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Abstract

This thesis describes research in the computational analysis of harmony in

western art music, focussing particularly on improving the accuracy and

information-richness of key and chord extraction from digital score data.

It is argued that a greater sophistication in automatic harmony analysis

is an important contribution to the field of computational musicology.

Initial experiments use hidden Markov models to predict key and mod-

ulation from automatically labelled chord sequences. Model parameters

are based on heuristically formulated chord and key weightings derived

from Schönberg’s harmonic theory and the key and chord ratings result-

ing from perceptual experiments with listeners. The music theory models

are shown to outperform the perceptual models both in terms of key accu-

racy and modelling the precise moment of key change. All of the models

perform well enough to generate descriptive data about modulatory fre-

quency, modulatory type and key distance.

A robust method of classifying underlying chord types from elaborated

keyboard music is then detailed. The method successfully distinguishes

between essential and inessential notes, for example, passing notes and

neighbour notes, and combines note classification information with tertian

chord potential to measure the harmonic importance of a note. Existing

approaches to automatic chord classification are unsuitable for use with

complex textures and are restricted to triads and simple sevenths. An

important goal is therefore to recognise a much broader set of chords, in-

cluding complex chord types such as 9ths, 11ths and 13ths. This level

of detail is necessary if the methods are to supply sophisticated informa-

tion about the harmonic techniques of composers. Testing on the first

twenty-four preludes of J. S. Bach’s Well Tempered Clavier, hand anno-

tated by the author, a state of the art approach achieves 22.1% accuracy;

our method achieves 55% accuracy.



no wise fish would go anywhere without a porpoise

(Lewis Carroll)
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Chapter 1

Introduction

What we still don’t have is... studies that are grounded in

mainstream musicological problems and that make use of com-

putational tools as simply one of the ways you do musicology

[Cook, 2005]

The aim of this research is to forge closer integration between the two

disciplines of musicology and computer science and to advance the state

of the art of music information retrieval (MIR) and computational musi-

cology research. We suggest that a greater level of immersion of musical

knowledge into computational approaches to music would be of benefit

to both disciplines, potentially creating new directions for musicology re-

search and improving the depth of results produced by MIR applications.

The suggestion has been made previously, most notably in Cook’s keynote

speech at ISMIR 2005 [Cook, 2005] and more recently at IRCAM, detailed

in Volk and Honigh [2012]. In this research we are focussing on improving

the modelling of harmony, and particularly the underlying chord structure

of challenging corpuses which feature a large quantity of inessential notes

such as passing notes and neighbour notes. The work described here can

be thought of as being broadly applicable to music from the ‘common

practice’ era of western music, a period of time generally accepted as cov-

ering the eighteenth and nineteenth centuries. In compositional terms this

ranges from J. S. Bach to Debussy approximately.

Musicologists use a wealth of constructs with which to scrutinise mu-

sic, freely discussing ‘harmony’, ‘rhythm’, ‘chromaticism’, ‘tonality’, and

‘form’, as well as more esoteric concepts like ‘colour’, ‘texture’ and ‘mood’.
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Of all of these, the harmonic language of a composer, especially charac-

teristic uses of chords, keys and modulatory technique, dominates music

analysis literature. If chord and key information could be captured to a

convincing degree using a computer system, opportunities are opened up

to yield novel musical insights across a range of musical works, and com-

monly accepted facets of music history could be substantiated or brought

into question based on quantitative data.

Meyer [1973] makes a distinction between critical analysis and style

analysis with respect to the study of music. The former, he describes,

belongs in the domain of the musicologist, who concentrates with fine

detail on an individual musical work in order to expose its meaning. The

latter field of study adopts a broader view of a group of works, with the

aim of separating characteristics which distinctively link the group from

those which don’t.

Inspired by Meyer’s writings, Deliege [2007] defines external and inter-

nal similarity relations, where ‘external’ is the parallel of Meyer’s defini-

tion of style analysis, and ‘internal’ refers to repetitions or patterns within

a single composition. She proposes the idea of musical cues, describing

them as ‘brief but meaningful structures’ which listeners use to either con-

sciously or subconsciously mentally formulate the ‘coherence’ of a musical

work. Deliege states that cues are ‘salient elements at the musical surface’,

and it is this latter term which is fastened upon in Cambouropoulos [2009].

Cambouropoulos points out that current computational approaches to mu-

sic analysis adopt a definition of ‘musical surface’ that is the sequence of

pitches at the uppermost level of the score, and asserts that in order to

be able to obtain deeper and more humanly satisfactory results from com-

putational music processing, current methods must progress beyond this

basic understanding, and instead focus on finding ways of transforming

the notes into ‘complex musical events’.

The aim of this research therefore is to take digital score data and

improve methods of key and chord recognition in order to facilitate com-

putational approaches to the analysis of music. Computers seem uniquely

suited to the task of rigorously analysing large corpuses, but for compu-

tational approaches to be able to deliver results that are deemed to have
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musical validity, the kind of constructs implemented must be persuasive,

and the nature of their implementation transparent.

1.1 Motivations of Automatic Harmony Analysis

The proposal of this thesis is that a closer intersection between the disci-

plines of musicology and computer science offers the potential to expedite

novel research areas in musicology which exploit the power of comput-

ing. Current methods in the field of music informational retrieval tend

to constrain experiments to more simplistic features of a musical surface.

Building computational models of more complex musical events is thus

an important contribution to the field, and may parallel the kind of pro-

cessing and decision making involved by a human performing the same

task. The research presented in this thesis aims to answer the following

questions:

1. How can we translate multi-faceted, inter-related music theory con-

cepts into the rigorous representations required by computers?

2. What computational techniques are most effective in refining the ac-

curacy, granularity and level of richness of key and chord information

extracted from digital score data?

3. Can a computer program make fine distinctions, such as distinguish-

ing between harmonically essential and inessential notes in complex

elaborated repertoire, or subtle oscillations of key, given the ambiva-

lent nature of such musical concepts?

1.2 Contributions of the Thesis

This thesis describes research exploring computational approaches to ex-

tracting information about the principles of western musical harmony,

including the recognition of complex events such as modulation, and the

classification of non-chord tones.

Chapter 2 of the thesis commences with a detailed overview of music

theoretic and historic concepts that are concomitant to understanding the
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research subsequently presented. The chapter describes core elements of

music theory and their relationship to our understanding of musical style,

prior to specifying influential philosophical and theoretic work in the field.

Chapter 3 presents a literature review spanning computational ap-

proaches to modelling aspects of musical knowledge, recent approaches

to distinguishing musical style computationally, and probabilistic and sta-

tistical methods in musicology.

Chapter 4 explores the use of hidden Markov models (HMMs) to de-

tect key and key change in automatically obtained chord sequences. The

experiments show that key and chord values heuristically derived from

music theory produce the most accurate models of key and modulation in

comparison to models based upon the results of perceptual experiments.

The results of the models are shown to produce harmony analyses that

closely match annotations of the same excerpts by Piston [1983]. This

research also exhibits the future potential offered by research into audio

transcription, by showing that transcribed audio data produces compa-

rable results to similar experiments using symbolic data. The research

reveals that although the models yield results good enough to perform

style classification experiments based on chord, key and modulation data,

the error rate of the automatic chord recognition algorithm is a significant

drawback to the broader applicability of the methods. Chord labelling

errors resulting from ‘non-chord’ tones (such as passing notes) are found

to impede the production of chord accurate sequences when used in con-

junction with music that features melodic movement and decoration. This

problem is addressed in the subsequent two chapters of the thesis.

Chapters 5 and 6 recount work to automatically recognise the under-

lying chords in complex elaborated textures containing a large quantity of

non-chord tones. An important pre-requisite step for the research is the

production of high quality ground truth data against which the outcomes

of the computational methods can be systematically measured. Chapter 5

therefore describes the task of producing hand annotated chord sequences,

undertaken by the author as part of this research, for Bach’s twenty four

preludes in Book One of the Well Tempered Clavier. Hand annotating

chord data for complex elaborated keyboard music is demanding on many
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levels, consequently the Riemann reference was chosen as the primary

source of reference in the production of the data [Riemann, 1890]. The

chapter also discusses issues relating to the different theoretical perspec-

tives about Baroque harmony, the paucity of comprehensive sources of

reference, the variation in labelling style and choices made in the music

reference material that does exist, segmentation issues, and the author’s

contributions to the improvement of computational annotation syntax in

order to accommodate a richer degree of information.

A difficulty with the task described in chapters 5 and 6 is the defining a

chord range that provides for broader applicability of the methods, a rich

degree of information, and acknowledges the accepted wisdom of music

theory. The corpus chosen is highly elaborated and was chosen intention-

ally because of the challenging nature of the music. Selecting a Baroque

corpus however presents issues in and of itself, due to the conflicting opin-

ions between both present day and historical music theorists regarding

the chord types that are considered to be valid in corpuses of this period.

(Some music theorists contend that no chords beyond simple sevenths are

valid.) The issue is somewhat alleviated by the author’s close adherence

to the Riemann annotations during the production of the ground truth

data, in which he labels chords of the 9th and 11th. Examples of complex

extended chord types in the music of J. S. Bach from other pre-eminent

music theorists are also given. Such issues of music theory are therefore

balanced against the goal of the research, to improve computational pro-

vision for musicology and music analysis in relation to a broad range of

music.

Chapter 6 chronicles the novel chord recognition method used to dis-

cover the underlying chords in the test corpus. To be able to access the

underlying harmony of ornamental music, the automatic differentiation of

chord and non-chord tones, such as melodic passing notes and neighbour

notes, is of crucial importance. Due to the fact that digital score data does

not always contain voice information, or may be voiced counter-intuitively,

a pre-requisite stage of development is to segment the score data into mu-

sical voices/linear musical streams. Despite extensive research, automatic

voice separation is largely thought to be not completely solvable as the
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voiced notation of music is both variable and individualised to composers

and editors, and because musical voicing does not adhere to a logical

rule set. This chapter explains the novel voice separation method imple-

mented and the evaluation results when compared to ground truth data.

The temporal segmentation of the data and a novel method for identifying

non-chord tones taking into account both linear position and contextual

intervallic relations are described. The methods used to compute musical

contour, pedal tone classification, and a measure of metrical and dura-

tional emphasis are also related.

The chord method presented in this chapter processes all possible com-

binations of notes for each temporal segment, as all notes are considered

to be potential chord notes prior to processing. Note features are allo-

cated a heuristic value to facilitate the computation of a measure of note

importance for each note within the context of the segment. The sum of

individual note importance values per distinct note combination is then

used to discover the group/groups of maximally salient notes for the seg-

ment. The tertian arrangement potential of each note subset is similarly

computed, generating the maximally harmonic note combination/s for the

segment. The two types of measures, (note features and tertian arrange-

ment), are then compounded to produce a third type of measure, thus

producing the most structural, (where structural refers to the concept of

notes that are made conspicuous in the musical texture either through

articulation or harmonic presence or both), note combination/s for the

segment. Intermediate evaluation results are given comparing the notes

identified as structurally important to the ground truth data, taking into

consideration the notes available within that temporal unit in the score

data.

The final stage of the chord recognition method explores the use of

weighted and non-weighted chord templates to obtain an optimum chord

classification by matching the generated note combination to a chord dic-

tionary. The results are compared to a baseline evaluation, demonstrat-

ing a significant improvement over one of the most cited chord recogni-

tion techniques [Pardo and Birmingham, 2002]. In addition, by removing

inessential tones from the baseline algorithm, this method is also shown
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to improve, although not reaching the accuracy of the novel chord method

proposed in this thesis.

The final chapter in this thesis contributes a discussion of the work

presented and highlights important areas requiring further research in the

future.

1.3 Publications by the Author

Publications by the author are listed here:

[Mearns and Dixon, 2010] Lesley Mearns, Simon Dixon. An Empirical

Approach to Musical Style. In Proceedings of the 3rd International Con-

ference of Students of Systematic Musicology, Cambridge, UK, 2010.

[Mearns et al., 2010] Lesley Mearns, Dan Tidhar, Simon Dixon. Char-

acterisation of composer style using high-level musical features. In Pro-

ceedings of the 3rd International Workshop on Machine Learning and Mu-

sic, Florence, 2010.

[Mearns et al., 2011] Lesley Mearns, Emmanouil Benetos, Simon Dixon.

Automatically Detecting Key Modulations in J.S. Bach Chorale Record-

ings. In Proceedings of the Sound and Music Computing Conference,

Padova, 2011. (Chapter 4)

Lesley Mearns, Simon Dixon. Detecting Chords in the Ornamental

Preludes of J.S. Bach. (Chapter 6) (under review).



Chapter 2

Music Theory and Concepts

In this chapter components of music theory that underpin the research

methods and approaches presented in this thesis are explained. The chap-

ter commences with an overview of polyphony, counterpoint and voice-

leading, before moving on to describe harmony, chords, key and modula-

tion and their importance with regard to musical style. This is followed

by an explanation of metre and rhythm. The latter parts of the chapter

outline some principle formal analytical theories of music that have either

influenced, or been symbolised in, the experiments discussed in subsequent

chapters, and the chapter concludes with an overview of some of the main

data formats used in computational approaches to music.

2.1 Polyphony and Counterpoint

Music in more than one part, music in many parts, and the

style in which all or several of the musical parts move to some

extent independently.[Frobenius, 2012]

The term polyphony is often used simply to mean music with more than

one part, but this is not a strict usage of the word. In the formal study

of Western Music, polyphony refers to a style of composition which grew

out of the Middle Ages and continued to be refined on into the Fifteenth

Century. The central feature of this polyphonic style was the adherence

to strict contrapuntal rules primarily formulated in terms of the musical

intervals, (distance in semitones), formed between successive or simulta-

neously sounding notes.
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Table 2.1: Musical Interval to Semitone Conversion

Musical Interval Semitones

Unison 0
Minor 2nd 1
Major 2nd 2
Minor 3rd 3
Major 3rd 4
Perfect 4th 5

Augmented 4th 6
Diminished 5th 6

Perfect 5th 7
Minor 6th 8
Major 6th 9
Minor 7th 10
Major 7th 11

Octave 12

Musical intervals have labels which reflect the function of the interval

in the context in which they are found. Enharmonic equivalence refers

to the notion that an interval may be notated to reflect its role. For

example, a tritone (six semitones), is both an augmented fourth and a

diminished fifth, varying to fit with linear or melodic voice-leading context

(see below 2.1.1). The treatment of musical intervals in a piece of music

is strongly characteristic both of historical period and the style of the

composer [Piston, 1983]. In the music of Chopin, notated double sharps

and double flats are common, for example, Chopin may write a doubly

flattened sixth rather than the equivalent, a perfect fifth. A list of musical

interval labels and their semitone equivalents are shown in Table 2.1.

The significance of the principles of counterpoint to the development of

Western tonal music and beyond cannot be overstated. From the Middle

Ages onwards to Bach, Mozart and Beethoven, the independence, shape

and movement of the contrapuntal line was of paramount concern, often

overriding considerations of tonal relations and harmony. Contrapuntal

technique is at the very core of Western musical language largely due to

the publication in 1725 of the book Gradus ad Parnassum, a pedagogic

work written by Johann Joseph Fux (1660 - 1741). The work was hugely
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Table 2.2: Species Counterpoint Definitions [Mann, 1943]

Classification Description

Perfect consonance (PC) Unison, Perfect 5th, Octave
Imperfect consonance (IC) Maj/Min 3rd, Maj/Min 6th
Dissonance (D) Maj/Min 2nd, Perfect 4th, Tritone, Maj/Min 7th

Motion

Parallel (P+/P–) Two parts move up or down by the same interval
Similar (S+/S– ) Two parts move in the same direction
Contrary (C>/C<) One part ascends and the other descends or vice versa
Oblique (Obl+/– Obu+/–) One part moves up or down, the other remains stationary

influential, studied in depth by master composers including Haydn and

Beethoven, as is evidenced by the existence of manuscripts based on Fux’

exercises, and copies of the book inscribed by the composers, their teachers

or their students [Mann, 1971]. Gradus ad Parnassum takes the student

through the five species of counterpoint leading to the mastery of four part

florid counterpoint. The rules for writing counterpoint are influenced by

the compositions of the Italian Renaissance composer Giovanni Periluigi

de Palestrina (1525/6 - 1594), and deal with the progression of the con-

trapuntal line, without “reference to harmony in the sense of organized

harmonic progression” [Forte and Gilbert, 1982], p42. The treatment of

consonant intervals and dissonant intervals, also otherwise known as con-

cords and discords is a central feature. Consonance, and its antonym, dis-

sonance, can be broadly defined as the psychoacoustic effect of two notes

sounded together, the former producing an effect of ‘harmoniousness’ and

the latter, ‘roughness’ or ‘tonal tension’ Palisca and Moore [2012]. In

species counterpoint new contrapuntal lines are set against a given musi-

cal line known as the cantus firmus, (literal meaning, ‘fixed song’). The

cantus firmus, which may be found in any voice but is more often in the

tenor, provides the foundations upon which the new composition is built

- all other lines are based upon it. The details of species counterpoint

definitions and rules are listed in Tables 2.2 and 2.3 respectively, but the

crucial characteristic of species counterpoint is that of strong contrapuntal

control in accordance with a set of rules.
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Table 2.3: Species Counterpoint Rules Mann [1943]

First Species

Note against note: both parts contain notes of same duration.
Begin and end on a perfect consonance (PC).
Consonant intervals only between the voices.
No parallel perfect consonances.
From one PC to another PC, proceed in contrary or oblique motion.
From a PC to an IC, proceed in any motion.
From an IC to a PC, proceed in contrary or oblique motion.
From IC to IC, proceed in any motion.

Second Species

Binary metre - two notes against one note of cantus firmus (c.f.).
Dissonance allowed to fill in the gap between an ascending or descending
consonant skip - i.e. dissonance is a passing note between the interval of
a major or minor third.
Previous conventions of first species continue to apply.

Third Species

Four notes to each note of c.f.
If five crotchets follow each other (asc. or desc.) the first and third must
be consonant, the fourth crotchet in the bar may only be dissonant if
the fifth note is consonant.
All dissonant intervals must resolve downwards by step onto a consonant
with the immediately following note.

Fourth Species

Two minims to each semibreve of c.f. but each two minims are on the
same pitch and joined by a tie. The first minim must occur on the
upbeat, the second on the downbeat.
Minims may be consonant or dissonant.
Species known as ligature or syncopation.

Fifth Species

Combines all the preceding species rules. The student is advised to
write a “singable, melodic line” which contains crotchets, minims and
ligatures.
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In later style periods, composers such as Debussy (late 19th to early

20th Century), and Messiaen (20th century), invented entirely new sonori-

ties by novel approaches to the combination of musical intervals. A char-

acteristic of Debussy is that of stacking the same interval one on top of

the other, creating a totally new sound. Similarly, Messiaen created new

musical scales based on new linear intervallic patterns; many of his com-

positions are based on these ([Neidhöfer, 2005, McFarland, 2005]). Later

still, composers such as Penderecki and Ligetti strictly limit the use of

the traditionally consonant intervals, and deliberately promote semitone

and tritone patterns, so that the music has little or no sense of tonal

centre ([Cuciurean, 2000]). Much musicological research is based on un-

covering the intervallic patterns that composers employ to create musical

works with a particular style, sonority, or structure (e.g. [Antokoletz, 1986,

Brown, 2009]). Little of this has been quantified computationally.

2.1.1 Voice-Leading

The principles of voice-leading always take precedence over

considerations of the chord as such, since chords themselves

have their origins in the coincidence of melodic movement [Pis-

ton, 1983]

It would be rare to read any musicological or music analytical book, article,

or paper about a composition without the term voice-leading appearing.

Sometimes the term is used only a little, in passing, but more often, the

voice-leading of a musical work is the central focus of writing aimed at

increasing our understanding of music. This is irrespective of the method-

ological approach used or primary goal of the analysis, as a quick perusal

of the titles of articles in music journals will testify. (For examples see

[Alegant, 2001, Neidhöfer, 2005, Parks, 1976]).

The term voice-leading is defined as being synonymous with that of

part-writing:

[Part-writing (voice-leading)]. That aspect of counterpoint

and polyphony which recognises each part as an individual line
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(or voice), not merely as an element of the resultant harmony;

each line must therefore have a melodic shape as well as a rhyth-

mic life of its own. In discussions of part-writing a distinction is

made between linear or conjunct motion and movement by leap

(i.e. by a 3rd or greater) in a single part, and between various

types of relative motion between two or more parts.[Drabkin,

2007]

The concept of part-writing historically precedes that of voice-leading,

and tends to be the term used most extensively in analysis of early mu-

sic (e.g. Palestrina and earlier). Voice-leading, derived from the German,

‘Stimmfuhrung’, has been dismissed by purists as ‘German-American mu-

sicological jargon’ [McL and Dent, 1950], but one wonders whether the

ubiquitous adoption of the term reflects the momentous shift in poly-

phonic compositional thought said to have occurred around the fifteenth

century. Blackburn [1987] cites the change from cantus firmus compo-

sitional technique, (successive composition), towards a process of com-

position in which individual voices are simultaneously composed both in

relation to themselves and in relation to the other voices, (simultaneous

conception) as “one of the great turning points in the history of music”.

The article delineates a crucial feature of voice-leading: it has a multi-

dimensional quality, at once embodying the linear dynamic progression

of the individual line, and the vertical note formation created by simul-

taneously sounding notes in other voices. Unlike ‘part-writing’, the term

voice-leading intrinsically infers this quality, a musical concept which is

about the simultaneous sounding of individual voices and voices that lead

somewhere.

2.1.2 Musical Voicing and Compound Melody

Musical voicing is in itself a topic of distinct academic interest due to ambi-

guity surrounding the concept with respect to instrumental music (e.g. see

[Cambouropoulos, 2008]). Although musical voicing originated with part-

writing for vocal music, the principles of counterpoint and voice-leading

continue to be used as primary compositional techniques in instrumental
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music both on the smaller and larger scale [Forte and Gilbert, 1982]. The

techniques of musical elaboration used particularly in keyboard music,

and the fluctuating musical textures that idiomatic of keyboard music,

(between ornamentation and chordal structures), makes it difficult to pre-

cisely demarcate the separate musical voices at work at any one moment.

In instrumental music it is no longer valid to consider that a musical voice

consists of a single note, a single musical voice may contain several notes

working together to produce a single linear process. In contrast to this,

there is also the concept of compound melody, in which the arrangement

of single succession of notes are arranged to give the impression of two

or more distinct musical streams rather than a single voice. Compound

melodic figuration tends to feature an approximately repeating series of

tones and one or more relatively large intervallic leaps, (major sixth or

more), which acts as a voice separator. In some cases the two distinct

streams may also imply contradictory harmonies or pitch class sets. For

example, in Prelude 2 of Bach’s Well Tempered Clavier Book One, which

can be seen in Figure 5.3 later in this thesis, the notes on the first and

third beats of each bar in the upper and lower streams are metrically and

registrally accentuated, giving the impression of independent voice pro-

cesses occurring at a higher structural level. The issue of musical voicing

is discussed in chapter 3 with reference to computational work, in which

a precise definition of musical voice is required prior to the development

of an algorithm.

2.2 Harmony

Harmony: the study of simultaneous sounds and of how they

may be joined with respect to their architectonic, melodic, and

rhythmic values and their significance, their weight relative to

one another. [Schönberg, 1922]

The “significance of simultaneous sounds”; their “weight relative to

one another”: Schönberg [1922] gives a definition of harmony that con-

summately conveys the intricacies of the subject. The term harmony
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Figure 2.1: C Major Diatonic Triads Schönberg [1922]

Figure 2.2: C Major Diatonic Sevenths Schönberg [1922]

describes the way in which groups of notes are employed, metrically and

melodically, to create harmonic sonorities, the way in which these sonori-

ties are connected, their hierarchical organisation, and the way in which

they are used to create larger scale structures and coherent wholes. This

chapter commences by defining fundamental precepts, such as chords and

keys, before moving onto a discussion of harmonic theory and the rela-

tionship between harmony and musical style.

2.2.1 Chords

Figure 2.3: A Minor Diatonic Triads Schönberg [1922]

Figure 2.4: A Minor Diatonic Sevenths Schönberg [1922]
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Apel [1970] defines a chord as “the simultaneous sounding of three of

more tones”. The makeup of individual chords can be described by their

interval configuration, for example, a major triad in root position is created

by placing, above a fundamental note, two further notes, at the interval of

a major third (4 semitones), and a perfect fifth (7 semitones). This may

also be thought of as the superimposition of tones at the intervals of a

major third and then a minor third. The total vertical interval content of

a root position major triad is therefore {4, 7, 3}. The minor triad consists

of two notes at the intervals of a minor third (3 semitones), and a perfect

fifth above the fundamental, a diminished triad consists of a minor third

and a diminished fifth above a fundamental, whereas the augmented triad

consists of a major third and an augmented fifth above the fundamental.

Triads built upon the degrees of the major or minor scales, generally

denoted by the Roman numerals from I to VII, are known as the diatonic

triads. In the major scale, the diatonic triads, I, IV and V, are major,

II, III, and VI are minor, and chord VII is diminished. Figure 2.1 shows

the diatonic triads on the scale degrees of C Major and lists the roman

numerals and common names of the scale degrees and Figure 2.3 shows

the triads on A Minor.

The concept of chord position and inversion was formulated by the-

orists in the 17th Century (Lippius, 1612 and Baryphonus 1615), but is

predominantly attributed to Rameau due to his endeavours to express

the theory of harmony in stricter scientific terms [Dahlhaus, 2007]. Root

position, in which the fundamental tone is in the lowest / bass voice, is

asserted to be the strongest, most stable chord position. A first inversion

(denoted by a b) places the third of the chord in the position of the low-

est tone. This arrangement is also known as a 6-3 chord, depicting the

different interval quality of the chord - consisting of a third and a sixth

above the bass note. The first inversion has a different sound quality to

the root position chord; being somewhat less emphatic, it is thought to

be less final [Kitson, 1920]. Cadences onto a first inversion are often used

mid phrase, to impart a sense of key without affecting the continuation of

the phrase. The second inversion (denoted by a c) places the fifth of the

triad in the bass voice, also known as a 6-4 because it consists of a fourth
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and a sixth above the bass note. This chord position tends to be used in

particular situations, for example as a ‘cadential 6-4’ in which the sixth

and fourth are treated as dissonant tones which resolve onto the fifth and

third, with a held bass note, of the following chord. Such treatment shows

that the 6-4 chord is thought to be unstable.

Chords can also be spaced in open or closed position. A chord in closed

position keeps the chord tones close together, with no gaps between which

a further chord tone could be placed. An open chord position is as it reads,

a positioning of chord tones with some open spaces for further tones in

between. Examples of the different chord positions are shown in Figure

2.5.

Figure 2.5: The C Major triad in root, first and second inversion, closed and
open positions

2.2.2 Doubling, Extended Chords and Tone Omission

Four part harmony, refers to music written for four voices: soprano, alto,

tenor and bass, (also known as SATB). Although originating chorally,

four part harmony is regularly adhered to as the voice-leading basis of

instrumental composition. To meet the requirements of four part harmony,

it is necessary to double one of the tones of a triad, thus providing the

fourth tone, and conversely in the case of extended chords containing

more than four notes, to omit a tone or tones. The omission of tones is a

complex area; the aim is to not jeopardise the sound quality of the chord

as a result of tone omission but to allow a representation of the chord

to fit with melodic movement. The rules about which tones to omit are

not conclusive and the tones omitted in music practice tend to vary in

accordance with voice-leading and musical context. Kitson [1920] states

that the triadic tone most usually doubled is the fundamental note because
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the third becomes too prominent in the sound mix if doubled, whereas the

6-4 chord doubles the fifth, thus giving it a unique sound quality.

From the basic triads many different chords can be created by the

superimposing further notes. The most common addition is that of the

seventh, the tone a third above the fifth of a triad. Piston [1983] defines

the seven interval configurations of seventh chords in root position and

says that seventh chords have their own rules with regard to treatment,

doubling and tonal makeup. (Consider all possible chords made up by

the different patterns of successive intervals from 3-3-3 to 4-4-4, shown

in Table 5.2 in Section 5.6). The most common seventh is the dominant

7th, in which the minor 7th scale degree is superimposed onto a chord

V. Piston [1983] asserts that the dominant 7th strongly implies resolution

onto the tonic chord and unequivocally implies either the major or minor

key of the tonic note.

Theorists differentiate between consonant (stable) and dissonant (un-

stable) chords on the basis of their intervallic content: a consonant chord

contains consonant intervals (please refer to section 2.1 with the proviso

that the intervals classed by musicians to be consonant / dissonant have

mutated during the course of history); a dissonant chord contains at least

one dissonant interval (e.g. second/seventh/tritone). Hindemith [1942]

considers that tritone content is an overriding harmonic factor in the mu-

sical treatment of a chord, overriding the importance of notes such as the

root. He divides chords into two groups; those containing tritones, and

those not containing tritones.

Extended, or complex chords, (sevenths, ninths, elevenths, and thir-

teenths) are all firmly placed in the category of dissonant chords. There

is a great deal of literature about their definition, usage, treatment and

stylistic implications. The so called ‘dominant ninth’ (Piston [1983]) is

where the diatonic ninth from the root is added to the V7 chord, and the

‘dominant thirteenth’ is often used as a displacement of the fifth note in

the chord V which resolves onto this note. (From a computational perspec-

tive this kind of arrangement is easily misinterpreted as a first inversion

chord on the thirteenth note). Figure 2.6 shows some extended chords in

common arrangement in four part harmony.
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Figure 2.6: Example Arrangements of Extended Chords

Another widely accepted concept in relation to chords and harmony is

that of chromaticism, most easily understood as the introduction of tones

foreign to the diatonic tones of the scale. In common practice repertoire

this most often occurs in the form of semitonal voice-leading movement for

the purposes of musical colour and interest [Kitson, 1920]. Chromaticism

is associated with particular composers, for example, Chopin [Kramer,

2012].

In homophonic works, block chordal structures are the primary chord

type. Complex polyphony is also acknowledged to elaborate chordal struc-

tures, with the works of J. S. Bach being some of the most well known

compositions embodying both the principles of counterpoint and chordal

elaboration [Kirkpatrick, 1984]. Ledbetter [2002] discusses the influence of

the writings of music theorist Frederich Erhard Niedt (1674-1708), whose

work Musicalische Handleitung details techniques for melodically embel-

lishing a figured bass structure. Kitson [1907] comments that even for

composers as early as Palestrina, the ability to decorate a basic tonal

structure is seen as the skill which renders master composers more promi-

nent in comparison to lesser composers,.

2.2.3 Cadences, cadential structures

A cadence, also termed close, is the use of two chords in succession to

demarcate a boundary, such as the end of a phrase. The cadence which is

most final, and which firmly defines a key in root position, is the ‘Perfect

Cadence’, which consists of a V - I or V7 - I progression. Other cadential
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types include the ‘Plagal Cadence’, IV-I, and ‘Interrupted’, V - VI. This

latter introduces an important aspect of cadences, which is that a sense of

expectation has been created as to how the pre-emptive chord will resolve.

A composer can use this expectation to create an element of surprise, by

resolving the chord in an unexpected way, or by not resolving the chord at

all but moving on to a further dissonance. Composers often use cadential

sequences in the lead up to a final cadence, maintaining an element of

suspense and thus creating a greater feeling of resolution when the final

close arrives. For a detailed discussion of cadences refer to [Piston, 1983].

2.2.4 Figured Bass

Figured bass is the principle of providing musical interval figures indicating

the expected or required harmonic configuration of notes above a bass

part, or with which to fully harmonise a soprano and a bass line. A root

position triad is a 5-3, i.e. a fifth and a third above the bass note. A first

inversion triad is a 6-3, and a second inversion triad a 6-4. By convention

a 5-3 is not notated, the 6-3 is abbreviated to 6, a 7-5-3 (a root position

seventh chord) to 7 and a 6-4-2 (a third inversion seventh) to 2. Figured

bass was primarily a practical guide for the performing musician in the

17th and 18th centuries. It continues to be used to this day to denote the

harmonies of music from these historical periods by music theorists.

2.2.5 Key and Modulation

An important concept in musical composition is that of key change, also

known as modulation. Closely related is the idea of key relationships and

key distance: keys which are separated by just one or two additions or sub-

tractions of accidentals in the key signature are thought to be more closely

related to one another than keys with quite different key signatures. The

concept can be visualised by studying the circle of 5ths, shown in Figure

2.7. Schönberg defines a set of key circles encapsulating the hierarchy of

key relationships, listed in Table 2.4. The final circle, number 7, contains

keys which are the enharmonic equivalent of keys listed in previous circles.

Change of key within a composition is often brought about by a chord
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Figure 2.7: The Circle of 5ths

which is common to both the initial key and the new key, commonly re-

ferred to as a pivot chord. In practice there may often be a series of pivot

chords together which have a dual key function until the move to the new

key becomes apparent. This type of modulation is known as a diatonic

key change. An alternative method is chromatic modulation, made via

the introduction of a chromatic chord that is used as a means of establish-

ing a new key area. An enharmonic modulation exploits the enharmonic

reinterpretation of tones within a chord by resolving the enharmonic in-

terpretation of the notes. This method facilitates key changes between

distantly related keys.

How key changes are effected within a composition, the frequency and

symmetry of key change, the keys moved to, and the use of a key structure
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Table 2.4: Key Circles for C Major / A Minor [Schönberg, 1922]

Key Circle Key 1 Key 2 Key 3 Key 4

First Circle: G Maj E min F Maj D min
Second Circle: D Maj B min B♭ Maj G min
Third Circle: A Maj F♯ min E♭ Maj C min
Fourth Circle: E Maj C♯ min A♭ Maj F min
Fifth Circle: B Maj G♯ min Db Maj B♭ min

Sixth Circle: F♯ Maj D♯ min Gb Maj E♭ min

Seventh Circle: C♯ Maj A♯ min Cb Maj A♭ min

of delineate the architectural boundaries of a composition, are considered

to be important style features of individual composers, groups of stylis-

tically similar composers, and historical period, begetting a vast array of

musicological literature. Ferris [2000], for example, discusses the extraor-

dinary modulatory technique of C. P. E. Bach, Bribitzer-Stull [2006] traces

the origins of nineteenth-century composers’ uses of chromatic major-third

relations, and Schachter [1987] revisits the role of modulation in relation

to composers of different style periods.

2.2.6 Harmonic Theory

The use of harmony has evolved and mutated during the course of history,

from the earliest harmonic inceptions of the Middle Ages, to the vast range

of vertical formations used in modern composition. The sheer wealth of

theoretical literature and discourse, commencing with the theoretical writ-

ings of the 15th Century, to contemporary publications, gives testimony

to the complexity, diversity of thought, and variation of viewpoint on the

subject.

Dahlhaus [2007] describes, that following the early theories of Zarlino

in which harmonic relationships are related directly to string length ratios,

one of the most influential theorists is Jean-Philippe Rameau (1683-1764).

Rameau’s systematic rationalisation of chords and harmonic progressions

evolves and mutates over several decades of influential theoretical work

commencing with the Traité de l’harmonie of 1722 and culminating in the
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Nouvelles Réflexions of 1760. His conception of a fundamental bass and

reconciliation of 9th and 11th chords in terms of 7th chords with additional

roots continues to dominate views on music theory today (e.g. [Gosman,

2000]). Similarly authoritative is Riemann’s theory of functional harmony,

in which chords are related to their tonic, subdominant and dominant

functions. Chords are not treated as entities in themselves but in relation

to their function or role within the bar, phrase, movement or musical

work. The diatonic chords are labelled with Roman numeral notation in

relation to the scale degree that constitutes the chord’s fundamental note.

A single chord may have several possible functions or labels, depending on

its key context. For example, an F Major triad is a chord IV in C Major,

a chord I in F major, a, chord V in Bb Major, and so on. To be able to

allocate a Roman numeral label to a chord, the key context of the chord

must be known. In order to understand harmony, Dahlhaus [2007] states,

one must be able to relate chord content, already understood in terms of

its role within a key, to metre, musical phrasing, and form. Importantly

he expresses the idea that harmony is as much a structural principle in

ancient and medieval music as it is in later tonal eras.

2.2.7 Harmonic Analysis

The analysis of harmony in a composition is not an exact science. Non-

chord tones, unusual rhythmic emphasis, and chromatic elements, are ex-

ploited by composers to create ambiguity and areas of harmonic tension.

Harmony analysis is subjective; although analysts will agree for the most

part about chord and key designations when the harmony is relatively

transparent and clear, opinions diverge in situations of ambiguity about

chord function, key, tonal centre, and about which notes are structurally

more important than others, and why. (Consider for example the ana-

lytical difference of opinion regarding the theme of the first movement of

Mozarts K331 - is the C♯ more important than the E or vice-versa?) The

variation of opinion between two people is commonly cited as a problem in

the field of Music Information Retrieval where unequivocal ground truth

data is required for system evaluation (e.g. see [Smith et al., 2011], and
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is supported in work by Krumhansl; her resolution to the problem is to

obtain ground truth data about key strengths in Bach’s C Minor Prelude

(Book II) from two musical experts rather than one [Krumhansl, 1995].

In relation to the research in this thesis the topic is discussed in more

depth in section 5.5). There are also different ways of going about the

analysis of harmony. One method is to designate every single chord label

in relation to the overall key of the piece, rather than in relation to the

local key context. Piston [1983] terms this ‘literal roots’; for a thorough

review refer to his chapter on harmonic analysis. The advantage is that

one cannot really argue about the chord label. The disadvantage is that it

can lead to some rather obscure labelling, and perhaps more significantly,

does not acknowledge the key processes at work within a piece, nor even,

it could be argued, the function of the chords.

