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Abstract

A growing body of evidence suggests that the potential exists to reduce morbidity and high

mortality rates associated with major surgery in high-risk patients. Dopexamine is a

dopamine analogue with agonist activity at β2-adrenoceptors and dopaminergic receptors

that has been used to maintain tissue perfusion in critically ill and high-risk surgical patients

with the aim of improving clinical outcomes. Postoperative complications occur more

frequently in the presence of poor tissue microvascular flow and oxygenation, and

dopexamine has been shown to improve these abnormalities. However, the effect of

dopexamine on clinical outcomes is less clear, and the findings of randomized trials have

proved inconsistent. These conflicting findings might be explained by dose-related

differences in the hemodynamic and immunologic effects of dopexamine. The series of

investigations that make up this thesis set out to explore the nature of any such dose-related

effects and reveal potent anti-inflammatory effects of dopexamine in the absence of

haemodynamic effects.
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Chapter 1 - Introduction

This thesis is about the effects of the catecholamine inotrope dopexamine in the context of

endotoxaemia and laparotomy. It is not specifically about goal-directed therapy (where

patients are haemodynamically optimised in order to avoid tissue hypoxia) (1). However this

study of dopexamine has its origin in questions that have arisen from clinical studies of the

use of inotropes to improve oxygen transport and goal-directed therapy. The historical

background to this thesis is therefore one whose origins can be traced back to the study of

the role of elevating oxygen delivery through goal-directed therapy in order to try and

improve patient outcomes. These are themes that have occupied the critical care and

anaesthetic communities for several decades. Before exploring how dopexamine has come

to be studied, a brief outline of cardiovascular physiology is provided.

1.1 Cardiovascular physiology and determinants of cardiac output

1.1.1 The heart: myocyte excitation and contraction, inotropy and chronotropy

The healthy adult heart is a four-chamber muscular pump that supplies two parallel

circulations. Each pumping chamber can be thought of as being filled passively (during

diastole) by a flow of blood originating from a reservoir of variable size, and actively ejecting

(in systole) in to a network of vessels of variable resistance. The size of the reservoir and

resistance of the network are under nervous and hormonal control. Cardiac output is the

volume of blood pumped by the heart each minute, and is the mathematical product of

stroke volume (itself partly governed by the force of contraction) and frequency of ventricular

contraction.

The heart is made up of cardiac muscle fibres (cardiomyocytes) which contract through the

sliding filament mechanism. Actin and myosin filaments are propelled past each other

through repeated cross-bridge linking and un-linking. At rest, tropomyosin blocks the actin
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binding site preventing engagement of myosin heads. Following a cardiac action potential,

voltage gated myocyte calcium channels open in the plasma membrane and a rise in [Ca2+]i

occurs, triggering a further release of calcium from the sarcoplasmic reticulum (Figure 1.1).

The sarcolemmal derived [Ca2+]i accounts for around a quarter of the total increase in [Ca2+]i,

whereas the sarcoplasmic reticulum accounts for around three quarters of it (2). Calcium

ions bind to troponin C within the troponin complex, displacing tropomyosin. This exposes

the actin binding site allowing cross-bridge formation with myosin heads. The orientation of

the myosin head changes causing filaments to slide past each other in an ATP dependent

process. At the end of the action potential, during repolarisation, calcium ions are pumped

back into the sarcoplasmic reticulum allowing myocardial relaxation. The force of ventricular

contraction is affected by changes in contractility, or the force of contraction for a given

resting fibre length. Catecholamine-based inotropes through their actions on adrenoceptors

prolong the action potential plateau duration, increasing [Ca2+]i, calcium release from the

sarcoplasmic reticulum and hence contractility.

An increase in venous return to the heart causes ventricular (and therefore cardiomyocyte)

stretch, resulting in increased filament overlap and hence an increase in the number of

available calcium binding sites. Cardiomyocyte stretch also increases myofilament sensitivity

to [Ca2+]i over several beats (the slow force response). These mechanisms, which are the

basis of Starling’s law of the heart, ensure ventricular output changes in response to

changing venous return and that the output of the two ventricles is finely matched.

1.1.2 Vascular tone: preload and afterload

Strictly speaking, preload refers to the stretch induced by a load on a myocyte prior to

contraction, a concept made famous by Ernest Starling in his in vitro experimental

preparations. As cardiomyocyte length cannot realistically be measured at the bedside, other

clinical correlates are used. The closest one to this is end-diastolic volume, most commonly

derived at the bedside from transthoracic echocardiographic measurements. Importantly this
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is not a direct measurement of volume as the derived parameter is based on assumptions

regarding ventricular geometry. The easiest surrogate to directly measure is end-diastolic

pressure, which applies to all cardiomyocytes in a loaded ventricle. Unfortunately though,

end-diastolic ventricular pressure does not predictably relate to end-diastolic ventricular

volume (the end-diastolic pressure in a ventricle with amyloidosis or hypertrophy is likely to

be greater than that from an identical volume ventricle with no pathology, yet the preload by

a volume definition is the same). Furthermore there are other drawbacks to a pressure-

based definition of preload; catheters are seldom intentionally inserted in to the ventricle at

the bedside, and measurements are therefore usually made in the preceding atrium or great

vessels (superior vena cava, or for the left side of the heart the pulmonary capillaries) and

assumed to be the same as that in the corresponding ventricle. It is clear that though easily

defined in vitro, choosing a directly measurable clinical correlate that is valid for all ventricles

at all times is not straightforward. Nevertheless it should also be clear that preload must

relate to the increase in myocyte length that accompanies the ventricular distension (volume

increase) that for any given ventricle is governed by its diastolic filling pressure.

Thus, in health an independent increase in capacitance vessel tone or an infusion of

intravenous fluid displaces blood in to the central circulation, thereby increasing end diastolic

volume and pressure, myocyte stretch and therefore cardiac output (this is akin to an

increased flow rate of blood from the reservoir to the ventricles in the aforementioned

model). This link relationship, best described by Guyton when explaining the effects of mean

circulatory filling pressure on cardiac output (3), explains much of the confusion clinicians

display when they incorrectly speak of volume status, preload and venous capacitance

interchangeably.

The resistance the ventricle ejects against is termed afterload and is composed of systolic

wall stress, the inertia of ventricular blood (determined by haematocrit), reflected pressure

waves from arteries, and arterial bed resistance (total peripheral resistance, or TPR). As

TPR is clearly an important component of resistance, haematocrit tends to be stable and the
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other parameters are difficult to measure, afterload and TPR are commonly (but imprecisely)

used interchangeably in clinical medicine. Cardiac output is directly affected by changes in

afterload, though to a lesser degree than preload (3). For a given preload and contractility

the direct effect of a decrease in afterload is to increase cardiac output. Systemic blood

pressure (mathematically speaking) is the product of cardiac output and TPR( = × ), though it is important to understand that CO and blood pressure can be

measured, TPR cannot. Therefore cardiac output can also be indirectly affected through

complex reflexes such as the baroreceptor reflex (baroreceptors detect changes in blood

pressure which provoke stereotypical responses from the autonomic nervous system),

critical reductions in coronary flow due to low aortic root pressure, and an adverse

myocardial oxygen supply-demand ratio.

.

1.1.3 Microvascular flow (also see 1.6)

The microcirculation consists of regions of the circulation containing blood vessels of

diameters less than 100μm (4). This region includes capillaries that link resistance vessels

with capacitance vessels, and represents the primary focus of blood-tissue gas and nutrient

exchange. The homeostasis of these specialised areas is under myogenic, metabolic,

immune and neural controls (2). Due to the large cross-sectional surface area of the

microcirculation, changes in arteriolar tone have significant effects on afterload, whereas

changes in venular tone (where 60-70% of blood volume resides) has significant effects on

preload by altering venous capacitance and therefore mean circulatory filling pressure.

Abnormalities of microvascular flow appear to play an important role in the pathophysiology

of critical illness (5-7). Catecholamines may influence this balance by altering both cardiac

output, and microvessel tone (8, 9). Indirect effects of these drugs may also exert complex

effects on endothelial permeability and hence blood volume which is commonly reduced in

critical illness (10, 11). Importantly, during periods of haemodynamic shock the loss of a
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number of homeostatic mechanisms may also impair myocardial contractility through both

tissue and systemic acidosis.

1.2 The autonomic nervous system modulates cardiovascular physiology through

catecholamine effects

The three endogenous catecholamines adrenaline, noradrenaline and dopamine are

released by the autonomic nervous system and adrenal medulla and produce characteristic

responses in different tissues. These molecules are agonists at widely distributed

adrenoceptors and dopaminergic receptors, the receptors varying in density between

different tissue beds. In general, the cardiovascular effects of these catecholamines are

governed by the number, types and locations of target receptors.

1.2.1 Function and distribution of adrenergic receptors

Adrenergic receptors are classified into α-adrenoceptors and β-adrenoceptors and further

into subtypes (12). Agonist binding to adrenoceptors results in G-protein coupling. These G

proteins consist of three subunits (α, β and γ), the type of α subunit denoting the type of G-

protein (Gs is Gα(s)βγ). When coupling, α subunits exchange GDP for GTP, dissociate from

the complex and remain active until the GTP is hydrolysed back to GDP. α-GDP then re-

associates with the βγ subunit complex and is available to couple with another adrenoceptor.

The duration of signalling is inversely related to the speed with which α-GTP is hydrolysed to

α-GDP, a process promoted by regulator of G protein signalling (RGS) molecules (13). G-

protein-coupled receptors are susceptible to down-regulation and desensitization (12, 14-

16), a particular problem in shock states such as sepsis (17). The activation of different G-

protein subunits results in different intracellular signals which ultimately result in changes in

intracellular calcium handling. These affect the state of inotropy, lusitropy, dromotropy and

vascular tone (Figures 1.1 & 1.2).



22

Although widespread throughout the body, only the cardiovascular distribution of these

receptors is discussed here. α-adrenoceptors have a predominantly vascular distribution

with a smaller presence in the heart whereas β-adrenoceptors have a heavy presence in the

heart but less in the vasculature. In the vasculature adrenergic receptor expression is

minimal in capillaries but increases with distance from the capillary in both arterioles and

venules. Adrenoceptor density and location within the cardiovascular system also

determines the pattern of response to circulating and neuronally released adrenergic agents

so that ability to vasodilate is markedly dependent on the pre-existing tone of each vascular

bed (18-21). The responses to catecholamines therefore vary across vascular beds, for

example between skin, mesenteric beds and skeletal muscle beds (22). To date no α2

adrenoceptors have been found in the human myocardium though they are found pre-

synaptically on innervating nerves. Other adrenoceptors are present in the myocardium.

Inotropy is provided predominantly by β-adrenergic mechanisms though α1 adrenoceptors

can bring about small increases in contractility (20).
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Figure 1.1 Adrenoceptor signalling in the heart. Both β1 and β2-adrenoceptors
(upper myocyte) activate adenylate cyclase via Gs, increasing intracellular levels of
cAMP, PKA and ultimately calcium. This increases the contractility of the heart. The
activation of sodium and potassium channels and calcium transporters (filled blue
circle) on the sarcoplasmic reticulum and myocyte membrane produces a
chronotropic and lusitropic response. Switching to Gi signalling and receptor
downregulation may occur, a particular feature of β-adrenoceptors. α1-adrenoceptors
(lower myocyte) activate phospholipase C via Gq, resulting in an increased release of
calcium from the sarcoplasmic reticulum and an inotropic response approximately
15% of β-adrenoceptor stimulation. There are no α2-adrenoceptors in the heart though
they are found pre-synaptically on noradrenergic neurons innervating the heart.
Agonism of these pre-synaptic receptors results in a decrease in contractility as the
neuronal release of noradrenaline is inhibited. This is of no relevance in states of high
sympathetic tone (e.g. heart failure) as pre-synaptic inhibition is already maximal and
cannot be further increased by higher concentrations of noradrenaline (20).

Figures 1.1 and 1.2 show that although the effect of activating identical adrenoceptors
may vary between organs (e.g. opposite effects of myocardial and vascular β-
adrenoceptor agonism on intracellular calcium concentrations) the second
messengers activated are the same.
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Figure 1.2 Adrenoceptor signalling in the vasculature. β-adrenoceptor signalling
(upper vascular smooth cell) activates adenylate cyclase via Gs, cAMP and PKA. This
produces hyperpolarisation and a transfer of calcium out of the cytosol and in to the
sarcoplasm and interstitium, resulting in decreased vascular tone due to effects on
calcium sensitive myosin light chain kinase (MLCK). α1-adrenoceptor ligation (lower
vascular smooth cell) results in activation of the phospholipase C pathway, activation
of protein kinase C, an increase in cytosolic calcium and increased vascular tone.
Endothelial adrenoceptors also modulate vascular tone through nitric oxide
dependent pathways. Endothelial β-adrenoceptor ligation results in adenylate cyclase
activation and the PKA dependent generation of NO. Although endothelial α2-
adrenoceptors are negatively coupled to adenylate cyclase they also result in the
generation of NO but via non-PKA dependent pathways. Endothelial NO diffuses to
vascular smooth muscle where it directly inhibits vascular smooth muscle
contraction and also inhibits phosphodiesterase, producing a higher cytosolic level of
cAMP, indirectly inhibiting contraction (20).

Although the downstream effects of activating second messenger systems may vary
between organs (e.g. opposite effects of β-adrenoceptor ligation on cytosolic calcium
concentrations in the heart and vasculature), the second messenger systems shown
here are those that are activated by the relevant adrenoceptors throughout the body.
Therefore α2 and β-adrenoceptors are coupled to adenylate cyclase signalling
systems whereas α1-adrenoceptors couple with the phospholipase C pathway.
However, the situation is complicated by switching of adrenoceptors between
predominantly stimulatory and inhibitory G-protein linkage to adenylate cyclase with
prolonged stimulation, and the ability of adrenoceptors to signal via additional
intracellular pathways.
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1.2.2 Function and distribution of dopaminergic receptors

There are five sub-types of dopaminergic  receptor classed in two groups: D1-like (subtypes

DR1 and DR5) and D2-like (subtypes DR2, DR3 and DR4) (12). Whilst dopamine may activate

both dopaminergic and adrenoceptors, the former are not activated by other endogenous

catecholamines (23, 24). All dopaminergic receptor subtypes have been identified in the

kidney where they mediate natriuresis and diuresis (25, 26). Cardiac dopaminergic receptors

(DR1 and DR4) possess some inotropic actions though less pronounced than β-adrenoceptor

mediated responses (27-29). Dopamine receptors can also be identified in the adrenal

medulla, autonomic ganglia, endothelium and the renal, mesenteric and splenic vasculature,

at both pre- (D2) and post-synaptic (D1 and D2) locations (23). D1 receptors are found in the

media of blood vessels and cause vasodilatation. Vascular D2 receptor activation can cause

vasodilatation or constriction depending on whether medial or adventitial (30). The overall

effect of non-selective dopaminergic activation, such as occurs during low dose dopamine or

fenoldopam infusion, is to reduce vascular tone.

The structural differences in catecholamines result in the differences in receptor affinity and

rates of metabolism. Substitution on the amino group of the catecholamine tail reduces α-

receptor affinity but increases β-receptor affinity (31, 32). Furthermore β2 affinity is increased

by the size of the substituent. The position of hydroxyl (OH) groups on the aromatic nucleus

also alters adrenoceptor affinity as does hydroxyl substitution on the catecholamine tail.

These latter groups are key in determining β2 affinity. For example, dopamine lacks a side

chain β-OH groups and demonstrate low affinity and intrinsic activity at β2 adrenoceptors

despite amino group substitutions (31, 33). Metabolism by COMT is affected by the position

of aromatic hydroxyl groups. Resistance to MAO is conferred by substitution of methyl

groups on the amino tail with larger groups or introducing small alkyl residues (31).

Alkylation of the primary amino group decreases affinity for uptake-1 (34). Although

catecholamine structure can determine the degree of adrenoceptor activation, agonists at

specific adrenoceptor subtypes may still generate differing concentrations of second
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messengers such as cAMP, due to non-selective G-protein coupling (35). Drug-receptor

interactions are also influenced by polymorphisms of adrenoceptor genes (36).

1.3 The widespread expression of adrenoceptors and dopaminergic receptors in

non-cardiovascular tissue can also affect the cardiovascular system

1.3.1 Metabolic effects

Catecholamines increase metabolic rate and alter the production of metabolically active

molecules through perfusion, receptor and second messenger mediated effects. Increased

total body oxygen consumption, peripheral insulin resistance, suppression of insulin

secretion, increased fatty acid and lactate production and hyperglycaemia are common

effects (37, 38). Hyperglycaemia causes denudation of the endothelial glycocalyx and

therefore has deleterious effects on the microcirculation (39).

1.3.2 Immune effects (also see 1.6 and 1.7)

Catecholamines have been shown to alter the state of activation of immune cells and may

therefore have important effects on immune function which are currently poorly understood

(40, 41). These catecholamines may be released neuronally, circulating in the bloodstream,

but can also be released by immune cells and act in either an autocrine or paracrine fashion

on membrane catecholamine receptors (42). Immune cell-endothelial interactions occur by

shear dependent or shear independent mechanisms both of which are influenced by

inotropic agents. Shear relates to both the differential rates of flow parallel to, and force

imparted perpendicular to, moving layers within non-Newtonian fluids such as blood (shear

rate and shear stress, respectively). In the context of shear dependent immune cell-

endothelial interactions, shear relates to both the centre-line rate of flow of blood through

microvessels and also the resulting stress that is imparted perpendicular to the vessel wall.
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Shear stress is determined by haematocrit, microvessel capacitance (and the interaction of

blood cells with the endothelium). At high shear rates, the probability of immune cells

interacting with the endothelium decreases (39). This is because blood cells are more likely

to be carried by a high flow rate in the centre-line of the vessel, away from the vessel wall

where they could otherwise interact with the endothelium. In microvessels this produces a

decrease in viscosity and haematocrit, allows a layer of plasma to internally line the

glycocalyx and in this way reduces friction. At any given shear rate a healthy endothelium is

also less likely to permit endothelial-immune cell interaction as the negatively charged

endothelial glycocalyx repels immune cells from the endothelium and toward the centre-line

of the vessel. Endothelial function is therefore an important component of the capacity of the

immune system to focus activity in specific tissue areas and microvascular flow is

intrinsically related to the immune system.

Shear independent mechanisms describe changes in the activation state of immune cells

independent of flow rate. A range of adhesion molecules are expressed by both leucocytes

(and the endothelium) following activation by inflammatory mediators. These allow

leucocytes initially to loosely attach, or roll, and then bind firmly before trans-migrating

between endothelial cells into the tissues. Thus activated cells have a greater chance of

endothelial interaction at any given flow rate compared to quiescent cells. Related platelet-

endothelial interactions are also important in critical illness illustrating the close relationship

between inflammation and coagulation within the microcirculation.

1.4 Dopexamine is a synthetic catecholamine developed for the treatment of heart

failure

Dopexamine is a catecholamine molecule and a synthetic structural analogue of dopamine

(Figure 1.3) (43, 44). In heart failure cardiac output is inadequate and in order to redress this

problem the autonomic system responds with increased adrenergic drive (inotropy and
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chronotropy) while the renin-angiotensin-aldosterone system retains salt and water in order

to maintain preload. However, this adrenergic stress leads to myocardial β1-adrenoceptor

downregulation, noradrenaline depletion from myocardial nerve terminals, and in

combination with preload and afterload increases causes myocardial work eventually leading

to myocardial decompensation. In acute heart failure, reductions in preload and afterload are

achieved through the use of diuretic and glyceryl trinitrate infusions. In severe heart failure or

cardiogenic shock, catecholamine inotropes have traditionally been used to support cardiac

function in the short-term. As dopamine possesses natriuretic, diuretic, and inotropic effects

at low doses it had traditionally been widely employed for this purpose (45, 46), but

unfortunately the unwanted effects of tachyarrhythmias and vasoconstriction proved

detrimental. Dopexamine was the product of a search for a synthetic dopamine analogue

which would give the same theoretical benefits as dopamine while being devoid of

vasoconstrictive and chronotropic effects and providing some degree of afterload reduction.

An N-alkylated dopamine analogue was the result.

Figure 1.3 Chemical structures of dopamine (upper) and dopexamine (lower)

1.4.1 Dopexamine pharmacodynamics

Although initial studies demonstrated a relatively simple receptor agonist profile, further

complexities became obvious (Table 1). In addition to β2-adrenoceptor and D1 and D2
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receptor agonism, dopexamine inhibits noradrenaline reuptake at the pre-synaptic uptake 1

transporter. Antagonism at α1-adrenoceptors and mACh receptors and agonism at 5-HT

receptors occur at high doses. There is evidence for VIP and CGRP involvement in the

modulation of dopexamine’s vascular effects and it has also been demonstrated that

dopexamine infusion results in baroreceptor reflex activation. The receptor profile would

initially appear confusing, but the clinically relevant receptors where dopexamine operates

are β2-adrenoceptors, D1 and D2 receptors and uptake 1 (inhibition). With regards to the

relative importance of these, although dopexamine has a ten-fold greater affinity for β2

adrenoceptors than β1 in the heart, and these receptors couple with adenylate cyclase and

increase cAMP levels (47, 48), the inotropic and chronotropic effects of dopexamine are

nevertheless predominantly secondary to increased NE concentrations (from uptake 1

inhibition and baroreceptor reflexes) which exert potent effects on β1-adrenoceptors (Table

1.1) (49). Although adrenergic and dopaminergic receptor systems in rats and in humans are

liable to downregulation, functionally this appears to be less of a problem with β1 and β2

systems when dopexamine is infused chronically over a week (50). Nevertheless in the

failing heart the effect of dopexamine still rapidly wanes, due to the low neuronal stores of

norepinephrine on which dopexamine depends for its inotropic action (49).

1.4.2 Dopexamine pharmacokinetics

When dopexamine is incrementally administered to healthy human subjects at infusion rates

of up to 4 μg/kg/min, plasma dopexamine levels rise in proportion to the dose of drug

infused, peaking at 124 (± 12 [SEM]) ng/ml. On cessation of infusion, a mono-exponential

decay is seen with a half-life of 7 (± 1 [SEM]) min, demonstrating a clearance of 36 (± 3

[SEM]) ml/min. A small study from patients undergoing liver transplantation suggests that the

liver is responsible for a substantial proportion of dopexamine’s clearance (51). Metabolism

of dopexamine occurs by O-methylation and sulphation, producing two metabolites that are
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both renally and faecally excreted, as is the parent compound. Quantitatively (>90%) the

most important excreted metabolite is the 2-methoxy, 1-sulphate molecule. Faecal excretion

accounts for approximately 20% of an administered dose whereas renal elimination

accounts for >50% (over 12 days).

The values for plasma levels of dopexamine correlate reasonably well with those from

clinical studies in anaesthetised patients. Prolonged infusions of 0.5μg/kg/min dopexamine

are associated with mean plasma levels of 51 (15 – 122 [range]) ng/ml at 6 h (personal

communication, Rupert Pearse), whereas 2μg/kg/min is associated with levels of 85 (69 –

102 [range]) ng/ml (51). Clearance reduces following cardiac surgery to 17ml/min (possibly

due to the effects of acidosis and hypothermia on enzyme systems) and following liver

transplantation to 24 (20 – 29 [range]) ml/min, while plasma half-life is increased to 11 min in

low cardiac output states (51, 52). Dopexamine, like other catecholamines, is therefore

short-acting and easily titrated.
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Table 1.1 – Summary of receptor, signalling and ion channel studies for dopexamine

Pathway Study animals Clinically relevant location Effect at site Result of receptor activation in vivo Refs
β2 adrenoceptor Humans, dogs, cats,

rats, guinea pigs,
lambs

Post-synaptic.
Heart and vasculature

Activates (high affinity). Increases renal,
mesenteric and cardiac cAMP

Systemic, renal and mesenteric vasodilatation
Chronotropy, inotropy

(44, 47,
48, 53-
60)

β1 adrenoceptor Humans, dogs, rats,
lambs

Post-synaptic
Heart

Poor affinity. Indirect and strong
activation by enhancing NE effects

Chronotropy
Inotropy

(47, 48,
55, 59-
61)

D1 receptor Humans, dogs, cats,
rats, guinea pigs

Post-synaptic
Mesenteric and renal
vasculature, nephron

Activates (⅓ affinity of dopamine).
Increases renal and mesenteric cAMP

Renal and mesenteric vasodilatation.
Natriuresis, diuresis.

(44, 53-
58, 60)

D2 receptor Humans, dogs, cats,
rats, guinea pigs

Pre-synaptic
Mesenteric and renal
vasculature, nephron

Activates (weaker affinity than D1) Decreases NE release (balances effect of uptake 1
inhibition at renal nerve)

(44, 48,
56, 57,
62)

Uptake 1 Humans, dogs, rats,
rabbits, guinea pigs

Pre-synaptic. Heart Inhibition Potentiates effects of neuronally released NE.
Chronotropy, inotropy

(49, 55,
60, 61,
63-65)

Baroreceptor
reflex

Dogs Cardioaccelerator nerves Activation Chronotropy
Inotropy

(55, 60)

α1 adrenoceptor Rats, rabbits Post-synaptic. Vasculature. Inhibition Vasodilatation (66-68)
mAch receptor Calves Post-synaptic

(bronchial tissue)
Antagonism None at clinically relevant concentrations. Can

decrease smooth muscle tone.
(69)

5-HT receptor Rats Renal vasculature Agonism Vasoconstriction – (high doses only) (70)
VIP/CGRP Guinea pigs Pulmonary vasculature Dopexamine releases VIP and CGRP 

agonism at these receptors
Vasodilatation (47, 53,

58, 71)
Adenylate cyclase Humans, rats, guinea

pigs
Intracellular Activates Generate cAMP. Involved in vasorelaxation

cAMP Humans, rats, guinea
pigs

Intracellular Increases (direct effect weak) Activates PKA and membrane ion channels

PKA Guinea pigs Intracellular Activates Involved in vasorelaxation
High and low
conductance
voltage-sensitive
K+ channels

Guinea pigs Vascular cell membrane Activates Involved in vasorelaxation

ATP sensitive K+

channels
Guinea pigs Vascular cell membrane Activates Involved in vasorelaxation

Verapamil
sensitive calcium
channels

Guinea pigs Heart cell membrane Opens Involved in myocardial effects of dopexamine (72)

ANP Humans, rats Reduces plasma levels of ANP, though D1 agonism
has a permissive effect on renal ANP effects

(73, 74)
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1.4.3 Effects of dopexamine infusion in conscious healthy volunteers

Dopexamine has been infused in man at doses up to 10μg/kg/min (75) and at far higher

doses in some animal studies. In order to better focus on the actions of dopexamine at

clinically relevant doses (see later) I will explore the effects of dopexamine at doses up to

2μg/kg/min only, though in the case of healthy human volunteers as the data are limited

findings at 2.25μg/kg/min have also been included.

Dopexamine’s cardiovascular actions include chronotropy, inotropy and vasodilatation

particularly in mesenteric, skeletal and renal beds (76, 77). An examination of

haemodynamic data from several small studies in healthy volunteers reveals that

dopexamine produces modest increases in heart rate (HR, up to 30% over baseline) and

MAP up to doses of 2μg/kg/min (78-83), and significant increases in cardiac index (approx.

25% and 45% increases in CO at 1 and 2μg/kg/min, respectively), associated with

decreases in total peripheral resistance (TPR) (80, 82). In one study 25% increases in

cardiac index (CI) could be achieved with doses as low as 0.125 – 0.5μg/kg/min, although

the time required to reach steady state was 15 – 35 min (83). Animal studies across species

strongly suggest that increases in cardiac index are predominantly a consequence of

afterload reduction rather than inotropy per se, though enhanced noradrenergic drive

(baroreceptor activation and uptake inhibition) is likely an important factor in any

simultaneously seen increased cardiac contractility (60). This is supported by examination of

the data from three studies on healthy volunteers measuring norepinephrine levels when

dopexamine is infused at 2.25μg/kg/min (81) and TPR when dopexamine is infused at

1μg/kg/min (78, 80).

Dopexamine causes peripheral vasodilatation despite the modest increase in MAP. Any

increase in MAP is therefore likely a consequence of increased cardiac output.

Vasodilatation is notable in renal beds, resulting in decreased vascular resistances and

increases in renal blood flows (D and β2 adrenoceptors). Thus at 1μg/kg/min dopexamine
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causes modest increases in GFR, renal plasma flow and diuresis, though not natriuresis (76,

80). During dopexamine infusion an increased filtered and therefore sodium load passes

through the glomerulus to reach the proximal convoluted tubule where sodium reabsorption

is unaltered. However natriuresis does not occur (unlike in rats), due to sodium reabsorption

in the distal convoluted tubule (80). Dopexamine does bind to receptors in areas of the

human and rat kidney that are known to cause natriuresis (56). The failure to cause

natriuresis in humans may then relate to a greater fractional density of β2-adrenoceptors in

the distal convoluted tubule in humans (which enhance tubular re-absorption) (84, 85).

However it is impossible to exclude the importance of other mechanisms that might also

account for these differences (e.g. differential dopexamine binding in the loops of Henle, the

macula densa and collecting ducts, the renal vasculature, actions on renal nerve discharge,

renin release, ANP release and species differences in adrenoceptor behaviour etc.) as these

aspects haven’t been studied. Regarding splanchnic blood flow in healthy volunteers, at

1μg/kg/min the increase in blood flow relates to increases in cardiac index and not selective

splanchnic vasodilatation (78). A significant increase in cardiac index caused by infusion of

dopexamine doesn’t appear to have any deleterious effects on cerebral haemodynamics and

autoregulation (83).

Several other features of dopexamine are notable. In health short-term infusion of

dopexamine brings about a modest fall in leucocyte numbers without affecting neutrophil

function (86). Dopexamine also appears to inhibit platelet aggregation in response to stimuli

and decreases platelet numbers (76, 87). Unlike many β2 agonists, in man dopexamine does

not cause decreased plasma potassium levels below 2μg/kg/min (81, 88). With regards to

metabolism, it is associated with only small increases in systemic oxygen consumption (VO2)

and plasma free fatty acids with a small decrease in respiratory quotient (implying increased

fatty acid oxidation) (81, 88). Dopexamine results in only minor increases in plasma lactate

and relatively stable glucose levels, accounting for the increase in insulin levels only seen

above 2μg/kg/min (81, 88). Markers of proteolysis are mildly depressed. This indicates that
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up to 2μg/kg/min dopexamine has neutral effects on metabolism. The caveat to all these

findings is that they have been made in small studies where the drug was infused on a short-

term basis.

1.4.4 Effects of dopexamine in heart failure

Early studies (without comparator controls) in small numbers of patients with NYHA III heart

failure demonstrated that in the short-term (10 min), 1μg/kg/min dopexamine caused no

effects on blood pressure, significant increases in cardiac index, stroke volume index and

indices of contractility, and decreases in systemic vascular resistance without increasing

myocardial work significantly (45). Other small studies had similar findings (89, 90). Although

some concerns remained about the sustainability of dopexamine effects in this patient group

(91), seven small studies had been conducted in 74 NYHA II-III patients at doses up to

6μg/kg/min. Amalgamating this data, the manufacturers were able to demonstrate that at up

to 2μg/kg/min, dopexamine dose-dependently increased cardiac index and reduced TPR

with only mild increases (13%) in heart rate and neutral effects on blood pressure (82).

Studies on small numbers of heart failure patients continued to be published, providing little

meaningful data but promising much (92-95). In 1991 a randomised-controlled trial of

dopexamine in heart failure over six hours in 45 patients demonstrated that there were

concerns with pharmacological tolerance, tachycardia, angina and a lack of convincing renal

effects with this drug in NYHA III-IV patients at doses up to 2μg/kg/min. Furthermore the

haemodynamic changes seen in earlier studies were not always reproducible (96). By 1995

the next randomised dopexamine trial in heart failure was published but added little useful

information as infusions of dopexamine were only run for one hour (97). In conclusion,

dopexamine at doses up to 2μg/kg/min produces similar cardiovascular effects in heart

failure patients to that in healthy humans. However effects are poorly tolerated in many of

these patients due to the underlying intolerance of tachycardia, and effects are short-lived
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and less predictable due to changes in adrenoceptor numbers, post-receptor signalling

systems and neurotransmitter depletion (49, 98, 99).

Like its catecholamine predecessors dopexamine had failed to open a new chapter in

decompensated heart failure treatment, but it had developed a reputation as an inotrope with

an interesting cardiovascular profile. As early as 1989 its use had been reported in low

cardiac output states due to sepsis and following cardiac surgery (100-103). The 1990s saw

a greater interest in the potential renoprotective effects of dopexamine (104, 105), its

potential to preferentially direct blood flow to the hepatosplanchnic circulation (106, 107),

and as goal-directed therapy came to the fore an interest in its use in that setting also began

(108).

1.5 Goal-directed therapy

1.5.1 What is goal-directed therapy?

In several landmark observational studies by Shoemaker and colleagues in the early 1970s,

it was noted that following major surgery and in the early stages of severe illness, surviving

patients tended to be able to elevate indices of left ventricular performance, oxygen delivery

and utilisation above baseline whereas those that couldn’t tended not to survive (109, 110).

The logical consequence of this was that patients with a poor prognosis could be identified

early by their haemodynamic and oxygen transport variables while the assumption was that

increasing oxygen delivery to values obtained from a large cohort of survivors could

potentially constitute a therapy to improve outcome in these poor outlook patients (111).

Normal values (on which treatment goals were based) were determined as the median of the

range of various cardiorespiratory variables in survivors - goals could be achieved through

the manipulation of preload (volume loading), circulating red cell volume (volume loading

and oxygen content) and contractility (inotropic agents, usually catecholamine-based) (1).

The biological basis behind this was that a reduced VO2 was the earliest pathophysiologic
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event in all types of shock and was actually driven by: “…low flow, by maldistribution of

flow, and by increased metabolic demand…”, (my emphasis), and furthermore that the

length and severity of cumulative VO2 deficits associated with morbidity and mortality (1).

The enforced reduction in VO2 due to a suboptimal DO2 would lead to an oxygen debt (the

integral difference between resting and current VO2) that needed to be repaid through an

elevated DO2 (112). This was the explanation provided for the elevations in DO2 seen post-

operatively in high risk surgical patients who survived (1). However, Shoemaker’s

observations of a supply-dependence of VO2 and the generation of an “oxygen debt”

suffered from the limitations of mathematical coupling (113, 114) and the problem that

(particularly in established critical illness and sepsis) it did not always hold true (115-120).

Several prospective trials in high risk surgical and septic patients followed over subsequent

years. The means to achieve goals were set in various algorithms, with mixed results (119-

124). A literature review of trials of GDT for surgery and sepsis is beyond the scope of this

thesis, but it is sufficient to note the following:

The pathophysiological basis for the use of GDT was that an enhanced oxygen

delivery would prevent otherwise critically perfused tissue becoming ischaemic (1, 125,

126). Shoemaker best explains this when he states: “the essence of this plan is to

maintain prophylactically the patient in an optimal haemodynamic state that does not

allow him to develop tissue hypoxia….” (1).

GDT is now no longer a term specifically describing haemodynamic optimisation with

the elevation of oxygen delivery to pre-defined levels, but describes any

algorithm/protocol used to achieve haemodynamic end-points (e.g. mean arterial

pressure, central venous pressure, changes in stroke volume) with a feedback loop

that often includes parameters that are measures or surrogates for tissue perfusion

(e.g. mixed venous saturation, lactate etc.), but not involving DO2 parameters.
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Therefore with time the specific goals of GDT have changed though the central tenet

of haemodynamic optimisation remains.

Nevertheless GDT for high risk surgical patients, with or without the use of inotropic

agents, has been shown to reduce the rate of surgical complications and

hospital length of stay, and may decrease short and long-term mortality (127-129).

GDT using central or mixed venous oxygen saturation as the oxygen transport

variable, or lactate as a tissue perfusion surrogate is still recommended in the

treatment of sepsis, though only in the first 6 h of treatment (130). One could argue

that this strategy fits in most precisely with Shoemaker’s hypothesis as he gave

particular importance to the early prevention of DO2/VO2 derangements, arguing that

later cardiorespiratory manifestations of critical illness were merely the consequences

of an earlier missed opportunity to prevent morbidity/mortality.

