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Abstract

In the analysis of movement patterns of animals, stochpsticesses play an im-
portant role, providing us with a variety of tools to examinedel and simulate
their behaviour. In this thesis we focus on the foraging @fcsfic animals - bum-
blebees - and analyse experimental data to understandfiirenioe of changes in
the bumblebees’ environment on their search flights. Siguiith a discussion of
main classes of stochastic models useful for the descnigtidoraging animals,
we then look at a multitude of environmental factors influagdhe dynamics of
animals in their search for food. With this background wenaixee flight data of
foraging bumblebees obtained from a laboratory experirbgratochastic analy-
ses. The main point of interest of this analysis is the dpsori, modelling and
understanding of the data with respect to the influence afgicey threats on the
bumblebee’s foraging search flights. After this detaikated view on interac-
tions of bumblebees with food sources and predators in thererental data, we
develop a generalized reorientation model. By extractivggrtecessary informa-
tion from the data, we arrive at a generalized correlatedloanwalk foraging
model for bumblebee flights, which we discuss and comparkd@xperimental
data via simulations. We finish with a discussion of anomsituctuation rela-
tions and some results on spectral densities of autoctioelfunctions. While
this part is not directly related to the analysis of foragirigconcerns a closely
related class of stochastic processes described by Langquiations with non-
trivial autocorrelation functions.
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Overview

The desire to understand the behaviour of animals gave aisebroad field of

research. A specific but still large part of this field is cameal with the analysis
of the movement patterns of foragers. While the topic of feedrch of animals
has been analysed for a long time, many interesting questénain under inves-
tigation due to the inherent intricacy of the field: a largeéety of environmental

factors, competing evolutionary pressures, and the coxiplef the analysed for-

ager itself make the analysis of experimental foraging datdlenging.

Since a complete modelling of all the biological factorevant to describe
the food search of an animal is typically not feasible, andnesuch a model
would likely still be non-deterministic, stochastic mosiélave been introduced
into foraging research. Consequently, stochastic presgsisly an important role
by providing us with a multitude of tools to examine, modetl @mulate animal
movement patterns.

In the first chapter we start with a discussion of environrakfactors influ-
encing the dynamics of animals in their search for food (sstien[1.2). We
then present the main classes of stochastic models usedd¢aliethe foraging
of animals in sectiofIl3. At the boundary between optimeddng theory and
stochastic processes the idea of the optimality of speafcom walks to find
randomly distributed targets developed into the Lévy tligypothesis, which we
discuss in section 1.4 in the context of the biological fextnd of its relation to
the alternative foraging models.

In the following two chapters we focus on a specific foragimgrel: the
bumblebee. These two chapters are based on a laboratonyregpeby Thomas
C. Ings and Lars Chittke ]1], who collaborated with me on tbgid¢ of preda-
tion threats together with Aleksei V. Chechkin and Raineadds (published in

10



OVERVIEW

[2]). In chapte’2 we examine flight data of foraging bumbksba order to un-
derstand the influence of predatory threats on the bumbklb@®mging search
flights. While the threat of predation is only one of the bgitml factors affecting
the foraging behaviour, the set-up of the experiment asribestin sectiori Z]1
has the advantage of keeping all other environmental infleemconstant. After
the main sectioh 212 of the chapter, which consists of théyaisaand interpreta-
tion of the effects of predators and a partial model there@f,also connect our
findings to the discussion on the applicability of the Lévgtt hypothesis (see
sectioL4R) in sectidn 2.3.

From the detail-oriented view on interactions of bumbledbgih food sources
and predators in chaptEl 2, we turn our attention to the belfights between
flower visits in chaptef]3. In this chapter the goal is to arat a generalized
reorientation model for bumblebee flights, which we devdbypextracting the
necessary information from the experimental data in se@i@. After compar-
ison of the resulting generalized correlated random watldmg model with a
simple reorientation model, the model is validated by satiah and comparison
to the data of the bumblebee experiment in sedfioh 3.3. Ampapten in collab-
oration with Aleksei V. Chechkin and Rainer Klages with thaimresults of this
chapter has been publishedin [3].

A common theme recurring through the previous chapters — &mem for-
aging — are Langevin equations and their generalizationshaptef# we finish
the thesis with a discussion of anomalous fluctuation @tatand some results
on spectral densities of autocorrelation functions. WHike class of stochastic
processes we investigate here are not directly relatedetarialysis of foraging,
they are also described by a (differently) generalized lesmgequation with non-
trivial autocorrelation functions. The content of this ptex is closely related to a
publication together with Aleksei V. Chechkin and Raineay@s([4], who are its
main authors.
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Chapter 1

Foraging and the Levy Flight
Hypothesis

1.1 Embedding into Foraging Research

Understanding the behaviour of foraging animals is an eraeavhich is chal-
lenging due to the complex environment in which the searchHdod happens.
Correspondingly broad are the topics in the area of foragesgarch. In the
following two chapters we will analyse experimental dataatswer more spe-
cific questions about foraging bumblebees, i.e. can we siale the interaction
between bumblebees and their predators and how can we nihediglraging be-
haviour. However, in this chapter we first want to introduwe televant biological
factors and the essential stochastic foraging models edsabkground to discuss
optimal foraging. Specifically,What is the best statistical strategy in order to
search efficiently for randomly located objectd¥is been used as a guiding ques-
tion to research the movement patterns of foraging aninfalearch model was
proposed which predicts thaévy walkﬁ are optimal to search for sparse and re-
visitable food source$ [5]. The basic idea is that insteaa r@indom walk with a
constant or normally distributed step lengtla random walk whose flight lengths
are distributed as a power-law is used to model the movenienfavager, that is:

IMisleadingly called_évy flightsin [5]. See also sectidn_L3.2.
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

Figure 1.1: Example trajectories (both with = 5000 steps) of a Brownian
motion (left) and a superdiffusive Lévy walk with typicalade-free step lengths

(right).

p(l) ~ 7P for1 < B < 3, wherep is the probability density function of the step
length. As this random walk exhibits the property that vemge step length are
much more common than in the case of Brownian motion, leairsyiperdiffu-
sive movement dynamics as shown in figl] 1.1. In sedfion]in@.2vill look at
Lévy flights, Lévy walks and why they are interesting foraeding diffusion and
especially foraging.

The optimality claim of the Lévy flight hypothesis is intstig from the bi-
ological point of view as one would expect evolutionary grge on the forager
from the energy and time spent for searching food, which ¢dehd to a cor-
responding adaptation of the forager towards an optimadiolg strategy. It is
however unclear if the Lévy walk model is applicable to reaimals and even if
it is, whether the resulting advantage for survival wouldii@ortant enough in
comparison to other evolutionary pressures to push theaaitowards an adapta-
tion of this foraging scheme. A second reason why Lévy walkse investigated
as a viable strategy were claims that they arise naturaliy the interaction of the
forager with the food source distribution [6, 7]. Both reasdead to the search
for Lévy walks in experimental data. Foraging data of manials has been
analysed to find evidence for Lévy walks as a search stratalipatross([5] 8];
deer, bumblebee$§][5] 8]; Drosophilg [9]; tuna, cod, turtkdsark and penguins

13



CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

[10] — with mixed results, as discussed in secfion1.4.2. Uitega few cases the
analysis had to be revised due to errors in the data, inserfticdata or method-
ological problems[[8]. The evidence for the existence ofyt @alks in foraging
data therefore still remains under discussion.

In this chapter we will begin in sectidn1.2 with an introdoatto the main
biological factors which affect the movement of animalsle/isearching for food.
After this exposition of the complexity of the environmeritforagers we will
then introduce common classes of stochastic processe$ atectypically used
to model animal movement in sectibn]1.3. In secfion 1.4 wé thén concern
ourselves with optimality in foraging, which has been depeld under the name
of optimal foraging theorysee section 1.4.1). There we will focus on the neces-
sary assumptions and experimental evidence foL.&wy flight hypothesjsvhich
arose at the interface of the theory of stochastic procemseéoptimal foraging
theory (see sectidn1.4.2). This chapter also functionsrafesence with respect
to stochastic models and the biology of foraging for thedwihg chapterg]2 and
B. We will meet the Lévy flight hypothesis again in secfioB & the context of
our analysis of experimental data of foraging bumblebees.

1.2 Biological Factors in Foraging

The ability of an animal to forage and the resulting movenpaiterns depend
on a large number of biological factors. While some of them ratated to the
environment the animal is living in, others are given by th&einal constraints
acting on it, e.g., its energy needs and energy storage itapac
In this section we can only give a short overview of the maipeass which

play a role in the discussion of search strategies of foag&mice introduction
to the field of foraging animals presenting the variety oflegal factors and
matching theories can be found In[11].

1.2.1 Habitat and Home Range

Many animals have a limited space in which they can searcliofml. There
are different reasons for these spacial limitations of theitat. On the one hand

14



CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

the area may be bounded, e.g., by physical barriers or bydauies to adjacent
territories of rivals. A different kind of spatial restrion is generated if the animal
has to return periodically to a specific location. Examplkesskeeping places and
locations where its social group gathers.

When discussing foraging, the effects of bounded motiorehawe recog-
nized, and may themselves give rise to interesting techaiuwé also biological
questions, e.g., how boundaries between territories aretanaed [12]. For the
discussion of search strategies, in many cases an unbotdodging space is
assumed and the need to return to the origin is neglectede she focus on
optimal search strategies is already complicated enougjfmowt these compli-
cations. However for the analysis of experimental dataglvesicerns have to be
addressed, e.g., by removing movements from and to a skgpfzane [8] — effec-
tively assuming that the dynamics during long search psnsthdependent from
transient movement phases to access the area of search.

1.2.2 Heterogeneous Environments

Nearly all animals live in a highly complex and heterogerssenvironment. One
common cause for a heterogeneous environment is a nonfamftmd source
distribution, which therefore has been examined analyyi¢h3) [14,[15,16] and
experimentallyl[1l7, 18, 19] and is of concern when optimehépng strategies are
investigated (see secti@nll.4). Even seemingly monotoanvisonments such
as the ocean surface have spatially heterogeneous foocksdor a foraging sea
bird, in this case structured plankton which is aggregatedditer eddied[18].

External spatially varying parameters, e.g., food avdilghtemperature or
water depth, can affect parameters of the movement of tlagjiiog animal.

When the internal parameters of the animal can be adequidstyibed by a
low number of “internal states”, the movement can be moddg a composite
random walk (see sectidn_1.B.5). However, if the number atestis very large
or even infinite, the idea of switching between different m®anight not make
much sense in those models — they are usually not considened speaking
about composite random walks in the context of foraging aMmsmrhe parameter
dependencies in these models might either be phenomenallygreatable, e.g.,
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

by superstatistical methods|20], or they have to be modedbgplicitly. Under-
standing the dependence on heterogeneities is extrempbyriamt since neglect-
ing them can lead to a false classification of the movemerdgz®

Destructive Foraging

Depending on the nature of the food, food sources can beidedas either re-
plenishing (a flower) or only once visitable (a single fish)eprager. If the rates
of replenishing the sources are high in comparison to the between returns of
a forager, the former can also be calledisitable Due to the changes to their
own environment, which can induce heterogeneitiEstructiveforagers on the
other hand are also of interest: especially in cases of aotke behaviour. We
will see in sectiol 1,412 that the ability to revisit sourcbsinges optimal search
behaviour drastically.

1.2.3 Risks while Foraging

The search for food is a risky endeavour for many foragergeEisilly the risk
from predators has to be considered and weighed againgsthassociated with
not foraging, which at some point means starvation. The aycsof the interac-
tion between predators and their prey has been studied aitbus approaches,
e.g., by Lotka-Volterra equations. Various analyses innogk foraging theory
(e.g. [21]22]) have tried to quantify the risks and benefittoraging in order to
find foraging strategies with ideal trade-offs.

In chaptefR2 we will have a closer look at a specific examplénefibfluence
of predation threat on the movement of a forager.

1.2.4 Heterogeneous Populations

Among many animals cooperative behaviour exists betwezmthividuals. While
we will restrict ourselves in the following to the analysfdioe movement of a sin-
gle individual without interaction with its peers, we witdk at a few effects of
animal cooperation which can influence the movement of feregThe analysis
of the movement of animals in a collective, e.g., in swarrheugh interesting

16



CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

on its own [23], is not our focus here since it is strongly govsl by in-swarm
interactions and only loosely connected to food search.

The tendency of animals to return to their group can industiations on its
movement similar to those of a habitat or home range (se®sdEZ1). Sev-
eral experimental studies have analysed animal dispersalthe spreading of
a group of animals from a single source site, finding a decayhefpopulation
density which has fat tail$ [24]. While at first this has beearsas evidence for
super-diffusive movement processes (see sefionl 1.3@ detailed analyses
of experimental data revealed the heterogeneity in the @rmmpulations as the
source of the seeming anomalous diffusionl [24,[25,[26] 2], Z8e diffusion
appeared to be anomalous because, while the movement ofrelzidual was
well-described by a normal diffusion, the diffusion comgtaaried between the
individuals. Notice that, while this is not exactly the saasea composite random
walk (see sectioh1.3.5), the effect of finding a seeminglyna@lous movement
process from averaging over data with an unaccounted paeaise¢he same.

1.2.5 Perception of the Forager

For the search behaviour of foraging animals their peroagpiays an important
role. Only through the limits on their senses does it becopmessary to move
around in order to search for food. While there are some aeaslinvestigating the
role of perception on search behaviour (see é.g.[123, 1539, in most studies
of search behaviour the modelling of the perception is diiredl by assuming
that the animal has a fixed range of perceptionall targets closer than are
automatically recognized, while no other targets are peece This assumption
can be interpreted as a simple model for undirected locatbe@hose movement
patterns are too small to be resolved in the larger model.oWdver this local
search is important enough that it has to be modelled eXiglas a separate and
maybe different stochastic process, intermittent modetsome a quite natural
choice for the movement analysis (see sedfion1l.3.5).

The range of perception of the forager is an important patante take into
consideration when the optimality of stochastic foragitigtegies is analysed (see
sectior.I.4P). If the range would be large enough that tirearalways perceives

17



CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

nearby food sources, the problem of foraging shifts awagnfetochastic search
(see section 1.2.6).

1.2.6 Deterministic Foraging and Memory

When modelling the foraging behaviour of an animal, the jaeof how much
knowledge the forager possesses about its food sourcess.ar®ith complete
knowledge the problem of efficient foraging reduces to figdinsolution, or an
approximation thereof, to tavelling salesman problef81], where the physical
distances between the food sources might be modified byamaental condi-
tions and risks when specifying the corresponding problem.

Another way determinism can enter into the discussion addorg is if the
forager always has sufficient information to know the nelafesd source, e.g.,
due to a large range of perception (see sediion]1.2.5), avayalchooses this
source as the next target. This kind of deterministic farggn a random environ-
ment has been analysed and compared to stochastic foragidglsne.g., when
analysing the effects of the shape of the home range of tlagéor(|32] 33], see
also sectiof T.211).

In addition to a small perceptive range, a typical assumptibstochastic
search models is that the forager has no memory of the alregolpred part of
its environment. However, while this is reflected in the basgochastic foraging
models (see sectidn1.3), most animals do have the capabilgather informa-
tion. The resulting effects on foraging behaviour have breeognized as impor-
tant for many foragers, e.g., the spatial memory of bumldslyeas analysed [34]
and the effects of learning on movement patterns investthgt, 31/ 35]. For ex-
ample the development of trap lines, i.e. fixed foragingesutetween revisitable
targets (see secti@qn 1.P.2) has been studied [36, 3L, B5, 37]

1.3 Stochastic Movement Models

In order to understand the dynamics of animal movement, gelaumber of
stochastic models have been developed over time. In thi®eewee can only give
a brief overview of the most essential classes of modelsiwhave been studied
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

in relation to animal foraging. All the models presentedehkave in common

that an organism is modelled as an ideal particle withoutiat®rnal structure or

learning capability, usually moving in an unstructured{imensional space. For
real animals these assumptions will not always hold. Nalefis the presented
model classes have been shown to be useful first approxinsafioo the descrip-

tion of animal movement. It should be kept in mind that the eisdisually have

to be modified to incorporate the main environmental factsege sectioh112) for
a comparison to experimental data.

1.3.1 Random Walk

The Wiener Process

The Wiener proces$V (t) for ¢ € R* is a time-continuous stochastic process
starting withi¥(0) = 0, whose incrementd/ (¢ +7) — W (¢) are independent and
normally distributed with a variance[38]

(WEt+7)=WE)) =1 (1.1)

for all - > 0 andW (¢) is almost surelycontinuous: the probability of a sample
path to be continuous is one. The usefulness of the WieneeBsas a model for
normal diffusion and random searches, e.g., in foragin@) large parts a result
of the central limit theorem. As experimental data is by ¢argion discrete in
time, a discretised Wiener Process, i.e. a random walk wahgSian step lengths
and fixed time step, is often used for comparison to experiments.

1.3.2 Levy Flights and Léevy Walks

Stable Distributions

Given a family of independent random variab{€es, }, i € N, which are all drawn
from the same distribution with finite meanand finite variance?, the position
of arandom Walk£ aftern steps is given bys,, = >°" | X;. Thecentral limit

2 While the random walk is presented here in one dimensioraritlme generalized to more
dimensions, e.g. by choosing a direction uniformly. For ad@m walker with a normal step
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

theoremstates that the distribution &f, converges to a normal distribution after
scaling:

N (% — u) — N(0,0%). (1.2)
In this limit the random walk converges to a Wiener procesgtvis therefore
used to model random motion. For the normal distributiomsaéntral limit the-
orem applies as well — as they converge to themselves thegraexample of
stable distributions.

A real, non-degenerate distributidn is calledstableiff for all independent
random variablesy, X, X, with distributionD and alla,b € R, aX; + bX5 IS
distributed likecX + d for somec,d € R. The central limit theorem ensures
that in the family of distributions with finite mean and vartz only the normal
distributions are stable.

If one eliminates this restriction, and considers the pbastimsS,, = >, Y;
of arbitrary independent identically-distributed (i.).dandom variable¥;, i € N,
the family of limit distributions is larger. The only dishutions Z which are
possible as limits for the recentred and rescaled partialssuhat isS"b—;“n — 7
for suitable coefficients,,, b, are theLévy alpha-stable distributionslso called
thestable lawqi39,/40]. These are defined by their characteristic funstij@i]

¢z(w) = (e“?) = exp (idw — |yw|™ (1 + iBsgn(w) K (o, w))) (1.3)
where
_J —tan(ma/2) : a#1
Klaw) = { 2log lw|/m : a=1. (1.4)

The restricted parameters are the index (0, 2], the skewnesg € [—1, 1], the
scaley > 0, and the location. Here we are only interested in random variables
Y; with an even probability density function, which result yrmemetric(3 = 0)
and centredo = 0) stable distributions with:

Oz(w) = e hwl” (1.5)

length distribution\'(0, o) this would be the same as using independent normal stephlengt
distributions in each dimension separately.
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

The central limit theorem is generalized in the followingyw#he stable dis-
tributions attract other distributions when summing th@indom variables de-
pending on the asymptotic behaviour of the tail probaletitofY;. For a finite
variance(Y;?) (or y?P[|Y;| > y] — 0) the resulting index is = 2, giving a nor-
mal distribution as this is the case for the usual centrail lineorem. However, if
P[lY; > y| ~ cy= for somec > 0 anda € (0,2) asy — oo, thisa is also the
index of the stable distributio# [39,[40].

