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EXTENDED ABSTRACT

This thesis comprises three main chapters focusing on a number of issues
related to forecasting economic and financial time series.

Chapter 2 contains a detailed empirical study comparing forecast perfor-
mance of a number of popular term structure models in predicting the UK
yield curve. Several questions are addressed and investigated, such as whether
macroeconomic information helps in forecasting yields and whether predict-
ing performance of models change over time. We find evidence of significant
time-variation in forecast accuracy of competing models, particularly during
the recent financial crisis period.

Chapter 3 explores density forecasts of the yield curve which, unlike the
point forecasts, provide a full account of possible uncertainties surrounding the
forecasts. We contribute by evaluating predictive performance of the recently
developed stochastic-volatility arbitrage-free Nelson-Siegel models of Chris-
tensen et al. (2010). The one-month-ahead predictive densities of the models
appear to be inferior compared to those of their constant-volatility counter-
parts. The advantage of modelling time-varying volatilities becomes evident
only when forecasting interest rates at longer horizons.

Chapter 3 deals with a more general problem of forecasting time series

under structural change and long memory noise. Presence of long memory in



the data is often easily confused with structural change. Wrongly account-
ing for one when the other is present may lead to serious forecast failure.
In our search for a forecast method that can perform reliably in presence of
both features we extend the recent work of Giraitis et al. (2013). A forecast
strategy with data-dependent discounting is adopted and typical robust-to-
structural-change methods such as rolling window regression, forecast averag-
ing and exponentially weighted moving average methods are exploited. We
provide detailed theoretical analyses of forecast optimality by considering cer-
tain types of structural changes and various degrees of long range dependence
in noise. An extensive Monte Carlo study and empirical application to many

UK time series ensure usefulness of adaptive forecast methods.
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Chapter 1

Introduction

Time series forecasting is an integral part of economics and finance. Reliable
predictions help making informed decisions and consequently, forecasting has
found important roles in a wide variety of economic and financial activities
which include monetary and fiscal policy designing, business planning, finan-
cial asset and risk management, among others. Ability to produce accurate
forecasts is valued as one of the principal attributes of a good dynamic model,
but it is hardly a guaranteed property. It is not unlikely that sophisticated
models which fit historical data extremely well often fail to outperform naive
models in terms of out-of-sample forecast performance. Several issues have
been held responsible in the literature (see, e.g., Egorov et al. (2006)). A
prominent one is the so called ‘data snooping’ which says that parametrically
rich models often overfit past data without capturing the true data generating
process. Parameter proliferation can again cause substantial estimation uncer-
tainty which deteriorates forecasts. Presence of structural change in time series
data can inflict parameter instability and therefore, have pernicious effect on

out-of-sample forecasting performance of a model which previously exhibited
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good in-sample fit. Therefore, it may not be ideal to judge a time series model
on the basis of its in-sample performance alone. Careful assessment of out-
of-sample forecasts can often insure against data snooping problem and help

select the best data-explaining model.

The field of economic forecasting is vast and expanding rapidly. The ob-
jective of this thesis is to shed light only on a few very specific topics in this
respect. The focus is two-fold. The first part explicitly deals with certain
aspects of forecasting the term structure of interest rates and takes empirical
approaches to investigate them. The second part looks at a wider problem of
forecasting time series under structural change and long memory persistence

and combines theoretical justifications with empirical evidence.

We begin the first part by conducting a comprehensive empirical study
which focuses on forecasting the term structure of UK interest rates. There
are several papers which attempt to model the UK yield curve and capture
its historical variable dynamics (e.g., Lildholdt et al. (2007), Bianchi et al.
(2009)). However, forecasting the future movements of the UK yield curve
has received little attention in the literature. The contribution of this chap-
ter is explicitly to this end and it exploits two very popular classes of yield
curve models in predicting the future course of the bond yields, namely the
Nelson-Siegel models and no-arbitrage affine models. The chapter attempts to
answer several interesting questions related to forecasting bond yields. First,
it investigates whether incorporating macroeconomic information helps in im-
proving predictive performance of models that, otherwise, would rely only on
cross-sectional information of the yield curve. There is historical evidence of
advantageous effects of adding economic fundamentals on interest rate pre-
diction (see Ang and Piazzesi (2003), Diebold et al. (2006), Moench (2008),
among others). Most of the studies, however, predominantly use the US yield
curves data and it is our interest to investigate whether documented findings

hold also for the UK. Second, the chapter examines whether predictive perfor-
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mance of models change over time. Following the onset of the recent financial
crisis in late 2007 the UK yield curve has undergone dramatic changes. The
short rates plummeted to their historical lows and the spread between the
short and long rates widened substantially. It is, therefore, unlikely that a
single term structure model will consistently produce the best forecasts of the
UK yield curve. Following recent literature we argue that a global measure
summarising model performance over a long forecast period may be misleading
when comparing competing models. We evaluate quality of forecasts across
sub-periods and apply the fluctuation test of Giacomini and Rossi (2010) to

detect significant time-variation in predictability of different models.

While the focus of the first chapter in part one is purely point forecasts of
the conditional mean of bond yields, a second chapter contributes by exploring
density forecasts of the yield curve. The point forecasts are often considered
to be of limited value in the sense that they do not account for the uncer-
tainty associated with future forecasts. A more desirable course of action is
constructing density forecasts which predict the entire distribution of future
yields and acknowledge possible uncertainties. Density forecasts allow com-
putation of higher order moments such as variance, skewness and kurtosis,
knowledge of which play important role in risk management and derivative
pricing. Unfortunately, empirical literature on probability forecast of the yield
curve is narrow. To our knowledge the only contribution is Egorov et al.
(2006) who evaluate performance of widely popular no-arbitrage affine term
structure models (ATSMs) in forecasting the conditional predictive density
of bond yields. Provided that these authors document unsatisfactory density
forecasts from ATSMSs, a better alternative forecasting model is to be sought
for. We contribute by computing and evaluating out-of-sample forecasts of a
recently developed class of models namely the stochastic-volatility arbitrage-
free Nelson-Siegel models of Christensen et al. (2010). While the models are

parallel to the ATSM in terms of theoretical consistency they enjoy several ad-



15

vantages over the ATSM. They are more parsimonious, easier to estimate and
offer meaningful interpretations for latent state variables. These models have
been found to fit the conditional mean and variance of US yields reasonably
well (Christensen et al. (2010)), but, to our knowledge, they have not been
evaluated for forecast accuracy. We take this opportunity to compare several
variants of the models in terms of their predictive performance. The questions
which are of particular interest are whether enforcing no-arbitrage restriction
and/or modelling time-varying volatility improve predictive performance of
Nelson-Siegel models. We resort to various metrics used in recent literature
such as probability integral transforms, coverage rates, log predictive density

scores in order to extensively assess the quality of calibrated density forecasts.

In the second part we divert our concentration from the specific problem
of forecasting interest rates to a more general problem of forecasting time
series under structural changes. In economics and finance literature struc-
tural change is considered as a common phenomenon (see Stock and Wat-
son (1996)) and often regarded as the principal cause of forecast failures (see
Hendry (2000)). This chapter addresses the broad problem of making reli-
able real-time forecasts of a time series in the presence of ongoing structural
changes and focuses on specific cases where the scenario is further complicated

by noises which are contaminated with long range dependence.

A major source of motivation behind conducting the research is an ongo-
ing argument about possible spurious relationship between long memory and
structural change (see, e.g., Diebold and Inoue (2001), Gourieroux and Jasiak
(2001), Granger and Hyung (2004)). It is being increasingly evident from
econometrics literature that the presence of long memory in the data can be
easily confused with structural change. Wrongly accounting for one when the
other is present or acknowledging only one when both are present may lead to
serious forecast failure. Given that it is often difficult to distinguish between

the two, it is desirable to establish forecast methods that are robust to struc-
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tural change and also appropriately account for long memory persistence. Our

contribution is specifically to this end.

We approach the problem by exploiting an adaptive forecast strategy that
is recently advocated in Giraitis et al. (2013). This strategy is attractive in
many ways. First, it computes forecasts of a time series in a simplistic frame-
work of weighted average of past data and avoids complicated modelling of
structural breaks and consequent estimation of associated parameters. Sec-
ond, it utilises forecast methods which essentially function by downweighting
historical data. Such a class of methods includes rolling window forecasts,
forecast averaging across estimation windows, exponentially weighted moving
averages, among others and are largely considered to be robust to historical
and recent structural changes. Third, unlike most models which are designed
to tackle specific types of structural changes, predominantly breaks, the adap-
tive method makes minimal structural assumptions and is applicable to various

forms of structural changes ranging from breaks to smooth and cyclical trends.

By considering short-memory noise processes Giraitis et al. (2013) develop
an in-sample cross-validation based technique to tune the downweighting para-
meter and theoretically prove that such data-selected discount rate minimises
mean squared forecast error (MSFE) asymptotically. They confirm empirical
usefulness of the methods by conducting a simulation study and applying it
to a large number of US time series. We extend their work by introducing
a more complex yet realistic forecasting environment where structural change
in a dynamic model is accompanied by noises with long memory persistence.
We consider a number of specific types of structural changes and provide de-
tailed theoretical justification for asymptotic optimality of forecasts based on
the proposed methods. An extensive Monte Carlo study follows to illustrate
small sample performance of data-tuned robust methods. Finally, we take the
methods to real data and examine their effectiveness by forecasting a number

of UK macroeconomic and financial time series.
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The thesis is organised in four chapters. Chapter 1 addresses the research
questions that are investigated in this dissertation and provides a brief sum-
mary of each chapter.

Chapter 2 reviews in details two well-known class of term structure models
— the no-arbitrage affine models and the Nelson-Siegel models, describes how
forecasts of future yields can be generated using the models and how macro-
economic information can be incorporated. Using monthly zero-coupon bond
yields of the UK, the predictive performance of the competing models, both
with and without macroeconomic information, are then compared. Detailed
robustness checks are conducted in order to check for time variation in models’
quality of forecasts.

Chapter 3 presents a survey of variants of Nelson-Siegel type yield curve
models — ranging from standard constant volatility atheoretical models to
arbitrage-free stochastic volatility models. We discuss how these models can
be exploited to produce density forecasts of interest rates. The models are
then evaluated in terms of their calibrated predictive density when applied in
forecasting the US yield curve. A number of criteria have been used to scruti-
nise quality of density forecasts and detailed results of out-of-sample forecast
exercise are reported.

Chapter 4 concentrates on a general problem of forecasting time series in
presence of structural change and long range persistence. A simple adaptive
forecast strategy which predicts by downweighting older data and relies on
data-dependent selection of a tuning parameter is revised and discussed. The-
oretical justifications for asymptotic optimality of such forecasts are presented
by considering processes with long memory noises. An extensive Monte Carlo
study confirms good small sample performance of data-tuned discounting. A
detailed empirical forecast exercise using many UK time series show that the

methods are also practically useful.



Chapter 2

Forecasting the Term Structure

of UK Interest Rates

2.1 Introduction

The yield curve, often known as the term structure of interest rates, is one of
the most widely studied topics in both finance and economics. It explicitly
looks at the relationship between different maturity periods of bonds (com-
monly government bonds which are free of default-risk) and interest rates
(yields) earned on them. Knowledge of the yield curve can be imperative for
researchers, policy makers and market participants for various reasons. Inter-
est rate models are the building blocks of fundamental financial activities such
as pricing assets, managing portfolios and hedging financial risks. The yield
curve has important implications in economics too. It has been documented
in the literature as one of the most reliable and consistent predictors of reces-

sion, inflation and output growth (see Estrella and Mishkin (1998) and Stock
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and Watson (2003)). Its role as a successful economic indicator can be ef-
fectively exploited by central banks in formulating monetary policy decisions.
Debt policies can also be benefited from the term structure of interest rates
as it can help in deciding maturity lengths of newly issued bonds. It is not
surprising, therefore, that the yield curve has attracted a lot of interest from
researchers around the world and enormous amount of efforts has been devoted
to modelling and forecasting the term structure of interest rates. Despite sig-
nificant progress in the modelling aspect the task of accurately predicting the
yield curve, however, remains to be a challenging endeavour even today. Many
sophisticated yield curve models which show impressive fit to historical data

fail to produce forecasts better than mere 'no-change’ forecasts.

Academic literature has evolved mainly around two classes of term struc-
ture models, namely the affine term structure models and the Nelson-Siegel
models. Early development comes through the hands of affine models (Vasicek
(1977), Cox et al. (1985) and Duffie and Kan (1996)). These models express
yields as linear functions of a small number of state variables which are ex-
tracted from the cross-section of a spectrum of yields with different maturities.
An attractive feature of affine models is that they impose, by construction,
cross-equation restrictions to rule out risk-free arbitrage opportunities. Given
that most bond markets are well-organised and highly liquid, any arbitrage
opportunity is expected to be traded away by the market participants. By
ensuring absence of arbitrage affine models, thus, comply with a desirable the-
oretical requirement. De Jong (2000) and Dai and Singleton (2000) confirm
the models’ good ability to fit the yield curve in-sample, but Duffee (2002)
reports rather disappointing forecasting performance out-of-sample. An excel-

lent revision of affine term structure models is provided in Piazzesi (2010).

A second class of models proposed by Nelson and Siegel (1987) takes a
more statistical approach to approximating the yield curve in a factor model

framework by imposing a particular exponential structure on the factor load-
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ings. They show that despite having a concrete theoretical foundation their
parsimonious three-factor model is able to replicate various shapes of the yield
curve such as monotonic, concave, S-shaped etc. Several more flexible ex-
tensions of the model are later proposed by including additional factors (see
Svensson (1994), Bjork and Christensen (1999)). Diebold and Li (2006) intro-
duce dynamics in the original static versions of the model. By using monthly
U.S. government bond yields they show that the dynamic Nelson-Siegel model
not only fits the data very well in-sample but also produces accurate forecasts,
particularly over long forecast horizons. De Pooter (2007) compares predic-
tive performance of several multi-factor variants of the Nelson-Siegel model
and finds that a more flexible four-factor model with two distinct slope factors
outperforms its two- and three-factor counterparts in terms of better in-sample
fit and out-of-sample forecasting. The Nelson-Siegel model has long been crit-
icised for not being arbitrage-free by design until Christensen et al. (2011)
develop a no-arbitrage version of the model. They demonstrate that imposing
freedom of arbitrage improves forecasts of dynamic Nelson-Siegel models when

predicting the U.S. yield curve.

The early and most basic versions of the term structure models have been
developed purely from financial interests and have long been studied without
considering any possible relationships of bond yields with wider economy. The
models typically employ only a small set of unobserved factors, often linked
to physical attributes of the yield curve such as its level, slope and curvature,
to explain movements along the term structure of interest rates and ignore
potential economic forces that could drive such movements. According to the
expectations theory of the term structure of interest rates long rates are ex-
pected values of the risk-adjusted future short rates. Short rates themselves
are popular policy instruments and are usually controlled by central banks

and other monetary authorities in response to change in macroeconomic con-
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ditions.! It is, therefore, reasonable to infer that the entire yield curve responds
to macroeconomic shocks. Nonetheless, it is not more than a decade ago that
researchers have begun to exploit macroeconomic information in modelling
and forecasting the yield curve. Ang and Piazzesi (2003) incorporate two
macroeconomic factors, one related to inflation and the other to real activ-
ity, in a standard no-arbitrage affine framework and constrain macro-yields
relationship to be unidirectional by allowing yields to depend on macro fac-
tors and not vice versa. They find that macroeconomic information not only
explains a healthy proportion of movements in the yield curve, particularly
in the short and medium rates, but also significantly improves historically
documented poor forecasting performance of these classes of models. How-
ever, the forecast gains over the random walk is small and evaluated only at
one-month horizon. Diebold et al. (2006) analyse a more generic bidirec-
tional interactions between the yield curve and economy by augmenting three
macroeconomic variables (representing policy instrument, inflation and real
activity) with the latent Nelson-Siegel factors. They report a number of im-
portant findings: there are strong correlations between inflation and the level
factor and also between real activity and the slope factor and there is strong
evidence of causality from macro variables towards yield curve movements but
a weaker evidence of a reverse influence. Their focus, however, is entirely
on modelling the yield curve dynamics in-sample rather than out-of-sample
forecasting. A group of researchers adopts more structural approaches to ex-
plaining yield curve movements where they combine macroeconomic models
to no-arbitrage yield curve models. Important contributions come from Wu
(2006), Hordahl et al. (2006) and Rudebusch and Wu (2008). Amongst these
studies only Hordahl et al. (2006) test their model’s predictive ability with

! The analogy dates back to Taylor (1993) who proposes a monetary policy rule to
determine how much the central banks should change the nominal interest rate in response
to changes in inflation and output.
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a pseudo out-of-sample forecast exercise and report its superior performance

when forecasting German zero-coupon bond yields.

Recently another strand of literature has emerged motivated by an ar-
gument that central banks today set policy rate depending on a large set of
macroeconomic variables rather than only a few key indicators (Bernake and
Boivin (2003)). This would mean that a shock in one or more of the vari-
ables in the set would affect the movements in the short end of the yield curve
and such effects would then feed into the long end. Several papers explore
modelling and forecasting the U.S. yield curve in a data-rich environment by
exploiting the so called dynamic factor models and extracting a number of
factors from a large panel of macroeconomic time series. Favero et al. (2012),
Moench (2008) and De Pooter et al.(2010) using either Nelson-Siegel or no-
arbitrage affine models or using both models show that considering a broader

set of economic information is beneficial for forecasting yields.

The principal objective of this thesis chapter is providing an empirical com-
parison of state-of-the-art models of term structure of interest rates based on
their performance in forecasting the UK yield curve. Although the literature
on yield curve modelling is rich with contributions of researchers around the
world, relatively few papers explore dynamic behaviour of the UK yield curve
with major contributions coming from the central bank researchers. Lildholdt
et al. (2007), using an affine macro-factor model, investigate historical fluctua-
tions in the UK yield curve and attribute the movements at the short-end of the
yield curve to change in monetary policy and that at the long-end to changes
in inflation target. Kaminska (2012) augments a structural framework with a
standard no-arbitrage affine term structure model to argue that risk premia is
driven by structural macroeconomic shocks rather than by non-structural risk
components. Bianchi et al. (2009) adopted time-varying parameters and sto-
chastic volatilities in a standard Nelson-Siegel model with an aim to modelling

interaction between interest rates and macroeconomy and find that the bilat-
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eral relationship changes substantially across different policy regimes. While
all these studies confirm material changes in dynamic properties of the UK
yield curve and their proposed models’ reasonably good fit to historical data,
they remain silent about the models’ ability to forecast future yields. This
essay contributes by exploring dynamic behaviour of the UK yield curve from

an out-of-sample forecasting perspective.

In its build up the chapter addresses several interesting issues related to
yield forecasting. A crucial one is possible time-variation in predictive perfor-
mance of term structure models. The time path of the UK yield curve has
undergone significant changes. For example, following the adoption of infla-
tion targeting policy in 1992 there is a large decline in its volatility. A latest
example is the recent financial crisis period of 2008-2010 which sees short-term
interest rates to plummet to their historical low and spread between short and
long rates to become extremely wide. It is, therefore, likely that a previously
well-performing model may forecast poorly during this changed environment
while a previously ill-performing model generates accurate forecasts. We shed
light on this by evaluating effects of instability on quality of model forecasts.
Following recent literature, we also assess the role of macroeconomic informa-
tion in predicting yields. Like the bond yields many macroeconomic indicators
of the UK went through dramatic change during the 2008-2010 crisis, signalling
a recession. We contribute by investigating whether variations in macroeco-
nomic fundamentals can help in forecasting recent changes in yield dynamics.
To summarise, the objective of the paper is three-fold: first and foremost,
compare forecasting performance of models widely used in literature in pre-
dicting UK nominal zero-coupon bond yields. Second, determine whether the
forecasting performance of models evolve over time. And finally, assess poten-
tial forecasting benefit, if any, from incorporating macroeconomic variables in

standard model frameworks.

The findings of the paper can be summerised as follows: i) forecasting abil-
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ity of models vary significantly over time, ii) models without macroeconomic
information forecast well during periods when interest rates are relatively sta-
ble, iii) an affine model augmented with macro-factors consistently produces
accurate forecasts during the recent crisis period of near-zero short rates and
wide spread and iv) choice of expanding-window and rolling-window forecast-
ing schemes can affect forecasting performance of certain models.

The chapter is organised as follows. Section 2.2 provides a comprehen-
sive description of the term structure models used for forecasting. Besides
presenting the econometric frameworks we explain how the models accommo-
date macroeconomic information and how they are estimated. Section 2.3
introduces and summarises empirical data containing both yields and macro-
economic variables for the UK. Results of in-sample fit of the models are
presented in section 2.4. Section 2.5 discusses the forecast methodology and

evaluation of forecasts generated by competing models. Section 2.6 concludes.

2.2 Term Structure Models

We compare predictive performance of two classes of multi-factor term struc-
ture models that are the most popular among academicians as well as prac-
titioners. The first class, the Nelson-Siegel model, functions by imposing a
specific exponential structure on the loadings of the factors and has been de-
veloped with an aim to capture various shapes of a typical yield curve. The
other class, the affine term structure model, is more founded on financial theory
and builds on cross-equation no-arbitrage restrictions. Variants of both mod-
els where some macroeconomic variables are entertained as yield-explaining
factors are also considered. We also include simple unrestricted linear dynam-
ics such as AR(1) on yield levels and random walk to serve as benchmarks. In

what follows we discuss in details the frameworks of the models, how macro-
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economic information is incorporated and how the models are estimated.

2.2.1 The Dynamic Nelson-Siegel Model

The Yields-Only Model

Nelson and Siegel (1987) has proposed modelling the yield curve in an expo-
nential components framework using a mathematical approximating function
(a Laguerre polynomial) and showed that their parametrically parsimonious
specification can provide enough smoothness and flexibility to capture varieties
of yield curve shapes. If y;" denotes the continuously compounded yield-to-
maturity of an m-period bond at time ¢, the functional form linking the yield
curve to maturities can be written as
1 — —m

1—em —Am
y(m) = By + By 4 g, (— e ) , (2.2.1)

m Am

where 3, B4, 83 and X\ are the parameters of the model. A\ determines the
rate of exponential decay of the loadings on S,and (5. Although the Nelson-
Siegel model does not inherently enforce no-arbitrage assumption it certainly
complies with several desirable properties of zero-coupon yields. For example,
as maturity m tends to zero, the yield-to-maturity reduces to instantaneous
short rate, r and when m increases indefinitely, the yield-to-maturity converges
to 3, a constant.

The original Nelson-Siegel model is static in definition and is meant to fit
the cross section of yields of different maturities at a particular point in time.
Diebold and Li (2006) extend it to a dynamic factor model:

1 — e m 1 — e m i
yi(m) = By + By ——+ B | ——— e : (2.2.2)

where 31, B9, and (5, are now time-varying latent factors with associated

loadings of 1, 1‘;;:m and 1_;;?7” — e . Depending on different limiting
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behaviours of the loadings Diebold and Li (2006) interprete [3,,, £, and [,
as the level, the slope and the curvature of the yield curve, respectively. For
example, the loading on /3, is constant at 1 for all maturities. Consequently,
changes in 3, affect all yields uniformly and thus control the level of the curve.
Loadings on (35, goes to one as m — 0 but decays fast to zero as m — oo.
Shocks in f3,,, therefore, primarily affect the short end of the yield curve and
thus induce variations in yield spreads. Finally, the loadings on 5, converges
to zero as m — 0 and m — oo but is concave in m. Accordingly, shocks in 35,
have a dominant effect on yields with mid-term maturities and consequently,
on curvature of the entire yield curve. Diebold and Li (2006) consider factor
independence by allowing separate AR(1) dynamics for each factor and a more

general case of correlated factors by allowing also a single VAR(1) process.

Diebold et al. (2006) identify that the latent nature of the factors allows
the dynamic Nelson-Siegel model to be represented in a state-space system,
a framework which can explicitly handle time series models with unobserved
variables in a unified methodology. The measurement equation is formulated
simply by adding maturity-specific stochastic error terms &;(m) on the right-

hand side of the yield equation (2.2.2). In matrix notations this can be written

as

Yt = A()\),Bt + &y, t = ]., 2, ceey T, (223)
where Y, = [y¢(m1), ......, ye(my)]’ is the vector of yields, B, = [B1,, oy, B3] is
the vector of latent factors and €, = [g,(m1), ...., e,(mxy)]" is the vector of mea-

surement errors. These errors can arise from various sources such as methods
of yield extraction, mistakes in data entry, lack of synchrony in sampled data

etc. A()) is a 3 x 3 matrix of factor loadings with its (7, j)-th element given
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by )
1, 7=1
A(N) =9 (1 =e )/ Amy;, j=2
L e =3,

\

The state equation defines a VAR(1) factor dynamics which essentially
nests an AR(1) process:

B, =p+®8,_,+mn, n,-N(0ZL%) t=12..T, (2.2.4)

where p is a 3x 1 vector of factor means, ® is a 3 x 3 matrix of VAR coefficients,
1, is a 3 X 1 vector of disturbances and ¥, is the variance-covariance matrix
of disturbances. Note that for an AR(1) dynamics ® and ¥, are assumed to
be diagonal. A final assumption is that the measurement- and state-equation

disturbances are orthogonal to each other, i.e.,

€ Onx1 2.
~ NID , . (2.2.5)

nt 03>< 1 En

The Yields-Macro Model

When extending the yields-only model to incorporate macroeconomic informa-
tion we closely follow Diebold et al. (2006) and include three variables, namely
official bank rate (BR;), annual CPI Inflation (I N F;) and unemployment rate
(U;) as measures of policy instrument, inflation rate and economic activity,
respectively.? The macroeconomic variables enter the set of state variables

alongside the latent factors. A new state-space system is constructed with

2 According to Diebold et al. (2006) this is the minimal set of indicators that can explain
fundamental macroeconomic dynamics. Note, however, that while they use manufacturing
capacity utilisation of the US as one of the variables, due to unavailability of such a variable
for the UK we exploit unemployment rate to represent real activity in the economy.
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equations (2.2.3)-(2.2.5) substituted by

Yt = A()\)ft -+ €t7 t = 1, 2, ceey T, (226)
fi=p+of_,+n, n N0, t=12.T, (2.2.7)
€t 0N><1 Ze
~ NID , , (2.2.8)
Ur O6x1 X

where f; = [BRy, INFy, Uy, By, Boy, B3) with dimensions of p, ®, n,, A and
¥, are increased accordingly to account for additional three macroeconomic

3

variables.” We maintain the assumption of bidirectional causality between

yields and macroeconomic variables by allowing ® and X, to be full matrices.

Estimation

For estimating the yields-only model we use both a two-step approach following
Diebold and Li (2006) and a one-step approach following Diebold et al. (2006).

The two-step approach requires \ to be fixed which allows us to compute
the maturity-specific factor loadings in A()\).* At each period ¢ the measure-
ment equation (2.2.3) then reduces to a linear regression model and OLS is ap-
plied in the first step to obtain period by period estimates of B, = [5,;, Bo, O3’
using the cross-section of the spectrum of yields. In step two, we specify the
dynamics of the latent factors by fitting the transition equation (2.2.4) and
estimating related parameters. We label these latent-factor models, estimated

in two stages, as NS2_ AR and NS2_ V AR depending on whether an AR(1)

3 pis now a 6 x 1 vector, ® is a 6 x 6 matrix and A is an N x 6 matrix. We adopt
the same parsimonious representation as in Diebold et al. (2006) and restrict the three left
most columns of A to contain only zeros meaning that the macroeconomic variables have
no direct influence on yields and that three latent factors are sufficient to explain interest
rate dynamics.

* Following Diebold and Li (2006) we set A = 0.0609 which maximizes the loading on 35
at a 30-month maturity.
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or a VAR(1) process has been considered for describing the evolution of the
factors.

The one step approach uses the state-space system of equations (2.2.3)-
(2.2.5) and applies a Kalman filter-induced maximum likelihood method to
estimate all the parameters of the state and the measurement equations si-
multaneously, namely p, ®, ¥,, A(\) and X.. Thus, A is not fixed and esti-
mated together with other parameters. We consider a VAR(1) dynamics for
the factors by assuming that both ® and X, are full matrices. We refer to this
one-step-estimated yields-only model as NS1.

Finally, for the model with macroeconomic variables we only apply the
one-step maximum likelihood approach to estimate the models in the state-
space system defined by equations (2.2.6) - (2.2.8) and denote this model as
NS M.

2.2.2 Affine Term Structure Model

The Yields-Only Model

While the structure imposed on factor loadings in a Nelson-Siegel model is
based on a convenient mathematical function used primarily to ensure smooth-
ness across yields, such a structure in an affine model is founded on some
cross-equation restrictions adopted for enforcing a theoretically desirable re-
quirement of freedom of arbitrage. Whether imposing such restrictions helps
in forecasting yields is still a debatable issue, but they can certainly help in
pricing bonds and other financial instruments and estimating yields of un-
observed intermediate maturities in a financially consistent manner. Affine
models have been developed and have long been studied in a continuous-time
environment with specifying a diffusion process for latent factor dynamics

(Duffie and Kan (1996)). In our analysis we, however, adopt a discrete-time
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version of the models proposed in Ang and Piazzesi (2003). In particular, we
assume a zero-mean Gaussian VAR(1) dynamics for a set of K latent factors,

F =[ly,ls, .., lx] which drive the movements of the yield curve:
Ft = \I/Ft—l + Uy, (229)

where, u; «~ N(0,XY') with ¥ being a lower triangular Cholesky matrix and
¥ is a K x K matrix of coefficients which govern the dynamics. The short

rate is assumed to be an affine function of the factors:
ry =00+ 0, F), (2.2.10)

where Jg is a scalar and 9, is a K x 1 vector. The nominal pricing kernel which

is assumed to price all assets in the economy, is modelled as®
Mt+1 = exp(—rt — 05)\;)% — )\;qu), (2211)

where )\; are market prices of risk which are assumed to be affine in the un-
derlying state variables and depend only on contemporaneous observations of

the model factors. The risk pricing equation, therefore, takes the form
At = Ao + M Fy, (2.2.12)

where \g is a K X 1 vector and \; is a K x K matrix. In an arbitrage-free
market, the price of an m-months to maturity zero-coupon bond in period ¢
must equal the expected discounted value of the price of an (m — 1)-months

to maturity bond in period ¢ 4 1. This leads to the recursive pricing formula:
P = BM P, (2.2.13)

where the expectation is taken under the risk-neutral measure. The bond

prices are then exponential linear functions of the state vector:

P = exp(A,, + B, F}), (2.2.14)

% The pricing kernel is also known as the stochastic discount factor.
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where the scalar A,, and the K-dimensional coefficient vector B,, depend on
the time-to-maturiy m. Ang and Piazzesi (2003) show that imposing no-
arbitrage results in the following recursive equations for bond pricing coeffi-

cients:
Ap = A1+ B, (11— X))+ 058, 5% B,, — b, (2.2.15)

B, =B, (U —%\)—4d, (2.2.16)

with Al = —(50 and Bl = —51. 6
The continuously compounded yield on an m-period zero-coupon bond is

then given by

log pi"
= — 2.2.17
() ! (22.17)
= ap+b, F, (2.2.18)
where a,, = —A,,/m and b,, = —B! /m. Thus, the yields are also affine

functions of the state variables F;.
The affine term structure model, analogously to its Nelson-Siegel counter-
part, can be easily cast into a compact state-space framework. The transition

and the measurement equations of the system can be summarised as

Ft = \I/Ft,1 —+ Uy, (2219)
}/;5 = A—{—BFt—{—'Ut, (2220)
0 S 0
[“t] « IIDN L)Nﬂ : : (2.2.21)
(¥
t Kx1 0 ZU

where Y, = [y,(m1), y(m2), ....., ye(mn)]" is a vector of all N yields at hand,

A =[Gy, gy oy Gy ] 18 @ N x 1 vector and B = [by,, by, oo, biny] 15 2

6 See Ang and Piazzesi (2003) or Moench (2008) for detailed derivation of these recursive
formulae.
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N x K matrix of bond pricing coefficients defined by equations (2.2.15) and
(2.2.16). v; is a vector of i.i.d. Gaussian measurement errors with variance-
covariance matrix ¥, and ¥, = X%, We refer to the yields-only no-arbitrage
affine model as AT SM.

Following common practice we set K = 3 to adopt a three-factor model
where the latent factors are interpreted as level, slope and curvature of the
yield curve. Dai and Singleton (2000) show that in a VAR setting linear trans-
formation and rotation of unobserved factors achieve observationally equiva-
lent yields. Following Ang and Piazzesi (2003) we identify the factors in the
Gaussian specification by adopting the a simple normalisation where we as-
sume that U is lower-triangular and ¥, is an identity matrix /. Then, ¢ is
the unconditional mean of the observed short-rate (which we approximate by
the 3-month treasury bill rate). Similar to the the Nelson-Siegel models we

assume X, to be diagonal.

The Yields-Macro Model

Adding macroeconomic information in affine models is as straightforward as in
Nelson-Siegel models. We follow Ang and Piazzesi (2003) to first collect time
series information on a number of variables related to inflation and economic
activity and standardise each series to have zero mean and unit variance.”
Then, we extract the first principal components from each group, namely
‘inflation’ and ‘economic activity’ and denote them as M; and Ms, respectively.
We restrict the macro factors to follow a simple VAR(1) process in order

8

to keep the model parsimonious in terms of parameters.” The state-space

representation of the model with macro factors then consists of the following

7 We describe all the macroeconomic variables in section 2.3.

8 Ang and Piazzesi (2003), however, adopted a VAR(12) dynamics for the macro fac-
tors. But unlike their study the principal goal of our work is forecasting and so parametric
parsimony of a dynamic model is desirable.
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equations:
Zt = \I/Zt—l + Uy, (2222)
}/;5 = A + BZt + Vt, (2223)
Yo O
{“t] «~ IIDN { Ot } : : (2.2.24)
v O(r+2)x1 0%

where Z;, = [My, Ms, Ft' | and dimensions of ¥, u; and ¥, are increased accord-
ingly to adjust for additional observed macroeconomic factors. Following Ang
and Piazzesi (2003) we impose independence between the latent and macro
factors.” This implies that for a model with three latent factors the lower-left
3 x 2 corner and the upper-right 2 x 3 corner of ¥ in the state-space system
(2.2.22)-(2.2.23) contain only zeros. The lower-right 3 x 3 corner is restricted
to be lower-triangular to match desirable canonical representation of latent

factors. We refer to the macro-added affine model as ATSM M.

Estimation

Both the yields-only model, AT'SM and the yields-macro model, ATSM M
are estimated in one-step by using the associated state-space representations
and applying the Kalman-filter induced maximum likelihood estimation process.
This allows simultaneous estimation of all parameters and extraction of latent

yield factors in a unified framework.

9 This strong assumption has two drawbacks. First, it defies historical evidence that
the term structure predicts macroeconomic dynamics and the general logic that policy rate
affects inflation and economic activity (see Ang and Piazzesi (2003)).
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The Benchmark and a Simple Competitor

Random Walk
Since time series of bond yields show high persistence, a driftless random
walk (RW) process is often found to capture yield dynamics very well. The

yields are modelled as
ye(m) = yr1(m) + o(m)¢,(m), ¢, (m) ~ N(0,1). (2.2.25)

The model implies that interest rates are not predictable and any forecast
is taken to be the last available observation. It is well-documented in the em-
pirical literature that standard term structure models struggle to outperform
the naive random walk forecasts (e.g., Duffee (2002), Ang and Piazzesi (2003)
and Diebold and Li (2006)). Therefore, we use the ‘no change’ forecast as
the benchmark against which we compare the forecasts of all other competing
models.

AR(1) on Yield Levels

The term structure literature often finds simple and parsimonious models
to produce more accurate forecasts than sophisticated models. We, therefore,
present an univariate AR(1) on yield levels which often produces good yield

forecasts. The AR(1) dynamics is given by

ye(m) = c(m) +~y(m)yi—1(m) + a(m)¢,(m), ¢,(m) ~ N(0,1),  (2.2.26)

where ¢(m), v(m) and o(m) are scalar parameters.

We denote this model as AR and treat it like a second benchmark.

2.3 Data Description

The data set for our empirical analysis consists of monthly UK nominal zero-

coupon bond yields from January 1989 to November 2010. We use end-month
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spot interest rates reported at fixed maturities of 3, 12, 15, 18, 21, 24, 30,
36, 48, 60, 72, 84, 96, 108 and 120 months. Yields at maturities of one year
and longer have been downloaded from the Bank of England website which
publish them in daily frequency.!® These yields have been derived from UK
government bond (gilt) prices and General Collateral (GC) repo rates by ap-
plying a spline based estimation technique.!! The shortest yield of 3-month
maturity is, however, proxied by the 3-month treasury bill rate which has been
downloaded using Datastream. We do so because of absence of repo market
and consequent irregular availability of yields at very short maturities (less

than one year) before March, 1997.