1.5.2 Dopexamine and trials of goal directed therapy

In the 1990s the vasoactive agents most commonly used to increase oxygen delivery were

the catecholamines dopamine, dobutamine and adrenaline. Each of these agents enhanced

oxygen delivery through potent effects on contractility and heart rate, therefore increasing

myocardial oxygen demand. They also had metabolic side-effects that included increasing

VO2 (131-133). As GDT was based on improving the supply of oxygen to tissues, and the

burden of ischaemic heart disease is also heavy in high risk surgical patients, dopexamine

was thought to be better suited for peri-operative GDT as it was able to increase DO2 with

relatively little effect on myocardial or total body VO2 compared to other agents (108, 133,

134). Although dopexamine does not increase cardiac index by virtue of inotropic action from

direct β-adrenoceptor agonism, it does do so indirectly by virtue of its combined vasodilator

actions and its indirect β-adrenoceptor stimulating properties (see sections 1.4.1 – 1.4.3).

Therefore during dopexamine infusion cardiac index increases because the drug behaves as
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an inodilator. Pure vasodilators cannot produce this effect as they can vasodilate but have

no direct or indirect β-adrenoceptor mediated inotropic action. The only comparable drugs

that can inodilate are methylxanthines and phosphodiesterase inhibitors, drugs with long

half-lives which are therefore more difficult to titrate acutely. Dopexamine has therefore been

used in many clinical trials due to this titratable inodilator action, coupled with its favourable

myocardial VO2 profile (see above).

Boyd et al.’s study from 1993 was the first of several randomised controlled trials (RCT)

comparing GDT with dopexamine against a protocol guided “best treatment”, non-

dopexamine control group (135). 53 of 107 patients were haemodynamically optimised for a

DO2 of 600ml/min/m2 in the GDT group (correlating with the median DO2 of Shoemaker’s

survivor group). This continued during surgery and for a variable time afterwards (dependent

on lactate results) at an average dose that was below 1.5μg/kg/min. The trial found that DO2

was significantly higher in the GDT group and that significant and large reductions of the

complication (>50%) and 28-day mortality rates (75%) were seen in association with this.

Furthermore it appeared that the benefits of GDT were translated to a sustained gain in

mortality benefit even 15 years later (128). In 1999 Wilson and Woods conducted another

RCT in 132 evenly divided patients, comparing GDT using adrenaline against GDT using

dopexamine (incremental dose from a start of 0.125μg/kg/min) and against a non-GDT

control group. GDT was commenced 4 h pre-operatively and ceased 12 h post-operatively.

Although haemodynamic data wasn’t available for the control group, DO2 was elevated in

the dopexamine GDT group to median levels of 564ml/min/m2 while the adrenaline GDT

group was similarly elevated. Outcome data revealed a significant decrease in mortality

when the GDT groups were pooled and compared with controls. On the other hand a

significant decrease in morbidity and length of stay was only seen against the control group

in the dopexamine GDT group, and even against the adrenaline group.

The following year Takala et al. conducted a multi-centre randomised trial of peri-operative

optimisation with or without dopexamine in high-risk patients undergoing abdominal surgery
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(136). This involved 412 patients who were admitted pre-operatively to intensive care and

optimised to various clinical criteria. Patients were then divided in to three groups, receiving

either placebo or dopexamine at 0.5 or 2μg/kg/min, starting 2-12 h before surgery and

continued 24 h afterwards. This trial did not find any significant benefits of adding

dopexamine to the pre-optimisation protocol, though there was an improvement in the low

dose dopexamine group that was statistically not significant (136). In 2003 another RCT of

GDT using dopexamine in major elective abdominal surgery was conducted, looking at

complications in 100 patients as the primary outcome (137). The dose of dopexamine used

was 0.25μg/kg/min and this was continued for 24 h after surgery. Intra-operative

haemodynamic monitoring found dopexamine was associated with significant increases in

cardiac index CI, SV and HR compared to baseline and controls. There was no significant

difference in complication rates between the dopexamine and control group, though the

dopexamine group had a higher number of baseline co-morbidities. Two years later a trial

conducted by Pearse et al. compared the effect of 8 h of post-operative GDT using stroke

volume response and dopexamine at a maximum rate of 1μg/kg/min against a non-

dopexamine CVP-led haemodynamic optimisation protocol. This study was stopped at

interim analysis after only 122 patients had been recruited due to a significant reduction in

complications (44% vs. 68%) and hospital length of stay in the dopexamine GDT group

compared to the control group (138).

A 2008 meta-regression analysis of GDT using dopexamine for (non-cardiac) major surgery

(including only the five trials above) revealed a reduction in 28-day mortality only when

dopexamine was used in low doses (≤ 1μg/kg/min) consistent with the signal detected in

Takala’s study (Figure 1.4, upper) (139). However, a similar meta-analysis using different

methods did not show a significant effect of dopexamine at any dose on (in-hospital)

mortality, though the trends were similar (Figure 1.4, lower) (140).
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Figure 1.4 Forest plots for:
UPPER. Meta-regression analysis of the use of low dose dopexamine (≤ 1μg/kg/min)
and its effects on 28-day mortality following major surgery. With permission, (139).
LOWER. Meta-analysis of the use of low-dose dopexamine (≤ 1μg/kg/min) and its
effects on in-hospital mortality following major surgery. With permission, (140) – © 2009
The Authors. Journal compilation © 2009 The Association of Anaesthetists of Great Britain and Ireland. All rights
reserved. Figure 1.4 (lower) may not be reproduced, stored or transmitted in any form or by any means without the
prior permission in writing from the copyright holder. Authorisation to photocopy items for internal and personal use
is granted by the copyright holder for libraries and other users registered with their local Reproduction Rights
Organisation (RRO), e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA
(http://www.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does not extend to
other kinds of copying such as copying for general distribution, for advertising and promotional purposes, for
creating new collective works or for resale. Special requests should be addressed to permissions@wiley.com)

A further RCT in 124 high risk general surgical patients was published in 2011, though this

time the comparison was between GDT with fixed rates of low-dose dopexamine and an

identical GDT protocol without dopexamine (141). In one group dopexamine was

administered at a fixed-rate of 0.5μg/kg/min, then for a further 24 h post-operatively. There

was no significant difference in stroke volume or cardiac index between the groups, and DO2
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was significantly higher than in controls though only for the last 2 h of the operations.

Unusually, the DO2 measured in this study was well below 600ml/min/m2 in both groups

possibly reflecting the selection of a population that in other trials may have been classed as

non-responders to GDT (142, 143). There were no significant differences between groups in

terms of peri-operative morbidity, complication rates or hospital mortality, though these were

only followed-up for 5 or 15 days.

Recently a multi-centre RCT investigating 30-day post-operative outcomes in 734 high risk

surgical patients undergoing major gastrointestinal surgery compared a peri-operative (and 6

hour post-operative) GDT protocol against usual care (129). The GDT protocol consisted of

a fixed rate infusion of dopexamine at 0.5μg/kg/min and colloid therapy to achieve and

maintain maximal stroke volume. This trial did not find a significant benefit in the composite

primary outcome (30-day moderate/major complications and mortality) or secondary

outcomes. However there were trends to an improved primary outcome with GDT (relative

risk = 0.84 (95%CI 0.71 – 1.01), P=0.07), becoming stronger following adjustment for

baseline co-morbidity (odds ratio = 0.71 (95%CI 0.53 – 1.00), P=0.05). Finally, when

protocol adherence was adjusted for significant benefits were found in the GDT group

(relative risk reduction = 0.8 (95%CI 0.61 – 0.99, P=0.04). This is notable as the power

calculation for the trial assumed a relative risk reduction of 25% from an assumed control

complication rate of 50%. In fact the control complication rate was only 43.4% and the trial is

therefore likely to have lacked the power to detect with significance the differences in

complication rates that it did.

Summing up these trials is problematic. The trials were conducted over a period of 21 years

during which standard practice changed, and the treatment of control (non-dopexamine)

groups has almost certainly improved. Some studies suggest that dopexamine could have a

beneficial effect on morbidity and mortality, particularly at lower doses, whereas others do
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not support this. If dopexamine does have any effect on outcomes, large trials with lengthy

follow-up periods may be necessary to conclusively demonstrate or refute it, as any

difference between treatment and placebo is likely to be smaller now than 21 years ago.

1.5.3 Searching for a mechanism of action for dopexamine

The pathophysiological basis of using GDT has centred on increasing oxygen delivery at a

time of decreased tissue perfusion. However, Wilson and Wood’s trial demonstrated that

when DO2 is increased, reduced rates of complications are seen only with dopexamine and

not with adrenaline, leaving open the question of whether systemic DO2 is really related to

dopexamine’s mechanism of action at all. The meta-regression analysis by Pearse also

noted a lack of effect at higher doses of dopexamine where cardiac index (and by extension

DO2) would be expected to be highest (139).

A post-hoc analysis (144) of Takala et al.’s study (136) also revealed some interesting

findings, though the analysis in question does have some flaws in its retrospective design

and incomplete patient capture. This showed that when surgical patients from the original

study were divided in to two groups based on surrogate markers of pre-operative gastric

(and by extension splanchnic) perfusion, patients with a poor pre-operative gastric perfusion

were at a significantly greater risk of morbidity and mortality compared to those who had a

good pre-operative gastric perfusion. Furthermore, those patients who went on to receive

dopexamine treatment (at both 0.5 and 2μg/kg/min) in the poor perfusion group experienced

an improvement in gastric perfusion post-operatively and a reduced incidence of

complications compared to placebo-treated patients from the same group. Curiously these

improvements in gastric perfusion and morbidity were not observed in the group with good

pre-operative markers of gastric perfusion, though DO2 was seen to increase with

dopexamine. With regards to mortality, no significant differences were seen with

dopexamine treatment between any of the poor pre-operative gastric perfusion sub-groups.
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This hypothesis-generating analysis also points toward an ambiguous relationship between

systemic DO2, tissue perfusion and complications. It hints that the ability of dopexamine to

improve patient outcomes may be related to improving perfusion on a tissue level, and not

necessarily at a systemic level. This study (144) was also notable as it correlates with other

studies demonstrating that poor pre-operative markers of tissue perfusion are associated

with post-operative morbidity (145).

Another side-arm (146) of Takala et al.’s original study (136) prospectively performed gastric

tonometry and also compared changes in the endoscopic and histological appearances of

gastric mucosa of 38 patients who had been randomised as per the initial protocol. The

endoscopically determined health of all gastric tissue deteriorated over the three days, but

no statistically significant differences were found between the groups at 72 h. However

histologic appearances of gastric tissue demonstrated that dopexamine treated groups

showed both statistically significant and non-significant inflammatory change which was less

than that in placebo groups (depending on whether assessed by myeloperoxidase staining

(a measure of neutrophil infiltration) or by haematoxylin and eosin staining, respectively).

Jhanji et al. in a physiological study (147) explored the effects of a post-operative eight hour

fixed rate infusion of dopexamine (0.5μg/kg/min) in a group of high risk surgical patients who

were haemodynamically optimised according to a stroke volume guided GDT protocol. This

was compared with a similar group optimised identically but without dopexamine, and a third

group optimised with a CVP guided protocol similar to that employed in the control group of

Pearse et al.’s 2005 trial. The groups were well matched and all patients had epidurals. This

study showed that there was a graded response in cardiac index and DO2 when comparing

the three groups, with the dopexamine GDT group at the top. Both GDT groups

demonstrated a significant increase in markers of microvascular perfusion (perfused vessel

density) with time whereas the control group decreased with time. However, the dopexamine

group was the only group to demonstrate a significantly increased tissue oxygen tension

(tPO2). Furthermore while control group endothelium-dependent microvascular behaviour
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(measured by post-occlusion hyperaemia) deteriorated over time, GDT with dopexamine

enhanced post-occlusion hyperaemia while GDT alone preserved responses at baseline

levels (Figure 1.5). Although there were no significant differences between groups in the

cytokine profile, a protective effect of dopexamine on endothelium-dependent microvascular

responses could not be excluded. Jhanji et al.’s study was not designed to assess the

incidence of post-operative complications. These clinical studies take us several steps

beyond a simple DO2 based explanation and open up the possibility of alternative

explanations:

 Dopexamine prevents a deterioration of microvascular perfusion in all tissue beds,

preventing morbidity (the role of DO2 in achieving this being potentially irrelevant)

 Dopexamine prevents the deterioration of tissue perfusion in specific tissue beds,

namely the renal and/or hepatosplanchnic beds, preventing morbidity

 The anti-inflammatory effect of dopexamine is the basis of preventing morbidity

1.6. The microcirculation

1.6.1 Structure

The microcirculation comprises blood vessels of less than 100μm diameter and is the part of

the circulation that is involved in the delivery and exchange of gases, metabolic substances

and hormones and removal of waste products from tissue beds (4). The microcirculation is

also closely involved in the regulation of coagulation and immune responses. In general,

small arteries divide in to arterioles which decrease in size with further subdivision until

capillaries are formed. Capillaries then merge to form venules and eventually veins. The

entire circulation is lined by a unicellular layer of cells called the endothelium.

Arterioles primarily regulate microvascular blood flow and are the major resistance vessels in

the body. They consist of intimal tubes of endothelial cells surrounded by an outer cylinder of



45

smooth muscle and connective tissue. Arteriolar tone is regulated by neural, humoral and

local factors. The tone of the terminal arteriole allows regulation of capillary perfusion.

Arterioles of a low tone will be patent, allowing perfusion of downstream capillaries. Arteriolar

constriction will reduce the number of perfused capillaries – thus the terminal arteriole is

often referred to as a pre-capillary sphincter. This is an important mechanism as perfused

capillary density is a key determinant of tissue oxygenation through effects on the average

inter-capillary distance, blood capillary transit time and the surface area available for nutrient

and gas exchange. In some vascular beds e.g. skeletal muscle, there is considerable

redundancy in the density of capillary beds. This allows a substantial increase in tissue

perfusion at times of high metabolic demand. Capillaries are tubes of endothelial cells of

approximately 5 μm diameter, with an associated basement membrane, devoid of

surrounding smooth muscle and varying in length from 500-1000μm. They are the main site

for exchange of gases and metabolic substances between tissue and blood and vary in their

permeability according to the organ in which they are found, being classified as continuous,

fenestrated or discontinuous (increasing permeability). As with all microvessels, pericytes

are found around capillaries. Pericytes are specialised, contractile cells that have long

processes wrapped around microvessels (these cells produce constituents of the basement

membrane and extracellular matrix and are also involved in regulating the permeability of

venular endothelial cell junctions in inflammation). Venules are very distensible but have little

smooth muscle and only slightly thicker walls than capillaries. However, venules remain

responsive to both circulating and neural vasoconstrictor stimuli. This allows control of

venular tone and venous capacitance. Venules play a central role in the evolution of tissue

inflammation. In normal conditions, venular endothelium expresses adhesion molecules

which may be rapidly upregulated when activated. These molecules facilitate the adhesion

and trans-migration of leucocytes to tissue beds.

The microcirculation is not structured according to a single design across diverse tissue

beds but is adapted specifically to the function of the organ concerned. The cerebral
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microcirculation is adapted to provide the tightly regulated extra-cellular milieu and a

guaranteed oxygen supply essential to neuronal integrity. Cerebral endothelial cells lack

fenestrations, are bound together by tight junctions while microvessels are linked to

neurones by astrocytes which play a role in the coupling of neuronal activation to blood flow.

These mechanisms are collectively termed the ‘blood brain barrier’. Cerebral blood flow is

tightly autoregulated by metabolic factors, and to ensure an adequate blood supply to the

brain there is a high capillary density. Similarly the heart is highly metabolically active,

mandating a high capillary density which is facilitated by cardiac myocytes being smaller

than skeletal muscle fibre counterparts, decreasing diffusion distances. Unlike skeletal

muscle with its reserve of recruitable capillaries, even at basal levels of function flow is

present in all capillaries in healthy myocardial tissue. Circulating catecholamines released

from the adrenal gland act predominantly on coronary endothelial β2-adrenoceptors

promoting vasodilatation and enhancing flow, increasing perfusion. As in the brain the

control of coronary microvascular flow is dominated by metabolic autoregulation. Coronary

microvessels are poorly innervated so when sympathetic tone and myocardial oxygen

demand increase vasoconstriction is minimised. In contrast the cutaneous microcirculation is

densely innervated so that when sympathetic tone increases, such as in circulatory

compromise, blood flow is re-directed away from skin toward other tissues.

In common with the heart and brain there is a very high capillary density in the pulmonary

microcirculation, resulting in tiny diffusion distances and maximising the efficiency of gas

exchange. The pulmonary vascular bed receives the entire cardiac output, but is a low

pressure and low resistance circulation because arterioles are short and thin walled and

autoregulation does not occur to any great degree except for hypoxic pulmonary

vasoconstriction which minimises ventilation-perfusion mismatch. This vascular response is

opposite to that in systemic tissues (such as skeletal muscle) where a drop in the partial

pressure of oxygen leads to vasodilation in order to match oxygen demand and perfusion.

The renal microcirculation is extensively adapted to allow selective filtration at the
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glomerulus and also to maintain osmotic gradients within the kidney. Unlike in the lung a rich

sympathetic innervation of renal arterioles allows coupling of systemic haemodynamics (and

tubular flow) to the regulation of microvascular blood flow in the kidney. Both afferent and

efferent arteriolar tone allows maintenance of glomerular hydrostatic pressure for filtration,

whereas a low capillary hydrostatic pressure is essential to reduce the formation of

pulmonary oedema in the lung. The glomerular endothelium contains fenestrations, while

podocytes and renal pericytes (mesangial cells) also give structure and function to the

glomerular filter. Bowman’s space between podocytes and endothelial cells is the entry point

for glomerular filtrate in to the nephron. On the other hand endothelial tight junctions in the

vasa recta which run parallel to the loops of Henle allow microvessels to act as counter-

current exchangers and to maintain the medullary osmolar gradient. Exchangers are also

found in the cutaneous microcirculation, though here arterio-venous anastamotic loops serve

to regulate the transfer of heat between the body and its environment. On dilation and

recruitment (as occurs in exercise) blood flow is directed to the skin surface and cooling

occurs.

The microcirculation of the gut is based on a design that varies somewhat along the course

of the digestive tract. Generally speaking the gut and its microcirculation is densely

innervated with the added sophistication of vasoactive gut peptides acting in the vicinity. In

this manner there is similarity with the cutaneous microcirculation where activated sensory

nerves can release vasoactive mediators (such as histamine and substance P) which alter

local vascular behaviour, and also because circulatory compromise results in the neuronally

directed redistribution of blood away from this tissue bed. Millions of villi give the gut mucosa

its large surface area for absorbing nutrients, but are also prone to hypoxia. This is because

the metabolically active villi are supplied from the base by a single main arteriole travelling to

the tip of the villus from where two distributing arterioles descend and supply a villous

capillary network that drains in to descending collecting venules. This acts as a counter-

current exchanger and invariably results in the diffusion of oxygen from arteriole to venule at
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the villous base, reducing villous tip oxygen levels. However despite the dense innervation of

the gut, mucosal blood flow is selectively protected from compromise as mucosal

microvessels are highly responsive to local metabolic factors and are relatively poorly

innervated. Downstream from the gut is the low pressure portal venous system which

contains poorly oxygenated blood and the metabolic substrate absorbed from the digestive

tract. This supplies 80% of the dual blood supply of the liver. The hepatic microcirculation in

common with the pulmonary microcirculation therefore has a low resistance to flow but also

performs several metabolic and immune functions to protect the body from potentially

absorbed toxins. Hepatic capillaries, or sinusoids, consist of widely spaced endothelial cells

with large fenestrae, interspersed with Kupffer cells (specialised macrophages that

phagocytose particulate, infective and foreign material originating from the portal blood

supply).

1.6.2 Regulating microvascular flow

Microvascular flow is regulated by both local and systemic mechanisms. The central nervous

system exerts significant control over the microcirculation, integrating it with baroreceptor

reflexes. Through sympathetic innervation of arterioles and venules, afterload and venous

return to the heart can be increased or decreased by controlling the neuronal release of

perivascular noradrenaline. The response is sophisticated and not uniform across

microvascular beds due to differences in innervation, adrenoceptor profile and density.

Similarly circulating vasoactive hormones also act on endothelium and vascular smooth

muscle to mediate changes in vessel tone.

On a local level, various factors influence blood flow. Myogenic responses are due to the

activation of stretch-sensitive ion channels in vascular smooth muscle cells. This causes an

increase in vascular contractility. The result is arteriolar constriction in response to pressure
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increases and vice versa. This ensures a consistency of blood flow to the organ bed over a

range of mean arterial pressures - pressure autoregulation. In addition to this, at any given

pressure other local mechanisms also regulate microvascular flow (39):

1. Local endothelial shear effect: Shear force is determined by haematocrit, capillary

capacitance and interaction of blood cells with the endothelium which activate

mechanoreceptors that trigger endothelial nitric oxide (NO) production via eNOS (39,

148). NO is a key mediator of vascular tone resulting in local vasodilatation. Electrical

signals transmitted between endothelial cells via gap junctions result in local

vasodilatation (whereas transmission across vascular smooth cell gap junctions

translates constriction) (149). The consequent increase in local blood flow decreases

shear force contributing to the autoregulation of microvascular flow.

2. Vasoactive tissue metabolites (e.g. CO2, ADP, H+, adenosine, K+) result in vasodilatation

during increased metabolic activity. This allows metabolic autoregulation of

microvascular flow may be particularly important in certain vascular beds such as the

brain.

3. Paracrine effects on microvessels from red and white blood cells e.g. NO from

erythrocytes, catecholamines from leucocytes.

The physics of blood flow through the microcirculation is of great interest and fundamental to

the function of the cardiovascular system. Blood is a non-Newtonian fluid. Although arterial

blood flow is laminar in nature, in smaller arterioles and capillaries perfusion pressure

decreases, in part because of the large numbers of vessels of this size. Unlike larger

arteries, microvascular haemodynamics are not determined purely by vessel calibre and

driving pressure. Microvascular blood flow is strongly influenced by vascular topology, blood

viscosity and the interaction of cellular constituents with each other and the endothelium.

The endothelium lines the vessels of the microcirculation and plays a pivotal role in

homeostasis of blood flow, inflammation, and coagulation. Just as the endothelium lines the
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vessels of the circulation, so the endothelium itself is lined by the glycocalyx, a negatively

charged layer of glycoproteins and glycolipids that decreases the permeability of blood

vessels and prevents interaction between the endothelium and blood cells. Endothelial cells

have an actin cytoskeleton which maintains cellular structure allowing regulation of cellular

permeability and hence endothelial barrier function.

Hence despite low perfusion pressure, microvascular blood flow is maintained through the

following mechanisms:

1. A thin plasma layer separates the outermost moving blood cells from the vessel wall,

decreasing friction

2. The endothelial glycocalyx repels negatively charged molecules including those

expressed on cell membranes and plasma proteins

3. Increased axial red cell velocity in capillaries causes an apparent drop in blood viscosity

4. The prevention of blood cell aggregation by ‘shear thinning’ and the deformability of red

and white cells

5. The single file movement of erythrocytes through capillaries termed ‘bolus flow’ further

decreases blood viscosity in the microcirculation

1.6.3 The microcirculation as a target for dopexamine

It had been recognised that there were stereotypical changes in the patterns of systemic

oxygen transport variables following major surgery and in sepsis. When the effects of these

changes at the tissue level were investigated, it was apparent that microvascular variables

also changed stereotypically. It has been shown that the microcirculation becomes impaired

following sepsis, that survival is associated with less severe derangements (150), and that

improvements in microvascular variables following therapy associate with improved survival

(151). Similarly following major surgery reductions in microvascular flow occur and tend to

be sustained in those who go on to develop complications (145). One study demonstrated
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that the severity of insult correlated with the degree of microvascular alteration (152) – in this

regard it is logical to see the microcirculation as a site where dopexamine might be exerting

its effects. It is also interesting in this regard that Shoemaker thought that the increases in

VO2 following successful GDT probably represented an opening of microvascular units that

allowed oxygen to reach ischaemic cells that could then extract more oxygen (1).

There have been few studies of the effects of dopexamine on the microcirculation in

humans. Jhanji et al.’s study demonstrated an ability of dopexamine to increase tissue PO2,

perfused vessel density and the cutaneous hyperaemic response to occlusion when

Figure 1.5 The effects of three different 8-hour post-operative haemodynamic
optimisation protocols on indices of sublingual perfused vessel density (upper left),
forearm cutaneous hyperaemic response (upper right) and forearm tPO2 (lower). The
protocols were either: CVP guided (CVP), stroke volume guided (SV) or stroke volume
guided with a fixed rate infusion of 0.5 dopexamine (SV & DPX). There was no
significant difference in the volume of fluid infused between groups. With permission,
(147).

compared to standard or flow-directed haemodynamic optimisation protocols (Figure 1.5)

(147).

One other human study (presented across two papers) explored the effect of dopexamine on

microvascular flow following free-flap plastic surgery in 24 patients (153, 154). Dopexamine
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was infused in 1.25μg/kg/min increments up to 5μg/kg/min after various haemodynamic

criteria had been met, and measured change in microvascular perfusion post-operatively (we

are only concerned with the doses up to 2.5μg/kg/min). A weakness is that infusions lasted

only 5 min at a time, which may not have been enough time to reach steady state conditions

(83). Nevertheless what the study found was that tissue microvascular flux, tissue

conductance and cardiac index increased in a dose-dependent manner while MAP

decreased. However with the same systemic haemodynamic changes, in denervated (free-

flap) tissue dopexamine failed to preserve or augment red cell flux though conductance

increased. On the other hand it was clearly demonstrated that when noradrenaline was

infused in a range of doses which increased cardiac index up to levels seen with

1.25μg/kg/min dopexamine, MAP and microvascular perfusion in the free-flap greatly

increased above baseline levels. This indicates that in denervated tissue MAP is an

important determinant of microvascular perfusion, not cardiac index/DO2. It is also possible

that post-denervation, vessels in the flap are almost maximally dilated so the addition of a

vasodilator such as dopexamine has little additional effect in flap vessels, and may produce

a steal of flow by the surrounding innervated tissue which can vasodilate (this is supported

by the finding that control tissue conductance increased more than free flap conductance

when dopexamine was infused). The second paper relating to this study also performed

spectral analysis of the Doppler waveforms of perfusion and suggested that myogenic

activity was decreased in denervated tissue compared to control tissue at baseline (154).

Infusing dopexamine had no effect on myogenic activity (as measured by proportion of

power in the myogenic frequencies), but noradrenaline increased it. Given that local

myogenic responses are in part governed by flow through blood vessels (2), this may further

confirm the importance of MAP in generating flow through denervated tissue. Dopexamine

decreased the driving pressure through the flap while noradrenaline increased it (153).

Alternatively it may reveal that lower doses of noradrenaline, while increasing MAP and

driving pressure in to the flap, also had the effect of increasing tone to normal levels in flap

vessels before the highest doses of noradrenaline produced over-constriction. These two
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papers are important in revealing that in normal tissue in the post-operative setting

dopexamine can improve perfusion. They are also useful in pointing out the importance of

maintaining MAP to preserve flow through tissue which is denervated (such as tissue under

epidural anaesthesia) or in tissue which is behaving abnormally, such as in sepsis (9, 155).

This latter point may also help explain why studies investigating the effects of dopexamine in

established sepsis and peri-operative settings have differing results.

Two other small studies (one in five patients, and the other in 10) looked at the effect of

dopexamine on microvascular flow in other tissue in pathological states. The first was to

investigate microvascular flow in denervated jejunal tissue of stoma fashioned from

transplanted small intestine (156). Details of this study are presented below (section 1.6.4).

With respect to microvascular flow, dopexamine at doses of 1 and 2μg/kg/min was shown to

improve red cell flux in the jejunal tissue that comprised the stoma. The paper does not

clearly present data on MAP or cardiac index. The improvement in microvascular flow in the

jejunum is also supported by a study post-cardiac surgery where cardiac index was

increased by 25% (see 1.6.4) (157). Another small study is also summarised below (1.6.4),

and shows using spectrophotometric techniques in patients with hyperdynamic sepsis that a

short-term infusion of dopexamine could improve microvascular flow in the gastric mucosa

(158).

1.6.4 Effects of dopexamine on regional perfusion

There is evidence that dopexamine may induce splanchnic vasodilatation and enhance renal

blood flow (159, 160). Several human studies in various different settings have sought to

assess whether or not dopexamine improves regional perfusion, with contrasting findings

(161). Table 1.2 excludes those studies that are unable to compare against placebo control

though studies where placebo comparator groups aren’t included have been included if the

studies are of short-duration and comparison against a baseline is both possible and

meaningful. On the grounds of relevance studies unambiguously presenting results for

dopexamine at doses of 2μg/kg/min or less (even if higher doses were used) are presented.
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Table 1.2   Summary of studies examining the effects of dopexamine on regional circulations in humans at doses ≤ 2μg/kg/min
Trial of Setting Region

Assessed
Method N Effect of dopexamine on region Effect of

dopexamine
on DO2

Study limitations Ref.

5 minute
infusion of DPX
at 1.25, (2.5,
3.75 and
5μg/kg/min) –
comparison with
normal tissue
here (see
region
assessed)

Patients with head and
neck cancer
undergoing free flap
surgery

Free flap
(denervated)
and normal
cutaneous tissue
(deltoid region)

Laser Doppler
velocimetry
Mathematically derived
tissue conductance
(tissue perfusionMAP)

24 Compared to baseline:
Increase in perfusion in normal tissue,
decrease in perfusion in free flap.
Increase in conductance in both tissues,
though to a greater degree in normal
tissue.

Increase Infusions only lasted 5 minutes,
most doses out of normal clinical
range.
Difficulty of extrapolating behaviour
in free flaps to any other tissue type.

(153)

5 minute
infusion of DPX
at 1.25, (2.5,
3.75 and
5μg/kg/min) –
comparison with
normal tissue
here (see
region
assessed)

Patients with head and
neck cancer
undergoing free flap
surgery

Free flap
(denervated)
and normal
cutaneous tissue
(deltoid region)

Power spectral analysis
of Doppler velocimetry
waveforms

24 No significant effect on frequencies
associated with myogenic activity

Increase As above.
To be able to statistically compare
power spectra requires
standardising all curves to a defined
area under the curve. This may
introduce error due to effectively
altering the shape of the measured
curves.
Effects at physiological sites are
inferred not directly observed.

(154)

8h of
0.5μg/kg/min
DPX vs. two
placebo groups
haemodynamic
ally optimised
either identically
or against CVP

Post major upper or
lower gastrointestinal
surgery

Forearm
microcirculation.
Sublingual
microcirculation.

Laser Doppler flowmetry,
Clarke electrode tPO2,
reactive hyperaemia
(forearm). Sidestream
darkfield imaging
(sublingual)

135 Forearm: Higher tPO2, and enhanced
reactive hyperaemic response over time
compared to placebo groups.

Sublingual: Significantly higher perfused
vessel density over time compared to
CVP group only.

Significantly
increased
compared to
baseline and other
groups.

Insufficiently powered to provide
significant data on post-operative
outcomes.
Therefore this physiological study
was unable to directly provide
linkage to outcomes.
No study of higher doses (1 &
2mcg/kg/min).

(147)

24h of
2μg/kg/min DPX
vs. placebo

Infra-renal aortic
surgery

Splanchnic
(Colon only)

Pre- and (1 week) post-
surgical colonoscopic
examination of mucosa
for signs of ischaemia

30 One week post-operatively DPX group
had significantly fewer patients with
ischaemic colonic lesions

No data provided Insufficiently powered study, unable
to provide data on DO2.
Colon does not represent entire
splanchnic circulation.
No direct measurement of tissue
blood flow in any specific region.

(162)

0.5-1μg/kg/min
DPX vs.
placebo intra-op

Abdominal aortic
aneurysm resection

Splanchnic
(stomach)

Gastric tonometry (pHi) 25 No significant change in pHi in DPX
group, though a significant decrease in
pHi in placebo group

Increased pHi is altered by non-perfusion
related factors. Therefore no direct
measurement of tissue blood flow in
any specific region.
Gastric region is not representative
of entire splanchnic bed.
Only intra-operative infusions of
dopexamine used.

(106)
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0.5 or
2μg/kg/min DPX
vs. placebo for
2-12h pre-op,
intra-op & until
24h post-op.
* post hoc
analysis of
Takala et al.’s
trial (136)
(Data analysed
according to
patients’ pre-op
pHi)

Non-vascular, high
risk abdominal surgery

Splanchnic
(stomach only)

Gastric tonometry (pHi) 268 pHi did not increase compared to placebo
in normal pre-op pHi group at either dose
of dopexamine.

pHi significantly increased compared to
placebo in low pre-op pHi group at both
doses of dopexamine

Increase (normal
pHi group)

No increase (low
pHi group)

Study based on post-hoc findings.
Only gastric tonometry used (see
above for shortcomings of this
modality)
No organ function data provided

(144)

0.5 or
2μg/kg/min DPX
vs. placebo for
2-12h pre-op,
intra-op & until
24h post-op.

* Side-arm of
Takala et al.’s
trial (136)

Non-vascular, high
risk abdominal surgery

Splanchnic
(stomach only)

Gastric tonometry (pHi)

Endoscopic examination
and biopsy of gastric
mucosa

38 No significant difference between groups
in pHi
No significant difference in endoscopic
appearance.

Biopsy evidence of significantly reduced
inflammatory infiltrates in gastric mucosa
in dopexamine groups compared to
placebo

Not significantly
different to placebo
at either dose of
dopexamine

Insufficiently powered study.
Gastric mucosal changes may not
have strictly related to gastric
perfusion – e.g. no information given
on pre- or peri-operative use of non-
steroidal anti-inflammatory drugs,
proton pump inhibitors etc.
No direct measurement of tissue
blood flow in any specific region.

(146)

24h of placebo
vs. 0.5 or
2μg/kg/min DPX

Pre- and post-major
abdominal surgery

Splanchnic
(hepatic blood
flow)

Indocyanine green (ICG)
infusion

Splanchnic oxygen
kinetics and lactate
uptake

21 No significant difference between groups
in absolute or fractional splanchnic blood
flow, oxygen kinetics or lactate uptake

DPX (not placebo)
at any dose
increases pre-
operatively.

Increase not
sustained post-op
(except high dose
group)

Insufficiently powered study

No direct measurement of tissue
blood flow in any specific region.

(163)

1h sequential
infusions of 1 or
2μg/kg/min DPX
– comparison
against baseline

Post-small intestinal
transplant while
patients ventilated on
ICU

Splanchnic Jejunal laser Doppler
flowmetry

Gastric tonometry (pHi,
n=2)

5 Significant dose-related increase in jejunal
red cell flux

pHi wording too ambiguous to be
meaningful – also only n=2

Ambiguously
worded – suggests
cardiac indices
(therefore also
likely DO2)
increase

Insufficiently powered study
Impossible to separate effects of
dopexamine on global and regional
DO2

(156)

5 min of: DPX
(vs. dopamine
vs. dobutamine)
DPX vs.
baseline
considered only

7 h post-CABG
involving CPB.

5min infusion only;
20min washout

Splanchnic
(hepatic flow
and jejunal
perfusion)

Hepatic Venous (HV)
catheter

Intraluminally sited
jejunal laser Doppler
flowmetry probe

10 Increase in jejunal mucosal perfusion of
20% above baseline

Increased HV saturations, lower HV O2
extraction cf: baseline

Mean increased
above baseline of
28%

Five minute infusions only
Insufficiently powered study
Hepatic vein drains blood from portal
circulation – cannot differentiate
perfusion effects in different parts of
splanchnic circulation

(157)

0.5-2μg/kg/min
DPX vs.
placebo

Strictly intra-op during
aortic surgery

Splanchnic
(small intestine)

Urinary recovery of
nasogastric administered
saccharides

24 No significant difference between groups
in recovery of saccharides (both groups
increased from baseline)

No data provided. Insufficiently powered study.
No direct measurement of global or
tissue blood flow in specific regions.

