2.11)

where �t are market prices of risk which are assumed to be a¢ ne in the un-

derlying state variables and depend only on contemporaneous observations of

the model factors. The risk pricing equation, therefore, takes the form

�t = �0 + �1Ft; (2.2.12)

where �0 is a K � 1 vector and �1 is a K � K matrix. In an arbitrage-free

market, the price of an m-months to maturity zero-coupon bond in period t

must equal the expected discounted value of the price of an (m � 1)-months
to maturity bond in period t+ 1. This leads to the recursive pricing formula:

Pmt = Et[Mt+1P
m�1
t+1 ]; (2.2.13)

where the expectation is taken under the risk-neutral measure. The bond

prices are then exponential linear functions of the state vector:

Pmt = exp(Am +B
0

mFt); (2.2.14)

5 The pricing kernel is also known as the stochastic discount factor.
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where the scalar Am and the K-dimensional coe¢ cient vector Bm depend on

the time-to-maturiy m. Ang and Piazzesi (2003) show that imposing no-

arbitrage results in the following recursive equations for bond pricing coe¢ -

cients:

Am = Am�1 +B
0

m�1(�� ��0) + 0:5B0m��
0
Bm � �0; (2.2.15)

B
0

m = B
0

m�1 (	� ��1)� �
0

1; (2.2.16)

with A1 = ��0 and B1 = ��1. 6

The continuously compounded yield on an m-period zero-coupon bond is

then given by

yt(m) = � log p
m
t

m
(2.2.17)

= am + b
0

mFt; (2.2.18)

where am = �Am=m and bm = �B0m=m. Thus, the yields are also a¢ ne
functions of the state variables Ft.

The a¢ ne term structure model, analogously to its Nelson-Siegel counter-

part, can be easily cast into a compact state-space framework. The transition

and the measurement equations of the system can be summarised as

Ft = 	Ft�1 + ut; (2.2.19)

Yt = A+BFt + vt; (2.2.20)

�
ut
vt

�
v IIDN

0BB@�0N�10K�1

�
;

2664�u 0

0 �v

3775
1CCA ; (2.2.21)

where Yt = [yt(m1); yt(m2); :::::; yt(mN)]
0 is a vector of all N yields at hand,

A = [am1 ; am2 ; ::::; amN
]
0
is a N � 1 vector and B = [bm1 ; bm2 ; ::::; bmN

]
0
is a

6 See Ang and Piazzesi (2003) or Moench (2008) for detailed derivation of these recursive
formulae.
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N � K matrix of bond pricing coe¢ cients de�ned by equations (2.2.15) and

(2.2.16). vt is a vector of i.i.d. Gaussian measurement errors with variance-

covariance matrix �v and �u = ��
0
. We refer to the yields-only no-arbitrage

a¢ ne model as ATSM .

Following common practice we set K = 3 to adopt a three-factor model

where the latent factors are interpreted as level, slope and curvature of the

yield curve. Dai and Singleton (2000) show that in a VAR setting linear trans-

formation and rotation of unobserved factors achieve observationally equiva-

lent yields. Following Ang and Piazzesi (2003) we identify the factors in the

Gaussian speci�cation by adopting the a simple normalisation where we as-

sume that 	 is lower-triangular and �u is an identity matrix I. Then, �0 is

the unconditional mean of the observed short-rate (which we approximate by

the 3-month treasury bill rate). Similar to the the Nelson-Siegel models we

assume �v to be diagonal.

The Yields-Macro Model

Adding macroeconomic information in a¢ ne models is as straightforward as in

Nelson-Siegel models. We follow Ang and Piazzesi (2003) to �rst collect time

series information on a number of variables related to in�ation and economic

activity and standardise each series to have zero mean and unit variance.7

Then, we extract the �rst principal components from each group, namely

�in�ation�and �economic activity�and denote them asM1 andM2, respectively.

We restrict the macro factors to follow a simple VAR(1) process in order

to keep the model parsimonious in terms of parameters.8 The state-space

representation of the model with macro factors then consists of the following

7 We describe all the macroeconomic variables in section 2.3.
8 Ang and Piazzesi (2003), however, adopted a VAR(12) dynamics for the macro fac-

tors. But unlike their study the principal goal of our work is forecasting and so parametric
parsimony of a dynamic model is desirable.
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equations:

Zt = 	Zt�1 + ut; (2.2.22)

Yt = A+BZt + vt; (2.2.23)

�
ut
vt

�
v IIDN

0BB@� 0q�1
0(K+2)�1

�
;

2664�u 0

0 �v

3775
1CCA ; (2.2.24)

where Zt = [M1;M2; F
0
t ]
0 and dimensions of 	; ut and �u are increased accord-

ingly to adjust for additional observed macroeconomic factors. Following Ang

and Piazzesi (2003) we impose independence between the latent and macro

factors.9 This implies that for a model with three latent factors the lower-left

3 � 2 corner and the upper-right 2 � 3 corner of 	 in the state-space system
(2.2.22)-(2.2.23) contain only zeros. The lower-right 3� 3 corner is restricted
to be lower-triangular to match desirable canonical representation of latent

factors. We refer to the macro-added a¢ ne model as ATSM_M .

Estimation

Both the yields-only model, ATSM and the yields-macro model, ATSM_M

are estimated in one-step by using the associated state-space representations

and applying the Kalman-�lter induced maximum likelihood estimation process.

This allows simultaneous estimation of all parameters and extraction of latent

yield factors in a uni�ed framework.

9 This strong assumption has two drawbacks. First, it de�es historical evidence that
the term structure predicts macroeconomic dynamics and the general logic that policy rate
a¤ects in�ation and economic activity (see Ang and Piazzesi (2003)).
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The Benchmark and a Simple Competitor

Random Walk

Since time series of bond yields show high persistence, a driftless random

walk (RW) process is often found to capture yield dynamics very well. The

yields are modelled as

yt(m) = yt�1(m) + �(m)�t(m); �t(m) � N(0; 1): (2.2.25)

The model implies that interest rates are not predictable and any forecast

is taken to be the last available observation. It is well-documented in the em-

pirical literature that standard term structure models struggle to outperform

the naive random walk forecasts (e.g., Du¤ee (2002), Ang and Piazzesi (2003)

and Diebold and Li (2006)). Therefore, we use the �no change� forecast as

the benchmark against which we compare the forecasts of all other competing

models.

AR(1) on Yield Levels

The term structure literature often �nds simple and parsimonious models

to produce more accurate forecasts than sophisticated models. We, therefore,

present an univariate AR(1) on yield levels which often produces good yield

forecasts. The AR(1) dynamics is given by

yt(m) = c(m) + 
(m)yt�1(m) + �(m)�t(m); �t(m) � N(0; 1); (2.2.26)

where c(m), 
(m) and �(m) are scalar parameters.

We denote this model as AR and treat it like a second benchmark.

2.3 Data Description

The data set for our empirical analysis consists of monthly UK nominal zero-

coupon bond yields from January 1989 to November 2010. We use end-month
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spot interest rates reported at �xed maturities of 3, 12, 15, 18, 21, 24, 30,

36, 48, 60, 72, 84, 96, 108 and 120 months. Yields at maturities of one year

and longer have been downloaded from the Bank of England website which

publish them in daily frequency.10 These yields have been derived from UK

government bond (gilt) prices and General Collateral (GC) repo rates by ap-

plying a spline based estimation technique.11 The shortest yield of 3-month

maturity is, however, proxied by the 3-month treasury bill rate which has been

downloaded using Datastream. We do so because of absence of repo market

and consequent irregular availability of yields at very short maturities (less

than one year) before March, 1997.

Figure 2.A.1 plots a subset of the sample yields over time. In the begin-

ning of the sample the UK experience an inverted yield curve with higher yields

at shorter maturities. Levels of yields are in general high ranging between 9%

to 13%. During the period 1989-1999 the yields remain more or less volatile.

First, there is a sharp increase in all the yields in the year 1989 and they reach

their highest levels in a year time. This period is then followed by a longer

period of plummeting rates which lasts till the beginning of 1994. Moderate

amount of �uctuations remains till the end of 1999. 2000-2007 is a period of a

more stable and �atter yield curve with yields at di¤erent maturities staying

close to each other. Following the start of the recent global �nancial crisis in

the third quarter of 2007 the short yields drop abruptly to their historical low

in reaction to a lowered o¢ cial bank rate by the Bank of England. The longest

rate does not, however, decline as much creating a very wide spread between

the short and long end of the yield curve.

Descriptive statistics of yields are presented in Table 2.B.1. The average

yield curve is downward sloping over maturities of 3 months to 1 year, but

10 The Bank of England website is www.bankofengland.co.uk.
11 See Anderson and Sleath (2001) for detailed technical description of the estimation

method.
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is upward sloping from then onwards. The standard deviations and sample

autocorrelations suggest that volatility decreases with maturity and long rates

are more persistent than the short rates. The shapes of the mean and median

yield curve is very di¤erent: while the short end of the average curve is down-

ward sloping, it is upward sloping for the median curve and while mid-to-long

end of the average curve is upward sloping, it is downward sloping for me-

dian curve. These facts, together with reported non-zero skewness and excess

kurtosis, imply that yields are probably non-normal. Yields of di¤erent matu-

rities are highly correlated and the closer the maturities are to each other the

stronger is the relation. The weakest correlation of 87% is observed between

the 3-month treasury bill rate and 10-year yield.

For macroeconomic information we include the o¢ cial bank rate as a mea-

sure of policy instrument, a group of in�ation related variables namely con-

sumer�s price index (CPI), producer�s price index (PPI) and retailer�s price

index (RPI) and a group of economic activity related variables namely unem-

ployment rate, the claimant count rate, the growth in employment and annual

growth in index of production (IOP). Time series data on the o¢ cial bank rate

are collected from the website of Bank of England, while the remaining are

downloaded from the website of O¢ ce for National Statistics12. The sample

time period for each macroeconomic series coincides with that for the yield

data.

Figure 2.A.2 shows time series plots of three key macroeconomic variables

- the o¢ cial bank rate, CPI in�ation and unemployment rate. For each series

we can identify three di¤erent time periods with distinctive patterns. During

early to mid 90s all the three curves show noticeable movements and reach

their maximums for the sample. The bank rate falls substantially after rising

to the highest level of 15%, in�ation rate �uctuates between 6% to 8% after an

initial increase and then fall sharply to 2%, and unemployment rate rises and

12 www.statistics.gov.uk
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exceeds 10% and is then followed by a gradual decrease. Mid 90�s to the third

quarter of the year 2007 marks the period of stability. The bank rate stays

close to 5%, in�ation rate remains within the BOE�s target rate of 2% and

unemployment rate slowly drops to 5% and is maintained at that level. The

global �nancial crisis that starts on September, 2007 breaks the stability and

the macroeconomic series begin to show some aberrant behaviours following

the crisis. The bank rate is adjusted and held �xed at its historical lowest

level of 0.5%, in�ation becomes volatile with sharp �uctuations between 1%

and 5%, and unemployment rises by almost 2% to 7%.

2.4 In-Sample Performance

Although our principal interest is systematic evaluation of forecast ability of

competing term structure models, we begin our empirical analysis by assess-

ing how well the models �t the cross-section of the UK yield curve. We use

root mean squared error (RMSE) of �tted residuals, a standard and widely

used evaluation criterion, for measuring the goodness of model �t. Provided

that both Nelson-Siegel and a¢ ne term structure models have good empirical

records of estimating bond yields we expect good in-sample performance from

all the models. Results presented in Table 2.B.2 con�rm this. Small values

of RMSE, expressed in percentages, indicate that overall the models �t the

data well. Noticeable di¤erence in RMSE values of the NS2_AR and NS1

models implies that the quality of data-�t of the Nelson-Siegel models varies

depending on whether factors are assumed to be independent or correlated, if

� parameter is treated to be �xed or estimated freely and/or whether model

is estimated in one or two steps. Identical �t for the NS1 and NS_M models

indicates that there is no signi�cant bene�t from incorporating macroeconomic
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information in Nelson-Siegel models.13 Adding macroeconomic fundamentals,

however, clearly improves the �t of a¢ ne term structure models. The macro-

yields model, ATSM_M reports RMSEs which are consistently lower than

those of its yields-only counterpart, ATSM . Gains are, however, small. Over-

all, the Nelson-Siegel models, NS1 and NS_M provide better �t than the

independent factor speci�cation, NS2_AR and the two a¢ ne models, except

for the 3-month yield and yields with maturities longer than seven years.

It is well recognised in term structure literature that a small number of

factors that can be distilled from the cross-section of yields are su¢ cient to de-

scribe variations in the entire yield curve (e.g., see Litterman and Scheinkman

(1991), Bliss (1997)). A factor model with three latent factors is the most com-

monly used speci�cation and the factors are often linked to three attributes

of the yield curve - namely level, slope and curvature (see Litterman and

Scheinkman (1991) and Diebold and Li (2006)). Another way of evaluating

how well our three-factor Nelson-Siegel and a¢ ne models �t the UK yields is

to look at the agreement between time series plots of actual level, slope and

curvature of the sample yield curve and model extracted factors. The plots

are presented in Figure 2.A.3.14 We follow Diebold and Li (2006) in de�ning

the true level, slope and curvature as the 10-year yield, the di¤erence between

the 10-year and 3-month yield, and twice the 2-year yield minus the sum of

3-month and 10-year yield, respectively. Close agreement between empirical

and model generated factors indicates good approximation to yield dynamics

by both the Nelson-Siegel and a¢ ne models.

13 RMSE values of the NS1 and NS_M models are not exactly identical, but di¤erences
are too small to be observed in percentage values expressed in three decimal points.
14 Since factors generated by di¤erent models operate at di¤erent levels we standardise

them for a fare comparison.
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2.5 Out-of-Sample Forecasting

In this section we evaluate the predictive performance of competing forecast-

ing models. Alongside standard yields-only versions we use variants of these

models which incorporate macroeconomic variables. The models are applied to

generate forecasts of future government bond yields of the UK and compared

in terms of forecast accuracy. We investigate a number of issues: whether

additional macroeconomic information helps in out-of-sample forecasting and

whether predictive ability of models changes over time. In what follows we se-

quentially describe the forecast design and how the forecasts are constructed,

and �nally, discuss the results of the forecasting exercise.

2.5.1 Forecast Procedure

We generate model forecasts by adopting separate recursive and rolling-window

estimation procedures. The two schemes di¤er in terms of how much of the

past information is used for making a forecast in the future. Under the re-

cursive scheme, often called an expanding-window scheme, parameters of a

model are estimated using all data available at each forecast origin (the point

in time when a forecast is made). Under a rolling-window scheme, however, a

data-window of �xed size is rolled over the full sample to update the parame-

ter estimates and generate future forecasts at each forecast origin. For each

strategy we use the most up-to-date information available at the time when

a forecast is made. Rossi (2012) argues that choice of expanding or rolling

window estimation may play an important role in forecasting in presence of

structural breaks. Rolling estimation is expected to forecast better in case of

large and recurrent breaks while recursive estimation is expected to be ad-

vantageous when breaks are small or absent. Although we do not speci�cally

test for breaks in our sample yields series, it is our interest to investigate how
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application of rolling and recursive schemes a¤ects forecast accuracy of our

competing models, particularly during the period of unusually low short rates

following the recent �nancial crisis.

We construct 1-, 6- and 12-month-ahead forecasts over the period 2001:1-

2010:11. We decide to keep the forecast period and consequently, the number

of forecasts �xed irrespective of the length of forecast horizon.15 Such a design

allows us to directly compare the quality of forecasts made at di¤erent hori-

zons but requires that we adjust estimation sample according to the length

of the forecast horizon. Thus, when generating 1-month-ahead forecasts using

the recursive scheme the initial estimation window is set to 1989:1-2000:12 so

that the �rst forecast is made at 2001:1 and the last estimation window is

set to 1989:1-2010:10 so that the last forecast is made at 2010:11. For longer

horizons we reduce the estimation sample in order to maintain a �xed number

of 119 out-of-sample forecasts. For example, the �rst estimation window for

12-month-ahead prediction is 1989:1-2000:1 so that the �rst forecast is made

at 2001:1 and the last estimation window is 1989:1-2009:11 so that the last

forecast is made at 2010:11. Under rolling-window estimation scheme we gen-

erate forecasts over the same forecast period 2001:1-2010:11. For each forecast

horizon h we keep the size of the estimation window �xed at 133 observa-

tions. This, however, requires that the initial estimation period is di¤erent

for di¤erent h. For example, when forecasting 1-month-ahead the initial esti-

mation window is 1989:12-2000:12 so that the forecast is made at 2001:1 and

the last estimation window is 1999:10-2010:10 so that the last forecast is made

at 2010:11. When forecasting 12-month-ahead, however, the �rst estimation

window is 1989:1-2000:1 so that the �rst forecast is made at 2001:1 and the

last estimation window is 1998:11-2009:11 so that the last forecast is made

15 This is important because one of our objectives is to compare forecasts at various
horizons made over the �nancial crisis period which constitute the last 35 months of the
sample.
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at 2010:11. When predicting yields multi-period ahead, we construct iter-

ated forecasts where the one-period-ahead model is iterated forward to make

forecasts at longer horizons.

2.5.2 Construction of Forecasts

We describe below how out-of-sample forecasts are computed for all the re-

ported models including the benchmark. As mentioned earlier, we use an

iterative approach to generate multi-step ahead forecasts.

Nelson-Siegel Models

Once the parameter vector f�;�;��;�"; �g of the state-space system is es-

timated at each time point t, an h-step-ahead forecast of the state vector

is computed by iterating forward the estimated state equations (2.2.4) and

(2.2.7): b�t+hjt = �h�1P
i=0

b�i� b�+ b�hb�t; (2.5.1)

bft+hjt = �h�1P
i=0

b�i� b�+ b�hbft: (2.5.2)

Equation (2.5.1) corresponds to the yields-only models,NS2_AR,NS2_V AR

andNS1, and equation (2.5.2) corresponds to the yields-macro model,NS_M .

The h-step-ahead yield forecasts are then made by substituting the factor fore-

casts in the estimated measurement equations:

bYt+h = �(b�)b�t+hjt; (2.5.3)

bYt+h = �(b�)bft+hjt: (2.5.4)

Note that for the model NS2_AR; which is estimated in two steps, b� =
� = 0:0609 is �xed.
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A¢ ne Term Structure Models

Similar to the Nelson-Siegel models, when the parameter vector f	; �1; �0; �1;�vg
of the a¢ ne models is estimated at any forecast origin, the h-step-ahead fore-

casts of state variables are computed by iterating forward the estimated state

equations (2.2.19) and (2.2.22):

bFt+hjt = b	h bFt; (2.5.5)

bZt+hjt = b	h bZt: (2.5.6)

Equation (2.5.5) corresponds to the yields-only model, ATSM and equa-

tion (2.5.6) corresponds to the yields-macro model, ATSM_M .

Estimated state and measurement equation parameters are placed in re-

cursive pricing equations (2.2.15) and (2.2.16) to obtain estimates of A and

B. Finally, the h-step-ahead yield forecasts are then made by substituting the

factors by their forecasts in the estimated measurement equations:

bYt+h = bA+ bB bFt+hjt; (2.5.7)

bYt+h = bA+ bB bZt+hjt: (2.5.8)

Random Walk

The benchmark forecast is simply the �last available observation�or �no-change�

forecast, i.e., byt+h(mi) = yt(mi):

AR(1) on Yield Levels

We use the OLS to estimate at each forecast origin the parameters c and 
 of

the AR(1) process (2.2.26) and then construct the h-step-ahead forecasts of
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yields with maturity mi as

byt+h(mi) =

�
h�1P
i=0

b
(mi)

�bc(mi) + b
h(mi)yt:

2.5.3 Forecast Evaluation Criteria and Tests for Model

Comparison

We evaluate the quality of forecasts by computing root mean squared forecast

error (RMSFE). It is a popular measure of predictive performance of time

series models and is symmetric in nature as it penalises negative and positive

errors equally. The smaller the value of RMSFE the better is the forecast

accuracy of a model. Let byjt+h(m) denote the h-month-ahead forecast of an
m-maturity yield yt+h(m) made by model j. Then the associated RMSFE is

de�ned by

RMSFEjm;h =

r
1

Tn

P�byjt+h(m)� yt+h(m)�2;
where the sum is computed over total number of forecasts, Tn.

We compare the predictive performance of models by reporting RMSFEs

relative to the benchmark which is the random walk. The relative root mean

squared forecast error (RRMSFE) is computed as:

RRMSFEjm;h =
RMSFEjm;h
RMSFERWm;h

A value of RRMSFEjm;h smaller than one indicates that model j forecasts

better than the random walk.

In order to assess statistical signi�cance of any forecast gain or loss relative

to the benchmark we apply the unconditional version of Giacomini and White

(2006) test of forecast comparison. The null hypothesis of the test is that

of equal predictive performance (measured in terms of loss functions such as

squared errors) of two competing models. One major advantage of the test

is that it can be e¤ectively applied to forecasts based on both nested and
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non-nested models.16 The test is robust to choice of estimation procedures

(e.g., Bayesian and fully-, semi- and non-parametric methods) but requires

that the size of estimation sample be �nite. We could, therefore, apply the

test only for the rolling-window based forecasting exercise. For the expanding-

window estimation scheme we only report the RRMSFE without commenting

on statistical signi�cance of any predictive gain.

Giacomini and Rossi (2010) argue that in presence of instability standard

tests of forecast accuracy are not insightful and propose a more appropriate

�uctuation test for testing statistical signi�cance of evolving relative forecast

performance of two competing models. During our forecast period 2001:1 -

2010:11 the UK yield curve shows changing behaviours: a period of stability is

followed by some erratic characteristics during the �nancial crisis, such as dra-

matic fall of short rates and pronounced widening of spread. We, therefore, use

the �uctuation test to evaluate signi�cance of possible time variation in predic-

tive ability of a forecast model relative to random walk, the benchmark. The

test statistic is calculated as standardised di¤erence between the MSFEjm;h
and MSFERWm;h computed over a rolling-window of 35-months. Negative val-

ues of the test statistic imply that the model under consideration is better

than the random walk. Giacomini and Rossi (2010) report critical values of

the test. Since the test statistic is equivalent to that of Giacomini and White

(2006) test it can also be used only for the rolling-window forecasts.

2.5.4 Forecast Results

Results of model performance for the entire forecasting period of 2001:1-

2010:11 are presented in Table 2.B.3. The table has two horizontal panels,

16 This is particularly important for our study since many of the forecasting models nest
the random walk benchmark. Alternative tests such as Diebold and Mariano (1995) test
are not suitable for comparing nested models, and therefore, avoided.
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panel (a) reporting results for the recursive forecasts and panel (b) report-

ing results for the rolling-window forecasts. Each panel is again divided into

three vertical blocks containing results for three di¤erent forecast horizons:

1-month, 6-month and 12-month. The second row in each block reports �ve

selected maturities ranging from 3 months to 10 years, while the remaining

rows report the root mean squared forecast errors relative to random walk,

RRMSFE . A value of RRMSFE smaller than one implies that the model

under consideration outperforms the random walk benchmark. The bold num-

ber under each maturity represents the minimum RRMSFE identifying the

best forecasting model. An asterisk indicates that the predictive gain over

random walk is statistically signi�cant under Giacomini and White (2006)

test (�*�and �**�indicate signi�cance at 10% and 5% levels, respectively).

In order to check temporal robustness of our forecast results we further

conduct a stability check by evaluating predictive performance over two non-

overlapping sub-samples. The �rst subsample consists of the �rst seven years

of the forecast period, during which the interest rates are relatively less volatile

and the spread between the long and short rates are particularly narrow. The

second sub-sample span the last 35 months of the forecast period and is marked

by near-zero short term yields and wide spread. RRMSFE results for the two

sub-periods are reported inTables 2.B.4 - 2.B.5. These tables are structured

and interpreted the same way as the full-sample tableTable 2.B.3. We discuss

the results of the forecasting exercise in details below.

Full Sample Results

Sample 2001:1 - 2010:11

From panel (a) of Table 2.B.3 we �nd that the 1-month-ahead forecast

results under the recursive scheme are very mixed. No single model stands

out to be the best predictor by outperforming the random walk across all or
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many maturities. Most of the models, however, forecast the shortest rate of

3-month maturity very well and no-arbitrage a¢ ne models yield the largest

RRMSFE reductions of about 8%. Poor forecasting performance relative to

the benchmark does not improve at longer horizons except that when fore-

casting 12-month-ahead the two speci�cations of the Nelson-Siegel yields-only

models, denoted as NS2_AR and NS1, predict the 3-month and 12-month

yield more accurately than the �last observation�benchmark. The AR(1) on

yields level forecasts the short end of the yield curve reasonably well. Models

that incorporate additional macroeconomic information generate inferior fore-

casts compared to their yields-only counterparts. Overall, the random walk

shows the best predictive ability and any gain over it is small.

Results of the rolling-window scheme, presented in panel (b), show a more

clear pattern in the relative forecasting performance of individual models. At

1-month horizon, the no-arbitrage a¢ ne term structure model with macroeco-

nomic factors, namely the ATSM_M , consistently beats the random walk

for all yields, except for that of 10-year maturity. This result is very much

in line with the �ndings of Ang and Piazzesi (2003) who report impressive

1-month ahead predictive performance of a similar model when forecasting

the US zero-coupon bond yields. The advantage of the ATSM_M model

over other competing models does not, however, sustain over longer forecast

horizons. At 6-month horizon, the Nelson-Siegel yields-only model with an

AR(1) factor dynamics, the NS2_AR model shows the most consistent fore-

cast accuracy. Most of the gains are, however, not statistically signi�cant.

The 12-month-ahead forecasts reveal a similar story as has been established

under the recursive scheme: the yields-only models produce superior forecasts

of short yields and adding macroeconomic fundamentals appears to be disad-

vantageous for forecasting at longer horizons. One major distinction between

the results of rolling- and expanding-window exercises is that of a relatively

much worse performance of the NS_M model in the former. When forecast-
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ing 12-month-ahead using a recursive scheme, penalties relative to benchmark

random walk range between 11%-20%. But with forecasting using rolling-

windows such costs lie within a much higher range of 50%-140% and increase

with maturity. These �ndings possibly imply that the heavily parameterised

yields-macro Nelson-Siegel model may require accounting for information of

distant past for its stable estimation and generation of reasonable forecasts.

Subsample Results

Sample 2001:1 - 2007:12

During this relatively long subsample the UK yield curves remain stable

and yields with di¤erent maturities stay close to each other. Panel (a) of

Table 2.B.4 contains results for the recursive forecasting scheme. Like the

full-sample exercise RRMSFE result at 1-month horizon is inconclusive and

does not guide towards a clear preference for a best model. However, as the

forecast horizon increases, a de�nitive pattern emerges. Apparently, over 6-

and 12-month horizons the NS2_AR model systematically beats all its com-

petitors across almost all reported maturities. This result resembles the over-

whelming long-horizon predictive accuracy of the NS2_AR model observed

in Diebold and Li (2006) while forecasting US yields. At longer horizons the

NS2_V AR model fares reasonably well against the benchmark, but the NS1

model performs poorly. This �nding implies that during the period of stable

interest rates a VAR(1) factor-dynamics is helping in forecasting only when

the Nelson-Siegel model is estimated in two steps and/or � parameter is held

�xed at 0.0609. The no-arbitrage a¢ ne models render worse predictive abil-

ity than the random walk benchmark. Finally, incorporating macroeconomic

information deteriorates forecast accuracy of yields-only models, as is evident

from large RRMSFEs of the macro-yields models NS_M and ATSM_M .

Most of the �ndings under recursive forecasting also hold for the rolling-
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window exercise. For example, the NS2_AR model maintains supreme pre-

dictive ability and dominates alternative models. Its gains against the bench-

mark random walk are larger than in recursive case and are mostly statistically

signi�cant, particularly at longer forecast horizons. For 12-month-ahead fore-

casts the margins of signi�cant outperformance is as high as 16% to 26%. In

general, the impact of using macroeconomic variables in forecasting is neg-

ative except for the fact that they improve predictive ability of the NS_M

model when forecasting the longest yield of 10-year maturity. This is inter-

esting considering the fact that the NS_M model performs miserably on the

whole sample. Results of rolling-window scheme that are noticeably di¤erent

from those of recursive exercise include relatively better and statistically sig-

ni�cant 1-month-ahead forecast of the yields-only model ATSM and worse

performance of the NS2_V AR model in the former.

Sample 2008:1 - 2010:11

This 35-month subperiod accommodates the recent �nancial crisis expe-

rienced by the UK and not surprisingly records some irregular behaviour on

the part of the yield curve. During this period the short rates decline sharply

by about 4.5% from 5% to 0.5% and the spreads between the long and the

short rates widen substantially. Thus, this subsample o¤ers us a platform to

investigate whether the crisis has any impact on the relative forecasting power

of the competing term structure models. We �rst analyse panel (a) of Table

2.B.5 that reports the expanding-window results. The sole domination of the

NS2_AR model observed during the pre-crisis period vanishes. It fails to out-

perform the benchmark random walk, except for only the 3-month rate. At the

longest forecast horizon of 12-month, the NS_M model forecasts the 3- and

12-month rate better than the benchmark, the NS2_AR and the NS2_V AR,

but it is outperformed by the NS1 model which is the most accurate. This

suggests that improvement in the predictive power of the Nelson-Siegel models

is attributable to estimating them in one-step within a state-space framework,
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rather than to taking macroeconomic information into account. The macro-

economic fundamentals, however, clearly helps the no-arbitrage a¢ ne models

in forecasting the short-term yields. The ATSM_M model predicts the 3-

and 12-month rates most accurately at the 6-month forecast horizon and is

able to surpass random walk and the yields-only a¢ ne model ATSM in fore-

casting the same rates at 12-month horizon. A simple AR(1) model also shows

reasonably good predictive performance.

The rolling-window results, reported in panel (b) of Table 2.B.5, render

convincing evidence of strikingly superior forecasting accuracy of theATSM_M

model. For 1-month-ahead forecasts it comfortably outperforms random walk

and other competitors across all maturities except 10-year. Gains over ran-

dom walk are large and range between 9% to 18%. This dominant feat is

carried also to longer forecast horizons. At 12-month horizon the ATSM_M

model achieves highly signi�cant RRMSFE reduction of 21% and 34% over

the benchmark for yields with 3-year and 5-year maturities, respectively. The

yields-only model ATSM also does well, but adding macroeconomic factors

seems to play an important role in improving forecast accuracy on a¢ ne models

during the �nancial crisis. Overall, no-arbitrage a¢ ne models forecast better

than their Nelson-Siegel counterparts. Similar to the �ndings as in the re-

cursive scheme, disappointing predictive performance of the NS2_AR model

is evident. Models with VAR(1) factor dynamics, such as the NS2_V AR

and NS1 show occasional good forecasting accuracy, particularly at the short

end of the yield curve. The model that su¤ers the most in predicting yields

is the NS_M model, reporting at times RMSFE values which are 2 to 3

times larger than those of random walk. This performance of the NS_M is

relatively much worse than its rolling-window performance in the pre-crisis

period. Interestingly, its yields-only counterpart, the NS1 model, shows a

reverse pattern by forecasting consistently better in the crisis period than in

the pre-crisis period, particularly at longer horizons. These observations imply
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that structural change in the macroeconomic variables and yields during the

crisis period may have played a role in the forecast failure of the heavily pa-

rameterised model NS_M . However, a comparison between rolling-window

and recursive forecasts con�rms that the inferior rolling-window performance is

potentially due to accounting for recent data and discarding older information.

Testing Time-varying Predictive Ability

It is evident from the sub-sample analysis that the models perform di¤erently

across subperiods. A clear example is the NS2_AR model which dominates

other competing models in the �rst sub-sample, but forecasts miserably in the

second subsample. Another example is the ATSM_M model which demon-

strates an exact opposite forecast pattern by yielding unsatisfactory predic-

tive performance in the �rst subsample and producing superior forecasts in

the second. As we have discussed earlier, we further investigate possible time-

variation in forecast accuracy of models by exploiting the �uctuation test of

Giacomini and Rossi (2010). The test tracks relative accuracy of two compet-

ing models over time and monitors for signi�cant deviations in performance.

Figures 2.A.4 - 2.A.6 plot the evolution of the �uctuation test statistics

with their critical values for 1-month, 6-month and 12-month forecast hori-

zons, respectively. Each �gure has two panels. Panel (a) reports the results

for the 12-month yield and panel (b) reports the results for a relatively longer

5-year yield.

Figure 2.A.4 shows that in the �rst few years of the out-of-sample period

only the AR(1) model produces forecasts of the 12-month yields that are sig-

ni�cantly worse than those of the random walk. Otherwise, for yields of bonds

with maturities of both 12 and 60 months, forecasts of competing models are

not signi�cantly di¤erent from random walk forecasts until mid 2007. Since

then the models� forecasting power, however, starts to change dramatically.
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The only model that consistently and signi�cantly outperforms the random

walk during the post-2007 �nancial crisis period is the ATSM_M model. All

other models show traces of inferior forecasting ability after some time. For

many of them predictive performance becomes signi�cantly worse than the

benchmark at certain points, e.g., NS2_AR, ATSM and NS_M when fore-

casting the 12-month yield and NS_M , ATSM and AR when forecasting the

60-month yield.

Results of �uctuation tests for the 6-month-ahead forecasts are presented

in two panels of Figure 2.A.5. Variable predictive performance of the mod-

els, more prominent for the longer maturity yields, can be observed from the

very beginning of the forecast period. The most remarkable feature is the

early superiority of the NS2_AR model in contrast to relatively much poorer

performance of alternative models compared to the random walk benchmark.

