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Abstract

Location estimation when deployed on wireless networks supports a range of services

including user tracking and monitoring, health care support and push and pull market-

ing. The main subject of this thesis is improving indoor and outdoor location estimation

accuracy using received signal strength (RSS) from neighbouring base stations (BSs) or

access points (APs), without using the global positioning system (GPS) or triangulation

methods. For the outdoor environment, state-of-the-art deterministic and probabilis-

tic algorithms are adapted to exploit principal components (PCs) and clustering. The

accuracy is compared with K-nearest neighbour (KNN) algorithms using different parti-

tioning models. The proposed scheme clusters the RSS tuples based on deviations from

an estimated RSS attenuation model and then transforms the raw RSS in each cluster

into new uncorrelated dimensions, using PCs. As well as simple global dimensionality

reduction using PCs, the data reduction and rotation within each cluster improves esti-

mation accuracy because a) each cluster can model the different local RSS distributions

and b) it efficiently preserves the RSS correlations that are observed (some of which are

substantial) in local regions and which independence approximations ignore. Different

simulated and real environments are used for the comparisons. Experimental results

show that positioning accuracy is significantly improved and fewer training samples are

needed compared with traditional methods. Furthermore, a technique to adjust RSS

data so that radio maps collected in different environmental conditions can be used to-

gether to enhance accuracy is also demonstrated. Additionally, in the radio coverage

domain, a non-parametric probability approach is used for the radio reliability estima-

tion and a semi-supervised learning model is proposed for the monitoring model training

and evolution according to real-time mobile users’ RSS feedback.

For the indoor environment, an approach for a large multi-story indoor location estima-

iii



tion using clustering and rank order matching is described. The accuracies using WiFi

RSS alone, cellular GSM RSS alone and integrated WiFi and GSM RSS are presented.

The methods were tested on real indoor environments. A hierarchical clustering method

is used to partition the RSS space, where a cluster is defined as a set of mobile users

who share exactly the same strongest RSS ranking set of transmitters. The experimen-

tal results show that while integrating of WiFi RSS with GSM RSS creates a marginal

improvement, the GSM data can be used to ameliorate the loss of accuracy when APs

fail.
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Chapter 1

Introduction

1.1 Introduction

The proliferation of wireless technology and mobile computing devices has fostered the

expanding demands and unpredictable traffic demands across a variety of Internet ser-

vices. To achieve a high data rate and seamless coverage, the complexity of radio access

networks continues to increase, and the expenditure on operational tasks, such as net-

work planning, deployment and network optimisation, is rising to an unprecedented level.

For such a complex situation, it is perhaps too difficult to meet users’ demands through

conventional cellular networks which require a large amount of manual labour and have

limited capacity. Self-Organizing Network (SON) has been considered to be an effec-

tive way to tackle these challenges supported by Long Term Evolution (LTE) networks

in 3GPP standards [4]. SON has the potential to support the integration of network

planning, configuration and optimisation into a single and mostly automated process,

requiring minimum human interaction and deployment effort [5]. It is proposed for high

speed wide-area wireless networks, where many advantages are expected in terms of

coverage, throughput and Quality of Service (QoS) provisioning [1] [5].

Network service providers want to apply SON approach into realistic wireless net-

1
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works, so that they can not only reduce the costs associated with human operational

involvement, but also optimise network capacity, coverage, performance and adaptability

in the presence of a variable network environment. To provide adequate radio coverage

with minimum cost for mobile users in a constantly changing network configuration,

it is essential to have the ability to predict radio propagation and traffic demand be-

haviour accurately. These can depend on topographical features and network configura-

tion. However, the constraints of network capacity, hard-to-predict mobile station (MS)

movements, the complexity of realistic propagation environment (e.g. multipath and

shadowing), the manpower and equipment costs for coverage measurement, all present

significant challenges to efficient radio resource allocation. SON functions give a promis-

ing opportunity for automated localised, distributed as well as centralised functions to

accomplish wireless access network planning and optimisation in the context of a variable

real environment.

This thesis investigates the use of signal strength received by MSs for positioning

and radio coverage prediction, in order to monitor the received signal strength (RSS)

distribution in a real-time and radio coverage status. This gives the fundamental support

for the self-processes (configuration, optimisation) in SON. The proposed approach could

also be used to assess the network state and affected civilians in emergency or disaster

situations.

(1) Potential Usage: Run Time Measurement for SON

In SON, the use cases are mainly divided into three procedures: self-configuration,

self-optimisation and self-healing. No matter which category, the network measurement

phase plays a very important role in the process of SON, as illustrated in Figure 1.1. In

this figure, the red arrow means the flow line which denotes the logical flow in this pro-

cedure and the blue “splodge” illustrates a cell or a site is in a failure state. During the

measurement phase, the measured data, e.g. user’ RSS feedback, mobility, traffic pat-

terns and interference are collected through information exchange among base stations

(BSs) or relay stations (RSs) in order to analyse and assess the network behaviours, and
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Initial 
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Real-time 
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Data 

Collection

Figure 1.1: The operational process applied in self-organizing networks

trigger adequate actions. The self-configuration process is designed for newly deployed

BSs to automatically monitor for bad coverage or shortage of offered bandwidth. It helps

to establish whether there is need for a new BS on a site and to determine the optimal

location for this new BS. In the self-optimisation phase, the processed measurements

are periodically used to monitor the real environment, and (self-) adjust the operational

algorithms and parameters in response to the changing conditions of the environment. If

a cell or a site is in outage or in a failure state, self-healing techniques will take some re-

covery actions to ensure better radio coverage in these failure areas by adjusting network

parameters and algorithms in nearby BSs (e.g. antenna tilting, sector power changes).

Thus, the measurement phase is crucial in all the procedures in SON as it can provide

important information to the different configuration and optimisation tasks that manage

the response to the changing conditions of the environment.

(2) Location Estimation

Location estimation has been a hot topic in the past years. The location estimation

systems are designed to estimate the position of a MS. Outdoor location estimation has

been possible for a long time using global positioning system (GPS). Other techniques

are offered by e.g. Google, when the satellite is not in direct line of sight, but these are

very inaccurate as they are often simply based on base station locations. GPS drains

the phone battery and for this reason many people do not turn the function on. For
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example, you may not want to drain your battery at a music festival because you will

want to make calls. Also, in the campus, you are often moving in and out of buildings

and GPS does not work well indoors. Likewise, indoors location estimation based on the

readily-collected received signal strength (without the use of special Radio Frequency

Identification (RFID) tags), is also inaccurate. Thus, the issue on how to give high

precision estimates both indoors and outdoors without using the computational and

battery resources of GPS to allow easy application development is one of the important

challenges in this thesis.

This thesis concentrates on building models to estimate a user’s location in outdoor

and indoor environments. The models are constructed from observed coverage patterns

in known antenna configurations and the accuracy of the predictions based on these

models in different scenarios is evaluated. The models are created by the analysis of

RSS data collected from historical data, i.e. during a training phase, and monitoring of

current mobile users’ RSS feedback to assess the current RSS distribution.

In an outdoor environment, the RSS data collected during the training phase is par-

titioned into relatively homogeneous regions with respect to RSS, by using a clustering

tool. This partitioning of the RSS space is used to support location estimation that can

be accurate enough to support resource allocation in SONs, without using the compu-

tational resources of triangulation. Five issues will be taken into account in outdoor

localisation: the first issue is how to effectively quantify the importance of each trans-

mitter and choose the most reliable transmitters for different regions; the second issue is

how to create the number of clusters that can represent the features of the geographical

patterns in the area of interest; the third issue is how to allow for the fact that differ-

ent correlations1 between BSs or access points (APs) signals occur at different points in

RSS in a cluster area; the fourth issue is how to reduce the useful information into rela-

tively lower dimensions by a suitable transformation in each cluster while reducing the

computational complexity and data requirements given the large scale of the area; the

1The term “correlation” refers to a process for establishing whether or not relationships exist between
two variables.
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last one is how to effectively accommodate the variation of signal strength over different

environmental conditions without having to rebuild the radio map repeatedly. Different

proposed estimation methods for outdoor location approximation based on clustering

models are tested for their estimated values in both data from a simulated propagation

model and a network planning tool, and data collected from the real environments. The

performances of estimation accuracy are evaluated.

In many potential applications approximate location information such as the room

they are in, or the room segment if the area is large, is adequate. The objective of indoor

localisation in this thesis is to locate mobile users in a specific room in a large multi-

storey environment where both GSM RSS and WiFi RSS are being used. In addition,

the issue of how to quickly locate mobile users in emergency events at a Shopping Mall

is also taken into account. The event is an incident that requires the fast evacuation of

the mall where some of the exits may be blocked or congested (a warning prior to the

incident), or post-incident where people are stuck in the mall and not sure what to do or

want help. The proposed methods are tested on two-floor of the Electronic Engineering

(EE) building in Queen Mary campus and the lower ground, ground and first floors of

the Stratford Westfield Shopping mall in London, which is claimed to be the largest of

its kind in Europe.

(3) Coverage Prediction

The clustering partitioning approach being developed also supports coverage predic-

tion. Previous research on cooperative control for radio coverage involving the physical

layer [6] [7] have shown that cooperative control is a novel way to handle heterogeneous

traffic and to improve the whole network performance significantly. The main idea of

cooperative control is to use the radio frequency (RF) domain optimisation to increase

utilization of the limited frequency spectrum at reasonable costs. In other words, coop-

erative control could cut the cost and time spent on network deployment by optimising

the RF domain according to perceived traffic distribution and propagation environment.

In order to reason about the best cooperative coverage in novel situations, it is critical to
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propose and develop an approach that can build models of the expected radio propaga-

tion that approximate to the real world in the area of interest. Cooperative control does

not necessarily involve only adjustments to the RF coverage; it can be combined with,

for example, dynamic frequency allocation. However, any changes to the RF coverage

require an assessment of the impact on the traffic in the area. This is a difficult problem

in a real environment and also is the second challenge considered in this thesis.

To use the users’ RSS feedback for the radio coverage estimation, previous researchers

need to obtain the users’ exact location information. However, in the proposed approach,

the target area is divided into different clusters. One of the advantages in this approach

is the exact location is not required, the location information is cluster based. For

each cluster, there is a probability density model to represent the probability density

function (pdf) of RSS from one antenna system at a specific antenna configuration. This

information can be used to maintain service reliability in the given region of a wireless

network. This is one possible use of this research.

1.2 Research Objective

This thesis is interested primarily in the problems of estimating a mobile user’s location

indoors and outdoors based on the RSS and secondly in the prediction of outdoor radio

coverage. The important observable in this thesis is RSS.

Why use the RSS for localisation?

In the early years, location applications employed only a small number of sophis-

ticated receivers or antenna arrays, typically as few as two or three, particularly for

long-distance positioning. These positioning systems preferred to use triangulation tech-

niques, e.g. Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Angle of

Arrival (AOA) over RSS to achieve high location accuracy. However, the recent pro-

liferation of wireless devices and networks has enabled a larger number of observation
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points, e.g. APs that are relatively close to the mobile target. Furthermore, the new

wireless applications and services for which the RSS approach is suitable have been devel-

oped, particularly in indoor and urban non-line-of-sight (NLOS) environments. Hence,

an RSS-based approach is a potentially viable, cost-effective solution that can be applied

to a broad range of applications while providing comparable location accuracy.

Despite lower location accuracy than the time-based techniques, the RSS-based lo-

calisation is a simple, low-complexity method that can be integrated into another type

of location system for a hybrid approach. Particularly, RSS values are readily available

in most wireless systems without additional hardware or system modifications. In fact,

RSS information is required by many wireless standards and specifications for the pur-

pose of basic radio functions such as clear channel assessment, link quality estimation,

handover, and resource management [8].

How to use RSS for Localisation?

Performing RSS-based localisation is a challenging task due to multipath effects in

outdoor and indoor settings. These effects include shadowing and reflection. Thus,

the RSS measurements will be attenuated in unpredictable ways due to these effects.

To tackle these challenges, this thesis investigates how to improve indoor and outdoor

location estimation accuracy using received signal strength from neighbouring BSs or

APs, without using the GPS or triangulation methods. The main contribution of this

thesis are summarised as follow:

• In outdoor environments, the aim is to partition the target area into different

regions where different localisation algorithms can be used to build a model. A

clustering scheme that uses the Affinity Propagation method is developed that

creates clusters based on deviation RSS feedback from mobile users who are at

different physical locations, and utilises the Venn Probability Machine (VPM) al-

gorithm to predict the probability of cluster membership. It manages the trade-off

between estimation accuracy of cluster identification and the number of clusters to
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select a better clustering scheme.

• To improve outdoor location estimation accuracy using the RSS from neighbouring

BSs without using GPS, state-of-the-art deterministic and probabilistic algorithms

are adapted to exploit principal components (PCs) based on the proposed cluster-

ing scheme. There is a high correlation between the RSS from different BSs in a real

environment, which leads to a decrease in estimation accuracy unless accounted

for. Therefore, the aim is to estimate user location despite the potentially high cor-

relation RSS values. In each cluster, Principal Component Analysis (PCA) is used

to transform the RSS into uncorrelated RSS tuples. The novel deterministic algo-

rithm, called Intersection after Principal Component Analysis (PCA-Intersection),

aims to find the most likely intersection area of more than three BSs circles (cov-

erage areas) in geographical spaces to calculate a mobile user’s position after RSS

transformation. A Kernel Density Estimator after Principal Component Analysis

(PCA-KDE) belongs to the probabilistic category. This algorithm estimates the

MS location by using the KDE to build an adjusted RSS probability distribution.

Additionally, a technique to adjust the RSS data without rebuilding the radio maps

collected in different environmental conditions is developed. This can also be used

to enhance accuracy.

• To support real-time monitoring of radio coverage in a dynamic environment, a

semi-supervised learning mechanism is described. Radio coverage probability mod-

els based on RSS from BSs in an outdoor environment are created. The proposed

clustering is also used to partition the RSS space and a nonparametric probability

approach is used to reliably estimate the radio coverage in each cluster and also test

for discrepancies in the RSS coverage that may occur over time. It is assumed that

data can be collected periodically from the physical environment. The analysis of

discrepancies is based on models constructed from historical data and monitoring

of current RSS from the MSs.

• An indoor positioning algorithm using clustering and ranking patterns is proposed
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for locating mobile users in a large scale multi-story indoor environment where

only GSM RSS data, or only WiFi RSS data, or hybrid RSS (e.g. GSM RSS and

WiFi RSS) are collected from mobile phones. Moreover, this approach is further

improved to use GSM data only to ameliorate the loss of accuracy when APs fail.

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 presents the basic concepts of network planning and radio propagation

models, and then introduces a comparison of the location determination systems for

typical wireless location technologies. Finally, it reviews the literature in coverage pre-

diction.

The basic concepts and methods of location fingerprinting are presented in chapter 3.

The emphasis is on the mathematical formulation and structuring the methods according

to their theoretical background. The methods covered in chapter 3 can be divided into

deterministic and probabilistic approaches.

In chapter 4, the proposed outdoor positioning mechanism, its corresponding trans-

mitter selection method and the clustering scheme are described.

The PCA-Intersection method is described in chapter 5 and its performance is eval-

uated by comparing it with common existing deterministic algorithms using simulated

and real data.

The PCA-KDE method is proposed in chapter 6 to estimate the MS location by

using KDE to build RSS distribution in each cluster.

Chapter 7 illustrates the proposed method to adjust RSS in different environmental

conditions in order to improve the estimation accuracy in dynamic environment.
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Chapter 8 concentrates on building models to predict radio coverage probability

that are based on clustering (RSS from BSs). For each RSS partition, a nonparametric

probability approach is used for the radio coverage reliability estimation, and the analysis

is based on models constructed from historical data and the monitoring of the RSS from

the MSs.

In chapter 9, the approach for indoor location estimation that integrates RSS data

from both WiFi and GSM networks is presented.

Finally, the last chapter concludes the thesis and some suggestions are made as to

how the work could be extended.
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Chapter 2

Network Radio Characteristics

and Localisation Methods

2.1 Introduction

This chapter presents an introduction of the essential principles of network planning in

section 2.2. Section 2.3 briefly describes the propagation characteristics and classical

empirical radio propagation models. Section 2.4 first provides an overview of the main

positioning techniques: Time of Arrival (TOA), Time Difference of Arrival (TDOA),

Angle of Arrival (AOA) and received signal strength (RSS), and then compares these

four positioning approaches on the basis of described performance parameters. Section

2.5 reviews some typical existing positioning systems and the technique aspect of radio

coverage prediction is introduced in section 2.6.

2.2 Radio Network Planning

The process of network planning aims to satisfy the ever-increasing demand for network

coverage and capacity from network vendors and mobile users. Among the whole network
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Figure 2.1: The radio network and network planning process [1] [2]

design process, radio network planning might be the most important stage, and its results

affect the performance of a wireless network. The radio network is a part of the wireless

network, including the BSs, MSs and the interface between them [1] [2]. In the radio

network, BSs have the capability of communicating with MSs within a certain coverage

area, and of maintaining network quality. The process of radio network planning includes

five main phases before the final plan is generated, as shown in Figure 2.1. In this figure,

the square shape represents the steps in this process and the red arrow shows the sequence

of these steps. The blue arrows show the communications between BSs and mobile users

in wireless networks.

Radio network planning starts with network requirement phase, which focuses on

estimating and collecting all relevant parameters (e.g. potential traffic demands, service

type provision, and related signal strength) of the considered area. Then, determining

the coverage and capacity criteria according to the data collected in the former stage.

After the pre-planning phase, the site search process starts. The process of site selection

and site survey is to identify specific areas for prospective sites based on the coverage

and capacity plans, and to generate the reports about information of the candidate sites.

When the best sites are chosen, making an accurate frequency allocation plan could not

only diminish the effect of interference, but also maintain the desired network quality.

Finally, the objective of parameter planning is to pre-define and optimise the parameters

12
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related to signalling, radio resource management, and handover, etc. so that those data

can help to provide seamless communication with minimal interference [2].

2.3 Radio Propagation Model

It is critical for wireless communication systems to have the ability to predict accurately

the radio propagation behaviour. Because conducting site measurements are not only

expensive but also time consuming, it is valuable to develop a low cost, convenient

alternative that is able to determine optimum BS location, estimate coverage, etc. Hence,

it is essential to develop a proper radio propagation model that can reflect the current

system propagation characteristics and estimate the signal characteristics effectively for

the purpose of wireless network planning during preliminary deployment.

The radio propagation model describes the signal attenuation from the transmitter

to the receiver antenna as a function of distance, carrier frequency, antenna heights and

other significant parameters like terrain profile (e.g. urban, suburban and rural). Based

on the radio propagation model, a wireless radio channel has three main characteristics:

path loss, shadowing (slow fading) and fast fading [9].

• Path Loss is caused by the dissipation of power radiated by the transmitter. It

determines how the average received signal power falls off relative to the distance

between the transmitter and the receiver.

• Shadowing is a kind of fading caused by larger movement of a mobile, or by an

obstruction, like a hill or large building that obscures the main signal path between

the transmitter and the receiver. It is often modelled as a log-normal distribution

with a standard deviation according to the Log distance path loss model. In a

slow fading channel, the channel impulse response changes much slower than the

transmitted signal. That is, the coherence time of the channel is greater than the

symbol period of the transmitted signal.

13
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• Fast Fading is a kind of fading occurring with small movements of a mobile or

obstacle that is caused by multipath phenomenon and environmental obstacles.

These destructive or constructive interferences happen between the signal and its

reflections and it varies over very short distances, in the order of a wavelength.

In a fast fading channel, the impulse response changes rapidly within the symbol

duration. That is, the coherence time of the channel is smaller than the symbol

period of the transmitted signal.

[10] reviews various propagation models for both outdoor and indoor environments.

Models, such as the free space propagation model, are used to predict signal strength

when the transmitter and the receiver have a clear, unobstructed line-of-sight (LOS)

condition. However, for most practical channels, the free space propagation model is

too idealised, and inadequate to describe the channel and predict system performance.

Commonly, the Rayleigh and the Ricean (Rice) propagation models are very popular

in practical applications. For instance, the Rayleigh propagation model [11] allows for

the situation when there is no LOS, and only multipath components exist. This model

incorporates intensive variations in received signal power because multiple paths can

either combine constructively or destructively. The amplitude, delay and phase shift of

these components greatly depends on the environment. In the Rice propagation model

not only models the situation when there is multipath effect, but also can take into

account the effect of a LOS propagation path. For example, the Rice propagation model

is used to model the environment within buildings where both LOS signal and multipath

exist.

2.4 Wireless Location Technology

Many commercial applications such as navigation systems, health care systems and in-

telligent transportation systems adopt location information within their system designs.

The positioning systems can be categorized by the measurement techniques to drive the

14



2. Network Radio Characteristics and Localisation Methods

desired MS’s location. A variety of wireless location techniques have been described

in the literature. Traditionally, the major categories are based on the measurement of

distance, angle, RSS-based, or any combination of the previous three categories. Figure

2.2 illustrates the basic classification of positioning techniques.

Figure 2.2: The category of positioning techniques

The main distance measurement approaches are known as TOA and TDOA. These

two algorithms rely on the precision of timing between the signal transmitter and the

receiver in order to use the propagation delay or time of flight (TOF) to calculate the

distance between the transmitter and the receiver. Hence, a precise synchronization is

needed in such a system. While the typical angle of measurement method (AOA) locates

the MS by determining the angle of the transmitting signals. However, this approach

requires the use of directional antennas and antenna arrays, which cause additional

overheads. Although RSS-based localisation is typically less accurate than TOA-based

positioning, it is still a very important technique since it can be implemented with

little or no modification to existing systems. The use of RSS for location estimation

is more economic and compatible for wireless networks because those related methods

do not need any additional hardware, such as clocks or antenna arrays. In addition,

RSS data can be readily collected indoors or outdoors in most wireless systems. The

collected data can be used to obtain either range estimates, or connectivity information

[12]. Fingerprinting, range-based and proximity-based localisation are the most common

RSS-based localisation methods [13]. The description of each measurement technique is
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as follows.

2.4.1 Distance Measurement Based on Time Delay

2.4.1.1 Time of Arrival (TOA)

The TOA technique determines a MS’s position based on the measurement of the arrival

time of a signal transmitted by a MS that is received at multiple BSs, as shown in Figure

2.3. It can be seen that if the signals emitted by the MS can reach a minimum of three

BSs, the intersection point (as shown in Figure 2.3) is the estimated position on which

the MS lies.

Figure 2.3: The time of arrival (TOA) method for MS location

In order to obtain the range between the MS and BSs, both transmitter and receiver

should be equipped with clocks. If these clocks are synchronized, and if the start time of

the signal transmitted by the MS is known, the TOA of the signal coming from the MS

m to BSi (i = 1, 2, 3), tm,i can be measured (Here, m denotes the target MS). Then the

distance ri denotes the distance between the MS m and BSi and it can be calculated as
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ri = ctm,i, where c is the speed of light. According to the idea of tri-lateration [14], the

distance ri can also be expressed as finding the solution to the following equation:

√
(xi − xm)2 + (yi − ym)2 = ri = ctm,i (2.1)

Here (xi, yi) is the coordinate of BSi and (xm, ym) is the desired MS’s position.

Obviously, a small error in the clock at the receiver or the transmitter could result in

large measurement errors in the distance prediction. Besides, multipath propagation and

the case of non-line-of-sight (NLOS) conditions are another important source of error.

Typical positioning errors caused by NLOS propagation in TOA-based techniques for

GSM have been measured [15]. The reported average errors are in the range of 400 m

to 700 m.

Since the measurement of TOA requires an accurate synchronization between trans-

mitter and receiver clocks, it is too difficult to obtain relatively accurate timing informa-

tion in mobile networks. So, many of the current wireless systems generally measure the

round trip time (RTT) of a signal transmitted and then sent back in order to calculate

the distances [16]. The RTT is the length of time it takes for a signal to be sent plus the

length of time it takes for an acknowledgment of that signal to be received. This time

delay therefore consists of the transmission times between the two points of a signal. In

this case, the time of arrival can be simply obtained and the value is equal to half of

the RTT. However, in the RTT method, the signal is sent both ways, which leads to

additional overhead, and the processing delays at the mid-point of the round trip as the

signal is sent back, which result in further timing uncertainty.

In the literature, a variety of TOA algorithms have been developed: the Taylor series

expansion is utilized in [17] to acquire the location estimation of the MS from TOA

approach by using iterative processes. It requires an initial guess of a MS’s position, and

then improves the guess at each step by determining the local linear least-sum squared

error correction. However, due to an incorrect initial positioning guess, it may suffer
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from the convergence problem, which may lead to incorrect results. Additionally the

computational complexity of this approach makes it incompatible with some wireless

applications. The Maximum Likelihood estimator is employed in the TOA system for

more precise location estimation due to the NLOS situation. Based on the assumption

of the Gaussian distributed TOA measurement error, the maximum likelihood location

estimate is the globally optimal solution of a non-convex optimization problem. In [18],

a two-step maximum-likelihood TOA-based algorithm is proposed. This approach aims

to find the maximum-likelihood estimate of the MS location in a predefined restricted

domain. A relative high accuracy positioning is provided when the non-line-of-sight

propagation interference is not very heavy. In addition to the location estimation for

a fixed MS, [19] [20] proposed a combination of Least-Square and Kalman filtering for

location estimation and tracking.

Although the main principle of TOA and the techniques implemented are relatively

easy to understand, it should be noted that the degree of precision of time synchroniza-

tion between BSs and the MS strongly affects the accuracy of the MS location estimation.

2.4.1.2 Time Difference of Arrival (TDOA)

In the TDOA scheme, the location of a MS can be estimated regardless of the accuracy

of the synchronization between BSs and a MS. It works by measuring the relative arrival

time of the signals coming from at least three BSs at the MS at the same time, or

by measuring the relative arrival time of signals emitted by the MS at the three BSs.

Each time difference of arrival measurement can generate a hyperbolic curve, and the

intersection of three hyperbolic curves is the location where the MS lies, as shown in

Figure 2.4.

Figure 2.4 depicts the basic principle of TDOA. Assuming that the three BSs received

a signal transmitted by the MS, and the estimated difference in propagation time from

the MS to the BSi and BSk can be obtained by the use of a synchronized time reference
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Figure 2.4: The time of difference of arrival (TDOA) method for MS location

among all of the BSs. Therefore, the difference in propagation distance to each BS can

be calculated by using the simple distance equation which is given by [19],

Di,k = cti,k =
√

(xi − xm)2 + (yi − ym)2 −
√

(xk − xm)2 + (yk − ym)2 (2.2)

Where (xi, yi) and (xk, yk) represent the coordinates of BSi and BSk, respectively,

ti,k is the difference between the TOAs of the MS signal at BSi and BSk, c is the speed of

light, Di,k is difference distances from the MS to BSi and BSk, and (xm, ym) is the desired

MS location coordinates. At least three BSs are required to perform the positioning

location with TDOA. Due to the high nonlinearity of the set of equations above, many

methods have been proposed to solve this problem. For instance, the least squares

[21] approach is adopted to calculate the estimated position in TDOA measurement.

Least squares works in a similar way to the maximum likelihood algorithm, but the

computational efficiency of least squares makes it more popular than the maximum

likelihood technique. Kalman Filtering is utilized in [22] and [23] to track the MS’s

trajectory based on TDOA in NLOS condition. The use of Kalman Filtering allows

tracking the position and speed of the MS, yielding an accurate location prediction

19



2. Network Radio Characteristics and Localisation Methods

algorithm. However, in the generally used Kalman Filtering in TDOA methods, the

state transfer matrix is usually from the accelerated motion. That is to say, if the target

MS is experiencing other kinds of motions, except for the accelerated motion, the state

transfer matrix cannot reflect the real motion of the MS.

In a real environment, the utilization of TDOA in location estimation is more practical

than the TOA system. It is independent of the signal emission time and does not require

that all the system components be equipped with precisely synchronized clocks. The only

requirement for the TDOA measurements is to ensure precisely synchronized clocks at

the fixed location receivers (e.g. BSs). However, multi-path reflections, non-line-of-sight

conditions, and other shadowing effects are the major factors that can lead to erroneous

distance estimates.

2.4.1.3 Angle Measurement: Angle of Arrival (AOA)

The AOA technique is performed to determine a MS position by another triangulation

technique [24] that utilizes triangle geometry in finding a location. In fact, it works in a

similar way to TOA and TDOA methods, but instead of distances, the arriving angles

of the signals coming from the MS to multiple BSs is measured. Generally, in order

to obtain the desired location of the MS, the AOA approach utilizes antenna arrays

at the BSs to measure the directions of arrival of the MS signals, then calculate and

determine the potential position based on the intersection of directional lines of signals,

as illustrated in Figure 2.5. As Figure 2.5 indicates, an estimate of the MS location can

be obtained with only two BSs.