A more usual approach is to label chords in relation to their role within

the local key context. This method is the preferred method if one wishes

to develop a more detailed understanding of musical form, such as sonata

form, which is primarily defined by its higher level harmonic structures.

The method thus requires the analyst to discover the key relationships

being used to create coherence in a work. To perform this kind of analysis,

a certain level of musical skill is needed. One must be clear (at least in

one’s own mind) about the definition of modulation and chromaticism,

and how keys and chords interact to create harmonic structure. At what

point does the use of chromatic chords become modulation, or at one

point is a seeming modulation just chromaticism? The analyst needs to

be able to judge how strong the modulation is, for example, whether it

is just briefly passed through, whether it is expressed weakly or strongly,

with inverted or root position chords. It may be a modulatory sequence

with a long term harmonic goal. Importantly, many musicologists do not

consider a modulation to be a modulation unless there is a cadence in the

new key [Kitson, 1920].

A further method is to analyse music in the light of ‘secondary dom-

inants’. The primary function of the secondary dominant, as detailed in

[Piston, 1983] pages 282 to 284, is that the purpose of a new key is to

emphasise the strength of the tonic key via tonicisation of dominant or
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subdominant harmony. Although the new key area is heard as a modula-

tion, it is thought to be felt in relation to the home key [Wishart, 1956].

The notation of secondary dominants takes the form of, ‘IV of IV’, or

‘IV of V’ where the first number refers to the chord, the second to the

key, identifying the relationship of both chord and new key to the original

tonic. The extent to which a key is actually perceived as a secondary

dominant has been brought into question by perceptual experiments with

listeners [West Marvin and Brinkman, 1999].

2.3 Harmony, Counterpoint and Musical Style

The use of harmonic relationships to carve out a sense of formal balance

and symmetrical proportion is seen by musicologists as the central charac-

teristic of the ‘Classical style’, the musical style which emerged during the

second half of the eighteenth century [Mellors, 1957]. The development

of a new harmonic language is regarded as the catalyst which induced a

period of new creativity and expression to emerge from the contrapuntal

control of the Baroque era [Rosen, 1971]. It is seen as a crucial turning

point in the history of music, marking a departure from old traditions,

and the beginning of a new musical era [Piston, 1983] The progress of

harmony throughout history can be charted through the works of the

master composers of western music: commencing with the early styles of

Palestrina, through the works of Monteverdi and Bach, to Haydn, Mozart,

Beethoven; and on to the composers who stretched the definition of har-

mony further and further with increasing levels of chromaticism (Brahms,

Debussy, Ravel, Mahler, Wagner), to polytonalality (Stravinsky, Britten,

Bartok), and on until the eventual deterioration of harmony resulting in

atonality and serialism (Schönberg, Berg, Webern) [Piston, 1983, Mellors,

1957, Grout, 1980]. Many recent composers have returned to the basic

building blocks of harmony within a new compositional framework such

as minimalism (Glass, Reich, Nyman, Pärt) whereas others have inno-

vated with dense counterpoint and polyrhythm to create novel sonorities

(Penderecki, Ligeti).

The role of harmony, in conjunction with the principles of counterpoint
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outlined earlier, are clearly understood in musicology to occupy an impor-

tant place in the definition of musical style. It is the chord qualities, the

way in which they are used to create a sense of tonality, of consonance

and dissonance, and an expectation of leading somewhere, and the way in

which harmonic structures are expressed by contrapuntal processes, that

are the primary distinguishing factors of musical style in western classi-

cal music. This dualism between the structural-vertical (harmonic) and

linear-horizontal (melodic) dimensions of music is one of the most dif-

ficult aspects of music to capture computationally. A computer system

tends to focus on a single dimension at a time; simultaneously occurring

multidimensional processes are particularly difficult to model.

2.4 Metre

This section outlines those aspects of metre and beat that are a necessary

adjunct to understanding research presented subsequently in this thesis.

The details and explanation of the concepts presented here are indebted to

[London, 2007] who gives a detailed overview of the topic. The upper por-

tion of a time signature defines the number of metrical units per bar. The

lower portion defines the unit of measurement: 2 corresponds to minim,

4 to crotchet, 8 to quaver, 16 to semiquaver, and so on. Meters with an

upper time signature value of 2, 3, or 4 are known as simple meters (for

example, 4
2, 2

3, 8
4), whereas compound meters multiply the number of units

in simple meters by 3 (for example, 8
9, 4

12, 2
6). The concept of metre implies

that there is a perceivable beat, i.e. a rhythmic pulse, best defined as that

to which one could tap one’s foot in time to a piece of music. Metres

are classified as being duple, triple or quadruple respectively, according to

whether there are 2, 3, or 4 beats per bar. The durational value of a beat

does not necessarily coincide with the unit of measurement specified by

the lower part of the time signature; a beat can consist of a combination

of these units. For example, the time signature 4
4, is simple quadruple,

and has 4 beats of crotchet value per bar. In contrast, the time signature

8
6 is compound duple, and consists of two beats per bar of three quavers
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Table 2.5: Time Signature Types Lookup Table.

Time Signature Signature Type Beat Groupings Shorthand

2/2 2/4 2/8 Simple Duple S/d
3/2 3/4 3/8 Simple Triple S/t
4/2 4/4 4/8 Simple Quadruple S/q
6/8 6/4 Compound Duple C/d
9/2 9/4 9/8 9/16 Compound Triple C/t
12/8 12/16 Compound Quadruple C/q
24/16 Compound Octuple C/o

each. Similarly, the compound quadruple time signature 16
12, has four com-

pound beats of three sixteenth notes per bar. A range of commonly used

time signatures and their classifications is shown in Table 2.5. Irregular

time signatures are possible and feature in twentieth century composition

especially.

2.5 Formal Analytical Theories of Music

A brief overview of formal analytical theories of music is included here for

the information of readers wishing to pursue similar lines of research in

the future. The theories are related in order of importance with respect

to their influence on this work, with pitch class set theory having only a

slight bearing on subsequent work, simply the representation of groups of

pitches by pitch class sets.

2.5.1 Schenkerian Theory

A description of Schenkerian analysis is included in this section of the

thesis because the concept of an ‘underlying structure’ in music is cen-

tral to the approach to capturing chords detailed in chapter 6. Heinrich

Schenker (1868-1935) propounded an analytical approach to tonal music

based on the idea that the surface detail of a tonal musical work is a ‘pro-

longation’ of a particular note, chord or harmony, and that all musical

works of the tonal era can be ‘reduced’ down to an underlying fundamen-

tal structure via a series of hierarchical levels [Schenker, 1979]. The notion
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of underlying structure is explained visually in the article by Heidi Siegel,

in which excerpts of Schenker’s intellectual correspondence with the artist

Victor Hammer are quoted [Siegel, 2006]. In their correspondence, Ham-

mer equates his diagram of the visual structure of his portrait of a patron,

Parmenia Ekstrom, to Schenker’s concept of ‘underlying structure’ in mu-

sic, stating that this is the ‘purely visual structure that is not seen but

apprehended’ in his paintings (page 89). In their letters Schenker also

refers to the idea of ‘musical space’, particularly Quint-Raum (space of a

fifth) and Terz-Raum (space of a third), which he proposes are the funda-

mental building blocks of music that are filled by the ‘unfolding Urlinie’

or structurally descending scale progression (page 92). In Schenker’s view,

all works are based upon an Urlinie with a supporting harmonic struc-

ture known as the Ursatz, but there have been criticisms of his published

analyses that the reductions were biased in favour of this [Salzer, 1982].

Schenkerian theory is intricate and complex and the reader is referred to

[Pankhurst, 2008] for a more detailed understanding of the subject mat-

ter. Nonetheless, internationally and throughout history, no other musical

theory has rivalled that of Schenker in terms of influence or the adoption

of its concepts. The theory has excited extensive and wide ranging aca-

demic discourse from many different perspectives [Cook, 1989, Littlefield

and Neumeyer, 1992]. The theory itself has reached far beyond the tonal

music it was originally devised to explain, with transmutations of the the-

ory extending into analyses of post-tonal composition (e.g. [Lerdahl, 1989]

and spawning new theoretic approaches to music (e.g. [Lerdahl, 2001]).

Computational approaches to Schenkerian analysis include the work

of Phillip B. Kirlin and Paul E. Utgoff [Kirlin and Utgoff, 2008], and the

more extensive researches of Alan Marsden (see for example [Marsden,

2011, 2010, 2007]). Marsden reports that one of the biggest challenges

facing a computational approach, aside from the inherent subjectivity of

this type of analysis, is the sheer quantity and complexity of data that

must be processed in order to achieve a Schenkerian reduction. The effect

of this is that the computer is only able to process short excerpts [Marsden,

2010].
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2.5.2 A Generative Theory of Tonal Music

Lerdahl and Jackendoff [1983] made a notable contribution to the field of

music theory with ‘A Generative Theory of Tonal Music’ (GTTM). It is

based upon Chomsky’s linguistic methodology combined with Schenkerian

music theory. In the opening paragraph of Chapter 1, page 1, the author’s

describe the goal of the work to be:

a formal description of the musical intuitions of a listener who

is experienced in a musical idiom.

The approach taken is to arrive at a set of well formedness rules to obtain

the definition of a group, and a more subjective set of preference rules

that take into account perceptual preferences, in the domains of Metre,

Grouping, Time-Span, and Prolongation. The influence of linguistic the-

ory is evidenced in the use of tree like structures to explain the structure

of pieces of music, however they seem a little remotely related to the music

they represent.

Despite being a theory about tonal music, the book notably omits any

detailed explanation of tonal relations or thematic/motivic processes in

music. Hamanaka et al. [2007], have implemented aspects of the theory

computationally, but state that the original theory is not directly adapt-

able to computation due to a lack of direction about how to proceed when

there are conflicts between rules. The applicability of the GTTM to real

world problems such as transcription, or style recognition has not been

fully tested, consequently there is scope for further research into the ap-

plication of a musical grammar of this kind. GTTM theory is used to

inform the implementation of measures capturing the metrical strength of

notes in the work presented in chapter 6.

2.5.3 Narmour’s Melodic Implication/Realisation Theory

Narmour [1992] places melodic processes in the domain of cognitive psy-

chology in his extensive theory of melody, ‘The Analysis and Cognition

of Basic Melodic Structures: The Implication-Realization Model’. Nar-

mour defines a theory of ‘process’, in which small melodic intervals imply
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melodic continuation, and ‘reversal’, in which large intervals imply rever-

sal or difference. Similarity and difference are judged according to melodic

context and this appears to be interpretive. Narmour also defines whether

a tone has a structural or nonstructural role, depending upon whether the

tone concludes, or fails to conclude, a sequence of preceding tones which

are implicative in nature. The theory has motivated quantitative experi-

mentation testing the theory e.g. [Krumhansl, 1995].

2.5.4 Pitch Class Set Theory

Forte [1973] developed pitch class set theory to expedite the analysis of

atonal and serial music; i.e. music that intentionally avoids any notion

of having a key or tonal centre. A pitch class set is any group of si-

multaneously occurring pitches, although it can also refer to a group or

combination of pitches musically expressed in linear or diagonal forma-

tions. A pitch class set does not have the concept of reinforcing a sense

of key, and crucially differs from tonal harmony in that all pitches are

included. To define a particular pitch class set, the constituent pitches

are translated into a unique set of pitch classes, commencing with pitch

class 0 (C), progressing chromatically up the scale to 11, (B). The normal

order of a pitch class set is when the pitches are arranged in ascending

order within a single octave and then cycled around until the first and

last pitches have the smallest interval between them, for example, the set

[0,3,2] in normal order is [0,1,2] taking into account transpositional and

inversional equivalence. Central to the theory are methods of ascertaining

whether pitch class sets are equivalent by transposition or inversion: for

example, an interval of a perfect fourth is equivalent to that of a perfect

fifth, an equivalence which would not be accepted by tonal composers such

as Bach. An important relationship between two pitch class sets is the

‘interval vector’, which departs from describing the pitch content of a set

and looks instead at the interval content. Two pitch class sets are said to

be related if they share the same interval vector, even if their pitch class

set classification is different. Forte [1973] gives a complete list of pitch

class sets, their names, pitches and interval vectors.



Chapter 3

Literature Survey

This chapter presents the research to date relevant to the work described

in this thesis, particularly methods of modelling music and formulating

representations of musical constructs using computational methods. De-

tailed attention is given to work that has a direct impact on the research

presented later in this thesis.

3.1 Counterpoint and Voice-leading

The musicologist Robert D. Morris 1 has published extensively about mu-

sic theory including a detailed and thorough account of counterpoint and

voice-leading. Morris [1998] formally describes features of counterpoint

before going on to discuss the theory of using a ‘Tonnetz’, in which pitch

classes are represented in a two dimensional pitch class array to represent

transformations between pitches. His ideas are influenced by previous

work done by David Lewin, described below. Robert Morris’s systematic

definition of counterpoint features are valuable to a computational imple-

mentation, however the simultaneous representation of structural-vertical

aspects of music and linear-horizontal aspects of music that humans per-

ceive so readily is peculiarly difficult to encode in a computer system.

Much of the computational research done so far has therefore been lim-

ited to simpler one-dimensional representations of voice crossing or voice

separation, rather than voice-leading. The idea of voice-leading analytical

1http://www.esm.rochester.edu/faculty/morris_robert/

http://www.esm.rochester.edu/faculty/morris_robert/
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layers is central to that of Schenkerian analysis [Pankhurst, 2008], con-

sequently work done on automatic Schenkerian reductions needs to take

some elements of voice-leading into account. Kirlin [2009] identifies a type

of voice-leading layer that can be identified relatively easily by a computer

- that of the linear-horizontal stepwise progression occurring at a higher

structural level such as the first beat of every bar. Diagonal and vertical

inter-voice relationships are not accounted for.

Laurson et al. [2008] describe a similar problem in their work on the

visualisation of computer assisted music analysis (PWGL), saying that

‘voice-leading rules tend to be harder to formulate than melodic and har-

monic rules as they deal with both melodic and harmonic formations at

the same time’. Their system consequently limits the representation of

voice-leading concepts to that of recognising when voice-crossing takes

place in a musical work. The musical voices in question are restricted to

one note per voice - a topic discussed further below.

David Lewin’s use of vectors to represent voice-leading progressions

between two pitch class sets successfully represents the interval crossing

relations of two pitch class sets [Lewin, 1998, 2001]. His theory exploits

pitch class set theory and is primarily applicable to atonal and serial com-

positions by composers such as Schönberg, but it also holds promise for

the processing of voice-leading in tonal music. An issue relating to voice-

leading functions in tonal music is the interval equivalence expressed. (See

section 2.5.4 on pitch class set theory). Lewin’s voice-leading functions

take no account of register, and therefore although one of his functions

claims to account for ‘total potential voice-leading’, in practice it does

not do so. Lewin’s work is of interest due to his detailed research into

the nature of transformations from one pitch-class set to another and how

this relates to music theory, rather then concentrating on the actual pitch

content of the pitch class set. He also pays attention to the intervallic

content of music, which as he points out in the first paper cited, is not

necessarily a secondary feature of music, but in some cases a primary one.

He gives as an example a sequence containing very individualistic intervals

in George Crumb’s Makrokosmos for piano: ‘the constancy of those nu-

meric values, from each stage of the progression to the next, is a feature in
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its own right’. The application of Lewin’s theories in methods of harmony

extraction in tonal music remain to be researched.

S. T. Madsen details experimentation with an evolutionary algorithm

to model species counterpoint in which randomly generated sets of notes

are evaluated in accordance with encoded species rules [Madsen, 2005].

The sets of notes that give the best fit are kept and slightly mutated

and the process continues until a set of notes is achieved adhering to the

defined rules. The work is based on three cantus firmus parts and explores

a systematic application of species counterpoint rules, however musical

knowledge is not enlisted to either assess or improve the musical quality

of the result, and he reports the results to be disappointing from a musical

perspective. Using the same cantus firmus used by Madsen, Eduardo and

Roberto Morales explore the application of Inductive Logic Programming

(ILP) to learn first species counterpoint rules [Morales and Morales, 1995].

They successfully generate a second musical part in note against note

style against the cantus firmus, and they express an aim to incorporate

these learned rules in a compositional system. Mearns et al. [2010] uses

machine learning tools to attribute digital scores to individual composers

based on musical features extracted about use of species counterpoint

rules, consonance and dissonance levels, vertical intervals and tonality in

two corpuses. A composer classification task is performed to test the

ability of the feature sets to discriminate composers, yielding moderate

accuracy. The experiments show that abstracting meaningful information

is challenging, however the results give promise for practical applications

such as style recognition and music recommendation. It is surmised that

by improving the capability of the program to abstract high level musical

constructs, the classification results and the insights given by the results

will also improve.

All of the above implementations feature similar problems with respect

to capturing contrapuntal processes in music. The problem relates to the

ways in which a computer system is able to store information, for example,

in the form of single dimensional storage types which do not easily adapt

to a system of references to track inter-relationships of notes. The princi-

ples of music analysis are loose, consequently there is an interpretive and
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subjective step involved in encoding the relative structural importance of

notes, and any implementation will require simplifying assumptions to be

made.

3.2 Modelling Musical Voices.

The separation of MIDI data into musical ‘voices’, which resemble either

the way that individual musical lines are written out in the score, or the

human perception of auditory streams, is also a challenging problem. One

part of the problem is that the notion of voicing has more than one defini-

tion (please see section 2.1.1). The majority of computational approaches

to voice separation adopt a standard understanding of the term ‘voice’,

which is that a musical voice is a monophonic series of successive notes

which do not overlap in time. Importantly, in this definition there cannot

be more than one note per voice at any one time. The definition is closest

to that used in early vocal styles, in which each ‘voice’ corresponded to

a single part, a definition which is the most convenient for a computer

implementation. Nonetheless as mentioned in preceding sections, the re-

striction of one note per voice does not hold true for keyboard music. As

early as Bach’s Well Tempered Clavier, we see fluctuating numbers of con-

current notes; the musical voicing is not consistent throughout. Varying

musical textures are an important feature of the idiom, and the idea of a

single note per voice is flawed.

The majority of computational algorithms developed with the aim of

deriving a set of musical ‘streams’ or ‘voices’ from MIDI data use roughly

similar sets of criteria for allocating notes to voices. The principles are

inspired by studies of human perception of auditory streaming, and in

particular how music is integrated or segregated into streams [Bregman,

1990]. There are two principles which prevail in computational implemen-

tations; the first is temporal continuity, i.e. the sequence of notes must

be contiguous, and the second is pitch proximity, which is the idea that

notes which are closest in pitch are more likely to be perceptually grouped

into a single voice. Most algorithms have a limitation of a single note per

voice; approaches to the maximum number of voices per score vary, from



CHAPTER 3. LITERATURE SURVEY 35

manual input to being equivalent to the size of the largest chord. (For

example see [Kilian and Hoos, 2002, Kirlin and Utgoff, 2005, Madsen and

Widmer, 2006, Temperley, 2001].)

It has been suggested that the problem is not fully solvable with the

amount of information available to the system [Marsden, 1992, Kilian and

Hoos, 2002]. Marsden [1992] uses J. S. Bachs Fugue in G♯ Minor from Book

I of The Well Tempered Clavier to take us through the intractability of the

problem. His first model, which defines a rule ‘closest’, whereby notes are

conjoined into a single voice based on the end of one note coinciding with

the beginning of the next note, and the next note being closest to it in

pitch. This first model is only successful until the beginning of the fourth

bar, where the note in the same voice as notated in the score is in fact

not the closest to it in pitch, thus it is incorrectly linked to the lower part.

Marsden goes on to build a series of models to try to deal with the problem.

One of the difficulties is that in attempting to address the various ways

in which Bach’s fugue digresses from consistent and logical ‘rules’, is that

the design of the model becomes overfitted and loses generality. Moreover,

the introduction of rules to resolve more complex voicing situations then

results in incorrect voicing in the previous cases where simpler models had

selected the correct allocation.

Madsen and Widmer [2006] present an approach to separating voices in

MIDI which is inspired by Temperley’s well-formedness rules [Temperley,

2001], including the restriction of one note per voice and the creation of

a contiguous sequence of note events per voice. They use a cost function

to ensure that certain preferences are adhered to when assigning notes to

voices, in particular, minimising leaps between notes in all voices, min-

imising the number of voices, and minimising the number of rests within

a voice. Their approach allows the dynamic creation and termination of

a voice, and also, in contrast to other approaches, allows voices to cross,

although voice crossing incurs a higher cost. They evaluate their results

using Bach’s three part inventions and fugues and report that the principle

of pitch proximity is insufficient to solve the problem. Initial experiments

with pattern matching to improve results show only a small improvement

but they conclude that pattern matching may be able to further improve
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their algorithm’s performance.

Cambouropoulos [2008] directly tackles the standard understanding of

musical ‘voice’ and computational models which make an assumption of

a single note per voice. He questions the reasoning behind David Huron’s

work on tone and voice [Huron, 2001], in which Huron asserts that the pur-

pose of voice-leading is to create ‘perceptually independent musical lines’,

linking this in with the perception of auditory streams. He points out that

Huron’s article neither defines what a musical voice is, nor makes explicit

the nature of the relationship between a voice and an auditory stream.

In addition, the assumption of only one note per musical voice results in

the discounting of a large proportion of music. Cambouropoulos argues

that any musical voice related algorithms must be able to accommodate

more than one note per voice to be truly functional in a computer sys-

tem. His Visa algorithm groups synchronous notes into a single stream

and notes that overlap and are not synchronous are placed in different

streams, thus a series of chords would be grouped into a single voice. The

method is particularly suited to keyboard music in which there may be

a set of chords in the left hand and a melodic upper part, which would

constitute a different voice, and is much more in keeping with the style of

many keyboard compositions. The algorithm in its current state is unsuit-

able for use with complex contrapuntal works such as the Well Tempered

Clavier in which compound melody is frequently a feature (see section

2.1.1). Prelude 2, the C Minor prelude, for example, would be grouped

into one single stream because it consists of synchronous semi-quavers,

rather than the two notated streams or possibly the more desired result

- four musical voices. The concept of musical parallelism as implemented

in Visa therefore requires further adaptation in order to detect compound

melodic streams, for example, parallel intervallic movement as well as met-

rical synchronicity. This type of modification is not straightforward due

to the fact that parallel intervallic movement does not necessarily consist

of progressions of exact intervals. Further work is needed to thoroughly

explore the topic (please see future work).

Other voice-leading related studies by Cambouropoulos include his pa-

per about ‘Auditory Streams in Ligeti’s Continuum: A theoretical and
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perceptual study’ [Cambouropoulos and Tsougras, 2008], in which he fur-

ther explores auditory streaming principles, this time in the context of

modern composition. He attempts to show how the human mind organ-

ises sequences of notes into auditory streams.

Chew and Wu’s ‘contig mapping’ method [Chew and Wu, 2005] is in-

spired by the perceptual principles of voice-leading defined by David Huron

[Huron, 2001] and thus far gives the highest level of accuracy of current

voice separation algorithms. The algorithm is based on the principle of

pitch proximity, supported by perceptual research that suggests that hu-

mans are more likely to hear notes that are close in pitch as constituting

a single auditory stream, and the concept that humans perceive the diver-

gence of auditory streams rather than voice crossing [Deutsch, 1975]. The

primary rules of the method are summarised as follows:

• Pitch proximity: take the shortest route to make voice connections

• Stream crossing: do not allow voices to cross

• Ideally restrict the number of voices to three or fewer (based on

Huron’s principle of limited density).

• Permit only one note per voice

Chew and Wu define four entities intrinsic to their computational im-

plementation: a note is an object with pitch and duration properties. A

fragment is a linear sequence of successive notes belonging to the same

voice. A contig is a collection of overlapping fragments such that the

number of voices present throughout the contig is constant. A maximal

voice contig is a contig containing the maximum number of voices. The

algorithm works by segmenting the data into a series of adjacent contigs,

seeding the maximal voice contigs first by pitch order, and then, via a met-

rics system which awards penalty points for less preferred connections,

propagates the musical voicing outwards via nearest neighbours. Voice

connections are therefore made at contig boundaries; by definition, the

number of voices in adjacent contigs is different. Chew and Wu deal with

the problem of fluctuating quantities of simultaneous notes, which using
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the one note per voice rule would mean a much larger number of voices in

total for a single musical work, by omitting large chords from their compu-

tation. They justify their approach by asserting that large chords serve as

‘statements of finality’, and that these verticals ‘masquerade as maximal

voice contigs’ [Chew and Wu, 2005]. The omission is questionable how-

ever, although omitting large chords avoids generating many more voices

than Huron’s preferred maximum, the question as to exactly how such

large chords should be voiced remains unanswered. Moreover, there are

many instances in contrapuntal corpuses where large chords appear within

the context of the piece and not simply at the end, suggesting that these

chords are an integral part of the music, and by implication therefore, the

voicing of the music.

Chew and Wu report an average voice consistency, (a measure of the

average proportion of notes to have been assigned by the algorithm to the

same voice), of 88.98% when applied to polyphonic keyboard music by J.

S. Bach. Recent work based on a replica of Chew and Wu’s method by

Ishigaki improves the average voice consistency measure to an accuracy

of 92.21% when the process of connecting contig boundaries is prioritised

to prefer making connections at boundaries where the number of voices is

increasing rather than decreasing [Ishigaki et al., 2011].

3.3 Chord Recognition

Automatically classifying keys and chords using a computer program to

process digital data faces several common problems. The majority of

systems process digital data formats such as MIDI, which generally does

not supply the enharmonic pitch spelling and voicing information that

would be levied by a human analyst performing the same task. For both

key and chord extraction, a key issue is that of ambiguity, which can be

defined as musical situations that present too little information to draw a

conclusion with any degree of certainty, or situations presenting too much

information and thus presenting a range of possibilities. Rohrmeier [2007]

gives an example of the latter in relation to key finding, citing the chord

sequence C-G-C-G, which could equally be interpreted as being in the key
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Figure 3.1: Reproduction of Pardo and Birmingham Excerpt.

of C major or G major. With chord extraction, the same issue of ambiguity

presents itself in relation to pitch content. Mechanisms need to be put in

place to ascertain which pitches in a presented group are chord tones, and

which ones are not. Chord extraction from pitch class sets is a difficult

problem, either involving the creation of complex interlocking rules, or

some other method of pitch to chord label inference. Many researchers

simplify the problem by processing only pitches which occur on the beat,

ignoring pitches with onsets that are on the offbeat (e.g. [Ponsford et al.,

1999]), however as discussed in section 6.1 it is erroneous to assume that

pitches occurring on the beat are always chord tones.

Pardo and Birmingham [2002] describe a pitch counting algorithm to

automatically recognise chords from symbolic data. Importantly this part

of the method is not relying on musical rules but derives information from

pitch weight evidence. The method is based on a pre-defined dictionary

of pitch class set style chord templates, representing triads and two types

of sevenths. The dictionary is populated by creating a pitch class set for

each type of defined chord template on pitch class from 0 (C), ascending

chromatically, to 11 (B). The templates are fully factored, i.e. every note

member of a chord is represented, for example, the major triad on C, {C,

E, G}, is defined as pitch class set {0, 4, 7}, and the seventh on G, {G,

B, D, F}, is defined as {7, 11, 2, 5}. The chord algorithm determines the

weight of individuals notes in a given segment by counting the number

of fractional segments the note is present within. A fractional segment
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is a sub-segment of the main segment denoted by a new note onset. For

example, Figure 3.1 reproduces the example segment used in [Pardo and

Birmingham, 2002], containing five notes, two minims, C and E in the bass

staff, and a treble voice progression C (crotchet), D, and E (quavers).

There are three fractional, or sub-segments, within the main segment.

These are shown by dotted lines in the figure. A count of pitch presence

in the fractional segments results in note weights of 3 (minim C), 3 (minim

E), 1 (crotchet C), 1 (quaver D) and 1 (quaver E) respectively. The method

therefore does not correlate to absolute duration but is a relative measure

of durational strength. The note weights are then compared to each and

every pitch class template in the dictionary, and a count is made of positive

evidence, negative evidence and misses, as described in the list following:

• positive evidence = the sum of the weights of pitch classes matching

a template element

• negative evidence = the sum of the weights of the pitch classes not

matching a template element

• misses = sum of the template elements not matching the pitch

classes.

A score for the pitch classes when compared to the template is cal-

culated by deducting the sum of negative evidence and misses from the

positive evidence values.

Three preference rules are used to choose between multiple pitch class

templates producing an identical score:

• prefer templates whose root pitch class has the greatest weight of

notes present in the template

• prefer templates having a higher prior probability

• in the case of diminished 7ths prefer the template whose bass note

moves down by a semitone in the following chord.

An issue facing all computational work in this field is access to ground

truth data against which to measure results, consequently a significant
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contribution made by Pardo and Birmingham [2002] is their objective

evaluation of results against the Kostka and Payne corpus [Kostka and

Payne, 1984]. The corpus contains a range of excerpts of music including

works by Bach, Beethoven, Haydn, Mozart, Schubert and Tchaikovsky.

They achieve levels of accuracy ranging from 75.81% to 88.65% depending

on the segmentation method used. In this work they also detail complex

approaches to segmentation of the data, widely acknowledged to be a very

hard problem to solve computationally. Segmentation can be defined as

the temporal division of music data, such that each segment corresponds

to a single chord. The issue is complex because harmonic rhythm in

music (i.e. rate of chord change), fluctuates considerably throughout a

single work and is also subject to differing opinion amongst annotators.

Annotations of chords and keys by human musicians are often generalised

to higher level segments so that fractional level chords are not labelled.

Harmonic rhythm is discussed in more detail in subsequent chapters, see

for example section 5.5.1. A great deal of harmony researchers avoid the

issue of segmentation altogether by basing experiments on the homophonic

Bach chorales ([Raphael and Stoddard, 1984, Rohrmeier, 2007]) which

predominantly follow a harmonic rhythm of a crotchet beat.

Maxwell [1992] describes the implementation of a LISP based expert

system to perform harmonic analysis. Maxwell states that the two main

problems when constructing rules for harmonic analysis are knowing how

to choose which vertically coinciding groups of notes are chords, and sec-

ondly where to demarcate the boundaries between chord groups. The

system defines a complex set of 55, interacting, specific rules by which

to recognise consonant and dissonant chord types including metrical ac-

centuation and tertian stacking of notes. The implementation of the rule

set is tested on J. S. Bach’s Six French Suites, and produces figured bass

labels for the test set. Maxwell discusses both the generally plausibility

of the output, but also the problems of the results which range from a

bias towards simpler triadic chord types, with some results missing clear

examples of seventh chords, and the computational difficulty of achieving

accuracy when there is abundant linear movement. For example, this may

be when the movement of quavers which should be identified as passing
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notes creates successive offbeat consonances. Maxwell’s results are not

measured against any ground truth; similarly to the work of [Raphael and

Stoddard, 1984] the results are discussed using musical excerpts. However

the lack of objective evaluation in this type of work makes it difficult to

understand precisely how successful and accurate the work is. Maxwell

highlights that the goal of this work was to encode rules intuitively, and

to parallel the kind of mental processes used by a human analyst in the

same task, and as such the work is a useful point of reference for further

experimentation in the field of automatic chord recognition.

Research using harmony information to classify style and genre has

been made possible by manually annotated data sets such as Chris Harte’s

Beatles chord annotations ([Mauch et al., 2007]). Manually annotating

chord labels to this degree of accuracy is very laborious thus there are

few complete sets of data to work with. Amelie Anglade has researched

the automatic classification of genres of symbolic and audio music us-

ing harmony rules derived from manually annotated chord progressions

([Anglade and Dixon, 2008, Anglade et al., 2009, 2010]). Her research

found that many chord progressions are generic across different genres

and that the difference between genres based on chord data is subtle.

The results demonstrate the necessity to capture intricacies of harmony

usage beyond the commonality of basic triads and simple sevenths for

style and genre recognition in music. Improving the level of richness of

information about vertical sonorities, for example, to include the presence

and compositional treatment of complex dissonance, as well as the use

of chord progressions in combination with other features such as key or

harmonic vectors, as described by Phillip Cathé may be more revealing

[Cathé, 2010].

A great deal of research has been performed to classify chords directly

from audio, for example [Mauch and Dixon, 2010, Harte et al., 2005, Fu-

jishima, 1999]. Mauch concentrates on abstracting chords from audio rep-

resentations of pop music using a dynamic Bayesian network that combines

information about meter, key, chord and bass and treble chroma. Mauch

reports that the use of contextual information improves chord recognition

accuracy.



CHAPTER 3. LITERATURE SURVEY 43

3.4 Statistical and Probabilistic Work

in predicting a future stimulus, our best prediction would

be the stimulus that has occurred most frequently in the past

[Huron, 2007]

In his book ‘Sweet Anticipation’, David Huron moots the idea that

statistical studies of music could yield novel insights into music. Chapter 5

of the book, ‘The Statistical Properties of Music’, is dedicated to this idea,

and he demonstrates the applicability of statistics to music by showing

that conclusions can be made about music from statistical studies. For

example, the frequency of occurrence of melodic intervals for samples of

music from ten cultures spanning Africa, Asia, Europe and America show

that on a linear level small intervals predominate. Huron reiterates the

idea mentioned in [Krumhansl, 1990] that listeners are also sensitive to

the statistical regularities and distributions of tones in music, and that

as a consequence there is a great deal of scope for further statistical, and

by implication probabilistic, modelling of music. Hillewaere et al. [2009]

have explored different statistical methods to differentiate style, either of

composers or for folk song classification. They describe two methods of

statistical analysis and compares the results of both when applied to the

same data set. The first method, the ‘global feature’ approach, summarises

a melody as a single feature vector; the second method is that of an

‘event’ model, which uses a sliding window to calculate the probability of a

melody. The polyphony of the scores is not fully accounted for; the melodic

lines are processed separately as if they were individual monophonic lines

and the musical interaction of the voices is disregarded. Individuating

Mozart from Haydn is clearly a very challenging task and it is suggested

that work to elicit much deeper and complex musical features is necessary

to successfully perform this task. Melodic intervals are easy to measure

and work with, however basing experiments solely on melodic intervals

thwarts the possibility of yielding deeper insights about a musical corpus,

as shown in the variation between different modelling methods; for the

folk song corpus the event model out-performs the global features, but in

a similar experiment to differentiate between Mozart and Haydn String
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Quartets [Hillewaere et al., 2010], the results are less determined. Conklin

and Bergeron [2010] describes a method to combine features in order to

discover abstract relations between contrapuntal parts. Their method

of capturing melodic interactions between pairs of voices is applied to

Bach chorale harmonisations proffers some success at eliciting distinctive

patterns in the counterpoint.

David Temperley also strongly supports the idea of probabilistic stud-

ies, and has published a book about his work and that of others in this

area [Temperley, 2007]. In the book Temperley describes Bayesian the-

ory, reviewing current research and introducing a set of his own Bayesian

algorithms which generate probability-based metre and pitch models, us-

ing the Essen folksong collection as his data set. Temperley’s key finding

model given a set of pitches performs reasonably well on annotated data,

with results in the region of 80%. He points out that his probability

models tend to perform less well than the rule based models used in the

Melisma analyser. The models are completely statistical with no musico-

logical rules applied. An important omission is that rhythm, bar and beat

position information is not taken into account, and no account is made

for structurally important notes. In Chapter 8 of his book, Temperley

discusses the possibilities of applying Bayesian musicological modelling to

transcription systems, saying ‘it provides a natural way of bringing to bear

higher-level musical knowledge’. He specifically cites the musical princi-

ple of pitch proximity as holding promise in this field of research. Partly

related to the idea of pitch proximity (indeed a forerunner) is the formal

musical principle of voice-leading.

Another area of musicological research which has been used to model

music with some success is Markov modelling theory. Markov modeling

has been used in a variety of contexts, such as tonality estimation and

composer identification [Noland, 2009, Liu, 2002, Ryynänen, 2008].



Chapter 4

Key Estimation from Perceptual

and Theoretic Data using Hidden

Markov Models

Musicologists cite the harmonic language of a composer as a critical in-

dicator of musical style period, as discussed earlier in this thesis (section

2.2). This includes: the range of chords used; types of chord progressions;

the exploitation of consonance and dissonance; the frequency, style and

methods of modulation; and key and key relationships. Translating such

subtle, complex and inter-related musical phenomena into the rigorous

terms required for computer processing is not a straightforward task, not

least because of the interpretive nature of musical harmony. Music ana-

lysts will vary quite markedly in their views on the structural importance

of notes, chord definition and chord function, key area, and tonality. In

computational work, the exact moment of key change has been shown to

be difficult to pinpoint, [Rohrmeier, 2007, 2011], due to a phenomenon he

terms ‘revision’, whereby chords of ‘dual function’ belonging to both the

previous key and the new key are reinterpreted when the new key becomes

apparent.

This chapter describes a set of experiments to automatically detect

key and modulation in J.S. Bach chorales from audio and MIDI data for-

mats. The process comprises a number of stages. The input music data is

initially processed into a series of temporally segmented notegroups that

are automatically classified to generate a discrete output sequence of chord

designations. The chord sequences are used as the input to various hidden
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Markov models (HMMs) [Rabiner, 1989] that are constructed to detect key

and key change in the chord sequences. The first set of models are built

with the aim of systematically realizing some of the fundamental compo-

nents of Schönberg’s harmonic theory [Schönberg, 1922]. The second set

of models test data from Krumhansl’s book chapter describing perceived

relationships of chords and keys in tonal hierarchies [Krumhansl, 1990],

analogous to previous work by [Noland, 2009]. The models based upon

heuristically derived data representing music theory and the models based

on the results of Krumhansl’s perceptual experiments are compared and

conclusions are drawn about the overall approach. A final stage is the

formulation of functional harmony labels for the score by combining the

output key sequence of the HMM with the chord input sequence.