Figure 2.A.1 plots a subset of the sample yields over time. In the begin-
ning of the sample the UK experience an inverted yield curve with higher yields
at shorter maturities. Levels of yields are in general high ranging between 9%
to 13%. During the period 1989-1999 the yields remain more or less volatile.
First, there is a sharp increase in all the yields in the year 1989 and they reach
their highest levels in a year time. This period is then followed by a longer
period of plummeting rates which lasts till the beginning of 1994. Moderate
amount of fluctuations remains till the end of 1999. 2000-2007 is a period of a
more stable and flatter yield curve with yields at different maturities staying
close to each other. Following the start of the recent global financial crisis in
the third quarter of 2007 the short yields drop abruptly to their historical low
in reaction to a lowered official bank rate by the Bank of England. The longest
rate does not, however, decline as much creating a very wide spread between

the short and long end of the yield curve.

Descriptive statistics of yields are presented in Table 2.B.1. The average

yield curve is downward sloping over maturities of 3 months to 1 year, but

10 The Bank of England website is www.bankofengland.co.uk.

1 See Anderson and Sleath (2001) for detailed technical description of the estimation
method.
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is upward sloping from then onwards. The standard deviations and sample
autocorrelations suggest that volatility decreases with maturity and long rates
are more persistent than the short rates. The shapes of the mean and median
yield curve is very different: while the short end of the average curve is down-
ward sloping, it is upward sloping for the median curve and while mid-to-long
end of the average curve is upward sloping, it is downward sloping for me-
dian curve. These facts, together with reported non-zero skewness and excess
kurtosis, imply that yields are probably non-normal. Yields of different matu-
rities are highly correlated and the closer the maturities are to each other the
stronger is the relation. The weakest correlation of 87% is observed between
the 3-month treasury bill rate and 10-year yield.

For macroeconomic information we include the official bank rate as a mea-
sure of policy instrument, a group of inflation related variables namely con-
sumer’s price index (CPI), producer’s price index (PPI) and retailer’s price
index (RPI) and a group of economic activity related variables namely unem-
ployment rate, the claimant count rate, the growth in employment and annual
growth in index of production (IOP). Time series data on the official bank rate
are collected from the website of Bank of England, while the remaining are
downloaded from the website of Office for National Statistics'?. The sample
time period for each macroeconomic series coincides with that for the yield
data.

Figure 2.A.2 shows time series plots of three key macroeconomic variables
- the official bank rate, CPI inflation and unemployment rate. For each series
we can identify three different time periods with distinctive patterns. During
early to mid 90s all the three curves show noticeable movements and reach
their maximums for the sample. The bank rate falls substantially after rising
to the highest level of 15%, inflation rate fluctuates between 6% to 8% after an

initial increase and then fall sharply to 2%, and unemployment rate rises and

12 www.statistics.gov.uk
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exceeds 10% and is then followed by a gradual decrease. Mid 90’s to the third
quarter of the year 2007 marks the period of stability. The bank rate stays
close to 5%, inflation rate remains within the BOE’s target rate of 2% and
unemployment rate slowly drops to 5% and is maintained at that level. The
global financial crisis that starts on September, 2007 breaks the stability and
the macroeconomic series begin to show some aberrant behaviours following
the crisis. The bank rate is adjusted and held fixed at its historical lowest
level of 0.5%, inflation becomes volatile with sharp fluctuations between 1%

and 5%, and unemployment rises by almost 2% to 7%.

2.4 In-Sample Performance

Although our principal interest is systematic evaluation of forecast ability of
competing term structure models, we begin our empirical analysis by assess-
ing how well the models fit the cross-section of the UK yield curve. We use
root mean squared error (RMSE) of fitted residuals, a standard and widely
used evaluation criterion, for measuring the goodness of model fit. Provided
that both Nelson-Siegel and affine term structure models have good empirical
records of estimating bond yields we expect good in-sample performance from
all the models. Results presented in Table 2.B.2 confirm this. Small values
of RMSE, expressed in percentages, indicate that overall the models fit the
data well. Noticeable difference in RMSE values of the NS2 AR and NS1
models implies that the quality of data-fit of the Nelson-Siegel models varies
depending on whether factors are assumed to be independent or correlated, if
A parameter is treated to be fixed or estimated freely and/or whether model
is estimated in one or two steps. Identical fit for the NS1 and NS M models

indicates that there is no significant benefit from incorporating macroeconomic
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information in Nelson-Siegel models.'® Adding macroeconomic fundamentals,
however, clearly improves the fit of affine term structure models. The macro-
yields model, ATSM M reports RMSEs which are consistently lower than
those of its yields-only counterpart, AT'SM. Gains are, however, small. Over-
all, the Nelson-Siegel models, NS1 and NS M provide better fit than the
independent factor specification, NS2 AR and the two affine models, except

for the 3-month yield and yields with maturities longer than seven years.

It is well recognised in term structure literature that a small number of
factors that can be distilled from the cross-section of yields are sufficient to de-
scribe variations in the entire yield curve (e.g., see Litterman and Scheinkman
(1991), Bliss (1997)). A factor model with three latent factors is the most com-
monly used specification and the factors are often linked to three attributes
of the yield curve - namely level, slope and curvature (see Litterman and
Scheinkman (1991) and Diebold and Li (2006)). Another way of evaluating
how well our three-factor Nelson-Siegel and affine models fit the UK yields is
to look at the agreement between time series plots of actual level, slope and
curvature of the sample yield curve and model extracted factors. The plots
are presented in Figure 2.A.3.'* We follow Diebold and Li (2006) in defining
the true level, slope and curvature as the 10-year yield, the difference between
the 10-year and 3-month yield, and twice the 2-year yield minus the sum of
3-month and 10-year yield, respectively. Close agreement between empirical
and model generated factors indicates good approximation to yield dynamics

by both the Nelson-Siegel and affine models.

13 RMSE values of the NS1 and NS M models are not exactly identical, but differences
are too small to be observed in percentage values expressed in three decimal points.

14 Since factors generated by different models operate at different levels we standardise
them for a fare comparison.



39

2.5 Qut-of-Sample Forecasting

In this section we evaluate the predictive performance of competing forecast-
ing models. Alongside standard yields-only versions we use variants of these
models which incorporate macroeconomic variables. The models are applied to
generate forecasts of future government bond yields of the UK and compared
in terms of forecast accuracy. We investigate a number of issues: whether
additional macroeconomic information helps in out-of-sample forecasting and
whether predictive ability of models changes over time. In what follows we se-
quentially describe the forecast design and how the forecasts are constructed,

and finally, discuss the results of the forecasting exercise.

2.5.1 Forecast Procedure

We generate model forecasts by adopting separate recursive and rolling-window
estimation procedures. The two schemes differ in terms of how much of the
past information is used for making a forecast in the future. Under the re-
cursive scheme, often called an expanding-window scheme, parameters of a
model are estimated using all data available at each forecast origin (the point
in time when a forecast is made). Under a rolling-window scheme, however, a
data-window of fixed size is rolled over the full sample to update the parame-
ter estimates and generate future forecasts at each forecast origin. For each
strategy we use the most up-to-date information available at the time when
a forecast is made. Rossi (2012) argues that choice of expanding or rolling
window estimation may play an important role in forecasting in presence of
structural breaks. Rolling estimation is expected to forecast better in case of
large and recurrent breaks while recursive estimation is expected to be ad-
vantageous when breaks are small or absent. Although we do not specifically

test for breaks in our sample yields series, it is our interest to investigate how
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application of rolling and recursive schemes affects forecast accuracy of our
competing models, particularly during the period of unusually low short rates

following the recent financial crisis.

We construct 1-, 6- and 12-month-ahead forecasts over the period 2001:1-
2010:11. We decide to keep the forecast period and consequently, the number
of forecasts fixed irrespective of the length of forecast horizon.!® Such a design
allows us to directly compare the quality of forecasts made at different hori-
zons but requires that we adjust estimation sample according to the length
of the forecast horizon. Thus, when generating 1-month-ahead forecasts using
the recursive scheme the initial estimation window is set to 1989:1-2000:12 so
that the first forecast is made at 2001:1 and the last estimation window is
set to 1989:1-2010:10 so that the last forecast is made at 2010:11. For longer
horizons we reduce the estimation sample in order to maintain a fixed number
of 119 out-of-sample forecasts. For example, the first estimation window for
12-month-ahead prediction is 1989:1-2000:1 so that the first forecast is made
at 2001:1 and the last estimation window is 1989:1-2009:11 so that the last
forecast is made at 2010:11. Under rolling-window estimation scheme we gen-
erate forecasts over the same forecast period 2001:1-2010:11. For each forecast
horizon h we keep the size of the estimation window fixed at 133 observa-
tions. This, however, requires that the initial estimation period is different
for different h. For example, when forecasting 1-month-ahead the initial esti-
mation window is 1989:12-2000:12 so that the forecast is made at 2001:1 and
the last estimation window is 1999:10-2010:10 so that the last forecast is made
at 2010:11. When forecasting 12-month-ahead, however, the first estimation
window is 1989:1-2000:1 so that the first forecast is made at 2001:1 and the
last estimation window is 1998:11-2009:11 so that the last forecast is made

15 This is important because one of our objectives is to compare forecasts at various
horizons made over the financial crisis period which constitute the last 35 months of the
sample.
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at 2010:11. When predicting yields multi-period ahead, we construct iter-
ated forecasts where the one-period-ahead model is iterated forward to make

forecasts at longer horizons.

2.5.2 Construction of Forecasts

We describe below how out-of-sample forecasts are computed for all the re-
ported models including the benchmark. As mentioned earlier, we use an

iterative approach to generate multi-step ahead forecasts.

Nelson-Siegel Models

Once the parameter vector {pu,®,3,, Y., A} of the state-space system is es-
timated at each time point ¢, an h-step-ahead forecast of the state vector
is computed by iterating forward the estimated state equations (2.2.4) and

(2.2.7):

~ h=1 .\ o~ ~

/Bt+h|t = (;) q)l) B+ q)h/Bta (2.5.1)

R hl o\ o

ft+h|t = (Z @Z) jv + P ft. (252)
=0

Equation (2.5.1) corresponds to the yields-only models, NS2 AR, NS2 VAR
and NS1, and equation (2.5.2) corresponds to the yields-macro model, NS M.
The h-step-ahead yield forecasts are then made by substituting the factor fore-

casts in the estimated measurement equations:

l?t—i-h = A(X)Bt—&—h\ﬂ (2.5.3)
Yien = AN E . (2.5.4)

Note that for the model NS2 AR, which is estimated in two steps, N =
A = 0.0609 is fixed.
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Affine Term Structure Models

Similar to the Nelson-Siegel models, when the parameter vector {¥, d1, Ag, A1, Xy, }
of the affine models is estimated at any forecast origin, the h-step-ahead fore-
casts of state variables are computed by iterating forward the estimated state

equations (2.2.19) and (2.2.22):
Fronye = U"F,, (2.5.5)

Z\t+h‘t - (I\JhZ\t. (256)

Equation (2.5.5) corresponds to the yields-only model, AT'SM and equa-
tion (2.5.6) corresponds to the yields-macro model, ATSM M.

Estimated state and measurement equation parameters are placed in re-
cursive pricing equations (2.2.15) and (2.2.16) to obtain estimates of A and
B. Finally, the h-step-ahead yield forecasts are then made by substituting the

factors by their forecasts in the estimated measurement equations:

}/;;H-h = A+ éﬁt+h|t> (2.5.7)
Yiin = A+ BZy ny. (2.5.8)

Random Walk

The benchmark forecast is simply the ‘last available observation’ or ‘no-change’

forecast, i.e.,

Yern(mi) = ye(my).

AR(1) on Yield Levels

We use the OLS to estimate at each forecast origin the parameters ¢ and ~ of

the AR(1) process (2.2.26) and then construct the h-step-ahead forecasts of
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yields with maturity m; as

Bran(m) = (2 30m) ) e + 3" mo

2.5.3 Forecast Evaluation Criteria and Tests for Model

Comparison

We evaluate the quality of forecasts by computing root mean squared forecast
error (RMSFE). It is a popular measure of predictive performance of time
series models and is symmetric in nature as it penalises negative and positive
errors equally. The smaller the value of RMSFE the better is the forecast
accuracy of a model. Let 7/ .»(m) denote the h-month-ahead forecast of an
m-maturity yield y;,,(m) made by model j. Then the associated RMSFE is
defined by

- 1 o 2
RMSFEZ)@JL = \/T_ > <y§+h(m) - yt+h(m)> )

where the sum is computed over total number of forecasts, T,.

We compare the predictive performance of models by reporting RMSFEs
relative to the benchmark which is the random walk. The relative root mean
squared forecast error (RRMSFE) is computed as:

RRMSFE), , = mrer oo

A value of RRM S FEfn , smaller than one indicates that model j forecasts
better than the random walk.

In order to assess statistical significance of any forecast gain or loss relative
to the benchmark we apply the unconditional version of Giacomini and White
(2006) test of forecast comparison. The null hypothesis of the test is that
of equal predictive performance (measured in terms of loss functions such as

squared errors) of two competing models. One major advantage of the test

is that it can be effectively applied to forecasts based on both nested and
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non-nested models.!® The test is robust to choice of estimation procedures
(e.g., Bayesian and fully-, semi- and non-parametric methods) but requires
that the size of estimation sample be finite. We could, therefore, apply the
test only for the rolling-window based forecasting exercise. For the expanding-
window estimation scheme we only report the RRMSFE without commenting
on statistical significance of any predictive gain.

Giacomini and Rossi (2010) argue that in presence of instability standard
tests of forecast accuracy are not insightful and propose a more appropriate
fluctuation test for testing statistical significance of evolving relative forecast
performance of two competing models. During our forecast period 2001:1 -
2010:11 the UK yield curve shows changing behaviours: a period of stability is
followed by some erratic characteristics during the financial crisis, such as dra-
matic fall of short rates and pronounced widening of spread. We, therefore, use
the fluctuation test to evaluate significance of possible time variation in predic-
tive ability of a forecast model relative to random walk, the benchmark. The
test statistic is calculated as standardised difference between the MSF Ef;%h
and MSF Eﬁv}f computed over a rolling-window of 35-months. Negative val-
ues of the test statistic imply that the model under consideration is better
than the random walk. Giacomini and Rossi (2010) report critical values of
the test. Since the test statistic is equivalent to that of Giacomini and White

(2006) test it can also be used only for the rolling-window forecasts.

2.5.4 Forecast Results

Results of model performance for the entire forecasting period of 2001:1-

2010:11 are presented in Table 2.B.3. The table has two horizontal panels,

16 This is particularly important for our study since many of the forecasting models nest
the random walk benchmark. Alternative tests such as Diebold and Mariano (1995) test
are not suitable for comparing nested models, and therefore, avoided.
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panel (a) reporting results for the recursive forecasts and panel (b) report-
ing results for the rolling-window forecasts. Each panel is again divided into
three vertical blocks containing results for three different forecast horizons:
1-month, 6-month and 12-month. The second row in each block reports five
selected maturities ranging from 3 months to 10 years, while the remaining
rows report the root mean squared forecast errors relative to random walk,
RRMSFE . A value of RRMSFFE smaller than one implies that the model
under consideration outperforms the random walk benchmark. The bold num-
ber under each maturity represents the minimum RRM SFE identifying the
best forecasting model. An asterisk indicates that the predictive gain over
random walk is statistically significant under Giacomini and White (2006)
test (“*’ and “** indicate significance at 10% and 5% levels, respectively).

In order to check temporal robustness of our forecast results we further
conduct a stability check by evaluating predictive performance over two non-
overlapping sub-samples. The first subsample consists of the first seven years
of the forecast period, during which the interest rates are relatively less volatile
and the spread between the long and short rates are particularly narrow. The
second sub-sample span the last 35 months of the forecast period and is marked
by near-zero short term yields and wide spread. RRM SF'E results for the two
sub-periods are reported in Tables 2.B.4 - 2.B.5. These tables are structured
and interpreted the same way as the full-sample table Table 2.B.3. We discuss

the results of the forecasting exercise in details below.

Full Sample Results

Sample 2001:1 - 2010:11
From panel (a) of Table 2.B.3 we find that the 1-month-ahead forecast
results under the recursive scheme are very mixed. No single model stands

out to be the best predictor by outperforming the random walk across all or
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many maturities. Most of the models, however, forecast the shortest rate of
3-month maturity very well and no-arbitrage affine models yield the largest
RRMSFE reductions of about 8%. Poor forecasting performance relative to
the benchmark does not improve at longer horizons except that when fore-
casting 12-month-ahead the two specifications of the Nelson-Siegel yields-only
models, denoted as NS2 AR and NS1, predict the 3-month and 12-month
yield more accurately than the ‘last observation’” benchmark. The AR(1) on
yields level forecasts the short end of the yield curve reasonably well. Models
that incorporate additional macroeconomic information generate inferior fore-
casts compared to their yields-only counterparts. Overall, the random walk

shows the best predictive ability and any gain over it is small.

Results of the rolling-window scheme, presented in panel (b), show a more
clear pattern in the relative forecasting performance of individual models. At
1-month horizon, the no-arbitrage affine term structure model with macroeco-
nomic factors, namely the AT'SM M, consistently beats the random walk
for all yields, except for that of 10-year maturity. This result is very much
in line with the findings of Ang and Piazzesi (2003) who report impressive
1-month ahead predictive performance of a similar model when forecasting
the US zero-coupon bond yields. The advantage of the AT SM M model
over other competing models does not, however, sustain over longer forecast
horizons. At 6-month horizon, the Nelson-Siegel yields-only model with an
AR(1) factor dynamics, the NS2 AR model shows the most consistent fore-
cast accuracy. Most of the gains are, however, not statistically significant.
The 12-month-ahead forecasts reveal a similar story as has been established
under the recursive scheme: the yields-only models produce superior forecasts
of short yields and adding macroeconomic fundamentals appears to be disad-
vantageous for forecasting at longer horizons. One major distinction between
the results of rolling- and expanding-window exercises is that of a relatively

much worse performance of the NS M model in the former. When forecast-
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ing 12-month-ahead using a recursive scheme, penalties relative to benchmark
random walk range between 11%-20%. But with forecasting using rolling-
windows such costs lie within a much higher range of 50%-140% and increase
with maturity. These findings possibly imply that the heavily parameterised
yields-macro Nelson-Siegel model may require accounting for information of

distant past for its stable estimation and generation of reasonable forecasts.

Subsample Results

Sample 2001:1 - 2007:12

During this relatively long subsample the UK yield curves remain stable
and yields with different maturities stay close to each other. Panel (a) of
Table 2.B.4 contains results for the recursive forecasting scheme. Like the
full-sample exercise RRM SFE result at 1-month horizon is inconclusive and
does not guide towards a clear preference for a best model. However, as the
forecast horizon increases, a definitive pattern emerges. Apparently, over 6-
and 12-month horizons the N52 AR model systematically beats all its com-
petitors across almost all reported maturities. This result resembles the over-
whelming long-horizon predictive accuracy of the NS2 AR model observed
in Diebold and Li (2006) while forecasting US yields. At longer horizons the
NS52 VAR model fares reasonably well against the benchmark, but the NS1
model performs poorly. This finding implies that during the period of stable
interest rates a VAR(1) factor-dynamics is helping in forecasting only when
the Nelson-Siegel model is estimated in two steps and/or A parameter is held
fixed at 0.0609. The no-arbitrage affine models render worse predictive abil-
ity than the random walk benchmark. Finally, incorporating macroeconomic
information deteriorates forecast accuracy of yields-only models, as is evident

from large RRM SF Es of the macro-yields models NS M and ATSM M.

Most of the findings under recursive forecasting also hold for the rolling-
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window exercise. For example, the NS2 AR model maintains supreme pre-
dictive ability and dominates alternative models. Its gains against the bench-
mark random walk are larger than in recursive case and are mostly statistically
significant, particularly at longer forecast horizons. For 12-month-ahead fore-
casts the margins of significant outperformance is as high as 16% to 26%. In
general, the impact of using macroeconomic variables in forecasting is neg-
ative except for the fact that they improve predictive ability of the NS M
model when forecasting the longest yield of 10-year maturity. This is inter-
esting considering the fact that the NS M model performs miserably on the
whole sample. Results of rolling-window scheme that are noticeably different
from those of recursive exercise include relatively better and statistically sig-
nificant 1-month-ahead forecast of the yields-only model AT'SM and worse
performance of the NS2 VAR model in the former.

Sample 2008:1 - 2010:11

This 35-month subperiod accommodates the recent financial crisis expe-
rienced by the UK and not surprisingly records some irregular behaviour on
the part of the yield curve. During this period the short rates decline sharply
by about 4.5% from 5% to 0.5% and the spreads between the long and the
short rates widen substantially. Thus, this subsample offers us a platform to
investigate whether the crisis has any impact on the relative forecasting power
of the competing term structure models. We first analyse panel (a) of Table
2.B.5 that reports the expanding-window results. The sole domination of the
NS2 AR model observed during the pre-crisis period vanishes. It fails to out-
perform the benchmark random walk, except for only the 3-month rate. At the
longest forecast horizon of 12-month, the NS M model forecasts the 3- and
12-month rate better than the benchmark, the NS2 AR and the NS2 VAR,
but it is outperformed by the N.S1 model which is the most accurate. This
suggests that improvement in the predictive power of the Nelson-Siegel models

is attributable to estimating them in one-step within a state-space framework,
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rather than to taking macroeconomic information into account. The macro-
economic fundamentals, however, clearly helps the no-arbitrage affine models
in forecasting the short-term yields. The ATSM M model predicts the 3-
and 12-month rates most accurately at the 6-month forecast horizon and is
able to surpass random walk and the yields-only affine model AT'SM in fore-
casting the same rates at 12-month horizon. A simple AR(1) model also shows

reasonably good predictive performance.

The rolling-window results, reported in panel (b) of Table 2.B.5, render
convincing evidence of strikingly superior forecasting accuracy of the ATSM M
model. For 1-month-ahead forecasts it comfortably outperforms random walk
and other competitors across all maturities except 10-year. Gains over ran-
dom walk are large and range between 9% to 18%. This dominant feat is
carried also to longer forecast horizons. At 12-month horizon the ATSM M
model achieves highly significant RRM SF'E reduction of 21% and 34% over
the benchmark for yields with 3-year and 5-year maturities, respectively. The
yields-only model AT'SM also does well, but adding macroeconomic factors
seems to play an important role in improving forecast accuracy on affine models
during the financial crisis. Overall, no-arbitrage affine models forecast better
than their Nelson-Siegel counterparts. Similar to the findings as in the re-
cursive scheme, disappointing predictive performance of the NS2 AR model
is evident. Models with VAR(1) factor dynamics, such as the NS2 VAR
and NS1 show occasional good forecasting accuracy, particularly at the short
end of the yield curve. The model that suffers the most in predicting yields
is the NS M model, reporting at times RMSFE values which are 2 to 3
times larger than those of random walk. This performance of the NS M is
relatively much worse than its rolling-window performance in the pre-crisis
period. Interestingly, its yields-only counterpart, the NS1 model, shows a
reverse pattern by forecasting consistently better in the crisis period than in

the pre-crisis period, particularly at longer horizons. These observations imply
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that structural change in the macroeconomic variables and yields during the
crisis period may have played a role in the forecast failure of the heavily pa-
rameterised model NS M. However, a comparison between rolling-window
and recursive forecasts confirms that the inferior rolling-window performance is

potentially due to accounting for recent data and discarding older information.

Testing Time-varying Predictive Ability

It is evident from the sub-sample analysis that the models perform differently
across subperiods. A clear example is the NS2 AR model which dominates
other competing models in the first sub-sample, but forecasts miserably in the
second subsample. Another example is the AT'SM M model which demon-
strates an exact opposite forecast pattern by yielding unsatisfactory predic-
tive performance in the first subsample and producing superior forecasts in
the second. As we have discussed earlier, we further investigate possible time-
variation in forecast accuracy of models by exploiting the fluctuation test of
Giacomini and Rossi (2010). The test tracks relative accuracy of two compet-
ing models over time and monitors for significant deviations in performance.
Figures 2.A.4 - 2.A.6 plot the evolution of the fluctuation test statistics
with their critical values for 1-month, 6-month and 12-month forecast hori-
zons, respectively. Each figure has two panels. Panel (a) reports the results
for the 12-month yield and panel (b) reports the results for a relatively longer
5-year yield.

Figure 2.A.4 shows that in the first few years of the out-of-sample period
only the AR(1) model produces forecasts of the 12-month yields that are sig-
nificantly worse than those of the random walk. Otherwise, for yields of bonds
with maturities of both 12 and 60 months, forecasts of competing models are
not significantly different from random walk forecasts until mid 2007. Since

then the models’ forecasting power, however, starts to change dramatically.
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The only model that consistently and significantly outperforms the random
walk during the post-2007 financial crisis period is the AT'SM M model. All
other models show traces of inferior forecasting ability after some time. For
many of them predictive performance becomes significantly worse than the
benchmark at certain points, e.g., NS2 AR, ATSM and NS M when fore-
casting the 12-month yield and NS M, ATSM and AR when forecasting the
60-month yield.

Results of fluctuation tests for the 6-month-ahead forecasts are presented
in two panels of Figure 2.A.5. Variable predictive performance of the mod-
els, more prominent for the longer maturity yields, can be observed from the
very beginning of the forecast period. The most remarkable feature is the
early superiority of the NS2 AR model in contrast to relatively much poorer
performance of alternative models compared to the random walk benchmark.
However, the advantage of the NS2 AR model soon dies out and the perfor-
mance of other models improve over time. Over the period of mid 2004 to mid
2007 forecast accuracy of all models is very similar to that of random walk.
But on the verge of the crisis in 2007, the paths of relative performance of
the forecasting models start to diverge. Although only the AT'SM model fore-
casts the 12-month interest rate significantly better than the random walk, the
ATSM M and NS1 models also do reasonably well. For a longer 60-month
yield, the AT'SM M model comfortably outperforms all its competitors over
the latest period of interest rate anomaly, at times with significant gains over
the random walk. The NS M model, as for 1-month-ahead forecasts, dis-
plays significant forecast failure at the end of the sample. The performance of

the NS2 AR model becomes increasingly disappointing over time.

Figure 2.A.6 looks at time-variation in 12-month-ahead forecasts and re-
ports many similar patterns as those observed at 6-month horizon. Three pe-
riods of distinctive features can clearly be identified: a first period of early but

fading superiority of the NS2 AR model, a second period of relatively equal
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and stable forecast performance of competing models and finally, a third period
of unusually low short rates and high spread. During the latter period which
accommodates the crisis the NS2 AR and NS M models produce signifi-
cantly inferior forecasts, the affine models generate significantly more accurate
short rate predictions than the benchmark, and the ATSM M model stands
out to be the most dominating predictor and shows significant advantage of

incorporating macroeconomic information.

Explaining Variations in Model Performance During the Crisis

One of our major findings is apparent change in relative forecasting perfor-
mance of competing models during the recent financial crisis. Unquestionably,
the crisis induced some unusual behaviour in the UK yield curve which was rel-
atively stable for a substantially long period prior to the crisis. In response to
Band of England’s lowering of the official rate in the early 2009 the short yields
plummeted towards zero and the gap between short and long rates widened.
Forecasts of many models under study deteriorated relative to the benchmark
random walk, possibly because of failure to account for structural changes in
the yield curve dynamics and consequent parameter instability inflicted by the
crisis.

Careful comparisons can shed further light on potential reasons behind
variations in model-specific predictive performance during the crisis. The
NS2 AR model which forecasted the UK yield curve exceptionally well during
2001-2004 conceded large errors during the crisis affected period of 2008-2010.
Its poor performance relative to the NS1 model in the latter period may be
explained by two factors. First, using an AR(1) dynamics for latent yield curve
factors which impose factor independence is too restrictive and predicting the
changed dynamics of interest rates in crisis requires a more flexible VAR(1)

specification which allows interactions among all the factors. Second, fixing
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the lambda parameter which determines the decay in the loadings of slope and
curvature factors appears to be similarly restrictive and estimating it along
with other model parameters is desirable. Inferior performance of the NS M
model compared to its yields-only counterparts during the crisis possibly im-
plies that the drastic change in yield dynamics caused adverse parameter insta-
bility in the model which already suffers from parameter proliferation arising
from addition of macroeconomic variables. The affine term structure models,
ATSM and ATSM M, performed better than the Nelson-Siegel models, par-
ticularly at the longest forecast horizon, indicating possibly that imposition of
no-arbitrage restrictions became important in forecasting UK yields during the
crisis. Overall, the term structure of interest rates of the UK became harder
to predict and the random walk benchmark predicting no change appeared to
be difficult to outperform. The only model that consistently showed improved
forecasting power is the AT'SM M model. This indicates that incorporating
observed macroeconomic factors can benefit the arbitrage-free affine models in

explaining and predicting the crisis period anomaly in bond yields.

2.6 Concluding Remarks

Forecasting of the term structure of UK interest rates has received little at-
tention in the finance or economics literature. This paper, using UK nominal
zero-coupon bond yield data, attempts to shed light on this important, yet
overlooked issue. In its build up this essay tries to answer a number of impor-
tant questions related to yield curve forecasting. First, it searches for a well-
performing forecasting model for the UK yield curve by providing a survey
of a number of popular term structure models and comparing them in terms
of forecast accuracy. Second, it examines whether adding macroeconomic in-

formation in the latent factor models improves predictive power. Third, it
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undertakes both a recursive and a rolling-window forecast exercise to deter-
mine whether the length of information history used in estimating dynamic
models play an important role in generating accurate forecasts. Finally and
most importantly, it investigates whether the predictive performance of the
yield curve models changes over time. In order to investigate such changing
behaviour the full forecast period is divided into two subperiods: one records
fairly stable yield movements and the other accommodates the recent financial
crisis period reporting abnormal yield dynamics. The models are then evalu-
ated across the two subsamples in order to check for consistency in forecasting
performance. Instead of relying solely on a time-invariant global measure of
predictive ability, we make inference by following the entire time path of the
models’ local relative performance and testing for possible significant time

variation.

A first-hand idea from the full sample results is that it is difficult to outper-
form simple 'no-change’ forecasts. A subsample analysis, however, reveals that
the forecasting power of models vary significantly across subperiods. Both the
recursive and the rolling-window exercises confirm that the yields-only models
perform better during periods when the term structure of interest rates shows
a stable pattern, such as the period 2001-2007 during which UK interests rates
were less volatile and spread between long and short rates is relatively narrow.
In particular, a Nelson-Siegel yields-only model with AR(1) factor dynam-
ics renders superior predictive ability against all competing models. During
the recent crisis period of 2008-2010 the interest rates, however, exhibit some
aberrant characteristics, such as sharp decline in short rates and pronounced
widening of the spread. It is evident from the rolling-window scheme that only
a no-arbitrage affine model with macroeconomic information can predict these
unusual behaviours of yields most accurately and most consistently. A test of
time varying relative performance further corroborates this finding. One addi-

tional finding is that the choice of forecasting designs may substantially affect
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forecasting ability of certain models. One clear example is the Nelson-Siegel
model with macro variables which display reasonably good predictive ability
under the recursive scheme but thoroughly disappointing performance under
the rolling-window scheme.

There is scope for further research. It is worth investigating how alterna-
tive empirically successful forecasting models such as the no-arbitrage Nelson-
Siegel model of Christensen et al. (2011), the factor-augmented VAR model
of Moench (2008) and the structural model of Hordahl et al. (2006) fare in
predicting the UK yield curves. Evidence of substantial time variation in fore-
casting performance of models and failure of a single model to consistently
produce accurate forecasts imply that forecast combinations across models
may potentially improve forecasts of the term structure of UK interest rates.

This is, however, beyond the scope of this study.
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2.A Appendix A: Figures
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Figure 2.A.1: The UK yield curves

Note: Time series plots of the end-month zero-coupon bond yields for the UK. The sample
period is January 1989 - November 2010 and selected maturities are 3, 12, 36, 60 and 120

months.
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The sample period is January 1989 -

Note: The figure shows time series plots of the official bank rate, CPI inflation and un-

employment rate, each expressed in percentages.

November 2010.
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Data-based vs model-based level, slope and curvature

Figure 2.A.3

Note: The data-based level, slope and curvature are defined as the 10-year yield, the differ-

ence between the 10-year and 3-month yield and twice the 2-year yield minus the sum of

Data and model-based factors are all standardised

respectively.

3-month and 10-year yield,

for convenience of comparison.
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Figure 2.A.4: Time path of fluctuation test statistic of Giacomini and Rossi

(2010) (1-month-ahead forecasts)

Note: The fluctuation test statistic is calculated as the standardised difference between the
MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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(b) 60 Month Maturity

Figure 2.A.5: Time path of fluctuation test statistic of Giacomini and Rossi

(2010) (6-month-ahead forecasts)

Note: The fluctuation test statistic is calculated as the standardised difference between the
MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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Figure 2.A.6: Time path of fluctuation test statistic of Giacomini and Rossi

(2010) (12-month-ahead forecasts)

Note: The fluctuation test statistic is calculated as the standardised difference between the
MSFEs of a competing model and the random walk benchmark. A negative value of the

statistic implies that the corresponding model is better than random walk. The horizontal

dashed lines indicate two-sided critical values of the statistic.
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2.B Appendix B: Tables

Table 2.B.1: Descriptive statistics, the UK yield curves

Maturity (months) Mean Median Std dev Skew Kurt Min Max p(1) p(12) p(30)
3 6.064  5.420 3442 1.027 1.060 0.380 15.170 0.984 0.687 0.218
12 5.884  5.436 2986 0.717 0.751 0.579 14.311 0.982 0.684 0.258
15 5.897  5.445 2910 0.668 0.645 0.609 14.158 0.982 0.688 0.277
18 5918 5.444 2.842  0.628 0.534 0.652 14.005 0.981 0.692 0.298
21 5.943 5477 2782 0.599 0.427 0.707 13.859 0.981 0.697 0.318
24 5.969  5.473 2.729  0.578 0328 0.771 13.725 0.981 0.703 0.337
30 6.019  5.515 2.643 0.555 0.152 0.918 13.494 0.981 0.714 0.370
36 6.065  5.566 2,577 0.551 0.009 1.080 13.315 0.981 0.725 0.397
48 6.141  5.595 2484  0.574 -0.200 1.422 13.075 0.982 0.747 0.438
60 6.199  5.529 2421  0.613 -0.340 1.757 12,932 0.983 0.767 0.468
72 6.242  5.418 2374  0.650 -0.441 2.070 12.828 0.983 0.783 0.491
84 6.272  5.350 2334 0.680 -0.521 2.353 12.733 0.984 0.797 0.510
96 6.292  5.280 2.298  0.700 -0.593 2.606 12.629 0.985 0.809 0.525
108 6.302  5.216 2.263 0.710 -0.664 2.828 12.508 0.985 0.819 0.539
120 6.306  5.153 2229  0.711 -0.736 3.022 12.368 0.986 0.827 0.550

Notes: The table reports summary statistics for the
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end-month UK nominal zero-coupon

bond yields. The yields are annualised and expressed in percentages. The sample period is

January 1989 - November 2010. The last three columns report sample autocorrelations at

displacements of 1, 12 and 30 months.
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Table 2.B.2: In-sample fit of models (RMSE of yield curve residuals)

Maturity (months) NS2 AR NSI NS M ATSM ATSM M

3 0.101 0.483  0.483 0.066 0.064
12 0.105 0.051  0.051 0.085 0.072
15 0.076 0.017  0.017 0.057 0.051
18 0.049 0.000  0.000 0.035 0.035
21 0.028 0.006  0.006 0.024 0.023
24 0.019 0.007  0.007 0.026 0.018
30 0.039 0.000  0.000 0.039 0.026
36 0.057 0.010  0.010 0.049 0.038
48 0.072 0.025  0.025 0.055 0.049
60 0.069 0.029  0.029 0.051 0.047
72 0.054 0.020  0.020 0.041 0.036
84 0.031 0.000  0.000 0.028 0.021
96 0.016 0.030  0.030 0.021 0.014
108 0.049 0.067  0.067 0.037 0.031
120 0.093 0.110  0.110 0.065 0.056

Notes: The table reports root mean squared errors of model fitted residuals expressed in
percentages. The NS2 AR refers to a Nelson-Siegel yields-only model with an AR(1) factor
dynamics estimated in two steps, the NS1 refers to a Nelson-Siegel yields-only model with a
VAR(1) dynamics estimated in one step, the NS M refers to a Nelson-Siegel yields-macro
model, the ATSM refers to a no-arbitrage yields-only affine model and ATSM M refers to

a no-arbitrage macro-augmented affine model.
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Chapter 3

Density Forecasts of Bond Yields:
Evaluating Arbitrage-free Nelson-
Siegel Models with Stochastic

Volatilities

3.1 Introduction

We continue empirical research on yield curve forecasting in Chapter 3. While
Chapter 2 assesses the predictive performance of the term structure models
in terms of point forecasts of bond yields this chapter focuses on evaluating
models on the basis of density forecasts which provide a full distribution of

the future predicted yields.
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For this work we exploit several variants of a well-known class of yield
curve models - the Nelson-Siegel models. These models enjoy a number of
attractive properties which made them very popular among researchers, both
in academia and central banks. The Nelson-Siegel model is parsimonious in
terms of parameters to be estimated, they are easy to estimate and tract and
they are flexible enough to capture many possible shapes of an yield curve.
Since its development by Nelson and Siegel (1987), the original model has
gone through significant refinements. Diebold and Li (2006) made the original
static model dynamic in order to capture evolution of bond yields over time.
Christensen et al. (2011) proposed an arbitrage-free version of the model and
made it theoretically more sound and competitive. Christensen et al. (2010)
went one step further by incorporating stochastic volatility to model dynamics
of interest rate fluctuations. The main objective of this chapter is to compare
different specifications of the Nelson-Siegel models, simple to complex, in terms
of their ability to generate forecasts of bond yields out-of-sample. Particular
emphasis has been given to evaluation of density forecasts of the yield curve,

as opposed to point forecasts.

