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Motion prediction and interaction localisation of people in crowds

Abstract

The ability to analyse and predict the movement of people in crowded scenarios can be of

fundamental importance for tracking across multiple cameras and interaction localisation. In this

thesis, we propose a person re-identification method that takes into account the spatial location

of cameras using a plan of the locale and the potential paths people can follow in the unobserved

areas. These potential paths are generated using two models. In the first, people’s trajectories are

constrained to pass through a set of areas of interest (landmarks) in the site. In the second we

integrate a goal-driven approach to the Social Force Model (SFM), initially introduced for crowd

simulation. SFM models the desire of people to reach specific interest points (goals) in a site,

such as exits, shops, seats and meeting points while avoiding walls and barriers. Trajectory prop-

agation creates the possible re-identification candidates, on which association of people across

cameras is performed using spatial location of the candidates and appearance features extracted

around a person’s head. We validate the proposed method in a challenging scenario from London

Gatwick airport and compare it to state-of-the-art person re-identification methods.

Moreover, we perform detection and tracking of interacting people in a framework based

on SFM that analyses people’s trajectories. The method embeds plausible human behaviours

to predict interactions in a crowd by iteratively minimising the error between predictions and

measurements. We model people approaching a group and restrict the group formation based

on the relative velocity of candidate group members. The detected groups are then tracked by

linking their centres of interaction over time using a buffered graph-based tracker. We show how

the proposed framework outperforms existing group localisation techniques on three publicly

available datasets.
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Chapter 1

Introduction

1.1 Motivation

With the increasing number of cameras deployed in public areas, it would nowadays be possible

to simultaneously monitor a high number of people, if not for the fact that surveillance operators

are only able to watch multiple video streams for a limited amount of time due to the repetitive

and tedious nature of the task. In order to address this problem, our research aims at an automatic

scene understanding where human motion models can generate likely movements for people, and

help the prediction of people’s motion in unobserved areas and the localisation of interactions.

Surveillance of large areas such as airports and train stations requires the deployment of

networks of cameras whose field-of-view (FOV) may be disjointed, thus generating unobserved

areas that make the task of tracking a person across the network very challenging (Fig. 1.1).

Moreover, the different positioning of the cameras in the network with respect to the scene, in-

volves changes in the pose and scale of people, and changes in illumination that modify the per-

ceived appearance of a person across cameras (Fig. 1.2). Most of the approaches for multi-camera

tracking presented in the literature employ machine learning tools to model the expected move-

ments and appearance of people, however these strategies require a training phase performed on

datasets that are normally large and time consuming to collate, thus limiting their applicability.

In order to avoid extensive learning phases with large amounts of data, we propose a method to

propagate people’s movements in the unobserved areas that makes use of the knowledge of the

map of the area and does not need any training set. People are expected to move towards regions

8
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1

3

Figure 1.1: Example of person re-identification for multi-camera tracking. Top-view map of the
London Gatwick airport (i-LIDS dataset [43]), where the coloured polygons indicate the FOV of
Camera 1 (blue) and Camera 3 (green).

of interest and location hypotheses for people’s movements are created over time that provide an

estimation of where people will be visible again in the next camera. This spatio-temporal infor-

mation is then merged with appearance cues for the association of people across cameras. In our

experiments, we validate the proposed method on video sequences from an airport scenario.

Furthermore, the localisation of group formations is very important to redirect the focus of

attention of a surveillance operator towards areas where interactions are happening, for security

reasons, and to perform scene analysis, for scene understanding. The task becomes very chal-

lenging when people are in a crowd, and when interactions have to be detected instantaneously

or within a short period of time in order to make an immediate decision when necessary. In our

research, we assume that people’s trajectories are known, and we analyse them to extract peo-

ple’s relative velocities and directions of movement over time. Interaction localisation is then

performed using a human motion model that generates the expected people’s movements in both

the situations when people walk alone and in a group. A temporal linking of the centres of inter-

action allows a clear definition of the movement of each group, if a new group is formed, and if

more people join an already existing group. The experiments show that our method is effective
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Appearance of people across cameras. Column 1: camera 1, full frame; Column 2: corresponding crop of a person of interest; Column
3: camera 2; Column 4: corresponding crop of a person of interest. People appear under different illumination conditions, as shown in (b) and (d),
and under different poses and levels of occlusion, as shown in (f) and (h).

Multi‐person 
detection

Feature 
extraction

Feature set

Cam 1

Feature set 
database

Manual 
input

Association
Camera calibration 

information
Re‐identification

Multi‐person  Feature 
Cam N

detection extraction

Training

Figure 2: General block diagram for person re-identification approaches.

Existing person re-identification methods are validated on snapshot-based or video-based datasets. VIPeR (Faren-
zena et al., 2010; Prosser et al., 2010) and i-LIDS-static (Farenzena et al., 2010; Bak et al., 2010; Prosser et al., 2010)
are the most common snapshot-based datasets used to validate appearance based methods mostly containing people
with full body visibility. The Terrascope dataset (Jeong and Jaynes, 2008) is a video-based dataset with nine indoor
cameras where eight people walk and act in an office environment. (Javed et al., 2008) presents a video-based dataset
with three sequences composed by up to three cameras from indoor and outdoor scenarios with large illumination
changes and up to four fully visible people. Finally, a more challenging dataset in terms of occlusions is presented in
(Kuo et al., 2010) composed of three outdoor cameras where up to ten people walk alone or in small groups.

In this paper we present a unifying overall structure and an in-depth survey of the state-of-the-art for person

2

Figure 1.2: Change of people’s appearance across cameras [43]. Column 1: camera 1, full
frame; Column 2: corresponding crop of a person of interest; Column 3: camera 2, full frame;
Column 4: corresponding crop of a person of interest. People appear under different illumination
conditions, as shown in (b) and (d), and under different poses and levels of occlusion, as shown
in (f) and (h).

in three datasets including a busy square where people are seen to both stand still and walk in a

variety of directions.

1.2 Definitions

The definition of general concepts used in the rest of the thesis is given below:

• Motion: The act or process of changing position or place. Motion can be described by

temporal features that model the temporal evolution of the video sequence [54].

• Movement: An instance of motion [54].

• Behaviour: The response of a person to a stimulus or a set of stimuli in a specific con-

text [15]. Behaviour analysis and understanding involve high-level descriptions of motion

and common motion patterns in the context where they are estimated.

• Interaction: Situation where a person’s behaviour is dependent on other people (one or

more). Communication needs to be established between the interacting people [15].

• Group: A set of interacting people sharing the same objective [15, 78]. Examples are people

walking towards the same direction given the same goal to reach, and people standing still

talking to each other.
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Table 1.1: Level of Service (LoS) [97] and group level for an area of 25 m2. The LoS value is
calculated as area over number of people (Np).

Level of service (LoS) LoS value Np Group level
A = free flowing > 3.25 < 8 Very low
B = minor conflicts 3.25 to 2.32 8 to 11 Low
C = some restrictions to speed 2.32 to 1.39 11 to 18 Moderate
D = restricted movement for most 1.39 to 0.93 18 to 27 High
E = restricted movement for all 0.93 to 0.46 27 to 54 Very High
F = shuffling movement for all < 0.46 > 54 Very very High

(a) (b) (c)

Figure 1.3: Examples of different crowd density levels in the i-LIDS dataset from London
Gatwick airport [43]: (a) Very low; (b) Low; (c) Moderate.

We also define the scene type for a single camera as a combination of crowd density, height

of the camera from the ground and angle, ζ , of the camera from the scene. Still [97] proposes

the Level Of Service (LoS) value as an objective measure for crowd density as it can describe

how freely a person moves within a specific area of interest. The LoS value is calculated as

the ratio between square meters and number of people, Np, and the LoSs are: free flowing (A),

minor conflicts (B), some restrictions to speed (C), restricted movement for most (D), restricted

movement for all (E), and shuffling movements for all (F). Given a fixed area of interest, we

can also define the group levels as a classification of the number of people. Note that a higher

number of people corresponds to a lower LoS and to more crowded scenes. Table 1.1 reports

LoSs and group levels for an area of 25 m2, and Fig. 1.3 shows an example of very low, low

and moderate group levels. In the rest of the thesis, low-density crowd corresponds to LoSs A-B

and group levels very low-low, mid-density crowd to LoSs C-D and group levels moderate-high,

and high-density crowd to LoSs E-F and group levels very high-very very high. In particular, we

concentrate on low- and mid-density crowds since they define the most typical scenes in video

surveillance.
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Moreover, camera heights from the ground are classified in low, middle (mid), and high

positioning. In the case of low positioning, the optical axis of the camera is at most at head

height. In mid positioning, the camera is slightly higher than people, up to five meters. Finally,

in high positioning the camera is well-above the head height (higher than five meters). Each

positioning involves different degrees of complexity depending on the application, e.g. cameras

at low positioning may facilitate the detection of faces [103], but occlusions are more frequent in

the presence of multiple people; while cameras at high positioning reduce the occlusion problem,

but the identification of individuals and their body parts becomes very challenging.

Finally, we consider the angle, ζ , formed by the vertical line perpendicular to the ground

going through the camera centre and the line going from the camera centre to the scene, being in

the range [0◦,90◦]. An overhead camera that provides a top view of the scene has ζ = 0◦, while

a camera with horizontal axis has ζ = 90◦. In the case of ζ = 0◦, the only recognisable part of a

person’s body is the head, but it is unlikely that it gets occluded; whereas when ζ = 90◦ the full

body is likely to be visible but more occlusions are expected due to the perspective.

1.3 Problem formulation

Let M cameras C1,C2, . . . ,CM with non-overlapping FOVs monitor the area of interest, and let

the set of N people P = {P1,P2, . . . ,PN} walk in this area in a low- or mid-density crowd. We

define multi-camera tracking as the problem of tracking each person in each camera view and

associating instances of tracking across cameras. Let us assume C1 to be the first camera where

person Pi is visible. A single-camera detection and tracking algorithm follows Pi in C1 and creates

a trajectory corresponding to the positions of Pi over time. These trajectories can be analysed

in order to localise interactions among people and define the groups Γγ(t) ⊆ P , where γ =

1 . . . |Γ(t)|, |Γ(t)| is the number of groups at time t and people can only belong to one group at the

time. Let us now assume that person Pi leaves C1 at time Te1
i

and person Pr appears in C2 at time

Ts2
r
> Te1

i
, where r = 1,2, . . . ,N. The re-identification task consists of the association between Pi

and Pr using features extracted from single-camera detection and tracking, and information from

the scene, environment and camera locations.



Chapter 1: Introduction 13

1.4 Contributions

Given a set of people moving in a crowded environment, our aim is to model these movements

for (i) motion prediction in unobserved areas and (ii) detection and tracking of groups of people.

Motion prediction provides candidate positions for people’s reappearance using a top view of

the monitored site, created from the environment map as a single reference for all cameras. The

prediction is performed in the unobserved areas through crowd modelling and with a landmark-

based approach. Association across cameras uses spatial locations of the candidates and the

appearance of people. Moreover, detection and tracking of groups is performed on single-camera

views where the relative velocities of moving and stationary people are employed for interaction

localisation.

The main contributions of the thesis are the following:

1. Re-identification algorithm based on motion prediction on a top view. A crowd simulation

model is employed for the propagation of people’s trajectories from the first camera of the

network to the unobserved regions in order to generate candidate locations for people’s

reappearance. Top view is created using an environment map where people’s trajectories

from each camera are projected and where spatio-temporal features are extracted. To the

best of our knowledge, this is the first application of a crowd simulation model for re-

identification [J2].

2. Landmark-based approach on a top view for re-identification, where landmarks correspond

to regions of interest in the scene and people’s trajectories are propagated in the unobserved

regions through the landmarks. The association of people across cameras is performed

online using the candidates generated by the motion propagation and a set of appearance

features extracted from the upper body [J3].

3. Use of plausible human behaviours for detection and tracking of people interacting in a

crowd. Candidates’ group members are selected from those that have coherent directions

of motion and people approaching a group are explicitly modelled using their relative ve-

locities. The centres of interaction for the detected groups are then tracked with a buffered

graph-based tracker that links centre positions over time [C1].

1.5 Organisation of the thesis

This report is organised as follows:
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Chapter 1: Introduction to motion prediction and interaction localisation, description of the

fundamental definitions, formulation of the problem and contributions.

Chapter 2: Previous work on human motion models and human interaction analysis. Organisa-

tion of the state of the art for person re-identification based on features, cross-camera calibration

and association. Summary of the main datasets used for validation of the presented works.

Chapter 3: Person re-identification based on spatio-temporal candidates generated using hu-

man motion models. Association of people across cameras performed using spatial locations of

the candidates and appearance of people. Experimental setup and validation for re-identification

in two cameras of the i-LIDS dataset from London Gatwick airport.

Chapter 4: Group detection using plausible human behaviours. Tracking of the centres of

interaction using a graph-based approach. Validation of the approach on BIWI-ETH, BIWI-

HOTEL and Student003 datasets.

Chapter 5: Summary of the achievements and future work.



Chapter 2

Related work

2.1 Introduction

In this chapter, we present the state of the art for human motion models, person re-identification,

and group detection and tracking. In Sec. 2.2, the human motion models are organised in macro-

scopic, microscopic and mesoscopic approaches based on how the relationship between individ-

uals is modelled. The literature for person re-identification (Sec. 2.3) is organised into its three

main phases, namely feature extraction, cross-camera calibration and association of people [J3].

Group detection and tracking methods (Sec. 2.4) are classified as offline, online, and with latency

based on when the decision is taken. Section 2.5 reports a brief description of the main datasets

employed for validation and Sec. 2.6 provides a discussion of the presented literature.

2.2 Human motion models

We can identify three main strategies for crowd simulation approaches based on how the relation-

ships between pedestrians are modelled, namely macroscopic, microscopic and mesoscopic [119].

Macroscopic approaches consider the crowd as an entity, and movements are modelled as a flow

that people follow. Microscopic approaches consider each person as an entity, and the movement

of each person is modelled by taking into consideration interactions among people and the envi-

ronment. Finally, mesoscopic approaches consider groups of people as entities and model their

movements by considering the movement of both the crowd as a whole and individuals within

the crowd.

15
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Macroscopic approaches are used for person tracking in high-density crowds, where indi-

viduals are difficult to be recognised, but the holistic crowd movements can be modelled as a

flow. Hughes [42] defines crowds as thinking fluids and models them with fluid attributes. An

example of application of this method is reported in Bauer et al. [7] where a high-density crowd

is simulated at the exit of a sport event. Ali and Shah [2] use a similar approach to segment

high-density crowds that move towards the same direction in a structured scenario by capturing

the underlying dynamics and geometry of the flow. While Rodriguez et al. [90] perform people

tracking using a Correlated Topic Model (CTM) in unstructured environments where people may

have heterogeneous movements. CTM is commonly used to model the correlation of different

topics in a document, and in this case the document title is represented by the high-level crowd

movement and topics are used to understand the correlation between different motion patterns.

A mesoscopic approach is presented in Ali and Shah [3] where tracking in crowds is per-

formed using cameras placed up high a long distance from the observed scene. People are

tracked using floor fields in structured environments where high-density crowds have homoge-

neous flows. Floor fields have three components: (i) static floor field to model the scene structure,

(ii) boundary floor field to model the influence of barriers and walls to the crowd flow, and (iii)

dynamic floor field to model people’s behaviour around the tracked individual. Tracking is per-

formed based on the optimisation of a probabilistic framework of floor fields and a colour patch

extracted from each target.

Microscopic approaches are more suitable for modelling and predicting movements of each

single person in the crowd. Lerner et al. [60] perform crowd simulation by learning people’s

movement from real sequences using single-camera tracking, thus obtaining realistic crowd be-

haviours. Brostow and Cipolla [18] spatially and temporally cluster the trajectories of KLT in-

terest points in order to extract their common movements. A discriminator function for motion

coherence is then used to count the number of clusters that, in principle, corresponds to the num-

ber of people. The algorithm is tested on mid- and high-density crowds where pedestrians’ heads

or shoulders are the most visible parts with cameras at mid positioning. Another microscopic

approach to crowd modelling is the Social Force Model (SFM) first presented by Helbing and

Molnar [39] and subsequently refined in Helbing et al. [38] by studying escape panic behaviours.

The SFM is extensively used in crowd simulations and it models forces that guide a person to-

wards a certain goal while avoiding barriers, walls, and other people. Andrade and Fisher [4]
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simulate two escape scenarios using the SFM, where the crowd simulation is studied in order to

understand how people behave in different situations. Results show that the average crowd den-

sity increases more in the case of closed exits compared to the case of a collapsed person. SFM

is also used for abnormality detection in Mehran et al. [72] where the SFM guide the movement

of a set of particles spread in the scene and the interaction forces between the agents (in this case

particles) are computed using optical flow. Abnormalities are detected by finding uncommon

patterns on social interaction forces over time. Furthermore, SFM is applied in single-camera

tracking [50, 59, 66, 93]. Johansson et al. [50] exploit the SFM in order to understand the forces

involved in people’s movement. In this case, the parameters for the SFM are learned from a set

of tracking results and the model is applied in simple scenarios with overhead cameras where

the detection task is already solved. Scovanner and Tappen [93] demonstrate how single-camera

tracking can perform better if the motion model follows a minimisation process of social forces,

instead of using a linear propagation. Forces due to the environment are not considered since

obstacles or walls constraining people’s movement are not present in the scene used for vali-

dation. Similarly, Luber et al. [66] integrate the SFM in a Multi-Hypothesis Tracking (MHT)

framework that uses measurements from a laser scanner, and Leal-Teixé et al. [59] include it in

a graph-based multi-person tracking algorithm where interacting people are also detected.

An alternative solution to the SFM is proposed in Pellegrini et al. [80] with the Linear Tra-

jectory Avoidance (LTA) method. In this microscopic approach, the expected point where people

are likely to move is estimated and a global optimal solution assigns the next step to each tar-

get. An improvement of this method is the stochastic LTA (sLTA) [81] where, compared to the

original LTA, the final decision is based on a mixture of Gaussians that describes where peo-

ple are likely to move. A similar approach is presented in Yamaguchi et al. [110] where, after

learning the model parameters, an efficient energy minimisation algorithm calculates the next

step for each person. A different microscopic approach for single-camera tracking is presented

in Antonini et al. [5], where a Discrete Choice Model (DCM) is the basis of a low complexity

tracking algorithm aimed at following people in crowded scenarios. Single pedestrian move-

ments are predicted in the next frame using a discrete grid and the prediction is performed by

DCM tuned by a learning phase. In this work, image perspective is relatively easy to rectify since

a high-positioning camera is considered.

Moreover, motion models can be applied to predict people’s trajectories and goals. Unlike the
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instantaneous motion models used in single-camera tracking, one of the first attempts of long-

term prediction of people’s movement towards a goal is presented in Vasquez et al. [102]. A

Growing Hidden Markov Model (GHMM) is used to predict a target goal after studying its move-

ments by considering the site map divided by a Voronoi diagram, where learning and prediction

steps of the GHMM are calculated online using the available observations. Kitani et al. [53]

propose a Hidden variable Markov Decision Process (hMDP) to estimate the future locations of

people by exploiting a training phase where likely paths are learned and by analysing the possi-

ble paths a person follows over time. Instead, Gong et al. [34] use a motion planning algorithm

originally developed for robots to create a set of hypothesis paths people can follow to reach a

set of goals by avoiding obstacles. The best hypotheses are then selected by graph search and

used to link short-tracklets over time. Finally, Idrees et al. [44] integrate collision avoidance, ve-

hicle following, trajectory smoothing and stopping behaviour in a framework that estimates the

possible behaviours of cars when unobserved. In this case, the scenario consists of a crossroad

controlled by traffic lights where four overhead cameras are directed away from the centre of the

crossroad, therefore leaving the crossroad unobserved.

Since we concentrate on low- and mid-density crowds, in this thesis we employ a microscopic

motion model for people’s movement. In particular, we opt for the SFM that well describes the

movement of each person towards a desired goal, and the interaction with the environment and

other people. In Ch. 3, the SFM is used for multi-camera tracking to predict people’s motion

on the map of the monitored area, while in Ch. 4 the SFM is employed to estimate the expected

movements of people in order to localise those people that are interacting.

2.3 Person re-identification

After performing single-camera detection and tracking [15, 27], person re-identification is used

for multi-camera tracking. Unlike previous method-based surveys [26], we organise the re-

identification methods into three main phases [J3], namely feature extraction, cross-camera cal-

ibration and person association (Fig. 2.1). The first phase is the extraction of features from the

detected and tracked people. Appearance features include colour, texture and shape [J3]. These

features can be extracted from a single snapshot of a target [121] or, when intra-camera tracking

information is available, after grouping features over time [12]. Moreover, concatenations of ap-

pearance features can also be used [35]. The second phase is cross-camera calibration, namely
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Figure 2.1: Unifying block diagram for person re-identification approaches.

the establishment of the colour and spatio-temporal relationship across cameras that can account

for the variability of observations of the same person across different FOVs. Spatio-temporal

calibration methods encapsulate information about the camera deployment, the spatial relation

between cameras, the entry/exit points in the scene and the travelling time across cameras [47].