To the author’s knowledge, this is the first study which utilizes poly-

phonic music transcription for systematic musicology research. We con-

sider that such collaborative work has exciting potential, both for the

advancement of automatic transcription, and for computational musicol-

ogy.

4.1 Chorale Corpus

Twelve J.S. Bach chorales were selected from www.jsbchorales.net, which

provides organ-synthesized recordings along with aligned MIDI reference

files. The use of Bach chorales in computational musicology is extremely

common due to their homophonic nature, which reduces the need to con-

sider voice-leading elements and allows simple chord matching processes

to be successful. The list of the chorales employed for the key detection

experiments can be seen in Table 4.1. Sample excerpts of original and

transcribed chorales are available online1.

1http://www.eecs.qmul.ac.uk/~emmanouilb/chorales.html

www.jsbchorales.net
http://www.eecs.qmul.ac.uk/~emmanouilb/chorales.html
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Table 4.1: The list of organ-synthesized chorales used for key detection experi-
ments.

BWV Title

1 1.6 Wie schön leuchtet der Morgenstern

2 2.6 Ach Gott, vom Himmel sieh’ darein

3 40.6 Schwing dich auf zu deinem Gott

4 57.8 Hast du denn, Liebster, dein Angesicht gänzlich verborgen

5 85.6 Ist Gott mein Schild und Helfersmann

6 140.7 Wachet auf, ruft uns die Stimme

7 253 Danket dem Herrn heut und allzeit

8 271 Herzlich tut mich verlangen

9 359 Werde munter, mein Gemüte

10 360 Werde munter, mein Gemüte

11 414 Danket dem Herrn, heut und allzeit

12 436 Wie schön leuchtet der Morgenstern

4.2 Music Transcription

For the transcription of audio, we used the signal processing based tran-

scription of [Benetos and Dixon, 2011]. Since the application of the tran-

scription system concerns chorale recordings, the pitch range was limited

to C2-A♯6 and the maximum polyphony level was restricted to 4 voices.

The pitch candidate set that maximizes the score function is selected as the

pitch estimate for the current frame. Finally, note offset detection is also

performed using HMMs trained on MIDI data from the RWC database

[Goto et al., 2003]. The recordings are synthesized, therefore the tempo

is constant and beats can be estimated directly from the onset detection

functions as described in [Benetos and Dixon, 2011]. The pitches in the

time frames between two beats are estimated by the frame level data,

computing the pitch salience function, resulting in a series of chords per

beat. Transcription accuracy is 33.1% using the measure of [Benetos and

Dixon, 2011], which also takes into account note durations, hence the low

value. An example of the transcription output of BWV 2.6 ‘Ach Gott,

vom Himmel sieh’ darein’ is given in Figure 4.1.
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Figure 4.1: (a) The pitch ground-truth of BWV 2.6 ‘Ach Gott, vom Himmel
sieh’ darein’. (b) The transcription output of the same recording. The abscissa
corresponds to 10 ms frames.

4.3 Chord Recognition

Transcribed audio, and for comparison, ground truth MIDI files, are seg-

mented into a series of beat level vertical notegroups according to onset

times. Notes which occur simultaneously or overlap in time are therefore

grouped. The pitch values within a group are converted to pitch classes

0 to 11, (0=C, 1=C♯ etc), but the original pitch order (low to high) is

preserved. It is also possible to have empty notegroups, representing rest

values rather than notes. MIDI pitch numbers are kept in order of ascend-

ing value, with an assumption that the lowest note is the bass voice. All
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instances of repeated pitch classes except the lowest (first) are removed

to create a unique ordered set. For example, MIDI pitches {53, 57, 60,

65}, (bass, tenor, alto, soprano) would become pitch classes {5, 9, 0, 5}

(modulo 12), which would become the unique ordered group {5, 9, 0}.

The Bach chorales most commonly have a harmonic rhythm, (i.e. rate of

harmonic change), of a crotchet beat, consequently for these experiments

the vertical notegroups are organized into higher level groups which con-

tain all of the notes present within this timing division. Thus, if the four

notes of MIDI pitch {53,57,60,65} occurred on the first beat of the bar,

(a metrical position of 1), but the MIDI note of pitch 65 (soprano voice)

changed on the quaver offbeat, metrical position 1.5, (to MIDI pitch 63),

the complete ordered group of pitch classes within the crotchet beat would

be {5, 9, 0, 3}.

The notegroups are classified using a chord dictionary of templates of

ordered sets of pitch classes, (e.g. a C major chord is {0, 4, 7}). The

chord designations used for the chord dictionary are taken directly from

Schönberg’s ‘Theory of Harmony’ [Schönberg, 1922]. Schönberg defines

unequivocally the diatonic triads, sevenths, ninths, elevenths, and ‘va-

grant’ chords per major or minor mode. In the minor mode, the sixth

and seventh degrees may be either raised or lowered by a semitone, more

usually raised in ascending melodic/motivic lines leading to the tonic, and

flattened on the descent. Schönberg makes a clear distinction between the

major and the minor modes, which are dealt with separately throughout

the text, and he is specific about the chords which identify them. The

presence of the raised or flattened sixth and seventh degree in the minor

mode results in more possible chord configurations than for the major

mode. The only triad in the minor mode which is unaffected by this vari-

able use of the sixth and seventh degree is the tonic triad. With regards

to chords containing an added seventh, there are two possible configura-

tions on each degree of the scale, and four possible configurations on the

seventh scale degree. To see the diatonic triads and sevenths defined by

Schönberg please refer back to Section 2.2.1, specifically Figures 2.1, 2.2,

2.3, and 2.4.

The program generating a chord dictionary commences with a pitch
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class representation of the scale types for the full set of major and minor

scales. For example, C major is [0, 2, 4, 5, 7, 9, 11]. The minor scales

contain optional values for the sixth and seventh degrees which are brack-

eted, for example C minor is [0, 2, 3, 5, 7, [8, 9], [10, 11]]. The types are

transposed across the full set of semitones from 0 to 11. The chord content

of the dictionary is built using a set of chord interval profiles that are used

to generate each chord type per scale degree. For example, the successive

interval profile of a major triad is {4, 3} semitones - a major third plus

a minor third successively from the root. In order to accommodate the

different HMM’s related in the subsequent sections of this chapter, two

different chord dictionaries are used. The first chord dictionary represents

the full set of major, minor, diminished, and augmented triads for the

12 major and 12 harmonic minor scales, resulting in a chord dictionary

of 48 chord types. The second chord dictionary is more comprehensive,

and represents the full range of diatonic triads and sevenths as defined by

Schönberg and shown previously in Section 2.2.1. This dictionary also de-

fines the selection of chromatic triads defined in [Kitson, 1920] and shown

in Figure 4.2 in order to provide a comprehensive range of common chords

per key. The result is 21 chord types defined for the major key, and unique

30 chord types for the minor key. The chords are then transposed into the

full set of 12 major and 12 minor keys creating a dictionary of 132 chords.

Ninths, elevenths and thirteenths are not represented in the dictionary

due to the additional complexity of chord matching and chord template

representation for extended chords. For example, a thirteenth on the root

note of G would contain all tones from the root to thirteenth: {7, 11, 2,

5, 9, 0, 4}, or {G, B, D, F, A, C, E}. A thirteenth rarely appears in

this form and typically omits some chord tones, such as the 9th, 11th and

5th. This creates ambiguity when matching and labelling such chords and

increases the likelihood of error. In addition, the role of such chords in the

definition of key is considered to be weaker than that of the primary triads

and sevenths in the context of common practice harmony (for example see

[Kramer, 1981] on nineteenth century harmony).

To obtain a discrete set of chord symbols per transcribed audio and

MIDI file, every unique pitch class contained in a beat segment is passed
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Figure 4.2: Kitson Chromatic Triads [Kitson, 1920].

through to the chord template matching method and is matched to the

contents of one of the chord dictionaries. For the corpus described two

chord sequences per chorale are produced, one which is limited to tri-

ads only, and another which is classified using the larger chord dictionary

containing sevenths and chromatic chords. During the classification pro-

cess, no durational or rhythmic weights, chord tone doubling preferences,

or preference rules relating to passing or neighbour notes are used. The

complete unique set of pitch classes present throughout the segment are

tested. This initially simplistic approach is deliberate, primarily because

the derivation of rules which would apply generically across many differ-

ent polyphonic works is a complex area requiring further, and detailed

research. In addition, all of the notes, including those occurring at frac-

tional positions within the bar, may still be very much a part of the har-

mony. Bach frequently introduces the seventh note of the V7 chord on the

offbeat, a gesture which would be considered to be a simple elaboration of

a V7 chord and not a chord V, by many musicologists Kitson [1907]. By

including the offbeat notes in the group, the chord designation is correctly

assigned to a V7 and not a chord V as would have been the result other-

wise. The inclusion of all tones per segmentation value restricts the scope

of the method to mostly homophonic music: presenting all of the notes

per segment in complex polyphonic keyboard music would result in many

‘no-chord’ matches without the introduction of the weighting of notes in

the algorithm (see below for further discussion).

The chord matching process undergoes a series of iterations to find the

dictionary template or templates that most closely match the presented

notegroup in terms of edit distance. An exact ordered match between the

pitch classes of the segment and a chord template in the presented dictio-

nary, (edit distance 0), would be, for example, a root position triad (e.g.
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{0, 4, 7}). An unordered exact match, (edit distance 0.5), would be an

inverted chord (e.g. {4, 7, 0}). The process continues, adding 1 for each

insertion or deletion, up to a maximum edit distance of 2. Restricting

the edit distance to 1 significantly decreases the number of notegroup to

template matches and can result in too many ‘no chord’ values. Equally,

allowing an edit distance of 2 or 3, results in the generation of increasing

numbers of multiple possible template matches per notegroup. The max-

imum edit distance is therefore restricted to 2. In the event that there

is a change in the harmonic rhythm, such as an increase of chord change

frequency in the approach to a final or structurally important cadence, the

matching process delivers inaccurate results due to the number of contra-

dictory chord tones in the group for the larger segment. Therefore if a

match is still not found for the notegroup for a segment, the offbeat notes

are removed from the presented group and the match process is repeated

with the set of notes which occurred on the beat. Removing the additional

offbeat chords results in a matched sequence. If no match is found, the

chord is returned as no chord.

Notegroups containing non-chord tones can be ambiguous as to chord

designation, and in many instances there are multiple possible template

matches per notegroup. For example, if only two notes matching the tonic

and the fifth of a triad are present, the template will match both the ma-

jor and minor triad. The HMMs require a discrete sequence of chord

symbols, consequently groups of tones returning more than one possible

chord classification are reduced to a single chord choice by the applica-

tion of preference rules. The first rule retains a chord which matches a

root position profile and those which have a different inversion profile are

discarded if there are root position chords present. The second rule se-

lects chord options on the basis of local context matching, which searches

near neighbours in the sequence first of all previously and then following

in the series, (the search range value is a parameter of the algorithm),

for identical chord labels. If an exact match is found between one of the

multiple chords in question and a nearby chord, this chord is selected.

Context matching has proved to be highly effective for the corpus used.

In the example of an ambiguous dyad containing a tonic and a fifth, in
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the preceding or immediately following beats, a definitive matching triad

is invariably present, allowing for an accurate selection. Pardo and Birm-

ingham [2002] came across the same problem. Their program labelled a

chord containing a C and a G as either C minor or C major. In the case

quoted, a definitive label would have been found by local context match-

ing. In the event that there are still multiple chord options remaining, the

final rule applied is taken from [Pardo and Birmingham, 2002], and selects

chords on the basis of which chord type has the higher prior probability,

which they list as being major, dominant seventh, minor, diminished 7th,

half diminished seventh, and diminished triad respectively. For the cor-

pus this series of rules effectively reduces the sequences to a single chord

option per segment.

To measure the competence of the chord labelling process, the au-

tomatically generated chord sequences are compared to hand annotated

sequences that have been annotated by the author of this thesis. The

chorales in the set have been annotated with ground truth chord labels

which include sevenths, thus the accuracy of the triads-only sequences is

not measured. Each pair of chord values in the two sequences is compared

(hand annotated and automatically generated), and a difference measure is

calculated by counting the number of exact matches. The final counts are

normalised, resulting in a proportional measure of matched or mismatched

values between the two files. If two chords differ, the Levenshtein distance

is calculated for the two pitch class sets represented as strings, to find out

the degree of difference between the automatically classified chord and the

hand annotated chord. Many of the chord mismatches found are in fact

extremely close pitch class set matches, for example, {t, 2, 5} compared

to {t, 2, 5, 9}, (where t=10, and e=11 due to the requirement for each

symbol to be represented by a single character), generating a Levenshtein

difference of 1. The accuracy results and the average Levenshtein distance

for the mismatches in the file are shown in Table 4.2.

A greater quantity of label mismatches are found with the transcribed

files than with the symbolic MIDI files, due to the pitch and timing errors

resulting from the transcription process. Total chord mismatches between

the transcribed data and the hand annotated data (i.e. where there are
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Table 4.2: Chord match results for transcribed audio and MIDI against hand
annotated chords.

MIDI Transcribed Audio

BWV %Match Levenshtein Avg %Match Levenshtein Avg

1.6 95.0 2.5 71.2 2.0
2.6 90.0 1.7 70.0 2.1
40.6 84.4 1.5 57.8 2.0
57.8 85.2 2.4 64.8 2.0
85.6 85.7 1.0 48.2 2.1
140.7 96.6 1.0 72.1 2.3
253 82.5 2.0 65.0 1.9
271 83.1 1.0 67.7 1.9
359 78.1 1.2 76.6 2.5
360 84.4 1.1 71.9 2.4
414 73.3 0.9 68.3 2.6
436 93.8 1.4 67.5 1.8

Avg: 86.0 1.5 66.7 2.1

no pitches in common between the two pitch class sets), indicate an error

in timing or quantisation. The greatest difficulty posed to the chord al-

gorithm by the transcribed data is the frequent presence of dyads rather

than triads in the groups. Resolving a dyad correctly is not straightfor-

ward; if the dyad is a third apart, this could imply either the upper or

lower portion of a triad; equally, a dyad a fifth apart could be either a

major or a minor triad. The transcription algorithm has a low false alarm

error rate and a high mis-detection rate, consequently the transcription

process produces output that assists the chord method where the MIDI

data poses problems; groups with many non-chord tones, or notegroups

containing complex chord tones unrepresented in the chord dictionary,

are captured from the transcribed data as simple triads whereas the MIDI

data may result in a ‘no chord’ value or erroneous label. Complex chords

are less adaptable to the pitch class set match approach due to the fact

that internal tones must be omitted from such chords to fit with four part

harmony. The majority of errors in the MIDI data result from suspended

and passing notes. Consequently the chord sequences obtained from tran-

scribed audio do not contain any ‘no chord’ values either for complex chord
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sequences or triadic sequences. Out of the complete set of 12 files, four

files contain ‘no chord’ values in the resulting sequence, with chorale 57.8

producing the highest number of unrecognised chords due to the number

of suspensions. The chord sequences containing complex chord symbols

feature a slightly increased proportion of ‘no chord’ values (2.58% across

the complete set), compared to the triadic sequences (1.1%).Overall, the

accuracy levels, shown in Table 4.2, when compared to the ground truth

files are in the upper range of the results reported in [Pardo and Birming-

ham, 2002]. (The transcribed audio achieves an average of 66% correct of

the hand annotated data.)

4.4 Key Modulation Detection

The method chosen to deduce key from the chord sequences is a hidden

Markov model (HMM). An HMM is a probabilistic model in which a series

of hidden states are inferred from an observable sequence of data by cal-

culating Bayesian probability values [Rabiner, 1989]. In the model the ob-

servation sequence O = {o[n]}, n = 1, . . . , N is given by the output of the

chord recognition algorithm in the previous section. The observation ma-

trix (B) therefore defines the likelihood of a key given a chord. Likewise,

the hidden state sequence which represents keys is given by S = {s[n]},

where s[n] ∈ {1, 2, ...24}. Each HMM has a key transition matrix A =

P (s[n]|s[n − 1]) (representing the 12 major and 12 minor keys, as shown

in Table 4.3), which defines the probability of making a transition from

one key to another. The keys are ordered in accordance with the two lines

of 5ths so that a move from one key to a close neighbour on the circle is

apparent from the key numbering.

For a given chord sequence, the most likely key sequence is given by:

Ŝ = arg max
s[n]

∏

n

P (s[n]|s[n − 1])P (o[n]|s[n]) (4.1)

which can be estimated using the Viterbi algorithm [Rabiner, 1989]. In

Figure 4.3, the graphical structure of the employed HMM model is shown.
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Table 4.3: Representation of Keys.

s[n] Key

1 C Maj
2 G Maj
3 D Maj
4 A Maj
5 E Maj
6 B Maj
7 F♯ Maj
8 C♯ Maj
9 A♭ Maj
10 E♭ Maj
11 B♭ Maj
12 F Maj
13 A Min
14 E Min
15 B Min
16 F♯ Min
17 C♯ Min
18 G♯ Min
19 D♯ Min
20 B♭ Min
21 F Min
22 C Min
23 G Min
24 D Min

HMMs are used for a wide range of modelling purposes with good rea-

son. As highlighted by Marsden in his discussion regarding the perception

of musical voices, ‘if a model serves as a methodological device, it is cru-

cial that is should be comprehensible and its workings be clear’ [Marsden,

1992]. In addition to this, Marsden goes on to explain, a model should

also be ‘predictable’, in that ‘the representation of its knowledge is precise,

and it should be ‘extensible’, i.e. it should be possible to add further rules

or knowledge to the model with ease. The HMM framework allows for all

of these: clarity, predictability, and extensibility.

An HMM has been used previously to infer the overall key of a piece

using Krumhansl’s perceptual data [Noland, 2009]. Krumhansl performed
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Figure 4.3: Graphical structure of the employed HMM for key modulation
detection.

Figure 4.4: Major and minor chord contexts used in the Krumhansl harmonic
hierarchy experiments [Krumhansl, 1990].

perceptual experiments with moderately trained listeners to test the struc-

tural significance of chords in tonal contexts [Krumhansl, 1990]). Two

experiments were performed, the first with 10 listeners, and the second

with 12. In the first experiment the key context given was the major or

harmonic minor scale, in the second experiment, the key context was a

major or minor chord sequence, reproduced in Figure 4.4. In both exper-

iments, the key context was followed by a single chord, and the listeners

were asked to rate ‘how well the chord fit’ the preceding context, using

a ratings scale from 1 - ‘fits poorly’ to 7 - ‘fits well’. In the first exper-

iment the context was followed by each of the major, minor, diminished

and augmented triads. Due to minimal variation in the ratings for aug-

mented chords in the this experiment, the augmented chords were omitted

from the second experiment. The chord ratings data produced by the two

experiments is shown in Table 4.4.

Despite the success of using this data previously, a curious feature of

the data produced by the experiments is that the chord ratings do not

ratify music theory in terms of clearly associating chord/key membership.

(Consider that a major key consists of three major triads (I, IV, V), three

minor triads (II, III, VI) and one diminished triad (VII).) In the C major
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Table 4.4: Chord ratings resulting from harmonic-hierarchy experiments [Krumhansl, 1990].

Key Context Key Context Key Context

Chord ↓ C Major C Minor Chord ↓ C Major C Minor Chord ↓ C Major C Minor

C Maj 6.6 (I) 5.30 C min 3.75 5.90 (i) C dim 3.27 3.93

C♯/D♭ Maj 4.71 4.11 C♯/D♭ min 2.59 3.08 C♯/D♭ dim 2.70 2.84

D Maj 4.60 3.83 D min 3.12 (ii) 3.25 D dim 2.59 3.43 (ii)

D♯/E♭ Maj 4.31 4.14 (III) D♯/E♭ min 2.18 3.50 D♯/E♭ dim 2.79 3.42

E Maj 4.64 3.99 E min 2.76 3.33 E dim 2.64 3.51

F Maj 5.59 (IV) 4.41 F min 3.19 4.60 (iv) F dim 2.54 3.41

F♯/G♭ Maj 4.36 3.92 F♯/G♭ min 2.13 2.98 F♯/G♭ dim 3.25 3.91

G Maj 5.33 (V) 4.38 (V) G min 2.68 3.48 G dim 2.58 3.16

G♯/A♭ Maj 5.01 4.45 (VI) G♯/A♭ min 2.61 3.53 G♯/A♭ dim 2.36 3.17

A Maj 4.64 3.69 A min 3.62 (vi) 3.78 A dim 3.35 4.10

B♭ Maj 4.73 4.22 B♭ min 2.56 3.13 B♭ dim 2.38 3.10

B Maj 4.67 3.85 B min 2.76 3.14 B dim 2.64 (vii) 3.18 (vii)
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context of Krumhansl’s experiments, all of the twelve major triads, irre-

spective of which note is the chord root, are rated as inferring the key of C

major more highly than the diatonic chords actually belonging to the key

of C major, (these may be minor or diminished in profile). Krumhansl

refers to this as the ‘chord type effect’, stating that ‘in the major key

context, listeners strongly preferred major chords over minor and dimin-

ished chords’, and that this perhaps may be accounted for by the relative

degrees of consonance, with listeners preferring the most consonant chord

types [Roberts and Shaw, 1984]. Krumhansl’s experiments appear to in-

dicate that perceptually, any major chord is more indicative of any major

key, than the diatonic chords which make up that key, simply because it

sounds major. An alternative interpretation, is that the data evidences

chord similarity ratings rather than key fittingness, or the extent to which

a chord is perceived as sounding as though it fits within a key 2. It is

possible that if the question asked of the listeners had been phrased dif-

ferently, for example ‘to what extent does the chord sound as though it

is in the same key as the context?’, a different set of ratings would result.

The ratings data certainly appears to group chords by type more than it

supports key membership.

From the perspective of music theory and common compositional prac-

tice, the data is therefore counterintuitive and one would anticipate in-

consistent results when used with common practice musical works. It

is hypothesized therefore, that populating the HMM matrices with data

heuristically derived from music theory, will result in an improvement in

key detection accuracy. Because Schönberg unequivocally defines the di-

atonic chords for the major and minor mode, a premise upon which the

design of the theory models are based, is that the observation matrix

should be able to strongly indicate key because the chord values are so

closely derived from core harmony principles. To test this hypothesis,

three HMMs are constructed based on Schönberg’s harmonic theory, and

two more are constructed embodying Krumhansl’s data.

Krumhansl uses the interlocking pattern of quantified chord functions

2The author would like to acknowledge the examiner Alan Marsden for this idea.
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Table 4.5: Correlations between harmonic hierarchies [Krumhansl, 1990]

Key C Major C Minor

C Major 1.000 .738
C♯/D♭ Major -.301 -.224
D Major -.141 -.320
D♯/E♭ Major -.013 .405
E Major -.139 -.256
F Major .297 .194
F♯/G♭ Major -.407 -.281
G Major .297 .175
G♯/A♭ Major -.139 .123
A Major -.013 -.286
A♯/B♭ Major -.141 .013
B Major -.301 -.298
C Minor .738 1.000
C♯/D♭ Minor -.298 -.373
D Minor .031 -.189
D♯/E♭ Minor -.286 .072
E Minor .123 -.096
F Minor .175 .245
F♯/G♭ Minor -.281 -.321
G Minor .194 .245
G♯/A♭ Major -.256 -.096
A Minor .405 .072
A♯/B♭ Minor -.320 -.189
B Minor -.224 -.373

to derive a map of key distances from the chord ratings, shown in Table 4.5.

The key distance values produce a set of values which form a representation

of the circle of fifths, (please see section 2.2.5).

4.4.1 Model Definitions

Five observation matrices (B) and four key transition (A) matrices are

constructed in total. Three of the observation matrices are derived from

music theory, and are designed to represent and test Schönberg’s theory

with regard to the chord membership of the 24 major and minor modes

[Schönberg, 1922] (see section 2.2.1). Two further observation matrices

use data from Krumhansl’s perceptual experiments [Krumhansl, 1990]
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Table 4.6: Rules for Schönberg observation matrix.

Feature BSchP BSchCh

Diatonic chord 1 2

Scale degree 2 1

Dim/aug scale degree 1 0.5

Ambiguous scale degree 1 0.5

Dim/aug ambiguous scale degree 0.5 0.25

Tonic chord 1 1

transposed across all 24 keys. The four different key transition matrices,

(defined below), are used in conjunction with all five of the observation

matrices.

Observation Matrices from Music Theory

The extent to which a chord infers a key is modelled heuristically in the

music theory observation matrices. The intention is to logically produce

a set of musically plausible chord rankings per key across the full range

of chords observed. The diatonic chords of a key are all indicative of

the home key; progressions containing chords II or IV with V or V7 are

strongly indicative of the home key because they would have to be chro-

matically altered to imply a different key [Piston, 1983]. Similarly, the

tonic triad, although it could be a member of several keys, tends to be

prominent in the establishment of a tonal centre. Such chords may there-

fore be expected to rank highly compared to the lower values achieved

by less characteristic chords. The relationship and interdependencies of

individual tones, chords, and keys to human cognitive processing of tonal-

ity is not well understood. Consequently, to arrive at a score for a chord

in relation to a key, points are given for both tone and chord properties.

These include, points for each constituent tone per scale degree member-

ship, partial points for ambiguous scale degree membership (i.e. 6th and

7th degrees in the minor key), for tonic chord status, and for being defined

as a diatonic chord for the key by Schönberg. The points are then summed

to give a total score for the chord in that key context.
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Figure 4.5: The BSchCh observation matrix

Two of the Schönberg observation matrices symbolise the complete

set of major, minor, diminished and augmented triads plus a ‘no chord’

value, resulting in a total of 49 possible chord symbols. The two matrices

are weighted differently, in order to test Parncutt’s psychoacoustical work

suggesting that chords are heard as having singular identities which are

prior to the constituent pitches [Parncutt, 1989]. Matrix BSchCh therefore

assigns double points to the diatonic chord as whole and gives single points

for individual tones, whereas BSchP, gives double points to constituent

tones and single points for diatonic chord status. The precise rules and

values used are listed in Table 4.6 and an image of the normalised BSchCh

matrix can be seen in Figure 4.5.

For example, the chord rating for a C major triad in the key of C major

for BSchP would be as follows:

• C,E,G, tonic chord = +1

• C,E,G, three diatonic scale degrees = 2+2+2

• C,E,G is listed by Schönberg as one of the diatonic chords = +1
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• Chord total = 8.

The third observation matrix BSch7 symbolises the full set of triads

and seventh chords elucidated by Schönberg [Schönberg, 1922] resulting

in 22 chord definitions for the major key, and 30 chords for the minor key.

The disparity in chord quantity is due to the optional raising of the 6th

and 7th degree in the minor mode. A total number of 132 unique pitch

class sets plus a ‘no chord’ value are defined, bringing the total number of

possible chord observations to 133.

The values assigned to each chord in the BSch7 model are the same as

those used for BSchP. In this model, the value for the dominant seventh

of C major would be:

• G,B,D,F, four diatonic scale degrees = 2+2+2+2

• G,B,D,F, is listed by Schönberg as one of the diatonic sevenths for

C major = +1

• Chord total = 9.

The dominant seventh chord is the highest signifier in the matrix for

its key, satisfactorily articulating common practice in tonal harmony.

Observation Matrices from Music Perception

The perceptual observation matrices symbolise the same chord set as the

previously described triad based Schönberg models. The four triad based

models therefore process identical chord sequences, allowing a direct com-

parison of the models based on music theory against those based on per-

ceptual data.

The first matrix BKrumOrig is formulated using Krumhansl’s chord

ratings (Table 4.4, similar to previous work [Noland, 2009] with the differ-

ence that all of Krumhansl’s chord data is used). In the absence of data for

augmented triads, these plus the ‘no chord’ value are given a uniform low

value of 1.0. As an experiment, a second observation matrix BKrumMod

is also created, in which the apparently contradictory values for minor

chords in the major key context which are part of the key, are swapped
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with the major chord values which are not part of the key. For example,

in the C major context, the values for the D major chord are swapped

with the value for the D minor (chord II), E major with E minor (chord

III), A major with A minor (chord VI), and B major with B diminished

(chord VII). Performing this swap leads to disproportionately high values

for the remaining major chords which also belie the home key without

a parallel minor or diminished chord with which to exchange the rating.

Such chords have 1 subtracted from their rating value to bring the data

more in line with the swapped changes, for example the chord rating of

4.36 for F♯ major becomes 3.36. The values for minor chords in the minor

key context in this model are left unmodified.

Key Transition Matrices

Four different versions of the key transition matrix are formalised and

used in conjunction with all five of the observation matrices. The first

matrix ANeutral is neutral, so that a move to any key is equally likely.

The second transition matrix AKrum features Krumhansl’s correlations

between key profiles [Krumhansl, 1990] summed with 1. The third and

fourth matrices, referred to as ASchEq, and ASchNL respectively, are im-

plementations of Schönberg’s table of key circles, in which seven circles

of increasing key distance from a given tonic are delineated [Schönberg,

1922]. Using pitch class set representations there are six unique circles

only, the seventh containing the enharmonically equivalent keys of pre-

vious circles. Therefore the ASchEq subtracts an equal value of 0.25 for

each key circle, commencing with an upper boundary of 2.0, and moving

through the relative minor and then each successive circle, ending on the

6th circle. The ASchNL implementation uses an exponentially decreasing

value, halving the deducted value for each circle. In ASchNL therefore,

the numeric distance between the first circle and the sixth circle is smaller

than the distance between the same two circles in the ASchEq matrix. For

all key transition matrices except the neutral matrix, the central diagonal

is weighted by adding the value of 1 to give a small preference to stay in

the current key. This is to model the human expectation that a chord
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sequence is most likely to continue in the current key unless there is clear

evidence of modulation. Without this weighting the models changed key

very frequently. Conversely, adding too much weight to the central diago-

nal e.g. a value of 5, influenced the models to remain in the key irrespective

of strong chordal modulatory implications. The values were determined

by repeatedly running the models and manually comparing outputs to the

ground truth data. An example of the values for each transition matrix

for the key of C major is shown in Table 4.7.

4.5 Evaluation

4.5.1 Metrics

To provide a rigorous measure of accuracy of the outputs of the HMMs,

each key value in the output sequences is compared to the correspond-

ing hand-annotated key, and values are calculated by which to measure

the performance of the models. These values include an error rate (Err),

a distance measure (Dist), a measure of modulation concurrency, which

is the number of times the HMM sequence changes key at precisely the

same moment as the hand annotated sequence, this value is expressed as a

percentage in the results tables (e.g. Table 4.8), (Conc), and modulation

percentage (Mods) are calculated. Given Ndiff the number of differences

between output key and hand annotated key, Nlen the length of the se-

quence, Ncmod the number of concurrent modulations, Nhmod the number

of hand annotated modulations, and Nomod the number of modulations in

the output, Err ,Conc and Mods are defined as:

Err =
Ndiff

Nlen

, Conc =
Ncmod

Nhmod

, Mods =
Nomod

Nhmod

(4.2)

The distance value Dist captures both the number of differences and

the extent of each difference relative to the circle of fifths when two key

values are found to conflict. For example, the distance value between

two keys on the same circle, i.e. its dominant, subdominant, or relative

minor, is 1, whereas a key difference two fifths apart on the circle of

fifths (in either direction) would result in a difference value of 2, and so
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Table 4.7: Value sets for the four key transition matrices shown for the key of C major.

C G D A E B F♯ C♯ G♯ D♯ A♯/B♭ F

AKrum 2.000 1.591 1.040 0.895 0.815 0.500 0.317 0.500 0.815 0.895 1.040 1.591
ASchEq 2.000 1.500 1.250 1.000 0.750 0.5 0.25 0.5 0.750 1.000 1.250 1.500
ASchNL 2.000 1.500 1.000 0.75 0.5 0.375 0.25 0.375 0.5 0.75 0.375 1.500
ANeutral 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

a e b f♯ c♯ g♯ d♯ a♯/b♭ f c g d

AKrum 1.651 1.536 0.842 0.631 0.702 0.492 0.346 0.598 1.215 1.511 1.241 1.237
ASchEq 1.750 1.500 1.250 1.000 0.750 0.5 0.25 0.5 0.750 1.000 1.250 1.500
ASchNL 1.750 1.500 1.000 0.75 0.5 0.375 0.25 0.375 0.5 0.75 1.000 1.500
ANeutral 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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on. Conc is regardless of whether the actual key change matches or not.

Finally, Mods shows the percentage of the number of modulations in the

HMM sequences compared to the number of modulations in the hand

annotated key sequences. This last value is considered to be important

firstly because it gives an indication of the effectiveness of the models in

tracking modulation, and secondly because the frequency of modulation

in a musical work is an important indicator of musical style. The results

tables show the mean of all of the normalised data.

4.5.2 Results of Triadic Models

The results for all combinations of key transition matrices and observation

matrices for the triadic models are shown in Table 4.8.

Error rates range from 0.26 to 0.35 for the transcribed data and 0.20

to 0.33 for the MIDI data sets. When the results are ordered by error, key

distance measure, or the number of modulations relative to the number

of modulations in the hand annotated data, the Schönberg observation

matrices expose a pattern of consistently higher accuracy levels than the

perceptual data matrices. The key transition matrices, for both the music

theory models and the Krumhansl model, are less easily distinguished.

The ANeutral matrix gives the poorest performance overall.

Matching the exact moment of key change between the HMM and the

hand annotated sequences is a predicament because the hand annotated

sequences take into account phrasing; key designations of chords depend

upon both previous and subsequent harmonic movement, i.e. at moments

of key transition the chords belong to both the current and new key.

This makes the exact moment of key transition ambiguous. In the hand

annotated data, the precise changeover point is decided on the basis of

non-harmonic phrasing information. The HMM has no phrase informa-

tion encoded, hence it will change key solely on the basis of chord and key

transition data. The models often display a key change timing lag approxi-

mately one beat behind the annotated data. The modulation concurrence

results are therefore quite low overall, but they are significantly higher

for the Schönberg observation matrices, with the combination of AKrum
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Table 4.8: Key detection results for all combinations of observation (B) and transition (A) matrices for triad models: error average
(Err), distance value for key differences average (Dist), percentage of modulation timing match (Conc), number of modulations
as a percentage of hand annotated number of modulations (Mods). Ground truth MIDI and transcribed file sets.

B Matrix → BSchP BSchCh BKrumOrig BKrumMod
A Matrix ↓ Err Dist Conc Mods Err Dist Conc Mods Err Dist Conc Mods Err Dist Conc Mods

MIDI

ANeutral 0.31 0.45 9.25 38.26 0.27 0.45 24.59 85.26 0.22 0.37 8.45 31.72 0.33 0.53 5.01 22.87
AKrum 0.23 0.33 33.01 87.25 0.20 0.34 46.03 120.84 0.28 0.40 15.66 87.24 0.26 0.35 13.31 59.34
ASchEq 0.21 0.32 32.81 85.66 0.21 0.31 43.05 109.18 0.27 0.35 15.66 109.18 0.25 0.33 16.72 52.68
ASchNL 0.21 0.30 29.38 72.47 0.20 0.30 38.54 113.79 0.26 0.36 15.66 83.70 0.28 0.36 17.06 55.52

Transcribed

ANeutral 0.35 0.74 11.55 51.09 0.27 0.45 25.23 109.42 0.28 0.42 4.76 18.89 0.32 0.51 2.68 9.68
AKrum 0.26 0.42 22.31 78.63 0.30 0.54 37.58 132.59 0.30 0.47 7.82 52.98 0.31 0.47 2.68 33.63
ASchEq 0.26 0.41 23.54 87.38 0.31 0.56 36.07 124.84 0.31 0.53 7.82 53.67 0.30 0.52 6.50 34.26
ASchNL 0.26 0.39 28.40 81.72 0.30 0.47 33.86 118.57 0.31 0.53 7.82 56.31 0.31 0.54 5.80 33.00
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Table 4.9: Results of Student TTest comparing the level of deviation of error
rates between transcribed data sets to MID data sets for each combination of
observation (B) and transition (A) matrices for triad models.

B Matrix → BSchP BSchCh BKrumOrig BKrumMod
A Matrix ↓ TTest TTest TTest TTest

ANeutral 0.85 0.40 0.43 0.82
AKrum 0.64 0.17 0.81 0.47
ASchEq 0.56 0.21 0.58 0.55
ASchNL 0.55 0.20 0.56 0.79

and BSchCh producing the most accurate moments of key change. Figure

4.6, which shows Piston harmony annotations alongside the results of the

models [Piston, 1983], demonstrates the problem. The BSchCh observa-

tion matrix changes to G♯ minor on precisely the same chord as Piston

and holds the key for four beats. BSchP also changes to the correct key,

but a beat later. Although Piston annotates the G♯ minor triad of bar 20

in the excerpt as III of E major, it could equally be classed as chord I of

G♯ minor, as per some of the HMM outputs.

The music theory data also appears to illustrate greater sensitivity to

short digressions through other keys than the perceptual data. In terms

of recognising global key, the perceptual models, which tend to stay in

the home key when harmonic divergence is only for the length of a couple

of beats, could be a preferred choice. If closer recognition of secondary

dominants is desired, the music theory based models appear to be the

more suitable option.