One reason why stable distributions for step lengths ar@ectial interest in
movement models is that coarse-graining experimental lolatalways treating,
e.g., two consecutive movement steps as a single step, dbekange the step
length distribution (up to a scale). This is a nice propedythe analysis espe-
cially since it might be difficult to define, and hard to det@renexperimentally,
when a step end5[42,143,144]. However this does not meanvthat) analysing
animal movement, models based on stable step lengthsbdisbrs are the only
available choices (see e.g. sectibns1[3.4,11.3.5).

Lévy Flights

In the context of foraging it was questioned whether a nowiifesion is a good
model for the random search behaviour of animals. As anradtse which mod-
els a super-diffusive behaviour, random walks in one and dmaensions with
scale-free step lengtlishave been used. Let us assume that the step length dis-
tribution p(1) has a power-law tail, that is(l) ~ (=# for largel. For3 < 1 the
distribution(I) cannot be normalised g3 p(1)d! diverges. For3 > 3 the first
and second moments exist. This means that in this case ttraldenit theorem
applies and the position distributidf) converges to a Gaussian for largeThis
leaves the range df < 3 < 3 where the variance diverges. By the generalized
central limit theorem (see above) the process converges évyastable distribu-
tion which conserves the power-law tail. In these randonksjalhich are called
Lévy flights the time used for each step is assumed to be a constant. €haigsm
that the total time is just the number of steps, and the vilegiproportional to
the step length. Since this means that the velocity is untbedinLévy flights are
not very useful as a foraging model as animal velocities kvays bounded.
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L évy Walks

A Lévy walkdistinguishes itself from the Lévy flights model by usinganstant
speedy, for the random walker. This means that instead of jumpingnflane
position to the next in constant time, the walker moves witipeedy, from po-
sition S,, to S,, ;1 in a time span proportional to the step length. The Lévy vialk
a more realistic foraging model than the Lévy flights evethé speed of animals
is rarely constant. The model can be seen as an approximatierev, corre-
sponds to the mean speed of an animal. Therefore when seal@ifocesses are
considered as animal movement models, Lévy walks areyhakvhys preferred
to Lévy flights. The question of whether Lévy walks are adjdescription of real
animal movement will be discussed in secfion1.4.2.

In a similar way, classic random walks have also been gamedato another
class of stochastic processentinuous time random walKd5, [46,[47]. For
these models, not only is the step size drawn from a distabubut the time
between one step and the next is also drawn from anotheereliff distribu-
tion, where both random variables are typically drawn .i.ithe interpretation
of the random update times is typically that they are induzga random envi-
ronment, which causes the object to stick and wait after ségh. Due to the
additional waiting times continuous time random walks cahnilat subdiffusion,
which makes them interesting in the context of crowded emvirents[]4B]. Con-
tinuous time random walks can also be superdiffusive asdtresheavy-tailed
step size distributions, e.g., a Lévy walk can be seen as@agase of a continu-
ous time random walk. However, apart from Lévy walks combins time random
walks are only rarely[]49] used for modelling foraging anleor the same rea-
son as the Lévy flights: the typically unbounded velocitiesnot match well to
the physics of animal movement.

1.3.3 Correlated Random Walk (Reorientation Models)

Typical candidates for modelling diffusion-like process@e e.g. (generalized)
Langevin equations or continuous time random welk$ [50théncase of foraging
models, it has to be taken into account, that animals oftea adfront”-direction
in which they move and have to turn their body to change thewement direc-
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tion. This is commonly modelled ksgorientation modelgalso calleccorrelated
random walkCRW)) and has been analysedl[42] [14, 43] and used to describe
the movement of a variety of animals [44] 51].

In (two-dimensionalyeorientation modelsthe movement of an animal, with
position (x,y) € R? heading into the direction given by the anglen a static
frame of reference, is described by:

alt+ 1) = a(t) + B(t) (1.6)
x(t+7) =a(t) + U(t) cos(a(t)) (1.7)
y(t+ 1) =y(t) — I(t) sin((t)) (1.8)

wherel is thestep lengthr is the discrete time-step amts theturning anglei.e.
the change in direction in a single time step. Many variaitmthis description
are used, for example the time-continuous versioh ih [4&)pBrtional to the step
length is the speed(t) := () /7.

The turning angle? and the step length> 0 are drawn independently from
probability densitiep(3) andg(l). These densities are usually estimated from an-
imal trajectories. In some models (e.g.][51]) the analyssmplified by assuming
a constant step lengthof the animal (and therefore also a constant speed), which
means thay(l) = 6(l — ly). Most reorientation models ignore autocorrelations
of § and/: each random variable is drawn i.i.d. If the autocorrelasiodecay fast
enough, i.e. exponentially, the model is diffusive. Thduliive properties, e.g.,
mean squared displacement and diffusion constant havedeemed analytically
for various subclasses of CRWs [44] 43] 52, 25]. Howeverartelations have
been rarely|53] used to analyse experimental movementddtaagers [54, 55].
Processes with anomalous diffusion are often excluded ftwrclass of corre-
lated random walks and treated separately.

Reorientation models are not only used when directionaletations occur
because of an asymmetry of the animal and the necessity natsubody. In
many applications the CRW is used to model the intendedtibreof movement
of the animal instead of the orientation of the body. In theases, the CRW
describes the dynamics of the intended direction, whiclgoarise to directional
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persistence of animals over long time scales even thougartimal changes the
orientation of its body on much shorter time scales.

If the autocorrelation time scale is large it can becomeadliffito distinguish
a correlated random walk from a Lévy walk. For this deteration given a finite
amount of experimental data da Luz et.Al.l1[56] gave a nepessiderion relat-
ing the time scale of the exponential autocorrelation of akdaan correlated
random walk to the distribution of its turning angles.

1.3.4 Generalized Langevin Equation (Active Brownian
Particles)

While many models of animal movement use a time-discreterg®n with
clearly discernible movement steps, most time-continunadels are in essence
Langevin equations or generalizations thereof.

The Langevin Equation

A Langevin equationis a stochastic differential equation with a deterministic
part, calledf, and an added noise teffhwhich is multiplied by the matrixk of
coefficient functions:

d

X (1) = £(X(1), 1) + k(X (1), )01 (1.9)

wherel is called a stochastic force bangevin forceit is a vector ofwhite noise
meaning thatl';(t)) = 0 and(I;(¢)I';(¢')) = ¢;;6(t — t’) for all dimensions,
whered; ; is Kronecker’s delta and(t — t') is the Dirac delta functioH. An

equivalent restatement of EQ.(IL.9) is:

dX(t) = £(X (1), t)dt + k(X (1), )dW (1). (1.10)

From the Langevin equation alone it is not clear which systerdescribe,
as we have not defined yet how to integrate it. As the Wienezge®is nowhere

3There is also the possibility to define the Langevin equdtiostochastic forcek which are
not §-correlated. Suchkoloured noisavill be used in sections-3.2.6 ahd 312.7.
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differentiable it is not integrable in the Riemann senseeréhare two different
ways to define a stochastic integral called tt®integral and theStratonovich
integraH [38,[46] . While the Riemann integral is independent of thgpsuting
points of the discretisation, the stochastic integraltedior varying approxima-
tion approaches.

Both integration methods are defined by

/O u(a,, )V (s) = lim i W, 7Y (W (brsa) — W(t)) (1.11)

with 0 =ty < t; < ... < t,, = t for any functionu(zy, s) of the Wiener process.
The two definitions of the stochastic integrals differ oniytihe choice ofr; as a
function oft; andt;, ;:

e The Ito integral uses = t;. It is non-anticipating which means that for
numeric integratiory only has to be evaluated at the previous time step as
described in sectidn Al 3.

e The Stratonovich integral uses= ““7*** and is symmetric in time.

The Stratonovich integral has the advantage that it cooredgto the calculus of
the Riemann integral whereas the It o integral needs asgpee: thdto calculus

Given that we specify the integration method by saying thatuse the Ito
or Stratonovich interpretation of the Langevin equationcsepletely describe a
Markov process (see sectibn_312.1). It depends on the maeesvant to model
which interpretation is appropriate.

Given the Langevin coefficients in one of the interpretatidns possible to
convert them to the other interpretation with the equati3&}:

Ok,
X,

~ 1
Fi(X, 1) = fi(X, 1) + 5 ; k(X 1) == (X, 1) (1.12)

“To be precise, there are not only two ways to define a stochastgral, but an infinite
number, as you are free to choose the supporting points aftheximation. It o and Stratonovich
have analytical advantages the other definitions do not.h@ilkies means that there is no reason
not to use one of the two.
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wheref is the deterministic part of the Langevin equation in Itteripretation and
f in the Stratonovich interpretatiok. is identical for both interpretations.

From Eq. [1.IPR) it follows that for givefiandk the It 0 and the Stratonovich
interpretation describe the same proceds(KX, ¢) is constant over phase space.
In this case the non-deterministic term is calbadtlitive noisan contrast to the
generaimultiplicative noise

The integration of a Langevin equation makes it possiblesioegate sample
paths of a Markov process if the Langevin coefficients arekmee.g., with the
Euler-Maruyama approximation (see secfionlA.3). As a sppeeise deterministic
systems are modelled by Langevin equations With 0, however the convention
is to restrict the term only to systems with non-trivfadndk.

Langevin Movement Models

One example of how the Langevin equation is used for modgdimmal move-
ment areactive Brownian particlesThe basic model describes the positigh)
of the animal by the dynamics of its velocityt) = () via

mv = —y(v)v + V2DI'(¢), (1.13)

wherem is the particle mass,(v) is a velocity-dependent “friction” and the diffu-
sion constanD scales the Langevin force (see elg.] |57, 58]). For activegbes,
the “friction” (v) is allowed to be negative, resulting in an active accelemati
which is usually powered by the metabolism of the animal. éerintroduction
to active Brownian particles including many-particle matetions can be found in
[23].

A variety of different generalizations of the Langevin etjoa (Eq. [1.9)) re-
lated to active Brownian particles will be used in this tlsegi Langevin equation
with an additional potential will be used in sectibn212.% chaptef3 a non-
Markovian version of a generalized Langevin equation irepobordinates will
be extracted from experimental data to model foraging betrd®s using the con-
nection (see sectidn_3.2.3) of the Langevin equation to ti&ér-Planck equa-
tion (see section3.2.2). In the final chapter a generalizstyevin equation with
memory kernel will be studied.
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1.3.5 Composite Random Walks and Intermittent Search

One assumption which is common to all animal movement matels/n above
is that only one process is responsible for generating ttireqgfaan animal. While
this focus on a single explanatory mechanism might be agsitg pleasing, it
has to be questioned when dealing with the movement of higbryplex organ-
isms in complex environments. It is natural to start fromrage description by
a diffusive random walk (sectidn1.B.1) and, when obserttiag the model is not
consistent with the experimental data, continue by dewetpmore general mod-
els. However insisting that the resulting models stay senmphy lead us astray in
understanding animal movement. For example, if one lookstgpical recorded
trajectory of a foraging animal and finds that there are mangisstep lengths but
also a non-negligible amount of much larger step lengths noight be tempted to
say: "Since there are too many large steps for a Brownianaenaalk, we need
a process with a step length distribution with a heavy taihdAince the steps
should be made of (not observed) sub-steps, only a stalikéodifon is plausi-
ble. (see section1.3.2)" This explanation simplifies byuasag that a process
has only one relevant scale. But for many animals, movemanes different
purposes which can have different relevant spacial scalésime scales. There-
fore itis plausible, that animals switch between differiatgérnal states governing
different movement phases.

Composite random wallexplicitly model these states, . . ., s,, and switches
between them. The switching between statemnds; in one time step\t is then
specified by a (time-independent) switching probability; — s,) for each pair
i, 7, with Z;L:lp(si — s;) = 1 for eachi, and the switching process is usually
assumed to be uncorrelated. These probabilities can soe®tie reconstructed
from time series, e.g., viaidden Markov model@#iMM) [59]. Associated to each
state is a stochastic process, which generates the trgj@ttihe animal while the
state is active. In principle any process could be used foate sbut using Lévy
strategies is only done occasionally|[60] as scale-frestegiies, while possible,
are a bit of a mismatch when one explicitly wants to explaia skcales of the
involved processes.

Although in theory one could use models with many stategnoftist two
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states are used, with a Bernoulli switching process. In nw@ses of foraging
animals one movement phase corresponds to a local sear¢boldwhile an-
other corresponds to movement with larger step lengthsronger directional
persistence. Composite random walks are therefore soreetalledntermittent
search processegven though the underlying process of the phenomenon is not
directly related to intermittency of dynamical syster%sl’ hese two-state models
can be understood as a compromise betwegorationof food abundance and
exploitationof local food sources. However, there are many other reastys
composite random walks are used for modelling since switgbietween differ-
ent movement phases is a good description for a variety dddpical factors. Ex-
amples are spatially inhomogeneous environments leadiagwitching between
different kinds of behaviour (see sectibn112.2), switghretween directed and
undirected modes of movemeht[62], and behaviour induceekbsrnal changes
in the environment, e.g., day and night cycles. In our anslgtexperimental
data of foraging bumblebees in chafdier 2 we will encountesxample of inter-
mittency induced by spatial inhomogeneities (see seEidap

Due to the flexibility in describing different biological pects for animal
movement, composite random walks have been used to modaktywat exper-
iments [63] 64, 59, 62, 65, 66] and a large number of analysdseo properties
have been doné [66,167]. A review of intermittent search @sses can be found
in [48].

The step length distribution, of a composite random walk is a mixture of the
step length distributions of each of the contributing psssss, with weights which
depend on the transition probabilities between the stdiesn with very simple
processes for each state, e.g., scaled Wiener processeasstiiting distribution
p; can be hard to distinguish from other those of other modeisrgéxperimental
data due to the large variety of possipld¢67]. This has been especially important
in the search for Lévy walks in animal movement data. Tylpiaapreference of a
power-law tail of a step length distribution over an expdredihtail has been inter-
preted as evidence supporting the biological Lévy hypsithesee section1.4.2),

SNotice that in some cases the term “intermittency” has besen dor a model with only one
process. In[[61] a Levy Walk model was used and all steps balthveshold were retroactively
assigned to a local search phase and all other steps to atielophase.

Sor even thinner
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e.g., in [10/6B]. However, since there are many biologieatdrs which can in
effect lead to a composite random walk, at least a few simges of composite
random walks should be excluded before one can attributerarpntal data to
a Léevy walk. Otherwise, e.g., if the only alternative motdeh Wiener process,
the step-length distribution of a composite random walk lmaeasily mistakenly
identified as the power law of a Lévy walk 169].

1.4 Optimal Foraging

1.4.1 Classical Optimal Foraging Theory

In the long and exciting process of biology developing fromadural science
with a stronger descriptive focus to a more quantitativersoce, the question of
how to explain the complex behaviour of animals proved to lvessstant one.
While early research gave to questionable descriptionsesf behaviour, e.g., the
“bad wolf” or the “greedy cow”, the tables turned with the adv of the theory
of evolution through natural selection |70Qptimal foraging theonarose as the
attempt to examine foraging through a set of core princifilé%

e a goal function which will be maximized, e.g., energy,
e options from which the forager can choose and
e environmental constraints acting on the forager, inclgdiriernal constraints.

With the assumption that the goal function is positivelyretated with the chance
of survival of the species of the forager, natural selecpoovides the selection
pressure, such that the animal is pushed towards choosisg #vailable options,
which under the environmental constraints maximize the fywection. While the
field of optimal foraging theory (see e.d. [11] 21] P2, 72))edsified until today
[17] it also lost its name due to cosmetic reasons [11]. Phathe diversifica-
tion came from considering more complex goal functions,civhmodel survival
chances more realistically. This means that also tradg-eff)., between gathered
food and predation risk have been considered [11].
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The Lévy hypothesis (see below in sectlon1.4.2) integrateely into this
framework, by considering different stochastic food shgocesses as options
of the forager. The constraints are given by the lack of mgnabithe searcher,
limited perception and a random environment. In this caniteis important to
realize that the choice of the goal function plays a decisile it should consider
both gain and costs, typically the food gained per distareeetied for acruise
forager, i.e. a forager which continuously scans the environmerteahoving.
This might however not be the correct choice of a goal fumctiBxamples are
so-calledsaltatory predatoythat switch between predation attempts and “blind”
movement phases, which often has the largest energetis asstciated to feed-
ing, e.g.’ his predation attempts, and not to the travelbetyveen attempts([73],
compare sectioris 1.2 5, TB.5). Another example is an dniumigh has a very
limited capability to store energy. This animal might wambptimize towards a
more regular/predictable uptake of food at the cost of ti& emmount of food in
order to avoid starvation [73].

In the context of optimal foraging theory another aspecheftiiological Lévy
hypothesis might be of interest to investigate. If the hjppsts would be correct
in case of a specific application, the resulting stochastigament process would
be scale-free[]5,16, 74]. In its strong interpretation (gedil.4.2) the resulting
dynamics would be quite inflexible: a model with more possiihrameters cor-
responding to different temporal or spatial scales mighggbed for the adapt-
ability of the animal. This is another reason why we might exqpect the strong
interpretation to hold. For example a composite random wadly not have the
optimal step length distribution for a particular searcblgem, but might be easy
to produce, compose and be flexible. The differences to sqtimal distribution
might not be large enough to give rise to evolutionary pres§iE].

1.4.2 Levy Hypothesis

In the context of early experiments on foraging animals /9 and some theo-
retical work on Lévy processes |77, 5] and their appliagapbtb movement data of
animals, thd_évy hypothesiwas born. Howevethe Lévy hypothesis is actually
two (main) hypotheses, which should be considered separdteough they are
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usually collectively known as the “Lévy flight hypothesisthere the “flight”-
part is actually a historical misnomer since most biololiycateresting models
are variations of Lévy walks, we give them distinct name®he

Mathematical L évy Hypothesis

Quantifying foraging behaviour of organisms by statidtaraalysis has raised the
guestion of whether biologically relevant search strasgian be identified by
mathematical modellind |71, ¥8.179,/75]) 80| 48, 74].

In short, the “Lévy flight hypothesis” predicts that a randeearch with jump
lengths following a power law minimizes the search time foarsely, randomly
distributed, replenishing food sources|[[717, 5, 74]. In tiofving we will call this
the mathematical Bvy hypothesisWhile this can be examined as a theoretical
guestion about stochastic processes, it also makes pogdiah the context of
optimal foraging theory (section_1.4.1). Here we will firdarfy the class of
processes under consideration and the assumptions nemdibe hypothesis to
hold. Whether there are actually any organisms which perfoevy walks (or
try to approximate them) is a different question, which wé lebk at in the next
subsection.

For all analyses of optimal foraging discussed here, it suased that the
foraging animal has no prior knowledge about the positiothefrandomly dis-
tributed food sources, searches stochastically and hagnwny (see sectidn 1.2.6):
the step-lengths are drawn i.i.d. from a power-law distidtou The optimized
goal function, i.e. the search efficiency, used here is thted food sources per
distance travelled (see section114.1).

A major reason why Lévy walks were considered as a mode$ damterest
is that they fill the gap between ballistic motion and a norditilision depend-
ing on the powers of the power-law decay of the step length distribution (see
section’1.32). Fop approximatingl from above, the behaviour of Lévy walks
is dominated by a few largest steps, making it effectivelljisiec for most pur-
poses. This limit is ideal in case of destructive foragingct®n[I.ZR) since it
decreases the probability to revisit food sources whichhateavailable any more
[5]. The non-trivial case is thereforeon-destructivéoraging or cases which can
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be approximated by it, e.g. a non-uniform distribution obdosources: if the
food sources are distributgatchily[81]], i.e. in clusters, they can collectively act
as re-visitable food patches for long time scales, evenghdhe individual food
source is destroyed on visits [5].