A wide variety of algorithms can be used to estimate AOA system. A typical approach

uses beamforming techniques [25] [26] that focus on measuring the power spectral density

between the antenna arrays to calculate the AOA of the MS signals. However, the

accuracy of location estimation may be degraded by the limitation of the beam-width

of the antenna array. Therefore, the accuracy of AOA location estimation might be
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Figure 2.5: The angle of arrival (AOA) method for MS location

strongly affected by the multipath environment, and also it performs better for an open

environment than an indoor environment. In a dense multipath environment, multiple

delayed copies of a signal may arrive from different directions, which could make most

input signals highly correlated. These multiple signal copies might be caused by signal

reflections, scattering from the buildings, trees, etc. Maximum Likelihood (ML) direction

finding algorithm [27] is used to resolve closely spaced correlated signals. The algorithms

in [27] require a multidimensional search, but efficient techniques for performing such a

search have been developed. Another approach is to use spatial smoothing followed by

some high resolution algorithm such as the MUtiple Signal Classification (MUSIC) [28]

algorithm. This approach is less computationally intensive but it does not perform as

well as an ML technique. Besides the algorithm selected, factors which affect direction

finding accuracy include signal-to-noise ratio, integration time, number of antennas,

hardware nonidealities, and array calibration error. What is more, with the increasing

demand for higher bit rates in wireless communications, Multiple Input Multiple Output

(MIMO) systems are being considered as a promising way to improve the capacity of the

radio channel with minimal frequency resources [29]. These systems use multiple antenna

elements at the transmitter and receiver to improve the capacity over Single Input Single

Output (SISO) systems when operated in multipath environments. Especially, in the

non-line-of-sight areas, the channel correlation and the channel capacity are influenced
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by the distribution of the incoming signal such as power azimuth spectrum, AOA and

direction of arrival. So, estimating direction of arrival is essential in MIMO performance

measurement.

Unlike time-based methods, the AOA location approach does not rely on precision

timing between BSs and the MS, and also it does not require a high accuracy clock in

the communication system. Moreover, at least two BSs are needed for the AOA location

process. The minimum number of BSs for the AOA system is less than the time-based

techniques (TOA and TDOA), which require three BSs. However, the AOA techniques

have some drawbacks. Firstly, these require relatively complex and expensive hardware

to measure the direction of arrival of the MS signals. Furthermore, the AOA accuracy

strictly depends on the network topology and propagation environment, the prediction

accuracy can be seriously degraded due to noise, fading, and interference in physical wire-

less environment. The accuracy of the AOA method diminishes with increasing distance

between the MS and BS due to the scatter environment and fundamental limitations

of the devices used to measure the arrival angles. [19] gives an example and consider a

scenario in which a measured AOA is in error by 3◦ at a certain BS. A MS is located

200 meters away from the BS will be 10 meters away from the line of position, while a

MS located 1000 meters away will be located 52 meters away from the line of position.

This leads to larger error for the further MS since the location estimate is determined

by the intersection of the line of position.

2.4.2 RSS-based Localisation

For many practical location applications, the goal of a location system designer is to

minimize the system requirements despite reasonable degradation in location accuracy.

Therefore, the RSS-based approach is an attractive candidate for location estimation

in wireless networks. Despite being less accurate than TOA-based positioning, RSS-

based localisation is seen as simple, economic for wireless networks as it does not require

additional hardware and can be applied without the aid of a network operator or third-
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part of data.

Two major aspects should be taken into consideration in relation to RSS systems:

the accuracy of the location estimation and the range of the radio coverage area. For

RSS-based location systems, the primary source of error is multipath fading and shad-

owing [30]. A number of empirical models have been set up [10], but they depend on

both the signal properties and the environment where measurements are performed.

Moreover, many studies have developed different algorithms utilizing RSS measurement

for position prediction in the past few years, such as clustering methods [31], particle

filtering [32] and probability-based algorithms [33]. With the author’s understanding,

the RSS-based localisation methods can be broadly classified into three categories: fin-

gerprint localisation, range-based localisation and proximity-based localisation. Among

them, the fingerprinting technique is the most widely used technique for positioning.

2.4.2.1 Fingerprint localisation

Fingerprint localisation could overcome the limitations of traditional triangulation ap-

proaches and perform well for NLOS circumstances, especially in a complex environment.

For a typical fingerprint-based localisation system, it only needs to collect the measure-

ments of RSS or other useful parameters at some known locations to form a location

fingerprints database (a.k.a. radio map) during the training stage. When a new online

RSS tuple is observed, its location is estimated using various algorithms based on the lo-

cation fingerprints database. Chapter 3 will give a detailed description of fingerprinting

localisation techniques and systems.

2.4.2.2 Range-based Localisation

Range-based localisation algorithms assume that the signal strength decays over distance

following a distribution that is known a priori. This distribution is used for converting

one or several signal strength measurements into distance estimates. Generally, these
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distributions include several parameters that try to account for the influence of the

environment which are calibrated in the calibration phase [34] [35] [36].

2.4.2.3 Proximity-based Localisation

Proximity based localisation algorithms assume that the signal strength decays inversely

proportionally with the distance [37] [38] [39]. The main difference between proximity-

based algorithms and range-based algorithms is that proximity-based localisation only

uses the order of RSS measurements instead of converting signal strength to distance

estimates. The advantage of proximity based localisation algorithms is that they do not

require a calibration phase.

2.4.3 Performance Comparison of Location Techniques

Table 2.1 compares the four classical methods previously discussed in terms of the num-

ber of BSs required for localisation, the need for LOS, the application environment

Table 2.1: Comparison of the Basic Measurement Methods

Methods No. of LOS / Environ- Accuracy Extra

BSs NLOS ment Contribution

TOA ≥ 3 LOS Outdoor High Time synchronization

across transmitter

and all receivers is

needed.

TDOA ≥ 3 LOS Outdoor High Time synchronization

at all receivers is

required.

AOA ≥ 2 LOS Outdoor Low Smart antennas are

needed.

RSS ≥ 3 Both Both High to Simple and

Medium inexpensive.
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(whether the technique is applied to indoor or outdoor), localisation accuracy and ex-

tra requirements for the positioning. For time-based techniques, both TOA and TDOA

measurements strongly rely on the precision of the timing between the signal transmitter

and receiver. Thus, a high accuracy clock plays an important role in wireless location

estimation systems. To some extent, TDOA is preferred to TOA in many implemen-

tations. The TDOA estimation only needs the clock synchronization between the BSs

in the system. AOA has the advantage over TOA and TDOA as neither BSs nor the

MS is needed be synchronized. However, specialised and complex antenna hardware is

required and the location accuracy forcefully decreases in larger cells. In real scenarios,

hybrid techniques use more than one type of location estimation method to improve

estimation accuracy. Typical examples are TOA/AOA [40], TDOA/AOA [41] [42] and

so on. Despite the relatively low accuracy for the positioning, the advantages of RSS

over the other three approaches rely on the fact a) it does not need to have additional

hardware or a particular network operator support to measure parameters; c) the RSS

data is readily collected and monitored and performs well in non-line-of sight circum-

stances. Hence, the RSS-based approaches have been widely investigated principally in

the context of indoor location estimation. In addition to the geometric-based location

estimation for a MS, some machine learning methods and probabilistic approximation

algorithms have been proposed and employed in the classification of MSs or the location

tracking of a MS.

2.5 Location Determination Systems

[43] presents a comprehensive survey of classical positioning systems. Therefore, this

section will take a small subset of these systems as examples and briefly introduce their

major characteristics.
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2.5.1 GPS

The Global Positioning System (GPS) is probability the most widely known positioning

system. The GPS satellite constellation consists of 24 satellites, each with an orbit

of 12 hours [44], so that almost all users on the earth can see at least four satellites

simultaneously, anywhere on the globe and at any time. It employs signal timing based

upon the same principle as TOA to measure the distance from the satellites to the user

receiver, and then determines the target location of the user.

In fact, many engineering or commercial companies utilize GPS technology for their

own applications, especially in vehicle-based systems or mobile phones. For instance,

GPS navigation installed in cars can be used to guide drivers through a detailed route

to their destinations. However, it is seen that GPS is unlikely a best option to solve

positioning in cellular networks. The reasons include: a) In order to obtain accurate

TOA measurements, GPS requires precise time synchronization between satellites and

receivers and so the receiver clocks bias has to be accounted for. b) Multipath reflections

make the satellite signals become weak when they arrive in cluttered or indoor envi-

ronments, consequently GPS provides an inaccurate location. Hence, GPS needs LOS,

and it is unusable in dense environments such as urban environments with many tall

buildings.

2.5.2 AGPS

When the GPS system is first turned on, it needs a long time (e.g. from 30 seconds to

a couple of minutes) to acquire satellite signals, to navigate data, and to localize. This

problem is called time to first fix (TTFF) or “cold start” [8]. The time duration depends

on the location of the receivers and the surrounding interference and horizon information.

Therefore, the Assisted Global Positioning System (AGPS) has been developed in order

to combat this shortcoming of GPS.
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The main system components of AGPS are a wireless handset with partial GPS

receiver, an AGPS server with a reference GPS receiver that can simultaneously moni-

tor and track the same satellites as the handset, and a wireless network infrastructure

consisting of BSs and a mobile switching centre [8].

The AGPS server obtains the handset position from the mobile switching centre

and can locate the cell of the handset and even the sector of the handset within a set if

directional antennas are used at the base stations [45]. Because the AGPS server monitors

and tracks the GPS satellites, it can predict the satellites that are sending the signals

to the handset at any given point of time. Thus, the AGPS server can communicate the

satellite information to the handset. This enables the handset to acquire GPS signals

quickly when it is first turned on, reducing the TTFF from minutes to less than a

second. Once the satellite signals are acquired by the handset, it calculates the distances

to satellites without clock synchronization. These satellite distances are sent back to

the AGPS server for further computation. Therefore, the AGPS server also shares the

computational load of the handset, reducing the handset battery power consumption.

Despite the fact that AGPS can improve the performance of a conventional GPS, the

indoor positioning problem is still not satisfactorily resolved, and also the extra signalling

needed from the GPS reference stations increases the impact in a mobile wireless system.

2.5.3 RFID

The RFID, Radio Frequency Identification, is a wireless system that identifies tags at-

tached to the object of interest. An RFID system consists of a reader and RFID tags.

RFID systems are divided into two categories, according to whether they use passive

or active tags [46]. For the passive tags, they are suitable for short-range application

because they do not contain a power source. The passive RFID tags are equipped with

an antenna that is excited by output signals at specific frequencies, and these tags are

activated by the power of the received signal. While for the active RIFD system, it is

a full transceiver system including processors, antennas, and batteries. Thus, an active
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tag contains both a radio transponder and a power source for the transponder. An

RFID reader constantly sends Radio Frequency (RF) electromagnetic waves, which are

received by the RFID tag in its vicinity. The RFID tag modulates the wave adding

its identification information and sends it back to the reader. The reader converts the

modulated signal into digital form to determine the tag identity. Active tags are ideally

suitable for the identification of high volume products moving through a processing unit

[8].

The RFID can be used to localize the position of a target object. An active RFID tag

can be attached to the object, which transmits a signal to the RFID reader. The con-

cept of trilateration is used along with the received signal strength indication technique

to localize the position of the tag. Because the objects to be positioned using RFID

are usually in an enclosed environment, there are multipath effects, which decrease the

accuracy of the system. In order to increase the accuracy of RFID-based positioning sys-

tem, the system utilizes additional readers and reference tags. However, these additional

readers increase the cost of the system. In order to keep the costs down, [47] proposed

an innovative approach, LANDMARC, that employs the idea of installing extra fixed

reference tags. This approach is called location identification based on dynamic active

RFID calibration.

2.6 Radio Coverage Prediction

With the rapid growth and demand for high quality and high capacity networks, provid-

ing sufficient radio coverage with minimum cost has become extremely important. For

this purpose, it would be useful to have the ability to accurately predict radio coverage

area and traffic demand behaviour for various scenarios, which can reflect topographical

features and dynamic network reconfigurations. Inaccurate estimation of radio cover-

age has severe impact on the network performance. Over estimating network coverage

will cause “coverage holes” where the areas with signal strength are weaker than the
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minimum required threshold. Under estimating network coverage will create coverage

overlaps, which result in interference. Hence, accurate prediction of radio coverage is

essential for network planning.

As a result of heterogeneous traffic demand, hard-to-predict users’ movements and

complex propagation models, how to achieve flexible radio coverage in a realistic envi-

ronment is a tough challenge for network providers.

Cooperative control is an effective way to handle heterogeneous traffic situations

and to improve the whole network performance significantly. The main idea of the RF

cooperative control is to use the RF domain optimization to increase utilization of the

limited frequency spectrum at reasonable costs. In other words, cooperative control could

cut the cost and time spent on network deployment by simultaneously optimizing the RF

domain according to perceived traffic demand distribution and propagation environment.

Thus, cooperative control can exploit the potential flexibility of wireless networks to

respond to traffic load demands in the RF domain of the physical layer and optimize the

network performance.

Previous research [6] [7] [48] on cooperative control proposed to create flexible radio

coverage according to different networks and antenna models. Their results have shown

significant improvements in call blocking, call dropping and system capacity. The coop-

erative control method adjusts the physical layer, such as the radiation pattern, titling

angle or transmit power based on the traffic demand in collaboration with other cells.

The bubble oscillation algorithm is introduced [48]. The main concept of this approach is

to use an analogy with air bubbles: the local coverage scheme is treated as an air bubble,

the local traffic load is treated as the air within the bubble and the un-served traffic is

treated as a vacuum between adjacent bubbles. The bubbles oscillate to obtain optimum

radio coverage across the network. In [7], a statistical model is proposed for radio cov-

erage prediction based on the received signal power feedback of the MSs to improve the

accuracy of radio coverage and avoid network holes in a realistic environment. With a

distributed approach [6] and the additional capabilities of evolved Node B(eNB), cooper-
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ative control can result in self-optimization for LTE networks. In order to reason about

the best cooperative coverage in novel situations, it is crucial to propose and develop an

approach, which can build different models of the expected RF environment. These ap-

proaches depend on a way to predict coverage in different configurations, and so the work

in this thesis is central to the eventual exploitation of such theoretical work. During the

last years, a couple of new propagation models for indoor and outdoor prediction have

been proposed in the literature, e.g. [49] [50] [51]. In [49], a variety of experimentally

or theoretically based models have been introduced to predict radio propagation in land

mobile systems. [50] presents a run-time efficient three-dimensional propagation model

for the complete prediction of outdoor and outdoor-to-indoor coverage of small macro

cells in urban areas based on high-resolution building data.

2.7 Summary

To better analyse the research work, related background about network radio character-

istics and localisation methods were investigated in this chapter. Firstly, the basic idea

of radio network planning was described followed by the overview of radio propagation

model. The technical aspects of wireless location technology and existing location es-

timation systems were then discussed. Finally, the challenges and previous studies on

radio coverage prediction were discussed. The next chapter will address the fundamental

aspects of fingerprint location estimation based on RSS measurements.
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Chapter 3

Received Signal Strength-based

Fingerprinting Localisation

3.1 Introduction

The use of RSS is ubiquitous in wireless systems. While RSS-based localisation is typ-

ically less accurate than TOA-based positioning, it is still a very important technique

since it can be implemented with little or no modification to existing systems. Thus,

this chapter reviews the literature on location fingerprinting by using signal strength. In

section 3.2, the basic concepts of location fingerprinting are considered. Previous work

related to transmitter selection is surveyed in section 3.3. Section 3.4 discusses different

means to create the radio map, followed by an analysis of the three main characteristics

of location fingerprinting: the environment feature, the partitioning models and the lo-

cation fingerprinting techniques in section 3.5, section 3.6 and section 3.7 respectively.

The conclusion of this chapter is presented in section 3.8.
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Figure 3.1: The structure of fingerprinting method

3.2 Location Fingerprinting

Location fingerprinting is the positioning technology that utilizes the relationship be-

tween a particular MS location and its corresponding RSS tuple value. Unlike other

localisation techniques, e.g. TOA, TDOA and AOA, that require the calculation of the

distance between the target MS and the BSs, and the triangulation of the MS’s loca-

tion, location fingerprinting techniques usually only need to measure the RSS at certain

locations to build up the “fingerprint” database and decide the location of a MS by

comparing the obtained RSS to the database. Generally, the procedure of location fin-

gerprinting can be divided into two phases: offline training phase and online localisation

phase. Figure 3.1 illustrates the structure of location fingerprinting. The arrows in this

figure show direction of flow from one step to another.

In the training phase, the relative fingerprints are required to be collected and stored

in a database. Fingerprints can be gathered by performing a site survey of the RSS from

multiple transmitters, e.g. BSs or RSs or APs, in the target environment. The RSS

is measured at every predefined location to create a database of RSS patterns of this

area. The generated database of RSS pattern is called a Radio Map, which consists of

many Location-RSS vector pairs. Every RSS vector is called the location fingerprint of

its corresponding location.
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In the online estimation phase, the new RSS observation originated from the unknown

positions are used to compare with all the fingerprints stored in the database during the

data collection period, to estimate the location based on different kinds of algorithms.

The most common and simple method is to calculate the Euclidean distance between

the new RSS vector and all the fingerprints to find the most similar RSS pattern, and

then the location of this best match pattern is returned as the estimated location for the

new RSS vector.

As discussed, a radio map created during the training phase covers the area of interest

and contains the RSS information about the function of the location, and then it is

used as a reference to determine the estimated position further. This makes location

fingerprinting methods reliable in relatively complex environments. Therefore, in order

to ensure a high precision of location estimation at run time, it is very significant to

design an appropriate radio map in the location fingerprinting process.

However, several important issues need to be considered: firstly, to achieve a good

estimation of MS location, the more training data collected during the offline phase,

the better; the more measurements obtained at each training data, the better, which

means it is a significant, time-consuming task during the data collection phase, especially

performing a huge data collection for a wide area network. Furthermore, it is a problem

of choice as to how many transmitters are required for the system and how to pre-process

the raw data before any further operation. What is more, how to keep the radio map up-

to-date in the constantly changing real environments, especially in urban environment

also needs to be taken into account.

3.3 Transmitter Selection

It makes intuitive sense that the more transmitters, e.g. BSs or RSs or APs, used in

the location estimation system then the higher the positioning accuracy obtained. This

is because the signal strength from any transmitter can provide some information for

33



3. Received Signal Strength-based Fingerprinting Localisation

location estimation. However, the use of more transmitters increases the dimensionality

and computational complexity. Hence, how to select the BSs to avoid unnecessary calcu-

lations, minimize noise levels and achieve high position accuracy is one of the challenges

in this work.

[31] [52] show how their smart AP selection methods can achieve good localisation

results as compared with using all the available APs in an indoor environment. In [31],

the MaxMean approach is proposed to choose the K most important APs. These are

defined to be those K APs for which the average RSS is the highest. This mechanism

unavoidably throws out the information of detectable but unselected APs, and also

requires that at least one AP can communicate with every point in the grid. This makes

the approach only suitable for small areas. [52] introduced the InfoGain algorithm for

AP selection, which divides the indoor environment into n grid elements. Let Gj denote

the j−th grid element in the test-bed. Suppose m is the number of APs detectable.

The signal strengths from the APs are collected in every grid Gj . The average value

of signal strength in Gj from APi (i = 1, ...,m) is defined as the value of the i-th

feature of Gj . The main idea of InfoGain is to select the top K APs in terms of the

“worth” of each AP feature in every grid element. The worth of each APi feature

is calculated as the reduction in entropy by including the feature, which is given by

InfoGain(APi) = H(G)−H(G|APi). Here H(G) = −
∑n

j=1 Pr(Gj) logPr(Gj) is the

entropy of the grid when APi’s RSS value is not known, Pr(Gj) is the prior probability

of grid Gj and is treated as uniformly distributed, i.e. a user can be equally likely in

any grid [52]. H(G|APi) =
∑

v

∑n
j=1 Pr(Gj , APi = v) logPr(Gj |APi = v) computes the

conditional entropy given APi’s value. v is one possible value of signal strength from

APi. The summation is taken over all possible values of APi. So they only need to focus

on the value of H(G|APi) which is the conditional entropy of grid G given APi’s RSS

value. Although positive results have been demonstrated for a relatively small indoor

environment, for a larger area, such as an outdoor environment, it is difficult to determine

the appropriate number of grid elements for the target area and the size of each grid
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element.

3.4 Radio Map

In the location fingerprinting system, the positioning accuracy is affected by a mapping

between the signal space and physical location space. The design of a fine-grained radio

mapping is an important part of the location fingerprinting process. The radio map

describes the signal distribution for all wireless networks receivable in the target area,

which can reflect how strong the reception of each network is for each of several discrete

locations (generally called reference points). These reference points are spread over

the covered area and can be described by their geographical coordinates. The signal

distribution patterns for every reference point captured during the training phase are

referred to as fingerprints. Generally, each fingerprint comprises of several data records,

which represents the received signal strength of one specific network at this reference

point. Additionally, the radio map is the union of all recorded fingerprints. During

the online phase, an algorithm evaluates the fingerprints stored in the radio map and

determines a certain distance between the stored and new captured signal patterns.

Different ways to generate a radio map have been proposed in previous studies by

other researchers. The simplest method is to store only the mean value of RSS measure-

ments at each training sample [53], regardless of the variation of the RSS. [54] proposed

a method based on interpolation to create a radio map. In [55], the author surveys the

properties of RSS in relation to the performance of a positioning system and provides

guidelines on the design of indoor positioning systems. Furthermore, [56] investigates

questions related to the design of IEEE 802.11b wireless LAN networks (WLAN) radio

maps for localisation based on fingerprinting, They analyse and compare the effects of

design factors, e.g. the size of the radio map and auxiliary supporting information in

the radio map. In this thesis, RSS is the main parameter for location estimation.

35



3. Received Signal Strength-based Fingerprinting Localisation

3.5 Indoor and Outdoor Environments

Existing localisation systems can be broadly classified into indoor and outdoor locali-

sation systems according to their environmental dependency. Accordingly, this thesis

analyses the difference between indoor scenario and outdoor scenario in three aspects:

Firstly, scale is an important parameter that impacts how fingerprints can be collected

and exploited effectively. Positioning systems need to scale on two axes: the size of the

land area and the population density of that area. For indoor localisation systems like

in-building navigation and digital homes, the typical environmental situations for these

applications are at home, in an office room or block or in a shopping mall, which typically

have small or medium sized areas with low-density of mobile users. Though in the case

of a shopping mall there may sometimes be a high density of users. In contrast, outdoor

localisation systems such as GPS, locate and track mobile users in the street, in the park,

or along the river and often cover larger-scale and high-density deployment.

Secondly, due to the smaller size of area and the nature of the target applications,

the accuracy requirement for indoor positioning systems is often relatively higher than

for outdoor positioning systems. However, both indoor and outdoor radio propagation

scenarios suffer from multipath fading, shadowing effects and interference to different

degrees. The outdoor environment can be divided into urban, sub-urban and rural areas

based on the type of terrain. Each of them has specific features that influence the posi-

tioning system performance. For instance, the strong effect of the canyon phenomenon

in urban areas leads to high variability of RSS between geographically close points [57].

This is the main contributor to accuracy degradation in triangulation location methods.

Generally, the localisation accuracy depends on how much the path loss model reflects

the realistic propagation environment.

Moreover, the mobility of the user greatly depends on the environment. In general,

low speeds and well-defined mobility paths are characteristic of indoor environments,

whereas variable speeds and flexible mobility paths that depend on the particular envi-
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ronment are features of outdoor environments. For example, there is a increase in the

predictability of user mobility when a user is walking or driving in a dense city environ-

ment with fixed streets and pathways relative to when the use could wander anywhere

in a rural village, field or forest.

3.6 Grid-based versus Cluster-based Localisation

To improve the accuracy of location estimation and reduce the computational load,

most previous localisation schemes have been built based on models that partition the

environment. Grid-based partitioning and cluster-based partitioning are the two most

popular in localisation systems.

The positioning applications based on grid partitioning [58] [59] generally divide the

simulation environment into a uniform regular grid and attempt to map a MS location

to a point on a grid element. The spacing of the grid influences the accuracy of the

position estimate [54]. A key issue is that a uniform grid does not reflect the topography.

Choosing larger grid spacing reduces the accuracy of positioning dramatically. On the

other hand, choosing smaller grid spacing increases the accuracy but leads to a more

laborious site-survey. Some location-aware applications [58] (mainly indoor ones), do

not use a regular grid but use a topographical model of the environment, where the

environment, e.g. an office building is divided into cells where each cell corresponds to a

specific office room or hallway segment, in the office building. Although these grid-based

localisation techniques partly improve the localisation accuracy, the selection of grid size

is only loosely related to the radio propagation conditions in different areas.

As a response to this, many cluster-based location estimation methods have been

proposed in recent literature. Again most of them have concentrated on the indoor

environment and WLAN [31] [52] [60]. Those results have shown that a cluster-based

structure is a good prediction tool for locating and tracking the MSs. The clustering

scheme is used to partition the environment into geographic regions that are homoge-
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nously covered by the radio signal. The aim is to better model a complex environment.

In [31] [60], the authors present the Joint Clustering technique to cluster the locations

in the radio map based on covering APs during the offline phase in order to decrease

computational complexity, and then apply a Maximum Likelihood (ML) estimator to

determine the most probable location within the cluster during the online phase. [52]

proposed a new algorithm known as CaDet for power-efficient location estimation by se-

lecting the number of APs used for location estimation in an indoor wireless environment.

The simulation environment is modelled as a space of 99 locations, each representing a

1.5-metre grid cell. In the offline mode, it uses K-means clustering [61] to generate

clusters based on the similarity of signal strengths from APs. In the online mode, the

decision tree over the grids in each cluster is built to detect a target’s location with high

accuracy. There are two points worth noting. Firstly, previous clustering localisation

research has not paid attention to the cluster stability and scalability issues associated

with handling a large amount of data without losing important correlation information.

Secondly, other approaches to clustering are dominated by the path loss effect and the

clusters are determined to a large degree by this, rather than by the correlations between

the RSS values created by topographical effects. The method used in this thesis makes

an approximate adjustment for the distance effect and then works with the residuals2,

and also has the benefit that the clusters are invariant to the power at the BSs and RSs.

3.7 Estimation Techniques

As discussed previously, in the online location estimation phase, new RSS measurements

are compared to the radio map to calculate the predicted location. Accordingly, the

fingerprint-based approaches are generally classified into two categories: deterministic

techniques and probabilistic techniques depending on how a location estimate is gener-

ated.

2Residual is represented the difference between an observed value and its estimated value from a
regression model.
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3.7.1 Deterministic Estimation

Deterministic techniques use deterministic inference algorithms to estimate a MS loca-

tion. This essentially involves calculations of the similarity between new RSS observa-

tions and the training RSS samples that are associated with known location information.

The RADAR system [53] [62], a RF based system for locating and tracking users inside

buildings, represents the first 802.11 fingerprinting structure for localisation developed

and was by Microsoft Research. The system uses K-Nearest-Neighbour (KNN) algorithm

[63] to estimate the desired user’s location as the average of the coordinates of the K

training locations whose fingerprint tuples have the shortest Euclidean distances to the

online RSS tuple. [47] and [64] improve the location determination accuracy by using a

weighted average of the coordinates of the K nearest training samples. The weight values

are taken as the inverse of the Euclidian distance between the target RSS measurement

and the RSS measurements of the K training samples. This method is referred to

as Weighted K-Nearest Neighbours (WKNN). The experimental results in [64] indicate

that the KNN and the WKNN can provide a relatively higher accuracy than the Nearest

Neighbour (NN) method, particularly when K = 3 and K = 4. However, when a high

density radio map is available, i.e. there is a lot of training data, the simple NN method

can perform as well as other more complicated methods [65]. Moreover, some variants of

the KNN method, e.g. the Database Correlation Method [66] [67], have been explored

to predict the location.