Why should we care about density forecasts of bond yields? A natural mo-
tivation comes from the importance of forecasting predictive density in general.
A point forecast provides a single future value for a variable of interest and is
easy to compute and interpret. However, a criticism of it is that it does not
take into account the uncertainty surrounding the prediction. Density fore-
casts provide a detailed description of such uncertainties as they are essentially
estimates of the complete probability distribution of the possible future values
of the variable of interest. This is particularly helpful for policy makers who
can incorporate forecast uncertainties in their policy decisions. It has a be-
come a common practice for most of the central banks around the world (e.g.
Bank of England, Bank of Canada, Norges Bank etc.) to routinely issue pre-

dictive distributions for many key economic indicators such as inflation, GDP,
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policy rate etc. Density forecasts has found even more frequent applications in
finance where risk or uncertainty plays a crucial role. The most prominent use
is in rapidly growing financial risk management industry where a full account
of the predictive density of future portfolio returns helps to track certain fea-
tures of the distribution such as value-at-risk which are often used as measures
of risk exposure. J.P. Morgan, Reuters, Bloomberg routinely publish density

forecasts of key measures of portfolio risk.

The density forecast of the term structure of interest rates has received
little attention in finance literature. To our knowledge the only contributions
came from Hong and Li (2005) and Egorov et al. (2006) who proposed non-
parametric tests for evaluating density forecasts and applied them to compare
a number of affine term structure models (ATSMs) when forecasting the joint
conditional probability density of bond yields. They found unsatisfactory den-
sity forecasts from ATSMs in continuous time which is reminiscent of Duffee
(2002) who found similar disappointing performance of discrete-time ATSMs
in terms of point forecasts using the US yields. Performance of the ATSM
in fitting conditional volatility of yields is not good enough either (Collin-
Dufresne et al. (2009)).! Moreover, it is well-documented in literature that in
general, it is difficult to estimate ATSMs, particularly its prices of risk para-
meters (see Duffee (2011)). Such empirical failure of ATSM prompts search
for an alternative and more competitive model. The result is the recent addi-
tion of arbitrage-free Nelson-Siegel models with stochastic volatilities proposed
by Christensen et al. (2010). The models combine several attractive proper-
ties which are important from both theoretical and empirical perspectives. For
example they account for time variation in yield curve volatility and are, there-
fore, more flexible than the constant volatility Nelson-Siegel models of Diebold

and Li (2006) and Christensen et al. (2011). There are existing Nelson-Siegel

I Jacobs and Karoui (2009), however, argue that ability of affine term sturcture models
to capture conditional volatility of the yield curve is sensitive to choice of sample periods.
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models which account for time-varying volatility in bond yields. Koopman
et al. (2010) find improved fit by adding a common GARCH-type volatil-
ity factor that drives volatility of the entire cross-section of the yield curve.
Hautsch and Yang (2012) allow the level, slope and curvature factors to induce
stochastic volatility in the model by introducing three additional state vari-
ables. They also confirm benefits from including stochastic volatility in terms
of better in-sample performance and reduced forecast uncertainty. However,
none of these models are arbitrage-free by nature. The stochastic-volatility
no-arbitrage models of Christensen et al. (2010) have an advantage over these
models in that they are corrected for risk-free arbitrage opportunities and are,
therefore, theoretically more sound. Using daily US and UK interest rates
Christensen et al. (2010) show that the models provide good in-sample fit
and can explain substantial proportion of stochastic volatility observed in the
data. However, to our knowledge forecasting performance of these models
is not tested. This chapter systematically evaluates forecasting performance
of these models, particularly their ability in calibrating predictive densities
of bond yield out-of-sample and investigates to what extent they satisfy the
quest for a model that produce good density forecasts of interest rates. The
questions which are of particular interest are whether enforcing no-arbitrage
restriction and/or modelling time-varying volatility improve predictive perfor-
mance of Nelson-Siegel models.? We employ various metrics used in literature
such as probability integral transforms, coverage rates, log predictive density

scores in order to assess the quality of density forecasts.

The chapter is structured as follows: section 3.2 provides a detailed de-

scription of the competing Nelson-Siegel models with and without stochastic

2 There is, however, considerable amount of debate in the literature about whether no-
arbitrage restrictions help in forecasting yields. Duffee (2011) and Joslin et al. (2011)
argue that predictions of pricing factors are independent of imposition of cross-sectional
restrictions. Nonetheless, Christensen et. al (2011) find improvements in forecasts of US
bond yields from making Nelson-Siegel models arbitrage-free.
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volatilities and their estimation procedure. Section 3.3 describes the yield data
used for empirical analysis and evaluates the models’ ability to fit the data in-
sample. Section 3.4 provides detailed comparison of models in terms of both

point and density forecasts of bond yields. Section 3.5 concludes.

3.2 Forecasting Models

In this section we describe different specifications of the Nelson-Siegel term
structure models which will be evaluated on the basis of their ability to fore-
cast bond yields. The models differ in terms of two basic features: whether
they adopt no-arbitrage restrictions or not and whether volatility of yields is
assumed constant or modelled as time-varying. As explained in the introduc-
tion, we follow Christensen et al. (2010) to explicitly consider time-varying
volatilities that are generated only by latent factors that are extracted from
cross-section of the yield curve. The stochastic volatility specifications differ

depending on how many of the factors drive the volatility.

3.2.1 Standard Dynamic Nelson-Siegel Model

The model has been already introduced in Section 2.2 of the previous chapter.
It is a very popular dynamic term structure model and is a result of temporal
extension by Diebold and Li (2006) of the original static model of Nelson and
Siegel (1987). We denote the three time-varying latent factors, level, slope and
curvature by L;, S; and C}, respectively. The yields are then expressed in a
dynamic exponential factor-model framework:

1— —Am 1— —Am
y(m) = Ly + StL + C; <L - e_)‘m) . (3.2.1)

Am Am

The DNS model has been widely applied and analysed for modelling
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yields and its success in forecasting has been well-documented in the liter-
ature. Diebold and Li (2006) report its superior predictive ability by as-
suming an AR(1) factor dynamics and using U.S. government bond yields.
Despite its good empirical behaviour, the DNS model has been heavily crit-
icised for not imposing no-arbitrage restrictions which lie in the heart of fi-
nancial theory of asset pricing. This simple model assumes that the implied
volatility in bond yields is constant or time-invariant. We use the DNS' as
the benchmark and compare its forecast performance against more sophis-
ticated Nelson-Siegel counterparts which are arbitrage-free and/or modelled

with time-varying volatility.

3.2.2 Arbitrage-free Nelson-Siegel with Constant

Volatility

Motivated by the importance of making the DN .S model more consistent with
finance theory, Christensen et al. (2011) propose an arbitrage-free version of
the dynamic Nelson-Siegel model with constant volatility (denoted hereby as
AFNSp). The AFN Sy model is derived in a continuous-time affine diffusion
environment as described in Duffie and Kan (1996). Following Christensen
et al. (2010) we first define the general affine process which encompasses
the AFNS, and also the arbitrage-free Nelson-Siegel models with stochastic
volatilities used in this study.

Let X be an N-dimensional vector of state variables. Then under no-
arbitrage affine framework X; follows a Markovian diffusion process and its
dynamics under risk neutral measure () can be defined by the following sto-

chastic differential equation (SDE):
dX, = K9(0° — X,)dt + £5(X,)dZ?, (3.2.2)

where Z9 is a vector of N independent standard Brownian motions, §° €
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RY is the mean vector of the process, K¢ € RV*" determines the speed of
mean reversion and ¥ € RY*¥ is the constant component of the volatility of
the process. The state-dependent (N x N) diagonal matrix S(X;) introduces
conditional heteroskedasticity or time-varying volatility in the bond yields and

its ¢-th diagonal element given by

\/ai + B X+ ..+ BLXN.

The short rate (instantaneous risk-free rate) is modelled as an affine func-

tion of the underlying state variables
ry = 0o + 01' Xy,

where 05 € R and §; € R™ are bounded and continuous functions.
If we define P,(m) as the time ¢ price of a $1 zero-coupon bond which is
maturing at time t + m, then P,;(m) can be expressed as exponential affine

functions of the state variables (Duffie and Kan (1996)):
P,(m) = exp(B(m)'X; + A(m)),

where the pricing coefficients B(m) and A(m) solve the following system of

Ricatti ordinary differential equations (ODEs):

) g, — (1Y Bm) + & % (' B(m) B(m)'S), (%), B(0) =0,
(3.2.3)
dfzy(;,n L= o BOmY K99 S (S B(m) B(m)'S) 0, A(0) = 0. (3:2.4)

Functional relationship between the yield and the price of an m-period
zero-coupon bond then implies that the expression for the yield reduces to an
affine functions of X;:

Blm) y _ Alm), (3.2.5)

m m

1
yt(m) = —EIOgP(Xt,TI’w = —
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Finally, the model is fully described with a risk price specification which
translates its risk-free dynamics to dynamics under real world (or historic) P-
measure. Following Christensen et al. (2010) we use the extended affine risk
premium specification of Cheridito et al. (2007) for all the models except for
one where we are restricted to use the essentially affine risk premium structure

of Duffee (2002). The risk premium I'; in extended specification is given by
Ty = S7H X" + S7H(X)y' X,
and the one in essentially affine specification is given by
Ty = S(X)7° + S™HX)y' Xe,

where 7° € R¥and 7! € RY*Ncontain unrestricted parameters. The rela-
tionship between real-world yield curve dynamics under the P-measure and

risk-neutral dynamics under the ()-measure is given by
dZ2 = dzF +Tdt. (3.2.6)

The dynamics of the state vector under the P-measure is obtained by
subtracting the term XS(X;)I'; from the SDE of @-dynamics in (3.2.2) and
replacing dZtQ by dZ'. A general expression for the P-dynamics can then be
given by

dX; = K*' (0" — X,)dt + £S(X,)dz} (3.2.7)

In the constant volatility AFNS model (AFNSy) of Christensen et al.
(2011), the instantaneous risk-free rate is explicitly defined as the sum of the
first two latent factors:

re= X} + X7 (3.2.8)

The vector of state variables X; = (X}, X?, X?) follows a Gaussian (as
opposed to square-root) diffusion process in the sense that there is no condi-

tional heteroskedasticity in the volatility of the yield factors and the volatility
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is driven by a constant ¥.> Without loss of generality we can set S(X;) to an
identity matrix and define the ()-dynamics of X; by the following system of
linear SDEs:

dX, = K909 — X,)dt + $dZ.

Christensen et al. (2011) have showed that if the mean reversion matrix

K@ has the following particular specification

00 0

K@ = (3.2.9)
0 X =) |
00 M\

BY(m) = —m (3.2.10)

and the yields-factors relationship can be written as

1—em L—e?m A(m)
yt(m):Xt1+ (T) Xt2+ (T—e A )XE—T,

which preserves the same loadings as the original model of Nelson and Siegel
(1987) for level, slope and curvature. There is, however, an additional yield-
adjustment term which is time invariant and is a function of maturity only.

The extended affine risk premium in the Gaussian framework implies

Iy = VO + VIXt

3 See Piazzesi (2010) for the distinction between a Gaussian and a square-root process.
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which together with measure change equation (3.2.6) imply that the P-dynamics
of the state vector X, is given by

dX; = K* (0" — X,)dt +2dzF .

Christensen et al. (2011) further showed that these models can only be
identified if the elements of #9, the mean vector under the Q-measure, are zero
and the volatility matrix X is no more than a triangular matrix. Under the
assumption of independence of yield factors ¥ is diagonal and the P-dynamics

takes the form:

dX} kP00 _ oF X} _
dx? | = 0 kb 0 of |- x2 ||
dx; 0 0 ki 0% X}
on 0 0 dzr
1 0 o0 O dzx"
0 0 o3 dz>r

The arbitrage-free version of Nelson-Siegel model AF NSy has been re-
ported to provide better yield forecasts than the already successful dynamic
Nelson-Siegel model DN S of Diebold and Li (2006) which does not correct for
arbitrage opportunities (Christensen et al. (2011)).

3.2.3 AFNS with Stochastic Volatility

Time varying volatility is a key feature of bond yield data. Therefore, assum-

ing constant volatility, as considered in the DN.S and AF NSy, models, limits
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flexibility of yield curve models. Christensen et al. (2010) extend AF NS,
to incorporate stochastic volatility where the volatility is spanned entirely by
latent yield curve factors. The principal objective of this paper is to investi-
gate whether incorporating stochastic volatility can further improve predictive
power of the AFNS models. We review all the models described in Christensen
et al. (2010). Throughout all the models the short rate is modelled as in equa-
tion (3.2.8) and the particular structure of kX“mean reversion matrix in (3.2.9)
is maintained to match closely the desirable Nelson-Siegel factor loading struc-
ture in the zero-coupon bond yield function. The models mainly differ in terms
of how many and which of the factors drive stochastic volatility. Consequently,
they have different specifications for the state-dependent stochastic volatility
inducing matrix, S(X;) which affects dynamics of factors under the risk-neutral
and physical measures. We define parsimonious versions of the models where

the three factors move independently of each other.

AFNS with One Stochastic Volatility Factor

There are two feasible AFNS stochastic volatility specifications that allow just
one factor to exhibit stochastic volatility - in one the volatility is induced
by level (denoted as AFNS; L) and in the other by curvature (denoted as
AFNS; C)A

The @)-dynamics of the state vector X; in a correctly identified AF'N.S; L

requires that in equation (3.2.2) we set

X} 0 0
S(Xe) = 0 1+ P5X] 0 , 08 = 09 = 0 and
0 0 V14 By X}

4 Christensen et al. (2010) show that a model with slope as a stochastic volatility factor
is not admissible because of the particular stucture of K< in (3.2.9).
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k:?l = ¢, where ¢ is a small positive number. As is observable, volatility in
slope and curvature is influenced by the level factor X} and the volatility sen-
sitivity parameter [3,,and 5, measure the extent of such influence. The level
factor follows a square-root process.

For the factor loadings in the zero-coupon bond prices, B'(m) is the solu-

tion to
dB'(m) 1 1
T = —l- eB'(m) + 5031(31(@)2 + 5521032(32(7”))2
1
+§5310§3(Bg(m))27

while B?(m)and B?(m) keep the original Nelson-Siegel expressions as in (3.2.10).
The yield-adjustment term, A(m) solves the following ODE:

dA(m) / 1 1
g = B(m) K909 + 503232(771)2 + 503333(m)2.

For the AFNS; L model the extended affine risk premium is not viable
(see Christensen et al. (2010)) and we adopt the essentially affine risk pre-
mium structure of Duffee (2002). The P-dynamics for the independent-factor

specification is given by

dX} kP00 _ o X/} _
dX} | =] 0 sk 0 oy | — | x? []d
dx3 0 0 &k e X3

on 0 0 X} 0 0 dzhr

+ 0 092 0 0 \/ 1+ 621Xt1
0 0 o3 0 0 1+ By X} dz>"

Following Christensen et al. (2010) we implement a required restriction

Q

. . e.0

on the mean parameter 6 which is #7 = preat
11

o

<8

N
~
|
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The model is completed by specifying the Feller conditions which ensure
that the square-root process X} never attains zero. The conditions are imple-
mented as x1 07 > 0 and 5.0({2 > 0.

The @-dynamics of the state vector X; in a correctly identified AFNS; C
model (where curvature is the sole driver of stochastic volatility) requires that

in equation (3.2.2) we set

V18X 0 0
S(Xy) = 0 1§ BpX? 0 |and 67 =065 =0.
23“*t

0 0 X3
In this model class the first two factor loadings B'(m) and B?*(m) are
identical to those in (3.2.10), while B3(m) is the solution to:
dB3(m)

= ABY(m) ~ ABY(m) + J0%(B ) + L By (B (m))?

dm 2
1
+§523U§2(32(m))2‘ (3.2.11)
The yield-adjustment term, A(m) solves the following ODE:
dA ' 1 1
di;n) = B(m) K99 + 5a%l(Bl(m)f + 5032(32(771))2. (3.2.12)

We estimate this model using the extended affine risk premium specifica-

tions and the independent-factor P-dynamics is given by

dx;} K00 o X/}
dx} | = 0 &k 0 oy | —| X2 ||
dx3 0 0 &k 0% X}
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The Feller condition requires rl,05 > 103, and A9 > 03,

AFNS with Two Stochastic Volatility Factors

There are two feasible models under specifications where volatility is dictated
by two factors. One is where level and curvature together exhibit stochastic
volatility (denoted as AFNSy; — LC') and the other is where slope and curva-
ture together drive stochastic volatility (denoted as AF NSy — SC).> We find
difficulty in estimating the AF NSy — SC model for the particular data set we
are using and therefore, exclude it from our analysis.

The @-dynamics of a correctly identified AFNSy; LC' requires that in
equation (3.2.2) we set

X! 0 0
SX) =1 0 I+ PuXi+Ppxf 0 |05 =0andkf=¢,
0 0 X}

where ¢ is a small positive number.
The factor loadings B'(m) and B?(m) of the zero-coupon bond price func-

tion are unique solutions to the following set of ODEs:

dB'(m) ! 1y, g v 1
am —1—¢eB (m)+§011(B (m))* + 5521022(3 (m))*,
dB3(m)

) N 15, 5 o 1 2 2 2
o= AB*(m) — AB°(m) + 5033(3 (m))” + 5523022(3 (m))”.

B?(m) remains the same as in (3.2.10). Hence, X? preserves its role as a slope
factor. The A(m)-function is the solution to:

dA(m)
dm

: 1
= B(m) K909 + 503232(77@)2.

% See Christensen et al. (2010) for detailed reasoning of why level and slope together
cannot enter the model as drivers of stochastic volatility.
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Using the extended affine risk premium structure, the independent-factor

P-dynamics is given by

dx} kP00 _ o X} _
dx} | =] 0 &b 0 or | — | X2 ||dt
dX? 0 0 kE 0% X}
cn 0 0 X! 0 0 dzr
1 0 oy 0 0 V148X + 83X 0 dzr"
0 0 o3 0 0 X3 dz>"r

For the level factor, the condition €.0¢ = x,0” must be satisfied. Feller

conditions are given by k5,05 > 102, and A0 > 1o2,.

AFNS with Three Stochastic Volatility Factors

In the last specification all three factors exhibit stochastic volatility (denoted
by AFNS3). The Q-dynamics of a correctly identified AF N S3 requires that

in equation (3.2.2) we set

X0 0
S(Xy) = 0 X2 0 and k2 = ¢, where ¢ is a small positive
0 0 X3

number.
In this model class, the factor loadings in the zero-coupon bond price

function are given by the unique solutions to

dB;z—gL) — —1—¢BY(m) + %afl(Bl(m>>2a
dB?*(m)

1
I - 1= ABY ) + 50R (B2 (m))?




82

dB3(m) 1
—am AB*(m) — AB®(m) + 5033(33(”&))2,
and the yield-adjustment term A(t,T) is given by the solution to:
dA(m) '
———/ = B(m) K9°.
- (m)

Applying the extended affine risk premium specification, the independent-

factor P-dynamics is given by

dx;} KO0 0 _ o X} _
ax; =] 0 &b 0 oy | —| x2 ||
dX; 0 0 x& 0% X}
cn 0 0 X} 0 0 dzr
1 0 o0p 0 0 X 0 dzp"’
0 0 o 0 0 X3 dz>

For X}, the constraint .09 = 7,67 must be satisfied. The Feller condi-
tions which must be satisfied are:

PpP _ 1.2, Q Q_12. PogP _ 12 Q 12

3.2.4 Estimation Framework

All the Nelson-Siegel specifications under this study can be conveniently rep-
resented in state-space frameworks. For estimation of such unobserved factor
dynamic models we use a standard maximum likelihood technique which use
Kalman filter for extraction of latent yields. We start by writing the transi-

tion equations for different specifications. For the benchmark DN S model, the

6 Diebold et al. (2006), Christensen et al. (2011) and Christensen et al. (2010) use
such Kalman filter induced maximum likelihood method for estimating DN S, AF NSy and
AFNS with stochastic volatility, respectively.
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transition equation is a VAR(1) dynamics for the state vector X; = { Ly, S, C; }:
Xi= (I =)+ o¢Xe1+mn, 1.~ N(0,Q). (3.2.13)

Specification of state dynamics of arbitrage-free Nelson-Siegel models re-
quires defining the first two conditional moments of the latent factors under
the P-measure. The expression for the conditional mean vector is the same

for both the constant volatility and stochastic volatility cases:
EP [X7|X,] = (I —exp(—=K"(T — t))0" + exp(—K"(T — 1)) X,. (3.2.14)

However, the definitions of conditional variance matrices are different. The

one for AF NSy is time-invariant and is given by
T—t
Q =V [Xr|X)] = / exp(— KT u)Y'Y exp(—(KT) u)du. (3.2.15)
0

The conditional variance matrix for AFNS with stochastic volatilities are

state-dependent and can be computed as

Qr(X,) = le[XTlXt]Z/t exp (—K(T = u))SS(E” [X,|Xi])

xS(E" [X,| X)) S exp (—(KPY (T — u))du. (3.2.16)

The state equation is then defined as a discrete version of the continuous-

time P-dynamics of the latent factors:
X, = (I —exp(—=KPAt)0” + exp(— KT A) X1 +1,, (3.2.17)

where At is the time between observations. For AF NSy n, ~ N(0,Q) and for
stochastic volatility AFNS 1, ~ N (0, Q¢(X;_1)) with Q(X;_1) = VT [X;| X;_4]
given by equation (3.2.16). The measurement equation is obtained by adding
stochastic disturbance terms to equation (3.2.5) where yields are expressed as

deterministic linear functions of state variables:

1 1
yr(m;) = —;B(mi)'Xt - ;A(mz) +ei(my), i=1,2,....,N.
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The above equation can be more compactly written in matrix notation as:
Y, =A+ BX; +¢,

where Y; is a vector of N observed yields and ¢, is an N x 1 vector of inde-
pendent and identically distributed Gaussian white noise measurement errors,
i.e., &y ~ i.i.d.N(0, R). A is the vector of yield-adjustment terms and B is the

loading matrix defined respectively as’:

_ A(ma) _ B(mi)

mi mi
_ Alma) _ B(ma)

A= " and B = "
_ A(mn) _ B(my)

i my | i my

Note that for DNS there is no yield-adjustment term and hence, A = 0.
The measurement disturbance covariance matrix R is assumed to be diagonal.
Measurement and transition disturbances are assumed to be orthogonal to
each other.

We briefly describe the Kalman filter that operates in two recursion steps
- a prediction step and an updating step. Let X; ;;_; denote an update of
the state vector that has been obtained at period ¢ — 1 using information up
to t — land let P;_;;—; be its mean square error matrix. Then forecasts for

the next period ¢ are obtained in the prediction step as
Xijp—1 = a+bXy_q1j1—1,
where a = (I — exp(—KPAt))0” and b = exp(—K P At)® and

Pyt—1 = bPy_1p—1b" + Q¢(Xi—1t-1),

" Elements of A and B for AFN S are solutions of ordinary differential equations and we
use Matlab funtion ode45 to numerically solve them.

8 In the empirical excercise the matrix exponents are evaluted in Matlab which uses Padé
approximation.
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where Q(.) is computed by the conditional variance formula (3.2.16).

The yield prediction error and its variance are obtained as

and

Ft‘tfl — Ept‘t,IE/ + R

In the update step at time ¢, the prediction X;;_; made at time ¢ — 1 is

improved by using additional information contained in Y;:
—; _
Xy = Xypp—1 + Py B Ft|t1_1’Ut|t—17

Py = Pyy—1 + Pt|t71E,F_1 Eljﬂtfl-

tt—1
The unknown parameters of the state-space model are estimated by max-

imizing the log likelihood given by

NT 1x 1z,
I(Y1,Ya, ..., Y ¥) = - In27 — 3 S In|Fyq| — 3 > Vhe 1 Fije—1vyje—1.
t=1 t=1

The Kalman filter is initialised at the unconditional mean and covariance

matrix ?

X, =0 and &, = / e KTsn8(07)S (07 ) e K5 s,
0

Finally, the standard deviations of the estimated parameters are calculated

as

T

1 dlog 1,(T) dlog 1, (V)
; o)  O()

where ¥ denotes the optimal parameter set.
There are, however, caveats of using the above Kalman filter based maxi-

mum likelihood technique for AF'N S with stochastic volatilities. The discrete

9 The conditional and unconditional moments in the estimation are calculated following
Fackler (2000) who extends the analytic solutions provided in Fisher and Giles (1996).
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state equation (3.2.17) assumes that the distribution of that the state variables
be Gaussian which is unlikely because of introduction of stochastic volatilities
in the models . Under the assumption of normality, the Kalman filter induced
maximum likelihood estimation is only quasi-maximum. Moreover, in spite
of forcing the parameter sets to satisfy Feller and other non-negativity condi-
tions the discretisation (3.2.17) can drive the square-root processes to negative
territory. If this happens we replace the negative value by zero following the

literature (e.g., see Duffee (1999), Christensen et al. (2010)).

3.3 Data and In-Sample Fit

For our empirical analysis we opt to use data which have been analysed in
Christensen et al. (2011). The data set consists of monthly U.S. zero-coupon
bond yields from January 1987 to December 2002. The yields are end-of-
month and reported at sixteen different maturities: 3, 6, 9, 12, 18, 24, 36, 48,
60, 84, 96, 108, 120, 180, 240 and 360 months. We find this particular data set
attractive for our forecasting exercise for several reasons. First, the yields are
Fama-Bliss unsmoothed yields and therefore, represents the true raw yields
better than those extracted by smoothing methods such as interpolating with
Nelson-Siegel type functions or fitting splines.!® Second, the data cover the
cross-section of the yield curve reasonably well as it includes yields with very
short maturity (e.g., 3 months) to very long maturity (e.g., 30 years). Third,
application of stochastic-volatility-Nelson-Siegel models on this particular data

allows us to compare some of our results directly with those of Christensen et

10" Construction of true yields by fitting a Nelson-Siegel type function may provide an
unfair advantage to any Nelson-Siegel yield curve model for out-of-sample forecasting. Since
all our competing models belong to the Nelson-Siegel class, this is not desirable. Yields
estimated by alternative smoothing techniques such as spline-fittng are often considered to
be distorted to some extent.
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al. (2011) obtained with constant volatility models.'!

Figure 3.A.1 plots time series of yields over the entire sample period of
January 1987 to December 2002. It is evident that the level, slope and cur-
vature of the yield curve vary substantially over time depicting many different
shapes - upward sloping, flat, inverted and so on.

Table 3.B.1 presents summary statistics of the sample yields and confirms
a number of stylised features of a typical yield curve. The average yield curve,
represented by means of yields of reported maturities, slopes upward. The
rear end of the yield curve, however, tilts downwards with average yield of the
30-year bond smaller than that of the 20-year bond.'? Decreasing standard
deviations for longer yields imply that the short end of the yield curve is
more volatile than the long end. The sample autocorrelations reveal that all
the yields are very persistent and that persistence increases with maturity.
Autocorrelations of longer yields are high even at lags of two years.

All the Nelson-Siegel models under study exploit three latent factors which
have unique definitions: level, slope and curvature.!® Following Christensen et
al. (2010) we perform a principal component analysis in order to investigate
the appropriateness of use of such three-factor models to our data. Results are
summarised in Table 3.B.2. First three principal components explain about
99.8% of the total variation in the yield curve and their loadings on different
yields shed light on their nature. With negative loadings of somewhat similar
size on all the yields the first principal component acts like the level of the yield

curve. Any change in it would affect all yields all most equally and in the same

1 Our forecast design, however, is different from the setup of Christensen et al. (2011).
Therefore, conclusions drawn from forecast results of DN.S and AF NSy are similar, but
not readily comparable.

12 Litterman et al. (1991) relates this reduction of yields on longer maturities to the
convexity of discount factor which prices bonds. They argue that the latter increases with
increased volatility.

13 The fact that three factors are sufficient to model the term structure of interest rates
is well documented in literature. See Litterman and Scheinkman (1991), for example.
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direction. With loadings of opposite signs for shorter and longer maturities
the second principal component captures the slope of the yield curve. Shocks
in it determines the steepness and flatness of the yield curve. Finally, the third
principal component has negative loadings on the two ends of the yield curve
and positive loadings in the middle suggesting that the component controls
the curvature of the yield curve. Overall, the results justify application of

three-factor Nelson-Siegel models to the data.

We estimate all the six models over the full sample period of January,
1987 to December, 2002. The parameter estimates of the benchmark model
DN S are presented in Table 3.B.3 and those of the AF'NS models are pre-
sented in Table 3.B.4. We replicate results of estimation of the DNS and
the AFNSp models, as presented in Christensen et al. (2011), with minor
discrepancies. For the AF NS models with stochastic volatilities the patterns
that can be identified from estimated values of the parameters are very similar
to that reported in Christensen et al. (2010) which uses daily U.S. yields.
Whether a factor is inducing stochastic volatility or not largely contributes to
the variations in the estimated mean parameters in §° and estimated volatility
parameters in ¢ across maturities. The signs of elements of #” are predomi-
nantly determined by the fact that any volatility-generating factor has to be
non-negative under a square-root process. Since different factors operate at
different scales estimated values of factor means are also substantially different.
Factors generating volatility have higher estimated o values and if a factor does
not produce stochastic volatility its associated estimated o is very close to the
corresponding estimate in the AFN.Sy; model. There is substantial variation
in K” matrix across models. However, for all models the level factor is the
most persistent while the curvature being the least persistent. The estimated
[ volatility sensitivity parameters suggest that the level factor induces sub-
stantial stochastic volatility in both slope and curvature but curvature hardly

contributes in generating volatility in the level. The estimated values of \ lie
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within a range of 0.49-0.82.

Following common practice we assess goodness of in-sample fit of different
models by comparing root-mean-squared-errors (RMSE) of fitted yields. Re-
ports presented in Table 3.B.5 show that performance of models are mixed.
No single model provides the best fit to the entire cross-section of the yield
curve. A comparison of the DNS and the AF NSy models implies that im-
position of no-arbitrage restriction deteriorates the fit to the short-end of the
yield curve, particularly to yields with 3- and 6-month maturities. However,
introduction of stochastic volatility through the level factor, as modelled by
the AFNS; — L model, outweighs much of these losses. RMSE values of the
models AFFNS; — L and AFNSy— LC are similar across all yields but they are
different from those of AF'NSy. This probably suggests that when both level
and curvature are allowed to induce volatility, most of the in-sample volatility
is accounted for by the level factor and it alone can generate sufficient amount
of stochastic volatility to produce cross-sectional fit which is substantially dif-
ferent from that of the constant volatility counterpart. RMSE values of the
models AFNSy and AFNS; —C are somewhat different for the first few short-
maturity yields, but similar otherwise. This indicates that volatility which is
generated through curvature alone affects only the short end of the yield curve.
Interestingly, variations in RMSEs of the models AFNSy, AFNS; — L and
AF NS5 imply that all the three factors together produce stochastic volatility
which affects the in-sample fit of data differently than do volatility generated
by level factor alone or by constant volatility. An additional noteworthy ob-
servation is that the models AF NSy and AFN S, —C fit the longest end of the
curve (i.e. the 30-year yield) very well but provide poor fit to 15- and 20-year
yields. The other time-varying volatility models AFNS; — L, AFNSy, — LC
and AFNS3 models deliver an opposite performance by fitting the 15- and
20-year yields relatively well and fitting the 30-year yield miserably. Overall,
the AF NSy — LC model, where both level and curvature are the drivers of sto-
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chastic volatility, is the most consistent in capturing the yield curve dynamics

well as it produces the maximum number of minimum RMSEs.

3.4 Out-of-Sample Forecasting

The main focus of this chapter is systematic evaluation of predictive per-
formance of Nelson-Siegel term structure models out-of-sample. Particular
interests lie in investigating whether accounting for no-arbitrage restrictions
together with time-varying volatility improves forecast accuracy of models and
also whether performance of models in terms of point forecasts of conditional
mean of yields is consistent with their ability to generate conditional predic-
tive densities of yields. The competing models which we have discussed earlier
range from non-arbitrage-free constant volatility benchmark to arbitrage-free
stochastic volatility specifications. In what follows we explain how forecasts,
both point and probability, are generated using each model and analyse results

of both types of forecasts in details.

3.4.1 Point Forecasts

Forecast Design and Construction of Forecasts

We construct 1-, 3-, 6- and 12-month-ahead forecasts of the U.S. yield curve
using all the Nelson-Siegel specifications described in Section 2. We estimate
and forecast using a rolling-window sample. The first estimation sample is Jan-
uary, 1987 to January, 1996; the next is February, 1987 to February, 1996 and
so on. The last estimation sample for the 1-step-ahead forecast ends in Novem-
ber, 2002 and 83 forecasts are generated altogether. For 3-, 6- and 12-month

horizons, final estimation samples end in September, 2002 (81 forecasts), June,
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2002 (78 forecasts) and December, 2001 (72 forecasts), respectively. For multi-
step ahead forecasts we use iterated forecasts, as opposed to direct forecasts.!*
Forecasts of yields are made it two steps: first h-step-ahead forecasts of factors
are produced and then these are used to predict yields h steps forward.

An h-step-ahead forecast of an m-maturity yield which is made at time ¢

using the DNS model is given by

R N R 1— efAm R 1— efz\m o
yt+h|t(m) = Liini+ St+h\t o + Ct—l—hlt o e - (3.4.1)
Defining the state vector as X; = (L, S;, C;), an h-step-ahead forecast

Xi1n)e is computed as

~ h—1
Xt+h|t = (Z:¢z> (I — ¢)N + Qtht. (342)

For the AF NS specifications, an h-step-ahead forecast of an m-maturity
yield is constructed as
IS - 1 —em - 1—em A(m)
~ 1 2 3 —Am
Yernp(m) = Xppnpe + X (T) + X e (T —e ) 0
(3.4.3)
where, )A(t+h|t is an h-step-ahead forecast of the state vector X; = (X}, X2, X?)

and is given by

Xonp = (I — exp(—KTh))0" + exp(—KTh) X,. (3.4.4)

Forecast Evaluation

We use root mean squared forecast error (RMSFE) as the criterion for eval-
uating the accuracy of yield curve models and compare their predictive per-
formance in terms of RMSFE relative to the benchmark model DN S. For an

h-step-ahead forecast of m-maturity yield produced from model j, we compute

RMSFE;L(m) = ngl > (Yern(m) — @f?h\t<m>>2

14 See Marcellino et al. (2006) for a discussion on direct and iterated forecasts.
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and define the relative RMSFE as
RRMSFE!(m) = RMSFE}(m)/RMSFE},yq(m).

A value of RRMSFE smaller than one implies that the corresponding model
forecasts better than the benchmark.