(164)
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1 hour of 1 or
2μg/kg/min DPX
vs. placebo
(also vs.
dopamine)

6 h post CABG (with
cardiopulmonary
bypass (CPB))

Splanchnic
(hepatic blood
flow)

ICG infusion 30 % ICG disappearance rate significantly
increased only at 2μg/kg/min DPX (no
changes in placebo group). Correlates to
38% (disproportionate) increase in liver
blood flow.

Cardiac index only
significantly
increased at
2μg/kg/min (27%).
DO2 likely to follow
same pattern.

Insufficiently powered study.
Only one hour infusions.
ICG disappearance rate is not only
related to hepatic blood flow (165).

(166)

~24h of placebo
vs. 2μg/kg/min
dopexamine
(also vs.
fenoldopam)

CABG with CPB Hepatic blood
flow

ICG boluses

Post-operative liver
function tests (LFTs)

42 No significant difference ICG clearance
between DPX and placebo at any time.

Trends to lower LFTs for 5 days after

ns difference
between DPX and
placebo at any
time

Insufficiently powered study.
ICG disappearance rates do not only
relate to hepatic blood flow.

(167)

Complex design
– 2h
dopexamine
1μg/kg/min vs.
2h enteral
nutrition (EN)
vs. 2h
(EN + DPX)

1 day post CABG
involving CPB in
elderly patients (over
70y.o.)

Splanchnic
(hepatic) blood
flow

Hepatic O2
kinetics

ICG infusion

HV lactate

16 Transient increase hepatic blood flow with
DPX (EN failed to augment SBF
compared to baseline and can be
therefore seen as a control)

No significant difference oxygen kinetics,
but systemic and HV lactate increased

DO2 augmented by
addition of DPX

Insufficiently powered study.
Only 2h infusion.
Purely physiological study.

(168)

24h DPX at 0.5,
1 or 2μg/kg/min
vs. placebo

CABG with CPB Splanchnic
blood flow

Renal function

HV catheter

Gastric tonometer (pHi)

Creatinine clearance
(CrC)

44 pHi no significant different between
groups

HV saturation not significantly different
HV lactate not significantly different
(except 0-6h post-op in 2μg/kg/min group)

CrC significantly greater in DPX groups,
and inversely related to dose

All groups
increased DO2 with
time. Only DPX
2μg/kg/min
significantly greater
DO2 than placebo,
though not beyond
8h

Insufficiently powered study
Gastric tonometry not only affected
by gastric blood flow.
HV catheter unable to distinguish
differential effects in different parts
of splanchnic circulation.
Unclear what degree of change in
regional perfusion will result in a
significant change in HV sats and
lactate – therefore uncertain
sensitivity.

(169)

60-90 min
infusion of
~1μg/kg/min
DPX vs.
placebo

Post CABG (involving
CPB)

Splanchnic Gastric tonometer (PCO2
gap)

ICG

14 Significant increased splanchnic blood
flow, DO2 and fractional splanchnic flow
cf: control

No significant difference in pHi cf:
controls, and significant decrease in pHi
cf:baseline

Significantly
increased DO2 cf:
controls (42%
above baseline)

See above for shortcomings of ICG
& gastric tonometry.
Insufficiently powered study.
Only 60-90 minutes of infusions.

(170)

18h infusions
of: placebo vs.
DPX 1μg/kg/min
(vs. epidural
bupivacaine)

CABG involving CPB Splanchnic ICG infusion 40 No significant difference in splanchnic
blood flow between control and DPX
groups.

ns difference in CI
between groups,
though significant
increase in CI with
time

Insufficiently powered study
See above for limitations of ICG
plasma disappearance rate.

(171)

Approx. 18h
either DPX
2μg/kg/min or
placebo for
patients with
pHi<7.3

Post-op heart valve
replacement (involves
CPB)

Splanchnic Gastric tonometry (pHi
and arterial-mucosa pH
gap)

19 No significant difference between groups
until 2h. Then pHi significantly lower for
significantly longer in DPX group.

No significant differences pH gap

No data provided Insufficiently powered study
No cardiac output/DO2 data.
pHi & pH gap data at odds with one
another when both are markers of
gastric perfusion. Underscores
reliability issues.

(172)
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16hrs of either
DPX 1μg/kg/min
or placebo (or
dopamine)

Following induction
and up to 16 h post-
CPB for various types
of cardiac surgery

Splanchnic Gastric tonometry
(mucosal PCO2, pHi and
arterial-mucosa pH and
PCO2 gap)

35 No significant difference in pH gap
between groups

No significant effects of dopexamine on
pHi, urine output or complications

No data provided Insufficiently powered study though
multi-modal gastric perfusion study

(173)

15 min infusions
of DPX at either
1 or 2μg/kg/min
(and also at
4μg/kg/min DPX
vs. dopamine)

Physiological study in
patients anaesthetised
for CABG (but not yet
undergoing surgery)

Renal blood flow Right renal vein catheter 20 Mean renal blood flow for each DPX
group increases by 41% (1μg/kg/min) and
49% (2μg/kg/min) cf: baseline – less than
the corresponding increases in cardiac
index

No data on DO2.
Likely to track
cardiac indices
(increase by 61
and 79% cf:
baseline,
respectively)

Physiological study with only 15
minute infusion.
Can’t assess effects on intra-renal
haemodynamics.
Uncertain whether effects are
sustained over longer periods of
time, whether they affect post-
operative outcome.

(174)

Peri-operative
infusion of
either
2μg/kg/min DPX
or placebo

Aortic surgery Renal function Plasma creatinine levels
for 3 days post-op

CrC

32 Significant increases in plasma creatinine
(cf: baseline) in placebo group, but not in
DPX group

No data on DO2 or
cardiac index

Insufficiently powered study to
assess effects on post-operative
complications.
No direct measurement of regional
blood flow in any tissue bed.

(105)

40 min infusions
of either 0.5, 1
or 2μg/kg/min
DPX vs.
placebo (also
4μg/kg/min
DPX)

Post-CABG (using
CPB) patients, 1-3 h
post-op

Renal resistance
of interlobar
arteries

Doppler ultrasound 20 No significant difference in renal vascular
index between placebo and any DPX
group

ns differences in CI
between placebo
and DPX groups
(up to 2μg/kg/min)

Only 40 minute infusions.
No ability to assess effects on organ
function.

(175)

DPX 1μg/kg/min
or placebo,
patients pre-
divided in to
normal or
abnormal renal
function

(i.e. 4 group
design)

Strictly intra-operative
during CABG (with
CPB) and until end of
surgery

Renal function GFR, CrC, various
markers of damage
specific for different
areas of nephron, urine
output

β-NAG (N-acetyl-β-
glucosaminidase)

48 No significant differences between control
and DPX groups whether pre-existing
normal or abnormal renal function.

No data on DO2.
Cardiac indices in
DPX groups
increased
significantly cf:
baseline and
controls but only
outside of CPB.

No direct measurement of tissue or
regional blood flow in the renal or
any other bed.

(176)

Up to 72h DPX
2μg/kg/min vs.
placebo (and
vs. dopamine)

Patients with septic
shock resuscitated
and on noradrenaline
infusion

Renal function CrC (primary end point)

Urine output

Free water and Na+

output

61 No significant differences: CrC, urine
output, or any renal outcome

Data not provided Studied in the setting of septic shock
and not post-major surgery.
Patients already receiving
noradrenaline (not usual for peri-
operative settings)
No direct measurement of
regional/tissue blood flow

(177)
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60 min
sequential
infusions of 0.5,
1 and
2μg/kg/min DPX
(also
4μg/kg/min)

Patients with septic
shock already
resuscitated to a
minimum cardiac
index with dobutamine
(not halted during
DPX)

Splanchnic
blood flow

ICG

Gastric tonometry (pHi
and gastric mucosal -
arterial PCO2 gap)

12 Non-significant increase in splanchnic
blood flow cf: baseline in any group. Only
significant increase in splanchnic DO2 in
2μg/kg/min group.
Dose-dependent significant increase
PCO2 gap and decrease pHi cf: baseline

Significant
increase from
baseline only in 1
and 2μg/kg/min
group

Insufficiently powered study
Studied in the setting of septic
shock.
Short-term infusions.
Dopexamine added to dobutamine
(not usual for peri-operative setting)
Shortcomings of ICG & gastric
tonometry already stated above

(178)

90 min infusion
of DPX 1-
4μg/kg/min
(NOTE: it is
impossible to
discern the
dose of DPX
infused and no
mean or median
dose of DPX is
stated in the
paper)

Hyperdynamic septic
shock (all patients
already on
noradrenaline)

Splanchnic
blood flow
(stomach,
hepatic vein)

ICG infusion & hv
sampling

Gastric tonometry (pHi,
gastric mucosal-arterial
PCO2 gap, gastric
mucosal-hv PCO2 gap)

12 Compared to baseline: significantly
reduced total splanchnic and pre-hepatic
vascular resistance. Significantly
increased splanchnic DO2 (not
proportionally greater than increase in
systemic DO2)
No significant change in any measured
PCO2 gap

Significantly
increased from
baseline

Insufficiently powered study
Short-term infusions
Studied in the setting of septic shock
and not post-major surgery.
Patients already receiving
noradrenaline (not usual for peri-
operative settings)
Shortcomings of ICG & gastric
tonometry already stated above.

(179)

1 hour of
2μg/kg/min
DPX. Patients
act as own
controls.
7 healthy
volunteers for
“normal
physiology”
comparison

Hyperdynamic septic
shock

Splanchnic
perfusion

Reflectance
spectrophotometry (for
microvascular O2
saturation (HbiO2) and
concentration (relHbconc))

Gastric tonometry

15
(7)

Hyperdynamic sepsis patients showed
broadening and negative skewing of
distribution of gastric mucosal HbiO2 and
relHbconc cf: healthy controls

Significant increase in HbiO2 and
relHbconc, with partial normalisation of
distributions cf: baseline

Significant increase in pHi cf: baseline.

Significant
increase in mean
DO2 over baseline

Insufficiently powered study
Short-term infusions
Studied in the setting of septic shock
and not post-major surgery.
Shortcomings of gastric tonometry
already stated above.

(158)

2h infusion of
either DPX
1μg/kg/min or
placebo (or
dopamine)

ICU; ventilated
patients with SIRS

Splanchnic Gastric tonometer (pHi)

ICG disappearance

MEGX formation

25 ns difference between DPX and placebo
at baseline (except lower MEGX DPX)
and ns change over 2h in placebo group
any parameter

DPX significant increases in pHi, ICG and
MEGX formation after 2h compared to
baseline

No significant
change in DO2

Insufficiently powered study
Short-term infusions
Studied in the setting of critical
illness and not post-major surgery.
Shortcomings of ICG & gastric
tonometry already stated above.

(180)

Up to 7 days of
DPX at 0.5-
2μg/kg/min vs.
placebo

Critically ill patients
predicted a stay
>4days

Splanchnic
(small intestine)

Renal function

Urinary recovery of
nasogastric administered
saccharides

CrC

102 ns difference between groups for any
splanchnic or renal parameter

ns difference groups for any mortality or
length of stay outcomes

Not provided Not studied in high risk surgical
patients.
No direct regional blood flow
measurements.

(181)
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There may be various reasons for the contrasting findings of the studies in Table 1.2. The

studies are small and may lack statistical power. Therefore a difference in findings is not

unexpected. The studies are heterogeneous in design making a firm conclusion more

difficult. Some studies assess patients undergoing non-cardiac surgery whereas others

assess patients who have undergone cardiac surgery with cardiopulmonary bypass. Other

groups include mixed populations of the critically ill or those with sepsis. The behaviour of

the vasculature and the heart and therefore the response to dopexamine, is likely to differ in

these populations and the use of other vasoactive medications may differ. The techniques

used to assess flow in different regional circulations vary in their specificity. While a hepatic

venous catheter may be used to obtain information about blood coming from the splanchnic

bed, it is impossible to draw any conclusions from the data about any specific area of the

splanchnic bed e.g. small intestine vs. stomach vs. liver etc. Similarly gastric tonometry may

be used to obtain different data (e.g. pHi, gastric PCO2, PCO2 gap) but all parameters have

been shown to be unreliable indicators of splanchnic perfusion due to non-perfusion related

factors (182, 183). The most reliable indicators of perfusion in splanchnic tissue are those

that measure microvascular perfusion directly. However it is known from animal studies that

different areas in the splanchnic circulation behave differently and therefore unless testing is

performed at multiple sites, a complete picture of the effects on the splanchnic bed is

impossible to construct (184).

Although the diverse methodology of the papers above must not be overlooked, it is

interesting to note that all of the studies above that directly assess microvascular flow

demonstrate that dopexamine is associated with improved microvascular perfusion.

1.7 Immunomodulatory and anti-inflammatory effects

The evidence for a selective effect on the splanchnic or renal circulations is not compelling.

Various investigators have instead looked to the effects of dopexamine on markers of
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inflammation. The theoretical basis behind this is that changes in microvascular and cellular

behaviour occur only after stereotypical intracellular signalling events have occurred (185-

188). Secondly, as already briefly stated in section 1.3.2, catecholamines, including

dopexamine, have immunomodulatory effects (40, 189) and therefore theoretically have the

ability to influence various parts of the signalling cascades. Before going on to describe the

few studies in humans looking at this aspect of dopexamine’s actions, immunomodulation by

catecholamines is discussed in greater detail.

1.7.1 Catecholamine immunomodulation

Vascular tissue, human peripheral blood mononuclear cells and many other tissue types are

covered in adrenoceptors, predominantly β2-adrenoceptors (40). Many immune cell types

contain catecholamine molecules which may be released to act in an autocrine or paracrine

fashion, while sympathetic neurones represent another catecholamine pool that can

modulate immune response (189, 190). As a result catecholamines have a variety of effects

that can affect inflammatory response. Catecholamines induce a short-lived increase in

circulating leucocyte numbers, most markedly in the natural killer cell and CD8+ lymphocyte

subset followed by a polymorph leucocytosis (40). These are thought to originate from the

marginal pool, and the response is thought to be β2-adrenoceptor mediated (86, 191-193),

though the neutrophilia in response to lipopolysaccharide injection has been shown to be α1-

adrenoceptor mediated (194). Chronically elevated levels of plasma catecholamines

however have been associated with reduced circulating immune cell numbers and

responses (40).

Once released in to the circulation the ability of immune cells to reach tissue from the

bloodstream is based on successfully adhering and transmigrating in to the tissue in

question. In this regard the interdependence of microvascular flow and immune cell-

endothelial interactions has already been touched on. Through complex effects on
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microvessel calibre and tone, the vascular effects of catecholamines influence shear rate,

shear-dependent autoregulation of microvascular flow and can reduce shear-dependent

leucocyte-endothelial adhesion (195-197). Although leucocyte endothelial interaction may be

reduced, platelet-neutrophil interactions may be increased, and this likely represents the

dose dependent effects of mixed adrenoceptor activation on platelet activation (198-202).

Endothelial behaviour e.g. vascular permeability is also under the influence of adrenoceptor

signalling and downstream cAMP related signalling seems to be involved in both this and the

reduction in immune cell adhesion (10, 195, 203-206). Shear independent factors such as

the activation state of neutrophils can also be modified directly by adrenoceptor agonists

(207, 208).

The control of neutrophil transmigration from the microcirculation in to the lung following

endotoxaemia (but not haemorrhage) has been shown to be α2-adrenoceptor mediated and

may relate partly to the inhibition of diapedisis through endothelial Gi signalling (209-211).

However α1-adrenoceptor signalling can increase both endotoxaemia and haemorrhage

induced neutrophil infiltration in the lung (211). This may be explicable in terms of opposite

effects on the same intracellular signalling pathway. In the case of α2-adrenoceptors, a

reduction in cAMP mediates an increased activation of downstream Raf-MEK1/2-ERK2-

p90rsk pathways whereas the opposite occurs with α1-adrenoceptor activation, possibly via

non-cAMP reactive oxygen species mediated pathways (211-213). The ability of leucocytes

to undergo respiratory burst is inhibited by β-adrenoceptor agonists whereas inhibition of

phagocytosis by macrophages is mediated by α and β-adrenoceptor pathways (214-216).

Adrenoceptor activation can modulate cytokine responses (217-219). Generally speaking

dopaminergic and β2-adrenoceptor responses promote the secretion of anti-inflammatory

cytokines such as IL-10 and reduce the secretion of pro-inflammatory cytokines such as

TNF-α. α-adrenoceptor agonism results in the opposite effect. In the case of α1-adrenoceptor

agonism and lung injury it has been shown that pro-inflammatory cytokines increase without

an increase in neutrophil infiltration (210, 220). These results may partly explain how organ
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function in α-adrenoceptor agonist treated models of sepsis are worse compared to

untreated septic controls (221). Although the cytokine response to adrenergic agents is not

straightforward, varying according to the cell type in question, (e.g. IL-6 generation occurs in

association with β-adrenoceptor agonism in endothelial cells and fibroblasts, but is

downregulated in peripheral blood mononuclear cells) (222), the cytokine profile response

following adrenergic stimulation in general favours that of a T-helper 2 response over a T-

helper 1 (40). The effect of catecholamine stimulation on human tissue may not be

favourable and can invoke a cytokine response that mimics that seen with

lipopolysaccharide (223, 224).

.Adaptive immunity is affected by adrenergic agents (225, 226). Dopaminergic receptor

agonism inhibits the cytotoxicity and proliferation of CD4+ and CD8+ T-cells and in vitro

studies demonstrate attenuated B-lymphocyte function and IgG production (40). Adrenergic

stimulation via α1-adrenoceptor and β2-adrenoceptor mechanisms induces lymphocyte

apoptosis (227, 228). It is possible that the increased rates of apoptosis partly relate to

intracellular free radical breakdown products of catecholamines (20, 42), and this may also

explain the apoptosis seen in the heart, vascular smooth muscle and skeletal muscle

myocytes exposed to catecholamines (229-231). On the other hand β2-adrenoceptor

agonism can prevent shiga-toxin induced renal tubular apoptosis and cAMP elevating agents

have been shown to reduce LPS-associated apoptosis in endothelial cells via inhibition of

caspase pathways (232, 233). The precise intracellular signalling pathways through which

adrenergic agents trigger or slow down inflammation, promote cell survival or apoptosis are

not known but several have been suggested (211, 232-239).

The effects of catecholamines on immune function and inflammation are clearly complex and

myriad. As a broad generalisation though, catecholamine effects are anti-inflammatory when

dopaminergic or β-adrenoceptor mediated, whereas the opposite is true for α-mediated

effects. Suspecting an anti-inflammatory role for dopexamine would be in keeping with its

predominant β2-adrenoceptor and lesser dopaminergic receptor effects.
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1.7.2 Focus on the β2-adrenoceptor

Studies across species support a role for the β2-adrenoceptor (as opposed to β1-

adrenoceptor or dopaminergic receptors) in the protection against free-radical mediated

injury (240-242). Studies demonstrate that β2-adrenoceptor agonists though not β1-

adrenoceptor agonists improve haemodynamic stability and mortality in endotoxaemia and

also following caecal ligation and puncture (243-245), and better preserve the pressor

response to norepinephrine despite a similar degree of amelioration of TNF-α to β1-

adrenoceptor agonists (243). Improvements in organ function compared to controls are also

seen and all these effects are partially ascribed to a protection against pro-inflammatory

cytokine and free radical generation (244, 246, 247). Similarly β2-adrenoceptor mediated

effects have been shown to reduce reactive oxygen species following hypoxic injury and

thereby reduce endothelial damage in vitro (248). Studies either selectively overexpressing

renal β2-adrenoceptors or selectively antagonising renal β2-adrenoceptors and have shown

the importance of the β2-adrenoceptor mediated amelioration of renal endotoxaemic injury

(249, 250), and note the specific effect of β2-adrenoceptor agonism on cytokine responses in

the renal medulla and a cAMP mediated anti-apoptotic effect on renal tubular cells (233,

251). One potential explanation for these observations may be downregulation by β2-

adrenoceptors of CD14-TLR4-TNFα signalling cascades (252). These findings are notable

as elevated mortality rates in septic shock are associated with both acute kidney injury (253),

and also with those β2-adrenoceptor gene polymorphisms that are associated with a greater

need for vasoactive drugs and organ dysfunction (36). It is also notable that several animal

studies demonstrated either an increase in sepsis mortality following β2-adrenoceptor

blockade or a more severe pattern of hepatic injury (221, 254-257).

Other vascular effects of β2-adrenoceptor agonism relate to preserved endothelial barrier

function, the amelioration of plasma extravasation and reduction of immune cell adhesion

(10, 197, 258). While many of the beneficial effects of β2-adrenoceptor agonism may relate
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to the cAMP signalling pathway, there may be cAMP independent pathways that are

involved in anti-inflammatory effects (247, 259).

1.7.3 Immunomodulatory effects of dopexamine in human studies

Returning to dopexamine-based studies in humans, some investigators have examined the

degree of neutrophil infiltration in various areas of the gut following major abdominal surgery

and have found it to be reduced in dopexamine treated groups when compared to placebo

treated groups (146, 162). Others have also shown that in comparison to placebo,

dopexamine treatment is associated with significantly less circulating plasma tumour

necrosis factor (TNF)-α (171), IL-6 (169) and procalcitonin (171) even when splanchnic

blood flow is not elevated. However, some investigators have failed to find any convincing

anti-inflammatory effects of dopexamine following surgery (147, 163, 260). The evidence

base for an anti-inflammatory effect is too small to draw a meaningful conclusion from.

1.8 Broadening the evidence base - effects of dopexamine in animal studies

The effects of dopexamine on regional perfusion and inflammation are not easily studied in

humans due to the ethical concerns of placing specialised monitoring in several locations

deep inside the body in large numbers of patients. Furthermore a greater degree of

standardisation of laboratory conditions, less variation in laboratory animals and the ability to

perform more specific and invasive tests allows further information to be drawn from animal

studies that is not available from human studies. The difficulty with animal studies is that it

can be difficult to compare findings in one species with another, and furthermore although a

high degree of standardisation is found within studies, the protocols used vary significantly

between groups. In this section the findings of animal studies are presented in order to

present further insights regarding mechanisms of action of dopexamine – studies are limited
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to those presenting data for doses up to 2.5μg/kg/min (this is just outside our dose range of

interest, the maximum dose used in peri-operative haemodynamic optimisation studies being

2μg/kg/min).

1.8.1 Microvascular perfusion and regional circulations

In anaesthetised rats, dopexamine at 1 μg/kg/min increases superior mesenteric artery

blood flow and decreases its vascular resistance, probably a result of cAMP increases

secondary to activation of both D1 and β2 adrenoceptor activation (57). As CO was not

measured in this experiment one can only speculate whether the increase in blood flow is

proportionate to CO or not. However, when a step-wise application of up to 20cmH2O

positive end expiratory pressure (PEEP) is applied in anaesthetised rats, the resultant

decreases in MAP and CO are not significantly ameliorated by dopexamine. Nevertheless

dopexamine at 1μg/kg/min better preserves ileal arteriolar mean blood flow and diameters.

This implies dopexamine can provide some degree of intestinal vasodilatation independently

of increases in cardiac output (261). In support of this two porcine studies where superior

mesenteric artery (SMA) perfusion pressure was either left free or reduced independently of

systemic haemodynamics (262, 263), SMA blood flow and DO2 and jejunal tPO2 decreased

with reductions in mesenteric perfusion pressure despite graded reductions in mesenteric

resistance (control). Infusing dopexamine at doses of either 0.5 or 1 μg/kg/min significantly

increased SMA blood flow by reducing mesenteric resistance, compared to control. At the

lowest perfusion pressure (30mmHg) these increases in flow were not reflected in beneficial

effects on pHi (decreased), PCO2 gap (increased), luminal lactate production (increased),

jejunal microvascular flux (no significant difference) or tPO2 (decreased) when compared to

control. These findings suggest dopexamine may induce selective mesenteric vasodilatation

in the mesenteric bed, but in a normally functioning bed which can autoregulate this is of no

additional benefit. A further similar study supports this (264). When the vasculature of tissue
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beds is unable to autoregulate normally, as occurs in sepsis or after an inflammatory insult,

the effect may differ.

In a resuscitated porcine model of sepsis (endotoxaemia), a dose of 2.5μg/kg/min

dopexamine induced significant increases in systemic DO2 which were associated with

trends to an increased jejunal tPO2, a significant increase in jejunal mucosal HbO2 and a

decrease in mesenteric (and skeletal muscle) oxygen extraction (265). Similarly in a

resuscitated model of porcine faecal peritonitis 2μg/kg/min dopexamine also increased

systemic and mesenteric arterial oxygen delivery above baseline, but failed to have any

significant effects on jejunal, colonic, renal or gastric microvascular flux. However gastric and

pancreatic microvascular flux were significantly increased compared to baseline with

1μg/kg/min dopexamine and it is notable that following fluid resuscitation but before the

infusions of dopexamine, the only microvascular areas where red cell flux hadn’t returned to

pre-endotoxin levels were the jejunal muscularis and pancreatic beds (266). It is notable that

dopexamine infusion at 1μg/kg/min has also been shown to increase pancreatic tissue PO2

in healthy rats (though not in a model of necrotising pancreatitis) (267).

Bastien et al. showed in a rabbit model of CPB (sterile inflammation) that a 15 minute

infusion of dopexamine at 2μg/kg/min was associated with a significant increase in

microvascular perfusion in ileal and jejunal tissues, but not the gastric bed (268). Higher

doses were not associated with sustained increases in perfusion though the design of the

experiment was such that it is impossible to know whether a gradual lack of effect would

have occurred at the same dose over time (as comparison was not against a control). In

another rabbit model using several different doses of up to 10μg/kg/min dopexamine (in the

setting of non-resuscitated endotoxaemia) (269), Lund et al. showed that dopexamine dose-

dependently improved liver, gut and skeletal muscle tPO2 distributions, that this effect began

below 2μg/kg/min and that this effect of dopexamine was independent of any increase in

DO2. Furthermore they provided data suggesting that a better distribution of microcirculatory
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blood flow was responsible for this, and that the effects on tPO2 in non-septic preparations

were not demonstrable.

In support of these findings, microvascular studies in rodent endotoxaemia models using

dopexamine at 0.5μg/kg/min show increased intestinal microvascular blood flow and ileal

muscularis functional capillary density when compared with untreated endotoxaemic controls

(196). In the only study where mucosal blood flow was seen to decrease in response to

endotoxin, dopexamine (2.5μg/kg/min) ameliorated these changes almost completely (270).

At 2μg/kg/min dopexamine also preserves portal blood flow, liver sinusoidal diameters and

blood flow and therefore ameliorates the deterioration in these parameters seen in untreated

endotoxaemic controls (271). Dopexamine at 2.5μg/kg/min also shows an ability to preserve

erythrocyte velocity at closer to baseline levels for longer (without a change in mesenteric

venular diameter) - consequently the mesenteric venular shear rate is higher for longer

compared to controls (195). In contrast to untreated endotoxaemic rats, rats treated with

dopexamine at this dose demonstrate no depletion in high energy phosphates or any

increase in the production of purine compounds in the intestine (272).

1.8.2 Anti-inflammatory effects

Dopexamine (2.5μg/kg/min) ameliorates leucocyte adhesion in rodent mesenteric (195) and

(0.5μg/kg/min) intestinal venules (196) when compared to untreated endotoxaemic controls.

Possibly as a consequence of these differences there is less plasma extravasation from the

intestinal circulation (195). However whereas plasma extravasation appears to be under β2-

adrenoceptor control, leucocyte-endothelial interactions were shown not to be so (195). In

common with the preservation of vascular barrier function seen in the intestine, in a porcine

faecal slurry model dopexamine increased beneficial effects on cerebral microvessel

ultrastructure and perivascular oedema formation, and this was blocked by co-administration

of a β-adrenoceptor antagonist or an α-adrenoceptor agonist (273). In a rodent model of
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endotoxaemia, dopexamine also ameliorated the high levels of plasma TNF-α seen one hour

after endotoxaemia in untreated controls (196). The only study performed in a rodent model

of necrotising pancreatitis failed to show any histological improvements as a result of the

infusion of 1μg/kg/min dopexamine (267). In a porcine model of supracoeliac cross clamping

(i.e. ischaemia-reperfusion injury), a dose of 2μg/kg/min dopexamine was associated with a

higher systemic DO2 and a lower production of molecular markers of lipid peroxidation when

compared with controls (274). Following on from these studies, various other studies have

looked at the effects of dopexamine on free radical mediated injury (240, 275),

immunomodulation and organ damage (207, 255, 273, 276). These studies have used

dopexamine outside of the dose range of interest, but deserve brief mention as they support

anti-inflammatory effects of dopexamine and point to β2-adrenoceptor agonism being

important for this.

Whether these microvascular and immune effects translate in to improved organ function is

impossible to assess as none of the animal studies assessed renal or liver function (though

plasma markers of pancreatic function were assessed in one study of necrotising

pancreatitis, and were not improved by dopexamine) (267). However 1μg/kg/min

dopexamine produced an early improvement in GFR and urine volume when compared to

untreated endotoxaemic rats (277) and in conscious bacteraemic rats, dopexamine

(1μg/kg/min) ameliorated decreases in glomerular filtration rate, urine flow and sodium

excretion compared to bacteraemic controls (278). It must be noted that these are unreliable

markers of the degree of renal injury though.
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1.9 Hypotheses

1. Dopexamine improves microvascular perfusion in the ileum of endotoxaemic

rodents

2. The beneficial effects of dopexamine on ileal microvascular perfusion are not

related to its effects on cardiac index

3. Dopexamine has anti-inflammatory effects in the setting of endotoxaemia, namely

reduced neutrophil activation as assessed by membrane integrin expression,

decreased leucocyte-endothelial adhesion in the intestinal microcirculation and

decreased neutrophil infiltration in the lung

4. Dopexamine improves organ function in a rodent model of laparotomy and

endotoxaemia

5. The anti-inflammatory effects of dopexamine are β2-adrenoceptor dependent

1.9.1 Novelty of the thesis

In translational medicine the laboratory bench is where drugs are developed for specific

purposes, and in general success occurs when those drugs are approved for and used at

the bedside. Dopexamine was not specifically designed with the intention of improving

outcomes in high risk surgery though it has found a place there. Having said that, the effects

of dopexamine in high risk surgery are unclear, and proponents of the drug (as part of a

package of peri-operative haemodynamic optimisation) are uncertain as to how exactly

dopexamine produces any benefit. In an effort to shed light on what the effects of

dopexamine are in this setting, a reverse translational approach has been taken here.

Therefore in this thesis a therapy of uncertain benefit for a specific clinical scenario is being

studied at the bench through in vivo modelling. This unusual and somewhat novel approach

has been necessary due to the variability in clinical trial populations and variable trial

findings as described previously, the massive expense of investigating this problem through
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future large clinical trials, the difficulty of finding a mechanism of action even if a well-

designed clinical trial produced a conclusively positive result, and additionally due to the

generally poor understanding of catecholamine effects in critical illness. The shortcomings of

many human studies are highlighted in Table 1.2.

Although previous in vitro and in vivo studies have looked at the effects of dopexamine on

various aspects of haemodynamics or the microcirculation or inflammation, none have

looked at all in an in vivo preparation sufficiently similar to major surgery whilst concurrently

studying the effects of infusion on organ function (see Table 1.3). Therefore studies

demonstrating immunomodulation or improved microvascular perfusion have not been able

to demonstrate a translation to improved organ function because this has not been recorded

(195, 196, 270, 272). Furthermore many studies have looked at doses outside of the range

of clinical interest (240, 255, 273, 275, 276). A more comprehensive review of the limitations

of the most relevant animal studies is covered below in Table 1.3. An attempt has been

made to overcome many of the limitations highlighted in both Tables 1.2 and 1.3 by the

studies that make up this thesis, and this represents in the main the novelty and strength of

the studies herein – the multimodal approach to monitoring macrohaemodynamics,

microcirculation and innate immune response while marrying the findings to clinically

relevant parameters and outcomes – organ function data and biochemical indices of

perfusion, in a reproducible and internally consistent model. This has not been done before.

Further discussion of the model will be found in Chapter 2.
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Table 1.3 In vivo animal studies investigating the effects of dopexamine (at 2.5μg/kg/h or less) on regional circulations and inflammation

Ref Species Setting Measurement
modalities

Dopex dose
(μg/kg/min)

Fluid regime
(ml/kg/h)

Principal findings Drawbacks

(57) Rats Physiological and
histological study

Combined in vitro
and in vivo
elements.

Mesenteric blood
flow (transit time

flow probe).

1 (& 3) 1.2ml/h normal
saline

Dopexamine binds to DA1
and β2 adrenoceptors in

mesenteric vasculature and
causes a dose dependent

increase in mesenteric blood
flow

No organ function data. Not clinically relevant
model of inflammation therefore unclear whether
these effects are maintained following a systemic

inflammatory stimulus.

(261) Rats

Physiological study –
incremental PEEP

increases to 20cmH2O to
reduce CO. Midline

laparotomy required.

Thermodilution
CO, IVM – red cell

velocity and
arteriolar
diameters
recorded

1, (3 & 5) Unclear

Compared to untreated
controls, dopexamine
prevents reductions in

arteriolar blood flow despite
decreases in cardiac output

Not clinically relevant model of inflammation.
Unclear what relevance is to clinical situation due

to lack of organ function data and short-term
infusion of drugs. Furthermore observations were

only noted in primary level arterioles and not
secondary or tertiary level arterioles.

(262) Pigs

Physiologic study in
animals with significant

abdominal surgery –
intestinal hypotension

induced by clamping of
superior mesenteric

artery (SMA)

SMA flow (transit
time US), laser

Doppler
flowmetry, tPO2,
jejunal luminal

dialysate, gastric
tonometry

0.5 & 1

600ml bolus,
20ml/kg/h
Ringer’s
acetate

Despite increase in
mesenteric DO2 with

dopexamine, PCO2 gap
increased, jejunal luminal
lactate increased, pHi and

tPO2 decreased

Short-term infusions of dopexamine.
No assessment of effects on organ

function/outcome and no control group (crossover
design)

(263) Pigs

Physiologic study in
animals with significant

abdominal surgery –
intestinal hypotension

induced by clamping of
superior mesenteric

artery (SMA)

Mesenteric
resistance

(derived from
transit time US),

laser Doppler
flowmetry, tPO2

0.5 & 1

600ml bolus,
20ml/kg/h
Ringer’s
acetate

Under conditions of
significant intestinal

hypotension dopexamine
induces mesenteric

vasodilation though it has no
effect of O2 delivery or

extraction

Short-term infusions of dopexamine.
No assessment of effects on organ

function/outcome and no control group (crossover
design)

(264) Pigs

Physiologic study in
animals with significant

abdominal surgery –
intestinal hypotension

induced by clamping of
superior mesenteric
artery (SMA) while

10cmH2O PEEP applied

SMA flow (transit
time US), laser

Doppler
flowmetry, tPO2,

intestinal net
lactate production

0.5 & 1

600ml bolus,
20ml/kg/h
Ringer’s
acetate

Dopexamine is unable to
rescue the gut from
ischaemia below the

perfusion pressure threshold
that induces intestinal

ischaemia

Short-term infusions of dopexamine.
No assessment of effects on organ

function/outcome and no control group (crossover
design)

(265) Pigs

20 minute LPS infusion:
E.Coli (0111:B4) 2 μg/kg.
Midline laparotomy and

abdominal
instrumentation.

Intestinal mucosal
tPO2. Mucosal
microvascular
Haemoglobin

oxygen saturation.
Global and

regional DO2.

2.5 (5, 10 & 20).
Also dopamine
and dobutamine
infused at same

doses.

50:50 Ringers
and 6%

hydroxyethyl
starch for
pulmonary

aortic
occlusion
pressure
15mmHg

Compared to untreated
controls, lowest dose of
dopexamine results in

significantly higher values of
jejunal mucosal

Haemoglobin saturations but
not tPO2. Mesenteric oxygen

extraction significantly
reduced. Associated with
increase in global DO2.