However, the advantage of the NS2_AR model soon dies out and the perfor-

mance of other models improve over time. Over the period of mid 2004 to mid

2007 forecast accuracy of all models is very similar to that of random walk.

But on the verge of the crisis in 2007, the paths of relative performance of

the forecasting models start to diverge. Although only the ATSM model fore-

casts the 12-month interest rate signi�cantly better than the random walk, the

ATSM_M and NS1 models also do reasonably well. For a longer 60-month

yield, the ATSM_M model comfortably outperforms all its competitors over

the latest period of interest rate anomaly, at times with signi�cant gains over

the random walk. The NS_M model, as for 1-month-ahead forecasts, dis-

plays signi�cant forecast failure at the end of the sample. The performance of

the NS2_AR model becomes increasingly disappointing over time.

Figure 2.A.6 looks at time-variation in 12-month-ahead forecasts and re-

ports many similar patterns as those observed at 6-month horizon. Three pe-

riods of distinctive features can clearly be identi�ed: a �rst period of early but

fading superiority of the NS2_AR model, a second period of relatively equal
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and stable forecast performance of competing models and �nally, a third period

of unusually low short rates and high spread. During the latter period which

accommodates the crisis the NS2_AR and NS_M models produce signi�-

cantly inferior forecasts, the a¢ ne models generate signi�cantly more accurate

short rate predictions than the benchmark, and the ATSM_M model stands

out to be the most dominating predictor and shows signi�cant advantage of

incorporating macroeconomic information.

Explaining Variations in Model Performance During the Crisis

One of our major �ndings is apparent change in relative forecasting perfor-

mance of competing models during the recent �nancial crisis. Unquestionably,

the crisis induced some unusual behaviour in the UK yield curve which was rel-

atively stable for a substantially long period prior to the crisis. In response to

Band of England�s lowering of the o¢ cial rate in the early 2009 the short yields

plummeted towards zero and the gap between short and long rates widened.

Forecasts of many models under study deteriorated relative to the benchmark

random walk, possibly because of failure to account for structural changes in

the yield curve dynamics and consequent parameter instability in�icted by the

crisis.

Careful comparisons can shed further light on potential reasons behind

variations in model-speci�c predictive performance during the crisis. The

NS2_ARmodel which forecasted the UK yield curve exceptionally well during

2001-2004 conceded large errors during the crisis a¤ected period of 2008-2010.

Its poor performance relative to the NS1 model in the latter period may be

explained by two factors. First, using an AR(1) dynamics for latent yield curve

factors which impose factor independence is too restrictive and predicting the

changed dynamics of interest rates in crisis requires a more �exible VAR(1)

speci�cation which allows interactions among all the factors. Second, �xing
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the lambda parameter which determines the decay in the loadings of slope and

curvature factors appears to be similarly restrictive and estimating it along

with other model parameters is desirable. Inferior performance of the NS_M

model compared to its yields-only counterparts during the crisis possibly im-

plies that the drastic change in yield dynamics caused adverse parameter insta-

bility in the model which already su¤ers from parameter proliferation arising

from addition of macroeconomic variables. The a¢ ne term structure models,

ATSM and ATSM_M , performed better than the Nelson-Siegel models, par-

ticularly at the longest forecast horizon, indicating possibly that imposition of

no-arbitrage restrictions became important in forecasting UK yields during the

crisis. Overall, the term structure of interest rates of the UK became harder

to predict and the random walk benchmark predicting no change appeared to

be di¢ cult to outperform. The only model that consistently showed improved

forecasting power is the ATSM_M model. This indicates that incorporating

observed macroeconomic factors can bene�t the arbitrage-free a¢ ne models in

explaining and predicting the crisis period anomaly in bond yields.

2.6 Concluding Remarks

Forecasting of the term structure of UK interest rates has received little at-

tention in the �nance or economics literature. This paper, using UK nominal

zero-coupon bond yield data, attempts to shed light on this important, yet

overlooked issue. In its build up this essay tries to answer a number of impor-

tant questions related to yield curve forecasting. First, it searches for a well-

performing forecasting model for the UK yield curve by providing a survey

of a number of popular term structure models and comparing them in terms

of forecast accuracy. Second, it examines whether adding macroeconomic in-

formation in the latent factor models improves predictive power. Third, it
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undertakes both a recursive and a rolling-window forecast exercise to deter-

mine whether the length of information history used in estimating dynamic

models play an important role in generating accurate forecasts. Finally and

most importantly, it investigates whether the predictive performance of the

yield curve models changes over time. In order to investigate such changing

behaviour the full forecast period is divided into two subperiods: one records

fairly stable yield movements and the other accommodates the recent �nancial

crisis period reporting abnormal yield dynamics. The models are then evalu-

ated across the two subsamples in order to check for consistency in forecasting

performance. Instead of relying solely on a time-invariant global measure of

predictive ability, we make inference by following the entire time path of the

models� local relative performance and testing for possible signi�cant time

variation.

A �rst-hand idea from the full sample results is that it is di¢ cult to outper-

form simple �no-change�forecasts. A subsample analysis, however, reveals that

the forecasting power of models vary signi�cantly across subperiods. Both the

recursive and the rolling-window exercises con�rm that the yields-only models

perform better during periods when the term structure of interest rates shows

a stable pattern, such as the period 2001-2007 during which UK interests rates

were less volatile and spread between long and short rates is relatively narrow.

In particular, a Nelson-Siegel yields-only model with AR(1) factor dynam-

ics renders superior predictive ability against all competing models. During

the recent crisis period of 2008-2010 the interest rates, however, exhibit some

aberrant characteristics, such as sharp decline in short rates and pronounced

widening of the spread. It is evident from the rolling-window scheme that only

a no-arbitrage a¢ ne model with macroeconomic information can predict these

unusual behaviours of yields most accurately and most consistently. A test of

time varying relative performance further corroborates this �nding. One addi-

tional �nding is that the choice of forecasting designs may substantially a¤ect
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forecasting ability of certain models. One clear example is the Nelson-Siegel

model with macro variables which display reasonably good predictive ability

under the recursive scheme but thoroughly disappointing performance under

the rolling-window scheme.

There is scope for further research. It is worth investigating how alterna-

tive empirically successful forecasting models such as the no-arbitrage Nelson-

Siegel model of Christensen et al. (2011), the factor-augmented VAR model

of Moench (2008) and the structural model of Hördahl et al. (2006) fare in

predicting the UK yield curves. Evidence of substantial time variation in fore-

casting performance of models and failure of a single model to consistently

produce accurate forecasts imply that forecast combinations across models

may potentially improve forecasts of the term structure of UK interest rates.

This is, however, beyond the scope of this study.
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2.A Appendix A: Figures
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Figure 2.A.1: The UK yield curves

Note: Time series plots of the end-month zero-coupon bond yields for the UK. The sample

period is January 1989 - November 2010 and selected maturities are 3, 12, 36, 60 and 120

months.
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(a) Official Bank Rate 
 

 

(b) CPI Inflation 

 

 

(c) Unemployment Rate 
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Figure 2.A.2: Time series plots of selected UK macroeconomic variables

Note: The �gure shows time series plots of the o¢ cial bank rate, CPI in�ation and un-

employment rate, each expressed in percentages. The sample period is January 1989 -

November 2010.
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(a) Level  

 

 

(b) Slope  

 

 

(c) Curvature  
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Figure 2.A.3: Data-based vs model-based level, slope and curvature

Note: The data-based level, slope and curvature are de�ned as the 10-year yield, the di¤er-

ence between the 10-year and 3-month yield and twice the 2-year yield minus the sum of

3-month and 10-year yield, respectively. Data and model-based factors are all standardised

for convenience of comparison.



59

 

(a) 12 Month Maturity 
 

 

(b) 60 Month Maturity 
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Figure 2.A.4: Time path of �uctuation test statistic of Giacomini and Rossi

(2010) (1-month-ahead forecasts)

Note: The �uctuation test statistic is calculated as the standardised di¤erence between the

MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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(a) 12 Month Maturity 
 

 

 

(b) 60 Month Maturity 
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Figure 2.A.5: Time path of �uctuation test statistic of Giacomini and Rossi

(2010) (6-month-ahead forecasts)

Note: The �uctuation test statistic is calculated as the standardised di¤erence between the

MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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(a) 12 Month Maturity 

 

 

(a) 60 Month Maturity 
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Figure 2.A.6: Time path of �uctuation test statistic of Giacomini and Rossi

(2010) (12-month-ahead forecasts)

Note: The �uctuation test statistic is calculated as the standardised di¤erence between the

MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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2.B Appendix B: Tables

Table 2.B.1: Descriptive statistics, the UK yield curves

Maturity (months) Mean Median Std dev Skew Kurt Min Max �̂(1) �̂(12) �̂(30)

3 6.064 5.420 3.442 1.027 1.060 0.380 15.170 0.984 0.687 0.218

12 5.884 5.436 2.986 0.717 0.751 0.579 14.311 0.982 0.684 0.258

15 5.897 5.445 2.910 0.668 0.645 0.609 14.158 0.982 0.688 0.277

18 5.918 5.444 2.842 0.628 0.534 0.652 14.005 0.981 0.692 0.298

21 5.943 5.477 2.782 0.599 0.427 0.707 13.859 0.981 0.697 0.318

24 5.969 5.473 2.729 0.578 0.328 0.771 13.725 0.981 0.703 0.337

30 6.019 5.515 2.643 0.555 0.152 0.918 13.494 0.981 0.714 0.370

36 6.065 5.566 2.577 0.551 0.009 1.080 13.315 0.981 0.725 0.397

48 6.141 5.595 2.484 0.574 -0.200 1.422 13.075 0.982 0.747 0.438

60 6.199 5.529 2.421 0.613 -0.340 1.757 12.932 0.983 0.767 0.468

72 6.242 5.418 2.374 0.650 -0.441 2.070 12.828 0.983 0.783 0.491

84 6.272 5.350 2.334 0.680 -0.521 2.353 12.733 0.984 0.797 0.510

96 6.292 5.280 2.298 0.700 -0.593 2.606 12.629 0.985 0.809 0.525

108 6.302 5.216 2.263 0.710 -0.664 2.828 12.508 0.985 0.819 0.539

120 6.306 5.153 2.229 0.711 -0.736 3.022 12.368 0.986 0.827 0.550

Notes: The table reports summary statistics for the end-month UK nominal zero-coupon

bond yields. The yields are annualised and expressed in percentages. The sample period is

January 1989 - November 2010. The last three columns report sample autocorrelations at

displacements of 1, 12 and 30 months.
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Table 2.B.2: In-sample �t of models (RMSE of yield curve residuals)

Maturity (months) NS2_AR NS1 NS_M ATSM ATSM_M

3 0.101 0.483 0.483 0.066 0.064

12 0.105 0.051 0.051 0.085 0.072

15 0.076 0.017 0.017 0.057 0.051

18 0.049 0.000 0.000 0.035 0.035

21 0.028 0.006 0.006 0.024 0.023

24 0.019 0.007 0.007 0.026 0.018

30 0.039 0.000 0.000 0.039 0.026

36 0.057 0.010 0.010 0.049 0.038

48 0.072 0.025 0.025 0.055 0.049

60 0.069 0.029 0.029 0.051 0.047

72 0.054 0.020 0.020 0.041 0.036

84 0.031 0.000 0.000 0.028 0.021

96 0.016 0.030 0.030 0.021 0.014

108 0.049 0.067 0.067 0.037 0.031

120 0.093 0.110 0.110 0.065 0.056

Notes: The table reports root mean squared errors of model �tted residuals expressed in

percentages. The NS2_AR refers to a Nelson-Siegel yields-only model with an AR(1) factor

dynamics estimated in two steps, the NS1 refers to a Nelson-Siegel yields-only model with a

VAR(1) dynamics estimated in one step, the NS_M refers to a Nelson-Siegel yields-macro

model, the ATSM refers to a no-arbitrage yields-only a¢ ne model and ATSM_M refers to

a no-arbitrage macro-augmented a¢ ne model.
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Chapter 3

Density Forecasts of Bond Yields:

Evaluating Arbitrage-free Nelson-

Siegel Models with Stochastic

Volatilities

3.1 Introduction

We continue empirical research on yield curve forecasting in Chapter 3. While

Chapter 2 assesses the predictive performance of the term structure models

in terms of point forecasts of bond yields this chapter focuses on evaluating

models on the basis of density forecasts which provide a full distribution of

the future predicted yields.
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For this work we exploit several variants of a well-known class of yield

curve models - the Nelson-Siegel models. These models enjoy a number of

attractive properties which made them very popular among researchers, both

in academia and central banks. The Nelson-Siegel model is parsimonious in

terms of parameters to be estimated, they are easy to estimate and tract and

they are �exible enough to capture many possible shapes of an yield curve.

Since its development by Nelson and Siegel (1987), the original model has

gone through signi�cant re�nements. Diebold and Li (2006) made the original

static model dynamic in order to capture evolution of bond yields over time.

Christensen et al. (2011) proposed an arbitrage-free version of the model and

made it theoretically more sound and competitive. Christensen et al. (2010)

went one step further by incorporating stochastic volatility to model dynamics

of interest rate �uctuations. The main objective of this chapter is to compare

di¤erent speci�cations of the Nelson-Siegel models, simple to complex, in terms

of their ability to generate forecasts of bond yields out-of-sample. Particular

emphasis has been given to evaluation of density forecasts of the yield curve,

as opposed to point forecasts.

Why should we care about density forecasts of bond yields? A natural mo-

tivation comes from the importance of forecasting predictive density in general.

A point forecast provides a single future value for a variable of interest and is

easy to compute and interpret. However, a criticism of it is that it does not

take into account the uncertainty surrounding the prediction. Density fore-

casts provide a detailed description of such uncertainties as they are essentially

estimates of the complete probability distribution of the possible future values

of the variable of interest. This is particularly helpful for policy makers who

can incorporate forecast uncertainties in their policy decisions. It has a be-

come a common practice for most of the central banks around the world (e.g.

Bank of England, Bank of Canada, Norges Bank etc.) to routinely issue pre-

dictive distributions for many key economic indicators such as in�ation, GDP,
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policy rate etc. Density forecasts has found even more frequent applications in

�nance where risk or uncertainty plays a crucial role. The most prominent use

is in rapidly growing �nancial risk management industry where a full account

of the predictive density of future portfolio returns helps to track certain fea-

tures of the distribution such as value-at-risk which are often used as measures

of risk exposure. J.P. Morgan, Reuters, Bloomberg routinely publish density

forecasts of key measures of portfolio risk.

The density forecast of the term structure of interest rates has received

little attention in �nance literature. To our knowledge the only contributions

came from Hong and Li (2005) and Egorov et al. (2006) who proposed non-

parametric tests for evaluating density forecasts and applied them to compare

a number of a¢ ne term structure models (ATSMs) when forecasting the joint

conditional probability density of bond yields. They found unsatisfactory den-

sity forecasts from ATSMs in continuous time which is reminiscent of Du¤ee

(2002) who found similar disappointing performance of discrete-time ATSMs

in terms of point forecasts using the US yields. Performance of the ATSM

in �tting conditional volatility of yields is not good enough either (Collin-

Dufresne et al. (2009)).1 Moreover, it is well-documented in literature that in

general, it is di¢ cult to estimate ATSMs, particularly its prices of risk para-

meters (see Du¤ee (2011)). Such empirical failure of ATSM prompts search

for an alternative and more competitive model. The result is the recent addi-

tion of arbitrage-free Nelson-Siegel models with stochastic volatilities proposed

by Christensen et al. (2010). The models combine several attractive proper-

ties which are important from both theoretical and empirical perspectives. For

example they account for time variation in yield curve volatility and are, there-

fore, more �exible than the constant volatility Nelson-Siegel models of Diebold

and Li (2006) and Christensen et al. (2011). There are existing Nelson-Siegel

1 Jacobs and Karoui (2009), however, argue that ability of a¢ ne term sturcture models
to capture conditional volatility of the yield curve is sensitive to choice of sample periods.
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models which account for time-varying volatility in bond yields. Koopman

et al. (2010) �nd improved �t by adding a common GARCH-type volatil-

ity factor that drives volatility of the entire cross-section of the yield curve.

Hautsch and Yang (2012) allow the level, slope and curvature factors to induce

stochastic volatility in the model by introducing three additional state vari-

ables. They also con�rm bene�ts from including stochastic volatility in terms

of better in-sample performance and reduced forecast uncertainty. However,

none of these models are arbitrage-free by nature. The stochastic-volatility

no-arbitrage models of Christensen et al. (2010) have an advantage over these

models in that they are corrected for risk-free arbitrage opportunities and are,

therefore, theoretically more sound. Using daily US and UK interest rates

Christensen et al. (2010) show that the models provide good in-sample �t

and can explain substantial proportion of stochastic volatility observed in the

data. However, to our knowledge forecasting performance of these models

is not tested. This chapter systematically evaluates forecasting performance

of these models, particularly their ability in calibrating predictive densities

of bond yield out-of-sample and investigates to what extent they satisfy the

quest for a model that produce good density forecasts of interest rates. The

questions which are of particular interest are whether enforcing no-arbitrage

restriction and/or modelling time-varying volatility improve predictive perfor-

mance of Nelson-Siegel models.2 We employ various metrics used in literature

such as probability integral transforms, coverage rates, log predictive density

scores in order to assess the quality of density forecasts.

The chapter is structured as follows: section 3.2 provides a detailed de-

scription of the competing Nelson-Siegel models with and without stochastic

2 There is, however, considerable amount of debate in the literature about whether no-
arbitrage restrictions help in forecasting yields. Du¤ee (2011) and Joslin et al. (2011)
argue that predictions of pricing factors are independent of imposition of cross-sectional
restrictions. Nonetheless, Christensen et. al (2011) �nd improvements in forecasts of US
bond yields from making Nelson-Siegel models arbitrage-free.
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volatilities and their estimation procedure. Section 3.3 describes the yield data

used for empirical analysis and evaluates the models�ability to �t the data in-

sample. Section 3.4 provides detailed comparison of models in terms of both

point and density forecasts of bond yields. Section 3.5 concludes.

3.2 Forecasting Models

In this section we describe di¤erent speci�cations of the Nelson-Siegel term

structure models which will be evaluated on the basis of their ability to fore-

cast bond yields. The models di¤er in terms of two basic features: whether

they adopt no-arbitrage restrictions or not and whether volatility of yields is

assumed constant or modelled as time-varying. As explained in the introduc-

tion, we follow Christensen et al. (2010) to explicitly consider time-varying

volatilities that are generated only by latent factors that are extracted from

cross-section of the yield curve. The stochastic volatility speci�cations di¤er

depending on how many of the factors drive the volatility.

3.2.1 Standard Dynamic Nelson-Siegel Model

The model has been already introduced in Section 2.2 of the previous chapter.

It is a very popular dynamic term structure model and is a result of temporal

extension by Diebold and Li (2006) of the original static model of Nelson and

Siegel (1987). We denote the three time-varying latent factors, level, slope and

curvature by Lt, St and Ct, respectively. The yields are then expressed in a

dynamic exponential factor-model framework:

yt(m) = Lt + St
1� e��m
�m

+ Ct

�
1� e��m
�m

� e��m
�
: (3.2.1)

The DNS model has been widely applied and analysed for modelling
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yields and its success in forecasting has been well-documented in the liter-

ature. Diebold and Li (2006) report its superior predictive ability by as-

suming an AR(1) factor dynamics and using U.S. government bond yields.

Despite its good empirical behaviour, the DNS model has been heavily crit-

icised for not imposing no-arbitrage restrictions which lie in the heart of �-

nancial theory of asset pricing. This simple model assumes that the implied

volatility in bond yields is constant or time-invariant. We use the DNS as

the benchmark and compare its forecast performance against more sophis-

ticated Nelson-Siegel counterparts which are arbitrage-free and/or modelled

with time-varying volatility.

3.2.2 Arbitrage-free Nelson-Siegel with Constant

Volatility

Motivated by the importance of making the DNS model more consistent with

�nance theory, Christensen et al. (2011) propose an arbitrage-free version of

the dynamic Nelson-Siegel model with constant volatility (denoted hereby as

AFNS0). The AFNS0 model is derived in a continuous-time a¢ ne di¤usion

environment as described in Du¢ e and Kan (1996). Following Christensen

et al. (2010) we �rst de�ne the general a¢ ne process which encompasses

the AFNS0 and also the arbitrage-free Nelson-Siegel models with stochastic

volatilities used in this study.

Let X be an N -dimensional vector of state variables. Then under no-

arbitrage a¢ ne framework Xt follows a Markovian di¤usion process and its

dynamics under risk neutral measure Q can be de�ned by the following sto-

chastic di¤erential equation (SDE):

dXt = K
Q(�Q �Xt)dt+ �S(Xt)dZ

Q
t ; (3.2.2)

where ZQ is a vector of N independent standard Brownian motions, �Q 2
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RN is the mean vector of the process, KQ 2 RN�N determines the speed of

mean reversion and � 2 RN�N is the constant component of the volatility of

the process. The state-dependent (N �N) diagonal matrix S(Xt) introduces

conditional heteroskedasticity or time-varying volatility in the bond yields and

its i-th diagonal element given byq
�i + �i1X

1
t + :::+ �

i
nX

N
t :

The short rate (instantaneous risk-free rate) is modelled as an a¢ ne func-

tion of the underlying state variables

rt = �0 + �1
0Xt;

where �0 2 R and �1 2 Rn are bounded and continuous functions.

If we de�ne Pt(m) as the time t price of a $1 zero-coupon bond which is

maturing at time t + m, then Pt(m) can be expressed as exponential a¢ ne

functions of the state variables (Du¢ e and Kan (1996)):

Pt(m) = exp(B(m)
0Xt + A(m));

where the pricing coe¢ cients B(m) and A(m) solve the following system of

Ricatti ordinary di¤erential equations (ODEs):

dB(m)

dm
= ��1 � (KQ)0B(m) +

1

2

NP
j=1

(�0B(m)B(m)0�)j;j(�
j)0; B(0) = 0;

(3.2.3)

dA(m)

dm
= ��0+B(m)0KQ�Q+

1

2

NP
j=1

(�0B(m)B(m)0�)j;j�
j; A(0) = 0: (3.2.4)

Functional relationship between the yield and the price of an m-period

zero-coupon bond then implies that the expression for the yield reduces to an

a¢ ne functions of Xt:

yt(m) = �
1

m
logP (Xt;m) = �

B(m)0

m
Xt �

A(m)

m
: (3.2.5)
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Finally, the model is fully described with a risk price speci�cation which

translates its risk-free dynamics to dynamics under real world (or historic) P -

measure. Following Christensen et al. (2010) we use the extended a¢ ne risk

premium speci�cation of Cheridito et al. (2007) for all the models except for

one where we are restricted to use the essentially a¢ ne risk premium structure

of Du¤ee (2002). The risk premium �t in extended speci�cation is given by

�t = S
�1(Xt)


0 + S�1(Xt)

1Xt;

and the one in essentially a¢ ne speci�cation is given by

�t = S(Xt)

0 + S�1(Xt)


1Xt;

where 
0 2 RNand 
1 2 RNxNcontain unrestricted parameters. The rela-

tionship between real-world yield curve dynamics under the P -measure and

risk-neutral dynamics under the Q-measure is given by

dZQt = dZ
P
t + �tdt: (3.2.6)

The dynamics of the state vector under the P -measure is obtained by

subtracting the term �S(Xt)�t from the SDE of Q-dynamics in (3.2.2) and

replacing dZQt by dZ
P
t : A general expression for the P -dynamics can then be

given by

dXt = K
P (�P �Xt)dt+ �S(Xt)dZ

P
t (3.2.7)

In the constant volatility AFNS model (AFNS0) of Christensen et al.

(2011), the instantaneous risk-free rate is explicitly de�ned as the sum of the

�rst two latent factors:

rt = X
1
t +X

2
t : (3.2.8)

The vector of state variables Xt = (X1
t ; X

2
t ; X

3
t ) follows a Gaussian (as

opposed to square-root) di¤usion process in the sense that there is no condi-

tional heteroskedasticity in the volatility of the yield factors and the volatility
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is driven by a constant �.3 Without loss of generality we can set S(Xt) to an

identity matrix and de�ne the Q-dynamics of Xt by the following system of

linear SDEs:

dXt = K
Q(�Q �Xt)dt+ �dZ

Q
t :

Christensen et al. (2011) have showed that if the mean reversion matrix

KQ has the following particular speci�cation

KQ =

0BBBBBB@
0 0 0

0 � ��

0 0 �

1CCCCCCA ; (3.2.9)

then the recursive bond pricing coe¢ cients in (3.2.3) are solved as

B1(m) = �m (3.2.10)

B2(m) = �
�
1� e��m

�

�
B3(m) = me��m �

�
1� e��m

�

�
and the yields-factors relationship can be written as

yt(m) = X
1
t +

�
1� e��m
�m

�
X2
t +

�
1� e��m
�m

� e��m
�
X3
t �

A(m)

m
;

which preserves the same loadings as the original model of Nelson and Siegel

(1987) for level, slope and curvature. There is, however, an additional yield-

adjustment term which is time invariant and is a function of maturity only.

The extended a¢ ne risk premium in the Gaussian framework implies

�t = 

0 + 
1Xt

3 See Piazzesi (2010) for the distinction between a Gaussian and a square-root process.
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which together with measure change equation (3.2.6) imply that the P -dynamics

of the state vector Xt is given by

dXt = K
P (�P �Xt)dt+ �dZ

P
t :

Christensen et al. (2011) further showed that these models can only be

identi�ed if the elements of �Q, the mean vector under the Q-measure, are zero

and the volatility matrix � is no more than a triangular matrix. Under the

assumption of independence of yield factors � is diagonal and the P -dynamics

takes the form:

0BBBBBB@
dX1

t

dX2
t

dX3
t

1CCCCCCA =

0BBBBBB@
�P11 0 0

0 �P22 0

0 0 �P33

1CCCCCCA

26666664

0BBBBBB@
�P1

�P2

�P3

1CCCCCCA�
0BBBBBB@
X1
t

X2
t

X3
t

1CCCCCCA

37777775 dt

+

0BBBBBB@
�11 0 0

0 �22 0

0 0 �33

1CCCCCCA

0BBBBBB@
dZ1;Pt

dZ2;Pt

dZ3;Pt

1CCCCCCA :

The arbitrage-free version of Nelson-Siegel model AFNS0 has been re-

ported to provide better yield forecasts than the already successful dynamic

Nelson-Siegel model DNS of Diebold and Li (2006) which does not correct for

arbitrage opportunities (Christensen et al. (2011)).

3.2.3 AFNS with Stochastic Volatility

Time varying volatility is a key feature of bond yield data. Therefore, assum-

ing constant volatility, as considered in the DNS and AFNS0 models, limits
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�exibility of yield curve models. Christensen et al. (2010) extend AFNS0

to incorporate stochastic volatility where the volatility is spanned entirely by

latent yield curve factors. The principal objective of this paper is to investi-

gate whether incorporating stochastic volatility can further improve predictive

power of the AFNS models. We review all the models described in Christensen

et al. (2010). Throughout all the models the short rate is modelled as in equa-

tion (3.2.8) and the particular structure of kQmean reversion matrix in (3.2.9)

is maintained to match closely the desirable Nelson-Siegel factor loading struc-

ture in the zero-coupon bond yield function. The models mainly di¤er in terms

of how many and which of the factors drive stochastic volatility. Consequently,

they have di¤erent speci�cations for the state-dependent stochastic volatility

inducing matrix, S(Xt) which a¤ects dynamics of factors under the risk-neutral

and physical measures. We de�ne parsimonious versions of the models where

the three factors move independently of each other.

AFNS with One Stochastic Volatility Factor

There are two feasible AFNS stochastic volatility speci�cations that allow just

one factor to exhibit stochastic volatility - in one the volatility is induced

by level (denoted as AFNS1_L) and in the other by curvature (denoted as

AFNS1_C).4

The Q-dynamics of the state vector Xt in a correctly identi�ed AFNS1_L

requires that in equation (3.2.2) we set

S(Xt) =

0BBBBBB@
p
X1
t 0 0

0
p
1 + �21X

1
t 0

0 0
p
1 + �31X

1
t

1CCCCCCA ; �
Q
2 = �Q3 = 0 and

4 Christensen et al. (2010) show that a model with slope as a stochastic volatility factor
is not admissible because of the particular stucture of KQ in (3.2.9).
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kQ11 = ", where " is a small positive number. As is observable, volatility in

slope and curvature is in�uenced by the level factor X1
t and the volatility sen-

sitivity parameter �21and �31 measure the extent of such in�uence. The level

factor follows a square-root process.

For the factor loadings in the zero-coupon bond prices, B1(m) is the solu-

tion to

dB1(m)

dm
= �1� "B1(m) + 1

2
�211(B

1(m))2 +
1

2
�21�

2
22(B

2(m))2

+
1

2
�31�

2
33(B

3(m))2;

whileB2(m)andB3(m) keep the original Nelson-Siegel expressions as in (3.2.10).

The yield-adjustment term, A(m) solves the following ODE:

dA(m)

dm
= B(m)

0
KQ�Q +

1

2
�222B

2(m)2 +
1

2
�233B

3(m)2:

For the AFNS1_L model the extended a¢ ne risk premium is not viable

(see Christensen et al. (2010)) and we adopt the essentially a¢ ne risk pre-

mium structure of Du¤ee (2002). The P -dynamics for the independent-factor

speci�cation is given by0BBBBBB@
dX1

t

dX2
t

dX3
t

1CCCCCCA =

0BBBBBB@
�P11 0 0

0 �P22 0

0 0 �P33

1CCCCCCA

26666664

0BBBBBB@
�P1

�P2

�P3

1CCCCCCA�
0BBBBBB@
X1
t

X2
t

X3
t

1CCCCCCA

37777775 dt

+

0BBBBBB@
�11 0 0

0 �22 0

0 0 �33

1CCCCCCA

0BBBBBB@
p
X1
t 0 0

0
p
1 + �21X

1
t 0

0 0
p
1 + �31X

1
t

1CCCCCCA

0BBBBBB@
dZ1;Pt

dZ2;Pt

dZ3;Pt

1CCCCCCA :

Following Christensen et al. (2010) we implement a required restriction

on the mean parameter �P1 which is �
P
1 =

":�Q1
�P11
:
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The model is completed by specifying the Feller conditions which ensure

that the square-root process X1
t never attains zero. The conditions are imple-

mented as �P11�
P
1 > 0 and ":�

Q
1 > 0:

The Q-dynamics of the state vector Xt in a correctly identi�ed AFNS1_C

model (where curvature is the sole driver of stochastic volatility) requires that

in equation (3.2.2) we set

S(Xt) =

0BBBBBB@
p
1 + �13X

3
t 0 0

0
p
1 + �23X

3
t 0

0 0
p
X3
t

1CCCCCCA and �Q1 = �
Q
2 = 0.

In this model class the �rst two factor loadings B1(m) and B2(m) are

identical to those in (3.2.10), while B3(m) is the solution to:

dB3(m)

dm
= �B2(m)� �B3(m) + 1

2
�233(B

3(m))2 +
1

2
�13�

2
11(B

1(m))2

+
1

2
�23�

2
22(B

2(m))2: (3.2.11)

The yield-adjustment term, A(m) solves the following ODE:

dA(m)

dm
= B(m)

0
KQ�Q +

1

2
�211(B

1(m))2 +
1

2
�222(B

2(m))2: (3.2.12)

We estimate this model using the extended a¢ ne risk premium speci�ca-

tions and the independent-factor P -dynamics is given by0BBBBBB@
dX1

t

dX2
t

dX3
t

1CCCCCCA =

0BBBBBB@
�P11 0 0

0 �P22 0

0 0 �P33

1CCCCCCA

26666664

0BBBBBB@
�P1

�P2

�P3

1CCCCCCA�
0BBBBBB@
X1
t

X2
t

X3
t

1CCCCCCA

37777775 dt

+

0BBBBBB@
�11 0 0

0 �22 0

0 0 �33

1CCCCCCA

0BBBBBB@
p
1 + �13X

3
t 0 0

0
p
1 + �23X

3
t 0

0 0
p
X3
t

1CCCCCCA

0BBBBBB@
dZ1;Pt

dZ2;Pt

dZ3;Pt

1CCCCCCA :
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The Feller condition requires �P33�
P
3 >

1
2
�233 and ��

Q
3 >

1
2
�233:

AFNS with Two Stochastic Volatility Factors

There are two feasible models under speci�cations where volatility is dictated

by two factors. One is where level and curvature together exhibit stochastic

volatility (denoted as AFNS2 � LC) and the other is where slope and curva-
ture together drive stochastic volatility (denoted as AFNS2 � SC).5 We �nd
di¢ culty in estimating the AFNS2�SC model for the particular data set we
are using and therefore, exclude it from our analysis.

The Q-dynamics of a correctly identi�ed AFNS2_LC requires that in

equation (3.2.2) we set

S(Xt) =

0BBBBBB@
p
X1
t 0 0

0
p
1 + �21X

1
t + �23X

3
t 0

0 0
p
X3
t

1CCCCCCA ; �
Q
2 = 0 and k

Q
11 = ",

where " is a small positive number.