Finally, the third phase is the association of candidate image regions across cameras to match

different instances of the same person using the information extracted in the previous phases.

Note that an implicit cross-camera calibration is performed in those approaches that employ a

learning process for association [85, 121]. In Sec. 2.3.1, Sec. 2.3.2 and Sec. 2.3.3, we discuss

the three phases of person re-identification, respectively, and a summary of the analysed works

is reported in Tab. 2.1.

2.3.1 Features

Colour, texture and shape are the appearance features commonly used in the state-of-the-art

methods for person re-identification. Colour features are extracted from the pixel intensity values

of the target; texture features are related to how the various pixels that compose the target are

distributed; and shape features are related to the silhouette of the target. In addition, features

must be robust to changes in pose since cameras can have different viewpoints. To this aim,

features are usually combined together in order to obtain a more representative descriptor of the

target. Furthermore, temporal consistency of features can be exploited in order to merge all the
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Table 2.1: State-of-the-art methods for person re-identification.

Ref.
Person representation Calibration Association
Features Temporal Colour Spatio- Measure Learning Optimisation

Colour Texture Shape grouping temporal based based based
[6] X X X X
[8] X X

[12] X X X X X
[16] X X X
[21] X X X X
[22] X X X X X
[23] X X X X X
[28] X X X X
[32] X X X X
[33] X X X X X
[35] X X X
[36] X X X
[40] X X X
[45] X X
[46] X X X X
[47] X X X X X
[48] X X X
[51] X X X
[55] X X X X X X
[64] X X X X
[65] X X X
[69] X X X
[76] X X X
[83] X X X
[84] X X X X
[85] X X X
[92] X X X X
[94] X X X
[99] X X X
[106] X X X X
[121] X X X

available information taken from multiple snapshots (person patches) over time.

Colour is the most commonly used appearance feature encoded in the form of either his-

tograms [21, 22, 28, 32, 33, 35, 47, 55, 65, 76, 85, 92, 94, 121] or cumulative histograms [12],

which are simple to compute and scale invariant. Different colour channels and their combina-

tions can be used: the Hue channel from the HSV colour space [76]; the Hue and Saturation

channels jointly [32]; the three channels of the HSV colour space [28, 40, 92]; or the Lab colour

space [40]. Also, the histogram of the RGB colour space is widely used [12, 21, 22, 23, 33, 47,

65, 84, 94]. However, Consensus-Colour Conversion of Munsell (CCCM) has proved to be a

better colour space compared to RGB and HSL1 [16]. A concatenation of histograms from RGB,

YCbCr, and HS (from HSV) colour channels (Fig. 2.2) is adopted in Gray and Tao [35], Prosser

et al. [85] and Zheng et al. [121]. An analysis by boosting classifier [35] shows how, for the

re-identification task, the Hue channel is the most discriminative followed by Saturation, Blue,

Red, and Green channels. However this analysis is limited to scenes where people are fully vis-

1HSL is a cylindrical-coordinate representation colour space similar to HSV.
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Figure 2.2: Example of colour and texture features extraction. Colour features can be extracted
from different channels (top row). Textural features can be extracted by applying Schmid (middle
row) and Gabor (bottom row) filters on the Y channel [35].

ible. Alternatively, the two chrominance channels from the YUV space are used in [48], where

a Gaussian Mixture Model is applied to find the most relevant colour clusters, whose centres

are adopted as descriptors. The Dominant Colour Descriptor (DCD) [6] and the Major Colour

Spectrum Histogram Representation (MCSHR) [69] compute the most recurrent RGB colour

values that are then used to represent a patch. Moreover, Maximally Stable Colour Regions

(MSCR) [28] extracts the homogeneous colour in the person patch by grouping neighbouring

colour blobs. Finally, camera parameters and reflectance of the objects’ surface can be studied to

obtain the main appearance characteristic of the target [47]. DCD, MCSHR, MSCR and object

reflectance are features applicable only when a person is captured at medium/high resolution (i.e.

larger than 100×40 pixels) and there is full-body visibility [J3].

The spatial distribution of the intensities in a person patch can be a key feature for person

re-identification. Gabor and Schmid filters (Fig. 2.2) define two kernels for texture extraction

applied to the luminance channel [35, 85, 121]. Gabor filters are linear filters similar to the
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way the human visual system is expected to describe horizontal and vertical structures, while

Schmid filters are rotational invariant Gabor-like filters. HAAR-like features can be used to ex-

tract relevant textural information from the person patch with the aim of finding recurrent colour

distributions [6]. Furthermore, the ratios between different regions in a patch can be used as a dis-

criminative feature. Ratios of colours, ratios of oriented gradients and ratios of saliency maps can

also be used as textural features [12]. Similarly, Recurrent High-Structured Patches (RHSP) ex-

tract the most common blobs in the person patch [28]; in addition to this, salient spatio-temporal

edges (edgels) obtained from watershed segmentation carry information of the dominant bound-

ary and of ratios between RGB channels [32]. The distribution of spatial patches can be directly

extracted in the frequency domain where Discrete Cosine Transform (DCT) coefficients can be

used as textural features [8]. Finally, spatial patch distribution can be extracted by computing

the first and the second derivatives of the person patch resulting in a covariance matrix [55, 106].

Symmetric regions of a patch can be an alternative to the covariance matrix. The symmetry

within the person patch can also be exploited in the extraction of local features, weighting each

feature based on their position with respect to the symmetric part [28]. These filtering methods

are robust to illumination changes but cannot deal with large pose changes. In particular, Gabor

and Schmid filters, and HAAR-like features are local descriptors suitable for small patches, while

the ratios, RHSP, salient edgels, DCT coefficients, and covariance matrix can only be applied to

people’s patches at medium/high resolution. Furthermore, a Histogram of Oriented Gradients

(HOG) gives information on the orientation of the edges in the patch [55, 106], creating a feature

that models the shape of the object by its edge distribution. However, HOG features are only

invariant to changes in illumination, and not to changes in pose and scale. A possible solution is

the CI DLBP, a combination of Colour Intensity (CI) and Distance based Local Binary Pattern

(DLBP) calculated in different colour spaces and their variations, and extracted from upper and

lower body parts [64]. Alternatively, a combination of HSV and Lab, as colour features, with

Local Binary Patterns, as texture features, extracted from small rectangular regions of the full

body can be employed [40]. The silhouette of a person has also been used when cameras are

geometrically calibrated. The bounding box around each person that comes from single-camera

tracking can be exploited by extracting the angle formed by the vertical edge and the diagonal

of the bounding box [22, 33]. A more general feature is the height of the target when calibra-

tion information is available [12, 92]. Finally, interest points can be used for re-identification in
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the case of variations in scale, pose and illumination [9]. Examples are SIFT [99], SURF-like

features [36, 76] and the Hessian Affine invariant operator [32].

When intra-camera tracking information is available, features extracted from single images

can be grouped over time either by temporal accumulation [36] or by clustering [28]. Then, the

most representative patch of the set is kept as representative for the specific person. A spatio-

temporal over-segmentation of patches over 10 frames can be used to create a signature for each

person [32]. However, the most common approach is to keep all the available features extracted

from single patches over time and then perform association by analysing the similarity among

all the available features [12, 47, 55]. Features can also be incrementally updated over time,

for example using Incremental MCSHR (IMCSHR) that updates MCSHR in order to increase

robustness in situations where there are abrupt changes in illumination [69]. Finally, features

extracted from patches of the same person over time can be used as a set of positive samples

for training a learning based method [6]. In general, using temporal information, the effects of

light variations within the same camera and short occlusions of people are reduced because more

representative features for each target are created.

2.3.2 Cross-camera calibration

Cross-camera calibration includes colour calibration and spatio-temporal calibration. Different

illumination conditions across cameras can be compensated with robust features, as discussed in

Sec. 2.3.1, and via colour calibration where cross-camera colour calibration models the colour

relationship between camera pairs [83]. This approach requires a learning stage where, for each

camera, a relationship must be found and updated over time to cope with daily changes in the

lighting conditions. Examples of colour calibration include the Brightness Transfer Function

(BTF) [47] and the Colour Transfer Function [48]. It is demonstrated that all BTFs lie in a

low dimensional space that is discovered using Principal Component Analysis (PCA) on RGB

colour intensities [47]. In this case, colour calibration is based on a linear function. Possible

improvements of BTF are the Cumulative BTF (CBTF) where the contribution of less common

training samples is taken into account [64, 84], the unsupervised incremental CBTF [94], and the

work of Chen et al. [21] that learns offline the BTF for each camera pair and then updates it over

time with an incremental Probabilistic PCA. Clustering with GMM can be used on RBG colour

space [21, 33] or, in order to find an affine colour calibration transformation, on the chromaticity

space [23, 48]. An alternative approach [92] calculates the best value to be multiplied to the RGB
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intensities. Colour calibration can perform well in the case of large inter-camera illumination

changes, however it can only be applied to scenes where abrupt illumination changes are unlikely

to happen.

The knowledge of the environment in which the cameras are deployed can be used to re-

strict the re-identification task within a certain time interval and certain regions of the monitored

scenario, by estimating when and where people are going to reappear in the next camera (spatio-

temporal calibration). The average travelling time across cameras and the expected entry/exit

points in the scene can be learned [21, 33, 47, 55, 71], or manually selected [23, 84]. Learning the

time it takes to travel across cameras can be complemented by the learning of probable entry/exit

regions in the camera network [47, 71]. However, when the relative camera positions are known,

people’s location and speed can be discriminative features for each person [22]. The main limita-

tion of these approaches is that they are only suitable for scenarios where unobserved regions are

easy to model and people always follow the most common paths. Instead of modelling entry/exit

regions and average travelling time for people, a possible solution is to learn the activities in each

camera and then obtain spatio-temporal information for person re-identification by cross-camera

activity matching [65]. Alternatively, in our approach we propagate people’s movements in the

unobserved regions in order to create a set of potential locations for people’s reappearance in the

next camera. We propose two models. The first model discretises the unobserved regions with a

set of landmarks that the hypotheses for people’s movements must traverse [J3] and the second

predicts people’s movement with a SFM-based method by assuming that people move towards a

set of regions of interest, and avoid walls and barriers [J2].

2.3.3 Association

The core of a person re-identification method is the definition of how to match features of can-

didate people. In order to associate the same person across cameras, we can measure the fea-

ture (dis)similarity, use a trained classifier, or perform an optimisation process. The most direct

and straightforward approach is to compute the distance or the correlation between feature sets.

Lower the distance, higher the similarity (lower the dissimilarity), and opposite for correlation.

Due to the challenging nature of the problem, distance and correlation measures are not always

sufficient to obtain good association results. More robust approaches involve learning based

methods. With these methods, the association problem is converted into a class-based problem

where the similarity between features is defined using a training phase. Finally, there exist differ-
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ent approaches that tackle the association problem as an optimisation problem. This optimisation

based person association is a maximisation/minimisation of a probability or of an energy-based

framework. The framework is composed of all the features from people in the scene, matched

using measures and/or learning based methods.

Person association using direct measures estimates the point-to-point dissimilarity between

feature vectors. The Euclidean distance is used for vectors representing colour values [23, 28],

interest points, or hypotheses about a person’s location [32, J3]. The Euclidean distance between

two colours is also included in an ad-hoc similarity measure created to compare two DCD feature

sets [6]. Alternative measures are the sum of quadratic distances [76] and the sum of absolute

differences [36]. The main disadvantage of these point-to-point distance measures is that the

single elements of the feature set are considered separately and the holistic information of the

set is neglected. Other distance measures include the Kullback-Leibler Distance (KLD) [12,

48] and the Bhattacharyya Distance (BD) [28, 65, 84, 94]. KLD is a directed non-symmetric

divergence measure used on feature sets composed of histograms. An additional measure derived

from the Kolmogrov distance is introduced in Madden et al. [69] to compare IMCSHR features,

while Lian et al. [64] employ a Chi square distance applied to different body parts. Correlation

between colour histograms and HOGs of the objects is used in Kuo et al. [55]. In these methods,

the most challenging part is the selection of the best distance for the specific set of features which

is usually chosen by trial and error.

Approaches based on measuring similarity between feature sets are not robust to illumination

changes unless cross-camera colour calibration is performed, as discussed in Sec. 2.3.2. As an

alternative, a classifier can be trained to learn the changes between cameras using labelled fea-

tures. Support Vector Machines (SVM) can be employed with DCT features [8] and SIFT [99].

An improvement of the standard SVM is the Ensemble SVM, as it reduces the computational cost

of rankSVM for high-dimensional feature spaces as well as converting the re-identification prob-

lem into a ranking problem [85]. Furthermore, AdaBoost is applied to person re-identification

to learn weak classifiers based on different feature sets and to identify the most discriminative

features [35]. A different learning-based approach is based on Probabilistic Relative Distance

Comparison (PRDC) [121]. PRDC maximises the probability of correct matches while minimis-

ing that of wrong matches by learning the best distance measure for the association. A similar

approach but computationally more efficient is the one presented in Hirzer et al. [40] where a
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Mahalanobis distance is efficiently learned after PCA has been applied to the feature space. Un-

like direct distances, these methods are less sensitive to feature selection because the importance

of each feature for association is learned using a training set. However, good performances are

only expected in those cases where the testing set is similar to the training set (e.g. training and

testing sets are extracted from the same camera network). A brute-force solution would train the

classifier in each scenario using an ad-hoc training set, but this may not always be feasible as

the labelling of training sets is normally time consuming. In order to address these limitations,

transfer learning techniques may be employed [62]. These techniques can transfer the knowledge

learned in one domain (from a training set) to a different domain, thus limiting and/or avoiding

the necessity of a new training set specifically created for each case2.

Other approaches use optimisation-based algorithms. One of the first attempts is a Bayesian

formulation and MAP [51] where the implementation is based on Linear Programming. This

method was further improved [33, 46] using a learning approach for colour calibration and Parzen

window for spatio-temporal calibration. The concept of belief/uncertainty assignment can be ex-

ploited and the decision for the association problem can be made on specific ad-hoc rules [22].

Also Bowden and KaewTraKulPong [16] designed specific ad-hoc rules for person’s reappear-

ance that are employed in a probabilistic framework. Euclidean distance minimisation can be

used between trajectories projected to the extension of the FOV lines of the cameras [45]. An al-

ternative approach finds the maximum likelihood Probability Density Functions (PDF) of appear-

ance and spatio-temporal features of different observations of the same object using a weighted

sum optimisation [21] or a split graph [47]. Re-identification can also be performed by Hun-

garian algorithm using colour, texture, and spatio-temporal features [55], where the ‘potentially’

correct matches are selected by Multi Instance Learning (MIL) boosting on the spatio-temporal

features. A similar approach is the Multiple Component Matching (MCM) [92] where only posi-

tive samples are used for training, and Hausdorff Distance and BD are used as measures. Finally,

dynamic programming is used to find the fitting of body models across cameras [32]. The main

drawback of optimisation-based approaches is that they operate in a batch mode and cannot be

run online.

When analysing re-identification algorithms using the ranking score assigned to each person,

results on methods solely based on appearance usually achieve less than 40-50% [121] for the

2For the interested reader, a survey on transfer learning techniques can be found in Pan and Yang [77].
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first ranking position (the real re-identification score) when 476 images of 119 people are con-

sidered. Re-identification algorithms that operate in batch mode and also exploit spatio-temporal

features, can achieve results over 90% [47] for the first ranking position in scenes where there

are on average 42 transitions across cameras, linear motion of people in unobserved regions and

full-body visibility. Nevertheless, methods solely based on appearance can be tested using single

snapshots of people (Sec. 2.5.1) and they become very important when cameras are located far

apart. In this scenario, spatio-temporal calibration is very challenging and spatio-temporal fea-

tures become less reliable. However, the propagation of people’s motion [J2, J3] can be applied

to a camera network with non-trivial layout where a set of spatio-temporal cues enhances the

performance of appearance features for association.

2.4 Human interaction analysis

The localisation of people’s interactions can be performed online, offline or with latency based on

when the methods provide an output with respect to the dynamics in the scene. Online methods

enable the localisation of interactions without using future information [10, 20, 118]. Bazzani

et al. [10] propose a Decentralised Particle Filtering (DPF) for group detection and tracking

where the states of the filter contain the position and velocity information of people, and labels

of the group affiliation of each person. Furthermore, Zanotto et al. [118] employ an unsupervised

method for group detection based on Dirichlet Process Mixture Model (DPMM) with real-time

processing, where motion patterns along with social constraints based on rules of proxemics are

used to determine group formations. Real-time processing is also achieved in Chang et al. [20]

where soft grouping structures are detected using a pairwise measure on people’s motion and

group connectivity through graph-cut methods. The soft group structures are then analysed to

estimate the specific grouping scenario.

Offline methods process the information extracted from the whole video in a batch. The ex-

tracted human motion patterns (e.g. position and velocity) are temporally analysed in order to

determine the affiliation of each subject to a particular group and group detection is performed

on the overall permanence of people within a group. Common directions and velocities of hu-

mans processed with a bottom-up hierarchical clustering [30, 31], an optimisation based on La-

grangian theory [86], an SVM classification [110] or a hypothesis testing scheme [117] can be

employed to detect groups. The clustering proposed in Ge et al. [30, 31] uses the symmet-
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ric Hausdorff measure to iteratively evaluate the distance between people belonging to different

groups; the Lagrangian theory proposed in Qin and Shelton [86] uses an iterative two-step algo-

rithm that first links tracklets by Hungarian algorithm and then groups of people are generated

using K-mean clustering; an extensive training on possible distances and velocities are used in

the SVM approach in Yamaguchi et al. [110]; while Yücel et al. [117] employ a hypothesis

testing scheme where positions are modelled with Minimum Spanning Trees and directions with

von Mises distributions. Alternatively, techniques based on social forces can be used to model

behaviours through the analysis of relative motion patterns [59, 74, 75, 105]. The experimental

study of how people self-organise themselves when walking in crowded environments reported in

Moussaı̈d et al. [74] is used in Moussaı̈d et al. [75] to embed group forces in the SFM. Šochman

and Hogg [105] exploit this modification in an error-minimisation framework to detect groups

in mid-density crowds. Finally, Leal-Taixé et al. [59] detect interacting people using the SFM

where people’s proximity is analysed over time. These approaches aim to recognise groups that

contain people who know each other, rather than localising short interactions.

Methods with latency can use the SFM for group modelling, whereas the final group de-

cision [105] is taken with an offline error minimisation process. Interestingly, this algorithm

outperforms state-of-the-art approaches in several difficult scenarios even if the group modelling

only analyses people’s movements and does not employ explicit human behaviour constraints for

group formation. However, this approach struggles to detect instantaneous interactions in some

simple situations which can be partially addressed by offline approaches [31]. In order to address

these situations while maintaining the method with latency, we include in the group modelling

two human behaviour constraints that consider relative directions and velocities of people, and

are calculated instantaneously [C1]. In particular, only people walking together can be detected

as part of the same group and only people stopping in proximity of a static group can be detected

as belonging to that group.

2.5 Datasets

2.5.1 Person re-identification

Existing person re-identification methods are validated on snapshot-based or video-based datasets.

On the one hand, VIPeR [28, 35, 64, 85, 92, 121] and i-LIDS-static [6, 28, 85, 121] are the

most common snapshot-based datasets used to validate appearance-based methods mostly con-
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(a) VIPeR Dataset (b) i-LIDS Dataset
Figure 1: (a) Sample image pairs from the VIPeR dataset [6] and (b) the i-LIDS dataset
(http://www.ilids.co.uk). Each column represents a matching pair of observations with the
top and bottom rows representing different camera views.

public spaces when appearance changes between camera viewscan render different people
almost indistinguishable.

In order to tackle this problem, most existing work has concentrated on compiling feature
sets as a template to describe an individual, followed by template matching using a direct
distance measure chosen independently from the data. The common feature sets include
major colours [9], combinations of colour and texture [10], or complex structural layouts
[4]. Typical distance measures include histogram based Bhattacharyya distance [10], K-
Nearest Neighbour classifiers [7], L1-Norm [12] or distance measures of relative proportions
of colours [9]. Regardless of the choice of features and distance measures, re-identification
by this approach is difficult because there is often too much of an overlap between feature
distributions of different objects, so much so that given a probe image, an incorrect gallery
image can appear to be more similar to the probe than a correctgallery image. Figure1
shows that incorrect matches can often appear almost identical to the correct match. Based
on the assumption that certain features are more suitable for matching than others, Gray and
Tao [5] proposed to use Adaboost to search through a large feature set for those features
that are more relevant (more discriminative) for more reliable re-identification. However,
their feature selection becomes less effective if object feature distributions overlap severely
in a multi-dimensional feature space as each of their weak learners only aims to seek the
most relevant features in each feature dimension independently, not across the entire multi-
dimensional feature space collaboratively.