Short-term infusion only. 3 doses out of normal
clinical range. No organ function data. Starches not

used clinically any longer. Crossover design.
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(266) Pigs

30 minute infusions of
drug four hours after
induction of faecal
peritonitis by 20g

autologous faeces.
Midline laparotomy and

instrumentation required.

Cardiac index,
superior

mesenteric artery
blood flow. Laser
Doppler flowmetry

in kidney,
pancreas,

stomach, colon,
and jejunum

1 & 2 (dopamine
& dobutamine
also used at

different times
and at varying

doses)

10ml/kg
pentastarch
followed by

15-20ml/kg/h
Ringer’s

acetate for
CVP and

pulmonary
capillary
wedge

pressure 6-
8mmHg

Significant increases in CI
and SMA flow. No significant

increase in red cell flux in
any organs except gastric
mucosa and pancreas at

2μg/kg/min dose.

Reasonable model of the emergency laparotomy
due to bowel perforation. However crossover
design, only short-term infusions of drugs, no

organ function data. Laser Doppler flowmetry has
poor spatial resolution. Pentastarch now not used

clinically.

(267) Rats

Cerulein and
glycodeoxycholic acid
induced necrotising

pancreatitis

Blood pressure,
polarographic

pancreatic tPO2,
pancreatic
enzymes,
pancreatic
histology

1 8ml/kg/h
normal saline

No effect of dopexamine on
tPO2 (though increases it
during non-pancreatitis

period). No significant effect
of dopexamine on
pancreatic injury.

Only one-hour of dopexamine. Necrotising
pancreatitis not a model of complications from

major surgery.

(268) Rabbits

Mild hypothermic non-
pulsatile cardiopulmonary

bypass. Midline
laparotomy and

sternotomy performed.

Gastric, jejunal,
ileal laser Doppler
flowmetry. Jejunal
biopsy to assess

ischaemic
damage.

2 (and 4) 3ml/kg/h
hetastarch

Lower dose of dopexamine
associated with greater LDF
values in ileum and jejunum

only

Hetastarch no longer used as a peri-operative fluid.
Dopexamine only infused for 15 minutes at each

dose. Cross-over design and problem of
deterioration of sample preparation with time. No

organ function data.

(269) Rabbits LPS bolus: E.Coli (L-
3137) 1.5mg/kg

Tissue PO2, CO
(transpulmonary
thermodilution) 0.5, 1, 2 (4 & 10) 20ml/kg/h

Normosol

Dopexamine significantly
and dose dependently

increases tPO2 distributions
in septic shock in gut, liver

and skeletal muscle.

2 doses outside of normal clinical range. Short-
term infusions only. No organ function data.
Hypotensive model – not comparable with

haemodynamics seen peri-operatively.

(196) Rats
15mins LPS infusion:

E.Coli (055:B5) 20mg/kg.
Midline laparotomy.

Intestinal IVM
(functional

capillary density,
leucocyte

adhesion), laser
Doppler flowmetry

(intestinal
circulation),

plasma TNF-α

0.5 7.5ml/kg/h
normal saline

Compared to untreated
controls, significantly: higher
intestinal red cell flux, higher

fcd in circular and
longitudinal layers of

intestine, less leucocyte
adhesion, reduced levels of

TNF-α.

No ability to link changes in microcirculation to
global DO2/CO. No organ function data – unsure
whether these improvements in cytokine profile
and the microcirculation translate to clinically

meaningful parameters.

(271) Rats

120 mins LPS infusion:
E.Coli (026:B6) 2mg/kg

with concomitant infusion
dopexamine. Midline

laparotomy and bowel
exteriorisation.

MAP, CO
(transpulmonary
thermodilution),
portal blood flow

(transit time flow),
intravital

microscopy of left
lobe of liver

2
25ml/kg/h

fluids Ringer’s
solution

Compared to untreated
group: significant attenuation

of portal blood flow, liver
sinusoidal diameters and

sinusoidal blood flow.
Significantly elevated CO at

120 mins.

Lack of liver and other organ function data limits
clinical significance of findings. Liver IVM can only

assess superficial areas of liver and not
microcirculation deep in liver parenchyma.
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(195) Rats

60 mins LPS infusion:
E.Coli (026:B6) 2mg/kg

(with or without
dopexamine pre-

treatment). Midline
laparotomy and bowel

exteriorisation.

IVM: leucocyte
adhesion, red cell
velocity, vessel

diameters,
vascular

permeability

2.5

Unclear
though groups
received same

volumes

Significant attenuation of:
decrease in venular shear
rate, leucocyte-endothelial

adhesion, vascular
permeability. Only

permeability was β2 -
adrenoceptor sensitive

Pre-treatment alone. Use of β2 –adrenoceptor
antagonist would have blocked all circulating
catecholamines that have an effect on said

receptor. Unable to relate microvascular effects to
global haemodynamics. No organ function data to
assess clinical meaningfulness of observations.

(272) Rats 60 mins LPS infusion:
E.Coli (026:B6)1.5mg/kg

Blood pressure,
plasma levels of

purines, ileal
tissue content of

high energy
phosphates

2.5 2ml/kg/h
normal saline

Normotensive model.
Significantly less plasma uric
acid and hypoxanthine while
significantly greater levels of
high energy phosphates in

intestinal tissue compared to
untreated group.

Study stopped after one hour of dopexamine –
uncertain whether longer-term infusion of

dopexamine sustains same effects. Uncertain how
findings relate to microvascular perfusion and

cardiac output.
No organ function data therefore no translatability.

(274) Pigs
Midline laparotomy, 120
mins aortic cross-clamp,

120 mins reperfusion

Cardiac output,
blood pressure,
plasma levels of
malondialdehyde

(MDA)

2 & 8

5-10ml/kg/h
Ringer’s

lactate plus
colloid boluses

for
CVP>4mmHg

2μg DPX vs. control:
significantly greater CO and
significantly less circulating

MDA (product of lipid
peroxidation during)

reperfusion

One dose out of range of interest.Cardiac output
not controlled for.

No data on translation to clinically relevant
parameters e.g. did significantly less lipid

peroxidation result in significantly less organ
dysfunction? Only one free-radical measured

(277) Rats

45 mins LPS infusion:
8mg/h E.Coli (0127:B8).

Small laparotomy for
bladder catheterisation.

Blood pressure,
urine output, GFR

1

1.5ml/h
3%creatinine

in normal
saline

Dopexamine prevents
hypotension and preserves

urine output and GFR

Renal function not measured (urine output and
GFR are not reliable markers of renal function).

GFR calculated from creatinine clearance. Control
groups and treatment groups differ significantly in

MAP. No mechanistic insight possible.

(278) Rats

60 mins bacteraemia:
4x109 E.Coli (06K 13H)/h.

Small laparotomy for
bladder catheterisation.

Blood pressure,
urine output, GFR,
sodium excretion,
fractional urinary

excretion of
sodium

1 3 ml/h normal
saline

Better preserved MAP, GFR,
urine flow compared to

controls. Greater absolute
and fractional urinary

sodium excretion compared
to controls

Performed in conscious animals – most other
studies in anaesthetised. Short-term model (60
mins bacteria, 80 mins dopexamine). Significant

difference in MAP between dopexamine and
controls. Plasma urea and creatinine not

measured. No mechanistic insight possible.
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Chapter 2 - Methods

2.1 General strategies and experimental design

The basic clinical question that has driven this research is: if dopexamine improves

outcomes from major surgery, how is this achieved? To design a set of studies to investigate

this problem therefore requires some understanding of the issue of post-surgical morbidity

and mortality, as clearly any model employed to study this must incorporate key features of

the problem for it to hold some clinical relevance.

Predicting surgical morbidity and mortality in the surgical population is not straightforward.

Prediction tools such as those produced by Goldman, Lee, Copeland and Gupta only

provide estimates of either the risk of major cardiac events or morbidity and mortality (279-

282). Nevertheless they suggest that surgical morbidity and mortality is influenced by two

main elements:

1. The nature of the patient:

a. Age, functional status, presence and severity of any co-morbidities

2. The nature of the surgery:

a. The magnitude of and anatomical location of the surgical insult

b. The magnitude of peri-operative adversity e.g. haemorrhage, peritoneal

soiling, emergency vs elective surgery

UK-based retrospective studies show that in 88% of general surgical patients the risk of

death is low (approximately 0.42%). However for the remaining 12% of surgical patients who

are significantly older and undergo a significantly greater proportion of emergency

procedures, the mortality is 29-30 fold greater, accounting for approximately 84% of all

surgical deaths (283). Importantly, hospital length of stay (a surrogate for post-operative

complications) is significantly more in this latter group. Furthermore the occurrence of even a

single post-operative complication has been shown to deleteriously affect long-term survival
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(284). Surgery and either recovery or complications and mortality are therefore best

conceptualised as a temporal continuum, with determinants of where a patient falls on this

continuum being the magnitude of encountered inflammation (whether traumatic, infective or

pre-existing disease severity). The other important feature to note regarding major surgery

and complications is that the patient finds his way to recovery, chronicity, multi-organ failure

or death over a number of days or weeks.

The strategy for experimental design was therefore to encapsulate these key features of the

clinical problem in a reproducible and inexpensive model. Unfortunately limitations of time

and expense are a reality in determining model design. Therefore using aged animals,

animals that had, for example, renal failure or heart failure experimentally induced, or using

a long-term model where recovery, complications and mortality could be assessed over

several days was not possible. Unfortunately this led to the use of healthy young animals

which does not tally with the nature of the high risk surgical population.

The key elements of the model that were used were:

1. A rodent based model – ease of handling and surgery, inexpensive, ethically more

sound than using larger mammals

2. Laparotomy – essential to simulate major surgery, essential to allow placement of

various monitoring kits (which in itself further contributed to surgical stress). Intra-

abdominal surgery in particular is associated with high risks of morbidity and mortality

when compared to, say, knee or hip surgery (282).

3. The use of high dose LPS to

a. Provide an inflammatory stimulus in addition to the surgery. This would

compensate partially for the reduced inflammatory burden of young healthy

animals (as opposed to aged, chronically diseased animals), but more

importantly provide a potent and accelerated inflammatory stimulus to mimic

the inflammatory milieu seen in post-operative patients, particularly those who
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experience complications (285-287). The accelerated nature of the stimulus is

key to producing a model which can rapidly simulate the complications which

usually occur over days/weeks post-operatively, and which evidence shows is

associated with endotoxaemia (288, 289)

b. Furthermore act as a model of sepsis and/or SIRS (290), which would

additionally serve to mimic the clinical scenario of emergency abdominal

surgery for peritonitis or ischaemic bowel

c. Reproducibly produce consistent levels of organ dysfunction (as opposed to

caecal ligation and puncture models – see below)

2.1.1 Consideration of the surgical model

To model the scenario of major surgery with a significant inflammatory/septic element a

rodent model involving significant surgical instrumentation of the abdomen followed by iv

delivery of Escherichia Coli endotoxin (serotype 0111:B4) is used. Specifically there is

laparotomy followed by bowel exteriorisation, blunt dissection down to the infra-renal aorta,

then opening of a small section of ileal lumen to the outside (Figure 2.1). This section of the

ileum remains outside the abdomen for the duration of the experiment though it is encased

in an air-tight barrier most of the time. As the surgery typically lasts one hour and involves

significant bowel handling and intra-peritoneal exposure it is clear that the model provides for

a reasonable approximation to human surgery involving the gut. Areas of inconsistency

when comparing with elective human surgery and modern peri-operative protocols are:

 there is less stringent control of surgical asepsis (lack of skin preparation, sterile

gloves, sterile drapes, sterile surgical instruments)

 anaesthesia in this model is quite different to that usually administered in either

theatre settings or in intensive care units (intra-peritoneal (ip) sodium thiopentone as
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opposed to  combination intra-venous (iv) opiate and benzodiazepine/propofol or

combination iv opiate and volatile anaesthetic)

 use of Normal Saline as crystalloid fluid as opposed to a balanced salt solution

 the lack of close control of blood sugar

Figure 2.1 – view of surgical interventions in in vivo studies.

Laparotomy, bowel exteriorisation and opening of luminal surface of ileum, and also
dissection to infra-renal aorta was conducted. Although monitoring modalities varied
slightly between studies, abdominal surgery always involved bowel exteriorisation.

2.1.2 Considerations and critique of the use of endotoxins

A recent international study highlights the importance of Gram negative organisms in

causing serious infection in the critically ill. 58.5% of patients with any infection had

undergone some form of surgery. 62% of positive isolates in infected patients were due to

Gram negative organisms, most commonly Pseudomonas species and Escherichia Coli

(291). Furthermore Gram negative pathogens are particularly associated with surgery

anywhere along the gastrointestinal tract from the duodenum through the biliary tree to the



78

rectum (292). Lipopolysaccharide (LPS), is a breakdown product from the cell wall of Gram

negative bacteria (Figure 2.2).

Figure 2.2 The structure of lipopolysaccharide (LPS)

LPS is embedded in the outer cell membrane of Gram negative bacteria (right)

It is not known exactly what causes an infection in one patient to remain relatively quiescent

while in another progressing to sepsis, severe sepsis or indeed septic shock. However in the

case of Gram negative infections, one likely trigger is LPS, released from bacteria and

recognised by pattern recognising receptors on the surface of host cells (293). This leads to

a vigorous and widespread cellular response that is clinically indistinguishable from sepsis

(293, 294). While unlikely to be the sole determinant of the progress of a Gram negative
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infection, the importance of this mechanism is undoubted. Indeed this mechanism, through

the translocation of bacteria from the lumen of the gut, may be important in the pathogenesis

of peri-operative sepsis and is targeted in critically ill patients with selective digestive

decontamination (295-297).

The biological basis for modelling human sepsis with this endotoxin should be apparent, and

indeed it is a commonly used laboratory technique. By varying the dose of LPS different

stages and severities (warm vs. cold shock) of sepsis can be modelled. Endotoxaemia

reproducibly produces both the desired septic phenotype and induces organ dysfunction. I

have chosen a dose of LPS designed to mimic normotensive sepsis as would be expected to

be the phenotype early on in surgical patients.

Although the haemodynamic, microvascular, metabolic, cellular and immune responses to a

challenge of LPS are similar to human sepsis, there are several important points regarding

endotoxin based models of sepsis that must be noted:

 Without the presence of microbes, endotoxaemia by definition is not sepsis

 Infection in humans are far more complex entities than endotoxaemia as the

presence of whole bacteria, often of varied classes, produces a more complex host

response to infection which also changes with time

 Human sepsis usually follows a course of days to weeks rather than hours, allowing

for additional factors such as LPS desensitisation to occur

 The fact that organ dysfunction in humans manifests more slowly than in

endotoxaemia models suggests a dissimilarity of pathophysiology

 The kinetics of LPS entry in to the circulation from any infective focus in a human is

likely to be strikingly different to that modelled by a single iv injection or even infusion

of LPS

 There are many different LPS moieties (see Figure 2.2) for each Gram negative

bacteria and each can produce a characteristic septic phenotype (298). Modelling
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Gram negative sepsis with a single LPS serotype therefore is unlikely to be truly

representative of the human picture

 There is a discrepancy between the levels of endotoxin measured in LPS based

models and those found in studies of human sepsis. Similarly the levels and patterns

of cytokine release when comparing models with human sepsis are different

 The weaknesses of the endotoxaemia model are most strikingly apparent in that

those therapies that appear to be of benefit in these models either produce no effects

or worsen mortality in studies with humans and in other models of sepsis where live

bacteria are used

 Not all features of rodent endotoxaemia mimic human sepsis. For example

hypoglycaemia is common in rodent endotoxaemia whereas hyperglycaemia is a

more common finding in septic patients

 Species exhibit diverse sensitivities to LPS often of the difference of orders of

magnitude. Such is the case when comparing rodents (relatively insensitive to LPS)

with humans (highly sensitive to LPS)

 LPS results in intracellular signalling following binding with the pattern recognition

receptor TLR 4 (188). Although this seems to be an important aspect of sepsis and

post-surgical complications, it is only one of several pathways in the inflammatory

signalling network (299). Therefore one criticism of the model, which partly explains

the weaknesses described in the foregoing points, is that it relies on an over-

stimulation of a single pathway to produce the effect that is seen only after a complex

activation of several pathways in a large network.

 There are alternative models which could have been selected to produce a septic

phenotype with, arguably, greater clinical validity. These include the models of faecal

peritonitis (either caecal ligation and puncture, colon ascends stent peritonitis,

inoculation of intraperitoneal autologous faeces), or the administration of live
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bacteria. These models have been reviewed extensively elsewhere (290, 300, 301),

but are briefly discussed below.

To improve the generalizability of findings, in the third study (intravital microscopy), a

combination of lipopolysaccharide and peptidoglycan (PepG) was used. PepG is a

breakdown product found in great abundance in the cell wall of Gram positive bacteria, and

to a lesser extent in the cell wall of Gram negative bacteria. LPS and PepG are sensed in a

host by different pattern recognition receptors (TLR 4 and TLR 2, respectively). The

combination of these two stimuli results in a synergistic response from the host though.

Although the use of PepG doesn’t strictly make the model a sepsis model (microbes are

missing), it does make it a better model for polymicrobial sepsis than LPS alone and its

effects are based on the activation of two pathways as opposed to one. It is important to

note that despite the stimulation of two distinct pathways, the argument of overstimulation of

only a very narrow set of signalling pathways out of a network phenomenon still holds.

This may leave one to question why the use of LPS/LPS-PepG as opposed to another,

possibly more clinically relevant model. This returns us to some minor theoretical issues and

several practical issues. The most clinically relevant animal models in the context of the

problem being studied are that of laparotomy for abdominal sepsis – this is not because the

interest is in post-operative sepsis per se, but because in clinical medicine abdominal sepsis

requiring surgery is highly likely to result in post-operative complications. These animal

models of sepsis are also much closer to that of the clinical reality as they are recovery-

based models, they usually require the use of antibiotics, and they require significant bowel

handling and are strongly associated with a bloodstream polymicrobial sepsis. However they

possess issues with regards to the reproducibility of organ injury, the reproducibility of

degree of peritonitis (being strongly dependent on the length of colon ligated, number of

colonic punctures and so on) (290, 301). Furthermore there are practical issues that

precluded use in these studies – the completion of one experiment would have taken up to

several days due to the nature of the model, incurring significant financial and time-related
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costs. Significant faecal contamination of the peritoneal cavity may have made intravital

microscopy much more difficult, resulting in an increased loss of animals due to unsuitability

for observation (and therefore also an additional cost). Finally and just as importantly, the

license permitting practice on such models of sepsis was not held by our institution and is in

fact only held by one institution in the UK.

Other than the above, it should also be noted that the model used is 4 or 5 h in duration.

This is not a long enough period to assess the effects of endotoxin and treatment on later

stage organ and cellular functions. Furthermore the animals used are healthy, young and of

one single breed whereas the patients I am modelling are often aged, are carrying co-

morbidities and are genetically diverse. Therefore it is important to realise that neither the

LPS nor any other model is a perfect match of post-operative sepsis and/or complications.

LPS with laparotomy is just one model, with its own limitations, but also its own strengths.

2.2 Flow Cytometry for measurement of leucocyte integrins

Flow cytometry is a powerful and well established technique designed for performing

measurements on cells (or other particles) as they pass single file in a flow system past a

point of measurement. Light is focused on the cells at the point of measurement and

identification of specific cell populations can be made by measuring fluorescence and the

scattered light. The versatility of flow cytometry lies in its ability to measure several

parameters on thousands of individual cells in a short period of time.

The sample must first be prepared for use in the cytometer in order to produce a suspension

of single cells that will flow through the system without clogging up the tubes. In the case of

white cells they are vastly outnumbered in the blood stream by erythrocytes. For this reason

sample preparation involves lysing erythrocytes, washing out the ghosts then fixing the white

cell subset. Just prior to lysing, the cells can be labelled with a fluorescent antibody of

interest – in this case fluorescent antibodies against CD11a and CD11b.
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Following isolation from other components of blood such as erythrocytes, platelets, plasma

proteins and so on, identification of the cellular subsets must be performed. The cells are

aspirated from the tube in which they have been prepared and are passed in a

hydrodynamically controlled stream passed a beam of laser light. The cells scatter the light

in various directions and this is detected. The scattered light gives information on the

size/volume of the cells and on its contents (e.g. nature of nuclei). By plotting the side

scattered light against forward scattered light (i.e. scattered light in perpendicular

orientations), it is possible to identify the subset of interest. Once identified this area of

interest is gated (by circumscribing the cells on a plot) and the gate is stored on a template

for use later by a computer programme. In this way tests on different samples at different

times can reliably look for the exact same cell population by using the stored gate from the

initial setup. For statistical significance at least 10,000 counts must be made in the gated

area (Figure 2.3).

Figure 2.3 Example of a cytogram

This is a cytogram of forward vs. side scatter for a population of leucocytes. As
different cells characteristically fall in different areas of the cytogram, a gate can be
fixed around the cells of interest. Neutrophils and monocytes have been gated in this
paper from our laboratory (302), (with permission). The same parameters were utilised
for gating neutrophils in this thesis.



84

A histogram plotting measured fluorescent intensity (logarithmic scale) against counts (of

fluorescent intensity - linear scale) is used to determine the median fluorescent intensity.

Graphing is automated by computer software, but determination of median fluorescence is

somewhat subjective. To determine the median fluorescent intensity of integrins on

neutrophils in the bloodstream at a given time point, several measurements must be made.

For any integrin on any one sample of blood 3 measurements are made, one on an

unadulterated sample, one with an isotype control, and one with the antibody to the integrin

of interest (see Figure 2.4). An unadulterated sample is used as all cells auto-fluoresce to

some extent and pattern needs to be looked at to ensure there is no abnormal fluorescence

in the region of interest.

Similarly an isotype control antibody is used to assess fluorescence due to non-specific

binding to other cellular structures (from the constant Fc region of the antibody). This is

because the antibodies to CD11a and CD11b are generated as IgG2 type molecules. While

the variable (antigen detecting regions) attach to the integrins of interest, the Fc region of the

IgG may also interact non-specifically with other proteins in the sample. For this reason an

identically conjugated antibody with an identical Fc region is used to quantify non-specific

binding by the antibody to CD11a (or CD11b). This also serves a second useful purpose in

demonstrating the specificity of the antibody against CD11a and CD11b. At any time (e.g.

baseline) the fluorescence due to binding from, for example, CD11a is expressed as median

fluorescent intensity (MFI) and is therefore given by:

MFI (CD11a) = MFI (CD11a Ab) – MFI (CD11a isotype control)
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Figure 2.4 Typical cytograms and histograms for neutrophil CD11a pre-LPS

The diagram above shows a cytogram (from the template) and three histograms (with
textual data) corresponding to a blood sample taken at baseline from a rat, and
treated in three different ways. The numbers circled red show 10,000 counts have
been made in the gate. The upper histogram is the fluorescent pattern for unstained
blood, whereas the intermediate histogram is for blood stained with an isotype
control antibody to CD11a. These should be similar and have low fluorescence. The
lower histogram also demonstrates fluorescence for blood from the same sample but
treated with an antibody to CD11a. The rightward peak represents (high) fluorescence
due to the antibody. The software generates a median for the entire distribution
(including the leftward peak). Subjectivity enters when a marker is drawn by the
operator across the lower histogram to isolate the peaks from one another (and a new
corrected median is calculated).



86

Figure 2.5 Typical histograms for neutrophil CD11a pre- and post-LPS

The distributions in the left column (upper to lower) represent those for blank, isotype
control and CD11a at baseline for one rat rendered septic with LPS. Those on the right
similarly represent the distributions for identically treated samples following 4 h of
sepsis. Looking at the two lower distributions, it is obvious that the there are fewer
CD11a positive fluorescent events at the end of the experiment. The distribution on
the bottom right also demonstrates how subjectivity can enter the measurement of
MFI, as a marker would need to be drawn to separate the peaks (this is clearly less
straightforward in the bottom right distribution than the bottom left)

CD11a MFI at the end of the experiment is calculated the same way. Comparing the MFI at

baseline and end of the experiment allows us to understand what is happening to the

number of surface markers on the surface of the cell with time. The distributions in Figure

2.5 (above) demonstrate this visually for CD11a, and were generated for a rat rendered

septic by iv injection of LPS.
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2.3 Measuring neutrophil infiltration by measuring myeloperoxidase (MPO) activity

On phagocytosing pathogens such as bacteria, neutrophils undergo respiratory burst (so

called due to the great increase their oxygen consumption) where they generate via the

action of NADPH oxidase the superoxide ion. This ion is rapidly converted by superoxide

dismutase to hydrogen peroxide through the Haber-Weiss mechanism. In the presence of

halide ions myeloperoxidase (MPO) catalyses the conversion of hydrogen peroxide to the

corresponding hypohalous acid (in vivo hypochlorous acid). This acid is an important anti-

bacterial mechanism (303). MPO is also released by neutrophils in to the extracellular

environment on degranulation where it performs the same task but may also cause

unintended damage to host tissue.

MPO is not unique to neutrophils as it is also found in the granules of other

polymorphonuclear leucocytes, the lysosomes of monocytes and even in the endothelial

cells around sites of inflammation. Although MPO is lost from monocytes on conversion to

macrophages, macrophages can come to contain MPO if they pinocytose it from the

environment or on ingesting neutrophils (304). However, the MPO content of monocytes is

less than that of neutrophils and neutrophils are numerically the largest population of these

cells. Indeed myeloperoxidase constitutes 2-5% of the dry mass of neutrophils and

constitutes the most abundant inflammatory enzyme within neutrophil azurophilic granules

(303, 305). For this reason tissue MPO measurement is commonly used to determine

neutrophil infiltration in to tissue (211, 304, 306, 307).

In this study I wished to measure neutrophil infiltration in to the lung. Although this is highly

vascular tissue, this was chosen as the pulmonary bed is subject to an intense early

neutrophil infiltration, making it a good tissue bed to look for infiltrative changes related to

therapy in relatively short-term models.

Organs were harvested en-bloc and doused in ice cold saline before being snap frozen in

liquid nitrogen. Samples were sent to colleagues in a laboratory in Italy who performed the

measurements of MPO activity. The process is as follows:
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Following thawing of tissue samples, MPO must be retrieved from its intracellular location by

homogenising the sample and using hexadecyltrimethyl-ammonium bromide to solubilise the

enzyme. Centrifugation follows and the soluble enzyme is extracted in the supernatant. Then

in order to measure MPO activity it is added to a fixed quantity of hydrogen peroxide in the

presence of a tetramethylbenzidine (TMB). This re-creates the conditions in which MPO

catalyses the production of hypochlorous acid (though in this case the bromide replaces the

chloride). The change in absorbance of light at 650nm is measured spectrophotometrically at

37C and from this MPO activity is measured.

What information we can derive from this technique should be briefly commented on as

there are some limitations to it. It is worth clarifying the following:

1. When MPO is measured in homogenates of tissue samples, strictly speaking this

represents the total of intracellular immune cell, endothelial cell and extracellular

MPO from the sample. It is an extrapolation to say this represents neutrophil

infiltration.

2. Measuring MPO enzyme activity is not necessarily the same as measuring MPO

enzyme quantity - two tissue samples may have different activities despite the

same overall content of MPO due to inter-individual variation in activity and also

the variable presence of inhibitors of MPO

3. Measurement of MPO (amount or activity) alone cannot distinguish between

MPO in activated and quiescent immune cells – therefore measuring MPO

activity in isolation cannot strictly be used to comment on immune cell activation

state

4. The reagents used (such as TMB) are not specific for MPO as they can also

detect other peroxidases and are affected by naturally occurring inhibitors –

therefore false positive results can arise, even when MPO null mice have been

used (305)



89

Nevertheless the technique is both useful and powerful if it is not over-interpreted. When

changes in MPO activity follow changes in factors that should determine the inflammatory

response (e.g. therapeutic intervention or severity of insult) it becomes more certain that this

is tracking inflammation and immune cell responses, and is not a response to confounding

variables (308). Under these circumstances, and particularly when confidence intervals are

small (reflecting similar intra-group behaviour) and there is additional supportive evidence,

we can be quite confident that any changes seen reflect a true difference in neutrophil

infiltration in to the tissue sample .

2.4 Measurement of plasma cytokines

The study of cytokine responses has been revolutionised by the recent introduction of

fluorescent bead-based technologies which allow the measurement of multiple (up to 100)

proteins from samples of as small a volume as 25μL (309). The Luminex 200 multi-well

analyser uses flow cytometry technology to read samples that have been appropriately

prepared for analysis. The principles of the process are as follows. Different “capture

antibodies” specific for individual cytokines are linked to different polystyrene beads with pre-

defined spectral properties. This allows each bead to be identified (the individual spectral

characteristics are due to the blending of different amounts of red and infra-red fluorescent

dyes which have been seeded in to the polystyrene beads). When a sample and the beads

are mixed, cytokine specific binding occurs (see Figure 2.6) during incubation. Protein-

specific biotinylated detection antibodies are added and bind to the specific pre-captured

cytokines. Streptavidin (which binds with high affinity to biotin) conjugated to the fluorescent

protein R-Phycoerythrin is added and binds to the biotinylated detection antibody, forming a

4-unit complex structure. When the sample is placed in a Luminex reader, correlating the

spectral properties of different beads and the amount of R-Phycoerythrin fluorescence allows

the software to determine specific cytokine concentrations in the sample. These tests on

samples are run in parallel with control samples, and standards containing proteins of known

concentration.
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Figure 2.6 Examples of bead-capture-antibody complexes

Schematic of how the bead-capture-antibody complex binds to cytokines (Il-2 and IL-6
as examples), and how biotinylated detection antibodies bind to Streptavidin-
conjugated R-Phycoerythrin (green asterisks)

Although it is possible to custom design a panel to measure any cytokines of interest, pre-

manufactured kits are available which usually include the cytokines of interest and have

been pre-assessed to ensure signals are specific. In this case a rat 10-plex cytokine kit

manufactured by Invitrogen (specifically for use in Luminex 200 readers) was used which

was designed to measure IL-1α and -β, IL-2, IL-4, IL-6, IL-10, IL-12 (p40/p70), TNF-α, IFN-γ

and GM-CSF. The benefit of using pre-designed kits is that the manufacturer has selected

an array of bead combinations which minimises spectral overlap and therefore maximises

the specificity of fluorescence.

Specific details of sample preparation are included in the relevant experimental chapter.

2.5 Arterial blood gas and lactate measurement

Arterial blood gas measurement was performed using the ABL77 Radiometer

(Copenhagen). This machine utilises a cassette containing a miniaturised measuring

chamber and several microsensors to measure the partial pressure of oxygen, carbon

dioxide, pH, and haematocrit in the sample. Derived data included plasma bicarbonate and
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base excess. The measurement of pH and PCO2 are through potentiometric means whereas

the measurement of PO2 is by amperometric techniques and haematocrit is by conductance

technique.

The principle of the potentiometric method for measuring pH in a test solution relies on the

following equation relating the pH and potential difference of a solution of known pH (pHs)

and potential (Es) to that of the test solution.

= − −
The constant k is calculated from the Nernst equation and is related to the change in

potential per unit change in pH (310). Two electrodes are immersed in the test solution, one

sensitive to H+ and the other being a reference electrode, and the potential difference

between them is measured. The apparatus is temperature sensitive and a buffer solution

specific to the manufacture is used for calibration.

Similarly the potentiometric method for measuring PCO2 in the test sample is essentially a

modified pH electrode. However, instead of H+ ions from the test solution permeating the

electrode, CO2 selectively permeates in to a solution of sodium bicarbonate which encases

the electrode. The CO2 reacts with water (according to the reaction below) to form H+ ions:

These permeate in to the electrode which is otherwise in the same configuration as a pH

electrode – therefore the PaCO2 of the test solution can be measured.

The amperometric technique for determining PO2 in a test sample of blood relies on the

principle that dissolved oxygen is proportional to the limiting current when oxygen is reduced

by an applied potential across two electrodes immersed in an electrolytic solution (311). The

classical Clark electrode utilises a membrane which is highly selective for oxygen and allows
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the PO2 in the sample and electrolytic solution to equilibrate. Through this membrane

oxygen diffuses from the test sample to an electrolytic solution where a working platinum

electrode and a silver/silver chloride reference electrode are sited. Oxygen is reduced at the

platinum cathode, resulting in the generation of a current which is measured. These

measurement techniques are well established and robust.

Conductivity techniques for measuring haematocrit are based on the principle the

conductivity of the test sample is inversely related to the haematocrit. Correction must be

made for the electrolyte content of the test sample (and the major electrolytes are measured

by the machine using a potentiometric technique).

An important derived parameter is the base excess. The body defends pH within narrow

limits and in this regard there are two systems which are useful to offset changes in pH – the

respiratory system and the renal system. Both these systems interplay with the bicarbonate

buffering system of the blood. By altering alveolar ventilation a change in pH can be offset by

altering PCO2 (which in turn alters pH as can be seen from the equation above). Le

Chatelier’s principle dictates that pH will fall as PCO2 rises, and therefore in circumstances

where PCO2 is not normal it becomes difficult to differentiate between respiratory and non-

respiratory (metabolic) components of the overall pH. Base excess indicates the contribution

of metabolic processes to pH as it refers to the amount of strong acid that must be added to

the test sample at 37C in order to normalise the pH to 7.4 if the sample’s PCO2 were fixed at

5.3kPa and were fully oxygenated. The base excess is therefore derived by the machine

from measured parameters of pH (bicarbonate concentration is derived from pH and PCO2)

as:

When base excess is less than 0 it is termed a base deficit. When base deficit is greater

than 2mmol/L (i.e. base excess is less than -2mmol/L) there is said to be an underlying
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metabolic acidosis. When pH is normal, the metabolic acidosis has been compensated for

by respiratory mechanisms whereas when an acidosis exists the compensation is

inadequate. Causes of metabolic acidosis can be divided in to a dysfunction of excretion

(e.g. renal failure), an increase in the bodily production of acids (e.g. ketoacidosis, lactic

acidosis) or an increase in exogenously administered acids or strong ions (e.g.

hyperchloraemia). Other causes also include the excessive loss of alkaline buffers from the

body, such as may occur during disorders of the GI tract. In the context of sepsis in

previously healthy patients, metabolic acidosis is most commonly attributable to renal failure,

shock and hypoperfusion, and very rarely due to severe liver dysfunction.

In the ABL77 an aspiration port is provided through which approximately 70μL of blood is

drawn up from the sample. The blood is drawn along in to the measurement chamber where

the measurements are performed. Automated calibration of the instrument occurred several

times a day and sensor cassettes had expiration dates (following which they were replaced)

and were also limited in number of samples they would perform tests on. Failure to calibrate

correctly would result in no further tests being permitted by the machine. With respect to pre-

analytic errors, the machine wouldn’t necessarily detect small air bubbles or clots and could

go on to produce erroneous results in these cases. Therefore each test required inspection

of the sample in the syringe and the aspirate in the sensor cassette tubing and chamber to

ensure the result was reliable.

Although the origin of bloodstream lactate in sepsis is not entirely clear, measurement of

lactate has been shown to be useful in human studies as it has been shown to correlate with

mortality while a decrease in lactate in response to therapeutic intervention has been shown

to correlate with improved outcomes. I elected to measure lactate using the point of care

Accutrend Lactate meter (Roche diagnostics). This utilises reflectance photometry to

determine the lactate concentration in plasma from a calorimetric lactate-oxidase mediator

reaction on a testing strip. The strip has a specific region where the sample of blood is

applied (see Figure 2.7). Blood filters through the yellow mesh and then erythrocytes are
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separated from plasma at the second glass-fibre layer. Plasma then descends onwards to

the detector film where the chemical reaction occurs and over 60s, while the strip is in the

analyser, the measurement is performed (312). The measurement range is from 0.8 –

22mmol/L in whole blood and the Accutrend has been validated as both an accurate and

reliable machine even approaching the higher end of these concentrations (312-314).

Important points to note are that lysis of erythrocytes will tend to overestimate lactate

concentration, and that testing a larger volume of blood than recommended can alter the

accuracy of the result.