The factor loadings B1(m) and B3(m) of the zero-coupon bond price func-

tion are unique solutions to the following set of ODEs:

dB1(m)

dm
= �1� "B1(m) + 1

2
�211(B

1(m))2 +
1

2
�21�

2
22(B

2(m))2;

dB3(m)

dm
= �B2(m)� �B3(m) + 1

2
�233(B

3(m))2 +
1

2
�23�

2
22(B

2(m))2:

B2(m) remains the same as in (3.2.10). Hence, X2
t preserves its role as a slope

factor. The A(m)-function is the solution to:

dA(m)

dm
= B(m)

0
KQ�Q +

1

2
�222B

2(m)2:

5 See Christensen et al. (2010) for detailed reasoning of why level and slope together
cannot enter the model as drivers of stochastic volatility.
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Using the extended a¢ ne risk premium structure, the independent-factor

P -dynamics is given by0BBBBBB@
dX1

t

dX2
t

dX3
t

1CCCCCCA =

0BBBBBB@
�P11 0 0

0 �P22 0

0 0 �P33

1CCCCCCA

26666664

0BBBBBB@
�P1

�P2

�P3

1CCCCCCA�
0BBBBBB@
X1
t

X2
t

X3
t

1CCCCCCA

37777775 dt

+

0BBBBBB@
�11 0 0

0 �22 0

0 0 �33

1CCCCCCA

0BBBBBB@
p
X1
t 0 0

0
p
1 + �21X

1
t + �23X

3
t 0

0 0
p
X3
t

1CCCCCCA

0BBBBBB@
dZ1;Pt

dZ2;Pt

dZ3;Pt

1CCCCCCA:

For the level factor, the condition ":�Q1 = �
P
11�

P
1 must be satis�ed. Feller

conditions are given by �P33�
P
3 >

1
2
�233 and ��

Q
3 >

1
2
�233:

AFNS with Three Stochastic Volatility Factors

In the last speci�cation all three factors exhibit stochastic volatility (denoted

by AFNS3). The Q-dynamics of a correctly identi�ed AFNS3 requires that

in equation (3.2.2) we set

S(Xt) =

0BBBBBB@
p
X1
t 0 0

0
p
X2
t 0

0 0
p
X3
t

1CCCCCCA and k
Q
11 = ", where " is a small positive

number.

In this model class, the factor loadings in the zero-coupon bond price

function are given by the unique solutions to

dB1(m)

dm
= �1� "B1(m) + 1

2
�211(B

1(m))2;

dB2(m)

dm
= �1� �B2(m) + 1

2
�222(B

2(m))2;
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dB3(m)

dm
= �B2(m)� �B3(m) + 1

2
�233(B

3(m))2;

and the yield-adjustment term A(t; T ) is given by the solution to:

dA(m)

dm
= B(m)

0
KQ�Q:

Applying the extended a¢ ne risk premium speci�cation, the independent-

factor P -dynamics is given by0BBBBBB@
dX1

t

dX2
t

dX3
t

1CCCCCCA =

0BBBBBB@
�P11 0 0

0 �P22 0

0 0 �P33

1CCCCCCA

26666664

0BBBBBB@
�P1

�P2

�P3

1CCCCCCA�
0BBBBBB@
X1
t

X2
t

X3
t

1CCCCCCA

37777775 dt

+

0BBBBBB@
�11 0 0

0 �22 0

0 0 �33

1CCCCCCA

0BBBBBB@
p
X1
t 0 0

0
p
X2
t 0

0 0
p
X3
t

1CCCCCCA

0BBBBBB@
dZ1;Pt

dZ2;Pt

dZ3;Pt

1CCCCCCA :

For X1
t , the constraint ":�

Q
1 = �

P
11�

P
1 must be satis�ed. The Feller condi-

tions which must be satis�ed are:

�P22�
P
2 >

1
2
�222; ��

Q
2 � ��

Q
3 >

1
2
�222; �

P
33�

P
3 >

1
2
�233 and ��

Q
3 >

1
2
�233:

3.2.4 Estimation Framework

All the Nelson-Siegel speci�cations under this study can be conveniently rep-

resented in state-space frameworks. For estimation of such unobserved factor

dynamic models we use a standard maximum likelihood technique which use

Kalman �lter for extraction of latent yields.6 We start by writing the transi-

tion equations for di¤erent speci�cations. For the benchmarkDNS model, the
6 Diebold et al. (2006), Christensen et al. (2011) and Christensen et al. (2010) use

such Kalman �lter induced maximum likelihood method for estimating DNS, AFNS0 and
AFNS with stochastic volatility, respectively.
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transition equation is a VAR(1) dynamics for the state vectorXt = fLt; St; Ctg:

Xt = (I � �)�+ �Xt�1 + �t; �t � N(0;
): (3.2.13)

Speci�cation of state dynamics of arbitrage-free Nelson-Siegel models re-

quires de�ning the �rst two conditional moments of the latent factors under

the P -measure. The expression for the conditional mean vector is the same

for both the constant volatility and stochastic volatility cases:

EP [XT jXt] = (I � exp(�KP (T � t)))�P + exp(�KP (T � t))Xt: (3.2.14)

However, the de�nitions of conditional variance matrices are di¤erent. The

one for AFNS0 is time-invariant and is given by

Q = V P0 [XT jXt] =

Z T�t

0

exp(�KPu)�0�exp(�(KP )0u)du: (3.2.15)

The conditional variance matrix for AFNS with stochastic volatilities are

state-dependent and can be computed as

QT (X t) = V P1 [XT jXt] =

Z T

t

exp (�KP (T � u))�S(EP [XujXt] )

�S(EP [XujXt] )
0�exp (�(KP )0(T � u))du: (3.2.16)

The state equation is then de�ned as a discrete version of the continuous-

time P -dynamics of the latent factors:

Xt = (I � exp(�KP4t))�P + exp(�KP4t)Xt�1 + �t; (3.2.17)

where 4t is the time between observations. For AFNS0 �t � N(0; Q) and for
stochastic volatilityAFNS �t � N(0; Qt(Xt�1)) withQt(Xt�1) = V

P [XtjXt�1]

given by equation (3.2.16). The measurement equation is obtained by adding

stochastic disturbance terms to equation (3.2.5) where yields are expressed as

deterministic linear functions of state variables:

yt(mi) = �
1

�
B(mi)

0Xt �
1

�
A(mi) + "t(mi); i = 1; 2; ::::; N:
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The above equation can be more compactly written in matrix notation as:

Yt = A+BXt + "t;

where Yt is a vector of N observed yields and "t is an N � 1 vector of inde-
pendent and identically distributed Gaussian white noise measurement errors,

i.e., "t � i:i:d:N(0; R). A is the vector of yield-adjustment terms and B is the
loading matrix de�ned respectively as7:

A =

266666666664

�A(m1)
m1

�A(m2)
m2

...

�A(mN )
mN

377777777775
and B =

266666666664

�B(m1)
m1

�B(m2)
m2

...

�B(mN )
mN

377777777775
.

Note that for DNS there is no yield-adjustment term and hence, A = 0.

The measurement disturbance covariance matrix R is assumed to be diagonal.

Measurement and transition disturbances are assumed to be orthogonal to

each other.

We brie�y describe the Kalman �lter that operates in two recursion steps

- a prediction step and an updating step. Let Xt�1jt�1 denote an update of

the state vector that has been obtained at period t � 1 using information up
to t � 1and let Ptj�1t�1 be its mean square error matrix. Then forecasts for
the next period t are obtained in the prediction step as

Xtjt�1 = a+ bXt�1jt�1;

where a = (I � exp(�KP4t))�P and b = exp(�KP4t)8 and

Ptjt�1 = bPtj�1jt�1b
0 +Qt(Xt�1jt�1);

7 Elements of A and B for AFNS are solutions of ordinary di¤erential equations and we
use Matlab funtion ode45 to numerically solve them.

8 In the empirical excercise the matrix exponents are evaluted in Matlab which uses Padé
approximation.
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where Q(:) is computed by the conditional variance formula (3.2.16).

The yield prediction error and its variance are obtained as

vtjt�1 = Yt � A�BXtjt�1;

and

Ftjt�1 = BPtjt�1B
0
+R:

In the update step at time t, the prediction Xtjt�1 made at time t � 1 is
improved by using additional information contained in Yt:

Xtjt = Xtjt�1 + Ptjt�1B
0
F�1tjt�1vtjt�1;

Ptjt = Ptjt�1 + Ptjt�1B
0
F�1tjt�1BPtjt�1:

The unknown parameters of the state-space model are estimated by max-

imizing the log likelihood given by

l(Y1; Y2; :::; YN ; 	) = �
NT

2
ln 2� � 1

2

TP
t=1

ln
��Ftjt�1��� 1

2

TP
t=1

v0tjt�1Ftjt�1vtjt�1:

The Kalman �lter is initialised at the unconditional mean and covariance

matrix 9

cXo = �
P and c�0 = Z 1

0

e�K
P s�S(�P )S(�P )0�0e�(K

P )0sds:

Finally, the standard deviations of the estimated parameters are calculated

as

�(b	) = 1

T

"
1

T

TX
t=1

@ log lt(b	)
@(b	) @ log lt(b	)0

@(b	)
#�1

;

where b	 denotes the optimal parameter set.
There are, however, caveats of using the above Kalman �lter based maxi-

mum likelihood technique for AFNS with stochastic volatilities. The discrete

9 The conditional and unconditional moments in the estimation are calculated following
Fackler (2000) who extends the analytic solutions provided in Fisher and Giles (1996).
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state equation (3.2.17) assumes that the distribution of that the state variables

be Gaussian which is unlikely because of introduction of stochastic volatilities

in the models . Under the assumption of normality, the Kalman �lter induced

maximum likelihood estimation is only quasi-maximum. Moreover, in spite

of forcing the parameter sets to satisfy Feller and other non-negativity condi-

tions the discretisation (3.2.17) can drive the square-root processes to negative

territory. If this happens we replace the negative value by zero following the

literature (e.g., see Du¤ee (1999), Christensen et al. (2010)).

3.3 Data and In-Sample Fit

For our empirical analysis we opt to use data which have been analysed in

Christensen et al. (2011). The data set consists of monthly U.S. zero-coupon

bond yields from January 1987 to December 2002. The yields are end-of-

month and reported at sixteen di¤erent maturities: 3, 6, 9, 12, 18, 24, 36, 48,

60, 84, 96, 108, 120, 180, 240 and 360 months. We �nd this particular data set

attractive for our forecasting exercise for several reasons. First, the yields are

Fama-Bliss unsmoothed yields and therefore, represents the true raw yields

better than those extracted by smoothing methods such as interpolating with

Nelson-Siegel type functions or �tting splines.10 Second, the data cover the

cross-section of the yield curve reasonably well as it includes yields with very

short maturity (e.g., 3 months) to very long maturity (e.g., 30 years). Third,

application of stochastic-volatility-Nelson-Siegel models on this particular data

allows us to compare some of our results directly with those of Christensen et

10 Construction of true yields by �tting a Nelson-Siegel type function may provide an
unfair advantage to any Nelson-Siegel yield curve model for out-of-sample forecasting. Since
all our competing models belong to the Nelson-Siegel class, this is not desirable. Yields
estimated by alternative smoothing techniques such as spline-�ttng are often considered to
be distorted to some extent.
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al. (2011) obtained with constant volatility models.11

Figure 3.A.1 plots time series of yields over the entire sample period of

January 1987 to December 2002. It is evident that the level, slope and cur-

vature of the yield curve vary substantially over time depicting many di¤erent

shapes - upward sloping, �at, inverted and so on.

Table 3.B.1 presents summary statistics of the sample yields and con�rms

a number of stylised features of a typical yield curve. The average yield curve,

represented by means of yields of reported maturities, slopes upward. The

rear end of the yield curve, however, tilts downwards with average yield of the

30-year bond smaller than that of the 20-year bond.12 Decreasing standard

deviations for longer yields imply that the short end of the yield curve is

more volatile than the long end. The sample autocorrelations reveal that all

the yields are very persistent and that persistence increases with maturity.

Autocorrelations of longer yields are high even at lags of two years.

All the Nelson-Siegel models under study exploit three latent factors which

have unique de�nitions: level, slope and curvature.13 Following Christensen et

al. (2010) we perform a principal component analysis in order to investigate

the appropriateness of use of such three-factor models to our data. Results are

summarised in Table 3.B.2. First three principal components explain about

99.8% of the total variation in the yield curve and their loadings on di¤erent

yields shed light on their nature. With negative loadings of somewhat similar

size on all the yields the �rst principal component acts like the level of the yield

curve. Any change in it would a¤ect all yields all most equally and in the same

11 Our forecast design, however, is di¤erent from the setup of Christensen et al. (2011).
Therefore, conclusions drawn from forecast results of DNS and AFNS0 are similar, but
not readily comparable.
12 Litterman et al. (1991) relates this reduction of yields on longer maturities to the

convexity of discount factor which prices bonds. They argue that the latter increases with
increased volatility.
13 The fact that three factors are su¢ cient to model the term structure of interest rates

is well documented in literature. See Litterman and Scheinkman (1991), for example.
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direction. With loadings of opposite signs for shorter and longer maturities

the second principal component captures the slope of the yield curve. Shocks

in it determines the steepness and �atness of the yield curve. Finally, the third

principal component has negative loadings on the two ends of the yield curve

and positive loadings in the middle suggesting that the component controls

the curvature of the yield curve. Overall, the results justify application of

three-factor Nelson-Siegel models to the data.

We estimate all the six models over the full sample period of January,

1987 to December, 2002. The parameter estimates of the benchmark model

DNS are presented in Table 3.B.3 and those of the AFNS models are pre-

sented in Table 3.B.4. We replicate results of estimation of the DNS and

the AFNS0 models, as presented in Christensen et al. (2011), with minor

discrepancies. For the AFNS models with stochastic volatilities the patterns

that can be identi�ed from estimated values of the parameters are very similar

to that reported in Christensen et al. (2010) which uses daily U.S. yields.

Whether a factor is inducing stochastic volatility or not largely contributes to

the variations in the estimated mean parameters in �P and estimated volatility

parameters in � across maturities. The signs of elements of �P are predomi-

nantly determined by the fact that any volatility-generating factor has to be

non-negative under a square-root process. Since di¤erent factors operate at

di¤erent scales estimated values of factor means are also substantially di¤erent.

Factors generating volatility have higher estimated � values and if a factor does

not produce stochastic volatility its associated estimated � is very close to the

corresponding estimate in the AFNS0 model. There is substantial variation

in KP matrix across models. However, for all models the level factor is the

most persistent while the curvature being the least persistent. The estimated

� volatility sensitivity parameters suggest that the level factor induces sub-

stantial stochastic volatility in both slope and curvature but curvature hardly

contributes in generating volatility in the level. The estimated values of � lie
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within a range of 0.49-0.82.

Following common practice we assess goodness of in-sample �t of di¤erent

models by comparing root-mean-squared-errors (RMSE) of �tted yields. Re-

ports presented in Table 3.B.5 show that performance of models are mixed.

No single model provides the best �t to the entire cross-section of the yield

curve. A comparison of the DNS and the AFNS0 models implies that im-

position of no-arbitrage restriction deteriorates the �t to the short-end of the

yield curve, particularly to yields with 3- and 6-month maturities. However,

introduction of stochastic volatility through the level factor, as modelled by

the AFNS1 � L model, outweighs much of these losses. RMSE values of the
models AFNS1�L and AFNS2�LC are similar across all yields but they are
di¤erent from those of AFNS0. This probably suggests that when both level

and curvature are allowed to induce volatility, most of the in-sample volatility

is accounted for by the level factor and it alone can generate su¢ cient amount

of stochastic volatility to produce cross-sectional �t which is substantially dif-

ferent from that of the constant volatility counterpart. RMSE values of the

models AFNS0 and AFNS1�C are somewhat di¤erent for the �rst few short-
maturity yields, but similar otherwise. This indicates that volatility which is

generated through curvature alone a¤ects only the short end of the yield curve.

Interestingly, variations in RMSEs of the models AFNS0; AFNS1 � L and
AFNS3 imply that all the three factors together produce stochastic volatility

which a¤ects the in-sample �t of data di¤erently than do volatility generated

by level factor alone or by constant volatility. An additional noteworthy ob-

servation is that the models AFNS0 and AFNS1�C �t the longest end of the
curve (i.e. the 30-year yield) very well but provide poor �t to 15- and 20-year

yields. The other time-varying volatility models AFNS1 � L, AFNS2 � LC
and AFNS3 models deliver an opposite performance by �tting the 15- and

20-year yields relatively well and �tting the 30-year yield miserably. Overall,

the AFNS2�LC model, where both level and curvature are the drivers of sto-
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chastic volatility, is the most consistent in capturing the yield curve dynamics

well as it produces the maximum number of minimum RMSEs.

3.4 Out-of-Sample Forecasting

The main focus of this chapter is systematic evaluation of predictive per-

formance of Nelson-Siegel term structure models out-of-sample. Particular

interests lie in investigating whether accounting for no-arbitrage restrictions

together with time-varying volatility improves forecast accuracy of models and

also whether performance of models in terms of point forecasts of conditional

mean of yields is consistent with their ability to generate conditional predic-

tive densities of yields. The competing models which we have discussed earlier

range from non-arbitrage-free constant volatility benchmark to arbitrage-free

stochastic volatility speci�cations. In what follows we explain how forecasts,

both point and probability, are generated using each model and analyse results

of both types of forecasts in details.

3.4.1 Point Forecasts

Forecast Design and Construction of Forecasts

We construct 1-, 3-, 6- and 12-month-ahead forecasts of the U.S. yield curve

using all the Nelson-Siegel speci�cations described in Section 2. We estimate

and forecast using a rolling-window sample. The �rst estimation sample is Jan-

uary, 1987 to January, 1996; the next is February, 1987 to February, 1996 and

so on. The last estimation sample for the 1-step-ahead forecast ends in Novem-

ber, 2002 and 83 forecasts are generated altogether. For 3-, 6- and 12-month

horizons, �nal estimation samples end in September, 2002 (81 forecasts), June,
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2002 (78 forecasts) and December, 2001 (72 forecasts), respectively. For multi-

step ahead forecasts we use iterated forecasts, as opposed to direct forecasts.14

Forecasts of yields are made it two steps: �rst h-step-ahead forecasts of factors

are produced and then these are used to predict yields h steps forward.

An h-step-ahead forecast of an m-maturity yield which is made at time t

using the DNS model is given by

byt+hjt(m) = bLt+hjt+ bSt+hjt�1� e��m
�m

�
+ bCt+hjt�1� e��m

�m
� e��m

�
: (3.4.1)

De�ning the state vector as Xt = (Lt; St; Ct), an h-step-ahead forecastbXt+hjt is computed as

bXt+hjt =

�
h�1P
i=0

�i
�
(I � �)�+ �hXt: (3.4.2)

For the AFNS speci�cations, an h-step-ahead forecast of an m-maturity

yield is constructed as

byt+hjt(m) = bX1
t+hjt+ bX2

t+hjt

�
1� e��m
�m

�
+ bX3

t+hjt

�
1� e��m
�m

� e��m
�
� A(m)

m
;

(3.4.3)

where, bXt+hjt is an h-step-ahead forecast of the state vector Xt = (X
1
t ; X

2
t ; X

3
t )

and is given by

bXt+hjt = (I � exp(�KPh))�P + exp(�KPh)Xt: (3.4.4)

Forecast Evaluation

We use root mean squared forecast error (RMSFE) as the criterion for eval-

uating the accuracy of yield curve models and compare their predictive per-

formance in terms of RMSFE relative to the benchmark model DNS. For an

h-step-ahead forecast ofm-maturity yield produced from model j, we compute

RMSFEhj (m) =
q
n�1h

P
(yt+h(m)� by(j)t+hjt(m))2

14 See Marcellino et al. (2006) for a discussion on direct and iterated forecasts.
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and de�ne the relative RMSFE as

RRMSFEhj (m) = RMSFE
h
j (m)=RMSFE

h
DNS(m):

A value of RRMSFE smaller than one implies that the corresponding model

forecasts better than the benchmark.

Tables 3.B.6 and 3.B.7 present mean forecast errors (MFEs) of models in

basis points. A negative value indicates over prediction while a positive value

implies under prediction. We test the null hypothesis of zero MFE against

alternative hypotheses of negative and positive biases and mark signi�cance

at 1%, 5% and 10% level.

MFE values are predominantly negative indicating that the model-generated

forecasts of many yields are, on average, too high. Average forecast errors

for the constant volatility models DNS and AFNS0 are consistently nega-

tive across yields with maturities of 10 years and less. Values for the AFNS3

model are negative all through except for 1-month-ahead forecasts of the short-

est yield with 3-month maturity. For the models AFNS1�L and AFNS2�LC
prediction biases are more mixed in sign. For example, 1-month-ahead MFEs

of these two models are positive for yields with 3-month, 7-year and 20-year

maturities but negative for the rest of the maturities. Over the shortest fore-

cast horizon of one month, the benchmark model DNS turns out to be the

worst forecasting model in the sense that it is the only model that reports

MFEs that are signi�cantly di¤erent from zero for the entire cross-section of

the yields. The absolute forecast bias of the DNS model are also the high-

est for all yields below 10-year maturity. Relatively better performance of

the AFNS models implies that imposition of no-arbitrage restriction helps in

forecasting yield levels, at least up to moderately long maturity. Overall, the

AFNS models forecast yields with 3-month to 7-year maturities well at 1-

month horizon with the highest average prediction error not exceeding 8 basis

points in absolute value. Forecasts of the 10-year yield are, however, signi�-
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cantly high for all the models with mean forecast errors being between -10 to

-19 basis points. Finally, forecast performance of competing models are mixed

for the longest two yields: while the AFNS1�L and AFNS2�LC models pre-
dict the 20-year yield with forecast biases of only 2 basis points, they provide

considerably large and signi�cantly non-zero biases of around 75 basis points

for the 30-year yield. Performance of the AFNS0 and AFNS1�C models are
opposite: while average biases are staggering 50 basis points when forecasting

the 20-year yield they are merely 6 basis points when forecasting the 30-year

yield. This extreme forecast behaviour of the models at the long end of the

yield curve is not surprising considering similar in-sample performance of the

models. The 1-month-ahead forecasts of the 30-year yield that are generated

by the AFNS3 model are highly biased with mean forecast errors exceeding

100 basis points.

Most of the �ndings for 1-month-ahead forecasts are also preserved at

longer horizons. On average, the benchmark DNS model continues to be the

most biased model while the AFNS models where the level factor is one of

the drivers of volatility generate the least forecast errors except at the longest

maturity.

The root-mean-square-forecast-errors (RMSFEs) which is a broader crite-

rion of evaluating predictive performance have been reported in Table 3.B.8

and Table 3.B.9. The �rst row of each panel of the table reports RMSFE of

the benchmark model DNS. The remaining rows present RRMSFEs which

are ratios of RMSFE of each model relative to the DNS; as de�ned above.

Any value below one means that the corresponding model forecasts better

than the benchmark. We test whether any gain or loss against the benchmark

DNS is signi�cant by applying Giacomini and White (2006) test. The null

hypothesis of the test is that of equal predictive ability for a model and the

DNS benchmark. Statistical signi�cance at 1%, 5% and 10% is reported.

All the AFNS models fare very well against the constant volatility bench-
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mark, at least for yields that are maturing in ten years and less. At the 1-month

horizon, models show varied predictive ability across di¤erent yields and it is

di¢ cult to identify a single best and most consistent predictor. The most ac-

curate forecasts are shared among stochastic volatility models AFNS1 � L,
AFNS1�C and AFNS2�LC. The gains, are, however, small except for the
longest two maturities with the maximum gain not exceeding 6%. Extreme and

contrasting forecast performance of the models for the 20- and 30-year yields,

which is evident in MFE analysis, is also re�ected in the reported RRMSFEs.

The models AFNS1�L; AFNS2�LC and AFNS3 predict the 20-year yield
with gains of around 40% over theDNS benchmark, but they are convincingly

outperformed by the benchmark when forecasting the 30-year yield. The mar-

gin of prediction loss is more than 200% for the AFNS3 model. The models

AFNS0 and AFNS1 � C lose 20% against the benchmark when forecasting

the 20-year yield but gain a same percentage in forecasting the 30-year yield.

At longer forecast horizons of three months and six months the AFNS2�
LC model appears to be the best predictive model by outperforming all the

competitors across most of the yields. However, forecast gains are rarely sig-

ni�cant. For instance, among all the 3-month-ahead predictions, only the

AFNS1�C�s forecast of the 3-month yield and the AFNS1�L and AFNS2�
LC�s forecasts of the 10-year and 20-year yields are signi�cantly better than

those of the DNS. At 12-month horizon the AFNS3 forecasts many of the

yields most accurately.

3.4.2 Density Forecasts

As we discussed earlier, point forecasts do not provide any description of uncer-

tainties associated with forecasts and therefore, capture only a partial/incomplete

account of the predictive power of a time series model. A much broader picture

of forecast performance is available through density forecasts which estimate
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the entire probability distribution of possible forecasts at each point in time

in the future. Calibration of density forecasts of the yield curve which usually

exhibit considerable amount of time-varying �uctuations requires su¢ cient ac-

count of stochastic volatility in the underlying models. Diebold and Rudebusch

(2013) rightly emphasise "if interest centers on interval or density forecasts of

yields or yield factors, then stochastic volatility is of direct and intrinsic in-

terest and cannot be ignored." One of the principal interests of this paper

lies in investigating how stochastic volatility AFNS models fare against their

constant volatility counterparts in portraying predictive densities of yields.

We use Monte Carlo simulation to produce density forecasts of yields.

The basic approach involves generating alternative outcomes (forecasts) arti-

�cially and approximating the distribution of forecasts each point in time in

the forecast period. Note that we do not take account of parameter estimation

uncertainty and directly use point estimates of state-space parameters in the

simulation. The simulation process can be more methodically described in the

following steps:

1. Estimate a model using all the information up to time t. Let e	t denote
the vector of point estimates of unknown parameters and eXt denote the vector

of latent factors extracted by Kalman �lter in the estimation.

2. For h = 1 draw one-step-ahead forecast of state equation disturbance

vector, �t+1 from an appropriate multivariate normal distribution speci�c to a

model. Note that for DNS �t+1 � MN(0;
), for AFNS0 �t+1 � MN(0; Q)
and for AFNS with stochastic volatility �t+1 �MN(0; Q( eXt)) , where Q( eXt)

is given by (3:2:16).

3. At time t generate 1-step-ahead prediction of factors using the state

equation as: bXt+1jt = a(e	t) + b(e	t) eXt + �t+1; (3.4.5)

where a and b are appropriately computed for DNS and AFNS speci�cations

according to de�nitions given in the estimation.
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4. Multi-step-ahead forecasts of latent state vector are simulated by draw-

ing h-step-ahead factor forecast errors �t+h from the model-speci�c multivari-

ate normal distributions stated in step 2 and then iterating forward the state

equation for h = 2; 3; :::; hmax:

bXt+hjt = a(e	t) + b(e	t) eXt+h�1jt + �t+h: (3.4.6)

Note that for AFNS with time-varying volatilities variance of �t+h is

Q( eXt+h�1jt) which is state-dependent.

5. Finally, realisations of h-step-ahead forecasts of yields are approxi-

mated by drawing the measurement equation disturbance vector "t+h from a

multivariate normal distribution with mean 0 and variance bR, where bR 2 e	t
and inserting them in the yield measurement equation along with the factor

forecasts: bYt+hjt = A(e	t) +B(e	t) bXt+hjt + "t+h: (3.4.7)

Forecasts for the period t + 2 are obtained on the basis of estimates of

parameters which use information up to time t+ 1 and then repeating all the

steps described above. This process is continued until forecasts for the last pe-

riod T are generated. One can generate many arti�cial paths for h-step-ahead

forecasts of factors and yields by drawing the transition and measurement

equation errors many times accordingly. At each forecast origin, predictive

density is numerically approximated from the simulated replications.

Interval Forecast

One of the simplest ways of evaluating density forecasts is interval forecast

or coverage rate. The idea is to estimate the time path of forecast intervals

with certain coverage probability � and then compute proportion of true re-

alisations that fall inside the interval. If the forecasting model is correctly
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speci�ed about �% of the realised values are expected to fall within the inter-

val. This is very similar to back-testing in risk management where forecasted

losses from estimated value-at-risk (VaR) are evaluated by looking back at past

and checking how many times actual losses exceed the VaR limit. Giordani

and Villani (2010) and Clark (2011) have used coverage rates as means of as-

sessing macroeconomic density forecasts. Following Clark (2011) we construct

70% intervals by computing the 15th and 85th percentiles from the calibrated

predictive densities.

Table 3.B.10 reports coverage rates generated by competing forecast

models for a selection of maturities. An accurately constructed interval should

contain about 70% of the real-time yields observed over the forecast period. A

coverage rate of more than 70% implies that, on average, for a given sample,

the predictive density is too wide and a rate below 70% means it is too narrow.

The 1-month-ahead predictive intervals of all models are extremely wide

for yields with maturities below one year. Coverage rates for the 3-month

yield are in the range of 92%-98% and those for the 6-month yield lie within

87%-95%. Performance of models in terms of matching the nominal cover-

age rate of 70% are mixed at the shortest forecast horizon. The AFNS1 � C
and the AFNS0 models provide the best forecast intervals for yields of bonds

with maturities of two years or less, the benchmark DNS model predicts 3-

and 5-year yields very well with coverage probabilities of 68%-72% and the

AFNS1 � L and the AFNS2 � LC models calibrate the interval most ac-

curately for longer yields with 10-year and 20-year maturities. Interesting

patterns can be identi�ed in coverage probabilities reported for di¤erent mod-

els, at least for all yields with maturities of twenty years and less. The pair,

AFNS1 � L and AFNS2 � LC, consistently produces intervals that are too
wide with true yields falling inside the intervals much more frequently than

the desired nominal rate of 70%. For the rest of the models, including the

constant volatility speci�cations, coverage probabilities are decreasing with
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years-to-maturity. Calibrated forecast intervals of the arbitrage-free speci�ca-

tions AFNS0, AFNS1�C and AFNS3 become imprecisely narrow at the long
end of the yield curve. For instance, coverage probabilities of these models are

only 51%-53% for the 20-year yield. Inferior 1-month-ahead predictive perfor-

mance of the AFNS1 � L, AFNS2 � LC and AFNS3 models, as observed

in point forecasts of the 30-year yield, is re�ected also in interval forecasts.

For this longest interest rate coverage probabilities of the models AFNS1�L
and AFNS2 � LC are only 31% while that for AFNS3 is just 11%. Overall,

at 1-month horizon the benchmark model DNS reports coverage rates that

are, on average, most consistently close to the true rate. Thus, it is evident

from the sample that imposing no-arbitrage restriction and/or incorporating

stochastic volatility have deteriorated calibration of 1-month-ahead predictive

densities.

Coverage probabilities of forecasting models change at longer horizons.

AFNS models where level is one of the drivers of stochastic volatility show

improved calibration of forecast intervals. At 6-month and 12-month horizons

the AFNS1 � L and AFNS2 � LC models provide coverage rates that are

closest to 70% for most of the yields. 12-month-ahead coverage probabilities

of all models are very low for yields of two years maturity and below.

Probability Integral Transforms

Probability integral transforms (PITs) provide an informal but useful qual-

itative approach to assessing accuracy of density forecasts. The PIT of a

realization yt with respect to density forecast pt�1(yt) can be de�ned as

zt =

Z yt

�1
pt(u)du:

For a correctly speci�ed forecast density the PIT series should be i.i.d.

uniform variates in the interval [0,1]. The idea of evaluating distributional
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assumption using PIT was �rst proposed in Rosenblatt (1952) and later used

in Diebold et al. (1998) for assessing optimality of predictive density. Diebold

et al. (1998) used a number of simple visual assessment techniques - such as,

histograms for checking uniformity and correlograms of generalized residuals

for checking independence of PITs.

For yields of selected maturities and forecast horizons of one month, Fig-

ures 3.A.2-3.A.7 present PIT historgrams obtained as decile counts of PIT

transforms. If the 1-month-ahead density forecasts are optimal the histograms

would be �at (with heights of 8.3 per bin) to con�rm that PITs are i.i.d.

U[0,1]. Results show that forecasts of all the models are, in general, poor

as they su¤er material departures from uniformity. Departures are severe for

shorter yields, particularly for 3-month and 6-month yields with distributions

of PITs looking more like normal distributions. The constant volatility models

DNS and AFNS0 predicts the 1-year and the 3-year yields better than their

stochastic volatility counterparts with relatively �atter PIT histograms. The

AFNS1 � L and AFNS2 � LC models, however, produce superior density

forecasts for yields with longer maturities, particularly 5, 7 and 20-year matu-

rities. Predictive densities for the 10-year and the 30-year yields are far from

convincing irrespective of model types.

Normal Transforms of PIT

The quality of models�forecast densities can also be visually investigated by

plotting the normalized forecast error over time. The normalized forecast error

at time t is de�ned as ut = ��1(zt), where zt denotes the PIT of one-step-ahead

forecast errors and ��1 is the inverse of standard normal cumulative density

function. Independence and uniformity of the PIT series would then mean that

normalized forecast errors are independently distributed as standard normal

which should be the case if a model is correctly speci�ed.
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Time series plots of normalised errors over time are presented in Figures

3.A.8-3.A.13. Clear distinctions among models�performances at the long

end of the yield curve, as already identi�ed from PIT historgrams, are also

evident in the time series plots. However, since forecasts of yields generated

by the competing models are very similar, plot of normalised errors are not

very informative. Therefore, we resort to more formal evaluation of density

forecast through statistical tests proposed in Berkowitz (2001).15 The tests

are based on the following AR(1) dynamics for the normalised errors:

ut � �u = �u(ut�1 � �u) + �t; �t � N(0; �2u): (3.4.8)

Evaluating if ut � iidN(0; 1) is then equivalent to testing the null hypoth-
esis H0 : �u = 0; �u = 0 and �

2
u = 1. The likelihood ratio test statistic is given

by16

LR = �2(l(0; 1; 0)� l(b�u; b�2u;b�u));
where the hats denote the estimated values. Under H0, LR is distributed as

�2 with 3 degrees of freedom, one for each of the three restrictions. A test of

only standard normality of normalised errors can be constructed by specifying

the null as H 0
0 : �u = 0 and �

2
u = 1 and computing the test statistic as

LR = �2(l(0; 1;b�u)� l(b�u; b�2u;b�u));
which follows a �2-distribution with 2 degrees of freedom.