In this work, we present a novel reformulation of the person re-identification problem.
While previous approaches have looked at this problem as a classification of correct vs incor-
rect match, we propose an approach based on the information retrieval concept of document
ranking [1]. Text document ranking aims to produce a ranked list of relevant documents
based on a user query for document search. We consider that person re-identification given
weakly distinctive (heavily overlapped) visual appearance has similar parallels. Given a
query image, we wish to find those observed people who are mostrelevant, with a focus
on the highest ranked person. The main difference between this approach and previous per-
son re-identification techniques is that we are not concerned with comparing direct distance
scores between correct and incorrect matches. Instead, we are only interested in the relative
ranking of these scores that reflects the relevance of each likely match to the query image. By
doing so, we convert the person re-identification problem from an absolute scoring problem
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by this approach is difficult because there is often too much of an overlap between feature
distributions of different objects, so much so that given a probe image, an incorrect gallery
image can appear to be more similar to the probe than a correctgallery image. Figure1
shows that incorrect matches can often appear almost identical to the correct match. Based
on the assumption that certain features are more suitable for matching than others, Gray and
Tao [5] proposed to use Adaboost to search through a large feature set for those features
that are more relevant (more discriminative) for more reliable re-identification. However,
their feature selection becomes less effective if object feature distributions overlap severely
in a multi-dimensional feature space as each of their weak learners only aims to seek the
most relevant features in each feature dimension independently, not across the entire multi-
dimensional feature space collaboratively.

In this work, we present a novel reformulation of the person re-identification problem.
While previous approaches have looked at this problem as a classification of correct vs incor-
rect match, we propose an approach based on the information retrieval concept of document
ranking [1]. Text document ranking aims to produce a ranked list of relevant documents
based on a user query for document search. We consider that person re-identification given
weakly distinctive (heavily overlapped) visual appearance has similar parallels. Given a
query image, we wish to find those observed people who are mostrelevant, with a focus
on the highest ranked person. The main difference between this approach and previous per-
son re-identification techniques is that we are not concerned with comparing direct distance
scores between correct and incorrect matches. Instead, we are only interested in the relative
ranking of these scores that reflects the relevance of each likely match to the query image. By
doing so, we convert the person re-identification problem from an absolute scoring problem

(b) i-LIDS from London Gatwick airport

Figure 2.3: Examples of different snapshot-based datasets used to test re-identification meth-
ods [85].

taining people with full-body visibility. VIPeR consists of 632 images taken from two outdoor

views [35], while i-LIDS-static contains from 44 [6] to 476 [121] images of people taken from

four cameras at London Gatwick airport. Since motion information is not available, only meth-

ods based on appearance can be tested on these datasets. Figure 2.3 reports examples of these

datasets.

On the other hand, video-based datasets are more representative of video surveillance camera

networks, but no standard datasets have been used in literature. Datasets with only one person

or only isolated people walking in the scene are CAVIAR [6, 36, 76, 99], Terrascope [48], GB-

SEO [12], PETS2007 [94] and others self-made [21, 22, 32, 33, 47, 64, 69, 84, 106]. CAVIAR

is recorded in a shopping centre in Portugal and it has two overlapping cameras with large il-

lumination changes (Fig. 2.4(a)). Terrascope has nine indoor cameras with overlapping and

non-overlapping FOVs that cover a wide area, where eight people walk and act in an office en-

vironment. GBSEO has two non-overlapping indoor cameras (Fig. 2.4(b)). PETS2007 has four

cameras from Glasgow airport, UK. Furthermore, three indoor cameras are used in Madden et

al. [69] (Fig. 2.5(a)) and in Prosser et al. [84] (Fig. 2.5(b)). In Cheng et al. [22] a dataset with

four outdoor cameras is used (Fig.2.6(a)), while three outdoor cameras are used in both Gheissari

et al. [32] and Wang et al. [106] (Fig. 2.6(b)). Javed et al. [47] employ a video-based dataset with

three sequences composed by up to three cameras from indoor and outdoor scenarios with large

illumination changes and up to four fully visible people (Fig. 2.6(c)). Although these datasets
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Figure 7. The sample images from CAVIAR data set. Top and bottom lines correspond to different cameras.

(a) CAVIAR

(b) TRECVID

Figure 8. Cumulative matching characteristic (CMC) curve
for haar-based and DCD-based signature with CAVIAR and
TRECVID database.

independently for each camera. Our goal was to generate
a human signatures using one camera and re-identify an in-
dividual in another camera. In [7] the signatures are built
by collecting the interest-point descriptors using both cam-
eras which simplifies the re-identification problem. Their
goal was to re-identify an individual by signature generated
using descriptors obtained from both cameras. In our case
the extraction of signatures does not require to match the
description of the same individual in different cameras. In
haar-based approach 80% of the queries have achieved a top
ranking true match which is comparable to [7] (82% preci-
sion for a recall of 78%). We have obtained similar results
without the strong assumption of observing people by both
cameras.

Figure 8(a) shows CMC curves for haar-based and DCD-
based signatures. CMC metric shows how performance im-
proves as the number of requested images increases (Rank
Score). DCD signature performs poorly because of signifi-
cant color dissimilarities between both cameras (see Figure
7). Color calibration improves performance but the dissim-
ilarities are so strong that the color transformation function
remains an issue. For example the woman at the fifth po-
sition appeared white on the first camera and blue on the
second camera. Moreover, DCD signature depends strongly
on resolution which can produce an ambiguities in the dom-
inant color extraction.

6.2. TRECVID data
The evaluation of the re-identifiaction algorithm has to

take into account that the chance of choosing the correct
match depends on segmentation results and on the num-
ber of considered signatures. Therefore, for evaluation pur-
poses, 44 individuals were detected using the human detec-
tor based on HOG. DCD signature performs poorly again.
In addition to the strong color dissimilarities, the new is-
sue in the data appears. The people often carry the luggage
which can occlude almost half of the person in one of the
cameras. This problem also produce some challenges for
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(a) (b)

Figure 2.4: Examples of different video-based datasets used to test re-identification methods. (a)
CAVIAR [6]; (b) GBSEO [12].
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Table 3 Comprehensive results of IMCSHR matching

Test case Frame no Camera Typical frame similarity Integrated
(IMCSHR) matching rates

1 (Same object, time disjoint) 282–294 3_0 0.9785 80% (4 out of 5 matched)
001–013 3a

2 (Same object, space disjoint) 001–013 3a 0.9817 100% (5 out of 5 matched)
300–312 5

3 (Different objects, time and space disjoint) 050–062 4 0.3696 20% (4 out 5 discriminated)
010–022 5

4 (Same object, time and space disjoint) 282–294 3_0 0.8410 100% (5 out of 5 matched)
300–312 5

5 (Different objects, space disjoint) 050–062 4 0.3696 20% (4 out 5 discriminated)
010–022 5

reported in Table 3. These results show that the pro-
posed method is capable of both correct matching, and
discriminating between different individuals. The
differences in matching rates for same and different indi-
viduals are significant and allow easy discrimination by
thresholding (we use an 80% threshold).

In test case 1, the same person is viewed under the
same camera in the morning and the afternoon. In the
morning view there is a significant amount of natural
light in the right part of the scene (with resemblances
to a typical outdoor view) while artificial illumination is
predominant in the left and central parts. In the after-
noon the whole view is dominated by artificial illumina-
tion, with slight changes in chromaticity. Variations in
the intensity of the R, G, B components for the moving
object across and between such views are in the order
of 25–30% and would not allow trivial colour histogram
matching. The object is successfully matched using the
method we have proposed with an integrated match-
ing rate of 80%. The other test cases cover a variety of
disjointedness in time and space. Cases 2 and 4 show
the same object successfully matched with an integrated
matching rate of 100%. In test cases 3 and 5, different
objects are successfully discriminated because of an inte-
grated matching rate of 20%. Figure 10 shows example
frames from the five test cases.

5.4 Results using automatically tracked and segmented
objects

The test cases presented in Sects. 5.1, 5.2, and 5.3 dem-
onstrate that the method works reliably with manually
selected and segmented objects. This section presents
results obtained by automatically tracking and segment-
ing objects from two cameras. The cameras are named
5_corridor and 5_lifts and provide views with object
movement being restricted in different directions, and
significant areas of different background colour. Cam-
eras were chosen to ensure that lighting conditions and
background colour of the areas of interest are differ-
ent throughout the majority of the scene, as shown in
Fig. 11. Within these cameras four people of interest
are studied wearing different coloured clothing. Their
appearance and typical segmentation masks are shown
in Fig. 12. The clothing was selected as they are typical
to indoor environments and are not intended to be of
high contrast to the background for easy segmentation.

Four main areas of interest are considered in the
automated results presented. Case 1 presents the results
of matching the same individual from different tracks
obtained within the same camera. Case 2 examines
matching tracks from the same individual between
different cameras. Case 3 examines the differentiation

Fig. 10 Typical frames used for test cases 1–5
(a)

• Minimum: Taking the smaller of the two values assumes that both values will be
high enough to qualify as a match but selects the lower each time to try and reduce
false positives and thus the overall matching rate.

• Symmetry Ratio Weighting (SRW): Assuming that a correct match will produce a
higher and more symmetric Sim() score for each direction and an asymmetric score
would indicate an incorrect match. We propose an adaption of the similarity score
presented in [6] to weight the mean of the Sim() values using the Symmetry Ratio
as follows:

Similarity(Oi,a,O j,b) =

(
1− Simmax −Simmin

Simmax +Simmin

)(
Sim(Ôi,a,O j,b)+Sim(Oi,a, Ô j,b)

2

)

(7)
5 Experiments
Three sets of experiments were carried out using challenging datasets collected from two
distributed camera networks of real world scenarios. First, we compare the proposed
CBTF and the mean BTF using a uni-directional transformation in order to demonstrate
that the estimated mapping function using CBTF is more accurate. Second, we compare
this uni-directional CBTF approach with the proposed bi-directional CBTF approach to
evaluate the effect of the proposed bi-directional similarity measure. Finally, we compare
our bi-directional CBTF method against alternative approaches from [5, 6]. In each of
these experiments, the BTFs and CBTFs for each colour channel were estimated from a
set of training pairs with known correspondences. In each set of results we show both
rank1 and rank5 results indicating the presence of the correct match as the highest and
top 5 highest similarity scores respectively.

(a) (b)

Figure 3: (a) Scenario 1 camera configuration. All cameras are mounted indoors. (b)
Scenario 2 camera configuration. Cameras 1 & 2 are indoors whilst camera 3 is outdoors.

Datasets: The first scenario (referred as Scenario 1) is inside an office building ob-
served by three cameras. The topology of this camera network is shown in Figure 3(a)
with example views shown in Figure 4(a)-(c). The illumination conditions and colour
quality vary between these views. Camera 1 displays a corridor scene where objects are
periodically lit by spotlights causing darker regions in the bottom part of a person’s body.
Camera 2 shows a shared space connecting several offices with fairly dim illumination.
Camera 3 is placed in a foyer region where there is poor lighting in the back right re-
gion making it a good spot to test potential algorithms. A single entry/exit region was
determined in each camera to capture targets. The training and testing data were obtained
from the entry/exit regions marked in yellow. Our dataset consists of synchronised videos
recorded simultaneously from 3 different cameras. In this dataset, 15 individuals giving
45 entry/exit transitions were used in the training phase, and the remaining 20 individuals
with 51 entry/exit transitions, were used in testing.

(a) Scenario 1: Site 1 (b) Scenario 1: Site 2 (c) Scenario 1: Site 3

(d) Scenario 2: Site 1 (e) Scenario 2: Site 2 (f) Scenario 2: Site 3

Figure 4: Sample frames from two scenarios: the same person reappeared in different
camera sites in each scenario. The yellow boxes show the entry/exit zones. The different
camera views in both scenarios undergo significant changes in both illumination and pose.

The second experimental scenario (referred as Scenario 2) was obtained from both
inside and outside a residential building. The camera topology is depicted in Figure 3(b).
Camera 1 shows a foyer scene with relatively rich colours and good illumination. Camera
2 shows a large variation in illumination from right to left due to the presence of an outside
door on the right hand side of the view. We thus capture data from the entry/exit region
on each side of this camera view. Camera 3 captures objects entering the building. Due
to the stark differences in illumination and colour between the 4 entry/exit regions, this is
an even more challenging dataset than that from Scenario 1. From this dataset 63 and 78
entry/exit transitions were used in training and testing respectively.

Mean BTF vs. CBTF: In order to show that the CBTF provides a better estimation of
the colour mapping between entry/exit regions we use a uni-directional comparison using
the Bhattacharya distance as similarity measure. For each individual we converted their
RGB histograms to the target entry/exit region colour space. They were then compared
against all individuals observed in this region. Figure 5(a) shows an approximate 15%
improvement in matching rate when compares CBTF with the mean BTF. In Figure 5(b),
it can be seen that although both methods are affected by the harsher illumination and
colour differences in Scenario 2, the CBTF is still a better approximation of the mapping
function. An example of the colour mapping using mean BTF and CBTF can be seen in
Figure 6.

Bi-directional vs. uni-directional: In this experiment, we demonstrate the differ-
ences in results between the two possible directions of colour transfer and that by adding
a comparison method to the two directions we can mitigate the effect of the differences
in their value. Figure 7 shows that only using the single direction matching can produce
different results depending the on the direction chosen, of which the dominant direction
may differ between data sets as show or even between individual objects. Of the bi-
directional measures tested, the minimum value clearly indicates that by attempting to

(b)

Figure 2.5: Examples of different video-based datasets used to test re-identification methods. (a)
Madden et al. [69]; (b) Prosser et al. [84].

have been designed to validate re-identification methods, they may not be completely represen-

tative of common scenarios as people in the scene are never occluded and methods based on

appearance can always perform feature extraction on the full body of a person. A more chal-

lenging dataset in terms of occlusions is presented in Kuo et al. [55] and composed of three

outdoor cameras at mid-positioning where up to ten people walk alone or in small groups (low-

and mid-crowd density) (Fig. 2.6(d)). We can consider this last dataset as more representative

of real scenarios, even if the camera deployment is quite simple as cameras are placed next to

each other with similar point of views. Finally, Colombo et al. [23] present a dataset composed

by 29 cameras from different stations of the Turin underground (Fig. 2.7), where fourteen people

travelling in the camera network are annotated.
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(a)

Figure 5. Left: The layout of cameras used for collecting the data
for the experiments. Camera 2 is placed roughly at twice the height
of Cameras 1 and 3. Right: The representative samples of key
frames for three individuals from all three camera views. The per-
son bounding boxes are placed on a black background to illustrate
the differences in resolution in the different views.

• For each person/camera combination, the maximum
ranking true match for all it’s key frames is determined.

• The number of times that a maximum ranking true
match is higher than a given value is then tabulated.

This evaluation scheme is analogous to a standard surveil-
lance scenario where an operator would query a person rei-
dentification system with multiple images of the same indi-
vidual captured over a short period of time from a particular
camera. Any hits from these queries would result in a suc-
cess.

Three reidentification algorithms are evaluated in this
manner. The first two algorithms use the interest operator
(see Section 4) and model fitting (see Section 5) approaches
for generating correspondences. A third algorithm, referred
to as the bounding box method, computes a single signature
using the foreground pixels in the bounding box of each in-
dividual and calculates the distance between the resulting
monolithic feature vectors to perform the matching. This
serves as a baseline implementation for comparison.

Figure 6 reports the performance of the three algorithms.
The model fitting approach results in the best performance
with approximately 60 percent of the queries achieving a
top ranking true match and over 90 percent of the queries
generating a true match in the top ten. The interest operator
method achieves a top ranking true match 25 percent of the
time and a true match is found in the top ten 65 percent of
the time. It should be noted that the performance of this
approach may improve with higher image resolotution. The
performance of the bounding box approach is comparable
to that of the interest point approach. Figure 6 shows the
top ranking images for a number of queries using the model

Table 1. Top ten matches using the model-based algorithm. The
query image is shown in the left column, and the remaining
columns are the top matches ordered from left to right. A box
is used to highlight when a match corresponds to query. Third row
shows an example where the correct match is not present in the top
ten matches.
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Figure 6. This figure compares the overall performance of the in-
terest operator, model fitting, and bounding box approaches. The
percent correct detection rate is plotted vs. the number of matches
considered. Note that the model fitting approach is the best per-
former, and the performance of bounding box approach and inter-
est point approach is comparable.

fitting algorithm. See Section 7 for further discussion of
these different approaches.
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(b)

The test phase consisted of a 12 minutes long sequence.
In this phase, a total of 68 tracks were recorded in the indi-
vidual cameras and the algorithm detected 32 transitions
across the cameras. Tracking accuracy for the test phase
is shown in Fig. 4.

Our second experimental setup consists of three cam-
eras, Camera 1, Camera 2, and Camera 3, as shown in
Fig. 8(a). The field-of-view of each camera is also shown
in the figure. It should be noted that there are several paths
from one camera to the other, which make the sequence
more complex. Training was done on a 10 min sequence
in the presence of multiple persons. Fig. 8(b) shows the
probabilities of entering Camera 2 from Camera 1, that

were obtained during the training phase. Note that people
like to take the shortest possible path between two points.
This fact is clearly demonstrated by the space–time pdf,
which shows a correlation between the y-coordinates of
the entry and exit locations of the two cameras. That is,
if an object exits Camera 1 from point A, it is more prob-
able that it will enter Camera 2 at point C rather than point
D. The situation is reversed if the object exits Camera 1
from point B. Testing was carried out on a 15 min
sequence. A total of 71 tracks in individual cameras were
obtained and the algorithm detected 45 transitions within
the cameras. The trajectories of the people moving through
the scene in the testing phase are shown in Fig. 9. Note that

Fig. 5. (a) Two camera configuration for the first experiment. Field-of-view of each camera is shown with triangles. The cameras were mounted
approximately 10 yards apart. It took 7–12 seconds for a person walking at normal speed to exit from the view of Camera 1 and enter Camera 2. The green
region is the area covered by grass, most people avoid walking over it. (b) The marginal of the inter-camera space–time density (learned from the training
data) for exit velocities of objects from Camera 2 and the time taken by the objects to move from Camera 2 to Camera 1. Note if the object velocity is high
a lesser inter-camera travel time is more likely, while for objects moving with lower velocities a longer inter-camera travel time is more likely. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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Fig. 6. The transfer functions for the R,G and B color channels from Camera 1 to Camera 2, obtained from the first five correspondences from the
training data. Note that mostly lower color values from Camera 1 are being mapped to higher color values in Camera 2 indicating that the same object is
appearing much brighter in Camera 2 as compared to Camera 1. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this paper.)
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people did not stick to a narrow path between Camera 1
and Camera 2, but this did not affect the tracking accuracy
and all the correspondences were established correctly
when both space–time and appearance models were used
(see Fig. 4). Fig. 15 shows some tracking instances in this
sequence. In the third experiment, three cameras Camera
1, Camera 2, and Camera 3 were used for an indoor/out-
door setup. Camera 1 was placed indoor while the other
two cameras were placed outdoor. The placements of the
cameras along with their fields of view are shown in
Fig. 10. Training was done on an 8 min sequence in the
presence of multiple persons. Testing was carried out on
a 15 min sequence. Fig. 11 shows some tracking instances
for the test sequence. The algorithm detected 49 transitions
among the total of 99 individual tracks that were obtained
during this sequence, out of which only two correspon-
dences were incorrect. One such error was caused by a per-
son staying, for a much longer than expected duration, in
an unobserved region. That is, the person stood in an
unobserved region for a long time and then entered another
camera but the time constraint (due to the space–time
model) forced the assignment of a new label to the person.
Such a scenario could have been handled if there were sim-
ilar examples in the training phase. The aggregate tracking
results for the sequence are given in Fig. 4. It is clear from
Fig. 4 that both the appearance and space–time models are
important sources of information as the tracking results
improve significantly when both the models are used
jointly.

In Table 2, we show the number of principal compo-
nents that account for 99% of the total variance in the
inter-camera BTFs computed during the training phase.

Fig. 7. Frames from sequence 1. Note that multiple persons are
simultaneously exiting from Camera 2 and entering at irregular intervals
in Camera 1. The first camera is overlooking a covered area while the
second camera view is under direct sun light, therefore the observed color
of objects is fairly different in the two views (also see Fig. 12). Correct
labels are assigned in this case due to accurate color modeling. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)

A

B D

C

Camera 1 Camera 2

Fig. 8. (a) Camera setup for sequence 2. Camera 2 and Camera 3 were mounted approximately 30 yards apart, while the distance between Camera 1 and
Camera 2 was approximately 20 yards. It took 8–14 seconds for a person walking at normal speed to exit from the view of Camera 1 and enter Camera 2.
The walking time between Camera 2 and 3 was between 10 and 18 s. The green regions are patches of grass. The points A and D are locations where people
exited and/or entered the camera field of view. (b) The marginal of the inter-camera space–time density for exit location of objects from Camera 1 and
Entry location in Camera 2. In the graph the y coordinates of right boundary of Camera 1 and left boundary of Camera 2 are plotted. Since most people
walked in a straight path from Camera 1 to Camera 2, i.e., from locations A to C and from B to D as shown in (a), thus corresponding locations had a
higher probability of being the exit/entry locations of the same person. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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(c)

(d)

Figure 2.6: Examples of different video-based datasets used to test re-identification methods. (a)
Cheng et al. [22]; (b) Gheissari et al. [32]; (c) Javed et al. [47]; (d) Kuo et al. [55].