Figure 2.7 Structure of a lactate strip

The mesh region where blood is applied, the erythrocyte separation pad, detector film
and support layer are demonstrated

2.6 Measurement of aortic blood flow by transit time ultrasound

Blood flow can be measured in small animals by use of miniature probes that encase the

blood vessels of interest. These probes utilise the principle that ultrasonic waves propagated

in opposite directions along the same path will take different amounts of time to traverse the

path, and the difference in “transit times” depends on the flow rate of blood travelling through

the vessel of interest (see Figure 2.8). The mathematical equations that govern this

relationship also involve the diameter of the vessel and therefore it is important that the

probe selected for use is suitable for the type of vessel it is used on – therefore a flow probe
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for the aorta of a small rat may be suitable for use on the hepatic artery of a much larger rat,

but the flow probe will be unsuitable if used on the aorta of that larger rat.

To attach the probe a laparotomy had to be performed, the bowel had to be exteriorised (and

kept moist to prevent drying) and then dissection of a small portion of the infra-renal aorta

from the vena cava and surrounding nervous tissue had to be performed. Once dissection

occurred, the probe would be loaded with sonicating gel and carefully hooked around the

infra-renal aorta before the latch was fastened. At this point further sonicating gel could

easily be applied if the signal was poor. When the animal was turned to its side the signal

would occasionally diminish in quality – repeat laparotomy would be unnecessary as gentle

manipulation of the probe would usually restore the signal. Variation in probe alignment and

position can interfere with the accuracy of the measurements. However, systematic error is

minimised by optimising the signal quality indicator (315). Furthermore any random error

should distribute evenly between groups (there is no reason to expect the introduction of

systematic error in one group and not another).

Use of the blood flow monitor would provide data on aortic blood flow. This obviously

excludes blood flow to the brain, coeliac axis and kidneys and most of the upper body of the

rat – clearly this is not equivalent to the cardiac output of the rat. Nevertheless this technique

has been used as a surrogate marker for cardiac output (relative cardiac output) by others

and is widely used for this purpose (316-318), and given that the alternative was a

thoracotomy to place the probe elsewhere (pulmonary artery or ascending aorta) which

would have necessitated mechanical ventilation, this was deemed more suitable. The probes

have been validated as accurate over a range of flows (319).
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Figure 2.8 Transit time ultrasonic flow probes and their mechanism of action

On the left is one of the ultrasonic aortic flow probes used in the experiments,
consisting of a body (light blue) containing two piezoelectric detector/receiver units, a
superiorly sited hook/reflector and an inferiorly sited sliding latch. A schematic (right)
shows two receiver/detector units (black) angulated to send ultrasonic waves thrugh
a blood vessel in opposite directions along the same path length. These waves
bounce off the metallic hook at the top which acts as a reflector. Unidirectional flow
through the blood vessel (red) will make the transit times differ, and from this
measured time difference the processor determines the flow rate. The diagram also
demonstrates a grey gap between the blue angled body and the blood vessel – this is
filled with a sonicating medium such as sterile gel, ensuring good quality signals can
be obtained (see Figure 2.9). The probe is securely fastened around the vessel by
gently sliding the latch superiorly.
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Figure 2.9 The processing unit for the transit time flow probe

The unit is attached via the blue cable on the bottom left of the unit. The black cable
allows output to a desktop computer where the data can be turned in to a graph and
stored for retrieval later on (see Figure 2.13). The quality of the signal is displayed on
the LED readout (good = 5/5 horizontal bars) – if the probe slipped or sonicating
medium dissolved the quality of the signal would fade as a warning.

2.7 Laser Doppler flowmetry

Laser Doppler flowmetry (LDF) is a reasonably well established method of assessing

microvascular perfusion in volumes of tissue where measurement is occurring (320). A

description of its operation will aid understanding of the scope and limitations of this

instrument.

The laser Doppler perfusion monitor comprises fibre optic cables, a monochromatic laser, a

photodetector and signal processor. The laser is used to generate light of a single

wavelength which is transmitted down an optical fibre to the tissue of interest. The laser light

penetrates tissue and interacts with both static and mobile elements of tissue so that some

light is scattered in to the tissue and lost while other light is backscattered to a second

optical fibre. Backscattered light travels via the optical fibre to a photodetector which

generates a current that is processed by the signal processor (320). Some understanding of

the physics is useful.
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2.7.1 Basic Principles

In Figure 2.10, a corpuscle moving with velocity vector v is struck by incident monochromatic

laser light represented by wave vector ki. A scattering vector q transforms ki to the scattered

wave vector ks. In this representation θ and ϕ are the angles between vectors ki and ks, and

the Bragg scattering vector q and v, respectively.

The frequency shift (Δf) in ki brought about through the Doppler effect is expressed as:

∆ = 2 sin( 2) cos( )
where λi is the wavelength of the incident light.

Figure 2.10 Scattering of light by erythrocytes

An erythrocyte moving with velocity vector v scatters incident light in a direction that
is dependent on the scattering vector q

Backscattered light will be a mixture of shifted and unshifted frequencies, the latter arising

predominantly from static tissue where v is zero. In the simplest case where there is only the
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unshifted frequency f and one shifted frequency f + Δf, the summated light wave at the

detector will vary in intensity with a frequency of Δf: (Figure 2.11):

Figure 2.11 Scattering produces a photocurrent at the detector

Two scattered waves, one shifted and one unshifted summate at the photodetector to
produce light which varies in intensity at a frequency Δf. This generates a
photocurrent that also varies with the same frequency.

As the photocurrent (it) is proportional to the light intensity it will also vary with frequency Δf.

When the number of backscattered light waves increases the photocurrent will comprise a

spectrum of frequencies corresponding to the Doppler frequencies. In this case the

photocurrent is expressed:

Where iac(t) represents the time varying part of the current and idc(t) the stationary part.

Based on the power density spectrum of the photocurrent, P(ω), an estimate of perfusion

(defined as being proportional to the mean velocity of red blood cells (RBCs) and the

concentration of RBCs) can be made:
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where ω is the angular frequency of the photodetector current. The relationship between

measured perfusion and actual tissue perfusion is non-linear (due to a widening of the

frequency spectrum with greater numbers of RBCs), but for any given concentration of RBCs

measured perfusion varies linearly with mean RBC speed. The relationship is also almost

linear for low RBC concentrations.

Determinants of perfusion are therefore obviously related to red cell flux, but also to the

wavelength of incident light and the optical properties of the tissue being sampled. The

volume of tissue being sampled is generally assumed to be <1mm3 but as this is dependent

on tissue properties this is not strictly defined either. Therefore measurements of flux are not

absolute, but are relative.

The aim of LDF is to assess perfusion by separating static and dynamic (RBC) components

of tissue scattering of incident laser light. Movement of non-RBC tissue (e.g. smooth muscle)

introduces non-RBC scattering which is measured as part of the dynamic signal. This motion

artefact has been shown to influence LDF signals (320). Another consideration is the

temperature dependence of measured perfusion. This arises due to Brownian motion (a

temperature dependent phenomenon) of static tissue components and is also responsible

for the lack of a biological zero in perfusion signals.

Although the sampling volume of LDF probes is taken as generally <1mm3, the depth of

penetration of the laser is dependent on the wavelength of the light and the separation of

emitter and detector fibres. Larger separation distances tend to detect deeper flows and

wavelengths in the red and near infra-red region penetrate more deeply than towards green

parts of the spectrum. This latter point is important as flux measurements in response to
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physiological phenomena such vasodilatation are detected with less sensitivity in red laser

flowmetry devices (320).

One of the biggest criticisms of laser Doppler flowmetry is that it provides a crude measure

of total flux through the sampling volume. While this is not useless information, it does have

some drawbacks. Thus it provides no information on the heterogeneity of flow in a sampled

tissue volume, the direction of red cell flow (e.g. oscillatory versus uni-directional flow) and it

theoretically cannot distinguish between 100 RBC/s traversing through an arteriolar-venular

shunt, 25 RBC/s traversing 4 small venules in a system where 10 should be open, and

laminar flow of 10 RBC/s in 10 open venules. Thus for 3 completely different states of tissue

perfusion the equipment would generate an equivalent output. For this more detailed type of

information more sensitive methods of microvascular monitoring are required.

2.7.2 MoorLAB Laser Doppler Blood Flow Monitor

The LDF device chosen for the purposes of this study was the MoorLAB laser Doppler blood

flow monitor (Figure 2.12), in conjunction with slave probes (P10k, Moor Instruments,

Axminster, UK) attached to master probes (MP10M200ST, Moor Instruments). Laser light of

780 nm wavelength with a 40Hz sampling rate and a 30˚ angular spread allowed a sampling

volume of approximately 1 mm3. Probes were calibrated daily using PFS flux standard (Moor

Instruments, Axminster UK) at 23oC prior to experiments. Amalgamating the haemodynamic

and laser Doppler measurements would produce data such as in Figure 2.13.
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Figure 2.12 MoorLAB Doppler processing units.

The upper unit is a supplementary unit for an additional probe. The lower unit is the
master unit and has a menu that allows the user to switch between probes (as the
results can only be displayed for one probe at a time). The probes consist of fibre
optic cables which either transmit laser light from the units, or return reflected light
back to the units (hence two ports on the left of each unit). The output of the units can
be linked to a desktop computer for graphical display, storage and retrieval at a later
date (see Figure 2.13).

2.8 Intravital microscopy

Intravital microscopy is a microscopy technique that allows dynamic events to be studied in

vivo in real time. The equipment for basic intravital microscopy is similar to that for standard

microscopy, but the introduction of the use of fluorescent markers and dyes has increased

the sophistication of necessary equipment.

In addition to the equipment, the nature of the specimen places slightly different demands on

the way the specimen is catered for compared to standard microscopic techniques. A

sufficiently large platform to hold the in vivo specimen is required – this is usually in the form

of a modified metallic slab which unfortunately acts as a potent conductor of the specimen’s

body heat away from the animal. Therefore provision has to be made for maintaining the

specimen’s core temperature throughout the period of observation. The exposed sample of

tissue from the specimen must not be allowed to dry out (and any fluid used to maintain

moisture must be removable should it overspill). The tissue must also be held at core

temperature, and must be handled in a manner which does not traumatise it. Even following
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Figure 2.13 Typical haemodynamic and microvascular traces

These were generated simultaneously by a desktop computer from transit time flow
probes (uppermost), invasive haemodynamic monitoring (middle 2 graphs) and laser
Doppler flux probes (lower) sited on an endotoxaemic rat (preliminary studies only)

atraumatic handling, a period of stabilisation will still be required for the tissue microvessels

to return to baseline behaviour. The natural tendency of certain tissues to move e.g.

respiratory variation or intestinal peristalsis may need to be countered in order to

successfully record observations at high magnification. Finally, when examining the effect of
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short-acting drugs on the circulation, the drugs must be continually infused during the period

of observation.

For all but the briefest of periods of observation these demands are rarely problematic.

However the observations required in my studies often led to times of one hour on the

microscope stage. In preliminary studies there were significant issues with tissue trauma,

drying and animal core temperature (due to the microscope stage acting as a potent

conductor of heat away from the rat). In order to combat these issues an in vivo intestinal

microscope platform was custom built (by myself) according to a design previously outlined

(Figures 2.14 – 2.16) (321).

Figure 2.14 The hand-made intravital microscopy platform.

In the foreground is an infra-red heating mat on which the rat would lie. The blue
boxed unit on the right contains a thermostatic controller for the foil heater
surrounding a bronze cylinder. The cylinder is filled with tap water and covered with a
removable circular glass slide. A green thermometer lies in the cylinder and measures
the temperature of the tap water as it is heated by the foil heater (through the bronze
cylinder). The bowel is placed on the glass slide when the set temperature (green) and
measured temperature (red) of the water match.
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Figure 2.15 Section through the cylindrical portion of the hand-made microscopy
platform.

When microscopy occurred irrigating fluid would initially fill the recess between the
upper surface of the slide and the top of the cylinder. Excess fluid would spill over in
to the epoxy lined recess in the base of the platform and could be suctioned away
before it overflowed.

Figure 2.16 Schematic of how rat bowel would lie on the cylindrical stage.

The ventral surface of the rat would face the cylinder and the bowel would be draped
over the glass slide which would be covered with Saran wrap. The bowel would be
sealed from above with a second layer of Saran wrap to ensure the bowel did not dry
out and to maintain microvascular integrity (322). When intravital microscopy was
performed, the entire platform could be lifted on to the stage of the microscope, and
the superiorly sited Saran wrap would be removed from the bowel so that irrigating
fluid could slowly moisten the bowel.
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In order to minimise peristalsis, irrigating fluid (warmed normal saline) had a small dose of

isoprenaline added to produce a concentration of 0.01μg/ml. This has been used by other

investigators in leucocyte rolling/adhesion experiments and has been shown to be below any

dose that alters vascular tone (323).

In order to delineate capillaries (for the measurement of functional capillary density) and to

better make leucocytes apparent, fluorescent dyes are used which localise to the

intravascular compartment (FITC-labelled albumin) or to leucocytes (rhodamine 6G). While

these dyes can cause effects that are artefactual (324), studies show that the use of

moderate light intensities for short periods of time do not induce additional leucocyte

endothelium interaction or alterations in vascular diameters (325). Use of these dyes

resulted in images such as shown in Figures 2.17 and 2.18.

Figure 2.17 Intravital study of leucocyte rolling and adhesion in an intestinal venule
from one of the rats.

As the focus is altered slightly, leucocytes appear in different parts of the illuminated
circle (1 through 4). By rapidly cycling the focus back and forth over a period of 45s, it
is obvious which leucocytes are adherent and which are rolling – this is not obvious
from the still images above though.
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Figure 2.18 Intravital study of capillaries in the intestinal muscularis.

These 4 still images are of the same area, but altering the focus brings different parts
of the image and therefore different capillaries in to focus. When played back it is
possible to determine the number of vessels in the entire area and to calculate a
functional capillary density for the area

Images were recorded for a minimum of 40s, and often for 1 min. These images were stored

for offline analysis at a later date by an investigator blinded to the treatment group of each

animal. Using the classification of Gore and Bohlen (326) intestinal microvessels were

identified and the following measurements were made: diameters of post-capillary (V1 and

V3) venules and pre-capillary (A1 and A3) arterioles. For each animal attempts were made

to take measurements from a minimum of three different vessels of the same branch order.

The number of adherent (na) and rolling leucocytes in V1 and V3 venules over a 30s period

was observed offline. From these measurements it was also possible to calculate adherent

leucocyte density, assuming venules were cylindrical and had an internal area, A, governed

by the equation A = (π.d).l (where d is the measured diameter of the venule, (π.d) gives its

circumference and l is the length of the vessel under observation).
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The adherent density was then calculated as:

Adherent density = na  A

With respect to functional capillary density, recordings from a minimum of three separate

areas of intestine were made. In each area capillaries in the circular and longitudinal layer

were identified offline. Lengths of individual capillaries of each group (e.g. circular muscle) in

the shot were measured using SlideBook 5.0 software. The total length of each type of

capillary (LT) was calculated by adding the measured lengths, and the functional capillary

density (fcd) was then calculated as:

fcd = LT  As

where As is the area of the screen.

2.9 Wire Myography

Wire myography is a technique used to assess the contractile properties of resistance

arteries and has only come to the fore since the 1970s (327, 328). In general, a small

chamber forms a volume within which fluid (usually Krebs’ solution) bathes a blood vessel

under study. The blood vessel is mounted on to two wires attached in a parallel fashion to

two jaws in the myography chamber, and changes in vessel tension can be recorded if one

jaw is attached to a micrometre screw and the second to an isometric force transducer which

measures wall tension. The temperature, oxygenation and carbon dioxide levels in the

chamber fluid are maintained to mimic as closely as possible physiological conditions.

Vasoactive drugs can be added to the fluid in the chamber to ascertain properties of the

vessel by measuring changes in tension at the transducer. Benefits of this technique are that

the contractile machinery of the vessel is allowed to perform in its normal orientation (i.e. the

vessel remains cylindrical) and the vessel is not affected by any potentially damaging

manoeuvres that fix its position such as occur with other techniques.
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Once vessels are mounted on to wires, a normalisation procedure is performed to determine

the internal diameter of the vessel when fully relaxed under a pressure of 100mmHg or

13.3kPa. Once this internal diameter has been determined, the micrometre is adjusted to

this setting as studies demonstrate that rat mesenteric arteries are maximally responsive to

vasoactive drugs under these conditions (329). The vessel is then assessed for viability by

pre-contraction with a high concentration of extracellular potassium chloride before washing

out the chamber and re-filling with fluid. A set of relaxation curves can be obtained following

contraction if vasodilators are subsequently added, and from this various calculations (see

below and Figure 2.19) can be made.

Handling of myography data: The following measurements were extracted (see Figure

2.19):

 The baseline tension just prior to the addition of the first pre-contracting dose of PE

(TB)

 The tension just prior to the addition of the first dose of ACh (TM), representing the

plateau tension following pre-contraction with the last dose of vasoconstrictor

 The plateau tension for each dose of ACh, measured at the time just prior to the

next dose of ACh or SNP (TACh)

 The plateau tension following the addition of SNP (TSNP) – this plateau was easily

visible on all myography traces and represented the end of the experiment
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Figure 2.19 Schematic of a myography trace (upper) and a real myography tracing
from a control vessel (lower).

In the upper diagram a vessel is pre-contracted with phenylephrine (PE) from a
baseline tension (Tb) and plateaus at a tension (TM). The addition of acetylcholine at
increasing doses (ACh(1) and ACh(2)) results in relaxation at two respective plateau
tensions (TACh(1) and TACh(2)). The addition of sodium nitroprusside (SNP) relaxes the
vessel maximally at a tension TSNP, which is usually equal to Tb. Similarities should be
visible in the lower tracing (39 = addition of PE, 43 – 92 = addition of ACh, 95 =
addition of SNP)

The maximum dilator response of the vessel was taken as:− (1)

whereas the dilator response of a vessel to any given dose of Ach was taken as:− (2)



111

The percentage decrease in PE-induced tone for each dose of ACh was calculated as:

100 × (3)

The percentage decrease in PE-induced tone standardised to the maximal vasodilator

response of the vessel was calculated as:

100 × (4)

The maximal endothelium-dependent vasodilator response was usually taken as the result of

equation 4 for the highest dose of ACh. Occasionally a lower dose would produce maximal

dilatation as high doses of ACh could be associated with constrictor activity – in these cases

the result from the dose of ACh that produced maximal dilatation was used. The percentage

SNP-attributable relaxation was calculated at the highest relaxing dose of ACh and was

calculated as:

100 × 1 − (5)

This assumed that SNP-attributable vasorelaxation was 100% of the relaxation possible for

the vessel, and generated an output representing the percentage difference between

standardised endothelium-dependent mechanisms and the SNP-evoked maximum. On the

other hand, when if baseline tone was taken to be the minimum tone attainable by the

vessel, the percentage of total relaxation attributable to SNP was given by:

(6)
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Therefore: 100 − (7)

represents the percentage tone remaining in the vessel following the addition of SNP to the

bath. With respect to percentage decreases on pre-constricted vascular tone in response to

ACh and SNP, the data were transformed and a non-linear fit (sigmoidal dose-response,

variable slope) approximated by software.

2.10 Statistical Analysis

All data were graphed and statistically analysed using PrismGraph 4.0 (GraphPad Software,

Inc., San Diego, CA). D’Agostino and Pearson Omnibus normality testing was performed on

all data (Kolmogorov-Smirnov testing if missing data points meant numbers in the group

were too small for this). Normally distributed data was tested by using one-way analysis of

variance (ANOVA) for comparison across all groups at a given time point, and two-way

ANOVA, for changes in multiple groups over time (that is, repeated measurements). Post-

testing was performed with Bonferroni corrections. When data were not normally distributed

in at least one group for any measurement (for example, urea, experiment 2), the Kruskal-

Wallis test was used in place of one-way ANOVA, and appropriate t-tests against controls for

post-testing were used, depending on whether the individual groups were normally

distributed or not. To assess for significance of changes compared to baseline, paired t-tests

were performed. Similarly, when data were not normally distributed in at least one group for

any measurement, data were displayed with box and whisker plots. Normally distributed data

was displayed using histograms.

Myography data was charted, and significance testing was performed by non-linear

regression and comparing best fit curves against one another with respect to a combination

of the parameters of top (Emax), bottom, logEC50 and Hillslope. Analysis was also performed
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as a series of one-way ANOVAs for comparison at each ACh dose for further mechanistic

insight. Significance was set for all experiments at P<0.05.
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Chapter 3 - Effects of dopexamine in a rodent model of
laparotomy and normotensive endotoxaemia:

haemodynamics, immune activation and effects on
organ dysfunction

3.1 Introduction

A growing body of evidence suggests that the potential exists to reduce the morbidity and

unacceptably high mortality rates associated with major surgery in high-risk patients (330).

For many years, inotropic and vasoactive agents have been widely used to maintain tissue

perfusion in critically ill and high-risk surgical patients with the aim of improving clinical

outcomes (331). Dopexamine is a dopamine analogue with agonist activity at β2 and

dopaminergic receptors. This spectrum of activity confers vasodilator actions in addition to

chronotropic and mild inotropic effects. Postoperative complications occur more frequently in

the presence of poor tissue microvascular flow and oxygenation (145, 332, 333), and

dopexamine has been shown to improve these abnormalities (147). However, the effect of

dopexamine on clinical outcomes is less clear, and the findings of randomized trials have

proved inconsistent (135, 136, 138, 141, 147, 334). These conflicting findings might be

explained by dose-related differences in the hemodynamic and immunologic effects of

dopexamine (20).

Increasing recognition is building that adrenergic agents may have important metabolic and

immunologic actions (20, 255), whereas tachycardia and myocardial ischemia may cause

significant harm, especially at higher doses. It has been suggested that anti-inflammatory

actions may be beneficial (20, 40). Previous work indicated that dopexamine may decrease

leucocyte-endothelial adhesion in mesenteric venules (195, 196), a phenomenon dependent

on CD11a and CD11b integrins (335). Other adrenergic agents have also been shown to

exert anti-inflammatory actions on cytokine responses in immune cells (40, 307, 336). It is

possible that the proposed clinical benefits of dopexamine, particularly at low doses, may
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relate to actions on inflammatory pathways (337). As outlined in section 1.7.2, there is

substantial evidence that β2-adrenoceptor agonists have potent anti-inflammatory effects.

Given these findings were somewhat contradicted by a prior study (195), I also planned to

investigate the role of β2-adrenoceptor agonism on any anti-inflammatory effects of

dopexamine. In order to not ablate all β2-adrenoceptor activation (e.g. by circulating

epinephrine), the selective β2-adrenoceptor agonist salbutamol was used rather than using a

selective β2-adrenoceptor antagonist. The aim of this was to avoid the possibility of

unopposed α-adrenoceptor agonism clouding any findings.

The overall objective was to investigate the effects of dopexamine on global hemodynamics,

regional microvascular flow, systemic inflammatory response, and organ injury in a rodent

model of laparotomy and endotoxemia.

3.2 Methods

48 Male Wistar rats (220-410 g) received a standard diet and water ad libitum before

experiments. All procedures were performed with Institutional approval and in accordance

with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act

1986. Anaesthesia was induced by ip injection of thiopentone (120 mg/kg) and maintained

with supplementary injections administered according to regular testing for limb withdrawal

to a standard stimulus or signs of inadequate anaesthesia. Animals were placed on a heated

mat and maintained at 37 ± 0.5˚C. A tracheostomy was performed with a short section of

polyethylene tubing (internal diameter 1.67 mm) to maintain airway patency and facilitate

spontaneous respiration. The right carotid artery was cannulated to allow blood sampling

and continuous haemodynamic monitoring, and the left jugular vein for drug and fluid

administration. A 2cm mid-line incision was then made through the abdominal wall to expose

the small intestine. A loop of intestine adjoining the terminal ileum was exteriorised and

placed in a Saran receiving pouch. A primary set of arterial blood samples was then taken,

the volume taken being replaced with an equal volume of normal saline. Animals were
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allowed to stabilize for 15 min before being allocated to one of 6 groups (sham, control,

D0.5, D1, D2, S – see Figure 3.1).

Endotoxemia was induced in five of six groups by administration of Escherichia coli

lipopolysaccharide (LPS) 0111:B4 (6 mg/kg) over a 10-minute period (sham group received

0.9% saline vehicle). Administration of LPS was followed by 4 hours of fluid resuscitation with

an infusion of intravenous 0.9% saline at 4.3 ml/kg/h. Sham and control animals received

only 0.9% saline infusion. Three different concentrations of dopexamine were added to three

of the groups’ infusion fluid, producing dopexamine infusion rates of 0.5, 1, and 2 μg/kg/min

for groups D0.5, D1, and D2, respectively. The final endotoxaemic group had salbutamol

added to its resuscitation fluid to produce a salbutamol infusion rate of 0.2 μg/kg/min (S). The

dose of salbutamol was selected on the grounds of previous studies conducted in isolated

guinea pig tracheal preparations showing a ten-fold greater potency of salbutamol at the β2

adrenoceptor when compared with dopexamine (44). The experiments ended after 4 hours of

resuscitation when the lungs and heart were harvested en bloc. In experiment 1, the lungs

were flash frozen in liquid nitrogen before being stored at -80˚C for subsequent analysis.

Figure 3.1 Timeline of experimental protocol

 Blood sampling for cytokine measurements

 Blood sampling for base excess, lactate and flow cytometry

 Blood sampling for organ function; organ harvest
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Analysis of plasma lactate, base deficit and renal and hepatic function

200μl of blood was taken at baseline and at the end of the experiment for measurement of

plasma lactate concentration (Accutrend Lactate; Roche Diagnostics, Basel, Switzerland)

and base deficit (Radiometer ABL77, Copenhagen, Denmark). A 1ml blood sample was also

taken at the end of the experiment for measurements of urea, creatinine, alanine

aminotransferase and aspartate aminotransferase by a commercial veterinary laboratory

(IDEXX Laboratories Ltd, Sussex, UK) who were blinded to treatment.

Analysis of plasma cytokine levels

A 200µl blood sample was taken for measurement of plasma cytokine levels at baseline, 60

minutes after LPS administration, and at the end of the experiment. Samples were

centrifuged immediately at 9,900 g for 3 minutes. A minimum of 50 µl of plasma per sample

was collected and stored at -80˚C for subsequent analysis. Cytokine levels were measured

on a Luminex 200 reader (Luminex Co., Austin, TX, USA) by using the Rat Cytokine 10-Plex

kit (Invitrogen Corporation, Camarillo, CA, USA) and following manufacturer’s instructions.

Measurements were expressed as mean fluorescent intensity, which was converted to

picograms per milliliter by using a set of nonlinear transforms based on standard curves

created in PrismGraph 4.0 (GraphPad Software Inc., San Diego, CA, USA).

Analysis of pulmonary myeloperoxidase (MPO) levels

MPO was measured in samples of renal, hepatic and pulmonary tissue harvested at the end

of the experiment. These samples were stored at -80°C and were analyzed in four randomly

selected samples per group by colleagues who were blinded to treatment. Samples of tissue
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from the (right lung in the case of pulmonary tissue, right kidney in the case of renal tissue)

were homogenized in a solution containing 0.5% (w/v) hexadecyltrimethyl-ammonium

bromide dissolved in 10 mM potassium phosphate buffer (pH 7) and centrifuged for 30 min

at 20,000g at 4°C. An aliquot of the supernatant was then allowed to react with a solution of

1.6 mM tetramethylbenzidine and 0.1 mM H2O2. The rate of change in absorbance was

measured spectrophotometrically at 650 nm. MPO activity was defined as the quantity of

enzyme degrading 1 μmol of peroxide per minute at 37°C and was expressed in μ-units per

gram of wet tissue. MPO was also measured in the liver and kidneys in a similar fashion.

Analysis of neutrophil surface CD11a and CD11b marker by Flow Cytometry

The principles of flow cytometry are explained in the methods section. The details of the

procedures involved follow. Phycoerythrin and fluorescein isothiocyanate-conjugated mouse

monoclonal antibodies (mAbs) against CD11a (IgG2a) and CD11b (IgA) were used to

quantify neutrophil cell-surface expression of these markers. Isotype-, fluorochrome-, and

protein concentration-matched controls were run in parallel to the mAb (Becton Dickinson,

Oxford, UK). Heparinized blood (600 μl) was collected for flow-cytometric analysis of

leucocyte adhesion molecules, and 100 μl of whole blood was mixed with mAb against rat

CD11a (5 μl) or CD11b (3 μl) in 4 × 75-mm polystyrene test tubes. Blood with no antibody

added served as a control for autofluorescence. The test tubes were then incubated on ice

for 30 minutes with continuous shaking, protected from light. Erythrocytes were lysed by

addition of 2 ml FACSTM lysing solution to the test tubes. The samples were then incubated

for a further 10 minutes on ice in the dark, and then centrifuged at 1,000 g for 3 minutes at

4°C. The supernatant was discarded, and the leucocyte pellet was resuspended and washed

twice in 2 ml ice-cold optimized PBS cell wash. Finally, leucocytes were fixed in 0.3 ml 1%

wt/vol paraformaldehyde in PBS at pH 7.4, and the tubes were stored in the dark at 4°C for

up to 24 hours until flow-cytometric analysis could be performed. Samples were analyzed by
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using a FACScan flow cytometer equipped with Cell-Quest software. CaliBRITE-3 beads and

FACS COMP software were used on a weekly basis to calibrate the fluorescence intensity in

accordance with the manufacturer’s instructions. Ten thousand neutrophils were collected

from each sample with light-scatter gain set in the linear mode and fluorescence gain set in

the logarithmic mode. The neutrophil population was identified by light-scatter characteristics

(forward versus side-scatter) and enclosed in an electronic gate for fluorescence histogram

analysis. Antibody binding was expressed as mean fluorescence intensity (MFI), values for

which were corrected for nonspecific binding by subtracting MFI measured for the matched

isotype control sample.

Statistical analysis

All data were graphed and statistically analysed using PrismGraph 4.0 (GraphPad Software,

Inc., San Diego, CA). D’Agostino and Pearson Omnibus normality testing was performed on

all data (Kolmogorov-Smirnov testing if missing data points meant numbers in the group

were too small for this). Normally distributed data was tested by using one-way analysis of

variance (ANOVA) for comparison across all groups at a given time point, and two-way

ANOVA, for changes in multiple groups over time (that is, repeated measurements). Post-

testing was performed with Bonferroni tests. When data were not normally distributed in at

least one group for any measurement (for example, plasma TNF-α), the Kruskal-Wallis test

was used in place of one-way ANOVA, and appropriate t-tests against controls for post-

testing were used, depending on whether the individual groups were normally distributed or

not. Significance was set at P<0.05.
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3.3 Results

Absent data points are referred to in the figure legends, and relate to measurements of

serum base deficit, lactate, cytokines, and integrin expression. No statistically significant

differences were found between control and other animals in terms of weight or anaesthetic

dose. Salbutamol treated animals received 1.5 ml/kg more fluid over the course of the entire

experiment compared to controls (Table 3.1). This was deemed to be clinically insignificant.

No other groups received significantly different volumes of fluid compared to control animals.

Experiment 1
Sham Control D 0.5 D1 D2 S

Weight (g) 300
(285 – 305)

320
(250 – 340)

335
(275 – 365)

255
(220 – 300)

305
(285 - 350)

335
(320 – 355)

Fluid
(ml.kg-1)

21.6
(21.5 – 21.7)

21.4
(21.0 – 22.6)

22.9
(22.2 – 23.5)

22.8
(22.3 – 22.8)

22.1
(21.7 – 23.5)

23.5
(23.1 – 23.8)*

Thiopental
(mg.kg-1)

194.2
(182.6 –
198.0)*

158.4
(137.8 –
177.7)

164.7
(140.0 –
179.0)

165.0
(132.7 –
174.9)

157.2
(143.3 –
168.5)

153.6
(145.6 –
168.4)

Table 3.1 Baseline characteristics for experiment 1 (n=8 all groups).

Data presented as mean (SEM) when all groups normally distributed, otherwise
median (IQR) if ≥1 group not normally distributed. Kruskal-Wallis test (Fluid –
Unpaired t-test with Welch’s correction *P<0.05 compared to control group;
Anaesthetic – Mann Whitney test *P<0.05 compared to control group)

Haemodynamic data were similar between all groups at outset. Compared with sham

animals, control animals had a significantly higher HR (P < 0.05) at 4 hours and a lower

MAP (P < 0.01) compared with baseline at this time (Figures 3.2 and 3.3). At this point,

plasma lactate (P < 0.001) and base deficit (P < 0.01), pulmonary tissue MPO activity (P <

0.01), neutrophil cell surface CD11b expression (P < 0.001), and plasma TNF-α (P < 0.05),

IL-1β (P < 0.05), IL-6 (P < 0.001), IL-10 (P < 0.05), IL-2, IL-12 and IFN-γ were also

significantly higher in control animals when compared with sham animals (Figures 3.4 –
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3.10). Levels of plasma TNF-α at 1 hour (that is, peak levels) were also significantly higher in

control animals (P < 0.001) (Figure 3.7).

After LPS administration, CD11b expression increased in control animals, whereas CD11a

expression decreased (Figure 3.6). Although pulmonary MPO was significantly increased

compared to baseline in all endotoxaemic groups, MPO levels were undetectable in the liver

and kidney in all groups (not shown). Endotoxaemia resulted in significant organ injury, as

evidenced by control-group plasma urea (P < 0.001), creatinine (P < 0.001), ALT (P < 0.001),

and AST (P < 0.01) being significantly greater than that of the sham group (Figure 3.11 &

3.12).

When compared with control animals, HR was higher in the dopexamine groups at 4 hours

after LPS, although this was not statistically significant (Figure 3.3). Although MAP

decreased to a similar extent in controls and all dopexamine groups, MAP was slightly better

maintained in the D2 group (Figure 3.2). The increase in plasma lactate was less in

dopexamine-treated animals than in control animals (P < 0.001 controls versus pooled

dopexamine) with corresponding changes in base deficit (P < 0.05 controls versus pooled

dopexamine) (Figure 3.4). Compared with control animals, dopexamine significantly

attenuated the increase in TNF-α (D1 P < 0.05), IL-1β (D0.5 and D1, P < 0.05), and IL-6 (any

dose, minimum P < 0.01) at 4 hours, whereas the reduction in IL-10 achieved significance

only at doses of 0.5 and 1 µg/kg/min (P < 0.05 minimum) (Figures 3.7 – 3.9). Peak plasma

TNF-α was also attenuated in although significantly in only D2 animals (P < 0.05). Although

increases in IFN-γ were not significantly ameliorated by dopexamine, the cytokines IL-2 (all

doses) and IL-12 (D1) were (Figure 3.10). CD11a expression was unaffected by

dopexamine, but in D1 and D2 groups, dopexamine infusion was associated with significantly

decreased CD11b expression at 4 hours (P < 0.01 minimum) (Figure 3.6), as well as

significantly reduced pulmonary MPO activity (P < 0.05 minimum) (Figure 3.5). Notably,

dopexamine infusion was also associated with significant reductions in renal (P < 0.005

pooled dopexamine versus controls) and hepatic injury (P < 0.05 pooled dopexamine versus
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controls) (Figures 3.11 & 3.12).