We report results of both tests along with a number of other metrics in

Table 3.B.11 and Table 3.B.12. The �rst panel reports the means of the

normalised errors with t-statistics for testing the null of a zero mean. The

second panel reports the variances of the normalised errors with t-statistics for

15 Betkowitz (2001) document better power for tests based on normality of normalised
errors than tests based on uniformity of PITs.
16 See Berkowitz (2001) for an expression of the exact log-likelihood function associated

with the AR(1) process.
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testing the null that the variance equals one. The third panel reports the AR(1)

coe¢ cients estimated by regressing errors on a constant and �rst lags along

with t-statistics for testing the null that the AR(1) coe¢ cient is zero. The

fourth and the �nal panel reports results of the Berkowitz�s (2001) likelihood

ratio tests with p-values of the joint test of independence and normality and

p-values of the test of normality with zero mean and unit variance only (in

parentheses).

Results of means of normalised errors resemble results of MFE for point

forecast. The benchmark model DNS does poorly by reporting average nor-

malised PITs which are signi�cantly di¤erent from zero for most of the yields.

Mean errors from the AFNS0 model are, however, consistently closer to zero

than those from the DNS model, at least for yields of 10-year maturity or less

and in most cases they are signi�cantly non-zero. For example, average of

normalised errors from the DNS model are -0.140, -0.191 and -0.302 at matu-

rities of three months, six months and �ve years and they are all statistically

signi�cant. The reported numbers for the AFNS0 model on the same set of

yields are -0.055, -0.107 and -0.253 which are not di¤erent from zero. The

stochastic volatility models AFNS1 � L, AFNS2 � LC and AFNS3 fair well
except at the longest yield of thirty years.

Reported variances of all the models are considerably and signi�cantly

lower than one for the shortest yield with 3-month maturity. The benchmark

DNS is the most consistent in matching the unit variance. Variances of its

errors are not signi�cantly di¤erent from one for yields with maturities of

one year and more. The AFNS0 model reports variances which are, in gen-

eral, much higher than those of the DNS model and for most of the longer

yields variances are signi�cantly higher than unity with large t-statistics. For

instance, the error variance for the DNS model is 1.025 for the 7-year yield

with a t-statistic of 0.205 and the error variance for the AFNS0 model is 1.846

for the same yield with a t-statistic of 2.900. The stochastic volatility models
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AFNS1 � L and AFNS2 � LC report variances which are consistently lower
than one and also lower than those reported by the constant volatility coun-

terparts DNS and AFNS0 across all yields except for the one with 20-year

maturity. For yields with two years to twenty years maturities, the variances

are, however, not statistically di¤erent from unity. The stochastic volatility

model AFNS3 where all the three factors drive volatility provides variances

which are even higher than those of AFNS0 for a number of yields.

There is little evidence of independence of normalised errors. For the

constant volatility modelsDNS and AFNS0, the estimated AR(1) coe¢ cients

of error dynamics are signi�cantly di¤erent from zero for all the yields except

the one with 10-year maturity. The stochastic volatility models AFNS1 � L,
AFNS2 � LC and AFNS3, however, perform slightly better by not showing

signi�cant autocorrelation for multiple yields, e.g., yields with maturities of

3, 5 and 7 years. For the 5-year yield reported AR(1) coe¢ cients of DNS,

AFNS0, AFNS1 � L, AFNS2 � LC and AFNS3 are 0.248, 0.241, 0.226,

0.224 and 0.211, respectively and associated t-statistics for testing the null of

no serial autocorrelations are 2.088, 2.137, 1.648, 1.557 and 1.340, respectively.

The above metrics look at the distributional and independence require-

ments individually and therefore, provide only a �rst hand idea about the

quality of the 1-month-ahead density forecasts of yields. The requirements

can jointly and therefore, more appropriately be tested by Berkowitz (2001)

tests. P-values for jointly testing the H0 of independence and standard nor-

mality of normalised errors reveal that in general the models fail the overall

test. The AFNS2 � LC model is the least bad as it survives the test for two
of the yields, the 5-year yield with a p-value of 0.064 and the 7-year yield with

a p-value of 0.140. Two other models, the AFNS1 � L and the benchmark
DNS show signi�cantly good calibration of one-step-ahead forecast density

for only the 7-year yield. P-values of a second test of just normality with zero

mean and unit variance (reported in parentheses) shed light on whether any



103

failure is driven by autocorrelation. When only matching the standard normal

distribution in terms of �rst two moments (mean and variance) is of concern,

some patterns can be observed among models� performance. The AFNS0;

AFNS1 � C and AFNS3 do well on yields of medium maturities of one year

to three years; the AFNS1 � L and AFNS2 � LC pass the test on yields of

longer maturities of �ve, seven and twenty years and the benchmark DNS

match the distribution well on yields of one year to seven years maturity.

Log Predictive Density Scores

The accuracy of density forecasts can be most broadly summarised and eval-

uated using log predictive density scores (LPDS). We follow the quadratic

formula of Adolfson et al. (2005) where the log predictive score of h-step

ahead predictive density at forecast origin t is de�ned as

St(yt+h) = �2 log pt(yt+h);

where, pt(yt+h) is the forecast density of N -dimensional vector of yields. Since

we assumed pt(yt+h) to be multivariate normal, the LPDS can be expressed as

St(yt+h) = n log(2�) + log
��Vt+hjt��+ (yt+h � yt+hjt)0V �1t+hjt(yt+h � yt+hjt);

where yt+hjt and Vt+hjt are the mean and covariance matrix of h-step-ahead

forecast distribution, being at time t. An average LPDS over the hold-out

sample is de�ned as

S(h) = N�1
h

X
St(yt+h)

where, Nh is the number of h-step ahead forecasts. The lower the score the

better is the predictive ability of a model.

Table 3.B.13 reports the log predictive density scores of the forecasting

models. Since yields of di¤erent maturities move together scores are simi-

lar across yields. Results of 1-month-ahead forecasts are mostly inconclusive.
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For 3-month to 5-year yields, the model AFNS1 � C, where curvature fac-
tor is the only driver of stochastic volatility, generates the lowest scores and

therefore, the most accurate forecast density. The constant volatility models

DNS and AFNS0 are equally competitive. The pair of models, AFNS1 � L
and AFNS2 � LC, in which stochastic volatility is primarily induced by the
level factor, produces inferior probability forecasts compared to their constant

volatility counterparts except for the 20-year yield. Poor scores of the models

AFNS1 � L, AFNS2 � LC and AFNS3 for the longest yield with 30-year

maturity resemble similar disappointing predictive performance of the models

in terms of RRMSFEs and coverage rates. The AFNS3 model where all the

three factors are responsible for generating time varying volatility turns out

to be the worst model by scoring the highest across most of the maturities.

The log predictive scores increase with forecast horizon implying that pre-

dictions are less accurate for longer horizons. Multi-step-ahead scores reveal

that some of the AFNS models start to show improved predictive densities.

At 3-month horizon the AFNS1 � L model provides the minimum scores for

yields maturing in two to twenty years. Its scores are closely matched by

those of the AFNS2 � LC model. At 6-month and 12-month horizons these

two models produce scores that are consistently lower than those of the con-

stant volatility models DNS and AFNS0 across the entire cross-section of

the yield curve except for the longest yield with 30-year maturity. Interest-

ingly, a comparison between the two constant volatility models indicates that

log predictive scores of the AFNS0 are consistently higher than those of the

DNS benchmark at forecast horizons of three months and more. This together

with previous results imply that adopting no-arbitrage restriction appears to

deteriorate prediction of forecast density at longer horizons, but the loss is

more than compensated by gains through considering time-varying volatility,

particularly that driven by the level factor. Even the AFNS3 model which

performs badly at 1-month horizon consistently outperforms the AFNS0 at
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12-month horizon, but fails to beat the DNS at many maturities.

Di¤erences in log predictive scores of a model and that of the benchmark

DNS are reported in Table 3.B.14 and Table 3.B.15. We identify sig-

ni�cant superior and inferior performance against the benchmark by using

Giacomini and White (2006) test of equal predictive ability. The loss func-

tions used in the tests are log predictive scores. Negative di¤erences indicate

that the calibrated predictive density of a model is better than that of the

DNS benchmark while positive di¤erences mean worse approximation on the

part of the model. At 1-month-horizon the models AFNS0 and AFNS1 � C
have signi�cant gains over the DNS at the short end of the curve. The models

AFNS1�L and AFNS2�LC generate density forecasts that are worse than
those of the benchmark for all yields except the 20-year yield where they gain

signi�cantly. It is di¢ cult to �nd signi�cance at longer horizons. The only

signi�cant gains come from the models AFNS1 � L and AFNS2 � LC when
forecasting the 20-year yield at 3-month horizon. The 3- and 6-month-ahead

density forecasts of these two models are, however, signi�cantly inferior to

forecasts of the DNS benchmark for the longest yield of 30-year maturity.

3.5 Conclusion

Current and past literature on term structure of interest rates heavily focus

on comparing models in terms of point forecasts of either the mean or the

variance of the yields. These are often of limited values as they do not account

for uncertainties surrounding a prediction. Density forecasts which provide a

full description of predictive densities of a model are more attractive and desir-

able. Apart from common moments they allow for computation of a range of

uncertainty related measures such as quantiles. There is, however, an ongoing

search for a term structure model which can calibrate distribution of future
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yields reasonably well. Following the failure of the well-known a¢ ne models in

this context, as documented in Egorov et al. (2006), it is time to look for alter-

native models. Arbitrage-free Nelson-Siegel models with stochastic volatilities,

proposed in Christensen et al. (2010), are certainly worthy candidates. They

adopt several properties which are attractive from both theoretical and empir-

ical perspectives. In particular, they are parametrically parsimonious, easily

estimable and tractable, arbitrage-free and modeller of time-varying volatility

of yields. This chapter extensively analyses and evaluates forecast performance

of di¤erent speci�cations of arbitrage-free Nelson-Siegel models, both in terms

of point forecasts and density forecasts.

Results of point forecasts fare well in favour of arbitrage-free Nelson-Siegel

Models. Using the same data set of U.S. bond yields but a di¤erent forecast

design we �nd similar conclusions as in Christensen et al. (2011)17: adopt-

ing no-arbitrage restrictions helps in improving forecast accuracy of dynamic

Nelson-Siegel Models. Further predictive gains can be achieved by modelling

stochastic volatility, particularly from forecasting at longer horizons. The

simple benchmark DNS which does not rectify for risk-free arbitrage oppor-

tunities and time-varying volatilities consistently reports mean forecast errors

which are higher than those of the AFNS counterparts and root mean square

errors which are relatively higher across all forecast horizons. Models where

level is one of the drivers of stochastic volatility, in particular, show superior

predictive ability. While the AFNS2 � LC model has clear advantage in 3-

and 6-month-ahead forecasts, the AFNS3 model, where all the three factors

generate stochastic volatility, provides the most competitive forecast at the

longest horizon of twelve months. There is, however, a caveat of using AFNS

with stochastic volatility to our sample; they fail miserably in �tting and fore-

casting the yield with the longest maturity of 30 years. This is not surprising

17 We opt to use a rolling-window rather than an expanding-window scheme. We also
curtail the estimation sample to have a longer forecast period.



107

considering the fact that these models have been found to show little �exibil-

ity in capturing any tilt at the longest end of the yield curve in-sample. Very

similar in-sample �t and out-of-sample forecast performance of AFNS0 and

AFNS1 � C imply that curvature alone accounts for insigni�cant proportion
of time-varying volatility.

Implications of �ndings for density forecasts are somewhat di¤erent. We

use a number of metrics and tests to evaluate predictive densities of yields

generated by the competing models. Results of a joint test of independence,

zero mean and unit variance of normalised errors reveal that all models�predic-

tion of 1-month-ahead forecast distribution is far from satisfactory. However,

when serial correlation is ignored and just matching the �rst two moments of

the standard normal distribution is considered, the constant volatility models

DNS and AFNS0 show good performance for medium-long maturity yields

and stochastic volatility models AFNS1 � L and AFNS2 � LC exhibit good
performance for a few long maturity yields. Density forecasts of short rates

with maturities below one year are inferior for all the Nelson-Siegel models.

These �ndings are also supported by visual representations of PIT histograms.

When models are compared in terms of forecast intervals, all models are found

to produce very wide intervals for short yields. Nonetheless, constant volatil-

ity models fare better than their stochastic volatility counterparts in matching

the true coverage probability for 1-month-ahead forecasts. Calibration of pre-

dictive intervals of stochastic volatility models, however, improves with longer

forecast horizons. Evaluation of density forecasts in terms of log predictive

scores leads to similar �ndings: better predictive densities for constant volatil-

ity models andAFNS1�C at one-month horizon and more competitive density
forecasts for the AFNS models with stochastic volatilities at longer forecast

horizons. Gains over the benchmark DNS are, however, rarely statistically

signi�cant. Disappointing performance of stochastic volatility AFNS models

for the longest yield of 30 year maturity is con�rmed by all means of density
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forecast evaluation.

Overall, there are evidence of bene�ts from accounting for time-varying

volatility which is spanned by three latent factors of arbitrage-free Nelson-

Siegel models. But the models�generated joint predictive densities of yields

are far from convincing. Further investigation is required to check if incorpo-

ration of unspanned stochastic volatility, as advocated by Collin-Dufresne et

al. (2009), can improve density forecasts of such models.
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3.A Appendix C: Figures 

 

 

 

Figure 1: The U.S. Yield Curve, January 1987 – December 2002 
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Figure 3.A.1: The US yield curves

Note: The data are Fama-Bliss unsmoothed zero-coupon bond yields for the period January

1987 - December 2002.
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3.B Appendix D: Tables

Table 3.B.1 Descriptive statistics, the US yield curves

Maturity Mean Std dev Skewness Kurtosis �̂(1) �̂(12) �̂(24)

3 5.085 1.744 -0.060 2.82 0.976 0.508 0.002

6 5.219 1.755 -0.140 2.789 0.975 0.509 0.013

9 5.329 1.763 -0.168 2.747 0.973 0.517 0.036

12 5.481 1.777 -0.196 2.766 0.971 0.520 0.050

18 5.703 1.735 -0.195 2.760 0.968 0.526 0.089

24 5.809 1.660 -0.180 2.742 0.964 0.528 0.127

36 6.063 1.552 -0.116 2.695 0.960 0.538 0.206

48 6.257 1.481 -0.083 2.592 0.959 0.555 0.274

60 6.361 1.440 -0.020 2.442 0.960 0.567 0.326

84 6.604 1.382 0.046 2.207 0.964 0.607 0.410

96 6.699 1.368 0.061 2.129 0.965 0.627 0.451

108 6.741 1.365 0.064 2.062 0.967 0.640 0.472

120 6.735 1.356 0.062 1.984 0.968 0.652 0.493

180 7.164 1.235 0.213 1.887 0.970 0.672 0.542

240 7.248 1.134 0.076 1.776 0.970 0.696 0.582

360 6.765 1.212 0.059 1.743 0.972 0.712 0.589

Notes: The data are monthly Fama-Bliss unsmoothed US zero-coupon bond yields. The

sample period is January 1987 to December 2002 and the maturities are reported in months.

The last three columns report sample autocorrelations at lags of 1, 12 and 24 months.
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Table 3.B.2 Loadings of US yields on �rst three principal components

Maturity Loadings on

(in months) First PC Second PC Third PC

3 -0.279 0.353 -0.541

6 -0.288 0.316 -0.264

9 -0.294 0.277 -0.090

12 -0.298 0.255 0.053

18 -0.296 0.184 0.200

24 -0.286 0.116 0.307

36 -0.269 0.018 0.308

48 -0.256 -0.064 0.268

60 -0.247 -0.116 0.241

84 -0.231 -0.202 0.108

96 -0.226 -0.236 0.040

108 -0.222 -0.262 -0.020

120 -0.217 -0.287 -0.063

180 -0.190 -0.309 -0.121

240 -0.166 -0.326 -0.234

360 -0.176 -0.345 -0.426

% explained 90.03 9.30 0.45

Notes: The table reports eigenvectors of the �rst three principal components of US zero-

coupon bond yields. The �nal row shows share of variation in all yields explained by each

principal component. The sample is from January 1987 to December 2002.

Table 3.B.3 Estimates of parameters of independent-factor DNS model

Mean (�) AR(1) coe¢ cient matrix (�) Error variance matrix (
)

�1 0.0699 �11 0.9853 
11 6.17x10�6

�2 -0.0246 �22 0.9737 
22 1.11 x10�5

�3 -0.0111 �33 0.9259 
33 5.57 x10�5
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Table 3.B.4 Estimates of parameters of the Arbitrage-free Nelson-Siegel

(AFNS) models with independent-factors speci�cation

Parameters AFNS models with independent factors

AFNS0 AFNS1 � L AFNS1 � C AFNS2 � LC AFNS3

�P1 0.0729 0.0448 0.0520 0.0449 0.0110

�P2 -0.0282 -0.0112 -0.0116 -0.0180 0.0287

�P3 -0.0096 -0.0024 0.1018 0.0772 0.0550

�P11 0.0629 0.0439 0.0919 0.0442 0.0993

�P22 0.2121 0.0997 0.0992 0.1100 0.1999

�P33 1.1092 1.1002 1.0988 0.8999 0.4995

�P11 0.0051 0.0481 0.0051 0.0484 0.0465

�P22 0.0110 0.0119 0.0111 0.0116 0.0656

�P33 0.0263 0.0260 0.0816 0.0961 0.1364

�P11 - - - - -

�P12 - - - - -

�P13 - - 0.0008 - -

�P21 - 0.9981 - 1.9755 -

�P22 - - - - -

�P23 - - 0.0009 - -

�P31 - 0.0999 - 0.0006 -

�P32 - - - - -

�P33 - - - - -

�Q1 - 1965 - 1985 1091

�Q2 - - - - 0.0494

�Q3 - - 0.1154 0.0800 0.0451

� 0.5980 0.8190 0.6609 0.8138 0.4942

Max Log L 16280.0 16509.5 16260.1 16496.0 16023.9

Notes: The table reports estimated mean vector under P-dynamics �P , the drift matrix

KP , the time-invariant volatility matrix �, the volatility sensitivity parameters �, the mean

vector under Q-dynamics �Q and the � parameter for di¤erent independent-factor speci�ca-

tions of the arbitrage-free Nelson-Siegel (AFNS) models. Estimations are based on monthly

yields data from January 1987 to December 2002. The last row reports the maximum

log-likelihood values.
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Table 3.B.5 RMSE of �tted yields for the Nelson-Siegel Models

Maturity Nelson-Siegel models with independent factors

(in months) DNS AFNS0 AFNS1 � L AFNS1 � C AFNS2 � LC AFNS3

3 12.26 18.49 11.62 16.17 11.55 19.86

6 1.09 7.09 0.85 5.40 1.13 7.82

9 7.13 3.47 7.28 4.49 7.12 4.99

12 11.19 9.60 9.94 9.85 9.77 9.93

18 10.76 10.43 8.40 10.43 8.23 10.41

24 5.83 5.93 5.06 5.66 4.86 7.21

36 1.51 1.98 2.22 1.93 2.44 3.82

48 3.92 3.72 4.13 3.80 4.22 3.90

60 7.14 6.82 5.85 7.15 5.84 4.98

84 4.25 4.29 4.03 4.37 4.02 4.51

96 2.09 2.11 1.08 2.15 1.08 4.74

108 2.94 3.02 4.88 3.03 4.90 6.45

120 8.51 8.23 12.73 8.06 12.76 11.37

180 29.45 32.66 16.70 33.4 16.61 17.91

240 35.00 42.60 17.36 43.85 17.23 13.02

360 37.61 22.04 49.81 22.36 50.14 74.74

Notes: The table reports root mean squared errors (RMSEs) of �tted yields with di¤erent

maturities under independent-factors speci�cation of variants of Nelson-Siegel models. The

DNS refers to a standard constant-volatility dynamic Nelson-Siegel model of Diebold and

Li (2006), the AFNS0 refers to the constant-volatility arbitrage-free Nelson-Siegel model

of Christensen et al. (2011) and AFNSi refers to the arbitrage-free Nelson-Siegel model

with stochastic volatility of Christensen et al. (2010), i denoting the number of factors

driving time-varying volatilities and L and C denoting the level and curvature factors,

respectively. The bold entries represent minimum RMSEs across maturities. The sample

period is January 1987 to December 2002.
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Table 3.B.6 Real-time mean forecast errors, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year

1-month-ahead
AFNS 0 -1.778 -3.795 -3.191 -5.840 -4.347
AFNS 1-L 3.763 -1.724 -4.393 -6.133 -1.066
AFNS 1-C -2.130 -4.083 -3.387 -5.947 -4.428
AFNS 2-LC 3.704 -1.687 -4.281 -6.051 -1.037
AFNS 3 3.745 -1.934 -5.140 -7.880** -3.322
DNS -5.842** -7.562** -6.596* -8.948** -7.319**

3-month-ahead
AFNS 0 -10.635 -12.233 -10.911 -12.443 -10.094
AFNS 1-L 0.815 -4.634 -7.042 -7.928 -1.959
AFNS 1-C -11.797 -13.305 -11.848 -13.237 -10.831
AFNS 2-LC 0.908 -4.641 -7.224 -8.321 -2.409
AFNS 3 -3.328 -8.288 -10.571 -12.605 -7.935
DNS -19.749 -21.422 -20.168 -21.601 -19.001

6-month-ahead
AFNS 0 -21.821 -22.769 -20.392 -20.473 -17.174
AFNS 1-L -0.463 -5.962 -8.269 -8.585 -1.974
AFNS 1-C -24.527 -25.519 -23.200 -23.314 -19.976
AFNS 2-LC -0.454 -6.562 -9.673 -10.602 -4.000
AFNS 3 -11.325 -15.644 -17.172 -18.842 -14.371
DNS -37.881 -39.362 -37.653 -38.116 -34.665

12-month-ahead
AFNS 0 -37.224 -35.959 -30.139 -26.045 -20.664
AFNS 1-L 2.827 -0.145 1.204 4.702 12.763
AFNS 1-C -42.327 -41.073 -35.242 -31.031 -25.469
AFNS 2-LC 1.847 -2.273 -2.395 0.062 8.169
AFNS 3 -18.514 -20.617 -19.221 -18.670 -14.205
DNS -66.867 -66.100 -60.997 -57.600 -52.433

Notes: The entries are mean forecast errors (actual yields minus forecasts) reported in basis

points. �***�, �**�and �*�imply signi�cance of a test of zero mean forecast error at 1%, 5%

and 10% level of signi�cance, respectively. The test statistic is a t-statistic calculated using

Newey-West standard errors.
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Table 3.B.7 Real-time mean forecast errors, Feb 1996 - Dec 2002 (Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year

1-month-ahead
AFNS 0 -7.461** -2.905 -10.288*** 49.518*** 6.393*
AFNS 1-L -0.398 1.640 -16.122*** 1.626 -74.702***
AFNS 1-C -7.558** -3.033 -10.452*** 49.305*** 6.165*
AFNS 2-LC -0.412 1.634 -16.111*** 1.647 -74.690***
AFNS 3 -2.723 -0.581 -19.142*** -14.205*** -111.337***
DNS -10.188*** -5.552 -13.574*** 37.154*** -23.696***

3-month-ahead
AFNS 0 -11.931 -6.473 -12.951 48.208*** 5.718
AFNS 1-L 0.084 2.926 -14.249 3.858 -72.614***
AFNS 1-C -12.658 -7.220 -13.729 47.381*** 4.875
AFNS 2-LC -0.317 2.611 -14.477 3.733 -72.710***
AFNS 3 -7.362 -5.131 -23.435** -17.698*** -114.233***
DNS -20.355 -14.770 -21.986** 29.715*** -30.811***

6-month-ahead
AFNS 0 -17.808 -11.583 -17.309 45.047** 3.251
AFNS 1-L 1.020 4.362 -12.514 5.650 -70.937***
AFNS 1-C -20.462 -14.080 -19.631 42.980** 1.271
AFNS 2-LC -0.654 2.996 -13.614 4.861 -71.614***
AFNS 3 -14.304 -12.288 -30.561* -23.952 -119.524***
DNS -34.830 -28.555 -35.209* 17.157 -43.147***

12-month-ahead
AFNS 0 -19.801 -13.282 -19.000 43.535 2.409
AFNS 1-L 16.189 19.096 1.394 17.446 -60.638***
AFNS 1-C -24.235 -17.404 -22.799 40.180 -0.800
AFNS 2-LC 12.311 15.811 -1.368 15.381 -62.375***
AFNS 3 -15.786 -15.324 -35.047 -29.723 -125.095***
DNS -51.647 -45.389 -52.290 -0.362 -60.819***

Notes: The entries are mean forecast errors (actual yields minus forecasts) reported in basis

points. �***�, �**�and �*�imply signi�cance of a test of zero mean forecast error at 1%, 5%

and 10% level of signi�cance, respectively. The test statistic is a t-statistic calculated using

Newey-West standard errors.
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Table 3.B.8 Real-time root mean squared forecast errors, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year

1-month-ahead
DNS 23.762 26.465 31.006 34.170 31.577
AFNS 0 0.964 0.960** 0.990 0.994 0.985
AFNS 1-L 1.004 0.961 0.963** 0.964** 0.971
AFNS 1-C 0.958 0.956** 0.982 0.982 0.971**
AFNS 2-LC 1.004 0.959 0.960** 0.963** 0.972
AFNS 3 0.978 0.969 0.994 0.997 0.990

3-month-ahead
DNS 57.865 63.178 67.123 68.763 62.618
AFNS 0 0.946 0.958 0.974 0.976 0.973
AFNS 1-L 0.957 0.949 0.957 0.957 0.961
AFNS 1-C 0.940* 0.952 0.964 0.963 0.958
AFNS 2-LC 0.954 0.944 0.949 0.947 0.952
AFNS 3 0.958 0.969 0.987 0.982 0.977

6-month-ahead
DNS 101.817 106.726 108.57 104.562 94.269
AFNS 0 0.963 0.967 0.972 0.966 0.960
AFNS 1-L 0.943 0.941 0.951 0.949 0.949
AFNS 1-C 0.955 0.960 0.966 0.961 0.957
AFNS 2-LC 0.940 0.936 0.943 0.937 0.939
AFNS 3 0.949 0.957 0.972 0.967 0.960

12-month-ahead
DNS 174.863 176.841 171.870 153.302 133.706
AFNS 0 0.984 0.988 0.995 0.994 0.990
AFNS 1-L 0.921 0.924 0.934 0.928 0.924
AFNS 1-C 0.969 0.971 0.975 0.971 0.966
AFNS 2-LC 0.919 0.919 0.923 0.912 0.908
AFNS 3 0.898 0.906 0.922 0.919 0.910

Notes: The �rst row of each panel reports root mean squared forecast errors (in basis points)

for the benchmark DNS. The rest of the rows report RMSFE relative to DNS (RRMSFE).

�**�and �*�imply signi�cance of the Giacomini and White (2006) test of equal MSFE of a

model and the benchmark at 1% and 5% level of signi�cance, respectively. The standard

errors of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.9 Real-time root mean squared forecast errors, Feb 1996 - Dec 2002

(Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year

1-month-ahead
DNS 31.379 28.858 28.217 47.893 37.534
AFNS 0 0.970** 0.987 0.959** 1.207** 0.829
AFNS 1-L 0.943 0.976 1.037** 0.586** 2.144**
AFNS 1-C 0.959** 0.979 0.952** 1.201** 0.819
AFNS 2-LC 0.947 0.981 1.037** 0.586** 2.141**
AFNS 3 0.961 0.995 1.109** 0.610** 3.048**

3-month-ahead
DNS 59.053 53.087 48.865 51.135 47.526
AFNS 0 0.965 0.979 0.946 1.256** 0.826
AFNS 1-L 0.944 0.963 0.934* 0.761* 1.705**
AFNS 1-C 0.953 0.967 0.938* 1.235** 0.807
AFNS 2-LC 0.940 0.960 0.932* 0.757* 1.701**
AFNS 3 0.958 0.971 1.006* 0.786 2.498**

6-month-ahead
DNS 87.412 77.755 71.252 58.054 64.889
AFNS 0 0.952 0.959 0.921 1.255 0.795
AFNS 1-L 0.932 0.937 0.881* 0.879 1.296**
AFNS 1-C 0.950 0.954 0.919 1.217 0.775
AFNS 2-LC 0.926 0.932 0.881* 0.874 1.299**
AFNS 3 0.936 0.933 0.943 0.907 1.946**

12-month-ahead
DNS 117.674 104.695 97.387 70.613 85.278
AFNS 0 0.974 0.973 0.921 1.221 0.747
AFNS 1-L 0.896 0.892 0.795 0.899 0.914
AFNS 1-C 0.953 0.951 0.907 1.181 0.731
AFNS 2-LC 0.886 0.885 0.797 0.896 0.926
AFNS 3 0.880 0.867* 0.854* 0.904 1.564**

Notes: The �rst row of each panel reports root mean squared forecast errors (in basis points)

for the benchmark DNS. The rest of the rows report RMSFE relative to DNS (RRMSFE).

�**�and �*�imply signi�cance of the Giacomini and White (2006) test of equal MSFE of a

model and the benchmark at 1% and 5% level of signi�cance, respectively. The standard

errors of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.10 Real-time forecast coverage Rates, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year 5 year 7 year 10 year 20 year 30 year

1-month-ahead
AFNS 0 0.928 0.867 0.771 0.675 0.675 0.614 0.566 0.542 0.530 0.614
AFNS 1-L 0.976 0.940 0.880 0.843 0.795 0.807 0.759 0.747 0.807 0.313
AFNS 1-C 0.916 0.867 0.771 0.663 0.663 0.614 0.566 0.542 0.53 0.627
AFNS 2-LC 0.976 0.952 0.880 0.843 0.807 0.795 0.771 0.747 0.795 0.313
AFNS 3 0.952 0.916 0.855 0.759 0.735 0.663 0.602 0.530 0.506 0.108
DNS 0.94 0.916 0.807 0.735 0.723 0.723 0.675 0.614 0.614 0.747

3-month-ahead
AFNS 0 0.802 0.704 0.593 0.568 0.568 0.556 0.519 0.519 0.543 0.630
AFNS 1-L 0.864 0.864 0.802 0.716 0.728 0.716 0.704 0.802 0.790 0.506
AFNS 1-C 0.802 0.716 0.605 0.593 0.593 0.543 0.543 0.506 0.556 0.642
AFNS 2-LC 0.864 0.864 0.815 0.741 0.716 0.728 0.741 0.790 0.815 0.494
AFNS 3 0.864 0.765 0.716 0.667 0.642 0.568 0.568 0.469 0.407 0.148
DNS 0.827 0.778 0.716 0.667 0.679 0.617 0.654 0.667 0.728 0.716

6-month-ahead
AFNS 0 0.654 0.577 0.513 0.449 0.436 0.462 0.410 0.449 0.692 0.577
AFNS 1-L 0.769 0.679 0.603 0.564 0.615 0.667 0.705 0.833 0.859 0.564
AFNS 1-C 0.679 0.564 0.513 0.474 0.449 0.410 0.410 0.423 0.692 0.564
AFNS 2-LC 0.769 0.679 0.603 0.564 0.641 0.705 0.731 0.833 0.859 0.564
AFNS 3 0.718 0.628 0.538 0.500 0.513 0.474 0.487 0.385 0.308 0.205
DNS 0.731 0.654 0.603 0.500 0.513 0.474 0.526 0.564 0.782 0.577

12-month-ahead
AFNS 0 0.486 0.458 0.458 0.417 0.458 0.417 0.403 0.431 0.694 0.653
AFNS 1-L 0.569 0.528 0.500 0.583 0.667 0.736 0.806 0.847 0.903 0.736
AFNS 1-C 0.486 0.472 0.458 0.431 0.458 0.361 0.403 0.431 0.708 0.639
AFNS 2-LC 0.569 0.514 0.514 0.611 0.667 0.736 0.806 0.861 0.903 0.736
AFNS 3 0.569 0.556 0.528 0.514 0.542 0.486 0.486 0.389 0.389 0.181
DNS 0.528 0.514 0.486 0.472 0.486 0.375 0.431 0.444 0.806 0.556

Notes: The table reports coverage probabilities or proportion of actual yields which fall

within 70% intervals. The upper and lower bounds of the interval are the 85th and 15th

percentiles of the predictive densities.