2.5.2 Human interaction analysis

The validation of group detection and tracking methods can be performed in self-made datasets

used for testing specific characteristic of the methods or in datasets recorded in public scenarios.

Examples of self-made datasets are the ones proposed in Moussaı̈d et al. [74, 75] used to under-

stand social interactions in a crowd and the Friends Meet (FM) [10] (Fig. 2.8(a)) where people

stand still in well-defined small groups or join already existing groups.

The most popular datasets from public scenarios are BIWI-ETH [10, 31, 80, 105, 110, 118,

C1] (Fig. 2.8(b)) recorded at a University entrance, BIWI-HOTEL [31, 105, 110, 118, C1]

(Fig.2.8(c)) that recorded a pavement next to a tram stop with a overhead camera, and Stu-

dent003 [60, 105, 110, 118, C1] (Fig. 2.8(d)) obtained from a busy square. Other datasets include

Zara01 and Zara02 [60, 110, 118] (Fig. 2.8(e)) that show a pavement in front of a shop; Town-
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Fig. 2. Some input video files. Top row: no colour correction. Bottom row: second order
colour correction (the difference may not be visible in print). Left and centre: two views
of the same target, yielding a low distance in the Mean-Colour descriptor space. Right:

a view of a different target, whose descriptor also yields a low distance.

4.1 Input Data

A total of 29 cameras from 2 stations (XVIII Dicembre and Racconigi) in the
Torino metro system were used in the experiments. The video format is MPEG-
4 Part II, in 2-CIF, i.e. 704 × 288, at 5 fps. The dataset consists of 14 people
travelling between the two stations. Each person is observed 10-15 times, giving
a total of 178 observations (see Fig. 2 for an example of input data).

All but two of the 29 cameras are calibrated to the ground plane (these two
did not have a sufficient number of known points in the view to permit a cali-
bration). Those belonging to the same level of the same station are calibrated
with respect to the same world reference frame. For adjacent cameras belonging
to different levels or different stations, the average transition (occlusion) time
is defined. The cameras are representative of the various situations arising in
surveillance scenarios: some are overlapping, some are separated by few occlu-
sions, and some are separated by long occlusions when passengers are walking
for some distance between the fields of view. Cameras in different stations are
separated by at least the duration of the train journey, which is 2 minutes in
this case since two adjacent stations were chosen.

4.2 Experimental Procedure

Each descriptor type was used to generate a description of each observation.
Then, for each descriptor type, the distance measures between all observation
descriptions are calculated and used to compile two histograms, one for the
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Figure 2.7: Examples of video-based dataset Colombo et al. [23] used to test re-identification
methods.

Centre [11] (Fig. 2.8(g)), from a street in Oxford (UK), and CAVIAR datasets are used in Qin

and Shelton [86] (Fig. 2.8(f)). These datasets present a low to mid-density crowd with people

mainly moving in opposite directions. Finally, Ge et al. [30, 31] propose SU1, SU2, ARTFEST,

STADIUM1, and STADIUM2 datasets that consist of mid-density crowds moving in indoor and

outdoor environments (Fig. 2.9) where the camera positioning varies from mid to high.

2.6 Discussion

Human motion models were developed in order to simulate realistic people’s movements for

crowd analysis, but the recent advances of these models allowed them to be applied to tracking

and interaction analysis. Compared to using linear motion models, these applications benefit

from the fact that the human models can more realistically describe people’s movements also

because human interactions with other individuals and the environment are considered. The

main limitations of these human motion models are the increase in the overall complexity of the

application and the need for a parameter tuning phase in order to adapt the specific model to the

specific scenario that is being analysed.

Recently, re-identification has been tackled using many different approaches, but it still pro-

vides open problems because of the challenges related to the variety of exiting camera networks.

In particular, large camera networks, cameras with different specifics, pose changes and illumi-
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(a) Friends Meet [10] (b) BIWI-ETH [105] (c) BIWI-HOTEL [105]

(d) Student003 [105] (e) Zara01 and Zara02 [60] (f) CAVIAR [25]

(g) TownCentre [11]

Figure 2.8: Examples of different datasets used to test group detection and tracking methods.

nation conditions, different positioning of the cameras, and different scenes make the problem

difficult to be solved in general. When analysing re-identification algorithms, results on methods

solely based on appearance usually achieve less than 40-50% [121] for the first ranking position

(the real re-identification score) when 476 images of 119 people are considered in the i-LIDS-

static dataset. Re-identification algorithms that exploit also spatio-temporal features can achieve

better results for the first ranking position in scenarios where a person’s full-body is visible and

transitions in the unobserved regions can be linearly modelled. For instance, a re-identification

score of over 90% is reported in Javed et al. [47] on the dataset in Fig. 2.6(c) where 32 tran-

sitions were employed for testing. When human motion models are used to propagate people’s
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Figure 2.9: Datasets used in Ge et al. [30, 31] to test their group detection algorithm. A: SU2,
B: SU1, C: ARTFEST, D: STADIUM1, and E: STADIUM2.

movements in the unobserved regions, better performance has been obtained compared to linear

propagation and average travelling times [J2]. However, methods solely based on appearance

can be tested using single snapshots of people, and they become very important when cameras

are located far apart. In fact, spatio-temporal features are less reliable and difficult to use in cases

where cameras are located at a considerable distance.

The automatic localisation of groups is very challenging in crowded scenarios, such as pub-

lic squares or large malls, where spatial proximity alone does not help to determine whether or

not people are interacting. Most of the works in the literature use trajectory analysis and clus-

tering [31, 86], however human motion models can be used to analyse people’s movement. In

particular, compared to methods solely based on people’s trajectories, motion models can pro-

vide an expected movement for both interacting and non-interacting people, thus providing an

understanding of which of these events are taking place within the scene.



Chapter 3

Motion prediction

3.1 Introduction

Wide sites are extensively monitored by networks of cameras whose field-of-views do not neces-

sarily overlap and, in the presence of unobserved areas, there are no direct measurements avail-

able that can be used to facilitate the tracking of a person across cameras. Predicting the exact

position where a person exiting the field-of-view of a camera will reappear in the next camera

is very challenging due to the presence of various obstacles (barriers and walls) and potential

interactions occurring in the unobserved regions. Moreover, in the presence of a crowd or in sce-

narios where the cameras are at low/mid positioning (Sec. 1.2), partial and complete occlusions

will generate challenging situations. Additional challenges are due to changes in illumination

conditions across cameras (e.g. the presence of a large window versus an area with artificial

illumination only), clutter (different people can look very similar) and different body poses.

In this chapter, we propose an online algorithm that tackles the problem of person re-iden-

tification across cameras by exploiting the top-view of the environment representing observed

and unobserved regions. In Sec. 3.2, the proposed approach is formalised. We then create a

set of possible re-identification candidates for reappearance position and time of each person

exiting the field-of-view of one camera by modelling their path in the unobserved regions. In

Sec. 3.3.1, the model is based on landmark points (regions of interest or crossing regions) in the

scene. In Sec. 3.3.2, the model is based on a goal-driven approach where a set of possible goals

are assigned to each person [73, 101], and goals are defined as interest points in the site such as

35
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for example shops, doors, exits, seats. In order to propagate people’s movement in unobserved

areas, we use a motion model developed in the field of crowd simulation [50]. Each person is

modelled as an agent that can freely move onto the top-view map trying to reach the selected

goals, avoiding barriers and walls while maintaining a desired speed. In Sec. 3.5, association

of people across cameras is performed on the possible candidates using spatial and appearance

features extracted from the upper body (Sec. 3.4).

Section 3.6 reports the evaluation of the proposed re-identification algorithms based on ap-

pearance features only, spatio-temporal features only and a combination of them both. We vali-

date and analyse the results of the goal-driven approach in Sec. 3.6.2, while the proposed person

patch is validated in Sec. 3.6.4. In Sec. 3.6.3, we show that the proposed landmark-based method

gives the best performances for person re-identification when a combination of appearance and

spatial cues are used for association.

3.2 Formalisation of the proposed approach

LetM be a top-view map of the site under surveillance that includes areas observed as well as ar-

eas unobserved by the FOVs of M cameras C1,C2, . . . ,CM with non-overlapping FOVs (Sec. 1.3).

Observed areas are mapped inM by homography projection [37]. Let (x,y) ∈M be a point in

the top view. Let N people P1,P2, . . . ,PN walk ontoM and let pi(t) = (xi(t),yi(t)) ∈M be the

position of person Pi at time t. Finally, let B∈M be the set of points pB = (xB,yB) corresponding

to barriers and walls that people cannot cross.

We indicate with ph
i (t) = (xh

i (t),y
h
i (t)) ∈ M the position of person Pi within the FOV of

camera Ch, where t ∈ [Tsh
i
,Teh

i
] is the time interval during which Pi is visible in Ch. Without loss

of generality, we consider camera C1 to be the first camera where the person appears in the scene

(i.e. we know p1
i (t) with t ∈ [Ts1

i
,Te1

i
]) and C2 the second camera where the person reappears.

When t > Te1
i
, we assume that Pi is not in the FOV of any camera and we start estimating the

movement of Pi with the aim of modelling the possible paths to go from p1
i (Te1

i
) to p2

i (Ts2
i
). Note

that p1
i (Te1

i
) and p2

i (Ts2
i
) may vary for each person. People are expected to move towards regions

of interest in the site, a reasonable assumption in those scenarios where areas that most people

traverse or reach are straightforward to identify (e.g. exits, seats, lifts in an airport). Moreover,

since our focus is to perform motion prediction, we deal with situations where each person that

exits camera C1 reappears in camera C2.
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3.3 Motion models

3.3.1 Landmark-based model

Since in challenging scenes the travelling time and entry/exit regions of the FOVs are not suf-

ficient for person re-identification, we propose to create person re-identification candidates by

modelling potential people’s movements in unobserved regions using areas of interest and cross-

ing areas (landmarks) obtained using an environment map of the site under surveillance and, in

our implementation, manually defined on the top view [J3]. We define crossing landmarks as the

regions through which people transit and entry landmarks as the regions where people may enter

the FOV of the next camera (Fig. 3.1(a)). We refer to the proposed motion propagation based on

regions of interest as the Landmark-Based Model (LBM).

When person Pi exits C1, its movement is propagated towards a first landmark, and then

towards crossing and entry landmarks according to specific transition rules. These rules define

how people can move through the crossing landmarks and which entry landmarks can be reached

by a crossing landmark (Fig. 3.1(b)). The entry landmarks reached after the transitions are the

candidate areas for reappearance of Pi in C2. Notice that landmarks are fixed for a specific map

and, in absence of other prior information, we assume that each landmark is equally likely to

be traversed in the propagation. A time step is associated to each reached entry landmark, and

calculated by the speed equation using the speed of people registered in the first observed region

and the distance covered by the propagation through the landmarks on the top view M. With

this modelling, variations of people’s speed occurring in the unobserved regions are not explicitly

taken into account, however experimental results (Sec. 3.6.3) demonstrate that the model can also

cope with changes in people’s speed, to some extent. Figure 3.2 shows the block diagram of the

proposed method.

We model crossing and entry landmarks with a set of vertices V of an oriented graph G =

(V,E), where E is the set of oriented edges that connect the vertices and correspond to the

transitions across landmarks in M (Fig. 3.1(b)). Let l(ι), with ι ∈ E, be the length of ι .

Let AV = {a1,a2, . . . ,a|AV |} with AV ⊆ V and |AV | > 0, be the set of crossing landmarks and

BV = {b1,b2, . . . ,b|BV |} with BV ⊆ V and |BV | > 0, be the set of entry landmarks. Let FV =

{ f1, f2, . . . , f|FV |} with FV ⊆ AV and |FV | > 0, be the set of vertices where the propagation of
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Figure 3.1: Landmark-Based Model (LBM): (a) Example of setup (black line: environment map;
blue and green line: FOVs of Camera 1 (C1) and Camera 3 (C2) at London Gatwick airport,
respectively; orange line: trajectory; orange arrow: direction of motion; red dot: crossing land-
mark; cyan dot: entry landmark). (b) Transition graph ({a1,a2, . . . ,a8}: crossing landmarks;
cyan border: crossing landmark from where entry landmarks can be reached); a1 and a2 do not
have a cyan border as entry landmarks cannot be reached from them.
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Figure 3.2: Block diagram for the proposed Landmark-Based Model (LBM).

people’s movements can start from. Let us define

E∗i = E ∪{(p1
i (Te1

i
),FV )}, (3.1)

where (p1
i (Te1

i
),FV ) corresponds to the edges connecting p1

i (Te1
i
) to the set of vertices in FV ,

namely the connection between the last visible position of Pi in C1 and the vertices where the

propagation can start from. Then, let us define the ordered set of edges that a person can follow

to go from p1
i (Te1

i
) to all the entry landmarks v ∈ BV as

φ
k
i =

(
ι1, ι2, . . . , ιh, . . . , ι|φ k

i |

)
, (3.2)

where ιh ∈ E∗i ; k = 1,2, . . . , |Φi| and Φi = {φ k
i } is the set of all possible paths that person Pi
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can follow; ι1 = (p1
i (Te1

i
),FV ) is the first edge of the sequence; ι|φ k

i |
= (AV ,BV ) indicates that the

last edge of φ k
i must go towards an entry landmark; and the edges from ι2 to ι|φ k

i |−1 are selected

according to the transition rules. We now accumulate the time needed for person Pi to travel

through a possible path φ k
i using the speed equation

t
φ k

i
=
|φ k

i |

∑
h=1

l(ιh)

si
, (3.3)

where si is the maximum speed calculated within a time window of Tp frames in C1. The sum of

the time step when person Pi exits C1, Te1
i
, and the time required for Pi to traverse φ k

i , t
φ k

i
, defines

the time step when person Pi reaches C2 if φ k
i is traversed

t∗ki = Te1
i
+ t

φ k
i
. (3.4)

The above process is repeated for each person exiting C1 and going to C2. When person Pr, with

r = 1,2, . . . ,N, reappears in C2, the set of candidates for the association are the set of vertices

V ∗i = {v∗ki } ∈ BV reached by ι|φ k
i |

that satisfy

Ts2
r
−∆t < t∗ki < Ts2

r
+∆t , (3.5)

where ∆t ∈ N, thus restricting the set of possible candidates from person Pi to the closest in time

to the reappearance of Pr. If ∆t is too small, the time window would be too restrictive and the

method could not account for small variations in speed. If ∆t is too large, the time window would

lose its significance to select only the “good” candidates for re-identification.

3.3.2 Social Force Model-based model

Overview

In this section, we propose to exploit the SFM to create person re-identification candidates. SFM

is initialised for each person with information from the first observed region and then the path

of a person is propagated within the unobserved areas on M. Since in a complex site people

have different goals to reach, a unique fixed goal for all the people is not a good model for the

estimation of their behaviour [101]. Unlike Luber et al. [67] that employs an extensive training to

understand where people are likely to move, we tackle this problem by introducing a Multi-Goal

Social Force Model (MG-SFM) [J2] that spreads |G| different goals corresponding to interest
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Observed region 1 Unobserved region Observed region 2
g1

g2

g3
k1

Figure 3.3: Schematic representation of the evolution of a path using the proposed MG-SFM.
Cyan line: trajectory in the observed region. Green dot: goal. Red line: key region where new
predictions are generated towards the goals. Blue line: predicted trajectory towards the goal.

points in the site, such as shops, cafeterias, exits, seats, etc.

Let us define Ψ∗i (t) = {p∗ j
i (t)} where p∗ j

i (t) ∈M, j = 1,2, . . . , |Ψ∗i (t)|, and |Ψ∗i (t)| is the

number of position candidates at time t where the person Pi is likely to walk. For each p∗ j
i (t) ∈

Ψ∗i (t) a goal g j
i is fixed where g j

i ∈ G and G is the set of possible goal positions (interest points)

onto M (in our implementation, goal positions are manually defined). p∗ j
i (t) and g j

i will be

considered as a pair in the rest of the thesis. As it is difficult to exactly define the desired goal

of each person over time, we generate candidates of people’s movement by introducing a set of

new predictions towards G when the already existing trajectories in Ψ∗i (t) reach key regions in

the environment (i.e. a crossing of possible paths selected using the map of the environment),

represented byK= {k1,k2, . . . ,k|K|}where |K| is the number of key regions inM. Note that due

to the different way they are modelled, these key regions may not be the same as the landmarks

defined in Sec. 3.3.1.

Without loss of generality, we assume C2 to be the next camera where person Pr, with r =

1,2, . . . ,N, is visible (Ts2
r

is the time step when Pr reappears). We consider all the predictions

p∗ j
i (t) at time t ∈ [Ts2

r
−∆t ,Ts2

r
+∆t ], where ∆t is a time interval, and we set their next goal to

p2
r (Ts2

r
). ∆t is the same as defined in Sec. 3.3.1. Then, we let the predictions evolve over time

along with the new observed trajectory (the new goal) p2
r for Tπ frames. Finally, from all p∗ j

i we

select the closest prediction in space to p2
r in order to re-identify Pr (ideally Pr is re-identified

with Pi when they represent the same person).

Figure 3.3 shows examples of predictions obtainable with the proposed approach: the algo-

rithm finds the next position of a pedestrian starting from the observations in the first camera and

uses this information to estimate the path a person is expected to follow when observations are

available again in the next camera.
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Multi-Goal Social Force Model

We modify the Social Force Model by modelling people’s movement towards specific goals,

avoiding barriers and walls, and maintaining a desired speed that we calculate in the first ob-

served region. We assume that there are no significant interactions between people and, as for

LBM, we do not explicitly model variations of people’ speed when they cross the unobserved

regions. Let each person Pi have mass mi and be guided by the forces that describe the desired

movements according to the surrounding constraints. We model an attractive force f∗ j
Di
(t) towards

a specific goal and a repulsive force f∗ j
Bi
(t) as the sum of forces from walls and barriers. Finally,

the displacement of Pi over time is defined by dv∗ j
i (t)
dt . The dynamic of the SFM is therefore

formulated as

mi
dv∗ j

i (t)
dt

= f∗ j
Di
(t)+ f∗ j

Bi
(t). (3.6)

As abrupt movements of walking people are less likely to happen, we define a temporal

smoothing process similar to the one reported in [93] in order to estimate the next step by consid-

ering the velocity1 in the previous steps and actual forces. Compared to [93], we use a weighted

average of the two components and we use more than only one previous step for smoothness

p∗ j
i (t +1) = p∗ j

i (t)+

(
w

dv∗ j
i (t)
dt

τ +(1−w)v∗ j
i (t)

)
, (3.7)

where v∗ j
i (t) = p∗ j

i (t)−p∗ j
i (t−Tp)

Tp
is the actual velocity calculated as the average velocity of the

previous Tp frames, τ is the interval during while the variation of velocity is calculated. The

magnitude of the displacement is directly proportional to τ . We fix τ = 1 as we calculate τ at

each time step. w ∈ [0,1] is the weight given to the actual velocity and 1−w the one given to the

previous velocity. The movement smoothness is inversely proportional to w and high values of

w can lead to abrupt displacement of the target over time. Figure 3.4 shows different trajectory

behaviours at varying w.

A goal is a point or an area of interest that would be reached at a desired speed following the

minimum path, if there would not be any constrain such as walls and barriers. These desires are

taken into account as

f∗ j
Di
(t) = mi

v0
i e0∗ j

i (t)−v∗ j
i (t)

τi
, (3.8)

where v0
i is the desired speed towards the direction e0∗ j

i (t) of the goal to reach, and τi is the time

1Velocity is the 2D displacement of a point, while speed is the magnitude of the velocity.
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Top view Gatwick airport

(a) w = 0

Top view Gatwick airport

(b) w = 0.1

Top view Gatwick airport

(c) w = 0.2

Top view Gatwick airport

(d) w = 0.3

Top view Gatwick airport

(e) w = 0.4

Top view Gatwick airport

(f) w = 0.5

Figure 3.4: Trajectory propagation examples generated using different values of w (see Eq. 3.7
for details) on the top-view map. Black line: barrier. Cyan line: trajectory from the observed
region (FOV of the camera is the blue region). Purple line: propagated trajectory. Green dot:
goal to reach. Black cross: example of stopped prediction because its speed is too slow.

relaxation parameter. f∗ j
Di
(t) is the force that pushes the target to reach the desired velocity by

calculating the difference between desired and actual velocities. Note that v0
i does not depend on

the specific j prediction but only on the desired speed of person Pi.

The desired speed v0
i is a key feature for our model. We have tested three different strategies

for desired speed calculation using observations from the first observed region: the average speed

using the complete trajectory here referred to as MG-SFM-AVG; the maximum speed registered

within a time interval of 2 ·Tp (MG-SFM-MAX50); the maximum speed registered within a time

interval of Tp (MG-SFM-MAX25), called si in Sec. 3.3.1. Results for the three strategies are

reported in Fig. 3.11 and explained in Sec. 3.6.2.