It has been shown that the search efficiency can only deperideochosen
search process if the non-destructive forager styosng its movement steps
when a food source is in the range of perceptip([l73], see section 1.2.5). These
foraging strategies are also callidget-truncated82]. Since the interest lies in
target-truncated Lévy walks it is important to notice,ttti@e mean free path
to the targets induces an extra decay of the actual stephlelggtibution [5/82].
The optimal exponent for a target-truncated Lévy walk is

A\ -2
Bopt =2 — <ln 5) (1.14)
which means that for sparse food sourcesx r,) a Cauchy distribution4,,; =
2) is the optimal step length distribution, i.e. a targentrated Lévy walk is better
than Brownian motion and ballistic motion! [5]. For this résafter each visit
to a food source the forager has to be placed near the foodesatia distance
corresponding to the perception range If it is placed further and further away,
the relative efficiency of the Lévy walk versus ballistic tiom decreases — as
doesp,,; [B2]. Together with the quite strong assumptions needesl rédses the
question of how robust the hypothesis is.

The result on the optimality is dependent on the restrictiobévy walks. If
one allows also, e.g., composite random walks (see sdciiB)1the situation
gets more complicated. In particular, models have beerysedl[66) 7] which
distinguish a fast relocation phase (ballistic or Lévy kyah which no food is
collected, and a phase of slow local food searches (tygiagirownian walk or a
correlated random walk [83]). The results depended on @&tyaof model details,
e.g. the time spent in each phakel [66, 61]. Overviews of thisaf different
models can be found, e.g., in]74.,182]. In summary, the reguaonditions for
the optimality of Lévy walks are very strict, which suggetitat the mathematical
Lévy hypothesis should not be seen as a general paradigee&wch strategies,
but rather as a remarkable exceptional case.
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Biological Léevy Hypothesis

A different hypothesis related to the mathematical Lévgdthesis is the question
whether any animals actually perform Lévy walks when fanggwhich we call
the biological Levy hypothesisWhile this hypothesis is motivated by the opti-
mality of Lévy walks under quite specific conditions (se®wat), many studies
have tried to find Lévy walks in movement data of animals uraleariety of
environmental conditions (e.d./[6.176.,184] L0, 68, 85]).

The interest in Lévy walks was motivated by optimal forapiheory (see
sectionCI.Z11), that is, by an argument via evolutionarsguee: if Levy walks
offer animals a more efficient way to forage in a random emviment than other
stochastic foraging strategies, then it is likely that aadsrhave evolved which
at least approximate this behaviour. Notice that the elatary argument does
not guarantee that the optimum is reached — suboptimal belvawight be good
enough. This raises the question of whether the biologiéaylhypothesis should
be understood in the sense that the underlying search pracésallyis a Lévy
walk, i.e. that it is directly generated via some bio-cheah@r bio-physical pro-
cess. Thisstronginterpretation of the biological Lévy hypothesis is usyalot
assumed to be valid since no such process has been foundnaedrsiclassical
optimal foraging theory (see sectibn114.1) the optima ateassumed to be real-
ized by the organism&[11]. Instead, usuallyweakerbiological Lévy hypothesis
is investigated: the assumption is that the animals moveisehiven by another
stochastic process, which is well approximated by a Lévikw@ihe immediate
question which arises is: how is “very well” measured?

The distinction between the strong and weak Lévy hypothisssometimes
discussed as the difference betwestaptedand emergentehaviour[[32]. the
strong interpretation corresponds to an internal meclamiich the animal de-
veloped to adapt to evolutionary pressure, while in the wieddrpretation the
Lévy movement pattern emerges from the interaction wighethvironment [[€.17],
see section 1.2.2).

The problem of finding evidence for or against the Lévy hyyesis is further
complicated by the fact that the animals’ step lengths hausetestimated from
imperfect discretely sampled data giving only the pattermiot the process of the
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movement([42, 43, 44]. This is done either by definition andlysis of turning

points in the recorded trajectory [19, 9], or by only recoglthe animals’ position
at the turning points when they are well defined, e.g., asit@ndoints of a for-

aging sea bird ]6]. In the first corresponding studies of expental datallb, 76]
after Lévy dynamics were introduced into foraging the@fy]| the tail of the step
length histogram was compared to straight lines in log-ltgspto find power-
laws in the distribution. This has been shown to be unrediaibéspective of the
binning method used for the histogram[86] 87], instead tably distinguish

a power-law tail from, e.g., an exponential tail, maximukelihood estimati(ﬂ1

has been shown to be necessary |8, 87].

Experimental evidencé][5,84,110,68] 76] supporting thekigalogical Lévy
hypothesis were challenged by refined statistical datayaesl[8| 87, 88, 25].

While in most analyses which claimed to have found Lévy wale null-
hypothesis was a Wiener process with normal diffusion, ¢bimparison is ques-
tionable: a variety of mechanisms (see sedfioh 1.2) mayalatlead to different
foraging dynamics on different length and time scales, éndividuality of ani-
mals [25] 24| 26], an intermittent switching between quslistic persistent dy-
namics and localized search modes |88, 48], or the averagiagnon-negligible
quantities like the time of day [68]. In sectibnll.3 we haversthat models like
the reorientation models (sectibn113.3) and especialgpmsite random walks
(sectior1.3)) arise quite naturally from many of thesérenwnental factors. As
ignoring these mechanisms can lead to spurious power [&W@3/[8it is important
to look for the reasons of the occurrence of non-trivial isttions, e.g., animals
switching between different search modes. Only with thidigahally gained
knowledge is it then possible to effectively try to answes Hiological Lévy hy-
pothesis by excluding that factors other than search dftgi@re the reason for
the observed movement patterns.

For more elaborate movement models the velocity autoairogls play a
large role. Lévy flights and Lévy walks generate triviaduced) functional forms
for the velocity correlation$ 189, 90]. Accordingly, expeents testing the biolog-
ical Lévy hypothesis have focused on probability disttidas, not on correlation

"We will use a similar technique in sectiGn 212.2 to reliabigtiiguish between models de-
scribing experimental velocity distributions.
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CHAPTER 1: FORAGING AND THE LEVY FLIGHT HYPOTHESIS

decay [6/ 84 10, 68]. In sectidn2.P.4 we will find an examgla ohange in au-
tocorrelations induced by changes in the environmentpgiainother hint that the
Lévy walks, which are inflexible with respect to the autaetations, are difficult
to reconcile with data from experiments on the movement @ders.

Although the evidence for Lévy walks as foraging strategieems to be get-
ting weaker and weaker [69, 191,[8,187] 88] 25], the lure of Wireak) biological
Lévy hypothesis as a way to explain experimental data lispsésent [68/ 85].
In some cases the reason for the interpretation of movensatas Lévy walks
is that they were preferred over a limited variety of altéiwvestochastic models
(e.g. by comparing only to Brownian motion), which matchreweorse. This
preference is seen as evidence for the Lévy flight hypasiaesspite the fact that
some other models would give a much better explanation alate For example
in the case of([68] the seeming similarity to Lévy walks isywkkely to be ex-
plained by a bistable day-night cycle for the off-shelf $haovement. Therefore
a bistable model or an approximation of the switching by a posite random
model (see sectidn1.3.5) would be more appropriate thheredt Lévy walks or
a Wiener process.

In summary, while the fundamental question ‘What is the reathtically most
efficient search strategy of foraging organisms?’ has béaaties] in detail (see
above), the mathematical Lévy flight hypothesis descrirdg one case of a va-
riety of foraging situations. Since its necessary condgiare quite restricting it
does not capture the full complexity of a biological foragroblem [74], which
incorporates both the dependence of foraging on ‘integ@iditions of a forager
as well as ‘external’ environmental constraints (see safi2). While the biolog-
ical Lévy flight hypothesis has been useful by renewing tiberest in cooperation
between biologists and the stochastic processes commiigiixse for modelling
real animals does not seem to hold up to initial expectations

A crucial problem is how dispositions of a forager like mem{84], sensory
perception [[30] or individuality[[25],_24, 26] as well as pespes of the envi-
ronment [19/ 65, 83, 10, 18, 68], can be tested in a statificaging analysis
[71,[78,79) 8D, 74]. Especially for data obtained from fanggexperiments in
the wild, it is typically not clear to what extent extractezhsch patterns are deter-
mined by forager dispositions, or reflect an adjustment efdynamics of organ-
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isms to the distribution of food sources and the presencesafgtors([10, 68, 80].
This problem can be addressed by statistically quantifgegrch behaviour in
laboratory experiments where foraging conditions areedhim a fully controlled

manner|[19] 68]. One such experiment has been performeddsydnd Chittka
[, ©92], who studied the foraging behaviour of bumblebeds wnd without dif-

ferent types of artificial spiders mimicking predators. le following chapter we
will examine the resulting experimental data in order taxgasight into the effect
of the environment on the movement patterns of foraging babdes.
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Chapter 2

Bumblebee Flights under Predation
Threat

In nature the interplay of a variety of factors, ranging frémod source distribu-
tions and other spatial inhomogeneities in the environrteesénsory capabilities
and memory of the forager, as described in sedfigh 1.2, malegy hard to anal-
yse foraging data. An important part before one can attemiuild concrete
foraging models is to figure out which of those environmefaedors have a large
influence over foraging behaviour.

In the following two chapters we analyse experimental forgglata of bum-
blebees under two different aspects. The experiment wi# gs the opportunity
to examine the search behaviour of bumblebees in a well@ténvironment (see
sectioZ1l). The goal of this chapter is to analyse the effext predators have
on the bumblebee flights. Therefore artificial predatorseHaaen introduced into
a foraging arena as a controlled environmental variatinoahghat the reaction of
the bumblebees to the change can be analysed. The mainomseste therefore,
whether there are qualitative or quantitative changeseir fhght behaviour de-
pending on the presence or visibility of predators, in wrsthtistical properties
these changes manifest themselves, and what we can sayedroirtg and mem-
ory of bumblebees. We will also look at the experimental datdne context of
the Lévy Hypothesis, although the experimental data isuaipable to directly test
it — mainly because of the boundedness of the experimentddile tconfinement
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of the bumblebees in the arena (compare se€fion]1.4.2).rikeless, the analysis
of the data will give us some indication regarding the agliity of the Lévy
Hypothesis.

In the next chapter we will then step away from the descnptibthe interac-
tion with flowers and predators and construct a bumblebeletfiigpdel from the
experimental data focussing on the search flights betweeflaisits.

We start this chapter with an introduction to the experimesectio 211, and
a first overview of the data by examining the position probgbdensity func-
tion (PDF) in sectiol Z.211. The main part of the examinatibthe bumblebee
data then consists of the analysis of the velocity distiimsg in sectiol 2.212 and
the velocity autocorrelations in sectibn 212.4 with respgecheir variation under
predation threat. The former also includes a discussiomefindividuality of
bumblebees. We will then distinguish different spatiabigdlised effects of the
presence of artificial predators on the foraging behaviduhe bumblebees in
sectioZZR. In sectidn Z.2.5 we aggregate the gained liedge about the bum-
blebee flights in a model, which gives a qualitative explemmator the observed
velocity autocorrelations. In sectidn 2.3 we connect thaults of our analysis
with the biological Lévy flight hypothesis (see section.)4and finish by sum-
ming up the chapter in sectign®.4.

2.1 Set-up of the Bumblebee Experiment

In the analysed experimeii [1] 30 bumblebdgsrtbus terrestriswere trained to
forage in a flight arena with side lengthslpf= 1 m, [, = 0.72m andl, = 0.73 m.
The flight arena included & x 4 grid of artificial flowers on one of the walls.
Each of the 16 flowers (see Fig.R.2) consisted of a landintjopfa, a yellow
square floral marker and an artificial feeder: a replenishidaogl source offering
sucrose syrup at a rate b85 ;1 /min []]. Figurel2Z.1 shows a diagram of the arena
together with data from a typical flight path of a bumblebe&eB the small size
of the foraging arena compared to the space available tdlfreg bumblebees,
the flights should be interpreted as the behaviour of bunag@slvhen foraging in
a patch of flowers and not as free flights in an unconstraingda@ment. The
influence of the boundedness of the flight arena on the burablbkhaviour is
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Figure 2.1:Diagram of the foraging arena. Included is a part of the flight trajec-
tory of a single bumblebee. The bumblebees forage on a guadttiditial flowers
at one wall of the box. While being on the landing platfornige bumblebees
have access to a food supply. All flowers can be equipped yittes models and
trapping mechanisms simulating predation attempts.

discussed in sectidn3.8.2. However, the main confinemettteobumblebees
does come from the tendency to return to the food sourcese wie walls of the
flight arena are not as important (compare sediion2.2.4).

The 3D flight trajectories of the bumblebees were trackedvmydameras with
a temporal resolution oAt = 0.02s. The individual bumblebee behaviour was
recorded by letting them fly, one at atime, in the flight arde@ch bumblebee was
approximated as a point mass with a spatial resolutianlofm: internal degrees
of freedom were not recorded. The positions of the bumblebesre estimated
by the centre of mass of all image pixels corresponding tobilmablebee via
background subtraction.

The bumblebees vary individually, e.g., by mass, age are] sieasured for
instance by the thorax widths of the bumblebees: they haveanmvidth of
5.6 mm with a standard deviation @¢f4 mm. Therefore the data analyses of this
chapter have been done for each bumblebee separately apkxsed otherwise
below; the individuality is addressed explicitly in sectiB.2.2.

In 7 experimental stages the bumblebees are trained todaddheir reaction
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Life-sized 3D
spider model

Figure 2.2: Image of a single artificial flower (left) congist of a landing plat-
form, a yellow square floral marker, a replenishing food dy@md a trapping
mechanism. The trapping mechanism is present on all floveeitst is only ac-
tivated on flowers which are additionally marked with a 3Ddgpimodel. To
its right: camouflaged crab spiders in situ, waiting on flosvier attack foraging
bumblebees. Photos by Thomas C. Ings.

to — and memory of — the presence of artificial spiders is rdedr The artificial
spiders are mechanical traps, which squeeze and releabartitdebees together
with life-sized { = 12mm) models of crab spiderdMisumena vatig which
simulate predation attempts. The experimental stages are:

(1) Pretraining Feeding without predator threat.

(2) Training Artificial spiders are introduced.

(3) Neutral Feeding with no spider models.

(4) Mid-term Memory Test Spider models visible, but trapping mechanism is blocked.
(5) Reinforcement Training Spiders with active traps.

(6) Remotivation a day later Feeding with no spiders.

(7) Long-term Memory Test Same as Mid-term Memory Test.

The stages used for our analysis are Rigtraining (4) Mid-term Memory Test
and (7)Long-term Memory Testo see whether the bumblebees learn from pre-
dation attempts and adapt their movements under the thfgakedation. The
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Training stages are not useful for an analysis of predatiweatsbecause one
would only measure the agitated flights of the bumblebee béimg trapped.

The bumblebees were trained on two kinds of artificial sgdéalf of them
on easily visible spiders and half of them on cryptic spid&}sin vivo, the spider
type which was emulated here is able to camouflage itself bptat its colour to
the surroundings (see Fig.2.2). However for our analysssdtiference between
the two types turned out to be irrelevant. We did not see anpmufferences
between the two groups of bumblebees in any observed varidlilerefore we
will not differentiate between them in the following.

More details on the experimental set-up can be foundlin [hle possibility
to change parts of the environment while keeping all otheddoons constant is
the main advantage of this and related [92, 93] experimdihiis. is in strong con-
trast to in situ experiments which have the advantage taicaphe behaviour of
animals in their natural surroundings. However, they saddfer the opportunity
of completely controlled modifications to the environmesitice the number of
influential factors is usually large (see secfiod 1.2).

2.2 Analysis of Bumblebee Flights

In our analysis of the experimental data we examined thecitgldistributions
and autocorrelations in the different spatial directiomsdll stages of the exper-
iment. As we are only interested in the flight behaviour, weleded all data
corresponding to crawling behaviour of the bumblebees erattificial flowers
by removing all data within 1 cm of each landing platform Mieg from 2000 to
15000 data points (average: 6000) per bumblebee for eagé.sta

For our analysis, the experimental flight data was classifistinguishing data
near flowers and data away from flowers: for that purpose riyugkbical flower
zonesaround the artificial flowers have been defined — see sdciibd for details.
While we will mainly be using the whole data set in this chaptechaptefB the
data inside flower zones has been removed in order to andlgderaging search
behaviour, excluding the interaction of the bumblebeeh thie food sources.

Given that the experimental data contained measurementsemgaps and
other artefacts, e.g., position data of bumblebees whemliagon flowers, the
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Figure 2.3: Semi-logarithmic plot of estimatedposition distributions for all
experimental stages. The flower platforms extend from thediovall atz =
—0.03m up tox = 0.04 m into the foraging arena.

data had to be cleaned as described in sefioh A.2. Trajestaere split at
larger gaps or when visiting the flowers (see seclion A.2@kxclude correla-
tions induced by flower visits. For individual bumblebeessarage ob1 search
trajectories between flower visits have been sampled angsath

In total ~ 170000 data points were available for each experimental stage afte
cleaning the data — in cases where complete gap-less tagsctrom flower to
flower are needed this reducestol 35000 data points.

2.2.1 Position Distributions

To get an overview of the data, let us start with an examinatiche distribution
of bumblebee positions. In all directions the positionsceanrate near the flow-
ers and the position distributions decay from there withreasing distance (see
Figs.[ZB andZ]4). Figuie2.3 shows the dependence of thgoeBDF p, on
the distance from the flower wall. While the exact functiosizdpe ofp,(z, y, 2)

is not easy to pin down, first differences between the expartal stages can
be observed. The clearest difference is between the thessistage (1) and the
memory test one day later (stage (7)): in all directions, ibenblebees’ posi-
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Figure 2.4: Semi-log plot of estimated and z-position distributions for all ex-
perimental stages.

tion density increases away from the flower positions inetéf). A plausible
explanation for this effect is that the bumblebees now haenkrained on two
occasions (stages (2) and (5)) with dangerous spiders aytat thierefore be more
motivated to leave the flower patch and search for food elsesvivhen they are
again exposed to spider models. This is consistent withmitrease op,, near the
other walls in figureE213 arid 2.4. The same effect, althoagh pronounced, can
be observed for the first memory test with predation threatage (4). 1t might
seem that in stage (4) the bumblebees have not yet sufficiemithed on artificial
predators to change their behaviour significantly, but wiéseie in sections 2.2.3
and[Z.Z} that they have already learned from the first mgiphase and adapted
their flight patterns.

Fig.[Z3 also nicely demonstrates the asymmetry in the cadrtidirection:
approaches to and from flowers and inspections of them haggamantly from
above which can also be seen in Higl2.5. The effects of thelation of the
flight direction inz- andz-direction due to starting and landing bumblebee flights
will be discussed in sectidn 2.2.4.

2.2.2 Velocity Distributions

While the distribution of bumblebee positions already sh@ame effect of pre-
dation threats on the bumblebees, we expect that the readiothe artificial
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bumblebee: C5G42, stage (1)
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Figure 2.5: Flight trajectories at a single flower (on thé kefrder) projected on
x andz: bumblebees starting from and approaching flowers areyfaohsistent
in their direction.

spiders might show a clearer signal of changed behavioautir changes in the
velocities. We therefore analyse the velocity distribagon the 3 qualitatively
different directions for all the experimental stages. 8ime can expect to find
differences between individual bumblebeées [1] (sdel., 48f)have to be careful
and look at each bumblebee individually before combiniregréssults. With the
amount of data given, we have to make sure that our resultsargistent and
have a convincing interpretation.