131

Table 3.B.11 Tests of normalised errors of 1-month-ahead forecasts, Feb 1996

- Dec 2002
Maturity

Model 3 month 6 month 1 year 2 year 3 year

(a) Mean
AFNS 0 -0.055 (-0.751) -0.107 (-1.199) -0.038 (-0.354) -0.117 (-0.922) -0.085 (-0.680)
AFNS 1-L 0.096 (1.673) -0.031 (-0.488) -0.079 (-1.028) -0.118 (-1.315) 0.001 (0.014)
AFNS 1-C -0.062 (-0.841) -0.120 (-1.307) -0.046 (-0.428) -0.125 (-1.000) -0.090 (-0.730)
AFNS 2-LC 0.089 (1.560) -0.041 (-0.630) -0.091 (-1.185) -0.133 (-1.468) -0.011 (-0.122)
AFNS 3 0.114 (1.853) -0.092 (-1.144) -0.212* (-1.968) -0.257* (-2.022) -0.099 (-0.737)
DNS -0.140* (-2.228) -0.191* (-2.571) -0.125 (-1.409) -0.192 (-1.864) -0.168 (-1.654)

(b) Variance
AFNS 0 0.447** (-3.948) 0.654 (-1.480) 0.967 (-0.175) 1.322 (1.079) 1.267 (0.988)
AFNS 1-L 0.269** (-10.721) 0.340** (-6.038) 0.486** (-3.487) 0.664 (-1.830) 0.673 (-1.694)
AFNS 1-C 0.442** (-4.041) 0.686 (-1.206) 0.953 (-0.225) 1.285 (0.962) 1.234 (0.873)
AFNS 2-LC 0.267** (-10.885) 0.341** (-5.779) 0.482** (-3.366) 0.670 (-1.624) 0.690 (-1.290)
AFNS 3 0.311** (-6.752) 0.530* (-1.996) 0.950 (-0.037) 1.324 (0.575) 1.483 (0.525)
DNS 0.326** (-5.960) 0.453** (-2.985) 0.643 (-1.824) 0.866 (-0.492) 0.845 (-0.661)

(c) AR(1) Coe¤
AFNS 0 0.341** (4.885) 0.447** (4.866) 0.553** (6.425) 0.477** (4.685) 0.279* (2.384)
AFNS 1-L 0.395** (5.664) 0.478** (5.797) 0.536** (6.194) 0.416** (3.624) 0.244 (1.813)
AFNS 1-C 0.323** (4.766) 0.426** (4.777) 0.540** (6.266) 0.462** (4.412) 0.255* (2.163)
AFNS 2-LC 0.391** (5.742) 0.464** (5.809) 0.523** (5.915) 0.391** (3.236) 0.224 (1.585)
AFNS 3 0.413** (6.990) 0.481** (4.267) 0.567** (5.441) 0.411** (2.874) 0.201 (1.131)
DNS 0.357** (5.700) 0.463** (5.795) 0.549** (6.598) 0.444** (4.191) 0.263* (2.172)

(d) LR test
AFNS 0 0.000 (0.000) 0.000 (0.001) 0.000 (0.056) 0.000 (0.921) 0.026 (0.516)
AFNS 1-L 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.002) 0.012 (0.020)
AFNS 1-C 0.000 (0.000) 0.000 (0.003) 0.000 (0.060) 0.000 (0.881) 0.050 (0.535)
AFNS 2-LC 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.003) 0.024 (0.033)
AFNS 3 0.000 (0.000) 0.000 (0.000) 0.000 (0.072) 0.000 (0.354) 0.013 (0.048)
DNS 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.059) 0.021 (0.129)

Notes: The �rst panel reports means of normalised errors along with a t-statistic (computed

using a Newey-West standard error) for testing the null of zero mean. The second panel

reports variance of normalised errors along with a t-statistic (computed by a linear regres-

sion of the squared error on a constant, using Newey-West standard error) for testing the

null of unit variance. The third panel reports the AR(1) coe¢ cients and t-statistics of its

signi�cance, obtained by estimating an AR(1) model with an intercept (with Newey-West

standard errors). The fourth column reports the p-values of two Berkowitz (2001) tests:

the �rst for the likelihood ratio test for the joint null of a zero mean, unit variance and no

autocorrelation and the second for only zero mean and unit variance. �**�and �*� imply

signi�cance at 1% and 5%, respectively. All test statistics are reported in parentheses.
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Table 3.B.12 Tests of normalised errors of 1-month-ahead forecasts, Feb 1996

- Dec 2002 (Cont.)
Maturity

Model 5 year 7 year 10 year 20 year 30 year

(a) Mean
AFNS 0 -0.253 (-1.920) -0.073 (-0.488) -0.430** (-2.969) 1.097** (15.068) 0.320* (2.561)
AFNS 1-L 0.004 (0.043) 0.073 (0.758) -0.405** (-4.808) 0.105 (1.056) -1.251** (-24.109)
AFNS 1-C -0.257* (-1.976) -0.080 (-0.546) -0.440** (-3.067) 1.096** (15.115) 0.315* (2.568)
AFNS 2-LC -0.009 (-0.098) 0.062 (0.638) -0.410** (-4.846) 0.099 (1.003) -1.251** (-24.408)
AFNS 3 -0.084 (-0.592) 0.035 (0.207) -0.788** (-5.654) -0.654** (-4.391) -1.443** (-40.356)
DNS -0.302** (-2.830) -0.160 (-1.435) -0.439** (-4.302) 0.848** (11.201) -0.570** (-7.287)

(b) Variance
AFNS 0 1.418 (1.730) 1.846** (2.900) 1.719** (3.201) 0.435 (1.792) 1.281* (2.273)
AFNS 1-L 0.734 (-1.301) 0.763 (-1.330) 0.581 (-1.605) 0.804 (-1.240) 0.221* (2.557)
AFNS 1-C 1.383 (1.635) 1.776** (2.810) 1.685** (3.000) 0.431 (1.817) 1.235 (2.097)
AFNS 2-LC 0.754 (-0.977) 0.780 (-1.047) 0.587 (-1.442) 0.793 (-1.369) 0.216** (2.606)
AFNS 3 1.668 (0.866) 2.295 (1.501) 1.595* (2.326) 1.817** (3.293) 0.105** (5.010)
DNS 0.933 (0.055) 1.025 (0.205) 0.852 (0.215) 0.470 (0.613) 0.501 (-0.719)

(c) AR(1) Coe¤
AFNS 0 0.241* (2.137) 0.240* (2.304) 0.150 (1.642) 0.445** (4.451) 0.465** (5.346)
AFNS 1-L 0.226 (1.648) 0.184 (1.509) 0.105 (0.978) 0.343** (3.702) 0.388** (4.032)
AFNS 1-C 0.224* (1.994) 0.228* (2.149) 0.139 (1.493) 0.437** (4.448) 0.461** (5.267)
AFNS 2-LC 0.224 (1.557) 0.181 (1.434) 0.090 (0.840) 0.339** (3.602) 0.384** (3.956)
AFNS 3 0.211 (1.340) 0.201 (1.478) 0.217* (2.034) 0.384** (4.038) 0.427** (5.104)
DNS 0.248* (2.088) 0.226* (2.039) 0.111 (1.203) 0.394** (3.924) 0.400** (4.054)

(d) LR test
AFNS 0 0.001 (0.031) 0.000 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.045)
AFNS 1-L 0.049 (0.080) 0.107 (0.140) 0.000 (0.000) 0.004 (0.079) 0.000 (0.000)
AFNS 1-C 0.003 (0.034) 0.000 (0.002) 0.000 (0.000) 0.000 (0.000) 0.000 (0.050)
AFNS 2-LC 0.064 (0.110) 0.140 (0.183) 0.000 (0.000) 0.004 (0.068) 0.000 (0.000)
AFNS 3 0.001 (0.006) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
DNS 0.004 (0.063) 0.080 (0.407) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Notes: The �rst panel reports means of normalised errors along with a t-statistic (computed

using a Newey-West standard error) for testing the null of zero mean. The second panel

reports variance of normalised errors along with a t-statistic (computed by a linear regres-

sion of the squared error on a constant, using Newey-West standard error) for testing the

null of unit variance. The third panel reports the AR(1) coe¢ cients and t-statistics of its

signi�cance, obtained by estimating an AR(1) model with an intercept (with Newey-West

standard errors). The fourth column reports the p-values of two Berkowitz (2001) tests:

the �rst for the likelihood ratio test for the joint null of a zero mean, unit variance and no

autocorrelation and the second for only zero mean and unit variance. �**�and �*� imply

signi�cance at 1% and 5%, respectively. All test statistics are reported in parentheses.
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Table 3.B.13 Real-time log predictive scores, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year 5 year 7 year 10 year 20 year 30 year

1-month-ahead
AFNS 0 18.484 18.487 18.781 19.047 18.870 18.871 18.887 18.805 20.270 18.891
AFNS 1-L 18.918 18.899 19.042 19.144 19.036 18.943 18.852 18.847 18.744 20.769
AFNS 1-C 18.479 18.486 18.766 19.03 18.853 18.858 18.881 18.796 20.258 18.866
AFNS 2-LC 18.918 18.904 19.057 19.177 19.083 18.983 18.878 18.863 18.740 20.771
AFNS 3 18.782 18.782 19.238 19.533 19.471 19.403 19.613 19.386 19.119 21.762
DNS 18.681 18.676 18.853 19.019 18.887 18.871 18.714 18.654 19.698 19.282

3-month-ahead
AFNS 0 20.002 20.259 20.503 20.697 20.456 20.438 20.397 20.164 20.483 19.371
AFNS 1-L 20.210 20.289 20.402 20.459 20.310 20.167 20.000 19.812 19.477 20.662
AFNS 1-C 19.985 20.239 20.467 20.638 20.388 20.36 20.318 20.107 20.429 19.322
AFNS 2-LC 20.204 20.286 20.403 20.465 20.326 20.191 20.012 19.820 19.474 20.679
AFNS 3 20.099 20.320 20.722 20.880 20.681 20.642 20.616 20.661 20.141 21.942
DNS 20.092 20.235 20.377 20.494 20.309 20.236 20.003 19.824 19.830 19.758

6-month-ahead
AFNS 0 21.467 21.773 21.940 21.868 21.522 21.502 21.349 21.046 20.703 19.972
AFNS 1-L 21.182 21.273 21.354 21.293 21.099 20.923 20.702 20.445 20.056 20.731
AFNS 1-C 21.448 21.760 21.930 21.844 21.483 21.442 21.276 20.998 20.625 19.919
AFNS 2-LC 21.179 21.269 21.351 21.296 21.109 20.936 20.709 20.456 20.052 20.745
AFNS 3 21.156 21.415 21.773 21.811 21.555 21.441 21.290 21.388 20.810 22.291
DNS 21.301 21.479 21.576 21.533 21.271 21.156 20.837 20.625 20.070 20.340

12-month-ahead
AFNS 0 23.752 24.135 24.221 23.662 22.993 22.632 22.312 21.889 21.052 20.305
AFNS 1-L 22.385 22.469 22.460 22.133 21.794 21.469 21.230 20.936 20.587 20.726
AFNS 1-C 23.689 24.055 24.128 23.556 22.889 22.531 22.215 21.832 20.962 20.264
AFNS 2-LC 22.384 22.463 22.445 22.116 21.785 21.469 21.234 20.948 20.593 20.749
AFNS 3 22.240 22.457 22.710 22.645 22.363 22.224 21.993 21.926 20.743 22.740
DNS 23.107 23.307 23.279 22.823 22.306 21.950 21.573 21.385 20.650 20.907

Notes: The table reports log predictive density scores calculated with a Gaussian quadratic

formula given in Adolfson et al. (2005) and used in Clark (2011). The lower the score the

better is the forecast model.
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Table 3.B.14 Di¤erences in log predictive scores, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year

1-month-ahead
AFNS 0 -0.197** -0.189** -0.072 0.028 -0.017
AFNS 1-L 0.237** 0.223** 0.189** 0.125** 0.149**
AFNS 1-C -0.201** -0.190** -0.087 0.011 -0.034
AFNS 2-LC 0.238** 0.228** 0.203** 0.158** 0.196**
AFNS 3 0.101** 0.105 0.384** 0.514** 0.585**

3-month-ahead
AFNS 0 -0.090 0.023 0.126 0.203 0.147
AFNS 1-L 0.118 0.054 0.026 -0.035 0.001
AFNS 1-C -0.107 0.003 0.091 0.144 0.079
AFNS 2-LC 0.113 0.051 0.026 -0.029 0.017
AFNS 3 0.007 0.085 0.345* 0.386 0.372

6-month-ahead
AFNS 0 0.166 0.294 0.364 0.335 0.251
AFNS 1-L -0.119 -0.206 -0.222 -0.240 -0.173
AFNS 1-C 0.147 0.281 0.353 0.311 0.211
AFNS 2-LC -0.122 -0.210 -0.226 -0.237 -0.162
AFNS 3 -0.145 -0.064 0.196 0.278 0.284

12-month-ahead
AFNS 0 0.645 0.828 0.942 0.839 0.687
AFNS 1-L -0.722 -0.837 -0.819 -0.690 -0.512
AFNS 1-C 0.582 0.749 0.849 0.733 0.583
AFNS 2-LC -0.724 -0.844 -0.834 -0.707 -0.521
AFNS 3 -0.868 -0.849 -0.569 -0.178 0.057

Notes: The table reports the di¤erence in log scores of a model and that of the DNS

benchmark. �**�and �*�imply signi�cance of the Giacomini and White (2006) test of equal

log predictive scores at 1% and 5% level of signi�cance, respectively. The standard errors

of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.15 Di¤erences in log predictive scores, Feb 1996 - Dec 2002 (Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year

1-month-ahead
AFNS 0 0.000 0.174 0.150 0.573** -0.391*
AFNS 1-L 0.072 0.138** 0.193** -0.953** 1.487**
AFNS 1-C -0.013 0.167 0.142 0.560** -0.415*
AFNS 2-LC 0.112 0.164** 0.209** -0.957** 1.490**
AFNS 3 0.532** 0.899** 0.732** -0.579 2.480**

3-month-ahead
AFNS 0 0.202 0.394* 0.340 0.653** -0.387
AFNS 1-L -0.068 -0.003 -0.013 -0.353* 0.904**
AFNS 1-C 0.125 0.315 0.282 0.599** -0.436
AFNS 2-LC -0.045 0.009 -0.004 -0.356* 0.921**
AFNS 3 0.406 0.613* 0.837* 0.310 2.184**

6-month-ahead
AFNS 0 0.346 0.513 0.421 0.633 -0.369
AFNS 1-L -0.234 -0.135 -0.180 -0.013 0.391*
AFNS 1-C 0.285 0.440 0.373 0.556 -0.421
AFNS 2-LC -0.220 -0.127 -0.170 -0.017 0.404**
AFNS 3 0.284 0.454 0.763 0.740 1.950**

12-month-ahead
AFNS 0 0.682 0.739 0.504 0.401 -0.602
AFNS 1-L -0.481 -0.342 -0.449 -0.064* -0.181
AFNS 1-C 0.581 0.642 0.447 0.312 -0.643
AFNS 2-LC -0.481 -0.339 -0.437 -0.058* -0.158
AFNS 3 0.274 0.420 0.541 0.092 1.833**

Notes: The table reports the di¤erence in log scores of a model and that of the DNS

benchmark. �**�and �*�imply signi�cance of the Giacomini and White (2006) test of equal

log predictive scores at 1% and 5% level of signi�cance, respectively. The standard errors

of the t test statistics are computed with the Newey-West estimator.



Chapter 4

Forecasting under Structural

Change and Long Memory Noise

4.1 Introduction

Dealing with structural change has become one of the most crucial challenges

in economic and �nancial time series modelling and forecasting. In economet-

rics structural change usually refers to evolution of a parameter of interest of

a dynamic model that makes its estimation and/or prediction unstable. The

change can be as dramatic as an abrupt shift or permanent break induced,

for example, by introduction of a new monetary policy, breakdown of an ex-

change rate regime or even sudden rise in oil price. In other instances, the

change can be slow, smooth and continuous caused for example by gradual

progress in technology or production. Empirical evidence of structural change

is widespread and well-documented in economic and �nance literature. Stock

and Watson (1996) investigate many US macroeconomic time series and �nd
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instability in both univariate and bivariate relationships by applying standard

instability tests and out-of-sample forecast exercises. In �nance structural

changes are detected in interest rates (e.g., Garcia and Perron (1996), Ang

and Bekaert (2002)) and stock prices and returns (e.g., Timmermann (2001),

Pesaran and Timmermann (2002)). Such structural change or parameter in-

stability has been identi�ed as one of the main culprits of forecast failures (see

Clements and Hendry (1996, 1998), Hendry (2000)) and not surprisingly detec-

tion of breaks and forecast strategies in the presence of breaks have attracted

a lot of attention from researchers. Nonetheless, real time forecasting of time

series which are subject to structural change remains to be a critical challenge

to date and is often complicated further by presence of other features of time

series such as persistence. Rossi (2012) provides a comprehensive review of

strategies that have been developed over the last few decades to tackle the

problem of forecasting in face of unforeseen structural changes.

A natural strategy for forecasting in unstable environment would be �nd-

ing the last change point and using only the post-break data for estimating

a model and forecasting. But such strategies may be problematic for various

reasons. First, standard tests of structural breaks are not suitable for real time

forecasting. Research on break detection tests has gone through signi�cant re-

�nements, e.g., from cases with known single break (Chow (1960)) to unknown

multiple breaks (e.g., Andrews (1993), Bai and Perron (1998, 2003)). How-

ever, most of these tests require some time to be elapsed after the break for

it to be detected and assume that the required post break data is break-free.

This makes timely detection of a break almost impossible. Another major

criticism of conventional tests is that they are retrospective by nature. This

means that they are speci�cally designed for detecting breaks over a historical

sample of given size and are problematic for repetitive use with new arrivals

of data. These shortcomings of classical tests prompt emergence of a second

class of tests based on sequential testing in statistics literature (see Chu et al.
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(1996), Leisch et al. (2000), Zeileis et al. (2005)). These forward looking �uc-

tuation type tests monitor for structural breaks with appearance of new data

and are more appropriate for real-time forecasting facing structural changes.

Issues with monitoring tests, however, remain. There are still delays, though

in smaller margins, in identifying breaks which means that detection of un-

known frequent breaks is di¢ cult and estimation of timing of a break is not

precise. In addition, small breaks are di¢ cult to track. Second, the amount

of post-break data may simply be insu¢ cient for stable estimation of model

parameters and consequently, for reliable prediction. Moreover, Pesaran and

Timmermann (2007) point out that a trade-o¤between bias and forecast error

variance implies that it is not always optimal to use only post-break data and

it is generally bene�cial to include some pre-break information.

A second line of strategies involves a more econometric approach that

involves formally modelling the break process itself and estimating its charac-

teristics such as timing, size and duration based on historical behaviour of a

series. A standard model of this kind is the Markov-switching model of Hamil-

ton (1989) which makes probabilistic inference of whether and when unknown

switching of regimes or equivalently, shifts in parameters may occur. While

this is a ground-breaking proposition for making stable inference in presence of

structural change predictive performance of such models have seriously been

questioned. Clements and Krolzig (1998) demonstrate via a Monte Carlo study

that despite the true data generating process being Markov-switching regime

switching models fail to forecast as accurately as a simple linear AR(1) model

in many instances. Research on modelling of structural breaks has continued

to evolve rapidly and recent literature records successful forecasting stories

of many sophisticated models, mainly founded on Bayesian methods (e.g.,

Pesaran et al. (2006), Koop and Potter (2007), Giordani and Kohn (2008),

Maheu and Gordon (2008)). In one way or another, these models learn about

change-points from the past and exploit these information as priors in mod-
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elling and forecasting future breaks. A debate that often arises in this context

is whether it is convenient to restrict the number of breaks occurring in-sample

�xed or to treat it as unknown. A class of models that avoids this argument

is the so called time varying parameter (TVP) models which assume that a

change occurs each point in time (e.g., Stock and Watson (2007), D�Agostino

et al. (2013)). Most of these models document evidence of impressive em-

pirical forecasting ability when evaluated individually. Bauwens et al. (2011)

run a horse-race by comparing predictive performance of several of these break

models along with simple rolling and recursive regressions. While modelling

break processes has a clear advantage in terms of root mean squared forecast

error (RMSFE), no single model has been identi�ed to produce superior fore-

casts consistently. Moreover, when performance is evaluated on the basis of

average predictive likelihood criterion a simple break-free method of rolling

regression enjoys an upper-hand on most of the break models. Di¢ culty in

�nding a single best forecasting model shifts attention to combining forecasts

of di¤erent models. A well-performing model can forecast badly after a break

while a previously poor-performing model can do better. Thus, pooled fore-

cast can result in the least mean squared forecast error (MSFE) even though

it was never the best at each point in time. Empirical evidence in the litera-

ture strongly speaks for simple combination rules such as averaging forecasts

with equal weights across all models. Bayesian Model Averaging (BMA) has

also been found to forecast well while forecast combination with time vary-

ing weights experiences little success (Rossi (2012)). Clark and McCracken

(2010) evaluate ability of di¤erent forecast combination strategies in improv-

ing forecast accuracy of small-scale macroeconomic VARs in the presence of

uncertain forms of model instability. They combine forecasts of many ad hoc

strategies designed for tackling structural breaks which include di¤erencing,

detrending, intercept corrections, sequential updating of lag orders, estima-

tion with di¤erent window lengths, Bayesian shrinkage, among others. They
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conclude that although BMA provides occasional large forecast improvements,

model averaging with equal weights provides good forecast consistency. A re-

cent interesting proposition comes from Castle et al. (2011) who argue that

with availability of rich and broad information set even breaks of unknown

nature can be predicted. Additional data which are not all directly related to

economic phenomena can be potentially used to explain driving forces behind

a break. These authors use an automatic model selection approach in order to

e¢ ciently exploit a data-rich environment. Simulation study reveals that even

though a break is di¢ cult to predict accurately it can be tracked well after

its occurrence. Nonetheless, predictive performance is not signi�cantly better

than robust mechanisms such as di¤erencing and intercept corrections.

An alternative forecasting approach which earns renewed attention in the

literature is adopting methods that do not require any knowledge of struc-

tural breaks but are actually robust to them. This class of methods builds on

downweighting past information and includes forecasting with rolling window,

exponential smoothing or exponentially weighted moving average (EWMA),

forecast pooling with window averaging etc. These simple strategies are par-

ticularly attractive because they are easy to implement, possibly robust to

di¤erent types of structural changes and can adjust for breaks without delay

which is particularly helpful for real time forecasting. On the downside dis-

carding old data by selecting a �xed discounting rate a priori may prove costly

when the true data generating process (DGP) is break-free. A signi�cant con-

tribution in this respect is due to Pesaran and Timmermann (2007). These

authors advocate two robust strategies: one is selecting a single window by

cross-validation based on pseudo-out-of-sample losses and the other is pooling

forecasts of the same model constructed over estimation windows of di¤erent

sizes. They argue that the former may work well in case of well-de�ned and

large breaks while the latter should perform well in situations where the breaks

are mild and hence di¢ cult to detect. They provide Monte Carlo results to
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show that simple forecast averaging performs particularly well when the under-

lying economic relations are subject to structural breaks. Assenmacher-Wesche

and Pesaran (2009) compute forecasts of many economic series of Swiss econ-

omy by using vector autoregressive models estimated over windows of di¤erent

lengths and �nd that averaging forecasts across windows leads to improve-

ments over largely popular strategy of averaging of forecasts across models.

Clark and McCracken (2009) �nd that averaging forecasts of expanding and

rolling windows can be bene�cial in presence of structural breaks. Pesaran

and Pick (2011) derive theoretical results for random walk and linear regres-

sion models proving that averaging over di¤erent estimation windows leads to

lower bias and smaller RMSFE. They con�rm their �ndings with a successful

simulation study and an application to equity returns data. By comparing

window-averaging forecast with the exponential smoothing forecast they con-

clude that the latter is more sensitive to choice of downweighting parameter

than the former is to the choice of minimum estimation window.

The issue of structural change occurring in real time and the challenge

it poses for time series forecasting are partly but systematically addressed in

Eklund et al. (2010). They consider and compare two di¤erent approaches to

tackle the problem. One requires monitoring for structural breaks and com-

bining forecasts of models estimated using all available data or only post-break

data. The other exploits data-downweighting break-robust methods as men-

tioned previously. On the basis of their Monte Carlo and empirical analysis

they establish that the monitoring method appears to be a conservative strat-

egy in the sense that neither its forecast gains nor its losses against a full

sample benchmark are substantial. In addition, performance of the rolling

window and exponentially weighted moving average (EWMA) methods is sen-

sitive to the choice of window lengths and discount parameters, and averaging

forecasts across estimation windows of various sizes performs consistently well

in cases where breaks are frequent and small.
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One crucial question that Eklund et al. (2010) do not answer is how much

to downweight older data. Moreover, their work, like much of the forecasting

literature, con�nes attention solely to structural breaks. The challenge of fore-

casting under recent and ongoing structural change has been dealt perhaps in

the most comprehensive and generic setting in a recent work of Giraitis et al.

(2013). Alongside breaks these authors consider various other types of struc-

tural changes including deterministic and stochastic trends and smooth cycles.

They do not explicitly model the structural change but exploit the typical data-

discounting robust-to-break methods such as rolling window, EWMA, forecast

averaging over di¤erent windows and various extensions of them. Importantly,

they make the selection of the tuning parameter which de�nes the discounting

weights data-dependent by minimising the forecast mean squared error. They

provide detailed theoretical and simulation analysis of their proposal and con-

vincing evidence of good performance of methods with data-selected discount

rate when applied to a number of US macroeconomic and �nancial time series.

Giraitis et al. (2013) consider persistence through short memory autore-

gressive dependence in noise process, but they do not explore possibility of

long memory which is often considered as a common but crucial property of

many economic and �nancial time series. This chapter extends the work of

Giraitis et al. (2013) by o¤ering a more complex, yet realistic forecasting

environment where structural change in a dynamic model is accompanied by

noises with long range dependence. We consider several simple cases, such

as a stationary long memory process and a combination of linear trend and

long memory noise and prove theoretically that forecasts generated with a

data-tuned downweighting parameter are asymptotically equivalent to optimal

�xed value forecasts. Robust methods with data-dependent tuning parame-

ters which have been found to be useful for forecasting time series with short

memory noise are then empirically evaluated on their predictive abilities by

forecasting time series with various types of structural changes and di¤erent
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levels of long memory persistence.

While this chapter adds a new dimension to the existing challenge of real

time forecasting under structural changes it further contributes to an interest-

ing and ongoing argument in econometric literature about possible �spurious�

relationship between long range dependence and structural change and poten-

tial forecasting di¢ culties this may create. Many researchers argue that pres-

ence of long memory in the data can be easily confused with structural change

(e.g., Diebold and Inoue (2001), Gourieroux and Jasiak (2001), Granger and

Hyung (2004)). This aggravates the already di¢ cult problem of forecasting

under structural change further. Wrongly accounting for one when the other

is present or acknowledging only one when both are present may lead to seri-

ous forecast failure. Given that it is often di¢ cult to distinguish between the

two, it is desirable to establish forecast methods that are robust to structural

change and also appropriately account for long memory persistence. Our work

is a potential contribution to this end.

The rest of the chapter is structured as follows. Section 4.2 introduces

the dynamic model to be forecast and reviews the forecast strategies proposed

in Giraitis et al. (2013). We discuss in details how the tuning parameter

de�ning the rate of downweighting is optimally selected from data and how

forecasts are constructed based on such data-dependent selection. Section 4.3

contains theoretical justi�cations of asymptotic optimality of forecasts based

on data-tuned discounting strategies. As mentioned before, we discuss only a

few speci�c cases involving long range dependence. In section 4.4 we present

Monte Carlo evidence evaluating performance of robust forecast strategies.

Section 4.5 justi�es practical usefulness of the methods through applications

in forecasting a number of UK economic and �nancial time series. Section 4.6

concludes.
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4.2 Econometric Framework

4.2.1 Forecast Strategy

We adopt the forecast settings of Giraitis et al. (2013) who entertain a simple

but general location model as given by:

yt = �t + ut; t = 1; 2; :::; T (4.2.1)

where yt is the variable to be forecast, �t is a persistent process of unknown

type and ut is a dependent noise that is independent of �t. Unlike most of

the previous works which focus mainly on structural breaks, this framework

o¤ers more �exibility and generality in the sense that it does not impose any

structure on �t and allows it to adopt many other possible structural changes

such as deterministic (bounded) and stochastic (unit root) trends.

While Giraitis et al. (2013) specify ut to be stationary and dependent

through a short memory autoregressive process, we contribute by exploring

possible long range dependence and non-stationarity in the noise process.

Several standard de�nitions of short and long memory can be drawn from

the statistical literature. A time-domain de�nition says that auto-covariances


u(k)=Cov(ut+k; ut) of a short memory process ut are absolutely summable,

i.e.,
P1

k=1 j
u(k)j < 1. The long memory, on the other hand, is de�ned

as the slow decay of 
u(k) � c
k
�1+2d, as lag length k increases, for some

0 < d < 1=2 and c
 > 0. Unlike short memory, the autocorrelations of long

memory processes are non-summable. In frequency domain, long memory

would imply explosive low-frequency spectra i.e., the spectral density of ut,

fu(!) ! 1 as frequency ! ! 0. Long- and short-range dependence can also

be distinguished in terms of variance of the partial sum process, ST =
PT

t=1 ut.

For a short memory process, growth of V ar(ST ) is proportional to the num-

ber of terms, T . For a long memory process, however, V ar(ST ) grows more
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rapidly and is of order O(T 2d+1) as T !1, 0 < d < 1=2. One can expect the
long-range dependence of noise process ut to feed into yt and generate sub-

stantial amount of persistence diluting the underlying model structure. Such

persistence is a common feature of many economic and �nancial time series

and our aim is to analyse forecasting perspectives of such series which undergo

structural change.

The forecast strategy we adopt does not require any particular modelling

and estimation of the structure of �t and relies simply on weighted combina-

tion of historical data. Methods based on two types of weighting schemes are

particularly popular in practice, namely rolling window method and exponen-

tially weighted moving average (EWMA). Such methods work by choosing a

tuning parameter which determines the rate of discounting past information.

Previous works that forecast using such data-downweighting methods �nd per-

formance to be sensitive to the choice of tuning parameters, but they do not

provide any guidance on how to select one (see Pesaran and Pick (2011), Ek-

lund et al. (2010)). Clearly, setting the discounting parameter a priori to a

single �xed value is a risky strategy and unlikely to produce accurate fore-

casts if a series is subject to structural change. Giraitis et al. (2013) advocate

a data-dependent selection of the tuning parameter and provide theoretical

justi�cation on how such a selection can be optimal.

The tuning parameter is chosen on the basis of predictive performance

evaluated over a part of the sample. The strategy is discussed in details below.

Forecast of yt is based on (local) averaging of past values yt�1,..., y1:

bytjt�1;H = t�1P
j=1

wtj;Hyt�j = wt1;Hyt�1 + :::+ wt;t�1;Hy1 (4.2.2)

with weights wtj;H � 0 such that wt1;H + ::: + wt;t�1;H = 1; parameterised by
a single tuning parameter H: The latter de�nes the rate of downweighting the

past observations (e.g., the width of the rolling window). We assume that H

takes values in the interval IT = [�;Hmax]; where � > 0:
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Giraitis et al. (2013) propose several interesting extensions built on the

�exibility of the location shift model. For example, they show that it is possible

to �rst �t a generic model of conditional mean to the location model and then

forecast around the model using robust strategies. This can be helpful if the

forecaster has a known preferred model of conditional mean for a series. We

include such extensions in our analysis.

4.2.2 Selection of the Tuning Parameter, H

Suppose we have a sample of T observations y1; :::; yT : Then construction of

one-step-ahead forecast byT+1jT;H requires selection of the parameter H. This
is done by a cross-validation method which holds back the last Tn = T �
T0 + 1 observations for a pseudo out-of-sample forecast exercise and chooses

the tuning parameter H which yields the smallest mean squared forecast error

(MSFE) on this evaluation sample. Thus, the MSFE which is minimised with

respect to H forms the objective function and is computed as

QT;H :=
1

Tn

TX
t=T0

(yt � ŷtjt�1;H)2; Ĥ := arg min
H2IT

QT;H (4.2.3)

with starting point of the cross-validation period, T0 = o(T ) and the size,

Tn := T � T0 + 1. We de�ne Hmax = T0T��; 0 < � < 1: It is assumed that T0
and Hmax are selected such that T 2=3 < Hmax < T0 = o(T ).

Let Hopt = argminH2IT !T;H be the optimal value of the �xed parameter

H which minimises MSE !T;H := E(yT+1 � ŷT+1jT;H)2. Giraitis et al. (2013)
theoretically prove that the forecast ŷT+1jT;H of yT+1, obtained with data-

tuned Ĥ, minimises the asymptotic MSE, !T;H inH, hence making the forecast

procedure (4.2.2) operational. It is also asymptotically optimal in the following

sense:

!T;Ĥ = !T;Hopt + op(1); QT;Ĥ = !T;Ĥ + op(1);
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where the quantity QT;Ĥ is an estimate of the forecast error !T;Ĥ .

Let �̂2T;u := T�1n
PT

j=T0
u2j . Giraitis et al. (2013) show that for a general

model yt = �t+ ut with a number of deterministic and stochastic processes �t
and short memory ut�s,

QT;H = �̂
2
T;u + E[QT;H � �2u](1 + op(1)); T !1; H !1;

uniformly in H. In addition, they verify that the deterministic function

E[QT;H � �2u] has a unique minimum. This allows selection of the optimal
data-tuned parameter H that asymptotically minimises the objective function

QT;H . We shall focus on two cases of yt = �t + ut where the noise ut has long

memory and �t is either a constant or a linear trend.

Assumptions and notation. We construct the weights wtj;H as follows.