Tables 3.B.6 and 3.B.7 present mean forecast errors (MFEs) of models in
basis points. A negative value indicates over prediction while a positive value
implies under prediction. We test the null hypothesis of zero MFE against
alternative hypotheses of negative and positive biases and mark significance
at 1%, 5% and 10% level.

MFE values are predominantly negative indicating that the model-generated
forecasts of many yields are, on average, too high. Average forecast errors
for the constant volatility models DN S and AF NS, are consistently nega-
tive across yields with maturities of 10 years and less. Values for the AF N S5
model are negative all through except for 1-month-ahead forecasts of the short-
est yield with 3-month maturity. For the models AFNS;—L and AFNSy—LC
prediction biases are more mixed in sign. For example, 1-month-ahead MFEs
of these two models are positive for yields with 3-month, 7-year and 20-year
maturities but negative for the rest of the maturities. Over the shortest fore-
cast horizon of one month, the benchmark model DNS turns out to be the
worst forecasting model in the sense that it is the only model that reports
MFEs that are significantly different from zero for the entire cross-section of
the yields. The absolute forecast bias of the DN.S model are also the high-
est for all yields below 10-year maturity. Relatively better performance of
the AFNS models implies that imposition of no-arbitrage restriction helps in
forecasting yield levels, at least up to moderately long maturity. Overall, the
AFNS models forecast yields with 3-month to 7-year maturities well at 1-
month horizon with the highest average prediction error not exceeding 8 basis

points in absolute value. Forecasts of the 10-year yield are, however, signifi-
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cantly high for all the models with mean forecast errors being between -10 to
-19 basis points. Finally, forecast performance of competing models are mixed
for the longest two yields: while the AFNS;— L and AF N Sy;— LC models pre-
dict the 20-year yield with forecast biases of only 2 basis points, they provide
considerably large and significantly non-zero biases of around 75 basis points
for the 30-year yield. Performance of the AF NSy and AFNS; — C models are
opposite: while average biases are staggering 50 basis points when forecasting
the 20-year yield they are merely 6 basis points when forecasting the 30-year
yield. This extreme forecast behaviour of the models at the long end of the
yield curve is not surprising considering similar in-sample performance of the
models. The 1-month-ahead forecasts of the 30-year yield that are generated
by the AF'NS3 model are highly biased with mean forecast errors exceeding
100 basis points.

Most of the findings for 1-month-ahead forecasts are also preserved at
longer horizons. On average, the benchmark DN .S model continues to be the
most biased model while the AF'N.S models where the level factor is one of
the drivers of volatility generate the least forecast errors except at the longest

maturity.

The root-mean-square-forecast-errors (RMSFESs) which is a broader crite-
rion of evaluating predictive performance have been reported in Table 3.B.8
and Table 3.B.9. The first row of each panel of the table reports RMSFE of
the benchmark model DNS. The remaining rows present RRMSFEs which
are ratios of RMSFE of each model relative to the DN S, as defined above.
Any value below one means that the corresponding model forecasts better
than the benchmark. We test whether any gain or loss against the benchmark
DNS is significant by applying Giacomini and White (2006) test. The null
hypothesis of the test is that of equal predictive ability for a model and the
DN S benchmark. Statistical significance at 1%, 5% and 10% is reported.

All the AF NS models fare very well against the constant volatility bench-
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mark, at least for yields that are maturing in ten years and less. At the 1-month
horizon, models show varied predictive ability across different yields and it is
difficult to identify a single best and most consistent predictor. The most ac-
curate forecasts are shared among stochastic volatility models AFNS; — L,
AFNS; —C and AFNS; — LC. The gains, are, however, small except for the
longest two maturities with the maximum gain not exceeding 6%. Extreme and
contrasting forecast performance of the models for the 20- and 30-year yields,
which is evident in MFE analysis, is also reflected in the reported RRMSFEs.
The models AFNS; — L, AFNS, — LC and AF N S3 predict the 20-year yield
with gains of around 40% over the DN S benchmark, but they are convincingly
outperformed by the benchmark when forecasting the 30-year yield. The mar-
gin of prediction loss is more than 200% for the AF'NS; model. The models
AFNSy and AFNS; — C lose 20% against the benchmark when forecasting
the 20-year yield but gain a same percentage in forecasting the 30-year yield.

At longer forecast horizons of three months and six months the AFN.S; —
LC model appears to be the best predictive model by outperforming all the
competitors across most of the yields. However, forecast gains are rarely sig-
nificant. For instance, among all the 3-month-ahead predictions, only the
AF NS, —(C’s forecast of the 3-month yield and the AFNS; — L and AFN S, —
LCs forecasts of the 10-year and 20-year yields are significantly better than
those of the DNS. At 12-month horizon the AF NS5 forecasts many of the

yields most accurately.

3.4.2 Density Forecasts

As we discussed earlier, point forecasts do not provide any description of uncer-
tainties associated with forecasts and therefore, capture only a partial /incomplete
account of the predictive power of a time series model. A much broader picture

of forecast performance is available through density forecasts which estimate
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the entire probability distribution of possible forecasts at each point in time
in the future. Calibration of density forecasts of the yield curve which usually
exhibit considerable amount of time-varying fluctuations requires sufficient ac-
count of stochastic volatility in the underlying models. Diebold and Rudebusch
(2013) rightly emphasise "if interest centers on interval or density forecasts of
yields or yield factors, then stochastic volatility is of direct and intrinsic in-
terest and cannot be ignored." One of the principal interests of this paper
lies in investigating how stochastic volatility AFNS models fare against their
constant volatility counterparts in portraying predictive densities of yields.

We use Monte Carlo simulation to produce density forecasts of yields.
The basic approach involves generating alternative outcomes (forecasts) arti-
ficially and approximating the distribution of forecasts each point in time in
the forecast period. Note that we do not take account of parameter estimation
uncertainty and directly use point estimates of state-space parameters in the
simulation. The simulation process can be more methodically described in the
following steps:

1. Estimate a model using all the information up to time ¢. Let U, denote
the vector of point estimates of unknown parameters and X, denote the vector
of latent factors extracted by Kalman filter in the estimation.

2. For h = 1 draw one-step-ahead forecast of state equation disturbance
vector, 1,,, from an appropriate multivariate normal distribution specific to a
model. Note that for DNS n,,, ~ MN(0,Q), for AFNSy n,,., ~ MN(0,Q)
and for AFN S with stochastic volatility n,,, ~ MN (0, Q(X,)) , where Q(X,)
is given by (3.2.16).

3. At time ¢ generate 1-step-ahead prediction of factors using the state
equation as:

Koo = a(Wy) +b(U) X, + 0,01, (3.4.5)

where a and b are appropriately computed for DN S and AF NS specifications

according to definitions given in the estimation.
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4. Multi-step-ahead forecasts of latent state vector are simulated by draw-
ing h-step-ahead factor forecast errors 7, ;, from the model-specific multivari-
ate normal distributions stated in step 2 and then iterating forward the state

equation for h = 2,3, ..., hpayx:
Sevate = a(T0) + 0T Koo + M (3.4.6)

Note that for AF'NS with time-varying volatilities variance of 7,,, is
Q()N(Hh_l‘t) which is state-dependent.

5. Finally, realisations of h-step-ahead forecasts of yields are approxi-
mated by drawing the measurement equation disturbance vector €, from a
multivariate normal distribution with mean 0 and variance fi, where R € \Ift
and inserting them in the yield measurement equation along with the factor

forecasts:

2+h|t = A(Ejt) + B(i}t)j(\rt_i_mt —|— EtJrh. (347)

Forecasts for the period ¢t + 2 are obtained on the basis of estimates of
parameters which use information up to time ¢ 4+ 1 and then repeating all the
steps described above. This process is continued until forecasts for the last pe-
riod T are generated. One can generate many artificial paths for h-step-ahead
forecasts of factors and yields by drawing the transition and measurement
equation errors many times accordingly. At each forecast origin, predictive

density is numerically approximated from the simulated replications.

Interval Forecast

One of the simplest ways of evaluating density forecasts is interval forecast
or coverage rate. The idea is to estimate the time path of forecast intervals
with certain coverage probability o and then compute proportion of true re-

alisations that fall inside the interval. If the forecasting model is correctly
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specified about a% of the realised values are expected to fall within the inter-
val. This is very similar to back-testing in risk management where forecasted
losses from estimated value-at-risk (VaR) are evaluated by looking back at past
and checking how many times actual losses exceed the VaR limit. Giordani
and Villani (2010) and Clark (2011) have used coverage rates as means of as-
sessing macroeconomic density forecasts. Following Clark (2011) we construct
70% intervals by computing the 15th and 85th percentiles from the calibrated

predictive densities.

Table 3.B.10 reports coverage rates generated by competing forecast
models for a selection of maturities. An accurately constructed interval should
contain about 70% of the real-time yields observed over the forecast period. A
coverage rate of more than 70% implies that, on average, for a given sample,

the predictive density is too wide and a rate below 70% means it is too narrow.

The 1-month-ahead predictive intervals of all models are extremely wide
for yields with maturities below one year. Coverage rates for the 3-month
yield are in the range of 92%-98% and those for the 6-month yield lie within
87%-95%. Performance of models in terms of matching the nominal cover-
age rate of 70% are mixed at the shortest forecast horizon. The AFNS; — C
and the AF' NSy models provide the best forecast intervals for yields of bonds
with maturities of two years or less, the benchmark DNS model predicts 3-
and 5-year yields very well with coverage probabilities of 68%-72% and the
AFNS; — L and the AFFNSy — LC models calibrate the interval most ac-
curately for longer yields with 10-year and 20-year maturities. Interesting
patterns can be identified in coverage probabilities reported for different mod-
els, at least for all yields with maturities of twenty years and less. The pair,
AFNS; — L and AFNS; — LC, consistently produces intervals that are too
wide with true yields falling inside the intervals much more frequently than
the desired nominal rate of 70%. For the rest of the models, including the

constant volatility specifications, coverage probabilities are decreasing with
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years-to-maturity. Calibrated forecast intervals of the arbitrage-free specifica-
tions AFN Sy, AFNS;—C and AF N S3 become imprecisely narrow at the long
end of the yield curve. For instance, coverage probabilities of these models are
only 51%-53% for the 20-year yield. Inferior 1-month-ahead predictive perfor-
mance of the AFFNS; — L, AFNSy; — LC and AFNS3 models, as observed
in point forecasts of the 30-year yield, is reflected also in interval forecasts.
For this longest interest rate coverage probabilities of the models AFNS; — L
and AFNS, — LC are only 31% while that for AF NS5 is just 11%. Overall,
at 1-month horizon the benchmark model DN S reports coverage rates that
are, on average, most consistently close to the true rate. Thus, it is evident
from the sample that imposing no-arbitrage restriction and/or incorporating
stochastic volatility have deteriorated calibration of 1-month-ahead predictive
densities.

Coverage probabilities of forecasting models change at longer horizons.
AFNS models where level is one of the drivers of stochastic volatility show
improved calibration of forecast intervals. At 6-month and 12-month horizons
the AFFNS; — L and AFNS; — LC models provide coverage rates that are
closest to 70% for most of the yields. 12-month-ahead coverage probabilities

of all models are very low for yields of two years maturity and below.

Probability Integral Transforms

Probability integral transforms (PITs) provide an informal but useful qual-
itative approach to assessing accuracy of density forecasts. The PIT of a
realization y, with respect to density forecast p;_1(y;) can be defined as
Yt
2 —/ pe(u)du.

For a correctly specified forecast density the PIT series should be i.i.d.

uniform variates in the interval [0,1]. The idea of evaluating distributional
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assumption using PIT was first proposed in Rosenblatt (1952) and later used
in Diebold et al. (1998) for assessing optimality of predictive density. Diebold
et al. (1998) used a number of simple visual assessment techniques - such as,
histograms for checking uniformity and correlograms of generalized residuals
for checking independence of PITs.

For yields of selected maturities and forecast horizons of one month, Fig-
ures 3.A.2-3.A.7 present PIT historgrams obtained as decile counts of PIT
transforms. If the 1-month-ahead density forecasts are optimal the histograms
would be flat (with heights of 8.3 per bin) to confirm that PITs are i.i.d.
U[0,1]. Results show that forecasts of all the models are, in general, poor
as they suffer material departures from uniformity. Departures are severe for
shorter yields, particularly for 3-month and 6-month yields with distributions
of PITs looking more like normal distributions. The constant volatility models
DNS and AFNS, predicts the 1-year and the 3-year yields better than their
stochastic volatility counterparts with relatively flatter PIT histograms. The
AFNS; — L and AFNSy; — LC models, however, produce superior density
forecasts for yields with longer maturities, particularly 5, 7 and 20-year matu-
rities. Predictive densities for the 10-year and the 30-year yields are far from

convincing irrespective of model types.

Normal Transforms of PIT

The quality of models’ forecast densities can also be visually investigated by
plotting the normalized forecast error over time. The normalized forecast error
at time ¢ is defined as u; = ®7!(z;), where z; denotes the PIT of one-step-ahead
forecast errors and ®~! is the inverse of standard normal cumulative density
function. Independence and uniformity of the PIT series would then mean that
normalized forecast errors are independently distributed as standard normal

which should be the case if a model is correctly specified.
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Time series plots of normalised errors over time are presented in Figures
3.A.8-3.A.13. C(Clear distinctions among models’ performances at the long
end of the yield curve, as already identified from PIT historgrams, are also
evident in the time series plots. However, since forecasts of yields generated
by the competing models are very similar, plot of normalised errors are not
very informative. Therefore, we resort to more formal evaluation of density
forecast through statistical tests proposed in Berkowitz (2001).} The tests

are based on the following AR(1) dynamics for the normalised errors:
Uy — oy, = py(Us_1 — 1) + €, € ~ N(0,02). (3.4.8)

Evaluating if u; ~ itdN(0, 1) is then equivalent to testing the null hypoth-
esis Hy : p, =0, p, = 0 and 02 = 1. The likelihood ratio test statistic is given
bylﬁ

LR = _2(Z<O7 L, 0) o l(ﬁu? azvﬁu)%

where the hats denote the estimated values. Under Hy, LR is distributed as
x? with 3 degrees of freedom, one for each of the three restrictions. A test of
only standard normality of normalised errors can be constructed by specifying

the null as H} : p, = 0 and 02 = 1 and computing the test statistic as

LR = _2<l(07 1,/P\u) - l(ﬁu7837/p\u))v

which follows a y2-distribution with 2 degrees of freedom.

We report results of both tests along with a number of other metrics in
Table 3.B.11 and Table 3.B.12. The first panel reports the means of the
normalised errors with t-statistics for testing the null of a zero mean. The

second panel reports the variances of the normalised errors with t-statistics for

15 Betkowitz (2001) document better power for tests based on normality of normalised
errors than tests based on uniformity of PITs.

16 See Berkowitz (2001) for an expression of the exact log-likelihood function associated
with the AR(1) process.
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testing the null that the variance equals one. The third panel reports the AR(1)
coefficients estimated by regressing errors on a constant and first lags along
with t-statistics for testing the null that the AR(1) coefficient is zero. The
fourth and the final panel reports results of the Berkowitz’s (2001) likelihood
ratio tests with p-values of the joint test of independence and normality and
p-values of the test of normality with zero mean and unit variance only (in

parentheses).

Results of means of normalised errors resemble results of MFE for point
forecast. The benchmark model DN S does poorly by reporting average nor-
malised PITs which are significantly different from zero for most of the yields.
Mean errors from the AF NSy model are, however, consistently closer to zero
than those from the DN S model, at least for yields of 10-year maturity or less
and in most cases they are significantly non-zero. For example, average of
normalised errors from the DN S model are -0.140, -0.191 and -0.302 at matu-
rities of three months, six months and five years and they are all statistically
significant. The reported numbers for the AF NSy model on the same set of
yields are -0.055, -0.107 and -0.253 which are not different from zero. The
stochastic volatility models AFFNS; — L, AFNS; — LC and AF N S5 fair well
except at the longest yield of thirty years.

Reported variances of all the models are considerably and significantly
lower than one for the shortest yield with 3-month maturity. The benchmark
DNS is the most consistent in matching the unit variance. Variances of its
errors are not significantly different from one for yields with maturities of
one year and more. The AFN S, model reports variances which are, in gen-
eral, much higher than those of the DN.S model and for most of the longer
yields variances are significantly higher than unity with large t-statistics. For
instance, the error variance for the DNS model is 1.025 for the 7-year yield
with a t-statistic of 0.205 and the error variance for the AF NSy model is 1.846
for the same yield with a t-statistic of 2.900. The stochastic volatility models
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AFNS; — L and AFNS; — LC report variances which are consistently lower
than one and also lower than those reported by the constant volatility coun-
terparts DN.S and AF NS, across all yields except for the one with 20-year
maturity. For yields with two years to twenty years maturities, the variances
are, however, not statistically different from unity. The stochastic volatility
model AF'NS3 where all the three factors drive volatility provides variances

which are even higher than those of AF'N.Sy for a number of yields.

There is little evidence of independence of normalised errors. For the
constant volatility models DN S and AF'N Sy, the estimated AR(1) coefficients
of error dynamics are significantly different from zero for all the yields except
the one with 10-year maturity. The stochastic volatility models AFNS; — L,
AFNS,; — LC and AF N Ss, however, perform slightly better by not showing
significant autocorrelation for multiple yields, e.g., yields with maturities of
3, 5 and 7 years. For the 5-year yield reported AR(1) coefficients of DNS,
AFNSy, AFNS, — L, AFNS; — LC and AFNS3 are 0.248, 0.241, 0.226,
0.224 and 0.211, respectively and associated t-statistics for testing the null of
no serial autocorrelations are 2.088, 2.137, 1.648, 1.557 and 1.340, respectively.

The above metrics look at the distributional and independence require-
ments individually and therefore, provide only a first hand idea about the
quality of the 1-month-ahead density forecasts of yields. The requirements
can jointly and therefore, more appropriately be tested by Berkowitz (2001)
tests. P-values for jointly testing the H, of independence and standard nor-
mality of normalised errors reveal that in general the models fail the overall
test. The AFNS, — LC model is the least bad as it survives the test for two
of the yields, the 5-year yield with a p-value of 0.064 and the 7-year yield with
a p-value of 0.140. Two other models, the AFNS; — L and the benchmark
DNS show significantly good calibration of one-step-ahead forecast density
for only the 7-year yield. P-values of a second test of just normality with zero

mean and unit variance (reported in parentheses) shed light on whether any
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failure is driven by autocorrelation. When only matching the standard normal
distribution in terms of first two moments (mean and variance) is of concern,
some patterns can be observed among models’ performance. The AF NS,
AFNS; — C and AF NS5 do well on yields of medium maturities of one year
to three years; the AFNS; — L and AFNS; — LC pass the test on yields of
longer maturities of five, seven and twenty years and the benchmark DNS

match the distribution well on yields of one year to seven years maturity.

Log Predictive Density Scores

The accuracy of density forecasts can be most broadly summarised and eval-
uated using log predictive density scores (LPDS). We follow the quadratic
formula of Adolfson et al. (2005) where the log predictive score of h-step

ahead predictive density at forecast origin t is defined as

St(yt+h> = _210gpt(yt+h>7

where, p;(y;.1) is the forecast density of N-dimensional vector of yields. Since

we assumed p; (45 ) to be multivariate normal, the LPDS can be expressed as

Se(ys+n) = nlog(2m) + log |Vt+h|t‘ + (Yern — yt+h\t)/v;r}l\t(yt+h - yt+h\t)a

where ., and Vi) are the mean and covariance matrix of h-step-ahead
forecast distribution, being at time t. An average LPDS over the hold-out

sample is defined as

S(h) = Ny' Y Si(yern)

where, IV}, is the number of h-step ahead forecasts. The lower the score the
better is the predictive ability of a model.

Table 3.B.13 reports the log predictive density scores of the forecasting
models. Since yields of different maturities move together scores are simi-

lar across yields. Results of 1-month-ahead forecasts are mostly inconclusive.
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For 3-month to 5-year yields, the model AFNS; — C, where curvature fac-
tor is the only driver of stochastic volatility, generates the lowest scores and
therefore, the most accurate forecast density. The constant volatility models
DNS and AFNS, are equally competitive. The pair of models, AFNS; — L
and AFNS,; — LC, in which stochastic volatility is primarily induced by the
level factor, produces inferior probability forecasts compared to their constant
volatility counterparts except for the 20-year yield. Poor scores of the models
AFNS, — L, AFNS; — LC and AF NS5 for the longest yield with 30-year
maturity resemble similar disappointing predictive performance of the models
in terms of RRMSFEs and coverage rates. The AFNS3 model where all the
three factors are responsible for generating time varying volatility turns out

to be the worst model by scoring the highest across most of the maturities.

The log predictive scores increase with forecast horizon implying that pre-
dictions are less accurate for longer horizons. Multi-step-ahead scores reveal
that some of the AF'N.S models start to show improved predictive densities.
At 3-month horizon the AFNS; — L model provides the minimum scores for
yields maturing in two to twenty years. Its scores are closely matched by
those of the AFNS, — LC model. At 6-month and 12-month horizons these
two models produce scores that are consistently lower than those of the con-
stant volatility models DNS and AF NSy across the entire cross-section of
the yield curve except for the longest yield with 30-year maturity. Interest-
ingly, a comparison between the two constant volatility models indicates that
log predictive scores of the AFN S, are consistently higher than those of the
DN S benchmark at forecast horizons of three months and more. This together
with previous results imply that adopting no-arbitrage restriction appears to
deteriorate prediction of forecast density at longer horizons, but the loss is
more than compensated by gains through considering time-varying volatility,
particularly that driven by the level factor. Even the AFNS; model which
performs badly at 1-month horizon consistently outperforms the AFNS, at
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12-month horizon, but fails to beat the DN S at many maturities.
Differences in log predictive scores of a model and that of the benchmark
DNS are reported in Table 3.B.14 and Table 3.B.15. We identify sig-
nificant superior and inferior performance against the benchmark by using
Giacomini and White (2006) test of equal predictive ability. The loss func-
tions used in the tests are log predictive scores. Negative differences indicate
that the calibrated predictive density of a model is better than that of the
DN S benchmark while positive differences mean worse approximation on the
part of the model. At 1-month-horizon the models AF NSy and AFNS; — C
have significant gains over the DN .S at the short end of the curve. The models
AFNS; — L and AFNSy — LC generate density forecasts that are worse than
those of the benchmark for all yields except the 20-year yield where they gain
significantly. It is difficult to find significance at longer horizons. The only
significant gains come from the models AFNS; — L and AFNS; — LC' when
forecasting the 20-year yield at 3-month horizon. The 3- and 6-month-ahead
density forecasts of these two models are, however, significantly inferior to

forecasts of the DN .S benchmark for the longest yield of 30-year maturity.

3.5 Conclusion

Current and past literature on term structure of interest rates heavily focus
on comparing models in terms of point forecasts of either the mean or the
variance of the yields. These are often of limited values as they do not account
for uncertainties surrounding a prediction. Density forecasts which provide a
full description of predictive densities of a model are more attractive and desir-
able. Apart from common moments they allow for computation of a range of
uncertainty related measures such as quantiles. There is, however, an ongoing

search for a term structure model which can calibrate distribution of future
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yields reasonably well. Following the failure of the well-known affine models in
this context, as documented in Egorov et al. (2006), it is time to look for alter-
native models. Arbitrage-free Nelson-Siegel models with stochastic volatilities,
proposed in Christensen et al. (2010), are certainly worthy candidates. They
adopt several properties which are attractive from both theoretical and empir-
ical perspectives. In particular, they are parametrically parsimonious, easily
estimable and tractable, arbitrage-free and modeller of time-varying volatility
of yields. This chapter extensively analyses and evaluates forecast performance
of different specifications of arbitrage-free Nelson-Siegel models, both in terms

of point forecasts and density forecasts.

Results of point forecasts fare well in favour of arbitrage-free Nelson-Siegel
Models. Using the same data set of U.S. bond yields but a different forecast
design we find similar conclusions as in Christensen et al. (2011)'": adopt-
ing no-arbitrage restrictions helps in improving forecast accuracy of dynamic
Nelson-Siegel Models. Further predictive gains can be achieved by modelling
stochastic volatility, particularly from forecasting at longer horizons. The
simple benchmark DN S which does not rectify for risk-free arbitrage oppor-
tunities and time-varying volatilities consistently reports mean forecast errors
which are higher than those of the AF NS counterparts and root mean square
errors which are relatively higher across all forecast horizons. Models where
level is one of the drivers of stochastic volatility, in particular, show superior
predictive ability. While the AFNS; — LC model has clear advantage in 3-
and 6-month-ahead forecasts, the AF NS3 model, where all the three factors
generate stochastic volatility, provides the most competitive forecast at the
longest horizon of twelve months. There is, however, a caveat of using AFN.S
with stochastic volatility to our sample; they fail miserably in fitting and fore-

casting the yield with the longest maturity of 30 years. This is not surprising

17 We opt to use a rolling-window rather than an expanding-window scheme. We also
curtail the estimation sample to have a longer forecast period.
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considering the fact that these models have been found to show little flexibil-
ity in capturing any tilt at the longest end of the yield curve in-sample. Very
similar in-sample fit and out-of-sample forecast performance of AF'NSy and
AFNS; — C imply that curvature alone accounts for insignificant proportion

of time-varying volatility.

Implications of findings for density forecasts are somewhat different. We
use a number of metrics and tests to evaluate predictive densities of yields
generated by the competing models. Results of a joint test of independence,
zero mean and unit variance of normalised errors reveal that all models’ predic-
tion of 1-month-ahead forecast distribution is far from satisfactory. However,
when serial correlation is ignored and just matching the first two moments of
the standard normal distribution is considered, the constant volatility models
DNS and AFNS, show good performance for medium-long maturity yields
and stochastic volatility models AFNS; — L and AFNSy; — LC' exhibit good
performance for a few long maturity yields. Density forecasts of short rates
with maturities below one year are inferior for all the Nelson-Siegel models.
These findings are also supported by visual representations of PIT histograms.
When models are compared in terms of forecast intervals, all models are found
to produce very wide intervals for short yields. Nonetheless, constant volatil-
ity models fare better than their stochastic volatility counterparts in matching
the true coverage probability for 1-month-ahead forecasts. Calibration of pre-
dictive intervals of stochastic volatility models, however, improves with longer
forecast horizons. Evaluation of density forecasts in terms of log predictive
scores leads to similar findings: better predictive densities for constant volatil-
ity models and AF N.S;—C' at one-month horizon and more competitive density
forecasts for the AF'N'S models with stochastic volatilities at longer forecast
horizons. Gains over the benchmark DN S are, however, rarely statistically
significant. Disappointing performance of stochastic volatility AFN.S models

for the longest yield of 30 year maturity is confirmed by all means of density
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forecast evaluation.

Overall, there are evidence of benefits from accounting for time-varying
volatility which is spanned by three latent factors of arbitrage-free Nelson-
Siegel models. But the models’ generated joint predictive densities of yields
are far from convincing. Further investigation is required to check if incorpo-
ration of unspanned stochastic volatility, as advocated by Collin-Dufresne et

al. (2009), can improve density forecasts of such models.
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3.A Appendix C: Figures

Jan 2002

Maturity (in months)

Time

Figure 3.A.1: The US yield curves

Note: The data are Fama-Bliss unsmoothed zero-coupon bond yields for the period January

1987 - December 2002.



110

‘200 I9qUIadd( 0} 9661 Areniqo,] st porrod 3SeI910J O, ‘SOILINIBW PIjId[as

)M SP[OIA PUO( JO $1SBIOIOJ PRSR-TIUOW-T U0 Pose( SULIojsuel) [erdojur £41[1qeqord o1} JO SHUNOD (109D 9T SWRISO)SIY O], :PI0N

[PPOW § N/ (7 U} AQ PojeIoussg SWRISOIST] T Id ¢V '€ I3

ot

plaIA reak-og ppaIA reak-0z pleIA reak-0T plaIA reak-, plaIA reak-g

N
o
o

ot

ST

0c

plaIA reak-g plaIA reak-z ploIA reak-T plaIA yuow-9 plaIA yiuow-g



111

‘200 I9qUIddd( 0} 9661 A1eniqo,] st porrod 3SeI910] O, ‘SOILINIBW PIjId[s

)M SP[OIA PUO( JO $1SBIDIOJ PRSYR-TIUOW-T U0 Pose( SuLIojsuel) rerdojur £411qeqord o1} JO SHUNOD [P 9T SWRISO)SIY O], :DI0N

[Ppowt 0 A7 .7}/ 94} Aq pojelsussd sweIso)sty J1d €V ¢ oInsig

“
n
S
o
-
*
S
©
IS}
<
S
~
S
-

ot
ot
ST

ST
0z

0z 4
ploIk 1eak-0g plelA reak-0z plaIk 1eak-0T ploIk teak-, plolA reak-g

ot

ST

0c

ploIA 1eak-g ploIA reak-z pIaIA 1eak-T plaIA Yuow-9 plRIA Yuow-g



112

‘200 I9qUIadd( 0} 9661 Areniqo,] st porrod 3SeI910J O, ‘SOILINIBW PIjId[as

)M SP[OIA PUO( JO $1SBIDIOJ PRSYR-TIUOW-T U0 Pose( SULIoJsueI) [erdojur £41[1qeqord o1} JO SHUNOD (109D 9T SWRISO)SIY O], :DI0N

[Ppowt 7 — IG AT J Y U} AQ pojeIouss SWeISOISY [[d F V¢ 2InSL]

ploIk 1eak-0g plelA reak-0z plaIk 1eak-0T ploIk teak-, plolA reak-g

S0 oo T S0 oo
S S
ot ot
ST ST
(4 0c

ploIA 1eak-g ploIA reak-z pIaIA 1eak-T plaIA Yuow-9 plRIA Yuow-g



113

‘200 I9qUIadd( 03 9661 A1eniqo,] st porrod 3SeI9I10] O, ‘SOILINIBW PIjId[os

)M SP[OIA PUO( JO $1SBIOIOJ PRSYR-TIUOW-T U0 Pose( SULIojsueI) [erdojur £41[1qeqord o1} JO SHUNOD (109D 9T SWRISO)SIY O], :DI0N

[Ppowr ) — G NV O3 A pojerauss swreiso)sty I1d GV ¢ oImsig

T S0 o] T 80 90
0
S
oT
ST
0z
ploIk 1eak-0g plelA reak-0z plaIk 1eak-0T ploIk teak-, plolA reak-g
S0 0 T S0 0
0 0
S S
ot ot
ST ST
(4 0c
ploIA 1eak-g ploIA reak-z pIaIA 1eak-T plaIA Yuow-9 plRIA Yuow-g




114

‘200 I9qUIadd( 03 9661 A1eniqo,] st porrod 3SeI9I10] O, ‘SOILINIBW PIjId[os

)M SP[OIA PUO( JO $1SBIDIOJ PR R-TIUOW-T U0 Pose( SULIoJsueI) [erdojur £)1[1qeqord o1} JO SHUNOD [P 9T SWRISO)SIY O], :DI0N

Ppow )7 — SN AV oY) Aq pejersussd swelso)sty J1d 9y ¢ oInsrg

ploIk 1eak-0g plelA reak-0z plaIk 1eak-0T ploIk teak-, plolA reak-g

ot

ST

0c

ploIA 1eak-g ploIA reak-z pIaIA 1eak-T plaIA Yuow-9 plRIA Yuow-g



115

‘200 I9qUIddd( 0} 9661 A1eniqo,] st porrod 3SeI910] O, ‘SOILINIBW PIjId[s

)M SP[OIA PUO( JO $1SBIDIOJ PRSYR-TIUOW-T U0 Pose( SuLIojsuel) rerdojur £411qeqord o1} JO SHUNOD [P 9T SWRISO)SIY O], :DI0N

[Ppow €GN/ 1/ 94} AQ pojelauss sweIso)sty J1d L V'€ oInsig

ot

ST

0z
ploIk 1eak-0g plelA reak-0z plaIk 1eak-0T ploIk teak-, plolA reak-g

S0 oo T S0 oo
S S
ot ot
ST ST
(4 0c

ploIA 1eak-g ploIA reak-z pIaIA 1eak-T plaIA Yuow-9 plRIA Yuow-g



116

'000¢ Toquuedo(J
03 9661 \AHNS.HQ.@HH St @OE@Q 388O9.I0J 9 T, "UOoIjoutj \mﬁmgwﬁ OAT)RINIUIND [RULIOU PJIePUR]S o) JO I9SI9AUT 97 ST H\AHV pue SIOLID 358I9.10]

PeROUR-IUOW-T JO SULIOJSURI} [RIS0jul A31[iqeqord oy sojousp *2 o1oym (*2);_¢ Se POuyop dIe SIOLIO JSBIVIOJ POSI[RULIOU O], :J0N

[Ppow ¢ A/ (7 oY) AQ pojeIsuss SIOLIS JSRIAIOJ PASI[RULION :R Y '¢ oINS

00T 0s 0 00T 0s 0 00T 0S 0 00T 0S 0 00T 0S 0
€ T € € €
z - “ z
0
I
T T T
T 0
0 0 0
T
I
T T z T
z € 4 € z
ploIk reak-0g ploIk 1eak-0z plaIA reak-oT ploIA reak-, pleIA reak-g
00T 0s 0 00T 0s 0 00T 0S 0 00T 0S 0 00T 0S 0
€ s € € ST
- C
C € z
¢ ST
T <
T -
0 T T
0 S0
T 0
T ° °
4 T 50
€ I 4 T T

paIk 1eak-g pIaIk reak-g pIaIk 1reak-T pieIA Yluow-9 pleiA yuow-g



117

200G IoquuILoo(J

0} 9661 Areniqo, st porrod 3SeO9I0J O], "UOIPIUN] AJISUOP SAIR[NUND [EULIOU PIBPURIS O} JO OSIDAUI 9} SI ;_ PUR SIOLIO JSBIIO]

1—

PeOUR-IUOW-T JO SULIOJSURI} [RISojUL A31[iqeqoid oy sejoudp *2 o1oym (*2);_¢ Se POuyop dIe SIOLIO JSBIVIOJ POSI[RULIOU O], :}0N

[Ppowt 0§ A7 /7 U} AQ POJRIOUSS SIOLIO 1SRIDIOJ PISIRULION 6V € 9INSI

00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ S0 - - s
z 0 g
50 “ “ z
1-
T T
0 0 0
ST 0
! T
¢ 4 4
z 52z z
€ € 14 14 €
pIaIA 1eak-0g pIaIA reak-0z pIaIA 1eak-0T pIaIA 1eak-, pIaIA 1eak-g
00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ i i i €
€ -
4 € € z
z
4T 4 qC
T T
40 T 4T
0 0
T 0 0
T
z 2 T T '
€ € 4 4 I

ploIk reak-g ploIA reak-z plaIk 1eak-T plaIA Yuow-9 plaIA Yuow-g



118

0} 9661 Areniqo, st porrod 3SeO9I0f Y, "UOIPIUN] A}ISUOP SATJR[NWIND [RULIOU PIBPUR)S OU) JO OSIOAUI JTf} ST

200G IoquuILd9(]

[_® PUB SIOIID }5BIAIOJ

PeOUR-IUOW-T JO SULIOJSURI} [RISojul A31[iqeqoid oy sojoudp *2 o1oym (*2);_¢ Se POuyop oIk SIOLIO JSBIVIOJ POSIRULIOU O], :9}0N

Ppow 7 — G N JV U} AQ PRIRIOUSS SIOLIO 1SRISI0J PISIRULION (O] ¢ oInsIq

00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ € € €
Exa z 4 z
A T T
1-
ST 0 0
[
nT- T T
S0 E q1c 14
0 4 € €
pIaIA 1eak-0g pIRIA reak-0z pIaIAk 1eak-0T pIaIA 1eak-, plaIA reak-g
00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ - € S oAl
I I
z - z
48T ST
T : T 1 T
do 0 450~ S0
410 0
T T
4150 S0
I 4 T T
ploIk reak-g ploIA reak-z plaIk 1eak-T plaIA Yluow-9 plaIA Yuow-g



119

200G IoquuILd9(]

0} 9661 Areniqo, st porrod 3SeO9I0J O], "UOIPIUNJ AJISUOP SAIJR[NUND [EULIOU PIBPURIS O} JO OSIDAUI 9} SI ;_H PUR SIOLIO JSBIIO]

1—

PeOUR-IUOW-T JO SULIOJSURI} [RISojUL A31[iqeqoid oy sojoudp *2 o1oym (*2);_¢ Se POuyop dIe SIOLIO JSBIVIOJ POSI[RULIOU O], :9}0N

[Ppow ) — G N JV Ul £q PoIRIOUSS SIOLIO 1SRIQI0J POSIRULION [T Y ¢ oIN3Iq

00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ T - - s
€
¢ 0
z z .
1-
T 1-
0 [ 0
z 0
! T
¢ 4 4
¢ [4
€ 14 14 14 €
pIaIA 1eak-0g pIRIA reak-0z pIaIAk 1eak-0T pIaIA 1eak-, plaIA reak-g
00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
€ € - - €
4 4 € € z
4T T 4 qC
1-
40 0 T 4T
0
T T 0 0
z z T 1 E
€ € 4 4 14

ploIk reak-g ploIA reak-z plaIk 1eak-T plaIA Yluow-9 plaIA Yuow-g



120

0} 9661 Areniqo, st porrod 3SeO9IO0f Y, "UOIPIUN] A}ISUOP SAIJR[NWIND [RULIOU PIBPUR)S OU) JO OSIOAUI 9} SI

200G IoquuILo9(]

[_® PU® SIOIId }5BIAIOJ

PeOUR-IUOW-T JO SULIOJSURI} [RISojul A31[iqeqoid oy sojoudp *2 o1oym (*2);_¢ Se POUyop oIe SIOLIO JSBIVIOJ POSI[RULIOU O], :0}0N

Ppow )7 — SN AV oY) AQ PojeIduas SIOLID JSRIDIO) POSI[RULION g1 V'€ 9InSI

00T 0s 0 00T 0S 00T 0s 0 00T 0s 0 00T 0S 0
Exal € € €
z z 4 z
T T
48T T
0 0
T [
T T
S0 T 1z Z
0 4 € €
pIaIA 1eak-0g pIRIA reak-0z pIaIAk 1eak-0T pIaIA 1eak-, plaIA reak-g
00T 0s 0 00T 0S 00T 0s 0 00T 0s 0 00T 0S 0
€ € S oAl
I I
4 4
48T ST
T T {1- T
Jo 0 450~ S0
410 0
T T
4150 S0
I 4 T T
ploIk reak-g ploIA reak-z plaIk 1eak-T plaIA Yluow-9 plaIA Yuow-g



121

200G IoquuILd9(]

0} 9661 Areniqo, st porrod 3SeO9I0J O], "UOIPIUNJ AJISUOP SAIJR[NUND [EULIOU PIBPURIS O} JO OSIDAUI 9} SI ;_H PUR SIOLIO JSBIIO]

1—

PeOUR-IUOW-T JO SULIOJSURI} [RISojUL A31[iqeqoid oy sojoudp *2 o1oym (*2);_¢ Se POUyop dIe SIOLIO JSBIVIOJ POSI[RULIOU O], :0}0N

[Ppow £§ A/ U} AQ POIRIOUSS SIOLIO )SRIDI0J PISI[RULION £V ¢ 0In3Iq

00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
Exal - - - s
€ € €
¢ 4 4 ¢ 4
T T T
ST 0
[¢] [ 0
T T T z T
4 4 4
S0 € € 14 €
pIaIA 1eak-0g pIRIA reak-0z pIaIAk 1eak-0T pIaIA 1eak-, plaIA reak-g
00T 0s 0 00T 0S 0 00T 0s 0 00T 0s 0 00T 0S 0
id i ld id €
€ €
€ & z
4 C
z
J1- T [ T
1-
40 0 Jt 0
0
T T
0 T
1z z T
€ € 4 T 14

ploIk reak-g ploIA reak-z plaIk 1eak-T plaIA Yluow-9 plaIA Yuow-g



3.B Appendix D: Tables

Table 3.B.1 Descriptive statistics, the US yield curves

Maturity = Mean  Std dev  Skewness  Kurtosis p(l)  p(12)  p(24)
3 5.085 1.744 -0.060 2.82 0976 0.508 0.002

6 5219 1.755 -0.140 2.789 0.975 0.509 0.013

9 5.329 1.763 -0.168 2.747 0973 0.517  0.036
12 5.481 1777 -0.196 2.766  0.971  0.520  0.050
18  5.703 1.735 -0.195 2.760 0.968  0.526  0.089
24 5.809 1.660 -0.180 2.742  0.964 0528 0.127
36 6.063 1.552 -0.116 2.695 0.960 0.538  0.206
48 6.257 1.481 -0.083 2.592  0.959 0.555  0.274
60  6.361 1.440 -0.020 2.442  0.960 0.567  0.326
84  6.604 1.382 0.046 2207 0.964 0.607 0.410
96 6.699 1.368 0.061 2129  0.965 0.627  0.451
108 6.741 1.365 0.064 2.062 0.967 0.640 0.472
120 6.735 1.356 0.062 1.984 0968 0.652  0.493
180  7.164 1.235 0.213 1.887 0970 0.672  0.542
240 7.248 1.134 0.076 1.776 0970 0.696  0.582
360 6.765 1.212 0.059 1.743 0972 0.712  0.589

122

Notes: The data are monthly Fama-Bliss unsmoothed US zero-coupon bond yields. The

sample period is January 1987 to December 2002 and the maturities are reported in months.