A monotonically decreasing force f∗ j
Bi
(t) is also considered that acts from barriers and walls

to that person [50]. As suggested in [50], we model this force with an inverted exponential

proportional to the Euclidean distance d∗ j
Bi
(t) between person Pi predictions and barriers B. In
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Figure 3.5: Influence of the presence of barriers on the movement of a person: (a) the influence
is limited to the visible range [−90◦,90◦] in the direction of motion; (b) the force generated by a
barrier is inversely proportional to the exponential of the distance from the barrier itself [50].

addition to this, as walking people are influenced only from what happens in front of them [50],

we restrict f∗ j
Bi
(t) to the barriers in the range [−90◦,90◦] of the direction of motion of Pi and to

the “visible” barriers from the actual position of the pedestrian. Figure 3.5(a) shows the range

of influence of the barriers on a person and Fig. 3.5(b) reports a schematic representation of the

influence of barrier forces on people’s movement, formalised as

f∗ j
Bi
(t) = ∑

B
ABe−

d∗ j
Bi

(t)

BB , (3.9)

where AB is the weight associated to the barrier force (high values correspond to high repulsion

force from the barriers), BB is the interaction range that enlarges or reduces the area of influence

of the barriers on people’s movements, d∗ j
Bi
(t) is a force where the magnitude is the Euclidean

distance value and the direction is the direction between propagation, j, and barrier, and the

summation indicates the sum of forces from each barrier position.

We predict how each person moves towards each goal using Eq. 3.7. At time step Te1
i
+ 1

(when person Pi is no longer visible from camera C1), we generate |G| predictions towards each

goal in G and we let them propagate onto M. Since walking people change their view of the

environment, it is likely that the direction of motion towards their goal changes over time. To

model this behaviour, multiple new predictions are further generated when an existing prediction

reaches any key region k. For instance, if prediction p∗11 (t) towards goal g1
1 has reached the key

region k1 at time t, we generate |G|− 1 new predictions towards G/
{

g1
1
}

(we exclude the goal

already followed by p∗11 (t)), and we include2 them in Ψ∗1(t). The next step of MG-SFM removes

2For the new predictions, we include in Ψ∗
1(t) the same positions of p∗1

1 (t) for t = [Te1
1
+1, t], and from
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Table 3.1: Testing for MG-SFM predictions on 42 trajectories from the London Gatwick airport
dataset. See text for the complete explanation of MG-SFM-AVG, MG-SFM-MAX50, and MG-
SFM-MAX25. Columns 2-4: Average percentage of predictions within the indicated radius
centred on the position of person’s reappearance of the 60 closest predictions (in time) to the
reappearance time step. Columns 5-7: Average percentage of time synchronisation within the
indicated frames between predictions and time step of person’s reappearance of the 60 closest
predictions to the position of reappearance.

Radius (units) Time (frames)
5 10 20 25 75 125

MG-SFM-AVG 45% 57% 67% 31% 62% 71%
MG-SFM-MAX50 48% 59% 71% 33% 79% 86%
MG-SFM-MAX25 45% 62% 81% 52% 79% 90%

from Ψ∗i (t) the predictions that do not appropriately model realistic scenarios. In particular, we

remove each p∗ j
i (t) with distance from its goal g j

i less than εg > 0, and we remove each p∗ j
i (t)

that corresponds to a prediction with speed v∗ j
i (t)< εv ·v0

i , where v∗ j
i (t) = |v∗ j

i (t)| and 0< εv < 1.

Figure 3.6 shows four examples of trajectory prediction in unobserved regions using the

parameter setting explained in Sec. 3.6.1. Using the same parameter setting, we test our model

in order to calculate the distance (in time and space) of our predictions with respect to frame step

and position of a person’s reappearance. Table 3.1 shows the results for MG-SFM-AVG, MG-

SFM-MAX50, and MG-SFM-MAX25 calculated on 42 people going from one observed region

to the next. For each person we consider the 60 closest predictions in time to the reappearance

time step and we calculate the average distance to the reappearance position. The results are

shown in columns 2-4 of Table 3.1. We see that for MG-SFM-MAX25, 81% of the predictions

are within 20 units (as the radius of the green circle in Fig. 3.6). Furthermore, we analyse

how synchronised our predictions are with the reappearance time step. We take the 60 closest

predictions in space to the position of reappearance and we calculate the average difference with

the time step of reappearance. Columns 5-7 of Table 3.1 summarise the results, where we can

see that over 50% of our predictions are within 25 frames (1 second on the used dataset) when

applying MG-SFM-MAX25.

As predicting the exact position and the exact time instant when a person reappears is very

challenging, when a generic person Pr appears in C2 we consider good candidates for Pr all the

predictions

p∗ j
i (t) ∈Ψ

∗
i (t) (3.10)

t +1 onward we make the predictions towards the assigned goals.
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Top view Gatwick airport

(a) Person 1

Top view Gatwick airport

(b) Person 2
Top view Gatwick airport

(c) Person 3

Top view Gatwick airport

(d) Person 4

Figure 3.6: Examples of trajectory prediction for four people walking from Camera 1 (C1) to
Camera 3 (C2) of the i-LIDS dataset from London Gatwick airport [43]. Cyan line: trajectory
in the observed regions. Blue line: predicted trajectory using MG-SFM-MAX25 (see text for
details). Red star: predicted trajectory at the time step when the person reappears in C2. Black
cross: predicted trajectory that stops because it reached the goal or its speed is too small. Red
segment: definition of the key region for splitting the predictions. Black segment: barrier. Green
dot: goal. Green circle: 20 units of radius centred in the first observation in C2.

from Pi where i = 1,2, . . . ,N, j = 1,2, . . . , |Ψ∗i (t)|, t ∈ [Ts2
r
− ∆t ,Ts2

r
+∆t ] and ∆t = 2 · Tp. ∆t

is chosen to be proportional to Tp (Eq. 3.7) in order to obtain a large enough time window for

the final association between predictions p∗ j
i (t) and observations p2

r (t) (similarly to Sec. 3.3.1).

Note that Pi varies among all the available people’s trajectories within the specific time interval

since we are now tackling the association problem. In particular, we propagate the predictions

p∗ j
i (t + tr) towards p2

r (Ts2
r
+ tr) with tr = 0,1, . . . ,Tπ −1 using Eq. 3.7, where

Tπ = min(Te2
r
−Ts2

r
+1,Tp). (3.11)

In other words, good candidate predictions for person Pr consider p2
r (t) as their goal for Tπ

frames. Algorithm 1 reports the complete algorithm for the MG-SFM.
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Algorithm 1 MG-SFM for camera pairs
Define: mapM; set B of barrier positions; goals g ∈ G; set of key regions K; parameters εv and εg; T : set of considered time
steps; I: set of walking people; Tp: frames to consider for actual velocity; ∆t : frame interval for re-identification;
C1: first observed region; [Ts1

i
,Te1

i
]: time interval when person Pi is within the FOV of C1;

p1
i (t): position of person Pi at time t within C1; v0

i : desired speed of person Pi;
C2: second observed region; [Ts2

i
,Te2

i
]: time interval when person Pi is within the FOV of C2;

p2
i (t): position of person Pi at time t within C2;

p∗ j
i (t): predicted position of person Pi towards goal g j

i at time t, g j
i ∈ G;

d
(

a,b
)

: Euclidean distance between a and b;

min
(

a,b
)

: minimum value between a and b;

for all t ∈ T do
for all i|Pi ∈ I do

if t ∈ [Ts1
i
,Te1

i
] then . First observed region

obtain p1
i (t) by single-camera tracking

else . Unobserved regions
if t = Te1

i
+1 then . Initialisation of Ψ∗

i (t)

initialise Ψ∗
i (t) =

{
p1

i (t)
}

Ψ∗
i (t) =ADDBRANCHES

(
Ψ∗

i (t),G
)

end if
for all j |p∗ j

i (t) ∈Ψ∗
i (t) do . Prediction step

apply Eq. 3.7 to p∗ j
i (t) (towards g j

i )
v∗ j

i (t) = speed of p∗ j
i (t)

if
(

t > Te2
i
+Tp∧ v∗ j

i (t) < εv · v0
i

)
∨
(

d
(

p∗ j
i (t),g j

i

)
< εg

)
then . Check for non-valid predictions

Ψ∗
i (t) = Ψ∗

i (t)/
{

p∗ j
i (t)

}

end if
if p∗ j

i (t) within K then
Ψ∗

i (t) =ADDBRANCHES
(

Ψ∗
i (t),G/

{
g j

i

})

end if
end for

end if
end for
initialise jr = 1, Ψ

∗
i (t) = ∅

for all r|Pr ∈ I do . Second observed region
for all t∗ ∈ [Ts2

r
−∆t ,Ts2

r
+∆t ] |∃p∗ j

i (t∗) ∈Ψ∗
i (t

∗) do

Tπ = min
(

Te2
r
−Ts2

r
+1,Tp

)

for all j |p∗ j
i (t∗) ∈Ψ∗

i (t
∗) do

p∗ jr
i (1→ t∗) = p∗ j

i (1→ t∗)

Ψ
∗
i (t

∗) = Ψ
∗
i (t

∗)∪
{

p∗ jr
i (1→ t∗)

}

for all tr ∈ [0,Tπ −1] do
apply Eq. 3.7 to p∗ jr

i (t∗+ tr) (towards p2
r (Ts2

r
+ tr))

end for
jr = jr +1

end for
end for

end for
end for

procedure Ψ = ADDBRANCHES(Ψ,G) . Procedure to add new branches for trajectory prediction
Ψ: set of trajectory predictions; G: set of goal positions
for all p ∈Ψ do

for all g ∈ G do
create new p = p
associate p to the goal g
Ψ = Ψ∪p

end for
end for

end procedure



Chapter 3: Motion prediction 47

w

h 2h
h/4

w w/2

h

w/2

w/4

2h
2h

2h

(a) (b) (c)

Figure 3.7: Spatial support for person’s representation. (a) Head detection bounding box. (b)
Selected strip whose height is twice the height, h, and width is half the width, w, of the bound-
ing box. (c) The strip is shifted downward by h/4 to reduce the likelihood of the presence of
background pixels in the features used for association. Compared to full-body, this upper-body
strip is more effective as a person’s representation for re-identification in crowded scenarios (see
Sec. 3.6.4 and Fig. 3.15).

3.4 Target representation

We introduce a person’s representation model for crowded scenarios that is defined as a vertical

strip located around the head [J3] as in typical surveillance settings the head and the upper body

are the most frequently visible and recognisable part of a person [115]. The top part of the strip is

centred on the head and contains pixels of the upper body (Fig. 3.7), thus reducing the probability

of occlusion and the presence of the background while maintaining the most discriminative part

of each person. People’s trajectories on the ground are then created using feet locations that are

estimated starting from the head positions, and assuming that people stand upright [68].

The appearance features for our method are extracted from the upper-body strip using a single

snapshot for each person (no temporal grouping is performed): we use a concatenation of 16-bin

histograms as in [35, 85, 121] (see also Fig. 2.2). In particular, we employ 8 colour channels

(R, G, B, Y, Cb, Cr, H, S) from RGB, YCbCr and HSV colour spaces, 8 Gabor filters (with

the following parameters: (γ,θ ,λ ,σ2) = (0.3,0,4,2), (0.3,0,8,2), (0.4,0,4,1), (0.3,π/2,4,2),

(0.3,π/2,8,1), (0.3,π/2,8,2), (0.4,π/2,4,1), (0.4,π/2,8,2)), and 13 Schmid filters (with the

following parameters: (σ ,τ) = (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3),

(10,1), (10,2), (10,3), (10,4)).
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3.5 Association

When a person Pr becomes visible in C2, the association between Pr and the re-identification

candidates generated by people Pi that exited C1, has to be performed. We propose to use a

reappearance score given by a weighted sum of the ranking obtained by measuring the spatial

Euclidean distance between candidates and reappearance positions, p2
r (Ts2

r
), onM, and the rank-

ing of the appearance similarity measures.

The Euclidean distance is calculated, in the case of LBM (Sec. 3.3.1), between candidates

v∗ki and p2
r (Ts2

r
), while in the case of MG-SFM (Sec. 3.3.2), we define d∗ j

ir (t) to be the Euclidean

distance between p∗ j
i (t +Tπ) and p2

r (Ts2
r
+Tπ), where p∗ j

i (t +Tπ) is defined in Eq. 3.10 and Tπ in

Eq. 3.11, and for each Pi we calculate

χir = min
j

min
t

(
d∗ j

ir (t)
)
, (3.12)

in order to consider only the best reappearance candidate for each Pi. The ranking based on

spatio-temporal cues of the re-identification candidates for Pr is calculated by sorting the Eu-

clidean distances of the various candidates. Since the association using appearance information

is performed separately, we can use any appearance-based method. From the state-of-the-art

methods [28, 84, 85, 121], we choose Bhattacharyya distance as an association measure because

it does not require any learning phase, and it outperforms both L1-Norm and rankSVM distances

when applied to colour and texture features (Sec. 3.4). Also in this case, the ranking based on

appearance cues is calculated by sorting the specific distance applied.

3.6 Results and analysis

3.6.1 Experimental setup

To validate the proposed methods, we use the i-LIDS dataset from London Gatwick airport [43]

and we study the movement of people at the arrival terminal. We consider people that are visible

when they walk out of the passengers area. The aim is to find where and when these people

reappear in one of the next cameras in the public area. This is a challenging environment where

people can potentially walk in many directions once they exit the camera view covering the pas-

senger area, and movements may be constrained by barriers. In addition, cameras present large

illumination changes and people can reappear with different poses after transiting in the unob-
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served regions where different paths can be followed. In the experiments, Camera 1 is the first

observed region (C1) and Camera 3 of the dataset is the second camera where people reappear

(C2). We only use Camera 1 and Camera 3 because people’s locations for Camera 2, Camera 4

and Cameras 5 are not available. The top-view mapM is shown in Fig. 1.13 and we consider 60

people similarly to previous works [47]. Results are shown by Cumulative Matching Character-

istic (CMC) curve where the ideal result is a horizontal line at value 1 that corresponds to having

correct re-identification for all people4. We use ∆t = 50 frames (corresponding to two seconds)

for association. The performance of the motion predictions does not substantially change their

performance by varying ∆t : for LBM, for instance, we obtain a mean re-identification score of

31% and standard deviation of 3% by varying ∆t from 20 to 80 frames at steps of 5 frames.

To better understand the variation in people’s movement and the travelling time variability

between C1 and C2, Fig. 3.8 and Fig. 3.9 show some statistics obtained using ground-truth in-

formation on the top view from 60 people. Figure 3.8(a) reports the difference of the average

speed (velocity magnitude) registered in C1 and C2, showing how people move at substantially

different speeds. Figure 3.8(b) shows the travelling time to go from C1 to C2, and Fig. 3.9 shows

the colour-coded time evolution of people in the two cameras where segments correspond to time

intervals during which a person is in the FOV of a camera and is not totally occluded. It is in-

teresting to note that (i) some people stay in the FOV of C1 for more than 1000 frames (due to

the presence of shops), (ii) some people are visible in C2 for only a few frames (the minimum

is 4 frames), and (iii) the travelling time of people to go from one camera to the next is highly

variable and goes from 7 seconds to 113 seconds (see for example the large difference between

person 36 and person 43 in Fig. 3.9). The maximum speed of people (si) registered in C1 within

Tp = 50 frames varies from 0.527 units/frame to 1.489 units/frame on M (with mean 0.867

units/frame and standard deviation 0.192 units/frame). Note that 1.489 units/frame corresponds

to a running person. In addition to this, exit regions in C1 present illumination conditions that

are more similar to C2 than the entry regions of C1 and people are more likely to be occluded in

the exit regions of C1 than in the entry regions of C1 due to the perspective. In order to account

for these characteristics of the dataset, we perform re-identification using two different sets. Let

us call EN1EN2 the first set where entry regions of C1 are associated with entry regions of C2

3Part of the map has been created using information from the London Gatwick airport website
http://www.gatwickairport.com/.

4For the interested reader, a discussion on CMC curve can be found in Lian et al. [64] while alternative
measures are introduced in Leung et al. [61] and Bäuml and Stiefelhagen [9].
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Figure 3.8: Variations of people walking speeds from Camera 1 (C1) and Camera 3 (C2) at Lon-
don Gatwick airport [43] calculated on the top-view map. (a) Average speed difference in the
two cameras; (b) travelling time to go from C1 to C2.

Table 3.2: Parameters of the proposed Multi-Goal Social Force Model (MG-SFM).M: top-view
map; mi: person’s mass; AB: weight associated to the barrier force; BB: barrier interaction range;
w: weight for actual velocity; |G|: number of goals, |K|: number of key regions; Tp: number of
previous frames to calculate actual velocity; εv: value for low velocity thresholding; εg: number
of units for goal-reached thresholding.

Parameter size(M) mi AB BB w |G|
Value 577×961

70 Kg 60000 N 1 unit 0.3 8
units

Parameter |K| τi Tp εv εg

Value 3 1 frame 25 frames 0.1 5 units

and EX1EN2 the second set where exit regions of C1 are associated with entry regions of C2. A

single snapshot for each person is extracted in each region (see also Sec. 3.4).

Table 3.2 summarises the parameters used in the evaluation for the MG-SFM (Sec 3.3.2). AB

is set high and BB is set to 1 in order to implement barrier avoidance while letting people move

in the environment without too much influence. Using Eq. 3.9 it can be seen that the influence

of the barriers on a person is negligible at a distance of about 10 units. We consider the mass mi

of each person to have the same value [38] and we set it to 70 Kg [29]. The actual velocity is

calculated during the last 1 second of video (25 frames).

For association using appearance (Sec 3.5), we compare the use of the L1-Norm, the Bhat-

tacharyya Distance (BD) and the rankSVM (rankSVM has comparable results to the Ensemble

SVM) adopted in [28, 84, 85, 121]. The training for the rankSVM is performed with 60 people’s

patches from C1 and C2 (this set does not overlap with the testing set).
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Figure 3.9: Time evolution of people from Camera 1 (C1) to Camera 3 (C2) at London Gatwick
airport [43]. Blue line: time elapsed when a person is observed in C1. Dotted line: time elapsed
in unobserved regions. Green line: time elapsed when a person is observed in C2.

We compare LBM and MG-SFM as person’s motion modelling with two baseline methods

for spatio-temporal calibration based on the average travelling time of people to go from C1 to

C2. Let TTALL be the first method that calculates the average travelling time of all people that

go from C1 to C2, and considers it as the expected travelling time of each person. This method

is similar to the one proposed in [16] where people’s travelling time is used to make hypotheses

for re-identification with the difference that, in our case, training and testing sets are the same

(a tough comparison for our method). Let TT4REG be the second method that divides C2 into

four entrance regions and calculates the average travelling time of people that only enter the

specific region. This creates an expected travelling time for each region. Figure 3.10 shows

the four regions, where arrows correspond to possible direction of motion. Note that TT4REG

is trained by assuming the region of reappearance of each person as known, thus creating a

tough comparison for our method (as for TTALL). For both TTALL and TT4REG, the average

travelling time is calculated as mean, but similar results are obtained using the median and a

Gaussian distribution around the mean time with standard deviation calculated on data from

all people for TTALL and from people in each region for TT4REG. We perform a ranking for

person association by calculating the absolute time difference between the time step when a

person reappears, and the results of TTALL and TT4REG. Since in LBM and MG-SFM we
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Figure 3.10: Entry regions of Camera 3 (C2) at London Gatwick airport [43] for the spatio-
temporal calibration method TT4REG. TT4REG is employed as a baseline method for motion
propagation. In each of the four regions, the expected travelling time is calculated as the mean
travelling time of all the people entering in that specific region (see text for details). (a): image
plane; (b): top view. Black line: barrier or wall. Green line: FOV of C2. Blue area: possible
entry. Black arrow: possible people’s movement. Of the 60 people used in Sec. 3.6, 10% enter
in Entry 1, 15% in Entry 2, 70% in Entry 3 and 5% in Entry 4.

consider only candidates within a time interval of ±∆t , in order to make a fair comparison we

also consider a correct association when a person arrives within a time interval of ±∆t frames of

the expected time. Let us call the corresponding methods as TTALL-50 and TT4REG-50. As

already mentioned in Sec. 3.3.2, we set ∆t = 2 ·Tp for our experiments.

Finally, as we focus on modelling people’s movements in unobserved regions and on re-

identification, we consider the single-camera detection and tracking task solved by employing

annotated heads (see App. A [J1] for a possible solution of this task). Feet locations are estimated

starting from the head positions as explained in Sec. 3.4.