Assumption 1 The function K(x) � 0; x � 0 is continuous and di¤eren-

tiable on its support, such that
R1
0
K(u)du = 1, K(0) > 0, and for some

C > 0, c > 0,

K(x) � C exp(�cjxj); j _K(x)j � C=(1 + x2); x > 0; (4.2.4)

where _K is the �rst derivative of K. For t � 1, H 2 IT , set kj;H = K(j=H)
and de�ne

wtj;H =
kj;HPt�1
s=1 ks;H

; j = 1; � � � ; t� 1: (4.2.5)

Popular classes of commonly used weights satisfying this assumption in-

clude:

(i) Rolling window weights, with K(u) = I(0 � u � 1):
(ii) Exponential weighted moving average (EWMA) weights, with K(u) = e�u;

u 2 [0;1): Then, with � = exp(�1=H), kj;H = �j and wtj;H = �j=
Pt�1

k=1 �
k,

1 � j � t� 1.
(iii) Triangular window weights, with K(u) = 2(1� u)I(0 � u � 1).
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While the rolling window simply averages theH previous observations, the

EWMA forecast uses all observations y1; � � � ; yt�1, smoothly downweighting
the more distant past.

In addition to wtj;h, for technical reasons we will use the weights

wj;H = kj;H=
1X
s=1

ks;H ; j � 1: (4.2.6)

4.3 Theoretical Results and Examples

We illustrate the theoretical properties of the weighted forecast ŷT+1jT;Ĥ with

data selected tuning parameter bH by two examples of yt = �t + ut where �t
is either a constant or a linear trend and the noise ut is a stationary long

memory process. Our objective is to show that the forecast yT+1jT;Ĥ of yT+1

with optimal turning parameter Ĥ minimises the forecast MSE in the following

sense: !T;Ĥ = !T;Hopt + op(1). Moreover, the property QT;Ĥ = !T;Ĥ +op(1)

allows estimation of the forecast error.

Below, a ^ b = min(a; b); a _ b = max(a; b) and I(A) is the indicator

function; aT � bT denotes that aT=bT ! 1, as T increases. We write op;H(1)

or oH(1) to indicate that supH2IT jop;H(1)j !p 0 or supH2IT joH(1)j ! 0, as

T !1.
The following assumption describes the class of stationary noise processes

ut. It allows ut to have either short memory (i) or long memory (ii). We

denote the k-th order autocovariance function of ut by 
u(k) = Cov(uk; u0).

Assumption 2 ut is a stationary linear process

ut =
1X
j=0

aj"t�j; t 2 Z; "j � IID(0; �2"); E"41 <1: (4.3.1)

(i) In the short memory (SM) case we assume that
P

k2Z j
u(k)j < 1,P
k�n j
u(k)j = o(log

�2 n) and s2u :=
P

k2Z 
u(k) > 0:
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(ii) In the long memory (LM) case we assume that for some c
 > 0 and

0 < d < 1=2,


u(k) � c
k�1+2d; k !1: (4.3.2)

Under SM Assumption 2 (i), ut has short memory, while its long-run vari-

ance s2u is positive and �nite. This case was discussed in Giraitis et al. (2013).

We now proceed to analyse the properties of QT;H , Ĥ and the forecast

error !T;Ĥ under long memory assumption 2(ii).

4.3.1 The Case of a Long Memory Stationary Process

yt

First, we focus on the forecast in the case when yt = �+ut, t � 1 is a stationary
long memory process. We shall use the following notations:

qu;H := E

 
u0 �

1X
j=1

wj;Hu�j

!2
� �2u; (4.3.3)

�LM = c


�Z 1

0

Z 1

0

K(x)K(y)jx� yj�1+2ddydx� 2
Z 1

0

K(x)x�1+2ddx

�
:

(4.3.4)

Theorem 1 Suppose that yt = � + ut; t � 1, where ut is a stationary long

long memory process with parameter d satisfying Assumption 2 (ii).

Then, as T !1, for H 2 IT ,

QT;H = �̂2T;u + qu;H + op;H
�
H�1+2d� ; (4.3.5)

!T;H = �2u + qu;H + oH(H
�1+2d);

where qu;H = �LMH�1+2d + o(H�1+2d); as H !1:
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Theorem 1 shows that QT;H is a consistent estimate of !T;H . The following

corollary shows that the forecast yT+1jT; Ĥ computed with the data-tuned Ĥ

has the same MSE as the forecast yT+1jT;Hopt with the tuning parameter Hopt.

Corollary 1 If qu;H reaches its minimum at some �nite H0, then

!T;Ĥ = !T;Hopt + op(1); (4.3.6)

QT;Ĥ = !T;Ĥ + op(1) = �
2
u + qu;H0 + op(1):

Proof of the Theorem 1 and Corollary 1 can be found in Appendix E.

Remark 1 Corollary 1 implies that quality of a forecast with tuning parameter

Ĥ is the same as using parameter Hopt that minimises the forecast error !T;H .

Observe that for �LM < 0, qu;H = �LMH�1+2d+ o(H�1+2d) implies that Ĥ will

remain �nite when T increases. Notice also that �LM < 0 for rolling window

weights corresponding to kernel function K(x) = I(0 � x � 1). Indeed,

�LM = c


Z 1

0

Z 1

0

K(x)K(y)jx� yj�1+2ddxdy � 2c

Z 1

0

K(x)x�1+2ddx

= c


�Z 1

0

Z 1

0

jx� yj�1+2ddxdy � 2
Z 1

0

x�1+2ddx

�

= 2c


�Z 1

0

Z x

0

u�1+2ddudx� 1

2d

�
= 2c


�
1

2d(1 + 2d)
� 1

2d

�
= � 2c


1 + 2d
< 0:

This shows that, using rolling-window weights, the error of the forecast obtained

with Ĥ is smaller than �2u and Ĥ remains �nite. The fact that under strong

dependence the data tuned parameter Ĥ does not increase with the sample size

is in line with the well known fact that a persistent process, e.g. a random

walk, can be well forecasted by the last observation, that corresponds to the

rolling window with H = 1.
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4.3.2 The Case of a Deterministic Trend and a Long

Memory Noise

Next, we analyse the forecast of yt = �t + ut, when �t = at is a deterministic

trend and ut is a stationary long memory noise.

Denote

q�;H :=

 1X
j=1

wj;Hj

!2
; � :=

�Z 1

0

K(x)xdx

�2
:

Notations qu;H and �LM are as in Theorem 1.

Theorem 2 Let yt = at+ ut; t = 1; � � � ; T where ut is a long memory process
satisfying Assumption 2(ii). Then, as T !1, for H 2 IT ,

QT;H = �̂2T;u + q�;H + qu;H + op;H(H
2); (4.3.7)

!T;H = �2u + q�;H + qu;H + oH(H
2);

where q�;H + qu;H = �H2 + o(H2), as H !1.

Theorem 2 allows to establish the following basic properties of the forecast

yT+1jT; Ĥ of a trend stationary process yt.

Corollary 2 Under assumptions of Theorem 2, for a linear trend �t = at, Ĥ

stays bounded:

!T;Ĥ = !T;Hopt + op(1); (4.3.8)

QT;Ĥ = !T;Ĥ + op(1) = �
2
u + q�;H0 + qu;H0 + op(1);

where H0 is a minimiser of q�;H + qu;H .

Proof of the Theorem 2 can be found in Appendix E.

Remark 2 In the presence of a deterministic trend the optimal Ĥ will take

small values and the forecast will be based on averaging over the last few ob-

servations.
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4.3.3 Illustrative Examples

We can learn about the adaptability of the proposed robust forecast strategy

simply by looking at the evolution of a data-estimated tuning parameter when

forecasting in face of structural changes. For interpretational convenience we

choose to examine only rolling window forecasts. This also allows us to directly

compare the resulting behaviour of the data-tuned windows for long memory

noise to that for i.i.d. noise considered in Giraitis et al. (2013). A sample size

of T = 200 observations is considered and the forecasting starts at � = 100:

We plot a single realisation of data-selected window size bH(t) which is com-
puted sequentially at t = � ; � + 1; :::; T . Two di¤erent structural change

set-ups from our Monte Carlo study in section 4.4 have been considered. Fig-

ure 4.B.1 examines forecasting under break in the mean (Experiment 4) and

Figure 4.B.2 looks at the case of a unit root process (Experiment 11). De-

pending on noise speci�cations each �gure has two panels: panel (a) referring

to i.i.d. ut and panel (b) referring to ut with long range dependence generated

by ARFIMA(0; 0:45; 0): In each panel the solid line represents the �rst obser-

vation of the data-estimated rolling window when there is a break in the mean

(Figure 4.B.1) or when there is unit root (Figure 4.B.2) and the dotted

line represents the starting point when there is no structural change (Experi-

ment 1) based on the same realisations of the noise ut. The long-dashed line

marks the last observation of the estimation window and the vertical distance

between it and the solid line (dotted line) measures the size of data-selected

rolling window used for constructing forecasts in presence of structural changes

(no structural change). In Figure 4.B.1 the small dashed line marks the �rst

post break observation which is the 110th data point. In case of i.i.d. noise

we �nd similar �ndings as Giraitis et al. (2013). Immediately after the break

the data-dependent forecast method reacts by beginning to use longer data-

windows than in no-break situation in order to learn more about the structural
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change and make subsequent predictions. When more observations become

available it soon starts using much smaller samples with the starting point of

the data-estimated windows mostly being the �rst post-break data. Once the

switch is made the data-tuned method never uses pre-break information for

forecasting and also never uses windows longer than in no structural break

case. When ut has long memory observations are slightly di¤erent. Panel (b)

of Figure 4.B.1 shows that similar initial adjustment with longer windows is

made immediately after the break, but the switch to post-break information

appears to be faster for noises with long range dependence. The window-sizes,

when there is structural break, are predominantly smaller than those in no-

break experiment, but the margins of di¤erence in window lengths are much

smaller than in i.i.d. noise case. There are also periods when data samples co-

incide for the two experiments. This is probably because persistence through

long memory mitigates or conceals the e¤ect of a break in the generated series

and a data-based tuning method �nds it di¢ cult to distinguish between the

break and no-break cases.

Panel (a) of Figure 4.B.2 shows that for unit root noise processes data-

selected window sizes remain much shorter than in no-break case throughout

the sample. Panel (b) then con�rms that for persistent long memory noises

the adaptive method yields even smaller windows but not substantially smaller

than those required in absence of a break.

4.4 Monte Carlo Experiments

A next step forward is to conduct a Monte Carlo study to evaluate the perfor-

mance of adaptive forecast strategies over �nite samples of arti�cially gener-

ated data and examine to what extent results comply with theoretical �ndings.

We closely follow Giraitis et al. (2013) in setting up the design of experiments
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with the main di¤erence being that we adopt long memory dynamics for the

noise process in contrast to their short memory speci�cations. We use the sim-

ple location model yt = �t + ut to simulate di¤erent data series that depend

on di¤erent structural speci�cations (e.g., deterministic functions of time or

stochastic processes) for �t component and various long memory dynamics for

noises ut. Alternative forecast methods are compared in terms of MSFE of

one-step-ahead forecasts relative to a benchmark of sample mean forecasts.

When persistence in ut is low we expect the benchmark to perform reasonably

well. We also include a simple AR(1) and �last observation�forecasts which

are generally considered to capture dependence and unit root dynamics well.

4.4.1 Data Generating Processes

As mentioned earlier we exploit the location shift model (4.2.1) for generating

the data:

yt = �t + ut; t = 1; 2; :::; T: (4.4.1)

While Giraitis et al. (2013) considered short memory i.i.d. and AR(1)

noises, we explore several long memory speci�cations for ut . We opt to

use the widely popular Autoregressive Fractionally Integrated Moving Av-

erage (ARFIMA) processes to generate ut with long range dependence. The

ARFIMA(p; d; q) model is de�ned as:

�(L)(1� L)dut = �(L)�t; �t � i:i:d:(0; �2�);

where d is the fractional di¤erencing parameter that induces long memory and

L is the lag operator. The fractional di¤erencing operator (1� L)d is de�ned
by the binomial expansion

(1� L)d =
P1

i=0

�
d

i

�
(�L)i:
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The process is stationary and invertible if all the roots of the autoregressive

polynomial of order p, �(L) = 1 � �1L � ::: � �pLp and the moving average
part of order q, �(L) = 1 + �1L + ::: + �qLq, lie outside the unit circle, with

jdj < 0:5. For jdj > 0:5 the process becomes non-stationary. Generally, yt is
said to be I(d) if generated by the ARFIMA(p; d; q) model.

We consider stationary and non-stationary ARFIMA(0; d; 0) processes

with long memory parameters d = 0:30, d = 0:45 or d = 0:75 indicating

di¤erent levels of persistence in memory or ARFIMA(1; d; 0) processes with

combinations of long memory parameters d = 0:30 or 0:75 and short memory

AR(1) parameters � = 0:7 or �0:7. The innovations of the noise processes are
i.i.d. standard normal. The component �t is either a linear or non-linear de-

terministic trend, a stochastic trend process such as random walk or a process

with a break in the mean. We consider eleven data generating processes that

are also used in in Giraitis et al. (2013):

Ex1: yt = ut: Ex7: yt = 2T
�1=2Pt

i=1 vi + 3ut:

Ex2: yt = 0:05t+ 5ut: Ex8: yt = 2T
�1=2Pt

i=1 vi + ut:

Ex3: yt = 0:05t+ 3ut: Ex9: yt = 0:5
Pt

i=1 vi + 3ut:

Ex4: yt =

8>><>>:
ut; t � t0 = 0:55T;

1 + ut; t > t0:

Ex10: yt = 0:5
Pt

i=1 vi + ut:

Ex5: yt = 2 sin(2�t=T ) + 3ut: Ex11: yt =
Pt

i=1 ui:

Ex6: yt = 2 sin(2�t=T ) + ut:

In order to get a �rst-hand idea about the dynamic behaviour of the gen-

erated series we plot them for di¤erent speci�cations of �t and ut. Figures

4.B.3 - 4.B.9 present time series plots of yt for Ex1, Ex3, Ex4, Ex6, Ex7,

Ex9 and Ex11, respectively. The �rst two panels of each �gure consider cases
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where ut are i.i.d. or AR(1) with i.i.d. innovations as studied in Giraitis

et al. (2013). The following four panels portray series with long memory

noises with ut following an ARFIMA(0; d; 0) with d = 0:30 and d = 0:75 and

ARFIMA(1; d; 0) with � = 0:7 and d = 0:30 or 0:75.

In Ex1, yt is determined by the noise process alone and there is no struc-

tural change. It is not surprising that forecasting an i.i.d. process, as illus-

trated in panel (a) of Figure 4.B.3, would require accounting for long past

and the benchmark sample mean should perform the best. Similarly, it is ex-

pected that a simple AR(1) benchmark will be di¢ cult to be outperformed

when forecasting persistent autoregressive processes such as one plotted in

panel (b). Giraitis et al. (2013) con�rm these facts through Monte Carlo evi-

dence and also report competitive forecasts for many of the robust methods. It

is our interest to investigate how the robust methods fare when the noises have

long memory. Panel (c) of Figure 4.B.3 shows that a weakly stationary long

memory process ARFIMA(0; d; 0) with d = 0:30 generates enough persistence

for it to be visually distinguishable from the i.i.d. process, but it is not as per-

sistent as the short memory AR(1) process with � = 0:7. However, long term

dependence can create false impression of structural change and make prior

preference of a forecast model di¢ cult. For example, the ARFIMA(0; d; 0)

process with d = 0:30 imitates a cyclical trend like movement (see panel (c)

of Figure 4.B.3) and it is not clear whether a full sample or AR(1) forecast

will be accurate. Panel (d) con�rms that a higher long memory parameter

d = 0:75 drives the series to non-stationary territory. However, this clearly

induces an impression of an increasing linear trend. Additional persistence

through autoregressive dependence make the series even closer to unit root

(panel (f)). An AR(1) benchmark should still do well in this case, but �last

observation�forecasts should be equally competitive.

Both Ex2 and Ex3 introduce linear monotonically increasing trends in

yt and di¤er only in size of variance of noise process. Giraitis et al. (2013)
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argue that such linear trends may be unrealistic but they can o¤er reasonable

representations of time series which are detrended through standard techniques

such as di¤erencing or �ltering. Moreover, Figure 4.B.4 con�rms that the

e¤ects of such trends are small enough to be dominated and muted by the

noise processes. While linear trends are visually detectable for an i.i.d. and a

weakly dependent ARFIMA(0; d; 0) noise process with d = 0:30, they become

more obscure with increasing persistence. The last two panels of Figure 4.B.4

con�rm that when short and long memory persistence are combined, the trends

can vanish completely.

The functional form of yt in Ex4 accommodates structural break in the

form of a break in the mean. The break occurs slightly after halfway the sam-

ple at time t0 = 0:55T . Giraitis et al. (2013) argue that since the post-break

period is greater than
p
T , as required by the theory, the robust forecasting

methods should take account of such �not-too-recent�breaks and yield fore-

casts that are signi�cantly better than the benchmark sample mean. Their

Monte Carlo study con�rms their claims. We should note from Figure 4.B.5

that although the shift in mean can be well identi�ed in i.i.d. or weak long

memory series, it becomes more concealed with increasing persistence in the

noise process. Dependence in the noise process ut intensi�es the e¤ect of the

break and for highly persistent non-stationary long memory series, such as

ARFIMA(1; d; 0) with � = 0:7 and d = 0:75 this can even result in a false

trend-like movement.

The purpose of Ex5 and Ex6 is to introduce smooth cyclical bounded

trends as observed in standard business cycles. Such trends are less likely to

be completely removed from standard detrending and therefore, more realistic

than a linear trend. The sample mean benchmark should do poorly, particu-

larly for Ex6 where oscillation of the trend is wider compared to the variance

of the noise process. It is evident from Figure 4.B.6 that higher persistence

can distort shapes of smooth cycles to substantial extent.
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For the remaining data generating processes, �t are stochastic trends. For

Ex7 and Ex8 the trends are bounded and represent increasingly popular time-

varying coe¢ cients type dynamic models. Ex9 and Ex10 consider unbounded

random walk (unit root) process, observed under noise ut. Ex11 analyses a

standard random walk model. Figures 4.B.7 - 4.B.9 show that dynamics of

simulated series varies signi�cantly depending on degree of persistence in the

noise process, contributed either by short or long memory.

It is evident from the time series plots that long memory can give false

impression of structural change. Moreover, persistence in the noise processes

induced by long memory or mixture of short and long memory dependence

can confound types of structural changes in a time series. It is worth inves-

tigating whether typical robust-to-structrual-change methods, such as rolling

window and EWMA methods, can perform well in forecasting in presence of

long memory. We argue that as long as the choice of tuning parameter is

data-dependent such methods can generate forecasts that are comparable to

the best possible �xed parameter forecasts.

4.4.2 Forecast Methods

We resort to forecast methods that have been analysed in Giraitis et al. (2013).

The range of strategies mainly include forecast methods that discount past

data and are known to be robust to historical and ongoing structural changes.

Both parametric and nonparametric weights and methods with both �xed and

data-dependent discounting parameters are considered. We compare forecasts

against a number of simple benchmark models.
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Methods with Parametric Weights

These are robust methods where data discounting weights are de�ned as func-

tions of a tuning parameter. Three methods are discussed which are based

on three di¤erent types of weights.

Rolling window method. In this method the weights are de�ned in terms

of the parameter H which is essentially the window size and includes the H

most recent observations to be used in forecasting. The weight wtj;H attached

to yt�j is de�ned as

wtj;H = H
�1I(1 � j � H); j = 1; 2; :::::; t� 1; for H < t; and

wtj;H = (t� 1)�1I(1 � j � t� 1); for H � t;
where I is an indicator function.

The weights are �at in the sense that all the observations in the window

get equal weights while the older data get zero weights. The one-step-ahead

forecast bytjt�1 is then simply the average of H previous observations. In the

result tables we refer this method as Rolling H: Besides selecting H optimally

from data we use two �xed window methods with H = 20 and 30:

Exponentially weighted moving average (EWMA) method. This

method assigns the highest weight to the most recent data point and discounts

further past by decreasing weights exponentially fast to zero. The weights used

in this methods can be de�ned as:

wtj;H = �
t�j=

�Pt�1
k=1 �

k
�
; 1 � j � t� 1; with 0 < � < 1:

The closer � is to zero the faster is the rate of discounting and the main

weights are concentrated on the last few data points. The closer � is to one

the slower is the rate and signi�cant weights are attached to datum in distant

past. In tables this method is denoted as Exponential �. We consider several

�xed value downweighting methods with � = 0:98, 0:95, 0:80, 0:60, 0:40 and

0:002. The data-tuned parameter is denoted as b�.
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Polynomial method. This uses weights

wtj;H = (t� j)��=
�Pt�1

k=1 k
��� ; 1 � j � t� 1; with � > 0:

The past is downweighted at a slower rate than with exponential weights.

This method is referred to as Polynomial �: We do not consider any �xed

value for � and only report data-dependent downweighting with estimated

parameter b�.
Nonparametric Methods

All the above methods adopt parametric weight functions and in one way

or another downweight past data monotonically. While this is sensible in

most practical situations, there may be instances when valuing recent data

the most may appear unfavourable. For example, if there are a �nite number

of monetary policy regimes which repeat themselves, then older data from a

period when the current regime previously held may be more relevant than

more recent data from other regimes (Giraitis et al. (2013)). A nonparametric

weighting scheme is used to account for such possibilities. See Giraitis et al.

(2013) for a detailed technical explanation about how the method works.

Multiparameter Extensions

Rolling (bk; bH) method. This is an extended two-parameter rolling window
method where the downweighting parameter, H is optimally and simultane-

ously chosen using a �stable�subsample period [k; :::; T ], where k, the starting

time of the period, is a second parameter to be estimated. The optimisation

procedure requires minimisation of MSE, QT;kH over both k and H and is

given by

QT;kH : = (T � k)�1
PT

t=k(bytjt�1;H � yt)2;
f bH;bkg : = arg min

H2IT ;k2fkmin;::::::;kmaxg
QT;kH
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The one-step-ahead forecast byT+1is then constructed based on the optimal
subsample ybk; ybk+1; :::; yT and the associated tuning parameter bH = bH(bk). We
should note that bH � T � bk: Giraitis et al. (2013) argue and prove theoreti-
cally that such two parameter rolling window forecast method is particularly

bene�cial when there is a break in the mean. Forecasting after the break

should require that more of post-break data are used and the irrelevant past

are weighted less. Optimally choosing an evaluation subsample rather than

using all the available information implies that switching to post-break data

is faster than when using the full sample.

Dynamic weighting. Giraitis et al. (2013) propose a more �exible ex-

tension of exponential weighting where the weights attached to the �rst few

lags are not determined by parametric functions, but rather freely chosen

along with the tuning parameter, H. Thus, like an AR process the �rst p

weights, w1; w2; :::; wp are estimated as additional parameters, while the re-

maining weights are functions of H. The weight function is de�ned as

ewtj;H =
8>><>>:

wj;

K(j=H);

j = 1; :::; p

j = p+ 1; ::::; t� 1; H 2 IT
(4.4.2)

and the �nal weights are standardised as ewtj;H = ewtj;H=�Pt�1
j=1 ewtj;H� to sum

to one. Note that QT is jointly minimised over w1; w2; :::; wp and H. We con-

sider a parsimonious representation by specifying p = 1 and choose exponential

kernel K.

Residual methods. Giraitis et al. (2013) argue that if a time series explic-

itly allows for modelling the conditional mean of the process and forecaster

has a preferred parametric model for it then it might be helpful to �rst �t the

model and use the robust methods to forecast the residuals from the model.

The original location model (4.2.1) is restrictive and not suitable for condi-

tional modelling and a more generic forecasting model is therefore, proposed
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to illustrate the approach:

zt = f(xt) + yt; t = 1; 2; ::::

where zt is the variable of interest, xt is the vector of predicted variables which

may contain lags of zt; and yt is the vector of residuals which are unexplained

by f(xt). In the presence of structural change, yt is expected to contain any

remaining persistence in zt such as trends, breaks or other forms of dependence,

and the robust methods should perform well in such scenario. Forecasts of

f(xt) and yt are then combined to generate improved forecasts of zt.

Following Giraitis et al. (2013) we adopt the widely popular AR(1) process

to model the conditional mean which gives f(xt) = �zt�1: The residuals yt are

forecast using either parametric or nonparametric weights discussed above.

The forecast of zt+1 based on z1; z2; :::; zt is computed as bzt+1 = b�zt + byt+1jt; bH :
Three versions of the residual methods are considered.

Exponential AR method. In this method the tuning parameter H and the

autoregressive parameter � are simultaneously estimated by minimising the

in-sample mean squared forecast error, QT;H = QT;H� which is computed by

de�ning yt = zt��zt�1 and using exponential weights. This method is referred
to as Exponential AR:

The remaining two methods involve two-step estimation where the au-

toregressive coe¢ cient � of zt�1 is estimated by OLS independently of the

parameters associated with forecasting yt.

Exponential residual method. It forecasts residuals yt = zt � �zt�1 using
exponential weights producing bH and consequently, the forecast byt+1jt; bH : In
the tables it is denoted as Exponential Residual:

Nonparametric residual method. It forecasts residuals yt = zt��zt�1 using
non-parametric methods. We refer to it as Nonparametric Residual.
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The Benchmark and Other Competitors

Full sample mean. The benchmark forecast for our study is the average of

all observations in the sample:bybenchmark;T+1 = 1
T

TP
t=1

yt:

AR(1) forecast. We include forecasts based on an AR(1) dynamics which is

often considered as a stable and consistent predictor of time series. The one-

step-ahead forecast is given by:byT+1jT = b�yT :
Last observation forecast. For unit root process a simple yet competitive

forecast is simply �no change�forecast:byT+1jT = yT :
Averaging method. Pesaran and Timmermann (2007) advocate simple ro-

bust method which is based on the idea of forecast combination with equally

weighted forecasts. The one-step-ahead forecast yT+1jT is the average of rolling

window forecasts byT+1jT;H obtained using all possible window sizes, H that in-

clude the last observation:

yT+1jT =
1
T

TP
H=1

byT+1jT;H ; byT+1jT;H = 1
H

TP
t=T�H+1

yt:

The method avoids estimation of any discount parameter but usually re-

quires selection of a minimum data-window to be used for forecasting . We

ignore such a choice of minimum sample size since forecasts are not signi�-

cantly sensitive to it. In table this method is referred to as averaging.

4.4.3 Monte Carlo Results

The out-of-sample forecast exercise becomes operational by choosing a starting

point � when the �rst forecast will be made. We subsequently apply all the

reported methods to construct one-step-ahead forecasts bytjt�1;H ; t = � ; :::; T .

Forecasts at time t is computed using only information available up to t � 1
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and the forecast evaluation period ends at T: We compare performance of

models in terms of their mean squared forecast error (MSFE) relative to the

benchmark of the sample mean of all available data. MSFE for method j is

computed as MSFEj = (T � � + 1)�1
PT

t=� (by(j)tjt�1;H � yt)2 and the relative
MSFE is de�ned as RMSFE =

MSFEj
MSFEsm

; where MSFEsm corresponds to

the benchmark forecast by sample mean.

In what follows we discuss Monte Carlo results of forecasting performance

of the adaptive forecasting techniques in predicting time series yt = �t + ut

with long memory noise ut and compare them with results for short memory

noises reported in Giraitis et al. (2013). Results for di¤erent long memory

speci�cations of the noise processes are presented in Tables 4.C.1 - 4.C.7.

The columns represent data-generating models Ex1� Ex11 which have been
discussed in the previous section, and the rows represent di¤erent forecasting

methods. Entries of the tables are MSFE of di¤erent methods relative to

sample average, as de�ned above. Noises in Tables 4.C.1 - 4.C.3 have been

generated by a standard ARFIMA(0; d; 0) model with the long memory pa-

rameter d = 0:30, d = 0:45 and d = 0:75, respectively. Note that the �rst two

speci�cations refer to stationary processes with a moderate and high degree

of long memory, while the last refers to a non-stationary integrated process.

Following Giraitis et al. (2013) we consider additional forms of persistence

in both stationary and non-stationary long memory processes via autoregres-

sions. Tables 4.C.4 - 4.C.5 report results for ARFIMA(1; d; 0) noise with

an AR(1) coe¢ cient � = 0:7 and long memory parameter d = 0:30, 0:75 re-

spectively. Tables 4.C.6 - 4.C.7 contain results for the ARFIMA(1; d; 0)

processes with the same degree of long memory but with a negative AR(1)

coe¢ cient of � = �0:7. The innovations of the noise processes ut are i.i.d.
standard normal.

We begin by discussing the results inTable 4.C.1which featuresARFIMA

(0,0.30,0) noises. RMSFE values below unity suggest that, in general, all the
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reported forecasting methods, both with �xed and data-driven discounting,

are useful in case of noises with moderately strong long memory. Even the

simplest case of �no structural change�, yt = ut reported in the �rst column

and labelled as Ex1 shows that forecasts of the most of the competing meth-

ods, including the rolling-window schemes, outperform the benchmark of the

full-sample average. The gains are, however, small. This �nding is in contrast

with the results obtained for stationary i.i.d. process in Giraitis et al. (2013)

that record sole dominance of the benchmark over the competitors.1 Gains

over the benchmark are more pronounced when yt has a persistent component

�t. Then, even naive �last observation� forecasts are better than the mean

forecast in most of the experiments.

Persistence entering yt through long memory ut requires stronger discount-

ing and accounting for information contained in the more recent past. This is

evident from the performance of �xed parameter exponentially downweighted

moving average forecast methods. While exponential downweighting with pa-

rameter � = 0:90 provides the most accurate forecasts for time series with i.i.d.

noise processes, discounting with � = 0:80 gives the best result for time se-

ries with ARFIMA(0,0.30,0) noise. Extremely strong discounting is penalised,

but not as harshly as in the case of short memory i.i.d. series. For example,

in the long memory case, the relative MSFE of forecasts with exponential

downweighting with parameter � = 0:002 is 1.253, while in the i.i.d. case, it

becomes 1.947. The data-dependent exponential weights do not exactly match

the best �xed value forecast method but are reasonably comparable and are

never among the worst performing methods. For instance, the exponential

weighting method with a �xed � = 0:90 beats the method with data-based

tuned value b� in a number of experiments such as Ex1, Ex2, Ex7 etc., but
is convincingly outperformed by the latter in several occasions such as Ex6,

Ex10, Ex11 etc. Results of Ex11 where yt follows a standard random walk

1 See Table 1 in Giraitis et al. (2013) for Monte Carlo results considering i.i.d. noise.
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are particularly di¤erent for long memory and i.i.d. noises. For instance,

the relative MSFE of the data-tuned exponential weights is only 0.006 for

ARFIMA (0; 0:3; 0) noises compared to a much higher value of 0.042 for i.i.d.

noises. Forecast methods with optimally chosen exponential weights consis-

tently perform better than the rolling-window methods, but their ability to

outperform the polynomial method is more mixed.

A comparison of rolling-window methods reveals that choosing an evalu-

ation period optimally together with the window size helps to improve fore-

casts of data with long memory noise. The combined methods using both

data-dependent window, bH, and an evaluation period (bk; T ) consistently out-
perform methods using bH and k = 1 in case of ARFIMA (0; 0:3; 0) noises.

Performance of these two methods is relatively more comparable in case of

i.i.d. noises. Both methods using the data-adjusted rolling-window forecast

better than methods with �xed windows of size H = 20 and H = 30 and also

outperform the averaging method of rolling windows advocated by Pesaran

and Timmermann (2007). This justi�es the use of data-driven choice of the

downweighting parameter in rolling window.

Overall, comparison of competing forecasting methods show that the full

sample AR(1) forecasts are in general very good compared to the benchmark,

but are often outperformed by most of the adaptive data-tuned methods. Fore-

casts based on the non-parametric method are competitive and those based on

the residual methods are impressive. Among the adaptive robust forecasting

methods the dynamic weighting method, where the weight attached to the last

observation is optimally chosen from data simultaneously with the exponen-

tial weighting parameter, consistently provides forecasts that are comparable

to the best possible forecasts for all the experiments. The exponential AR

method is also equally competitive.

Similar �ndings as for ARFIMA (0; 0:3; 0) noises hold also for ARFIMA

(0,0.45,0) and non-stationary ARFIMA (0; 0:75; 0) noise processes presented
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in Table 4.C.2 and Table 4.C.3 respectively. There are, however, a few

new important patterns. First, gains of data-tuned methods over the bench-

mark of sample mean increase with the increase of long memory, particularly

for exponentially weighted moving average and dynamic models. For exam-

ple, the RMSFE�s of the data-tuned exponential method in Ex1 are 1.085,

0.905, 0.688 and 0.211 for i.i.d. noise and long memory noises with d = 0:30,

d = 0:45 and d = 0:75; respectively. Second, exponential weighting with

stronger discounting provides better forecasts for processes with stronger long

memory and the data-tuned exponential method matches the best �xed pa-

rameter method more closely in case of higher persistence. For example, in

case of Ex1 and long memory process with d = 0:30 the smallest RMSFE

value of 0.874 is attributable to � = 0:80 while the RMSFE value of the

data-tuned method is 0.905. For d = 0:75, however, a much smaller best

RMSFE value of 0.208 is generated by � = 0:40 and the corresponding value

for the data-tuned method is 0.211. Third, data-tuned exponentially weighted

methods and dynamic methods enjoy larger gains over polynomial methods

when long memory increases. Finally, AR(1) forecasts become more and more

competitive with increased persistence. For noises following a non-stationary

ARFIMA (0; 0:75; 0) process AR(1) is one of the best performing forecast

methods across all the experiments.