The last three columns report sample autocorrelations at lags of 1, 12 and 24 months.



123

Table 3.B.2 Loadings of US yields on first three principal components

Maturity Loadings on

(in months) First PC  Second PC  Third PC
3 -0.279 0.353 -0.541

6 -0.288 0.316 -0.264

9 -0.294 0.277 -0.090

12 -0.298 0.255 0.053

18 -0.296 0.184 0.200

24 -0.286 0.116 0.307

36 -0.269 0.018 0.308

48 -0.256 -0.064 0.268

60 -0.247 -0.116 0.241

84 -0.231 -0.202 0.108

96 -0.226 -0.236 0.040

108 -0.222 -0.262 -0.020

120 -0.217 -0.287 -0.063

180 -0.190 -0.309 -0.121

240 -0.166 -0.326 -0.234

360 -0.176 -0.345 -0.426

% explained 90.03 9.30 0.45

Notes: The table reports eigenvectors of the first three principal components of US zero-
coupon bond yields. The final row shows share of variation in all yields explained by each

principal component. The sample is from January 1987 to December 2002.

Table 3.B.3 Estimates of parameters of independent-factor DNS model

Mean (¢)  AR(1) coefficient matrix (¢) FError variance matrix (£2)

@y 0.0699 ¢, 0.9853 O 6.17x106
[ty -0.0246 ¢y 0.9737 Qoo 1.11 x1075

gy -0.0111  ¢gg 0.9259 Q33 5.57 x107°
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Table 3.B.4 Estimates of parameters of the Arbitrage-free Nelson-Siegel

(AFNS) models with independent-factors specification

Parameters AFNS models with independent factors

AFNSy AFNS;—L AFNS;1—C AFNS;—LC AFNSs
or 0.0729 0.0448 0.0520 0.0449 0.0110
05 -0.0282 -0.0112 -0.0116 -0.0180 0.0287
or -0.0096 -0.0024 0.1018 0.0772 0.0550
wD 0.0629 0.0439 0.0919 0.0442 0.0993
wL 0.2121 0.0997 0.0992 0.1100 0.1999
kb 1.1092 1.1002 1.0988 0.8999 0.4995
of 0.0051 0.0481 0.0051 0.0484 0.0465
ok 0.0110 0.0119 0.0111 0.0116 0.0656
ok 0.0263 0.0260 0.0816 0.0961 0.1364
o, : : - - -
ot - - : : :

5 - - 0.0008 - -
B - 0.9981 - 1.9755 -
o5, - - - - -
B - - 0.0009 - -
B4 - 0.0999 - 0.0006 -
o5, : - : - :
o5, - - - - -
0% - 1965 - 1985 1091
03 - - - - 0.0494
03 - - 0.1154 0.0800 0.0451

A 0.5980 0.8190 0.6609 0.8138 0.4942

Max Log L 16280.0 16509.5 16260.1 16496.0 16023.9

Notes: The table reports estimated mean vector under P-dynamics 67, the drift matrix
KP, the time-invariant volatility matrix ¥, the volatility sensitivity parameters 3, the mean
vector under Q-dynamics 0% and the A parameter for different independent-factor specifica-
tions of the arbitrage-free Nelson-Siegel (AFNS) models. Estimations are based on monthly
yields data from January 1987 to December 2002. The last row reports the maximum

log-likelihood values.



Table 3.B.5 RMSE of fitted yields for the Nelson-Siegel Models
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Maturity Nelson-Siegel models with independent factors

(in months) DNS AFNSy, AFNS;—L AFNS;—-C AFNS,—LC AFNS;

3 12.26 18.49 11.62 16.17 11.55 19.86

6 1.09 7.09 0.85 5.40 1.13 7.82

9 7.13 3.47 7.28 4.49 7.12 4.99

12 11.19 9.60 9.94 9.85 9.77 9.93

18 10.76 10.43 8.40 10.43 8.23 10.41

24 5.83 5.93 5.06 5.66 4.86 7.21

36 1.51 1.98 2.22 1.93 2.44 3.82

48 3.92 3.72 4.13 3.80 4.22 3.90

60 7.14 6.82 5.85 7.15 5.84 4.98

84 4.25 4.29 4.03 4.37 4.02 4.51

96 2.09 2.11 1.08 2.15 1.08 4.74

108 2.94 3.02 4.88 3.03 4.90 6.45
120 8.51 8.23 12.73 8.06 12.76 11.37
180 29.45 32.66 16.70 33.4 16.61 17.91
240 35.00 42.60 17.36 43.85 17.23 13.02
360 37.61  22.04 49.81 22.36 50.14 74.74

Notes: The table reports root mean squared errors (RMSEs) of fitted yields with different

maturities under independent-factors specification of variants of Nelson-Siegel models. The

DN S refers to a standard constant-volatility dynamic Nelson-Siegel model of Diebold and

Li (2006), the AF NSy refers to the constant-volatility arbitrage-free Nelson-Siegel model

of Christensen et al. (2011) and AFNS; refers to the arbitrage-free Nelson-Siegel model

with stochastic volatility of Christensen et al. (2010), ¢ denoting the number of factors

driving time-varying volatilities and L and C' denoting the level and curvature factors,

respectively. The bold entries represent minimum RMSEs across maturities. The sample

period is January 1987 to December 2002.
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Table 3.B.6 Real-time mean forecast errors, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year
1-month-ahead
AFNSo -1.778 -3.795 -3.191 -5.840 -4.347
AFNS1-L 3.763 -1.724 -4.393 -6.133 -1.066
AFNS-C -2.130 -4.083 -3.387 -5.947 -4.428
AFNSa-LC 3.704 -1.687 -4.281 -6.051 -1.037
AFNS3 3.745 -1.934 -5.140 -7.880*%*%  -3.322
DNS -5.842%*%  _7.562*%*  -6.596%  -8.948%*  _7.319%*
3-month-ahead
AFNSo -10.635 -12.233 -10.911  -12.443 -10.094
AFNS1-L 0.815 -4.634 -7.042 -7.928 -1.959
AFNS-C -11.797 -13.305 -11.848  -13.237 -10.831
AFNSo-LC 0.908 -4.641 -7.224 -8.321 -2.409
AFNS3 -3.328 -8.288 -10.571  -12.605 -7.935
DNS -19.749 -21.422 -20.168  -21.601 -19.001
6-month-ahead
AFNSo -21.821 -22.769 -20.392 -20.473 -17.174
AFNS1-L -0.463 -5.962 -8.269 -8.585 -1.974
AFNS.-C -24.527 -25.519 -23.200 -23.314 -19.976
AFNSy-LC -0.454 -6.562 -9.673 -10.602 -4.000
AFNS3 -11.325 -15.644 -17.172  -18.842 -14.371
DNS -37.881 -39.362 -37.653  -38.116 -34.665
12-month-ahead
AFNSo -37.224 -35.959 -30.139  -26.045 -20.664
AFNS1-L 2.827 -0.145 1.204 4.702 12.763
AFNS1-C -42.327 -41.073 -35.242  -31.031 -25.469
AFNSo-LC 1.847 -2.273 -2.395 0.062 8.169
AFNS3 -18.514 -20.617 -19.221  -18.670 -14.205
DNS -66.867 -66.100 -60.997  -57.600 -52.433

Notes: The entries are mean forecast errors (actual yields minus forecasts) reported in basis
points. *¥¥ ¥ and "* imply significance of a test of zero mean forecast error at 1%, 5%
and 10% level of significance, respectively. The test statistic is a t-statistic calculated using

Newey-West standard errors.
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Table 3.B.7 Real-time mean forecast errors, Feb 1996 - Dec 2002 (Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year
1-month-ahead
AFNSo -7.461%* -2.905 -10.288%** 49 518*** 6.393*
AFNS1-L -0.398 1.640 -16.122%%* 1,626 ST4.702%%*
AFNS-C -7.558%%* -3.033 -10.452%*%*  49.305%** 6.165*
AFNSa-LC -0.412 1.634 -16.111°%%*  1.647 -74.690%**
AFNS3 -2.723 -0.581 S19.142%%%  _14.205%**%  _111.337%**
DNS -10.188*** 5552 S13.574%*F* 37 154%** -23.696%**
3-month-ahead
AFNSo -11.931 -6.473 -12.951 48.208*** 5.718
AFNS1-L 0.084 2.926 -14.249 3.858 -72.614%%*
AFNS-C -12.658 -7.220 -13.729 47.381*** 4.875
AFNSo-LC -0.317 2.611 -14.477 3.733 -72.710%**
AFNS3 -7.362 -5.131 -23.435%* S17.698%**F  _114.233%**
DNS -20.355 -14.770  -21.986** 29.715%** -30.811%%*
6-month-ahead
AFNSo -17.808 -11.583  -17.309 45.047** 3.251
AFNS1-L 1.020 4.362 -12.514 5.650 -70.937***
AFNS.-C -20.462 -14.080 -19.631 42.980%* 1.271
AFNSy-LC -0.654 2.996 -13.614 4.861 -71.614%%*
AFNS3 -14.304 -12.288  -30.561* -23.952 -119.524***
DNS -34.830 -28.555  -35.209* 17.157 -43.147F*F*
12-month-ahead
AFNSo -19.801 -13.282  -19.000 43.535 2.409
AFNS1-L 16.189 19.096 1.394 17.446 -60.638%**
AFNS1-C -24.235 -17.404  -22.799 40.180 -0.800
AFNSo-LC 12.311 15.811 -1.368 15.381 -62.375%**
AFNS3 -15.786 -15.324  -35.047 -29.723 -125.095%**
DNS -51.647 -45.389  -52.290 -0.362 -60.819%**

Notes: The entries are mean forecast errors (actual yields minus forecasts) reported in basis
points. *¥¥ ¥ and "* imply significance of a test of zero mean forecast error at 1%, 5%
and 10% level of significance, respectively. The test statistic is a t-statistic calculated using

Newey-West standard errors.
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Table 3.B.8 Real-time root mean squared forecast errors, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year
1-month-ahead
DNS 23.762 26.465 31.006 34.170 31.577
AFNSo 0.964 0.960** 0.990 0.994 0.985
AFNS;-L 1.004 0.961 0.963**  0.964**  0.971
AFNS:-C 0.958 0.956** 0.982 0.982 0.971%*
AFNSo-LC 1.004 0.959 0.960**  0.963**  0.972
AFNS3 0.978 0.969 0.994 0.997 0.990
3-month-ahead
DNS 57.865 63.178 67.123 68.763 62.618
AFNSo 0.946 0.958 0.974 0.976 0.973
AFNS;-L 0.957 0.949 0.957 0.957 0.961
AFNS:-C 0.940%* 0.952 0.964 0.963 0.958
AFNSs-LC 0.954 0.944 0.949 0.947 0.952
AFNS3 0.958 0.969 0.987 0.982 0.977
6-month-ahead
DNS 101.817 106.726 108.57 104.562  94.269
AFNSo 0.963 0.967 0.972 0.966 0.960
AFNS;-L 0.943 0.941 0.951 0.949 0.949
AFNS.-C 0.955 0.960 0.966 0.961 0.957
AFNSs-LC 0.940 0.936 0.943 0.937 0.939
AFNS3 0.949 0.957 0.972 0.967 0.960
12-month-ahead
DNS 174.863 176.841 171.870  153.302 133.706
AFNSo 0.984 0.988 0.995 0.994 0.990
AFNS;-L 0.921 0.924 0.934 0.928 0.924
AFNS.-C 0.969 0.971 0.975 0.971 0.966
AFNSs-LC 0.919 0.919 0.923 0.912 0.908
AFNS3 0.898 0.906 0.922 0.919 0.910

Notes: The first row of each panel reports root mean squared forecast errors (in basis points)
for the benchmark DNS. The rest of the rows report RMSFE relative to DNS (RRMSFE).
4 and "* imply significance of the Giacomini and White (2006) test of equal MSFE of a
model and the benchmark at 1% and 5% level of significance, respectively. The standard

errors of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.9 Real-time root mean squared forecast errors, Feb 1996 - Dec 2002

(Cont.)
Maturity

Model 5 year 7 year 10 year 20 year 30 year
1-month-ahead
DNS 31.379 28.858 28.217 47.893 37.534
AFNSo 0.970**  0.987 0.959%*%  1.207**  0.829
AFNS;-L 0.943 0.976 1.037%*  0.586**  2.144**
AFNS1-C 0.959**  0.979 0.952**  1.201**  0.819
AFNSo-LC 0.947 0.981 1.037**  0.586*%*  2.141**
AFNS3 0.961 0.995 1.109*%*  0.610%*  3.048**
3-month-ahead
DNS 59.053 53.087 48.865 51.135 47.526
AFNSo 0.965 0.979 0.946 1.256**  0.826
AFNS;-L 0.944 0.963 0.934* 0.761* 1.705%*
AFNS.-C 0.953 0.967 0.938* 1.235%*  0.807
AFNSo-LC 0.940 0.960 0.932%* 0.757* 1.701%*
AFNS3 0.958 0.971 1.006* 0.786 2.498%*
6-month-ahead
DNS 87.412 77.755 71.252 58.054 64.889
AFNSo 0.952 0.959 0.921 1.255 0.795
AFNS;-L 0.932 0.937 0.881* 0.879 1.296**
AFNS1-C 0.950 0.954 0.919 1.217 0.775
AFNSo-LC 0.926 0.932 0.881* 0.874 1.299**
AFNS3 0.936 0.933 0.943 0.907 1.946**
12-month-ahead
DNS 117.674 104.695  97.387 70.613 85.278
AFNSo 0.974 0.973 0.921 1.221 0.747
AFNS;-L 0.896 0.892 0.795 0.899 0.914
AFNS{-C 0.953 0.951 0.907 1.181 0.731
AFNSs-LC 0.886 0.885 0.797 0.896 0.926
AFNS3 0.880 0.867* 0.854* 0.904 1.564**

Notes: The first row of each panel reports root mean squared forecast errors (in basis points)
for the benchmark DNS. The rest of the rows report RMSFE relative to DNS (RRMSFE).
P4 and * imply significance of the Giacomini and White (2006) test of equal MSFE of a
model and the benchmark at 1% and 5% level of significance, respectively. The standard

errors of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.10 Real-time forecast coverage Rates, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year 5 year 7 year 10 year 20 year 30 year
1-month-ahead
AFNSy 0.928 0.867 0.771 0.675 0.675 0.614 0.566 0.542 0.530 0.614
AFNS1-L 0.976 0.940 0.880 0.843 0.795 0.807 0.759 0.747 0.807 0.313
AFNS.1-C 0.916 0.867 0.771 0.663 0.663 0.614 0.566 0.542 0.53 0.627
AFNSo-LC 0.976 0.952 0.880 0.843 0.807 0.795 0.771 0.747 0.795 0.313
AFNS3 0.952 0.916 0.855 0.759 0.735 0.663 0.602 0.530 0.506 0.108
DNS 0.94 0.916 0.807 0.735 0.723 0.723 0.675 0.614 0.614 0.747
3-month-ahead
AFNS 0.802 0.704 0.593 0.568 0.568 0.556 0.519 0.519 0.543 0.630
AFNS1-L 0.864 0.864 0.802 0.716 0.728 0.716 0.704 0.802 0.790 0.506
AFNS.1-C 0.802 0.716 0.605 0.593 0.593 0.543 0.543 0.506 0.556 0.642
AFNS>-LC 0.864 0.864 0.815 0.741 0.716 0.728 0.741 0.790 0.815 0.494
AFNS3 0.864 0.765 0.716  0.667 0.642 0.568 0.568 0.469 0.407 0.148
DNS 0.827 0.778 0.716  0.667 0.679 0.617 0.654 0.667 0.728 0.716
6-month-ahead
AFNS 0.654 0.577 0.513 0.449 0436 0.462 0.410 0.449 0.692 0.577
AFNSqi-L 0.769 0.679 0.603 0.564 0.615 0.667 0.705 0.833 0.859 0.564
AFNS.1-C 0.679 0.564 0.513 0.474 0.449 0410 0.410 0.423 0.692 0.564
AFNS»-LC 0.769 0.679 0.603 0.564 0.641 0.705 0.731 0.833 0.859 0.564
AFNS3 0.718 0.628 0.538 0.500 0.513 0.474 0.487 0.385 0.308 0.205
DNS 0.731 0.654 0.603 0.500 0.513 0474 0.526 0.564 0.782 0.577
12-month-ahead
AFNSo 0.486 0.458 0.458 0.417 0.458 0.417 0.403 0.431 0.694 0.653
AFNSq-L 0.569 0.528 0.500 0.583 0.667 0.736 0.806 0.847 0.903 0.736
AFNS.1-C 0.486 0.472 0.458 0.431 0.458 0.361 0.403 0.431 0.708 0.639
AFNSo-LC 0.569 0.514 0.514 0.611 0.667 0.736 0.806 0.861 0.903 0.736
AFNS3 0.569 0.556 0.528 0.514 0.542 0.486 0.486 0.389 0.389 0.181
DNS 0.528 0.514 0.486 0.472 048 0.375 0.431 0.444 0.806 0.556

Notes: The table reports coverage probabilities or proportion of actual yields which fall
within 70% intervals. The upper and lower bounds of the interval are the 85th and 15th

percentiles of the predictive densities.
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Table 3.B.11 Tests of normalised errors of 1-month-ahead forecasts, Feb 1996

- Dec 2002
Maturity

Model 3 month 6 month 1 year 2 year 3 year
(a) Mean
AFNSq -0.055 (-0.751)  -0.107 (-1.199) -0.038 (-0.354) -0.117 (-0.922) -0.085 (-0.680)
AFNS1-L 0.096 (1.673) -0.031 (-0.488) -0.079 (-1.028) -0.118 (-1.315)  0.001  (0.014)
AFNS1-C 20.062  (-0.841)  -0.120  (-1.307) -0.046  (-0.428) -0.125  (-1.000) -0.090  (-0.730)
AFNS,-LC 0.080  (1.560)  -0.041  (-0.630) -0.091  (-1.185) -0.133  (-1.468) -0.011 (-0.122)
AFNS3 0114  (1.853)  -0.092  (-1.144) -0.212% (-1.968) -0.257* (-2.022) -0.099  (-0.737)
DNS -0.140%  (-2.228)  -0.191*  (-2.571) -0.125  (-1.409) -0.192  (-1.864) -0.168 (-1.654)
(b) Variance
AFNSq 0.447%*  (-3.948)  0.654 (-1.480) 0.967 (-0.175) 1.322 (1.079)  1.267  (0.988)
AFNS1-L 0.269%*  (-10.721)  0.340** (-6.038) 0.486** (-3.487) 0.664 (-1.830) 0.673  (-1.694)
AFNS1-C 0.442%* (-4.041)  0.686  (-1.206) 0.953  (-0.225) 1.285  (0.962) 1.234  (0.873)
AFNS,-LC 0.267%*  (-10.885) 0.341%* (-5.779) 0.482** (-3.366) 0.670  (-1.624) 0.690  (-1.290)
AFNS3 0.311*%*  (-6.752)  0.530%  (-1.996) 0.950 (-0.037) 1.324 (0.575)  1.483  (0.525)
DNS 0.326%*  (-5.960)  0.453** (-2.985) 0.643 (-1.824) 0.866 (-0.492) 0.845  (-0.661)
(c) AR(1) Coeff
AFNSq 0.341%*  (4.885) 0.447*%*  (4.866)  0.553%*  (6.425)  0.477** (4.685)  0.279*% (2.384)
AFNS1-L 0.395%*  (5.664) 0.478%*  (5.797)  0.536%*  (6.194)  0.416** (3.624) 0.244  (1.813)
AFNS1-C 0.323%F  (4.766)  0.426%* (4.777)  0.540%* (6.266)  0.462%* (4.412) 0.255% (2.163)
AFNS,-LC 0.391%%  (5.742)  0.464**  (5.809)  0.523** (5.915) 0.391*%* (3.236) 0.224  (1.585)
AFNS3 0.413%%  (6.990)  0.481%* (4.267) 0.567** (5.441) 0.411%* (2.874) 0201  (1.131)
DNS 0.357**  (5.700) 0.463**  (5.795)  0.549%*  (6.598)  0.444** (4.191)  0.263* (2.172)
(d) LR test
AFNSg 0.000 (0.000) 0.000 (0.001)  0.000 (0.056)  0.000 (0.921)  0.026  (0.516)
AFNS1-L 0.000 (0.000) 0.000 (0.000)  0.000 (0.000)  0.000 (0.002)  0.012  (0.020)
AFNS:1-C 0.000  (0.000)  0.000  (0.003) 0.000  (0.060) 0.000  (0.881) 0.050  (0.535)
AFNS,-LC 0.000  (0.000)  0.000  (0.000) 0.000  (0.000) 0.000  (0.003) 0.024 (0.033)
AFNS3 0.000 (0.000) 0.000 (0.000)  0.000 (0.072)  0.000 (0.354)  0.013  (0.048)
DNS 0.000 (0.000) 0.000 (0.000)  0.000 (0.000)  0.000 (0.059)  0.021  (0.129)

Notes: The first panel reports means of normalised errors along with a t-statistic (computed
using a Newey-West standard error) for testing the null of zero mean. The second panel
reports variance of normalised errors along with a t-statistic (computed by a linear regres-
sion of the squared error on a constant, using Newey-West standard error) for testing the
null of unit variance. The third panel reports the AR(1) coefficients and t-statistics of its
significance, obtained by estimating an AR(1) model with an intercept (with Newey-West
standard errors). The fourth column reports the p-values of two Berkowitz (2001) tests:

the first for the likelihood ratio test for the joint null of a zero mean, unit variance and no

Ikk 9%

autocorrelation and the second for only zero mean and unit variance. and

imply

significance at 1% and 5%, respectively. All test statistics are reported in parentheses.
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Table 3.B.12 Tests of normalised errors of 1-month-ahead forecasts, Feb 1996

- Dec 2002 (Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year
(a) Mean
AFNSq -0.253 (-1.920) -0.073 (-0.488) -0.430** (-2.969) 1.097**  (15.068) 0.320* (2.561)
AFNS1-L 0.004 (0.043)  0.073 (0.758)  -0.405**  (-4.808) 0.105 (1.056)  -1.251**  (-24.109)
AFNS,-C -0.257%  (-1.976) -0.080  (-0.546) -0.440%* (-3.067) 1.096**  (15.115) 0.315%  (2.568)
AFNS3-LC 20.009  (-0.098) 0.062  (0.638) -0.410%* (-4.846) 0.099 (1.003)  -1.251%*% (-24.408)
AFNS3 -0.084 (-0.592)  0.035 (0.207)  -0.788**  (-5.654) -0.654** (-4.391) -1.443** (-40.356)
DNS -0.302*%*  (-2.830) -0.160 (-1.435) -0.439** (-4.302) 0.848**  (11.201) -0.570** (-7.287)
(b) Variance
AFNSo 1.418 (1.730) 1.846**  (2.900) 1.719%* (3.201) 0.435 (1.792) 1.281% (2.273)
AFNS1-L 0.734 (-1.301) 0.763 (-1.330)  0.581 (-1.605) 0.804 (-1.240)  0.221* (2.557)
AFNS,-C 1.383 (1.635)  1.776** (2.810) 1.685**  (3.000) 0.431 (1.817) 1235 (2.097)
AFNS3-LC 0.754 (-0.977) 0.780  (-1.047) 0.587 (-1.442) 0.793 (-1.369)  0.216%*  (2.606)
AFNS3 1.668 (0.866)  2.295 (1.501)  1.595* (2.326)  1.817**  (3.293) 0.105**  (5.010)
DNS 0.933 (0.055)  1.025 (0.205)  0.852 (0.215)  0.470 (0.613) 0.501 (-0.719)
(c) AR(1) Coeff
AFNS, 0.241%  (2.137)  0.240%  (2.304)  0.150 (1.642)  0.445%*  (4.451)  0.465**  (5.346)
AFNS1-L 0.226 (1.648)  0.184 (1.509)  0.105 (0.978)  0.343**  (3.702) 0.388%*  (4.032)
AFNS,-C 0.224%  (1.994)  0.228%  (2.149)  0.139 (1.493)  0.437%%  (4.448)  0.461%*  (5.267)
AFNS3-LC 0.224 (1.557)  0.181  (1.434)  0.090 (0.840)  0.339%*  (3.602)  0.384%*  (3.956)
AFNS3 0.211 (1.340)  0.201  (1.478) 0.217%  (2.034) 0.384%*  (4.038)  0.427**  (5.104)
DNS 0.248%  (2.088) 0.226*  (2.039) 0.111 (1.203)  0.394%*  (3.924)  0.400%*  (4.054)
(d) LR test
AFNSq 0.001 (0.031)  0.000 (0.001)  0.000 (0.000)  0.000 (0.000) 0.000 (0.045)
AFNS1-L 0.049 (0.080)  0.107 (0.140)  0.000 (0.000)  0.004 (0.079) 0.000 (0.000)
AFNS,-C 0.003 (0.034)  0.000  (0.002)  0.000 (0.000)  0.000 (0.000)  0.000 (0.050)
AFNS3-LC 0.064 (0.110)  0.140  (0.183)  0.000 (0.000)  0.004 (0.068)  0.000 (0.000)
AFNS3 0.001 (0.006)  0.000 (0.000)  0.000 (0.000)  0.000 (0.000) 0.000 (0.000)
DNS 0.004 (0.063)  0.080 (0.407)  0.000 (0.000)  0.000 (0.000) 0.000 (0.000)

Notes: The first panel reports means of normalised errors along with a t-statistic (computed
using a Newey-West standard error) for testing the null of zero mean. The second panel
reports variance of normalised errors along with a t-statistic (computed by a linear regres-
sion of the squared error on a constant, using Newey-West standard error) for testing the
null of unit variance. The third panel reports the AR(1) coefficients and t-statistics of its
significance, obtained by estimating an AR(1) model with an intercept (with Newey-West
standard errors). The fourth column reports the p-values of two Berkowitz (2001) tests:

the first for the likelihood ratio test for the joint null of a zero mean, unit variance and no

Ikk 9%

autocorrelation and the second for only zero mean and unit variance. and

imply

significance at 1% and 5%, respectively. All test statistics are reported in parentheses.
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Maturity
Model 3 month 6 month 1 year 2 year 3 year b5 year 7 year 10 year 20 year 30 year
1-month-ahead
AFNSy 18.484 18.487 18.781 19.047 18.870 18.871 18.887 18.805 20.270 18.891
AFNS1-L 18.918 18.899 19.042 19.144 19.036 18.943 18.852 18.847 18.744  20.769
AFNS.1-C 18.479 18.486 18.766 19.03  18.853 18.858 18.881 18.796 20.258 18.866
AFNSo-LC 18.918 18.904 19.057 19.177 19.083 18.983 18.878 18.863 18.740 20.771
AFNS3 18.782 18.782 19.238 19.533 19.471 19.403 19.613 19.386 19.119 21.762
DNS 18.681 18.676 18.853 19.019 18.887 18.871 18.714 18.654 19.698 19.282
3-month-ahead
AFNS 20.002 20.259 20.503 20.697 20.456 20.438 20.397 20.164 20.483 19.371
AFNS1-L 20.210 20.289 20.402 20.459 20.310 20.167 20.000 19.812 19.477 20.662
AFNS.1-C 19.985 20.239 20.467 20.638 20.388 20.36  20.318 20.107 20.429 19.322
AFNS>-LC 20.204 20.286 20.403 20.465 20.326 20.191 20.012 19.820 19.474 20.679
AFNS3 20.099 20.320 20.722 20.880 20.681 20.642 20.616 20.661 20.141 21.942
DNS 20.092 20.235 20.377 20.494 20.309 20.236 20.003 19.824 19.830 19.758
6-month-ahead
AFNS 21.467 21.773 21.940 21.868 21.522 21.502 21.349 21.046 20.703 19.972
AFNSqi-L 21.182 21.273 21.354 21.293 21.099 20.923 20.702 20.445 20.056 20.731
AFNS.1-C 21.448 21.760 21.930 21.844 21.483 21.442 21.276 20.998 20.625 19.919
AFNS»-LC 21.179 21.269 21.351 21.296 21.109 20.936 20.709 20.456 20.052 20.745
AFNS3 21.156 21.415 21.773 21.811 21.555 21.441 21.290 21.388 20.810 22.291
DNS 21.301 21.479 21.576 21.533 21.271 21.156 20.837 20.625 20.070  20.340
12-month-ahead
AFNSo 23.752 24.135 24.221 23.662 22.993 22.632 22.312 21.889 21.052 20.305
AFNSq-L 22.385 22.469 22.460 22.133 21.794 21.469 21.230 20.936 20.587 20.726
AFNS.1-C 23.689 24.055 24.128 23.556 22.889 22.531 22.215 21.832 20.962 20.264
AFNSo-LC 22.384 22.463 22.445 22.116 21.785 21.469 21.234 20.948 20.593 20.749
AFNS3 22.240 22.457 22.710 22.645 22.363 22.224 21.993 21.926 20.743 22.740
DNS 23.107 23.307 23.279 22.823 22.306 21.950 21.573 21.385 20.650 20.907

Notes: The table reports log predictive density scores calculated with a Gaussian quadratic

formula given in Adolfson et al. (2005) and used in Clark (2011). The lower the score the

better is the forecast model.



Table 3.B.14 Differences in log predictive scores, Feb 1996 - Dec 2002

Maturity
Model 3 month 6 month 1 year 2 year 3 year
1-month-ahead
AFNSo -0.197**%  -0.189**  -0.072 0.028 -0.017
AFNS1-L 0.237** 0.223** 0.189*%*  0.125%*  0.149**
AFNS.-C -0.201**%  -0.190**  -0.087 0.011 -0.034
AFNSo-LC 0.238%* 0.228%* 0.203*%*  0.158%*  0.196**
AFNS3 0.101%** 0.105 0.384**  0.514**  0.585**
3-month-ahead
AFNSo -0.090 0.023 0.126 0.203 0.147
AFNS;-L 0.118 0.054 0.026 -0.035 0.001
AFNS-C -0.107 0.003 0.091 0.144 0.079
AFNSo-LC 0.113 0.051 0.026 -0.029 0.017
AFNS3 0.007 0.085 0.345%* 0.386 0.372
6-month-ahead
AFNSo 0.166 0.294 0.364 0.335 0.251
AFNS1-L -0.119 -0.206 -0.222 -0.240 -0.173
AFNS.-C 0.147 0.281 0.353 0.311 0.211
AFNSy-LC -0.122 -0.210 -0.226 -0.237 -0.162
AFNS3 -0.145 -0.064 0.196 0.278 0.284
12-month-ahead
AFNSo 0.645 0.828 0.942 0.839 0.687
AFNS;-L -0.722 -0.837 -0.819 -0.690 -0.512
AFNS:-C 0.582 0.749 0.849 0.733 0.583
AFNSo-LC -0.724 -0.844 -0.834 -0.707 -0.521
AFNS3 -0.868 -0.849 -0.569 -0.178 0.057

134

Notes: The table reports the difference in log scores of a model and that of the DNS

benchmark. "**’ and "*’

imply significance of the Giacomini and White (2006) test of equal

log predictive scores at 1% and 5% level of significance, respectively. The standard errors

of the t test statistics are computed with the Newey-West estimator.
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Table 3.B.15 Differences in log predictive scores, Feb 1996 - Dec 2002 (Cont.)