The velocity distributions vary for the different spatiatettions due to asym-
metries induced by physical and biological constraints e as the spatial ar-
rangement of the flowers. FigureR.6 shows a typical norradllastogram of the
horizontal velocities parallel to the flower wall (gf-direction in Fig.[Z.1l) for a
single bumblebee showing a characteristic peak at low uedsc Direct fitting of
distributions on the histogram and a visual comparison wittne assumed dis-
tribution was shown to be unreliable |87], as is illustratgdFig.[Z.6: only the
power law and the Gaussian distribution can be ruled out byatiinspection.
However, the Gaussian mixture and an exponential funciopear to be equally
likely. In the following, we therefore use maximum likelibod estimation for a
number of candidate distributions to obtain the optimabpsaters for each can-
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didate and then compare the different distribution typethleyr weights using the
Akaike and Bayesian information criteria |94, 95].

Maximum Likelihood Estimation

In order to fit candidate distributions to the experimentaloeity data we esti-
mated their parameters by maximising the likelihood of ediskribution [8,87].
Our candidate distributions are:

a) Exponentialp, (v) = ce I,
b) Powerlaw:p,(v) = c¢|v| ™",
c) Normal distribution with zero mean, (v) = N, (v),

d) Mixture of two normal distributionsp, o, »,(v) = aN,, (v)+(1—a)N,, (v),

02

whereN, (v) = \/;W_U?e_ﬁ ,i=1,2,and0 < a < 1.

Given a set of measured velocitiés = {vy,vs,...,v,} and a probability
density functiorp,(v), where\ is a vector of k parameters, theg-likelihoodof
the probability density function for a finite resolution dfet data fv = 5 cw/s)

simplifies to

max(b)

ImLAD) =) InPy(v;) = > h[Y] ln/ pa(v)dv (2.1)

v;€D bebins min(b)

whereh(b) is the observed frequency in bin

For each candidate distribution , i € {1,...,4}, we locally maximised the
log-likelihood In L; with relation to\; with the Nelder-Meaddownhill simplex
algorithm [96]l1 We then used a Monte Carlo method to search for global max-
ima. Figure[2Zb shows a typical result of fitted distribusdn data of a single
bumblebee.

1This algorithm was chosen as it is quite fast, so that we csatdple for many starting pa-
rameters with Monte Carlo.
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Figure 2.6: Estimated velocity distributions: Semi-laganic plot of the nor-
malised histogram of velocities, parallel to they-axis in Fig[Z1 (black crosses)
for a single bumblebee in the spider-free stage (1) togetitera Gaussian mix-
ture (red line), exponential (blue dotted), power law (grdashed), and Gaussian
distribution (violet dotted), fitted via maximum likelihdaestimation.

Information Criteria

For checking which of the distributions fits best we used tlkaike information
criterion [8]. We made sure that the results do not dependherchosen criterion
by also checking the Bayesian information criterion.

To find the preference between the different model distitimst whose likeli-
hoodsL; are maximised at*** the information criteria are

[OZ = -2 ln(LZ()\;mm\D)) + S(’I’I,)k’z (22)

with s(n) = 2 for the Akaike information criterion and(n) = In(n) for the
Bayesian information criterion as a penalty on the numbgrasémeters;. The
best model, denoted by; is the one which minimises the information criterion
IC, = IIliiIl(]C,'). The Akaike/Bayesian weights then give the preference df ea
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Table 2.1: Model weights and estimated parameters. Akarick Bayesian
weights both give preference to the mixture of two Gaussiatridutions foru,
for most of the bumblebees. The weights are estimated ithatahy for each bum-
blebee and their mean and standard deviation (in brackets atl bumblebees are
shown. Below the mean and standard deviation over all bupekle of the indi-
vidually estimated distribution parameters are given.

Model: a) Expon. | b) Power law| c¢) Normal | d) Normal Mixture
Akaike weight | 0.00 (0.00) 0.00 (0.00) | 0.04 (0.19) 0.96 (0.19)
Bayesian weight 0.04 (0.18) 0.00 (0.00) | 0.08 (0.26) 0.88 (0.30)

Parameter X A 1 o a o] lop
mean(X) 5.61 1.11 0.25 0.67|0.06| 0.29
stdev(X) 1.07 0.16 0.03 0.13| 0.04| 0.03

model over the others as a probability

w; = ae”UG=I1C)/2 (2.3)
where o normalises the weights td_. w; = 1. In our case, the choice of the
information criterion makes no strong difference for thedabselection in this
experiment.

Of our list of candidate distributions the Gaussian mixttued out to be
best for all stages of the experiment independent of enmienmtal parameters
(see Tablé2]1). With the Akaike information criterion thauSsian mixture is
chosen with a weight of over 95% for all bumblebees and aleexpental stages.
The Bayesian information criterion agrees with the Akaikiimation criterion
on 90% of all data sets. For the other 10% it prefers a singles&an or an
exponential distribution — however, these data sets tuméado be those with
the least amount of data available.

The mixture of two Gaussian distributions can be biolodycalterpreted as
two modes of flight: one for flying near flowers and one for ‘freearch flights,
which bears some resemblance to intermittent dynamids4€5/4]. This has
been verified by splitting the data into flights far from thenfér wall vs. flights in
the flower zones (see section Al2.2) and examining both étéseparately. With
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Figure 2.7: Semi-log plot of normalized velocity distrilmrts in each direction
in experimental stage (1). The velocity distributions héseen scaled by their
variance for each bumblebee before accumulating the datk lnées. f(v,) and
p(v,) are shifted down for better visibility.)

a growing risk of overfitting we could continue to increase thoo” of candidate
distributions, e.g. by considering exponential mixturetowever, the Gaussian
mixture is not only satisfying because we can explain why iixed, but also
because the Gaussians are stable, which is consistentmwittiteapretation of the
discretely measured flight steps as sums of substeps (den§EE.2).

The velocity distributions in the other directions, kge.andv, can be seen in
figure[2ZT. For this comparison data from all bumblebeesages{1) was used.
To allow the use of all data, the velocities had to be scalethbyariance for
each bumblebee (see below). Figl 2.7 shows that whilg-thedocity distribution
is nicely symmetricp(v,) andp(v,) have asymmetries induced by gravity for
respectively by the difference between flying towards thevdlowall and flying
away forv,. For an analysis of the causes of the functional shape oé tthissri-
butions a more comprehensive bio-mechanical model fotistpand landing on
flowers would be needed. Itis interesting that, ) is consistently exponential for
negative velocities, over all individual bumblebees, that is, for flights towards
the flower wall — however, the reason is unclear.
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Table 2.2: Weights and estimated parameters of the Gaussidre for the dif-
ferent experimental stages. Weights and parameters aneag¢stl for each bum-
blebee. Shown are the mean over all individuals and the atdrdkviation (in
brackets). The mixture of two Gaussians is the best fit intaiss. In the param-
eters of the distribution we observe no significant effedhefthreat of predators
on the bumblebees.

Stages

Akaike w.

Bayesian w.

a

01

02

(1) No Risk

0.97 (0.15)

0.93 (0.23)

0.64 (0.11)

0.06 (0.02)

0.29 (0.03

(4) Pred. risk
(7) Risk+lday

0.99 (0.04)
0.89 (0.29)

0.90 (0.27)
0.80 (0.38)

0.68 (0.13)
0.72 (0.16)

0.06 (0.02)
0.07 (0.07)

0.29 (0.02
0.30 (0.03

Variability between Individual Bumblebees

Looking at the parameters of the mixture of two normal dmttions, estimated
for p(v,) for different bumblebees, we found that there are strongtians be-
tween individuals. This is interesting as heterogeneoysifadions have been
proposed as one mechanism by which anomalous diffusior gtdfulation level
can be generated even if the individual behaviour is nor@@( 25, 24].

Surprisingly, by comparing the best fits to these distritmsi for the differ-
ent stages of the experiment, we could not detect any difta®in the velocity
distributions between the spider-free stage and the stabese artificial spider
models were present, as is shown in Tdblé 2.2. The paranddtée Gaussian
mixture vary between individual bumblebees, as can be sedigure[Z.8, but
there is no systematic change due to the presence of preddtioe same is true
for the distributions ofv, andv,. However the observations by the experimen-
talists suggested that the behaviour of the bumblebeegekamhen threatened
by predators. This means that the changes should be mekshyabbservables
other than the velocity distributions.

Since the bumblebees vary in their weight and size as mahbyitheir thorax
width, it would be reasonable to assume that their size rdiffees are the reason
for their different speeds. Yet, no such relation has beendadn this experiment
as can be seen, e.g., in Hig.12.9. This is consistent withvaque analysis of the
experimental data, which found no effects of bee size andadiéght parameters
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Figure 2.8: Individual variation of standard deviationstieé distribution ofv,
between bumblebees. No systematic change between expéalrstages is ob-
served for any velocity distribution.

and learning and memory of the bumblebeés [1]. This anabfsaspossible size-
dependence used only data outside the flower zones (sea&cfi2) to exclude
any complications due to variations in the time spent neardts. Including the
data near flowers also did not show any dependence.

Quantile-Quantile Plots

The information criteria only give the preference betwedss ¢andidate distribu-
tions. However, they do not inform us if the best of the caathd is actually a
good model: if all of the candidates are far off the real dsttion, the Akaike
weights (and Bayesian weights) could highlight one of thesrihe best of the
poor fits. As a supplementary qualitative test to which eixtie@ estimated distri-
bution with the largest Akaike weight deviates from the datar the whole range
variables, we use Quantile-Quantile (Q-Q) probabilitytplo

By using 20 surrogate data sets of the same size as the realggaterated
by drawing i.i.d. random numbers from the estimated distidn, we looked
for deviations from the model larger than those expectedlse of stochastic
variations due to the finite quantity of the data. FiglreIxshows the typical
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Figure 2.9: Standard deviations@fdistributions for each bumblebee depending
on their thorax widths for flights outside the flower zones. dépendence of the
velocities on the thorax widths has been found.

result for a single bumblebee: the fluctuations of the QQ-#fithe data lie in the
typical range one would expect for the given amount of data.

For comparison, figule Z.1L1 shows a Quantile-Quantile picafhon-matching
distribution, in this case a normal distribution with thereatly estimated param-
eters, for the aggregated data of all bumblebees. TheMlistins for the bum-
blebees have been normalized by the standard deviationebafmregation as a
result of individual differences (see below).The strongatéure from the diag-
onal indicates a clear mismatch of the normal distributiod the experimental
data.

2.2.3 Local Behavioural Changes under Threat

One way to examine the effect of the presence of predati@atbiis via the prob-
ability of a bumblebee to fly directly in front of a flower. Théange in the
bumblebees’ behaviour can be analysed by computing therelif€e between the
position densities at stage (1) and (4) as a function of tis#tipas parallel to and
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Figure 2.10: Quantile-Quantile plot of, against a Gaussian mixture as the best
fit: quantiles ofv, (in m/s) of a single bumblebee against quantiles of an estimated
mixture of two Gaussians. An ideal match would yield a stnaime. The stepsin
the real data are a discretisation effect of the data. Therres show 20 surrogate
data sets of the same size.

near ¢ < 5cm) the flower wall

(4) (1)

App(y, 2) = py (Y, 2) — pp (Y, 2) - (2.4)

Figure[ZIP shows that near the flowers, the position-PDFedses when intro-
ducing a predation threat.

For a more detailed analysis of the local effects, it is udefawitch to relative
coordinates where the origin is always the position of thedlowhich is closest
to the bumblebee. Here we want to focus on the change in thevimelr from
threat-less foraging to flights under predation threat aodom the preferences
between individual flowers, we therefore treat all flowergaqsivalent:

App (yreb Zrel) - 0;4) (yrela Zrel) - P;l) (yrela Zrel) ) (25)

where the positiongy,..;, z.;) are relative to the nearest flower centre. The changes
thus extracted from the experimental data are shown i EIg. Here data from
all the individual bumblebees was accumulated: differermetween individuals
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Figure 2.11: Quantile-quantile plots of against a normal distribution using data
of all bumblebees. The distributions for the individual thlebees have been
normalized by the standard deviation before aggregatidre mismatch of data
and distribution is visualized by the departure from a dreaand disqualifies
the normal distribution as a valid model. The introductidrpaedation threat in
stages (4) and (7) has no effect on velocity distributionthefoumblebees.

have been only found in the velocity distributions, but we dot find a strong
variation in the position-PDFs. Two different types of belbar can be seen here:
First, there is a small increase in the amount of hoverirgg,inspection flights
near the flower platform when a spider model is present([9R, Wiich is con-
sistent with Ref.[[1]. This increased hovering occurs ortlfl@avers occupied
by spiders: see below for an analysis of data in front of gpice flowers (in
Fig.[2.14). Second and more important is the local minimupresenting the
avoidance of flowers infected by spiders. This effect isrgjast in an area around
3 cm above the flowers, because the flowers are predomingyhpached from
above.

While the increased hovering occurs only on those flowersages(4) which
have spiders on them, the avoidance behaviour in stage #B5agresent in front
of spider-less flowers. This can be seen in figurel2.14, whereomparison of
the position-PDF between stages (1) and (4) is restrictddt@in front of flowers
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Figure 2.12: Regions in position space avoided under piaudttireat (stage (4))
relative to stage (1), i.e., wher®p,(y, z) < 0. The marked regions correspond to
positions near flowers.

without spiders. As stage (1) is spider-less anyway, thatricgion only affects
data from stage (4). The decrease of the position-PDF nédersiess flowers in
stage (4) indicates that the bumblebees adapted to thetimretiaeat by learning
from the training stage (2) before. A purely instantane@ation to perceived
spiders could only explain changes at the flowers with spid&otice that the
experiment does not tell whether the adapted avoidancevimeiias completely
new: it could be that the bumblebees just learned that thehyp flowers is dense
in spiders and therefore switch to a more careful search meti&eh already
existed prior to the learning.

Even while the bumblebees have been shown above to redutienthepent
aboveall flowers after learning of the predation threat in the tragnphase (2),
the avoidance is strongest for spider-occupied flowerss atwidance behaviour
affects not only flights near the flower wall but can still beeted further away
from it. For stage (4), figurEZZ15 compares the differencethé probabilities
pysefe, prerider 1o fly in front of safe flowers without artificial spiders to tein
front of flowers with spiders as a function of the distanceh® flower wall. This
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App(yrelizrel)

Figure 2.13: Predator avoidance of bumblebees at flowers(EH), extracted
from the experimental data. Increased hovering behavioum(stage (1) to stage
(4)) in front of a flower is represented by the positive spikedtly at the flower
centre, while the negative region behind this spike refldatsgeneral avoidance
of flying near flowers in the presence of threats (stage (4)).

relative change is given by

4. spider _ 4safe
p () = pp*e(x)
change, ;(z) = -2 Toafe P .

Pp (z)

Even up to 30 cm away from the flower wall the bumblebees arergbd as less
likely to be in front of flowers with spiders than in front of iger-free flowers.
For larger distances there is not enough data availablejngake comparison
less and less reliable.

Figure[2.16 directly compares the corresponding histograver the distance
x to the flower wall. With the exception of smat| where relatively less flying
space is available since the bumblebees’ movement isatesirby the flower
platforms, the histograms show a roughly exponential degay from the flower
wall, and for10 cm < z < 30 cm the preference of flying in front of spider-free
flowers is again visible.

(2.6)
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Figure 2.14: Avoidance of spider-free flowers in stage (4amparison to stage
(1), as extracted from the experimental data. While not eengtas in front

of flowers with spiders, the avoidance of spider-free flowgosts towards an
adaptation of the bumblebees to the predation threat bydeabehaviour. No
increased hovering is found here — this behaviour occuedysakar flowers oc-
cupied by spiders (compare Fig.2.13).

In total, while other effects occur due to predator presgpag the hovering
detected above), the dominant effect on the bumblebeeiqusits the relative
flower avoidance, which, while strongest at flowers with spéd also affects the
behaviour at spider-free flowers by learning.

2.2.4 \elocity Autocorrelations

As the velocity distributions were not affected by the eommental change, we
also examined the autocorrelation functigfi(7) of the flight velocities

o () ((w(®) =Wt +7) = 1) 2.7)

o2

for flights from flower to flower. The autocorrelation has beemputed by av-
eraging over all bumblebees and over time in all flights thhat@mplete from
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Figure 2.15: Relative difference of positiarPDFs (both in Stage (4), see
Fig.[ZI3) in front of flowers with vs. without spidershange,..,(x) is given rel-
ative to the probability density function in front of flowevgthout spiders (see
Eq. (Z.8)). It shows the avoidance of flowers with predataesneup to 30 cm
away from the flower wall.

starting on one flower to landing on the next. We exclude figiantaining too
long gaps (see sectibn AP.3) and weighted with the totalarnof data available
for each time interval.

FiguredZ.1I7 and 2.1 8 show the velocity autocorrelatiohéat andy-directions
for different stages of the experiment. In thalirection (Fig[Z.1l7) perpendicular
to the flower wall the velocity autocorrelation has no quaive dependence on
the predation risk: It is always anti-correlated for timesumnd0.5 s, which is due
to the tendency of the bumblebees to quickly return to thedtomall. For longer
times this effect of returning to the flower wall still induecsome anti-correlation,
although it gets quickly weaker for larger

However, the flights with long durations between flower gisiecome more
frequent for stages (2) and (3) where the bumblebees wereserpo predation
risk compared with stage (1) (inset of Hg. 2.17). This i®alsflected in a small
shift of the global minimum in the correlations for stagey 48d (3) away from
the origin.

In the verticalz-direction the autocorrelation is similar to the one in the
direction. This relation is due to the correlations betweemd > for the starting
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Figure 2.16: Histogram of bumblebee positions under predahreat (stage
(4)) in z-direction. Shown is the position histogram in front of daraus flowers
(with spiders, red) and safe flowers (without spiders, gre€he former is scaled
by a factor of3 for comparison, to account for the different number of dange

and safe flowers.

and landing phases of the flights: bumblebees leaving a fl@aerto a simulta-
neous increase in both position coordinates as can be s&em [B.5.

An important result is that, (parallel to the flower wall) is anti-correlated
in the presence of spiders for7s < 7 < 2.8s, while for the spider-free stage
it remains positive up td.7s (Fig.[2ZI8). The autocorrelation function varies
between bumblebees due to the limited amount of data andftaddifferences
between individuals. We therefore re-sampled the resulehying the data of
each single bumblebee out (jackknifing). The re-samplingeti of Fig[Z18)
confirms that the differences in the autocorrelation.pfre due to the presence
of spiders.

The velocity autocorrelations are consistent with a morefahsearch: When
no threat of predators is present, the bumblebees forage systematically with
more or less direct flights from flower to flower, arching awagnh the flower
wall. Under threat the trajectories become longer and thelebees change
their direction more often in their search for food souraegecting flowers with
artificial spiders. This reversing of directions generdates anti-correlations in
the y-direction. By looking at the flight time distributions, i.#e distribution of
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Figure 2.17: Autocorrelation of the velocities at differexperimental stages:
without spiders (red triangles), under threat of predafgyeen circles), and under
threat a day after the last encounter with the spiders (bfasses). In ther-
direction the velocities are anti-correlated for smallésn 0.5s) due to short
flights from one flower to a nearby flower back at the flower wdlset: the
distribution of flight-durationg’; for each stage shows a corresponding maximum
for these short jumps. Under threat of predation (dottexdy fiights become more
frequent.

time intervals between starting on one flower and landingratteer, one can rule
out the possibility that the main features of the correlafienctions are induced
by the boundedness of the flight arena: in the inset of [Eigd, 2all flight time
distributions display maxima arouri¢ ~ 0.5 s suggesting that times below 2 s
are primarily related to flights between flowers. Boundafg&s are only evident
for flight times that fall within the tail of the distributian The anti-correlations
in the y-direction thus cannot be induced by the walls but are geeeray a
reversal of directions at flowers under predatory threat.tk@x- andy-direction,
the return to the flower wall is responsible for the anti-etation at small delay
times, not the opposite wall, which is too far away to havegaificant effect.