The key output accuracy using the transcribed audio for all models

is encouragingly high when compared to the results for the MIDI data,

achieving an average of 79% of the accuracy achieved for the ground truth

data, despite the higher quantity of chord recognition errors for the tran-

scribed audio. Table 4.9 shows a series of Student t-test results comparing

the transcribed data sets to the MIDI data sets with a null hypothesis

that the two sets have no statistical difference. All of the models produce

a probability value that our null hypothesis is true with the ANeutral

BSchP and ANeutral KrumMod giving the highest probability values to



CHAPTER 4. KEY ESTIMATION USING HMMS 70

Figure 4.6: Key outputs based on MIDI data of final bars of BWV 436, ‘Wie
schön leuchtet der Morgenstern’, for all triad model combinations compared
with Piston harmony annotations [Piston, 1983]

support this. The implication is that the transcribed audio is of sufficient

quality for some musicological tasks based on predominantly homophonic

textures. The transcription error rate for more complex contrapuntal tex-

tures would need to be improved.

4.5.3 Results of Sevenths Model

The results for the BSch7 model in combination with all four key transi-

tion matrices are shown in Table 4.10. This more complex HMM contain-

ing 133 chord symbols demonstrates a greater level of disparity from the

hand annotated key sequences than the triad based models. A weakness

in BSch7 is that it is weighted towards major key outputs due to the

dissimilarity between the number of chord symbols represented per major

or minor mode, (21 chord symbols for major, and 30 chord symbols for

minor, see section 2.2.1). The larger number of chords representing the

minor key compared to the chord quantity defined for the major mode re-

duces the proportional value of individual minor key chord symbols when
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Table 4.10: Key detection results for observation matrix BSch7 in conjunction
with all four A matrices: error average (Err), distance value for key differences
average (Dist), percentage of modulation timing match (Conc), number of mod-
ulations as a percentage of hand annotated number of modulations. Ground
truth MIDI and transcribed file sets.

A Matrix ↓ Err Dist Conc Mods

MIDI

ANeutral 0.34 0.47 18.93 70.13
AKrum 0.35 0.47 23.24 110.36
ASchEq 0.34 0.47 27.12 113.27
ASchNonLin 0.36 0.47 21.44 109.61

Transcribed

ANeutral 0.36 0.57 21.65 153.22
AKrum 0.35 0.50 34.66 205.22
ASchEq 0.36 0.51 37.02 238.45
ASchNonLin 0.37 0.49 29.14 217.29

the data is normalised to sum to 1. (I.e. during the process of normali-

sation the chord values are divided by the sum of chord values to ensure

that the rows sum to 1; the greater the total sum of the row, the smaller

are the individual chord values following normalisation.) This pushes the

outputs of the models over to the major key. For example, chorale BWV

85.6 oscillates between E♭ major and C minor, being in the minor key

for a little less than 50% of the time. The four sevenths models detect

the minor key for an average of 13% for the MIDI data and 25% for the

transcribed audio; the triadic models outperform the sevenths models in

the detection of C minor, achieving an average minor key presence of 37%

for MIDI data and 35% for the transcribed audio across all triadic models,

and therefore being much closer to the actual minor key presence in this

chorale.

The three minor key chorales in the set, BWV 85.6, 2.6, and 40.6 have

the greatest number of errors for both sets of data, transcribed audio and

MIDI. These three chorales were also the least facile to hand annotate

due to the fluctuating and inconclusive nature of the harmony. Chorale

40.6, ‘Schwing dich auf zu deinem Gott’, which is listed as having the

most errors for all model versions for both types of data is harmonically
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quite equivocal. The opening five chords are ambivalent, and could be

interpreted as being either in D minor or F major. Each and every chord

is a legitimate member of both keys, and there isn’t a decisive indication

of either key. It could be argued that the move to an F major chord on the

first beat of the second bar, followed by the cadence onto C major, weights

the whole phrase towards F major, but it is a first inversion chord, and

so still feels a weak inference. D minor is chosen for the hand annotation

based on the first chord which is a D minor chord, and because the phrase

as a whole has a D minor feel. It is not unacceptable that all of the

eight HMM sequences generated by the sevenths HMMs commence with

a clear series of F major values. Beyond the first two phrases of chorale

40.6, the four different key transition matrices evidence a variation of

output across the file sets, both in terms of key choice and the timing of

key change. The chorale moves away from the home key and cadences

onto an E major chord in the second half of bar 6 creating an interrupted

cadence in A minor. It is anticipated that interrupted cadences could cause

incorrect key outputs for the HMM, in fact all of the outputs excepting

the Neutral matrix, move correctly to the dominant minor, excepting the

Neutral matrix which mistakenly moves to E major. The transcribed data

produces the closest outputs, moving to A minor at the beginning of bar

6, whereas the symbolic MIDI data delays the change of key until two

beats later, the actual cadence point.

The chorales of less complex harmony, i.e. those which are in a major

key and which hardly deviate from this key, result in key sequence outputs

which are very similar to each other and to the hand annotated ground

truth output for all four models. The clearest example is chorale 1.6,

which is quite solidly in F major throughout, resulting in highly consistent

outputs across all version of the model. All four models based on the

MIDI data recognise the momentary move to the secondary dominant

in the final bar; the deficiency of an HMM at phrase boundaries is in

evidence here, as none of the output sequences move back to the tonic for

the final chord, but remain in C major. The four suspension points in

the chorale, all of which contain a G and F a tone apart which cause a

‘no chord’ value in the ground truth data, are captured with reasonable
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Figure 4.7: Middle bars of BWV 40.6 ‘Schwing dich auf zu deinem Gott’ with
HMM key outputs per transition matrix for BSch7, hand annotated key and
harmony labels using Roman numerals and chord tabs.

accuracy by the transcribed data as C major triads, the two pitches being

too close together to extract separately. In contrast, the fragmentation of

outputs from the different models reveal areas of complex harmony within

individual chorales. Bars 9 to bar 12 of BWV 40.6, (chords 33-48), are

particularly inconclusive with regard to key; the harmony is constantly

moving and there is sense of flux and ambiguity. At chord 33, shown in

Figure 4.7, six of the eight outputs recognise the move to C major for two

chords, but from this point the outputs diverge. The transcribed data

performs better than the MIDI data, staying in C for the two chords for

two of the matrices, then moving on, almost completely correctly for the

Krumhansl matrix, to a momentary G minor, before changing key again.

The divergence of the outputs speaks of the harmonic intricacy.

The outputs for all file sets for all matrix combinations were ordered per

file error rate and distance value, resulting in a highly consistent ordering

of the chorales across all of the models, three of which are shown in Table

4.11. The chorales of less complex harmony, i.e. those which are in a major

key and which hardly deviate from this key, appear at or near the top of

the list, with BWV 1.6 (in the key of F major throughout), disclosing the

least errors for almost every model. The three minor key chorales in the



CHAPTER 4. KEY ESTIMATION USING HMMS 74

Table 4.11: Chorales ordered by error rate using transcribed audio and Sch7
models.

ASchbEq / BSch7 AKrum / BSch7 ANeutral / BSch7

BWV Err Dist BWV Err Dist BWV Err Dist

1 1.6 0.18 0.20 1.6 0.09 0.09 1.6 0.11 0.11

2 414 0.20 0.25 414 0.20 0.28 414 0.23 0.32

3 253 0.23 0.70 140.7 0.21 0.23 359 0.27 0.50

4 436 0.25 0.27 253 0.23 0.70 360 0.28 0.38

5 140.7 0.27 0.29 360 0.23 0.30 140.7 0.29 0.31

6 360 0.33 0.44 436 0.27 0.30 436 0.33 0.36

7 359 0.34 0.39 359 0.36 0.50 253 0.38 0.78

8 57.8 0.35 0.46 57.8 0.39 0.50 271 0.41 0.80

9 271 0.42 0.88 271 0.42 0.77 57.8 0.44 0.87

10 85.6 0.45 0.46 85.6 0.45 0.48 2.6 0.45 0.60

11 2.6 0.55 0.67 2.6 0.60 0.67 85.6 0.48 0.66

12 40.6 0.78 1.08 40.6 0.80 1.14 40.6 0.69 1.16

file set, BWV 85.6, 2.6, and 40.6 are listed at the bottom of the table for

all of the models shown.

Analysis of the hand annotated data for the three minor key chorales

reveals an average minor key presence of 74%. Comparing the perfor-

mance of the sevenths models to the triadic models in the detection of the

minor key, the four sevenths models average minor key outputs of 24%

for the MIDI data and 30% for the transcribed audio. The sixteen triadic

models average a minor key output of 52% for MIDI data and 42% for

transcribed audio. The triadic models therefore show improved accuracy

over the sevenths models, but none of the models achieve the minor key

presence of the ground truth for those pieces, suggesting that accurately

capturing the minor key is a difficult problem, particularly due to the

practice of using a ‘tierce de picardié’ at cadence points. A possible solu-

tion for models containing complex chord types could be to separate out

melodic minor and and harmonic minor chord designations, thus defin-

ing a much more balanced quantity of chord symbols per key type, but

modelling the melodic minor will always generate additional chords due to

the changing sixth and seventh degrees in accordance with voice-leading

movement. As can be seen in Table 4.12, the chorales with minor key
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Table 4.12: Analysis of hand annotated key and chord data to see the relation-
ship between key types and chord distributions.

BWV No. of Major Keys No. of Minor Keys No. of Unique Chord Types

1.6 2 0 13
2.6 1 3 17
40.6 2 2 24
57.8 1 1 11
85.6 1 1 21
140.7 3 1 23
253 3 1 10
271 2 2 22
359 2 1 16
360 2 1 16
414 3 1 11
436 2 1 13

sections feature a greater range of unique chord types than the chorales

that are predominantly in major keys. In this corpus, the chord of the

diminished seventh appears to be particularly associated with minor keys,

an observation which could be modelled in an HMM. (This may not be

generally the case for other musical styles.) A possible interpretation of

the BSch7 model is that the results substantiate the notion that triads

are more indicative of key than complex chords, excepting the dominant

7th. For this model, the error rates for the transcribed data are very close

to the MIDI data achieving a relative best accuracy of 97%.

4.6 Functional Harmony

To produce functional harmony labels for the chorales the automatically

labelled chord sequences are combined with the HMM key sequences. The

method is to combine the chord symbol and corresponding HMM output

key to select the analogous functional chord label for the key from a lookup

dictionary. An example of the key:chord label in the dictionary for the

pitch class set {5,9,0}, (an F major triad), are shown as follows.
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Chord: {5,9,0}

C Major:IV

C♯ Major:III♯3

D Major:III♭R♭5

E♭ Major:II♯3

E Major:IIN6

F Major:I

F♯ Major:VII♯3♯5

G Major:VII♭R

A♭ Major:VI♯3

A Major:VI♭R♭5

B♭ Major:V

C Minor:IV

D Minor:III

E Minor:IIN6

G Minor:VII

A Minor:VI

B♭ Minor:V

In the event that a particular pitch class set is not listed as being a

chord member of the corresponding key value given by the HMM, a ‘nf’

(not found) label is returned. An ‘nf’ can result from either a chord error

or a key error. Two of the chorales from the corpus chosen have excerpts

in Piston along with his functional harmony labels [Piston, 1983]. These

are used for comparison.

A caveat is that any precise and systematic measures of correctness of

harmony labelling needs to be considered in light of the anomalous nature

of the field. There is rarely a single correct harmony labelling; it is both

subjective and sometimes equivocal. The Piston excerpts demonstrate

this. Figure 4.8 shows an excerpt from BWV 360, Werde munter mein

Gemute, along with Piston’s functional harmony labels, and the harmony

labels generated for both transcribed audio and MIDI data by combining

the automatically detected chord labels with the key sequences generated
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Figure 4.8: Functional harmony labels obtained from MIDI and transcribed
audio in conjunction with BSch7 observation data for BWV 360 ‘Werde munter
mein Gemute’ and Piston harmony labels [Piston, 1983], and chord symbols
(ours). ‘nf’ and transcribed chord anomalies result from transcription errors.

by the BSch7, ASchEq model. The automatically generated harmony

labels do not include inversion labels but these could be obtained with

relative ease by using information about the bass note.

As shown in the excerpt Piston offers dual interpretations for three out

of the fifteen chords. For example, the chord on the first beat of the final

bar is listed by Piston as either a chord IV or a chord II of B♭ major. The

chord II is C, E♭, G, and the chord IV is E♭, G, B♭. The segment in question

contains E♭, G, B♭ and C of almost equal duration, consequently it could

be interpreted as either chord. Although the bass note possibly indicates

a leaning towards the chord IV, the chord II with a 7th, considering the

strength of emphasis of the C, is an equally valid designation. The chord

sequence obtained from processing the MIDI file allocates chord II7 of

B♭ at this point, but the transcribed audio version, which modulated two

beats previously to the key of E♭ major, and due to a transcription mis-

detection of the upper C♮, allocates a chord I (E♭, G, B♭). The transcribed

audio version also features a pitch transcription error on the third beat

of the second bar, producing a chord label that is unrelated to the key of

B♭ major, and therefore resulting in an ‘nf’ label for this chord. For both

ground truth and transcribed data, our harmonic labelling results match

Piston’s harmony labels closely, with the MIDI data matching 13 out of

the 15 labels and generating 2 differences of relative insignificance. The
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transcribed audio varies more due to transcription errors and modulation

in the key sequences, but still produces 6 exact label matches.

Figure 4.9: Closing bars of BWV 436 ‘Wie schön leuchtet der Morgenstern’ with
functional harmony labels derived from BSch7 observation data in conjunction
with ASchEq with analysis from [Piston, 1983]

The second excerpt from the data set analysed by Piston is the chorale

Wie schön leuchtet der Morgenstern shown in Figure 4.9. Piston has

assigned labels in the style of secondary dominants. The excerpt shows

the closing bars of the chorale, and commences with the terminating chord

of the previous phrase, which cadenced in E major.

The previously discussed area of uncertainty when measuring harmony,

that of knowing precisely where to mark a change of key, becomes evident

with this excerpt. The chord commencing the final phrase is a C♯ minor

chord. The chord could equally be a chord VI in E major, or as it is

analysed by Piston, a chord IV of G♯ minor. It has been chosen as a pivot

chord, a chord of dual function, to smooth the transition from the previous

E major phrase into the current G♯ minor phrase. It is not clear that this

is where the harmony is taking us, until the following chord, a chord V of

G♯ minor. (It is designated V of III by Piston, III being G♯ minor). A

simple count based statistic marks this as an error because the model does

not change key with the C♯ minor chord, but in the beat following, on the

chord V. Piston identifies the first three chords of the phrase as being in

G♯ minor, whereas our models identify two. The changeover back to E is

a precise match.

The harmony results from the MIDI file demonstrate the mismatch
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issue with the functional harmony method as it stands. The chord desig-

nation is correctly aligned to the chord [6,10,1,4], the V7 of B major (i.e.

V of V - demonstrating the secondary dominant principle being discussed

by Piston), but the key output of the HMM at this point is still E major,

which is also correct overall. When the key is combined with the chord

label, this particular chord is not listed as being a member of the key of

E major, and so an ‘nf’ label is returned. The transcribed audio produces

a chord label error for the third beat of bar 19, [1,4,7,11] by labelling all

notes within the beat as a single chord. This is not classified as a member

of E major, therefore producing an ‘nf’ at this point. The problematic

chord for the MIDI data is circumvented by the transcription process; the

closeness in pitch of the F♯ and the E result in a single pitch being chosen

here. The chord designation of a chromatic chord II [F♯, A♯, C♯], is not

entirely accurate, nonetheless it is a close match.

4.7 Discussion and Conclusions

This chapter has presented an approach to key detection and key modula-

tion using automatic chord classification of transcribed audio and symbolic

MIDI data. A set of HMMs were explored using observation and transi-

tion probabilities derived from perceptual data and values calculated to

represent formal music theory respectively. Although the transcription

error rate is quite high, key error rates for the audio recordings are only

slightly higher than the key error rates for the ground-truth MIDI. Also,

the key error rates are slightly higher for transcribed data using the tri-

adic models, but the complex chord HMM exhibits alignment of results

between transcribed audio and MIDI data. This could be interpreted as

suggesting that the quality of the transcribed chorales is of sufficiently

high quality for the task, however, given that the overall accuracy of the

model is relatively low, a greater disparity of results between the data

types could emerge should the model accuracy be improved. The ques-

tion remains open for future experimentation. The music theory models

are shown to outperform the perceptual data, with much of the variation
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between the models evincing the subtle and often ambiguous nature of mu-

sical harmony. Alignment of key boundaries is low overall with the HMM

due to the absence of phrase information. The music theory observation

matrix BSchCh shows the best result for key change concurrence and the

music theory matrices demonstrate significant improvement over the per-

ceptual data matrices in this respect. Results are considered promising for

the use of automatic transcription research in computational musicology.

By combing key outputs with chord sequences, functional harmony labels

were obtained for the chorales, opening up opportunities to automatically

access information about underlying formal harmonic structures. The

methods are promising for the modelling musical style based on higher

level abstractions founded in core harmonic theory, for example, measures

of modulatory frequency, style of modulation, modulatory sequences and

complexity, chord distributions, chord progressions and measures of rela-

tive key distance.

In chapter 6 we improve the automatic chord recognition method to

be able to classify complex chords and tone groups containing non-chord

tones by identifying structural tones. Prior knowledge of key and harmony

could also be used to improve the output of a transcription process; for

example, initially transcribing the data, obtaining harmony information,

and subsequently re-transcribing the data utilising this knowledge. For

music research the combination of transcription and musicological mod-

els could facilitate the analysis of large corpuses of audio data with the

potential for some exciting discoveries about music.



Chapter 5

Creating Ground Truth and MIDI

Datasets: The First Twenty-Four

Preludes of J. S. Bach’s Well

Tempered Clavier

for the profit and use of musical youth desirous of learning,

and especially for the pastime of those already skilled in this

study 1

To be able to measure the effectiveness of the automatic chord recog-

nition method presented in chapter 6, a hand-annotated ground truth

dataset is required, against which the computational output can be com-

pared. One of the contributions made by the author of this doctorate has

therefore been the creation of a ground truth hand-annotated harmony

dataset of a test corpus of elaborated keyboard music. The test corpus

chosen is the first twenty-four preludes of J. S. Bach’s Well Tempered

Clavier, Book One. Creating a reference dataset is a laborious task, re-

quiring careful consideration of multiple, often conflicting factors. This

chapter relates background information about the test corpus and out-

lines some of the reasons why the corpus is of such crucial historical and

musical significance. The principles guiding the hand annotation process

are explained, and the complexities of the harmonic interpretation of or-

namental music are discussed. The penultimate section of the chapter

1Original title page inscription.
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describes the annotation syntax used and the additions that were made to

the syntax in order to accommodate the requirements of western harmonic

analysis. Preliminary statistical distributions of the hand transcribed data

are given at the end of the chapter.

5.1 Historical Context

As attested by the inscription on the original title page, Bach’s renowned

musical work, the 48 Preludes and Fugues of the Well Tempered Clavier,

are acknowledged by scholars to be intentionally pedagogic [Ledbetter,

2002, Kirkpatrick, 1984, Tomita, 2007a]. Historical sources evidence that

Bach’s approach to imparting his musical prowess was to teach by exam-

ple; Ernst Ludwig Gerber reports that Bach’s lessons to his father involved

Bach playing the Well Tempered Clavier several times to him (see Chapter

1 in [Kirkpatrick, 1984]). The collection in Book I dates from around 1720

and was revised a further three times, the latest revision being dated ap-

proximately 1736, thus overlapping the creation of Book II chronologically.

Neither Book I nor Book II was printed during Bach’s lifetime, (the first

printed edition appeared in 1799, published by Kollman, London), and

due to the differences between revisions and the practice of hand copying,

some of which was performed by Bach’s students, and much by his wife,

Anna Magdalena Bach [Ledbetter, 2002, Tomita, 2007b], different versions

of the works exist. Despite a waning of popularity of Bach’s music in the

one hundred years following Bach’s death, a great many more printed edi-

tions of the Well Tempered Clavier were published [Palisca, 1981]. The

edition on which this research is based is the Associated Board edition of

the Well Tempered Clavier, edited by Donald Frances Tovey [Tovey and

Samuel, 1924].

5.2 Tuning and Key Integrity

Book I of J. S. Bach’s Well Tempered Clavier constitutes the very first

complete collection of composed works to use every key as a tonic. The

keys progress up the scale chromatically from C, (a departure from the



CHAPTER 5. GROUND TRUTH DATASET 83

more accepted ordering around the circle of fifths), alternating between

major and minor, and concluding with Prelude 24 in B Minor.

The innovation of the collection is that it was written at a time when

modal composition was still the norm, and when instrumental tuning was

in a state of experimentation. The modes are rooted in medieval music,

and are linked to unequal tuning systems which were believed to give each

mode an individual character of its own [Ledbetter, 2002]. A problem is

that the number of keys available in unequal tuning systems are restricted

to ones with simple key signatures (one to two accidentals), albeit with a

greater quantity of perfect intervals [Montagu, 2012]. Three main types

of tuning were in use at the time; 1⁄4-comma meantime, Werckmeister III,

and an approximation of equal temperament. It is not known what type

of tuning Bach used, but the nature of the collection has led scholars to

surmise that the tuning system he adopted must have been a version of

equal temperament [Ledbetter, 2002]. An important issue of the day was

whether equal temperament, a tuning system in which the only acousti-

cally perfect interval is the octave, (the remaining intervals are divided

into equal semitones), was an improvement over the traditional modal

system. If equal temperament meant simply the possibility of two keys,

one major and one minor, that could be transposed around the keyboard,

but without each individual key having a distinct and authentic character,

then for many of Bach’s contemporaries, equal temperament represented

an impoverishment of tonal language compared to the expressive possi-

bilities and tonal range of the modes (please refer to the Mattheson and

Buttstet debate [Schulenberg, 2006]). In contrast to this viewpoint, the

discrepancies between pure overtone intervals and the intervals of tuned

instruments, and the variety of responses to this [Lindley, 2009], supports

the possibility expounded by some Bach analysts (e.g. [Riemann, 1890]),

that each key in equal temperament may still have a unique expressive

character. Bach’s treatment of particular keys, in terms of expressive

style and also types of modulation and key relationships, is thought to be

highly influential on the works of later composers, creating precise associ-

ations manifested in their compositions (see e.g. [Young, 1991]). The topic

continues to be debated, in particular with reference to the implications
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of original sources containing versions of pieces in different keys [Tomita,

1990].

5.3 Bach Harmony and Chords

Figure 5.1: Ledbetter’s bass figures for the concluding bars of Prelude 1 in C
Major, BWV 846, and their implied tones. ([Ledbetter, 2002])

Although it is anachronistic to discuss the music of Bach in terms

of Rameau-based theories of harmony ([Rameau, 1971 (Republished]),

Baroque music scholars appear to be universally agreed on the idea that

‘Bach’s melodies are apt to combine in counterpoint so as to form masses

of harmony’ [Tovey and Samuel, 1924]. Nonetheless there are differences

of perspective about whether harmony is the result of melodic movement

or whether melodic movement arises from an underlying chord structure.

Kirkpatrick states that Bach’s harmony is firmly founded in ‘the language

of thoroughbass’ [Kirkpatrick, 1984], page 90. (Thoroughbass and fig-

ured bass can be thought of as being synonymous - see chapter 2.) The

implication is that Bach’s harmony should be thought of in terms of ver-

tical interval aggregates from the bass. Bach would almost certainly have

thought of some of these intervals (e.g. unisons, 3rds, 5ths, and 6ths) as

being consonant, whereas others (e.g. 2nds and 7ths) would be consid-

ered dissonant. Due to the chronological inconsistency between theory
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and practice, some music scholars adhere strictly to using figured bass to

describe Baroque harmony, listing, for example, a 5-3 or 6-3 sonority to

describe a vertical arrangement of tones in accordance with their interval-

lic distance from the bass note. For example see Figure 5.1, which shows

Ledbetter’s bass figures for the last ten bars of the C Major Prelude. The

stave above shows the tones signified by the figures (my addition), and

thus the resulting chords. Even Ledbetter however, opts to use Roman

numerals as a convenient means by which to describe harmonic sequences

evidenced in the preludes (see Section 3, Preludes, Book I, The Invention

Principle in [Ledbetter, 2002]).

Vertical combinations of tones could otherwise be termed, for example,

a triad or (using Rameau’s inversion theory), a first inversion of a triad. In

later nineteenth and twentieth century theoretic treatises vertical combi-

nations came to be signified by the Roman numeral notation of functional

harmony, a theory first expounded by Hugo Riemann in Vereinfachte Har-

monielehre (1893), in which each diatonic chord is deemed to have either

a tonic, dominant, or subdominant function within the key.

If we consider chords to be an ‘aggregation of tones’ [Hindemith, 1942],

there are as many different types of chords as there are combinations of

tones, but some are more recognised in music theory, and used in prac-

tice, than others. Baroque harmonic theory ends chord recognition at the

seventh, chiefly due to writings which relate chord tones to the harmonic

series (e.g. [Rameau, 1971 (Republished]). It is a question contended by

Schönberg in [Schönberg, 1922], who cites the tendency of theorists to con-

sign vertical tones beyond the 7th to ‘accidental harmony’. What precisely

is meant by this maxim? That the harmony has no harmonic significance

and is merely an accident of voice-leading? That the composer did not

intend the dissonant effect of melodic writing if the dissonance involved is

a 9th, 11th or 13th? Despite the theoretic argument surrounding Baroque

chord recognition and labelling, sonorities emphasising the vertical inter-

vals of the 9th, 11th, and 13th above the degree of the scale are present

in Baroque repertoire. Different scholars adopt different approaches to

designating these occurrences, generally in line with their own particular

thinking on the topic. For example consider Bach’s Partita No. 5, shown
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Figure 5.2: Example of Piston’s labelling of a tonic eleventh in the Preambulum
of Bach’s Partita No. 5. ([Piston, 1983])

in Figure 5.2, which shows Walter Piston’s use of Roman numeral nota-

tion along with figures to label the dissonance of a tonic eleventh chord

(bar 4) [Piston, 1983]. It seems impossible that the eleventh sonority, oc-

curring as it does on the first beat of the bar in the form of a five note

homophonic chord, was either of harmonic insignificance, or unintended

by the composer.

For the purposes of musical style modelling, it is mooted that all of

the subtle nuances of vertical sonorities present in the corpus need to be

captured in order to provide insight into the character of the composer’s

harmonic texture, particularly those situations presenting unusual note

combinations, outside of the common chords. Consequently, despite the

contention between rival harmonic theories in relation to Baroque har-

mony, sonorities featuring extended dissonance in this corpus are labelled

as extended chords.

The principles used to create the hand-annotated ground truth chord

data from the corpus are reviewed in more depth in the following sections.

5.4 The Preludes

For the purposes of providing a core dataset for the study of voicing,

chords and harmony, the preludes alone have been selected. Although

preludes and fugues exploit both linear (melodic) and chordal techniques,

the preludes can be interpreted as being based more on elaborated har-

monic structures whereas the fugues exploit linear or melodic processes.
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Figure 5.3: Preludes 1 - 24, opening bars.
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There is evidence to suggest that the preludes and fugues were originally

two separate collections, being only conjoined later on, and therefore the

extent to the which each prelude and fugue is a pair is subject to debate

[Ledbetter, 2002].

The preludes, the opening bars of which are listed in Figure 5.3, ex-

hibit considerable variety of compositional technique and can be as much

a rich resource for MIR research as they have long been a source of study

for musicians. The term prelude refers to a piece of music designed to

be played as an introduction (for example, preceding a fugue), although

this association no longer holds for the piano pieces of later composers

such as Debussy. The character of the prelude has also evolved over the

ages, referring in its earliest inception (15th and 16th Centuries) to key-

board works particularly noted for their freedom of technique from strict

contrapuntal methods due to their basis in improvisation [Ledbetter and

Ferguson, 2012]. Preludes, from the earliest organ improvisations up to

the modern day, are particularly stylised by idiomatic keyboard writing

and freedom of form. Several forms are mentioned in association with the

first twenty-four preludes: the toccata, a keyboard composition in free

idiomatic style employing full chords and running passages which may

contain sections of imitation; three voiced trio sonatas, concerto style,

meaning works of three sections; and inventions, a term used by Niedt to

refer to works elaborating harmonic structures.

The preludes exemplify the usage of almost every symmetric metre, as

can be seen from the list of time signatures in Table 5.1. The concepts

of metre and beat, and the distinction between compound, simple, triple

and duple time signatures are explained in section 2.4.

5.5 The Annotations

Bach’s melodies are apt to combine in counterpoint so as to

form masses of harmony [Tovey and Samuel, 1924]

Despite the wealth of publications about Bach’s Well Tempered Clavier,

no complete sets of harmonisations exist. The most extensive harmonic
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Table 5.1: Summary of Main Characteristics of J. S. Bach’s Well Tempered Clavier, Book One, Preludes 1 - 24.

Prelude BWV Key TimeSig Sig Type Beat Value Average Harmonic Rhythm Characteristics

1 846 C Maj 4
4 Simple Quadruple ♩ � Alla breve, arpeggiated.

2 847 C Min 4
4 Simple Quadruple ♩ �, ♩ in Presto Technical rapid semiquaver movement.

3 848 C♯ Maj 8
3 Simple Triple � ♩‰ Light, ornamental and melodic.

4 849 C♯ Min 4
6 Compound Duple ‰  Rich and weighty minor key, chordal.

5 850 D Maj 4
4 Simple Quadruple ♩ ♩ Compound melody implying a four voice texture.

6 851 D Min 4
4 Simple Quadruple ♩ ♩ Triplet semiquaver activity, chromatic progressions.

7 852 E♭ Maj 4
4 Simple Quadruple ♩ ♩ Sectional, pedal notes, four part double. fugue from bar 25.

8 853 E♭ Min 2
3 Simple Triple  �‰ Declamatory chordal texture with singing melody.

9 854 E Maj 8
12 Compound Quadruple ♩‰ ♩‰ , varying to ‰ Light arpeggiated triplets.

10 855 E Min 4
4 Simple Quadruple ♩  Highly decorated.

11 856 F Maj 8
12 Compound Quadruple ♩‰ ♩‰ Ornamental arpeggiation of triplets, frequent lengthy trills.

12 857 F Min 4
4 Simple Quadruple ♩ ♩ Four part compound melody, some use of pedal tones.

13 858 F♯ Maj 16
12 Compound Quadruple �‰ Varying Original time signature was 12/8 features syncopated. demisemiquavers

14 859 F♯ Min 4
4 Simple Quadruple ♩ ♩ Technical prelude, Bach notably used the thumb on raised notes.

15 860 G Maj 16
24 Compound Octuple �‰ Varying Arpeggiated semiquaver triplet movement.

16 861 G Min 4
4 Simple Quadruple ♩ Interpretive Highly ornamental, trills, demisemiquaver decorative style.

17 862 A♭ Maj 4
3 Simple Triple ♩ Bar Varied texture of block chord and rapid figurations.

18 863 G♯ Min 8
6 Compound Duple ♩‰ Varying from � to ♩‰ Example of upper voice pedal at end.

19 864 A Maj 4
4 Simple Quadruple ♩ ♩ Example of triple counterpoint.

20 865 A Min 8
9 Compound Triple ♩‰ Varying from bar to �‰ Light decorative three part texture.

21 866 B♭ Maj 4
4 Simple Quadruple ♩ � Dense chords and brilliant runs of demisemiquavers.

22 867 B♭ Min 4
4 Simple Quadruple ♩ Varying Very dense chords in places, pedal effect of repeating quavers.

23 868 B Maj 4
4 Simple Quadruple ♩ ♩ Mixed rhythmic figures in a three part texture.

24 869 B Min 4
4 Simple Quadruple ♩ ♩ Vocal four part texture.
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analyses of the corpus are those published by Riemann in 1890 [Riemann,

1890]. Riemann’s idiosyncratic annotation syntax takes a little decipher-

ing (see Figure 5.4), and his analyses are predominantly restricted to short

excerpts. They are also unsuitable for systematic processing without a fur-

ther stage of translation and syntactic adaptation to produce a machine

readable format. Despite these limitations Riemann’s analyses provide

a valuable and authoritative source, and Riemann’s judgements are de-

ferred to as the definitive label in the annotations for the sections of the

corpus that they are available for. This section of the thesis describes the

annotation process, and the challenges and guiding principles adopted.

Annotating the underlying chords of elaborated keyboard works such

as the preludes requires the concurrent processing of note, chord, and

contextual information. A label is chosen based on the aforementioned

Riemann source, and then in accordance with the musical expertise of the

annotator about the relative structural significance of the notes and their

potential as chord and/or key members. The process involves deciding

whether any of the notes have a solely ornamental or melodic role and may

therefore be omitted with respect to chord definition. At the same time,

the group of notes must be considered with reference to immediate, local,

and global context, to arrive at credible and justifiable chord designations.

Other texts quoted in this section of the thesis are referred to for guidance

about both key and chord, these include [Ledbetter, 2002, Kirkpatrick,

1984, Tomita, 2007a, Schenker and Salzter, 1969, Piston, 1983].

In a contrapuntal texture constituent tones may be missing from any

of the chord types, for example a triad may be implied by the presence of

a single unison. In the case of complex dissonances, several elements may

be absent. The process of chord selection is interpretive and subjective,

and on the part of the annotator, higher level information is taken into

account. This includes knowledge of key, preceding and succeeding note

groups, melodic, registral and thematic arrangements, the formal position

of the group of notes within the prelude, and the metrical and durational

emphasis of notes. There are many cases where the underlying chord is

transparent, about which all musicians will agree, for example much of
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Figure 5.4: A fragment of Riemann’s harmonic analysis of the Prelude in B♭

Minor [Riemann, 1890], one of the more lengthy analyses in the publication.

the arpeggiation in Prelude No. 1 in C Major, BWV 846. Even here how-

ever, there are differences in the translations made by different musical

authorities. For example, bar 23 arpeggiates upwards from A♭ in the bass

through F, to the semiquaver figuration of B, C, D (Figure 5.5). Schenker

[Schenker and Salzter, 1969] chooses the F Minor triad with added 6th

for this bar. Riemann marks this bar as a dominant minor 9th minus

the root (G, B, D, F, A♭ where G is the missing root) [Riemann, 1890].

Ledbetter gives two figured bass versions of the prelude; in the earlier

version the Ab is absent (i.e. there is a different chord in the earlier ver-

sion), in the final version Ledbetter’s figured bass lists an added fourth (D)

and third (C) [Ledbetter, 2002]. The example highlights the dichotomy

between the computational requirement for rigorous, accurate and con-

sistent ground truth data, and the inherent elusiveness of tonal harmony.

Whether intentional on the part of the composer or not, a central element

of musical expression is its exploitation of blurred boundaries and unclear

classifications. With all ground truth data about harmony, it is impor-

tant to acknowledge that there is no one single correct answer, and that

musicians and musicologists will vary in their opinion about what is the

correct chord or key.
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Figure 5.5: Prelude 1 in C Major, BWV 846, Bar 23.

5.5.1 Harmonic Rhythm

To provide a data set of consistent granularity that can be used for audio

chord recognition as well as computational musicology, and similarly to

annotations provided for popular music [Mauch et al., 2009], a beat syn-

chronous approach was adopted. There is perhaps a sense of incongruity

in creating chord labels at consistent and regular time intervals, given that

the rate of change of harmony in a piece of music, known as the harmonic

rhythm, varies. Harmonic rhythm is independent of melodic rhythm, and

generally does not adhere to uniform time intervals. If one views excerpts

of harmonic analysis in [Piston, 1983]; it will be immediately apparent

that chord labelling alters from bar to bar in terms of duration, frequency,

and position.

It may seem that this is not a particular problem. If an entire bar

is labelled as a V7 chord (Riemann’s labels vary from a single label for a

single bar, therefore reflecting the extended chord indicated by the content

of the whole bar, or may give a unique label per beat) one might think

that the solution is to label each individual beat in the bar with a V7. In

fact, the level of focus impacts chord labelling more literally than this. A

full or half bar inference of a V7 chord does not mean that smaller beat

level groups also imply a V7 chord. A typical example is that of a V7

chord expressed over 2 beats; each beat may contain the notes of a subset

of the larger focus chord, for example, a dominant triad followed by the

diminished triad on VII. A contrasting situation is when harmonic change

occurs at a faster rate than the level of annotation, for example, when

two chords are stated successively within a single beat. It is not practical
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or realistic to endeavour to represent every harmonic nuance of melodic

movement; with all approaches to harmonic analysis, and especially in

the case of decorative keyboard music, demarcating precise boundaries

is difficult and subjective. All annotators, whether following harmonic

rhythm or not, aim to portray the most plausible and suitable set of chord

labels for the purpose for which they are intended. The beat synchronous

approach therefore results in a singular set of chord labels that may diverge

from a harmonic rhythm approach, but harmonic rhythm is itself to some

degree open to interpretation, and in general, a change of harmony, whilst

not occurring uniformly, mostly occurs in time with a beat.

As mentioned previously, the durational value of a beat is affected by

time signature; generally, compound time signatures indicate compound

beat values. There is an exception to this in the set. Prelude 3 in C♯ Major,

BWV 848, (Figure 5.6), which has a simple triple time signature of 8
3, has

such a sparse texture that this prelude is annotated at the compound beat

level.