3.7.1.1 Distance Measurement in Signal Space

Suppose that the radio map constructed during the training phase consists of a set of

n location fingerprints denoted by {r1, r2, ..., rn} and each fingerprint has a one-to-one

mapping to a set of positions {l1, l2, ..., ln}. A sample of an RSS fingerprint measured

during an on-line phase is denoted as rm. Assuming that this target environment only

considers the RSS from q transmitters, e.g. BSs or APs or RSs as a location fingerprint,
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the sample of RSS vector is rm = (rm,1, rm,2, ..., rm,q) and each RSS fingerprint ri in the

radio map can be denoted as ri = (ri,1, ri,2, ..., ri,q).

There are different ways to find the best match between the RSS observations and

radio map. The common choice for the comparison measure is to use the Euclidean

distance. Let S(·) function be the a distance measurement in signal space. According to

the Euclidean distance [53] [68] [69], the similarity between the new observation rm and

RSS fingerprint ri from the q transmitters can be expressed as

S(rm, ri) =

√√√√ q∑
k=1

(rm,k − ri,k)2 (3.1)

The Minkowski Distance [70] is a generalization of the Euclidean Distance, which can

be given by

S(rm, ri) = (

q∑
k=1

(rm,k − ri,k)
p)

1
p (3.2)

where p is the norm parameter. Starting from 1 and by varying parameter p, different

norms can be obtained. For example, p = 1 corresponds to Manhattan distance and

p = 2 implies Euclidean distance in (3.1). [68] modified (3.2) and added the weight

factor wi,k in (3.2), that is, S(rm, ri) = (
∑q

k=1
1

wi,k
(rm,k − ri,k)

p)1/p,where p = 2. In [68],

the weight wi,k is assigned to the number of RSS samples or the standard deviation of

RSS fingerprint. The weight is considered as bias parameter that can demote or promote

an important RSS component in the fingerprints [65].

In addition, the Mahalanobis distance [71] can also be used as a distance measure.

In this thesis, Mahalanobis distance is used rather than Euclidean distance, because it

can automatically account for the scaling of the coordinate axes, correct for correlation

between different features, and enable both non-linear and linear decision boundaries

[71]. Direct comparisons of the Euclidean distance and the Mahalanobis distance on

real data sets are given in chapter 5 section 5.5. In fact, the Euclidean distance is a

special case of the Mahalanobis distance when all the RSS signal components in the
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location fingerprint are uncorrelated and their variances are the same in all directions.

However, the disadvantage of the Mahalanobis distance is that the covariance matrix for

the location fingerprint must be determined.

Given a location fingerprint vector ri, a sample vector rm, and a covariance matrix

of location fingerprint Σ, the Mahalanobis distance S(rm, ri) can be calculated as

S(rm, ri) = −
√

(rm − ri)TΣ−1(rm − ri) (3.3)

3.7.1.2 K-nearest Neighbour

The K-Nearest Neighbour (KNN) [63] method has been widely used as a benchmark

in localisation research. Previous research work have shown that the KNN method can

provide good accuracy if enough training data are collected during the training phase.

In the KNN approach, the estimated location l̂ is calculated as the average value of the

K training data’s locations with the smallest RSS distance between the new observation

rm and RSS fingerprints ri in the q-dimensional RSS space (e.g. q is the number of BSs)

stored in the radio map, which can be expressed as

l̂ =
1

K

K∑
i=1

li (3.4)

Where the set of {l1, l2, ..., lK} denotes the ordering of reference locations with respect

to increasing RSS distance between the respective ri and the observed RSS measurement

rm.

3.7.2 Probabilistic Estimation

Probabilistic techniques are often used as a tool for modelling uncertainty and errors

in RSS measurements in wireless networks [72]. These methods use the training RSS
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samples to construct the probability distribution of RSS over various locations as the

content of a radio map, and then utilize probabilistic inference to compute the likelihood

or posterior probabilities over locations during positioning. The MS localisation can be

derived from the likelihood and posterior density function by using the ML estimator

[31] [60], the Minimum Mean Square Error estimator [72], the Maximum A Posterior

estimator, or variants of those estimators (e.g. Probability-based Maximum Likelihood

[33]).

The estimation of unknown probability density function (pdf) from the training RSS

measurements constructed in the offline phase is a problem of fundamental importance to

positioning accuracy. Density estimation methods can be roughly categorized into para-

metric and nonparametric. In parametric density estimation, the pdf is approximated

as a certain particular known distribution function, e.g. the Gaussian distribution [58].

However, due to the complex propagation environment, the distribution of RSS can be

asymmetric and multimodal [65] [73]. Accordingly, it is difficult to build up a parametric

probability distribution with a known function to RSS from the real environment. On

the other hand, a nonparametric approach, such as the construction of the RSS his-

togram from sample data or a kernel density estimator (KDE), can estimate the pdf

without assumption regarding the specific form for the density. Although the histogram

estimation [72] [74] is the most widely used to estimate the pdf, the constructed density

estimate is highly dependent on the choice of starting position and bin width 3 . Addi-

tionally, the histogram is discontinuous because of the use of discrete bins and sensitive

to disturbances due to the sample size for areas with low sample frequencies. All these

problems make it unsuitable for most practical applications, especially in higher dimen-

sional spaces. The KDE [72] [75] [76] is considered as a more general density estimation

technique than a raw histogram approximation, and can smooth the discrete histogram

to a continuous function and the smoothing accommodates incomplete RSS data. The

authors in [72] point out that the accuracy of the KDE is highly dependent on the number

3To construct a histogram from a continuous variable, it needs to split the data into intervals, called
bins, and the size of bin is bin width.
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of training samples and the size of bandwidth4 (more detail will be given in chapter 6).

Furthermore, some kernel-based methods have also been explored for positioning, like the

Support Vector Machines [77] and Canonical Correlation Analysis [78] [79]. In addition,

Bayesian inference provides a general framework for positioning and tracking problems.

For example, the Nibble system [80] applies Bayesian networks with RSS measurement

to infer the location of a target sensor in a Wi-Fi network environment. [81] provides a

detailed survey of the application of Bayesian Filtering for location estimation.

3.7.3 Comparison of Estimation Techniques

Some classical localisation schemes in the literature have been classified with respect

to different categories as shown in Table 3.1. The procedures used in deterministic

techniques are relatively simple, but generally need to collect a large number of training

data during the offline phase in order to achieve high location estimation accuracy.

Although probabilistic techniques are reported to provide higher positioning accuracy

than deterministic techniques, and this has been proven in [72] based on their test-beds,

their higher computational complexity makes probabilistic techniques difficult when the

vector of observations is of high dimension.

In this thesis, different approaches have been proposed. For outside environment,

two location approaches are developed to estimate a user’s location: the Intersection

after Principal Component Analysis (PCA-Intersection) method and the Kernel density

estimator after PCA (PCA-KDE) method, both of which are augmented with the use of

PCA. The first one belongs to the deterministic category, and the second one is within

the probabilistic category. For inside environment, the deterministic location approach

called the Weighted K-Nearest Neighbour after PCA (PCA-WKNN) is utilized to predict

the room number. For all of the three approaches, the PCA method is used for feature

selection to reduce the required data, as well as to retain important correlations in high

dimensional data in the reduced dimension. The benefit of PCA is that it reduces the

4Bandwidth is a smoothing parameter that controls the smoothness of the density estimation.
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Table 3.1: Classification of Some Localisation Schemes

Localisation Area of Partition Model Estimation Techniques

Scheme Deployment Grid/Cluster/Global Deterministic/Probabilistic

RADAR [53] [62] WLAN Indoor Global Deterministic

Ref. [72] WLAN Indoor Global Probabilistic

Ref. [64] Indoor Global Deterministic

Nibble [80] WLAN Indoor Global Probabilistic

Ref. [58] WLAN Indoor Grid Probabilistic

CellSense [59] GSM Indoor Grid Probabilistic

Horus [60] WLAN Indoor Cluster Probabilistic

CaDet [52] Indoor Cluster Probabilistic

PCA-Intersection GSM Outdoor Cluster Deterministic

PCA-KDE GSM Outdoor Cluster Probabilistic

PCA-WKNN Indoor Cluster Deterministic

computational requirements of location determination and can perform simple lookups

with fewer samples.

3.8 Summary

In this chapter, the general aspects of location fingerprinting systems were described,

followed by a survey about its four main characteristics that may influence the precision

of localisation accuracy: transmitter selection approach, indoor or outdoor environment,

grid model or cluster model and deterministic or probabilistic method applied to posi-

tioning system. The chapter concluded with a short evaluation of location fingerprinting

approach. The following chapters, Chapter 4 to Chapter 8, concentrate on the pro-

posed outdoor localisation techniques and coverage prediction. These chapters present

the proposed run-time positioning measurement system in outdoor environment and of-

fer different approaches to estimate users’ locations in a static/dynamic environment as

well as prediction the coverage reliability.
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Chapter 4

Partitioning the Wireless

Environment

4.1 Introduction

This chapter describes the approach to partitioning the environment into different dis-

joint regions where each region in RSS space maps the locations in a real environment

that have similar RSS. This is achieved by creating clusters in the space of RSS. The

clusters do not necessarily correspond to physically contiguous regions. The MS belong-

ing to a cluster can be dispersed over the geographical area and even be interspersed by

MSs that belong to different clusters. So a MS at any particular geographical location

may belong to more than one cluster. There is a trade-off between the number of clus-

ters and the accuracy of the location estimation. The fewer the number of clusters the

more accurately the cluster can be identified, but the less useful the identification of the

cluster is. This is because it will cover a broader range of RSS and more geographically

dispersed MSs.

In order that the clustering may be relevant for different antenna configurations, for

example, it can be generated by using different transmission powers, different tilt angles
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or a semi-smart antenna. That means modelling of the RSS distribution and radio

coverage in each cluster is undertaken. For complex changes e.g. tilt, the reflections will

be different, so the modelling is intended to capture the changes at least at a statistical

level, such as the probability that the RSS will exceed a threshold can be computed

at different locations. Modelling at detailed ray tracing level is not being performed.

In the recent years, fingerprinting has attracted attention to predict user location in

indoor environment. The implementation of this technology is quite simple and effective

for indoor environment positioning, because it normally only needs the measurement of

RSS or other non-geometric parameters at some locations to form a database of location

fingerprints, and then to find out the better match fingerprints in the database. There

has not been a great deal of research into how to adopt a fingerprinting approach in

outdoor location estimation systems, because of the difficulty of the large amounts of

data that need to be processed and tested.

In this work, a similar idea to a fingerprint-based positioning system is adapted for the

outdoor environment. Firstly, a subset of transmitters is selected in the area of interest

using principal component analysis (PCA) to overcome the drawbacks of transmitter

selection methods. This initial selection is a coarse filter to clearly eliminate no useful

BSs. A more refined selection occurs for each cluster. Then the deviation of the raw

RSS from the estimated path loss model from the BS is clustered and the region is

partitioned into several similar areas in terms of the effect of topography on the RSS.

After clustering, the proposed approach returns to using the raw RSS in each determined

cluster and use PCA again to rotate these raw RSS to independent principal components

(PCs) within each cluster, which allows us to build a RSS distribution model within each

cluster to support further positioning.

This chapter summarizes the theoretical fundamentals of the proposed measurement

system in outdoor location estimation. Section 4.2 gives a brief outline of the proposed

run-time positioning mechanism. The proposed transmitter selection method is pre-

sented in section 4.3. In section 4.4, the clustering scheme, which is used for partitioning
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of the wireless environment, such as cell sectors, into regions that allow for accurate

modelling of the propagation environment and prediction of the users’ RSS distribution,

is introduced in detail. Section 4.5 gives more details about how to transfer the raw RSS

into independent ones within each cluster. The proposed clustering scheme is tested by

using both simulated and real data collected from the outdoor environment and the eval-

uation of the simulation results are presented in section 4.6. Finally, section 4.7 makes

a conclusion of this chapter.

4.2 The Overview of Outdoor Localisation System

The proposed positioning mechanism involves two phases: a training phase and an online

localisation phase, and this is illustrated in Figure 4.1. This section focuses on the

location estimation in a constant environment. Positioning in a dynamic environment

will be discussed in chapter 7.

Finding the clustering scheme and creating the accurate RSS distribution models are

Figure 4.1: The overview of the proposed positioning mechanism
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the main aims in the training phase. For this thesis, it can be considered the training

is done once and for all. Before clustering the RSS data points, the first step is to

choose the most representative subset of transmitters in the area of interest. The PCA

is used globally to remove the least useful transmitters during the training phase to avoid

unnecessary calculations. A clustering scheme is described to partition the environment

into different disjoint regions where each region in RSS space maps to locations in the

real environment that have similar RSS, as shown in the red dashed box in Figure 4.1.

The black arrows in this figure show direction of flow from one step to another and

the red arrows mean the needed information is provided by the results obtained in the

training phase.

Once these models are constructed, they are applied to a new set of RSS values for

online real-time location estimation. In the online phase, a new mobile phone user comes

into the test-bed and he/she asks for positioning. That is to say, when a new MS with

observed RSS tuple from nearby BSs has been collected, the better matching cluster for

each new MS is found according to the received power using the K-Nearest Neighbour-

Venn Probability Machine (KNN-VPM). Then its relative location in that cluster can

be estimated. In this way, the algorithm is tolerant to a location calculation error.

This is achieved by creating clusters in the space of deviations of the observed RSS

(in the training data) from the estimated log-distance path loss from each transmitter

in the best chosen transmitter subset. Deviations of RSS are used for clustering rather

than raw RSS, as this can approximate the decay with distance that can otherwise

dominate the clustering. Since the clustering is performed in RSS space, the created

clusters do not necessarily correspond to physically contiguous regions. For example, in

a complex environment, two mobile users within the same cluster can be scattered over

geographically dispersed locations or even be interspersed by the other users that belong

to another different cluster. After partitioning using the number of clusters, the RSS

distribution model is built in each cluster using PCA again. For each partition, the raw

RSS is rotated into orthogonal dimensions and used to build RSS distribution models
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for location estimation in the online phase.

4.3 Detectable Transmitters Selection

In a real environment, a mobile user can receive signals from many detectable trans-

mitters within the area of interest. For example, for one of the test-beds (the Queen

Mary campus in section 4.6.2.1), 29 BSs for a particular operator are detectable. In

the training stage, assume a set of n MSs: the MS geographic location and the RSS

measurements from all D neighbouring transmitters are collected. If one MS does not

receive measurable signal strength from one typical transmitter, this means a null value

indicator. A default value -120 dBm is given to this null value indicator, and also -120

dBm is the minimum strength of the signal strength received in the environment. The

detectable transmitter selection process can be divided into two filtering steps:

Step 1: Neglect the transmitters that are far away from the target experimental

area. If the number of MSs that cannot receive signals from transmitter j is less than

n/2, transmitter j is ignored. Hence, the range of the detectable transmitters can be

narrowed from D to D
′
. So the RSS measurements received by all the training data

from D
′
transmitters are described as

R =


r⃗1
...

r⃗n

 =


r1,1 · · · r1,D′

...
. . .

...

rn,1 · · · rn,D′

 ≡


t⃗1
...

t⃗D′


T

(4.1)

Where T is the symbol of matrix transpose. To better understand the equation (4.1),

Figure 4.2 takes an example. Here r⃗i is a D
′
-dimension row vector of RSS received by

MS i from D
′
transmitters, while t⃗j is the n-dimension column vector of RSS received

by all the n MSs from transmitter j, i.e. a different viewpoint on the same data set.
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Figure 4.2: The explanation of equation (4.1)

Step 2: Use the PCA technique globally to project the measured RSS into a trans-

formed signal space. The basis in the transformed space can be viewed as the linear com-

bination of each transmitter with different weights (a.k.a principle components (PCs)),

which represent the different contributions of each transmitter. It can be seen how many

principal components are needed to express the percentage of the variability in the data

set, and use these as the reduced dimensions (e.g. q dimensions q < D
′
) with the added

advantage that they are orthogonal.

Principal component analysis (PCA) is a statistical technique that uses a linear or-

thogonal transformation to convert a set of observations of possibly correlated variables

into a set of uncorrelated variables called principal components (PCs). Mathematically,

the first PC is a line passing through the multidimensional RSS mean and minimizes the

sum of squares of the distances of the points from the line. So this axis has a large vari-

ability when measured along the axis (not orthogonal to it). The second PC is similar

but constrained to be orthogonal to the first PC. The computed eigenvalue for each PC is

proportional the sum of the squared distances of the points from their multidimensional

mean (along the PC axis) and is often referred to as the “variance” of the PC. The sum
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of all the eigenvalues is equal to the sum of the squared distances of the points from

their multidimensional mean. PCA rotates the set of points around their mean in order

to align with the PCs and this moves as much of the variance as possible into the first

few orthogonal dimensions. Therefore, by removing the PCs that contribute little to the

total variance, the aim is to project the entire data set to a lower dimensional space, but

retain most of the information. This step can be further divided into four sub-steps as

follow:

1. Calculate the matrix R̄, each of its row vector is the mean value (t̄1, ..., t̄D′ ) of

the training RSS data points in R from each transmitter, and then the D
′ × D

′

covariance matrix Σ of the training RSS data points can be obtained.

2. Calculate the eigenvalues and eigenvectors of Σ. The eigenvalues contains the

variances for the PCs and the eigenvectors contains the linear coefficients for the

principal components. Assume the eigenvalue {λ1, ..., λD′} is in descending order,

and e⃗i represents the normalized eigenvector associated with λi. Thus, the principal

component coefficients can be defined as A = [e⃗1, ..., e⃗D′ ]. So far, the principal

components analysis itself has been accomplished.

3. Hence, to put the PCA to use, it needs to know what proportion each principal

component represents of total variance, which can be expressed as

ωi =
λi∑D′

i=1 λi

(4.2)

According to (4.2), it can remove the PCs that contribute little to the variance,

and project the entire data set to a lower dimensional space, but retain most of

the information. Figure 4.3 gives an example of how to choose the optimal PCs in

the Queen Mary campus scenario. It shows how much variance in the data set is

explained by which PC (by the bars shown in Figure 4.3) and how much variance

is explained by the first 6 PCs (as seen by the blue line shown in Figure 4.3). It can

be observed that the 6 first PCs can capture most of the variability in the signal
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Figure 4.3: The cumulative variance accounted for by successive PCs in Queen Mary
Scenario

strengths from the 29 BSs in Queen Mary Scenario and the first PC can expresses

36.4% of the total variance in the data set. Since the principal components are

orthogonal, the amount of total variance expressed by the first 4 PCs is 87.60%,

the sum of the proportions explained by them individually. So if it is needed to

express 85% of the variability in the data set, it can be found that 4 PCs can be

used as the reduced dimensions (e.g. q ≤ D dimensions), with the added advantage

that they are orthogonal and give us almost 90% of the information about RSSs

from the 29 BSs. In other words, the global PC can reduce the dimension by

25/29 = 86% in this scenario. Hence, analyzing fewer pieces of information can

give us almost the same results as analyzing the whole set of variables. In this

way, the reduced dimensions can be denoted as q, which is 4 here. The optimized

principal component is Aopt = [e⃗1, ..., e⃗q].

4. Calculate component loadings of each transmitter to the q largest PCs.

uij =
√

λieij(i ∈ [1, q], j ∈ [1, n]) (4.3)
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Here uij is the component loading of the j-th transmitter on the i-th PC, and eij is

the j-th element of e⃗i. Within each PC, one transmitter with the largest absolute

value of component loading is chosen.

The use of PCA for selecting the most representative transmitters is also feasible in

indoor environments, especially for small-/medium- size. For a large-size environment,

e.g. one of the test-beds London Stratford Westfield shopping mall, it is not appropriate

to apply PCA to choose the best subset of APs/BSs for the whole area. Details can be

found in chapter 9 section 9.5.1.

4.4 The Proposed Clustering Scheme

Clusters are used instead of a uniform grid for a better model of complex topography as

grid boundaries and topographic features do not necessarily align (this has been verified

in direct comparisons on the data sets described here). Previous clustering localisation

research [31] [52] [82] [83] does not pay attention to the cluster stability and to managing

scalability issues without losing important correlation information. In the proposed

clustering scheme, the Affinity Propagation method [84] is used for clustering and the

Venn Probability Machine (VPM) [85] method is used to predict the probability of

cluster membership and manage the trade-off between the estimation accuracy of cluster

identification and the number of clusters to select the better clustering scheme. It not

only pays attention to the cluster stability and to managing scalability issues without

losing important correlation information, but also adjusts for RSS values to decrease the

path loss effect that has the benefit, which the clusters are invariant to the power at the

BSs or RSs, which will be explained later.
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4.4.1 The Introduction of Affinity Propagation

Affinity Propagation [84] [86] clustering algorithm is a service-oriented architecture clus-

tering method, which has been shown to produce clusters in much less time, and with

much less error than traditional clustering techniques, such as K-means clustering, in

[31]. For instance, K-means clustering method aims to partition a set of data into k

clusters in which each data point belongs to the cluster with the nearest mean value.

Although the main idea of K-means clustering is quite simple, it needs to determine

the number of cluster (the value of k) in advance, and consumes too much processing

time until the best results are selected. Due to those harsh requirements, it could not

be a feasible method for a dynamic large wireless environment. Affinity Propagation

clustering can solve the above issues. Affinity Propagation clustering can be utilized to

identify a relatively small number of cluster centres (a.k.a exemplars) to represent all the

points in a data set. In Affinity Propagation clustering, each data point can be viewed

as a node in a network and simultaneously considered as a potential exemplar at first,

and then real-valued messages are recursively transmitted along the edges of the network

until a good set of exemplars and corresponding clusters emerges.

A review of the mathematical model of the Affinity Propagation approach is given

below.

• Exemplars

Exemplars are the data points that are chosen to be the cluster centres. They are

representative of themselves and some other data points that belong to the same clusters

with them.

• Input Arguments : Similarity and Preference

Similarity

Affinity Propagation takes an input function of similarities, s(i, k), where s(i, k) in-
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Figure 4.4: The effect of the preference value on the number of generated clusters

dicates how well suited data point k is to be the exemplar (a.k.a cluster centre) of data

point i. If the data are real-valued, a common choice of similarity function could be the

negative Euclidean distance between data points that a maximum similarity corresponds

to the closest data points. Affinity Propagation clustering can be applied to use general

notion of similarity, and the similarities can be positive or negative depending on the

way in which the definition of similarity is appropriate for the application.

Preference

Each data point i has a self-similarity, s(i, i), which reflects the prior suitability of

data point i to be an exemplar and influences the number of exemplars that are identified.

The self-similarity is also called “preference” that is another input parameter for this

algorithm. Assigning a data point to a larger or smaller preference (self-similarity)

value will respectively increase or decrease the possibility of the data point becoming an

exemplar. In the beginning, Affinity Propagation clustering considers all data points as

potential exemplars. So if one wants to make sure all data points are equally suitable as

exemplars and there is no inclination toward particular ones as exemplars, the preferences

of all data points should be set to the same value. In addition, the preference value can

control the number of clusters that are generated. Figure 4.4 shows the relationship of
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preference value on the number of produced exemplars. It can be clearly seen that low

values of preferences will lead to a small number of clusters, while high values will find

a large number of clusters that is produced.

• Two Types of Message Passing : Responsibility and Availability

In Affinity Propagation clustering method, two kinds of messages are exchanged

between data points: Responsibility message and Availability message.

Responsibility

The responsibility message, rres(i, k), is sent from data point i to candidate exemplar

data point k. A non-exemplar data point i informs each candidate exemplar whether it

is suitable for joining as a member, as shown in Figure 4.5 (a). The message rres(i, k)

indicates how well suited data point k is to be data point i’s exemplar, taking into

account competing other potential exemplars.

                     

data point 

                            

candidate

exemplar
                            

(a) Responsibility message

                     

data point 

                            

candidate

exemplar
                            

(b) Availability message

Figure 4.5: Responsibility message and availability message

Availability

The availability message, aava(i, k), is sent from candidate exemplar k back to po-

tential cluster member data point i. A candidate exemplar data point k informs other
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data points whether it is a good exemplar, as shown in Figure 4.5 (b). The message

aava(i, k), shows how proper it would be for point i to choose point k as its exemplar

based on supporting the feedback from other data points. The calculation of availabil-

ity only considers the positive responsibility messages from surrounding data points.

If point k receives strong responsibility messages from surrounding data points, it will

send a stronger availability message to indicate the suitable degree for it to become an

exemplar.

It should be noted that the self-responsibility, rres(k, k) and self-availability, aava(k, k)

are two additional messages calculated for each data point k. Both of these two messages

give accumulated evidence that point k is to be an exemplar, and are used to find the

clusters. The self-responsibility message is based on the input preference value and the

maximum value of availability message received from surrounding data points. It reflects

how ill-suited it is to be assigned to another exemplar. In contrast to the self-availability

message, the suitability for point k to be an exemplar is based on the number of the

positive received responsibilities messages and their values.

In Affinity Propagation clustering, all data points are taken as potential exemplars

simultaneously. In other words, all data points can be thought to be either candidate

exemplars or cluster members, depending on whether they are sending or receiving re-

sponsibility or availability messages. Data points exchange and update these two mes-

sages in the network until a high-quality set of exemplars and corresponding clusters

emerge. So there are some updated formulas for responsibility (4.4), self-responsibility

(4.5), availability (4.6) and self-availability (4.7) should be complied with, and Figure 4.6

depicts how these two messages are exchanged between the data points. The algorithm

begins by calculating the responsibilities with the availabilities set to 0.

rres(i, k) = s(i, k)−maxk′ :k′ ̸=k{aava(i, k
′
) + s(i, k

′
)} (4.4)

57



4. Partitioning the Wireless Environment

                            

data point 

                            

candidate

exemplar
                            

                            

competing candidate 

exemplar
                            

(a) Update responsibility message

                            

data point 

                            

candidate

exemplar
                            

supporting 

data point
          

                            

(b) Update availability message

Figure 4.6: Update responsibility message and availability message

rres(k, k) = s(k, k)−maxk′ :k′ ̸=k{s(k, k
′
)} (4.5)

aava(i, k) = min{0, rres(k, k) +
∑

i
′
:i
′ ̸={i,k}

max{0, rres(i
′
, k)}} (4.6)

aava(k, k) =
∑

i′ :i′ ̸=k

max{0, rres(i
′
, k)} (4.7)

In the whole process, these two messages should follow the four equations above.

While computing responsibilities and availabilities according to these simple updating

rules will result in oscillations that are caused by “overshooting” the solution, so the

responsibilities and availability messages are “damped” according to the following equa-

tion:

Rres(t+ 1) = (1− λ)Rres(t) + λRres(t− 1) (4.8)

Aava(t+ 1) = (1− λ)Aava(t) + λAava(t− 1) (4.9)

Where Rres = [rres(i, k)] and Aava = [aava(i, k)] represent the responsibility matrix
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and availability matrix respectively. t indicates the iteration times and λ is the damping

factor that is used to avoid numerical oscillations. Because loopy belief propagation on

which Affinity Propagation is based can be viewed as a particular kind of over-relaxation

[87]. A damping factor is commonly needed in over-relaxation methods and it prevents

the availability and responsibility updates from overshooting the solution and leading

to oscillations in Affinity Propagation clustering. As long as the Affinity Propagation

converges, the exact damping level should not have a significant effect on the resulting

net similarity. In [84], they state that the damping factor λ should be at least 0.5 and less

than 1, and the authors recommend setting the damping factor to 0.9. Higher damping

factor λ will lead to slower convergence. If the Affinity Propagation does not converge,

λ can be increased. But if the damping factor λ goes beyond 0.99, numerical precision

issues will arise. For the experiments in this thesis, the value of λ is set to be 0.9 and

there is no big difference when the damping factor falls within the range of (0.5, 1).

• The Decisions of Clusters

The responsibilities and availabilities are messages that provide evidence for whether

or not each data point should be an exemplar and if not, which exemplar that data point

should be assigned. After the messages have converged, there are two ways to identify

exemplars [87]:

1. For data point i, if aava(i, i) + rres(i, i) > 0, then data point i is an exemplar.

2. For data point i, if aava(i, i) + rres(i, i) > aava(i, j) + rres(i, j) for all j not equal

to i, then data point i is an exemplar

This clustering procedure may be performed at any iteration of the algorithm, but

final clustering decisions should be made once the algorithm stabilizes. The algorithm can

be terminated once exemplar decisions become constant for some number of iterations,

indicating that the algorithm has converged.
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• The Process of Affinity Propagation

To begin with, the availabilities are initialized to zero for the first iteration: aava(i, k)

= 0. So rres(i, k) is set to (1 − λ) times of the value of the difference of: the input

similarity between data point i and data point k minus the largest competing similarity

between point i and other competing potential exemplars (e.g. data point k
′
in Figure

4.6 (a)), which can be given by:

rres(i, k) = (1− λ)(s(i, k)−maxk′ :k′ ̸=ks(i, k
′
)) (4.10)

After later iterations when some data points are assigned to other exemplars, their

availabilities will drop below zero. This decreases the value of the corresponding sim-

ilarity to which it is added and gradually removes them from the competition to be

an exemplar. According to (4.6), the important part of availability update rule is its

prescribed updated value. It is set to the self-responsibility rres(k, k) plus the sum of

positive responsibilities candidate exemplar k receives from other points (e.g. the data

point i
′
in Figure 4.6 (b), but it does not include the message destination: data point

i). Only the positive portions of incoming responsibilities are added, because it is only

necessary for a good exemplar to explain some data points well. If rres(k, k) is negative,

it indicates that data point k is currently better suited as belonging to another exemplar

rather than being an exemplar itself. The availability of point k as an exemplar can

be increased if some other points have positive responsibilities for point k being their

exemplar. For any data point during Affinity Propagation clustering, responsibilities

and availabilities can be combined to identify exemplars.