A simple model describing this mechanism is given in sed@&% below. For
the z-direction, the return to the flower wall is responsible foe tanti-correlation
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Figure 2.18: The autocorrelation of shows the effect of the presence of spi-
ders on the flight behaviour of the bumblebees. The inset shio& re-sampled
autocorrelation for the spider-free stage in the regionrehiee correlation differs

from the stages with spider models, which confirms that tferéinces are due to
predatory threat.

at small delay times.

The distributions of the flight duratior’s themselves also change under threat
of predation: the inset of Fig. 2117 shows the roughly exptiaétails of P(7)
and that the flights with long durations between flower visggsome more fre-
guent for stages (4) and (7) compared to the pre-trainingesth).

2.2.5 An Effective Potential Model for the Dynamics
of Threatened Bumblebees

The avoidance of spider-infected flowers seen in seclidgh8 and2.2}4, together
with the spatial switching of flight modes (see secfion®,Z2an be modelled by
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the Langevin Equation:

dr

T = )
dv

E(t) = —nv(t) —VU(r(t)) + &(r,t), (2.8)

where n is a friction coefficient and a vector of white Gaussian noise with
standard deviation depending on the flight mode as a funciahe position,
E(r,t) = xfz(r)€1(t) + (1 — xf2(r))&2(t). Herer = (z,y,2)" is the position
of the bumblebee at timg xs,(r) is the indicator function of the feeding zone,
which is equal to one whenever the bumblebee is in the cuhendra flower as
defined before, and,, i = 1,2 is Gaussian noise with two different variances.
The potential/ models an interaction between bumblebee and spider in the fo
of a repulsive force exerted by the spider onto the bumblefoeevhich we as-
sume that the potential maxima are located near infectectfw

When the mechanism generating the correlation functiowsvshin figures
2.17,[2.18 is not the focus of the investigation, it suffic@sdnsider a reduced
version of Eqs.[{Z]8) in the form of theffectiveLangevin equation

% = Xfz(0) G (1) + (1 = xfz(r)) G (1) - (2.9)

This equation describes the spatially varying hovering search modes by us-
ing noise¢; , i = 1,2, which models the impact of the potentialtogether with
the noise¢. Further data analysis shows that excluding hovering hasigrofi-
cant impact on the velocity autocorrelations, which are whated by the search
flights. This is in full agreement with figurésZ2117,2.18, wehthe time scale for
the predator-induced anti-correlation (Hig.2.18) is é&arthan the time scale for
flights between adjacent flowers (Fig.d.17). Hence, we mggde) as a vector
of Gaussian white noise with the smaller varianéegiven in Table2Zll which
describes the hovering. The search flights from flower to ffosve reproduced
by the correlated Gaussian noise vedg(t) with variances? and the autocorre-
lationsv“(7), i = z,y shown in Figsl.ZIT, 2.18. While this model is a quite sim-
plistic phenomenological model, the components we arrierea directly based
on our data analysis.
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Figure 2.19: wv,-Autocorrelation for a model with a repulsive potential.
Egs. [ZID)[[Z1) model the predation threat by diffesgrgngths of the repul-
sion. Shown are results from computer simulations withaut(0; red triangles,
upper line) and with predation threat & 0.5 m?/s%; green circles, lower line).
These results should be qualitatively compared with theeewpental findings
Fig. [Z18.

Simple Model explaining Anti-Correlations

We now focus on the different aspect of understanding thphyisical mecha-
nism that generates the anti-correlations of the velaciiarallel toy shown in
Fig.[ZI8. Starting from the full model Eq§.{R.8), since vewdrseen above that
the velocity autocorrelations are dominated by the seaight§l it suffices to se-
lect that mode by setting(r, t) = &»(t) thus neglecting any spatial variations of
the noise. This yields the Langevin equation

) =~ () - G () + €00, 210)

for the y-velocity only. A rough approximation for the repiye force is provided
by a periodic potential with maxima at dangerous flowers,

U(r) = ucos <27ri) , (2.11)
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wherey, is the mean distance between spidersatite strength of the repulsion.

We integrated this Langevin equation via an Euler-Maruyanehod (see
sectiorLA.B) under variation af by computing the autocorrelation functioff of
the generated data. Figure 2.19 shoeyfsby increasing the repulsion strength
The correlation function changes from positive correlasiéo anti-correlations in
a range of delay times comparable to the changes in the correlation function of
the experimental data of Fig.2]18. This qualitatively oehrces our experimental
findings from first principles. Note that the oscillations fogherr in Fig.[2Z.19
would be suppressed in a higher-dimensional model. The dilections can be
treated analogously, e.g., by includingzaxdependent term in the potential for the
attraction of the bumblebees to the flower wall. A stochaatialysis of Langevin
equations with periodic potentials can be found, e.g., ih [38]. The effect of
the harmonic potential on the creation of negative velocdyrelations can also
be calculated analytically [38].

We emphasize that our model EJs._(2.10), (P.11) provideg amjualitative
description of the biophysical mechanism generating thengk in the correla-
tions of the bumblebee velocities under predation threat.aFquantitative com-
parison to the experimental data a much more detailed moai@ldie necessary,
which needs to include the random positioning of the spiderd the general
attractive force exerted by the flowers onto the bumblebEslelling the three-
dimensional nature of the potential would also be importaatice, e.g., the local
maximum ofvy¢ aroundr =~ 2.5 which is an artefact of the one-dimensional
modelling of spider avoidance. However, as it is difficulrétiably estimate the
parameters of the potential from the given experimentad,dat do not attempt
such a quantitative comparison here. Instead of focussirigelocal interactions
with the food sources and predators, we will develop a moneged model for the
bumblebee behaviour during search flights from flower to flowehapteB.

2.3 Connection to the Llevy Hypothesis

The motivation for the introduction of Lévy walks into fajimg from a theorists’
point of view were the existence of a generalized centraitlthreorem as dis-
cussed in sectidn1.3.2 and optimality claims [47, 5], dueding scale-free (see
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section’L.4PR). We emphasize that the experiment analys#ds chapter does
not match the conditions of the Lévy flight hypothesis [Hdsection 1.412). We
therefore cannot directly support or reject the biologicalry hypothesis (sec-
tion [[.4.2) with the given data, but can only argue indirectVer its applica-
bility. Lévy flights and Lévy walks predict scale-free piability distributions
[74] and generate trivial functional forms for the velocigrrelations (|89 90].
Accordingly, experiments testing this hypothesis havei$ed on probability dis-
tributions, not on correlation decalyl [6,184,] 10] 68]. Howewair results (see
sectior’2.Z1) demonstrate that velocity autocorrelatzan contain crucial infor-
mation for understanding foraging dynamics, here in thenfof a highly non-
trivial correlation decay emerging from an interactionvaeén forager and preda-
tor. Identifying such an emergent property in contrast taple behaviour (see
sectio.4R), as we do with our simple model, has beenihigfield as a crucial
problem in foraging dynamic$§ [68]. In addition, we obsensgpatial variation of
the velocity distributions (see section Z212.2). These figdillustrate the presence
of different flight modes governing the foraging dynamicsdiffierent scales of
time and space. Our results thus indicate that taking Soadedistributions as a
paradigm beyond the conditions of validity of the mathepwtLévy flight hy-
pothesis might be too restrictive an approach in order touragomplex foraging
dynamics of animals. This is consistent with our discussidhe previous chap-
ter: in real application in the context of foraging animasariety of mechanisms
may naturally lead to much more complicated distributiang,, individuality of
animals [25]°24], 26], an intermittent switching betweensipallistic persistent
dynamics and localised search modes [88, 48], or quantities which one has
averaged like time of day [68]. It is easy to mistake nonidtivelocity or step
length distributions as a sign of the presence of Lévy walldsile a more de-
tailed data analysis can reveal that seemingly heavydtaiistributions are only
an effect of, e.g., failing to distinguish different movemenodes or ignoring a
food source inhomogeneity (compare sections 1[3.5.11a2dT.4P). The vari-
ety of complications which can arise highlight the need tttdvainderstand, and
more carefully analyse, the interplay between forager amdrenment, which
will yield crucial information for constructing better ntegmatical foraging mod-
els. From that point of view Lévy walks are probably not adastarting point for
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the analysis of foraging data.

2.4 Summary

In this analysis of an experiment on foraging bumblebeesr@ain concerns were
how the search behaviour the bumblebees is influenced byréisemqce of preda-
tors, in which statistical properties the influence marngétself, and how and if
the results are related to the Lévy hypothesis.

We found that the velocity distributions of the bumblebeas be described
by Gaussian mixtures which can be interpreted as a switghiagess between
two flight modes depending on the position of the bumblebeg.eXpected by
the boundedness of the experiment, we did not find any ev&suapporting the
Lévy hypothesis (see sectibn114.2): the velocity distidns and also the flight-
durations show no power law behaviour. The non-trivial eéloautocorrelations
also do not match with a Lévy walk model (see seclion1.3r2particular, the
observed changes in the autocorrelation due to the inttaduof a predatory
threat would be difficult to include in such a model. The preseof different
flight modes and their impact on the velocity distributioasd the changes in
the velocity autocorrelations due to environmental charsf®w that bumblebee
foraging is governed by different dynamics on differentlesaf time and space.
We therefore argue (in sectiénP.3) that scale-free modeth s Lévy flights
might thus be a too simplistic approach to foraging.

Regarding the memory of the bumblebees and their adaptadipnedation
threat we confirmed an increased hesitation behaviour int fod flowers with
spiders on them (sectign 2.P.8,[93]). More importantly warfd a tendency to
avoid flying near/above both types of flowers, dangerous afel sinder preda-
tion threat. Although not as strong as in front of flowers wafiider models, the
effect was also present at flowers without spiders. It isdfoge not a direct re-
action to seeing a spider model, but instead an adaptatitimetgeneral threat
of predation. We described this learned flower avoidancendehr by a repul-
sive potential in a flight model in sectign 2.R.5, for which #en discussed a
simplified one-dimensional projection resulting in a gtaive modelling of the
predation-induced velocity anti-correlations which wesetved in section 2.2.4.
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While we here concentrated on the effects of a predatonatiaed the inter-
action of the bumblebees with the flowers, we will take a alések at the search
behaviour of the bumblebees outside the flower zones in tleiog chapter.
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Chapter 3

Modelling Bumblebee Flights

In chaptefR2 we analysed experimental data of foraging babdg#s with a focus
on understanding the adaption of the bumblebees to theimoegmaent and the ef-
fect of artificial predators on the flight behaviour. In thisapter we want to step
away from a detailed description of the local interactiothwiowers and preda-
tors. Instead our aim is to find a good stochastic model fobtimablebee flights
away from the flower wall. As an important aspect of the obséroumblebee
movement is the directional persistence, we use a genatializof the reorienta-
tion model (see sectidn1.B.3) similar to the generalizetteain equation in sec-
tion[T.3.4 as our model class. The goal is a biologically amgsprally plausible

model whose statistical properties should be similar te¢haf the experimental
data.

In section[3]l we describe the general set-up of our modelkhmive then
construct in sectiofi 3.2 from the experimental data. With éstimated model
parameters and interdependencies, we then validate thelnmosectior 313 by
simulation of its stochastic differential equations (s&tf3.3.2) and a compari-
son of the resulting simulated data with the experimenttd aesectio3.312. We
conclude the chapter with a discussion of the differencesiomodel and reorien-
tation models in sectidn3.2.8 and a summary in se¢fidn 34rief presentation
of the main results of this chapter can be found.in [3].
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3.1 Set-up and Assumptions

In the following we will present a flight model in terms of geakzed Langevin
Equations (see secti@n1.13.4), which we then use to anakpsgimental bumble-
bee data. In this chapter we will focus on the horizontal biefode movement.
By neglecting the slower vertical movements, which are ofenaterest when
analysing the starting and landing behaviour near flowers éectiofl 2.213), we
thus restrict ourselves to a two-dimensional model. Sineeave not interested
in the interaction with the food sources, we exclude fligrgamthe flowers, i.e.
in the flower zones (see sectibn Al2.2) from the data of therxent [1,/92]
described in sectidn2.1.

Given movement data of flying bumblebees available with astzont time
stepAt, the step length is determined by the speéd = |v(¢)| of the animal.
As we will be looking at a flying insect in a data recording whigses a small
time step, we may expect to have a deterministic persistdnedo the animals
momentum. A reorientation model would assume thand 5 are drawn i.i.d.,
which is sensible ifAt is large enough. However, for small time steps it cannot
be excluded that the decision of the animal to turn left ontriigdkes longer than
the time step (or persists over a longer time time), whicha@relate the turning-
angles3(t) over a number of time steps. If one wants to arrive at a bettehsstic
model for bumblebee flights than the simple reorientatiomlehn sectiol 1.313,
one therefore has to capture the dynamics of the turningeaangd the speed in
addition to their distributions. We model the changes iresp@nd turning-angle
via two coupled generalized Langevin equations (undeinitaspretation),

ds

- () = h(B(t), 5(1)) + & (1) (3.1)
S 0) = 9(8(0) 5(0) + (1) (32)

where we distinguish between the deterministic padsdg and stochastic terms
¥ and¢, (whose speed dependence will be discussed in sdcfion .3\/&)as-
sume that the noise processes are stationary with auttetoorefunctions which
may be non-trivial, and we make no further assumptions ferghape of their
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stationary distributions.

While Egs. [31L[_3]2) represent a time-continuous desoripthe turning an-
gle 3 yields the change of the directien(in a non-comoving frame) according to
the fixed time resolution\t. That is,3(t) relates to a time-continuous angular ve-
locity v of e via 5(t) = ftt_my(r)dr. The animals’ positiom(t) = (z(t), y(t)) is
then given bydz/dt = scos(a(t)), dy/dt = ssin(a(t)) andda/dt = ~(t). The
numerical analysis is done with time-discrete data wheeentteasured turning
angle is given bys(t) = £L(v(t), v(t— At)), wherev(t) = (r(t+ At) —r(t)) /At
at timest = nAt, n € N.

3.2 Model Construction

The generalized Langevin equations18.1] 3.2) are an appitoanodel the bum-
blebee movement, which tries to separate deterministis pathe dynamics from
stochastic ones. The stochastic terms are not assumed tmlyeabng only from
outside influences, e.g. turbulences. Instead they witl edpresent the non-
deterministic decision processes of the animal.

In this section we will first look at how one can, assumingistedrity and
Markovianity (see sectidn3.2.1), extract coefficient fiimres of a Langevin Equa-
tion from data via a description by a Fokker-Planck Equatiosectiof3.213. In
sectior 3.2 we will then extract and discuss the detestigiierms of our bum-
blebee model from experimental data. After a discussiohefriterdependencies
of turning-angless and the speed in section[3.2)5, we will then determine a
stochastic description gf ands.

3.2.1 Stationary and Markov Processes

Two properties we will have to assume of our data, if we wanestimating
Fokker-Planck coefficients, are stationarity and Markoitia

Let X(t), t € Rt be ad-dimensional stochastic process an(iX, ¢) be the
time-dependent probability densities in phase space giviered initial distribu-
tion w(X,0).
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Thejoint probability densityw(X,,, t,; X1, tn_1; - - .; Xo, to) is the proba-
bility density to be aiX; at timet; forall i = 0,1, ..., n. All the joint probability
densities together specify a stochastic prodess [38].

The procesX(t) is calledstationaryif all joint probability densities (for all
n > 0) are independent of any time shift

wW( Xy by X1, b1 - -3 Xoy o) = w( X, tn+ T X1, b1+ 155 Xo, to+T).
(3.3)

The conditional probability density)(X.,,, t,| X1, t,—1; - - - ; Xo, to)El is the
probability density to be in stal¥,, at timet,, if the system was itX; at¢; for all

2

w(Xo, ty; X1, tn—1; - . -3 Xo, to)
w(Xn—la tn—l; ) X07 tO)

p(Xn7tn|Xn—latn—l; .- ';X07t0) = (34)
We call the procesX(t) a Markov process the conditional probability den-
sity of the process has tiarkov property

p(Xn> tn|Xn—l> tn—l; Xn—2a tn—2; .. ) = p(Xna tn‘Xn—la tn—1)~ (35)

This means that the time evolution of the probability dgnéitnction depends
only on one previous time step. ER.{3.5) holds for arbitrgry- ¢,,_;.

3.2.2 The Fokker-Planck Equation

While Langevin equations are stochastic descriptions ofkishaprocesses, the
Fokker-Planck equatiois a deterministic way to describe these systgnmtead
of analyzing the dynamics of the observables directly, w& nbange our point
of view on stochastic processes by looking at the dynamichefprobability
density of the observables in phase space instead. The FBld@ck equation
is an advection diffusion equation for the probability denfunction w (X, t) of

Ywheret,, >t if k>0
20f course the Fokker-Planck equation is only deterministiproviding the deterministic
dynamics of the probability density function and not of ieations of the process.
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cu =~ 3o (DX (X, 0)

1< o @
2
+ 5> e (DX Hux,b) (3.6)

wherew is the probability density functiodD™) is the drift vector,D® is the
diffusion tensor,X is the vector in phase space aids the dimension of the
system.

The diagonal elements in the diffusion tensor describetiieagth of the nor-
mal diffusion in the different directions in phase spacelathe off-diagonal ele-
ments measure cross diffusion.

We can rewrite the right hand side of E§.(3.6) by introducihg Fokker-
Planck operatorL - p so that the Fokker-Planck equation regds:

%w(X,t) = EFP(X,t)w(X,t). (37)

We can integrate the Fokker-Planck equation to compute thritgon of a
given probability density as an initial condition. A spdaase of an initial con-
dition for a Fokker-Planck equation afegpeaks as discussed in section 3.2.3 and
leads to a method to extract the Fokker-Planck coefficienta sample paths.

3.2.3 Estimating the Drift- and Diffusion Coefficients

Let us assume that we know the exact stéfeof a Markov process at timg.
From the point of view of a Fokker-Planck equation this meahaasthe probability
density function at time® is ad-peak:

w(X, ) = §(X — X°). (3.8)

3The same can be done in the case of the Kramers-Moyal expegiging the Kramers-Moyal
operatorLx s .
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The conditional probability density at a tinte> ¢® is then just the probability
density function at that time:

p(X, X5 ) = w(X, ). (3.9)

As the Fokker-Planck equation is an advection diffusionagign we know that
for short timesr = ¢ —t* the probability density function (X, ¢) is a multivariate
normal distribution with a mean &* + 7D (X*, t*) and a variance (covariance
matrix) of 7D (X, ¢*) in the first order ofr [38]. This means that if we have
a large enough ensemble of sample paths of lengitarting from positiorX* at
time ¢*, we can estimate the mean and the variance (&, t° + 7) to calculate
the Fokker-Planck coefficients at positi&ri at timet®.

If the process is stationary we can estimate the time-inuldget drift- and
diffusion coefficients from only one sample peilﬁt) by [38]:

1 /~
(1) — lim = _
DY(X) = lim (X(t+7) X>‘>~<(t>:x (3.10)
1 ~ ~ T
D@ (X) = lim - <<X(t ) - X) : <X(t +7) - X) > (3.11)
=0T X (=X
whereX(t) is a realization of the Markov process anhd - )% #=x is the condi-

tional time averagbover allt for which X(t) = X.
For a numerical estimate from a limited amount of data, theddmnal aver-
age has to be taken over afor which X () € U(X) whereU (X) is a neighbour-
hood ofX because we should have enough data to get a reliable average.
The limit for 7 in Eq. (3.I0) and EqL{3.11) means that for data with a finite
sampling rate, an approximation is needed in order to gehasts for the Fokker-
Planck coefficients. An approach which is applicable to de is given below.