Maturity
Model 5 year 7 year 10 year 20 year 30 year
1-month-ahead
AFNSo 0.000 0.174 0.150 0.573%* -0.391%*
AFNS1-L 0.072 0.138%*  0.193**  -0.953**  1.487**
AFNS.-C -0.013 0.167 0.142 0.560** -0.415%*
AFNSo-LC 0.112 0.164*%*  0.209%*  -0.957**  1.490**
AFNS3 0.532*%*  0.899**  0.732**  -0.579 2.480%**
3-month-ahead
AFNSo 0.202 0.394* 0.340 0.653** -0.387
AFNS1-L -0.068 -0.003 -0.013 -0.353* 0.904**
AFNS-C 0.125 0.315 0.282 0.599** -0.436
AFNSo-LC -0.045 0.009 -0.004 -0.356* 0.921%*
AFNS3 0.406 0.613* 0.837* 0.310 2.184%**
6-month-ahead
AFNSo 0.346 0.513 0.421 0.633 -0.369
AFNS1-L -0.234 -0.135 -0.180 -0.013 0.391*
AFNS.-C 0.285 0.440 0.373 0.556 -0.421
AFNSy-LC -0.220 -0.127 -0.170 -0.017 0.404**
AFNS3 0.284 0.454 0.763 0.740 1.950%*
12-month-ahead
AFNSo 0.682 0.739 0.504 0.401 -0.602
AFNS;-L -0.481 -0.342 -0.449 -0.064* -0.181
AFNS:-C 0.581 0.642 0.447 0.312 -0.643
AFNSo-LC -0.481 -0.339 -0.437 -0.058%* -0.158
AFNS3 0.274 0.420 0.541 0.092 1.833**

Notes: The table reports the difference in log scores of a model and that of the DNS

% and ¥’ imply significance of the Giacomini and White (2006) test of equal

benchmark.
log predictive scores at 1% and 5% level of significance, respectively. The standard errors

of the t test statistics are computed with the Newey-West estimator.



Chapter 4

Forecasting under Structural

Change and Long Memory Noise

4.1 Introduction

Dealing with structural change has become one of the most crucial challenges
in economic and financial time series modelling and forecasting. In economet-
rics structural change usually refers to evolution of a parameter of interest of
a dynamic model that makes its estimation and/or prediction unstable. The
change can be as dramatic as an abrupt shift or permanent break induced,
for example, by introduction of a new monetary policy, breakdown of an ex-
change rate regime or even sudden rise in oil price. In other instances, the
change can be slow, smooth and continuous caused for example by gradual
progress in technology or production. Empirical evidence of structural change
is widespread and well-documented in economic and finance literature. Stock

and Watson (1996) investigate many US macroeconomic time series and find
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instability in both univariate and bivariate relationships by applying standard
instability tests and out-of-sample forecast exercises. In finance structural
changes are detected in interest rates (e.g., Garcia and Perron (1996), Ang
and Bekaert (2002)) and stock prices and returns (e.g., Timmermann (2001),
Pesaran and Timmermann (2002)). Such structural change or parameter in-
stability has been identified as one of the main culprits of forecast failures (see
Clements and Hendry (1996, 1998), Hendry (2000)) and not surprisingly detec-
tion of breaks and forecast strategies in the presence of breaks have attracted
a lot of attention from researchers. Nonetheless, real time forecasting of time
series which are subject to structural change remains to be a critical challenge
to date and is often complicated further by presence of other features of time
series such as persistence. Rossi (2012) provides a comprehensive review of
strategies that have been developed over the last few decades to tackle the

problem of forecasting in face of unforeseen structural changes.

A natural strategy for forecasting in unstable environment would be find-
ing the last change point and using only the post-break data for estimating
a model and forecasting. But such strategies may be problematic for various
reasons. First, standard tests of structural breaks are not suitable for real time
forecasting. Research on break detection tests has gone through significant re-
finements, e.g., from cases with known single break (Chow (1960)) to unknown
multiple breaks (e.g., Andrews (1993), Bai and Perron (1998, 2003)). How-
ever, most of these tests require some time to be elapsed after the break for
it to be detected and assume that the required post break data is break-free.
This makes timely detection of a break almost impossible. Another major
criticism of conventional tests is that they are retrospective by nature. This
means that they are specifically designed for detecting breaks over a historical
sample of given size and are problematic for repetitive use with new arrivals
of data. These shortcomings of classical tests prompt emergence of a second

class of tests based on sequential testing in statistics literature (see Chu et al.
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(1996), Leisch et al. (2000), Zeileis et al. (2005)). These forward looking fluc-
tuation type tests monitor for structural breaks with appearance of new data
and are more appropriate for real-time forecasting facing structural changes.
Issues with monitoring tests, however, remain. There are still delays, though
in smaller margins, in identifying breaks which means that detection of un-
known frequent breaks is difficult and estimation of timing of a break is not
precise. In addition, small breaks are difficult to track. Second, the amount
of post-break data may simply be insufficient for stable estimation of model
parameters and consequently, for reliable prediction. Moreover, Pesaran and
Timmermann (2007) point out that a trade-off between bias and forecast error
variance implies that it is not always optimal to use only post-break data and

it is generally beneficial to include some pre-break information.

A second line of strategies involves a more econometric approach that
involves formally modelling the break process itself and estimating its charac-
teristics such as timing, size and duration based on historical behaviour of a
series. A standard model of this kind is the Markov-switching model of Hamil-
ton (1989) which makes probabilistic inference of whether and when unknown
switching of regimes or equivalently, shifts in parameters may occur. While
this is a ground-breaking proposition for making stable inference in presence of
structural change predictive performance of such models have seriously been
questioned. Clements and Krolzig (1998) demonstrate via a Monte Carlo study
that despite the true data generating process being Markov-switching regime
switching models fail to forecast as accurately as a simple linear AR (1) model
in many instances. Research on modelling of structural breaks has continued
to evolve rapidly and recent literature records successful forecasting stories
of many sophisticated models, mainly founded on Bayesian methods (e.g.,
Pesaran et al. (2006), Koop and Potter (2007), Giordani and Kohn (2008),
Maheu and Gordon (2008)). In one way or another, these models learn about

change-points from the past and exploit these information as priors in mod-
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elling and forecasting future breaks. A debate that often arises in this context
is whether it is convenient to restrict the number of breaks occurring in-sample
fixed or to treat it as unknown. A class of models that avoids this argument
is the so called time varying parameter (TVP) models which assume that a
change occurs each point in time (e.g., Stock and Watson (2007), D’Agostino
et al. (2013)). Most of these models document evidence of impressive em-
pirical forecasting ability when evaluated individually. Bauwens et al. (2011)
run a horse-race by comparing predictive performance of several of these break
models along with simple rolling and recursive regressions. While modelling
break processes has a clear advantage in terms of root mean squared forecast
error (RMSFE), no single model has been identified to produce superior fore-
casts consistently. Moreover, when performance is evaluated on the basis of
average predictive likelihood criterion a simple break-free method of rolling
regression enjoys an upper-hand on most of the break models. Difficulty in
finding a single best forecasting model shifts attention to combining forecasts
of different models. A well-performing model can forecast badly after a break
while a previously poor-performing model can do better. Thus, pooled fore-
cast can result in the least mean squared forecast error (MSFE) even though
it was never the best at each point in time. Empirical evidence in the litera-
ture strongly speaks for simple combination rules such as averaging forecasts
with equal weights across all models. Bayesian Model Averaging (BMA) has
also been found to forecast well while forecast combination with time vary-
ing weights experiences little success (Rossi (2012)). Clark and McCracken
(2010) evaluate ability of different forecast combination strategies in improv-
ing forecast accuracy of small-scale macroeconomic VARs in the presence of
uncertain forms of model instability. They combine forecasts of many ad hoc
strategies designed for tackling structural breaks which include differencing,
detrending, intercept corrections, sequential updating of lag orders, estima-

tion with different window lengths, Bayesian shrinkage, among others. They
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conclude that although BMA provides occasional large forecast improvements,
model averaging with equal weights provides good forecast consistency. A re-
cent interesting proposition comes from Castle et al. (2011) who argue that
with availability of rich and broad information set even breaks of unknown
nature can be predicted. Additional data which are not all directly related to
economic phenomena can be potentially used to explain driving forces behind
a break. These authors use an automatic model selection approach in order to
efficiently exploit a data-rich environment. Simulation study reveals that even
though a break is difficult to predict accurately it can be tracked well after
its occurrence. Nonetheless, predictive performance is not significantly better

than robust mechanisms such as differencing and intercept corrections.

An alternative forecasting approach which earns renewed attention in the
literature is adopting methods that do not require any knowledge of struc-
tural breaks but are actually robust to them. This class of methods builds on
downweighting past information and includes forecasting with rolling window,
exponential smoothing or exponentially weighted moving average (EWMA),
forecast pooling with window averaging etc. These simple strategies are par-
ticularly attractive because they are easy to implement, possibly robust to
different types of structural changes and can adjust for breaks without delay
which is particularly helpful for real time forecasting. On the downside dis-
carding old data by selecting a fixed discounting rate a priori may prove costly
when the true data generating process (DGP) is break-free. A significant con-
tribution in this respect is due to Pesaran and Timmermann (2007). These
authors advocate two robust strategies: one is selecting a single window by
cross-validation based on pseudo-out-of-sample losses and the other is pooling
forecasts of the same model constructed over estimation windows of different
sizes. They argue that the former may work well in case of well-defined and
large breaks while the latter should perform well in situations where the breaks

are mild and hence difficult to detect. They provide Monte Carlo results to
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show that simple forecast averaging performs particularly well when the under-
lying economic relations are subject to structural breaks. Assenmacher-Wesche
and Pesaran (2009) compute forecasts of many economic series of Swiss econ-
omy by using vector autoregressive models estimated over windows of different
lengths and find that averaging forecasts across windows leads to improve-
ments over largely popular strategy of averaging of forecasts across models.
Clark and McCracken (2009) find that averaging forecasts of expanding and
rolling windows can be beneficial in presence of structural breaks. Pesaran
and Pick (2011) derive theoretical results for random walk and linear regres-
sion models proving that averaging over different estimation windows leads to
lower bias and smaller RMSFE. They confirm their findings with a successful
simulation study and an application to equity returns data. By comparing
window-averaging forecast with the exponential smoothing forecast they con-
clude that the latter is more sensitive to choice of downweighting parameter

than the former is to the choice of minimum estimation window.

The issue of structural change occurring in real time and the challenge
it poses for time series forecasting are partly but systematically addressed in
Eklund et al. (2010). They consider and compare two different approaches to
tackle the problem. One requires monitoring for structural breaks and com-
bining forecasts of models estimated using all available data or only post-break
data. The other exploits data-downweighting break-robust methods as men-
tioned previously. On the basis of their Monte Carlo and empirical analysis
they establish that the monitoring method appears to be a conservative strat-
egy in the sense that neither its forecast gains nor its losses against a full
sample benchmark are substantial. In addition, performance of the rolling
window and exponentially weighted moving average (EWMA) methods is sen-
sitive to the choice of window lengths and discount parameters, and averaging
forecasts across estimation windows of various sizes performs consistently well

in cases where breaks are frequent and small.
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One crucial question that Eklund et al. (2010) do not answer is how much
to downweight older data. Moreover, their work, like much of the forecasting
literature, confines attention solely to structural breaks. The challenge of fore-
casting under recent and ongoing structural change has been dealt perhaps in
the most comprehensive and generic setting in a recent work of Giraitis et al.
(2013). Alongside breaks these authors consider various other types of struc-
tural changes including deterministic and stochastic trends and smooth cycles.
They do not explicitly model the structural change but exploit the typical data-
discounting robust-to-break methods such as rolling window, EWMA, forecast
averaging over different windows and various extensions of them. Importantly,
they make the selection of the tuning parameter which defines the discounting
weights data-dependent by minimising the forecast mean squared error. They
provide detailed theoretical and simulation analysis of their proposal and con-
vincing evidence of good performance of methods with data-selected discount

rate when applied to a number of US macroeconomic and financial time series.

Giraitis et al. (2013) consider persistence through short memory autore-
gressive dependence in noise process, but they do not explore possibility of
long memory which is often considered as a common but crucial property of
many economic and financial time series. This chapter extends the work of
Giraitis et al. (2013) by offering a more complex, yet realistic forecasting
environment where structural change in a dynamic model is accompanied by
noises with long range dependence. We consider several simple cases, such
as a stationary long memory process and a combination of linear trend and
long memory noise and prove theoretically that forecasts generated with a
data-tuned downweighting parameter are asymptotically equivalent to optimal
fixed value forecasts. Robust methods with data-dependent tuning parame-
ters which have been found to be useful for forecasting time series with short
memory noise are then empirically evaluated on their predictive abilities by

forecasting time series with various types of structural changes and different
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levels of long memory persistence.

While this chapter adds a new dimension to the existing challenge of real
time forecasting under structural changes it further contributes to an interest-
ing and ongoing argument in econometric literature about possible ‘spurious’
relationship between long range dependence and structural change and poten-
tial forecasting difficulties this may create. Many researchers argue that pres-
ence of long memory in the data can be easily confused with structural change
(e.g., Diebold and Inoue (2001), Gourieroux and Jasiak (2001), Granger and
Hyung (2004)). This aggravates the already difficult problem of forecasting
under structural change further. Wrongly accounting for one when the other
is present or acknowledging only one when both are present may lead to seri-
ous forecast failure. Given that it is often difficult to distinguish between the
two, it is desirable to establish forecast methods that are robust to structural
change and also appropriately account for long memory persistence. Our work

is a potential contribution to this end.

The rest of the chapter is structured as follows. Section 4.2 introduces
the dynamic model to be forecast and reviews the forecast strategies proposed
in Giraitis et al. (2013). We discuss in details how the tuning parameter
defining the rate of downweighting is optimally selected from data and how
forecasts are constructed based on such data-dependent selection. Section 4.3
contains theoretical justifications of asymptotic optimality of forecasts based
on data-tuned discounting strategies. As mentioned before, we discuss only a
few specific cases involving long range dependence. In section 4.4 we present
Monte Carlo evidence evaluating performance of robust forecast strategies.
Section 4.5 justifies practical usefulness of the methods through applications
in forecasting a number of UK economic and financial time series. Section 4.6

concludes.
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4.2 Econometric Framework

4.2.1 Forecast Strategy

We adopt the forecast settings of Giraitis et al. (2013) who entertain a simple

but general location model as given by:
ye =By +u, t=12,..T (4.2.1)

where y; is the variable to be forecast, 3, is a persistent process of unknown
type and u; is a dependent noise that is independent of /3,. Unlike most of
the previous works which focus mainly on structural breaks, this framework
offers more flexibility and generality in the sense that it does not impose any
structure on 3, and allows it to adopt many other possible structural changes
such as deterministic (bounded) and stochastic (unit root) trends.

While Giraitis et al. (2013) specify u; to be stationary and dependent
through a short memory autoregressive process, we contribute by exploring
possible long range dependence and non-stationarity in the noise process.
Several standard definitions of short and long memory can be drawn from
the statistical literature. A time-domain definition says that auto-covariances
Yu(k)=Cov(usi, us) of a short memory process u; are absolutely summable,
e, Yo |7u(k)] < co. The long memory, on the other hand, is defined
as the slow decay of 7,(k) ~ ¢,k7'™? as lag length k increases, for some
0 <d < 1/2 and ¢, > 0. Unlike short memory, the autocorrelations of long
memory processes are non-summable. In frequency domain, long memory
would imply explosive low-frequency spectra i.e., the spectral density of wy,
fu(w) — oo as frequency w — 0. Long- and short-range dependence can also
be distinguished in terms of variance of the partial sum process, S = Zthl Ug.
For a short memory process, growth of Var(Sr) is proportional to the num-

ber of terms, 7. For a long memory process, however, Var(Sr) grows more
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rapidly and is of order O(T?%!) as T — o0, 0 < d < 1/2. One can expect the
long-range dependence of noise process u; to feed into 1y, and generate sub-
stantial amount of persistence diluting the underlying model structure. Such
persistence is a common feature of many economic and financial time series
and our aim is to analyse forecasting perspectives of such series which undergo
structural change.

The forecast strategy we adopt does not require any particular modelling
and estimation of the structure of 3, and relies simply on weighted combina-
tion of historical data. Methods based on two types of weighting schemes are
particularly popular in practice, namely rolling window method and exponen-
tially weighted moving average (EWMA). Such methods work by choosing a
tuning parameter which determines the rate of discounting past information.
Previous works that forecast using such data-downweighting methods find per-
formance to be sensitive to the choice of tuning parameters, but they do not
provide any guidance on how to select one (see Pesaran and Pick (2011), Ek-
lund et al. (2010)). Clearly, setting the discounting parameter a priori to a
single fixed value is a risky strategy and unlikely to produce accurate fore-
casts if a series is subject to structural change. Giraitis et al. (2013) advocate
a data-dependent selection of the tuning parameter and provide theoretical
justification on how such a selection can be optimal.

The tuning parameter is chosen on the basis of predictive performance
evaluated over a part of the sample. The strategy is discussed in details below.
Forecast of y; is based on (local) averaging of past values y;_1,..., y1:

t—1

Uft—1,10 = D WejaYe—j = W, HYe—1 + o + Wegm1 gy (4.2.2)
j=1

with weights wy; gz > 0 such that wy g + ... + w15 = 1, parameterised by
a single tuning parameter H. The latter defines the rate of downweighting the
past observations (e.g., the width of the rolling window). We assume that H

takes values in the interval It = [, Hpax], where a > 0.
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Giraitis et al. (2013) propose several interesting extensions built on the
flexibility of the location shift model. For example, they show that it is possible
to first fit a generic model of conditional mean to the location model and then
forecast around the model using robust strategies. This can be helpful if the
forecaster has a known preferred model of conditional mean for a series. We

include such extensions in our analysis.

4.2.2 Selection of the Tuning Parameter, H

Suppose we have a sample of T' observations yy, ..., y7. Then construction of
one-step-ahead forecast yr,1r,z requires selection of the parameter H. This
is done by a cross-validation method which holds back the last T,, = T —
Ty + 1 observations for a pseudo out-of-sample forecast exercise and chooses
the tuning parameter H which yields the smallest mean squared forecast error
(MSFE) on this evaluation sample. Thus, the MSFE which is minimised with

respect to H forms the objective function and is computed as

T

1 R o .
Qrm = Tn tZT(yt - yt|t71,H)2, H :=arg ;II%IE Qr.m (4.2.3)
=10

with starting point of the cross-validation period, Ty = o(7T) and the size,
T,:=T —Ty+ 1. We define Hyox = Ty77°,0 < 6 < 1. It is assumed that T,
and Hy,. are selected such that 72/3 < Hy. < Ty = o(T).

Let H,p = arg minges, wr,z be the optimal value of the fixed parameter
H which minimises MSE wr g := E(yr41 — Jr417,m)?. Giraitis et al. (2013)
theoretically prove that the forecast g 17 g of yri1, obtained with data-
tuned H, minimises the asymptotic MSE, wr g in H, hence making the forecast
procedure (4.2.2) operational. It is also asymptotically optimal in the following

sense:

Wr g = Wi, +0p(1),  Qr g =wr g+ 0p(1),
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where the quantity (), 5 is an estimate of the forecast error w, .
Let 67, == T,;* Z?:TO u3. Giraitis et al. (2013) show that for a general
model y; = 3, +u; with a number of deterministic and stochastic processes f3,

and short memory wu,’s,
QT,H - &%,u + E[QT,H - O'i](l + Op(l))v T — 0, H— 0,

uniformly in H. In addition, they verify that the deterministic function
E[Qrp — o2] has a unique minimum. This allows selection of the optimal
data-tuned parameter H that asymptotically minimises the objective function
Qr.r- We shall focus on two cases of y, = 3, + u; where the noise u; has long

memory and [, is either a constant or a linear trend.

Assumptions and notation. We construct the weights wy; i as follows.

Assumption 1 The function K(x) > 0, x > 0 is continuous and differen-
tiable on its support, such that fooo K(u)du = 1, K(0) > 0, and for some
C>0,c>0,

K(z) < Cexp(—clz]), |K(z) <C/(1+ %), x>0, (4.2.4)

where K is the first derivative of K. Fort > 1, H € Iy, set kjg = K(j/H)

and define
ki m
Zi;ll ks,H

Popular classes of commonly used weights satisfying this assumption in-

Wej,H = ; J=1-t-1 (4.2.5)

clude:

(i) Rolling window weights, with K(u) = 1(0 <u < 1).

(ii) Exponential weighted moving average (EWMA) weights, with K (u) = e™*,
u € [0,00). Then, with p = exp(—1/H), kjy = ¢/ and wy g = '/ S pF,
1<j<t—1.

(iii) Triangular window weights, with K(u) =2(1 —u)I(0 < u < 1).
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While the rolling window simply averages the H previous observations, the
EWMA forecast uses all observations y1,--- ,v;_1, smoothly downweighting
the more distant past.

In addition to wy; s, for technical reasons we will use the weights

wja = K/ Z ks, J =1 (4.2.6)
s=1

4.3 Theoretical Results and Examples

We illustrate the theoretical properties of the weighted forecast . TR with
data selected tuning parameter H by two examples of y; = 3, + u; where j3,
is either a constant or a linear trend and the noise u; is a stationary long
memory process. Our objective is to show that the forecast v, LA of yry1
with optimal turning parameter H minimises the forecast MSE in the following
sense: Wr g = Wr,mH,, + 0p(1). Moreover, the property Q5 = wy g +0p(1)
allows estimation of the forecast error.

Below, a A b = min(a,b), a V b = max(a,b) and I(A) is the indicator
function; ar ~ by denotes that ar/br — 1, as T increases. We write o, ;(1)
or og(1) to indicate that supyc;. [0y (1)] —p 0 or supyc. |og(1)] — 0, as
T — .

The following assumption describes the class of stationary noise processes
u;. It allows wu; to have either short memory (i) or long memory (ii). We

denote the k-th order autocovariance function of u; by 7, (k) = Cov(uy, ug).

Assumption 2 u; is a stationary linear process

w=Y a_j, t€Z, £ ~1D(0,0?),  Eef<oo. (4.3.1)
=0

(i) In the short memory (SM) case we assume that ), ., |v,(k)] < oo,
>izn [1u(k)] = o(log™ n) and s, := 32, 7, (k) > 0.
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(i1) In the long memory (LM) case we assume that for some ¢, > 0 and
0<d<1/2,
Yo (k) ~ e k712 k — o0. (4.3.2)

Under SM Assumption 2 (i), u; has short memory, while its long-run vari-
ance s is positive and finite. This case was discussed in Giraitis et al. (2013).
We now proceed to analyse the properties of Qr g, H and the forecast

error wy, i under long memory assumption 2(ii).

4.3.1 The Case of a Long Memory Stationary Process

Yt

First, we focus on the forecast in the case when y; = u+u;, t > 1is a stationary

long memory process. We shall use the following notations:
o 2
Qu.H ‘= E (UO — Z 'U)jJ{Uj) — 0'12” (433)
j=1

Mt = € [ /0 h /0 T K@) K)o — g dyds — 2 /0 h K(g;)mmddgc] |
(4.3.4)

Theorem 1 Suppose that y; = p + ug,t > 1, where uy is a stationary long

long memory process with parameter d satisfying Assumption 2 (ii).

Then, as T — oo, for H € Ir,

QT,H = 5-2T,u + Qug + OpH (H_1+2d) , (4.3.5)

wrH = Ui + Qu + OH(Hwa),

where ¢ = Ay H 72 + o( H1424) | as H — oo.
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Theorem 1 shows that ()7 i is a consistent estimate of wr . The following
corollary shows that the forecast v, T A computed with the data-tuned H

has the same MSE as the forecast yri1|r, m,,, with the tuning parameter Hy;.

Corollary 1 If q, n reaches its minimum at some finite Hy, then

Wrg = WTH,, +0p(1), (4.3.6)
Qrpg = Wp g+ 0p(1) = 0121, + qu.n, + 0p(1).

Proof of the Theorem 1 and Corollary 1 can be found in Appendix E.

Remark 1 Corollary 1 implies that quality of a forecast with tuning parameter
H is the same as using parameter H,, that minimises the forecast error wr g .
Observe that for Apyr < 0, qug = AparH 7204 o( H~124) implies that H will
remain finite when T increases. Notice also that A\pyr < 0 for rolling window

weights corresponding to kernel function K(x) =1(0 <z <1). Indeed,

ALy = cv/ / K(z)K(y)|z — y| " dedy — 267/ K(z)z "y
o Jo 0

1,1 1
= ¢, </ / |l — y| " T drdy — 2/ x_1+2ddx>
o Jo 0

Lo 1 1 1 2
—9 gy — — ) —9e (—— )= __ 5
“ (/0 /0 v T o) =29 \2di+ 2d) 24 1+2d °

This shows that, using rolling-window weights, the error of the forecast obtained

with H is smaller than o2 and H remains finite. The fact that under strong
dependence the data tuned parameter H does not increase with the sample size
s in line with the well known fact that a persistent process, e.g. a random
walk, can be well forecasted by the last observation, that corresponds to the

rolling window with H = 1.
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4.3.2 The Case of a Deterministic Trend and a Long

Memory Noise

Next, we analyse the forecast of v, = 3, + u;, when 3, = at is a deterministic

trend and w, is a stationary long memory noise.

(z) o ([ o)’

Notations ¢, g and Apys are as in Theorem 1.

Denote

Theorem 2 Let y; = at +uy, t = 1,--- T where u; is a long memory process
satisfying Assumption 2(ii). Then, as T — oo, for H € Ir
Qrag = &'_23“ + 48,0 + Qua + Op,H(H2)7 (4.3.7)
wry = 00+ qan+ quu +on(H?),
where qg i + quu = KH* + o(H?), as H — oo.

Theorem 2 allows to establish the following basic properties of the forecast

Yoy, i of a trend stationary process y;.

Corollary 2 Under assumptions of Theorem 2, for a linear trend 3, = at, H

stays bounded:
wT,f{ = wTaHopt + Op(l)v (4.3.8)
Qrg = wrgtop(l)= 0%+ qg.ry + Qure + 0p(1),

)

where Hy is a minimiser of qa.g + Qu i -
Proof of the Theorem 2 can be found in Appendix E.

Remark 2 In the presence of a deterministic trend the optimal H will take
small values and the forecast will be based on averaging over the last few ob-

servations.
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4.3.3 Illustrative Examples

We can learn about the adaptability of the proposed robust forecast strategy
simply by looking at the evolution of a data-estimated tuning parameter when
forecasting in face of structural changes. For interpretational convenience we
choose to examine only rolling window forecasts. This also allows us to directly
compare the resulting behaviour of the data-tuned windows for long memory
noise to that for i.i.d. noise considered in Giraitis et al. (2013). A sample size
of T' = 200 observations is considered and the forecasting starts at 7 = 100.
We plot a single realisation of data-selected window size H (t) which is com-
puted sequentially at t = 7, 7+ 1,..., T' . Two different structural change
set-ups from our Monte Carlo study in section 4.4 have been considered. Fig-
ure 4.B.1 examines forecasting under break in the mean (Experiment 4) and
Figure 4.B.2 looks at the case of a unit root process (Experiment 11). De-
pending on noise specifications each figure has two panels: panel (a) referring
to i.i.d. u; and panel (b) referring to u; with long range dependence generated
by ARFIMA(0,0.45,0). In each panel the solid line represents the first obser-
vation of the data-estimated rolling window when there is a break in the mean
(Figure 4.B.1) or when there is unit root (Figure 4.B.2) and the dotted
line represents the starting point when there is no structural change (Experi-
ment 1) based on the same realisations of the noise u;. The long-dashed line
marks the last observation of the estimation window and the vertical distance
between it and the solid line (dotted line) measures the size of data-selected
rolling window used for constructing forecasts in presence of structural changes
(no structural change). In Figure 4.B.1 the small dashed line marks the first
post break observation which is the 110th data point. In case of i.i.d. noise
we find similar findings as Giraitis et al. (2013). Immediately after the break
the data-dependent forecast method reacts by beginning to use longer data-

windows than in no-break situation in order to learn more about the structural
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change and make subsequent predictions. When more observations become
available it soon starts using much smaller samples with the starting point of
the data-estimated windows mostly being the first post-break data. Once the
switch is made the data-tuned method never uses pre-break information for
forecasting and also never uses windows longer than in no structural break
case. When u,; has long memory observations are slightly different. Panel (b)
of Figure 4.B.1 shows that similar initial adjustment with longer windows is
made immediately after the break, but the switch to post-break information
appears to be faster for noises with long range dependence. The window-sizes,
when there is structural break, are predominantly smaller than those in no-
break experiment, but the margins of difference in window lengths are much
smaller than in i.i.d. noise case. There are also periods when data samples co-
incide for the two experiments. This is probably because persistence through
long memory mitigates or conceals the effect of a break in the generated series
and a data-based tuning method finds it difficult to distinguish between the
break and no-break cases.

Panel (a) of Figure 4.B.2 shows that for unit root noise processes data-
selected window sizes remain much shorter than in no-break case throughout
the sample. Panel (b) then confirms that for persistent long memory noises
the adaptive method yields even smaller windows but not substantially smaller

than those required in absence of a break.

4.4 Monte Carlo Experiments

A next step forward is to conduct a Monte Carlo study to evaluate the perfor-
mance of adaptive forecast strategies over finite samples of artificially gener-
ated data and examine to what extent results comply with theoretical findings.

We closely follow Giraitis et al. (2013) in setting up the design of experiments
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with the main difference being that we adopt long memory dynamics for the
noise process in contrast to their short memory specifications. We use the sim-
ple location model y; = 3, + u; to simulate different data series that depend
on different structural specifications (e.g., deterministic functions of time or
stochastic processes) for 3, component and various long memory dynamics for
noises u;. Alternative forecast methods are compared in terms of MSFE of
one-step-ahead forecasts relative to a benchmark of sample mean forecasts.
When persistence in u; is low we expect the benchmark to perform reasonably
well. We also include a simple AR(1) and ‘last observation’ forecasts which

are generally considered to capture dependence and unit root dynamics well.

4.4.1 Data Generating Processes

As mentioned earlier we exploit the location shift model (4.2.1) for generating
the data:
Yy =By tu, t=1,2..T (4.4.1)

While Giraitis et al. (2013) considered short memory i.i.d. and AR(1)
noises, we explore several long memory specifications for u; . We opt to
use the widely popular Autoregressive Fractionally Integrated Moving Av-
erage (ARFIMA) processes to generate u; with long range dependence. The
ARFIMA(p,d, q) model is defined as:

O(LY(1 — L)y = O(L)ey, € ~i.i.d.(0,0?),

where d is the fractional differencing parameter that induces long memory and
L is the lag operator. The fractional differencing operator (1 — L)? is defined

by the binomial expansion

1Ly =%, (d> (L),
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The process is stationary and invertible if all the roots of the autoregressive
polynomial of order p, ®(L) =1 — ¢;L — ... — ¢, L” and the moving average
part of order ¢, O(L) =1+ 6,L + ... + 0,L9, lie outside the unit circle, with
|d| < 0.5. For |d| > 0.5 the process becomes non-stationary. Generally, v, is
said to be I(d) if generated by the ARFIM A(p, d, q) model.

We consider stationary and non-stationary ARFIM A(0,d,0) processes
with long memory parameters d = 0.30, d = 0.45 or d = 0.75 indicating
different levels of persistence in memory or ARFIM A(1,d,0) processes with
combinations of long memory parameters d = 0.30 or 0.75 and short memory
AR(1) parameters p = 0.7 or —0.7. The innovations of the noise processes are
ii.d. standard normal. The component f3, is either a linear or non-linear de-
terministic trend, a stochastic trend process such as random walk or a process
with a break in the mean. We consider eleven data generating processes that

are also used in in Giraitis et al. (2013):

Exl. v = uy. Ex7. y, =2T7V23"0 v + 3uy.
Ex2. y, = 0.05¢ + 5u. Ex8. y, = 2T 230 i+ wy.
Ex3. y, = 0.05t + 3u,. Ex9. v, = 0.5 ", v; + 3uy.
(7 t S to = 055T,
Exd. y, = Ex10. y; = 0.5 v + uy.
14w, t> 1.
Ex5. y, = 2sin(27t/T) + 3uy. Exll. gy =30 .

Ex6. y, = 2sin(2nt/T') + ;.

In order to get a first-hand idea about the dynamic behaviour of the gen-
erated series we plot them for different specifications of 3, and u;. Figures
4.B.3 - 4.B.9 present time series plots of vy, for Fxl, EFx3, Ex4, Ex6, Ex7,

Ez9 and Fx11, respectively. The first two panels of each figure consider cases
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where u; are ii.d. or AR(1) with ii.d. innovations as studied in Giraitis
et al. (2013). The following four panels portray series with long memory
noises with u; following an ARFIM A(0,d,0) with d = 0.30 and d = 0.75 and
ARFIMA(1,d,0) with p = 0.7 and d = 0.30 or 0.75.

In Ex1, 3y, is determined by the noise process alone and there is no struc-
tural change. It is not surprising that forecasting an i.i.d. process, as illus-
trated in panel (a) of Figure 4.B.3, would require accounting for long past
and the benchmark sample mean should perform the best. Similarly, it is ex-
pected that a simple AR(1) benchmark will be difficult to be outperformed
when forecasting persistent autoregressive processes such as one plotted in
panel (b). Giraitis et al. (2013) confirm these facts through Monte Carlo evi-
dence and also report competitive forecasts for many of the robust methods. It
is our interest to investigate how the robust methods fare when the noises have
long memory. Panel (c) of Figure 4.B.3 shows that a weakly stationary long
memory process ARFIMA(0,d,0) with d = 0.30 generates enough persistence
for it to be visually distinguishable from the i.i.d. process, but it is not as per-
sistent as the short memory AR(1) process with p = 0.7. However, long term
dependence can create false impression of structural change and make prior
preference of a forecast model difficult. For example, the ARFIM A(0,d,0)
process with d = 0.30 imitates a cyclical trend like movement (see panel (c)
of Figure 4.B.3) and it is not clear whether a full sample or AR(1) forecast
will be accurate. Panel (d) confirms that a higher long memory parameter
d = 0.75 drives the series to non-stationary territory. However, this clearly
induces an impression of an increasing linear trend. Additional persistence
through autoregressive dependence make the series even closer to unit root
(panel (f)). An AR(1) benchmark should still do well in this case, but ‘last

observation’ forecasts should be equally competitive.

Both Ex2 and Ex3 introduce linear monotonically increasing trends in

y; and differ only in size of variance of noise process. Giraitis et al. (2013)
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argue that such linear trends may be unrealistic but they can offer reasonable
representations of time series which are detrended through standard techniques
such as differencing or filtering. Moreover, Figure 4.B.4 confirms that the
effects of such trends are small enough to be dominated and muted by the
noise processes. While linear trends are visually detectable for an i.i.d. and a
weakly dependent ARFIM A(0, d,0) noise process with d = 0.30, they become
more obscure with increasing persistence. The last two panels of Figure 4.B.4
confirm that when short and long memory persistence are combined, the trends

can vanish completely.

The functional form of gy, in Fx4 accommodates structural break in the
form of a break in the mean. The break occurs slightly after halfway the sam-
ple at time ¢ty = 0.557". Giraitis et al. (2013) argue that since the post-break
period is greater than /T, as required by the theory, the robust forecasting
methods should take account of such ‘not-too-recent’ breaks and yield fore-
casts that are significantly better than the benchmark sample mean. Their
Monte Carlo study confirms their claims. We should note from Figure 4.B.5
that although the shift in mean can be well identified in i.i.d. or weak long
memory series, it becomes more concealed with increasing persistence in the
noise process. Dependence in the noise process u; intensifies the effect of the
break and for highly persistent non-stationary long memory series, such as
ARFIMA(1,d,0) with p = 0.7 and d = 0.75 this can even result in a false

trend-like movement.

The purpose of Fx5 and Ez6 is to introduce smooth cyclical bounded
trends as observed in standard business cycles. Such trends are less likely to
be completely removed from standard detrending and therefore, more realistic
than a linear trend. The sample mean benchmark should do poorly, particu-
larly for Ex6 where oscillation of the trend is wider compared to the variance
of the noise process. It is evident from Figure 4.B.6 that higher persistence

can distort shapes of smooth cycles to substantial extent.
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For the remaining data generating processes, (3, are stochastic trends. For
Ex7 and Ex8 the trends are bounded and represent increasingly popular time-
varying coefficients type dynamic models. £x9 and Ex10 consider unbounded
random walk (unit root) process, observed under noise u;. Ex1l analyses a
standard random walk model. Figures 4.B.7 - 4.B.9 show that dynamics of
simulated series varies significantly depending on degree of persistence in the

noise process, contributed either by short or long memory.