4.4.2 Clustering Mobile Stations’ RSS feedback

In the context of wireless networks, there are two benefits of Affinity Propagation clus-

tering technique that can be applied to this research work: (a) the clusters emerge
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naturally, rather than by specifying the number of clusters in advance and the number

of clusters is related to a chosen “preference” value. (b) It allows for great flexibility in

the face of dynamic environments, since all clustering parameters can be varied across

iterations. Accordingly, the fundamental idea of Affinity Propagation clustering to par-

tition the wireless environment based on the deviations RSS from the log-distance path

loss models is used.

Assume there is a set of n MSs collected during training stage. For each MS, its geo-

graphic location and the RSS measurements from neighbouring transmitters are known.

Let r⃗i = (ri,1, ri,2, ..., ri,q) represent the set of RSS from MS i from q antennas, i.e. BSs

and RSs, in the area of interest, and the deviations from the q RSS log-distance path

loss models create a tuple ρ⃗i = (ρi,1, ρi,2, ..., ρi,q). In this work, clustering is based on

the Mahalanobis distance rather than the Euclidean distance in signal space to create

distinct and stable clusters. Because Mahalanobis distance function can avoid giving

too much weight to correlated RSS values in the distance function and enables both

non-linear and linear decision boundaries. Direct comparisons of the Euclidean distance

and Mahalanobis distance on real data set are given in chapter 5 section 5.5 later. For

any two MSs, such as MS i and MS k, the similarity between them can be expressed as:

s(i, k) = −
√

(ρ⃗i − ρ⃗k)TΣ−1(ρ⃗i − ρ⃗k), ∀k ̸= i (4.11)

Because the signal strength received by MSs from different BSs can be correlated, the

covariance matrix Σ in signal space used in (4.11) is to describe the mutual dependence

of the signal strength received by any two MSs from different BSs. If there are q BSs

nearby, Σ can be estimated as:

Σq×q =


Σ1,1 · · · Σ1,q

...
. . .

...

Σq,1 · · · Σq,q

 (4.12)
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Where Σj,p =
1

(n−1)

∑n
i=1(ρi,j − ρ̄j)(ρi,p − ρ̄j)

T , 1 ≤ j, p ≤ q, n is the number of RSS

tuples, T is the symbol of the vector (ρi,j − ρ̄j) transpose and ρ̄j is the average deviation

RSS value of MSs from BS j, ρ̄j = 1
n

∑n
i=1 ρi,j . If the covariance is not used and it is

assumed that RSS is independence as in the Euclidean distance, then highly correlated

variables are given too much weight in the distance function.

The use of deviations can eliminate to some extent the effects of distance dependent

path loss attenuation, and so better capture the effects of multipath and shadowing,

which mainly depends on the topography. Using the raw RSS leads to clusters where

the similarity is dominated by the distance path loss, which is approximated anyway by

the estimated path loss model. Direct comparisons on different data sets demonstrate

this and they are given in chapter 5. The deviations from the log-distance path loss

model are obtained based on the RSS data during the training stage. According to the

log-distance path model [11], the RSS measurement Prss (in dBm) at the distance d from

the transmitter can be formulated as in the equation below:

Prss − PTR = κ+ γlog(d/d0) (4.13)

Where PTR represents the transmit power of the transmitter, d0 is reference distance

for the antenna area and the value of it is set to 100 meters in this research. The values

of parameter γ and κ are heavily dependent on the environment and are estimated by a

least squares linear regression model (4.13) from training data for the transmitter.

Figure 4.7 shows the process of how to cluster MSs RSS data using Affinity Prop-

agation clustering algorithm in this research. Each box represents a step respectively

corresponding to step 1 to step 6. Step 3, step 4 and step 5 are iterated for several times

or until convergence. Here are the details of each step as below.

Step 1: Collect current mobile users’ feedback, analyse and process current RSS

data.
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Step 2: Construct similarity function according to (4.11) and define preference value

that may influence the number of clusters that are created.

Step 3: Update and compute the responsibilities messages according to (4.4) and

(4.5). The responsibility update rule let all potential exemplars compete for ownership

of a MS.

Step 4: Update and compute the new availabilities messages according to (4.6) and

(4.7). The availabilities update to gather the evidence whether each candidate exemplar

would make a good exemplar or not.

Step 5: Calculate the exemplars for all MSs using the result of iteration of step 3 and

step 4. Combine responsibilities and availabilities to monitor the exemplars decisions.

For any MS i, if rres(i, i) + aava(i, i) > 0, then identify MS i to be the current estimated

exemplar.

Step 6: If the estimated exemplars produced in step 5 stay unchanged for a certain

number of iterations or the number of iterations reaches the maximum value, the program

will assign other MSs to the exemplars depending on which one of exemplars is most

similar to them, and then output cluster result. Otherwise go back to step 3.

Figure 4.7: Flowchart of Affinity Propagation clustering
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4.4.3 Estimation of the Accuracy of Cluster Identification

The Venn Probability Machine (VPM) learning technique [85] is a classification

system usually applied on top of an existing learning algorithm, e.g. KNN, to augment

predictions with probability estimates. In this work, the VPM is used to estimate the

probability of cluster membership and to manage the trade-off between the estimation

accuracy of cluster identification and the number of clusters. The RSS training data set

are randomly split into two halves as the cluster training and cluster testing sets. The

cluster training set is used as representatives of the clusters that have been obtained; and

the cluster testing set is allocated to clusters based on KNN. This allows the computation

of the probability that each RSS tuple in the cluster testing set belonging to each cluster,

to find the most likely cluster ID for the testing data point and to validate the accuracy of

cluster classification for the testing data point. The accuracy of the cluster identification

prediction is also used to support the MSs clustering. According to the required cluster

estimation accuracy, the preference value is adapted based on the calculated accuracy

and the clustering number found.

Let R represent the space of RSS tuples for MSs from the neighbouring BSs, and C be

the space of cluster IDs and Z = R×C, which denotes the pair (RSS tuple, cluster ID) for

every MS in the area of interest. The RSS tuple will be referred to as a data point. The

clustering set C = {C1, C2, C3, ..., CT } and T is the number of clusters. The training data

set, TR, can be represented as TR = {z1, z2, z3, ..., zN}, where zn = [rn, cn],cn ∈ C. The

testing data set, TS, can be denoted as TS = {zN+1, zN+2, zN+3, ..., zN+S}. Suppose the

cluster ID of every test data point is unknown, the objective is to assign the estimated

cluster ID for every test data point using its RSS tuples and make an assessment of the

cluster ID prediction accuracy by comparisons with the known correct cluster ID of these

test data points. The process is described in Algorithm (4.1).

First, choose one test data point from the test data set (step 1) and combine it with

the training set TR to form a new data set (step 2). Use KNN algorithm to obtain a list of
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Algorithm 4.1 K-Nearest Neighbours Venn Probability Machine
Requried:

kmax: the maximum value of nearest neighbours used
Cluster ID: {C1, C2, C3, ..., CT }
Training data set TR = {z1, z2, z3, ..., zN}, (zn = [rn, cn], cn ∈ C)
Test data set TS = {zN+1, zN+2, zN+3, ..., zN+S}

Steps:
1: for s = 1 toS do
2: TM = {z1, z2, z3, ..., zN , zN+s}.
3: Using RSS to calculate the distances and get each zi its neighbours Neighbour(zi) in a

descending order of respective distance.
4: for t = 1 toT do
5: Assign zN+s ∈ Ct

6: for k = kmax to 1 do
7: if ∃zp ∈ TR such that Neighbour(zp)(1 : k) = Neighbour(zN+s)(1 : k) then
8: keff = k
9: Put zp into Z

10: Fill Z with all other zq in TR that satisfy
Neighbour(zq)(1 : keff ) = Neighbour(zN+s)(1 : keff )

11: Break
12: end if
13: end for
14: for τ = 1 toT do
15: Calculate the frequency of each cluster

Pt,τ =
sizeof({zµ∈Z,cµ∈Ct})

sizeof(Z)

16: end for
17: end for
18: cN+s = agr maxcN+s≤T (min{PcN+s,1, ..., PcN+s,T }+max{PcN+s,1, ..., PcN+s,T })
19: end for

neighbours for each data point (step 3). Then the process works recursively on different

cluster IDs (step 4). Specifically, the test data point is assigned with current cluster

ID (step 5), so each data point gets a list of cluster IDs which can be converted from

its list of neighbours. Compare the first k (initially kmax) cluster ID in the respective

list between the test data point and each training data point (step 6). If there exists no

training data points that has the same sequence of the first k cluster ID with the test

data point (step 7), decrease k by one (step 6) and repeat. Once a training data point

satisfying this condition is found, the effective value of k is set as keff (step 8). Then,

put this training data point and all other eligible training data points into collection

Z (step 9 and step 10). The normalised frequency of each cluster can be obtained by

counting the number of MSs in Z (step 14 to step 16). These probabilities also compose

the corresponding column of the frequency matrix. Repeat step 4 until all the cluster IDs
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are analysed. As a result, all the columns of the matrix can also be filled. Finally, the

mean of the maximum and minimum values of each row is regarded as the probability

that the selected test data point belongs to each corresponding cluster. Therefore, the

cluster of the test data point can be estimated as the one with the largest probability

(step 18). The cluster ID of the other test data points can be estimated in the same way.

4.4.3.1 An example of Venn Probability Machine

A simple example is given for a better understanding of how the VPM algorithm works.

Suppose that the RSS data of ten MSs have been measured in the area of interest, where

only four BSs are taken into account. Based on the Affinity Propagation clustering

method, assume that three clusters are created which can be denoted as {C1, C2, C3},

as shown in Figure 4.8 (a). Thus, the training set can be set as the RSS measurements

of these ten MSs and their corresponding cluster IDs.

Now given a new MS mx with RSS data, its cluster ID can be estimated as followed.

Firstly, combine mx with the training data set and then calculate the similarity between

any two MSs based on their RSS. For each MS, K nearest neighbours can be estimated in

a descending order (assuming K=3) as shown in Figure 4.9, in which the corresponding

cluster IDs are also listed.

Since the mx’s cluster ID is unknown, it can be hypothetically assigned with all of

the cluster IDs in turn in order to calculate the probability of mx being in each cluster.

Here mx is firstly assigned to cluster C1 (Figure 4.7 (b)). Consequently, the cluster

ID list of each MS’s three nearest neighbours need to be updated as shown in Figure

4.10. The next step is to search for the MSs which have the same cluster ID list with

mx’s. However, as seen in Figure 4.10, there is no MS in the training data set that

satisfies this condition. Therefore, these searching steps will be repeated with a smaller

K, which turn to be two. Now, there are two MSs m2 and m10 that have the same

two-nearest-neighbour list with mx can be selected. They are stored in a category Z,

66



4. Partitioning the Wireless Environment

m1

m7

m2

mx

m3 m5

m6

m4

m8

m10

m9

C1 C2 C3

(a) Estimate cluster ID for MS mx

m1

m7

m2

mx

m3 m5

m6

m4

m8

m10

m9

C1 C2 C3

(b) Assign to cluster C1 hypothetically

m1

m7

m2

mx

m3 m5

m6

m4

m8

m10

m9

C1 C2 C3

(c) Assign to cluster C2 hypothetically

m1

m7

m2

mx

m3 m5

m6

m4

m8

m10

m9

C1 C2 C3

(d) Assign to cluster C3 hypothetically

Figure 4.8: Estimate cluster ID for MS mx

so Z = {m2,m10}. Then the normalised frequency of each cluster can be obtained by

counting the number of MSs. For this example, the frequencies of all clusters are 0,0,1.

Similarly, cluster ID C2 and C3 are in turn assigned to mx (Figure 4.8 (c) and (d))

to obtain the frequency of each cluster with the initial K value of three. The final

frequencies under different assumptions of the mx’s cluster ID in this example is shown

in Table 4.1. The average value of the maximum and minimum frequencies of each row

is regarded as the probability that mx belongs to each cluster. Finally, the cluster of mx

will be estimated as the one with the largest average frequency value, which is C3 in this

example.
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Figure 4.9: The list of three nearest neighbours of all the MSs

Figure 4.10: The list of three nearest neighbours when hypothetically assigns C1 to mx

Table 4.1: Frequencies Table for the MS mx’s Possible Cluster ID

PPPPPPPPPPPPPP
Frequency

Assumption
C1 C2 C3 Normalised Frequency

C1 0 0 0.5 (0+0.5)
2 = 0.25

C2 0 0 0 (0+0)
2 = 0

C3 1 1 0.5 (0.5+1)
2 = 0.75
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4. Partitioning the Wireless Environment

4.5 Selecting the Number of Clusters

One of the objectives is to have a coherent partitioning in the RSS space. A stable

clustering can improve the estimation accuracy of cluster member assignment and hence

can give useful information for the purpose of monitoring a dynamic MS environment

and predicting users’ locations. Accordingly, the issue of determining the number of

clusters is taken in to account.
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No.Cluster = 50

Figure 4.11: An example of the selection of cluster number

An example is given in Figure 4.11 to illustrate the identification of the number of

clusters. The thick blue line represents the relationship between the cluster preference

parameter value and the number of clusters generated. The green dashed line depicts

the dependence of the cluster prediction accuracy on the number of clusters created.

There is a trade-off between the number of generated clusters and location estimation. A

greater number of clusters generated in the training period reduces the cluster prediction

accuracy e.g. if there were one cluster, the cluster prediction accuracy would be 100%,

but the location estimation would be poor), but results in a higher precision in location

estimation, conditional on having chosen the correct cluster. Here, the objective is to
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find the right balance between the accuracy of cluster identification and the number of

clusters. The number of clusters is the maximum number of clusters that can still satisfy

the accuracy requirements for cluster prediction. The cluster shape is determined by

the location of training data set in this cluster. Seen from Figure 4.11, if the threshold

accuracy of cluster identification is taken as 90%, the corresponding maximum number

of clusters is 50. The training data set is collected first and the collection time depends

on the size of area required. After cluster identification, models (such as other regression

models) are fitted to each cluster. As the points are similar but not identical, a local

and representative traffic distribution model can be determined from the points in the

cluster.

Hence, using the clustering scheme, the terrain is divided into a set of clusters

C = {C1, C2, ..., CN}, where N is the total number of clusters. These created clus-

ters construct a radio map, which not only capture the characteristics of the signal

propagation in a given environment, but also avoid the modelling of the complex radio

propagation and reduce the computational cost of coverage prediction. If M denotes the

radio map, the i-th element in the radio map can be expressed as

Mi = (Ci, Ri, Li), i = 1, ...N (4.14)

Let ni be the number of training MSs within cluster Ci. Ri denotes the RSS mea-

surements in cluster Ci, which is given by

Ri =



r⃗1
...

r⃗j
...

r⃗ni


=



r11 · · · r1,b · · · r1,q
...

. . .
...

rj,1 rj,b rj,q
...

. . .
...

rni,1 · · · rni,b · · · rni,q


ni×q

≡



t⃗1
...

t⃗b
...

t⃗q



T

(4.15)

Here r⃗j is a q-dimension row vector of RSS received by MS j from q antennas in

70



4. Partitioning the Wireless Environment

cluster Ci. Li = (li1, ..., lij , ..., lini) consists of the geographical locations, lij of MS j in

cluster Ci. t⃗b is the ni-dimension column vector of RSS received by all the ni MSs from

transmitter b, i.e. a different viewpoint on the same data set.

4.6 RSS Transformation within each cluster

When computing locations in the real environment, the correlation between signal strengths

cannot be neglected. For example, for the real RSS data points collected from Queen

Mary Campus given in section 4.6.2.1, Table 4.2 presents the RSS correlations from

different BSs in one typical cluster. The RSS samples from different BSs can have cor-

relations as high as 0.9, as shown in Table 4.2. The main challenge is to determine how

to improve location estimates despite such high correlations.

Table 4.2: The correlation between signal strength in one typical cluster in Queen Mary
Scenario

BS 1 BS 2 BS 3 BS 4

BS 1 1 0.8293 0.7117 0.4387

BS 2 0.8293 1 0.9084 0.4656

BS 3 0.7117 0.9084 1 0.6687

BS 4 0.4387 0.4656 0.6687 1

For each cluster, the author uses PCA again to transform the correlated q-dimensional

training RSS data set into a new basis, which are uncorrelated, and then builds the

regression model for each cluster for each BS using the transformed uncorrelated RSS

data points in that cluster. According to (4.14), the radio map in each cluster Ci is

Mi = (Ci, Ri, Li). So for each cluster Ci:

Step 1 and 2: Calculate the q×q covariance matrix of the training RSS data points

in this cluster and then compute the eigenvalues and eigenvectors of this covariance

matrix to obtain the principal component coefficients Ai.

Step 3: Transform the original RSS data set of each cluster to obtain the new training

RSS data set. Here each of the matrix R̄i’s row vector is the mean value (t̄1, ..., t̄b, ..., t̄q)
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of the training RSS data points in Ri from each BS.

R
′
i = AT

i · (Ri − R̄i) (4.16)

For convenience, one takes the row vector r⃗
′
j and column vector t⃗

′
b to represent R

′
i,

which can be expressed as

R
′
i =



r
′
11 · · · r

′
1,b · · · r

′
1,q

...
. . .

...

r
′
j,1 r

′
j,b r

′
j,q

...
. . .

...

r
′
ni,1

· · · r
′
ni,b

· · · r
′
ni,q


ni×q

=



r⃗
′
1

...

r⃗
′
j

...

r⃗
′
ni


≡



t⃗1
...

t⃗b
...

t⃗q



T

(4.17)

In the following chapters, PCA is applied into each cluster, and then two different

positioning algorithms are used to estimate user location, which will be described in

chapters 5 and 6 respectively.

4.7 Experimental Results

In this section, the simulated and real data are tested to evaluate the performance of the

proposed mechanism.

4.7.1 Results with Simulated Data

Two different sets of data are considered: one data set is obtained from a simplified

urban environment propagation model and the other data set is generated by a network

planning tool for the island of Jersey (primarily rural).
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4.7.1.1 Outdoor Scenario 1: A Simple Simulated Urban Propagation Model

Figure 4.12: Topology of the simulated urban environment

Table 4.3: Configuration Parameters Used in the Simulation

System Setting

Distance between BS to BS 2.0 km

Minimum Mobile-to-BS distance 20 m

Total Number of MSs 3200 ( 8 MSs in each grid element)

Propagation Environment

Minimum Transmit Power 40 dBm

Maximum Transmit Power 48 dBm

Shadowing Deviation

Building I 0 dBm

Building II 7 dBm

Building III 15 dBm

Building IV 25 dBm

Street -5 dBm

A 2 km × 2 km square area with four BSs at each corner is built as shown in Figure

4.12. The propagation model used in the simulation is based on the reference propagation

model of COST-231 urban that is the combination of typical logarithmic path loss model

and Rayleigh fading model. For simplicity, reflection, diffraction and scattering effects

are not taken into account. The simulation area is divided into 20 × 20 elements by a
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rectangular grid. For each grid element, there is a propagation feature that represents

the shadowing variation in the corresponding grid element in the urban environment.

The shadowing feature in each grid is given by the mean of the shadowing variation

deviation of the uniform distribution of (0, 1). The mean of the shadowing variation

is -5 dBm, 0 dBm, 7 dBm, 15 dBm and 25 dBm respectively, depending on the grid

element which one of building blocks or street belongs to in Figure 4.12.

Furthermore, the MSs are uniformly distributed over the whole area and an equal

number of sample MSs are selected from each grid element. Every MS in this area

could receive signal strength from the four BSs. The important simulation configuration

parameters are given in Table 4.3. To test whether the clusters represent the features

of the topography, it needs the simulation model used to generate RSS from each BS

to accommodate different physical situations. Suppose there are two settings for BS

transmit powers: high power (48 dBm) and low power (40 dBm). There can be 16

possibilities from different combinations of powers for the four BSs. Let “1” denote the

high power and “0” be the low power. These 24 factorial experiments can be simply

expressed as: 0000, 0001,..., 1110, 1111.

In order to better analyse and compare with the results of 16 settings, all the MSs are

chosen at exactly the same locations in each experiment that the RSS data set is collected.

Figure 4.13 shows four examples of the results of clustering MSs based on deviation RSS

over different powers at the four BSs. It can be seen from each sub-figure in Figure

4.13, different colours represent different clusters, and the cluster distribution can be

seen to reflect the topological feature of the simulation area to some extent, especially

for the places with a relatively small shadow variation. For the area with relatively large

shadow variation, such as block IV in Figure 4.12, the cluster distribution is scattered

with respect to the geographical locations of the MS, though in the four dimensional RSS

space they are compact. The number of clusters produced in every test is not exactly

the same but quite close, nearly 50 clusters. These results from all the 16 groups have

shown that the distributions of created clusters all have the roughly same structure as

74



4. Partitioning the Wireless Environment

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 # X,[m] 

 #
 Y

,[
m

]

(a) 0000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 # X,[m] 

 #
 Y

,[
m

]

(b) 0110

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 # X,[m] 

 #
 Y

,[
m

]

(c) 1101

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 # X,[m] 

 #
 Y

,[
m

]

(d) 1111

Figure 4.13: Clustering results in the outdoor scenario 1

would be expected mathematically as a result of using the deviations. Besides, within the

same parameters, each experiment has been tested many times and the results showed

good stability in the clustering. Although the simulated urban model used is simple,

it can be further improved by analysing the azimuth and elevation power distribution

of the transmission antenna to make sure whether this approach can be used in various

scenarios in wireless networks.

4.7.1.2 Outdoor Scenario 2: The Island of Jersey area

The pilot signal strength data for the island of Jersey is obtained from network planning

tool ASSET 3G. Figure 4.14 shows the topographic map of the centre of the island of

Jersey with six BSs covering an area of 8 km × 6 km and the clustering result is depicted
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Figure 4.14: The topography map in outdoor scenario 2

Figure 4.15: Clustering result in outdoor scenario 2

in Figure 4.15.

As seen from the results in Figure 4.15, the clusters can generally represent the

features of the current geographical patterns to a certain extent, particularly the contour

of highways and roads. These results are consistent with the results of scenario 1. The

less shadowing variability in an area, the more topographical features are predicted by
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clustering. Each experiment has been tested several times and the results demonstrated

the performance stability. Because of the complex terrain of the central area, 160 different

clusters are created in the central area. Given the large number of test points and the

complexity of the model it seems feasible to adopt this approach and the RSS clusters

have a mapping to the topography that is meaningful.

4.7.2 Results with Real Data

To test the proposed mechanisms in a real environment, two scenarios have been set up.

One environment test-bed is around Queen Mary campus and the other is a three-day

music festival in London Victoria Park. Both of these are essentially outdoors as they

are based on GSM signals and depended on GPS to validate the accuracy outdoors.

The RSS data of a GSM network was collected by a mobile app on an Android smart

phone. In general, mobile phones are in communication with one or more BSs during

and between connections. The mobile phone measures the received signal strength from

nearby BSs and attempts to access the BS with the strongest signal when a connection

is to be established. As the author uses the smart phone and moves around Queen Mary

University or London Victoria Park, within every 1 second, the mobile application can

record the exact latitude and longitude of the current location from GPS in the smart

phone, and collect the varying signal strengths from the surrounding BSs. The locations

of all the nearby BSs obtained from the server of Sony Ericsson are reported. More

details about these two scenarios including the downloadable raw data can be found in

[88].

4.7.2.1 Outdoor Scenario 3: Queen Mary campus

The Queen Mary campus covers a 475 m × 365m area and is in an urban area with tall

buildings. In Figure 4.16, the colour-line area represents the result of clustering 9277

test points. In this case, the number of clusters is 70. 2 to 4 PCs, i.e. q=2 to 4, are
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chosen for each cluster (depending on the cluster).

Figure 4.16: Clustering result in outdoor scenario 3

4.7.2.2 Outdoor Scenario 4: Three-day Music Festival in London Victoria

Park

Figure 4.17: Clustering result in outdoor scenario 4
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The GSM RSS data is collected from a three-day music festival held in London

Victoria Park that covers a 450 m × 240 m area. There are only 10 BSs around the

festival field, 3 BSs are chosen. The data sets are partitioned into three separate parts

according to the day collected, that is, Day 1, Day 2 and Day 3. 2095 RSS samples

collected on the first day are used as the training data set and then used to create

clusters based on the RSS measurement. The data sets from Day 2 and Day 3 will

be analysed later in chapter 7. As illustrated in Figure 4.17, the coloured-line area

represents the result of clustering 2095 test points on Day 1. In this case, the number of

clusters is 52.

4.8 Summary

In this chapter, the proposed positioning measurement mechanism was introduced, which

can be applied into the real environment by monitoring users’ RSS values continually.

The simple global dimensionality reduction using PCs was used to select the most repre-

sentative detectable transmitters. In addition, this proposed scheme clustered the RSS

tuples based on deviations from an estimated RSS attenuation model and then trans-

formed the raw RSS in each cluster into new uncorrelated dimensions, using PCs again.

In order to evaluate the feasibility of the clustering scheme, relevant experiments

were carried out. According to the experiment results, it can be concluded that the

performance of the proposed clustering scheme that contribute to the greater accuracy

in the test-beds: a) the use of deviations from the observed path loss model for each

RSS component rather than the raw RSS. This also results in the clusters being invariant

to the BS/RS power; b) the accurate estimation of the cluster membership probability

and the number of clusters to manage the trade-off between cluster size and accuracy of

cluster modelling.

The limitations of the proposed clustering are: a) it will take a relatively long time

to generate the number of clustering scheme during the training phase; b) for the clus-
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tering scheme, the aim is to combine with VPM to find the number of clusters in the

target area, no matter what kind of clustering method used, e.g. K-means and Affinity

Propagation methods. Therefore, the difference between different clustering methods in

a real environment will be compared in future work.

The next chapter begins to introduce the proposed deterministic localisation method,

Intersection after Principal Component Analysis (PCA-Intersection), to estimate user’s

location based on the proposed clustering scheme.
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Chapter 5

Deterministic Estimation with

Clustering

5.1 Introduction

As described previously in chapter 4, in the training phase, after the number of clusters

is identified, PCA approach is used to rotate the raw RSS to independent principal

components in each determined cluster. Since the RSS values in each cluster are similar,

the application of PCA can retain accuracy by not losing the substantial RSS correlations

in each cluster, but also the PCA accommodates the different RSS distributions in each

cluster. This allows building RSS distribution models within each cluster to support

further positioning. This chapter concentrates on how to model the transformed RSS

distributions in each cluster and how to estimate a user’s location by finding the most

likely intersection area of more than three BSs circles in geographical spaces. The detail

of the Intersection after Principal Component Analysis (PCA-Intersection) method is

described in section 5.2. Then in section 5.3, the proposed method is compared with

the KNN method using three forms of partitioning, viz. the whole area (a.k.a global

partitioning or no partitioning), cluster partitioning and grid partitioning to evaluate the

81



5. Deterministic Estimation with Clustering

positioning performance based on the simulated and real data sets discussed in chapter

4. Additionally, the reasons for using deviation RSS data and the Mahalanobis distance

function are analysed in section 5.4 and section 5.5 respectively. Section 5.6 concludes

this chapter.

5.2 Intersection after Principal Component Analysis Method

5.2.1 Training Phase

In chapter 4 section 4.5, the transformed training data R
′
i in each cluster Ci can be

obtained. After getting the R
′
i, the propagation model in each cluster Ci is built in order

to estimate the distance of a new MS. Let suppose there are ni MSs in the cluster Ci.