4Ergodicity, which guarantees that the time average is theesas the space average is used
here, too. For stochastic processes this follows from thigostarity with the exception of a patho-
logical process which has a phase space which is split byitefiotential walls. In that case there
would not even be a unique invariant density.
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Connection of the Fokker-Planck Equation and the Langevin Euation

The relation of the coefficients of a Langevin equation (sge @9) in sec-
tion[I.3.4) to those of a Fokker-Planck equation depends@ahoice of a stochas-
tic integral, because, if we fix the process by the Fokken&daequation, the
deterministic terms of the Langevin equation depend onnitsrpretation (see
sectiof 1.3 }).

For thelto interpretationof a Langevin equation the drift coefficient equals
the deterministic part of the Langevin equation:

DW(X,t) = f(X,1). (3.12)

The Stratonovich interpretatiof the Langevin equation gives a more compli-
cated res

akz N

5%, (X, 1). (3.13)

DV (X, 1) = fi(X, 1) + = Zkﬂxw

The additional term is callespburious driftand is a consequence of the integration
scheme. It is induced by and depends only onrtbe-deterministigart of the
Langevin equation.

The relation between the diffusion and the stochastic plathe® Langevin
equation is the same for both interpretations of the stdahisegral:

D@ (X, t) = K*(X,1). (3.14)

With Eq. (3I2) we can easily g&@® from k by a matrix multiplication. The
inverse transformation is not as direct: in order to compufeom D we have
to compute a root of the diffusion matrix. A roR of a diagonalizable matri¥1
is a matrix satisfyingR? = M. With a diagonalizatiodM = PAP !, whereP is
an invertible matrix and\ is a diagonal matrix, a rod® can be computed Hy

R—P (\/K)P‘l. (3.15)

SSee Eq.[[T12).

5The root of a diagonal matrix is just the matrix of the rootsatfentries.
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The root of a matrix is not unique as we have the choic&offor every or-
thonormal matrixO the matrixP := OP gives a diagonalizatioM = f’;&f’_l,
too. It follows that for every Fokker-Planck equation we é&av corresponding
family of Langevin equations for differer® with k(X,¢) = E(X,t)o. This
normally does not lead to complications as these Langewatgans specify the
same Markov process which can be explained by the fact tbabtated (or mir-
rored) d-dimensional Gaussian white noise prodNéss OT is the same as the
procesd’.

The Fokker-Planck equation and the Langevin equation aceemuivalent
descriptions for the same class of processes. Equafiofi)($3.18) and(3.14)
give the means to transform one description to the other aoH providing, e.g.,
the possibility to look at probability density functionsdato compute invariant
probability densities from the Fokker-Planck equationd iastegrate the Langevin
equations to get sample paths.

Finite Time Corrections for Diffusion Coefficients

In general time series which originate from measured data hdinite sampling
rate. This means we cannot go to the limitof— 0 but we have to use the
smallestr availabléj Due to this approximation we have to correct the diffusion
term for the finite time effects induced by the drift term gigi[98,/99/ 100]:

D®)(X) = ¢—1< (i(t +7)—- X — TD(I)(X)>

- T (3.16)
: (X(t b)) - X - TD(I)(X)> > .
X(t)=X
The drift term is approximated by:
1 /~
(1) B _
DM(X) = - <X(t+7) X>L~((t)zx. (3.17)

This correction of the diffusion coefficients due to the fnitme 7 is only the

’Another way would be to compute the Fokker-Planck coefftsidar differentr and then
extrapolate them to = 0.
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first term for a full correctiorﬁ A more elaborate correction and a discussion
of different corrections can be found in_[100]. In the case of> 0 this is not
necessary as the mean-®™)(X) = 0 and all corrections of higher order vanish,
too. Another aspect of a finite amount of data is that any teaslynamics at the
beginning of the time series should be discarded. Othersta@narity would be
broken.

3.2.4 Determining Deterministic Dynamics of Flight Data

We now examine the bumblebee flight data by treating it as geteerated by
a stationary Markov process with stat¥s= (3,s)" € [-=, 7] x R*, and nu-
merically estimate[]28, 100, 101, 102] the components ofdtiie vector field
(drift coefficients)D™) (3, s) of the corresponding Fokker-Planck equation using
Eq. (3.17).

Since we interpret our model of Langevin equations](8.1) 8rder Ito-
interpretation, the drift coefficients of the Fokker-Plereguation are the deter-
ministic terms of the Langevin equations we were looking(fme section3.2.3):

DW(8,5) = (9(8,5), h(B,9))". (3.18)

This estimation of the drift terms is based on a Markov apnaion: only
those parts of the dynamics which match to a Markovian dgson in the state
space variable§ ands have their deterministic terms reflectedii?) (X). Any
other parts of the flight dynamics — stochastic as well asragtéstic but not
Markovian in/3 ands — are captured by the stochastic terms of Hgsl [31, 3.2).

By looking at the drift coefficients we can examine the meaha®ur of
the turning-angle and the speed The drift vector field (normalised for better
visibility) in Figure[3:1 shows that the drift is quite wddehaved: the drift vectors
quickly push the turning-anglé towards0, while the dynamics in the speed
is much slower. We therefore find a timescale separationdéterministic part
of the dynamics can be reduced to a regular and fast relaxafiohe turning-
angleg and slow dynamics in. The nearly horizontal vectors with minimal curl

8The diffusion estimation with this correction is a kind ofvierse algorithm’ of the Euler-
Maruyama approximation (see sectfonlA.3).
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Figure 3.1:Normalised drift vector field D) (3, s)corresponding to the deter-
ministic terms of the Langevin equatiohs{3.1]3.2) estadatia Eq.[(3.110). The

regular structure shows the quick relaxation to small angled the absence of
strong cross-dependencies in the drift.

demonstrate that the cross-dependentiesandg(3) are weak; in our model we
will neglect them completely.

By projection on the turning-angle resp. on the velocity we examined the
drift of each variable separately(s) andh(j3).

Examining the drifth(3) of the turning angle in Fid.“3/2 reveals that the drift
term seems linear i¥ — indeed we find numerically that its slopek matches
exactly to a decay of the turning angle @oin a single observation time step
At by k =~ 1/At, disregarding the noise term. This means that by integrat-
ing Eq. [31) over a tim&\¢t and approximating the drift () for small At by
[ n(B(r))dr ~ h(B(t))At, we have

t+AL t+AL
Bt +80 — 50 = koAt + [ Emdr=—p)+ [ &nar
: : (3.19)

With &,(t) = ftt_m &,(T)dr and Eq. [319), the time scale separation in the

(G-Langevin equation due to the very fast relaxation meansvileacan simplify
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Figure 3.2:Drift coefficient of the turning-angle. The deterministic drift:(3)
as estimated from data (black, 95% confidence intervalseg)gs in good ap-
proximation linear (Stokes-like) iff (red diagonal).

Egs. [31[3R) to:
5() = &0, (320
1) = 9ls(0) + 010) 321)

While this reduction of dynamics fromi3/dt to 5 makes the model resemble the
simple reorientation model (sectibn113.3), the turninglas are still correlated,
as we will see in section3.2.6. Since the turning angles aralsr for high
velocities it would be tempting to uges as a scaled turning angle to simplify the
geometry of the systeHmHowever, as we will see in sectidn_3R.5, the speed-
dependence of the turning angle is more complex.

The speed-drift/(s) displayed in Figi-3]3 shows that the deterministic part of
the speed-Langevin equation alone is non-linear and woale la stable fixed
point arounds, = 0.27m/s. Comparing the slopes above and belgareveals
that fors < s the force towards, is stronger than fog > s,. This is biologically

9This small-angle approximation would assume a purely géoordependence of on 3.
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Figure 3.3:Drift coefficient of the speed. The experimental deterministic drift
coefficientg(s) (black, 95% confidence intervals in grey) has been appraeicha
by piecewise linear functions from one to three pieces (bheen,cyan). The
data shows the tendency to quickly increase low speeds. Ynwapeeds above
0.27 m/s decrease more slowly, except for the rare high speed

plausible if one interprets, as a preferred speed: if the bumblebee is slower it
accelerates, but if it is faster it does not rush to decedesatit would give up the
energy spent to reach a high velocity. For very high velesifover 0.55 m/s) the
slope ofg(s) increases again. This might be caused by the limited spaikable

to the bumblebee in the flight arena. For our model we appratedy(s) by a
piecewise linear function:

—d; for s < s

, (3.22)
—ds for s> So

g(s) = (s — sp) X {

whered; > d, > 0. As the very high velocities are rare, it made no difference
in our model whether we used Ef.(3.22) or a piecewise lingactfon with three
pieces.
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Beyond Deterministic Bumblebee Dynamics

With the deterministic drift terms (see section 312.4)restied from the experi-
mental data as described in secfion3.2.3, we could now gaithrew estimation
of the diffusion tensor as described in secfion 3.2.3. Harewve know that the
assumption of the Markov property (see seclion8.2.1) isadlgt not valid for the
analysed data. For example, anti-correlations, as obdémtee velocities, and
v, in z- andy-direction in sectiof 2214, cannot be generated by a FeRkamck
equation with the drift vector field shown in Fig_B.1 togetkédth uncorrelated
diffusion terms. Our approach is therefore the followinge estimated the drift
terms assuming that the process is Markovian as descritmaaf herefore the
drift terms only capture the mean behaviour, and all parthefdynamics which
are not described by the drift have now to be treated as nbliisice that the full
flight dynamics has been projected on the turning-afglad the spees— should
there be other relevant variables, with our modelling apphatheir dynamics will
contribute to the noise terms even if their dynamics wasallgtuleterministic.
This means that, in order to get a useful description of tha,dae have to al-
low autocorrelations in the noise terms of the Langevin équnaApart from this
coloured noise, another reason not to use the estimatigredfakker-Planck dif-
fusion tensor as described above, is the complication ofpemi#ence between
turning-angle and speed. In the following we will at first gtify this dependence
in sectior 325 and then discuss the coloured noise tesftisand(t) of 5 and
s separately in sectidn 3.2.6 alad 312.7 respectively.

3.2.5 Dependencies of Turning-Angle and Speed

The turning-angle of an animal and its speed are often asdtortee independent
for simplicity. Given that the force a bumblebee can use t@ange directions is
finite, the largest turning-angles have to be smaller whandlwith high speeds
(see FigC3HK). In our case, this is consistent with the alesehsimultaneously
having high speed and large turning-angle in the data, agidemt, e.g., from

the data gaps in Fig._3.1 in sectibn_312.3. However, animatsoounteract this
geometric dependence by varying the forces used for chgmtjiaction with the

speed.
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Figure 3.4:Schematics of the dependence ¢f on speeds. Assuming a con-
stant maximal force (circle) available to the bumblebee doeterate during a
time step, the distribution of the turning-angledepends on the previous speed
si—1 = |v;_1|. lllustrated is the change from large angles for low spektt (o a
stronger concentration aroufd for higher speeds (right).

In this section we will first discuss an alternative model imet the accelera-
tions of the organism are assumed to be independent of iksldpefore discussing
the experimental data. In models in which the momentum oftfimal is not
important for the observed directional persistence, thoss-dependence is often
neglected(|44].

Turning-Angles in a Model with Speed-independent Accelerons

A simple model showing a dependence of the turning-angletherspeed (see
Fig.[333) is given in the following. Given the velocity(t) = (v, (t), v2(t))" of an
animal for each time stefrt, assume that the distribution of acceleration vectors
a(t) = YO¥=2Y js invariant under rotation with variane€ in all directions,
and the random accelerations are drawn i.i.d. from a binbdisdribution and
independent of the speed.

Using the comoving frame of the animal at time.e. centered at the animals
positionx(t) = (x1(t), zo(t))" = 0 and oriented in the (old) direction(t—At) =
(s(t — At),0)7 for step lengths;(t) = |v(t)|, the position at time + At is
distributed as

1 _@i@)—st—Aat)2tag(t)?

¢ . (3.23)

Px(t + At)) =

2mo?
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Changing a volume elemenix to polar coordinatesgs(¢), 3(t)) with the new
step lengths(¢) and turning-angled(t) betweenv (¢t — At) andv(t) results in the
probability p(s(t), 5(t))dsd( := p(x(t + At))dx via
p(s(t), B(t))ds(t)dB(t) = 2730_2e‘5“)2““_“)2555”5“_A” =D ds(8)dB(1).
(3.24)
between the

The turning-angles then depends on the quotientt) := s(t\/_ﬁt)

former speed and the noise strengthintegrating outs(¢) the distributionp(3)
of the turning-angle is given by:

e e sin®(B)

p(0) = 5+ = neos() (1 +erf(eos(9)  (3.25)
for —m < g < m. With vanishing relative speeglt) = 0 the first term gives
a uniform distribution as expected, and fgft) — oo the distribution sharply
peaks af? = 0 with its variances g approaching), similar to the behaviour in the
simpler case of a von Mises distribution {42, 103].

Experimental Speed Dependence of Turning-Angles

Analysing the experimental data we find a strong dependefrtbe turning-angle
on the speed. Figufe-3.5 shows the standa(d) of the turning-angle distribution
as a function of the bumblebee speedhe dependence of; on s is robust over
data collected from the different experimental stagesv#rations seen for high
speedss in Fig.[3.5 are statistical errors due to a lack of sufficigmtlany data
points for high speeds

The experimental bumblebee data does not show a decay tf0 but to a
finite positive value. Therefore the simple geometric maowdigh constant accel-
erations in sectioh"3.2.5 does not hold: the acceleratiams b be modelled as
speed-dependent.

While Fig.[35 shows that distinguishing between exact fional forms for
o(s) is difficult, the double-logarithmic plot in Fi§._3.6 suggethat the decay of
os(s) to a constant offset is roughly exponential. The given cemfa@ intervals
are calculated based on tié-distributed variance (see section Al1.2). Given the
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Figure 3.5: Speed-dependence of the turning-angleThe standard deviation
o of the turning-angle distribution is shown as a function lué speed as esti-
mated from data (black dots) and approximated by shiftedgpdaw (green) and

shifted exponential (blue). The dependence is robust dwedifferent experi-

mental stages (solid, dashed, dotted).

amount of data, the possibility of a power-law decay withgame constant offset
cannot be reliably excluded, however for large speetite exponential tail is a
better match to the data.

3.2.6 Stochastic Description of Turning-Angles

As seen in section_3.2.5, the distribution for the turnimgidas depends on the
speed of the bumblebee. In theory one would have to estirtsashape for each
range of speeds separately to get a good description of thmgangle. How-
ever, this would significantly limit the number of usableal@bints for the esti-
mation. For simplicity we therefore approximated the dglsttion of the turning-
anglesp,(/3) for each given speedby a normal distribution. This approximation
works best for low speeds, as can be seen from the estimattbigl of p,(3)

10 Kurtosis[X] = % where E[X*] is the4™ central moment an&[X 2] is the variance,

since the mean aoX is 0.
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Figure 3.6: Log-log plot demonstrating the speed-dependence of the tning-
angle distribution. The standard deviation; of the turning-angle is shown as a
function of the speed as estimated from data from all expenial stages (black)
and approximated by a shifted power-law (green) and a shéftponential (blue).
95% confidence intervals fer; based on a?2-distribution are shown in grey.

shown in figurd=3]7. For higher speeds the kurtosis is cardigthigher than the
3 expected for a normal distribution. While there are dewiagi from Gaussian-
ity, we did not find a reliable fit of a better model for the whalistribution due
to the limited amount of data available. For our model we nmthaesimplifying
assumption of Gaussian noise.

In total, we therefore model the turning-angles as spe@udent Gaussian
noise: &(t) ~ N(0,0¢(s))) with o¢(s) = cie7® + ¢3 as estimated above in
section[3.Z5. The offset, could either be an effect of the boundedness of the
flight arena, since the bumblebee has to turn more often tio aadls when flying
fast. Or it could be that the bumblebees use stronger foardsifning during fast
flights to maintain their manoeuvrability. It would be irgsting to examine free-
flight data to check for the cause. For the two stochasticspzfrthe Langevin
equations, we estimated the autocorrelation functions filee data. The turning-
angle autocorrelation is approximated by a power-law as se€ig.[3.8, which
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Figure 3.7:Kurtosis of the turning-angle distribution. The kurtosis ofp, (/)
is given as a function of for all experimental stages. The kurtosis of a normal
distribution and the number of available data points arevshior reference.

in this case is preferable to the alternative fit by a simplgoential decay.

3.2.7 Stochastic Description of Speed

In addition to the drift termy(s), the dynamics of the speed is governed by a
stochastic term, which we analyse here. By subtraction ohpproximation for
the deterministic terng(s) from the observed speed changkgdt in Eq. (3.21)
we can estimate the distribution and autocorrelation oattwleration noise term

W(t) = ds(t)/dt — g(s(t)).

Strength of the Acceleration Noise Term

The noise termy(¢) is well approximated by Gaussian noise, however the strengt
of the noise has to be corrected for discretisation effects.

In order not to overestimate the noise term, discretisatioors of an approxi-
mate size ofAz/At* due to the finite resolutiodz = 10~3m of the cameras
have been accounted for. The calculation of the discréatisarror is a one-
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Figure 3.8:Log-log plot of the autocorrelation of turning-angles 5. The exper-
imental data (black crosses) together with an exponemiabénta) and a power-
law (blue) fit is shown with the large-lag standard error {grél'he green circles
show the autocorrelation extracted from the simulated.data

dimensional approximation of the error in accelerationvggidiscretised position
data. The real one-dimensional bumblebee positigrier ¢t € 1...n can be de-
scribed byx; = 7; + u;, wherez; is the measured discretised position (i.e. the
center of a bin) and;; is uniformly distributed betweer Az /2 and Az /2 and

is assumed to be drawn i.i.d., representing the uncertéative position inside a
discretisation bin. With} = ﬁ(astwt — 2x; + x4_a¢) @S @an approximation for
the real accelerations, the measured acceleraﬂbﬁsﬁ(jtw — 2%y + Ty Ar)
have a variance of

A 2
Var(z]) = Var(z]) + Var(ugar — 2us + us_ae) = Var(x)) + 2;4. (3.26)
Therefore the standard deviation of the real accelerai®gen by:
" . Ax?
Stdev(x}) = \/Var(xt) ~ oA (3.27)

As the bumblebee flights are modelled in two dimensiaks,has been scaled
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Figure 3.9:Autocorrelation of the non-deterministic speed changes(t). The
autocorrelation function of (t) = ds/dt(t) — g(s(t)) estimated from the exper-
imental data (dots) with two times the large-lag standardrdigrey) and three
fitted approximations: difference of 2 exponentials (retifference of 2 power-
laws (green), difference of exponential and power-lawélplu

by v/2, giving a rough estimate for the strength of the discretisainduced noise
added ta)(t). SinceAxz is quite small in the experimental data, this has been good
enough for our modelling purposes (see sediion B.3.2). Rfdimensional treat-
ment of the discretisation effects on the accelerationsempecially on turning-
angles would be more cumbersome.