5.5.2 Harmonic Dualism

The preludes present many situations similar to the aforementioned Bar

23 of BWV 846, in which the tones present in a group are open to multiple

possible interpretations. Bach’s music regularly signifies several possible

chords, and sometimes keys, at once. Consider for example, the excerpt

in Figure 5.6, which shows bars 70 to 73 of Prelude 3 in C♯ Major. There

is an ascending melodic sequence in the upper voice from E♯, through F

double sharp, to G♯ in bar 73. Bar 70 outlines the tonic chord. But how

to interpret bars 71 and 72? The left hand is enunciating C♯ Minor, but

the enharmonic equivalent of F double sharp is G♮, and the combination

of C♯, E♮, G♮ and A♯ (enharmonic B♭), form a diminished seventh chord.

The F double sharp, high up in the register and on the first beat of the

bar, occupies a level of salience that could overcome the bass G♯.

The excerpt is just one example of many in the corpus which raises

questions about the perception of harmony and the link between percep-

tion and harmonic interpretation. It could be argued that the enharmonic
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Figure 5.6: Prelude 3 in C♯ Major, BWV 848, Bars 70-73.

notation suggests that the diminished 7th grouping is incidental, but the

sound of a diminished 7th chord is so distinctive it is unlikely that the

composer was unaware of the effect. What would a listener perceive here?

Would they hear two chords played simultaneously - the left hand C♯ Mi-

nor pattern and the diminished seventh of the combination? Alternatively,

if a single sonority is discerned, would the tonic minor triad be percep-

tually prior to the dissonance of the diminished 7th? If the diminished

7th is recognised as the overriding harmony, how would a listener account

for the G♯; as a pedal tone, or as inessential? It would be interesting,

but is beyond the scope of this thesis, to discover how the perceptions of

listeners either validate or contradict the annotations.

5.5.3 Dissonance

In keeping with compositional style of the time, Bach’s presentation of

dissonance is primarily in the form of suspensions (prepared dissonance)

and appoggiatura (unprepared dissonance). An example of this can be

seen in Figure 5.7, which shows an excerpt from Prelude 7, BWV 852,

featuring a series of suspensions. The excerpt opens at bar 31, with a

major 9th on Eb {Eb, G, (B♭ - absent), D, F}, where the 7th (D) and 9th

(F) are presented in the form of a double suspension, (i.e. held over from

previous beats), in the upper voices, which subsequently resolve down-

wards by step. Bar 32 follows with an established style of elaboration of

the period in which all elements of a 9th chord (in this case the 9th on G,

{G, Bb, D, F, A♭}), are articulated melodically. The held notes at this

point (D and G), are not dissonant, but maintain the overall texture. The

9th is implied across two crotchet beats, (although only actually stated in
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the first crotchet beat), and is followed by a minor 7th on C, also for two

beats. The two chords highlight one of the difficulties of harmonic rhythm

discussed earlier: zooming into the crotchet level, the second beat of of the

9th chord states the chord only up to the 7th, and could also indicate an

E♭ major triad, similarly, the second beat of the C minor 7 when viewed

in isolation, could also be interpreted as the dominant 7th on F {F, A♮, C,

E♭}. The 9th chord on F at the beginning of bar 33 would be marked as a

dominant 7th on F by many, and is included to demonstrate the challenge

of producing consistent data when interpreting embellished music.

Chords containing an 11th or 13th are often presented during the

Baroque period in the form of a pedal note rather than as a clear chord

member, which nonetheless creates a dissonant sonority. A technique fre-

quently used by Bach is to superimpose a dominant 7th or 9th chord over

the tonic, creating the effect of an 11th or 13th (see Figure 5.8). Disso-

nances such as these generally resolve correctly by step, e.g. onto tonic

harmony. One of the most difficult aspects of annotating any of the disso-

nant chords, is judging the harmonic importance of the dissonant tones.

The ninth of bar 32 in Figure 5.7 is relatively uncontroversial, but there

are many cases when the sounding of the upper dissonances are more fleet-

ing, and it is not always clear whether the notes warrant inclusion in the

definition of the chord. The principles used to disambiguate this include:

affording greater harmonic significance to dominant dissonance; melodic,

metrical and registral accentuation of notes; harmonic context; the overall

quantity of dissonance, and the level of harmonic ambiguity in the work

as a whole. This latter tends to be much greater in the minor key pieces.

5.5.4 Texture

Music written for keyboard instruments which precede the pianoforte re-

quire a reasonably intense degree of movement to maintain both musical

interest and sound volumes due to the lack of sustaining sound of period

instruments. Rapid ornamental movement combined with rhythmic vari-

ation often results in partial articulation of harmonies, with too few chord

member notes per beat group to conclusively define a specific chord. For
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Figure 5.7: Prelude 7 in E♭ Major, BWV 852, Bars 31-33.
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Figure 5.8: 13th effect produced by dominant minor 9th over tonic pedal on
the 4th beat of bar 2 of Prelude 22 in B♭ Minor, BWV 867.

Figure 5.9: Prelude 13 in F♯ Major, BWV 858, Bars 10-12.

example, view Figure 5.9, which shows the syncopated rhythm and sparse,

fragmentary texture of Prelude 13 in F♯ Major, BWV 858. The excerpt

features a segment of the prelude modulating to D♯ Minor. Bar 10 is prob-

lematic to annotate, with the conflicting presence of C double sharp and

D♯ in both voices. Despite the presence of D♯, the first two beats imply

a C double sharp diminished triad, moving subsequently to the dominant

seventh of D♯ Minor {A♯, C double sharp, E♯, G♯}. In the case of such

sparse data, knowledge is levied of key, local context, and implied chord

progressions.

5.5.5 Chord Inversion

Chord inversion refers to the scale step of the bass note in the vertical

arrangement of pitches in a chord (Section 2.2.1). In a moving elaborated

texture the chord position is not necessarily held throughout the beat, for

example, the bass may travel from the root note to the third. Standard

broken chord or returning patterns in the bass which commence on a
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specific degree are treated as having the position of the first note of the

pattern even if the pattern progresses to a different chord position. When

there is much stepwise movement it is not always possible to identify a

single chord position, in which case chord position is not annotated and

root position is implied.

5.5.6 Pedal Tones

Pedal tones are tones which are maintained across more than one bar

[Apel, 1970]. They can appear in any of the voices but are more frequently

found in the bass. Pedal tones take the form of sustained or repeated notes,

alternating octave patterns or a repeating pitch of shorter durational value

at a regular metrical position in the bar for a series of bars. A common

use of pedal tones in the preludes is as a tonal anchor during a chord

sequence that begins with, departs from, and subsequently rejoins the

pedal tone. Pedal tones are demarcated separately in the annotations

(see next section).

5.6 Chord Annotations

The annotations make use of Chris Harte’s chord syntax [Harte, 2010].

The syntax defines a method of representing chords independent of key

context, in which the note members of a chord are unmistakable. The

syntax has many advantages; it is clear, unambiguous, and requires little

or no musical training to understand. For these reasons it is a popularly

utilised syntax which has been widely accepted by the MIR community.

Chris Harte’s syntax, and his annotations of The Beatles are well known

in the MIR community, consequently, it is deemed sufficient to refer the

reader to Chris Harte’s PhD thesis [Harte, 2010]. (Please also see Table

5.2.)

The manual annotation of keys and chords is a lengthy and time con-

suming task. Consequently, although the original syntax allows for the

explicit labelling of arbitrary sets of chord intervals, and provides some

shorthand labels up to and included three types of 9ths, to expedite the
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Table 5.2: Chord annotation syntax extending Harte’s annotation syntax [Harte, 2010]: showing new chord descriptors, shorthand
notation, musical intervals, successive semitone interval content, and note examples. Asterisks denote shorthand labels that were not
in Harte’s syntax.

Description Shorthand Interval List Semitone Intervals Example New
Major maj (1,3,5) (4,3) G,B,D

Minor min (1,b3,5) (3,4) G,B♭,D

Diminished dim (1,b3,b5) (3,3) G,B♭,D♭

Augmented aug (1,3,#5) (4,4) G,B,D♯

Seventh 7 (1,3,5,b7) (4,3,3) G,B,D,F

Major Seventh maj7 (1,3,5,7) (4,3,4) G,B,D,F♯

Minor Seventh min7 (1,b3,5,b7) (3,4,3) G,B♭,D,F

Diminished Seventh dim7 (1,b3,b5,bb7) (3,3,3) G,B♭,D♭,F♭

Half Diminished Seventh hdim7 (1,b3,b5,b7) (3,3,4) G,B♭,D♭,F

Minor Major Seventh minmaj7 (1,b3,5,7) (3,4,4) G,B♭,D,F♯

Augmented Seventh aug7 (1,3,#5,b7) (4,4,2) G,B,D♯,F *

Augmented Major Seventh augmaj7 (1,3,#5,7) (4,4,3) G,B,D♯,F♯ *

Major Sixth maj6 (1,3,5,6) (4,3,2) G,B,D,E

Minor Sixth min6 (1,b3,5,6) (3,4,2) G,B♭,D,E

Italian Sixth It6 (1,3,#6) (4,6) G,B,E♯ *

German Sixth Gr6 (1,3,5,#6) (4,3,3) G,B,D,E♯ *

French Sixth Fr6 (1,3,#4,#6) (4,2,4) G,B,C♯,E♯ *

Ninth 9 (1,3,5,b7,9) (4,3,3,4) G,B,D,F,A

Major Ninth maj9 (1,3,5,7,9) (4,3,4,3) G,B,D,F♯,A

Minor Ninth min9 (1,b3,5,b7,9) (3,4,3,4) G,B♭,D,F,A

Seventh Minor Ninth 7b9 (1,3,5,b7,b9) (4,3,3,3) G,B,D,F,A♭ *

Minor Seventh Minor Ninth min7b9 (1,b3,5,b7,b9) (3,4,3,3) G,B♭,D,F,A♭ *

Eleventh 11 (1,3,5,b7,9,11) (4,3,3,4,3) G,B,D,F,A,C *

Major Eleventh maj11 (1,3,5,7,9,11) (4,3,4,3,3) G,B,D,F♯,A,C *

Minor Eleventh min11 (1,b3,5,b7,9,11) (3,4,3,4,3) G,B♭,D,F,A,C *

Halfdim Seventh Eleventh hdim711 (1,b3,b5,b7,9,11) (3,3,4,4,3) G,B♭,D♭,F,A,C *

Thirteenth 13 (1,3,5,b7,9,11,13) (4,3,3,4,3,4) G,B,D,F,A,C,E *

Major Thirteenth maj13 (1,3,5,7,9,11,13) (4,3,4,3,3,4) G,B,D,F♯,A,C,E *

Minor Thirteenth min13 (1,b3,5,b7,9,11,13) (3,4,3,4,3,4) G,B♭,D,F,A,C,E *

Minor Seventh Minor Thirteenth min7b13 (1,b3,5,b7,9,11,b13) (3,4,3,4,3,3) G,B♭,D,F,A,C,E♭ *

Thirteenth Minor Ninth 13b9 (1,3,5,b7,b9,11,13) (4,3,3,3,4,4) G,B,D,F,A♭,C,E *
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process of manually annotating the harmony of a more diverse range of

musical styles, a new set of shorthand labels are provided to promote the

rapid and easy encoding of extended chords. This includes 7th and 9th

chords, as well as 11ths, 13ths, and augmented 6ths. Extended chords

are a primary distinguishing feature of western musical style period, with

post Romantic music, and jazz in particular exploiting the colourful effect

of 11th and 13th chords [Piston, 1983, Strunk, 1988], consequently being

able to easily and rapidly label such chord instances in the repertoire is

extremely important. The shorthand labels shown in Table 5.2 are under-

stood to symbolise a precise pattern of intervals based on a specific scale

degree, for example, C:7b9 refers to the seventh minor ninth chord on C,

or C, E, G, B♭, D♭. We intentionally adopt jazz style chord notation for

the labelling of ‘altered’ chords in order to produce a chord dictionary that

is as generically applicable and as consistently notated as possible whilst

continuing to be musically intuitive. The additions listed in Table 5.2 are

representative of the dissonances used in classical western harmony, from

the Baroque to the Romantic era. Conventionally not all of the tones

are sounded together, although they may be touched upon melodically;

the 3rd and 5th are typically omitted from 11th chords, and the 5th, 9th

and 11th from 13ths. We plan to further expand this standard set of

chord definitions in order to create a comprehensive dictionary of chords

encompassing broader musical periods and jazz (see future work).

A further addition to the syntax is a method of identifying the presence

of a pedal note along with a chord. A pedal note cannot simply be an-

notated as a bass note below a chord; the pedal note may be completely

unrelated to the chord, and may also not be a bass note. In addition,

using the bass note part of the syntax to show a pedal note would mean

removing the representation of the actual chord bass tone. Pedal tones

are therefore indicated by a tilde followed by the pedal tone e.g.

G:maj/3 ∼ C

The interpretive nature of harmony has been mentioned earlier. The

aim whilst annotating the preludes was to select the single most repre-

sentative chord choice for a beat group, but in some situations more than

one possible chord appears to be equally valid. To allow for more accurate
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evaluation of automatic algorithms by avoiding arbitrary choices which a

system could not be expected to guess correctly, in such cases all possi-

ble chord interpretations are annotated. The distinction between chord

choices is shown by an equals sign, e.g.

B:dim7/3 = D:dim7

Note that this notation does not assert the equivalence of the two chord

labels, but that they are equally valid descriptors of the harmony (e.g. see

Figure 5.7, last beat of bar 32).

5.7 Key Representation

The annotations discussed thus far provide a literal representation of un-

derlying chord sequences in the preludes. There is a limitation imposed

by using an annotation syntax tailored to popular music to encode the

chord sequences of advanced Baroque keyboard composition. Regardless

of notational particulars and the ease or otherwise of adapting these for

computational purposes, the critical difference between traditional mu-

sicological methods of harmony annotation and the approach used here,

is one of scope: literal chord sequences, annotated independent of key

context, do not represent the implied harmony.

Harmony is not easy to define succinctly. The term encapsulates many

concepts, from chords, consonance and dissonance, and cadences, to key

and modulation, to harmonic function, structure and musical form. Har-

mony refers to the ways in which entities such as scale, chord and key

are combined to create musical coherence. It is the skill and variety of

these combinations that allow composers to construct musical structures

capable of supporting large scale musical works. Dahlhaus [2007] explains

that in order to understand harmony, one must be able to relate chords (in

this case chords are already understood in terms of their function within

a key) in relation to metre, musical phrasing, and form. Dahlhaus gives

the example of a cadential chord sequence, I-IV-V-I, (in the key of C Ma-

jor this would be the chord series C, F, G, C, all major), which cannot

be reversed without significantly altering the musical effect, whereas the

harmonic outline of I-V-IV-I, (C, G, F, C), is quite usual for an entire
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movement. The advantage of the musicological representation is one of

abstraction; by symbolising a chord in terms of its function within a key

context, or a key in relation to an overall key, the building blocks of har-

mony, (for example, cadences), can be described. Without this level of

symbolic abstraction, the presence of a first inversion D♭ major chord in

a C Major sequence, is just that, a D♭ Major first inversion. If one inter-

prets the chord in its key context, the chord is immediately recognisable

as a Neapolitan Sixth, a chromatic triad on the flattened supertonic with

a unique harmonic function and place in musical history.

Enhancing the richness of annotated information by including key as

well as chord, from which functional harmony can be derived, is clearly

advantageous for music research. Annotating key information presents its

own issues, not least of which is how to select and represent the precise

moment of transition from one key to the next, a process known as modu-

lation. A standard method of modulation is to move into the new key via

chords common to both keys, resulting in an area of overlapping keys (see

[Piston, 1983]). These segments of music contain chords that can be de-

fined as being either in the key being moved from, or the key being moved

to. Musicologists use additional information such as phrasing to decide

at precisely what moment the old key finishes and the new key begins,

although they may also demarcate the overlap. In addition to this, there

is the question of how to annotate sections of music which feature rapidly

changing key centres, tonal equivocation, or which use more than one key,

as in the case of bitonal composition.

In the interests of maximum ease of use, clarity and simplicity, the key

annotations of the preludes, (currently only for the first 5 preludes), adopt

the same beat synchronous approach and extended syntax to represent

key as that used to represent chords. As with the chord annotations, it is

permissible to annotate more than one key per beat. The annotations are

therefore able to represent areas of key overlap and polytonality e.g.

F:maj = C:maj | F:maj = C:maj | C:maj
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5.8 Validation and Correction of MIDI Score Data

and Hand Annotations

5.8.1 Cleaning and Validating the MIDI data set

The author would like to thank Phillip Kirlin of University of Massachusetts

Amherst, for providing voiced MIDI recordings of the preludes. These were

used as the corresponding digital score data for the research described in

the following chapter. The MIDI data was validated against the edition

of the score being used for this research ([Tovey and Samuel, 1924]) via a

repeated process of loading the files into a music notation software package

and manually checking for discrepancies or errors, particularly of timing or

pitch. The corrected data was then exported out of the notation package

in MIDI format, with the errors corrected. The process is a painstak-

ing and arduous task, sometimes made more so by the typesetting of the

software package, and one that had to be repeated many times over. Er-

rors that were missed during the manual checking process were discovered

later, via the method detailed in the next subsection, or during the com-

putational processing detailed in the next chapter. Each error in the data

was therefore manually corrected in the notation package, and a new ver-

sion of the MIDI file once again exported. The data cleansing process was

a critical part of the methodology of the research described in the next

chapter, meaning that the results of the computational processing could

be confidently interpreted as a product of the computing algorithm, rather

than the result of data error.

5.8.2 Verification of Hand Annotations and Further Checking

of the MIDI Data

To verify the quality of the hand-annotated data and to check further for

discrepancies between the MIDI data set used for subsequent experiments,

and the edition of the score, a computer program compares the pitch class

set versions of the hand annotations to the actual pitch classes present in

each beat segment. The program produces intersection, difference, and

symmetric difference values, between each corresponding hand-annotated
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set and the pitch class set of the MIDI data. The difference value is of

most interest, as it shows pitch classes present in the hand-annotated set

that are not present in the MIDI data, indicating a possible error. The

symmetric difference value shows values present in either group but not

the other. For example given a hand-annotated set of [7, 10, 1] and a

MIDI pitch class set of [10, 4, 7], the difference value is [1], the symmetric

difference is [1, 4], and the intersection of the groups is [7, 10].

The values were written to files and were manually checked against

the score to discover and correct errors in either dataset, or to verify that

the differences are considered to be legitimate; i.e. they are the result of

missing chord tones. Taking Prelude 3 as an example, there are many

instances of legitimate differences between the hand-annotated pitch class

set representation and the actual pitch classes present in any one beat

segment. Throughout the prelude there are decorated dyads of a third

apart, which are assumed to signify a triad omitting the fifth, and perhaps

due to the light texture of the prelude, many of the 7th chords in this

prelude also omit the fifth. Missing chord factors, particularly for complex

chords, are a significant challenge both to annotation and automatic chord

methods. Table 5.3 shows the number of segments with difference values

shown as the percentage of the length of sequence per prelude, and the

average number of different pitch classes when a different pitch is found.

5.9 The Annotated Dataset

A contribution of this thesis will be to make the dataset available from the

Centre for Digital Music data repository for use by the community. In ad-

dition to this there will be a software parser which parses the annotations

and produces equivalent sequences of pitch class set

5.10 Corpus Distributions

In this section statistics are drawn from the hand-annotated chord data.

Tables 5.4 and 5.5 show the distribution of chord types per prelude, ex-

pressed as a percentage of the length. Averages are shown for the set of
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Table 5.3: Pitch class difference percentage between the hand-annotated data
and the MIDI data set, and the average number of different pitch classes, per
prelude.

Prelude % Segments with Differences Average difference quantity

Prelude 1 16.43 1.57
Prelude 2 41.45 1.00
Prelude 3 20.19 1.10
Prelude 4 12.82 1.10
Prelude 5 54.29 1.04
Prelude 6 13.46 1.07
Prelude 7 30.71 1.10
Prelude 8 20.00 1.17
Prelude 9 39.58 1.00
Prelude 10 33.54 1.11
Prelude 11 6.94 1.00
Prelude 12 18.18 1.00
Prelude 13 37.50 1.09
Prelude 14 36.46 1.00
Prelude 15 29.61 1.20
Prelude 16 14.47 1.09
Prelude 17 44.70 1.14
Prelude 18 13.79 1.25
Prelude 19 57.29 1.00
Prelude 20 11.90 1.00
Prelude 21 17.50 1.21
Prelude 22 22.92 1.18
Prelude 23 38.16 1.14
Prelude 24 51.06 1.14
Average 28.46 1.11

12 major and 12 minor key pieces, and for the full corpus of twenty-four

preludes. It can be seen from the tables that the most common chords

are the major and minor triads (interval profile {4, 3} and {3, 4} respec-

tively), and as might be expected, major chords dominate in the major

key pieces, and minor chords prevail in the minor. The most common

sevenths are the 7th, (often referred to as the dominant 7th), with the

interval profile of {4, 3, 3}, followed by the diminished 7th, interval profile

of {3, 3, 3}, and the minor 7th, interval profile of {3, 4, 3}. The most

common extended chord type is the 7b9, or dominant minor 9th, for both

major and minor key pieces. The distribution table, Table 5.5, evidences

the selective and limited usage of extended dissonance in the harmonic
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language of the corpus. Interestingly, it also appears to show that a sin-

gular type of extended dissonance is characteristic of individual preludes,

for example the minor 9th in Prelude 4.

Table 5.6 shows the distribution of root pitch scale degrees, disregard-

ing inversion, and expressed relative to the main key to enable a direct

comparison of the data. Commencing at pitch class 0 and progressing

chromatically up the scale, 0 therefore symbolises the scale degree of the

tonic, 1 the semitone above that, 2 the supertonic, 5 the subdominant,

and 7 the dominant. In the major key pieces, chords built on the tonic,

dominant and supertonic scale degrees are most prominent, whereas in

the minor key pieces, chords built on the tonic, dominant, subdominant,

and then supertonic, are the most conspicuous.
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Table 5.4: Distributions of triads, sixths and sevenths in hand annotated data as a percentage of sequence length per prelude.

Prelude maj min dim aug min6 maj6 7 dim7 maj7 min7 halfdim7 minmaj7 augmaj7

Major Keys
1 31.43 8.57 12.14 0.00 2.86 0.00 25.00 2.86 8.57 8.57 0.00 0.00 0.00
3 43.27 21.15 3.85 0.00 0.00 0.00 10.58 10.58 2.88 5.77 0.00 0.00 0.00
5 29.29 18.57 5.71 0.00 0.00 0.00 26.43 11.43 0.71 6.43 0.00 0.00 0.00
7 41.43 20.71 6.79 0.36 0.00 0.36 16.07 3.21 3.57 5.36 0.36 0.00 0.00
9 47.92 23.96 5.21 1.04 0.00 0.00 19.79 2.08 1.04 4.17 0.00 0.00 0.00
11 23.61 13.89 15.28 0.00 0.00 0.00 30.56 1.39 2.78 9.72 0.00 0.00 0.00
13 39.17 30.00 11.67 0.00 0.00 0.00 11.67 4.17 0.00 1.67 0.83 0.00 0.00
15 48.03 22.37 10.53 0.66 0.00 0.00 6.58 1.97 0.66 3.29 1.97 0.00 0.00
17 51.52 18.18 6.82 0.00 0.00 0.00 10.61 0.00 0.76 9.85 0.76 0.00 0.00
19 32.29 28.13 6.25 0.00 0.00 0.00 16.67 0.00 2.08 11.46 2.08 0.00 0.00
21 35.00 16.25 2.50 0.00 0.00 0.00 33.75 3.75 3.75 2.50 0.00 0.00 0.00
23 27.63 15.79 7.89 0.00 0.00 0.00 26.32 2.63 3.95 7.89 1.32 1.32 0.00
Average (Major) 37.55 19.80 7.89 0.17 0.24 0.03 19.50 3.67 2.56 6.39 0.61 0.11 0.00
Minor Keys
2 22.37 36.18 16.45 0.00 0.00 0.00 11.18 7.89 2.63 5.26 0.00 0.00 0.00
4 20.51 35.90 2.56 0.00 0.00 1.28 21.79 12.82 1.28 2.56 1.28 0.00 0.00
6 21.15 30.77 13.46 0.00 0.00 0.00 23.08 17.31 0.96 0.96 0.00 0.00 0.00
8 20.83 35.83 5.00 0.00 0.00 0.00 12.50 19.17 0.00 1.67 1.67 0.00 0.00
10 10.37 38.41 18.29 0.00 0.00 0.00 18.90 9.15 2.44 0.61 1.22 0.00 0.00
12 30.68 27.27 7.95 0.00 0.00 0.00 10.23 11.36 2.27 5.68 1.14 0.00 0.00
14 16.67 50.00 16.67 1.04 0.00 0.00 7.29 4.17 0.00 3.13 2.08 0.00 0.00
16 18.42 42.11 6.58 0.00 0.00 0.00 15.79 6.58 1.32 2.63 3.95 0.00 0.00
18 18.97 29.31 1.72 0.00 0.00 0.00 27.59 13.79 1.72 1.72 6.90 0.00 0.00
20 25.00 35.71 8.33 0.00 0.00 0.00 11.90 4.76 0.00 2.38 11.90 0.00 0.00
22 12.50 28.13 4.17 1.04 0.00 0.00 21.88 7.29 1.04 8.33 6.25 0.00 1.04
24 29.79 43.09 3.19 0.00 0.00 0.00 12.23 2.13 0.00 4.26 1.06 0.00 0.00
Average (Minor) 20.61 36.06 8.70 0.17 0.00 0.11 16.20 9.70 1.14 3.27 3.12 0.00 0.09
Average (All) 29.08 27.93 8.29 0.17 0.12 0.07 17.85 6.69 1.85 4.83 1.87 0.05 0.04
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Table 5.5: Distributions of dissonant chord types in hand annotated data as a percentage of sequence length per prelude and
totals.

Prelude 9 maj9 min9 7b9 min7b9 dimb7b9 11 b11 b3b11 maj11 min11 13 maj13

Major Keys
1 0.00 0.00 0.00 0.00 0.00 0.00 6.43 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.71 0.71 0.00 0.00 1.43 0.00 0.00 0.00 0.00 0.00 0.00
7 0.36 0.00 1.79 0.36 0.00 0.00 2.5 0.36 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 1.39 0.00 0.00 1.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 1.32 0.66 0.00 1.32 0.00 0.00 0.00 0.00 0.00 1.97 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 3.03 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 1.04 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 5 0.00 0.00 1.25 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 3.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32
Average (Major) 0.26 0.06 0.37 1.13 0.25 0.00 1.12 0.03 0.00 0.16 0.00 0.00 0.11
Minor Keys
2 0.00 0.00 0.00 3.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 5.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.83 0.00 0.00 1.67 0.00 0.83 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 3.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 1.32 0.00 1.32 0.00 0.00 0.00 1.32 0.00 0.00 0.00 0.00 0.00 0.00
18 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 1.19 0.00 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 2.08 1.04 0.00 0.00 1.04 0.00 0.00 0.00 3.13 1.04 0.00
24 3.19 0.00 0.53 0.00 0.00 0.00 2.66 0.00 0.00 0.00 0.00 0.00 0.00
Average (Minor) 0.52 0.00 0.76 1.07 0.00 0.10 0.56 0.00 0.07 0.00 0.26 0.09 0.00
Average (All) 0.06 0.00 0.09 0.18 0.02 0.01 0.14 0.00 0.01 0.01 0.02 0.01 0.01



C
H

A
P

T
E

R
5
.

G
R

O
U

N
D

T
R

U
T

H
D

A
T
A

S
E

T
109

Table 5.6: Distribution of root pitch scale degrees in hand annotated chords relative to the main key and represented as semitones
from the tonic.

Prelude 0 1 2 3 4 5 6 7 8 9 10 11

Major Keys
1 28.57 0.00 14.29 2.86 0.00 17.14 2.86 31.43 0.00 5.71 0.00 3.57
3 27.88 1.92 14.42 0.00 5.77 5.77 0.96 24.04 2.88 8.65 2.88 4.81
5 22.14 1.43 15.71 1.43 8.57 9.29 7.14 18.57 1.43 12.86 0.71 2.14
7 21.43 1.07 16.43 0.36 10.00 11.79 1.79 17.50 1.43 13.57 2.50 5.71
9 22.92 0.00 17.71 2.08 10.42 10.42 1.04 22.92 1.04 10.42 3.13 3.13
11 16.67 2.78 16.67 1.39 6.94 12.50 0.00 13.89 4.17 16.67 1.39 6.94
13 20.83 0.83 13.33 0.00 9.17 2.50 5.00 18.33 2.50 15.00 1.67 10.83
15 19.74 3.29 18.42 0.00 4.61 7.24 4.61 25.00 3.95 7.89 0.66 5.92
17 24.24 0.00 15.15 0.00 5.30 6.82 3.03 25.76 0.00 12.12 0.00 9.85
19 18.75 0.00 16.67 0.00 10.42 7.29 4.17 19.79 0.00 14.58 0.00 8.33
21 27.50 1.25 16.25 0.00 5.00 3.75 2.50 28.75 0.00 12.50 0.00 6.25
23 19.74 0.00 17.11 0.00 7.89 9.21 1.32 22.37 3.95 15.79 0.00 2.63
Average (Major) 22.53 1.05 16.01 0.68 7.01 8.64 2.87 22.36 1.78 12.15 1.08 5.84
Minor Keys
2 29.61 0.00 12.50 5.26 1.32 15.79 5.26 16.45 5.26 0.66 3.95 9.87
4 30.77 2.56 14.10 5.13 0.00 8.97 3.85 28.21 1.28 1.28 5.13 3.85
6 25.00 0.96 5.77 6.73 1.92 20.19 5.77 11.54 7.69 2.88 8.65 10.58
8 28.33 5.00 15.83 2.50 5.00 14.17 0.83 16.67 2.50 1.67 0.00 7.50
10 22.56 0.61 7.32 4.88 8.54 20.73 1.83 17.68 4.27 3.05 3.66 6.71
12 29.55 1.14 13.64 5.68 0.00 6.82 5.68 20.45 3.41 1.14 3.41 9.09
14 27.08 0.00 13.54 5.21 1.04 12.50 3.13 19.79 3.13 5.21 5.21 5.21
16 32.89 2.63 6.58 10.53 1.32 19.74 2.63 13.16 1.32 1.32 5.26 3.95
18 24.14 1.72 13.79 12.07 3.45 8.62 0.00 10.34 6.90 0.00 13.79 8.62
20 23.81 0.00 15.48 10.71 2.38 10.71 2.38 13.10 5.95 5.95 10.71 1.19
22 31.25 0.00 11.46 6.25 1.04 12.50 1.04 18.75 5.21 2.08 3.13 7.29
24 25.53 0.00 13.83 7.98 1.60 16.49 0.00 20.74 5.32 1.60 7.98 1.06
Average (Minor) 27.54 1.22 11.99 6.91 2.30 13.94 2.70 17.24 4.35 2.24 5.91 6.24
Average (All) 25.04 1.13 14.00 3.79 4.65 11.29 2.78 19.80 3.07 7.19 3.49 6.04



Chapter 6

Chords In Ornamental Music

In chapter 4 hidden Markov models designed to identify key and moments

of key transition using chord sequences obtained from symbolic data and

transcribed audio were described (Mearns et al. [2011]). This work, along

with other statistical approaches to harmony (e.g.Rohrmeier and Cross

[2008]), generates chord symbols for the Bach chorales, which can be de-

rived with some accuracy due to the homophonic four voiced texture of

the music. Alternative approaches work around the issue of inducing ac-

curate chord data by basing their research on hand-annotated collections

(e.g. Mauch et al. [2007], Anglade and Dixon [2008]), or online databases

of manually created chord symbols (McVicar et al. [2011]).

To facilitate automatic harmonic analysis of a broad range of digital

corpuses, a robust method of acquiring the underlying chords from orna-

mental polyphonic music is necessary. Accessing the chordal structures

from rapidly moving instrumental textures is considerably more difficult

than obtaining chord labels from homophonic works due to the presence

of ‘non-chord tones’ - tones which are present in the musical surface but

which do not form a part of the underlying harmony. For example, con-

sider the excerpt from Bach’s Prelude No. 7 shown in Figure 6.1. MIDI

data for the first bar is shown in Table 6.1. From a systematic perspective,

processing such information to deduce the implied harmony is complex on

many levels. In Beat 1, the elaborated chord is an E♭ Major triad {E♭, G,

B♭}. The non-chord tone in this group is the semiquaver A♭, situated in

the treble clef, (alto voice), and passed over melodically in a progression

which moves from the third (G) to the fifth (B♭) of the E♭ Major triad.

The A♭ is metrically weak, although less so than the chord tones on either
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Figure 6.1: The opening of Prelude 7 of the Well Tempered Clavier, Book One,
by J. S. Bach.

side of it. In Beat 2, the underlying chord is the same, and the non-chord

notes are the A♭ and F. In both cases, to classify the implied chord the

non-chord tones need to be discarded. In the second beat they occupy

positions of greater metrical accentuation than the chord tones.

In Beat 3 the dissonant interval of a 7th is introduced in the form of

an upper voice D♭ against an E♭ below. The dissonant interval is strongly

emphasized in the musical surface by metrical position, (it commences on

the strong beat on the second half of the bar), duration (two beats), and

register (it takes place between the two highest pitches in the bar). The

non-chord tone in this particular beat is the tenor voice A♭, in a figuration

which echoes the opening semiquaver pattern of the alto.

From the previous example it can be seen that metrical position and

duration are not unequivocal indicators of structurally important tones.

Master composers rarely adhere consistently to singular rules of articula-

tion; there are a huge variety of ways in which chords may be figurated in

keyboard music. The ability to elaborate chords with variety and spon-

taneity was an indispensable skill of any working musician. (Friederich Er-

hardt Niedt’s ‘Musicalische Handleitung’, published approximately 1710,

and written purposely to improve variation techniques, has been men-

tioned earlier in chapter 5). In The Well Tempered Clavier there are

many instances where chord tones are not presented at strong metrical
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Table 6.1: MIDI and standard representation of note pitches of the opening of
Prelude 7 of the Well Tempered Clavier, Book One, by J. S. Bach.

Segment Index MIDI Pitch Musical Notes

Beat 1
0 51 E♭

1 51, 67 E♭,G
2 51, 68 E♭,A♭

3 51, 70 E♭,B♭

Beat 2
4 51, 68 E♭,A♭

5 51, 67 E♭,G
6 51, 65 E♭,F
7 51, 63 E♭,E♭

Beat 3
8 51, 63, 73 E♭,E♭,D♭

9 51, 55, 63, 73 E♭,G,E♭,D♭

10 51, 56, 63, 73 E♭,A♭,E♭,D♭

11 51, 58, 63, 73 E♭,B♭,E♭,D♭

Beat 4
12 51, 56, 63, 73 E♭,A♭,E♭,D♭

13 51, 55, 63, 73 E♭,G,E♭,D♭

14 51, 53, 63, 73 E♭,F,E♭,D♭

15 51, 51, 63, 73 E♭,E♭,E♭,D♭

positions, particularly at moments when the chord tones are subservient

to the voice-leading. A further area of complexity mentioned in reference

to the creation of the hand-annotated data, is the antithesis between the

humanistic and interpretive nature of musicology which allows multiple

possibilities, and the rigorous systematic procedures of computer science

which often requires a single result. In addition, for a chord algorithm

to have general applicability, it must be capable of evaluating the relative

structural emphasis of notes within a group of notes, and using this infor-

mation to classify a broad range of chords including extended dissonances.
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Table 6.2: Types of Inessential Tones [Hindemith, 1942].

Shorthand Brief Description

W Changing Tone
D Passing Tone
V Suspension
U Unprepared Suspension
N- Neighbour tone left by leap
-N Neighbour tone approached by leap
A Anticipation
F1 Unaccented Free Tone
F2 Accented Free Tone

6.1 The Problem of Chord and Non-Chord Tone Clas-

sification

It is often doubtful whether such cases involve real returning

tones or broken chord formations [Hindemith, 1942] page 165

Hindemith [1942] devotes a section of his book chapter entitled Har-

mony to discussing the identification of ‘non-chord’ or ‘inessential’ tones.

Hindemith’s summarisation of the nine categories of inessential tones (re-

produced in Table 6.2), along with his description of the different tone

types and the influencing factors of the contexts in which they may appear,

may give the impression that there are discrete and directly implementable

rules enabling the identification of such tone types in complex musical tex-

tures. In practice, the opposite is the case. There are no absolute rules

by which to define non-chord tones, and the rules that are suggested in

music theoretic texts tend to take the form of guidance for the music

analyst. Such rules are therefore imprecise, contextual and inherently cir-

cular. Hindemith, for example, states that in order to decide whether a

tone is ‘harmonic’ or ‘non-harmonic’, the analyst must ascertain, based

on a range of factors such as texture, harmony and metrical positioning,

whether the tone produces an ‘independent chord’ or conversely, whether

the tone is extraneous to the harmony (Hindemith [1942], page 164).

The opening to the second of Bach’s French Suites (written between
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Figure 6.2: Suite II of Bach’s French Suites, Opening Bar.