Here the transformed RSS data is used to describe the “distance” between the BS b and

the MS j (the j-th transformed training data in R
′
i with the following function:

d(r
′
j,b) = 10(PTR−r

′
j,b)/10αb (5.1)

Where r
′
j,b is the transformed signal power from BS b to MS j and PTR is the value

of the transmission power and in the experiments, which is given a default value of 48

dBm for an outdoor GSM environment. The parameter αb for BS b can be chosen to

minimize the sum of the squared errors
∑ni

j=1(dj,b − d(r
′
j,b))

2 where dj,b is the distance

calculated from the already known locations of BS b and MS j from the training data.

5.2.2 Online Location Estimation Phase

In this phase, the location of a new MS is estimated. Suppose that for a new MS m the

observed RSS tuple from q neighbouring BSs is r⃗m=(rm,1, rm,2, ..., rm,q). The detailed

process of its location estimation is shown below:
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Figure 5.1: RSS distribution models built for one cluster

Step 1: Use the VPM based on KNN to calculate the probability of MS m belonging

to each cluster, and then assign the cluster ID with the highest probability to MS m.

Call this cluster Ci.

Step 2: Transform the observed RSS tuple of MS m into the new basis of cluster Ci

with its PC coefficients Ai. Thus getting r⃗ ′
m=AT

i · (r⃗m − R̄i), and r⃗ ′
m, and r⃗ ′

m can also

be represented as (r⃗ ′
m,1, r⃗

′
m,2, ..., r⃗

′
m,q).

Step 3: Based on the function (5.1) and the optimized parameter αb for each BS,

the “distance” between each BS to MS m can be estimated as d̂m,b(1 ≤ b ≤ q), as shown

in Figure 5.1. (Here q = 3).

Step 4: Calculate the distance in signal space between r⃗ ′
m and all the transformed

training data set in cluster Ci. Then KNN algorithm is used to find MS m’s K near-

est neighbours. These neighbours are listed as {p1, ..., pk, ..., pK}, which is arranged in

descending order of signal distance. In order to estimate of the precision for each calcu-

lated distance, a distance range is computed with respect to each BS, viz. δm,b for BS

b. It is important to calculate the confidence level of the distance band. To do this, MS

m’s K neighbours’ individual deviations from the distances from the centroid of the K
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neighbours in this cluster are calculated, this is given by:

δk,b =
√∣∣dpk,b − dp,b

∣∣ (5.2)

Here dpk,b is the distance calculated from the already known locations of BS b and

MS pk. dp,b is the centroid of the K nearest neighbours in training data points from

cluster Ci and it is defined as:

dp,b =

K∑
k=1

dpk,b/K (5.3)

Then the weighted mean and standard deviation of the deviations δp,b are calculated.

Let µ be the mean value of the deviations, and σ the standard deviation of the devia-

tions. Since the RSS distribution is skew in the real environment, the confidence interval

derived from the normal distribution cannot be used in this case. Therefore, a two sided

confidence interval can be created by applying Chebyshev’s inequality [89], which can

provide a lower bound for how much probability mass lies outside a the chosen confi-

dence range. As such, the two-sided confidence level of the distance band interval can

be obtained by:

P (|δp,b − µ ≥ λσ|) ≤ 1

λ2
(5.4)

On the right hand side of (5.4), the value of 1
λ2 is set to be 0.01, which means that

whatever the distribution is, there is always at least 99% of the probability of being

inside the distance band interval. The value of the upper bound of the band width as

the uncertainly band, δm,b is now chosen. Thus, the possible distance dm,b between MS
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m and BS b is given by:

dm,b ∈
[
d̂m,b − δm,b, d̂m,b + δm,b

]
(5.5)

Step 5: At this step, the aim is to find out which one of the intersection areas MS

m is most likely to be located in. Different intersection areas are generated by different

patterns of distance bands of at least two BSs. This is illustrated in Figure 5.2 that, for

simplicity, only shows three BSs. A similar idea to [90] is adopted for the search. Since

the distribution of training data points is quite variable, the search strategy considers

the two cases below.

A

B
C

D

E

  
 

G
F

Nearest neighbouring MSsBS 3

BS 2

BS 1

Nearest neighbourin

Figure 5.2: Uncertainty area of location estimation

1. The intersection area that has the most number of nearest neighbours is selected.

For example, there are 5 nearest neighbours of MSm in Figure 5.2. The intersection

area ABCDEA has three neighbours and the area AEFGA has two, so the most

likely intersection area for MS m is taken to be ABCDEA.

2. If more than one intersection area has the same greatest number of nearest neigh-

bours (including the case where none of the intersection areas contains even one

of these neighbours), choose the area that contains the neighbour points with the
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smallest sum of distance in signal strength between the neighbour’s RSS values

and the MS m’s RSS values.

Step 6: Collect all the training data points in cluster Ci that are located on the

most possible intersection area, and use the WKNN method to compute MS m’s loca-

tion. Assume there are K
′
qualified training data points, and (r⃗ ′

1, ..., r⃗
′
i, ..., r⃗

′
K

′ ) and

(l1, ..., li, ..., lK′ ) denote their RSS sets and locations respectively. The location of MS

m is estimated by l̂m =
∑K′

i=1wili. The wi is a normalized weight for each training

data point and is given as: wi=
1

∥r⃗ ′
i−r⃗ ′

m∥·
∑K′

i=1
1

∥r⃗ ′
i
−r⃗ ′

m∥
. Figure 5.3 provides a sample to

display how the method above process with a real training data set.
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Figure 5.3: A sample of the uncertainty area

5.3 Performance Evaluation

In this section, the localisation accuracy is tested with four different sets of data. In all

cases, the MS were stationary or walking. Three forms of partitioning are considered,

viz. the whole area (a.k.a global partitioning or no partitioning), cluster partitioning
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and grid partitioning. For the sake of comparison, the number of grid elements is made

to correspond to the number of clusters generated. To better compare the performance

between the proposed method and the traditional KNN method, in the experiments

for each test-bed, the data points are randomly divided into two equal sets. The first

half is treated as training data points and their location coordinates are assumed to

be known. The other half is used for location estimation with only the RSS values,

with their location information (e.g. GPS values) subsequently used for validation. The

collected GPS data is assumed accurate in this thesis, so it is used as a reference. All

the estimated locations using different algorithms are compared with the reference GPS

data to calculate the root mean square errors (RMSE). Therefore, the algorithm which

gave the estimation with the minimal RMSE is considered as “good”.

5.3.1 Location Results with Simulated Data Sets

5.3.1.1 Outdoor Scenario 1: A Simple Simulated Urban Propagation Model

Figure 5.4 depicts the cumulative distribution function (CDF) of the error distance of

the KNN and PCA-Intersection algorithms based on global, grid and cluster models. Al-

though the propagation model in outdoor scenario 1 is established based on grid elements,

the results show that the cluster-based positioning methods provide a slightly better ac-

curacy than the grid-based positioning methods and no partitioning-based positioning

methods. In addition, Table 5.1 summarizes the information in terms of the mean, 50th,

75th and 90th percentile values of the error distance for these two algorithms based on

the three models. For example, 90th percentile of the distance errors using cluster-based

PCA-Intersection method is within 219.6 m whereas the method based on grid model

and global model report 299.9 m and 440.2 m respectively. For PCA-Intersection algo-

rithm, cluster-based leads to improvements of 23.4 m over using grid model. It indicates

that using clustering scheme can give good support for the appropriate estimation of the

mobile users’ locations even with a grid-based propagation model.
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Figure 5.4: Cumulative percentile of error for KNN and PCA-Intersection algorithms
based on different partitioning models in outdoor scenario 1: a simple simulated urban
propagation model.

Table 5.1: Comparison of Estimation Error between KNN and PCA-Intersection Meth-
ods based on Global, Grid and Cluster Models in Outdoor Scenario 1 (in meters)

Outdoor Scenario 1:

A Simple Simulated Urban Propagation Model

KNN PCA-Intersection

Global Grid Cluster Global Grid Cluster

Mean Error 252.2 148.3 114.7 216.4 137.4 114.0

50 Percentile 201.2 86.2 70.1 166.0 94.1 85.9

75 Percentile 316.8 211.9 156.1 267.6 182.0 133.8

90 Percentile 463.1 364.7 282.0 440.2 299.9 219.6

5.3.1.2 Outdoor Scenario 2: The Island of Jersey

As shown in Figure 5.5, the proposed algorithm also outperforms the KNN algorithm

by using a cluster model with a suitable number of clusters. Similarly, as illustrated in

Table 5.2, it can be observed that for the proposed algorithm (Cluster-PCA-Intersection),

90th percentile of the distance errors is within 26.8 m, whereas Cluster-KNN method

88



5. Deterministic Estimation with Clustering

0 50 100 150 200 250 300 350 400 450 500500
0

0.2

0.4

0.6

0.8

1

Location Error [m]

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

Global−KNN
Grid−KNN
Cluster−KNN
Global−PCA−Intersection
Grid−PCA−Intersection
Cluster−PCA−Intersection

Figure 5.5: Cumulative percentile of error for KNN and PCA-Intersection algorithms
based on different partitioning models in outdoor scenario 2: the island of Jersey area.

Table 5.2: Comparison of Estimation Error between KNN and PCA-Intersection Meth-
ods based on Global, Grid and Cluster Models in Outdoor Scenario 2 (in meters)

Outdoor Scenario 2:

The Island of Jersey area

KNN PCA-Intersection

Global Grid Cluster Global Grid Cluster

Mean Error 95.9 19.6 13.4 45.5 17.6 11.2

50 Percentile 76.5 12.0 6.75 7.8 8.0 6.1

75 Percentile 108.0 29.5 13.7 49.7 19.2 11.8

90 Percentile 204.4 45.2 31.2 146.3 44.6 26.8

report 31.2 m to reach the same cumulative probability. Likewise, in the grid model, the

PCA-Intersection algorithm achieves a little better positioning accuracy than the KNN

algorithm. 90th percentile of the positioning errors for Grid-PCA-Intersection is with

44.6 m, which is similar to (slightly better than) the result of Grid-KNN algorithm in

the rural environment. It can be seen from the results from this scenario, the positioning

accuracy performances of the two algorithms in terms of cluster model are quite similar
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to those in terms of grid model in the rural propagation environment.

In summary, given the accuracy of location estimation and the complexity of the

model it seems feasible to adopt the algorithms proposed in this chapter to estimate

location based on the clustering scheme that can have a mapping to the topography

meaningful in a large area.

5.3.2 Location Results with Real Data Sets

5.3.2.1 Outdoor Scenario 3: Queen Mary campus

Figure 5.6 and Table 5.3 show the CDF of the error distance and the position error using

the PCA-Intersection and KNN based on global model, grid model and cluster model

respectively. The PCA-Intersection and KNN based on the cluster model outperforms

these two methods based on the other two models. In particular, for the cluster-based

PCA-Intersection approach, 50th percentile of the distance errors is within 29.4 m, and

the distance measurement error is around 75.6 m in mean value.
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Figure 5.6: Cumulative percentile of error for KNN and PCA-Intersection based on
different partitioning models in outdoor scenario 3: Queen Mary campus.
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Table 5.3: Comparison of Estimation Error between KNN and PCA-Intersection Meth-
ods based on Global, Grid and Cluster Models in Outdoor Scenario 3 (in meters)

Outdoor Scenario 3:

Queen Mary Campus

KNN PCA-Intersection

Global Grid Cluster Global Grid Cluster

Mean Error 131.4 107.9 95.0 119.1 99.2 75.6

50 Percentile 98.4 76.3 46.0 83.1 49.5 29.4

75 Percentile 172.4 142.9 123.6 156.4 130.6 106.3

90 Percentile 275.6 237.6 244.1 262.4 251.9 216.9

Unlike the rural environment in outdoor scenario 2, the signal in complex suburban

environment undergoes additional attenuation and fluctuates rapidly due to many ob-

structions i.e. high buildings. The clustering scheme uses deviation signal strengths to

partition the environment into consistent geographic regions which are more homoge-

nously covered by the radio signal. The intention is to better model a realistic complex

environment than with a grid model. These results not only indicate that the cluster

based positioning methods outperform grid based methods in the complex outside area,

but also the proposed intersection method can provide relatively high location estima-

tion accuracy with only a small amount of training data points in a small area. Since

the ground truth is taken as the GPS data and it has inaccuracies, the variance is an

overestimate.

5.3.2.2 Outdoor Scenario 4: Music Festival in London Victoria Park

In the Day 1 data set, 1048 test points were randomly selected as training data points

and the remaining test points used as testing data set. The same size of training data set

is used in each method. Similarly, as illustrate in Figure 5.7, the results again indicate

that the proposed method (using clustering) provides greater positioning accuracy in

the suburban environment. In Table 5.4, it can be observed that for the Cluster-PCA-

Intersection algorithm, 50th percentile of the distance errors is within 48.6 m, whereas
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Figure 5.7: Cumulative percentile of error for different algorithms based on different
partitioning models in outdoor scenario 4: Music Festival in London Victoria Park on
Day 1.

Table 5.4: Comparison of Estimation Error between KNN and PCA-Intersection Meth-
ods based on Global, Grid and Cluster Models in Outdoor Scenario 4 (in meters)

Outdoor Scenario 4:

Music Festival in London Victoria Park

KNN PCA-Intersection

Global Grid Cluster Global Grid Cluster

Mean Error 168.7 122.1 119.0 143.7 108.2 93.6

50 Percentile 141.9 99.4 79.6 109.0 71.7 48.6

75 Percentile 221.7 165.6 164.2 193.1 154.0 131.4

90 Percentile 337.9 248.6 278.7 323.2 261.0 240.3

the Cluster-KNN method reports 79.6 m to reach the same cumulative error probabil-

ity. Likewise, for the grid partitioning, the intersection method also achieves a higher

positioning accuracy than the KNN method. The mean value of positioning error for

Grid-PCA-Intersection is within 108.2 m, which is a little broader than the result for

the Cluster-PCA-Intersection method in the suburban environment. From the results in
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this scenario, it can be seen that the positioning accuracy performance of the two algo-

rithms for cluster partitioning follow the same pattern to the grid model in the suburban

propagation environment.

5.4 RSS deviations from path loss versus raw RSS

Using the deviations helps in two ways:

(a) Clusters generated by the deviations data are a better reflection of the topography.

For the island of Jersey data, Figure 5.8 depicts the comparisons of clustering distribution

between using the raw RSS and deviation RSS when the same number of clusters is

created. It can be seen that using the deviation RSS has achieved significant better result

than raw RSS. Using the raw RSS leads to clusters where the similarity is dominated by

the distance path loss when near a BS and this is approximated anyway by the estimated

path loss model. The evidence for this is observed in Figure 5.8 (a) (especially for the

black circle area) when the raw RSS was used. For example, if the world were uniform,

then ring segments are generated. This would simply reflect the decay with distance

rather than topography. On the other hand, Figure 5.8 (b) illustrates that when using

(a) Clustering based on raw RSS (b) Clustering based on deviation RSS

Figure 5.8: The comparisons of clustering results between using the raw RSS and devi-
ation RSS in the island of Jersey data
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Figure 5.9: Location estimation results based on raw RSS and deviation RSS clustering
scheme in Queen Mary data by using PCA-Intersection approach

the deviations the mapping of the clusters onto the geographical locations shows more

scatter and reflects the terrain better than if the clustering was performed on the raw

data in Figure 5.8 (a).

(b) The location estimation is more accurate on all the data sets when using the

deviations, e.g. Figure 5.9 shows an example of the CDF of the error distance for

Intersection method based on both data sets in the Queen Mary Scenario, under the

premise that the same number of clusters is created. For the Intersection method the

mean values of the distance error based on deviations is 75.6 m, whereas based on the

raw RSS data the mean is 181.0 m. The invariance of the clusters to transmit powers

using the deviations was illustrated in outdoor scenario 1 in chapter 4 section 4.6.1.1.

5.5 Mahalanobis’s Distance versus Euclidean Distance

The correlation between signal strength is very common in a real environment, which has

an impact on the estimation accuracy. For clustering, using the Mahalanobis distance
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Figure 5.10: Cumulative percentile of error for cluster-based approach using Mahalanobis
distance and Euclidean distance for the Queen Mary campus data

function to calculate the RSS similarity between any two MSs from different transmitters

can correct for the high correlation between signal strength from different transmitters

and automatically account for the scaling of the coordinate axes. Figure 5.10 compares

the CDF of the error distance for the proposed probabilistic method based on both

data sets in the Queen Mary Scenario, under the premise that the same number of

clusters is created. It can be observed that the proposed method based on clustering

using Mahalanobis distance function significantly outperforms that based on clustering

using Euclidean distance. More specifically, for the proposed method the mean values

of the distance error based on Mahalanobis distance function is 75.6 m, whereas based

on the Euclidean distance function the mean is 140.8 m. This result indicates that the

Mahalanobis distance could be used as a better alternative to the Euclidean distance

to determine the location in positioning systems. The improvement provided by the

Mahalanobis distance lies in its use of the covariance matrix to adjust the distance

metric. The Euclidean distance essentially treats all the data points equally. Two highly

correlated RSS values, for example are given too much weight. The Mahalanobis function

corrects for this.
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5.6 Summary

An improved intersection localisation method to outdoor fingerprint location estimation

based on clustering RSS from BSs has been presented in this chapter. Four different

scenarios (rural, urban, and suburban) have been considered in order to evaluate the

performance of the proposed approach. Results presented show the proposed scheme

finds more accurate locations and outperforms the KNN approaches for all numbers of

NNs tested based on global model, cluster model and grid model in the four test-beds.

It is also shown that the difference between clustering and the more conventional grid

partitioning is important in urban environments, as in these more complex environments

the regular partitioning of grids leads to higher variability in the accuracies obtained.

Moreover, the experimental results also showed that the clustering scheme created by

using deviations in RSS from the estimated path loss gives a better reflection of the

topography and this clustering based on Mahalanobis distance is seen to provide better

accuracy than that based on the Euclidean distance in a complex environment.

The following chapter will focus on calculating mobile users’ locations by using a

probabilistic algorithm based on the proposed clustering scheme.
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Chapter 6

Probabilistic Estimation with

Clustering

6.1 Introduction

In this chapter, the main focus is on the use of probabilistic models for location estima-

tion. Section 6.2 introduces an overview of the probability framework and points out

the estimation problem by using probability techniques in previous works. The general

concept of the Kernel Density Estimation (KDE) technique is described in section 6.3.

Section 6.4 proposes a novel estimator derived through KDE technique by using Principle

Component Analysis (PCA) to transform highly correlated RSS values into uncorrelated

adjusted RSS values. In section 6.5, the proposed PCA-KDE technique is compared

with the common existing KDE method and performance are evaluated based on the

simulated and real data sets discussed in chapter 4. Finally, section 6.5 concludes of this

chapter.
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6.2 Probabilistic Framework

The main idea of the probabilistic framework is to calculate the conditional probability

density function (pdf) P (li|r), i = 1, ..., l (posterior) given the observed RSS fingerprint

r during positioning, which can be done by using Bayes’ Theorem:

P (li|r) =
P (r|li)P (li)

P (r)
=

P (r|li)P (li)∑
li∈L P (r|li)P (li)

(6.1)

Where the function P (r|li) is the likelihood function of the given RSS measurement

r = r, P (li) is the prior probability of being at location li before knowing the value of

the observed RSS and P (r) is the normalizing constant. Usually, the prior density P (li)

is assumed to be uniform distribution, thus the problem is to calculate P (r|li), though

knowledge of hotspot clusters in an area would allow non uniform priors.

In previous indoor literatures, most of them assume the RSS measurements from APs

are independent. If there are n transmitters, e.g. APs or BSs, the value of P (r|li) can

be computed as:

P (r|li) =
n∏

ρ=1

P (rρ|li) (6.2)

Here n is the number of transmitters that are used to form the RSS tuple. The

probability P (rρ|li) can be obtained by calculating the pdf of the RSS measurements

from the ρ-th transmitter at each of the training locations li. This can be estimated

from the training data set in the training phase. The information about the PDFs of the

RSS training data points are retained in approximating functions, e.g. in in the form

of histograms or as a kernel function. In this thesis, the kernel functions are considered

and more detail is given in the next section. Finally, the use of the Maximum Likelihood

(ML) estimator, Maximum A Posteriori (MAP) estimator and Minimum Mean Square

Error (MMSE) estimators is to calculate the location of a desired MS, as illustrated in

Table 6.1, are described. If the prior distribution is uniform, the MAP estimate is the
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same as the ML estimate.

Table 6.1: Different Positioning Variants

Name Function

Maximum Likelihood (ML) l̂ = agrmaxliP (r|li)

Maximum A Posteriori (MAP) l̂ = agrmaxliP (r|li)P (li)

Minimum Mean Square Error (MMSE) l̂ = E(l|r) =
∑L

i=1 liP (li|r)

6.3 Introduction of Kernel Method

The kernel density estimator (KDE) can be also called a Parzen Window estimator [91].

It is an alternative to the histogram for nonparametric density estimation. Compared

to the histogram, the KDE uses a smooth and continuous function for building blocks

for bins, and also enjoys superior theoretical properties such as integrated variance [3].

Intuitively, the KDE is the superposition of “bumps” centred at each training data point

[91]. The shapes of these “bumps” are determined by a kernel function K(·), depicted

in Figure 6.1. The kernel function is a non-negative function satisfying the following

conditions: ∫
K(r)dr = 1 (6.3)

K(r) = K(−r) (6.4)

Hence, the kernel estimator with kernel K(·) is defined by [91]

f(r) =
1

nδ

n∑
i=1

K(
r − ri
δ

) (6.5)

Here n is the number of data points. δ is the window width, also called the smooth-

ing parameter or bandwidth. The window width greatly affects the resulting density
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Figure 6.1: Kernel density estimate as a sum of bumps 5

estimate. The quality of a density estimate is now widely recognized to be primarily

determined by the choice of the smoothing parameter δ, and only in a minor way by the

choice of kernel function.

6.3.1 Kernel Function

Different kernel functions generate different shapes of the estimated density. Table 6.2

lists four examples of kernel functions. Since the Gaussian kernel performs effectively in

previous indoor positioning applications, it is also used here. In [3], the authors compare

the influence of the kernel function in Table 6.2 in the final estimates, and suggest that

the shape of the kernel does not lead to drastic changes in the accuracy of the estimate.

5This figure is made by Ricardo Gutierrez-Osuna, Wright State University, and the parameter h is
the window width.
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Table 6.2: Kernel Functions [3]

Kernel Functions

Triangle K(r) = 1− |r|, |r| ≤ 1

Epanechnikov K(r) = 3
4(1− r2), |r| ≤ 1

Quartic K(r) = 15
16(1− r2)2, |r| ≤ 1

Gaussian K(r) = 1√
2π
exp(−1

2r
2)

6.3.2 Kernel Bandwidth

Choosing a good bandwidth is crucial in density estimation. Choose too large bandwidth,

the kernel function cannot reflect the exact density distribution as some important in-

formation might be neglected as the spread smoothes over important features of the

overall density function. If the bandwidth is too small, meaningful information may suf-

fer significant statistical fluctuation because of the paucity of samples in each bandwidth.

Figure 6.2 presents examples of Kernel densities with various bandwidths chosen, and

illustrates how increasing of the bandwidth can simplify the Kernel densities and level

out minor variations.

In fact, a number of alternative measures exist to estimate bandwidth δ and can

be found in [3]. The appropriate choice for the value of δ is data-dependent and also

depends on how the density estimates are to be used. In this thesis, the optimal δ is

obtained by minimizing the asymptotic mean integrated square error (AMISE) between

the estimated and true densities [3], which is given by

δ = { 4

n(2d+ 1)
}1/(d+4)σ (6.6)

Here d is the dimension of the RSS vector and σ2 = 1
d

∑d
k=1 σ

2
k is the average marginal
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Figure 6.2: Kernel density estimator with different bandwidths using Queen Mary data
set

variance in each dimension.

6.4 Constructing Kernel Density Estimator after Principle

Component Analysis

6.4.1 Training Phase

After the RSS transformation process as described in chapter 4 section 4.5, the proba-

bility density estimate is calculated for each of the independent axes in the transformed

training RSS samples t⃗
′
b, t⃗

′
b ∈ R

′
i from the BS b in location l (l ∈ Li). Here the Gaussian

KDE method is utilized as shown in (6.7):

P (r
′
j,b|l = li,j) =

1

ni

ni∑
u=1

1√
2πΨb

exp

(
−

(r
′
j,b − r

′
u,b)

2

2Ψ2
b

)
(6.7)

Ψb is the smoothing parameter that determines the width of the kernel. The value of
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Ψb is not only data-dependent but also depends on how the density estimates are used.

Here the optimal Ψb is obtained according to (6.6).

6.4.2 Online Localisation Phase

At run time: Given a new MS m with observed RSS tuple r⃗m from q BSs, the process

of estimation of MS m’s location (l̂m) is as follows:

Step 1 and 2: These are the same steps as the Intersection method. Predict the

estimated cluster ID for the new MS m and then transform its RSS tuple into PCs from

(4.16), Here r⃗ ′
m=AT

i ·(r⃗m−R̄i) and r⃗ ′
m=(r

′
m,1,r

′
m,2, ...,r

′
m,q).

Step 3: Estimate the probability of r⃗ ′
m over all possible training location values in

cluster Ci. The posterior probability density function of the location l is given by Bayes’

Theorem:

P (lij |r= r⃗ ′
m)=

P (r= r⃗ ′
m | lij)P (lij)∑

lij∈Li
P (r = r⃗ ′

m | lij)P (lij)
(6.8)

Since the only aim is to select the most probable location rather than compute the

actual probability, the denominator can be ignored as it is the same for all the possible

locations lij (lij ∈ Li) in the training samples within cluster Ci. Here other factors, such

as relative traffic densities, are not taken into consideration (though they could be) and

the prior density P (lij) is regarded to be uniform in the cluster.

Estimating P (r= r⃗ ′
m|lij) requires calculating the frequency of r⃗ ′

m for every possible

location l. In the training step, the kernel probability distributions for each dimension for

each training location in each cluster has been built. Therefore, the probability of r⃗ ′
m at

every possible location lij can be obtained, as the product of the conditional probability

density function (from the kernel function) of each dimension:

P (r= r⃗ ′
m | lij)=

q∏
b=1

P (rb=r
′
m,b | lij) (6.9)
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This also can be considered as a weight of r⃗ ′
m at the location lij . For the subsequent

location estimation of MS m it is important to normalize all the weights. Let wm,lij be

the normalized weight of MS m at the location lij , so wm,lij =
P (r=r⃗ ′

m|lij)∑ni
j=1 P (r=r⃗ ′

m|lij)
. Thus,

the estimated location of MS m is l̂m=
∑ni

j=1wm,lij lij .

6.5 Experimental Results

6.5.1 The Comparisons of Different Partitioning Models

In this section, the proposed method is compared with the traditional KDE method

by using the data set from the simulated and real environments discussed in chapter 4.

Similarly, every method is tested by using different partitioning models (global-, grid-

and cluster-) and the number of generated grid elements is equal to the number of cluster

created. In the experiments for each test-bed, the data points are randomly divided into

two equal sets. The first half is treated as the training data set and their location

coordinates are assumed known. The other half is used for location estimation with only

the RSS values, with their location information (e.g. GPS values) subsequently used for

validation.