Patterns of pulmonary MPO and surface integrin expression in salbutamol treated animals

paralleled those of dopexamine treated groups (Figures 3.5 & 3.6), but the plasma cytokine

pattern associated with salbutamol treatment differed markedly from dopexamine treated

groups, most notably for IL-1β, IL-6, IL-2 and IL-12 (Figures 3.8 -3.10). In association with

this, MAP was significantly lower than both control and dopexamine treated groups for

significant periods of the experiment in group S (Figure 3.2). Although MAP was significantly

reduced compared to controls, indices of organ perfusion were not worse than control

animals, though they were not ameliorated either (Figure 3.4). Organ injury was not

ameliorated by salbutamol treatment (Figure 3.11 & 3.12).
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Figure 3.2 MAP for all groups

Two-way ANOVA (Bonferroni’s post-tests vs. controls, * P<0.05 [D2 group]). MAP was also significantly reduced compared to
baseline at 4 hours in the control (P<0.01) and S (P<0.0001) groups (not shown on graph for clarity). Although not significantly
different compared to controls at any time point, S group had significantly decreased MAP compared to all dopexamine groups for
the last 30 min, and the D2 group from 60 min onwards (not shown on graph for clarity).
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Figure 3.3 Heart rate for all groups

Two-way ANOVA (Bonferroni’s post-tests, * P<0.05, ** P<0.01, *** P<0.001 vs. controls)
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Figure 3.4 Indices of tissue perfusion

Plasma lactate (n=8 all groups) and base deficit (D0.5 and D1 n=6 each, all others n=8):
One-way ANOVAs (Bonferroni’s post-tests vs. control: ** P<0.01, ***P<0.001)
Indices of organ function appeared to track markers of global tissue perfusion.
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Figure 3.5 Pulmonary MPO

One-way ANOVA P<0.05 (Bonferroni’s post-tests vs. controls: ** P<0.01. n=4 all
groups)
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Figure 3.6 CD11a and CD11b mean fluorescent intensity (MFI) expression for all groups

Two-way ANOVA (Bonferroni’s post-tests vs. controls *P<0.05 **P<0.01 ***P<0.001)

(CD11a – n=7 D0.5 and S, n=8 all others; CD11b – n=6 controls, n=5 S, n=8 all others)
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Figure 3.7 Plasma TNF-α levels for all groups at 1 (t1) and 4 (t4) h post endotoxaemia, respectively

t1: Kruskal-Wallis test (post hoc unpaired t-tests (sham), ***P<0.001 vs. controls, post hoc Mann-Whitney test (D2), *P<0.05 vs.
controls)
t4: Kruskal-Wallis test (post hoc Mann Whitney (sham), *P<0.05 vs. controls, post hoc unpaired t-test (D2), *P<0.05 vs. controls)

(t1: n=7 controls and D2, n=8 all others. t4: n=7 D0.5, n=6 D1, n=5 D2, n=8 all others)
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Figure 3.8 Plasma IL-1β and IL-6 for all groups 4 h post endotoxaemia.

One-way ANOVA (Bonferroni’s post-tests *P<0.05, **P<0.01, ***P<0.001 compared to control group)

(IL-1β: n=7 D0.5, n=6 D1, n=4 D2, n=8 all others; IL-6: n=7 controls and D2, n=8 all others)
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Figure 3.9 Plasma IL-10 levels for all groups at 1 (t1) and 4 (t4) h post endotoxaemia, respectively.

Kruskal-Wallis tests (post hoc tests Mann-Whitney (all groups), *P<0.05, **P<0.01, ***P<0.001)

(t1: D1 n=7, D2 n=5, all others n=8; t4: D0.5 and D1 n=7, D2 n=6, all others n=8)



131

t4 IL-2

Sham Control D0.5 D1 D2 S0.2

10

100

1000

10000

100000

   

pg
/m

l
t4 IL-12

Sham Control D0.5 D1 D2 S0.2

100

1000

10000

100000

 

pg
/m

l

t4 IFN-

Sham Control D0.5 D1 D2 S0.2

1

10

100

1000

10000

100000

pg
/m

l

Figure 3.10 Plasma cytokine levels (IL-2, IL-12 and IFN-γ) for all groups 4 h post-
endotoxaemia

IL-2: Kruskal-Wallis test (post hoc Mann Whitney (sham), **P<0.01 vs. controls, post
hoc unpaired t-tests (D0.5, D1 and D2), *P<0.05 vs. controls)
IL-12: Kruskal-Wallis test (post hoc Mann Whitney (sham, D1), *P<0.05 vs. controls)
IFN-γ: Kruskal-Wallis test (post hoc Mann Whitney (sham), **P<0.01 vs. controls)

(IL-2 and IL-12: n=7 D2, n=8 all others; IFN-γ: n=8 D0.5 and D1, n=7 sham and S0.2,
n=6 controls, n=4 D2)



132

Sham control D0.5 D1 D2 S
0

5

10

15

20





pl
as

m
a 

ur
ea

 (m
m

ol
 / 

l)

Sham control D0.5 D1 D2 S
0

20

40

60

80

100

120

140

 



pl
as

m
a 

cr
ea

tin
in

e 
(

m
ol

 / 
l)

Figure 3.11 Plasma urea and creatinine.

Urea: One-way ANOVA (Bonferroni’s post-tests vs. controls: ** P<0.01, ***P<0.001)
Creatinine: Kruskal-Wallis test (post hoc unpaired t-tests (sham and D1) **P<0.01 compared with controls; post hoc Mann-Whitney
test (D2) *P<0.05 compared with controls).
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Figure 3.12 Plasma ALT and AST

ALT: One-way ANOVA (Bonferroni’s post-tests vs. controls: * P<0.05, ***P<0.001)
AST: Kruskal-Wallis test (post hoc unpaired t-tests (sham) *P<0.05 compared with controls)
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3.4 Discussion

This study showed that, in a rodent model of laparotomy and endotoxaemia, dopexamine

can attenuate the systemic inflammatory response, limit the degree of lactic acidosis, and

protect against organ injury. Dopexamine infusion was associated with a reduced systemic

inflammatory response, as evidenced by decreased circulating levels of TNF-α, IL-1β, and IL-

6, and decreased leucocyte expression of the cell-adhesion molecule CD11b. In turn, this

was associated with reduced pulmonary MPO activity, a marker of pulmonary leucocyte

infiltration. Overall, dopexamine-treated animals sustained less organ injury than did control

animals. Interestingly, these potentially beneficial effects occurred at doses of dopexamine

that had little or no effect on blood pressure.

These findings suggest that after a combined surgical and infectious insult, dopexamine can

attenuate the increase in circulating levels of inflammatory mediators and reduce leucocyte

expression of the cell-adhesion molecule CD11b. As a consequence, leucocyte-endothelial

adhesion and transmigration into tissues is decreased, with a reduction in organ injury. This

suggestion is consistent with the findings of previous studies indicating that catecholamines

can inhibit cytokine release and that CD11b integrins mediate pulmonary neutrophil

recruitment (196, 218, 338). Although not intrinsically chemotactic, TNF-α and IL-1β

upregulate endothelial and leucocyte expression of adhesion molecules (339, 340), and

hence promote leucocyte-endothelial adhesion and migration into tissues. Previous work

also showed that adrenergic agents can decrease leucocyte expression of adhesion

molecules (207), whereas in vivo microscopy suggests that dopexamine may decrease

leucocyte-endothelial adhesion in the mesenteric circulation (195, 196). Dopexamine has

been shown to decrease free radical-mediated tissue injury in other animal models (242,

274), whereas the β2-agonist terbutaline reduced nitric oxide and superoxide levels in

endotoxaemic rats (246). This latter finding is particularly interesting as the early changes in

endotoxaemic renal failure relate to changes in intra-renal haemodynamics (but not renal
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blood flow), and changes in tubular transporters – all predominantly mediated by TNF-α, IL-

1β and IFN-γ and all ameliorated by β2-adrenoceptor agonists such as dopexamine,

fenoterol, clenbuterol and terbutaline (233, 250, 251, 341-346).

Although salbutamol demonstrated similar efficacy in reducing CD11b expression and

pulmonary MPO activity, this was neither associated with a similar pattern of cytokine

amelioration, nor with an amelioration of organ injury. Cytokines such as IL-1β and

stimulators of IFN-γ synthesis (such as IL-12 and IL-2 (347, 348)) were significantly reduced

in dopexamine treated animals but not salbutamol treated animals. Indices of perfusion were

neither ameliorated nor exacerbated. MAP was significantly reduced compared to

dopexamine and control groups. These findings could suggest the beneficial effects of

dopexamine on CD11b integrin expression and pulmonary MPO activity are β2-adrenoceptor

mediated, though they could possibly point away from cytokines as the intermediary that

drives this process. However plasma cytokine levels reflect the subtotal of cytokine

responses from several different body compartments that enter the circulation. If neutrophil

activation occurs in a compartment of the body where the effects of salbutamol and

dopexamine on cytokine release are similar, the hypothesis that neutrophil activation is

inhibited by a β2-adrenoceptor mediated reduction in cytokine levels could still be valid. In

this case the difference in plasma cytokine levels may reflect a failure of salbutamol to

ameliorate cytokine release from other body compartments and may also explain the

difference in organ injury. The question arises why the effects of salbutamol and dopexamine

on different body compartments is different if they are equipotent at the β2-adrenoceptor?

This could relate to more potent vasodilator effects of salbutamol – a reduction in perfusion

pressure to some organs (e.g. kidneys) and a re-distribution of blood flow to other tissue

beds (such as skeletal muscle) when salbutamol is infused. This might relate to the other

differential features of drug action such as noradrenaline reuptake inhibition.

There are additional potential explanations. Should the doses of salbutamol and dopexamine

at the β2-adrenoceptor have not been equipotent (Figure 3.3 suggests this is not the case),
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there would be no reason to expect an equivalent response. Such a possibility could be

supported by other in vivo studies where a 6-fold lower salbutamol than dopexamine dose

did not result in equivalent amelioration of organ injury, but an equivalent dose did (240).

Finally, even if traditional cAMP related signalling pathways were activated to the same

degree at these doses, a differential efficacy of these two drugs on non-cAMP related

pathways involved in inflammation is not precluded.

Several features of the model are consistent with similar studies and therefore reassuring.

Endotoxaemia and bacteraemia are associated with significant increases in HR and usually

a significant though only modest reduction in MAP in rodents (though this is dose

dependent) (195, 196, 270-272, 277, 278, 349). Furthermore following LPS administration,

plasma TNF-α levels peak at approximately 1 hour and continue to remain elevated above

baseline for up to 4 h after endotoxin bolus whereas IL-1β and IL-6 do not peak even by 3 to

4 hours post-endotoxin (196, 350-352). Six hours of rodent endotoxaemia has previously

been shown to be associated with an upregulation of leucocyte CD11b and also to cause

significant renal and hepatic injury (302). Both bacteraemia and endotoxaemia are

associated with a 30 -50% decrease in glomerular filtration rate, urine flow and sodium

excretion, as soon as 30 minutes following injection (277, 278). Thus profound changes

affecting renal filtration occur early following an exposure to bacterial breakdown products

(studies suggest this is not due to changes in intravascular volume or renal plasma/blood

flow alone) (349, 353-355). The increases in plasma urea and creatinine seen here are

consistent with these findings. The findings of the experiment (with respect to dopexamine)

are also consistent with the literature in that a reduction in plasma TNF-α, amelioration of

CD11b upregulation and amelioration of renal dysfunction was seen (196, 207, 278).
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Chapter 4 - Effects of dopexamine in a rodent model of
laparotomy and normotensive endotoxaemia:
macrohaemodynamics, microhaemodynamics and
effects on organ dysfunction

4.1 Introduction

The previous study established that dopexamine could ameliorate organ dysfunction in a

normotensive model of laparotomy and endotoxaemia. Although there were demonstrable

effects of dopexamine on markers of inflammation and also biochemical markers of

perfusion, it is unclear how this relates to indices of global and microvascular blood flow. The

following experiment was conducted in order to address those questions.

4.2 Methods

48 Male Wistar rats (220-410 g) received a standard diet and water ad libitum before

experiments. All procedures were performed with Institutional approval and in accordance

with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act

1986. Anaesthesia was induced by ip injection of thiopentone (120 mg/kg) and maintained

with supplementary injections administered according to regular testing for limb withdrawal

to a standard stimulus or signs of inadequate anaesthesia. Animals were placed on a heated

mat and maintained at 37 ± 0.5˚C. A tracheostomy was performed with a short section of

polyethylene tubing (internal diameter 1.67 mm) to maintain airway patency and facilitate

spontaneous respiration. The right carotid artery was cannulated to allow blood sampling

and continuous haemodynamic monitoring, and the left jugular vein for drug and fluid

administration. A 2cm mid-line incision was then made through the abdominal wall.

Following this the bowel was evacuated into a moist cotton receptacle. Blunt dissection was

then performed to access the retroperitoneum and the abdominal vasculature. After isolation



138

from the vena cava, a 1.5-mm ultrasonic aortic transit time flow probe (MA1.5PRB;

Transonic Systems Inc., Ithaca, NY, USA) was placed on the infra-renal aorta to measure

aortic blood flow. The bowel was then replaced in the abdominal cavity, except for a loop of

ileum just proximal to the cecum. The exposed bowel was kept moist by the application of

0.9% saline drops through a pipette. The laparotomy incision above and below the exit of the

terminal ileal loop from the abdomen was then closed with 5.0 Vicryl to prevent excessive

insensible losses.

A 1.5-cm incision was subsequently made in the antemesenteric border of the ileum by

using unipolar diathermy for later placement of laser Doppler probes. To prevent thermal

damage to the ileum, the section was immediately washed with normal saline. The mucosal

surface of the bowel was exposed and gently cleansed with 0.9% saline by using cotton-

tipped buds in preparation for placement of laser Doppler probes. The animal was then

placed on a Perspex stage in the right lateral position so that the ileal loop rested on a raised

section of the stage, at the level of the laparotomy incision. Subsequently the bowel was

fixed at two points on either side of the incision with a small amount of tissue glue to prevent

movement artefact. After application of the laser Doppler probes (see later), an impermeable

cover for the ileal loop was created by placing small pieces of pre-cut Saran wrap over the

loop and around the probes, until the ileal preparation was airtight. This was followed by a 5-

ml/kg bolus of intravenous normal saline to replace insensible fluid losses and by a 15-

minute stabilization period. Blood sampling for plasma lactate and arterial blood gases was

performed, followed by a second 15-minute stabilization period before measurement of

regional microvascular flow. The only other blood samples taken were at the end of the

experiment for markers of organ injury.

Endotoxaemia was induced in five of six groups by administration of Escherichia coli

lipopolysaccharide (LPS) 0111:B4 (6 mg/kg) over a 10-minute period (sham group received

0.9% saline vehicle). Administration of LPS was followed by 4 hours of fluid resuscitation with

an infusion of intravenous 0.9% saline at 4.3 ml/kg/h. Sham and control animals received
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only 0.9% saline infusion. Three different concentrations of dopexamine were added to three

of the groups’ infusion fluid, producing dopexamine infusion rates of 0.5, 1, and 2μg/kg/min

for groups D0.5, D1, and D2, respectively. Group S had salbutamol added to its resuscitation

fluid to produce a salbutamol infusion rate of 0.2μg/kg/min when the fluid was infused at

4.3ml/kg/h. The dose of salbutamol was selected on the grounds of previous studies

conducted in isolated guinea pig tracheal preparations showing a ten-fold greater potency of

salbutamol at the β2 adrenoceptor when compared with dopexamine (44). The experiment

ended after 4 hours of resuscitation.

Analysis of plasma lactate, base deficit and renal and hepatic function

200μl of blood was taken at baseline and at the end of the experiment for measurement of

plasma lactate concentration (Accutrend Lactate; Roche Diagnostics, Basel, Switzerland)

and base deficit (Radiometer ABL77, Copenhagen, Denmark). A 1ml blood sample was also

taken at the end of the experiment for measurements of urea, creatinine, alanine

aminotransferase and aspartate aminotransferase by a commercial veterinary laboratory

(IDEXX Laboratories Ltd, Sussex, UK) who were blinded to treatment.

Measurement of ileal red cell flux

Two fibre-optic laser Doppler flux slave probes (P10k; Moor Instruments, Axminster, UK)

suspended from clamps were lightly applied to the mucosal and serosal surfaces of the

ileum to determine red-cell flux, a measure of regional microvascular blood flow. Two probes

were placed on the ileum, one on a mucosal site and one on a serosal site away from visible

blood vessels. These were then fixed with tissue glue, a technique that causes minimal

interference with tissue microvascular flow. Slave Probes were calibrated daily by using PFS

flux standard (Moor Instruments, Axminster, UK) at 23˚C before experiments. Slave probes
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were reattached to master probes (MP10M200ST; Moor Instruments), which in turn were

connected to a satellite monitor (moorLAB; Moor Instruments). Connection of the server to a

desktop computer allowed continuous recording of red-cell flux and the direct current or DC

signal (index of reflected light intensity and hence quality of probe contact). Laser light of

780-nm wavelength with a 40-Hz sampling rate and a 30-degree angular spread allowed a

sampling volume of approximately 1 mm3. The probe readout was monitored for 2 minutes to

ensure adequate contact before fixation. As the thickness of rat ileum is less than the depth

of measurement achieved with LDF probes, red-cell flux was averaged between mucosal

and serosal sites to minimize bias due to heterogeneity in regional microvascular flow.

Measurement of aortic blood flow

A 1.5-mm perivascular probe was applied with water-soluble sonicating gel and sited as

described earlier. The probe was connected to a TS420 monitor (Transonic Systems Inc.,

Ithaca, NY, USA), which was connected to a Powerlab/8SP monitoring system (AD

Instruments). This allowed continuous recording of aortic blood flow and waveform-derived

HR and calculation of a measure of stroke volume. Aortic blood flow was indexed to body

weight to provide a measure of changes in stroke volume index (SVI) and cardiac index (CI).

MAP was indexed to aortic blood flow to give a measure of total peripheral resistance. Probe

calibration was performed daily according to the manufacturer’s instructions before

experiments.

Statistical analysis

All data were graphed and statistically analysed using PrismGraph 4.0 (GraphPad Software,

Inc., San Diego, CA). D’Agostino and Pearson Omnibus normality testing was performed on

all data (Kolmogorov-Smirnov testing if missing data points meant numbers in the group

were too small for this). Normally distributed data was tested by using one-way analysis of
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variance (ANOVA) for comparison across all groups at a given time point, and two-way

ANOVA, for changes in multiple groups over time (that is, repeated measurements). Post-

testing was performed with Bonferroni tests. When data were not normally distributed in at

least one group for any measurement (for example, urea), the Kruskal-Wallis test was used

in place of one-way ANOVA, and appropriate t-tests against controls for post-testing were

used, depending on whether the individual groups were normally distributed or not.

Significance was set at P<0.05.

4.3 Results

There was no statistically significant difference between control and other groups regarding

animal weight, dose of anaesthetic or volume of fluid received (Table 4.1). There was no

significant difference in baseline haemodynamics or haematocrit between controls and any

group, and no significant increase in haematocrit over the period of resuscitation for any

group (Figure 4.1 to 4.3). There were no significant differences between ileal mucosal or

serosal red cell fluxes (Figure 4.4) therefore serosal and mucosal data were pooled to give

total ileal red cell flux.

Experiment 2
Sham Control D 0.5 D1 D2 S

Weight (g) 275
(265 – 305)

320
(290 – 320)

320
(285 – 325)

305
(290 – 320)

300
(280 – 300)

330
(310 – 335)

Fluid
(ml/kg)

24.3
(23.8 – 24.3)

23.8
(23.8 – 24.0)

23.9
(23.7 – 24.2)

23.8
(23.5 – 23.9)

24.0
(23.8 – 24.1)

23.8
(23.8 – 23.9)

Thiopental
(mg/kg)

172.8 (3.2) 156.5 (7.6) 160 (9.3) 152 (6) 157.2 (4.3) 150.9 (5.8)

Table 4.1 Baseline characteristics for experiment 2 (n=8 all groups).

Data presented as mean (SEM) when all groups normally distributed, otherwise
median (IQR) if ≥ 1 group not normally distributed.
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Figure 4.1 Trends in haematocrit from baseline (left) to end (right) for all groups

Baseline MAP, HR, CI, SVI, TPR and lactate were not significantly different between groups.

In the sham group, CI and SVI increased progressively (Figure 4.5), whereas ileal flux

decreased to a mean of 82% of baseline over a 4-hour period (P < 0.05 versus baseline)

(Figure 4.6). In control-group animals, ileal flux also decreased over time, but more rapidly

and to levels below those observed in sham animals (P < 0.05 minimum, from 30 minutes

onward) (Figure 4.7). This was associated with a moderate but significant decrease in CI

over 4 hours (P < 0.05 versus baseline) and a more-marked decrease in SVI over the same

period (P < 0.0005 versus baseline) and a progressive increase in TPR (Figure 4.5 and 4.6),

possibly reflecting the importance of compensatory tachycardia in this model. Even when CI

was significantly increased above baseline, control group ileal red cell flux was significantly

decreased from baseline (Figure 4.8). By 4 hours, control-group plasma lactate (P < 0.01)
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and base deficit (P < 0.05) were significantly increased compared with sham animals (Figure

4.9). With regard to organ dysfunction, endotoxaemia also resulted in organ injury, although

the changes did not reach statistical significance for AST (Figure 4.10 and 4.11).

The addition of dopexamine at any dose did not significantly affect MAP and did not

attenuate the LPS-induced decreases in SVI and CI, despite a significant increase in heart

rate. Moreover, dopexamine did not influence the decrease in ileal red-cell flux even when CI

was significantly increased above baseline (Figures 4.5, 4.7 and 4.8). Dopexamine did not

appear to ameliorate the increases in TPR seen in controls. Dopexamine at any dose (and

when dopexamine data were pooled) was not associated with any significant differences in

end-experiment plasma lactate, base deficit, or organ function when compared with controls,

with the exception of ALT in the D2 group (P < 0.05 versus controls) (Figures 4.9 – 4.11).

Salbutamol behaved in a similar manner to D2 so that the S group failed to significantly affect

MAP, failed to attenuate the LPS-induced decreases in SVI and CI and also failed to

influence the decrease in ileal red-cell flux even when CI was significantly above baseline

(Figures 4.5 – 4.8). Salbutamol was not associated with any improvement in indices of tissue

perfusion or renal function when compared to controls even though salbutamol was not

associated with the high TPR seen in control animals (Figure 4.6). Salbutamol ameliorated

the increase in plasma ALT when compared to controls.
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Figure 4.2 MAP for all groups
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Figure 4.3 Heart rate for all groups

Two-way ANOVA (Bonferroni’s post-tests, *P <0.05, **P<0.01, ***P<0.001 vs. controls)



146

D1 fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

sham fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

D0.5 fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

control fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

D2 fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

S fluxes

-30 0 30 60 90 120 150 180 210 240
20

40

60

80

100

120
mucosal
serosal

time (mins)

Figure 4.4 Comparison of microvascular flux from mucosal and serosal probes for each group.
Two-way ANOVA failed to demonstrate differences between mucosal and serosal red cell flux at any time for any group.
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Relative cardiac index
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Figure 4.5 Relative cardiac indices and stroke volume indices

Two-way ANOVA (Bonferroni’s post-tests *P<0.05, **P<0.01, ***P<0.001, vs. controls).

Stroke volume index significantly increased from baseline in controls only at 30 min. CI increased significantly from baseline in
controls, D0.5 and S at 30 and 60 min, and in D2 at 30 min only (see Figure 4.6).
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Relative Total Peripheral Resistance
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Figure 4.6 Relative TPR for all groups

Two-way ANOVA (Bonferroni’s post-tests, *P<0.05, **P<0.01, ***P<0.001 vs. shams)
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Ileal red cell flux
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Figure 4.7 Total ileal red flux for all groups

Two-way ANOVA (Bonferroni’s post-tests * P<0.05, ** P<0.01, *** P<0.001 vs. controls)
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Figure 4.8 – Cardiac index vs. ileal flux in controls (first hour of experiment)

When compared to baseline, despite early and significant increases in relative cardiac
index, ileal red cell flux decreased in the control group (Paired t-tests, *P<0.05 vs.
baseline). Neither dopexamine at any dose, nor salbutamol significantly altered this
profile.
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Figure 4.9 Indices of tissue perfusion.

Plasma lactate (n=8 all groups) and base deficit (D1 n=7, all others n=8):
One-way ANOVAs (Bonferroni’s post-tests vs. control: *** P<0.001)
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Figure 4.10

Plasma urea and creatinine (n=8 all groups)

Urea: Kruskal-Wallis test (post hoc Mann-Whitney (sham), ***P<0.001)
Creatinine: Kruskal Wallis test (post-hoc unpaired t-test (sham), ***P<0.001)
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Figure 4.11 Plasma ALT and AST (n=8 all groups)

ALT: Kruskal Wallis test (post hoc Mann-Whitney post-testing *P<0.05, **P<0.01 vs. controls).
AST: One-way ANOVA P=0.0239 overall. Post-test not significant for any single group compared to control group
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4.4 Discussion

This study showed that, in a rodent model of laparotomy and normotensive endotoxaemia,

clinically relevant doses of dopexamine did not significantly alter haemodynamics. Early

increases in CI were not sustained and over the four hour period CI and SVI decreased.

Furthermore dopexamine failed to improve ileal red cell flux, as assessed by laser Doppler

flowmetry. No beneficial effect of dopexamine on indices of tissue perfusion or organ function

was demonstrable either, and only at the highest dose of dopexamine was an amelioration of

plasma ALT seen. In this preparation salbutamol behaved in the same way as dopexamine,

failing to ameliorate any haemodynamic or tissue perfusion indices and only ameliorating the

increase in plasma ALT.

Several features of the model are consistent with similar studies, including the previous

experiment, and are therefore reassuring. Endotoxaemia and bacteraemia are associated

with significant increases in HR and usually a significant though only modest reduction in

MAP in rodents (though this is dose dependent) (195, 196, 270-272, 277, 278, 349).

Furthermore following LPS administration in rodents, intestinal microvascular blood flow

decreases rapidly (by 1 hour) to 50% of baseline and remains depressed up to 4 h following

a bolus of endotoxin (196, 356). This is in keeping with findings of intense splanchnic

vasoconstriction in shock states (357), and the general increase in TPR seen in

endotoxaemic controls here. However, the findings of this experiment (with respect to

dopexamine) are not consistent with other studies where dopexamine was shown to

preserve intestinal microvascular blood flow at these doses or where it ameliorated renal

injury (196, 278). More importantly, the findings of this experiment with respect to the effect

of dopexamine on indices of tissue perfusion and organ function are not consistent with

those of the previous experiment which is arguably much closer in design to this than any

other study.

The effects of dopexamine on biochemical indices of tissue perfusion and organ function in
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this experiment go against those of the previous experiment and are therefore somewhat

problematic. One possible explanation is that improvements in microvascular perfusion are

required for improvements in biochemical indices of tissue perfusion and also in order to

ameliorate organ function. Such a suggestion finds support in another study where intestinal

microvascular blood flow was ameliorated by dopexamine in association with an amelioration

of plasma TNF-α (196), as seen in the previous experiment. This may have been possible if

dopexamine had prevented intestinal vasoconstriction, possibly resulting in a reduction in

TPR. This did not occur though and partly supports the findings of no significant increase in

intestinal microvascular flow with dopexamine in this experiment. On the other hand,

salbutamol was not associated with the significantly higher levels of TPR seen in controls yet

did not lead to any improvements in intestinal microvascular blood flow, in indices of tissue

perfusion or organ function. This could be explained by preferential vasodilatation in other

microvascular beds such as skeletal muscle though. If this was the case, minor differences in

the experimental protocol may have led to subtle differences in fluid loading conditions,

resulting in an improved perfusion in dopexamine treated animals in the first experiment but

not this one (there is possibly some support for this when comparing dopexamine heart rates

from the current and previous experiment – Figures 3.3 and 4.3). Assuming that

microvascular perfusion was only significantly different for dopexamine across the two

experiments could also explain why the results for sham, control and salbutamol

experimental groups were consistent across the two experiments.

Although ileal red cell flux was not shown to improve in this experiment, subtle changes in

microvascular behaviour may have occurred both in this and the previous experiment, but

laser Doppler flowmetry may not have detected them (as this monitoring modality cannot

provide data on qualitative changes in the microcirculation). However, this possibility would

not explain why dopexamine failed to improve organ function in this experiment.

The findings with dopexamine in this experiment are also in contrast to those of a recent

clinical study in high risk surgical patients which identified significant increases in tissue
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microvascular flow and oxygenation after surgery (147). Although there was no increase in

haematocrit in this experiment (suggesting the volume status of the animals did not

deteriorate over the course of the experiment), several differences between this experiment

and the clinical study (such as the nature and severity of the inflammatory insult, the quantity

of fluid delivered and the differences between the subjects under study) could account for

these differences.
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Chapter 5 – Effects of dopexamine in a rodent model of
laparotomy and normotensive endotoxaemia:

macrohaemodynamics, intravital microscopy and effects
on organ dysfunction

5.1 Introduction
The previous experiments demonstrated that dopexamine has anti-inflammatory actions in

models of laparotomy and endotoxaemia - decreasing plasma cytokine levels, modulating

neutrophil CD11b expression and decreasing neutrophil infiltration in the lung. Improving

microvascular perfusion (and consequently tissue oxygenation) is thought by some to play a

key role in how dopexamine exerts its beneficial effects, and indeed in the previous

experiment when dopexamine did not augment microvascular blood flow, the striking

improvements in organ function seen in the first experiment were not replicated. Why there

was a discrepancy between experiments regarding the effects of dopexamine on organ

function when the model used was remarkably similar is uncertain.

In this study the previous model of rodent laparotomy and endotoxaemia was modified in

two ways. Firstly endotoxaemia involving LPS and PepG (as opposed to LPS alone) was

used to assess the validity of the findings in a model closer to polymicrobial sepsis.

Secondly the model was altered to allow the use of intravital microscopy to assess the

effects of dopexamine on the intestinal microcirculation and on intestinal leucocyte-

endothelial adhesion. Finally the comparator salbutamol dose was changed to match

1μg/kg/min dopexamine. Given the tendency to a lower MAP in the first experiment with

0.2μg/kg/min salbutamol it was hoped to avoid this possible confounder by selecting a lower

dose of salbutamol. A 2μg/kg/min dopexamine group was no longer strictly necessary and

furthermore the beneficial effects of dopexamine were seen at 1μg/kg/min.

By modifying the experiment it was aimed to reconfirm that dopexamine could improve

organ function as previously shown, to assess whether there were subtle changes in the
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microcirculation that were not detectable by laser Doppler flowmetry and to assess whether

or not the improvements in organ function were linked purely to the immune effects of

dopexamine.

5.2 Methods
30 male Wistar rats (240-340 g) received a standard diet and water ad libitum before

experiments. All procedures were performed with institutional approval and in accordance

with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act

1986. Anaesthesia was induced by intraperitoneal injection of thiopental (120 mg/kg) and

maintained with supplementary injections administered according to regular testing for limb

withdrawal to a standard stimulus or signs of inadequate anaesthesia. Animals were placed

on a heated mat and maintained at 37 ± 0.5˚C. A tracheostomy was performed, following

which a short section of polyethylene tubing (internal diameter, 1.67 mm) was inserted to

maintain airway patency and to facilitate spontaneous respiration. The right carotid artery

was cannulated to allow blood sampling and continuous monitoring of heart rate (HR) and

mean arterial pressure (MAP). The left jugular vein was cannulated for drug and fluid

administration. A 2-cm midline incision was then made through the abdominal wall to expose

the peritoneum. Following laparotomy, bowel was evacuated into a moist cotton receptacle.

Blunt dissection was then performed to access the abdominal vasculature. After isolation

from the vena cava, a 1.5-mm ultrasonic aortic transit time flow probe (MA1.5PRB;

Transonic Systems Inc., Ithaca, NY, USA) was placed on the infra-renal aorta to measure

aortic blood flow. The bowel was then replaced in the abdominal cavity, except for a loop of

ileum just proximal to the cecum. The exposed bowel was kept moist by the application of

0.9% saline drops through a pipette. The laparotomy incision above and below the exit of the

terminal ileal loop from the abdomen was then closed with 5.0 vicryl to prevent excessive

insensible losses. The animal was then placed on an infra-red animal heating mat on a

specially constructed intravital microscopy platform and placed in a right lateral position so
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the ileal loop fell on to a raised section of the platform that was at was at the level of the

laparotomy incision. The temperature of the raised section was thermostatically controlled at

37.5C in order to ensure the exposed bowel was not at a significantly lower temperature to

core temperature. This manoeuvre did not interfere with the ability of the ultrasonic probes to

measure aortic blood flow. Subsequently the bowel was covered with Saran wrap to prevent

evaporative losses from its surface and maintain bowel microvascular integrity (322).  This

was followed by a 5ml/kg bolus of normal saline to make up for insensible losses and a 15

min stabilisation period when microvascular flow could settle and the animal could be re-

warmed if necessary. A primary set of arterial blood samples was then taken (see below),

the volume taken being replaced with an equal volume of normal saline. Animals were

allowed to stabilize for 15 min before being allocated to one of five groups (sham, control,

D0.5, D1, S).

Endotoxaemia was induced in four of five groups by administration of Escherichia coli

lipopolysaccharide 0111:B4 (LPS - 1 mg/kg) and peptidoglycan (PepG - 0.3 mg/kg) over a

10 minute period (sham group receiving 0.9% saline vehicle). Sham and control animals

received only 0.9% saline infusion at 4.3ml/kg/h. Two different concentrations of dopexamine

were added to two of the remaining three groups’ infusion fluid, producing dopexamine

infusion rates of 0.5 and 1μg/kg/min for groups D0.5 and D1, respectively. Group S had

salbutamol added to its resuscitation fluid to produce a salbutamol infusion rate of

0.1μg/kg/min when the fluid was infused at 4.3ml/kg/h. This dose of salbutamol was selected

as previous studies conducted in isolated guinea–pig tracheal preparations showing a 10-

fold greater potency of salbutamol at the β2 adrenoceptor when compared with dopexamine

(44). Intravital microscopy was performed half way through resuscitation (during which time

measurements of global haemodynamics were not possible to perform). The experiment

ended after 5 hours of resuscitation.
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Analysis of plasma lactate, base deficit and renal and hepatic function

200μl of blood was taken at baseline and at the end of the experiment for measurement of

plasma lactate concentration (Accutrend Lactate; Roche Diagnostics, Basel, Switzerland)

and base deficit (Radiometer ABL77, Copenhagen, Denmark). A 1ml blood sample was also

taken at the end of the experiment for measurements of urea, creatinine, alanine

aminotransferase and aspartate aminotransferase by a commercial veterinary laboratory

(IDEXX Laboratories Ltd, Sussex, UK) who were blinded to treatment.

Measurement of aortic blood flow

A 1.5-mm perivascular probe was applied with water-soluble sonicating gel and sited as

described earlier. The probe was connected to a TS420 monitor (Transonic Systems Inc.,

Ithaca, NY, USA), which was connected to a Powerlab/8SP monitoring system (AD

Instruments). This allowed continuous recording of aortic blood flow and waveform-derived

HR and calculation of a measure of stroke volume. Aortic blood flow was indexed to body

weight to provide a measure of changes in stroke volume index (SVI) and cardiac index (CI).

Probe calibration was performed daily according to the manufacturer’s instructions before

experiments.

Intravital Microscopy

15 min before the midpoint of fluid resuscitation, 0.2mls of rhodamine 6G (Sigma Aldrich)

was administered intravenously in order to better enhance the visibility of leucocytes during

IVM. At the midpoint of resuscitation the platform was transferred to the stage of an intravital

microscope and microscopy performed to assess leucocyte rolling and adhesion in intestinal

venules. A further 0.2mls of FITC labelled albumin (Sigma Aldrich) was then administered

intravenously in order to measure functional capillary density, arteriolar and venular
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diameters. The platform was then removed from the stage and observations continued as

before.

Statistical analysis

Kolmogorov-Smirnov normality testing was performed for all groups. Normally distributed

data was tested using one-way analysis of variance (ANOVA) for comparison across all

groups at a given time point. Post-testing was performed with Bonferroni’s tests. When data

was not normally distributed in at least one group for any measurement (e.g. AST), the

Kruskal-Wallis test was used in place of one-way ANOVA, and appropriate t-tests

against controls for post-testing depending on whether the individual groups were normally

distributed or not. Two-tailed paired t-tests were used to compare haemodynamics at

baseline with those at other time points for animals within the same group. Data were

analysed with PrismGraph 4.0 (GraphPad Software, San Diego, USA). Significance was set

at P<0.05.