1722-1725), shown in Figure 6.2, provides a useful illustration of this issue

of circularity. At the simplest level, a passing note, denoted by a ‘P’ in

the diagram, is a note through which a melodic sequences passes from one

note to another by step in a single direction, where a step is the interval of

a semitone or tone. As may be seen from the illustration, more than one

passing note may occur in succession in the linear sequence of tones (e.g.

the adjacent A♮ and B♮ demisemiquavers in the upper voice of the opening

figuration), and other types of inessential notes may occur simultaneously

in other musical voices (e.g. the G, B♮, and D, on the off beat of the

second crotchet beat of the bar). It can be seen from Figure 6.2, that a

purely linear definition of a passing note is inadequate for the accurate

identification of passing notes. Passing notes are only understood to be

passing notes when they pass between chord tones, rather than non-chord

tones. It is the harmonic implication of tone combinations that informs

us that the adjacent A♮ and B♮ demisemiquavers are both passing notes,

and inessential to the underlying harmony. The C to which they move

could be defined as a passing note from a purely linear perspective, but

we know that it is not, because it forms the root of the underlying C minor

chord. The aforementioned G, B♮, and D group are a slight anomaly: at

the quaver beat level these notes form the diatonic chord of G Major

in the key of C Minor. In the example shown in Figure 6.2, all of the

notes marked as passing notes occur at weaker metrical positions than the

component chord tones. In contrast Figure 6.3 shows an excerpt from a

sonata by Beethoven (written in 1796), featuring a chromatic decorative

sequence, a device common amongst works of Beethoven’s era (Classical
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Figure 6.3: Beethoven’s Sonata in A, Opus 2 No. 2, Rondo, Bars 89-90.

/ Early Romantic). In this example the chord tones in the sequence are

picked out by matching their pitch to those contained in the sustained left

hand chord, rather than by their metrical position or linear arrangement.

The keyboard compositions of the Baroque historical period feature fewer

such clear chordal signals - all of the musical voices are continually moving.

Nonetheless, metrical emphasis of notes, particularly when combined with

sustained duration, is anticipated to be an indicator of chord membership

in particular situations (see section 6.2.5 below).

The lack of precision surrounding non-chord tone definition and identi-

fication in complex music presents a fascinating and difficult problem with

respect to a computational implementation. The process involves the in-

terpretation, translation and representation of fluid, inter-dependent, and

inexact music theoretic constructs, into the rigorous form required for

a computer program. The assumptions, translations and formal com-

putational representations used in this research are now detailed in the

following sections.

6.2 Guiding Principles from Music Theory for Tone

Classification and Chord Recognition

The music theoretic principles of tone and tone feature recognition that

commonly direct the judgements of music analysts and that have guided

the computational implementation covered later in this chapter are de-

scribed in this section. Hindemith’s non-chord tone definitions are reduced

for simplicity to two primary types of non-chord tone: passing notes, and

neighbour notes (referred to as ‘changing tones’ by Hindemith), outlined
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in subsections 6.2.1 and 6.2.2. Subsection 6.2.3 outlines the principle used

to identify pedal notes. Subsection 6.2.4 discusses the principle of con-

tour and its potential to express harmonic structure. Finally, the metrical

theory of [Lerdahl and Jackendoff, 1983] which underpins the method of

classifying the metrical emphasis of notes in this research, is detailed in

subsection 6.2.5. These principles still demonstrate the issue of circularity

mentioned earlier in this chapter. The computational approach to this

problem and a more formal description of the classification methods are

detailed in section 6.3.3.

6.2.1 Passing Notes

A tone is defined as a passing note if it satisfies all of the following condi-

tions:

• Preceded melodically by step within a single musical voice

• Succeeded melodically by step within a single musical voice

• Is part of a melodic progression travelling in a single direction either

up or down

• Does not form part of the underlying harmony

N.B. The definition implemented here does not recognize the non-chord

tones denoted in Table 6.2 as N- and -N, i.e. passing notes approached or

quitted by leap. Such notes are considered to be more difficult to spot

and have been omitted for the sake of managing the level of complexity

involved in the task.

6.2.2 Neighbour Notes

A tone is defined as a neighbour note if it demonstrates all of the following:

• Preceded melodically by step within a single musical voice

• Succeeded melodically within a single musical voice by the same note

that preceded it
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• Metrically weak

• Forms part of a group that does not cross a barline

• Is not adjacent to a passing note

• Does not form part of the underlying harmony

6.2.3 Pedal Notes

A tone is classed as a pedal note if it has:

• A total duration which is greater than the duration of a single bar

Pedal notes in the form of octave oscillations or repeated notes are not

currently accounted for.

6.2.4 Contour

Music theorists, e.g. [Morris, 1998], have emphasised the concept of mu-

sical contour in twentieth century music, asserting that in the absence of

tonal melody, contour is a prime structural feature in composition. It is

possible that musical contour plays a similarly important structural role in

earlier music, and that melodic peaks and troughs are used to accentuate

notes. The theoretic principle of contour is therefore tested as a possible

indicator of notes of structural prominence in the texture.

A tone is defined as occupying a contour peak (CP) or a contour trough

(CT) if it is:

• Preceded melodically within a single musical voice by two steps or

leaps either up (moving towards a CP) or down (moving towards a

CT)

• Succeeded melodically within a single musical voice by two steps or

leaps either up or down, but moving in the opposite direction to the

preceding two steps / leaps.

• If the first note in a score is succeeded by two steps or leaps of the

same direction it is marked as a CP or CT.
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6.2.5 Metrical Structure

Lerdahl and Jackendoff [1983] explain that metrical emphasis is a function

of the human perception of beat, rather than musical dynamic or patterns

of articulation in the musical surface. (Please refer to chapter 2 for a more

detailed explanation of the concepts of metre, beat and their relationship

to simple and compound time signatures.) A metrical hierarchy is de-

scribed, consisting of two or more levels of beats. The authors state that

for a beat to be felt to be strong, it must ‘also be a beat at the next larger

level’. Figure 6.4 portrays an alternative representation of the metrical

relations they describe, in which stronger beats (Lerdahl and Jackendoff’s

‘larger level’) at higher positions in the diagram, and weaker beats are

further down. The beats are represented diagrammatically using dots to

symbolise equally spaced moments in time. Accented beats coincide with

beats at the higher level above, a representation we consider to be more

immediately intuitive than that of [Lerdahl and Jackendoff, 1983]. In 4
4

meter, the beats on the first and third crotchet beats of the bar are felt

to be stronger than the second and fourth beats because they are beats at

the level above. Similarly the first beat is felt to be stronger than the third

beat because it is a beat at the next level up. Figure 6.4 also shows the

metrical accentuation levels of the simple triple time signature of 4
3 and

the compound duple time signature of 8
6. In each case the strong beats

are shown for each level in relation to the level below.

6.2.6 Chord Structure

The circularity of the harmony and non-chord tone problem is evident

from the discussion in the preceding sections. In order to discover the

underlying harmony in ornamental music, we wish to exclude, or at least

reduce the emphasis of, non-chord tones from the chord recognition pro-

cess. Moreover, to identify non-chord tones, we need to know that they

are not part of the underlying harmony. Metrical information, surface em-

phasis, and a tone’s linear positioning within a musical voice may assist

in the identification of non-chord tones. In addition to this, the vertical

intervallic relationship of a tone with other simultaneously occurring tones
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Figure 6.4: Expression of beat strength in a metrical hierarchy in which accented
beats are also a beat at the level above.

must be taken into account, to ascertain whether a tone could be part of

a chordal arrangement, even if it is not rendered prominent in the musical

surface by dynamic, metrical, durational or melodic features.

The problem of chord definition has been discussed earlier in chapter

5. The chords we seek to discover are tertian arrangements; i.e. groups

of tones that it is possible to organise into a series of successive thirds.

The notes in a group are not necessarily presented so that they can easily

be organised into a series of thirds moving upwards from the bass note.

By re-arrangement however, chord notes may be formulated into a tertian

group. The most common such arrangements are the major and minor

triads (see the statistics of chord hand annotations in section Figure 5.10),

followed by the 7th, and the diminished 7th. Due to the fact that chord
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tones may be omitted from any chords, (a diatonic triad may be indicated

by a single tone), but most particularly from extended chords such as the

7th, 9th, 11th and 13th, to meet the requirements of harmony notated

for fewer conceptual voices, (for example four or three voice harmony),

the component intervals of a chord are not always reducible to a series of

successive thirds. They may also contain intervals representing an interval

skip, or compound third (e.g. a sixth). Figure 2.6 gives an example of some

commonly omitted tones in the arrangement of extended chords.

The principle used to identify a chordal arrangement from a vertical

perspective is therefore to prefer groups of tones which can be organised

into tertian or compound-tertian intervallic relationships from a submitted

mixture of pitches. The full list of defined chords, interval profiles, and

example notes are shown in Table 5.2.

6.3 Digital Score Processing and Note Feature Clas-

sification

This section of the thesis describes stages of digital score processing that

form an integral part of automatic harmony analysis.

Section 6.3.1 describes the temporal segmentation of the music data.

Section 6.3.2 describes the voicing method used to segment the data into

linear musical streams. Section 6.3.3 describes the method of identifying

passing notes in the voiced note data. Section 6.3.4 describes the identifi-

cation of neighbour notes, contour notes, and pedal notes, in accordance

with the principles listed in Section 6.2. The identified features and struc-

tures are then used to measure the notes’ emphasis and importance.

6.3.1 Segmentation

The twenty-four preludes, symbolised in the form of MIDI data, are au-

tomatically segmented horizontally into linear musical voices as described

earlier in this chapter (section 6.3.2). The voiced music data is divided

into time segments which equate to a single musical beat in accordance
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Figure 6.5: Segmentation and unique pitch sets for the opening bar of Preludes
No. 4, No. 14 and No. 18.

with the time signature of the score. (Please refer to section 2.4 regard-

ing metre and beat, and the discussion of harmonic rhythm in section

5.5.1. ) A prelude in 4
4 is therefore partitioned into four crotchet duration

time segments per bar, a prelude with the signature 4
3 is separated into

3 crotchet beat group segments per bar, and so on. The segmentation

of three of the preludes is illustrated in Figure 6.5. Two of the preludes

shown have compound time signatures; the prelude in C♯ Minor is in 4
6,

and the prelude in G♯ Minor is in 8
6. The F♯ Minor prelude has a sim-

ple quadruple time signature. Boxes drawn around the groups of notes
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Figure 6.6: Prelude 5 in D Major, BWV 850, Bar 1, Riemann Edition.

in the score demarcate the beat segmentation; the unique set of pitches

contained within each beat segment, (n.b. not showing pitch repetition),

are listed within braces below the box.

Every individual musical note in a score is represented by a correspond-

ing individual code object. Each beat group segment is allocated a list of

object references for every note present during any part of that time seg-

ment. With reference to Figure 6.5, the first beat segment of the Prelude

in C♯ Minor will contain seven note references: a dotted semibreve bass

C♯, and six successive quavers in the treble clef: G♯, F♯, E, D♯, E and

C♯. The second segment also contains references to seven note objects,

including precisely the same bass C♯ code object.

6.3.2 Voicing Polyphonic Music

The concept of independent musical voicing in polyphonic music, the dif-

ferences of opinion as to what constitutes a musical voice, and the in-

tractability of the problem of automatically assigning accurate voicing

to polyphonic music data have been discussed earlier in this thesis (see

chapters 2 and 3 respectively). Considering the variations of voicing as an-

notated in different musical manuscripts (compare Figure 6.6 showing Rie-

mann’s scoring of Prelude 2, BWV 850, with the ABRSM edition in Figure

6.7), it can be argued that the problem is not fully solvable. Nonetheless,

as may be ascertained from section 6.1, music data that has been voiced

to a reasonable degree of accuracy when compared to an edition of a score

is a prerequisite to the problem of non-chord tone identification.

The voicing method described in this chapter is loosely inspired by the
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Figure 6.7: Prelude 5 in D Major, BWV 850, Bar 1, ABRSM Edition.

Figure 6.8: Vertical notegroup slices, Prelude 7 in E♭ Major, BWV 852, Bar 1.

contig mapping approach devised by Chew and Wu [2005] (please refer to

Section 3.2).

The aim of the voicing method implemented here is to produce, as

nearly as possible, a voiced version of an edition of a score, rather than

to generate a voiced representation that is most closely aligned to the

perception of a listener. The method initially segments the music data

into a series of vertical note groups, (henceforth VNG), in accordance

with each new note or rest onset. (N.B. ‘empty’ notegroups containing

only rest values can be generated.) The vertical segmentation of the first

bar of Prelude 7 in E♭ Major (BWV 852) is visualised in Figure 6.8.

Rectangular boxes drawn around vertically coinciding notes indicate the

vertical notegroups. Each note in a score is symbolised computationally

by a single analogous note object. The bass E♭ with which Prelude 7

commences, sustained for two and a half bars, is represented by a single

code object, and this object is referenced by the first forty eight VNG’s

each of which has a durational value of a semiquaver.

The method adopts the ideas of seeding maximal vertical note segments
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Table 6.3: Summary of maximally voiced segments in the corpus: the total
number of maximally voiced segments (MV ), the maximum number of con-
current notes occurring in the work, and whether a maximally voiced segment
features as the final chord.

BWV Prelude Key No. of Max No. of Final
Key MV Voices Chord

846 1 C Maj 1 5 Y
847 2 C Min 11 5 N
848 3 C♯ Maj 2 7 N
849 4 C♯ Min 1 6 N
850 5 D Maj 1 10 N
851 6 D Min 1 9 N
852 7 E♭ Maj 536 4 Y
853 8 E♭ Min 2 8 N
854 9 E Maj 17 4 Y
855 10 E Min 2 5 Y
856 11 F Maj 27 3 N
857 12 F Min 3 5 Y
858 13 F♯ Maj 347 2 Y
859 14 F♯ Min 15 4 Y
860 15 G Maj 1 4 Y
861 16 G Min 52 4 Y
862 17 A♭ Maj 1 5 N
863 18 G♯ Min 6 4 Y
864 19 A Maj 263 3 Y
865 20 A Min 5 5 Y
866 21 B♭ Maj 9 8 N
867 22 B♭ Min 1 9 N
868 23 B Maj 5 5 Y
869 24 B Min 2 4 Y

first and preferring voice connections with the closest pitch proximity,

but departs in some significant aspects from Chew and Wu’s method.

Given that scores do in practice feature voice-crossing, voice-crossing is

not penalised and it is possible for voice crossing to take place in this

method. In addition, the maximum number of voices and voicing of large

chords are interpreted differently. In contrast to Chew and Wu’s method

all notes in the score are voiced, irrespective of their contextual situation,

be it homophonic or polyphonic, within a sparse texture or part of a large
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Figure 6.9: Mixed homophonic and elaborated texture, Prelude 21 in B♭ Major,
BWV 866, Bars 11-12.

chord. Table 6.3 provides statistics about the vertical coincidence of notes

in the test corpus. Out of the 24 preludes, 14 preludes feature a maximally

voiced VNG as their final chord.

Figure 6.9, for example, shows the variegated texture of Prelude 21

(BWV 866), which alternates between dense homophonic chords and sin-

gle lines of rapid demisemiquaver movement. How should these large

chords be voiced? As a single voice of many notes? As the coincidence of

many voices each only containing one note? The chords could be divided

up into two or four voices, in accordance with predefined ranges represent-

ing soprano, alto, tenor and bass. But the demarcating such boundaries

is problematic in itself. The chords and the rapid demisemiquaver runs

evidence the importance of register on musical voicing, particularly with

respect to scoring music. As can be understood by viewing Figure 6.9,

by placing the most emphasis on voice connections of the shortest pitch

distance, in the absence of concurrent pitches, a run of single successive

notes such as the one commencing in the upper part of the treble clef in

bar 11 in the figure, and concluding in the lower ranges of the bass clef at

the end of bar 12, will be allocated the same voice irrespective of range,

a result that could only be altered by explicitly accounting for registral

position in the method.

The decision to allocate a voice value to every note in a score with

no exclusions results in more voices than one might intuitively expect on

looking at a score. Huron states a preference for a maximum of three

voices based on perceptual experimental results [Huron, 2001], but the
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Figure 6.10: Voice Seeding Procedure.

extent to which composers considered the importance of the ability of lis-

teners to accurately perceive formal contrapuntal processes can only be

surmised. Composers, including J. S. Bach, recognise no such limitations

on the maximum number of concurrent voices in a musical work, compos-

ing fugues of sometimes up to eight voices. The issue is returned to later

on in this section, when a thresholding method to arrive at an optimum

voice range is discussed.

An example of the overall voicing procedure is visually expressed in

Figure 6.10. All maximally voiced segments (referred to as MV ) are ini-

tially voiced in pitch height order in accordance with MIDI values (please

see the MV annotated in the diagram). Maximal vertical slices contain-

ing duplicate pitches are not treated as maximal verticals but are left

unseeded at this stage. Commencing with the first MV, the preceding

VNGs are seeded using the method described below, by iterating back

through the list in [X, Y ] pairs, where X is seeded from Y, and where the

first Y group is the MV and X is the notegroup preceding it in the list.

The seeding process is indicated by arrows at the top of the diagram. The

reverse iteration results in the majority of seedings taking place at bound-

aries where the number of voices is increasing, as per the results reported

earlier Ishigaki et al. [2011]. (Prelude 1, for example, is voiced entirely

in a single reverse sequence from the final 5 note chord.) In Figure 6.10

VNG 10 is the first MV to be reached, and this group seeds the preceding

group, group 9. Group 9 voicing is then used to seed group 8, and so on.
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Figure 6.11: Musical example of X, Y notegroups, MIDI [48, 60, 69] and [53,
57, 65, 73].

The process continues in this way unless a ‘reversal’ situation is encoun-

tered, as demonstrated in the diagram between VNG 4 and VNG 3. By

VNG 4, the musical texture has reduced to a single voiced note which is

inadequate for the task of informing about the voicing of all four notes

of VNG 3. One possible solution to this is to allocate a voice to a single

note in VNG 3 according to the shortest distance from VNG 4 and then

order the remaining pitches in order of height and allocate voice numbers

omitting the taken voice value. This approach does not take into account

the registral positioning of VNG 3 and in practice produces unusual levels

of voice crossing and voicing values that do not tally with the score. An

alternative approach, which improves the accuracy of results by taking

into account the registral range of the nearest MV, is to seed notegroups

positioned at reversals such as VNG 3 from the voice values of the near-

est MV, in this case VNG 11. Once all the notes in a VNG have been

voiced, the notegroup as a whole is marked as fully seeded. The seeding

process continues either until the start of the list or until another MV is

reached, at which point iteration continues from the next MV. Given that

MV notegroups do not necessarily occur in the final chord in the music,

when the final MV is reached, if it is not the last VNG in the score, the

seeding process proceeds forwards in precisely the same way until end of

the list.

To seed a pair of notegroups [X, Y ], all linear connections of pitches

between the two groups are calculated, and a total voice leading score is
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Table 6.4: All twenty-four possible combinations of X group [48, 60, 69] with
seeding group Y [53, 57, 65, 73].

Index Pair 1 Pair 2 Pair 3 Total Cost

1 48, 53 60, 57 69, 65 12
2 48, 53 60, 57 69, 73 12
3 48, 53 60, 65 69, 57 22
4 48, 53 60, 65 69, 73 14
5 48, 53 60, 73 69, 57 30
6 48, 53 60, 73 69, 65 22
7 48, 57 60, 53 69, 65 20
8 48, 57 60, 53 69, 73 20
9 48, 57 60, 65 69, 53 30
10 48, 57 60, 65 69, 73 18
11 48, 57 60, 73 69, 53 38
12 48, 57 60, 73 69, 65 26
13 48, 65 60, 53 69, 57 36
14 48, 65 60, 53 69, 73 28
15 48, 65 60, 57 69, 53 36
16 48, 65 60, 57 69, 73 24
17 48, 65 60, 73 69, 53 46
18 48, 65 60, 73 69, 57 42
19 48, 73 60, 53 69, 57 44
20 48, 73 60, 53 69, 65 36
21 48, 73 60, 57 69, 53 44
22 48, 73 60, 57 69, 65 32
23 48, 73 60, 65 69, 53 46
24 48, 73 60, 65 69, 57 42

arrived at by summing the absolute interval differences of each of the indi-

vidual note pairs for that specific combination of connections. The score

is used to find an overall shortest distance value of the two notegroups.

For example, given two successive notegroups, where X consists of MIDI

pitches [48, 60, 69] and Y has MIDI values [53, 57, 65, 73], 24 paired

permutations are possible, as listed in Table 6.4. As can be seen from the

musical scoring of the example in Figure 6.11, due to the position of the

A♮ of the upper portion of the group, which is equally spaced between the

F♮ and the C♯ of the Y notegroup, the first two sets of voice combinations

result in precisely the same series of interval differences of 5, 3 and 4 semi-

tones respectively, each with a total cost of 12. (Please refer to indexes 1
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Table 6.5: Unison VNG’s with a percentage of all VNG’s in the preludes.

Prelude Total VNG’s VNG’s with unisons % unisons

1 545 0 0.0
2 631 1 0.2
3 616 0 0.0
4 503 24 4.8
5 542 5 0.9
6 590 6 1.0
7 955 45 4.7
8 516 5 1.0
9 328 6 1.8
10 683 8 1.2
11 434 2 0.5
12 365 69 18.9
13 362 0 0.0
14 382 0 0.0
15 433 3 0.7
16 401 4 1.0
17 425 1 0.2
18 331 11 3.3
19 372 12 3.2
20 432 17 3.9
21 555 1 0.2
22 267 21 7.9
23 297 1 0.3
24 376 6 1.6

and 2 in the table.) In this event the algorithm selects the combination at

the highest position in the array, in this case the voice connections, [48,

53], [60, 57], [69, 65]. The voice connections [48, 53], [60, 57], [69, 73] are

equally plausible according to the scoring method of the algorithm.

A problem encountered during the seeding process concerns the seeding

of notegroups containing unisons (see Table 6.5). Unison pitch occurrences

usually feature notes of different durational values, however the seeding

process takes into account only pitch values. Consequently, during the

first pass through the VNG list, notegroups containing unisons where the

duplicates are both unseeded are passed over. The note in the unison

occurrence with a longer duration is seeded as the process continues to go
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through antecedent groups, when the other unison value ceases to sound.

To ensure that all remaining groups, including those containing unseeded

unisons, are seeded, a second pass through the list searches for unseeded

notes and assigns voice values in relation to the nearest MV followed by

assigning the earliest available voice value remaining given the voice values

already in use by the group, (i.e. if voices 1, 2, and 4 have been taken,

even if the logical pitch distance voice for the unseeded unison is 2, the

voice allocated to the note is 3 , as this voice value has not yet been

allocated). (This latter in the event of an MV containing duplicates.) As

an example, consider the excerpt shown in Figure 6.12 which shows bars

8 and 9 of Prelude 7, BWV 852. The final VNG of bar 8 contains three

notes on B♭, with two voices sounding the B♭ below middle C, MIDI pitch

58. The resulting MIDI group is [46, 58, 58]. The seeding MV is the

four note chord which strikes on the third beat of bar 9 with MIDI values

[46, 57, 72, 75], voiced 1-4 from bass to soprano respectively. During the

reverse seeding process, when the final slice of bar 8 containing the unison

is reached, the seeding algorithm is unable to choose between the duplicate

MIDI values of 58, and the group is therefore passed over without being

seeded. On the next iteration the preceding VNG of bar 8 is reached

(counting backwards) consisting of MIDI group [46, 58, 60]. This group

references precisely the same sustained B♭ note (MIDI 58) as the unison

group. It cannot be seeded from the unison group, therefore this group is

seeded from the MV (MIDI [46, 57, 72, 75]), and correctly allocates voice

2, the same voice as the A♮ with which bar 9 commences, to the sustained

B♭. The bass B♭ (MIDI 46) is already seeded as part of the MV, leaving

only one note unseeded in the final VNG of bar 8. During the second pass

of the list, the unseeded B♭ (MIDI 58) is seeded to voice 3 from the MV

i.e. the same voice as the middle C demisemiquaver commencing the run

in bar 9.

Voicing Evaluation Method and Results

To evaluate how the voicing method performs, the method is tested using a

collection of MIDI recordings of the preludes in which musical voicing has
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Figure 6.12: Unison pitch value example, Prelude 7 in E♭ Major, BWV 852, Bars 8-9.
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Table 6.6: Number of tracks compared to MV in MIDI files.

Prelude MIDI Tracks Size of MV

1 3 5
2 2 5
3 2 7
4 4 6
5 4 10
6 4 9
7 4 4
8 3 8
9 4 4
10 4 5
11 2 3
12 4 5
13 2 2
14 3 2
15 2 4
16 4 4
17 3 5
18 4 4
19 3 3
20 3 5
21 3 8
22 4 9
23 4 5
24 3 4

been organised into MIDI tracks (aforementioned Phillip Kirlin dataset,

section 5.8.2). The notes in the MIDI data are processed into musical

voices using the method described above, and the voicing results are then

compared to the corresponding track values in the original data. As can

be seen from Table 6.6 however, there is a disparity between the maximum

musical voicing value of each prelude and the number of channels allocated

for voicing in the MIDI files. The primary reason for this is due to the

previously described approach to large chords, in which each note in the

chord is assigned a voice. Out of the 24 preludes, 6 MIDI files show an

exact match between the number of MIDI channels and the number of

voices. To calculate the precision of the voicing results of the algorithm
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Table 6.7: Percentage of Matching Voice Connections to MIDI Ground Truth
in the 24 Preludes.

Prelude % Matching Voice Connections

1 99.7
2 99.4
3 99.8
4 97.6
5 98.8
6 99.2
7 98.9
8 96.1
9 99.4
10 99.0
11 100.0
12 97.5
13 100.0
14 98.7
15 98.6
16 99.1
17 98.7
18 99.4
19 98.6
20 97.1
21 90.5
22 97.5
23 99.3
24 99.6

% Average 98.4

the note to note linear connections are marked as either a match or a

mismatch in comparison to the track allocations in the files. For example,

if note x in the data is allocated voice 1, and note y is also allocated voice

1 by the algorithm, and note x is in MIDI track 4, and note y is also in

MIDI track 4, then the voice connection would be counted as a match (1).

In contrast, if note x in the data is allocated voice 1, and note y is also

allocated voice 1 by the algorithm, and note x is in MIDI track 4 but note

y is in MIDI track 2, then the connection is counted as a mismatch (0).

The precision results for the twenty-four preludes are shown in Table 6.7.

Some of the preludes, notably prelude 21, demonstrate lower accuracies
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Figure 6.13: Differences between music notational voicing compared to pitch
proximity voicing in Bar 3 of Prelude 21 in B♭ Major.

than the rest of the corpus. This is due to differences between the music

notational voicing of the ground truth MIDI data and the pitch proximity

voicing of the algorithm. Figure 6.13, which shows an excerpt from Prelude

21, gives an example of this contrasting approach - the three brackets in

the figure show where the ground truth MIDI data changes voice but

the voicing of the algorithm remains the same. The ground truth MIDI

voicing is indicated by stem direction and accurately reflects the music

notation in the score. The series of demisemiquavers occurring in the

second half of beat 3 and situated on the bass staff, (A, B♭, middle C,

B♭) changes voice in the ground truth data between the G and the A at

the start of this 4 note sequence, and again at the end of it, following the

B♭. In the algorithm’s voicing these notes remain in the same voice; there

is an absence of any other simultaneously sounding notes to inform the

algorithm otherwise. From the perspective of Huron’s perceptual rules,

for example pitch proximity (see section 3.2), the voicing of the algorithm

could be considered to be correct.

Thresholding to Obtain Optimal Voice Count

The voice texture of a musical work, as exemplified by the evaluation

method, does not necessarily equate to the maximum number of concur-

rent notes or densest chord. To have the potential to automatically map

the literal one note per voice values previously described across to a more

credible range of voices, a method for deducing the optimum number of

voices for a piece of music from the most dominant voice count is needed.
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For example, a piece may be predominantly two voiced whilst incorpo-

rating a reasonably marked three voice section, in which case the optimal

overall voice count would be three voices, despite three voices occupying

a proportionally smaller role.

In this section we investigate the use of threshold values to select the

optimal voicing. The experimentation does not address issues of com-

pound voicing or the perception of musical voices, (for example, Prelude

1 in C Major could be considered to be a single harmonic arpeggiated

stream rather than three independent voices/streams), but aims to dis-

cover how to identify the optimal musical voicing for a score. The method

works by calculating the distribution of the number of voices per notegroup

throughout each prelude. An upper and lower threshold percentage value

are then used to select the optimum voice count. If the most common voice

proportion is greater than the upper threshold percentage value, then this

is chosen as the voice count for the piece, but if the second most common

voice proportion is greater than the lower threshold and the second most

common voice count is higher than the most common voice count, then

this voice value is chosen. Maximal voicings of less presence than the

lower threshold percentage value are discounted from the voicing value,

(i.e. the presence of large chords dispersed in the musical texture does not

affect the optimal voice count unless they occupy a significant section of

the music). Table 6.8 shows the optimal musical voicing which results

from using an upper threshold of 75% and the lower threshold of 15%.

The results agree with the MIDI data in 15 out of 24 cases. For example

consider Prelude 5, predominantly a light two voiced texture throughout,

but featuring two very dense chords at the beginning of bars 33 and 34

(i.e. in the lead up to the final bar 35). The thresholding method iden-

tifies the two voiced texture of the prelude, despite the MV value of ten

simultaneous notes being used in one of these chords.

6.3.3 Passing Notes

Each musical voice is initially processed separately, and notes in linear

stepwise passing formations are labelled to indicate that the note may be
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Table 6.8: Results of Threshold Method to Select Optimal Musical Voice Count Per Prelude.

Prelude Distributions of Voices (Number of voices, % of VNG) MV Optimum Voicing MIDI Tracks

1 (5, 0.73), (3, 99.27) 5 3 3
2 (5, 1.32), (3, 6.58), (1, 13.16), (2, 78.95) 5 2 2
3 (6, 0.32), (7, 0.65), (1, 5.48), (2, 93.55) 7 2 2
4 (6, 0.45), (5, 9.42), (2, 15.7), (4, 25.56), (3, 48.88) 6 4 4
5 (10, 0.73), (8, 1.46), (1, 2.19), (6, 2.19), (4, 2.92), (3, 8.76), (2, 81.75) 10 2 4
6 (6, 0.97), (7, 0.97), (8, 0.97), (9, 0.97), (1, 5.83), (3, 14.56), (2, 75.73) 9 2 4
7 (1, 0.36), (2, 7.22), (3, 28.16), (4, 64.26) 4 4 4
8 (7, 1.69), (8, 1.69), (6, 2.54), (1, 5.93), (2, 9.32), (3, 10.17), (5, 22.88), (4, 45.76) 8 5 3
9 (1, 0.72), (4, 6.14), (2, 20.94), (3, 72.2) 4 3 4
10 (5, 1.23), (1, 1.84), (3, 9.82), (4, 31.9), (2, 55.21) 5 4 4
11 (1, 2.31), (3, 6.94), (2, 90.74) 3 2 2
12 (5, 2.35), (3, 24.71), (4, 72.94) 5 4 4
13 (1, 4.19), (2, 95.81) 2 2 2
14 (4, 8.42), (3, 22.11), (2, 69.47) 4 3 3
15 (4, 0.23), (1, 11.09), (2, 88.68) 4 2 2
16 (2, 9.21), (4, 18.42), (3, 72.37) 4 4 4
17 (5, 0.77), (1, 5.38), (4, 8.46), (3, 13.08), (2, 72.31) 5 2 3
18 (4, 2.37), (2, 14.2), (3, 83.43) 4 3 4
19 (2, 14.74), (3, 85.26) 3 3 3
20 (5, 1.64), (1, 4.51), (4, 12.3), (3, 20.08), (2, 61.48) 5 3 3
21 (3, 1.25), (6, 1.25), (7, 6.25), (8, 6.25), (1, 41.25), (2, 43.75) 8 2 3
22 (3, 1.05), (7, 1.05), (9, 1.05), (6, 2.11), (5, 27.37), (4, 67.37) 9 5 4
23 (2, 1.33), (5, 2.67), (4, 12.0), (3, 84.0) 5 3 4
24 (4, 1.08), (2, 3.23), (3, 95.7) 4 3 3
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a possible passing note, where M is the set of all possible passing notes.

Given a possible passing note, m ∈ M , the labels pred(m) and succ(m) re-

fer to the predecessor and successor respectively of each m within the voice.

It is possible for a series of passing notes to be situated adjacent to one

another. This initial stage adopts a purely linear perspective on passing

note formations, and does not utilise information about inter-voice inter-

vallic relations, duration or metrical position. A purely linear approach to

passing note assessment does not provide a measure of the extent to which

a possible passing note ‘does not form a part of the underlying harmony’,

as detailed in the musical principles in section 6.2.1 and is inadequate for

a corpus which features a great deal of consecutive stepwise movement.

As discussed at the beginning of this chapter, the potential of a note to

be a passing note must also be considered in the context of surrounding

notes. Elements of M therefore have their classification refined using a

scoring method that considers the chordal intervallic relationships of the

note m, and the notes either side of it in the linear formation (pred(m)

- m - succ(m)), in relation to the other pitches within the beat segment.

The aim of the method is to verify whether a note marked as a potential

passing note is harmonically essential or inessential in the context of the

beat segment.

To ascertain this, the number of intervals indicating a potential chordal

structure are counted for each of the three notes in the passing note for-

mation. Specifically, the chord intervals (modulo 12) of unison, major

or minor third, and perfect fifth, between each of the three notes in the

passing note formation and all of the other notes present in the segment,

are counted. Non-tertian intervals are not counted. Registral position is

accounted for; if m is a D, and there is an A situated above this note, then

the interval is classed as a perfect 5th, or 7 semitone interval. Conversely,

if m has an A below it, the interval is classed as Perfect 4th, or 5 semi-

tone interval, in relation to it. We recognise that allowing an interval in

either direction is potentially counterintuitive and could result in a fifth

being treated as a tonic, however the advantage is that it does not re-

quire identification of the tonic. We aim to improve upon the method and

test the results systematically against a ground truth in the future (please
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see chapter 7.) The result is a count of interval relationships for each of

the three notes, represented as a 12 position vector where each position

represents a semitone interval modulo 12. (Position 0 is a unison/octave,

position 3 is a minor third, position 4 is a major third and position 7 is a

perfect fifth.)

The interval score is used to improve the accuracy of the initial desig-

nation of m. In the event that pred(m) and succ(m) both have a greater

quantity of chordal intervals in relation to the surrounding pitches than

m, the scores are considered to evidence that the m note is harmonically

inessential in context. Alternatively, if m has more triadic intervals than

the notes either side of it, the evidence contests that m is harmonically

essential. The score is used to determine the passing tone classification

for each m ∈ M :

• If pred(m) and succ(m) both have higher scores than m, then m is

removed from M and added to P the set of passing notes.

• If pred(m) and succ(m) both have lower scores than m, then m is

removed from M.

• If either pred(m) or succ(m) has lower score whilst the other one

has a higher score than m, then the classification of m remains, to

indicate a possible passing note of less certainty.

For example, consider the first beat segment of Prelude 18, shown in

Figure 6.5. The beat is a compound beat containing 10 notes in total:

MIDI pitch values [68, 70, 71, 68, 70, 73, 59, 56, 63, 61], or musical notes

[G♯, A♯, B, G♯, A♯, C♯, B, G♯, D♯, C♯]. The overall harmony is a G♯ minor

triad. In the treble clef, the second semiquaver, A♯, is marked as a possible

passing note (m). The pitches of the notes on either side of this A♯ are

G♯ (pred(m)) and B (succ(m)). (The fifth semiquaver A♯ is not marked

as a possible passing note because it is left by leap.) A count of interval

relations between this A♯ (MIDI 70) and each one of the remaining notes

in the beat ([68, 71, 68, 70, 73, 59, 56, 63, 61]) is computed, as shown in

Table 6.9.

The resulting set of semitone intervals can be represented in an interval



CHAPTER 6. CHORDS IN ORNAMENTAL MUSIC 139

Table 6.9: Interval relations of m, A♯, MIDI pitch 70, from the first beat segment
of Prelude 18, (shown in Figure 6.5), to the other MIDI pitches in the segment:
[68, 71, 68, 70, 73, 59, 63, 61, 56].

Note MIDI Note MIDI Semitones
%12

A♯ 70 G♯ 68 2
A♯ 70 B 71 1
A♯ 70 G♯ 68 2
A♯ 70 A♯ 70 0
A♯ 70 C♯ 73 3
A♯ 70 B 59 11
A♯ 70 D♯ 63 7
A♯ 70 C♯ 61 9
A♯ 70 G♯ 56 (14) 2

Table 6.10: Vector representation of interval counts of G♯ - A♯ - B passing note
formation notes in relation to surrounding pitches in the first beat segment of
Prelude 18, Figure 6.5, along with the chordal interval score for each note.

Note Pitch MIDI Interval Vector Score
(Semitones)→ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

pred(m) G♯ 68 [2, 0, 2, 1, 0, 2, 0, 1, 0, 1, 0, 0] 4
m A♯ 70 [1, 1, 3, 1, 0, 0, 0, 1, 0, 1, 0, 1] 3
succ(m) B 71 [1, 2, 1, 3, 0, 0, 0, 0, 1, 0, 1, 0] 4

vector as shown in Table 6.10. This table shows the interval count for

all three of the notes in possible passing note formation (pred(m) - m -

succ(m)) surrounding the first A♯ in this particular example. The number

of chordal intervals present (unison, major or minor 3rd and perfect 5th)

are totalled to produce a chord score for each note. The notes either side

of the A♯ both result in higher scores, as shown in Table 6.10, consequently

this note is moved to the set P, indicating that this note is a passing note

and inessential to the surrounding harmony.