6.5.1.1 Location Results with Simulated Data Sets

Using the simulated data set in outdoor scenario 1 and outdoor scenario 2 in chapter 4,

the proposed method is compared against the original KDE approaches based on global,

cluster and grid partitioning models. The positioning error information between these

two methods based on different models are illustrated in Table 6.3 and the CDFs of the

error distance of them are shown in Figure 6.3. As previously described, the propagation

model of outdoor scenario 1 is built based on uniform grid elements. It seems reasonable

that approaches based on a grid model would provide similar or slightly better posi-

tioning results than these methods based on a cluster model. The simulation results
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(a) Outdoor Scenario 1: A Simple Simulated Urban Propagation Model
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(b) Outdoor Scenario 2: The Island of Jersey area

Figure 6.3: Cumulative percentile of error for KDE and PCA-KDE based on different
partitioning models in simulated environments: (a) A Simple Simulated Urban Propa-
gation Model; (b) The Island of Jersey area
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Table 6.3: Comparison of Estimation Error between KDE and PCA-KDE Methods based
on Global, Grid and Cluster Models in Outdoor Scenario 1 and 2 (in meters)

Outdoor Scenario 1:

A Simple Simulated Urban Propagation Model

KDE PCA-KDE

Global Grid Cluster Global Grid Cluster

Mean Error 360.8 204.2 194.1 323.2 177.4 159.8

50 Percentile 323.3 137.6 154.9 286.3 117.9 100.7

75 Percentile 526.6 296.8 286.6 477.7 252.8 225.5

90 Percentile 668.0 447.7 416.3 644.3 436.0 400.5

Outdoor Scenario 2:

The Island of Jersey area

KDE PCA-KDE

Global Grid Cluster Global Grid Cluster

Mean Error 202.6 62.7 60.7 183.2 43.4 41.8

50 Percentile 191.6 57.4 55.0 170.4 40.7 39.5

75 Percentile 265.8 81.7 79.0 246.9 54.3 53.6

90 Percentile 361.1 105.4 104.3 333.0 70.0 65.7

show that the PCA-KDE method outperforms the original KDE method to calculate

estimated location information, no matter which one of partitioning models it is applied

to. In terms of mean square error, Cluster-based PCA-KDE, Grid-based PCA-KDE and

Global-based PCA-KDE methods report values of the distance errors that are within

159.8 m, 177.4 m and 323.2 m respectively, whereas the original KDE method based on

clustering scheme, grid model and global model are within 194.1 m, 204.2 m and 360.8

m respectively. Likewise, in the simulations results from the data collected from the

network planning tool in the rural environment, PCA-KDE methods can achieve signif-

icant improvement in both partition models. In particular, the 50th percentile of the

distance estimation errors when using Cluster-based PCA-KDE is around 39.5 m, by us-

ing Grid-based PCA-KDE are around 57.4 m. Although the data set from the simulated

propagation model and network planning tool seems too simplified without considering

the complex environmental factors and fading factors, it also can be concluded that using
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PCA to reduce the correlation between signal strength before using probability methods

to build RSS distribution model for positioning are better than directly using probability

methods by assuming signal strength independently. In the orthogonal space generated

by the construction of the principal components the simple multiplication to compute

the joint probability is valid, whereas in the non-transformed space it is not.

6.5.1.2 Location Results with Real Data Sets

Figure 6.4 and Table 6.4 illustrate the comparison results using the real data sets from

the two different outside environments. For the data set from Queen Mary campus (see

Figure 6.4 (a)), it is obvious seen that KDE and PCA-KDE methods based on cluster

model outperform these two methods based on grid model and global model. More

specifically, for the cluster-based PCA-KDE method, the mean values of the distance

errors are within 85.5 m, and KDE method based on clustering scheme reports 128.1 m

in mean value. What’s more, the 50th percentile of the distance estimation errors when

using Cluster-based PCA-KDE is around 66.4 m. Likewise, for the Music Festival in

Victoria Park, the PCA-KDE based on the cluster model also performs slightly better

than the result of the other three methods. Unlike outdoor scenario 3, it can be seen that

the positioning accuracy performance of the two algorithms with respect to partitioning

model, the cluster model is quite similar to the grid model. This is primarily because

of the few BSs located nearby. In summary, applying PCA into KDE algorithm can

improve the estimation accuracy in the real outdoor environments tested.
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(a) Outdoor Scenario 3: Queen Mary campus
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(b) Outdoor Scenario 4: Music Festival in London Victoria Park

Figure 6.4: Cumulative percentile of error for KDE and PCA-KDE based on different
partitioning models in simulated environments: (a) A Simple Simulated Urban Propa-
gation Model; (b) Music Festival in London Victoria Park
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Table 6.4: Comparison of Estimation Error between KDE and PCA-KDE Methods based
on Global, Grid and Cluster Models in Outdoor Scenario 3 and 4 (in meters)

Outdoor Scenario 3:

Queen Mary campus

KDE PCA-KDE

Global Grid Cluster Global Grid Cluster

Mean Error 210.8 128.1 112.0 173.9 113.7 85.5

50 Percentile 191.8 80.0 90.3 156.5 72.7 66.4

75 Percentile 249.3 160.7 130.8 204.9 130.8 89.6

90 Percentile 322.8 273.2 189.5 271.7 255.1 141.5

Outdoor Scenario 4:

Music Festival in London Victoria Park

KDE PCA-KDE

Global Grid Cluster Global Grid Cluster

Mean Error 243.1 118.1 108.0 198.0 95.9 76.1

50 Percentile 222.0 86.0 59.9 171.7 69.0 46.3

75 Percentile 308.6 155.8 147.7 258.2 124.0 103.2

90 Percentile 396.0 264.8 263.9 344.2 203.6 180.0

6.5.2 Augmenting PCA to Improve Accuracy

Three different algorithms, viz. Intersection, KDE and KNN, each with and without

the use of PCA, are used to evaluate the benefits of PCA in a real environment. For

KNN, the constant K is set as 3 in this experiment. Figure 6.5 depicts the CDF of the

error distance for the KNN, Intersection and KDE algorithms with and without PCA

in both Queen Mary campus data set and the first day data set in London Victoria

Music Festival. In comparison, the figure clearly shows that the proposed approaches

outperform the traditional approaches. More specifically, for Queen Mary campus (see

Figure 6.5 (a)), using the clustering scheme, the percentiles within 50 meters for the

original KNN, Intersection, and KDE methods are 49.9%, 54.1%, and 40.9%, whereas

for the PCA-KNN, PCA-Intersection and PCA-KDE report 59.6%, 68.0%, and 67.6%
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(a) Queen Mary campus
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(b) Music Festival in London Victoria Park

Figure 6.5: Cumulative percentile of error for different algorithms with or without PCA
in real environments: (a) Queen Mary campus; (b) Music Festival in London Victoria
Park
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respectively. Hence, it can conclude that using PCA to map the independent axes space

performs much better than the original RSS space in a city environment. In addition,

as mentioned before, PCA is applied in each cluster. The subsequent application of

PCA gives further data reduction (e.g. to 2 or 3 or 4 depending on the cluster) and

importantly gives orthogonal axes to support efficient joint probability density function

estimation. The transformation matrices are also very different between clusters. Table

6.5 illustrates some of the samples of transformation matrices in different clusters in

Queen Mary campus scenario.

Table 6.5: Transformation Matrices in Different Clusters in Queen Mary Campus Sce-
nario

Cluster ID Transformation Matrices

Cluster 2


0.5021 −0.5223 0.4207 −0.5459

−0.5619 −0.4225 −0.5043 −0.5014

−0.5257 0.4139 0.6304 −0.3937

0.3946 0.6143 −0.4138 −0.5437


Cluster 5


0.6773 −0.2240 0.7008

−0.2653 −0.9628 0.0513

0.6862 0.1512 −0.7115


Cluster 10

[
−0.7168 −0.6973

−0.6973 0.7168

]

Unlike the city environment in Queen Mary Campus scenario, in the park there are

few obstacles, such as high buildings for radio reflections, and the RSS is more closely

related to distance. Correlations from different BSs are observed to be lower than that

in the city campus environment. Also in a rural area, the BSs are sparse and the RSS

values are relatively low. Thus, fewer clusters are needed, and greater estimation errors

are reported and the difference between the positioning accuracy of the methods is less.
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6.5.3 Reduction in Training Samples Required for Specified Accuracy
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Figure 6.6: Percentile of errors within 50 meters versus the number of training samples

in outdoor scenario: Queen Mary campus

The training phase consists of collecting training samples for the radio map. In the

proposed method used in the test-beds, the location estimation accuracy does not depend

on the size of the area of the interest, but depends on the number of training tuples

collected during the training phase: the smaller the number of training data points, the

lower the positioning accuracy that is obtained, but the less time the training period

takes. A larger number of training data points leads to higher accuracy of location

estimation but requires more time for the training procedure. However, the accuracy

does not improve in strict proportion to the training sample size and reaches a limit that

depends on the algorithm and of course the intrinsic variability associated with the use

of RSS. This is why it is useful to have a method that is efficient in its use of the sample

data points. Figure 6.6 reports the impact of the number of training samples taken

from the Queen Mary campus environment with respect to the estimation accuracy. As

seen from Figure 6.6, when only taking 1000 samples, the PCA-Intersection algorithm
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already outperforms the other methods, even when these methods use 9000 samples.

From Figure 6.6, given a required median accuracy the sample size needs to be chosen to

correspond to the Queen Mary campus environment. The results clearly show that the

size of the training sample set can be greatly reduced with the integration of PCA into

the preferred algorithm for the Queen Mary campus scenario. This can be explained by

the ability of PCA to compress more information into fewer dimensions and remove the

high correlation between RSSs from different BSs. The extracted PCs provide sufficient

information for the model learning, and thus fewer training samples are required in the

location system. It can be concluded that applying PCA in the different methods can

result in a reduction of costs of site survey and data collection in the specific scenarios

considered in this thesis.

6.6 Summary

An improved Kernel Density Estimator method for outdoor fingerprint localisation based

on clustering deviation RSS from BSs has been presented in this chapter. Considering

the correlation relationship between signal strength, the proposed method applies PCA

to obtain a transformed signal strength tuple, so that any two of them are independent.

Four different specific scenarios (rural, urban and suburban) have been considered in

order to validate the performance of the proposed approach. The comparison results

presented show the proposed scheme finds more accurate locations and outperforms the

original KDE approach whether based on cluster partitioning or grid partitioning or no

partitioning for the specific use cases. Furthermore, in these specific user cases, the

results also indicated that applying PCA in Intersection, KDE and traditional KNN

algorithms can reduce the computation burden and storage and improve the positioning

accuracy. Moreover, fewer training sample were needed in the proposed algorithms when

compared to traditional methods in the specific scenarios.
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Chapter 7

Outdoor Location Estimation in

Changeable Environments

7.1 Introduction

Most previous work assumes the radio map is static. During the training phase, after

generating the radio map, location estimation models are built between the RSS and

their corresponding location information. Once the models are learnt, they are applied

with the radio map for further location estimation without making any adaptation to the

new RSS measurements. However, in a changeable environment the observed RSS mea-

surement may significantly deviate from those stored in the radio map due to the changes

in humidity, temperature, physical environment, chip set, antenna and the mobile users’

hard-to-predict movements. Consequently, location based systems that depend on static

radio maps have been criticised because of the often substantial inaccuracies. Therefore,

it is a challenging task to design a proper adaptive location estimation approach with

respect to dynamic environmental changes.

To take dynamic environmental changes into account, [92] [93] [94] have proposed

different approaches utilised inside buildings. By using highly distributed additional
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hardware systems, [92] uses a small number of stationary emitters and sniffers to assist

location estimation, in order to obtain the new RSS values to update the radio maps in

WLAN networks. [93] adapts a static radio map by calibrating new RSS samples at a few

known locations and fits a linear function between these values and the corresponding

values from the RSS map. [94] applies a model-tree-based method, called LEMT, to

adapt radio maps by only using a few reference points in an 801.11b wireless network.

LEMT requires building a model tree at each location to capture the global relationship

between the RSS values received at various locations and those received at reference

points. It needs to install additional sensors to keep on recording RSS values all the

time.

In this chapter, a novel algorithm is presented to allow an existing radio map, which

is built for a specific weather condition and user population density, to be used under

different conditions by using a small set of real-time RSS data points collected for a

new weather condition or mobile user density. When applied online the algorithm takes

the real-time RSS values and adjusts them so that the existing radio map can be used.

This calibration process is not uniform over the area of consideration. The deviations

from the existing radio map are clustered and a correction based on the cluster that a

run time RSS observation belongs to is applied. It will be seen from the experimental

results that this technique can mitigate the variations of signal strength due to different

weather conditions and different population densities, and allow calibration without the

need to repeatedly rebuild the radio maps for each possible weather condition and user

density. The rest of the chapter is organized as follows. Section 7.2 illustrates the

proposed algorithm for location estimation using RSS in changeable environment in

detail. Section 7.3 analyses the impact of environmental factors on RSS values and

presents the experimental evaluation of the proposed algorithm in a real environment.

Section 7.4 concludes the chapter and discusses directions for future work.
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7.2 Location Estimation in Changeable Environment

To allow adjustment for a changeable environment, the two step localisation workflow

(viz. training and online estimation) used above has the second step augmented with a

calibration process.

RSS with corresponding location data that are collected at different random locations

for a certain environment is called the training data set (TR). So normally there could

be several TRs, and one of them will be labelled as the reference (RTR). Typically the

RTR could be a large training set, and the other training data sets, called secondary

training sets, could be much smaller. In this thesis, only one reference training set and

one secondary training set are considered at a time. Firstly the radio map of the RTR

is created using clustering and regression techniques as described previously. Secondly,

under the desired different weather condition or mobile user density, a small set of the

secondary training data (STR) is collected and used to build updating patterns (to be

described). Finally, newly measured RSS values are calibrated based on the updating

patterns, so they can be regarded as being measured under the reference condition.

Hence they can be used for positioning using the proposed methods described in section

7.3.

7.2.1 Training Phase

Reference training data set (RTR):

A set of MSs is collected in the reference environment T0 in the area of interest. For

the j-th RTR element, let r⃗j(T0) = (rj,1(T0), ..., rj,q(T0)) represents the signal strength

vector received by the MS from q antennas, i.e. BSs and RSs. l⃗j(T0) represents its

corresponding geographic location.
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Secondary training data set (STR):

Let n be the total number of data elements in the STR that are measured in en-

vironment Tσ. Let R(Tσ) = {r⃗1(Tσ), ..., r⃗i(Tσ), ..., r⃗n(Tσ)} denote the RSS measure-

ments from nearby transmitters, where r⃗i(Tσ) = (ri,1(Tσ), ..., ri,q(Tσ)) is a q-dimension

vector of RSS received by STR element i (i.e. a MS) from q antennas. L(Tσ) =

{⃗l1(Tσ), ..., l⃗i(Tσ), ..., l⃗n(Tσ)} consists of the geographic locations. l⃗i(Tσ) is the 2-D posi-

tion coordinates of STR i.

Let the superscript ′ of r denote the adjusted RSS data. For the i-th element of

the STR, its measured RSS values r⃗i(Tσ) are adjusted to create r⃗
′
(T0), so that the

estimated signal strength values r⃗
′
(T0) can be treated as if it was collected in the reference

environment T0.

Step 1: Find the K (e.g. K = 3) nearest neighbours of STR i from RTR in location

space (not RSS space), and the IDs of these neighbour RTRs are recorded in set Ui. So

the physical location of the k-th (1 ≤ k ≤ K) neighbour can be given as l⃗Ui(k)(T0), and

r⃗Ui(k)(T0) denotes its corresponding RSS measurements. Therefore, the location distance

between STR i and its k-th neighbour can be give as

dk=
∥∥∥⃗li(Tσ)− l⃗Ui(k)(T0)

∥∥∥ (7.1)

Step 2: Calculate an estimated RSS values for STR i that can be regarded as

measured in the reference environment T0. This can be expressed as

r⃗ ′
i(T0)=

K∑
k=1

wkr⃗Ui(k)(T0) (7.2)

where wk is a normalized weight for the k-th neighbour:

wk=
1

dk
∑K

i=1
1
di

(7.3)
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Step 3: Obtain a vector of difference values of STR i between its estimated RSS

values r⃗ ′
i(T0) and measured RSS values r⃗i(Tσ).

∆⃗i= r⃗ ′
i(T0)− r⃗i(Tσ) (7.4)

Step 4: Repeat Step 1-3 for another (n− 1) times for all the other data points in

STR. Hence every STR has a vector of difference values.

Step 5: Apply the clustering scheme to cluster the n difference values. Let Gi stand

for the cluster which ∆⃗i belongs to. Assume that Gi contains Ni vectors of difference

values including ∆⃗i, so the average of all the difference vectors in cluster Gi can be

assigned to STR i (1 ≤ i ≤ n) as:

∆̄i=
1

Ni

∑
j

∆⃗j ,
{
1 ≤ j ≤ n | ∆⃗j ∈ Gi

}
(7.5)

7.2.2 Online Location Estimation Phase

During the online phase for the environment Tσ, given a new MS m with observed RSS

tuple r⃗m(Tσ) from q BSs, the process of estimating MS m’s location l̂m is as follows.

Step 1: Find MS m’s K
′
(e.g. K

′
= 3) nearest neighbours in the STR (using Eq.

(7.6)). Let V be the set that stores the IDs of these neighbouring STR elements, so

r⃗V (k′)(Tσ) and l⃗V (k′)(Tσ) can denote the RSS sets and locations of the k′-th neighbour

STR respectively. By using the Mahalanobis distance in signal space, the similarity be-

tween the MS m’s RSS values and its k′-th neighbour STR’s RSS values can be obtained:

sk′ =

√(
r⃗m(Tσ)− r⃗V (k′)(Tσ)

)T −1∑(
r⃗m(Tσ)− r⃗V (k′)(Tσ)

)
(7.6)

Here
∑

is a q × q covariance matrix in signal space.
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Step 2: Based on the similarity in signal space, each of these K
′
STR neighbours

can be assigned a weight, which is defined as:

w
′
k′ =

1

sk′
∑K′

j=1
1
sj

(7.7)

Step 3: Calibrate the RSS value tuple of MSm to what it would be if it was measured

in the reference environment T0 by

r⃗ ′
m(T0)= r⃗ ′

m(Tσ) +

K′∑
k′=1

w
′
k′∆̄V (k′) (7.8)

Since the above calibration process focuses on eliminating the impact of environmen-

tal factors, such as weather condition and mobile population density, the calibrated RSS

value r⃗ ′
m(T0) can be regarded as measured in the same environment T0 as reference

training data. So the calibrated RSS value can be used for position estimation with the

proposed approaches described in chapters 5 and 6.

7.3 Performance Evaluation

Concerning the data collected from a three-day music festival held in London Victoria

Park, the weather and population density information during these three days is shown

in Table 7.1 according to [95]. Due to the different activities and venues of the music

festival, the walking paths on these different days are different, as shown in Figure 7.1.

Table 7.1: Environment Information during the Three Days in London Victoria Park

Day Temperature Humidity Cloud Precipitation The Overall
Amount Amount Number of People

Day 1 20◦C 73% 42% 0.3mm 10,000

Day 2 19◦C 64% 54% 0.0mm 30,000

Day 3 16◦C 77% 84% 1.3mm 9,000
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Figure 7.1: Walking paths for each day of music festival

7.3.1 Impact of Changing Environment

The changes in RSS for different conditions are illustrated in the graphs below.

(a) Similar weather, different population density
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Figure 7.2: The comparisons of RSS distributions for Day 1 (medium attendance) and
Day 2 (large attendance) at fixed locations from a typical BS. (Similar weather)
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(b) Different weather, similar population density
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Figure 7.3: The comparisons of RSS distributions over Day 1 (dry and sunny) and Day
3 (wet) at fixed locations from a typical BS. (Similar population density)

It can be seen that the signal strength values received from the same BS at a fixed

location may vary significantly. For example, the RSS data points collected during a

three-day music festival in London Victoria Park described in chapter 4 demonstrates

this effect. From Table 7.1, it shows that Day 1 was sunny and dry and with a moderate

number of visitors, while Day 2 had the same weather condition but had a much larger

audience. Day 3 was cloudy and wet and with a slight drop in the user numbers compared

with Day 1. However, because of the different activities and venue layouts of the music

festival on different days, there are only a few locations that are measured with RSS and

same GPS signals in all the three days. Therefore, pair wise comparisons of the RSS

distributions between Day 1 and Day 2, and Day 1 and Day 3, are made to analyse the

impact of environmental factors, e.g. weather condition and population density, on RSS

measurements in two cases.

Figure 7.2 and Figure 7.3 illustrate two comparisons of RSS distributions, both of

which are processed with the kernel density estimate method. RSS data points in each

comparison are measured at the same locations from the same BS. It can be observed that
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in each figure the signal strength of the peaks vary from each other, probably because

of the different environments in each comparison. It can be concluded that the RSS

distributions from the same BS vary both with different audience numbers, and weather

conditions even at the fixed locations. These variations imply that depending on the

original radio map generated in the training phase, the position estimation results might

be inaccurate when the physical environment changes.

A network operator may change the transmission power of the BS based on environ-

mental conditions. That is to say, from one day to the next, the transmission power

could be different, as well as the environmental conditions. In the proposed localisation

scheme as described in Chapter 4, one of the reasons for using the deviations RSS to

create clusters is to make the clustering more invariant to the transmission power. The

transmission power is a variable that can be adjusted to change the coverage if required.

Therefore, the changes of transmission power of the BS do not impact on the estimation

accuracy.

7.3.2 Positioning Performance

There are 2095 RSS samples collected on the first day. 2050 and 3424 RSS measurements

with their location coordinates are also collected on the second day and the third day

respectively. In each of the two data sets, 600 RSS measurements are randomly chosen as

the secondary training data set, while setting the first day as the reference environment,

to create the updating pattern. The remaining parts of the measurements are used for

location estimation with their RSS values only.

Figure 7.4 depicts the CDF of the error distance for the PCA-Intersection, PCA-KDE

and PCA-KNN with and without using the updating scheme on two different days.

Comparison of the two figures clearly shows that the data update is effective. More

specifically, as seen from Figure 7.4 (a), the percentage of errors less than 150 meters in

the PCA-Intersection, PCA-KDE and PCA-KNN methods based on the adapted RSS
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(a) Day 2
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(b) Day 3

Figure 7.4: Cumulative percentile of error for different algorithms for two different days
at Victoria Park Music Festival
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data report 60.6%, 46.3% and 49.7% respectively, whereas these three methods without

calibrating the RSS are 45.7%, 38% and 29.1% respectively on Day 2. Similarly, it

can be observed from Figure 7.4 (b) that the proposed methods with calibration can

perform better than those methods without applying any correction for the changes

in environment on Day 3, e.g. the mean measurement error of PCA-Intersection with

calibration is around 133.2 m, while the PCA-Intersection without any calibration reports

163.9 m.

From the experiments, it can be concluded that the proposed method can make

adaptations for changeable environments, giving better localisation accuracy than static

fingerprint-based positioning methods in some specific use cases.

7.4 Summary

In this chapter, a novel RSS-based outdoor location estimation approach that can cre-

ate calibrations so that localisation can be made using the primary radio map has been

proposed. This method only needs one full radio map built for a specific environmental

condition or user population density and a small set of data points measured in a new

environment. The calibrated RSS data points can be regarded as measured in the same

reference environment as the training data set. The improvement in location estimation

accuracy is tested, and the results show that the proposed algorithms achieve a consider-

able advantage over previous static fingerprint-based techniques in the three-day music

festival held in London Victoria Park.

However, some improvements can be considered: a) in this chapter, 600 samples were

randomly selected as secondary training samples from Day 2 and Day 3 respectively, but

comparisons with different number of secondary training samples have not been tested

yet. Therefore, extensions of this work will focus on how to find the suitable number of

secondary training samples in the area of interest; b) this chapter only considered one

area with three different scenarios. To validate the applicability of the proposed method,
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it is important to collect data for different environments in different areas.
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Chapter 8

Network Monitoring with

Clustering

8.1 Introduction

Many radio coverage prediction methods have been proposed and typically take one of

two approaches [10]: an empirical approach and a site-specific approach. A common

problem with empirical models is accuracy, while with site-specific models it is compu-

tational efficiency. For empirical models the accuracy of the prediction model is mainly

based on the precision of the database used, such as the scope of the database of signal

strength measurements and the related topographical information. In the conventional

network planning phase, the engineer uses data with location information to identify

the radio coverage or link budget. The data is collected by the engineers with special

devices on the person or in a vehicle. Although there are some other tests as part of the

network state information collection, RSS is the main parameter for the radio coverage

estimation and also applied in the approach described here.

It is too difficult to describe an area using only one model because of the complexity

of the propagation environment. Previous research has relied on the mobile users’ exact
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location in order to calculate the prediction of the radio coverage. The propagation

model is set up according to propagation theories. Hence, the estimated propagation

loss measurement can be obtained. However, it is difficult to ensure accuracy as a high-

precision database needs to be created incorporating topographical and build features

of the propagation environment. This activity is extremely time-consuming and error-

prone. In the approach described in this chapter the exact locations are not necessary.

Clustering allows us to partition the RSS space. Identification of the correct cluster

yields a probability distribution of RSS in that cluster. The approach developed in this

chapter also allows for assessment of changes in the coverage, arising for example by a

new building.

This chapter proposes a mechanism for real-time modelling of the radio coverage in

cellular networks so that resource allocation algorithms can benefit from traffic demand

distribution and coverage information. This gives fundamental support for the self-

processes (configuration, optimisation) in SON. In this work, a large outside area is

partitioned into small clusters created by analysis of RSS data points collected from

historical data, i.e. during a training phase, based on the proposed clustering scheme

as introduced in chapter 4 and monitoring the current mobile users’ RSS to access the

current radio coverage status. With this knowledge, novel optimal configurations for

the antennas, e.g. power, tilt, interference control and the frequency allocation, can

be selected with better assurance that the prospective network performance on the real

terrain will be adequate and, hence, achieve a better QoS. Therefore, in this section the

real time monitoring of radio coverage is explored.

The main contribution of this chapter is twofold: 1) the proposed approach models

the probability density of RSS in every small area partitioned by clustering, rather than

constructing a propagation model to predict the received power for a given location in-

accurately. This is better to represent the reliability; 2) the proposed clustering provides

a good support for estimation of radio coverage in complex outdoor environment. The

potential exploration of this approach could also be used to assess the network state and
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affected civilians in emergency or disaster situations.

The remaining part of the chapter is organized as follows: section 8.2 presents the

proposed run-time self-training measurement system and the corresponding approaches

for predicting the radio coverage and adapting to a dynamic environment are presented

in detail in section 8.3 and section 8.4 respectively. The performance evaluations of

the proposed algorithm are performed in section 8.5 over data points generated from a

network planning tool in a real environment. Finally, section 8.6 discusses the results

and outlines open issues for future research.

8.2 The Overview of Run-time Self-training Measurement

Mechanism for Coverage Prediction

Data Collected

 in Network 

Planning Stage

Initial Model Estimation Phase

Self-training Phase

Build Radio Coverage Model 

in each cluster 

Predict 

Cluster ID

Unlabeled

data
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Figure 8.1: Illustration of the run-time self-training measurement mechanism for coverage
prediction.

The proposed run-time self-training measurement mechanism for coverage estimation

involves two phases: the initial model estimation phase (a.k.a. the training phase) and

the self-training phase (a.k.a. the online phase), which is illustrated in Figure 8.1. This

mechanism can be integrated with the one introduced in chapter 4 (see Figure 4.1) to be

a comprehensive mechanism in an outdoor environment. The black arrows in this figure

show direction of flow from one step to another.
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8.2.1 The initial model estimation phase

Finding the clustering scheme and radio coverage models are the main aims in the ini-

tial model estimation phase. Chapter 4 described the proposed clustering scheme to

partitioning the environment into different disjoint regions where each region in RSS

space maps to locations in the real environment that have similar RSS. This is achieved

by creating clusters in the space of RSS. The experiment results using real data sets in

chapter 4 has shown that the proposed clustering scheme partitions the environment into

consistent geographic regions that are more homogenously covered by the radio signal,

and also the geographical distribution of the created clusters reflected better the RSS

distribution and better model the realistic environment according to the RF propagation.

For each partition of RSS space, accurate radio coverage models are built to ensure the

reliability of coverage prediction in the self-training phase.

8.2.2 The self-training phase

In the self-training phase, the objective is to find novel radio coverage models, which can

ensure network performance on the real terrain and achieve a better QoS in a dynamic

environment. To account for the complex propagation environment found in a real wire-

less network, the prediction model is initialized with the training data points first, which

can be extracted either from the data from the real environment during an experimental

training period or from simulation models. Thus, in the coverage prediction domain,

the purpose is to focus on how to use the real-time mobile users’ RSS with self-training

learning to improve the accuracy of the pdfs of the RSS, in response to the antenna

re-configurations, and detect changes in the environment.

The self-training learning process is based on a semi-supervised learning technique.

The motivation for having a self-training process stems from the use of unlabeled data

to help build a better classifier from the labelled data points. At each time interval (e.g.

one hour), when a set of new MSs with observed RSS tuples has been collected, the best
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matching cluster is found for each new MS according to their respective received power

by using the K-Nearest Neighbour-Venn Probability Machine (KNN-VPM) described in

chapter 4. The algorithm only needs to find which cluster the mobile user belongs instead

of calculating its exact location. In this way, the algorithm is tolerant to a location

calculation error. In order to take physical environmental changes into account, a filtering

model is employed to detect if there are environmental changes in the surrounding area.