As mentioned above, Table 4.C.4 considers performance of forecast meth-

ods when noise ut shows substantial serial dependence through AR(1) coe¢ -

cient of � = 0:7 along with long memory persistence, d = 0:3. A comparison

with results for short memory AR(1) noise reveals that robust adaptive tech-

niques report smaller RMSFE�s in many situations for noises with additional

time-dependence induced by long memory.2 The full sample AR(1) forecasts

are consistently the best unlike in the short memory scenario where they are

2 Refer to Table 2 in Giraitis et al. (2013) for Monte Carlo RMSFE results considering
short memory noises that have AR(1) dynamics with an autoregressive coe¢ cient of 0.7.
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sometimes beaten. Performance of �xed parameter exponentially weighted

moving average methods improves with stronger downweighting of past infor-

mation. Note, for instance, that the forecasts computed using the exponential

method with the lowest �xed value of the tuning parameter � = 0:002 are

comparable to the AR(1) forecasts. Advantage of using only the most recent

information is further con�rmed by equally good �last observation�forecasts.

The adaptive method with optimal data-selected exponential weights almost

always matches the best �xed value method.

Among the rolling-windowmethods, once again methods with data-dependent

window outperform the �xed window methods, more convincingly than in the

case of long memory noises with no additional short-range dependence. Fore-

casts based on methods using a data-dependent window, bH and evaluation

period (bk; T ) are also more accurate than those based on methods using bH
and k = 1, with gains more pronounced in presence of additional serial depen-

dence than in the long-memory-only situation. Note that while the RMSFE�s

of �xed window forecast methods are similar for ARFIMA (0; 0:3; 0) noises

and ARFIMA (1; 0:3; 0) noises with an AR(1) coe¢ cient of 0:7, RMSFE�s

of data-tuned rolling-window methods shrink substantially in the latter, con-

�rming adaptability of such methods to higher persistence. Averaging method

appears to be one of the worst performing methods. The exponential AR and

the residual methods belong to the group of best performers, followed by the

dynamic weighting and the polynomial weighting methods.

Results for a non-stationary noise process ARFIMA (1; 0:75; 0) with an

AR(1) coe¢ cient of 0:7 retain most of the above �ndings. Evidential results

are presented inTable 4.C.5. Performance of data-tuned methods against the

full-sample average further improves. Forecasts based on the EWMA methods

with data-selected weights and dynamic methods are similar and almost iden-

tical to AR(1) and the �last observation�forecasts. Notably, the exponential

AR forecasts can beat the AR(1) forecasts in several experiments, although
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with marginal gains.

Advantage of data-based adaptive forecasting methods becomes clearly

evident when we consider ARFIMA (1; 0:3; 0) with a negative AR coe¢ cient

� = �0:7. Table 4.C.6 reports corresponding RMSFE�s. Although the
full sample AR(1) forecast consistently beats the benchmark sample mean,

it is outperformed by most of the adaptive forecasting techniques including

the rolling window methods. Noteworthy di¤erences between the results of

ARFIMA (1; 0:3; 0) noises with positive and negative AR coe¢ cients are that

margins of gains over the benchmark are higher in the former and that fore-

casts using data tuned exponential and rolling-window methods become more

comparable in the latter.

Methods adopting data-based selection of the downweighting rate, partic-

ularly, the dynamic weighting and the exponential AR methods are the most

dominant predictors. The residual methods also generate very good forecasts

in most of the experiments. Maximum reduction in relative MSFE of the

�xed parameter EWMA methods come from methods with very low discount-

ing rates emphasising necessity of including information of distant past. The

optimally chosen exponential weights lead to forecasts that are comparable

to the forecasts generated by the best performing �xed parameter methods.

There is no signi�cant advantage of optimally choosing the evaluation period,

(bk; T ) along with the window size, bH and data-based choice does not always

provide better forecasts than the �xed window methods. The �no-change�

forecast is by far the worst candidate reporting RMSFE�s which are predom-

inantly much higher than unity.

Forecasting under non-stationary noise generated by ARFIMA (1,0.75,0)

with an AR coe¢ cient of �0:7 further establishes superiority of the data-tuned
forecasting techniques by reporting larger gains over the benchmark. Table

4.C.7 presents the evidence. It also shows that optimally chosen exponential

weights can beat the residual methods with marginal gains.
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The Monte Carlo experiments with long memory time series noise ut gen-

erated by ARFIMA models con�rm that accuracy of forecasts varies with the

degree of persistence in the data and consequently, depends on appropriate

down-weighting of past observations. The facts that many of the data-tuned

discounting methods always match, if not outperform, the best forecast with

�xed downweighting parameter and that the optimal rate of discounting cannot

be observed in advance, prove the adequacy of data-tuned adaptive forecasting

techniques, particularly when facing structural changes.

4.5 Empirical Application

In this section we examine practical usefulness, if any, of data-tuned discount-

ing methods by applying them to real data. We exploit all the methods pre-

viously used in the Monte Carlo experiments to forecast a range of UK time

series which are available on quarterly and/or monthly frequencies. Giraitis

et al. (2013) investigate predictive performance of same methods by fore-

casting 97 US quarterly series and �nd many of them, particularly a EWMA

with data-selected downweighting parameter and exponential AR, to be sig-

ni�cantly superior to a simple full sample AR(1) benchmark. Our forecast

exercise is similar to their design, but it is extended and more detailed in

several ways. First, we use latest data that include the recent �nancial crisis

period. Second, we analyse forecasts of both untransformed (raw) and trans-

formed (to stationary) series and data with two di¤erent frequencies (quarterly

and monthly). Third, we perform robustness check by providing results for

two di¤erent sub-samples.

The quarterly data consist of 55 series and span a long period of 1971Q1:

2012Q4. The dataset includes economic series related to output, production,

employment and in�ation and �nancial series related to interest rates, ex-
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change rates among others. We generate one-quarter-ahead forecasts for the

last 22 years of the full sample starting in 1999Q1. We evaluate and com-

pare forecasts over two non-overlapping sub-periods of equal size: the �rst is

[1999Q1: 2001Q4] and the second is [2002Q1: 2012Q4]. The monthly data

span a much shorter period ranging from January 1993 to December 2012, but

contain a larger information set with 79 series.3 The full forecast period for

the monthly dataset is January 2001 to December 2012 and the sub-sample

analysis examines one-month-ahead forecasts over two periods each 6 years

long: one ranging from January 2001 to December 2006 and the other ranging

from January 2007 to December 2012.

The forecasting methods considered are robust to structural change and

include methods with exponential, polynomial and non-parametric weights,

rolling-window schemes and residual methods. For each series, we compute

MSFE relative to the full sample AR(1) benchmark. Full lists of quarterly

and monthly series together with RMSFE results are reported in Tables

4.C.14 - 4.C.16 of Appendix G. Although we provide a detailed series-by-

series comparison of models we emphasise that our goal is not to identify

the best forecasting strategy for particular series or datasets, but to examine

overall bene�t from using data-based discounting.

4.5.1 Results for Quarterly Data

We begin by discussing results for one-quarter-ahead forecasts of untrans-

formed data. Table 4.C.8 summarises them in terms of a number of descrip-

tive statistics and tests. These include the mean, the median, the minimum

and the maximum of the relative MSFE�s. The columns DM1 and DM2

report the number of signi�cant Diebold-Mariano tests where the null hypoth-

3 Note that the quarterly and the monthly datasets share a number of series between
them.
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esis is that of equal forecast ability of a robust data-downweighting method

and the benchmark AR(1). The alternative hypothesis for DM1 is that the

AR(1) forecasts are more accurate and for DM2 the downweighting method

is better. Most of the series appear to be non-stationary. The full sample

unconditional mean and forecast methods using rolling-window weights, non-

parametric weights and exponential weights with low discount rates perform

poorly compared to the full sample AR(1) benchmark. We, therefore, report

results for only those methods, either with �xed or data-tuned downweight-

ing parameters, whose forecasts are reasonably comparable to those of the

benchmark.

Majority of the reported data-dependent adaptive methods fare very well

against the full sample AR(1). In almost all the cases the median RMSFE is

below unity. Results are the most impressive for the EWMA with data-tuned

discounting, Exponential AR and the two residual methods. Lower mean than

median indicates that the methods can yield substantial gains over the bench-

mark. The largest gains range between 55%-68%, and the maximum cost is

no more than 38%. Moreover, while in 25%-36% of the cases forecasts of

these adaptive methods are signi�cantly better than those of the benchmark

(indicated by DM2 tests), proportions of signi�cantly worst forecasts do not

exceed 7%. The exponential AR is, by all means, the best predictor. It yields

the maximum reduction of 17% in the mean RMSFE and 7% in the median.

More importantly, it concedes no signi�cant outperformance by the benchmark

while signi�cantly beating it for 20 series, the maximum among the competing

models. The exponential residual method and EWMA with optimised down-

weighting parameter also perform very well with average RMSFE gains of

11% and 6%, respectively. Their gains at medians are, however, small. Dy-

namic weighting and the polynomial weighted moving average method match

the benchmark AR(1) in terms of median RMSFE and enjoy healthy propor-

tions of signi�cant DM2 tests, but they lose out on mean RMSFE. Although
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the penalty at mean is trivial for the dynamic method, it is enormous for the

polynomial weighting. The cost is re�ected on the latter�s abnormally high

maximum loss and large number of signi�cant DM1 tests which o¤sets almost

all its signi�cant bene�ts.

Among the �xed parameter methods, the EWMAmethod with the strongest

discounting rate and an associated tuning parameter value � = 0:002 out-

performs the AR(1) benchmark marginally on both mean and median. This

implies that most of the series in our sample have unit roots and the last obser-

vation often serves as a competitive one-quarter-ahead forecast. Nonetheless,

the data-tuned exponential discounting proves to be better than the best �xed

discounting by several means. Although the two forecast methods are compa-

rable in terms of median, the former enjoys a 4% average RMSFE gain over

the latter. Most importantly, while the best gains over the full-sample AR(1)

are comparable for both the methods, the largest cost is much smaller in case

of data-dependent downweighting. The largest RMSFE for the best �xed

exponential weighting is 2:450 compared to a value of 1:175 for the data-tuned

weighting. This suggests that the adaptive method is much safer to use, espe-

cially knowing that the optimal rate of downweighting cannot be determined

in advance. Lower number of signi�cant DM1 tests and higher number of sig-

ni�cant DM2 tests also con�rm advantage of data-tuned rate of exponential

discounting over the best �xed rate.

The sub-sample results establish more pronounced superiority of adaptive

forecasting methods during the �rst half of the sample. All the methods beat

the benchmark AR(1) for the median and mean reductions in RMSFE are

often large. For example, the gains at the mean and the median are 25% and

21% for the exponential AR and those for the exponential residual method

are 16% and 14%, respectively. The minima indicate that at times bene�ts

relative to the benchmark can be extraordinary with gains as high as 88%.

In the second sub-sample domination of adaptive techniques appears to be
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subdued and there are fewer signi�cant outperformance in favour of them.

The �xed parameter EWMA enforcing the strongest discounting performs very

well, but not better than its counterpart with optimally chosen downweighting

parameter.

In order to evaluate practical importance of forecast methods further, we

compare their MSFE relative to the AR(1) benchmark for a selection of 15

economically important series. Table 4.C.9 reports the results. For each se-

ries a bold number indicate the smallest RMSFE and consequently, the best

forecast. Supreme forecast performance of exponential AR method, which

was documented earlier, is evident. It beats the benchmark for almost all

the reported series, sometimes with large gains, e.g., 65% for GDP and 33%

for unemployment rate. The largest loss it incurs is merely 8% and arises

from forecasting total exports of goods and services. Interestingly, the non-

parametric residual method performs very well for certain variables, such as

consumption expenditure, CPI and money stock. However, at times there

can be costs of considerable amount, e.g., costs of 25% for exchange rate and

14% for Index of production on manufacturing. On average, the EWMA with

� = 0:002 which assigns almost all the weights on the last observation forecasts

the best among the �xed discounting methods. But there are occasions, such

as forecasting of public sector borrowing, where it performs poorly and a rela-

tively lower discount rate with � = 0:60 achieves the most accurate prediction.

This is where application of data-dependent exponential discounting proves to

be particularly useful as it almost always matches the best �xed value method

or beat it with small gains. Forecasts of polynomial weighting can often match

those of exponential weighting, but there are also costly deviations. For exam-

ple, the reported RMSFE of the polynomial weighted moving average method

for total actual weekly hours worked is 2:642 compared to a much lower value

of 1:004 for exponential weighting. Overall, many of the adaptive methods

forecast the set of indicator variables well, often with substantial gains over
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the benchmark and with minor costs at the worst cases.

Following Giraitis et al. (2013) we report the most pronounced gains of

two well performing data-dependent adaptive forecast methods - EWMA with

optimised discounting parameter and exponential AR. For each method, Ta-

ble 4.C.10 lists 20 series with the smallest MSFE relative to the full sample

AR(1) benchmark. For many of these series outperformances are large, partic-

ularly when forecasting using the exponential AR method. The methods are

the most bene�cial for forecasting output, production, price and employment

related variables.

The quarterly series are predominantly non-stationary. We follow Giraitis

et al. (2013) to transform them to be stationary and investigate whether

such a transformation a¤ects any of the above �ndings. The stationarisation

advantages the previously discarded poor performing methods and makes all

methods more comparable to each other in terms of forecast performance.

Table 4.C.11 summarises the results. Overall, the full sample AR(1) bench-

mark outperforms almost all the competing forecasting models in terms of

mean and median RMSFE and number of signi�cant DM statistics. How-

ever, not all is ominous. The EWMA with data-tuned discounting parameter

and the exponential AR method match the benchmark at mean and most

importantly, yield more signi�cant gains (DM2 tests) than signi�cant losses

(DM1 tests). For these two and other adaptive methods such as exponential

residual method and methods with polynomial and dynamic weights penal-

ties at mean and median are fairly small. The non-parametric weighting and

non-parametric residual methods are not particularly useful.

We should note that the forecast of the EWMA with � = 0:002 or equiva-

lently the �last observation�, which was a competitive contender in forecasting

untransformed quarterly series, loses out to the full sample AR(1) benchmark

miserably in the all stationary environment. It experiences more than 50%

penalty at both mean and median and there is no signi�cant DM2 statis-
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tics in contrast to 39 signi�cant DM1 statistics. Fixed parameter EWMA

methods with low discounting rates or high values of the tuning parameter,

e.g., � = 0:90; 0:80, perform rather better. Yet, optimally chosen exponential

downweighting method beats almost all the �xed value discounting methods on

every evaluation criterion. Most convincing are much lower mean RMSFE

and maximum penalty and a much higher number of signi�cant outperfor-

mances of the benchmark. Contrasting performance of a �xed discount rate

for stationary and non-stationary datasets points out the already identi�ed

fact: one discount rate is unlikely to be suitable for every dataset or for every

series. Generating reliable forecasts and avoiding severe forecast failures in

the face of structural change can be achieved by adaptive forecasting with

choosing discounting weights optimally over time.

Predictive performance of rolling-window techniques relative to the AR(1)

benchmark is not satisfactory. However, it is worthy of noting that, on aver-

age, methods with data-selected window yield better forecasts than the �xed-

window and window-averaging methods. For data-based optimally chosen

window the maximum forecast gains are much higher and the highest cost

is much lower. This once again corroborates importance of optimal selection

of downweighting parameter using past information.

Good full-sample forecast performance of adaptive EWMA and exponen-

tial AR can also be observed over the two sub-samples. The mean and median

RMSFE in the two periods indicate that the adaptive EWMA and the dy-

namic methods (dynamic weighting and residual methods) enjoy better overall

advantage in the �rst sample. For the rolling-window methods performance is

opposite - better forecast in the second half of the sample.
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4.5.2 Results for Monthly Data

We forecast the 55 quarterly series over a period of 22 years. Although such a

long period can accommodate structural changes with higher probabilities, it

leaves us with only 88 one-step-ahead forecasts to evaluate. We, therefore, opt

to test the predictive performance of adaptive techniques at monthly frequency.

The forecast period span a much shorter period of 12 years, but we have more

observations and more importantly, a larger information set to work with.

Similar to untransformed quarterly data we identify most of the monthly

series to be non-stationary and to disadvantage many of the competing models

including rolling window, estimation window averaging and full sample mean,

among others. In order to make reasonable comparisons we, therefore, dis-

card any poor performing methods. We decide to report forecast results of

the same set of methods which we present in Table 4.C.8 for untransformed

quarterly data. A summary of RMSFE results in terms of descriptive statis-

tics is presented in Table 4.C.12. Unlike quarterly forecasts monthly results

are less favourable to data-based adaptive forecasting techniques. The expo-

nential AR and the EWMA method with data-tuned discounting parameter

are the only two predictors which beat the benchmark AR(1) at both the mean

and the median RMSFE. The gains are, however, less pronounced than in

quarterly data. For the exponential AR the mean and median reductions are

7% and 5% respectively and for the adaptive EWMA they are merely 5% and

2%, respectively. The superiority of the two methods over the benchmark

is further substantiated by large number of signi�cant gains over the bench-

mark and small number of signi�cant losses. For the other adaptive methods,

such as the dynamic weighting and residual methods, outperformances of the

benchmark are outnumbered by number of signi�cant DM1 tests (favouring

the benchmark). There are, however, positives to take. Importantly enough,

penalties at mean or median are not more than 5% for these methods and best
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outperformances are large compared to much lower worst costs, particularly

for residual methods. Results for polynomial weights are far from convincing.

The predictive performance of EWMA methods improve with stronger

discounting. Among the �xed parameter EWMA methods the one with a dis-

count rate of � = 0:002 (which is equivalent to assigning all the weights to the

last observation) is rewarded the most. It outperforms the AR(1) benchmark

marginally on mean RMSFE and yields more signi�cant DM2 statistics than

signi�cant DM1 tests. Nevertheless, this best �xed parameter EWMA is no

match for the adaptive EWMA with data-tuned downweighting rate. For the

latter the mean RMSFE is 6% lower and the proportion of signi�cant out-

performances over the AR(1) is 28% higher. Important of all, it is less prone

to forecast failure. In the worst case, the RMSFE of optimised EWMA is

1:103 compared to a much higher value of 1:846 for its best �xed value coun-

terpart. Results of the two sub-samples are similar. For most of the adaptive

methods there are small improvements in median RMSFE during the more

recent sub-period.

As in quarterly forecast we present the best 20 predictions for optimised

EWMA and Exponential AR in Table 4.C.13. While the EWMA forecasts

sales and production well, the exponential AR enjoys clear advantage on em-

ployment and price related variables. Both predict tourism related series much

better than the AR(1) benchmark.

4.5.3 Forecast Performance During the Crisis

The recent global �nancial crisis that set out in late 2007 triggered a reces-

sion in the UK economy and adversely a¤ected the dynamics of many of its

key indicators. For example, output growth became negative and in�ation be-

came volatile. Developing or recongising forecast models and methods which

can accurately predict such unusual and abrupt economic changes is of cru-
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cial practical interest. Barnett et al. (2012) compare a number of dynamic

models with time-varying parameters in forecasting the UK GDP growth, in-

�ation and short term interest rate. These authors conclude that although

a single best model is di¢ cult to �nd, allowing for time-variation of speci�c

types proves to be bene�cial, particularly during the crisis. We conduct a

similar analysis to assess crisis-period predictive performance of each of the

robust methods considered in this study. Figure 4.B.10 plots one-step-ahead

forecasts of quarterly GDP growth alongside the actual data over 2008 Q1 -

2010 Q4, a period when the crisis deepened. Figure 4.B.11 reports similar

results for CPI in�ation. The GDP growth and in�ation are computed as log

di¤erence of quarterly GDP and CPI index values multiplied by 100.

Figure 4.B.10 clearly shows that the crisis initiated a prolonged period

of strong negative growths followed by periods of recovery. In 2008 Q2 the

actual growth was about -0.9%, but all the forecast methods predicted posi-

tive growth with the benchmark AR(1) being the least biased by forecasting

near-zero growth rate. The rolling window methods, using either �xed or es-

timated window lengths, performed miserably and forecasted near constant

positive growth during the entire crisis. Most of the other methods, including

the benchmark AR(1), were predicting negative GDP growth by mid 2009.

Exponentially weighted moving average methods with stronger discouning of

past information performed better. It, however, remained di¢ cult to outper-

form the last observation, meaning that the growth data were highly persistent

during the crisis. Nonetheless, forecasts from a number of methods with data-

tuned downweighting rate, such as the adaptive EWMA, Exponential residual,

Exponential AR and Dynamic weighting methods, could closely match the last

observation on many occasions and importantly, they were, on average, supe-

rior to AR(1) forecasts. In 2008 Q4 the GDP growth plummeted to its lowest

at -2.1%. The adaptive EWMA and Exponential residual appeared to be the

two best predictors by forecasting growths lower than -1.5%. Forecasts of the
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dynamic weighting method and exponential AR were larger but more accurate

than the benchmark AR(1) forecast of -0.7%. These two adaptive methods

predicted the recovery of the GDP growth in the year 2009 particularly well.

Performance of methods based on nonparametric weights were not satisfactory.

It is evident from Figure 4.B.11 that in�ation became volatile and harder

to forecast during the crisis. It increased from 0.6% at 2008 Q1 to 2.2% at the

end of next quarter. But subsequent large drops made in�ation negative and

it reached the trough at -2.5% in 2008 Q4. It recovered and rose to 1% over

the following two quarters, and remained fairly stable until 2010 Q2 only to

experience some �uctuations at the end of 2010.

The �no change�forecasts (last observations) were the most accurate during

periods of stable in�ation, but generated large forecast errors during times of

volatility. Interestingly, the exponential AR and adaptive EWMA methods

which closely imitated the last observations when forecasting GDP growth

avoided such forecast error by behaving very di¤erently based on a much slower

rate of discounting. For example, the last observation forecast was about 2.2%

in contrast to the actual in�ation rate of 0.8% in 2008 Q3. Forecasts of adaptive

EWMA and exponential AR were much more reliable being close to 1%. The

residual methods were amongst the few which were able to forecast negative

in�ation in 2009 Q1. They matched the last observation and AR(1) forecasts,

but were, in general, less biased, particularly when there were substantial

�uctuations. For �xed size rolling window methods, the forecast paths stayed

horizontal at around 0.8%. There was no real advantage of adaptively choosing

the window size from data except that the method that simultaneously selects

the tuning parameter and a stable evaluation period forecasted in�ation better

after 2009 Q3.
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4.6 Conclusion

We look at the problem of forecasting time series which are persistent and

also subject to ongoing structural change. Forecast methods that are robust

to historical and recent structural changes are of particular interest. These

include a class of methods that, in one way or another, downweight past data,

such as rolling window regression, forecast averaging across di¤erent estima-

tion windows and exponentially weighted moving averages. Our work builds

on the contribution of Giraitis et al. (2013) who argue that choosing a priori

a �xed rate of discounting older data is not optimal provided that the nature

of structural change is unknown. They propose a data-based selection of tun-

ing parameter and provide theoretical evidence showing that such a technique

minimises mean squared forecast errors asymptotically. They further justify

good small-sample performance of their adaptive methods via Monte Carlo

simulations and practical usefulness by forecasting many US time series. In

their econometric framework Giraitis et al. (2013), however, consider persis-

tence in time series only through short-range dependence in the noise process.

We bring long memory into the scenario. Long-range dependence is a common

feature of many economic and �nancial time series and is often confused with

structural changes. Presence of both poses a di¢ cult challenge for real time

forecasting. We shed light on this aspect by justifying, both theoretically and

empirically, e¢ cacy of forecast methods with data-tuned discounting rates in

such complex situations.

For the theoretical analysis, we prove asymptotic optimality of forecasts

based on data-dependent adaptive methods by considering two speci�c cases -

a stationary long memory process and a linear trend process with long memory

noise. We establish that for a persistent process, such as the former, a data-

selected tuning parameter is not a¤ected by number of observations and for a

deterministic trend, such as the latter, it remains bounded. These reasonably
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imply that forecasts of a time series with long range dependence will rely on

the last observation or averaging of the last few available observations.

Next, for the empirical exercise, we consider di¤erent degrees of long

memory persistence in the noise process which transmits into the original

response series to be forecast. We �nd that long-range dependence generated

by ARFIMA models often creates false impressions of di¤erent types of struc-

tural changes such as cyclical or monotonic trends and conceals presence of

true structural changes. A detailed Monte Carlo study con�rms e¤ectiveness of

data-tuned robust methods in forecasting in face of ongoing structural change

when coupled with long memory noise process. For rolling window methods,

a cross-validation based selection of window length almost always results in

more accurate forecasts than when �xing the size to a predetermined value.

Not surprisingly, forecast performance of EWMA methods appears to be sen-

sitive to choice of the tuning parameter. Di¤erent values, meaning di¤erent

rates of downweighting, achieve the best forecast for di¤erent degrees of persis-

tence in noise. Importantly, however, we �nd that adaptive EWMA methods

which update the degree of discounting at each forecast horizon can generate

reliable forecasts consistently. In spite of presence of various types of struc-

tural changes in a time series and varying level of long memory in the noise

process, their forecasts are generally as competitive as the best �xed parame-

ter forecasts. We con�rm practical usefulness of data-tuned robust methods

by forecasting several economic and �nancial time series of the UK at both

quarterly and monthly frequencies. There are large bene�ts to gain with rare

evidence of adverse penalties.
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4.A Appendix: Proofs

4.A.1 Proof of Theorems 1 and 2 and Corollary 1

We follow the same steps of the proof as in Giraitis et al. (2013). By de�nition

QT;H = T
�1
n

TX
t=T0

(yt � ŷtjt�1; H)2 = T�1n
TX

t=T0

 
t�1X
j=1

wtj;H(yt � yt�j)
!2
;

!T;H = E(yT+1 � ŷT+1jT;H)2 = E
 

TX
j=1

wT+1;j;H(yT+1 � yT+1�j)
!2
:

We will approximate QT;H and !T;H by the sums

Q
(apr)
T;H = T�1n

TX
t=T0

 
T1X
j=1

wj;H(yt � yt�j)
!2
;

!
(apr)
T;H = E

 
T1X
j=1

wj;H(yT+1 � yT+1�j)
!2
;

replacing wtj;H by wj;H de�ned by (4.2.6), setting T1 = T0T��=2. Since Hmax =

T0T
��, then T0=Hmax = T �, T1=Hmax = T �=2 and T1=T0 � T��=2.
The proof of Theorems 1 and 2 is based on Lemma 1, Lemma 2, and

Lemma 3 given in Section 4.A.2. These lemmas divide the proof into 3 steps,

establishing required approximations.

Proof of Theorem 1. Write

QT;H = �̂
2
T;u +

h
QT;H �Q(apr)T;H

i
+ E

n
Q
(apr)
T;H � �̂2T;u

o
(4.A.1)

+
h
Q
(apr)
T;H � �̂2T;u � EfQ

(apr)
T;H � �̂2T;ug

i
:

Recall that H � T and 0 < d < 1=2. Uniformly in H, by Lemma 1,h
QT;H �Q(apr)T;H

i
= O(T�2), by Lemma 2, E

n
Q
(apr)
T;H � �̂2T;u

o
= qu;H + O(T

�2)
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and by Lemma 3,h
Q
(apr)
T;H � �̂2T;u � EfQ

(apr)
T;H � �̂2T;ug

i
= oH(H

�1+2d). Hence,

QT;H = �̂
2
T;u + qu;H + oH(H

�1+2d);

where by Lemma 2(i), qu;H = �LMH�1+2d + oH(H
�1+2d). This completes the

proof of the theorem. �

Proof of Theorem 2. Recall equality (4.A.1). Then, uniformly in H, by

Lemma 1,
h
QT;H �Q(apr)T;H

i
= O(T�2), by Lemma 2, E

n
Q
(apr)
T;H � �̂2T;u

o
=

q�;H + qu;H + oH(H
2) and by Lemma 3,

h
Q
(apr)
T;H � �̂2T;u � EfQ

(apr)
T;H � �̂2T;ug

i
=

oH(H
2). Hence,

QT;H = �̂
2
T;u + q�;H + qu;H + oH(H

2);

where by Lemma 2(ii), q�;H + qu;H = �H2+ oH(H
2). This completes the proof

of the theorem. �

Proof of Corollary 1. Proof follows using the same argument as in the

case of Corollary 1 in Giraitis et al. (2013). Let qu;H reaches its minimum

c0 = qu;H0 at some �nite H0. Since �̂
2
T;u = �2u + op(1), then (4.3.5) implies

that QT;Ĥ = c0 + op(1), !T;Hopt = c0 + o(1), which in turn implies !T;Ĥ =

QT;Ĥ+o(1) = c0+o(1). Hence, !T;Ĥ = !T;Hopt+o(1) and QT;Ĥ = !T;Ĥ+op(1).

This proves (4.3.6). �

4.A.2 Main lemmas

Step 1. First, using Lemma 1 we show that

QT;H = Q
(apr)
T;H +

n
QT;H �Q(apr)T;H

o
= Q

(apr)
T;H +O(T�2);

uniformly in H.
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Lemma 1 Under assumptions of Theorems 1 and 2,

E

�
sup
H2IT

���QT;H �Q(apr)T;H

���� = O(T�2); (4.A.2)

sup
H2IT

���!T;H � !(apr)T;H

��� = O(T�2):
Proof. The proof is similar to the proof of the Lemma A.1 in Giraitis et

al. (2013). We provide here all details.

Notice that by de�nition of weights, wtk;H � 1 and wj;H � 1. To evaluate
QT;H�Q(apr)T;H , for T0 � t � T and j; k � t�1 we shall use the following bound:
jwtj;Hwtk;H � wj;Hwk;HI(j; k � T1)j � jwtj;Hwtk;H � wj;Hwk;H j + jwj;Hwk;H �
wj;Hwk;HI(j; k � T1)j � jwtj;H�wj;H jwtk;H+wj;H jwtk;H�wk;H j+ wj;Hwk;HI(j >
T1 or k > T1) � jwtj;H � wj;H j + jwtk;H � wk;H j + wj;HI(j > T1) + wk;HI(k >
T1) � CT�6 because jwtj;H � wj;H j � CT�6 by (4.A.24) and wj;HI(j > T1) �
CT�6 by (4.A.23).

Hence,

jQT;H �Q(apr)T;H j

� T�1n
TX

t=T0

t�1X
j;k=1

jwtj;Hwtk;H � wj;Hwk;HI(j; k � T1)j

� j(yt � yt�j)(yt � yt�k)j

� CT�1n
PT

t=T0

Pt�1
j;k=1 T

�6j(yt � yt�j)(yt � yt�k)j =: jT :

Since jT does not depend on H it remains to show that

EjT = O(T
�2):

We have

EjT � CT�1n
TX

t=T0

t�1X
j;k=1

T�6Ej(yt � yt�j)(yt � yt�k)j:
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We use the bound Ej(yt � yt�j)(yt � yt�k)j � E(yt � yt�j)2 + E(yt � yt�k)2 �
2(Ey2t + Ey

2
t�j) + 2(Ey

2
t + Ey

2
t�k) � 8maxt=1;:::;T Ey2t .

In Theorem 1, Ey2t = E(� + ut)
2 � 2�2 + 2Eu2t = 2�2 + 2Eu21 < 1,

because ut is a stationary sequence with �nite variance.

In Theorem 2, Ey2t = E(at+ ut)
2 � 2a2t2+2Eu2t � 2a2T 2+2Eu21 � CT 2

for t = 1; :::; T .

Therefore, Ej(yt � yt�j)(yt � yt�k)j � CT 2 where C does not depend on

t; j; k. So,

EjT � CT�1n T 2
TX

t=T0

t�1X
j;k=1

T�6 � CT�1n T�1:

Since Tn = T � T0 + 1 � T , then EjT � CT�1n T 2
PT

t=T0

Pt�1
j;k=1 T

�6 � CT�2

which proves the �rst claim of the lemma.

To show the second claim, we use the bound we obtained above: Ej(yT+1�
yT+1�j)(yT+1 � yT+1�k)j � CT 2. Then,

j!T;H � !(apr)T;H j
= E

���PT
j;k=1(wtj;Hwtk;H � wj;Hwk;HI(j; k � T1))

�(yT+1 � yT+1�j)(yT+1 � yT+1�k)j
�
PT

j;k=1 jwtj;Hwtk;H�wj;Hwk;HI(j; k � T1)jEj(yT+1�yT+1�j)yT+1�yT+1�k)j
� CT 2

PT
j;k=1 jwtj;Hwtk;H � wj;Hwk;HI(j; k � T1)j

� CT 2
PT

j;k=1CT
�6 � CT�2; using the inequalities we obtained above.

This proves the second claim. �

Step 2. Next we obtain asymptotics of E(Q(apr)T;H � �̂2T;u) and !
(apr)
T;H .

Lemma 2 (i) Under assumptions of Theorem 1,

E(Q
(apr)
T;H � �̂2T;u) = qu;H +O(T�2); (4.A.3)

!
(apr)
T;H = �2u + qu;H +O(T

�2);

where qu;H is the same as in Theorem 1 and

qu;H = �LMH
�1+2d + oH(H

�1+2d): (4.A.4)
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(ii) Under assumptions of Theorem 2,

E(Q
(apr)
T;H � �̂2T;u) = q�;H + qu;H + oH(H2); (4.A.5)

!
(apr)
T;H = �2u + q�;H + qu;H + oH(H

2);

where q�;H = �H2 + oH(H
2), and

q�;H + qu;H = �H
2 + oH(H

2): (4.A.6)

Proof. Since in Theorems 1 and 2, �t is deterministic, and ut is a stationary

LM sequence with zero mean, Euj = 0, then

E[Q
(apr)
T;H � �̂2T;u] = m�;TH +mu;TH ; !