The C♯ in the alto voice on the third quaver beat of the first beat

segment in Prelude 18 is also added to M. The notes either side of the

alto C♯ are D♯ and due to the tie, B♮. This note is an interesting case
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Table 6.11: Interval count and chord score of passing note formations in the
opening bar of Prelude 18 (Figure 6.5.)

Note Pitch MIDI Interval Vector Score
(Semitones)→ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

pred(m) D♯ 63 [0, 0, 1, 0, 1, 2, 0, 3, 1, 0, 1, 0] 4
m C♯ 61 [1, 0, 2, 0, 0, 1, 0, 2, 0, 2, 1, 0] 3
succ(m) B♮ 59 [1, 0, 2, 1, 1, 0, 0, 0, 0, 2, 0, 2] 3

in point, because the B♮ is outside of the segment in question. In this

case, the relationship intervals are computed with reference to the notes

within the beat segment, as if the note in question was a part of that beat

segment. The interval counts are shown in the second section of Table

6.11. In this instance the notes either side of m do not both result in

higher scores, consequently this note remains in M. If the first A♯ in the

segment is classified as a passing note it seems reasonable to suppose that

other A♯’s in the segment should be classified similarly. At this stage of

processing, the fifth semiquaver A♯ remains unclassified. To address this

disparity, all of the notes in the segment are re-processed, and classified

notes seed the classification of notes of duplicate pitch with either a lower

or no classification within the segment, i.e. a note in P will seed a note

of duplicate pitch outside of P, and a note in M will seed an unclassified

note of duplicate pitch. Matching the pitch classification of duplicate pitch

classes results in both C♯’s (treble and bass clef) being added to M and

both A♯’s being added to P. The pitch duplication classification method

means that some passing notes that are missed, perhaps because they

are approached or left by leap, are successfully captured. In theory, by

matching the classification of duplicate pitches in this way, the method

should be able to deal with higher level harmonic abstractions.

Due to the lack of ground truth data, we are only able to evaluate the

passing note method indirectly in section 6.4.8. There are situations when

the scores of notes either side of a possible passing note are conclusively

higher, very strongly indicating that the middle note is a passing note.

Equally, there are situations when the scores of notes either side are higher
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by only a small margin, indicating a less clear cut situation. There are also

situations where either pred(m) or succ(m) produces a higher score but

the other one does not. These situations are not currently addressed by

the algorithm, but could be used to indicate varying levels of certainty of

a passing note formation or passing notes approached or left by leap. The

method would benefit from systematic research and evaluation, however

creating the required ground truth data and performing comprehensive

testing is beyond the scope of this PhD (please see future work in chapter

7).

6.3.4 Pedal Tone, Contour Tone and Neighbour Tone Classifi-

cation

Pedal tones, contour tones, and neighbour tones are classified within a

single musical voice from a linear perspective, and using rhythmic and

durational information, based on the previously outlined rules. Neighbour

tones must have durational values that are a fraction of a beat and are

therefore captured within a single beat segment. Chordal arrangements

are not taken into account in the identification of neighbour tones, i.e. the

rule about forming a part of the underlying harmony is not implemented.

6.3.5 Implementing Measures of Metrical Strength

The aim of the implementation of metrical emphasis is to express the con-

cept of stronger or weaker beats within a hierarchical metrical structure as

outlined in Section 6.2.5. To betoken the differing proportions of metrical

strength for a particular time signature, a series of metrical strength values

are defined for quadruple/duple and triple time signatures. The strength

values commence with a value of 1 for the strongest metrical position and

decrease according to the positions’ depth in the metrical hierarchy. For

each metrical level, a value of 1/n is assigned, where n is the number of

events in the bar at that level. A metrical position is assigned the value

of the highest metrical level it occurs at. The different metrical levels and

their numerical values in the metrical hierarchies can be viewed in Figure

6.14 for quadruple time signatures, and Figure 6.15 for triple. In practice
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Figure 6.14: The hierarchy of metrical positions and values given for quadruple
time signatures.
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Figure 6.15: The hierarchy of metrical positions and values given for triple time
signatures.
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the smallest metrical level values are not used. For quadruple and duple

time signatures the beat strength values are 1, 0.5, 0.25, 0.125, 0.0625

from strongest to weakest, and for triple time signatures the values are

1.0, 0.33, 0.16 and 0.08. For example, a note positioned on the first beat

of the bar of a 4
4 time signature is accorded a metrical strength value of

1. Beat 3, the beginning of the half bar, and the next strongest metrical

level in the hierarchy, is given the next strength value in the series, 0.5.

Beats 2 and 4 are positioned on the third strongest metrical level in the

bar, and are allocated a value of 0.25.

6.4 Recognising Chord Tones using Note Features

and Tertian Structure

In this work we hypothesise that harmonically important, or ‘structural’,

notes are most likely to be strongly articulated in the musical surface,

(i.e. emphasised by metrical position / duration / register / loudness etc.).

Our hypothesis is supported by a large body of perceptual experimenta-

tion, extensively covered in [Deutsch, 1982], in which listeners are shown

to mentally group notes into hierarchical representations based on metri-

cal, registral, and tonal/temporal hierarchies heard in the music. Similar

hypotheses have been made previously in computational approaches to

musical structure, most notably The Cognition of Basic Musical Struc-

tures, in which Temperley states that structures such as phrase, coun-

terpoint, meter and harmony are commonly accepted as ‘musical facts’,

(‘The Unanswered Question’, page 1, [Temperley, 2001]). Temperley uses

these ‘facts’ to support the musical intuitions on which his computational

methods are based, further citing common practice music theory as evi-

dencing the notion that musical ‘salience’ is linked to both theoretic and

perceptual structure. A further hypothesis that we make in this work, is

that information about chordal structure can also be extracted by com-

puting the tertian intervallic arrangement potential of a group of notes.

The importance of tertian structure in relation to musical harmony is sup-

ported by music psychology experimentation which suggests that humans
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use arpeggiated or tertian patterns to formulate harmonic structure when

listening to music ([Deutsch, 1982] and [Cook, 2006]).

The primary aim of this computational work is to capture the most

plausible underlying or structural chord present during a particular beat

segment, by simultaneously accounting for the structural emphasis of

notes at the musical surface and the tertian intervallic relationships of

those notes to one another. The overall approach therefore, is to com-

bine heuristically derived measures of individual note emphasis, (arrived

at by amalgamating evidence of note features, and metrical and dura-

tional proportions), with a calculation of optimum tertian note ordering

and aggregation of the complete set of notes contained within a single

segment.

This section outlines the approach used in more detail and formally

describes the implementation details.

6.4.1 The Importance of a Note

A note whose surface articulation renders it prominent in the musical

texture is construed as having increased likelihood of harmonic function

within the context of a beat segment. For example, a note occurring on

the first beat of the bar, sustained for a full beat, and situated at the peak

or trough of a contour, is deduced to have a greater degree of harmonic

function than an offbeat note of fractional duration marked as a passing

note within the same beat. This concept, that the surface expression of a

note can be related to the degree of its harmonic function, is referred to

as the importance of a note.

To understand the effect of context on the role of a note, please see the

opening bar of Prelude 4 in C♯ Minor, Figure 6.5. The bass C♯, although

important in both the first and second segments, cannot be interpreted as

having exactly the same degree of structural intensity in both segments,

because the onset of the note occurs at the beginning of segment 1. The

note is then sustained into segment 2. Although the bass C♯ is exactly the

same note which happens to be present across two segments, its emphasis,

and by implication its role in the context of the second segment, may
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Figure 6.16: Prelude 14 in F♯ Minor, BWV 859, Bars 22-23.

conceivably be quite different in the second segment. The idea of note

importance being relative to its situation is further exemplified in Figure

6.16, showing bars 22-23 of Prelude 14 in F♯ Minor, featuring a sustained

F♯ semibreve in the upper voice. The F♯ initially reinforces the root note

of the chord of F♯ minor, transforms into the fifth of the chord of B Minor

in the second segment, becomes the root of the first inversion of F♯ minor

in the third, and in the fourth and final segment of the bar transforms

into a seventh over the G♯ and B to form a half-diminished seventh chord

minus the fifth.

6.4.2 Measuring Note Importance using Duration, Metrical Po-

sition and Note Features

Notes commence with an importance value of 0 in the context of the seg-

ment. The scoring method computes a note importance value for each note

based on durational and metrical emphasis and the previously delineated

classifications of pedal, contour, neighbour and passing notes. The actual

values used are heuristically derived and based on the musical intuitions

of the author.

A measure of note emphasis is calculated first by summing the dura-

tional and metrical scores of the note. The durational value of a beat is

the fraction of the beat that the note overlaps. For example, a quaver in

the context of a minim beat is valued at 0.25, a quaver in the context of

a dotted crotchet beat is allotted the durational value of 0.33, a quaver

within the context of a crotchet beat is given the durational value of 0.5.
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Notes sustained across the full duration of a beat are awarded the max-

imum durational value of 1, irrespective of the absolute duration of the

note. The metrical strength of a note is assigned according to the onset

time of the note and to the previously described metrical position values

(see Section 6.3.5). The metrical emphasis of a note is only included if the

onset of the note occurs within the current beat segment, otherwise the

metrical emphasis value is 0. For example, a note in a 4
3 time signature

whose onset time occurs on the second crotchet beat is given the metrical

value of 0.33.

Referring to the aforementioned bass C♯ in Prelude 4 in C♯ Minor,

Figure 6.5, this particular note would score the maximum durational value

of 1 for both the first and second segments. The metrical emphasis value

would be set to 1 for the first segment, because the onset time of the note

coincides with the first beat of the bar. The note emphasis score generated

by combining the metrical and durational score is 2 for this segment. In

the second segment the metrical score is 0 because the onset time of the

note occurred in the preceding segment, resulting in a note emphasis score

of 1.

The measure of note importance is initialised to the note emphasis

value. Values are then either added to or deducted from this value in

accordance with feature classifications as summarised below. The initial

value sets are listed in Table 6.12.

• If a note is classified as a pedal tone, and the onset time of the pedal

tone is not within the beat segment, the note importance value is

reduced by the pedal tone penalty.

• If a note is classified as a passing note in M or P the importance

value receives the relevant passing note penalty.

• If a note is classified as a neighbour note, the importance value is

given the neighbour note penalty.

• If a note is classified as a contour peak or trough, the importance

value is summed with the contour value.
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Table 6.12: Summary of Note Features and Initial Heuristic Values

Note Feature Value

Contour 2
Pedal -2
Neighbour Note -2
Passing Note (Weak certainty m ∈ M ) -2
Passing Note (Strong certainty p ∈ P ) -4

• If the note has no feature classifications, its importance value remains

at the initialised note emphasis value.

6.4.3 Computing All Possible Note Combinations Per Segment

We assume that in any beat segment, (excepting rest segments), some

non-empty subset of the notes in that segment has a harmonic function.

To discover the most structural combination of notes, a combination we

refer to as the best note combination or BNC, we compute a score for every

distinct note combination or subset from an input group, accounting for

both the surface articulation of notes as derived from note features, and

the tertian interval relationships of the notes in the subset. For each indi-

vidual combination of notes, an overall chord score is realised by summing

the note importance values for the group, computing a maximum tertian

interval content score, and then combining the two scores to provide an

overall result.

The principle of computing all possible combinations of an input group

is most easily understood by viewing Table 6.13. The table shows all

combinations of an input group of five notes, {C♯, G♯, F♯, E, D♯}, from

the smallest combination, in this case set to a minimum of one note, to

the maximum group of five. The result is 31 note combinations. (Note

combinations may feature notes with duplicate pitches, but each individual

note has its own importance measure and therefore must be included in the

method). Computing combinations has the potential to become extremely

data intensive; an input group of n = 20 for example, will result in 2n −1,

or 1048575 combinations. Our input groups generally have much fewer
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Table 6.13: All possible subsets of a group of 5 notes {C♯, G♯, F♯, E, D♯}, from
the smallest combination to largest, shown with pitch names and pitch class
equivalents.

Index Pitch Name Pitch Class

1 C♯ 1
2 G♯ 8
3 F♯ 6
4 E 4
5 D♯ 3
6 C♯, G♯ 1, 8
7 C♯, F♯ 1, 6
8 C♯, E 1, 4
9 C♯, D♯ 1, 3
10 G♯, F♯ 8, 6
11 G♯, E 8, 4
12 G♯, D♯ 8, 3
13 F♯, E 6, 4
14 F♯, D♯ 6, 3
15 E, D♯ 4, 3
16 C♯, G♯, F♯ 1, 8, 6
17 C♯, G♯, E 1, 8, 4
18 C♯, G♯, D♯ 1, 8, 3
19 C♯, F♯, E 1, 6, 4
20 C♯, F♯, D♯ 1, 6, 3
21 C♯, E, D♯ 1, 4, 3
22 G♯, F♯, E 8, 6, 4
23 G♯, F♯, D♯ 8, 6, 3
24 G♯, E, D♯ 8, 4, 3
25 F♯, E, D♯ 6, 4, 3
26 C♯, G♯, F♯, E 1, 8, 6, 4
27 C♯, G♯, F♯, D♯ 1, 8, 6, 3
28 C♯, G♯, E, D♯ 1, 8, 4, 3
29 C♯, F♯, E, D♯ 1, 6, 4, 3
30 G♯, F♯, E, D♯ 8, 6, 4, 3
31 C♯, G♯, F♯, E, D♯ 1, 8, 6, 4, 3

than twenty elements, consequently the use of a combinations algorithm

is an expedient application of the power of computing to the problem at

hand.
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6.4.4 Scoring Note Combinations from Note Features

To illustrate the scoring of note combinations, the scoring of the first beat

segment of Prelude 4 in C♯ Minor, Figure 6.5, is detailed. The segment

contains a total of seven notes; {C♯, G♯, F♯, E, D♯, E, C♯}. The underlying

harmony in this opening chordal elaboration is C♯ Minor ({C♯, E, G♯}),

consequently the F♯ and D♯ need to be discounted as inessential notes.

The previously described algorithms correctly classify the F♯ as a pass-

ing note, and the D♯ as a neighbour note. During scoring, these notes will

receive the associated penalty. The C♯ and G♯ will both receive the highest

metrical position score (1) and the bass C♯ is given the maximum duration

score (1). The E’s are awarded positive metrical position and durational

scores in contrast to the negative values assigned to the inessential notes

due to their position in the metrical hierarchy. For each distinct note com-

bination of the 127 possible combinations the note importance values are

summed and the top scoring group or groups of notes and associated score

values are saved. The algorithm scores the five notes, {C♯, G♯, E, E, C♯}

as the notes most strongly articulated in the segment, (alternatively the

BNC for this segment using only note features), whose notes also match

the pitch class set of the underlying harmony.

6.4.5 Scoring Tertian Arrangements of Note Combinations

To discover the optimum tertian arrangement of each distinct subset of

notes, the pitches of the notes are converted into pitch classes, and all

possible orderings of the unique set of pitch classes are computed using a

permutation algorithm. Duplicate pitch values are not submitted: the aim

is to find out whether the unique pitch class set can be organised in such

a way as to form a tertian interval stack of notes. For example, Table 6.14

shows all twenty-four possible pitch arrangements of note combination No.

26 listed in Table 6.13: {C♯, G♯, F♯, E}. (The largest note combination in

Table 6.13, {C♯, G♯, F♯, E, D♯}, produces 120 permutations and therefore

was not used for this example.)

Table 6.15 shows the list of possible pitch arrangements of the chord

of C Major ({C, E, G} = {0, 4, 7}). The successive interval content of
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Table 6.14: The twenty-four permutations of note combination No. 26 from
Table 6.13: {C♯, G♯, F♯, E}

Index Permutation

1 C♯, G♯, F♯, E
2 C♯, G♯, E, F♯

3 C♯, F♯, G♯, E
4 C♯, F♯, E, G♯

5 C♯, E, G♯, F♯

6 C♯, E, F♯, G♯

7 G♯, C♯, F♯, E
8 G♯, C♯, E, F♯

9 G♯, F♯, C♯, E
10 G♯, F♯, E, C♯

11 G♯, E, C♯, F♯

12 G♯, E, F♯, C♯

13 F♯, C♯, G♯, E
14 F♯, C♯, E, G♯

15 F♯, G♯, C♯, E
16 F♯, G♯, E, C♯

17 F♯, E, C♯, G♯

18 F♯, E, G♯, C♯

19 E, C♯, G♯, F♯

20 E, C♯, F♯, G♯

21 E, G♯, C♯, F♯

22 E, G♯, F♯, C♯

23 E, F♯, C♯, G♯

24 E, F♯, G♯, C♯

Table 6.15: The permutations and successive semitone interval content of a C
Major chord represented using musical pitch and pitch classes.

Index Pitch Group Pitch Class Set Successive Intervals

1 C, E, G (0, 4, 7) [4, 3]
2 C, G, E (0, 7, 4) [7, 9]
3 E, C, G (4, 0, 7) [8, 7]
4 E, G, C (4, 7, 0) [3, 5]
5 G, C, E (7, 0, 4) [5, 4]
6 G, E, C (7, 4, 0) [9, 8]



CHAPTER 6. CHORDS IN ORNAMENTAL MUSIC 152

each pitch permutation is calculated as if the note pitches are placed in

ascending order. For example, when calculating the interval content of

the third permutation in the table ({E, C, G} = {4, 0, 7}), the first pitch

class of 4 is normally higher than the second pitch class of 0, consequently,

to calculate the interval, pitch class 0 is represented by 12 rather than 0 to

arrange the pitches in ascending order, and the interval difference between

12 and 4 is calculated). The result is a successive interval array for the

permutation. The first permutation in Table 6.15 demonstrates that the

pitch class set can be arranged into successive thirds: this permutation

consists of the successive intervals of a major third followed by a minor

third. This particular group of pitches can therefore be arranged into a

tertian chordal stack, with the first permutation in the list showing the

optimum tertian ordering of the pitch content of the group.

To select the maximum tertian arrangement of a pitch class set an in-

terval scoring method is used. The method iterates through each interval

in the successive array of intervals, and awards a score value based on the

interval and its position in the interval array for each individual permu-

tation of pitch classes. Intervals of thirds occurring in the first or second

position of the array are awarded the Triad Intervals score. Intervals in

position 3 of the array are awarded the 7th score, in position 4, the 9th,

and position 5 or 6 the 11th and 13th.

To mitigate against a bias towards the selection of the best mathe-

matical arrangements of pitches in terms of thirds, (there are instances in

the corpus where every pitch in a large combination of pitches can be or-

ganised into a series of successive thirds), rather than the most musically

plausible result, pitch permutations resulting in an interval array consist-

ing solely of thirds, (i.e. containing only values of 3 or 4 semitones) and

of a total length of 4 or less intervals, are awarded an additional Tertian

Intervals Only value. Interval arrays consisting of thirds and the doubled

value of a third, i.e. intervals of 6 or 7 semitones which may indicate tone

omission from the chord presentation, are awarded the smaller additional

value Tertian Intervals and Double Third. The interval of 8 semitones is

not used, because chords containing this interval tend to be beyond the

range of the most common diatonic chords, please see Hindemith’s table
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Table 6.16: Summary of Tertian Heuristic Score Values

Chord Feature Value

Tertian Intervals Only 2
Tertian Intervals and Double Third 1
Triad Intervals 2
7th 0.5
9th 0.25
11th and 13th 0.125
Double Third 1

of chord groups [Hindemith, 1942]. Please refer to Table 6.16 to see the

full list of parameters set and their values, and Table 6.17 for an example

of the interval scoring of the set of permutations of a G7 chord.

6.4.6 Selecting the Top Scoring Combination of Notes

Each distinct combination of notes for a given segment generates three

score values:

1. Note Importance Score

2. Tertian Arrangement Score

3. Combined Note Importance and Tertian Arrangement Score

The best note combinations (BNCs) for a given segment are selected on

the basis of the highest note importance score, the highest tertian arrange-

ment score, and the highest combined score which is obtained by adding

the note importance score and the tertian arrangement score together.

In the event that there is more than one equal top scoring group of notes

for any of the three scoring categories, the choices are reduced iteratively

to a single chord choice in accordance with the preference rules listed

below, in order of presentation. As soon as a single note combination is

realised, the iterative process is concluded and no further preference rules

are applied.

1. Prefer the combination which has the most notes in it, (i.e. capture
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Table 6.17: The score for each permutation of a seventh chord on G using
the initial value set listed in Table 6.16. The highest scoring permutation is
highlighted in bold.

Index Permutation Intervals Interval Set Score

0 (7, 5, 2, 11) (10, 9, 9) (9, 10) 0
1 (7, 5, 11, 2) (10, 6, 3) (10, 3, 6) 1.0
2 (7, 2, 5, 11) (7, 3, 6) (3, 6, 7) 4.0
3 (7, 2, 11, 5) (7, 9, 6) (9, 6, 7) 1.0
4 (7, 11, 5, 2) (4, 6, 9) (9, 4, 6) 2.5
5 (7, 11, 2, 5) (4, 3, 3) (3, 4) 6.5
6 (5, 7, 2, 11) (2, 7, 9) (9, 2, 7) 0.5
7 (5, 7, 11, 2) (2, 4, 3) (2, 3, 4) 2.5
8 (5, 2, 7, 11) (9, 5, 4) (9, 4, 5) 0.5
9 (5, 2, 11, 7) (9, 9, 8) (8, 9) 0
10 (5, 11, 7, 2) (6, 8, 7) (8, 6, 7) 1.0
11 (5, 11, 2, 7) (6, 3, 5) (3, 5, 6) 2.5
12 (2, 7, 5, 11) (5, 10, 6) (10, 5, 6) 0.5
13 (2, 7, 11, 5) (5, 4, 6) (4, 5, 6) 2.5
14 (2, 5, 7, 11) (3, 2, 4) (2, 3, 4) 2.5
15 (2, 5, 11, 7) (3, 6, 8) (8, 3, 6) 2.5
16 (2, 11, 7, 5) (9, 8, 10) (8, 9, 10) 0
17 (2, 11, 5, 7) (9, 6, 2) (9, 2, 6) 0.5
18 (11, 7, 5, 2) (8, 10, 9) (8, 9, 10) 0
19 (11, 7, 2, 5) (8, 7, 3) (8, 3, 7) 1.0
20 (11, 5, 7, 2) (6, 2, 7) (2, 6, 7) 1.0
21 (11, 5, 2, 7) (6, 9, 5) (9, 5, 6) 0.5
22 (11, 2, 7, 5) (3, 5, 10) (10, 3, 5) 2
23 (11, 2, 5, 7) (3, 3, 2) (2, 3) 4

the maximum number of notes, the group of pitch classes [0,0,4,7]

should beat [0,4,7]).

2. Prefer the combination containing notes whose onset times match

the onset time of the first beat of the bar.

3. Prefer the combination whose lowest note matches the lowest note of

all of the notes in the combination (considered to be the bassnote).

4. Prefer the combination which contains more than one equal scoring

permutation of the same pitches (frequently an indication of different

arrangements of a diminished 7th chord).



CHAPTER 6. CHORDS IN ORNAMENTAL MUSIC 155

5. In the event of multiple highest tertian arrangement or combined

scores, prefer the combination with the highest note importance

score.

Referring once again to the first beat segment of Prelude 4 in C♯ Minor,

Figure 6.5, nine distinct note combinations generated from the notes in this

segment correspond to the unique pitch class set {C♯, E, G♯}, (there are

two C♯’s, one G♯, and two E’s in the seven note input group). All of these

combinations therefore result in precisely the same tertian permutation

score, which in this case is also the highest scoring permutation. Using the

first preference rule, the largest note combination of the tied-permutation

results is selected. This is the five note group matching the pitch class set

{C♯, E, G♯}; no further preference rule processing is necessary.

6.4.7 Final Output Lists of Best Note Combinations

For every beat segment in an input piece of music, a sequence of best note

combinations or BNC’s is generated in pitch class set format, based on the

note importance score, the tertian arrangement score, and the combined

score. The result is three individual lists of pitch class set representations

of the most structural note combinations (BNCs), as calculated by the

algorithm, for each of the three measures, for every prelude in the test set.

The combined score list is expected to produce the best overall list of note

combinations out of the three.

6.4.8 Evaluation

The method was evaluated by comparing the output sequences of BNC’s

to the hand-annotated harmony data. The hand annotations are converted

to pitch class set format to enable like for like comparison. Notes such as

pedal notes, listed in the hand annotations, are not added to the pitch class

set of the ground truth chord for the segment. (Please refer to Section 5.6

about the annotation syntax.) For example, if the hand-annotated chord

is C Major over a B♭ pedal note, the ground truth pitch class set is {0, 4,

7}, and the B♭ ({10}), is not represented.
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Table 6.18: Tuned Values for Note Features

Note Feature Value

Contour 0
Pedal -1
Neighbour Note -1
Passing Note (Weak certainty m ∈ M ) -1
Passing Note (Strong certainty p ∈ P ) -2

Table 6.19: Tuned Values for Tertian Score

Chord Feature Value

Tertian Intervals Only 1
Tertian Intervals and Double Third 0.5
Triad Intervals 1
7th 0.5
9th 0.25
11th and 13th 0.125
Double Third 0.5

The combinations method does not fill in missing pitches, therefore,

rather than penalising the method for pitches that are not actually played,

we derive from the hand-annotated chord data a new ground truth which

excludes pitches missing within a beat segment. Taking the intersection

of the hand-annotated pitch class sets and the notes actually performed

in any one beat segment, a series of new ground truth sets are created and

used for comparison with the BNC sequences resulting from the three

different types of measures. For example, if the hand-annotated set is

{0, 4, 7} but the pitches actually played in the segment are {0, 7, 1, 6}

then the new ground truth set is {0, 7} because pitch {4} is missing. In

this example, if the pitch class set selected by the method is {0, 7} the

result is counted as a match. If the method produces a set of pitches

which do not match precisely, for example {0, 7, 6}, or {0}, the result

is a mismatch, and it is counted as an error. In cases where the hand-

annotated data offers more than one chord possibility as equally valid, if

the chord method produces a match to one of the options, it is counted

as a match.
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Optimising the parameters in this type of work is a complex problem

because the characteristics of the solution space are not known. In addi-

tion, due to the computation time involved, a complete grid search is not

possible. We make the assumption therefore that the individual features

are independent of one another and will not change in an irregular fashion

in relation to differences in other features. To achieve a locally optimal

result, working from the initial values listed in Table 6.12 and Table 6.16,

individual note importance and tertian arrangement parameters are sys-

tematically varied singly, and the impact on the results are observed.The

value of each individual parameter is successively varied between 0 and

the first value for which results deteriorate in step sizes of 0.25. Testing

is continued beyond the point of initial deterioration in order to establish

whether a reversal might occur, however in all cases deterioration contin-

ues. After an initial pass of all of the parameters, in which the value at the

point at which deterioration occurs is chosen, the same type of optimisa-

tion is repeated several more times in order to further ascertain whether

the optimal values chosen for each parameter produces the highest overall

result during evaluation. This is considered to be a more efficient approach

than a complete grid search. The experimentation is continued until the

no further improvement in the evaluation results is observed. The note

and tertian parameters determined from the tuning stage are listed in

Tables 6.18 and 6.19.

The average accuracy results following parameter tuning are shown

in Figure 6.17. The graph exhibits the general tendency for the tertian

arrangement method to outperform combinations arrived at using note

features. As anticipated, the combined score produces the best results

overall for the preludes, with average scores of 60.8%, 57.2%, 48.0% for the

combined sequence, tertian arrangement sequence and note importance

sequence respectively. An interesting result revealed by the tuning stage is

that positively weighting note contour has no impact on the final accuracy

scores and can be left at 0.

Two of the three lowest overall accuracy results are achieved from Pre-

ludes 4 and 18. Both preludes have compound time signatures, 4
6 and

8
6 respectively. These are the only two preludes in the set with these
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Figure 6.17: Average accuracy for the three sets of note combination sequences following parameter tuning. Values shown are
for the combined sequence. Average overall values for the sequences are 60.78% (combined) 57.18% (tertian) and 47.96% (note
importance).
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particular time signatures, and in both cases the harmonic rhythm is fre-

quently faster than the duration of a beat segment. (I.e. a single segment

may feature a succession of two or more changes of harmony / possi-

ble chord labels.) The results demonstrate the weakness of the method

in the abstraction of a single chord choice when several possible tertian

arrangements of pitches of potentially equal validity are in contention.

Rather, the method attempts to account for as many pitches as possi-

ble within a single chord label. The note importance weights, including

metrical strength and passing note classification, are inadequate for the

resolution of complex situations of multiple chord possibilities. Limited

experimentation altering the metrical emphasis weights to more strongly

favour notes occurring at the onset of a segment whilst negatively weight-

ing notes which occur on weak metrical positions (e.g. occurring later on

in the beat), marginally improves the chord abstraction accuracy of these

two compound beat preludes, for example from 27.6% to 35.3% for the

combined score for Prelude 18. A problem is that the alterations cause a

not insignificant decrease in accuracy levels for the full set of preludes (ap-

proximately 8% lower average score). The issue is complex and requires

more detailed and systematic experimentation, including potentially an

extension to the method to automatically abstract harmonic rhythm (see

future work).

It is anticipated that a change of segmentation to the lower value of

a crotchet (4
6) and a quaver beat (8

6) will improve the accuracy of the

results for these two preludes in the set. To ascertain the precise impact

of compound segmentation, Prelude 18, consistently the lowest scoring

prelude, is re-annotated at the quaver beat level, and the chord method

is tested again. The consequence of changing the segmentation of the

prelude to the smaller beat level proves to be considerable; much higher

accuracy levels are achieved for the combined score, tertian arrangement

score, note feature score: 70.7%, 67.2%, 66.1% respectively.

It is interesting to relate the note feature classifications, as described

in Section 6.4.2, to the results of the method. The potential for note

feature classifications relating to inessential note classifications (i.e. ex-

cepting metrical features) to influence the outcome of the method, varies
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considerably depending upon the quantity of note feature classifications

per prelude. Figure 6.18 details the inessential note feature classifications

captured for each prelude by the previously described methods. Contour

information has been omitted as it appears to have no effect on results

unless weighted negatively (see above). Predictably, Prelude 1, with its

simple arpeggiated figuration, produces the fewest inessential note clas-

sifications in the set, followed by Preludes 6, 13, 15, 17 and 21 in or-

der of increasing classification percentage. The musical score editions

of these preludes reveals that their melodic figuration is predominantly

arpeggiated, much more so than the other preludes in the set. It could

be deduced from this that these preludes contain the smallest quantity of

non-chord tones and therefore it might be expected that these works yield

the highest chord accuracy results. Relating the quantity and distribution

of inessential note classifications, shown in Figure 6.18, to the chord ac-

curacies shown in Figure 6.17, Prelude 1, probably the least harmonically

ambiguous prelude of the set, consistently also gives the highest chord ac-

curacy. Preludes 15, 13, 6, 11, 3 and 17, all have note feature classification

quantities of less than 23%, and these preludes generate chord accuracy

results ranging from 60% (prelude 6) to 82% (prelude 11), thus falling

in the upper half of the accuracy range. To understand the correspon-

dence between inessential note feature distribution and note combination

accuracy, a scattergraph showing the relationship between inessential note

classifications, (i.e. the percentage of the combination of neighbour notes,

passing notes and pedal notes in the preludes) and accuracy, is shown in

Figure 6.19, producing a Pearson coefficient of correlation of -0.6. The

graph evidences an inverse relationship between inessential note features

and the accuracy of method. Similarly Figure 6.21 plots the accuracy val-

ues in relation to the percentage of stepwise movement present, and shows

a trend of greater accuracy in relation to fewer melodic steps for some of

the corpus with a correlation coefficient of -0.62. Prelude 6, with its ap-

parently minimal quantity of inessential tones, is an archetypical example

of the challenges presented by master compositions to automatic computa-

tional analysis of music. Although the prelude is arpeggiated throughout,
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Figure 6.19: Average accuracy of combined sequence plotted in relation to the percentage of inessential note features (neighbour
notes, passing notes, and pedal notes) calculated for the 24 preludes. The correlation coefficient is -0.6.
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Figure 6.20: Prelude 6, Bar 7.

the figuration in the prelude simultaneously expresses both melodic move-

ment and harmonic structure. Linear stepwise melodic movement, (often

involving non-chord tones), is articulated at a higher level of abstraction.

Voice-leading movement is promoted in the texture by positioning the

melodic notes on the 3rd semiquaver of each tuplet in the treble clef. For

example, see the ascending scale D, D, E, F♯, G in the treble clef of bar

7 of Prelude 6, in Figure 6.20. The software does not capture such higher

level abstractions, consequently most non-chord tones are undetected in

this prelude.

6.5 Labelling Note Combinations using Chord Dic-

tionaries

6.5.1 Introduction and Baseline Evaluation

To arrive at a definitive sequence of chord labels per segment per prelude,

the note combinations in the output sequences need to be awarded an

unambiguous chord classification. The problem is by no means a trivial

one. The note combinations themselves present two specific difficulties:

firstly, the absence of critical chord components, either due to erroneous

exclusion as a result of the previously described pre-processing, or, more

frequently, due to the omission of such tones in the original music; and

secondly, the presence of non-chord tones that the previously outlined

methods have not successfully excluded. The test corpus, characterised

throughout by complex ornamentation, features a multitude of instances

of chords implied by fewer tones than the component tones of the chord,
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Figure 6.21: Average accuracy of combined sequence in relation to the percentage of melodic steps in the 24 preludes. The
correlation coefficient is -0.62
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(for example, a dyad or single tonic note implying the tonic triad), that

are also decorated melodically with runs, trills, turns and so on.

To procure a distinct chord label per note combination, a chord dic-

tionary is used, similar to that of Pardo and Birmingham [2002]. They

describe a method (henceforth referred to as the Harman method), of clas-

sifying groups of pitch classes by scoring them against fully factored pitch

class set chord templates. (For example, the major triad on C, {C, E, G},

is notated as pitch class set {0, 4, 7}, and the seventh on G, {G, B, D,

F}, is notated as {7, 11, 2, 5}.) Their method counts the weight of notes

in an input segment matching a template element (positive evidence), not

matching a template element (negative evidence), and the number of tem-

plate elements missing from the input segment (misses), in order to select

the highest scoring template.

Pardo and Birmingham [2002] acknowledge the problem of the gener-

ation of multiple equally top scoring chord templates per input segment,

and outline a set of preference rules to reduce multiples to a single chord

choice. They also state that their method, expounded using a chord dic-

tionary of triads and two types of seventh (dominant and diminished),

is easily extensible to the representation of complex chords. In practice,

this is not the case. Correctly classifying pitch class groups denoting com-

plex chords against a dictionary containing extended chord templates is

a peculiarly challenging problem. Consider, for example, the fully fac-

tored representation of a thirteenth chord, {G, B, D, F, A, C, E}, or pitch

class set {7, 11, 2, 5, 9, 0, 4}, compared to the most common thirteenth

arrangement in a four voiced musical texture, {G, B, F, E}, or {7, 11,

5, 4}. Sparse input pitch groups such as these produce multiple equal

scoring chord options that may not even include the desired classification.

Should any non-chord tones also be present, the possibility of accurately

identifying the extended chord becomes even more remote. Furthermore,

as evidenced below, each extension to the dictionary exacerbates both the

difficulty of accurately matching complex chords and the production of

multiple top-scoring templates generated by a single input group.

The corpus is tested against a prototype of Harman system. Four dif-

ferent chord dictionaries are used; the first is based on the major, minor,
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diminished and augmented triads only, the second populates the dictio-

nary with the same set of triads and all eight types of seventh chord, the

third adds six types of ninths, and the final dictionary includes all of the

previous chords plus 11ths and 13ths. Chord templates are generated on

every degree of the scale using the interval profiles of the defined chord

types. (For the list of chord types please see Table 5.2.) The prototype

varies from Pardo and Birmingham [2002] in the implementation of their

final preference rule, which selects a single option from a group of match-

ing diminished 7th chords that vary in terms of inversion, based on the

resolution of the chord; the rule is not adaptable to a complex texture

with a moving bass part and is therefore omitted.