5.3 Results

There was no statistically significant difference between control and other groups regarding

weight or volume of fluid received, and only the sham group required significantly more

anaesthetic to remain anaesthetised for the duration of the experiments than controls

(Table 5.1). There was no significant difference in baseline haemodynamics, base deficit,

lactate or haematocrit between controls and any group, and no significant increase in

haematocrit over the period of resuscitation for any group (Table 5.2).

In the sham group, MAP and HR did not change significantly but CI and SVI increased

progressively (Table 5.3, Figures 5.1 to 5.4). Compared with the sham group and baseline,

controls had a significantly higher HR (P < 0.05) and a significantly lower SVI and CI at 5

hours (Figures 5.2 to 5.4). MAP was an average of 23mmHg lower compared with baseline
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Sham Control D 0.5 D1 S

Weight (g) 295
(250 – 318)

305
(290 – 320)

310
(290 – 330)

320
(300 – 335)

300
(290 – 305)

Fluid (ml/kg) 29.9
(29.2 – 30.5)

29.4
(29.3 – 29.5)

29.8
(29.4 – 30.5)

30.1
(29.4 – 30.5)

29.8
(29.4 – 30.4)

Thiopental
(mg/kg) 186.6 (8.8)** 141.4 (5.0) 141.6 (6.4) 142.2 (7.0) 157.5 (7.3)

Table 5.1 Baseline characteristics for experiment 3

(n=6 all groups). Data presented as mean (SEM) when all groups normally distributed,
otherwise median (IQR) if ≥ 1 group not normally distributed

One-way ANOVA (post hoc Bonferroni’s test, **P<0.01 vs. controls)

at this time though the result was not significant (P=0.052) (Figure 5.1). At this point control

group plasma base deficit and lactate were increased compared with sham animals, the

latter significantly (P < 0.05) (Figure 5.5). With regard to organ dysfunction, endotoxaemia

also resulted in organ injury (the changes did not reach statistical significance for ALT on

post-testing) (Figures 5.6 and 5.7). When IVM was commenced, control group SVI and CI

were significantly less than shams (Figures 5.3 and 5.4) and TPR was significantly greater

(Figure 5.8). In association with the increased TPR, intestinal arteriolar A1 and A3 diameters

were significantly smaller than in shams (both P < 0.01, Figure 5.9). However, neither FCD in

any layer of the intestinal muscularis nor intestinal venular diameters were significantly

different (Figure 5.10 and 5.11). Compared to shams, the number of leucocytes seen to

be rolling or firmly adherent in V3 venules at this time was significantly reduced and

increased, respectively, in the control group (Figures 5.12 and 5.13). However, in V1

venules there was no statistically significant difference in median values of rolling or

adherent leucocytes.
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Sham Control D 0.5 D1 S

Initial HR (bpm) 378
(357 – 421)

399
(379 – 417)

415
(390 – 420)

379
(356 – 441)

392
(370 – 423)

Final HR (bpm) 371 (8)*** 447 (12) 465 (15) 478 (9) 445 (5)

Initial MAP (mmHg) 120 (7) 111 (3) 114 (5) 108 (3) 110 (6)

Final MAP (mmHg) 114
(95 – 133)

93
(69 – 101)

81
(76 – 106)

94
(79 – 106)

78
(70 - 106)

Initial haematocrit (%) 39.0
(35.5 – 42.5)

42.5
(38.0 – 43.5)

45.5
(39.0 – 49.0)

42.0
(41.5 – 43.5)

40.5
(36.0 – 45.5)

Final haematocrit (%) 42.5 (1.4) 41.0 (1.0) 42.8 (0.6) 39.3 (1.0) 37.5 (2.2)

End experiment lactate
(mmol/L) 1.7 (0.2)* 3.4 (0.5) 3.1 (0.3) 2.6 (0.4) 3.8 (0.3)

End experiment base
deficit (mmol/L) - 0.6 (1.0) 4.5 (1.6) 2.9 (1.5) 3.3 (1.5) 6.0 (1.0)

End experiment pH 7.38 (0.02) 7.39 (0.02) 7.36 (0.01) 7.39 (0.02) 7.34 (0.02)

End experiment PaCO2
(kPa) 5.9 (0.4)* 4.3 (0.4) 4.9 (0.3) 4.7 (0.4) 4.7 (0.1)

End experiment PaO2
(kPa)

11.1
(10.0 – 12.0)

12.7
(11.7 – 13.6)

11.6
(10.2 – 12.6)

10.2
(9.9 – 13.8)

11.1
(9.9 – 12.3)

Table 5.2 Baseline and end experiment haemodynamic and blood gas data for
experiment 3

(n=6 all groups). Data presented as mean (SEM) when all groups normally distributed,
otherwise median (IQR) if ≥ 1 group not normally distributed

One-way ANOVA (post hoc Bonferroni’s test, *P<0.05, ***P<0.001 vs. controls)

The infusion of dopexamine at any dose had no significant effect on any

haemodynamic parameter when compared to controls, except heart rate (Figure 5.2).

Although plasma lactate and base deficit was lower in dopexamine treated animals

than in controls, these results were not significant (Figure 5.5). Although plasma

creatinine was improved in the D1 group and there were trends to improvements in

creatinine kinase, hepatic organ injury was not ameliorated by dopexamine (Figures 5.6

and 5.7). Unlike controls, A1 and A3 arteriolar diameters in dopexamine treated groups

were not significantly smaller than shams and TPR was not significantly increased
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compared to shams (Figures 5.8 and 5.9). Muscularis FCD and intestinal venular

diameters were not affected by dopexamine infusion (Figures 5.10 and 5.11). Although

dopexamine infusion had no significant effect on leucocyte rolling and adhesion in V1

intestinal venules, there was a significant amelioration of leucocyte adhesion in V3

venules compared to controls (Figures 5.12 and 5.13).

Sham Control D0.5 D1 S

HR -14bpm (11)
NS

49bpm (10)
(P<0.005)

57bpm (11)
(P<0.005)

87bpm (18)
(P<0.005)

54bpm (9)
(P<0.005)

MAP 6mmHg (10)
NS

-23mmHg (9)
(P=0.052)

-27mmHg (6)
(P<0.05)

-15mmHg (6)
NS

-26mmHg (8)
(P<0.05)

SVI 0.044 (0.014)
(P<0.05)

-0.036 (0.008)
(P<0.01)

-0.050 (0.009)
(P<0.005)

-0.054 (0.003)
(P<0.0001)

-0.020 (0.011)
NS

CI 15.3 (6.2)
NS

-10.5 (3.2)
(P<0.05)

-16.1 (4.2)
(P<0.05)

-14.4 (2.0)
(P<0.001)

3.0 (4.9)
NS

TPR -2.23 (1.02)
NS

0.49 (0.83)
NS

1.33 (0.82)
NS

2.17 (0.46)
(P<0.01)

-1.48 (0.70)
NS

Table 5.3 Mean changes in haemodynamic parameters from baseline to end
experiment for experiment 3

(n=6 all groups). Data presented as mean (SEM) when all groups normally distributed,
otherwise median (IQR) if ≥ 1 group not normally distributed

P values represent the results of paired t-tests of baseline vs. end experiment values
for each group
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Figure 5.1 MAP for all groups

One-way ANOVA at each time point (Bonferroni’s post-tests, *P<0.05 vs. controls)

Values are not plotted for t180 – t210 as animals were undergoing IVM at this time and it was impossible to measure MAP
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Heart Rate
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Figure 5.2 Heart rate for all groups

One-way ANOVA at each time point (Bonferroni’s post-tests, * P<0.05, ** P<0.01, ***P<0.001 vs. controls)

Values are not plotted for t180 – t210 as animals were undergoing IVM at this time and it was impossible to measure HR
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Relative Stroke Volume Index
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Figure 5.3 Relative SVI for all groups

One-way ANOVA at each time point (Bonferroni’s post-tests, *P<0.05, **P<0.01, ***P<0.001 vs. controls)

Values are not plotted for t180 – t210 as animals were undergoing IVM at this time and it was impossible to measure HR and aortic
flow (and therefore calculate relative SVI)
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Relative Cardiac Index
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Figure 5.4 Relative CI for all groups

One-way ANOVA at each time point (Bonferroni’s post-tests, *P<0.05, **P<0.01, ***P<0.001 vs. controls)

Values are not plotted for t180 – t210 as animals were undergoing IVM at this time and it was impossible to measure aortic flow (and
therefore calculate relative CI).
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Figure 5.5 Indices of tissue perfusion.

Plasma lactate (n=6 all groups) and base deficit (control and D0.5 n=5 each, all others n=6):
Lactate: One-way ANOVAs (Bonferroni’s post-tests, *P<0.05 vs. control)
Base deficit: One-way ANOVA P=0.0206 (no groups positive in post-test).
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Figure 5.6 Plasma urea, creatinine and creatinine kinase

(n=6 all groups). One-way ANOVA (Bonferroni’s post-tests, *P<0.05, **P<0.01,
***P<0.001 vs. controls)
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Figure 5.7 Plasma ALT and AST for all groups

(n=6 all groups)

ALT: One-way ANOVA, P=0.0246 (no groups positive in post-tests)

AST: One-way ANOVA (Bonferroni’s post-tests, *P<0.05 vs. controls)
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Figure 5.8 Relative TPR for all groups

One-way ANOVA at each time point (Bonferroni’s post-tests, *P<0.05 vs. shams)

Values are not plotted for t180 – t210 as animals were undergoing IVM at this time and it was impossible to measure MAP and aortic

flow (and so calculate relative TPR).
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The infusion of salbutamol produced a similar pattern of haemodynamics to that seen

with dopexamine. However, there was no suggestion of any improvement in indices of

tissue perfusion and no evidence of any amelioration of organ injury whatsoever

(Figures 5.5 to 5.7). IVM showed that while salbutamol had a similar effect on A3

arteriolar diameters as dopexamine did, it was unable to prevent the significant

constriction seen in A1 arterioles (Figure 5.9) though TPR was similar to that seen in

shams. There were no discernable effects on muscularis FCD or intestinal venular

diameters though. With respect to leucocyte rolling and adhesion, salbutamol

significantly ameliorated the decrease in V3 venular leucocyte rolling and significantly

decreased V3 venular adherent leucocyte density when compared to controls (Figures

5.12 and 5.13). It showed no significant effect on leucocyte rolling and adhesion in V1

intestinal venules.
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Figure 5.9 Intestinal arteriolar diameters (n=6 rats per group)

One-way ANOVA (Bonferroni’s post-tests, *P<0.05 and **P<0.01 vs. shams)

A1: Numbers of vessels measured per group ranged from 10-17
A3: Numbers of vessels measured per group ranged from 8-19
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Figure 5.10 Intestinal functional capillary density in longitudinal and circular layers of the muscularis (n=6 rats per group)

FCD longitudinal: One-way ANOVA P=0.024 (no groups positive in post-tests)
FCD circular ns, FCD muscularis ns (P=0.058)

Number of images per group ranged from 16-25
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Figure 5.11 Intestinal post capillary venular diameters (n=6 rats per group)

V1: Numbers of vessels measured per group ranged from 13-18
V3: Numbers of vessels measured per group ranged from 8-20
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Figure 5.12 Leucocyte rolling in V1 and V3 ileal post-capillary venules (n=6 rats per group)

V3 rollers, Kruskal Wallis test (Mann-Whitney post-tests, *P<0.05, ***P<0.001 vs. controls)

V1: Numbers of vessels observed per group ranged from 15-18
V3: Numbers of vessels observed per group ranged from 8-18
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Figure 5.13 Leucocyte adhesion in V1 and V3 ileal post-capillary venules (n=6 rats per group)

V3 adherent, One-way ANOVA (Bonferroni’s post-tests, *P<0.05, **P<0.01, ***P<0.001 vs. controls)

V1: Numbers of vessels observed per group ranged from 13-18
V3: Numbers of vessels observed per group ranged from 8-18
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5.4 Discussion

This study showed that, in a rodent model of laparotomy and normotensive endotoxaemia,

clinically relevant doses of dopexamine could attenuate the systemic inflammatory response

and protect against renal injury as evidenced by a reduction in leucocyte adhesion in post-

capillary intestinal venules and an amelioration of the rise in plasma creatinine. Although no

discernible effect of endotoxaemia could be found on muscularis FCD, dopexamine

prevented the significant arteriolar constriction that was seen in control A1 and A3 intestinal

arterioles and in this manner altered the microcirculation. No significant effect of dopexamine

on indices of tissue perfusion was demonstrable (though there were trends to improvement).

Interestingly these effects occurred at doses of dopexamine which had little or no effect on

systemic haemodynamics such as MAP, SVI and CI.

Salbutamol produced similar haemodynamics to dopexamine and also ameliorated leucocyte

adhesion in post-capillary venules. Nevertheless salbutamol was unable to ameliorate renal

(or hepatic) injury, did not improve indices of tissue perfusion and only prevented significant

constriction in intestinal A3 arterioles though it was not associated with the high TPR seen in

controls. This supports the suggestion made in the previous experiment that salbutamol is

also a potent vasodilator in non-splanchnic microvascular beds. The findings with both

salbutamol and dopexamine suggest that in this experiment macrohaemodynamics are not

related to the improvements in organ function seen with dopexamine, that the inhibition of

intestinal leucocyte adhesion is β2-adrenoceptor mediated, but that these effects are possibly

less important in improving organ function than the subtle and specific effects dopexamine

produces in the intestinal microcirculation.

In this regard it is worth noting that the distribution of blood flows in the intestinal wall is not

uniform. There is a 3-4 fold higher blood flow in the mucosa compared to the muscularis. In

response to hypoperfusion splanchnic vasoconstriction occurs and there is a neuronally

mediated relative preservation of blood flow to the hypoxia-prone mucosa when compared to
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the muscularis (358-360). The preservation of blood flow to the mucosa while overall

splanchnic vasoconstriction is occurring is the result of autoregulatory mechanisms that

allow the mucosa to escape from vasoconstrictive factors that affect the muscularis (361).

However, with respect to intestinal mucosal blood flow in endotoxaemia, two studies in

rodents show a significant decrease in intestinal arteriolar villous diameters and blood flow

(270, 362) while another failed to show any significant changes in that portion of the

intestinal microcirculation (196). In this experiment the control group showed intense

arteriolar constriction, but no signs of autoregulation (muscularis FCD did not decrease as

expected for blood to be re-directed to the mucosa). Dopexamine at 1μg/kg/min on the other

hand was associated with a lower longitudinal muscularis FCD. This might support the

hypothesis that dopexamine at 1μg/kg/min is capable of preserving mucosal microvascular

blood flow in the ileal bed – with better preserved arteriolar diameters and a preferentially

constricted muscularis vascular bed serving to direct blood to the mucosal layers of the

ileum. This could be due to a unique vasodilator profile of dopexamine (combined β2-

adrenergic and dopaminergic agonist), or alternatively due to an ability of dopexamine to

preserve autoregulation due to anti-inflammatory actions in the vasculature. The latter would

fit in with the clinical findings of preserved flow-mediated vasodilation following dopexamine

treatment (147). It is possible that even if total ileal red cell flux is not dissimilar between

groups (such as demonstrated in experiment 2) that dopexamine, through an autoregulatory

preservation of mucosal microvascular blood flow and oxygenation, prevents disruption of

the hypoxia prone mucosal villi, and in a similar fashion also preserves autoregulation and

oxygen supply-demand matching in other vascular beds. In support of this, it has been

demonstrated that following endotoxaemia dopexamine ameliorates intestinal ischaemia

(assessed by measuring tissue levels of high energy phosphates, levels of ATP breakdown

products (hypoxanthine and uric acid) and ATP/ADP ratio) (272). This explanation could also

account for the difference in lactate and base deficit between controls and shams given FCD

was not significantly different.
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Alternative explanations are possible though. Should plasma lactate in this preparation not

be derived from hypoperfused tissue, but instead from inflamed tissue with an altered

metabolic profile, it would point back to the anti-inflammatory effects of dopexamine rather

than any effects of dopexamine on tissue perfusion per se.

Several features of the model are consistent with similar studies, including the previous

experiments, and are therefore reassuring. Endotoxaemia and bacteraemia are associated

with significant increases in HR and usually a significant though only modest reduction in

MAP in rodents (though this is dose dependent) (195, 196, 270-272, 277, 278, 349). This, as

in the previous two experiments, was replicated here. Following LPS administration in

rodents, intestinal microvascular blood flow decreases rapidly (by 1 hour) to 50% of baseline

and remains depressed up to 4 h following a bolus of endotoxin (196, 356). This is in

keeping with findings of intense splanchnic vasoconstriction in shock states (357), and the

general increase in TPR seen in endotoxaemic controls here and in the previous experiment.

Various studies exploring rheological and immune events in the microcirculation in

endotoxaemia show an increase in adherent leucocyte numbers in intestinal post-capillary

venules (196), something that was also found here. Other changes that occur include a

leukopenia occurring over two hours (195, 270). This study found a significant increase in

adherent leucocytes and a decrease in rolling leucocyte numbers in post-capillary venules,

and it is likely this would have resulted in leukopenia - certainly when conducting flow

cytometry on endotoxaemic samples in experiment 1, it took significantly longer to capture

10,000 neutrophil counts than in shams. Some findings of this experiment are not consistent

with other studies though, such as the failure of endotoxaemia to decrease longitudinal and

circular muscularis functional capillary density (196). Not all in vivo endotoxaemia studies

can produce consistent findings in the intestinal microcirculation though (196, 270, 362), and

this is likely the result of differences in the endotoxin serotype, dose, method of

administration and fluid conditions of each experiment.
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Chapter 6 – Comparison of Experiments 1 to 3

Before presenting the myography experiments, a brief comparison of the preceding in vivo

experiments is made in order to assess how similar the preparations were compared to one

another. This is best done by comparing the behaviour of the control groups:

Table 6.1 Comparison of experimental protocols and outcomes

Experiment 1
(n=8)

Experiment 2
(n=8)

Experiment 3
(n=6) P value

Length of
experiment 4 h 4 h 5h n/a

Endotoxaemia LPS (011:B4)
6mg/kg LPS 6mg/kg LPS 1mg/kg /

PepG 0.3mg/kg n/a

Fluid
administered

(ml/kg)
21.4

(21.0 – 22.6)
23.8

(23.8 – 24.0)
29.4

(29.3 – 29.5) *
<0.05 vs.

experiment 1

Fluid
administered per

hour (ml/kg/h)
5.4 (5.3 – 5.7) 6.0 (5.9 – 6.0) * 5.9 (5.9 – 5.9) * <0.05 vs.

experiment 1

End lactate 4.1 (2.9 – 5.2) 3.9 (3.1 – 4.4) 3.3 (2.2 – 4.6) ns

End base deficit 7.2 (2.5 – 13.1) 8.6 (6.7 – 11.9) 3.2 (1.8 – 8.0) ns

End urea 18.6
(15.0 – 19.9)

17.3
(16.4 – 18.4)

18.7
(15.2 – 19.6) ns

End creatinine 69.7
(56.4 – 87.9)

57.9
(52.0 – 73.4)

57.6
(45.8 – 77.3) ns

End ALT 128.1
(86.3 – 167.9)

81.8
(73.5 – 85.3)

71.5
(62.4 – 109.4) ns

End AST 414 (304 – 480) 320 (274 – 403) 302 (243 – 429) ns

Groups were similar with respect to baseline characteristics (mass, baseline lactate,

baseline base deficit). By design animals in experiments 2 received more fluid to

compensate for the more sustained and severe surgical insult (5ml/kg bolus at the end of

surgery), and in the case of experiment 3 due to the longer experimental time. However

when this was corrected to account for differing lengths of the experiment, values for fluid

administered differed by statistically but not clinically significant volumes. Baseline lactate
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(data not shown), HR and MAP were similar to those of equivalent groups in experiment 1

(see Figure 6.1). Although on first glance there seems to be an overall reduction in the

severity of organ injury in control animals in experiment 2 and 3 as compared to experiment

1, this was not significant (ANOVA or individual t-tests). Similarly the development of organ

injury in experiment 3 appears to coincide with lower plasma lactates and base deficits than

in experiments 1 and 2 – however this was not significant either (ANOVA or individual t-

tests).

The placement of an aortic flow probe in experiments 2 and 3 reveals no significant

differences between control groups for relative stroke volume, relative cardiac index or

markers of total peripheral resistance (though by design there is no data for experiment 2

beyond 4 h) (see Figure 6.2). Given that MAP and HR are similar between the three

experiments, it may be reasonably assumed that a similar cardiovascular profile was present

in experiment 1 too.

Although the models used for the three experiments were similar it is not certain that the

additional surgical preparation required for experiments 2 and 3, and the different nature of

the inflammatory insult did not cause haemodynamic differences between the preparations

(e.g. in microvascular flow). However, the fact that values for HR, blood pressure and lactate

at baseline and throughout the comparable four hour experimental periods were similar

argues against this possibility.
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Figure 6.1 HR and MAP for experiments 1, 2 & 3

Two-way ANOVA of HR and MAP for control groups from experiments 1, 2 and 3 (post hoc Bonferroni’s tests *P<0.05 vs. experiment
2 vs. 1).

In all 3 experiments a biphasic dip in MAP and a tachycardia is seen.
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Figure 6.2 Haemodynamic comparison of experiments 2 and 3.

There were no significant differences between groups at any time point. Relative
stroke volume was significantly below baseline levels from 90 min onwards whereas
relative cardiac index became significantly lower than baseline from 120 min onward
(in both experiments; paired t-tests, all comparisons at least P<0.05). TPR was
significantly below baseline at 60 min in both experiments, and significantly above
baseline in experiment 2 from 120 min onward (paired t-tests, all comparisons at least
P<0.05). In experiment 3 TPR only tended to be significantly above baseline from 150
min (P=0.057) but due to the variable time on the intravital microscopy stage the
number of measurements made at 180 and 210 min is only 4.
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Chapter 7 - Effects of dopexamine on inflamed rodent
mesenteric arteries

7.1 Introduction
The previous studies have looked at the effects of dopexamine in endotoxaemia. These

studies demonstrated an endotoxaemia associated increase in circulating plasma TNF-α

and various other cytokines which were associated with neutrophil activation, markers of

inadequate perfusion and organ dysfunction. Dopexamine ameliorated almost all these

effects despite its inability to increase cardiac index, ileal microvascular red cell flux and ileal

functional capillary density. In cases where organ function improved, anti-inflammatory

effects were noted (suppression of plasma cytokine levels, neutrophil activation and

infiltration in the first study, and a decrease in neutrophil adhesion in the third study). No

evidence of improvement in microvascular function (such as increased functional capillary

density or ileal red cell flux) was associated with improved organ function in any studies,

though less intense arteriolar vasoconstriction was seen. This leaves open the question of

whether the effects of dopexamine relate purely to intrinsic anti-inflammatory effects of

dopexamine or some other mechanism.

The previous studies have been in vivo studies where it has not been possible to definitively

separate any intrinsic anti-inflammatory and rheological/haemodynamic effects of

dopexamine on resultant tissue injury. For example, if dopexamine improved microvascular

flow under conditions of endotoxaemia through vasodilator actions, or if it improved the

barrier function of the endothelium, it could yet appear to have anti-inflammatory effects as

leucocyte endothelial adhesion is reduced under such conditions (195). On the other hand if

dopexamine did possess anti-inflammatory actions, this could also improve the behaviour of

the microcirculation as venular adhesion and arteriolar dysfunction are associated with

dysregulated and reduced microvascular blood flow and oxygen delivery (363-366).

Although none of my previous studies were able to show simultaneous effects of
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dopexamine on microvascular flow and on inflammatory changes, it is not impossible that

both occur together as Experiment 1 did not examine effects on microvascular flow, and

Experiment 3 did not directly measure microvascular flux, only arteriolar diameters and fcd.

Therefore it is important to perform the following studies for an insight in to mechanistic

pathways, and for this reason it was also important that vessels were not harvested from

animals treated for several hours with LPS +/- dopexamine as it would remain unclear if any

differences in the behaviour of blood vessels were due to vascular or anti-inflammatory

effects of dopexamine.

In summary, by studying vascular tissue ex vivo I planned to investigate whether or not

dopexamine has any intrinsic anti-inflammatory activity (in particular on the endothelium),

independent of any effects it may have on global haemodynamics, microvascular flow and

tissue oxygenation.

7.2 Methods
All procedures were performed in accordance with Institutional and Home Office guidance

on the care and use of animals (Animals (Scientific Procedures) Act 1986). Male Sprague-

Dawley rats (250-350g) received a standard laboratory chow diet and water ad libitum prior

to investigations. Single rats were placed in a sealed chamber and killed by exposure to an

increasing concentration of carbon dioxide. A midline laparotomy was rapidly performed

following transfer of the rat to a workstation. The small intestine was explored for a suitable

section of associated mesenteric arcade, approximately 10cm distal to the pylorus. Such an

arcade was determined to be suitable if between two and four straight sections of supply

arteries were easily visible. This section of small intestine and mesentery was excised en-

bloc and transferred to a large petri dish containing cold Krebs’ solution, consisting of (mM):

NaCl (118), KCl (5.4), MgSO4.7H2O (1.2), glucose (11), KH2PO4 (1.2), NaHCO3 (25) and

CaCl2.2H2O (2.5) in dH2O, which had been pre-oxygenated for at least 10 min with 95%O2
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and 5%CO2. Small resistance arteries (2nd and 3rd order branches of the superior mesenteric

artery, roughly 200 – 350μm in diameter) were carefully cleaned of all fat and connective

tissue under a dissecting microscope (Leica) and high intensity illuminator (Cole-Palmer).

Lengths of artery of approximately 2mm length were excised and transferred to smaller petri

dishes containing Krebs’ solution, prior to transfer to culture conditions under a sterile field

(HeraSafe Class II microbiological safety cabinet, Heraeus). Vessels were treated in one of

four ways. All vessels were incubated for 18 h in 5mL Dulbecco’s Modified Eagle’s Medium,

supplemented with penicillin 100U/mL and streptomycin 0.1mg/mL at 37C / 5% CO2 in a

humidified incubator (HeraCell 240, Heraeus). One group of vessels had no intervention

(negative control). The remaining three groups of vessels were incubated following the

addition of TNF-α (final concentration 10ng/ml). Except for one of these three groups

(positive control) the remaining two groups were co-incubated with dopexamine at 1 or

10μg/ml.

A 4-chamber wire myograph (Multiwire Myograph System 620M, DMT Ltd) was prepared the

following day by filling each chamber with 5ml of Kreb’s solution which was continually

oxygenated and kept at 37C. The dissecting microscope was then used to aid in loading a

randomly selected pre-incubated vessel on to two wires which were attached in a parallel

fashion to the two jaws of each myography chamber, one jaw attached to a micrometre

screw for manual adjustment of vessel diameter and the second to an isometric force

transducer for measurement of wall tension. Care was taken specifically not to disturb the

endothelium when mounting the vessels by ensuring the wires did not irritate the intimal

surface of the vessels through rash or aggressive handling. Readouts of tension were via a

desktop computer using LabChart Pro V7 software (ADInstruments Ltd.). Once mounted,

each chamber was closed by placing a sealed Perspex cover with a small orifice over the

top. The orifice allowed for the addition of drugs in to the chamber via pipette. The presence

of 4 chambers allowed 4 experiments to be conducted in parallel.
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Chambers were allowed to reach operating temperatures (of 36.8 – 37˚C) following which a

calibration was performed in order to derive the internal diameter of each vessel and

determine the correct amount of basal tension to apply. Vessel tension was increased

manually in 0.4mN steps and the change in diameter recorded. These data were analysed

using a normalisation software unit (NORM) within LabChart which derives the internal

diameter of the vessel and determines the starting distance between the parallel wires (and

therefore the resting tension) using the Laplace relationship between internal diameter and

wall tension at a given transmural pressure (set to 13.3kPa for systemic arteries, as in this

case). The calculated diameter was set accordingly, and the tension was allowed to plateau

before commencing experiments.

To assess the suitability of vessels for further study, pre-contraction with 200μl of 3M KCl

was initiated (providing a bath concentration of 120mM KCl). Vessels not achieving an

increase of at least 0.5mN were deemed unsuitable for study and were discarded. Following

this chambers were washed out three times with fresh Krebs’ solution before a new 5ml

volume of Krebs’ solution was added to each myography chamber followed by the addition

of 0.3μM nifedipine to reduce spontaneous vasomotor activity. Vessels were given time to

plateau at resting tension before the experiments could begin in earnest.

Vessels were then pre-contracted with phenylephrine (PE) to a maximum of 300μM until

approximately 70% of the maximal KCl plateau response had been achieved. If this was not

sufficient to produce adequate tone the thromboxane receptor agonist U446619 was added

at up to 1μM. If this was insufficient the vessel was discarded. Once tension plateaued after

pre-contraction, an initial volume of 5μl of 100nM acetylcholine (ACh) was added to the

chamber (in-chamber concentration 100pM ACh). Any change in tension was allowed to

plateau following which a further 10μl of the same solution of ACh was added to the bath to

produce a 3-fold increase in Ach concentration to 300pM. Following any plateau in tension,

and in order to maintain approximately half-log increases in ACh concentration, ACh was

then added alternately and cumulatively in volumes of 3.5μl and 10μl, each set coming from



190

a solution of ACh 10 times more concentrated than the previous set. The time of each

addition was duly noted. When it became obvious that further ACh was not inducing further

vasorelaxation, (or when the ACh concentration reached 300μM), the time was noted and

5μl of 100mM sodium nitroprusside (SNP) was then added to the bath (100μM in-bath

concentration) to induce a nominally maximal vasodilatation. Using this technique the total

volume of added drugs never exceeded 101μl and that the increase in the volume of the

bath was therefore not more than 2%. Following any plateau in tension after the addition of

SNP, recording was halted, the cover of the chambers were removed, vessels and wires

were discarded following which each chamber was washed out three times with clean Krebs’

solution and a further volume of 5ml Krebs’ was reloaded in to the bath and experiments

repeated with new vessels. In each experiment data were saved for offline statistical

analysis.

Statistical analysis

For data analysis, the following measurements were extracted:

 The baseline tension just prior to the addition of the first pre-contracting dose of PE

(TB)

 The tension just prior to the addition of the first dose of ACh (TM), representing the

plateau tension following pre-contraction with the last dose of vasoconstrictor

 The plateau tension for each dose of ACh, measured at the time just prior to the

next dose of ACh or SNP (TACh)

 The plateau tension following the addition of SNP (TSNP) – this plateau was easily

visible on all myography traces and represented the end of the experiment

Kolmogorov-Smirnov normality testing was performed for all groups. Calculations were

performed as described in the methods section. Data were tested using one-way analysis
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of variance (ANOVA) for comparison across all groups. When data were not normally

distributed in at least one group for any measurement, the Kruskal-Wallis test was used

in place of one-way ANOVA, and appropriate t-tests against controls for post-testing

depending on whether the individual groups were normally distributed or not. With respect

to percentage decreases on pre-constricted vascular tone in response to ACh and SNP, the

data were transformed and a non-linear fit (sigmoidal dose-response, variable slope)

approximated by software. Data were analysed with GraphPad Prism 4.0 (GraphPad

Software, San Diego, USA). Significance was set at P<0.05.

7.3 Results

A total of 56 vessels from 11 rats were initially analysed. There were 16 vessels in the

untreated group, 3 of which were excluded from analysis. One vessel behaved abnormally

during calibration and had to be abandoned. A further two untreated vessels were also

excluded as they were clearly abnormal in their behaviour – being unable to sustain

contractile and dilator responses to vasoconstrictors and sodium nitroprusside, respectively.

None of the 16 vessels were excluded from analysis from the TNF group. There were 12

vessels in the dopexamine groups. In the 1μg/ml dopexamine group one vessel had a faulty

calibration and was therefore excluded. No vessels from the 10μg/ml dopexamine group

were excluded from analysis.

Vessel diameters were not significantly different and ranged from 235 - 448μm (Figure 7.1).

The percentage remaining tone in the vessel after administering SNP was significantly

higher in untreated TNF-α vessels compared to control vessels (Figure 7.2).
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Figure 7.1 Vessel diameters

(n=11–16 per group). No significant differences were found between groups in terms
of the size of blood vessels
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Figure 7.2 Remaining tone in vessels following administration of SNP

(n=11–16 per group). (Unpaired t-tests *P<0.05 TNF-α vs. controls)
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Vasorelaxation curves obtained by indexing relaxation to the maximal SNP-inducible

relaxation (TM – TSNP) were significantly different to one another (P<0.0001) (Figure 7.3).

One-way ANOVA of the mathematical characteristics of the best fit curves only showed a

significant difference in EMAX between incubated controls and the TNF-α group (Table 7.1).

An identical set of statistical changes was found, though with less graphical similarity

between TNF-α and dopexamine groups (Figure 7.4), when relaxation curves were indexed

to the baseline tone (i.e. TM – TB) (Figure 7.4 and Table 7.2). Furthermore when compared to

incubated controls and as a fraction of the total tone in the vessel (TM – TB), there was

significantly less relaxation achieved at the four highest dose of ACh in the non-dopexamine

co-incubated TNF-α group (but not dopexamine co-incubated groups) (Figure 7.5).
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Figure 7.3 Relaxation curves indexed to maximal SNP-induced dilatation

Relaxation curves for incubated control vessels (black), vessels incubated with
10ng/ml TNF-α (blue) and vessels co-incubated with TNF-α and either 1μg/ml (pink) or
10μg/ml (red) dopexamine to increasing doses of ACh following pre-contraction with
phenylephrine. These responses have been indexed to the maximum SNP-induced
vasodilatation (non-linear regression; comparison of best fit dose-response curves,
P<0.0001)
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Figure 7.4 Relaxation curves indexed to baseline (pre-PE contraction) tone

Relaxation curves for incubated control vessels (black), vessels incubated with
10ng/ml TNF-α (blue) and vessels co-incubated with TNF-α and either 1μg/ml (pink) or
10μg/ml dopexamine (red) to increasing doses of ACh following pre-contraction with
phenylephrine (non-linear regression; comparison of best fit dose-response curves,
P<0.0001)
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log EC50 Emax N

Incubated controls 7.143 ± 0.2771 66.000 ± 4.5670 13

TNF 6.963 ± 0.3319 44.350 ± 4.2400 * 16

TNF + DPX 1 7.484 ± 0.8459 48.970 ± 9.5410 11

TNF + DPX 10 7.018 ± 0.3188 45.760 ± 4.1150 12

Table 7.1 Mathematical characteristics of relaxation curves indexed to maximal
SNP-induced dilatation

One-way ANOVA, Bonferroni’s post-tests *P<0.05 vs. incubated controls

log EC50 Emax N

Incubated controls 7.152 ± 0.2858 55.020 ± 3.9100 13

TNF 6.951 ± 0.3809 35.080 ± 3.8210 * 16

TNF + DPX 1 6.988 ± 0.6371 39.780 ± 7.6950 11

TNF + DPX 10 6.832 ± 0.3817 41.610 ± 4.7810 12

Table 7.2 Mathematical characteristics of relaxation curves indexed to baseline
(pre PE contraction)

One-way ANOVA, Bonferroni’s post-tests *P<0.05 vs. incubated controls
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Figure 7.5 % relaxation at highest doses ACh (indexed to baseline tone)

3D bar chart showing mean % relaxation achieved for the 4 highest doses of ACh
(-log10[Ach]) for control vessels, vessels incubated with 10ng/ml TNF-α and vessels
co-incubated with TNF-α and either 1μg/ml or 10μg/ml dopexamine (standard errors
omitted for clarity). At each dose TNF-α treated vessels (but not dopexamine co-
incubated vessels) demonstrated significantly less relaxation in response to ACh
when compared to control vessels (One-way ANOVA, Bonferroni’s post-tests
*P<0.05). Although one-way ANOVA failed to reveal significant differences between
any of the groups at the highest dose of ACh, individual t-testing revealed that only
non-dopexamine co-incubated TNF-α vessels relaxed significantly less than controls.