(apr)
T;H = v�;TH + vu;TH ; (4.A.7)

where m�;TH := T
�1
n

PT
t=T0

E
�PT1

j=1wj;H(�t � �t�j)
�2
,

mu;TH :=T
�1
n

TX
t=T0

E

 
T1X
j=1

wj;H(ut � ut�j)
!2
� �2u

= E

 
T1X
j=1

wj;H(u0 � u�j)
!2
� �2u;

v�;TH :=E

 
TX
j=1

wj;H(�T+1 � �T+1�j)
!2
;

vu;TH :=E

 
TX
j=1

wj;H(uT+1 � uT+1�j)
!2
:

(i). Suppose that conditions of Theorem 1 are satis�ed. Then �t = � and

hence m�;TH = 0, v�;TH = 0.

Thus, to prove (4.A.3) we need to show that

mu;TH � qu;H = OH(T�2); vu;TH � �2u � qu;H = OH(T�2): (4.A.8)
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By de�nition, qu;H = E
�P1

j=1wj;H(u0 � u�j)
�2
��2u. We showed that Ej(u0�

u�j)(u0 � u�k)j � 8Eu20 < 1, also we have
P1

k=1wk;H = 1 by de�nition of

wk;H , and
P1

j=T1
wj;H = O(T

�6) by (4.A.23). So,

jmu;TH � qu;H j

�
P1

j;k=1wj;Hwk;H(I(j > T1) + I(k > T1))Ej(u0 � u�j)(u0 � u�k)j

� C
P1

j;k=T1
wj;Hwk;H(I(j > T1)+I(k > T1)) � C

P1
j=T1

wj;H
P1

k=1wk;H �
CT�6.

Similarly, by stationarity, vu;TH := E
�PT

j=1wj;H(u0 � u�j)
�2
and jvu;TH�

�2u�qu;H j � jE
�PT

j=1wj;H(u0 � u�j)
�2
�E

�P1
j=1wj;H(u0 � u�j)

�2
j � CT�6.

This completes the proof of (4.A.8).

It remains to prove (4.A.4). By assumption, 
u(k) � c
k�1+2d as k !1.
Therefore,

qu;H = E

 1X
j=1

wj;H(u0 � u�j)
!2
� �2u

=
1X

j;k=1

wj;Hwk;HEu�ju�k � 2
1X
j=1

wj;HEu0u�j +
1X
j=1

wj;HEu
2
0 � �2u

=
1X

j;k=1

wj;Hwk;H
u(j � k)� 2
1X
j=1

wj;H
u(j):

By de�nition, wj;H = K(j=H)=vH where vH =
P1

j=1K(j=H) � H by (4.A.27).
Hence, approximating the sum by the integral and change of variables gives

1X
j;k=1

wj;Hwk;H
u(j � k) � H�2
1X

j;k=1

K(j=H)K(k=H)c
jj � kj�1+2d

� H�1+2dH�2
Z 1

0

Z 1

0

K(x=H)K(y=H)c
jx=H � y=Hj�1+2ddxdy

� H�1+2d
Z 1

0

Z 1

0

K(x)K(y)c
jx� yj�1+2ddxdy:
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Similarly,

2
1X
j=1

wj;H
u(j) � 2H�1
1X
j=1

K(j=H)c
j
�1+2d

� 2H�1+2dc


Z 1

0

K(x)x�1+2ddx

which implies qu;H � H�1+2dc

�R1
0

R1
0
K(x)K(y)jx� yj�1+2ddxdy

�2
R1
0
K(x)x�1+2ddx

�
= H�1+2d�LM proving (4.A.4). This completes the

proof of part (i).

(ii). Suppose that conditions of Theorem 2 are satis�ed. Equalities and (4.A.2)

show that to prove (4.A.5) it su¢ ces to show that

m�;TH � q�;H = oH(T�2); v�;TH � q�;H = oH(T�2): (4.A.9)

Since �t = at and T � T0 + 1 = Tn, then m�;TH = T
�1
n

PT
t=T0

�PT1
j=1wj;Haj

�2
=
�PT1

j=1wj;Haj
�2
, and v�;TH =

�PT
j=1wj;Haj

�2
. On the other hand,


�;H =
�P1

j=1wj;Haj
�2
. Then, by equality a2 � b2 = (a� b)(a+ b),

jm�;TH � 
�;H j �

������
 

T1X
j=1

wj;Haj

!2
�
 1X
j=1

wj;Haj

!2������
� 2a2

 1X
j=T1

wj;Hj

! 1X
k=1

wk;Hk

!
:

Since H � T ,
P1

j=T1
wj;H(j=H) = O(T

�6) by (4.A.23) and
P1

j=1wj;H(j=H) =

O(1) by (4.A.27), we obtain

jm�;TH � 
�;H j � H2O(T�6)O(1) = o(T�2);

which proves the �rst claim in (4.A.9). The second claim follows using the

same argument.

Property (4.A.6) follows applying to q�;H + qu;H property (4.A.4), qu;H =

�LMH
�1+2d + oH(H

�1+2d), and noting that q�;H = (
P1

j=1wj;Hj)
2 �

H2(
R1
0
K(x)xdx)2 = H2� by (4.A.27).
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This completes the proof of the lemma. �

Step 3. Here we establish the bound for the stochastic term.

Lemma 3 (i) Under assumptions of Theorem 1,

E sup
H2IT

H1�2d��Q(apr)T;H � �̂2T;u � EfQ
(apr)
T;H � �̂2T;ug

��! 0:

(ii) Under assumptions of Theorem 2,

E sup
H2IT

H�2��Q(apr)T;H � �̂2T;u � EfQ
(apr)
T;H � �̂2T;ug

��! 0: (4.A.10)

Proof. Denote �tj = �t� �t�j, utj = ut� ut�j. Then,
PT1

j=1wj;H(yt� yt�j) =PT1
j=1wj;H�tj +

PT1
j=1wj;Hutj. So,

Q
(apr)
T;H = T�1n

TX
t=T0

 
T1X
j=1

wj;H(yt � yt�j)
!2

(4.A.11)

= J��;TH � 2J�u;TH + Juu;TH ; (4.A.12)

where

J��;TH = T
�1
n

TX
t=T0

 
T1X
j=1

wj;H�tj

!2
;

Juu;TH = T
�1
n

TX
t=T0

 
T1X
j=1

wj;Hutj

!2
;

J�u;TH = T
�1
n

TX
t=T0

 
T1X
j=1

wj;H�tj

! 
T1X
k=1

wk;Hutk

!
:

(i) Since �tj = � � � = 0, we have J��;TH = J�u;TH = 0. It remains to

show that

E sup
H2IT

H1�2d��Juu;TH � �̂2T;u � EfJuu;TH � �̂2T;ug��! 0: (4.A.13)
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We conduct the proof similarly as in the proof of Lemma A.3 of Giraitis et al.

(2013), amending it to long memory of ut�s.

Set w0j;H := wj;H � wj+1;H , j = 1; � � �T1 � 1, w0T1;H := wT1;H , �tj =Pj
s=1 ut�s, j = 1; � � � ; T1 and hT :=

PT1
j=1wj;H . Using summation by parts,

write

T1X
j=1

wj;Hut�j =

T1�1X
j=1

(wj;H � wj+1;H)�tj + wT1;H�tT1 =
T1X
j=1

w0j;H�tj:

Then,
PT1

j=1wj;Hutj = hTut �
PT1

j=1wj;Hut�j = hTut �
PT1

j=1w
0
j;H�tj, and

Juu;TH = T
�1
n

TX
t=T0

 
hTut �

T1X
j=1

w0j;H�tj

!2

= T�1n

TX
t=T0

8<:
 

T1X
j=1

w0j;H�tj

!2
� 2hT

 
T1X
j=1

w0j;H�tj

!
ut

9=;+ h2T �̂2T;u
Hence,

Juu;TH � �̂2T;u =

T1X
j;k=1

w0j;Hw
0
k;H

 
T�1n

TX
t=T0

�tj�tk

!
� 2hT

T1X
j=1

w0j;H

 
T�1n

TX
t=T0

�tjut

!
+(h2T � 1)�̂2T;u:

Denote

S��;T;jk :=T
�1
n

TX
t=T0

�
�tj�tk � E�tj�tk

�
;

S�u;T;jj :=T
�1
n

TX
t=T0

�
�tjut � E�tjut

�
:

Then

RH;t :=
���Juu;TH � �̂2T;u � E[Juu;TH � �̂2T;u]���
�

T1X
j;k=1

jw0j;Hw0k;H j
��S��;T;jk��+ 2 T1X

j=1

w0j;H
��S�u;T;jk��+ jh2T � 1j(�̂2T;u � �2u):
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Using (4.A.25), we can bound H1�2djw0j;Hw0k;H j � jH1=2�dw0j;HH
1=2�dw0k;H j �

C(jk)�3=2�d and H1�2djw0j;H j � Cj�1�d. By (4.A.23), 1 � h2T � 2(1 � hT ) �
2
P1

j=T1
wj;H = O(T

�6), and hT �
P1

j=1wj;H = 1. Therefore, H
1�2d(1�h2T ) �

CHT�6 � CT�5 = o(1). Moreover E�̂2T;u = T�1n
PT

t=T0
Eu2t = �

2
u. Therefore,

H1�2dRH;t � rt := C
 

T1X
j;k=1

(jk)�3=2�d
��S��;T;jk��+ T1X

j=1

j�1�2d
��S�u;T;jj��!+ o(1):

We will show that for some �0 > 0,

EjS��;T;jk
�� � C(jk)1=2+dT��0 ; EjS�u;T;jj

�� � Cj1=2+dT�1=2+d; (4.A.14)

which implies (4.A.13):

Ert � C
"

T1X
j;k=1

(jk)�3=2�dE jS��;T;jkj+
T1X
j=1

j�1�2dE jS�u;T;jjj
#

� C

24T�� T1X
j;k=1

j�1

!2
+

T1X
j=1

j�1=2�dT�1=2+d

35
� C[T�� log2 T + (T1=T )1=2�d]! 0 as T !1.

It remains to show (4.A.14). We will use the following general bounds obtained

in the proof of Lemma A.4 in Giraitis et al. (2013):

ES2��;T;jk � CT�2
TX

t0;t=T0

E[�t0j�tj]E[�t0k�tk]; (4.A.15)

ES2�u;T;jj � CT�2
TX

t0;t=T0

E[�t0j�tj]E[ut0ut]:

We will show that

(a) for all T0 � t; t0 � T and 1 � j � T1,

jE[�t0j�tj]E[�t0k�tk]j � C(jk)1+2d; jE[�t0j�tj]E[ut0ut]j � Cj1+2d: (4.A.16)
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(b) There exists 0 < � < 1 and � > 0 such that for all 1 � j � T1 and

T0 � t; t0 � T such that jt� t0j � T 1�� ,

jE[�t0j�tj]E[�t0k�tk]j � C(jk)1+2dT�� (4.A.17)

Now we prove the �rst claim of (4.A.14). By (4.A.16)-(4.A.17),

ES2��;T;jk � CT�2
TX

t0;t=T0: jt0�tj�T 1��
jE[�t0j�tj]E[�t0k�tk]j

+ CT�2
TX

t0;t=T0: jt0�tj>T 1��
jE[�t0j�tj]E[�t0k�tk]j

� C(jk)1+2dT�2[
TX

t0;t=T0: jt0�tj�T 1��
1 +

TX
t0;t=T0: jt0�tj>T 1��

T��]

� C(jk)1+2d(T�� + T��):

Hence, EjS��;T;jkj � E(S2��;T;jk)
1=2 � C(jk)1=2+dT�min(�;�)=2 which proves

(4.A.14) for EjS��;T;jkj .

Now we prove the second claim of (4.A.14) for EjS�u;T;jkj.
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ES2�u;T;jj � CT�2
TX

t0;t=T0

E[�t0j�tj]E[ut0ut]

� CT�2j1+2d
TX

t0;t=T0

E[ut0ut]

� CT�2j1+2d
TX

t0;t=T0


u(t
0 � t)

� CT�2j1+2d
TX

t0;t=T0

�
1 +

���t0 � t�����1+2d
� CT�2j1+2d

TX
t=T0

TX
k=0

(1 + jkj)�1+2d

� CT�2j1+2dTT 2d

� Cj1+2dT�1+2d

Hence, EjS�u;T;jjj � Cj1=2+dT�1=2+d:

Proof of (4.A.16). Recall that long memory assumption Eujuj�k = 
u(k) �
c
jkj�1+2d as k !1. Hence, by stationarity of uj,

E�2tj = E

 
jX
s=1

ut�s

!2
= E

 
jX

s;k=1

ut�sut�k

!

=

jX
s;k=1


u(s� k) =
jX
s=1


u(0) + 2

jX
s=1

s�1X
k=1


u(s� k):

� j
u(0) + 2j
jX
k=1

j
u(k)j � C
 
j + j

jX
k=1

k�1+2d

!

� C
�
j + j

Z j

0

x�1+2ddx

�
� Cj1+2d:
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Thus, using Cauchy-Schwarz inequality we can write

jE[�t0j�tj]j � (E�2t0jE�2tj)1=2 � Cj1+2d; (4.A.18)

jE[�t0j�tj]E[�t0k�tk]j � C(jk)1+2d;

which proves (4.A.16).

Proof of (4.A.17). Observe the following. Let t0 � t > T 1��. Then for any

s 2 [t0 � j; t0], i 2 [t� j; t] and j � T1, for large T it holds

s� i � (t0 � j)� t = (t0 � t)� j = (t0 � t)=2

because j � T1 � T 1��=2 = o(T 1��), for our chosen � = �=4. This implies

j
u(s� i)j � Cjs� ij�1+2d � Cjt0 � tj�1+2d � C(T 1��)�1+2d:

Then,

jE[�t0j�tj]j =
�����E
 

jX
s=1

ut0�s

! 
jX
i=1

ut�i

!����� =
�����E
 

t0�1X
s=t0�j

us

! 
t�1X
i=t�j

ui

!�����
�

t0�1X
s=t0�j

t�1X
i=t�j

j
u(s� i)j � C
t0�1X
s=t0�j

t�1X
i=t�j

(T 1��)�1+2d

� C(T 1��)�1+2dj2:

By de�nition, j � T1 � T 1��=2 = T��=4T 1��=4 = T��T 1��, so we can bound

j1�2d � (T��T 1��)1�2d. Hence

jE[�t0j�tj]j � C(T 1��)�1+2d(j1+2d)(j1�2d) � CT��(1�2d)j1+2d: (4.A.19)

Therefore,

jE[�t0j�tj]E[�t0k�tk]j � CT��(jk)1+2d (4.A.20)

with � = 2�(1� 2d) which proves (4.A.17).
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(ii) In (ii), �t = at, �tj = aj, so J��;TH is deterministic and EJ�u;TH = 0 in

(4.A.11). Denote

RH := H
�2��Q(apr)T;H � �̂2T;u � EfQ

(apr)
T;H � �̂2T;ug

��:
By (4.A.11),

RH � 2H�2jJ�u;TH j+H�2��Juu;TH � �̂2T;u � EfJuu;TH � �̂2T;ug��
=:r1;H + r2;H :

It remains to show that

E sup
H2IT

rl;H ! 0; l = 1; 2: (4.A.21)

For l = 2, (4.A.21) follows from (4.A.13). It remains to show it for l = 1. By

de�nition,

J�u;TH = T
�1
n

TX
t=T0

 
T1X
j=1

wj;H�tj

! 
T1X
k=1

wk;Hutk

!

= T�1n

TX
t=T0

 
T1X
j=1

wj;Haj

! 
T1X
k=1

wk;Hutk

!

=

 
T1X
j=1

wj;Haj

!
T1X
k=1

wk;H

 
T�1n

TX
t=T0

utk

!
:

By (4.A.25), for 0 � 
 � 2, wj;H(j=H)
 � Cj�1, for j � 1. Hence

H�2wj;Hjwk;H = wj;H(j=H)
3=2wk;H(k=H)

1=2(jk)�1=2 � C(jk)�3=2:

Hence,

H�2jJ�u;TH j � C
T1X
j=1

j�3=2
T1X
k=1

k�3=2

�����T�1n
TX

t=T0

utk

����� ;
E sup
H2IT

r1;H � C
T1X
j=1

j�3=2
T1X
k=1

k�3=2E

�����T�1n
TX

t=T0

utk

�����
�

T1X
k=1

k�3=2jT;k; j2T;k := E

 
T�1n

TX
t=T0

utk

!2
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because
PT1

j=1 j
�3=2 �

P1
j=1 j

�3=2 <1 and

E

�����T�1n
TX

t=T0

utk

����� �
0@E T�1n TX

t=T0

utk

!21A1=2

= jT;k:

Note that j2T;k := E(T�1n
PT

t=T0
utk)

2 � CT�2
PT

t;s=T0
Eutkusk

where jEutkuskj � 2j
u(t � s)j + j
u(t � s + k)j + j
u(t � s � k)j. Hence,
for 1 � k � T1 � T ,

j2T;k � CT�2
TX

t;s=T0

(j
u(t� s)j+ j
u(t� s+ k)j+ j
u(t� s� k)j)

� CT�2C
 

3TX
t=�3T

j
u(t)j
! 

TX
s=T0

1

!
� CT�1

3TX
t=1

t�1+2d

� CT�1
Z 3T

0

x�1+2ddx � CT�1+2d:

Thus,

E sup
H2IT

r1;H � C
T1X
k=1

k�3=2jT;k � CT�1=2+d
T1X
k=1

k�3=2

� CT�1=2+d ! 0;

because 0 < d < 1=2 and
P1

k=1 k
�3=2 < 1 which proves (4.A.21) and com-

pletes the proof of the part (ii) of the lemma. �

4.A.3 Auxiliary Results

Denote vt;H :=
t�1P
j=1

kj;H , t � 1 and vH :=
1P
j=1

kj;H , t � 1. Recall de�nitions

wtj;H = kj;H=vt;H and wj;H = kj;H=vH . Below qu;H is an in Theorem 1 and

T1 as in de�nition of Q
(apr)
T;H .

Lemma 4 Under Assumption 1, uniformly in H 2 IT , T � 1, the following
holds.
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(i) There exists c > 0, C > 0 such that for 0 � 
 � 2,

�H � cH; wj;H � C(j _H)�1; j � 1; (4.A.22)

wj;H � CT�6; j � T1;
1X
j=T1

wj;H (j=H)

 = O(T�6); (4.A.23)

jwtj;H � wj;H j � CT�6; T0 � t � T; 1 � j � t� 1; (4.A.24)

wj;H(j=H)

 � Cj�1; jwj;H � wj+1;H jH
 � Cj�2+
; j � 1: (4.A.25)

(ii) As H !1,

H�1�H ! 1; H
1X
j=1

w2j;H !
Z 1

0

K2(x)dx; Hw0;H ! K(0); (4.A.26)

1X
j=1

wj;H(j=H)

 !

Z 1

0

K(x)x
dx; 0 � 
 � 2: (4.A.27)

Proof of the �rst claim of (4.A.22). With � > 0;

vH =
1X
j=1

kj;H =
1X
j=1

K(j=H)

�
[�H]X
j=1

K(j=H); since �H � 1

= K

�
1

H

�
+K

�
2

H

�
+ ::::+K

�
�H

H

�
� � [�H]

where � := infK(u); 0 � u � �. Notice that � > 0 when � > 0 is su¢ ciently
small, because K(u)! K(0) > 0 for u! 0 by Assumption 1. This implies

vH � � [�H] � (��=2)H = cH;

where c = ��=2.
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Proof of the second claim of (4.A.22). Notice that for any positive integer r,

exp(�c jxj) = (exp(c jxj))�1

=

 1X
i=0

(c jxj)i
i!

!�1
�
�
cr jxjr

r!

��1
=
r!

cr
jxj�r = c�x�r (4.A.28)

where c� = r!
cr
> 0: Then for any x � 0 we can use (4.2.4) to bound

K(x) � C exp(�c jxj) � Cx�r; r � 0: (4.A.29)

Also for any x � 0;
exp(� jxj) � 1: (4.A.30)

Then (4.A.29) and (4.A.30) together imply

K(x) � C (exp� jxj) � C( 1
x
^ 1):

Since j=H � 1 is positive we can then write

K (j=H) � C ((j=H)�1 ^ 1):

This together with the �rst claim of (4.A.22) implies,

wj;H =
K(j=H)

vH
� C((j=H)�1 ^ 1)

C�H

= C 0
�
j�1 ^H�1� = C 0(j _H)�1;

where C 0 = C
C� > 0.

Properties: For a > 0; b > 0 and c > 0; (a ^ b)1
c
=
�
a
c
^ b
c

�
=
�
c
a
_ c
b

��1
.

Proof of the �rst claim of (4.A.23). Note that T1 = T0T
��=2 and Hmax =

T0T
��. Hence, Hmax

T1
� T��=2. The inequality (4.A.29) implies that we can
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bound K(x) � C jxj�(m+4) by choosing m such that m�
2
� 6. We can then

write

kj;H = K(j=H) � C(j=H)�(m+4)

= C(H=j)m+4 = C(H=j)m(H=j)4

� C (Hmax=T1)m (H=j)4; since Hmax � H and T1 � j

� C
�
T��=2

�m
(H=j)4 = CT��m=2(H=j)4

� CT�6(H=j)4; (4.A.31)

since T
�m�
2 � T�6.

Since H�1(H=j)4 � 1 we can use (4.A.31) and the �rst claim of (4.A.22)

to write

wj;H =
Kj;H

vH
� CT�6(H=j)4

C 0H

= C�T�6H�1(H=j)4 � C�T�6; (4.A.32)

where C� = C
C0 > 0:

Proof second claim of (4.A.23). Since j
H � 1 and 0 � 
 � 2; we can use

(4.A.32) to bound

1X
j=T1

wj;H(j=H)

 �

1X
j=T1

wj;H(j=H)
2

�
1X
j=T1

CT�6H�1 (H=j)4 (H=j)�2

= CT�6H�1
1X
j=T1

(H=j)2 = CT�6H
1X
j=T1

j�2
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For any c � 1 and n � 1, we can approximate sum by integral to write

1X
j=T1

j�n �
Z 1

T1

x�ndx � c
�
� x�n+1

�n+ 1

�1
T1

� c

T n�11

(4.A.33)

Hence,
P1

j=T1
wj;H(j=H)


 � CT�6HT�11 � CT�6 = O (T�6) ; since H
T1
� 1.

Proof of (4.A.24). To show (4.A.24) we �rst verify that

jvH � vt;H j � CT�6H; t � T0

for some C > 0. Note that Hmax = T0T
�� ) Hmax

T0
� T��. Using (4.A.29)

we can bound K(x) � c jxj�(m+1) for any m > 0. Then, kj;H = K (j=H) �
c (H=j)m+1 and

vH � vt;H =
1X
j=1

kj;H �
t�1X
j=1

kj;H

=
1X
j=t

kj;H �
1X
j=t

c (H=j)m+1

= cHm+1

1X
j=t

j�(m+1)

Using (4.A.33) we can write
P1

j=t j
�(m+1) � c�

tm
. Choosingm such that �m � 6

we can then write

vH � vt;H � cHm+1 1

tm
= c (H=t)mH

� c
�
Hmax
T0

�m
H; since Hmax � H and T0 � t

� cT��mH; since
Hmax
T0

� T��

� cT�6H; (4.A.34)
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since T��m � T�6. Finally,

jwtj;H � wj;H j = kj;H
��v�1t;H � v�1H ��

=
kj;H
vt;HvH

jvH � vt;H j = wtj;H jvH � vt;H j v�1H

� jvH � vt;H j v�1H ; since wtj;H � 1

� CT�6H

C 0H
= C�T�6

using (4.A.34) and �rst claim of (4.A.22).

Proof of �rst claim of (4.A.25). Using (4.2.4) and (4.A.29) we can bound

K(x) � C jxj�(m+4) for any m > 0. This implies for any x � 0 and 0 � 
 � 2,

K(x) � Cx�(
+1) ) K(x)x
 � Cx�1 (4.A.35)

Using (4.A.35) and �rst part of (4.A.22),we can then write

wj;H(j=H)

 =

K(j=H)

vH
(j=H)


� C(j=H)�1

c0H
= C�j�1;

where C� = C
C0 > 0.

Proof of second claim of (4.A.25). Using �rst claim of (4.A.22) we can write

H
 jwj+1;H � wj;H j = H
v�1H jK((j + 1)=H)�K(j=H)j

� H
 1

cH

1

H

jK((j + 1)=H)�K(j=H)j
1
H

� c�H�2+

��� :K (�)���
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for some � 2 [jH�1; (j + 1)H�1] and using the central limit theorem. By

(4.2.4),
��� :K(x)��� � c

1+x2
� c

x2
. This implies

��� :K(�)��� � c��2
� c��2+
, since 0 � 
 � 2

� c (j=H)�2+
 , since � � j

H
; ��2+
 �

�
j

H

��2+

= c (H=j)2�


Hence,

H
 jwj+1;H � wj;H j � c�H�2+
c (H=j)2�
 = c��j�2+


where c�� = c�c > 0.

Proof of �rst claim of (4.A.26). Approximating sum by integral we can write

1

H
vH =

1

H

1X
j=1

K

�
j

H

�
� 1

H

Z 1

1

K
� u
H

�
du =

1

H

Z 1

1
H

K (x)Hdx

=

Z 1

1
H

K (x) dx:

As H !1, 1
H
! 0 and hence, 1

H
vH !

R1
0
K(x)dx = 1.

Proof of second claim of (4.A.26). We can write

H
1X
j=1

w2j;H = H
1X
j=1

 
K
�
j
H

�
vH

!2

� H
Z 1

0

 
K
�
u
H

�
vH

!2
du

=
1

H

Z 1

1
H

�
K (x)
1
H
vH

�2
Hdx
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Using �rst claim of (4.A.26) and the fact that 1
H
! 0 as H !1; we get

H

1X
j=1

w2j;H !
Z 1

0

K2(x)dx, as H !1:

Proof of third claim of (4.A.26). Using �rst claim of (4.A.26) we can write

Hw0;H =
K (0)
1
H
vH

! K(0):

Proof of (4.A.27). Approximating sum by integral we can write

1X
j=1

wj;H

�
j

H

�

�
Z 1

1

K
�
u
H

�
vH

� u
H

�

du

=
1

H

Z 1

0

K
�
u
H

�
1
H
vH

� u
H

�

du

=
1

H

Z 1

1
H

K (x)
1
H
vH
x
Hdx

�
Z 1

0

K(x)x
dx, 0 � 
 � 2

using the �rst part of (4.A.26) and the fact that 1
H ! 0 as H !1. �
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4.B Appendix F: Figures
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(a) ut ~ i.i.d. 

 

(b) ut ~ ARFIMA(0,0.45,0) 

 

Figure 4.B.1: Realisation of the data-selected rolling window for a structural

break.

Note: The solid line represents the starting point of the window for a structural break model

with a break at observation 110 (Experiment 4 of Monte Carlo Study), and the dashed line

(long dashes) shows the last observation in the window. The dashed line (short dashes)

indicates the �rst post break observation, and the dotted line the beginning of the window

when there is no structural change.
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(a) ut ~ i.i.d. 

 

 

(b) ut ~ ARFIMA(0,0.45,0) 

 

Figure 4.B.2: Realisation of the data-selected rolling window for a random

walk.

Note: The solid line represents the starting point of the window for a random walk model

with a break at observation 110 (Experiment 11 of Monte Carlo Study), and the dashed

line (long dashes) shows the last observation in the window. The dashed line (short dashes)

indicates the �rst post break observation, and the dotted line the beginning of the window

when there is no structural change.
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(f) ARFIMA(1, d, 0) with d = 0.75 and ρ = 0.7

Figure 4.B.3: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 1)

Note: Data are generated using the model: yt = ut. This is the case of no structural change.

The panels specify alternative dynamics for noise ut. Innovations for AR and ARFIMA noise

processes are i.i.d. standard normal.
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(f) ARFIMA(1, d, 0) with d = 0.75 and ρ = 0.7

Figure 4.B.4: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 3)

Note: Data are generated using the model: yt = 0:05t+ 3ut. This introduces a monotonic

linear trend. The panels specify alternative dynamics for noise ut. Innovations for AR and

ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.5: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 4)

Note: Data are generated using the model: yt = ut; t � t0 = 0:55T and yt = 1 + ut; t > t0.

This introduces a break in the mean. The panels specify alternative dynamics for noise ut.

Innovations for AR and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.6: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 6)

Note: Data are generated using the model: yt = 2 sin(2�t=T ) + ut. This introduces a smooth

cyclical trend. The panels specify alternative dynamics for noise ut. Innovations for AR

and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.7: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 8)

Note: Data are generated using the model: yt = 2T�1=2
Pt

i=1vi + ut. This introduces a

bounded stochastic trend. The panels specify alternative dynamics for noise ut. Innovations

for AR and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.8: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 10)

Note: Data are generated using the model: yt = 0:5
Pt

i=1vi + ut. This introduces an un-

bounded stochastic trend process, such as random walk with noise. The panels specify

alternative dynamics for noise ut. Innovations for AR and ARFIMA noise processes are

i.i.d. standard normal.
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Figure 4.B.9: Plots of simulated yt with di¤erent dynamics for noise process

ut (Experiment 11)

Note: Data are generated using the model: yt =
Pt

i=1ui. This is a standard driftless random

walk process. The panels specify alternative dynamics for noise ut. Innovations for AR and

ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.10: Actual and forecasted GDP growth, 2008 Q1 - 2010 Q4.
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Figure 4.B.11: Actual and forecasted in�ation, 2008 Q1 - 2010 Q4.



217

4.C Appendix G: Tables



218

T
ab
le
4.
C
.1
:
M
on
te
C
ar
lo
R
es
ul
ts
.
T
=
2
0
0.
u
t
�
A
R
F
IM
A
(0
;0
:3
;0
).
R
el
at
iv
e
M
SF
E
�s
of
on
e-
st
ep
-a
he
ad
fo
re
ca
st
s

w
it
h
re
sp
ec
t
to
th
e
fu
ll
sa
m
pl
e
m
ea
n
b
en
ch
m
ar
k.

E
xp
er
im
en
ts

M
et
h
od

E
x
1

E
x
2

E
x
3

E
x
4

E
x
5

E
x
6

E
x
7

E
x
8

E
x
9

E
x
1
0

E
x
1
1

E
x
p
o
n
en
ti
a
l

�
=
�̂

0.
90
5

0.
66
4

0.
41
9

0.
68
0

0.
67
3

0.
21
1

0.
84
7

0.
62
1

0.
56
8

0.
19
4

0.
00
6

R
o
ll
in
g

H
=
Ĥ
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Ĥ

0.
39
1

0.
36
3

0.
34
7

0.
40
7

0.
40
3

0.
33
0

0.
43
1

0.
37
0

0.
39
0

0.
30
2

0.
01
4

R
o
ll
in
g

H
=
2
0

0.
65
8

0.
62
6

0.
61
6

0.
71
5

0.
66
3

0.
57
7

0.
69
4

0.
64
6

0.
67
9

0.
60
6

0.
19
0

H
=
3
0

0.
76
1

0.
73
1

0.
72
3

0.
83
0

0.
77
7

0.
69
2

0.
79
8

0.
74
0

0.
77
2

0.
71
4

0.
34
1

E
x
p
o
n
en
ti
a
l

�
=
0
:9
8

0.
70
6

0.
67
6

0.
67
2

0.
74
5

0.
71
1

0.
65
0

0.
72
7

0.
68
0

0.
71
1

0.
65
3

0.
40
6

�
=
0
:9
0

0.
39
0

0.
35
9

0.
35
0

0.
40
8

0.
39
8

0.
33
3

0.
41
9

0.
37
1

0.
38
9

0.
31
7

0.
05
1

�
=
0
:8
0

0.
28
8

0.
26
0

0.
25
2

0.
28
9

0.
29
6

0.
24
2

0.
31
2

0.
26
7

0.
27
8

0.
21
2

0.
01
4

�
=
0
:6
0

0.
22
8

0.
20
4

0.
19
8

0.
22
0

0.
23
6

0.
19
0

0.
24
8

0.
20
7

0.
21
4

0.
15
5

0.
00
4

�
=
0
:4
0

0.
20
8

0.
18
6

0.
18
0

0.
19
7

0.
21
7

0.
17
3

0.
22
7

0.
18
7

0.
19
3

0.
13
6

0.
00
2

�
=
0
:0
0
2

0.
21
6

0.
19
3

0.
18
8

0.
20
1

0.
22
7

0.
18
1

0.
23
8

0.
19
3

0.
19
9

0.
13
7

0.
00
1

A
v
er
a
g
in
g

0.
75
5

0.
72
4

0.
72
0

0.
81
2

0.
76
0

0.
69
4

0.
78
1

0.
72
5

0.
76
7

0.
70
1

0.
46
0

N
o
n
p
a
r
a
m
et
r
ic

0.
37
7

0.
34
1

0.
32
9

0.
38
7

0.
38
4

0.
31
6

0.
40
7

0.
35
4

0.
36
9

0.
28
8

0.
02
6

P
o
ly
n
o
m
ia
l

�
=
�̂

0.
32
5

0.
29
2

0.
29
7

0.
29
9

0.
32
7

0.
28
4

0.
33
8

0.
28
9

0.
30
2

0.
23
7

0.
01
4

R
o
ll
in
g

H
=
Ĥ
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