It is evident from the time series plots that long memory can give false
impression of structural change. Moreover, persistence in the noise processes
induced by long memory or mixture of short and long memory dependence
can confound types of structural changes in a time series. It is worth inves-
tigating whether typical robust-to-structrual-change methods, such as rolling
window and EWMA methods, can perform well in forecasting in presence of
long memory. We argue that as long as the choice of tuning parameter is
data-dependent such methods can generate forecasts that are comparable to

the best possible fixed parameter forecasts.

4.4.2 Forecast Methods

We resort to forecast methods that have been analysed in Giraitis et al. (2013).
The range of strategies mainly include forecast methods that discount past
data and are known to be robust to historical and ongoing structural changes.
Both parametric and nonparametric weights and methods with both fixed and
data-dependent discounting parameters are considered. We compare forecasts

against a number of simple benchmark models.
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Methods with Parametric Weights

These are robust methods where data discounting weights are defined as func-

tions of a tuning parameter. Three methods are discussed which are based

on three different types of weights.

Rolling window method. In this method the weights are defined in terms

of the parameter H which is essentially the window size and includes the H

most recent observations to be used in forecasting. The weight w,; i attached

to y,—; is defined as
wyp=H'Y(1<j<H),j=12,..,t—1 for H<t, and
wypg=0t—1)"11<j<t-1),for H>1t,

where [ is an indicator function.

The weights are flat in the sense that all the observations in the window
get equal weights while the older data get zero weights. The one-step-ahead
forecast yy;—1 is then simply the average of H previous observations. In the
result tables we refer this method as Rolling H. Besides selecting H optimally
from data we use two fixed window methods with H = 20 and 30.
Exponentially weighted moving average (EWMA) method. This
method assigns the highest weight to the most recent data point and discounts
further past by decreasing weights exponentially fast to zero. The weights used
in this methods can be defined as:

wyn=p") (i P, 1<j<t—1,with0O<p< L.

The closer p is to zero the faster is the rate of discounting and the main
weights are concentrated on the last few data points. The closer p is to one
the slower is the rate and significant weights are attached to datum in distant
past. In tables this method is denoted as Fxponential p. We consider several
fixed value downweighting methods with p = 0.98, 0.95, 0.80, 0.60, 0.40 and
0.002. The data-tuned parameter is denoted as p.
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Polynomial method. This uses weights

wyg = (t—7) (i k), 1<j <t—1, witha > 0.

The past is downweighted at a slower rate than with exponential weights.
This method is referred to as Polynomial o. We do not consider any fixed
value for o and only report data-dependent downweighting with estimated

parameter a.

Nonparametric Methods

All the above methods adopt parametric weight functions and in one way
or another downweight past data monotonically. While this is sensible in
most practical situations, there may be instances when valuing recent data
the most may appear unfavourable. For example, if there are a finite number
of monetary policy regimes which repeat themselves, then older data from a
period when the current regime previously held may be more relevant than
more recent data from other regimes (Giraitis et al. (2013)). A nonparametric
weighting scheme is used to account for such possibilities. See Giraitis et al.

(2013) for a detailed technical explanation about how the method works.

Multiparameter Extensions

Rolling (k, H) method. This is an extended two-parameter rolling window
method where the downweighting parameter, H is optimally and simultane-
ously chosen using a ‘stable’ subsample period [k, ..., T|, where k, the starting
time of the period, is a second parameter to be estimated. The optimisation
procedure requires minimisation of MSE, Qrxy over both k£ and H and is

given by

QT,kH L= (T - k)_l ZtT:k@ﬂthH - yt)Q,

{H,k} @ =arg min Qrrm
HGIT,kE{kmin, ~~~~~ 7kmax}
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The one-step-ahead forecast yr1is then constructed based on the optimal
subsample yz, yz_ ,, ..., yr and the associated tuning parameter H=H (/k\;) We
should note that # < T — k. Giraitis et al. (2013) argue and prove theoreti-
cally that such two parameter rolling window forecast method is particularly
beneficial when there is a break in the mean. Forecasting after the break
should require that more of post-break data are used and the irrelevant past
are weighted less. Optimally choosing an evaluation subsample rather than
using all the available information implies that switching to post-break data
is faster than when using the full sample.

Dynamic weighting. Giraitis et al. (2013) propose a more flexible ex-
tension of exponential weighting where the weights attached to the first few
lags are not determined by parametric functions, but rather freely chosen
along with the tuning parameter, H. Thus, like an AR process the first p
weights, wy,ws, ..., w, are estimated as additional parameters, while the re-

maining weights are functions of H. The weight function is defined as

. wy, j = 1, P
Wt H = (442)

K(j/H), j=p+1,..t—1, Help

and the final weights are standardised as wy; g = Wyj n/ (Zz;ll Wy, H) to sum

to one. Note that ()7 is jointly minimised over wy, wy, ..., w, and H. We con-
sider a parsimonious representation by specifying p = 1 and choose exponential
kernel K.

Residual methods. Giraitis et al. (2013) argue that if a time series explic-
itly allows for modelling the conditional mean of the process and forecaster
has a preferred parametric model for it then it might be helpful to first fit the
model and use the robust methods to forecast the residuals from the model.
The original location model (4.2.1) is restrictive and not suitable for condi-

tional modelling and a more generic forecasting model is therefore, proposed
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to illustrate the approach:
Zt = f(fl;t) + Y, t= 1, 27

where z; is the variable of interest, x; is the vector of predicted variables which
may contain lags of z;, and y; is the vector of residuals which are unexplained
by f(z;). In the presence of structural change, y; is expected to contain any
remaining persistence in z; such as trends, breaks or other forms of dependence,
and the robust methods should perform well in such scenario. Forecasts of

f(z;) and y; are then combined to generate improved forecasts of z;.

Following Giraitis et al. (2013) we adopt the widely popular AR(1) process
to model the conditional mean which gives f(x;) = ¢z_1. The residuals y; are
forecast using either parametric or nonparametric weights discussed above.
The forecast of z;,1 based on 21, 23, ..., z; is computed as z;,; = gzt + ﬂt A

Three versions of the residual methods are considered.

Exponential AR method. In this method the tuning parameter H and the
autoregressive parameter ¢ are simultaneously estimated by minimising the
in-sample mean squared forecast error, Qr g = Q7 1, Which is computed by
defining y; = 2z; — ¢2;_1 and using exponential weights. This method is referred

to as Exponential AR.

The remaining two methods involve two-step estimation where the au-
toregressive coefficient ¢ of 2z, ; is estimated by OLS independently of the

parameters associated with forecasting ;.

Exponential residual method. Tt forecasts residuals y; = 2, — ¢z, using
exponential weights producing H and consequently, the forecast 7, IS In

the tables it is denoted as Exponential Residual.

Nonparametric residual method. It forecasts residuals y; = 2, — ¢2;_1 using

non-parametric methods. We refer to it as Nonparametric Residual.
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The Benchmark and Other Competitors

Full sample mean. The benchmark forecast for our study is the average of

all observations in the sample:

Uenchmark,T+1 = 7 i Yz
AR(1) forecast. We intgllude forecasts based on an AR(1) dynamics which is
often considered as a stable and consistent predictor of time series. The one-
step-ahead forecast is given by:

?7T+1|T = /éyT-
Last observation forecast. For unit root process a simple yet competitive
forecast is simply ‘no change’ forecast:

@\TJrllT = Yr.
Averaging method. Pesaran and Timmermann (2007) advocate simple ro-
bust method which is based on the idea of forecast combination with equally
weighted forecasts. The one-step-ahead forecast Y., p is the average of rolling
window forecasts §T+1|T7 u obtained using all possible window sizes, H that in-

clude the last observation:
T

T
Yy =7 > Yr+r,H, YTHT,H = [ > U
H=1 t=T—H+1
The method avoids estimation of any discount parameter but usually re-
quires selection of a minimum data-window to be used for forecasting . We
ignore such a choice of minimum sample size since forecasts are not signifi-

cantly sensitive to it. In table this method is referred to as averaging.

4.4.3 Monte Carlo Results

The out-of-sample forecast exercise becomes operational by choosing a starting
point 7 when the first forecast will be made. We subsequently apply all the
reported methods to construct one-step-ahead forecasts Y114, t = 7, ..., T.

Forecasts at time t is computed using only information available up to t — 1



164

and the forecast evaluation period ends at 7. We compare performance of
models in terms of their mean squared forecast error (M SFE) relative to the
benchmark of the sample mean of all available data. M SFE for method j is
computed as MSFE; = (T — 7+ 1)7! ZfZT(@fﬁllH — ;)% and the relative

MSFE is defined as RMSFE = J\%iFE%n , where M SFFE,,, corresponds to

the benchmark forecast by sample mean.

In what follows we discuss Monte Carlo results of forecasting performance
of the adaptive forecasting techniques in predicting time series v, = 3, + us
with long memory noise u; and compare them with results for short memory
noises reported in Giraitis et al. (2013). Results for different long memory
specifications of the noise processes are presented in Tables 4.C.1 - 4.C.7.
The columns represent data-generating models EFx1 — Fx11 which have been
discussed in the previous section, and the rows represent different forecasting
methods. Entries of the tables are M SFFE of different methods relative to
sample average, as defined above. Noises in Tables 4.C.1 - 4.C.3 have been
generated by a standard ARFIM A(0,d,0) model with the long memory pa-
rameter d = 0.30, d = 0.45 and d = 0.75, respectively. Note that the first two
specifications refer to stationary processes with a moderate and high degree
of long memory, while the last refers to a non-stationary integrated process.
Following Giraitis et al. (2013) we consider additional forms of persistence
in both stationary and non-stationary long memory processes via autoregres-
sions. Tables 4.C.4 - 4.C.5 report results for ARFIMA(1,d,0) noise with
an AR(1) coefficient p = 0.7 and long memory parameter d = 0.30, 0.75 re-
spectively. Tables 4.C.6 - 4.C.7 contain results for the ARFIMA(1,d,0)
processes with the same degree of long memory but with a negative AR(1)
coefficient of p = —0.7. The innovations of the noise processes u; are i.i.d.

standard normal.

We begin by discussing the results in Table 4.C.1 which features ARFIMA
(0,0.30,0) noises. RM SFE values below unity suggest that, in general, all the
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reported forecasting methods, both with fixed and data-driven discounting,
are useful in case of noises with moderately strong long memory. Even the
simplest case of ‘no structural change’, y;, = u; reported in the first column
and labelled as Ex1 shows that forecasts of the most of the competing meth-
ods, including the rolling-window schemes, outperform the benchmark of the
full-sample average. The gains are, however, small. This finding is in contrast
with the results obtained for stationary i.i.d. process in Giraitis et al. (2013)
that record sole dominance of the benchmark over the competitors.! Gains
over the benchmark are more pronounced when y; has a persistent component
B,. Then, even naive ‘last observation’ forecasts are better than the mean
forecast in most of the experiments.

Persistence entering y; through long memory u; requires stronger discount-
ing and accounting for information contained in the more recent past. This is
evident from the performance of fixed parameter exponentially downweighted
moving average forecast methods. While exponential downweighting with pa-
rameter p = 0.90 provides the most accurate forecasts for time series with i.i.d.
noise processes, discounting with p = 0.80 gives the best result for time se-
ries with ARFIMA(0,0.30,0) noise. Extremely strong discounting is penalised,
but not as harshly as in the case of short memory i.i.d. series. For example,
in the long memory case, the relative M SFE of forecasts with exponential
downweighting with parameter p = 0.002 is 1.253, while in the i.i.d. case, it
becomes 1.947. The data-dependent exponential weights do not exactly match
the best fixed value forecast method but are reasonably comparable and are
never among the worst performing methods. For instance, the exponential
weighting method with a fixed p = 0.90 beats the method with data-based
tuned value p in a number of experiments such as Fxl, Fx2, Ex7 etc., but
is convincingly outperformed by the latter in several occasions such as Ez6,

Ex10, Ex11 etc. Results of Fx11l where y,; follows a standard random walk

! See Table 1 in Giraitis et al. (2013) for Monte Carlo results considering i.i.d. noise.
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are particularly different for long memory and i.i.d. noises. For instance,
the relative MSFE of the data-tuned exponential weights is only 0.006 for
ARFIMA (0,0.3,0) noises compared to a much higher value of 0.042 for i.i.d.
noises. Forecast methods with optimally chosen exponential weights consis-
tently perform better than the rolling-window methods, but their ability to

outperform the polynomial method is more mixed.

A comparison of rolling-window methods reveals that choosing an evalu-
ation period optimally together with the window size helps to improve fore-
casts of data with long memory noise. The combined methods using both
data-dependent window, H , and an evaluation period (E, T) consistently out-
perform methods using H and k = 1 in case of ARFIMA (0,0.3,0) noises.
Performance of these two methods is relatively more comparable in case of
i.i.d. noises. Both methods using the data-adjusted rolling-window forecast
better than methods with fixed windows of size H = 20 and H = 30 and also
outperform the averaging method of rolling windows advocated by Pesaran
and Timmermann (2007). This justifies the use of data-driven choice of the

downweighting parameter in rolling window.

Overall, comparison of competing forecasting methods show that the full
sample AR(1) forecasts are in general very good compared to the benchmark,
but are often outperformed by most of the adaptive data-tuned methods. Fore-
casts based on the non-parametric method are competitive and those based on
the residual methods are impressive. Among the adaptive robust forecasting
methods the dynamic weighting method, where the weight attached to the last
observation is optimally chosen from data simultaneously with the exponen-
tial weighting parameter, consistently provides forecasts that are comparable
to the best possible forecasts for all the experiments. The exponential AR
method is also equally competitive.

Similar findings as for ARFIMA (0,0.3,0) noises hold also for ARFIMA
(0,0.45,0) and non-stationary ARFIM A (0,0.75,0) noise processes presented
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in Table 4.C.2 and Table 4.C.3 respectively. There are, however, a few
new important patterns. First, gains of data-tuned methods over the bench-
mark of sample mean increase with the increase of long memory, particularly
for exponentially weighted moving average and dynamic models. For exam-
ple, the RMSFE’s of the data-tuned exponential method in Fx1 are 1.085,
0.905, 0.688 and 0.211 for i.i.d. noise and long memory noises with d = 0.30,
d = 0.45 and d = 0.75, respectively. Second, exponential weighting with
stronger discounting provides better forecasts for processes with stronger long
memory and the data-tuned exponential method matches the best fixed pa-
rameter method more closely in case of higher persistence. For example, in
case of Fxl and long memory process with d = 0.30 the smallest RMSFE
value of 0.874 is attributable to p = 0.80 while the RMSFFE value of the
data-tuned method is 0.905. For d = 0.75, however, a much smaller best
RMSFFE value of 0.208 is generated by p = 0.40 and the corresponding value
for the data-tuned method is 0.211. Third, data-tuned exponentially weighted
methods and dynamic methods enjoy larger gains over polynomial methods
when long memory increases. Finally, AR(1) forecasts become more and more
competitive with increased persistence. For noises following a non-stationary
ARFIMA (0,0.75,0) process AR(1) is one of the best performing forecast

methods across all the experiments.

As mentioned above, Table 4.C.4 considers performance of forecast meth-
ods when noise u; shows substantial serial dependence through AR(1) coeffi-
cient of p = 0.7 along with long memory persistence, d = 0.3. A comparison
with results for short memory AR(1) noise reveals that robust adaptive tech-
niques report smaller RM SF E’s in many situations for noises with additional
time-dependence induced by long memory.? The full sample AR(1) forecasts

are consistently the best unlike in the short memory scenario where they are

2 Refer to Table 2 in Giraitis et al. (2013) for Monte Carlo RMSFE results considering
short memory noises that have AR(1) dynamics with an autoregressive coefficient of 0.7.
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sometimes beaten. Performance of fixed parameter exponentially weighted
moving average methods improves with stronger downweighting of past infor-
mation. Note, for instance, that the forecasts computed using the exponential
method with the lowest fixed value of the tuning parameter p = 0.002 are
comparable to the AR(1) forecasts. Advantage of using only the most recent
information is further confirmed by equally good ‘last observation’ forecasts.
The adaptive method with optimal data-selected exponential weights almost

always matches the best fixed value method.

Among the rolling-window methods, once again methods with data-dependent
window outperform the fixed window methods, more convincingly than in the
case of long memory noises with no additional short-range dependence. Fore-
casts based on methods using a data-dependent window, H and evaluation
period (/k\, T') are also more accurate than those based on methods using H
and k = 1, with gains more pronounced in presence of additional serial depen-
dence than in the long-memory-only situation. Note that while the RMSFFE’s
of fixed window forecast methods are similar for ARFIMA (0,0.3,0) noises
and ARFIMA (1,0.3,0) noises with an AR(1) coefficient of 0.7, RMSFE’s
of data-tuned rolling-window methods shrink substantially in the latter, con-
firming adaptability of such methods to higher persistence. Averaging method
appears to be one of the worst performing methods. The exponential AR and
the residual methods belong to the group of best performers, followed by the
dynamic weighting and the polynomial weighting methods.

Results for a non-stationary noise process ARFIMA (1,0.75,0) with an
AR(1) coeflicient of 0.7 retain most of the above findings. Evidential results
are presented in Table 4.C.5. Performance of data-tuned methods against the
full-sample average further improves. Forecasts based on the EWMA methods
with data-selected weights and dynamic methods are similar and almost iden-
tical to AR(1) and the ‘last observation’ forecasts. Notably, the exponential

AR forecasts can beat the AR(1) forecasts in several experiments, although
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with marginal gains.

Advantage of data-based adaptive forecasting methods becomes clearly
evident when we consider ARFIMA (1,0.3,0) with a negative AR coefficient
p = —0.7. Table 4.C.6 reports corresponding RMSFE’s. Although the
full sample AR(1) forecast consistently beats the benchmark sample mean,
it is outperformed by most of the adaptive forecasting techniques including
the rolling window methods. Noteworthy differences between the results of
ARFIMA (1,0.3,0) noises with positive and negative AR coefficients are that
margins of gains over the benchmark are higher in the former and that fore-
casts using data tuned exponential and rolling-window methods become more

comparable in the latter.

Methods adopting data-based selection of the downweighting rate, partic-
ularly, the dynamic weighting and the exponential AR methods are the most
dominant predictors. The residual methods also generate very good forecasts
in most of the experiments. Maximum reduction in relative M SFFE of the
fixed parameter EWMA methods come from methods with very low discount-
ing rates emphasising necessity of including information of distant past. The
optimally chosen exponential weights lead to forecasts that are comparable
to the forecasts generated by the best performing fixed parameter methods.
There is no significant advantage of optimally choosing the evaluation period,
(/15, T') along with the window size, H and data-based choice does not always
provide better forecasts than the fixed window methods. The ‘no-change’
forecast is by far the worst candidate reporting RM SF E’s which are predom-
inantly much higher than unity.

Forecasting under non-stationary noise generated by ARFIMA (1,0.75,0)
with an AR coefficient of —0.7 further establishes superiority of the data-tuned
forecasting techniques by reporting larger gains over the benchmark. Table
4.C.7 presents the evidence. It also shows that optimally chosen exponential

weights can beat the residual methods with marginal gains.
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The Monte Carlo experiments with long memory time series noise u; gen-
erated by ARFIM A models confirm that accuracy of forecasts varies with the
degree of persistence in the data and consequently, depends on appropriate
down-weighting of past observations. The facts that many of the data-tuned
discounting methods always match, if not outperform, the best forecast with
fixed downweighting parameter and that the optimal rate of discounting cannot
be observed in advance, prove the adequacy of data-tuned adaptive forecasting

techniques, particularly when facing structural changes.

4.5 Empirical Application

In this section we examine practical usefulness, if any, of data-tuned discount-
ing methods by applying them to real data. We exploit all the methods pre-
viously used in the Monte Carlo experiments to forecast a range of UK time
series which are available on quarterly and/or monthly frequencies. Giraitis
et al. (2013) investigate predictive performance of same methods by fore-
casting 97 US quarterly series and find many of them, particularly a EWMA
with data-selected downweighting parameter and exponential AR, to be sig-
nificantly superior to a simple full sample AR(1) benchmark. Our forecast
exercise is similar to their design, but it is extended and more detailed in
several ways. First, we use latest data that include the recent financial crisis
period. Second, we analyse forecasts of both untransformed (raw) and trans-
formed (to stationary) series and data with two different frequencies (quarterly
and monthly). Third, we perform robustness check by providing results for
two different sub-samples.

The quarterly data consist of 55 series and span a long period of 1971Q1:
2012Q4. The dataset includes economic series related to output, production,

employment and inflation and financial series related to interest rates, ex-
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change rates among others. We generate one-quarter-ahead forecasts for the
last 22 years of the full sample starting in 1999Q1. We evaluate and com-
pare forecasts over two non-overlapping sub-periods of equal size: the first is
[1999Q1: 2001Q4] and the second is [2002Q1: 2012Q4]. The monthly data
span a much shorter period ranging from January 1993 to December 2012, but
contain a larger information set with 79 series.®> The full forecast period for
the monthly dataset is January 2001 to December 2012 and the sub-sample
analysis examines one-month-ahead forecasts over two periods each 6 years
long: one ranging from January 2001 to December 2006 and the other ranging
from January 2007 to December 2012.

The forecasting methods considered are robust to structural change and
include methods with exponential, polynomial and non-parametric weights,
rolling-window schemes and residual methods. For each series, we compute
MSFE relative to the full sample AR(1) benchmark. Full lists of quarterly
and monthly series together with RMSFFE results are reported in Tables
4.C.14 - 4.C.16 of Appendix G. Although we provide a detailed series-by-
series comparison of models we emphasise that our goal is not to identify
the best forecasting strategy for particular series or datasets, but to examine

overall benefit from using data-based discounting.

4.5.1 Results for Quarterly Data

We begin by discussing results for one-quarter-ahead forecasts of untrans-
formed data. Table 4.C.8 summarises them in terms of a number of descrip-
tive statistics and tests. These include the mean, the median, the minimum

and the maximum of the relative M SFE’s. The columns DM1 and DM2
report the number of significant Diebold-Mariano tests where the null hypoth-

3 Note that the quarterly and the monthly datasets share a number of series between
them.
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esis is that of equal forecast ability of a robust data-downweighting method
and the benchmark AR(1). The alternative hypothesis for DM1 is that the
AR(1) forecasts are more accurate and for DM2 the downweighting method
is better. Most of the series appear to be non-stationary. The full sample
unconditional mean and forecast methods using rolling-window weights, non-
parametric weights and exponential weights with low discount rates perform
poorly compared to the full sample AR(1) benchmark. We, therefore, report
results for only those methods, either with fixed or data-tuned downweight-
ing parameters, whose forecasts are reasonably comparable to those of the

benchmark.

Majority of the reported data-dependent adaptive methods fare very well
against the full sample AR(1). In almost all the cases the median RMSFE is
below unity. Results are the most impressive for the EWMA with data-tuned
discounting, Exponential AR and the two residual methods. Lower mean than
median indicates that the methods can yield substantial gains over the bench-
mark. The largest gains range between 55%-68%, and the maximum cost is
no more than 38%. Moreover, while in 25%-36% of the cases forecasts of
these adaptive methods are significantly better than those of the benchmark
(indicated by DM2 tests), proportions of significantly worst forecasts do not
exceed 7%. The exponential AR is, by all means, the best predictor. It yields
the maximum reduction of 17% in the mean RMSFFE and 7% in the median.
More importantly, it concedes no significant outperformance by the benchmark
while significantly beating it for 20 series, the maximum among the competing
models. The exponential residual method and EWMA with optimised down-
weighting parameter also perform very well with average RMSFFE gains of
11% and 6%, respectively. Their gains at medians are, however, small. Dy-
namic weighting and the polynomial weighted moving average method match
the benchmark AR(1) in terms of median RM SF'E and enjoy healthy propor-
tions of significant DM2 tests, but they lose out on mean RMSFE. Although
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the penalty at mean is trivial for the dynamic method, it is enormous for the
polynomial weighting. The cost is reflected on the latter’s abnormally high
maximum loss and large number of significant DM1 tests which offsets almost

all its significant benefits.

Among the fixed parameter methods, the EWMA method with the strongest
discounting rate and an associated tuning parameter value p = 0.002 out-
performs the AR(1) benchmark marginally on both mean and median. This
implies that most of the series in our sample have unit roots and the last obser-
vation often serves as a competitive one-quarter-ahead forecast. Nonetheless,
the data-tuned exponential discounting proves to be better than the best fixed
discounting by several means. Although the two forecast methods are compa-
rable in terms of median, the former enjoys a 4% average RMSFE gain over
the latter. Most importantly, while the best gains over the full-sample AR(1)
are comparable for both the methods, the largest cost is much smaller in case
of data-dependent downweighting. The largest RMSFE for the best fixed
exponential weighting is 2.450 compared to a value of 1.175 for the data-tuned
weighting. This suggests that the adaptive method is much safer to use, espe-
cially knowing that the optimal rate of downweighting cannot be determined
in advance. Lower number of significant DM1 tests and higher number of sig-
nificant DM2 tests also confirm advantage of data-tuned rate of exponential

discounting over the best fixed rate.

The sub-sample results establish more pronounced superiority of adaptive
forecasting methods during the first half of the sample. All the methods beat
the benchmark AR(1) for the median and mean reductions in RMSFFE are
often large. For example, the gains at the mean and the median are 25% and
21% for the exponential AR and those for the exponential residual method
are 16% and 14%, respectively. The minima indicate that at times benefits
relative to the benchmark can be extraordinary with gains as high as 88%.

In the second sub-sample domination of adaptive techniques appears to be
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subdued and there are fewer significant outperformance in favour of them.
The fixed parameter EWMA enforcing the strongest discounting performs very
well, but not better than its counterpart with optimally chosen downweighting

parameter.

In order to evaluate practical importance of forecast methods further, we
compare their M SFE relative to the AR(1) benchmark for a selection of 15
economically important series. Table 4.C.9 reports the results. For each se-
ries a bold number indicate the smallest RMSF E and consequently, the best
forecast. Supreme forecast performance of exponential AR method, which
was documented earlier, is evident. It beats the benchmark for almost all
the reported series, sometimes with large gains, e.g., 65% for GDP and 33%
for unemployment rate. The largest loss it incurs is merely 8% and arises
from forecasting total exports of goods and services. Interestingly, the non-
parametric residual method performs very well for certain variables, such as
consumption expenditure, CPI and money stock. However, at times there
can be costs of considerable amount, e.g., costs of 25% for exchange rate and
14% for Index of production on manufacturing. On average, the EWMA with
p = 0.002 which assigns almost all the weights on the last observation forecasts
the best among the fixed discounting methods. But there are occasions, such
as forecasting of public sector borrowing, where it performs poorly and a rela-
tively lower discount rate with p = 0.60 achieves the most accurate prediction.
This is where application of data-dependent exponential discounting proves to
be particularly useful as it almost always matches the best fixed value method
or beat it with small gains. Forecasts of polynomial weighting can often match
those of exponential weighting, but there are also costly deviations. For exam-
ple, the reported RM SF'E of the polynomial weighted moving average method
for total actual weekly hours worked is 2.642 compared to a much lower value
of 1.004 for exponential weighting. Overall, many of the adaptive methods

forecast the set of indicator variables well, often with substantial gains over
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the benchmark and with minor costs at the worst cases.

Following Giraitis et al. (2013) we report the most pronounced gains of
two well performing data-dependent adaptive forecast methods - EWMA with
optimised discounting parameter and exponential AR. For each method, Ta-
ble 4.C.10 lists 20 series with the smallest M SF'E relative to the full sample
AR(1) benchmark. For many of these series outperformances are large, partic-
ularly when forecasting using the exponential AR method. The methods are
the most beneficial for forecasting output, production, price and employment

related variables.

The quarterly series are predominantly non-stationary. We follow Giraitis
et al. (2013) to transform them to be stationary and investigate whether
such a transformation affects any of the above findings. The stationarisation
advantages the previously discarded poor performing methods and makes all
methods more comparable to each other in terms of forecast performance.
Table 4.C.11 summarises the results. Overall, the full sample AR(1) bench-
mark outperforms almost all the competing forecasting models in terms of
mean and median RMSFFE and number of significant DM statistics. How-
ever, not all is ominous. The EWMA with data-tuned discounting parameter
and the exponential AR method match the benchmark at mean and most
importantly, yield more significant gains (DM2 tests) than significant losses
(DM1 tests). For these two and other adaptive methods such as exponential
residual method and methods with polynomial and dynamic weights penal-
ties at mean and median are fairly small. The non-parametric weighting and

non-parametric residual methods are not particularly useful.

We should note that the forecast of the EWMA with p = 0.002 or equiva-
lently the ‘last observation’, which was a competitive contender in forecasting
untransformed quarterly series, loses out to the full sample AR(1) benchmark
miserably in the all stationary environment. It experiences more than 50%

penalty at both mean and median and there is no significant DM2 statis-
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tics in contrast to 39 significant DM1 statistics. Fixed parameter EWMA
methods with low discounting rates or high values of the tuning parameter,
e.g., p = 0.90,0.80, perform rather better. Yet, optimally chosen exponential
downweighting method beats almost all the fixed value discounting methods on
every evaluation criterion. Most convincing are much lower mean RMSFE
and maximum penalty and a much higher number of significant outperfor-
mances of the benchmark. Contrasting performance of a fixed discount rate
for stationary and non-stationary datasets points out the already identified
fact: one discount rate is unlikely to be suitable for every dataset or for every
series. Generating reliable forecasts and avoiding severe forecast failures in
the face of structural change can be achieved by adaptive forecasting with

choosing discounting weights optimally over time.

Predictive performance of rolling-window techniques relative to the AR(1)
benchmark is not satisfactory. However, it is worthy of noting that, on aver-
age, methods with data-selected window yield better forecasts than the fixed-
window and window-averaging methods. For data-based optimally chosen
window the maximum forecast gains are much higher and the highest cost
is much lower. This once again corroborates importance of optimal selection

of downweighting parameter using past information.

Good full-sample forecast performance of adaptive EWMA and exponen-
tial AR can also be observed over the two sub-samples. The mean and median
RMSFE in the two periods indicate that the adaptive EWMA and the dy-
namic methods (dynamic weighting and residual methods) enjoy better overall
advantage in the first sample. For the rolling-window methods performance is

opposite - better forecast in the second half of the sample.
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4.5.2 Results for Monthly Data

We forecast the 55 quarterly series over a period of 22 years. Although such a
long period can accommodate structural changes with higher probabilities, it
leaves us with only 88 one-step-ahead forecasts to evaluate. We, therefore, opt
to test the predictive performance of adaptive techniques at monthly frequency.
The forecast period span a much shorter period of 12 years, but we have more

observations and more importantly, a larger information set to work with.

Similar to untransformed quarterly data we identify most of the monthly
series to be non-stationary and to disadvantage many of the competing models
including rolling window, estimation window averaging and full sample mean,
among others. In order to make reasonable comparisons we, therefore, dis-
card any poor performing methods. We decide to report forecast results of
the same set of methods which we present in Table 4.C.8 for untransformed
quarterly data. A summary of RMSFE results in terms of descriptive statis-
tics is presented in Table 4.C.12. Unlike quarterly forecasts monthly results
are less favourable to data-based adaptive forecasting techniques. The expo-
nential AR and the EWMA method with data-tuned discounting parameter
are the only two predictors which beat the benchmark AR(1) at both the mean
and the median RMSFFE. The gains are, however, less pronounced than in
quarterly data. For the exponential AR the mean and median reductions are
7% and 5% respectively and for the adaptive EWMA they are merely 5% and
2%, respectively. The superiority of the two methods over the benchmark
is further substantiated by large number of significant gains over the bench-
mark and small number of significant losses. For the other adaptive methods,
such as the dynamic weighting and residual methods, outperformances of the
benchmark are outnumbered by number of significant DM1 tests (favouring
the benchmark). There are, however, positives to take. Importantly enough,

penalties at mean or median are not more than 5% for these methods and best



178

outperformances are large compared to much lower worst costs, particularly
for residual methods. Results for polynomial weights are far from convincing.

The predictive performance of EWMA methods improve with stronger
discounting. Among the fixed parameter EWMA methods the one with a dis-
count rate of p = 0.002 (which is equivalent to assigning all the weights to the
last observation) is rewarded the most. It outperforms the AR(1) benchmark
marginally on mean RM SFE and yields more significant DM2 statistics than
significant DM1 tests. Nevertheless, this best fixed parameter EWMA is no
match for the adaptive EWMA with data-tuned downweighting rate. For the
latter the mean RMSFE is 6% lower and the proportion of significant out-
performances over the AR(1) is 28% higher. Important of all, it is less prone
to forecast failure. In the worst case, the RMSFE of optimised EWMA is
1.103 compared to a much higher value of 1.846 for its best fixed value coun-
terpart. Results of the two sub-samples are similar. For most of the adaptive
methods there are small improvements in median RM SF'E during the more
recent, sub-period.

As in quarterly forecast we present the best 20 predictions for optimised
EWMA and Exponential AR in Table 4.C.13. While the EWMA forecasts
sales and production well, the exponential AR enjoys clear advantage on em-

ployment and price related variables. Both predict tourism related series much

better than the AR(1) benchmark.

4.5.3 Forecast Performance During the Crisis

The recent global financial crisis that set out in late 2007 triggered a reces-
sion in the UK economy and adversely affected the dynamics of many of its
key indicators. For example, output growth became negative and inflation be-
came volatile. Developing or recongising forecast models and methods which

can accurately predict such unusual and abrupt economic changes is of cru-
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cial practical interest. Barnett et al. (2012) compare a number of dynamic
models with time-varying parameters in forecasting the UK GDP growth, in-
flation and short term interest rate. These authors conclude that although
a single best model is difficult to find, allowing for time-variation of specific
types proves to be beneficial, particularly during the crisis. We conduct a
similar analysis to assess crisis-period predictive performance of each of the
robust methods considered in this study. Figure 4.B.10 plots one-step-ahead
forecasts of quarterly GDP growth alongside the actual data over 2008 Q1 -
2010 Q4, a period when the crisis deepened. Figure 4.B.11 reports similar
results for CPI inflation. The GDP growth and inflation are computed as log
difference of quarterly GDP and CPI index values multiplied by 100.

Figure 4.B.10 clearly shows that the crisis initiated a prolonged period
of strong negative growths followed by periods of recovery. In 2008 Q2 the
actual growth was about -0.9%, but all the forecast methods predicted posi-
tive growth with the benchmark AR(1) being the least biased by forecasting
near-zero growth rate. The rolling window methods, using either fixed or es-
timated window lengths, performed miserably and forecasted near constant
positive growth during the entire crisis. Most of the other methods, including
the benchmark AR(1), were predicting negative GDP growth by mid 2009.
Exponentially weighted moving average methods with stronger discouning of
past information performed better. It, however, remained difficult to outper-
form the last observation, meaning that the growth data were highly persistent
during the crisis. Nonetheless, forecasts from a number of methods with data-
tuned downweighting rate, such as the adaptive EWMA, Exponential residual,
Exponential AR and Dynamic weighting methods, could closely match the last
observation on many occasions and importantly, they were, on average, supe-
rior to AR(1) forecasts. In 2008 Q4 the GDP growth plummeted to its lowest
at -2.1%. The adaptive EWMA and Exponential residual appeared to be the

two best predictors by forecasting growths lower than -1.5%. Forecasts of the
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dynamic weighting method and exponential AR were larger but more accurate
than the benchmark AR(1) forecast of -0.7%. These two adaptive methods
predicted the recovery of the GDP growth in the year 2009 particularly well.

Performance of methods based on nonparametric weights were not satisfactory.

It is evident from Figure 4.B.11 that inflation became volatile and harder
to forecast during the crisis. It increased from 0.6% at 2008 Q1 to 2.2% at the
end of next quarter. But subsequent large drops made inflation negative and
it reached the trough at -2.5% in 2008 Q4. It recovered and rose to 1% over
the following two quarters, and remained fairly stable until 2010 Q2 only to

experience some fluctuations at the end of 2010.