We organise the experiments as follows. In Sec. 3.6.2, the MG-SFM is validated for motion

prediction, and results using different strategies for calculation of the desired speed are presented

and compared to the baseline methods. Section 3.6.3 presents a comparison on motion prediction

models (MG-SFM, LBM and baseline methods), and shows that these motion models can create

good re-identification candidates and that the best performances are obtained by combining ap-

pearance and spatial cues for association. In Sec. 3.6.4, the results obtained using the proposed

person’s representation (Fig. 3.7) are compared to those obtained using the full body of a person,

showing the superior performance of the proposed representation.
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Figure 3.11: Cumulative Matching Characteristic (CMC) curves for person re-identification us-
ing different spatio-temporal modellings of people in unobserved regions (no appearance is used).
The results are obtained with the MG-SFM where three different strategies are used for de-
sired speed calculation, and with four spatio-temporal calibration methods (see text for details).
Dataset: 42 people going from Camera 1 (C1) to Camera 3 (C2) in the i-LIDS dataset from
London Gatwick airport [43]. X-axis: person re-identification ranking. Y-axis: frequency accu-
mulation of the correct person re-identification ranking.

3.6.2 Validation of the Social Force Model-based motion prediction

This section presents an in-depth analysis of the MG-SFM performance on 42 people5. We ob-

tain the re-identification results with the three strategies for desired speed calculation presented in

Sec. 3.3.2 (MG-SFM-AVG, MG-SFM-MAX25 and MG-SFM-MAX50) where association is per-

formed by Euclidean distance, and we compare them with TTALL-50 and TT4REG-50. More-

over, we perform a more challenging comparison with TTALL and TT4REG by considering a

correct association if a person arrives within a time interval of 2 ·∆t . Let us call the corresponding

methods TTALL-100 and TT4REG-100. Note that the ranking of the possible candidates is cal-

culated by only using spatial Euclidean distance and no association method based on appearance

of targets has been used, as we are now validating the MG-SFM as a motion model. Figure 3.11

shows the final results by CMC curve.

MG-SFM-MAX25 outperforms the baseline methods based on average travelling time (TTALL

and TT4REG), while MG-SFM-MAX50 outperforms them starting at position rank 2. With MG-

SFM-MAX25 we obtain 50% of correctly re-identified people, compared to 41% of TT4REG-

5We restrict the dataset from 60 to 42 people in order to facilitate the analysis while maintaining its
principal characteristics.
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100, and 29% of MG-SFM-MAX50 and MG-SFM-AVG. Furthermore, if we consider the first

four positions in the ranking we have 88% and 83% of correct re-identifications for MG-SFM-

MAX25 and MG-SFM-MAX50, respectively. On the other hand, MG-SFM-MAX25 never

reaches 100% in the re-identifications task because the method cannot predict the behaviour

of a person who travels at an average speed in C1, and then takes a long time to reappear in C2

(more than 31% of the average travelling time of their reappearance region). In general, MG-

SFM-MAX50 and MG-SFM-MAX25 are better at modelling people’s desired speed compared

to MG-SFM-AVG. In fact, it is likely that the registered highest speed describes well the desired

speed that a person would maintain if there would not be any constraints in the environment,

and for this reason, in the rest of the thesis, we shall only use MG-SFM-MAX25 and MG-SFM-

MAX50.

Finally, Fig. 3.12 shows the confusion matrix obtained with MG-SFM-MAX25, reporting

the distances resulting from Eq. 3.12. It is interesting to note that person 12 and person 14 are

re-identified with rank 2, and the distance between the best prediction and reappearance position

is less than 3 units, hence very close to the correct re-identification (the green circle in Fig. 3.6 is

20 units). Difficult cases for our motion modelling are when people exit C1 at roughly the same

position and time step. An example is person 21, 22, and 23. However, since these people exit at

different velocities, we can still have rank 2 and 1 for person 21 and 22, respectively, because our

model creates different predictions for each of them. A second example is provided by people

37 and 38, who walk and exit together C1 at approximately the same velocity, and reappear in

the same region in C2. In this case, the distance between predictions and observed trajectory

is less than 7 units between the two and over 81 units from person 42: a wrong hypothesis for

the re-identification. Furthermore, only two people (number 18 and 25) have the correct ranking

values over 20 units and only one person (number 7) is out of ranking because the predictions are

too far away in time. In these latter cases, people substantially vary their speed when unobserved

and, even if these variations are not explicitly modelled, our method can cope with them to some

extent. These results show how MG-SFM can estimate well people’s movement in unobserved

regions for the re-identification problem and even in the cases when the method cannot perfectly

solve the re-identification problem, it can give reasonable hypotheses on the position and the

time of reappearance of a person. It is also important to notice that MG-SFM does not need any

training phase for learning common paths that people follow or average travelling times, unlike
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TTALL and TT4REG [16].

3.6.3 Re-identification results and analysis

In this section, we compare the proposed LBM and MG-SFM using a combination of appearance

and spatial association applied to EX1EN2 because the propagation of paths is between exit

regions of C1 and entry regions of C2. First, we validate LBM by comparing it with the MG-SFM

using only Euclidean distance as an association method, similarly to Sec 3.6.2. Speed in LBM is

calculated with Tp = 25 frames and Tp = 50 frames (namely LBM25 and LBM50, respectively) as

for MG-SFM. Figure 3.13(a) shows the CMC curves where the results of the baseline methods

TTALL-50 and TT4REG-50 are also reported. As already shown in Sec 3.6.2 for 42 people,

poor results are obtained with TTALL-50 and TT4REG-50 due to the high variability of people’s

travelling times. LBM50 gives better results than LBM25 on average. Moreover, LBM shows

results slightly worse or comparable to MG-SFM-25 and MG-SFM-50 for the first three ranking

positions, respectively, and better results after ranking three. However, LBM requires less time

to be computed and a smaller number of parameters to set, thus resulting in a better applicability

of the method.

We now perform re-identification using LBM50 as motion prediction, where for association

L1-Norm, BD and rankSVM are used as appearance methods. We compare these results with the

results obtained by only using appearance without any spatio-temporal feature to show the im-

provement that motion prediction can give to re-identification. Figure 3.13(b) shows that the re-

identification score is improved by 28% for L1-Norm, 28% for BD and 20% for rankSVM when

LBM is employed. These results highlight how LBM creates good candidates for re-identification

by restricting the possible candidates to only those close in time and space to the reappearance

time and location, respectively. Finally, we apply LBM as motion prediction and we perform

association by using a combination of appearance methods (L1-Norm, BD and rankSVM) that

evaluate the similarity of people’s patches and a spatial method (Euclidean distance) that eval-

uates the closeness in space of the predictions. In order to select the best combination weights,

we test the re-identification performance by applying different weights to BD and Euclidean dis-

tance, resulting in the CMC curves in Fig. 3.14(a). Then, we decide to weight 50% the association

ranking given by appearance and 50% the one given by Euclidean distance, since it has the high-

est re-identification score among the possible weights. Figure 3.14(b) shows the CMC curves.

The black CMC curve is a baseline result obtained by LBM50 and Euclidean distance where no
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Figure 3.12: Confusion matrix for person re-identification as a result of MG-SFM-MAX25. Each
row corresponds to a person Pi to be re-identified. Each column corresponds to possible can-
didates Pr for re-identification. Each cell contains the minimum distance between the closest
predicted trajectory and the trajectory in the observed region (calculated with Eq. 3.12). Red
cell: missed re-identification ranking. Coloured cell: different person re-identification ranking.
Red-bordered cell: diagonal of the original confusion matrix (in the ideal case it contains the min-
imum distance). Cell with ’-’: the predicted trajectory is too far away in time to be considered
and therefore removed from the candidate list.
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Figure 3.13: Cumulative Matching Characteristic (CMC) curves for person re-identification.
Dataset: 60 people going from Camera 1 (C1) to Camera 3 (C2) in the i-LIDS dataset from
London Gatwick airport [43]. (a) Different spatio-temporal modellings of people in unobserved
regions (no appearance features are used): Multi-Goal Social Force Model (MGSFM) and LBM
where association is performed using Euclidean distance, and TTALL and TT4REG as base-
line methods that use the average travelling time (see text for details). (b) Appearance meth-
ods (L1-Norm, Bhattacharyya distance and rankSVM) applied on the full dataset and on the
re-identification candidates generated for each person by LBM50.

appearance is used (this curve is the same as in Fig. 3.13(a)). Given the re-identification can-

didates provided by LBM50, the combination of Euclidean distance with L1-Norm (blue CMC

curve), BD (green CMC curve), and rankSVM (red CMC curve) gives 50%, 43%, and 38% for

the re-identification score, respectively. These re-identification scores average to 44% that pro-

vides an improvement of 6% when compared to the average results obtained by LBM50 as motion

prediction with only appearance for association (the three top CMC curves in Fig. 3.13(b)) and an

improvement of 16% over those obtained by LBM50 as motion prediction with only Euclidean

distance for association (black CMC curve in Fig. 3.14(b)).

Note that the CMC curves reported in the figures are not always monotonically increasing

and they remain constant for a few ranks after the first 5-10. This happens because we use a

dataset of 60 people and we reach over 80% in the CMC curves within the lower ranks, so the

number of people that could be re-identified at higher ranks are only a few. This is desirable for

algorithm performance, but constant trends generated at higher ranks highlight the fact that there

exist some people that are very difficult to be re-identified by the algorithm. Moreover, in some

of the figures the CMC curves never reach 100%, as already mentioned in Sec. 3.6.2 for Fig. 3.11.

In fact, the time interval ∆t (Sec. 3.3) can sometimes be too restrictive and this results in some

correct candidates being left out of the set of possible re-identification candidates. A solution
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Figure 3.14: Cumulative Matching Characteristic (CMC) curves for person re-identification us-
ing LBM50 to generate re-identification candidates for each person. (a) Association performed
by different weighted sums of Bhattacharyya distance (appearance measure) and Euclidean dis-
tance (spatial measure). (b) Association performed by only using Euclidean distance (black CMC
curve) and by weighted sum (50%-50%) of Euclidean distance and different appearance methods
(L1-Norm, Bhattacharyya distance and rankSVM).

for this issue would be to increase the ∆t value at the cost of a decrease in the re-identification

performance.

3.6.4 Validation of the proposed person’s representation

In order to evaluate our proposed representation model, we compare the results obtained with

a full-body model [28, 84, 85, 121] and those obtained using the shape from Fig. 3.7. In these

experiments, only appearance features are used without any motion prediction. Figures 3.15(a)

and 3.15(b) show the results by Cumulative Matching Characteristic (CMC) curves. It is pos-

sible to notice that the upper-body model is a more suitable shape to use for re-identification

than the full body. In particular, since people are more likely to be occluded when they exit C1,

Fig. 3.15(b) shows a higher improvement compared to Fig. 3.15(a) that considers the entry of C1.

Moreover, the L1-Norm and BD show a considerable improvement from Fig. 3.15(a) (EN1EN2)

to Fig. 3.15(b) (EX1EN2) compared to rankSVM that has a more stable behaviour. This is be-

cause the rankSVM is a learning-based method with a cross-camera colour calibration implicitly

performed in the training phase and hence is more robust to illumination changes.
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Figure 3.15: Cumulative Matching Characteristic (CMC) curves for person re-identification us-
ing different spatial supports for feature calculation. Only appearance features are used for asso-
ciation without any motion prediction. Dataset: 60 people going from Camera 1 (C1) to Camera 3
(C2) in the i-LIDS dataset from London Gatwick airport [43]. Full body is the left-most image in
Fig. 3.7, upper body is the right-most image in Fig. 3.7. (a) People entering C1 associated with
people entering C2. (b) People exiting C1 associated with people entering C2.

3.7 Summary

In this chapter, we proposed a person re-identification framework divided in two main phases: (i)

generation of reappearance candidates of people and (ii) association of people across cameras. In

order to generate the reappearance candidates, we modelled people’s movement in unobserved

regions using the top-view map of the environment. We proposed two different models for move-

ment propagation. In the first, crossing regions in the site are marked as landmarks on the top

view and people’s movement is modelled using a graph-based approach (LBM). In the second, a

person’s desire to reach specific goals in the site while avoiding obstacles is modelled using the

Multi-Goal Social Force Model (MG-SFM), a modification of the Social Force Model commonly

used in crowd simulation.

A person that reappears in the next camera is then associated with those candidates within a

time window around the person’s reappearance time. Association is performed using two mea-

sures: (i) the spatial Euclidean distance calculated on the top view between the position of the

candidates and the position of reappearance of the specific person; and (ii) the Bhattacharyya

distance between appearance features extracted from the reappeared person and people that have

generated the candidates. In order to reduce the presence of background and the probability of

occlusion, we extracted appearance features from a patch around the head obtained as reported

in Fig. 3.7, thus making the method suitable for crowded scenes. Finally, the association is per-
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formed by equally weighting the contribution of spatial Euclidean and Bhattacharyya distances

leading to an association ranking.

We used a challenging dataset of 60 people from London Gatwick airport in order to compare

the proposed methods with state-of-the-art methods in a realistic crowded scene. Approaches

solely based on appearance features extracted from the full body of a person have performances

close to random, nevertheless when they are extracted from part of the upper body they can reach

40% in the first 10 ranking positions. LBM and MG-SFM have been compared in the generation

of re-identification candidates using spatial association. With the best settings for both LBM and

MG-SFM, MG-SFM performs better for the first three positions of the re-identification ranking

while LBM presents better results after the third position. Overall, by employing LBM for the

generation of re-identification candidates and different strategies for association across cameras,

the re-identification score (rank 1) can reach 41.67% when only appearance is used, 28.33% when

only motion is used, and 50% when their rankings are summed with equal weights. In general,

similarly to what has been reported in the state of the art [47, 65], it is important to highlight the

fact that spatio-temporal cues, when available, should be used in combination with appearance

methods for re-identification, as this combination normally outperforms methods solely based on

spatio-temporal features or on appearance features.



Chapter 4

Human interaction analysis

4.1 Introduction

About 50-70% of human walking activity takes place in groups [105]: video monitoring of spa-

tially interacting humans is therefore very important for analysing people’s behaviours [95, 122].

In this chapter, our aim is to detect those people that know each other and form a group, and

those that interact with each other for short periods of time. We concentrate on scenarios of

low- and mid-density crowds, and we find interacting people by analysing people’s trajectories

and by calculating the expected people’s movements. The task becomes very challenging when

ambiguous situations are created by people that stand or pass very close to each other without

interacting. In order to address these situations, we extend the Social Force Model with latency

method for group detection presented in Šochman and Hogg [105] by defining plausible human

behaviours for the localisation of group formations. With the aim of enabling group detection in

situations that were not previously possible, we improve the model by incorporating relationship

constraints such as walking in the same direction and decelerating when approaching individuals

who are standing still (Sec. 4.2). Moreover, we track each centre of interaction over time with a

graph-based tracker to enforce the spatio-temporal consistency of the detections (Sec. 4.3). Fig-

ure 4.1 shows the block diagram of the overall solution. We validate the proposed framework on

three different datasets and show that it outperforms existing methods using the one minus False

Positive rate (1-FP) and the Group Detection Success Rate (GDSR) [10] (Sec. 4.4).

61
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Figure 4.1: Block diagram of the proposed approach (GDet) for group detection and tracking,
showing the embedding of walking together, approaching and SFM-Det (Social Force Model
group Detection [105]). GTrack corresponds to Group Tracking.

4.2 Interaction detection

Let P = {P1,P2, . . . ,PN} be the set of N people walking or standing still in the monitored scene,

and pi(t) = (xi(t),yi(t)) be the feet position of person Pi at time t on the rectified image1.

Šochman and Hogg [105] proposed to detect interactions among people by analysing instanta-

neous forces with a Social Force Model (SFM-Det); however, this method fails to detect groups

in situations when the paths of walking people cross over each other or when people pass near

a stationary group (Fig. 4.2). In our approach, we specifically model these situations. Note that,

compared to Sec 3.3.2 where SFM is used as a motion model to propagate people’s movement in

unobserved regions, SFM-Det analyses the observed trajectories in order to describe the expected

movement of each person and to find which people are in group.

In the SFM-Det, the desired velocity of a person is defined as the average velocity observed

in the time interval [t, t +Tp], and the force fDi(t) as the displacement between actual velocity

and desired velocity. Let us define the set of peopleHi = P \Pi and the contour of non-walkable

areas B (walls and barriers), where B are the spatial locations defined by a vector (xB,yB) for the

horizontal and vertical coordinates, respectively. The sum of repulsive forces, fHi(t) and fBi(t),

is inversely proportional to the distance between pi(t) and Hi, and pi(t) and B in order for Pi to

be at a comfortable distance from other peopleHi and from walls and barriers B, respectively. In

particular,

fHi(t) = ∑
j|Pj∈Hi

fi j(t), (4.1)

1Note that, compared to Ch. 3, we do not need a top view because we now deal with single cameras.
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Monday, 25 March 2013
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Monday, 25 March 2013
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Monday, 25 March 2013
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(e)
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(f)

Figure 4.2: Visualisation of plausible human behaviour constraints. (a)-(c) A person crossing
a group of two people walking together is not detected as part of the group; (d)-(f) A person
approaching a stationary group is detected as a member only if he/she decelerates and stops in
proximity of the group.

where fi j(t) indicates the interaction force generated by Pj on Pi and

fBi(t) = ∑
b∈B

fib(t), (4.2)

where fib(t) indicates the barrier force generated between a barrier b and person Pi. In our imple-

mentation, we model the module of fi j(t) and fib(t) as a decreasing exponential in the direction

of the interaction, similarly to previous works [38, 39, 59, 66]. Alternative models include a cir-

cular exponential where person Pi is influenced by all the surroundings [50, 93] and an elliptical

exponential that reshapes based on the pedestrian speed [50]; the exponential function has also

been demonstrated to be the best to model interaction forces [74]. Moreover, in the SFM-Det,

the attractive force, f
Γ

γ

i
(t), is the force that keeps people within the same group Γ

γ

i (t)⊆P [105],

where Pi ∈ Γ
γ

i (t) as in Sec. 1.32. The sum of forces describes the variation of people’s movement

2In the rest of the chapter, we drop the index γ for better readability.
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that, at instant t and for a person Pi, results in

mi
dvi(t)

dt
= fDi(t)+ fHi(t)+ fBi(t)+ fΓi(t), (4.3)

where dvi(t)
dt is the actual variation of the velocity over time and, unlike Eq. 3.6, the mass of

people, mi, does not need to be set to a specific value because it is implicitly determined by

people’s trajectories from the right-hand side of Eq. 4.3. The left-hand side of Eq. 4.3 models the

variation in space of a person’s movement at each time instant and the position of each person is

then predicted using

p∗i (t +Tp) = pi(t)+Tp

(dvi(t)
dt

τ +vi(t)
)
, (4.4)

where p∗i indicates the expected position of Pi determined using the SFM, τ is the time interval

during which the Eq. 4.3 is calculated (we set τ = 1 similarly to Eq. 3.7), and vi(t) is the actual

velocity obtained as the average velocity within the time window [t − Tp, t]. Lower values of

Tp would result in a model that is sensitive to noise, while higher values of Tp could not reliably

describe abrupt velocity variations. Note that, unlike in the Eq. 3.7 where the temporal smoothing

is performed with a weighted sum, in the Eq. 4.4 the temporal smoothing is implicit in the

calculation of vi(t) and p∗i (t + Tp). In summary, the SFM-Det describes people’s movements

using Eq. 4.3 that models people’s desire to reach and maintain a specific speed and direction,

and the fact that people want to move or stand at a comfortable distance from other people and

barriers; Eq. 4.4 is then used by the SFM-Det to smooth speed and direction of motion over time

by assuming that abrupt changes are unlikely to happen.

Compared to the original SFM [38], the term fΓi(t) in Eq. 4.3 is introduced for group be-

haviour modelling [74, 75] that is used for interaction detection in an iterative algorithm [105].

This algorithm evaluates whether the prediction using Eq. 4.4 commits more error, δ , when there

are no group forces involved (fΓi(t) = [0 0]), or when there is an active group force keeping peo-

ple together and inhibiting them from being repulsed by each other. In Šochman and Hogg [105],

all people can interact with each other (within a certain gating radius) in order to form a group,

thus resulting in a reliable group detection only in specific scenarios where people do not walk

or stand next to each other. However, in crowded cases like the one presented in Fig. 4.3 where

people can cross existing groups and in Fig. 4.4 where people walk very close to other people

but without stopping, this method may fail. In order to specifically address these challenging sit-
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Figure 4.3: Sample of group detection results in the case of a person crossing a group of people
walking together. Green ellipse: person (feet location) belonging to the group; Magenta cross:
group centroid. From (a) to (c): temporal evolution.

uations, we restrict the set of potentially interacting people to those walking in similar directions

(walking together) and to those decelerating when approaching a stationary group (approaching).

The former model defines that only people walking in the same direction can interact (Sec 4.2.1),

while the latter model defines that people approaching a stationary group shall decelerate and

almost stop in order to be considered as interacting with that group (Sec 4.2.2). We define our

model as GDet. Let us call Hi(t)⊆Hi and Ĥi(t)⊆Hi the sets of people potentially interacting

with person Pi at time t, and selected by walking together and approaching, respectively. We

then restrict the interactions of Pi to the set H∗i (t) =Hi(t)∪Ĥi(t), where H∗i (t) ⊆Hi. In order

to consider H∗i (t) instead of Hi(t), Eq. 4.3 is modified by changing the actual variation of the

velocity from dvi(t)
dt to dv∗i (t)

dt and the interaction force from fHi(t) to fH∗
i
(t) that results in

mi
dv∗i (t)

dt
= fDi(t)+ fH∗

i
(t)+ fBi(t)+ fΓi(t), (4.5)

where the group force fΓi(t) is only applied between Pi and H∗i (t) at each time t. Similarly, in

Eq. 4.4 we change the prediction of person Pi position from p∗i (t +Tp) to p∗i (t +Tp) that results
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Figure 4.4: Sample of group detection results in the case of a person passing nearby a group.
Green ellipse: person (feet location) belonging to the group; Magenta cross: group centroid.
From (a) to (c): temporal evolution.

in

p∗i (t +Tp) = pi(t)+Tp

(dv∗i (t)
dt

τ +vi(t)
)
. (4.6)

Walking together and approaching models are detailed in Sec. 4.2.1 and Sec. 4.2.2, respectively.