The main idea is to create RSS coverage models and tests for discrepancies in the coverage

models created from additional data points that can be collected periodically. If there are

statistically significant differences between the historical model and the additional model,

the system will re-cluster the RSS in this area and build a new coverage model. If there is

no (significant) difference, the self-training learning scheme can reuse the previous model

rather than re-creating a new model. This will be presented in section 8.4. Moreover,

since the coverage prediction model is relatively simple and there is no accurate location

requirement, this means the prediction model can be used in an operational phase for

further optimisation.

8.3 Coverage Probability Prediction with Clustering

Assume that in the training phase the following data is collected for a set of n MSs: the

MS geographic location and the RSS measurements from neighbouring transmitters. Us-

ing the clustering scheme, the terrain is divided into a set of clusters C = {C1, C2, ..., CN}

where N is the total number of clusters. These created clusters construct a radio map,

which not only capture the characteristics of the signal propagation in given environ-

ments, but also avoid the modelling of the complex radio propagation and can reduce

the computational cost of the coverage prediction. If M denotes the radio map, the i-th

element in the radio map can be expressed as

Mi = (Ci, {r⃗j=(rj,1, rj,2, ..., rj,q)|j ∈ ni}, {lj |j ∈ ni}) (8.1)
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(a) Histogram of RSS measurement distribution (b) Kernel density estimates of RSS

Figure 8.2: The comparisons of RSS distributions for one BS by using histogram and
Kernel density estimates for one dimension

Where Ci is the i-th cluster ID, ni is the variable presenting the number of training

MSs within cluster Ci. Let r⃗j = (rj,1, rj,2, ..., rj,q) represent the set of RSS received by

MS j from q antennas, i.e. BSs and RSs, in the area of interest in cluster Ci and lj the

corresponding location of MS j.

Given the radio map, modelling of the coverage in each cluster is undertaken. For

complex changes, such as tilt, the reflections will be different and so the modelling is

intended to capture the changes at a statistical level, such as the probability that the

RSS will exceed a threshold at different locations. In this thesis, the Kernel Density

Estimate (KDE) technique is also adopted instead of the histogram technique to build

a coverage radio model in each cluster. Because RSS histograms are discontinuous it is

very difficult to capture the structure of the set of observed data, and this problem is

even worse with more than one dimension, since it requires a very large amount of data

to be sampled or else most of bins would be empty. This is illustrated in Figure 8.2(a).

Also there is variability, whatever the estimation technique. The data is also sensitive

to changeable weather patterns, vehicle movement and people walking. Using the KDE

to model RSS distribution can smooth the discrete histogram to a continuous function
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and better illustrate the density estimate of the observed data shown in the red line in

Figure 8.2 (b).

In the coverage prediction domain taken in this thesis, the estimation of the distribu-

tion of RSS in each cluster is constructed for the strongest signal strength values of the

MSs in corresponding cluster. If ri,max is the strongest RSS value obtained by MS i from

all the neighbouring BSs, the Gaussian KDE of the unknown density in each cluster is:

f̂(r) =
1

n

n∑
i=1

K(r; ri,max) =
1

n

n∑
i=1

1√
2πδr

exp(−(r − ri,max)
2

2δ2r
) (8.2)

Here n is the number of training MSs in one cluster, and δr is the smoothing parameter

that determines the width of the kernel. The optimal δr is obtained by minimizing the

AMISE between the estimated and true densities according to (6.6). Since in coverage

prediction, only the strongest RSS value of every RSS vector are taken in account, d = 1,

δr = { 4
3n}

1
5σ.

To evaluate the stability of the coverage model, a certain proportion of the RSS sam-

ples are randomly selected for training in each cluster and the rest of data is used for

testing. Initially, a small amount of RSS data is used to construct the coverage distri-

bution model, Pt0 , during the offline period, and then at every time interval, ti, this

coverage model is refined by adding a small amount of traffic data for each cluster, Pti .

Let Ptm denote the final RSS distribution model constructed from the whole RSS mea-

surements in each cluster. The Kullback-Leibler distance (KL-distance) [96] is applied to

quantify how close the RSS distribution models built over different time periods are to

the final RSS distribution model construct from the whole RSS measurements in each

cluster. This distance is given by:

d(Ptm , Pti) =

∫ +∞

−∞
ftm(r) log

ftm(r)

fti(r)
dr, i = 0, ...m− 1 (8.3)

Here fti(r) and ftm(r) are the densities of Pti and Ptm respectively. The KL-distance
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Figure 8.3: The variations of coverage distribution over different time periods in one
cluster.

is always non-negative, and a larger KL-distance value from two probability density

functions implies a greater difference between them. In Figure 8.3, a typical example

is given to illustrate the variations of coverage distribution model over different time

periods in one cluster. From Figure 8.3 (a) to Figure 8.3 (g), it can be clearly observed

that these RSS distribution models at different time periods are very similar, but not

identical. The KL-distance values are in Figure 8.3 (h). Although Figure 8.3 (h) shows

the coverage model constructed in the off-line phase has the largest deviation from the

coverage model built from the whole RSS measurements, the KL-distance value between

them, T0,6, is very small and nearly zero. Therefore, it can be concluded that even using

a small amount of traffic data can build a fine RSS distribution model in each cluster.

Radio coverage probability is used to reflect the quality of communication in an area.

The coverage probability is defined as the probability that the received powers of all

possible area elements within the target service area exceeds a specific threshold value.

Using the clustering scheme, estimates of radio coverage probability within each cluster

based on observed RSS data can be made. Within one typical cluster (i.e. C1), according
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to (8.2) the radio coverage model can be built from the strongest signal strength values

of the training MSs in the corresponding cluster. Let f̂C1(r) denotes the pdf of RSS in

cluster C1. For a chosen threshold Rthreshold , the coverage probability in cluster C1 can

be expressed as

PC1(r > Rthreshold)=

∫ +∞

Rthreshold

ˆfC1(r)dr (8.4)

8.4 Adapting to a Dynamic Environment

To take dynamic environmental changes into account, a filtering model is proposed to

monitor and detect changes in the real environment in future research work. As previ-

ously mentioned, in the training phase, the pdf of RSS analysis in radio coverage model

provides an initial estimate of the signal characteristics and channel model. So that,

during every T time periods in the self-training phase, a new set of RSS observations is

collected and these observations are allocated to their best candidate cluster ID using

KNN-VPM algorithm. Using the KDE technique, a new coverage model in each cluster

is constructed from these new observed RSS measurements without the training RSS

samples in corresponding clusters. That is to say, two coverage radio models are built in

each cluster: one is based on the RSS measurements during the training phase; the other

one is based on the new RSS measurements during the online phase. The Kolmogorosv-

Smirnov test (K-S test) [97] is applied to compare the RSS distribution models derived

from two different traffic samples. If these two coverage models (i.e. distributions) based

on training data and new observations in the same cluster differ significantly, the current

environment is changing. This could be because of weather conditions (e.g. rain ), new

buildings erected, etc. That means a re-clustering with the new RSS values is needed as

shown in Figure 8.2.
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8.5 Simulation Results

To test the efficiency and robustness of the self-training learning method and the accuracy

of coverage prediction, the data generated by a network planning tool ASSET 3G for

the island of Jersey is used. Six BSs are chosen in the centre of the island covering an

area of 8 km × 6 km. 160 clusters are created using the proposed clustering scheme

as previously mentioned in chapter 4 section 4.6.1.2. The distribution of the generated

clusters can represent the topographical features significantly, including the contours of

highways and roads.

In outdoor environment, the threshold value of radio coverage is usually set to be -90

dBm. In this case, the coverage probability status for each cluster in the central area of

Jersey is illustrated in Figure 8.4. For each cluster, if the predicted coverage probability

is below 60%, the corresponding cluster area is considered to be an un-served place (see

black-coloured area in Figure 8.4). As seen from Figure 8.4, the coverage probabilities

for the majority of cluster areas in the central area reach above 90%, and few partitioned

regions are un-served. Thus, the clustering scheme gives good support to guarantee high

homogenous coverage within a target service area in the central area of Jersey.

In addition, in order to better ensure the reliability of the predicted coverage proba-

bility in this test-bed, Figure 8.5 depicts the coverage status for every user in the whole

area. Similarly, if the strongest signal power received by one user is smaller than the

threshold value, -90 dBm, and this user is considered as outside the served area and

marked with black point in the figure. Comparing these two figures, it can be clearly

observed that the distribution of estimated coverage probability within clusters is in line

with the distribution of the maximum RSS measurement for every user. Taking a clus-

ter as a region to compute the coverage probability, the average of the difference value

between estimated coverage probability and measurement coverage probability based on

clusters is 1.11%, and for the majority of clusters, the coverage probability bias is nearly

0%, as illustrated in Figure 8.6. These simulation results demonstrate that the proposed
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Figure 8.4: Distribution of estimated coverage probability with clustering in the central
area of Jersey

Figure 8.5: Distribution of maximum RSS measurements in the central area of Jersey

radio coverage prediction model based on the proposed clustering scheme in the central

area of Jersey is satisfactory and reasonable.

Radio coverage prediction models are dependent on the survey data. Hence, the

quality and quantity of the sample data are important for a prediction model. To evaluate
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Figure 8.6: The difference between the estimated coverage probability and measurement
coverage probability based on clustering in the central area of Jersey

the performance of traffic demand distribution monitoring, the effect of the number of

training samples on the performance of the cluster identification method (KNN-VPM)

is taken into consideration. In [98], it is reported that there are roughly 88,000 residents

in Jersey island with a total area of 116 km2. Assume the mobile users are uniformly

distributed over the whole island, 36,000 mobile users are randomly selected in the central

area (48 km2) and are treated as testing data to do the cluster identification experiment,

which represents the accuracy of user traffic distribution estimation. Figure 8.7 displays

the estimation accuracy with respect to different number of training data in the central

area of Jersey. It can be seen from Figure 8.7 that, initially, the accuracy increases as the

number of training data points increases. This is because the more training data points

are used, the more information is provided. However, when the number of training data

reaches about 50,000, the accuracy of cluster identification is approximately the same.

This reflects that there is enough information to distinguish different clusters, and the

added training samples cannot contribute to a significant increase in accuracy but to an

increase in computational complexity.
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Figure 8.7: The cluster identification accuracy with respect to the number of training
data points in the central area of Jersey

8.6 Summary

This chapter has described a run-time self-training measurement mechanism to model

the real wireless environment and to determine the coverage probabilities by monitoring

of mobile users’ RSS in novel configurations. A nonparametric probability approach

for modelling radio coverage prediction is proposed to represent and predict the service

reliability in a given area based on the pdf of RSS. The self-training semi-supervised

learning could remove the need to know the precise location of most of the recorded

fingerprints during the training process. By using self-training learning, the model can

evolve according to real-time mobile users’ RSS values. The traffic distribution for each

cluster area can also be roughly estimated based on the cluster identification method. So,

the radio coverage and traffic demand could be both monitoring based on the proposed

tool. Such models are important for intelligent radio resource management as it allows

more accurate hypothetical reasoning and hence the discovery of optimal solutions.
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Chapter 9

Location Estimation in an Indoor

Environment

9.1 Introduction

As mentioned previously, many localisation systems utilize the signal strength values

received from the BSs or RSs or APs to estimate the location of a mobile user, based on

deterministic or probabilistic techniques. RSS has been widely investigated principally

in the context of indoor location estimation. This is because the data required to create

the RSS database is readily collected from indoors. Though not as accurate as time-

based methods, RSS fingerprint-based localisation has the potential to overcome the

limitations of traditional triangulation approaches, because it performs relatively well for

NLOS circumstances where the alternative of modelling the nonlinear and noisy patterns

of realistic radio signals is a challenging task. Furthermore, RSS-based methods do not

require the cooperation of network operators. The focus in this chapter is on large scale

indoor localisation using commercial off-the-shelf (COTS) smartphones. Despite the

well-known accuracy limitations of RSS for localisation, this chapter explores methods

to provide an accuracy that allows it to be useful for a range of applications. This chapter
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also shows that WiFi RSS and GSM RSS data sets can be integrated to enhance indoor

estimation accuracy. This has potential to support localisation in certain emergency

contexts.

Fingerprinting techniques are especially appropriate for the range of frequencies in

which GSM and WiFi networks operate. This is because [99] [100] the signal strength

at those frequencies presents an important spatial variability. Regarding GSM tech-

nology, several research works use this technology for localisation, especially in outside

environment. For example, chapter 4 to chapter 7 utilized GSM-based fingerprinting

for outdoor localisation. The RSS fingerprints from the 4-strongest GSM BSs have been

collected, achieving 50th percentile accuracy of 29.4 meters in a city environment. While

inside buildings, [100] has proposed an accurate GSM-based indoor localisation system

by making use of the wide signal-strength fingerprints (includes the 6 strongest GSM

cells and readings of up to 32 additional GSM channels, most of which are strong enough

to be detected, but too weak to be used for efficient communication), but with the need

of dedicated and complex hardware. Many research works [31] [53] [72] have investigated

WiFi RSS fingerprinting in a relatively small size of indoor environment for positioning.

[53] represents the first fingerprinting system for indoor localisation using portable de-

vices. It localizes a laptop in the hallways of a small office building with accuracies of 2

to 3 meters, using RSS fingerprints from four 802.11 APs. Other work uses additional

mechanisms to improve the accuracy of this technique, such as RFID [47] and Zigbee

[101]. Methods that use auxiliary active RFID tags have been proposed for high indoor

accuracy, but this is not ideal for general use in larger areas.

The aim of this chapter is to provide a novel hybrid RSS-based localisation method

for indoor environments and test it in a large indoor multi-floor environment. Unlike

other previous research, this work is content to locate to a specific room or store or store

segment for a mobile user rather than looking for very high location accuracy indoors. In

this work, a hierarchical partitioning scheme is used to divide the MSs in the training set

into a tree of clusters according to the sequence of the transmitter labels sorted by their
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RSS values in a descending order. For example, the first level branches correspond to

partitions where each particular transmitter is the strongest; all MSs with the same two

transmitters in the same order of RSS form a second level branch from the root of the

tree. At run time, for a new MS with a given RSS tuple, the labels of the transmitters

that cover this MS sorted by RSS are used and this can be determined which cluster

the MS belongs to, by finding the longest label match in the tree. Then PCA is used to

transform the RSS into the transformed basis for that cluster. After transforming, the

WKNN algorithm is applied to predict the room number for this MS in that cluster.

Techniques based on radio maps become increasingly inaccurate over time because

APs fail, or are turned off, or change. These issues are amplified in emergency contexts

as then many APs could fail simultaneously. Solutions in the literature to date require

reconstruction of the map. (This is done periodically by Google for outdoors. Even

the highest resolution of Google, without using GPS, can be rather inaccurate and can

deteriorate with time.) This chapter addresses this issue and extends it to emergency

situations in a large indoor environment. The main idea is to figure out the estimated

failed AP IDs by the use of GSM data. Naively the GSM data set can be used as a

backup if some of APs cannot work, but better the GSM data can be used to retrieve

some of the lost WiFi accuracy in areas where coverage is reduced.

The novel contributions of this chapter are: a) this work focuses on a large scale

multi-floor shopping mall; b) it takes the different importance for WiFi and GSM signals

into account, using clusters based on WiFi RSS and GSM RSS respectively. Hence the

estimated room number can be obtained using different weightings for the cluster sets

from these two kinds of RSS; c) the experimental results show that integrating WiFi RSS

with GSM RSS data points can marginally enhance positioning accuracy; d) in order

to improve the estimation accuracy in the emergency situations, GSM data can help to

estimate the possible failed APs to update the radio map, with a more marked increase

in accuracy.

The rest of the chapter is organized as follows. Section 9.2 illustrates the proposed
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algorithm for the room estimation using both GSM RSS and WiFi RSS in indoor multi-

floor buildings in detail. Section 9.3 describes how to locate a user in an emergency

situation. The experiment environment and the experimental evaluation of the proposed

algorithms are presented in section 9.4 and section 9.5. Section 9.6 concludes this chapter.

9.2 Localisation in a Static Indoor Environment

9.2.1 Training Phase

The aim is to build a radio map during the training phase. Let q1 and q2 be the number

of WiFi APs and GSM BSs respectively. Let Z = {z1, ..., zi, ..., zn} be the set of the n

training MSs, where zi=
[
r⃗wifi
i , r⃗ gsm

i , li

]
, r⃗wifi

i and r⃗ gsm
i are the WiFi RSS tuples and

the GSM RSS tuples for the i-th training MS respectively and li denotes its corresponding

store (or store segment) number.

Algorithm 9.1 Hierarchical Partitioning Scheme in Indoor Training Phase
Required:

Z = {z1, ..., zi, ..., zn}: training data set
w, g: the number of transmitters to choose from APs and BSs respectively (the matching
length)

Steps:
1: for i = 1 ton do
2: Sort the strongest w WiFi RSS in descending order and get corresponding ID sequence of

APs: [iW1 , iW2 , ..., iWw ] as the ranking ID pattern for i of length w, PW,w
i .

3: Sort the strongest g GSM RSS in descending order and get corresponding ID sequence of
BSs: [iG1 , i

G
2 , ..., i

G
g ] as the ranking ID pattern for i of length g, PG,g

i .
4: for length d = 1 tow do
5: Let CW,d

i be the cluster that zi with ID pattern P
W,d
i belongs to.

6: ∀j < i, if P
W,d
i =P

W,d
j , then CW,d

i ≡CW,d
j

7: end for
8: for length d

′
= 1 to g do

9: The ID pattern for zi in length d
′
is PG,d

′

i .

10: ∀j < i, if P
G,d

′

i =P
G,d

′

j , then CG,d
′

i ≡CG,d
′

j

11: end for
12: end for

The training phase analyses the RSS of WiFi and GSM separately with the same

procedures which are illustrated in Algorithm (9.1). For WiFi measurements of every

142



9. Location Estimation in an Indoor Environment

training data zi (step 1), the strongest w WiFi RSS measurements in descending order

are selected, which can be expressed as

{
rwifi

i,iW1
≥ rwifi

i,iW2
≥ ... ≥ rwifi

i,iWw
| iW1 , iW2 , ..., iWw ∈ [1, q1]

}
(9.1)

Here iW1 , iW2 , ..., iWw are the ID series of the chosen w WiFi transmitters respectively.

This series [iW1 , iW2 , ..., iWw ] can be regarded as the order w ID ranking pattern P
W,w
i of zi

for WiFi networks (step 2). Similarly, the corresponding IDs of BSs can be obtained as

{iG1 , iG2 , ..., iGg } by choosing the strongest g RSS of GSM transmitters in descending order

for zi (step 3). For WiFi data, by choosing lengths d ∈ [1, w] for the length of the ID

sequence (step 4), the w ID patterns PW,d
i for zi can be extracted (step 5). For a specific

length, training data points having the same ID pattern can be regarded as belonging to

the same cluster (step 6). Similar steps are used to create clusters in the training data

from the strongest g GSM RSS (step 8 to step 11).

9.2.2 Location Estimation Phase

Given a new MS m with observed RSS measurement r⃗m = (r⃗wifi
m , r⃗ gsm

m ) from q1 APs

and q2 BSs, the aim is to estimate which room this MS belong to, which are illustrated

in Algorithm (9.2).

First the RSS of WiFi and GSM are sorted in descending order separately, thus

obtaining two ID sequences with the length of w and g, respectively, PW,w
m and P

G,g
m of

MS m (step 1 and 2). The following estimation of the room ID based on WiFi RSS and

GSM RSS is similar. For WiFi measurements, the prediction of room ID is implemented

recursively within the maximum length w (step 3). Starting from length w, if there is

any training data that has the same ranking ID pattern of WiFi RSS of length d within

P
W,d
m , MS m can be regarded as belonging to the cluster of this training data (step 5 and

6). Otherwise, the search continues using a shorter length for a matching ID sequence
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Algorithm 9.2 PCA-WKNN Method in Indoor Online Phase
Requried:

Z = {z1, ..., zi, ..., zn}: training data set
w, g: the maximum number of APs and BSs respectively in an ID sequence (the matching
length)

P
W,d
i : all the ranking patterns of WiFi training data in every dimension. (i ∈ [1, n], d ∈ [1, w])

P
G,d

′

i : all the ranking patterns of GSM training data in every dimension. (i ∈ [1, n], d
′ ∈ [1, g])

r⃗wifi
m , r⃗ gsm

m : the MS m’s RSS measurements from WiFi and GSM networks.
Steps:
1: Sort the strongest w WiFi RSS of m in descending order and get the ID sequence of APs:

PW,w
m =[mW

1 ,mW
2 , ...,mW

w ]
2: Sort the strongest g GSM RSS of m in descending order and get the ID sequence of BSs:

PG,g
m =[mG

1 ,m
G
2 , ...,m

G
g ]

3: for length d = w to 1 do
4: Extract PW,d

m from PW,w
m

5: if ∃i such that PW,d
m ≡P

W,d
i then

6: m ∈ CW,d
i

7: Apply PCA-WKNN to estimate a room ID l̂Wm for m using the training data Z in CW,d
i .

8: break
9: end if

10: end for
11: for length d

′
= g to 1 do

12: Extract PG,d
′

m from PG,g
m

13: if ∃i such that PG,d
′

m ≡P
G,d

′

i then

14: m ∈ CG,d
′

i

15: Apply PCA-WKNN to estimate a room ID l̂Gm for m using the training data Z in CG,d
′

i .
16: break
17: end if
18: end for
19: if l̂Wm = l̂Gm then
20: This is the chosen room ID for m
21: else
22: Apply PCA-WKNN to estimate the room ID for m using the hybrid RSS training data in

CW,d
i

∩
CG,d

′

i

23: end if

(step 3), and MS m’s ranking ID pattern P
W,d
m can be obtained by extracting the first

d elements from P
W,w
m (step 4). Once the cluster of MS m’s WiFi RSS is found, the

room ID l̂Wm of m can be estimated by applying PCA-WKNN method to the training

data in this cluster (step 7), and the estimation process using WiFi RSS terminates

(step 8). Since successive signal strength samples from the same transmitter are highly

correlated, it should take this high correlation into account to enhance the accuracy.

Chapter 4 section 4.5 illustrates how to transform RSS into an uncorrelated basis using
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PCA. Likewise, by using the GSM RSS of m, an estimated room ID (l̂Gm) can be also

obtained through a similar procedure (step 11 to step 18). By this point, the estimated

room IDs for m have been obtained. If these two estimates are exactly the same, the

room ID of m can be finally determined (step 19 to step 20). Otherwise, the training

data shared by the two clusters selected in step 5 and step 13 is extracted and analyzed

using PCA-WKNN to provide a final estimate of the room ID of m (step 21 to step 22).

9.3 Localisation in an Emergency Situation

Secondary training data set (STR): Let n be the total number of data elements

in the STR that are measured in an emergency situation (Tτ ) in a part of the target

environment. For example, for one experiment environment (the ground floor in London

Westfield Stratford shopping mall), the area marked with red line in Figure 9.1 are chosen

where the q closest APs are shut down (The detail about the test-bed can be found

in section 9.5.5). Let zj(Tτ ) = [r⃗wifi
j (Tτ ), r⃗

gsm
j (Tτ ), lj ] denote the j-th STR element,

where r⃗wifi
j (Tτ ) and r⃗gsmj (Tτ ) are represented the q1-dimension vectors of WiFi RSS

measurements from the q1 APs and q2-dimension vectors of GSM RSS measurements

from the q2 BSs respectively. lj is the room number of STR j.

An important issue with localisation mechanisms is their reliability. In some cases,

some access points may be disabled because of local power failures, management, up-

grades etc. In such cases, the user may be given location information that is incorrect

because, e.g. in the algorithm described the matching process has missing APs. When

there are isolated failures then correction is easier. To demonstrate the approach con-

tiguous failures of different sizes are chosen. Hence this section will mainly focus on two

issues: (1) How to estimate the number of failed APs with their corresponding IDs in

an area where there are contiguous failures in Westfield mall. (2) How to predict the

correct position in this situation.
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Figure 9.1: A sample of one emergency area on the ground floor in the London Stratford
Westfield Shopping mall

9.3.1 Training Phase

In the training phase, suppose that there is a set of MSs collected in the reference

environment T0 in the area of interest where all of APs and BSs in WiFi and GSM

networks work well. The MS’s room location and its corresponding WiFi RSS and GSM

RSS measurements from nearby APs and BSs are recorded. Let q1 and q2 be the numbers

of WiFi APs and GSM BSs respectively. The collection of this data is taken as training

data set (TR). For the i-th training data, let zi(T0) = [r⃗wifi
i (T0), r⃗

gsm
i (T0), li], where

r⃗wifi
i (T0) and r⃗gsmi (T0) are the WiFi RSS tuples and the GSM RSS tuples for the i-th

training MS respectively and li denotes its corresponding room number. If one MS does

not receive measurable signal strength from one typical AP or BS, its default value is

set to -120 dBm, as it is the minimum signal strength. For the TR, the ranking patterns

for GSM RSS and WiFi RSS have already been generated according to Algorithm (9.1).

For the j-th element of the STR in the room number lj , its measured WiFi RSS

146



9. Location Estimation in an Indoor Environment

values r⃗wifi
j (Tτ ) is totally different from the WiFi RSS values of TR data collected in

the same room in the reference environment, because of the failed APs. However, the

GSM RSS measurements between any two of them in the same room are roughly the

same. Therefore, the intention is to estimate the number of disabled APs and their

corresponding IDs according to the GSM RSS measurements, in order to update the

radio map to improve the estimation accuracy.

Firstly in Algorithm (9.3), the ranking patterns of GSM RSS in TR in different

matching lengths are created (Step 1 to Step 7). Then, the estimated number of the

failed APs q̂ can be obtained (Step 8 to Step 10). Furthermore, for each STR j, it can

be assigned to a cluster in TR which has the same GSM ranking pattern with STR j

in dimension d (Step 13 to Step 19), so that both the WiFi RSS of the TR data in this

cluster and the unique detectable APs’ IDs can be obtained. Put these APs’ IDs in list

B in order to find the most common AP IDs (list U) in this cluster (Step 20 to Step

22). So the possible failed AP IDs can be estimated by comparing the detectable AP

IDs list Pj of STR j and the list U , which are added into list T (Step 21). Moreover,

traversing all the STR data points, estimated failed AP IDs are regarded as the first q̂

AP IDs by counting the number of each possible failed AP ID in list T and sorting them

in a descending order (Step 24). Lastly, the WiFi RSS measurements in TR are updated

and re-clustered again (Step 25 to Step 32).

9.3.2 Location Estimation Phase

Given a new MS m with observed RSS measurement r⃗m(Tτ ) = (r⃗wifi
m (Tτ ), r⃗

gsm
m (Tτ ))

from q1 APs and q2 BSs, the estimated room ID this MS belong to can be obtained by

using the Algorithm (9.2) based on the updated radio map.
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Algorithm 9.3 Updating the WiFi radio map in an emergency situation
Requried:

Z(T0) = {z1(T0), ..., zi(T0), ..., zN (T0)}: training data set (TR)
g: the number of BSs to choose from q2 BSs (the matching length)
Z(Tτ ) = {z1(Tτ ), ..., zi(Tτ ), ..., zN (Tτ )}: secondary training data set (STR)

Steps:
1: for i = 1 toN do
2: Sort the strongest g GSM RSS in descending order and get corresponding ID sequence of

BSs: [iG1 , i
G
2 , ..., i

G
g ] as the GSM ranking ID pattern for TR i of length g, PG,g

i .
3: for length d = 1 to g do
4: Let CG,d

i be the cluster that TR i with ID pattern P
G,d
i belongs to.

5: ∀k < i, if P
G,d
i ≡P

G,d
k , then CG,d

i ≡ CG,d
k .

6: end for
7: end for
8: Calculate the average number of APs detected by every TR i in WiFi networks, LEN .
9: Calculate the average number of APs detected by every STR j in WiFi networks, L.

10: The estimated number of failed APs is q̂ = LEN − L.
11: for j = 1 ton do
12: Obtain the list (Pj) including the detectable AP IDs of STR j according to r⃗wifi

j (Tτ ).
13: Sort the strongest g GSM RSS of STR j in descending order and get corresponding ID

series of BSs: P
G,g)
j = [jG1 , jG2 , ..., jGg ].

14: for length d = g to 1 do
15: Extract PG,d

j from P
G,g
j

16: if ∃i in TR such that PG,d
j ≡P

G,d
i then

17: STR j ∈ CG,d
i

18: end if
19: end for
20: Assume there are m TR data in CG,d

i , obtain their WiFi RSS measurements and select
the unique detectable APs’ IDs and put them in a list B.