7.4 Discussion
This study shows that vasorelaxation in small mesenteric arteries co-incubated with

dopexamine is preserved when compared to the TNF-α group, and also that endothelial

dependent vasorelaxation is less impaired.
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When normalised to SNP responses, there is little apparent difference between TNF-α

treated and dopexamine co-incubated vessels (possibly indicating no significant difference in

the behaviour of the endothelium). However the non-normalised graph shows some

differences in that dopexamine co-incubated vessels better preserve dilator responses. Why

this is not visible in the SNP-normalised graphs is due to the proportionally greater tone

remaining in TNF-α group after SNP treatment. In other words non-dopexamine co-

incubated vessels are closer to their limit of vasodilatation at the highest dose of ACh

whereas dopexamine treated vessels are not. This might point to a greater anti-inflammatory

effect of dopexamine on smooth muscle cells as opposed to endothelial cells or to a

dopexamine mediated anti-inflammatory effect on the endothelium manifested by the

amelioration of the limitation of dilator responses to the highest doses of ACh.

The vasodilator effects of ACh are abolished in eNOS deficient mice, abolished by selective

inhibitors of eNOS such as L-NAME (N-nitro-L-arginine methyl ester hydrochloride) and also

by soluble guanylate cyclase inhibitors (367). Thus ACh (like shear stress) activates eNOS

to generate NO which diffuses to smooth muscle where it activates soluble guanylate

cyclase, triggering vasodilation. ACh is also able to vasodilate through effects on inward

rectifying potassium currents (368). The dilator responses to SNP are also soluble guanylate

cyclase dependent and involve activation of vascular smooth muscle inward rectifier

potassium channels (369). These similarities suggest that NO species donated by SNP are

comparable to and act in a similar fashion to endothelium (ACh) generated nitric oxide

species. TNF-α has been shown to result in decreased NO-induced and endothelium

dependent vasorelaxation, a decreased synthesis and bioavailability of NO, an increase in

vascular superoxide anion, a decreased sensitivity of soluble guanylate cyclase, an

upregulation of iNOS and a downregulation of eNOS (370-372). Furthermore TNF-α

decreases cAMP levels in endothelial cells (373). β2-adrenoceptor agonists increase cAMP

levels and activate eNOS pathways of NO formation (374), but have also been shown to

ameliorate the expression of iNOS following endotoxaemia (245), potentially preventing the
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decreased sensitivity of soluble guanylate cyclase. A reduction in the amount of superoxide

anion has also been found following β2-adrenoceptor agonist treatment in endotoxaemia and

hypoxia/re-oxygenation injury (243, 246, 248), a similar effect to that seen with free radical

scavengers such as superoxide dismutase and inhibitors of xanthine oxidase (371, 375). In

this regard it is notable that free radical scavenging by dopexamine has been suggested in

several in vivo studies (240, 242, 274, 376). The effects of dopexamine in this preparation

could therefore represent a β2-adrenoceptor mediated reduction of free radical production,

with the result that NO bioavailability increases and endothelial dysfunction is ameliorated.

TNF-α has also been shown to reduce cell viability in endothelial cells (377), while cyclic

nucleotides such as cAMP ameliorate apoptosis via inhibiting caspase activation (378).

Cyclic AMP elevating agents also upregulate the enzyme arginase (which competes with

NOS for arginine) (379), reducing levels of free radicals and apoptosis when NO is released

in pathological quantities by iNOS (380). However the precise role of arginase in improving

vascular function is unclear as TNF-α also upregulates arginase, reducing physiological

levels of NO released by eNOS, causing endothelial dysfunction (381). Irrespective of the

precise mechanism, a decrease in endothelial cell viability would be expected to decrease

endothelial function and this provides an alternative or additional mechanism of

dopexamine’s effects in this preparation.

Important limitations of this experiment are:

 Vessels were incubated with TNF-α and not with LPS. This was because the

experience with LPS was an all or nothing response in that either there was no

inducible endothelial dysfunction or vessels were so dysfunctional that they were

unsuitable for analysis. This led to the use of TNF-α which was able to provide a

much more reliable vascular injury.

 Vessels were incubated in TNF-α overnight as opposed to only a brief exposure (e.g.

30 mins). It is arguable whether a 30 minute, 5 hour or 18 hour incubation is more in
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keeping with the effects of LPS in the in vivo experiments. It is important to note

though that shorter durations of incubation with TNF-α have been shown to result in

qualitatively different behaviour of small arteries when compared to overnight

incubations (375).

 Although the use of this in vitro model allows anti-inflammatory effects to be

dissected away from any microvascular effects of the drug, there was no comparison

of TNF-α treated vessels with those isolated from in vivo LPS treated animals to

ensure that any extrapolation is justified (this was due to the logistics of these

experiments being performed in a different laboratory to the in vivo ones, also that a

typical in vivo experiment occupied an entire working day, rendering transport of

isolated vessels from one laboratory to another (across London) difficult).

Nonetheless it is clear that endothelial and smooth muscle dysfunction was induced

by TNF-α, and therefore any effect dopexamine had in reducing this type of

inflammation was a notable observation in itself.

 The experiments could have been made more useful from a mechanistic perspective

by utilising various other agents such as dopaminergic, β2-adrenoceptor antagonists,

intracellular stimulators or inhibitors of cAMP and PKA. It is hoped to continue such

work in the future.
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Chapter 8 – Discussion

8.1 Macrohaemodynamics and organ dysfunction

Although the in vivo studies conducted for this thesis all differed from one another in certain

(arguably minor) respects, all three experiments resulted in significant organ dysfunction in

control groups that occurred despite the maintenance of normotension. Paired t-tests show

that control group relative cardiac index (in the two experiments where it was measured) was

also similar to baseline and occasionally significantly higher for the first 2 h of each

experiment (Figure 6.2). Beyond these time points the lowest control relative CI in both

experiments was at 240 min and was 21.5% (SEM 8.4%) of baseline in experiment 2, and

28.4% (SEM 8.1%) of baseline in experiment 3 (Figure 6.2). Other haemodynamic changes

included a sustained increase in heart rate – a response that can augment cardiac output

when stroke volume decreases. This normotensive model of laparotomy and endotoxaemia

was also associated with significant increases in end experiment plasma lactate and base

deficit, biomarkers that are used to assess end organ perfusion.

When compared to controls, dopexamine had no significant effects on any of these

haemodynamic parameters, but most convincingly improved renal function in experiments 1

and 3, at doses of 1μg/kg/min, and improved plasma lactate in the same experiments (the

failure to significantly improve lactate in experiment 3 at this dose was very likely due to a

small group size as the trend to improved lactate was strong). Dopexamine also improved

hepatic function in experiment 1 but this effect could not be reliably reproduced in

experiments 2 or 3.

The preceding paragraphs suggest that dopexamine can improve organ dysfunction and the

cause of this is not the prevention of hypotension. With regards to relative cardiac index, the

suggestion that in this endotoxaemic preparation it is inappropriately low (even when it is

above baseline) is supported by several observations in control animals –
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1. There is an associated significant increase in plasma lactate. This could be

interpreted as representing a type 2 lactic acidosis due to anaerobic metabolism

in the context of hypoperfusion

2. There is an associated significant increase in base deficit, which can also be

encountered in situations of hypoperfusion

3. In Figure 4.8 there is a mismatch between the early fractional increase in relative

cardiac index and the fractional decrease in ileal red cell flux in control

endotoxaemic groups – could a higher relative cardiac index have ameliorated

this?

Dopexamine appears to improve organ function and lactate without any significant difference

in relative cardiac index (or stroke volume) when compared with controls though (the

reduction in plasma lactate is also notable considering it might have been expected to

increase through dopexamine’s β2-adrenoceptor mediated mechanisms (382)). This argues

strongly against an augmented cardiac index (and therefore DO2) being the mechanism of

action for the improvements seen with dopexamine, and by extension it also argues against

a suboptimal cardiac index being the mechanism of organ dysfunction and high plasma

lactate in untreated endotoxaemic controls.

8.2 The microcirculation and microvascular perfusion
One possibility might be that irrespective of the effects on “global” haemodynamics, there is

a fundamental problem at a microvascular level. This could also fit in with the increased

lactate and base deficit being due to hypoperfusion and is suggested by the following

observations in control animals (experiment 2 and 3):
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1. There is a significant decrease in ileal inflow arteriolar diameters (and such

reductions have been shown to be associated with decreases in red cell velocity

(362))

2. There is a significantly lower ileal red cell flux measured in endotoxaemic animals

compared to sham animals – such a reduction is unlikely to be confined to the

ileal circulation.

Other studies support this idea of a primary microvascular dysfunction. In endotoxaemia,

portal blood flow decreases by an average of 33% by 1 hour, stays depressed for another

one hour, and during this time liver sinusoidal diameters steadily increase. Liver sinusoidal

blood flow decreases by an average of 27% at 1 hour and 40% at 2 h yet cardiac output

remains similar to baseline (271). Furthermore progressive decreases in red cell velocity,

venular shear rate and increases in plasma extravasation with time are seen in the

mesenteric bed (195).

Although there is some data from animal studies in support of dopexamine significantly

improving microvascular perfusion in endotoxaemic rats (195, 196, 270), the studies in this

thesis were unable to replicate such findings in any robust manner as neither FCD nor ileal

red cell flux were significantly different between dopexamine and control animals in any of

our studies. One subtle and possibly important observation relates to the behaviour of

intestinal arterioles in experiment 3 though.

As arterioles are more numerous than larger vessels in the arterial tree they make up a large

fraction of TPR (383). In keeping with this, at the mid-point of resuscitation when control

MAP is comparable to sham animals but control TPR is significantly greater than shams and

is at its peak, profound intestinal arteriolar vasoconstriction and a reduction in ileal red cell

flux is observed in controls. This corresponds with previous findings of intense splanchnic

vasoconstriction also seen in shock states (357), and the fact that endotoxaemia results in

an increase in sympathetic outflow such that there is a short-lived surge in plasma
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adrenaline and a more sustained increase in plasma noradrenaline (384-386) – features that

would be expected to increase TPR. In this regard it is notable that in experiment 3 TPR

tends to be lower in dopexamine treated animals, and that intestinal arterioles also tended to

be less constricted. This could indicate that red cell velocities and therefore red cell flux (as

the product of red cell velocity and arteriolar cross-sectional area) are greater in the

intestinal arterioles of dopexamine treated animals than controls. These findings are

probably genuine as measurements of arteriolar diameters and the measurements required

for calculating TPR are independent of one another. The relatively small numbers in each

group in experiment 3 may be the reason why these differences were not shown to be

significant. This may also explain why in experiments 1 and 3 organ function was much more

convincingly improved with dopexamine than in experiment 2 (where significant differences

in microvascular flow were not demonstrated between groups and where TPR was similar to

controls). Although salbutamol was associated with a much lower TPR in experiments 2 and

3, it is likely this is due to vasodilatation in non-splanchnic beds, such as skeletal muscle.

One further and related subtle microvascular finding is worth discussion. The distribution of

blood flows in the intestinal wall is not uniform. There is a 3-4 fold higher blood flow in the

mucosa compared to the muscularis. In response to hypoperfusion splanchnic

vasoconstriction occurs and there is a neuronally mediated relative preservation of blood

flow to the hypoxia-prone mucosa when compared to the muscularis (358-360). The

preservation of blood flow to the mucosa while overall splanchnic vasoconstriction is

occurring is the result of autoregulatory mechanisms that allow the mucosa to escape from

vasoconstrictive factors that affect the muscularis (361). In this study the control group

showed intense arteriolar constriction, but no signs of autoregulation (muscularis FCD did

not decrease as expected for blood to be re-directed to the mucosa). Dopexamine at

1μg/kg/min on the other hand demonstrated a lower longitudinal muscularis FCD. This

supports the hypothesis that dopexamine at 1μg/kg/min might be capable of preserving

microvascular autoregulation in the ileal bed – with better preserved arteriolar diameters and
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a preferentially constricted muscularis vascular bed serving to direct blood to the mucosal

layers of the ileum. This preserved autoregulation would fit in with the clinical findings of

preserved flow-mediated vasodilation (an endothelium dependent phenomenon) following

dopexamine treatment (147), but more importantly in the context of these studies it fits in

very well with the observation (experiment 4) that dopexamine can improve endothelium-

dependent and endothelium-independent vasodilator responses in small inflamed arteries.

Such effects have been previously observed with agents that elevate cAMP and possibly

relate to cross activation of cGMP related systems (377). It is possible that even if total ileal

red cell flux is not dissimilar between groups (such as demonstrated in experiment 2) that

dopexamine, through an autoregulatory preservation of mucosal microvascular blood flow

and oxygenation, prevents disruption of the hypoxia prone mucosal villi, and in a similar

fashion also preserves autoregulation and oxygen supply-demand matching in other

vascular beds. This could account for the trends to improved lactate and base deficit in

experiment 3 when control and sham FCD was not significantly different.

8.3 Immunomodulation ameliorates organ dysfunction?
Notwithstanding the aforementioned argument, the fact that dopexamine improves organ

function, base deficit and plasma lactate without significantly affecting blood pressure,

cardiac index or ileal red cell flux and ileal functional capillary density is somewhat

problematic when looking for a fundamental cellular mechanism to explain the findings. One

approach would be to maintain the argument that oxygen delivery is being improved at a

microvascular and tissue level in key microvascular beds – either argued as above, or by

arguing that improvements occur in vascular beds not examined in these studies. The

alternative is to turn away from hypoperfusion (as suggested by some studies (387)) and

look in a completely different place for the explanation. The obvious place to turn to is the

potent immunomodulatory effects of dopexamine that have been demonstrated here.
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Endotoxaemia produces stereotypical haemodynamic and microvascular changes. At a

cellular level there is an early release of vasodilatory NO from eNOS followed by a later

(TNF-α and IL-1β mediated (388, 389)) sustained release of nitric oxide from iNOS (390).

This pattern is apparent on examining the total peripheral resistance and MAP graphs for all

endotoxaemic groups (Figures 6.1 and 6.2). TNF-α has also been shown to mediate

superoxide production via NADPH oxidase (391), generating free radicals which impair

endothelium-dependent vasorelaxation. Studies have documented that lactate is not

necessarily correlated with hypoperfusion (392) and in keeping with this increases in plasma

lactate (and other clinical findings) seen in endotoxic shock are replicated by infusion of

TNF-α alone (393). Given that TNF-α release from cells occur as a consequence of

endotoxin-TLR receptor interactions, and that TNF-α is responsible for setting off a chain of

events that is associated with an elevation in plasma lactate, the implication is that the host’s

inflammatory response to LPS can drive lactate production . It is well documented that

endotoxin and sepsis results in an increased activity of the membrane Na+/K+ ATPase (394-

396), and it has also been demonstrated that activation of this ATPase drives cellular lactate

production and aerobic glycolysis (397). Evidence exists that muscle and non-muscle tissue

is involved in the generation of lactate in critical illness (398, 399) – the latter including

inflammatory cells and areas heavily infiltrated by inflammatory cells (400, 401). The

involvement of TNF-α and IL-1β in a host of features observed in all experiments here is

notable. TNF-α receptor activation is involved in the acute renal failure induced by LPS (341,

343, 345, 402), is involved in the blunted vasodilator responses to ACh and SNP seen in

metabolic syndrome and ischaemia/reperfusion injury (371, 403), drives lactate production

and together with IL-1β recapitulates many of the cardiovascular effects seen with LPS

(404). Therefore should dopexamine be able to modulate TNF-α receptor signalling directly

and/or result in a decreased release of systemic TNF-α by immune cells, it would in theory

be able to ameliorate rises in plasma lactate, renal dysfunction and improve vascular

reactivity without necessarily increasing global or tissue oxygen delivery. Furthermore a

vascular bed which is able to preserve its reactivity should be able to autoregulate and
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therefore better balance oxygen supply and demand. This is what these experiments found –

not only was dopexamine infusion associated with less TNF-α release, improved organ and

(in particular) renal function, lower plasma lactate and less immune activation, but in in vitro

experiments it was demonstrated that dopexamine could directly interfere with TNF-α

induced changes in vascular function and in vivo experiments suggested preserved

autoregulation. What is more is that dopexamine was associated with reduced levels of IL-

1β and IL-12 (a stimulator of IFN-γ synthesis (347)), when salbutamol wasn’t.

8.4 Why does salbutamol fail where dopexamine succeeds?

The immunomodulatory effects of catecholamines and in particular β2-adrenoceptor agonists

been previously investigated (40, 195, 218, 241). It would be tempting to ascribe the

immunomodulatory effects of dopexamine to β2-adrenoceptor agonism given that salbutamol

produced almost identical effects on the majority of immune parameters and the results of

previous β2-adrenoceptor studies (250, 256). However, all three experiments present

problems in adopting this approach. In experiment 1 equipotent doses of salbutamol and

dopexamine demonstrated potent effects on neutrophil CD11b, pulmonary MPO and plasma

TNF-α. Similarly, in experiment 3 the effects of equipotent salbutamol and dopexamine on

intestinal leucocyte-endothelial adhesion were also comparable. Nevertheless, the effects of

dopexamine across both experiments resulted in improved organ function, plasma lactate

whereas salbutamol didn’t. Therefore assuming dopexamine achieves effects via an

identical mechanism to salbutamol cannot be strictly correct, notwithstanding the fact that it

has already been demonstrated that producing beneficial effects in endotoxaemia can be

achieved without reducing TNF-α levels (243). The following explanations could account for

some of the difference in outcomes between salbutamol and dopexamine if the β2-

adrenoceptor is focused on:
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1. The assumption (based on a study using tracheal preparations (44)) that doses of 1

and 2 μg/kg/min dopexamine are equivalent to 0.1 and 0.2μg/kg/min salbutamol at

the β2-adrenoceptor, respectively, may not be correct (405). Should it be the case

that the actual dose equivalence is not governed by a fold-difference of 10, this could

account for any differences seen in the ability of salbutamol and dopexamine to

ameliorate cytokine responses, plasma lactate and organ function in these

experiments. However, the fact that neutrophil behaviour measured by 3 separate

means (IVM, flow cytometry and MPO activity) was comparable between these

groups argues against this possibility.

2. Even if doses of salbutamol were correctly selected, it is possible that the

significantly lower MAP in experiment 1 (when comparing salbutamol 0.2μg/kg/min

with dopexamine 2μg/kg/min) was responsible for the worse outcomes seen in

salbutamol treated groups in that experiment. This is unlikely to be a valid

explanation though as in experiment 3, MAP was not significantly different between

salbutamol and dopexamine groups yet lactate and renal function showed no trend to

improvement whatsoever in the salbutamol group whereas the comparator dose

dopexamine group showed strong trends to improvement.

3. It could be argued that the β2-adrenoceptor is fundamental to the beneficial effects of

dopexamine if it is recalled that the classic model of the β2-adrenoceptor is that

agonist binding to it leads to an activation of adenylate cyclase and an increase in

intracellular cAMP (20). Any difference in the outcomes between salbutamol and

dopexamine could then be ascribed to a non-equivalence at the level of cAMP

generation (rather than non-equivalence at the receptor level as point 1 would have

argued), as dopexamine additionally signals through dopaminergic receptors which

also lead to increases in intracellular cAMP. This argument loses some validity if

cAMP generation is not the only cellular basis of the anti-inflammatory action of these

β2-adrenoceptor agonists, and there is some evidence that this could be the case

(243, 247).
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4. Evidence exists that in addition to the traditional β2-adrenoceptor-adenylate cyclase-

cAMP-protein kinase A signalling paradigm, other β2-adrenoceptor-dependent

signalling pathways exist which are involved in inflammation (259). β2-adrenoceptor

agonists signal via these other pathways in a manner which is not necessarily related

to the strength of cAMP signalling (probably due to the promiscuous coupling of β2-

adrenoceptors with differing G-protein subunits), but β2-adrenoceptor agonists also

have non-β2-adrenoceptor mediated anti-inflammatory effects (241, 344). Differential

activation of such pathways by dopexamine and salbutamol may then have been

responsible for the differences between salbutamol and dopexamine groups (and

may have manifested as higher levels of IL-1β, IL-6, IL-10 and IFN-γ in the

salbutamol groups) whereas a similar degree of activation of the traditional pathway

could explain neutrophil effects (406).

5. Differences between the efficacy of dopexamine and salbutamol in countering

endotoxin induced inflammatory change may have related to a differential ability to

reduce cellular levels of free radicals (215, 218, 244, 246, 247). It is also notable that

the ability to reduce intracellular levels of free radicals by antioxidants has been

linked to the prevention of vascular dysfunction by TNF-α (375). How this ties in with

cAMP formation is unknown as this feature has recently been shown to be common

to many β2-adrenoceptor agonists (241, 247), though some authors suggest that

while blockade of adrenoceptors can abolish this effect (241, 248), various

adrenoceptor agonists can reduce superoxide generation independently of

adrenoceptor (241), adenylate cyclase,  cAMP, protein kinase A or Epac based

mechanisms (247). Where dopexamine lies in this signalling spectrum is unknown,

though in vivo studies (including the ones in this thesis) point to at least some

dependency on the β2-adrenoceptor for effect (240).

6. Salbutamol and dopexamine are thought to have different macrohaemodynamic

effects. Salbutamol by virtue of β2-adrenoceptor agonism is understood to

preferentially re-distribute blood to skeletal muscle and could shunt cardiac output
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away from essential organs, contributing to worse organ injury and higher lactates

despite any immunomodulatory effects. Evidence for a different distribution of

microvascular blood flow was found in experiments 2 and 3 (TPR graphs, intestinal

arteriolar diameters).

8.5 Study Limitations
There are several limitations of the study which deserve mention. The first and most obvious

limitation is that the model may not be relevant to humans and the findings therefore may

not translate directly. In the methods section of this thesis, it was noted that the model

employed is one with an overstimulation of either TLR 4, or TLR 2 & 4 signalling pathways.

The model also lacked the presence of bacteria and is a short-term non-recovery model.

Furthermore while in vitro wire myography studies demonstrate that the mesenteric arteries

of humans and rats behave in a very similar fashion (407), the in vivo behaviour of rats and

humans is by no means necessarily the same (e.g. LPS sensitivities). Studies demonstrate

that murine and rodent models (which may very reasonably be expected to be closer to one

another than human and rodent models) of sepsis and inflammation behave in quite

characteristically different fashions, as do murine and human models (408, 409). However,

as commentators point out, the recognition of these differences and the framing of findings

in the context of the pathophysiology specific to the species in question should mean that

lessons can still be drawn from such studies (410-412).

Further issues relate to the manner in which animal research is conducted (413). Although

every effort was taken to minimise bias (e.g. randomly allocating rats to treatment groups,

the analysis of IVM and the assessment organ function being conducted in a blinded fashion

by persons who were not involved in the experiments), there were several aspects of the

study’s design that did not involve blinding. As the person conducting the experiments, I was

fully aware of which animals were receiving which treatment throughout the experiments,
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and was fully aware of which groups were being analysed when performing blood gas

analysis, lactate measurements and flow cytometry. Part of this was due to the limitations of

performing the studies alone.

It would also have been preferable to have conducted all measurements in one study in

order to be more confident about the nature of any mechanisms driving changes seen with

dopexamine. Experiment 1 was probably the most revealing yet no measurements of

cardiac index or microvascular flow were made and we must infer from experiments 2 & 3

about what was likely to be occurring on those fronts. Similarly in experiment 3 when

changes that were in keeping with experiment 1 were seen, no plasma samples were taken

to assess the effect on plasma cytokine concentrations and the study was under-powered to

detect the changes in organ function due to dopexamine. On the subject of the power of the

studies, this was not a factor taken in to the design of the experiments and indeed power

calculations have only recently come to the fore as good practice in animal-based research.

This was admittedly a weakness.

The appendix lists the data comparing either controls vs. D1 (as the most appropriate

dopexamine group) for several key parameters. Comparison is also made with the sham

groups in experiment 2 and occasionally with the sham group in experiment 3. This data

shows the power of the experiments to demonstrate significant differences between controls

and the comparator group in question. It is re-assuring that the majority of significant

differences between controls and shams were within the power of the study to be detected.

It is notable though that to have the power to detect several changes that were found to be

significant would have required occasionally a few and often substantially larger numbers of

animals to be tested. Future studies should be designed with this in mind.
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8.6 Summary
When dopexamine is infused at 1μg/kg/min in combination with a fluid regime that does not

augment global oxygen delivery or tissue microvascular flow in the setting of laparotomy and

endotoxaemia, dopexamine is seen to have potent immunomodulatory actions, specifically

the inhibition of surface neutrophil CD11b expression, an inhibition of post-capillary venular

leucocyte-endothelial adhesion, an inhibition of neutrophil infiltration to pulmonary and

possibly other tissue beds and an inhibition of the cytokine response to laparotomy and

endotoxaemia. There is also an amelioration of the downstream metabolic effects of the

cytokine response to laparotomy and endotoxaemia, and a suggestion of a preservation of

microvascular autoregulation in ileal beds. The in vitro studies show here that dopexamine

can limit the TNF-α induced endothelial and smooth muscle dysfunction in small mesenteric

arteries, possibly providing a mechanism of action for any such preserved autoregulation.

The fact that the comparator β2-adrenoceptor agonist salbutamol was also able to produce

similar immunomodulatory effects but was unable to significantly improve organ function and

plasma lactate points to the importance of β2-adrenoceptor signalling related pathways in

immunomodulatory effects of dopexamine, particularly regarding the behaviour of

neutrophils (197), but unfortunately leaves us unable to attribute the improved organ function

to these effects alone.

The mechanisms behind these consistently observed anti-inflammatory effects cannot

reliably be discerned from these experiments alone. Other experiments suggest that

ameliorating the rise in free-radicals and circulating cytokines are of key importance. The β2-

adrenoceptor actions of dopexamine (and possibly those at dopaminergic receptors), or

functional selectivity of dopexamine at the β2-adrenoceptor are putative explanations for the

differences observed between salbutamol and dopexamine.
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8.7 Translation to human studies

Human peri-operative studies differ in several important respects to these studies. Most

modern peri-operative studies optimise subjects according to pre-defined stroke volume (and

less often cardiac index) based responses to fluid and inotrope therapy. This was clearly not

the case in these experiments – cardiac index and stroke volume were allowed to follow their

natural course, which was to decrease, while maintenance fluid was infused. Although this

did not result in an increase in haematocrit the dynamics of the circulation on a macroscopic

and microscopic level are likely to differ. Furthermore human peri-operative studies of

dopexamine have not enrolled patients who are all overtly septic. Therefore although these

experiments may reveal an aspect of dopexamine that has hitherto been under-appreciated

in clinical practice (i.e. immunomodulation), they do not serve to explain how and whether

dopexamine synergises with a fluid protocol based on the optimisation of stroke SV/CI.

Furthermore, as no significant changes in microvascular flow were seen, which is in contrast

to clinical studies (147), some caution must be exercised in ascribing the findings seen with

dopexamine in these studies to those seen in clinical studies.

Nevertheless, some findings here are of note for clinicians. Most importantly, these studies

have shown that dopexamine can markedly attenuate the inflammatory response to

laparotomy and endotoxaemia, and improve organ function without an increase in cardiac

index or microvascular flow – this is an important finding in its own right. Secondly, the

effects of catecholamines in sepsis cannot be easily predicted even when similar to one

another, and so each drug requires individual evaluation given the myriad signalling

pathways, specificities of receptor-ligand interactions and differential abilities to signal

through different G-protein subunits. Finally, one of the most interesting findings of the thesis

was that dopexamine improved the function of different organs to varying degrees across

three very similar experiments – this seems to parallel human studies where the effects of

dopexamine on morbidity and mortality are not always reproducible. While the results of this

thesis provide an additional mechanistic insight in to how the addition of dopexamine to a
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peri-operative fluid optimisation strategy in humans can improve outcome, they also reveal

how the effects of dopexamine are highly dependent on the clinical conditions under which it

is given. If dopexamine can genuinely lead to improved outcomes there is an urgent need to

find out what the nature of the variability is that ablates any beneficial effect of dopexamine.

8.8 Hypotheses

With respect to the original hypotheses:

1. Dopexamine improves microvascular perfusion in the ileum of endotoxaemic

rodents

2. The beneficial effects of dopexamine on ileal microvascular perfusion are not

related to its effects on cardiac index

3. Dopexamine has anti-inflammatory effects in the setting of endotoxaemia, namely

reduced neutrophil activation as assessed by membrane integrin expression,

decreased leucocyte-endothelial adhesion in the intestinal microcirculation and

decreased neutrophil infiltration in the lung

4. Dopexamine improves organ function in a rodent model of laparotomy and

endotoxaemia

5. The anti-inflammatory effects of dopexamine are β2-adrenoceptor dependent

These studies have only weakly supported hypotheses 1 and 2. Hypothesis 2 has not been

refuted though improvements in arteriolar diameters were independent of an augmented

cardiac index. The experiments strongly support the third and fourth hypotheses. Hypothesis

5 receives strong support from the experiments here. It should be noted that while the

experiments here strongly support a role for β2-adrenoceptor mediated mechanisms as

being important in leucocyte endothelial interactions, the experiments could also be used to

support the role of other mechanisms being important with regards to the improvements in

organ function seen with dopexamine.
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8.9 Future directions

The strong immunomodulatory effects of dopexamine seen in these preparations, the

unexpected lack of microvascular effects, the lack of a clear mechanism through which

dopexamine exerts its effects and the inherent weaknesses of the model itself means that

there are a multitude of directions in which this work should be taken in the future.

While the intention was not to look at models of sepsis per se, it happens that surgical

complications occur with very great frequency in patients who undergo emergency surgery

for abdominal sepsis. Therefore to extend these experiments to a similar model (such as

faecal slurry or caecal ligation and puncture) would improve the translatability and

robustness of any future findings. During any such experiments it would be useful to re-visit

many of the original questions. This could be done in several ways:

1. The use of a microsphere technique to assess the distribution of blood flows within

the gut, or indeed any other organ - most notably the kidneys and liver. Therefore

even in the absence of detectable differences in FCD in specific layers of (for

example) the gut, any deterioration in organ function could still be potentially

explained by an alteration in the intra-organ distribution of blood flows.

2. A more detailed exploration of how dopexamine modifies oxygen kinetics at the level

of the microcirculation and tissues – this could be achieved with tissue oxygen

probes (ruthenium based IVM probes or tissue electrodes), the use of IVM to look at

NADH autofluorescence, the use of a Doppler camera to measure erythrocyte

velocity, and the harvesting and freezing of organs after experiments in order to later

determine ATP/ADP ratios.

3. The use of non-invasive laser speckle contrast imaging could also allow surface,

whole organ blood flow to be much more easily assessed over a prolonged period of

time as compared to laser Doppler flowmetry which is limited in the number of

sampling sites and IVM which suffers from the drawback of specimen deterioration

with observed time. It may also be useful to use laser speckle imaging to
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simultaneously measure the distribution of blood flow in a completely different tissue

bed (e.g. liver surface or exposed area of abdominal muscle).

4. Follow up to these experiments must also be made from the perspective of fluid-

catecholamine interactions. A flow guided method of volume resuscitation similar to

that used in theatre and intensive care units must be employed in a new set of

investigations (this will also improve translatability), and an assessment made of

whether the addition of dopexamine to such a regime replicates the

immunomodulatory findings in these experiments and the microvascular findings in

the group’s clinical experiments (147).

5. Further mechanistic insights in to the important receptor actions of dopexamine that

lead to anti-inflammatory effects can be gained through the use of drugs in in vitro

preparations where selective blockade of dopaminergic and/or adrenoceptor

pathways (e.g. ICI 118551, SCH 23390, domperidone etc.). These experiments

should not only be conducted in myography preparations, but also in suspensions of

leucocytes, endothelial monolayers and should assess functional aspects of

neutrophil function – such as respiratory burst and chemotaxis. Similarly drugs such

as Forskolin (an adenylate cyclase activator that increases intracellular cAMP levels)

can be administered while surface receptors are blocked to interrogate the

importance of downstream parts of the signalling cascade.
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Appendix

Data comparing either controls vs. D1 (as the most appropriate dopexamine group) for

several key parameters. Comparison is also made with the sham groups in experiment 2

and occasionally with the sham group in experiment 3 – only parameters which were

distributed normally for these groups in the experiments have been listed. The software

package MedCalc (v12.7.7.0) was used to perform power calculations, setting a

significance level of P<0.05 and a power of 80% and using the standard deviations for

each sample. Where the ratio of numbers in each group was not 1, the same ratio was

maintained to show what the appropriate numbers ought to have been for 80% power. It

should also be noted that this shows the power of the studies to show a difference

between these groups against controls as independent samples t-tests (with unequal

variances) as opposed to part of a one-way ANOVA where due to multiple comparisons

the power will be even lower.

EXPERIMENT 1

Control
mean (SD)

D1
mean (SD)

Measurements
per group in
experiment

Numbers per
group for 80%

power at
P<0.05

lactate 3.96 (1.52) 1.99 (1.11) 8 each 8 each
base deficit 7.94 (6.21) 2.17 (3.39) 8 : 6 13 each
urea 17.78 (2.52) 14.65 (1.76) 8 each 9 each
creatinine 76.2 (27.6) 40.3 (17.8) 8 each 8 each
ALT 137.6 (71.9) 79.1 (19.1) 8 each 14 each
AST 422.6 (195.4) 275.4 (88.0) 8 each 18 each
TNF-α (1h) 4485 (3714) 1611 (1091) 7 : 8 15 : 18
TNF-α (4h) 323.7 (262.3) 50.9 (15.9) 8 : 6 9 : 7
IL-1 1774 (1650) 192.7 (89.7) 8 : 6 10 : 8
IL-6 29668 (19943) 4268 (2555) 7 : 8 6 : 7
MPO 125.02 (10.15) 76.46 (5.55) 4 : 4 2 each
Final
CD11b 133.68 (28.46) 103.18 (26.84) 6 : 8 12 : 16
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EXPERIMENT 2

Control
mean (SD)

Sham
mean (SD)

Measurements
per group in
experiment

Numbers per
group for 80%

power at
P<0.05

lactate 3.73 (1.03) 1.69 (0.54) 8 each 4 each
base deficit 8.98 (4.02) -1.51 (1.30) 8 : 7 3 each
creatinine 62.0 (12.6) 35.5 (4.3) 8 each 3 each
AST 337.0 (86.2) 266.6 (106.1) 8 each 31 each
CI (4h) 24.3 (7.4) 49.4 (16.3) 8 each 4 each
SVI (4h) 0.052 (0.016) 0.133 (0.046) 8 each 5 each
Ileal flux
(4h) 48.7 (20.9) 81.6 (34.0) 16 each 13 each

EXPERIMENT 3

Control
mean (SD)

D1
mean (SD)

Sham
Mean (SD)

Measurements
per group in
experiment

Numbers
per group
for 80%
power at
P<0.05

lactate 3.37 (1.16) 2.60 (1.03) n/a 5 : 6 31 : 38
base deficit 4.54 (3.58) 3.33 (3.70) n/a 6 each 144 each

urea 17.80 (2.09) 16.27 (2.02) n/a 6 each 29 each
creatinine 60.2 (15.1) 45.5 (4.1) n/a 6 each 10 each

CK 1617 (710) 953 (427) n/a 6 each 13 each
ALT 81.1 (22.6) n/a 47.0 (13.4) 6 each 6 each
AST 324.6 (113.2) 279.4 (70.2) n/a 6 each 69 each

TPR (2.5h) 10.97 (3.10) 9.62 (1.82) 7.18 (1.70) 6 each
56 each

(D1), 8 each
(sham)

CI (5h) 32.2 (10.4) n/a 63.4 (19.4) 6 each 5 each
SVI (5h) 0.072 (0.024) n/a 0.171 (0.049) 6 each 4 each

A1 54.1 (10.0) 75.6 (40.5) 94.4 (28.0) 15 : 14 (D1)
15  : 10 (sham)

33 : 31 (D1),
23 : 16
(sham)

A3 21.0 (5.0) 30.5 (7.4) 39.3 (8.2) 9 : 12 (D1)
9 : 8 (sham)

7 : 10 (D1), 4
each (sham)

fcd
longitudinal

layer
129.7 (42.2) 89.9 (27.2) n/a 16 : 19 13 : 16

fcd total
muscularis 293.8 (76.0) 235.8 (66.8) n/a 16 : 22 22 : 31

Adh v3 702.7 (296.9) 360.9 (247.7) n/a 12 : 14 10 : 12
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