The ‘no change’ forecasts (last observations) were the most accurate during
periods of stable inflation, but generated large forecast errors during times of
volatility. Interestingly, the exponential AR and adaptive EWMA methods
which closely imitated the last observations when forecasting GDP growth
avoided such forecast error by behaving very differently based on a much slower
rate of discounting. For example, the last observation forecast was about 2.2%
in contrast to the actual inflation rate of 0.8% in 2008 Q3. Forecasts of adaptive
EWMA and exponential AR were much more reliable being close to 1%. The
residual methods were amongst the few which were able to forecast negative
inflation in 2009 Q1. They matched the last observation and AR(1) forecasts,
but were, in general, less biased, particularly when there were substantial
fluctuations. For fixed size rolling window methods, the forecast paths stayed
horizontal at around 0.8%. There was no real advantage of adaptively choosing
the window size from data except that the method that simultaneously selects

the tuning parameter and a stable evaluation period forecasted inflation better

after 2009 Q3.
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4.6 Conclusion

We look at the problem of forecasting time series which are persistent and
also subject to ongoing structural change. Forecast methods that are robust
to historical and recent structural changes are of particular interest. These
include a class of methods that, in one way or another, downweight past data,
such as rolling window regression, forecast averaging across different estima-
tion windows and exponentially weighted moving averages. Our work builds
on the contribution of Giraitis et al. (2013) who argue that choosing a priori
a fixed rate of discounting older data is not optimal provided that the nature
of structural change is unknown. They propose a data-based selection of tun-
ing parameter and provide theoretical evidence showing that such a technique
minimises mean squared forecast errors asymptotically. They further justify
good small-sample performance of their adaptive methods via Monte Carlo
simulations and practical usefulness by forecasting many US time series. In
their econometric framework Giraitis et al. (2013), however, consider persis-
tence in time series only through short-range dependence in the noise process.
We bring long memory into the scenario. Long-range dependence is a common
feature of many economic and financial time series and is often confused with
structural changes. Presence of both poses a difficult challenge for real time
forecasting. We shed light on this aspect by justifying, both theoretically and
empirically, efficacy of forecast methods with data-tuned discounting rates in

such complex situations.

For the theoretical analysis, we prove asymptotic optimality of forecasts
based on data-dependent adaptive methods by considering two specific cases -
a stationary long memory process and a linear trend process with long memory
noise. We establish that for a persistent process, such as the former, a data-
selected tuning parameter is not affected by number of observations and for a

deterministic trend, such as the latter, it remains bounded. These reasonably



182

imply that forecasts of a time series with long range dependence will rely on
the last observation or averaging of the last few available observations.

Next, for the empirical exercise, we consider different degrees of long
memory persistence in the noise process which transmits into the original
response series to be forecast. We find that long-range dependence generated
by ARF'IM A models often creates false impressions of different types of struc-
tural changes such as cyclical or monotonic trends and conceals presence of
true structural changes. A detailed Monte Carlo study confirms effectiveness of
data-tuned robust methods in forecasting in face of ongoing structural change
when coupled with long memory noise process. For rolling window methods,
a cross-validation based selection of window length almost always results in
more accurate forecasts than when fixing the size to a predetermined value.
Not surprisingly, forecast performance of EWMA methods appears to be sen-
sitive to choice of the tuning parameter. Different values, meaning different
rates of downweighting, achieve the best forecast for different degrees of persis-
tence in noise. Importantly, however, we find that adaptive EWMA methods
which update the degree of discounting at each forecast horizon can generate
reliable forecasts consistently. In spite of presence of various types of struc-
tural changes in a time series and varying level of long memory in the noise
process, their forecasts are generally as competitive as the best fixed parame-
ter forecasts. We confirm practical usefulness of data-tuned robust methods
by forecasting several economic and financial time series of the UK at both
quarterly and monthly frequencies. There are large benefits to gain with rare

evidence of adverse penalties.
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4.A Appendix: Proofs

4.A.1 Proof of Theorems 1 and 2 and Corollary 1

We follow the same steps of the proof as in Giraitis et al. (2013). By definition

T T [t-1 2
Qru=T," Z(yt — Jyer,u)? =T, Z (Z Wej,m (Y — ?Jt—j)) )

t=Th t=Tp, \j=1
T

2
wru = E(yri — rppun)? = E (Z wri,m (Yrer — yT+1—j)) :
j=1

We will approximate )7z and wr g by the sums

T /T 2
59’}}”) =T, Z <Z wj (Y — yt—j)) )

t=Tp \j=1

T 2
CL)’_('[?’p];) = E <Z wj7H(yT+1 — yT-i—l—j)) ,

j=1

replacing wy; g by w; i defined by (4.2.6), setting T} = ToT—%/%. Since Hypow =
ToT~°, then Ty/Hymaw = T°, Ty ) Hypae = T%/% and Ty /T, < T2,

The proof of Theorems 1 and 2 is based on Lemma 1, Lemma 2, and
Lemma 3 given in Section 4.A.2. These lemmas divide the proof into 3 steps,

establishing required approximations.

Proof of Theorem 1. Write
Qrat = 6%, + [QTH - “”’”’] +e{Qim -2} (4.A.1)
e |

Recall that H < T and 0 < d < 1/2. Uniformly in H, by Lemma 1,
(@i — Q)] = OT2), by Lemma 2, B{Q%) — 4%, } = guu + O(T2)
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and by Lemma 3,
[ 5:171[);) 52 —E{Q apr) _ u} = oy (H~129), Hence,

Qrm = &?r,u + qui + o (H 1129,

where by Lemma 2(i), g,z = Aoy H 2% + oy (H~124). This completes the
proof of the theorem. []

Proof of Theorem 2. Recall equality (4.A.1). Then, uniformly in H, by
Lemma 1, |Qrp — 7?’;;) = O(T7?), by Lemma 2, E{ (am) &%u} —
qs.0 + Quir + o (H?) and by Lemma 3, [Q apr) — E{Qyy (apr) &Tﬂl}] =
or(H?). Hence,

Qr,n = (ﬁm + goi + qui +on(H?),

where by Lemma 2(ii), 5.5 + qun = kH?+ oi(H?). This completes the proof
of the theorem. []

Proof of Corollary 1. Proof follows using the same argument as in the
case of Corollary 1 in Giraitis et al. (2013). Let ¢,y reaches its minimum
Co = (u,, at some finite Ho. Since 67, = 02 + 0,(1), then (4.3.5) implies
that Q5 = co + 0p(1), wrm,, = co + o(l), which in turn implies w; 5 =
Qr g +o(l) = co+o(l). Hence, wy, g = wrm,, +0o(1) and Qr, g = wy g +0,(1).
This proves (4.3.6). O

4.A.2 Main lemmas
Step 1. First, using Lemma 1 we show that

Qr,n = Q apT) {QT,H - %Z)} = (apr +0(T?),

uniformly in H.
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Lemma 1 Under assumptions of Theorems 1 and 2,

(apr)
QT,H T wT,H

E [EE?T } =0(T7?), (4.A.2)

sup
Helr

(apr)
Wr.H — W g

= O(T72).

Proof. The proof is similar to the proof of the Lemma A.1 in Giraitis et
al. (2013). We provide here all details.

Notice that by definition of weights, wy, z <1 and w; g < 1. To evaluate
Qrm— Qgﬂf’};), for Ty <t < T and j, k < t—1 we shall use the following bound:
\wy; pwe, i — Wi pwe I (§,k < Th)| < Jwy g n — W gWem| + (W) pwe g —
wj gwr, gl (j, k < T)| < |wyj,z—w; g |wie, r+w;, 1| Wi g — Wi 1|+ 05w g 1(j >
Ty or k>T) < |wypg—wjp|+ |wen — wiu| +wjal(j >T1)+weul(k >
T1) < CT~° because |wy; g — wjpg| < CT% by (4.A.24) and w; yI(j > T1) <
CT~% by (4.A.23).

Hence,
Qrar — Q)
T t-1
<T* Z Z \wij, Wi, m — wirwr,pl (5, k < T1)]
t=Ty j,k=1

X (e = ye-3) (e = Yo
S OT Yy e T8 — v 3) (e — )| = -
Since jr does not depend on H it remains to show that
Ejr = O(T™?).

We have

T t-1

Ejr <CT,* Z Z T°E|(ys — 1) (W — ye-1)|.

t=To j,k=1
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We use the bound E|(y: — ye—;) (e — Y1) < E(yr — ye—j)® + E(ye — p1—1)? <
2(Ey} + Eyij) + 2(By; + Eyi ) < 8maxe—y,. 1 Eyy.

In Theorem 1, Ey? = E(u + w)? < 2p* + 2Eu? = 2u* + 2Fu? < oo,
because u; is a stationary sequence with finite variance.

In Theorem 2, Fy? = E(at +w;)? < 2a*t? + 2Eu? < 2a*T?* + 2Eu? < CT?
fort=1,..,T.

Therefore, E|(y: — yi—j)(ye — yi—k)] < CT? where C' does not depend on

t, 5, k. So,
T ot-1

Ejr <CT,'T?) Y T °<CT,'T™".

t=Tp j k=1
Since T, = T — Ty + 1 ~ T, then Ejy < CT,'T? Y/, S2000 776 < CT2
which proves the first claim of the lemma.

To show the second claim, we use the bound we obtained above: E|(yr,1—

yr41-3)(Yr41 — yri1-r)| < CT?. Then,
wrar — wi|
=K Zik:l(wt]’,Hwtk,H —w;gwy,l(j, k <Th))
X (yrs1 — yre1-3) Wre1 — yrii-k)|
< kaﬂ (Wi Wi, 5w g Wk, e (, k < TO|E|(Yr1—Yre1-5)yr1—yri1-+)|
< CT? kaﬂ | Wej Wi, g — W gkl (j, k < Th))|
< CT? Zikzl CT~% < OT2, using the inequalities we obtained above.

This proves the second claim. []

apr)

Step 2. Next we obtain asymptotics of E(Q%g) —6%,) and w(T’ [
Lemma 2 (i) Under assumptions of Theorem 1,
B(QFE — 6%.) = unr + O(T ), (4.A.3)

WD = 6% 4 guu + O(T72),
where q, g s the same as in Theorem 1 and

G = AparH 20+ o (H 1129, (4.A.4)
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(i1) Under assumptions of Theorem 2,
E( 57,? - &i2r,u) =qpH t QuH + OH(H2), (4.A.5)
Wik = 0%t Gt + qun + on (),
where gz g = kH* + oy (H?), and
Q.+ Qui = kH? + o (H?). (4.A.6)

Proof. Since in Theorems 1 and 2, (3, is deterministic, and u; is a stationary

LM sequence with zero mean, Eu; = 0, then

E[ SSL,Z) — &%’u] = Mmp,TH + My, TH, w%ﬁ") = UB,TH + Uu,TH, (4A7)

2
where mg g =T, ZtT:TO E ( ;‘Fil wj (B, — 5:5—;‘)) ,

T T 2
-1 2
murr =T ) B Y win(u—uy) | —oh
=1

t=To

) 2
=F (Z ’lUjJL[(UO — U_j)) — 0'72”

J=1

- 2
vgrH =E (Z wj,H(BT-&-l - 5T+1—j)) )

=1
- 2
vyrH =F E wj g (ursr — ursi—;) | -

j=1

i). Suppose that conditions of Theorem 1 are satisfied. Then 6 = and
P =1
hence mpgrTH = 0, Us,TH = 0.

Thus, to prove (4.A.3) we need to show that

My TH — Qu,H = OH(T_Q), Uy, TH — Ui — Qu,H = OH(T_Q)- (4.A.8)
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By definition, ¢,y = £ (Z;’il wj g (uo — u_j)>2—03. We showed that E|(ug—
u_j)(up — u_)| < 8Fu < oo, also we have Y ;- wr g = 1 by definition of
Wy, and 77w = O(T~°) by (4.A.23). So,

|mu,TH - Qu,H|

<Dk Wipwer(I(G > T1) + I(k > T1)) E|(uo — u—j)(uo — u—r)|

<O e wiawra(I(G > TO)+I(k>T1)) < CY 2 p win Y ey Wen <
CTS.

Similarly, by stationarity, v, rg = E (Z;‘Ll wj g (u — u_j))2 and v, 7 —
on—quu| < |E (Zj y Wy (uo — U—j)>2—E (Z;il wj,p(uo — U—j)>2| <CT°
This completes the proof of (4.A.8).

1+2d

It remains to prove (4.A.4). By assumption, v, (k) ~ ¢ k™ as k — oo.

Therefore,

00 2
Qua =FE <Z wj,r(uo — U—j)> — o
=1

00 00 oo
E : § E : 2 2
= wijwhHEu_ju_k -2 U)j7HE’LL0U_j + wjﬂEuO — 0,

jk=1 j=1 =1
= g Wi Wk Y] — K —2§ W Yy (J
7,k=1

By definition, w; g = K(j/H) /vy where vy = Y%, K(j/H) ~ H by (4.A.27).

Hence, approximating the sum by the integral and change of variables gives

Z wj w7y, (J = - Z K(j/H)K (k/H)cy|j — k|77

7,k=1 7,k=1

o g / / K (e/ H)K (y/ H)e, [/ H — y/H|"dedy

~ H™ 1+2d/ / K C’Y|ZU y|_1+2dd$dy.
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Similarly,

2> w7y, (7) ~ 2H Y K (j/H)eyj =
Jj=1

j=1
~ 2H_1+2dcq,/ K(z)z " dy
0

which implies g,z ~ H e, ([;° [;° K(2) K (y)|z — y| - 4 dady

=2 |7 K(x)x"2dx) = H~'*2\ )/ proving (4.A.4). This completes the
proof of part (i).
(ii). Suppose that conditions of Theorem 2 are satisfied. Equalities and (4.A.2)
show that to prove (4.A.5) it suffices to show that

msrn — qs.n = og(T™?), varn — Qo = o (T72). (4.A.9)
2
Since 8, = at and T — Ty + 1 = T,,, then mgryg = T, * ZthTo (E]TLI wLHaj)
2 2
= (Z]TQ wj,Haj> , and vy = (ZJTZI me@j) . On the other hand,
2

Yo = (Z;; wj,Haj> . Then, by equality a® — b*> = (a — b)(a + b),
Ty 2 0o 2
img e —Vp,u| < (Z wj,Haj> - (Z wj,Haj>
P =1
S 2&2 (Z U)quj) <Z wijk) .
k=1

Jj=T
Since H < T, 372 1, win(j/H) = O(T°) by (4.A.23) and > 22, w;n(j/H) =
O(1) by (4.A.27), we obtain

mern —v5ul < HO(T™*)O(1) = o(T ),

which proves the first claim in (4.A.9). The second claim follows using the
same argument.

Property (4.A.6) follows applying to ¢z m + qu u property (4.A4), g.u =
Aoy HT'? 4 o (H'424), and noting that gsm = (302 wjmj)® ~
H2([,° K (z)xdz)? = H?k by (4.A.27).
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This completes the proof of the lemma. []

Step 3. Here we establish the bound for the stochastic term.

Lemma 3 (i) Under assumptions of Theorem 1,

E sup H- 2d‘Q(apT) A2 —E{Q apr) _&T,u}’ 0.
Helrp

(i) Under assumptions of Theorem 2,

E sup H2|Qy™) — — B{Q — &% 3| — 0. (4.A.10)

Helr

T

Proof. Denote 8,; = 8, — 8;,_;, uyj = uy — uy—;. Then, Zjil Wy, b (Ye — Ye—j) =
T T

Zji1 wj,HBtj + Zjil Wj,HUj. SO,

(am =T, Z (Z wj g (Y — Vi J)) (4.A.11)

t=Top

= JﬂB,TH - 2J,8U,TH + Juu,TH7 (4A12)

where

T 8
-1
Tosrn =T, Y Y JwinBy |
t=To \j=1
T 2
-1
uuTH E E Wy HUtj )
t=To \j=1
T Ty T
-1
Journ =T, ) D JwimBy | (D wemue | -
t=To \j=1 k=1

(i) Since f;; = p — p = 0, we have Jggrg = Jgurn = 0. It remains to
show that

E sup H' | Jyurn — 6%, — E{Juurn — 67} — 0. (4.A.13)

Helr
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We conduct the proof similarly as in the proof of Lemma A.3 of Giraitis et al.

(2013), amending it to long memory of wu;’s.

Set wig == wjg — wipm, j = 1,---Ty =1, wy g = wr g, Ny =
22:1 Upg, J = 1,--- 11 and hy = 511 w; m. Using summation by parts,
write

T -1 T
ij,Hut—j = Z (wij - wj+1,H)7ltj +wn By, = Z w;’,Hntj'
j=1 j=1 j=1

Ty _ T1 _ Ty /
Then, > 1, wjmuy = hyuy — 3520 wj g = houg — 350w gy, and

T i) 2
Junirt = T (h -2 wé,ﬂ“‘)
=1

t=Tp
T Ty 2 T
. T*l / o 2h / + h2 ~2
=1, W 1 Mj T Wy gy | Ut 70T
t=Tp =1 j=1

Hence,

T T T T
J A2 o ! / Tfl o Qh / T*l
wu,TH — O,y = W; gWe g | 1n Nt Mtk T Wig | 4n MUt
Jj=1

7,k=1 t=Top t=Top

+(h} —1)6%,

7u‘

Denote
T
S, T.jk ;:T;l Z (77tj77tk - Entjntk)a
t=Top
T
Spurgi =Ty " Z (”tj“t - E”tj“t)~
t=Tp
Then
Ryy :=\Juwrr — 6%, — ElJuwrn — 67,

Ty T1
< Wy wh gl Snrn] + 2D W) | Spurg| + 183 = 1)(6%, — 02).
j k=1 j=1

)
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Using (4.A.25), we can bound H'~**|w] ywj | < |H1/2*dw;7HH1/2*dw§€7H| <

C(jk)=#* 4 and H' " |w) 4| < Cj~7% By (4.A.23), 1 —h < 2(1 — hy) <

2> 2 wig = O(T°%), and hy < 37 w; g = 1. Therefore, H'~**(1—-h7) <

CHT 5 < CT~5 = o(1). Moreover E&%, =T, 'S\ Fu? = 02. Therefore,
) 0

Ty T
H Ry, <r,:=C (Z (jk)—3/2—d’5an7jk’ + Zj—1—2d‘SUU,T,jj|> +o(1).
k=1 J=1

We will show that for some ¢’ > 0,
E|Syyrgk| < C(R)PHT™, E|Syurg,| < C37HT2H (4.A.14)

which implies (4.A.13):

T1 Tl

Er, < C | (k)P E Syl + D5 E Syl

k=1 j=1

T1 2 Tl
<C|T (Z j_l) + Zj—l/?—dT—l/2+d

jk=1 j=1

< O[T 1og®> T + (T /T)*7 ¥ - 0 as T — oo.

It remains to show (4.A.14). We will use the following general bounds obtained

in the proof of Lemma A.4 in Giraitis et al. (2013):

T

ES?]”7T9.]k S CT_2 Z E[nt,]nt‘j]E[nt’k”tk]y (4-A.15)
t' t=Tp
T

ES??U,,T,_]] S CT72 Z E[nt’jntj]E[ut/ut]'

t' t=Tp
We will show that

(a) for all Ty < t, ¢’ <T and 1 < j < Ty,

|E[nt’jntj]E[nt’kntk]| < C(jk)1+2da |E[nt’jntj]E[ut'ut” < Cj1+2d- (4.A.16)
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(b) There exists 0 < ¢ < 1 and # > 0 such that for all 1 < j < T} and
To < t,t' < T such that [t —¢/| > T,

|E[77t'j77tj]E[77t'k77tk]| < C(jk)1+2dT_E (4-A-17)

Now we prove the first claim of (4.A.14). By (4.A.16)-(4.A.17),

T
ESy, p < CT? > |\ E[ny 1) E M|

tt=Tp: [t/ —t|<T1-0
T

+CT7 Z |E[nt’jntj]Emt/kntk]|
t/ t=To: [t/ —t|>T1—¢
r T

< C(jk)1+2dT72[ Z 1+ Z Tfe]

v t=To: |t —t|<T1-0 v t=To: |t/ —t|>T1—?

< CUR™HT 4+ T7).

Hence, E|S,, 1| < E(S?

nn,T,jk)1/2 < O(jk)1/2+dT—min(e,0)/2 which proves
(4A14) for E|S1777,T,jk| .

Now we prove the second claim of (4.A.14) for E|S,., 1 k|-
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T

ES2,75; <CT2 " Elny ) Eluyu]

t' t=Ty

T
S CT?2j1+2d Z E[ut/ut]

t't=Tp

T
S CT72j1+2d Z f}/u(t/ . t)

t't=Tpo

) , —1+2d
<or = 52 (L]~

t't=Tp
T T

< CT*2j1+2d Z Z (1 + ‘k|)_1+2d

t=Tp k=0

S CTij 1+2dTT2d

S le+2del+2d

Hence, E|S,.r ;| < CjY/3aT—1/2+d,

Proof of (4.A.16). Recall that long memory assumption Euju;_ = v, (k) ~

cy|k|7124 as k — oo. Hence, by stationarity of u;,

j 2 j
ET/tQJ =F (Z ut—s) =L (Z ut_sut_k>
s=1

s,k=1
J J j s—1
=D 5=k =D 7 0)+2) ) (s —k).
s,k=1 s=1 s=1 k=1
J j
< J7(0)+2j ) (k) < C (j +iy k;—1+2d>
k=1 k=1

J
<C (j +J / :c‘l“dd:c) < oyt
0
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Thus, using Cauchy-Schwarz inequality we can write
|Elnyymigl| < (Bnp Eng)? < €2 (4.A.18)

|E[nt/jntj]E[nt/kntk] | < C(jk)1+2da

which proves (4.A.16).

Proof of (4.A.17). Observe the following. Let ¢’ —t > T'~?. Then for any
selt'—j,t],ielt—jt]and j < Ty, for large T it holds

S ()= —t) = ()2
because j < Ty < T'7%/2 = o(T*~%), for our chosen § = §/4. This implies

|7u(s — 1) < Cls — z‘]*”d <Ot - t’—1+2d < C(T179>71+2d.

Then,
j j -1 t—1
o ) ) (£1) (59
s=1 i=1 s=t'—j i=t—j
. . ’ :
<D hs=al<e Y Yot
s=t/—j i=t—j s=t/—j i=t—j

< C<T179)71+2dj2.

By definition, j < Ty < T'9/2 = T=9/471=8/4 — T=071-0 55 we can bound
j1_2d S (T—9T1—9)1—2d_ Hence

|E[77t’]77t]]| S O(TI—G)—1+2d<j1+2d)(]'1—211) S OT_0(1_2d)j1+2d. (4A19)

Therefore,

|E[77t'j77tj]E[77t'k77tk] | < CT*E(]']{)H% (4.A.20)

with € = 26(1 — 2d) which proves (4.A.17).
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(ii) In (ii), 8, = at, B;; = aj, so Jggry is deterministic and EJg, i = 0 in
(4.A.11). Denote
RH = H_2‘Q§?§;) - 6%,11 - E{Qg?,][];) - &T,u}|‘

By (4.A.11),

RH S 2H72’J5u,TH| + HiZ‘Juu,TH - a-%,u - E{JUU:TH - &Tvu}‘

=T1H+T2H-
It remains to show that

E sup rpg — 0, [=1,2. (4.A.21)
Helr

For [ = 2, (4.A.21) follows from (4.A.13). It remains to show it for [ = 1. By

definition,

T T T
Jourm =T, > (Z wj,Hﬁtj) (Z wk,H“tk)
k=1

t=Tp, \j=1

T T1 T
Tn_1 Z (Z wj,HClj) (Z wk,HUtk)
k=1

t=Tp 7j=1

T Ty T
(z ) S ( 3 ) |
j=1 k=1

t=Tp

By (4.A.25), for 0 <~ <2, w; x(j/H)" < Cj~!, for j > 1. Hence
H™%wj jwe = wn (5 H) Pwg (k) H)'P (k)71 < C(k)72.
Hence,
T
T

Y

T T
H72‘J5u,TH’ S Cz.jf?)/Z Z k73/2
=1 k=1

t=Tp
T T T
E sup ri g < CZ]’_?’/2 ij_?’/QE Tn_l Z s
Helr =1 k=1 t=To

T T 2
< Z e N (Tn_l Z utk)
k=1

t=Top
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because Z;‘ilj*z)’ﬂ < Z;’;lj*S/Q < oo and

. . o\ 1/2
E|T,'Y ug| < [E (T,;l > utk> = jrh
t=Tpo t=Tp
Note that jf, = E(T,' Z:{:TO ug)? < CT72 ZZ:SZTO By gg

where |Euguse| < 2|7, — s)| 4+ |7, (t — s+ k)| + |7,(t —s — k)|. Hence,
for 1<k <T,<T,

T
B SCT 2N (It — )| + byt — s+ k)| + Iyt — s — E)))

t,s=Tp
3T T 3T
<CoT7C < > |7u(t)|> (Z 1) <CorTty ot
t=—3T s=To t=1

3T
< o7t / 1 < T2,
0

Thus,

T T
E sup rm g < C’Z k:_3/2jT7k < o1/ Z k—3/2

Helr =1 k=1

Y

because 0 < d < 1/2 and Y 32, k%2 < oo which proves (4.A.21) and com-
pletes the proof of the part (ii) of the lemma. O

4.A.3 Auxiliary Results

t—1 [e’e)

Denote vy gy := Y kju, t > 1 and vy = k;jm, t > 1. Recall definitions
j=1 j=1

wijg = kjp/veg and wig = kjpg/vg. Below g, p is an in Theorem 1 and

T} as in definition of Qgﬂl Z).

Lemma 4 Under Assumption 1, uniformly in H € Iy, T > 1, the following
holds.
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(i) There exists ¢ > 0, C > 0 such that for 0 <~y < 2,

vy > cH, wig <CGVH)™,  j>1; (4.A.22)
wig <CT™0 j>T, > win(j/H) =0(T°; (4.A.23)
Jj=T
lwijg —win| <CT™ Ty <t <T, 1<j<t-—1 (4.A.24)
wig(j/H) < Cj™ |\wjg —wjm| H < Cj727, j > 1. (4.A.25)
(ii) As H — oo,

H vy —1, HY wly— / K*(z)dz, Huwey — K(0);  (4.A.26)
0

j=1

> wn(G/H) — / K(z)xdr, 0<v<2. (4.A.27)
0

Jj=1

Proof of the first claim of (4.A.22). With € > 0,

v =Y kim =Y K(j/H)
j=1 j=1

[eH]
> ZK(]’/H), since eH < oo
j=1
1 2 eH
=K | —= K|—= e+ K| —
() + (@) o ()
> 0 [eH]

where 0 := inf K (u),0 < u < e. Notice that 6 > 0 when e > 0 is sufficiently

,0
small, because K (u) — K(0) > 0 for u — 0 by Assumption 1. This implies
vy > 0 [eH| > (d¢/2)H = cH,

where ¢ = d¢/2.
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Proof of the second claim of (4.A.22). Notice that for any positive integer r,

exp(—clz]) = (exp(cla])) ™

:<§fﬁWj1§(%?31

|
== |7 =" (4.A.28)
CT

where ¢* = Z > 0. Then for any z > 0 we can use (4.2.4) to bound
K(z) < Cexp(—c|z|]) < Cz™",r > 0. (4.A.29)

Also for any = > 0,
exp(—|z|) < L. (4.A.30)

Then (4.A.29) and (4.A.30) together imply
K(@) < C(exp—lal) < € A1),
Since j/H > 1 is positive we can then write
K (j/H) < C((j/H) " AL).
This together with the first claim of (4.A.22) implies,

w1 — KG/H) C(G/H) " A1)

Vg C*H

=C'(j7'ANH ) =C'(jvH),

where C' = CQ > 0.

Properties: For a > 0,b>0and ¢ >0, (a Ab)L = (2A2)=(V 19))_1.

Proof of the first claim of (4.A.23). Note that T} = T,T~%? and Hp. =
ToT—°. Hence, H%l“ < T79/2. The inequality (4.A.29) implies that we can
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bound K (z) < C |z|""™* by choosing m such that ™m0 > 6. We can then

write
ki = K(j/H) < C(j/H) "
= C(H/j)"* = C(H[j)"(H/[j)*
< C (Huax/T))™ (H/j)",  since Hupax > H and Ty < j
<C(TP)" (H[j)* = CT"/*(H/j)*

< OT S(H/j)*, (4.A.31)

. —ms _
since T2 < TS,

Since H '(H/j)* <1 we can use (4.A.31) and the first claim of (4.A.22)

to write
K; CT-S(H/j)*
’ VH C’H
=C*T°H*(H/j)* < C*T5, (4.A.32)
* _ C
where C* = o> 0.

Proof second claim of (4.A.23). Since 4 >1and 0 < v < 2, we can use
(4.A.32) to bound

Z w;n(j/H)" < Z wjn(j/H)?

J=T J=1

<Y CTCH ' (H[j) (H/)™

Jj=T

=CcTrtH! i (H/j)? =CTSH i j2

j=Ty Jj=T1
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For any ¢ > 1 and n > 1, we can approximate sum by integral to write

o0 0 —n+1 c
DIV / z"dr < ¢ {— ] < —= (4.A.33)
J=T1 Ty I PP
Hence,Y > 1 w;n(j/H) < CTSHT{* < CT% = O (T, since - < 1.

Proof of (4.A.24). To show (4.A.24) we first verify that
lvg —ven| < CT °H, t > Ty

for some C' > 0. Note that Hypax = To7T7° = H%Oa" < T79. Using (4.A.29)
we can bound K (z) < c|z| ™" for any m > 0. Then, kin = K(j/H) <
c(H/7)™" and

] t—1
Vg — UH = Z kjm — Z K
j=1 j=1
= kg <Y e(H/H!
j=t j=t

— cH™T! ij(erl)

J=t

Using (4.A.33) we can write Z;’;tj_(mﬂ) < £, Choosing m such that dm > 6

we can then write

1
vg — veg < chHt—m =c(H/t)"H

Hmax " .
§c( - > H, since Hyax > H and Tp < ¢
0

H
< T°™H, since ;ax <T7°
0

< cT7%H, (4.A.34)
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since 7™ < T, Finally,

lwej — win) = ki vl — v

kjm 1
= (v — V| = wi g lve — vem| vy
UVt HUH

< |vg — vep| vy, since wg <1

CT°H
<

— *T—6
- ('H ¢

using (4.A.34) and first claim of (4.A.22).

Proof of first claim of (4.A.25). Using (4.2.4) and (4.A.29) we can bound
K(x)<C ]m\f(mﬂ) for any m > 0. This implies for any 2 > 0 and 0 < v < 2,

K(z) < Cz~ 0" = K(2)2" < Ozt (4.A.35)

Using (4.A.35) and first part of (4.A.22),we can then write

wyanti/ay = SO Gy

< C(/H)™

— C* ~—17
cH J

where C* = £ > (.

Proof of second claim of (4.A.25). Using first claim of (4.A.22) we can write

HY Jwjsr,m — win| = H'vy' [K((j +1)/H) — K(j/H)]

< Hvii’K((j+1)/H) — K(j/H)|

cHH %

< cFHTP

i (&)
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for some & € [jH ', (j+ 1) H '] and using the central limit theorem. By
(4.2.4), ’K(m)‘ < 125 < %. This implies

K| < e
§c§_2+7, since 0 <~y <2
2 j AN
<c(/H)*7, s P I
ey, e g2 s ()

= c(H/j)""

Hence,

HY [wjy1,q — wjpg| < cH™ e (H/J')%7 =T

where ¢** = ¢*¢ > 0.

Proof of first claim of (4.A.26). Approximating sum by integral we can write

[e 9]

1 1 & j 1 u 1 (>
—op=—=SK(L)~n= | K(2)du== | K@)H
a H; (H) i, (H)d“ H/I}I (x) Hdz

:/;K(x)dx.

As H — o0, £ — 0 and hence, vy — [° K(2)dz = 1.

Proof of second claim of (4.A.26). We can write
SN\ 2
H 2 = —\HJ)
ZMJ’H HZ ( VH )
7j=1 7j=1
NESTAY
~ H/ ( H ) du
0 Un

1 [®/(K 2
= —/ T () Hdx
H % E’UH
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Using first claim of (4.A.26) and the fact that & — 0 as H — oo, we get
szj%H_)/ K?*(z)dz, as H — oo.
j=1 0

Proof of third claim of (4.A.26). Using first claim of (4.A.26) we can write

K
HwU,H: 1 —>K(0)

Proof of (4.A.27). Approximating sum by integral we can write
< YK uy
. L) o —_\HJ (ﬁ) d
Z U}]’H (H) /1 vy H u
7j=1
1 [ K(5
_ / 1(H) <£>’y du
H 0 EUH H
1 (K
= —/ ﬂx”ﬂ’dw
H % EUH

N/ K(x)x"dz, 0<~y<2
0

using the first part of (4.A.26) and the fact that + — 0 as H — co. [J
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4.B Appendix F: Figures
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(b) u.~ ARFIMA(0,0.45,0)

Figure 4.B.1: Realisation of the data-selected rolling window for a structural

break.

Note: The solid line represents the starting point of the window for a structural break model
with a break at observation 110 (Experiment 4 of Monte Carlo Study), and the dashed line
(long dashes) shows the last observation in the window. The dashed line (short dashes)
indicates the first post break observation, and the dotted line the beginning of the window

when there is no structural change.
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First observation used in rolling window
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(a) u;~ii.d.
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(b) u;~ ARFIMA(0,0.45,0)

Figure 4.B.2: Realisation of the data-selected rolling window for a random

walk.

Note: The solid line represents the starting point of the window for a random walk model
with a break at observation 110 (Experiment 11 of Monte Carlo Study), and the dashed
line (long dashes) shows the last observation in the window. The dashed line (short dashes)
indicates the first post break observation, and the dotted line the beginning of the window

when there is no structural change.



(a) i.i.d.

0 50 100 150
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(b) AR with p =0.7

50 100 150 200
(d) ARFIMA(0,d, 0) with d = 0.75
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(f) ARFIMA(1,d, 0) with d =0.75 and p = 0.7

50 100 150 200

Figure 4.B.3: Plots of simulated y; with different dynamics for noise process

u; (Experiment 1)

Note: Data are generated using the model: y; = u;. This is the case of no structural change.

The panels specify alternative dynamics for noise u;. Innovations for AR and ARFIMA noise

processes are i.i.d. standard normal.
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(b) AR with p = 0.7

50 100 150 200

(d) ARFIMA(0,d, 0) with d = 0.75

50 100 150 200

(f) ARFIMA(1,d,0) with d = 0.75 and p = 0.7

50 100 150 200

Figure 4.B.4: Plots of simulated y; with different dynamics for noise process

u; (Experiment 3)

Note: Data are generated using the model: y; = 0.05¢ + 3u;. This introduces a monotonic

linear trend. The panels specify alternative dynamics for noise u;. Innovations for AR and

ARFIMA noise processes are i.i.d. standard normal.



210
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4 4.
2 2
0 0
-2 -2
-4 . . . . -4 . . A )
0 50 100 150 200 0 50 100 150 200
(&) ARFIMA(0, d, 0) with d = 0.30 (d) ARFIMA(0, d, 0) with d = 0.75
4 4
2 2
0 0
-2 -2
-4 . . . . —4 . . A )
0 50 100 150 200 0 50 100 150 200
(e) ARFIMA(1,d,0) with d =0.30 and p = 0.7 (f) ARFIMA(1,d,0) with d = 0.75 and p = 0.7
4 4
2 2
0 0
-2 -2
-4 . . . . -4 . . A )
0 50 100 150 200 0 50 100 150 200

Figure 4.B.5: Plots of simulated y; with different dynamics for noise process

u; (Experiment 4)

Note: Data are generated using the model: y; = uy, t < tg = 0.55T and y; = 1 + ug, t > to.
This introduces a break in the mean. The panels specify alternative dynamics for noise u;.

Innovations for AR and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.6: Plots of simulated 1, with different dynamics for noise process

u; (Experiment 6)

Note: Data are generated using the model: y; = 2sin(27t/T') + w;. This introduces a smooth
cyclical trend. The panels specify alternative dynamics for noise u;. Innovations for AR

and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.7: Plots of simulated 1, with different dynamics for noise process

u; (Experiment 8)

Note: Data are generated using the model: y; = 2T*1/2Zf:1vi + uz. This introduces a
bounded stochastic trend. The panels specify alternative dynamics for noise u;. Innovations

for AR and ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.8: Plots of simulated y; with different dynamics for noise process

u; (Experiment 10)

Note: Data are generated using the model: y; = 0.522211@ + u¢. This introduces an un-
bounded stochastic trend process, such as random walk with noise. The panels specify
alternative dynamics for noise u;. Innovations for AR and ARFIMA noise processes are

i.i.d. standard normal.
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Figure 4.B.9: Plots of simulated 1, with different dynamics for noise process

u; (Experiment 11)

Note: Data are generated using the model: y; = Eﬁzlui. This is a standard driftless random
walk process. The panels specify alternative dynamics for noise u;. Innovations for AR and

ARFIMA noise processes are i.i.d. standard normal.
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Figure 4.B.10: Actual and forecasted GDP growth, 2008 Q1 - 2010 Q4.
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Figure 4.B.11: Actual and forecasted inflation, 2008 Q1 - 2010 QA4.
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4.C Appendix G: Tables
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