21: if an AP ID in list B can be detected by theses m or (m− 1) TR data in CG,d
i

22: then this AP ID can be taken as one of the most common AP IDs in this cluster and put
it in a list U .

23: Compare the list (Pj) and the list (U) to find out the possible failed AP IDs, and add
these possible failed AP IDs into a list (T ).

24: Count the number of each possible failed AP IDs in list (T ) and sort them in a descending
order. The first q̂ AP IDs are the estimated failed AP IDs.

25: Update the WiFi RSS measurements in TR data and set all the WiFi RSS values from
these q̂ AP IDs to the value of -120 dBm.

26: for i = 1 toN do
27: Sort the strongest w updated WiFi RSS in descending order and get corresponding ID

sequence of APs: [iW1 , iW2 , ..., iWw ] as the WiFi ranking ID pattern for TR i of length w,

P
W,w
i .

28: for length d
′
= 1 to g do

29: Let CW,d
′

i be the cluster that TR i with ID pattern P
W,d

′

i belongs to.

30: ∀k < i, if P
W,d

′

i ≡P
W,d

′

k , then CW,d
′

i ≡ CW,d
′

k

31: end for
32: end for
33: end for
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9.4 Experimental Environment

Two experiments were conducted to evaluate the algorithms. One is two-floors of the

EE building in the Queen Mary campus as shown in Figure 9.2; and the other one is

the three floors of the London Stratford Westfield Shopping mall as shown in Figure 9.3.

For each test-bed, both GSM RSS data and WiFi RSS data have been collected at the

same time in each room in the target area by a mobile app on an Android smartphone

and their corresponding location information are labelled with the room number or room

segment number if the room is large. The downloadable data can be found at [88]. In the

Westfield case, because the shops are of different sizes, large shops have been manually

divided so that all shops or shop segments are approximately the same size.

9.4.1 Indoor Scenario 1: Two-Floor of EE building in Queen Mary

Campus

(a) The 2nd floor (b) The 3rd floor

Figure 9.2: The layout of the 2nd and 3rd-floor of EE building in the Queen Mary
campus

The 2nd and 3rd-floor of EE building in the Queen Mary campus is used as the

first test-bed in this work. In this indoor environment, 500 samples of GSM and WiFi

signal strengths have been collected in 15 different rooms on the two floors. There are

21 nearby BSs detected in GSM networks and 20 stable APs found in WiFi networks.
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In the experiments, the data are randomly divided into two sets. The first set is treated

as training data and is a collection of 400 samples. Their corresponding room location

information is known. The other set contains the other 100 samples and is used for room

estimation test using only the RSS values, with their correct room number subsequently

only used for validation.

9.4.2 Indoor Scenario 2: London Stratford Westfield Shopping Mall

(a) Lower Ground Floor (b) Ground Floor (c) First Floor

Figure 9.3: The layout of the three-floor of London Stratford Westfield shopping mall

In this test-bed, 5323 samples of GSM and WiFi signal strengths are collected in

177 different rooms or room segments on the three floors. There are 41 nearby BSs

detected in GSM networks and 199 stable APs found in WiFi networks. Similarly, in the

experiments, the data are randomly divided into two equal sets. The first set is treated

as the training data set. The other set is used for room estimation test.
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Figure 9.4: The average accuracy of correct room prediction versus the number of APs
in indoor scenario 1: EE building in Queen Mary Campus

9.5 Performance Evaluation

9.5.1 The Effects of Transmitters Selection Methods

In the EE office case, to select the best number of APs from the 20 stable APs, the

proposed approach (global-PCA) is compared with the MaxMean [31] and InfoGain [52]

approaches. (Note that for larger areas, it has been also looked at selecting and rotating

to Principal Component axes computed for each cluster. This is sensible as each cluster is

different, but each individual cluster is (more) homogeneous. For the InfoGain approach,

every room is taken as a grid element. The performance is evaluated in terms of the

average accuracy of room estimation, which is defined as the cumulative percentage of

estimations within specified errors. Figure 9.4 shows the accuracy comparison between

MaxMean, InfoGain and the proposed transmitter selection method. It can be clearly

seen that the PCA approach significantly outperforms the traditional methods under the

same numbers of the APs. For example, when using 12 APs, the proposed transmitter

selection approach reports 71.8% accuracy of room estimation while those of MaxMean
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and InfoGain are 60% and 57.2% respectively. Likewise, the proposed transmitter selec-

tion approach performs better than the other two methods for the GSM networks. In

this comparison, 12 APs and 4 BSs are chosen as the best subset respectively after using

PCA. When applying the global PCA into the large area, e.g. the London Stratford

Westfield shopping mall, the best number of APs and BSs are 13 and 6 respectively.

However, as mentioned before, the target of this research is to perform location

estimation in a large indoor area. Here it might not be a reasonable way to use global

PCA to choose a best subset of transmitters relevant to all possible locations. Any one

of detectable transmitters cannot be necessarily neglected because each of them takes

the important responsibility in the region where it covered. So the global PCA method

(a.k.a G-PCA) has been described in chapter 4 section 4.3 is compared with the proposed

approach in this chapter where Principal Components are selected within each cluster

(a.k.a C-PCA) from the full set of transmitters. For each approach, in each cluster the

best transmitters are used, i.e. those that account for most of the variability in the

data. Both methods are tested by using different subsets of the RSS in indoor scenario

1 and 2 respectively, as shown in Figure 9.5 and Figure 9.6. These two figures not only

show the correct room prediction accuracy, but also illustrate the accuracy of obtaining

either the correct room or a neighbouring room or room segment (where a neighbour

is defined as the adjacent room segment on the same floor). A marked improvement in

accuracy is found using C-PCA, especially for the shopping mall. The reason is that

the chosen Principal Components can be quite different in each cluster after a suitable

transformation, and C-PCA does not require the selection of a single relevant subset,

which G-PCA does. Therefore C-PCA is more scalable.
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Figure 9.5: The probability of correct room estimation results comparisons between
cluster-based PCA and Global PCA methods in three forms of RSS in indoor scenario
1: EE building in Queen Mary Campus.
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Figure 9.6: The probability of correct room estimation results comparisons between
cluster-based PCA and Global PCA methods in three forms of RSS in indoor scenario
2: London Stratford Westfield Shopping Mall
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9.5.2 The Effect of the Matching Length in Clustering

The proposed method needs to create different clusters according to ranking patterns

of different lengths during the training phase. To balance the trade-off between compu-

tational complexity and estimation accuracy, it is important to find the best maximum

matching length to create clusters. Figure 9.7 and Figure 9.8 show the room estima-

tion accuracy versus the highest chosen maximum matching length used in clustering in

both GSM networks (g) and WiFi networks (w) in these two different scenarios. This

corresponds to the depth of the tree constructed during training phase. Taken the EE

building in Queen Mary campus for an example, seen from Figure 9.7 (b), it can be

found that the estimation accuracy increases as the matching length increases from 1

to 8. However, the predictive accuracy does not monotonically improve along with the

increasing matching length. When the maximum allowed matching length is set as 7,

inclusion of additional RSS leads to worse rather than better performance. Similarly,

for GSM shown in Figure 9.7 (a), the best maximum number length allowed is set as 2.

Likewise, for the London Stratford Westfield Shopping Mall, the best maximum number

length in GSM networks and WiFi networks are set to 4 and 9 as illustrated in Figure

9.8 (a) and Figure 9.8 (b).
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Figure 9.7: The probability of correct room prediction versus the maximum number of
matching length in clustering in (a) GSM networks and (b) WiFi networks in indoor
scenario 1: EE building in Queen Mary Campus
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Figure 9.8: The probability of correct room prediction versus the maximum matching
length in clusters (a) GSM networks and (b) WiFi networks in indoor scenario 2: London
Stratford Westfield Shopping Mall

9.5.3 Positioning Performance

The performance of the proposed localisation method is compared with the KNN method

in [53] and the KDE method in [72], which assumes RSSs are independent statistically.

For the KDE method, the RSS probability density for every room is built. Three forms

of RSS are used, viz. GSM RSS, WiFi RSS and both of them (a.k.a hybrid RSS).

Figure 9.9 and Figure 9.10 compare the estimation accuracies of the three different

algorithms by using GSM RSS, WiFi RSS and both of them in the two test-beds. For each

test-bed, 10 trials for every algorithm are performed and the mean value is plotted, and

also the same number of training data points and test data points is used in each trial.

From these two figures, it can be clearly seen that the proposed localisation method

significantly outperforms the two traditional methods, with a marginal improvement

when hybrid RSS data (WiFi RSS and GSM RSS) is used. For instance, for the Stratford

Westfield shopping mall, when integrating WiFi RSS with GSM RSS, the proposed

method can achieve 93.7% accuracy of correct room prediction, whereas the KNN and

KDE methods report 60.1% and 15.3% respectively. Furthermore, it can be observed
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Figure 9.9: The correct room estimation accuracy results for different algorithms in three
forms of RSS in indoor Scenario 1: Two-Floor of EE building in Queen Mary Campus
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Figure 9.10: The correct room estimation accuracy results for different algorithms in
three forms of RSS in indoor Scenario 2: London Stratford Westfield Shopping Mall

that all the three methods based on hybrid RSS data perform better than those based on

only GSM signal strength or WiFi signal strength at a small extent. Moreover, it clearly

shows, as expected, that using WiFi data can achieve better accuracy than using GSM

156



9. Location Estimation in an Indoor Environment

data. This is because the variation of GSM signal strengths in different rooms is smaller

than that of WiFi signal strengths and there are more APs available. In addition, it

can be clearly observed that the performance of the KNN approach used in shopping

mall does better than when applied in the EE building in the Queen Mary campus.

The difference in the received signal in different rooms in a small-sized environment is

relatively smaller than that in a larger-sized environment. In the relatively small area,

e.g. EE building in the Queen Mary campus, the signal powers received in any two rooms

are very similar. It appears to be more difficult to use the simple “distance” function in

signal space to find the nearest match.

9.5.4 Comparison with Kendall’s rank correlation

One of the main ideas in the proposed algorithm is to assign a new mobile user to a

specific cluster, which is built by the sequence of the transmitter labels sorted by their

RSS values in a descending order from training samples. Here the Kendall tau rank

correlation coefficient [102] is used as a benchmark to evaluate the performance of the

proposed method. The Kendall tau rank correlation coefficient is a statistic used to

measure the degree of similarity between two sets of ranks given to a same set of objects

[102]. This allows a mobile user to be within two or more clusters according to the

similarity between any two predefined subsets of relevant transmitters, rather than a

specific cluster. Both methods are tested by using different subsets of the RSS in the

different indoor scenarios, and the results shown in Figure 9.11 and Figure 9.12.

Seen from these two figures, the proposed method performs only a little better than

using Kendall tau rank correlation coefficient (One would expect it to be marginally

worse) but is much less time-consuming. For example, for the Stratford Westfield shop-

ping mall data, the average processing time to predict the room ID for one new mobile

user with Kendall’s tau takes 37.9 seconds, while the proposed method only takes 0.5

seconds (on a small laptop).

157



9. Location Estimation in an Indoor Environment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 R

oo
m

 P
re

di
ct

io
n

 

 

GSM Original
GSM Kendall

WIFI Original
WIFI Kendall

Hybrid Original
Hybrid Kendall

Correct Room
Correct Room or Neighbouring Room

Figure 9.11: The correct room or neighbouring room estimation accuracy results compar-
isons between the proposed method and the method using Kendall tau rank correlation
coefficient in indoor Scenario 1: Two-Floor of EE building in Queen Mary Campus
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Figure 9.12: The correct room or neighbouring room estimation accuracy results compar-
isons between the proposed method and the method using Kendall tau rank correlation
coefficient in indoor Scenario 2: London Stratford Westfield Shopping Mall
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Figure 9.13: The layout of the emergency areas on the ground floor in the London
Stratford Westfield Shopping mall

9.5.5 Estimation Accuracy in an Emergency Situation

In this section, 4 different small-size areas are considered as test-beds marked in the

Figure 9.13. There are 1613 RSS samples collected on the ground floor. The data points

are randomly divided into two equal sets. The first set is considered as the training data

set, in which all the APs work well. The other set is treated as the test data set that

is further divided into another two sets: one is the secondary training data set and is

used for predicting the number of the failed APs and their corresponding IDs around

the emergency areas, and the other set is to validate the proposed approach.

For each test-bed, the strongest 5 or 10 APs in that area are chosen to shut down to

evaluate the performance of the proposed approach (this will have a considerable effect

on the performance of the location estimation procedure.) In the experiments, different

scenarios are taken into account: (1) all the APs in the area are in good condition; (2)

when the APs fail, but no modification to the procedure is made; (3) using different
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numbers of the secondary training data points, e.g. all the test data points, a half of the

test data points and a quarter of the test data points, to improve the accuracy under the

emergency situation. For each scenario, 5 trials for the proposed scenario are generated

and the mean value is plotted. The same number of training data and test data is used

in each trial.

The experiment results in different test-beds are described in the following sections:

from section 9.5.5.1 to section 9.5.5.4. For example, for test-bed 1, Table 9.1 illustrates

the estimation results of the prediction the number of the failed APs and their corre-

sponding IDs. The data in this table shows that the proposed approach can help to

find out the failed AP IDs to some extent when there are different numbers of APs are

unavailable. Furthermore, as indicated in Figure 9.14, the comparison results in the

two sub-figures clearly show that the data update is effective. More specifically, as seen

from Figure 9.14 (b), the percentage of the proportion of times that the correct room

obtained in the proposed approach (based on the adapted RSS data) according to all the

test data, half the test data and a quarter of the test data is 86.6%, 80.5% and 77.5%

respectively; whereas without calibrating the radio map is e.g. 62.2% when there are 10

APs are unavailable in test-bed 1. Similarly, it can be observed from Figure 9.14 (a) that

the proposed methods with calibration can perform better than that without applying

any correction for the changes under the condition that 5 APs are failed.

According to Algorithm (9.3), the average number of APs detected by every training

data point in the whole area is needed to be calculated at first. But for a large area,

e.g. the ground floor of the Westfield shopping mall, it is difficult to make sure that the

average number of APs covered by each store or store segment is the same value. The

distribution of APs is not uniform in the real environment. That is why the accuracy

results of estimated failed APs in the other three test-beds (test-bed 2, 3 and 4) are

slightly worse than the result in test-bed 1. But it still can be seen that the proposed

method make improvements in location estimation in emergency situation as shown in

Figure 9.15, 9.16 and 9.17. In addition, it can be conclude that using the small number
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of sample data in an emergence environment can support a good accuracy to figure out

the failed AP number and corresponding IDs.

9.5.5.1 Test-bed 1: Room 159-Room 163

Table 9.1: The probability of estimating the failed 5 and 10 APs IDs in Test-bed 1

All the 1/2 of the 1/4 of the

test data points test data points test data points

Nqfailed 5 5 5 5 5 5 5 5 4 5 5

Probability 1 1 1 1 1 1 1 1 0.8 1 1

Nqfailed 7 7 7 6 7 7 6 7 7 6 7

Probability 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7
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Figure 9.14: The comparison between the approach when all the APs work well, without
taking any measurements under emergency situation, and using all the test data points,
half of the test data points and a quarter of the test data points to make improvements
in emergency situation in Test-bed 1: (a) 5 APs are failed and (b) 10 APs are failed.
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9.5.5.2 Test-bed 2: Room 167-Room 174

Table 9.2: The probability of estimating the failed 5 and 10 APs IDs in Test-bed 2

All the 1/2 of the 1/4 of the

test data points test data points test data points

Nqfailed 4 5 4 4 4 4 6 5 5 5 4

Probability 0.8 1 0.8 0.8 0.8 0.8 1 1 0.8 1 0.8

Nqfailed 6 6 6 6 7 6 7 6 7 6 8

Probability 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 .6 0.7
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Figure 9.15: The comparison between the approach when all the APs work well, without
taking any measurements under emergency situation, and using all the test data points,
half of the test data points and a quarter of the test data points to make improvements
in emergency situation in Test-bed 2: (a) 5 APs are failed and (b) 10 APs are failed.
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9.5.5.3 Test-bed 3: Room 147-Room 154

Table 9.3: The probability of estimating the failed 5 and 10 APs IDs in Test-bed 3

All the 1/2 of the 1/4 of the

test data points test data points test data points

Nqfailed 5 5 5 6 4 5 5 5 6 4 4

Probability 1 1 1 1 0.8 1 1 1 1 0.8 0.8

Nqfailed 7 6 7 7 7 7 0.7 7 6 7 5

Probability 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.5
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Figure 9.16: The comparison between the approach when all the APs work well, without
taking any measurements under emergency situation, and using all the test data points,
half of the test data points and a quarter of the test data points to make improvements
in emergency situation in Test-bed 3: (a) 5 APs are failed and (b) 10 APs are failed.
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9.5.5.4 Test-bed 4: Room 141-Room 146 and Room 115

Table 9.4: The probability of estimating the failed 5 and 10 APs IDs in Test-bed 4

All the 1/2 of the 1/4 of the

test data points test data points test data points

Nqfailed 4 4 3 3 4 3 3 3 3 3 2

Probability 0.8 0.6 0.6 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.4

Nqfailed 6 6 5 6 5 6 6 7 6 6 6

Probability 0.6 0.6 0.5 0.6 0.5 0.6 0.6 0.7 0.6 0.4 0.6
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Figure 9.17: The comparison between the approach when all the APs work well, without
taking any measurements under emergency situation, and using all the test data points,
half of the test data points and a quarter of the test data points to make improvements
in emergency situation in Test-bed 4: (a) 5 APs are failed and (b) 10 APs are failed.
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9.6 Summary

This chapter has described solutions to estimation location in terms of room number (or

room segment) or neighbouring room number in a large scale multi-story indoor environ-

ment. First, a novel hybrid RSS-based room estimation approach in static environment

has been proposed. To evaluate the performance of the proposed cluster-based deter-

ministic algorithm, real RSS from both WiFi and GSM networks have been collected on

the two floors of EE building in the Queen Mary campus and the three floors of Strat-

ford Westfield shopping mall in London. The results indicate using the hybrid RSS can

improve the estimation accuracy in a multi-story building compared with the traditional

algorithms. Secondly, how to locate mobile users in situations where contiguous APs fail

at a Shopping Mall has been considered. An improved approach to allow WiFi radio

maps to be adapted to the emergency situation has also been introduced. The improve-

ments in room estimation accuracy in simple emergency scenarios are tested and the

results show the GSM data can be used as a backup to ameliorate the loss of accuracy

when APs fail. In failure scenarios at the mall, when 5 contiguous APs are chosen to fail,

an accuracy increase of 25% in the room segment prediction is found. The comparison

is made between the observed WiFi RSS and calibrated WiFi RSS using the GSM RSS

correction. The approach leverages itself using GSM RSS data to find out the failed APs

in a small-sized area.
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Chapter 10

Conclusions and Future Work

10.1 Conclusion

The focus of this thesis is the problem of location estimation and prediction of coverage

patterns. Such techniques can be used to support a wide range of applications and

support SON functions, e.g. in LTE.

Location estimation based on RSS is problematic as the accuracy is inevitably limited.

It is affected by weather, chip set, antenna, phone orientation, etc. The overall aim of this

work is to develop mechanisms to enhance the accuracy of location estimation based on

RSS, which is readily available from GSM base stations and Wi-Fi access points. RSS is

attractive as it can be collected from COTS smartphones and does not require additional

equipment (though accuracy can be improved by the use of additional sensors). When a

person wants to know his or her current location, the mobile client installed in his or her

mobile phone can collect the raw RSS data from each of the location sources, and then

send these data to a location server. The location server generates the location from the

new data by using advanced hybrid positioning algorithms based on the database. By

leveraging the strengths of more than one underlying position technology, the proposed

location system can provide the better possible location available in any environment.
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In this thesis, the proposed localisation mechanism can run on a real-time operation.

For example, the proposed algorithms and the radio map can be located in a server. The

algorithms are at the back end of an HTTP server. A servlet can invoke the specialised

MATLAB code. Therefore, the client app can send the RSS data to the server and the

server sends back the location estimate.

After introducing and motivating the problem in chapter 1, a review of fundamen-

tal concepts and relevant literature on location estimation and coverage prediction was

provided in chapter 2. A detailed introduction of location fingerprinting techniques was

given in chapter 3. A run-time positioning measurement mechanism for outdoor en-

vironment was proposed in chapter 4 to provide a better precision of user positioning

using RSS. Additionally, a transmitter selection method and a clustering scheme were

also introduced to better partition the wireless environment into different homogenous

regions based on users’ RSS feedback. To improve outdoor positioning accuracy, two dif-

ferent novel localisation methods were proposed respectively in chapter 5 and chapter 6,

and simulation and experimental results shows they both can provide higher accuracy for

outdoor user positioning. To improve the performances of these two methods in different

environmental conditions, chapter 7 introduced a mechanism that allows radio maps to

be adapted to environmental changes. A filtering model was briefly introduced in chap-

ter 8 to adapt to a dynamic environment and a nonparametric probability algorithm was

developed to build radio coverage models in each area created by the individual clusters.

In chapter 9, an approach to large scale indoor location estimation was described. This

was then extended to a mechanism that integrates RSS data from both GSM and WiFi

networks by using clustering and rank order matching.

An advantage of the approaches described in this thesis is that none require the

cooperation of a network operator.

Five of the most significant contributions of this thesis are discussed below.
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• Validation of estimation of locations based on RSS distribution models

by using real data sets collected from outside and inside

Outside, four different scenarios have been considered in order to compare the

outdoor localisation approaches proposed in this thesis. These scenarios can be

divided into two: those that depend on simulated data and those based on real

data. For the real data, two scenarios (Queen Mary campus and a music festival in

London Victoria Park) are considered. As both of them are essentially outdoors the

validation used GPS. Two simulated scenarios were also considered in outdoor en-

vironment, a regular grid with different shadowing deviations in each grid element,

and data collected by radio models on the island of Jersey. For inside buildings,

two different sizes of multi-floor real test-beds (viz. two-floors of EE building in

the Queen Mary campus and three-floors of London Stratford Westfield shopping

mall) are used to perform to validate the proposed indoor localisation approaches.

• A clustering scheme for outdoor localisation

In the proposed run-time positioning measurement mechanisms, the proposed clus-

tering scheme plays an important role. This influences the precision of position

accuracy and coverage prediction and allows models of coverage to be created for

individual clusters. It is shown that the partitioning into clusters outperforms grid-

based and global-based methods in some of the specific scenarios. Mobile location

is estimated by the cluster it belongs to and its relative location in that cluster and

coverage model is also built in that cluster to estimate radio coverage probability.

The clusters are created by analysis of RSS data points collected from training

data and further improved by users of the applications during operation.

The novel features of the clustering scheme are: a) the use of deviations from the

observed path loss model for each RSS component rather than the raw RSS. This

also results in the clusters being invariant to the BS/RS power; b) the accurate

estimation of the cluster membership probability and the number of clusters to

manage the trade-off between cluster size and accuracy of cluster modelling using
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the VPM; c) it allows selective additional data collection to enhance accuracy, e.g.

near cluster boundaries; d) it is not sensitive to transmit power changes; e) it can

be coupled with location tracking and other non RSS data to improve accuracy.

• Improved outdoor localisation approaches for static and dynamic envi-

ronments

The use of PCA is shown to offer an efficient mechanism to utilize information

from all detectable transmitters and to retain correlations in the RSS by rotating

to orthogonal dimensions in each cluster. The PCs are generated through a trans-

formation relevant to each cluster in the RSS data, and the selected BSs and the

data reduction can be different in each cluster.

State-of-the-art deterministic and probabilistic location estimation approaches were

proposed.

In the deterministic framework, an improved PCA-Intersection method to outdoor

fingerprinting location estimation based on clustering RSS from BSs was tested in

four different scenarios (rural, urban, and suburban). Results presented show that

the proposed scheme finds more accurate locations and outperforms the traditional

probabilistic approach and KNN approach in the experiments.

In the probabilistic framework, considering the high correlation between signal

strengths from different transmitters, PCA-KDE was utilised to maintain the most

important RSS characteristic information and reducing useless signal information.

The KDE was then used for location estimation. This nonparametric approach pro-

vided a powerful tool set for modelling of spatio-temporal RSS properties based on

the training-based fingerprinting approach. KDE and relevant parameter choices

were studied both theoretically and experimentally. It was shown that the PCA-

KDE estimate is superior to the original KDE used in both simulated and real data

in terms of positioning accuracy. In the orthogonal space the joint probabilities

are computed rapidly by simple multiplication.

Moreover, a mechanism has been introduced to allow radio maps to be adapted
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to environmental changes. Only one full radio map for a specific environment is

needed. Based on this, an updating pattern for a new environment can be created.

The calibrated RSS data can be regarded as measured in the same environment as

the reference training data. The improvement in location estimation accuracy is

tested, and the results show that the proposed algorithms achieve a considerable

advantage over previous static fingerprint-based techniques in the test-beds.

• A nonparametric probability approach for modelling radio coverage

The method proposed in this thesis mitigates inaccuracies resulting from changes

in the physical environment as it provides a way of detecting them. Firstly, the

self-training semi-supervised mechanism was applied to the proposed mechanism

which removes the need to know the precise location of most of the recorded fin-

gerprints during the training process. A few carefully selected key points represent

regions of fingerprints. Secondly, to provide reliable radio coverage in the wireless

environment, KDE was utilised again to build an accurate coverage model in each

cluster based on the clustering scheme. A filter model was proposed to detect

significant changes in the radio map.

• Hybrid RSS-based Room Estimation Method

A novel hybrid RSS-based room estimation approach by a hierarchical partitioning

scheme in multi-story indoor environment was described and validated in the real

environment. The results indicate using the hybrid RSS can improve the estima-

tion accuracy in multi-story building compared with the traditional algorithms.

Additionally, a method used GSM data to figure out the failed APs in a simple

emergency scenario, and it demonstrated to allow improved accuracy when APs

fail, e.g. in emergency situations.

10.2 Possible Extensions and limitations

Several technical issues or aspects remain to be explored before continuing to this work:
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• The main limitation of the proposed system is the sensitivity of the training location

fingerprints to environmental changes and device characteristics. Furthermore, the

laborious nature of fingerprint collection hinders the scalability of the proposed

technique to large environments. An interesting solution for overcoming these

limitations is the use of dynamically built radio maps based on real-time sensing

of the environment. This is being investigated.

• With the author’s understanding, location-based systems that depend on RSS alone

have been criticised because of inaccuracies, due to changes in humidity, temper-

ature, and physical environment. Methods that use auxiliary active RFID tags

have been proposed for high indoor accuracy, but this is not ideal for general use

in larger areas. As mentioned in chapter 8, the proposed method mitigates inac-

curacies resulting from changes in the physical environment because RSS coverage

models are created and can be used to check for discrepancies over time and the

model of deviations is corrected across a threshold and also accommodates changes

in power at the transmitter in chapter 4. However, as the experimental results in

the Music Festival in London Victoria Park show (chapter 7), the influence of

environmental factors, such as temperature, humidity and rain amount, on the

accuracy of positioning will be concentrated on. For example, for humidity the au-

thor can collect outdoor data in rain and sunshine and cumulative data collection

can build up a suitable data base for different conditions. The further work aims to

collect systematic data to validate the proposed calibration method in changeable

environment so that appropriate path loss models can be constructed.

• The limitations of the indoor research in chapter 9 are the difficulty for obtaining

exactly x-axis and y-axis information in the indoor environment and simplistic

emergency scenarios are used. Extension of the work will focus on how to record

the geo-location or relative location in the Westfield shopping mall by using a

smart phone app and integrating auxiliary geographical and smart phone sensor

information to improve estimation accuracy (such as magnetic field). Moreover,
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the different degrees of damage and the associated communication strategy will be

also considered.

• Further work intends to improve the estimation method when appropriate by pre-

dicting future locations based on previous locations (e.g. using Kalman filtering).

This temporal averaging will be used to reduce battery usage, as if the context indi-

cates that prediction will be accurate, and then sampling RSS will be unnecessary.

It also provides a way of smoothing the data akin to taking repeated measure-

ments. The author plans to use auxiliary topographic knowledge so as to decide

when and when not to use the predictor. It is more important to recognise when

filters could be useful than to have to elaborate prediction techniques. For example

at traffic lights, a linear predictor, such as the Kalman filter, is often not sensible.

It is better not to predict at all. Additionally, investigation into the selective use of

use of accelerometers in the smart phones, again based on auxiliary knowledge, to

support identification of location, such as lift or bus or escalator, which can have

discriminatory profiles and act as landmarks will be taken into account.
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