Auto-Correlations of the Acceleration Noise Term

Figure[3.9 shows the autocorrelation function of the noéset)(¢) and a set of
fitted functional shapes. The anti-correlations/dt) can be approximated e.qg.
by acfy, (1) = ae™" + (1 — a)e”**". While an autocorrelation function of the
shape oficf] ”(7) = b(1 + 1) + (1 -b)(7 + 1) 72 can be exluded, a difference
between an exponential and a power-tf, *(7) = ce 7+ (1—c)(7+1)"* is
not significantly worse thaact;,"“. For our model we chose the simple difference
of exponentialsicf .
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As the observed anti-correlation between delay8.bf > 7 > 0.3 s happens
on a time scale which is too short to be an effect of the bounelesiof the exper-
iment or of residual effects of the presence of the foragimad) ¥2], it is unclear
where the anti-correlation comes from. One could spectkatit might be the
result of a stabilising mechanism in the bumblebee dynamics

3.2.8 The Complete Flight Model

The full set of parameters estimated from the data set whiak wsed for the
simulation is given below. For reference, the model equatiand the equa-
tions describing all terms are also collected here. Whetespecified other-
wise, the parameters of the functional shapes were estimatk a least-squares
fit (Marquardt-Levenberg algorithin[104, 105]). The (simfipd) Langevin equa-
tions [3.20[3.21) are,

5(1) = &(1)
C (1) = gs(1)) + (1)

The parameters for the standard deviatg(s) = c;e~*° + ¢; of the angle noise
Es(t) ~ N(0,0¢(s))) arec; = 126° ¢, = 12s/m, ¢5 = 12.5° and its autocor-
relation is given byacfs(7) = (7 + 1)71°*7¢ (see sections3.2.6,3.2.6). For the
deterministic drift of the speed (see Hq.(3.22))

—d; for s < s
—ds for 5 > Sy 7

9(s) = (s = s0) X {

the change of slope is a = 0.275m/s while the slopes arg; = 0.16 and

dy = 0.06. The non-deterministic changest) of the speed (see section 312.7) are
assumed to be normally distributed with standard deviatipr= 3.52 m/s* and
autocorrelated according tef; “(7) = ae™7 4 (1 — a)e 7 wherea = 1.44,

A1 = 25.5and )\, = 10.7.
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Comparison to the Reorientation Model

Given the complete flight model we can now compare it to a ezation model
(see section 1.3.3). In secti@n-312.4 we found that the thifn of the turning
angle is trivial, which is in accord with the reorientatiodel. If one is not inter-
ested in the bumblebee movement on short time scales, der&n0.3 s where
the autocorrelations of the noise terfiét) andq(¢) have not fully decayed yet,
an approximation by a reorientation model would look feksibHowever, the
resulting simplification would still include a determiricsspeed-drifty(s) which
induces correlations for the spegdand the dynamics of the turning angle and the
speed are still dependent \§&t). Therefore the resulting model should be under-
stood as a variation of active Brownian particle modelsdadt(see sectidn1.B8.4).

3.3 Model Validation

With the information gathered in sectibnB.2 from the exmemtal data, we have
now completed our two-dimensional model of bumblebee fighive can now

simulate it to generate artificial sample trajectories. His section we will de-

scribe the details of the simulation and compare the reguftight paths to the

experimental data in order to validate our findings.

3.3.1 Generating Correlated Noise

For the simulation of the bumblebee model above, we need &blecto generate
noise, whose distribution and autocorrelation functiorichahose estimated for
the noise terms;(¢) andv(t). There are two main ways to generate coloured
noise: the first is to find some stochastic process, whoseawuesation function
acf(7) and probability density functiop(x) coincides with those of the desired
noise, and numerically integrate that process. A varietdifiéerent algorithms
have been used for the simulation of correlated naisel [10%]. IThe success of
this approach depends critically on the ability to find aali stochastic process
with the desired properties.

The second main source of algorithms to generate colourisg comes from
the idea to use uncorrelated noise samples, and correlette bly shaping their
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spectra in the frequency domain. A variety of more sophaséid algorithms have
been developed to account for the distortions of the autetairons due to sam-
pling and windowing effects, see e.g. [106]. In this work veed a straightfor-
ward method of correlating noise as described below. Whientethod is not the
most accurate, it is sufficient in our case: The autocoimdtinctions, which we
estimated from the experimental bumblebee data, have iagseneasurement
errors (see Fid—318 arid 8.9) which are much larger than tredl smprecisions
due to the inaccuracy of the algorithm below.

The algorithm works in the following way: We start by genergtan i.i.d.
noise sample:, ..., z, of the desired probability density functigrix). In case
of the turning-angle and speed noises used for the simalafiboumblebee flights,
p(x) is chosen to be a Gaussian — the sample can be generated ¢e.Bux-
Muller method[104]. The sample is then transformed to the frequency domai
with a discrete Fourier transfornmto the sequence:

N
Xp=Y wje2minl (3.28)
j=1

The modulus ofX, is the spectral amplitude which we want to shape — in case
of uncorrelated (white) noise it is the constdnt— and the modulus squared
is called thepower spectral density The Wiener-Khinchin theorerfB8] states
that for (weakly) stationary processes, the power spedgakity is theFourier
transformof the autocorrelation functioscf (7):

psd(k) = act(k) = / acf(7) e 2"k dr, (3.29)

o0

Therefore if we take the power spectral dengityl(k) corresponding to the de-
sired autocorrelation and multiply,. by /psd(k) we arrive at the desired coloured
noise in the frequency domain:

Xp, = Xp/psd(k) for0 <k <n/2. (3.30)

Note thatX, is not scaled as(y/n is the mean of the;, and fork > n/2 the
coefficients have to be kept in symmetty(k) = X (n — k)*. The result is then
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transformed back to the time domain with tingerse discrete Fourier transform
1 N
N ~ k.
Tj=— § Xpe?mind, (3.31)

n
k=1

For the speed noise the autocorrelation function is approximated by
acf (1) = ae™7 + (1 —a)e27 (3.32)

as shown in figurE-319, which corresponds to a power spearaity of:

. 2)\1@ 2)\2(& — ].)
by (M) = e aamie) T (N 4 4nk) (3:33)

For the turning-angle noisg¢ the autocorrelation function is approximated by
acfe(1) = (7 + 1)L, As the corresponding power spectral density does not have
a particularly pleasant expresslamve calculatecbsd, (k) numerically with a dis-
crete Fourier transform afcf (7).

3.3.2 Simulation of the Bumblebee Model

Given the complete model specification in secfion 3.2.8 wenmav generate ar-
tificial bumblebee flight trajectories. To simulate the buehlee model, we in-
tegrate its Langevin equatiorfs (3.£0, 3.21) using the taieé noise terms,(¢)
andy(t) from sectior:3.3]1 and the estimated dyift) from sectior3.2]5. These
Langevin equations are the stochastic differential equatpf anlto process If
instead a Stratonovic interpretation of the SDEs had beed,uke estimation
of of the drift terms would have needed a correction due toralucedspuri-
ous drift as described e.g. in_[38]. The numerical integration far ltlngevin
equations therefore has to be done with an It o scheme. Qhe ofost basic It o
integration schemes is theuler-Maruyama-schemgee sectiof”Al3), which we
use here. Writing the Langevin equatiohs (B[20,13.21) ofmadel in It o form,

q_L 3_L. 212 )| k|F ! cse(nL) sin(Z
Hpsdg(k) = 2RI E AR ) | ot L ese(rl sin(g (LAIRD)
where 1F5 is a generalized hypergeometric function did.) is the gamma function.
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Figure 3.10:Simulated trajectory of a bumblebee. The complete model (see

section’3.Z18) is simulated for 200 (10° time steps) with an Euler-Maruyama
scheme using the noise samples foand ¢ correlated beforehand (see sec-
tion[3.3.1).

and discretising time with a time steyx gives the following integration scheme:

Bt + At) = &(1), (3.34)
s(t+ At) = s(t) + g(s(t)) At + Ay(t). (3.35)

Notice that the noise strength dfi)(¢) has to be scaled in consistence with the
time-stepAt used for the integration. In our simulations we used the ties®-
lution At = 0.02s of the experimental data as a time delay for the integration,
as it is already small enough. In rare cases where the Gaussisey (¢) would
lead to a negative speed despite the positive dfif) for s < sy, we enforce a
non-negative speed by settin@) = 0.

The dependence of the turning-angle distribution on thedpg) adds a com-
plication to the simulation. While the acceleration tepft) can be simply added
to the speed in each time step of the integration, the turaimge noise, () is
speed-dependent and cannot be generated in advance akatbstsectiof 3.3]1.
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Figure 3.11:Comparison of the speed-distributions. The green (dashed) line
shows the probability densitydf(s) extracted from the simulated data, the black
(solid) line shows the experimental data of all bumblebee4%000 data points).

Instead the correlated Gaussian noise has to be scaleddsgiefzendent standard
deviationo () for each step (see sectibn312.6). As this happens aftezlating
the noise, this does not reproduce the autocorrelationeaitining-angle exactly.
However the error made is acceptable in our case, as it isHasghe errors from
the estimation oficf 3. The resulting scheme for the turning-anglean be written
as

Bt + At) = &(t) = ap(s(t))€(t) (3.36)

where¢(t) is the unscaled correlated Gaussian turning-angle noise.

A sample trajectory of a bumblebee simulated for 200 s usiigime steps
is shown in Fig[Z3.110. The trajectory shows the typical shiitg of flight patterns
between localized flights with low velocity and large tumiangles, and faster
movement with low sinuosity. Using the generated data wenmam check the
validity of the model by comparison to the experimental ddtall bumblebees.
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Model Comparison to Experimental Data

Figure[311l compares the probability density functjaif(s) of the speed ex-
tracted from the simulated data with the corresponding glodly density func-
tion from the experimental data. Despite the fact that we enguite a lot of
simplifications when building the bumblebee model, e.g.orgrg the influence
of vertical movement, and that we used rather simple apprations for the esti-
mated properties, e.g. the speed diift), the distribution of speeds in the model
matches the experimental data rather well.

Apart from the correct variance, the resulting turning @djktributionpdf(5)
does not match the experimental data very well. This is ntoinéshing since the
model simplified the turning angle noigg 3) by assuming that its distribution is
normal for all values of. As discussed in sectidn 3.P.6, the Gaussian approxi-
mation is only valid for low speeds. While this could have #ea for the short
term dynamics, over a few time steps the accumulated sunmedfithing angles
becomes normal again due to the central limit theorem (sets€L3.2).

The autocorrelation function of the turning-angle is shamfigure[3.8. There
is a good (and not so astonishing) agreement between thecaxglation of 5
in the experiment and in the model, which mostly shows thatgéneration of
coloured noise works.

The autocorrelationcf(7) of the speed, which is shown in figure=3.13, has
to be looked at in more detail. While the model is in nice agreet with the
autocorrelation from experimental stage (4) as can be sefeguire[3.1P, it differs
from stage (7) and especially stage (1), which show a strofpgsitive) correla-
tion for larger delay times. This difference can be explained by the following:
the dynamics in stage (1), meaning without predation trattite flowers, is dom-
inated by short systematic flights between flowers. Theredgelar flights mean
that the speed is autocorrelated over longer times. Undeatiof predation in
stage (4) the bumblebee reacts to the predators by brediengdular search pat-
tern, leading to a quicker decay of the autocorrelation. dae from stage (7)
lies in the middle between the other two, since the bumbkebese trained, but
have already partially forgotten about it. For evidencehefflower avoidance see
sectiofZ.Z13 and for the predator-induced anti-correfetisee sectiois 2.2.4 and
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Figure 3.12: Autocorrelation of bumblebee speed. The green (dashed) line
shows the autocorrelation extracted from the simulated,dbé black (solid) line

from the experimental data (from stage (4)) with two times ldrge-lag standard
error (grey).

ZZ8. Since we are in this chapter not so much interestdukisystematic flights
from flower to flower, but rather on the free search flights afvayn the flowers,
which are more pronounced in stage (4), we are happy with ttehmg of the
data from stage (4) and the model. With regard to an appdicatf the model to a
bumblebee in a natural habitat, the presence of predatatsaghe default state.

Mean Square Displacement

Figure[3 1% shows the mean squared displacement (MSD) dfuimdblebee po-
sition as determined from each experimental stage and fn@nsimulated model
data. While both, the experimental results and the simaashow well-matching
ballistic dynamics for low delay times < 0.5 s, the diffusive behaviour for large
7, as emphasized by a linear fit, can only be seen in the modstedd, the ex-
perimental data shows a saturation of the MSD arduf8m? for - > 1.6s. The

saturation is to be expected, since the movement of the mirabs is hindered
by the flower zones and bounded by the walls. In the model theblebee flights
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Figure 3.13: Autocorrelation function of the bumblebee speed for diffeent
experimental stagesThe black line shows the autocorrelation extracted from the
simulated data, the other lines show its estimates from xperénental data in
stages (1),(4),(7) in red, green and blue respectively.

are however not constrained, leading to the deviation oMB® for large delays.

3.4 Summary

The family of reorientation models has been often used terdes the corre-
lated random walk of animals. We therefore tried to examieértsuitability as a
model to describe the foraging behaviour of bumblebees msistency with the
observed data. Instead of looking only at the distributiofihe turning angles
and the speed, we generalized the reorientation model by explicitly mbdg
their dynamics via generalized Langevin equations. Anatysnovement data
of the bumblebee experiment, we extracted information endgterministic and
stochastic terms of Eq4._(B[I,1B.2). We examined a detestiarpart of the dy-
namics of( 3, s) using a Markov approximation by estimating the drift coédfits
of the Fokker-Planck equation corresponding to the Langequation. Any ef-
fects not captured by this drift term contributed to the etated noise terms (see
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Figure 3.14: Mean squared displacement. The measured mean squared dis-
placement of a bumblebee is shown for different experinestéges: stage (1)
(green), stage (4) (blue), stage (7) (violet). In additio@ MSD of the simulated
data is shown (black), together with a linear fit (dashed Jgoéyts diffusive be-
haviour for large delays and a quadratic fit (dotted grey}oballistic short term
behaviour.

sectiond3.21d,3.2.7) in the resulting model (sedilon83. 2With the estimation
of the turning angle drift(3) we found that while the usual assumption of i.i.d.
turning angles is not valid in our case, the lack of a nondtigrift and the weak
autocorrelation of, are consistent with the usual reorientation model (see sec-
tion [3.3.2). However, our generalized model exhibits digant differences in
the non-trivial deterministic paw(s) of the speed changés/dt and the speed
dependence of the turning angles. In terms of active Brawpiticle models
([23,58], see sectidn1.3.4) we described the two-dimerasioumblebee move-
ment by a particle with a non-linear friction tergits) depending and acting only
on the speed, driven by multiplicative coloured noise witifedent correlations
for the angle component and the speed component of the tel@¢ile this com-
bination of complications might make it difficult to treatetlsystem analytically,
progress in this direction has been made [108, 57].

To validate the bumblebee flight model, we simulated it bglséstic integra-
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tion using correlated noise in sectibnl3.3. The comparisahé data has shown
that the resulting model agrees very well with the experitaledata despite the
approximations we made for the model.

Given that the experiment which yielded our data is rathealsamd provided
the bumblebees with an artificial environment, it would kteiasting to apply our
new model to free-flying bumblebees to reveal how much theltegepend on
the specific set-up. This would clarify whether the flight &elbur seen in the
laboratory experiment survives as a flight mode for foragimg patch of flowers
in an intermittent model, with an additional flight mode fong flights between
flower patches. The analysis of data from other flying insaots birds by using
our model could be interesting in order to examine whethetiecewise linear
nature of the speed drift and the trivial drift of the turniaggle are a common
feature. In view of understanding the small-scale bio-raeatal origin of flight
dynamics, our model might serve as a reference point for aonerdetailed dy-
namical modelling. That is, we would expect that any morerasicopic model
should reproduce our dynamics after a suitable coarseiggpover relevant de-
grees of freedom.
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Fluctuation Relations

In this chapter we will at first briefly motivate fluctuatiodatons (see sectidn4.1).
We then summarize a study of the interplay of fluctuationidegson relations and
fluctuation relations for a concrete class of stochasticgsees in sectidn4.2. The
main results of this study were done by A. V. Chechkin and Rge€k[[4], | con-
tributed with work on spectral densities of autocorrelatfanctions as shown in
sectiorT4.B, and some discussions. Specifically | focuse¢tl@non-negativity of
spectral densities for given autocorrelation functions.

While the aim of this study — examinirapomalous fluctuation relationthat
is deviations from (normal) fluctuation relations — is ndated to foraging, the
set-up has similarities to our data analysis in chajpfersdiZ3aand some related
foraging models: a stochastic process described by a demeerdangevin equa-
tion albeit a different generalization than discussed hege sectioh 1.3.4 and a
non-trivial autocorrelation function where anti-corrétams (see e.g. sectiGn 2.P.4)
and heavy tails play a decisive role. In contrast to the evichapters, here the
Langevin equation will be generalized through a frictiomies (Eq. [4.3B) in sec-
tion[4.2) giving another way to model autocorrelated preess

4.1 Introduction to Fluctuation Relations

For isolated systems, treecond law of thermodynamistates that the entropy
of the system cannot decrease. While the second law is fuedkah the restric-
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tions on its applicability made it desirable to find more gahand more precise
relations for the entropy production. From statistical hreatics the second law
has been understood to be strictly valid only in the thernmadiyic limit. How-
ever, given any real systems of finite size the law has to berpréted proba-
bilistically: for large sizes the probability of a violatioof the second law de-
creases and becomes effectively negligible. However, thighincreased interest
in smaller systems, e.g. single macromolecules, thoseapilities become im-
portanlﬂ Therefore there was a need to find laws which hold for smaliesys,
too, and preferably these laws would be also applicable meaguilibrium situa-
tions since many systems of interest, e.g. all biologicateys, are not isolated
but externally driven systems.

Consequently the probability density functip(¥;) of the entropy produc-
tion & over a time intervat starting from an equilibrium state and ending in a
non-equilibrium steady state has been studied in morelddtar large classes
of systems[[109, 110, 111, 112] it has been shown that thendeleav can be
generalized to the so-calldldictuation relation113,[114/ 115]

p(gt)
P(—ft)

This means that negative entropy productions are lesyltkein positive produc-
tions by a factoexp(&;). The expectation of the entropy production is therefore
still non-negative which then leads to the second law in hleerhodynamic limit:

=&, for§ > 0. (4.1)

In

<& o= / Ep(€1)dE, = /0 Ep(€) (1 —exp ) dé, >0, (4.2)

While the quantity of interest is often the entropy prodoti similar laws
exist for related quantities, e.g., the accumulated workwitch between two
equilibrium steady states [1114]. Since the fluctuationtietegives quite detailed
information aboup(¢,), it is interesting for which processes it holds under which
conditions. We therefore examine its validity for the clag§&aussian stochastic

1 A simple example is an ideal gas ofparticles with uniformly drawn initial positions in a
cubical container. Without external forcing the probaito find all particles in the left half of
the cube after a timéconvergest@~" for ¢t — oo, which is only insignificant for large.
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processes in the next section.

4.2 Fluctuation Relations in Gaussian Stochastic
Processes

Let us look at aGaussian stochastic procegiven by ageneralized Langevin
equation[116]:

/O ot )yt —t)dt' = % + &(1) 4.3)

with a constant forcé’, massn and a friction kernely(¢). The nois&(t) should
be stationary, Gaussian and have an ensemble avéfage = 0 for all ¢, but
it does not have to be uncorrelated (white), i.e. colouredencs allowed. The
question of interest is, under which conditions the wékk := Fz obeys the
(normal)transient work fluctuation relatiofiL13]:

pW,t) W

MW T ReT @9

wherep(W, t) is the probability density function of the workg is the Boltzmann
constant and’ is the temperature of the system. This depends criticallyhen
autocorrelation fUﬂCtiCE’]aCf(T) = (£(t)&(t + 7)), of the noise and if and how
it relates to the friction kernel. For these Gaussian stsiih@rocesses it can be
shown that:
pV,1) 2 (a(t))

p(=W,t)  Foi(t)
which means that whether the fluctuation relation ([Eq.] {4n)ds depends on
the mean displacemenit:(¢)) and the mean square displacement (M3B().
In cases where the MSD does not scale linearly in tiptee diffusion is called
anomalous

The fluctuation relatior[{414) does not hold in general withfirther restric-
tions onacf(7) and~(7). Forinternal noisethe source of the friction and the
noise are the same, which gives rise to tluetuation-dissipation relation of the

In (4.5)

2In contrast to the other chaptersf(7) is not normalized here.
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second kind (FDR It)

kBWTW(T) ) (4.6)
In [4] we show that the fluctuation relation follows in thigugtion, and which
implications exist between the transient fluctuation refaand the fluctuation-
dissipation relations. A special case of a model with irdérnoise isBrownian
motion where the friction is proportional to a delta functioy(r) = 2v4(7) with
the friction constant, and the noise is whiteicf (1) = (2vkgT /m)o (7).