4.2.1 Walking together model

Let us consider two people, P1 and P2, interacting with each other or with other people, and

walking in the same direction within a range of 180◦ . If a third person P3 walks close to P1 and

P2 in the opposite direction, the interaction model SFM-Det erroneously classifies P1 and P2 as

non-interacting people (Fig. 4.3) because the movement of P3 interferes in the group detection

phase. This problem can be addressed by modelling the walking together that allows people

interacting with other subjects only if their direction of motion is coherent within a range of

180◦.

Let us consider two groups of people (P1 with P2, and P4 with P5) that walk in the same

direction and are far apart enough to not be detected as a single group, while a fifth person (P3)

walks in the opposite direction. With the modelling of [105], when P3 is nearby P2 and P4, the

repulsive forces f23(t) and f43(t) act on their masses (see Eq. 4.1), and when people are almost
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Figure 4.5: Difference between the proposed approach and Šochman and Hogg [105] in how the
forces act on people while crossing other groups of people walking together. Coloured ellipses
represent people (P = {Pi}5

i=1); the black arrow is the vector of movement (fDi(t)); solid and
coloured arrows are the repulsive forces (fHi(t)); dotted arrows are the attractive forces that form
the group (fΓi(t)); and the dotted ellipses are the detected groups.

aligned, they cancel out with f21(t) and f45(t), respectively, thus obtaining

f21(t)∼=−f23(t)

f45(t)∼=−f43(t),
(4.7)

a common situation in crowded scenarios (Fig. 4.2). Accepted predictions for the movements of

P2 and P4 (Eq. 4.4) are obtained without any group forces, thus leading to a missed detection of

the two groups (groups are detected only in the presence of a group force). With the inclusion of

the walking together constraint, P3 does not influence P2 and P4 movements with a repulsive force

since their motion direction is opposite, and accepted predictions are generated by including the

group forces between P1 and P2, and P4 and P5 in the Eq. 4.6, thus leading to correct group detec-

tions. Figure 4.5 reports a schematic representation of the forces and shows how group detection

is improved by using walking together compared to the original formulation of Šochman and

Hogg [105].

4.2.2 Approaching model

When dealing with crowded scenes where frequent meetings occur, a single person Pi may inter-

act with a stationary group S ⊆ Hi, or may pass very close to it in order to shorten the path to
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Figure 4.6: Difference between the proposed approach and Šochman and Hogg [105] in how the
forces act on people while approaching. Coloured circles represent people (P = {Pi}5

i=1); the
black arrow is the vector of movement (fDi(t)); solid and coloured arrows are the repulsive forces
(fHi(t)); dotted arrows are the attractive forces that form the group (fΓi(t)); and the dotted ellipses
are the detected groups.

reach his/her goal. The vicinity of Pi to S generates a set of high repulsive forces, fSi , that in the

SFM-Det [105] results in spurious group detections. In order to address this problem, we restrict

the possible people interacting with S to only those decelerating in proximity of S and stopping

within t̂ frames. Figure 4.6 shows the SFM forces with and without considering the approaching

model. Initially, when P3 starts to get close to P1 and P2 the repulsive forces start acting on the

masses, but until a certain distance is maintained these forces are negligible and do not affect the

group force. When P3 is close to P1 and P2, SFM-Det allows the repulsive forces generated by

P3 on P1 (f13(t)) and on P2 (f23(t)) to influence their movement predictions and, in order to have

accepted predictions, f13(t) and f23(t) have to be balanced by group forces that make P1, P2 and

P3 being detected as in the same group, thus resulting in a false positive group detection for P3.

However, this problem is solved by including the approaching constraint where the interaction of

P3 with P1 and P2 is not allowed unless P3 decelerates in proximity of P1 and P2, as if a meeting

was about to happen. Figure 4.4 shows a real example of the benefit of using the approaching

model for group detection.
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4.3 Group tracking

After frame-by-frame interaction localisation is performed (GDet), the centres of interaction are

tracked in order to enforce their temporal consistency. We define the group locations (or centres

of interaction) as the centroid of the positions of the people that form each group. The cen-

tres of interaction are associated over time by using a buffered greedy graph-based multi-target

tracker [82] (GTrack). In GTrack, the work Poiesi and Cavallaro [82] is adapted to group tracking

where the velocity is also included in the algorithm, as mentioned below. At first, short tracks are

generated by associating consecutive centroids with Hungarian algorithm (HA)3. The association

cost used by HA is calculated with the `-2 norm on the 2D positions of the centroids. Longer

tracks are subsequently extracted using GTrack that pair-wise matches short tracks until no alter-

native better pairings are found. GTrack determines the affinities among the short tracks using

position and velocity information, and the association process is performed within a short tem-

poral buffer that involves a sliding window of Θ frames overlapping for θ frames. When short

tracks are associated, the missing centroids within the temporal gap between the last location of

an earlier short track and the initial location of a later one are generated by 2D interpolation. The

people forming the group of the earlier short track are propagated up to the later short track.

In Fig. 4.7, we can see the effectiveness of the association of the centres of interaction. A

group of two people (light-blue track under white arrow) is passing nearby another group (brown)

and, initially, the detector correctly localises the centres of interactions (groups) (Fig. 4.7(a)).

When the light-blue group is closer to the brown group (Fig. 4.7(b,c)) the detector fails and

assigns the people of the light-blue group to the brown group. However, the tracker manages to

recover this erroneous assignment (Fig. 4.7(d)) and returns to tracking the two people belonging

to the light-blue group.

4.4 Results and analysis

4.4.1 Experimental setup

In order to validate the method for localising groups, we compare it with the methods of Šochman

and Hogg [105], Bazzani et al. [10] and Zanotto et al. [118] using BIWI-ETH [81], BIWI-

HOTEL [81], and Student003 [105] datasets. BIWI-ETH contains people mainly walking in and

3http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html, last ac-
cessed: March 2013.

http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
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Figure 4.7: Example of track recovery of a two-person group (light-blue track). Coloured circle:
affiliation of the people to a group; Coloured line: trajectory; Magenta cross: group detection.
(a) Light-blue group is correctly detected and tracked; (b)-(c) for some subsequent frames the
light-blue group is erroneously detected as part of a neighbouring group; (d) the light-blue group
is correctly recovered by the tracker.

Table 4.1: Details of the datasets used in the experiments. Key - ppg: people per group.

BIWI-ETH BIWI-HOTEL Student003
Total number of people 360 390 434
Number of groups 74 59 109
Min number of ppg 2 2 2
Max number of ppg 6 4 6
Mean number of ppg 2.6 2.1 2.3
Median number of ppg 2 2 2
Frame size (pixels) 640×480 720×576 720×576
Frames per second 25 25 25

out of a building; BIWI-HOTEL has more complex movement of people because of the presence

of a tram stop and of various barriers; Student003 presents a challenging scenario where people

walk in unpredictable directions and get very close to each other. In these datasets, different types

of groups are formed, ranging from those in motion to those standing still. Table 4.1 provides ad-

ditional information about each dataset. The method of Bazzani et al. [10] is based on an online

DPF for Joint Individual-Group Tracking (JIGT), which is characterised by two conditionally

dependent subspaces used to model people’s motion and group formations, respectively. Instead,

in Zanotto et al. [118], observations of people’s locations and velocities are generated using a

tracker, and group detection is performed online by modelling groups as infinite mixtures solved

using DPMM.
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4.4.2 Validation of group detection and tracking

For group detection (GDet), we use the same parameter setting of Šochman and Hogg [105],

except for δ that we set to a minimum value of 3 (instead of 0) in order to remove noisy group

detections. In particular, we set Tp = 10
fps seconds where fps indicates the frames-per-second

of the specific dataset used. A person is considered to be standing still when his/her speed is

on average less than their shoulder radius - 0.35 meters [105] - within a one-second time win-

dow and t̂ = Tp for the approaching model. Group tracking (GTrack) is performed on temporal

windows of Θ = 25 frames with a 20% overlap. Like [10, 105, 118], we consider the single-

camera person tracking task solved. We compare the results of GDet and the algorithm proposed

in [105] without the offline decision (SFM-Det), and those of GTrack applied to the output of

GDet and of SFM-Det (let us call them GTrack and SFM-TR, respectively). For JIGT [10] and

DPMM [118], we provide the results from the related papers. The evaluation is performed with

the mean of all frames of one minus the False Positive rate (1-FP) that indicates the percentage

of correct detections of people not belonging to any group and the Group Detection Success

Rate (GDSR) metric which calculates the rate of correctly detected groups [10]. A correct de-

tection for GDSR is a group that contains at least 60% of the members annotated in the Ground

Truth [10]. Table 4.2 reports the quantitative evaluation, where the results for JIGT and DPMM

are only available for the BIWI-ETH dataset. The performance of GDet and GTrack are superior

to that of other methods, a part from a small decrement of 1-FP in the Student003 dataset, thus

proving the effectiveness of the proposed model for group localisation (Sec. 4.2). Compared to

SFM-Det [105], 1-FP of GDet is about the same in all datasets (improvement by 1% in BIWI-

HOTEL, decrease by 2% in Student003 and the same value in BIWI-ETH), while GDSR of GDet

in BIWI-HOTEL and Student003 is dramatically improved (by 11% and 13%, respectively) since

the scene contains people standing still and groups are formed next to each other. In BIWI-ETH,

the GDSR improvement of GDet is minor (1%) because the scene is less crowded and groups

are located relatively far from each other. Moreover, we believe that the difference between our

results (GDet) and those obtained with DPMM for both 1-FP and GDSR (26% and 15%, re-

spectively), are due to the fact that this work is designed for and is therefore more suitable for

detecting people switching groups, and because DPMM is an online method while GDet has a

small latency.

The group tracker (GTrack) improves the GDSR of GDet by 2% and 1% in BIWI-ETH and
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Table 4.2: Result comparison on the BIWI-ETH, BIWI-HOTEL and Student003 datasets us-
ing [10] (a) 1-FP and (b) GDSR. GDet: proposed group detection; GTrack: proposed group
tracking on the output of GDet; SFM-Det: group detection of Šochman and Hogg [105]; SFM-
TR: proposed group tracking on the output of SFM-Det; JIGT: group detection and tracking of
Bazzani et al. [10]; DPMM: group detection of Zanotto et al. [118].

(a) 1-FP
Dataset GDet GTrack SFM-Det SFM-TR JIGT DPMM

BIWI-ETH 98% 98% 98% 98% 54% 72%
BIWI-HOTEL 91% 91% 90% 89% - -
Student003 80% 80% 82% 81% - -

(b) GDSR
Dataset GDet GTrack SFM-Det SFM-TR JIGT DPMM

BIWI-ETH 78% 80% 77% 78% 54% 63%
BIWI-HOTEL 89% 89% 78% 81% - -
Student003 71% 72% 58% 60% - -

Student003, respectively, whereas GDSR in BIWI-HOTEL remains the same. This is due to

the high performance of GDet in BIWI-HOTEL where groups are constantly detected over time,

unlike in BIWI-ETH and Student003 where GDet provides less consistent input to the tracker

that can then link the centres of interaction over time. 1-FP for GTrack and GDet remains the

same for all datasets. GTrack also improves the GDSR of SFM-Det (SFM-TR) by 1%, 3%

and 2% in the three datasets, respectively, while maintaining the same 1-FP in BIWI-ETH and

decreasing it by only 1% in the other two datasets. Compared to JIGT, GTrack performs 44%

and 26% better for 1-FP and GDSR in BIWI-ETH, respectively, because JIGT is more suitable to

detect switchings of groups and is online, like DPMM. Figure 4.8 shows the qualitative results as

comparison between GTrack and SFM-TR, and how the group tracker links and correctly tracks

most of the groups in the scene. From the results shown in Fig. 4.8, we can see some of the

challenging situations where the proposed modelling is effective. GTrack has better performance

compared to SFM-TR, for example in Fig. 4.8(d) where a stationary group is correctly detected

and tracked, even when another one passes close to it. Likewise, in Fig. 4.8(g) on the left, two

groups (light blue and purple) that cross each other are consistently localised. In some situations,

the group localisation may fail. For example in Fig. 4.8(h), the three people in the middle of

the frame are not localised as part of the same group because they just joined together and their

group formation is highly unstable, that is they keep moving apart and joining back together

while walking, as well as passing through other groups of people. On the other hand, SFM-TR

in this case can correctly localise part of the group (two out of three people), even for only few
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frames until when the group crosses another one coming from the opposite direction.

The overall computational complexity for SFM-Det [105] has an upper limit of O(N3) where

N is the number of people. This is obtained as a multiplication between O(N) operations, that

check whether or not people belong to a group, and O(N2) operations that calculate the set of

interaction forces between each pair of people. The GDet method does not increase the com-

putational complexity of SFM-Det (O(N3)) because walking together and approaching models

in GDet need O(1) to create the set H∗i (t) (Eq. 4.5). Moreover, the implementation of GDet

is usually faster than the one of SFM-Det since interaction forces are normally calculated on a

subset of people (in most of the cases |H∗i (t)|< |Hi(t)|). Finally, the computational complexity

for GTrack is the sum of O(N3) which is required by the Hungarian algorithm and O(N2) which

is required to solve the graph, thus resulting in an overall upper limit of O(N3).

4.5 Summary

We proposed a detection and tracking algorithm for the localisation of interacting people. Com-

pared to the state-of-the-art approach Šochman and Hogg [105] that performs group detection

by only analysing the Social Force Model forces, we embedded in the algorithm two interaction

constraints that modelled typical behaviours of interacting people. The first restricted the inter-

action among people to only those walking in the same direction and the second modelled the

approaching of a person to a stationary group. The method analysed direction and velocity of

people over time and groups were detected with a short latency of 0.4 seconds. In addition to this,

the temporal consistency of the localised groups was improved with a graph-based tracker that

linked the centres of interaction with a latency of 1 second. We showed that our framework out-

performed state-of-the-art methods [10, 105, 118] on BIWI-ETH, BIWI-HOTEL and Student003

datasets that presented low- and mid-density crowds.
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Figure 4.8: Samples of group tracking results obtained with SFM-TR and GTrack on the (a)-(c)
BIWI-ETH, (d)-(f) BIWI-HOTEL, and (g)-(i) Student003 datasets.
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Conclusions

5.1 Summary of the achievements

In this thesis, we addressed the problem of person re-identification and interaction localisation of

people using human motion models with the aim of enhancing automatic video surveillance. Po-

tential applications for our work could range from improving security in an existing environment

to data analysis for scene understanding or for commercial purposes, as discussed below. Given

a set of cameras with non-overlapping FOVs, the task of following a person across all cameras is

very challenging, especially in those situations where people move in a crowd and look very sim-

ilar to each other. For this reason, we proposed to employ human motion models to predict the

paths followed by people in unobserved regions and to create candidate locations for reappear-

ance. We exploited and modelled the fact that walking people are normally attracted by regions

of interest (exits, shops, seats and meeting points) that are common to the majority, and we de-

signed a parametric algorithm that does not need any data-driven learning, thus avoiding the need

of a training set. The predictions generated can be used in the person re-identification task and

provide a surveillance operator with the potential paths people follow when unobserved. These

potential paths can be used for understanding movement in areas that cameras cannot monitor

and to estimate the most likely movements of people. Unlike existing methods for crowd simu-

lation where the simulation is performed by fixing a set of parameters beforehand, in our method

the set of hypotheses for people’s movements are generated using the velocity of people in the

monitored scene, thus allowing estimations that are more realistic and, hence, closer to the actual
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people’s movements. A possible application could be the improvement of safety in a building

by, for instance, avoiding the placement of barriers in locations that obstruct the actual flow of

people. The safety of a building is normally analysed before the building is constructed using

crowd simulations and, after the building is constructed, using the video streams from the camera

network; however our method could provide estimations from real data also in those areas that

are not in the FOV of any camera.

In particular, for person re-identification, we critically analysed and reorganised the state of

the art based on appearance features, cross-camera calibration and the approaches used for inter-

camera association. We proposed and validated two person re-identification methods based on

two models for people’s movement in unobserved regions that exploited the map of the environ-

ment. The first model, Landmark-Based Model (LBM), was based on landmarks corresponding

to interest and crossing regions in the site, and the second model, Multi-Goal Social Force Model

(MG-SFM), was based on a modification of the Social Force Model that took into account barrier

avoidance as well as the desire of people to move towards specific goals. We also presented a

person’s representation that is appropriate for crowded scenarios, and based on a vertical strip

covering the upper body and containing the head. A challenging dataset from London Gatwick

airport was employed for comparing the proposed methods with state-of-the-art approaches in

a realistic and crowded scenario. Re-identification results of the motion models showed similar

trends in the Cumulative Matching Characteristic (CMC) curves, even if LBM had lower com-

plexity in terms of modelling and MG-SFM was more suited to modelling complex aspects of

people’s movement. Appearance-based methods that extracted features from the full body per-

formed poorly compared to algorithms that extracted features from the upper body and to those

that only considered possible variations on the travelling time of people in the unobserved re-

gions (spatio-temporal modelling). Finally, the best performance for person re-identification was

obtained by combining spatio-temporal and appearance cues.

In addition to this, motivated by the fact that 50-70% of walking activity of people takes

place in groups, we localise interacting people in single camera views by analysing a human

motion model that describes expected people’s movements. Also in this model, no data-driven

learning is necessary. On the one hand, the localisation of interacting people over time can be

used to redirect the focus of attention of a surveillance operator to those areas where interactions

are not supposed to happen. On the other hand, offline analysis of group formations can be used



Chapter 5: Conclusions 77

for multiple applications. For instance, when fights and similar dangerous interactions occur,

an automatic analysis of the recordings would help in understanding where and when the event

started, so the protagonists could be identified and similar situations could be avoided in the

future. The understanding of where groups are more likely to form could also be used to infer

the locations where people prefer to interact and socialise. This scene understanding allows the

localisation of areas that should not be substantially modified in any future refurbishment because

people already use and socialise in them, while if there are areas that are not used frequently this

could indicate that they are in need of improvement. The localisation of these areas and the

analysis of where people are more likely to move when in a group, is also very important for

commercial and marketing purposes. For instance, advertisements can be effectively placed in

those areas where groups of people move in order to maximise the number of people reached and

to promote those products/activities specific for groups of people.

In particular, we proposed to embed two constraints for group formation in an interaction

localisation algorithm based on Social Force Model. The Social Force Model described the forces

involved in people’s movement that are: the forces to maintain a desired velocity, to keep people

at a comfortable distance from other people and barriers, and to keep people together when in

a group. Interaction localisation was performed using an algorithm that iteratively analysed all

the forces acting on people at a certain time instant and calculated the expected movement that

people should have when interacting with other people. In order to improve group detection,

we proposed to limit the interactions to those people moving in the same direction and to those

decelerating when approaching a static group. After interactions were localised, a graph-based

algorithm was applied to link over time the group centroid and to follow those interactions that

were consistent over time. The improvements on group localisation of the proposed approach

with respect to state-of-the-art methods were shown quantitatively using the one minus False

Positive rate (1-FP) and the Group Detection Success Rate (GDSR) metrics, and qualitatively on

three datasets presenting a different number of interactions.

In summary, we demonstrated that solutions for open problems related to the monitoring of

human movements can be designed by understanding people’s movement and modelling them

without the need of data-driven learning. The applications of our motion prediction and interac-

tion localisation of people in crowds could be video surveillance for re-identification and group

detection, safety that improves the quality of an environment by understanding where people
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move when unobserved and when in a group, and commercial purposes that exploit data estima-

tion and analysis to obtain the most likely paths people follow.

5.2 Future work

The future direction of our work are summarised below:

1. The application of the methods proposed in this thesis is limited by the fact that single-

camera multi-person detection and tracking were considered solved, and manual annota-

tions for people’s trajectories were used in the experiments. In order to input automatically

extracted trajectories to the proposed motion prediction and interaction localisation algo-

rithms, their robustness to imprecise people’s location, and false positive and false negative

trajectories, needs to be evaluated [55, 79, 98]. Our proposed solution for single-camera

detection and tracking is reported in App. A [J1].

2. Occlusion is one of the main issues that a single-camera tracking algorithm has to ad-

dress [57]. The motion propagation algorithms presented in Ch. 3 could be used to pro-

vide location candidates for people’s reappearance after a long occlusion. Unlike Gong

et al. [34] that use a path planning method, a motion model designed for people, like the

MG-SFM, may result in a more accurate motion estimation. Furthermore, similarly to

Jin and Bhanu [49] grouping information could be integrated into the motion propagation

framework.