Figure 6.22 shows the number of times the prototype method results

in more than one chord option per segment per prelude as a percentage of

the total number of segments in the list and in accordance with the chord

dictionary used. In some cases, the number of multiple equal scoring tem-

plates is large, producing more than five possibilities. The preference rules

have not sufficiently reduced the chord choices to a single result. The av-

erage number of multiple choices per dictionary, shown in the final column

of the graph, are 40.98, 39.63, 28.69, 34.85 (triads,, triads and 7ths, triads

7ths and 9ths, and all templates respectively), with a standard deviation

of 14.2, 11.6, 11.3 and 9.1 in the same order. The ability of the Harman

method to label segments in the test corpus was evaluated by comparing

the pitch class sets generated by Harman and the hand-annotated data

and counting the number of exact pitch class set matches. The evalua-

tion is lenient; in the event that there is a large number of multiple chord

options, should one of the options match the hand-annotated data, it is

counted as a match. Ideally these multiples would be reduced to a single

possible answer. The specific chord template dictionary employed by the

automatic method limits the range of possible chord choices to a varying

extent, sometimes to a smaller set of chords than is represented in the

hand-annotated data. The evaluation method accounts for this discrep-

ancy by iteratively reducing the size of the chord in the hand-annotated

data until it matches the contents of the chord dictionary being used in

any particular instance. For example, if the hand-annotated pitch class
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Figure 6.22: The percentage of segments using the Harman method [Pardo and Birmingham, 2002] resulting in multiple equal
top scoring chord templates shown per chord dictionary.
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Table 6.20: Chord accuracy results using the Harman method [Pardo and Birm-
ingham, 2002] with four different chord dictionaries

Prelude Triads Triads and 7ths Triads, 7ths and 9ths All Templates

1 79.5 73.5 73.5 82.9
2 77.9 29.7 11.2 9.2
3 84.5 62.8 52.0 51.0
4 66.7 28.4 5.4 2.6
5 78.7 58.5 25.7 9.3
6 71.2 52.0 39.4 36.5
7 64.4 40.6 22.4 13.6
8 86.1 53.5 41.7 29.2
9 63.0 43.8 28.1 19.8
10 60.0 29.4 12.2 4.3
11 92.1 55.7 36.6 11.1
12 69.0 36.5 21.6 15.9
13 70.1 62.2 52.5 47.5
14 71.3 56.3 28.1 8.3
15 73.4 65.8 61.3 59.2
16 60.0 31.5 13.5 5.3
17 73.0 46.5 31.5 28.8
18 58.6 28.1 8.6 1.7
19 73.4 44.2 8.4 5.2
20 86.2 42.7 25.3 9.5
21 63.4 48.7 42.3 40.0
22 68.2 45.5 33.7 14.6
23 74.4 58.3 38.7 13.2
24 49.7 33.3 21.9 19.2

Average 63.0 47.2 30.7 22.4

set is {0,4,7,10}, and the chord dictionary is restricted to triads only, then

the hand-annotated chord is reduced to the equivalent triad, {0,4,7}, and

this pitch class set is used as the comparative chord label for the chord

generated by the method.

The chord accuracy results for the four chord dictionaries are shown

in Table 6.20. The accuracy data gives the percentage of matches be-

tween the output of the Harman algorithm and the hand-annotated data,

which is reduced to match the chord dictionary of Harman. The results

demonstrate that the largest chord dictionary has the lowest accuracy;
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progressively smaller dictionaries showed better results. The trend is vi-

sually apparent in Figure 6.23, which graphs the percentage match results

for the corpus. As can be seen from the graph, the method performs

reasonably well in conjunction with the triadic chord dictionary, with ac-

curacy levels progressively falling off with each increase in the number and

complexity of chord templates. The average accuracies across the corpus

for the four dictionaries are 63.0% (triad dictionary), 47.2% (triads and

sevenths dictionary), 30.7% (triads 7ths and 9ths dictionary), and 22.4%

(all templates). The percentage of chord labels in the ground truth that

had to be reduced to match the maximum chord length contained in the

dictionaries are 35.2% (triads), 3.5% (triads and 7ths dictionary), and

2.1% (triads 7ths and 9ths dictionary). A significant weaknesses of the

Harman method is the inability to distinguish passing notes and exclude

them from consideration. The preludes which contain a greater quantity

of stepwise movement and fewer arpeggiated figurations, drop off in ac-

curacy quite markedly with the introduction of additional chords to the

chord dictionary. This can be seen particularly in preludes with a large de-

gree of stepwise motion in the voices. Compare, for example, the accuracy

levels for Prelude 2 (Table 6.20), which features many neighbour note con-

figurations (please refer to Figure 5.3). From the triad dictionary to the

sevenths dictionary the result drops by 47.3%, from an accuracy of 77.0%

to a low 29.7%. The problem relates to the number of pitches present in

the chord dictionary templates. If the templates are restricted to triads,

ornamental note configurations have less impact as there are no templates

in the dictionary containing all or most of the pitches in the presented

group. Issues start to arise when the template sizes are increased, for ex-

ample to four or more pitches, because the algorithm is able to account

for a greater number of the presented pitches within a single template.

The preference rules are often not able to satisfactorily reduce multiple

possible options to the correct underlying harmony. The situation is sub-

tle: in some cases the presented pitches represent an ornamented triad; in

others, they represent an extended chord. If both templates produce the

same score, it is difficult to identify the correct choice without additional

contextual information. The result for prelude 2 therefore falls further
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with each successive addition to the defined chord range, reaching a very

low result of 9.2% in conjunction with the largest chord dictionary. By this

point, the accuracy level averaged across all of the preludes has dropped

to 22.4%. The Harman algorithm requires the addition of some means of

differentiating between inessential tones and structural chord tones to be

able to successfully process complex notegroups in conjunction with more

comprehensive chord dictionaries. The distribution of melodic steps per

prelude in relation to the chord accuracy results of the Harman method us-

ing the triads and 7ths chord dictionary can be viewed in Figure 6.24. The

correlation coefficient is 0.4. As a final experiment, the Harman method

is run again in conjunction with the maximum dictionary size containing

all templates. This time, all notes classified as inessential by the methods

described earlier in this thesis, (neighbour notes, passing notes or pedal

notes), are omitted from consideration by the algorithm. The removal of

inessential notes from the groups demonstrates a marked improvement in

results - the average accuracy across the corpus is lifted from 22.4% to

40.2%.

6.5.2 Matching Best Note Combination Sequences to Chord

Templates

The output BNC sequences obtained using the combined score (see section

6.4.6) are matched to all four chord dictionary types to obtain a chord

classification per combination using the evidence method of Pardo and

Birmingham [2002] as described in the previous section.

In order to find a method of more effectively capturing complex chord

designations even when chord factors are missing or obscured by additional

pitches we evaluate three different methods of weighting the chord dictio-

nary data. The weights are used to emphasize the scale degrees which

are most indicative of a particular chord configuration and de-emphasize

the most common note omissions from complex chords. A basic vector

contains only 0 and 1, where 1 represents a chord note, and 0 represents

a non-chord note. A C major chord template, {0,4,7} has a basic vec-

tor of [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]. A second arrangement (profile
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Figure 6.24: Scattergraph of distribution of melodic intervals against the chord accuracy values for the triads and 7ths chord
dictionary using the Harman method. The correlation coefficient is 0.4.
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weights) distinguishes between important and less important chord notes

by increasing the weight of important chord factors to a rating of 2. In all

cases it is assumed that the outer interval defines the chord most strongly,

for example in the case of a seventh chord, it is the outer interval of the

seventh that is most indicative. Selected inner notes are also rated as

important, consequently, a triad weight profile is the root and 5th, a 7th

profile weights the root, 3rd, 7th, a 9th weights the root, 3rd, and 9th,

and 11th weights the root, 7th, 11th and a 13th, which typically omits the

5th, 9th, and 11th, weights root, 3rd, 7th, and 13th. The profile weighted

vector for a C major triad is [2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0] and for a G7

({7, 11, 2, 5}) [0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 2]. In a final type of weighting

(root weights), the profile weighted chord vectors are modified to stress

the root note with a value of 3. When compared to a weighted template

vector, if a presented pitch class matches a weighted template element,

the match count is incremented by the template weight value. Therefore

a C major triad would be represented by a root weighted vector of [3, 0,

0, 0, 1, 0, 0, 2, 0, 0, 0, 0], and the G7 chord by [0, 0, 1, 0, 0, 2, 0, 3, 0, 0, 0,

2]. The match count of a pitch class set S to a template W = [W0, ....W11]

is given by
∑

i∈S

Wi, while the missed count is given by −
∑

i/∈S

Wi, and the

template match score is
∑

i∈S

−
∑

i/∈S

Wi. For example, a pitch class set of

{0, 3, 7}, matched to the C Major weighted template, would produce a

match count of 4 (0 and 7), and a missed count of -1, (3), resulting in a

total template match score of 3.

Prior to presenting the final template match results, we analyse the na-

ture of chord label designation of complex beat segments in more detail.

For any one beat segment we compute how many of the chord tones (CT )

in the hand-annotated chord are actually present, (i.e. are performed), in

the input segment (henceforth referred to as the input set), how many of

the chord notes are missing (CT-) from the input set prior to processing,

and similarly, how many non-chord notes (NCT ) are present in the input

set when compared to the content of the hand-annotated chord. Sub-

sequently, following processing by the combinations algorithm, we again

count how many of the non-chord notes (NCT ) remain in the BNC and
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how many chord notes (CT ). Clearly, the fewer chord tones (CT ) that

are actually present in the input set and by definition therefore, the BNC,

and the greater the quantity of NCT present in either group, the more

challenging it is to accurately obtain the desired chord designation from

the processed group (BNC ). The difference between input set and BNC in

terms CT, CT-, and NCT can also tell us how effective the combinations

method has been at a) correctly capturing structurally important chord

tones from what was available at the input, and b) removing non-chord

tones from the input segment to produce a pitch combination that is closer

to the desired chord tone group.

Consider, as an example, the chord template match results for the

segment in bar 8, beat 1, in Prelude 7. The hand-annotated chord is {10,

2, 5} (B♭ major triad), and the unique set of pitch classes contained in the

input set are {10, 2, 0, 3, 9}. Following processing by the combinations

algorithm, the BNC contains the pitch classes {10, 2} i.e. pitch classes

{0, 3, 9} have been removed. All of these are represented in the hand-

annotated data as NCT.

For this example, when compared to the hand-annotated chord and to

each other, are as follows:

1. % of annotated chord tones (CT ) present in the input set 66.6

2. % of input set non-chord tones (NCT ) 60.0

3. % of BNC chord tones (CT ) 66.6

4. % of BNC non-chord tones (NCT ) 0

5. % non-chord tones (NCT ) removed as a result of processing (i.e. the

difference between the input set and the BNC ) 100.0

The three types of measures (tertian, note importance and combined),

prior to the application of the reduction rules, produce the following sets

of equal scoring chord template matches:

1. Tertian Score - Top Scoring Template: {9, 0, 3}

2. Note Importance Score - Top Scoring Templates: {10, 2, 5}, {7, 10,

2}, {2, 6, 10}, {6, 10, 2}, {10, 2, 6}
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3. Combined Score - Top Scoring Templates: {10, 2, 5}, {7, 10, 2}, {2,

6, 10}, {6, 10, 2}, {10, 2, 6}

As both the note importance score and the combined score contain

more than one template match, a single template is chosen via a preference

rule reduction process (detailed below). The final resulting templates are

as follows:

1. Tertian Template: {9, 0, 3}

2. Note Importance Template: {10, 2, 5}

3. Combined Score Template: {10, 2, 5}

Table 6.21 gives statistics detailing the proportion of segments con-

taining NCT, CT- and where the quantity of NCT is greater than CT,

for input set data and for the processed BNC segments across the corpus.

Averages for the corpus are shown at the bottom of the table.

The reduction of segments containing NCT in the input set data from

an average of 75.8%, down to an average of 30.9% for the BNC data,

shows that the algorithm is successfully removing NCT from more than

half of the input segments. A smaller quantity of segments (14.3%) have

legitimate chord tones removed during processing; the average quantity

of segments missing chord tones (CT-) moves up from 28.9% in the in-

put set data to 42.1% for the BNC data. The increase is relatively small

when compared to the quantity of segments where NCT are successfully

removed. Almost 20% of input data segments contain an equivalent num-

ber or higher of NCT compared to CT. This value is reduced to just over

10% of segments in the processed BNC data.

The data evidences that the production of multiple equal scoring chord

templates from the BNC chord matching method is a significant problem

with 41.3% of segments across the corpus resulting in multiple possible

chord symbol choices. This is an area for improvement in future work;

having to select a chord label from a number of possible options increases

the potential for erroneous labelling.

To assess the effectiveness of weighting the chord templates on the



CHAPTER 6. CHORDS IN ORNAMENTAL MUSIC 176

Table 6.21: Statistical comparison of ground truth chord tones in relation to
input segment tones and processed note group tones (BNC ) across the corpus.
The columns entitled NCT give the percentage of segments containing non-
chord tones. The columns headed CT- give the percentage of segments with
missing chord tones. The columns heading NCT>CT give the percentage of
segments where the number of non-chord tones is equal to or greater than the
number of chord tones. The Multiple templates column refers to the production
of more than one possible chord template match. Columns 2-4 give data about
notes in the input segment, columns 5-8 show statistics for the BNC. All values
are expressed as a percentage of the total number of segments in the sequence
containing these features.

Prelude Input Segments BNC Segments Multiple
NCT CT- NCT>CT NCT CT- NCT>CT Templates

1.0 10.7 14.3 0.0 5.7 15.7 0.0 20.7
2.0 91.5 34.2 19.1 19.7 40.1 9.9 43.4
3.0 45.2 21.2 21.2 20.2 32.7 5.8 35.6
4.0 98.7 10.3 46.2 57.7 41.0 25.6 42.3
5.0 93.6 52.9 10.0 36.4 68.6 12.9 60.0
6.0 59.6 9.6 14.4 37.5 28.9 11.5 35.6
7.0 85.7 29.3 21.1 42.1 52.1 14.6 49.6
8.0 63.3 20.0 9.2 24.2 26.7 7.5 40.0
9.0 78.1 36.5 21.9 37.5 46.9 12.5 51.0
10.0 98.2 32.9 28.7 44.5 51.2 14.6 59.8
11.0 98.6 6.9 4.2 16.7 16.7 1.4 13.9
12.0 81.8 18.2 19.3 45.5 39.8 23.9 40.9
13.0 54.2 37.5 10.8 21.7 38.3 9.2 40.8
14.0 96.9 35.4 11.5 14.6 41.7 3.1 56.3
15.0 41.5 29.0 9.2 21.1 31.6 3.3 16.5
16.0 97.4 14.5 23.7 56.6 42.1 21.1 39.5
17.0 69.7 43.9 13.6 24.2 50.8 7.6 42.4
18.0 58.6 49.4 7.5 22.4 51.7 5.2 44.3
19.0 95.8 57.3 29.2 32.3 71.9 17.7 55.2
20.0 90.5 11.9 22.6 28.6 32.1 7.1 29.8
21.0 57.5 16.3 15.0 36.3 45.0 10.0 42.5
22.0 86.5 24.0 12.5 34.4 34.4 3.1 29.2
23.0 86.8 38.2 7.9 23.7 50.0 2.6 39.5
24.0 79.3 49.5 16.0 38.8 60.6 17.0 61.7

Average 75.8 28.9 16.4 31.0 42.1 10.3 41.3

chord match process, we evaluate the impact of the different chord tem-

plate representations. For each dictionary weight format, the following

results are counted: the number of times multiple equal scoring templates

are generated per single input segment per prelude, the number of times
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Table 6.22: Impact of weighted chord templates on accuracy and multiple tem-
plate generation.

% Multiple Top % Ground Truth % Matched
Scoring Chord in Single

Weight Type Templates Multiple Match Results

Basic (no weight) 25.2 62.7 60.7
Profile Weights 28.2 61.2 57.0
Tonic Weights 29.1 57.5 55.5

a list of multiple top scoring templates contains the desired ground truth

template, and, where there is a single chord template result for a segment,

the number of times this single chord template matches the ground truth

chord. As can be see from the results shown in Table 6.22, and contrary

to expectation, the non-weighted chord templates produce the best results

for all three categories measured.

The final stage is to reduce all multiple top scoring template lists per

segment to a single chord choice so that a sequence of individual chord

labels is produced for each prelude. For each set of multiple templates,

preferred templates are selected by computing the closest match between

the template pitches and the note combination pitches. This is calculated

using mathematical set theory. In mathematics, the intersection of two

sets A and B is the set that contains all elements of A that also belong

to B, or vice versa. The symmetric difference takes set A and B and

computes a new set containing elements in either A or B but not in both.

The combination of these two membership tests can be used to ascer-

tain the degree of pitch commonality between a template set and a note

combination set.

For example, given the BNC note combination [1, 8], (call it A) and

two templates [1, 4, 8] (B1 ) and [1, 4, 8, 11] (B2 ), the intersection of

A and B1 is the same as A with B2, (set [1, 8]), however the symmetric

difference between A and B1 is a smaller set ([4]) than the symmetric

difference between A and B2 (set[4, 11]), and for this reason template B1

is selected as the one most closely matching set A. The membership test

of pitches method proves to be an effective way of narrowing down a list
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of choices from the templates. Should more than one top scoring template

remain, the options are reduced again in accordance with the chord pro-

file probability table of Pardo and Birmingham [2002], in which chords are

preferred in accordance with their interval profile as follows: major, dom-

inant 7th, minor, diminished 7th, half-diminished 7th, diminished triad.

For example, should the list contain a dominant 7th and a minor chord,

after the application of the preference rule, only the dominant 7th chord

would remain. Finally, due to some multiples containing different inver-

sions of a diminished 7th chord, a single chord choice is preferred based

by matching the root note of the chord with the lowest pitch of the note

combination. This combination of rules reduces the options to a single

choice for each note group for the corpus.

6.6 Results and Discussion

We have shown that identifying the underlying harmony in ornamental

keyboard music is a challenging task both for the human annotator and for

automatic methods of chord recognition. Variations in harmonic rhythm,

melodic processes, and note emphasis techniques; sparse textures from

which critically defining chord notes are missing; ornamentation featuring

contrasting chord and non-chord tones; and above all, ambiguity of both

key or chord in some segments, renders this an extremely difficult task.

It would be useful to have an upper limit of accuracy based on human

annotations of this or another corpus of common practice musical works,

but to obtain this kind of measure a single musical corpus would need

to be annotated by a number of human annotators using the same beat

segmentation and adopting the same approach and methodology. The

level of deviation between the resulting annotated sets could be measured.

However, there is no data available for this.

The overall results for the combinations (BNCs) matched to chord

templates using all four chord dictionary types are shown in Table 6.23.

The average result for the corpus for the triads dictionary is slightly below

that of the Harman result at 59.7%, however our method reduces all chord

options to a single chord choice while Harman is left with multiple options,
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Table 6.23: Chord accuracy results using the combinations method with four
different chord dictionaries. Chord options are reduced to a single chord option
in the method.

Prelude Triads Triads and 7ths Triads, 7ths and 9ths All Templates

1.0 79.3 89.2 86.3 86.3
2.0 62.3 62.0 62.0 62.0
3.0 69.2 65.4 64.4 64.4
4.0 47.4 40.8 39.0 36.8
5.0 49.6 43.1 41.6 41.6
6.0 61.5 56.7 56.7 56.7
7.0 55.2 45.0 44.6 44.9
8.0 61.7 67.5 66.7 66.7
9.0 61.5 53.1 53.1 52.1
10.0 49.1 41.0 40.4 40.0
11.0 77.8 81.9 81.9 81.9
12.0 52.9 51.7 49.4 49.4
13.0 63.3 65.0 64.2 64.2
14.0 63.2 62.1 62.1 61.1
15.0 73.7 69.1 69.1 69.1
16.0 47.4 35.5 35.5 35.5
17.0 62.1 57.6 56.8 56.8
18.0 62.1 58.6 57.5 57.5
19.0 41.7 38.5 38.5 37.5
20.0 63.9 63.9 62.7 62.7
21.0 61.3 48.8 45.0 45.0
22.0 58.5 60.6 57.5 58.5
23.0 61.8 54.0 51.3 51.3
24.0 46.8 42.5 40.9 37.6

Average 59.7 56.4 55.2 55.0
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any one of which could be the correct template, thus the evaluation of our

method is stricter. The performance of the method in conjunction with

all of the four dictionaries is highly consistent across all dictionary types:

averages for the four dictionaries are 59.7%, 56.4%, 55.2% and 55.0%,

thus there is only a 4.7% deterioration of results from the simplest Triads

dictionary to the most comprehensive All Templates dictionary. The trend

is a significant improvement over that evidenced by the Harman method.

Considerably higher levels of accuracy are achieved for individual preludes

containing a high proportion of passing notes and ornamental non-chord

tones in comparison to the prototype method.

Harman has been found to be a useful labelling method if simple triadic

structures are all that is required; however, for the purposes of in-depth

automatic music analysis and more profound style characterisation, the

fundamental triad types are considered to be insufficiently descriptive. In

addition, the method features no processing of the digital data to iden-

tify inessential notes prior to labelling, consequently the effectiveness of

the method is significantly impacted by the presence of such notes in in-

put groups, and yields much lower accuracy results in conjunction with

ambiguous data. The method also progressively drops off in accuracy in

relation to the addition of complex chord types to the chord dictionary,

consequently without modifications the method is not suitable for the

generation of information rich harmony labelling, particularly in conjunc-

tion with complex corpuses. Removing inessential notes from the input

group was found to improve the effectiveness of the Harman method by

almost 20% when used in conjunction with the All Templates chord dictio-

nary. The method generates large numbers of multiple top scoring chord

definition templates, thus extensions to existing preferences rules for the

purposes of final chord selection are necessary.

This chapter also details significant work in the automatic processing

of digital scores in order to access the kind of note features that would

be used by a human analyst when annotating music with chord labels.

Prior to obtaining note features, the score data is segmented into tempo-

ral beat segments corresponding to compound or simple beats, and a novel

musical voice separation method, a further pre-requisite processing stage
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necessary for the identification of linear note features (such as passing

notes and neighbour notes), demonstrates a high level of accuracy when

compared to MIDI ground truth data. A new voice thresholding approach

estimates the number of musical voices in the score and successfully coun-

ters the impact of dense chords on overall voicing values. The chapter goes

on to detail a novel method of passing note identification based on linear

voice stepwise movement and the tertian intervallic relationships of clas-

sified notes to surrounding notes. The interval relationships are used to

ascertain the degree of certainty of the passing note classification. Notes

of duplicate pitch within the same segment are subsequently re-classified

to align all matching pitches. The passing note method is not tested di-

rectly on ground truth data, however the subsequent calculation of the

percentage of non-chord tone removal from input data shows that 60% of

the input sets with non-chord tones have the non-chord tones successfully

removed by the combinations method (Table 6.21).

An important point of note is that this work addresses two specific

categories of inessential notes only : neighbour notes, and passing notes

situated in a stepwise series of three. There are many other categories

of inessential notes; these are not covered by the work described here.

Consequently, it is not possible to ascertain the extent to which the 40%

remainder of input sets still containing non-chord tones is attributable to

errors in the detection of non-chord tones, or the extent to which it is

attributable to the presence of categories of inessential notes that are not

accounted for.

The combinations method makes no prior decision regarding the num-

ber of notes present in any one segment that form part of a chord or best

combination; all distinct note combinations in all segments are submitted

to the algorithm as potential chord combinations. Note features, including

metrical and durational emphasis, and inessential note classification, are

used to derive a measure of individual note importance within the context

of the segment, and the tertian arrangement potential of each subset of

notes is also calculated. The two measures are combined to produce a

final combined measure, thus generating three distinct sequences of top

scoring best note combinations per prelude. The three sets of sequences
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are compared to hand-annotated ground truth data. The tertian arrange-

ment of notes produces a more accurate series of note combinations than

the groups produced by note importance features, however the genera-

tion, interaction, and scoring of these features is complex and open to fur-

ther experimentation. Combining measures of note importance with the

scoring of tertian arrangements produces the best overall results for the

dataset. Segmenting some of the preludes at the compound beat level is

shown to produce situations of tonal ambiguity that are not resolvable by

either the tertian arrangement or note importance rules used in this work;

the method attempts to account for as many pitches as possible within a

single label, and group subdivision is not attempted. Re-segmenting the

data of a compound beat prelude to a smaller beat level and matching

this to a unique set of annotations evinced considerable improvement in

results, evidencing that the level of harmonic movement was often at the

smaller beat level, and that accessing the harmonies at the reduced du-

rational level was possible by the chord recognition method described in

this chapter.

An observation from the work presented in this thesis is that the com-

bination of inessential notes (or NCT ) with omitted chord tones CT-

presents significant difficulties. Figure 6.25 plots the accuracy data of

the combinations method in conjunction with non-weighted chord tem-

plates compared to the proportion of NCT and CT- (missing chord tones)

in the BNC segments. The graph visually demonstrates a relationship

between the presence of spurious or conflicting tonal elements in the data,

missing or omitted chord notes, and the capability of the software to cor-

rectly identify the underlying harmony. Accuracy levels significantly drop

off as the quantity of positive chord evidence reduces and the proportion

of alternative tonal elements increases. In some cases features of articu-

lation, such as metrical emphasis, duration, registral emphasis and pitch

repetition may be sufficient to overcome the conflicting chord information

presented by missing chord notes or the presence of ornamental non-chord

notes.

In some cases however, the features of articulation captured by the

methods described do not cause a removal of non-chord tones, and this
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presents a significant problem to the automatic chord identification meth-

ods explored.

Despite considerable success in the removal of non-chord tones from

the best combinations (BNCs) segments, matching the note content of the

BNCs to chord dictionaries in order to obtain a single final and accurate

chord label per segment remains challenging. The greater the number of

non-chord tones, and the fewer defining chord tones (i.e. chord tones that

have been omitted), the harder it is to access the underlying harmony.

The problem is exacerbated by the inclusion of complex chord types such

as 9ths, 11ths and 13ths in the template dictionary, often resulting in

erroneous chord matches if the presented notes contain conflicting tonal

content. For the advancement of systematic musicology research however,

resolving the automatic capture of extended chord types is mooted to

be a necessity. An alternative method of matching notes to dictionary

templates is suggested for future research, (see next chapter), representing

complex chords by their common musical pitch articulation, rather than

by including every one of the component tones of the chord.

An improvement in the level of sophistication to automatic harmony

processing has a great deal of potential for systematic musicology. En-

hancements in this area may lead to the production of high quality har-

mony data that could be used in the automatic analysis of large corpuses.

In addition, although this work has been tested on a corpus in which the

use of extended chords is relatively limited, in the interests of general

applicability, richness of information, and facilitation of systematic musi-

cology research, automatic methods must be capable of accessing vertical

sonorities beyond those of basic triads and sevenths. Once this has been

achieved it will become possible to access characteristic high level aspects

of a composer’s harmonic language potentially producing novel insights

that are supported by quantitative data.
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Figure 6.25: Chord accuracy results of note combinations using the All Templates dictionary compared to the percentage of
NCT and CT- for the BNC segments per prelude. The graph demonstrates the impact of non-chord tone or missing chord tone
elements in the segments on chord match accuracy, with accuracy levels decreasing as the proportion of NCT and CT- increases.



Chapter 7

Conclusions and Future Work

This thesis commenced by stating that the aim of this research was to bring

the disciplines of musicology and computer science closer together. Three

main aims were identified, the primary focus of which was an improve-

ment in computational methods of extracting harmony information from

digital corpuses. Systematic musicology offers immense potential for novel

exploration of music producing quantitative results, but for systematic ap-

proaches to deliver the kind of high quality and transparent information

about complex music such as that of the Baroque period, a great deal

of work remains. This chapter summarises the discoveries made during

the course of this doctoral research, and suggests developmental areas for

future work in the field.

7.1 Conclusions

Chapter 1 highlights the language and approach of the discipline of musi-

cology, and defines the differences between critical analysis (the close study

of a single work), and style analysis (the study of commonalities across a

body of works), in music. The writings of Deliege and Cambouropoulos are

discussed with reference to definitions of a ‘musical surface’; in particular,

the idea that human listeners make sense of music by abstracting complex

musical structures, or ‘wholes’, from the sequences of note events they

hear, and that this concept needs to be moved across into computational

work in order to make any real progress in computational musicology. A

motivation of the work presented in this thesis is to pursue the idea of ab-

stracting more meaningful musical constructs, thus expediting automatic
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harmonic analysis.

Chapter 2 presents an overview of core concepts in musicology, provid-

ing details of the theoretical foundations on which the research is built.

Topics covered include counterpoint, harmony and metre, and the rela-

tionship of these to broader topics such as musical style. Music theoretic

and analytical theories that have influenced the approaches adopted in

this research are outlined.

In Chapter 3 research relating to the computational abstraction of

musical constructs and harmony are reported. The most successful ap-

proaches to musical voice separation and automatic chord symbol extrac-

tion, in terms of accuracy levels or popular adoption in the community,

are given particular attention due to their influence on the work presented

here. The chapter highlights the difficulty in the abstraction of core musi-

cal concepts such as chords, key and voicing from digital data, and attests

that producing high quality software to analyse music continues to be a

challenging problem.

Chapter 4 describes key and modulation detection from automatically

generated chord sequences using hidden Markov models (HMMs). One of

the most interesting results of the work was the accuracy of the results

obtained from audio data compared to the MIDI data; errors which oc-

curred during transcription were progressively smoothed out during chord

and key modelling, ultimately resulting in comparable levels of key out-

put accuracy and suggesting the potential for this type of digital data for

future research as transcription methods continue to improve. Exploiting

the framework of the models to test the effectiveness of Krumhansl’s per-

ceptual chord and key data against values elicited heuristically from the

harmonic theory of Arnold Schönberg, we found that values linked to mu-

sic theoretic principles consistently produce the most accurate key change

results, both in terms of determining the precise moment of key change -

a widely acknowledged problem in this type of work - and in terms of pin-

pointing the correct key, when compared to hand annotated ground truth

data. The work expands previous work in this area by including larger

sets of chord symbols; models testing perceptual data necessarily symbol-

ise the 48 major, minor, diminished and augmented triads, however further
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models add the full range of seventh chords, as defined by Schönberg, to

this basic set. The models based on the more complex observation data

produce more equivocal results, partly due to the imbalance between the

number of chords defined as being part of the minor key compared to

the number of chords representing the major key (i.e. considerably more

chords are defined as symbolising the minor key), weighting the models

towards major key outputs. In addition, the more equivocal results of

seventh model suggests that extended chords increase tonal ambiguity in

contrast to simply triads which are able to define key more clearly. Sig-

nificant deviation in key outputs between the various models highlights

areas of complex or ambiguous harmony in the data set. Overall, all of

the models produce key data of sufficient accuracy to obtain measures of

modulatory type, frequency and key distance.

The final two chapters of this thesis present work to abstract the un-

derlying chord structure of the complex keyboard music of J. S. Bach,

by removing inessential notes and identifying tertian pitch relationships.

To our knowledge this is the first attempt to classify inessential notes in

ornamental music and use this information to extract a broad range of

chords from an intricate test corpus.

An important contribution of this work is the annotation of ground

truth chord data for J. S. Bach’s first twenty four preludes of the Well

Tempered Clavier, Book One. Chapter 5 describes the process of hand an-

notating the dataset, subsequently used to evaluate the output sequences

of the structural note methods. Prior to this, no complete sets of chord

or key annotations exist for the test corpus; the partial annotations by

Riemann provided a valuable source of reference [Riemann, 1890]. A fur-

ther contribution is the extension of Chris Harte’s chord annotation syn-

tax [Harte, 2010], to facilitate the annotation of western classical music.

Modifications include: allowing more than one permissible chord label;

the representation of pedal notes; and additional shorthand labels for ex-

tended chords. A software parser converts the chord labels to pitch class

set format, optionally containing pedal note information.

The data processing required to reach the stage of being able to test
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a structural note algorithm based on abstracted note features is consider-

able. A method to segment into linear voice groups extends the approach

of Chew and Wu [2005] and yields a high degree of accuracy. Novel addi-

tions include an alternative method of data segmentation, repeat parsing

to clarify ambiguous linear note connections, the inclusion of dense chords

(removed by other algorithms due to their negative impact on results),

and a thresholding method to ascertain optimum voicing. A novel aspect

of the work is the computation of a measure of contextual note importance

from note features that aims to mirror the musical articulation. Follow-

ing rigorous feature definition, contour, metrical strength and inessential

note classifications are determined from the digital data. Although the

passing note method is not tested empirically, subsequent evaluation of

the chord results demonstrates that a high proportion of inessential notes

are successfully removed from input groups (see below).

The method intentionally avoids predetermining the note membership

of structural note groups, and using a brute force approach scores all of the

distinct note combinations of an input group. The first scoring method

is based on note features (such as metre or note classification), the sec-

ond method computes the tertian chord potential of each subset. The

two types of scores are then combined to obtain a final third combina-

tion score (and associated note combination). In each case, multiple top

scoring combinations of notes are reduced to a single choice via musically

informed preference rules. The result is three unique sequences of best

note combinations (BNCs) per prelude. The combination of both note

features and tertian arrangement potential, (third type of measure), pro-

duces the best series of BNCs when compared to hand annotated data,

with an average level of accuracy of 60.8% across the corpus.

Comparison of the notes in the hand annotated chord data, the notes

presented in the input data, and the notes contained in the BNCs, affirms

that the methods are successful in the removal of non-chord tones from

segments NCT, with 60% of segments having NCTs removed. A compar-

atively smaller quantity of chord tones CT are also erroneously removed

during processing. Matching the BNC sequences to four different types

of chord dictionary produces consistent accuracy levels across the four
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dictionary types, (59.7%, 56.4%, 55.2% and 54.9% for each of the dictio-

naries from simplest to most comprehensive), clearly outperforming the

prototype Harman method in this respect. The work has produced quan-

titative data evidencing that the relative proportions of NCT, CT and

missing or omitted chord tones CT- in input segments and BNC directly

influence chord abstraction accuracies. The prototype method clearly ex-

poses the problem of allowing inessential notes to be present in input

sets to any chord algorithm for this type of data: the method generates

large quantities of multiple equal scoring templates per segment, and re-

veals progressive and significant deterioration of accuracy levels directly

in line with the increase in size of chord dictionary, (specifically, averages

of 63.0%, 47.2%, 30.7% and 22.4% from the smallest to the largest dic-

tionary). Individual preludes give particularly poor results when they are

segmented at the larger beat level, (for example prelude 18), revealing that

the method is weak at abstracting chord designations when more than one

legitimate chord is present within a segment. The removal of notes from

input sets designated as inessential by the methods described in this thesis

are shown to lift the final Harman result from 22.4% to 40.2%.

Our work proves that correctly differentiating between inessential and

chord notes in complex music is an imperative component of any ap-

proach to musical harmony in complex corpuses; more so when the aim

is to access diverse, accurate and information-rich harmonic descriptors.

The work presented in this thesis shows that the development of compu-

tational methods that move beyond the superficial stream of notes at the

surface level of a score are vital to the advancement of the state of the art

in computational musicology and MIR. The work is possibly relevant to

automatic genre recognition and music recommendation systems. Some

ideas for future work in this respect are outlined in the following section.

7.2 Future Work

Several areas for future work have presented themselves during the course

of this doctoral research, these are now detailed as follows.
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7.2.1 Musical Voicing

The intractability of the problem of musical voicing lies less with the dif-

ficulty of producing algorithms capable of accurately voicing music, than

with difficulty of arriving at a precise definition of what a musical voice

actually is. The term has evolved from early ‘a capella’ vocal practice in

which there are fixed number of (human) voices sounding a single note per

voice, to later keyboard idioms, in which a single musical ‘voice’ may have

many notes at any one time and in which the texture is constantly vary-

ing. The clear indication is that it is not valid to restrict a computational

model to one note per voice, either from a compositional or perceptual

perspective. In addition to this, there is the concept of voice-leading,

another oft-used term with multiple interpretations. In Schenkerian anal-

ysis, voice-leading refers to higher level motivational and structural forces

in the music, rather than note to note progressions at the surface level

of part writing. A theoretical model representing an alternative view-

point of musical voicing with the potential to separate out the individual

voice elements of compound melody and access higher level voice-leading

structures would therefore be a significant contribution to systematic mu-

sicology. Vertically clustering pitch groups would enable pitch range sim-

ilarities to identify linear connections and thus indicate voice membership

rather than the more usual method of pitch succession. An example of the

proposed model can be seen in Figure 7.1. In the figure, the first one or two

bars of the first four preludes is shown followed by the vertical stacking of

notes per beat, disregarding the metrical position or duration of individual

notes within the beat. The registral organisation of the notes within the

beat is rendered immediately apparent. In the figure, note stems are used

to indicate membership of one of a maximum of four voices. Although the

examples shown in the figure do not signify the voicing of the entire work,

the excerpts provide a useful basis for discussion in order to understand

the possibilities of a vertical stacking method to discover how notes should

be integrated vertically into a single musical voice.
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7.2.2 Passing Note Identification and Chord Algorithm Im-

provement

Indirect testing of the passing note method indicates that it is successfully

classifying a proportion of passing notes in the test corpus. To understand

precisely how well the algorithm works in its current format, and to quan-

titatively test, research and improve the algorithm, the most important

next step is to create the necessary ground truth data against which to

compare the method. Such data will be drawn from the existing test cor-

pus, but also from contrasting corpuses in order to produce a passing note

algorithm that is as generally applicable as possible. A further important

improvement on current work, is to incorporate note feature abstraction

fully into the combinations algorithm, and to simultaneously assess both

note features and tertian interval relationships. This has the potential to

raise the accuracy levels described in this thesis. Individual note features,

for example, metre, may be systematically tested, to ascertain the degree

of influence each feature has on chord results. Consideration needs to be

given also to the issue of missing chord tones, which could potentially be

addressed during combinations processing, or subsequently via different

types of chord templates.

7.2.3 Refinement of Hand Annotated Data for Use by the Com-

munity

The hand annotated chord and key data listed in chapter 4 and the chord

data in chapter 5 was created by a single annotator. Existing sources of

harmony data for the test corpuses were referred to as far as possible dur-

ing the process, however, to be fully assured that the datasets are robust

and accurate, in particular with respect to the more complex and equivo-

cal Bach preludes, an important future goal is to involve other musicians

in the production and/or verification of the data. At present, parallel key

data exists only for a small quantity of the preludes test corpus; complete

sets of robust chord and key annotations for both chorales and preludes

by J. S. Bach will be an invaluable contribution to the MIR community,
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enabling novel research into harmony algorithms. The current set of ex-

tended chord definitions in the syntax will also be extended to produce a

comprehensive set of chord classifications representative of later musical

periods and jazz.
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Figure 7.1: Vertical stacking of notes per beat to obtain voice groupings.
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