3. The motion prediction models proposed in Ch. 3 could be applied in different scenarios

only if interest and key regions, and goals are correctly localised in the specific site. The

automatic definition of these regions in the observed areas [107] and, building on Idrees

et al. [44] that estimate car behaviours in unobserved regions, the possible configurations

of the unobserved areas could be integrated in the motion models.

4. The propagation error of the motion prediction methods could be analysed and the scala-

bility of the methods evaluated using a larger camera network. Moreover, a dataset with

people that only appear in one camera and do not reappear in other cameras, could be em-

ployed in order to analyse the robustness of the method when applied to this challenging

situation [9].

5. Since in Ch. 3 only one set of appearance features was employed for person re-identifica-

tion, further tests could evaluate how different appearance features affect the performance
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of the re-identification based on motion prediction.

6. Similarly to Leal-Taixé et al. [59] and Pellegrini et al. [79], the interaction localisation

method presented in Ch. 4 could be embedded in a target tracking framework. Tracking

could benefit from a human motion model that better describes people’s movement than

linear motion. Moreover, the information of people walking in a group could be used to

generate more robust cues for person re-identification in a multi-camera tracking frame-

work [87, 120].

7. Since real applications may require the localisation of interacting people a few time instants

in advance [111], we could perform interaction prediction by creating a set of hypotheses

for future interactions among people. Past people’s trajectories define actual groups and

future interactions are estimated by propagating this information, thus permitting the un-

derstanding of which people will interact and, for instance, join an already formed group.



Appendix A

Multi-person tracking on confidence maps: an

application to people tracking

A.1 Introduction

Multi-target tracking is a challenging task in real scenarios due to the variability of target move-

ments, shapes and sizes over time, clutter and occlusions. Moreover, the computational cost may

exponentially increase with the number of co-occurring targets to be tracked and the maximum

number of targets has to be fixed a priori [J1]. Compared to single-target tracking where the state

of each target is represented by a single state vector [116], for multi-target tracking either the state

vector is increased with respect to the number of targets [11, 14, 41, 56, 57, 63, 70, 91, 112, 113,

114] or a single-target tracking is initialised for each target [1, 17, 24, 52, 100, 104, 109, 115].

We refer to the two approaches as one-state-per-target (OSPT) and one-filter-per-target (OFPT)

methods, respectively. OSPT methods perform the tracking optimisation at each time step on the

overall state space. In this case, only a limited number of targets can be tracked due to a prior

definition of the maximum number of allowed targets [24] or ad-hoc stages used to estimate the

number of targets in the scene [14, 70]. OFPT methods perform tracking by a local optimisation

for each target, thus limiting its application to situations where the number of targets is small and

targets are easily distinguishable.

We propose a multi-target tracker based on track-before-detect algorithm [89] and applied to

confidence maps (MT-TBD) [J1]. To allow for multi-target tracking, we develop a method where

target IDs are assigned by using Mean-Shift clustering and Gaussian Mixture Model (GMM),
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and the birth and death of targets are modelled with a Markov Random Field (MRF). Unlike

Buzzi et al. [19], we do not need to define the maximum number of targets a priori and, unlike

Breitenstein et al. [17], the initialisation of a track may occur in any location of the image,

thus making the MT-TBD completely automatic and flexible to different scenarios. MRF allows

multi-target tracking without the augmentation of the state (OSPT methods, like the work by

Boers and Driessen [14]) or the number of filters (OFPT methods), caused by an increase in the

number of targets. Moreover, the use of MRF overcomes the limitations of Buzzi et al. [19]

by allowing a reliable tracking of close targets without loss of performance and the formulation

with a MRF leads to a computational complexity depending only on the number of particles.

We apply the MT-TBD to people tracking using a postprocessing phase on a temporal window

that employs track duration, background information and people’s appearance. Compared to the

recent work Benfold and Reid [11], the tracking accuracy improved by 11% with 2 seconds of

latency and by 10% with 4 seconds of latency on a dataset from the town centre of Oxford, UK.

A.2 Related work

In this section, we discuss recent works on multi-person tracking, we analyse their main contri-

butions and classify each method in its corresponding category. Multi-target video trackers can

be classified into causal and non-causal methods. Causal methods use information from past

and present observations to estimate trajectories at the current time step. Non-causal methods

use also information from future observations, thus resulting in a delayed decision. Although

non-causal approaches are not suitable for time-critical applications, they can achieve a global

optimum leading to more robust results during occlusions.

Causal trackers can be for example Bayesian filters [1, 11, 17, 109, 115]. Yang et al. [115]

use a Bayesian detection association obtained by Convolutional Neural Network (CNN) trained

on colour histograms, elliptical head model, and bags of SIFTs. Benfold and Reid [11] find the

optimum trajectories within a four-second window by a Minimum Description Length (MDL)

method applied on trajectories from a forward and backward Kanade-Lucas-Tomasi (KLT) track-

ing and from a Markov Chain Monte Carlo Data Association (MCMCDA). Alternatively, a par-

ticle filter is used in [1, 17, 109]. Ali and Dailey [1] track heads obtained by Haar-like features

and AdaBoost; Xing et al. [109] employ the Hungarian algorithm for the optimisation of short

but reliable trajectories obtained by tracking the upper human body. Breitenstein et al. [17] track,
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depending on the scenario, people detected by Histogram of Oriented Gradients (HOG) or Im-

plicit Shape Model (ISM), where the association between detections and tracks is performed by a

greedy algorithm and boosting. A different approach is presented in Rodriguez et al. [91] where

tracking is obtained on four points per head by KLT and head detection is optimised by crowd

density estimation and camera-scene geometry. Tag-and-track methods for a high-density crowd

are proposed in [3, 90], where targets are assumed to follow a learned crowd behaviour. Ali

and Shah [3] deal with crowds with coherent motion by modelling their global behaviour, the

environment structure and the local behaviour of people. Rodriguez et al. [90] focus on crowds

with non-coherent motion where the modelling is performed by Correlated Topic Model (CTM)

that predicts the next position of a person by exploiting the optical flow. Note that among causal

methods, only Benfold and Reid [11] and Rodriguez et al. [91] use an OSPT framework. This

is because the OSPT is generally more complex than OFPT, but the modelling for multi-person

tracking is more flexible and computationally cheaper [11].

Among non-causal trackers, short term tracks (tracklets) [41, 56, 57, 63, 112, 113, 114] can

be associated over time by using a modification of the Multi-Hypothesis Tracking (MHT) algo-

rithm [88] where the detections are obtained by the Wu et al. [108] person detector. Huang et

al. [41] associate tracklets by Hungarian algorithm using position, time and appearance features,

and then refine them using entry and exit points in the scenes, which are in turn learned from

tracklets. Li et al. [63] show how the association can be improved by using a combination of

RankBoost and AdaBoost in a hierarchical approach where, by starting from the lower levels,

longer trajectories are generated using a set of 14 features per tracklet. In Yang et al. [112], the

association is performed using RankBoost applied to an optimisation of affinities and dependen-

cies between tracklets by a Conditional Random Field (CRF). Kuo et al. [56] associate tracklets

using an AdaBoost classifier which learns online the discriminative appearance of targets based

on colour histogram, covariance matrix features and HOG. Moreover, Kuo et al. [57] extract

motion, time and appearance from different body parts of each target in order to perform a re-

identification step to resolve long-term occlusions. Yang and Nevatia [113] learn online the non-

linear motion of people and a Multiple Instance Learning (MIL) framework for the appearance

modelling using the estimation of entry and exit regions. Furthermore, Yang and Nevatia [114]

use CRF to model affinity relationships between pairs of tracklets, where the association of track-

lets is based on Hungarian algorithm and a heuristic search.
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Table A.1: Summary of recent state-of-the-art and proposed [J1] methods for multi-person track-
ing, and datasets used (see text for details). Legend: CM = Confidence Map; OSPT = One-
State-Per-Target; CRF = Conditional Random Field; OLDAMs = Online Learning of Discrimina-
tive Appearance Models; PIRMPT = Person Identity Recognition based Multi-Person Tracking;
MIL = Multiple Instance Learning; KLT = Kanade-Lucas-Tomasi feature tracker; MCMCDA
= Markov-Chain Monte-Carlo Data Association; JPDA = Joint Probabilistic Data Association;
iLids = i-LIDS dataset from Westminster subway station (London, UK); TRECVID = i-LIDS
dataset from London Gatwick airport.

Ref. Method CM OSPT Causality Dataset
[41] Three-stage algorithm, Hungarian algorithm X CAVIAR, iLids
[56] AdaBoost on OLDAMs X CAVIAR, TRECVID
[57] PIRMPT X CAVIAR, ETH, TRECVID
[63] HybridBoost X CAVIAR, TRECVID

[112] CRF, RankBoost X TRECVID
[113] Learning of motion map, MIL for appearance X CAVIAR, PETS2009, TRECVID
[114] CRF, Hungarian algorithm/heuristic search X ETH, TRECVID, TUD
[11] KLT, MCMCDA X X X iLids, PETS2007, TownCentre
[58] Automatic relevance detection, JPDA X X X Ants, laser output
[91] KLT points, Crowd density estimation X X X Political rally
[17] Particle filter, Greedy algorithm, Boosting X X iLids, PETS2009, soccer, TUD campus, UBC Hockey
[1] Particle filter X Bangkok station
[3] Floor fields X Marathon, train station

[90] Correlated Topic Model X Mall, sport crowd
[109] Particle filter, Hungarian algorithm X CAVIAR, ETH
[115] Bayesian filter, Hungarian algorithm X CAVIAR, TRECVID
[J1] Multi-target track-before-detect X X APIDIS, ETH, iLids, TownCentre, TRECVID

Our proposed MT-TBD, similarly to Stalder et al. [96] and Breitenstein et al. [17], is a causal

method that makes use of confidence maps as a measurement for tracking. However, compared

to Stalder et al. [96], we use the confidence maps online without the need of any temporal

processing and, compared to Breitenstein et al. [17], an automatic assignment between the con-

fidence map and targets is performed. In addition, unlike Breitenstein et al. [17] which uses

manually selected areas at the borders of the image to initialise tracks, we do not use any prior

information about the scene. This becomes extremely advantageous when targets temporarily

undergo a total occlusion in any position of the image. We overcome the limitations of OFPT ap-

proaches [17, 58] with a global and instantaneous optimisation of target tracking in the MT-TBD

by employing a general likelihood function obtained from a controlled sequence. Finally, un-

like De Leat et al. [58], the use of multiple measurements per target is tested in various crowded

scenes with different camera perspectives.

Table A.1 summarises the methods covered in this section and the dataset on which these

methods have been tested.
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A.3 Results and analysis

We show the results of the MT-TBD as multi-person single-camera tracking on automatically

generated confidence maps. We use the TownCentre dataset1 composed of 4500 frames of size

1980×1080 pixels, recorded from Oxford (UK) town centre at 25 Hz. For a fair comparison with

Benfold and Reid [11], we use the head locations provided by the authors, which are generated

using HOG features and SVM. As the provided person’s locations have already been thresh-

olded, they are not in the form of intensity levels. For this reason, the input to the MT-TBD is a

confidence map with 2D Deltas in correspondence to each localised head.

Given a bounding box for each target along with the 2D Deltas at each time step, a true

positive track is defined as the one having a bounding box overlapping at least 25% with the

ground truth [11]. Let t p be the number of all the true positive tracks in a video sequence, f p

all the false positive tracks, f n all the false negative tracks, IDS the number of all ID switches,

and NG the number of ground truth targets. Performance evaluation is obtained by calculating

the Multiple Object Tracking Accuracy (MOTA) and the Multiple Object Tracking Precision

(MOTP), Precision and Recall [13]. MOTA is calculated as

MOTA = 1− (NG− t p)+ f p+ IDS
NG

(A.1)

and MOTP as

MOT P =
Ot

Nm
, (A.2)

where Ot quantifies the overlap between the tracked bounding boxes at each time instant t and

the ground-truth bounding boxes, and Nm is the number of ground-truth targets mapped with the

tracking output for the whole video sequence. Precision is calculated as

P =
t p

t p+ f p
(A.3)

and Recall as

R =
t p

t p+ f n
. (A.4)

We show how our method outperforms the recent work Benfold and Reid [11] by using

1http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold headpose/project.html.
Last accessed: March 2012.
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Figure A.1: Comparison of the results on TownCentre dataset with Benfold and Reid method
[11]. The graphs show the variation of the scores as a function of the latency introduced by the
postprocessing: (a) MOTA, (b) MOTP, (c) Precision and (d) Recall.

the same observations for tracking. This scenario is fairly challenging as it contains very close

targets and the FOV of the camera is very large, hence ID switches are likely to be frequent.

For comparison, we present the results with the same latency used in Benfold and Reid [11] for

postprocessing and, in particular, of 1, 2, 3, and 4 seconds (1 second = 25 frames). In order to

show the global improvement of our proposed method, we also include the performance of the

MT-TBD without any postprocessing. Note that, unlike our tracker, the work in Benfold and

Reid [11] cannot work with latency equal to 0.

Figure A.1 shows the quantitative results. The superior performance of the proposed method

is highlighted by the value of Recall that is consistently higher than Benfold and Reid [11] at

various latencies. For the MT-TBD without latency (and no postprocessing), the value of Recall

is already high and comparable with 4 seconds of latency. However, the Precision in this case

is lower due to the short and false tracks generated by the temporally-consistent false positive

head locations. By applying the proposed postprocessing, the Precision drastically increases.

Table A.2 summarises the final results and Fig. A.2 shows sample tracking results, where it is

clear that the method is robust under severe occlusions with a few fragmented tracks.
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Table A.2: Comparison between the results obtained using the proposed method (MT-TBD) and
Benfold2011 [11] on TownCentre dataset [11]. The number of frames between round brackets
represents the temporal window duration used for postprocessing. Key - IDS: ID Switches.

Method MOTA MOTP Precision Recall IDS
MT-TBD (100frs) 0.546 0.637 0.783 0.762 285
Benfold2011 0.454 0.508 0.738 0.710 -

(a) (b)

(c) (d)

Figure A.2: Sample tracking results of the proposed method on TownCentre dataset [11]. The
tracks are shown from the initialisation of the track.

A.4 Summary

In this appendix, we described a Bayesian method for multi-object tracking based on track-

before-detect, which utilises a Markov Random Field applied on the particles to perform track-

ing (i) of unknown and large number of targets, and (ii) by probabilistically managing the ID

assignment to avoid ID switches with close targets. The state estimate of a target is performed

via Mean-Shift clustering and supported by Mixture of Gaussians in order to enable an accurate

assignment of IDs within each single cluster. The birth and death of the targets at each iteration of

the filter is modelled with a Markov Random Field. The robustness of our algorithm was demon-

strated by applying the method on a surveillance dataset obtaining better results with respect to a

recent method from the state-of-the-art.
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[40] M. Hirzer, P. M. Roth, M. Köstinger, and H. Bischof. Relaxed pairwise learned metric

for person re-identification. In Proc. of European Conference on Computer Vision, pages

780–793, Florence, Italy, 7-13 October 2012.



91

[41] C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of

detection responses. In Proc. of European Conference on Computer Vision, pages 788–801,

Marseille, France, 12-18 October 2008.

[42] R. L. Hughes. The flow of human crowds. Annual Review of Fluid Mechanics, 35:169–182,

2003.

[43] i-LIDS. Home Office multiple-camera tracking scenario definition (UK). 2008.

[44] H. Idrees, I. Saleemi, and M. Shah. Statistical inference of motion in the invisible. In Proc.

of European Conference on Computer Vision, pages 544–557, Florence, Italy, 7-13 October

2012.

[45] O. Javed, Z. Rasheed, O. Alatas, and M. Shah. KnightM: A real time surveillance system

for multiple overlapping and non-overlapping cameras. In IEEE Conference on Multimedia

and Expo, pages I.649–I.652, Baltimore, MD, USA, 6-9 July 2003.

[46] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. Tracking across multiple cameras with

disjoint views. In Proc. of IEEE International Conference on Computer Vision, pages 952–

957, Nice, France, 14-17 October 2003.

[47] O. Javed, K. Shafique, Z. Rasheed, and M. Shah. Modeling inter-camera space-time and

appearance relationships for tracking across non-overlapping views. Computer Vision and

Image Understanding, 109(2):146–162, February 2008.

[48] K. Jeong and C. Jaynes. Object matching in disjoint cameras using a colour transfer ap-

proach. Springer Journal of Machine Vision and Applications, 19(5):88–96, September 2008.

[49] Z. Jin and B. Bhanu. Integrating crowd simulation for pedestrian tracking in a multi-

camera system. In Int. Conference on Distributed Smart Cameras, pages 1–6, Hong Kong,

30 October-2 November 2012.

[50] A. Johansson, D. Helbing, and P. K. Shukla. Specification of a microscopic pedestrian

model by evolutionary adjustment to video tracking data. Advances in Complex Systems,

10(2):271–288, December 2007.

[51] V. Kettnaker and R. Zabih. Bayesian multi-camera surveillance. In Proc. of IEEE Confer-

ence on Computer Vision and Pattern Recognition, volume 2, pages 252–259, Fort Collins,

CO, USA, 23-25 June 1999.



92

[52] Z. Khan, T. Balch, and F. Dellaert. MCMC data association and sparse factorization updat-

ing for real time multitarget tracking with merged and multiple measurements. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 28(12):1960–1972, December 2006.

[53] K. M. Kitani, D. Bagnell, and M. Hebert. Activity forecasting. In Proc. of European

Conference on Computer Vision, pages 201–214, Firenze, Italy, 7-13 October 2012.

[54] T. Ko. A survey on behavior analysis in video surveillance for homeland security applica-

tions. In IEEE Applied Imagery Pattern Recognition Workshop, pages 1–8, Washington, DC,

USA, 15-17 October 2008.

[55] C.-H. Kuo, C. Huang, and R. Nevatia. Inter-camera association of multi-target tracks by

on-line learned appearance affinity models. In Proc. of European Conference on Computer

Vision, pages 383–396, Hersonissos, Crete, Greece, 5-11 September 2010.

[56] C.-H. Kuo, C. Huang, and R. Nevatia. Multi-target tracking by on-line learned discrimi-

native appearance models. In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, pages 685–692, San Francisco, CA, USA, 13-18 June 2010.

[57] C.-H. Kuo and R. Nevatia. How does person identity recognition help multi-person track-

ing? In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pages

1217–1224, Colorado Springs, CO, USA, 20-25 June 2011.

[58] T. De Laet, H. Bruyninckx, and J. De Schutter. Shape-based online multitarget tracking

and detection for targets causing multiple measurements: Variational bayesian clustering

and lossless data association. IEEE Trans. on Pattern Analysis and Machine Intelligence,

33(12):2477–2491, December 2011.
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[105] J. Šochman and D. C. Hogg. Who knows who - inverting the social force model for

finding groups. In Proc. of IEEE International Conference on Computer Vision Workshop,

pages 830–837, Barcelona, Spain, 6-13 November 2011.

[106] X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu. Shape and appearance context

modeling. In Proc. of IEEE International Conference on Computer Vision, pages 1–8, Rio

de Janeiro, Brasil, 14-20 October 2007.

[107] X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson. Trajectory analysis and semantic

region modeling using nonparametric hierarchical bayesian models. International Journal

of Computer Vision, 95(3):287–312, December 2011.

[108] B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by

bayesian combination of edgelet based part detectors. International Journal of Computer

Vision, 75(2):247–266, November 2007.

[109] J. Xing, H. Ai, and S. Lao. Multi-object tracking through occlusions by local tracklets

filtering and global tracklets association with detection responses. In Proc. of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 1200–1207, Miami, FL, USA,

20-25 June 2009.

[110] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg. Who are you with and where

are you going? In Proc. of IEEE Conference on Computer Vision and Pattern Recognition,

pages 1345–1352, Colorado Springs, CO, USA, 20-25 June 2011.

[111] X. Yan, I. Kakadiaris, and S. Shah. Predicting social interactions for visual tracking. In

Proc. of British Machine Vision Conference, pages 102.1–102.11, Dundee, UK, 29 August-2

September 2011.

[112] B. Yang, C. Huang, and R. Nevatia. Learning affinities and dependencies for multi-target

tracking using a CRF model. In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, pages 1233–1240, Colorado Springs, CO, USA, 20-25 June 2011.

[113] B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear motion

patterns and robust appearance model. In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition, pages 1918–1925, Providence, RI, USA, 16-21 June 2012.



98

[114] B. Yang and R. Nevatia. An online learned CRF model for multi-target tracking. In

Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pages 2034–2041,

Providence, RI, USA, 16-21 June 2012.

[115] M. Yang, F. Lv, W. Xu, and Y. Gong. Detection driven adaptive multi-cue integration for

multiple human tracking. In Proc. of IEEE International Conference on Computer Vision,

pages 1554–1561, Kyoto, Japan, 29 September-2 October 2009.

[116] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,

38(13):1–45, December 2006.
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