For external noisghere is no FDR Il, which means that in general one can-
not expect the fluctuation relation to hold for arbitrary@drrelationacf(7) and
friction v(7). But even for a simple friction(7) = 2v4(7) there is a variety of
behaviour in the MSD which we investigated. The behaviourlead to normal
and anomalous diffusion and varying validity of the fluctoatrelation: we give
an overview of the results in sectibn4.4 (see [4] for de}ail$he results depend
on the properties of the autocorrelation function: powaer tails are needed for
anomalous diffusion and the MSD and the fluctuation relatiotically depend
on its exponent. The behaviour also depends on whether toeatelation is
persistentdecay to 0 from above for large or anti-persisten{anti-correlation
and convergence to 0 from below), and in the case of antigiersce whether it
is pure (see sectidn 4.8.2). In the following section wedfae look at suitable
classes of autocorrelation functions.

acf(1) =

4.3 Spectral Densities of Autocorrelation Functions

For an autocorrelation functioscf(7) of a stochastic process the corresponding
spectral density

S(w) := /OO e~ “Tacf(r)dr 4.7)

has to be non-negative for all > 0 for consistency[[117]. Since we want to
construct examples for different classes of stochasticgsses by choosing the
distribution of the noise and the autocorrelation, we cleedcthe non-negativity
for a few classes of autocorrelation functions. In this caseare interested in
anti-correlations and/or heavy-tailed correlations (g which we investigate
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in the following.

4.3.1 Power-Law Decay

A simple class of autocorrelation functions with power-ldecay and a finite
valuecs = acfg(0) is
acts(r) = —— 2 (4.8)
(+%)

where( < 3 < oo, ¢g > 0,0 > 0. The corresponding spectral density is:

COS T sin x

Sp(w) = 2c56°wP 1 <cos(w5) /wa dx + sm(w5)/

wd

d;t) (4.9

P

In order to test the non-negativity of the correspondingctipé density the con-
stantscz andd (which is effectively just a scaling factor for the frequessw) are
not important. For convenience we sgt= % andé = 1 giving:

Sp(w) = ! <cos(w)/ sy dx + sin(w )/ Sl;xdx) (4.10)

P

Asw > (it suffices to examiné;(w) := w!' =7 S3(w) which then can be simplified
as follows:

I3(w) = cosw/w coxsﬁxdx + sinw/w Slxnﬁxdx (4.11)
:/°° cosxcosu)—L—gsinxsinu}dle (4.12)
w T
:/ cos(xﬁ— w)dx (4.13)
w T
*  cosx
= —d 4.14
/0 (x + w)ﬁ o ( )
sin(x) sin
_ 4.15
(x4 w)? ﬁ/ (z + w)B+! d (4.15)
& sin
— " d 4.16
& o (z4w)stl v (4.16)
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which is positive because the denominator is strictly iasneg: the integral over
each positive part from rodink to root 27k + 7 is always larger than the next
negative part from27k + 7 to 2w (k + 1) for all natural k, as shown below:

sin x
T+ w) 5“

(
e 2nk+m 27 (k+1) .
sin x SN xr
Y gy / T e (4.18)
kz:: (/ )B—H 2wk+m ('T + w)ﬁ-‘rl )

27rk+7r sin _osine 2wk+m sin(x + 71')
Tttt

6 (4.17)

d;t) (4.19)

27rk rk (z+m+w)st!

0 2rk+m .
sin —sinx

- + d 4.20

ﬂ;/m A S

o0 2wk 1 1
= i — d 4.21
ﬂkzg/m Smx((acw)ﬁ“ <x+w+w>ﬁ+1) r20 @2l

sincesinz > 0 for x € 27k, 2wk + 7] and M > (Hﬂjw)ﬁﬂ. This means
the spectral density is non-negative for@JI

4.3.2 Anti-Correlation

An example for autocorrelation functions which show amtirelation is given by:
act(r) = ke "l — (k — 1)e7*I"l (4.22)

fora > b > 0 andk > 1. Since the autocorrelation function is an even function,
the integral of the product with the odd functisim yields0, so the corresponding
spectral density is:

S(w) = F(acf)(w) = 2 /0 h cos(wr) (ke™ — (k—1)e ") dr.  (4.23)

Using [;™ e 7" cos(qx)dr = 4 forall p > 0:

b

EEwR (4.24)

a

w2

20k — 1)
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S(w) > 0iff
2% 2k —1)—" (4.25)
a? 4+ w? — b? + w? '
a_ k—1a®+w?
> - 4.2
= bk Pt (4.26)
which means tha$(w) > 0 for all w iff
a k—1a?+ w?
p = (Tm) #.27)
a _k—1 a’? — b?
& - > —— max (1+m) (4.28)
a _ k—1 a’? — b?
a k=10 4.29
< bk ( TR ) (4.29)
a_ k—1a°
> - ]
o P2 (4.30)
- a_ k (4.31)
b — k—1| '

In this case the consistency of the corresponding stochpsicess depends
on a proper choice of parametersb andk. The condition is quite restrictive; a
positive example isa = 84, b = 67/2, k = 158/153. However, the integral over
the autocorrelatiorf;~ acf(7)dr is only non-negative fof > £, which means
the only valid case is thpure anti-persistentase with f0°° acf(7)dr = 0 where
a k

b~ k-1

4.3.3 Anti-Correlation and Power-Law Talil

Similar in shape (starting positive, then with anti-coatedn which converges to
0 from below) but with a power-law tail is the following autacelation function
(Fig.[41):

acf(7) = (1 + a)e Vo —a(1 4 |7])77 (4.32)

whered > 0, a > 0 andf > 1 + %55 to ensure thay™ act(r)dr > 0.
In this case we did not find an analytical proof for the nonaiagty of the

spectral density but could only show it numerically for a eirdnge of parameters.
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acf(r)

Figure 4.1:Autocorrelation with anti-correlation and power-law tail . Shown
is an example for the class of autocorrelations with an emtielated heavy tail
given in Eq.[43R). The chosen parameters are: 1, 3 = 3,6 = 1.

A closed form expression of the spectral density can stiltbeputed, e.g. by
Mathematica, but it leads to an expression which is not eaapnéalyze:

Jw) = L) anba(li 1 - 235 -2 amw *sin(w+ %)
1 4+ w3242 1-3 ['(B) sin(73)

(4.33)
HereT is thegamma functiol’(z) := f0°° t*~le~tdt and F, is ageneralized
hypergeometric functiofL18] given by:

k

1Fo(ay, ag; b x) == Z % (4.34)

=0

x
k!

with the Pochhammer symboh);, := I'(a + k) /T'(a).

Plotting I (w) for a many different parameters (FIg. ¥.2) gives evidencéte
non-negativity of the spectral density. While this is nogdrthat the autocorrela-
tion function is suitable for all possible parameters, iteg some indication that
this choice ofacf(7) is of use in building stochastic models with anti-persisgen
and anomalous diffusive behaviour.
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Figure 4.2: Numerical evidence for the non-negativity of/(w). Plotted are
the spectral densities (see EQ._(4.33) corresponding t@nitiecorrelated auto-
correlations with power-law tail given by Eq.(4132) for ariedy of parameters:
searching through many valid combinations of parametersamsistently found
that/(w) > 0 for all w.

4.4 Fluctuation Relations and MSD for External
Noise

After checking the consistency of different classes of eoteelation functions via
their spectral density in sectign #.3, we can now finish thigpter by discussing
the validity of the transient work fluctuation relation foa@ssian stochastic pro-
cesses given by the Langevin equatibnl(4.3) for the casxtefnal noisgsee
sectior 4.R). Here we restrict ourselves to friction kesngl) = 2v4(7) without
memory — the analysis would be severely more complicatediroylsaneously
considering friction kernels and noise autocorrelatiorsclv are unrelated and
both non-trivial. This section is an overview of the resutt$4], where a more
detailed discussion can be found. Notice that the main tesfithis paper were
not derived by me: they are included below only to complete tkeulsion in sec-
tion[4.2. For external noise, interesting anomalies of fffaglon can occur due to
autocorrelation functionscf(7) whose tail can be approximated by a power-law.
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We therefore examine autocorrelation functions of theofwihg shape:

acti(|r]) for|r| <A

acf(1) = : (4.35)
acfa(|7])  for|7] > A
with acf;(0) > 0, A > 0, acf;(A) = acfy(A), and tails
A
acfa(7) = Cp N . (4.36)

The autocorrelations discussed in secfion 4.3.1[and]l4r8.8x@amples with the
same asymptotic behaviour for the persistent case @jth- 0 and0 < 5 < oo,
and for the anti-persistent case with < 0 and1 < < oo respectively.

The diffusive behaviour, i.e. the mean squared displacémaed the validity
of the fluctuation relation fot > A now depend on the sign 6f; and ongs. The
right hand side of the fluctuation relation (EEq.J4.4) and th®D/can both be cal-
culated explicitly[[4]. The results, which are discusselbleare suOTmarized in
Table[4.1 using the following constants as abbreviatidhs= % / acf(7)dr,

0
Teg := ZL—D, andR := /OO Tacf(7)dr.

For pBeVrsistent exteronal noise with fast enough correlatiecay ¢ > 1) the
process exhibits normal diffusion andgeneralized fluctuation relatioholds,
where the temperatur€ is replaced in Eq.[(414) with aaffective temperature
T.¢. For3 < 1 the process is instead superdiffusive and the fluctuatiatioa is
anomalousi.e. it does not hold.

Given anti-persistent external noise, an exportest 1 would be inconsistent
with D > 0 (compare sectidn4.3.3), and is therefore excluded. Aatdlitiy, if D
is strictly positive, then the MSD shows normal diffusiom farget and a gener-
alized fluctuation relation as above. For the remaining Igwaeti-persistent cases
(with D = 0) the fluctuation relation does not hold and the diffusivedyetur
ranges from subdiffusion fotr < § < 2 to localization, i.e. an asymptotically
constant MSD, fop3 > 2.

The transition points between different types of behayioars = 1 for per-
sistent ands = 2 for anti-persistent noise, show additional logarithmicrts in
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Table 4.1:Work fluctuation relation and MSD for Gaussian stochastic pro-
cesses with external noiseShown are the mean squared displacement and the
right hand side of the fluctuation relatidn (4.1) for> A depending on the expo-
nents of the autocorrelation decay for persistent and purely-peatsistent noise.

persistent (Cz > 0) pure anti-persistent (Cs < 0, D = 0)
p(W.1) p(W.1)
g MSD In ———— MSD In ————
0<pB<1 ~ 2B ~— _ _ .
; t%/l_/ﬁ This regime does not exist.
pu— Y 1 —_— Y
’ i (5) | ~
1<B<2 ~ 2h ~ Wbl
w t Wi
— ~ 2Dt ~ ~In = ~
b kple | ™10 (A) In(t/A)
2 v
> 2 ~ —|R ~——Wt
g v |R| I

both the MSD and the fluctuation relations. [Ih [4] it is shoWwattthese terms also
appear when looking at processes with expongmear the transition points, if
one does not consider the asymptotic behaviour for larpet instead examines
the MSD or the fluctuation relation at intermediate timesisTi& of relevance to
the analysis of experimental data, since the time scaleshadain be explored ex-
perimentally are typically restricted. This means thatakgmptotic regime might
be out of reach and only behaviour on intermediate time s@keaccessible. The
topic of experimental observations of anomalous fluctuatedations — including
logarithmic corrections — is discussed in more detailln [4]

In summary, it has been shown that a large variety of difieidehaviours
can occur for Gaussion stochastic processes given by therajemed Langevin
equation[[4B). We discussed the role of the autocorreldtiaction of the ex-
ternal noise for the flucutation relation and for the meanased displacement.
We also checked the non-negativity of corresponding spkedansities in order
to find consistent classes of autocorrelations, which cansee as examples for
Gaussian stochastic processes showing different kindsarhalous behaviour.
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In this thesis we investigated how the movement of foragimgiblebees can be
analysed in terms of stochastic models. Specifically, wengxad the effect the
presence of predators has on the search patterns of the &loedsl, and the appli-
cability of a generalised reorientation model to descrikgegimental flight data.
A large part of the difficulty in the field of foraging is the niiide of dif-
ferent biological factors which influence foraging behavidNe therefore started
our discussion in chaptéf 1 with a general introduction ®niost relevant fac-
tors. As a variety of stochastic models has been proposethéoanalysis of
animal movements, we also described the most common clasgeaging mod-
els. On this background we discussed the idea of optimagfioga— in particular
the mathematical Lévy flight hypothesis. We argued thatsdtiiet conditions
of the hypothesis on the specific foraging situation undeestigation make it
doubtful whether much evidence for the hypothesis shouleXpected when ex-
amining experimental data. The validity of the biologicé&My flight hypothesis,
i.e., whether real animals perform Lévy walks on their fawdrch, has been an
influential question in the last years. We ended the chapittr tive conclusion
that, while the Lévy flight hypothesis has been influentiagdpurring the cooper-
ation between the research communities on foraging andallastic processes,
its usefulness as a paradigm under which foraging animalstadied is limited.
In chaptefR anfll3 we analysed data of a laboratory experiorebtimblebee
search flights from two different points of view. In chapgférir focus was the
influence that the threat of predation has on the movemeraviair of foraging
bumblebees. Interestingly we found that the predatoryatraéfects the bumble-
bees’ movement, which already showed two different flightiewbefore intro-
ducing any threats. While we found local changes in the behawear the food
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sources due to the introduction of artificial spiders as ated, its effect on the
search flights from flower to flower was more interesting: weanfd that change of
behaviour was primarily visible in the velocity autocoatbn functions, which
we explained by a simple stochastic model, and not in velatigtributions, as
we originally expected. We also discussed the connectitimsainportance of the
autocorrelation in this case study with the Lévy flight hifpesis.

We switched our point of view in chaptier 3 to the question of/io develop
a stochastic model for the bumblebee movements from thaiexgetal data. We
approached the problem by generalising a reorientationeiranatd extracting the
coefficients of its generalised Langevin equations frontta. After a discussion
of the main differences of the resulting model — which is aiatawn on active
Brownian particles — and simpler reorientation models, \akdated our model
by simulation and comparison to the observed data.

After the analysis of foraging animals and especially buehbks in the first
chapters, the second theme of generalised Langevin eqaa&appeared in chap-
ter[4. Here we gave a brief introduction to fluctuation relat and discussed
them for Gaussian stochastic processes given by a diffgesrgralisation of the
Langevin equation. In this context we came back to the arsatfsautocorrela-
tion functions, that is to say, we checked specific exampldésnztions for their
validity as autocorrelation functions of Gaussian stotihgsocesses by examin-
ing the corresponding spectral densities, and we finishedhlapter with a short
discussion of fluctuation relations for external noise.
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Appendix

A.1 Error Analysis

A.1.1 Standard Error of the Mean

Letzy,...,x, ben random variables all drawn independently from one distribu
tion with population meamn:, population standard deviation and variancer?.
Unbiased estimators ¢f ando? are thesample meam: = Y "  z;/n and the
sample variance? = ﬁ S (xi —m)?, giving the (biasedyample standard
deviations. Thestandard errorSE of a statistic is the standard deviation of the
statistic, and describes the size of the error made whemattig the underlying
statistical parameter by the statistic. In the case of timation of the population
meanu by the sample meam the standard errof £, can be approximated by

5

vn'

which is related to the standard deviatiey of the sample mean. The standard
error can be used to derive confidence intervals for the megnthe 95% confi-

dence interval€’'] = [m—1.96SE,,, m+1.96SE,,| , wherel.96 is approximately
the 0.975-quantile of a Gaussian distribution.

SEm -
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A.1.2 Confidence Intervals for Standard Deviations

To compute 95% confidence intervals for the sample standewditibn s (see
sectioA.T1l) we first compute the confidence intervals liersample variance
s2. Under the assumption that the random variables. ., z,, are drawn from a
normal distribution, the sample variangehas ay? distribution withn —1 degrees
of freedom

8~ X1 = W—xT_ e 2
LT
with quantilesq;. For a confidence level ok = 0.95 the confidence interval
of s? is then given waSQ = [82(71 — 1)/q(1+a)/2, 32(n — 1)/q(1_a)/2] and the

corresponding interval fos is given by taking the square root of the boundaries.

2 2 ]_ n—1 1 T

A.1.3 Large-Lag Standard Error of Autocorrelation
Functions

When computing confidence intervals for an autocorreldtimction

acf(T) = <<xt — m> (Sfﬂ_T — m>>

at time-lagr = kAt for a given time seriesg, v, . . ., 7(,—1)> With meanm and
variances?, it is important to realize that the coefficients for diffatdime-lags
are not necessarily independent — and neither are thensetrestead of assuming
an uncorrelated time-series for the error analysis, whichnrealistic for many
applications, the underlying assumption for tlagge-lag standard errorfor a
time-lag 7 is, that the autocorrelation coefficients for higher lags aegligible
while the ones for lower lags might not be zero. This assupmdtL19] gives the
following approximationSE, ., calledlarge-lag standard errof120], of the
error of the autocorrelation function at lag

k—1
1
SEaCf(T) = SEaCf(kAt) = E (1 +2 Z acf (lAt)2> .

=0
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A.2 Data Cleaning

The experimental flight data contained various artefactsickvhad to be ac-
counted for. The recorded time series have been visualperted to check for
obvious recording errors, e.g., single data points whieldr from the otherwise
smooth trajectory immediately before and after the outligtrese errors have been
marked as invalid and treated as a gap in the data. Otheresoafartefacts could
be dealt with automatically, e.g., the times when the bubdse were not flying
but crawling on a surface (see section Al2.1), and gaps inet@rded data (see
sectiofAZB).

A.2.1 Exclusion of Crawling

For the analysis of the bumblebee flights, parts of the erpantal data had to
be excluded: the cameras tracking the bumblebees not oodyded the flight
trajectories, but also the crawling of the bumblebees orothjects in the flight
arena: the walls of the arena and especially the artificialdts (see sectidn2.1).
Therefore the data has been filtered: all recorded posibbbsmblebees within
1 cm of the flowers, including the landing platform and the haatcal traps, have
been excluded from any analysis to capture bumblebee flighiis The size
of this boundary is based on the size of the bumblebees, wiagk a height
of approximately 1 cm. While a smaller cut-off would not exaé all crawling
behaviour, the cut-off can be increased robustly withirsoeable bounds. We
have checked that, e.g. a 2.cm cut-off does not have any ic#uen any of the
analysed quantities, as the amount of the data which wowadleded in addition
is very small.

A.2.2 Flower Zones

Analysing the experimental bumblebee flight data, a dittinchad to be made
between the space near foraging flowers and the space awaytfem in the rest
of the flight arena (see sectibnP.1). For that redftmmer zonesvere defined as
the following: for each flower a rectangular box with widthdameightw = h =
9cm is centred on the flower. The back side is at the foraging wdiije the
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stagel ——
stage 4
stage 7 ——

0.1

Pgap length

0.01 f

0.001

1 10 100 1000
gap length [in missing data points]

Figure A.1: Distribution of gap-lengths in the experimental data. The gaps
with small gap-lengths (counted in missing data pointsifa) can be interpolated
to gain more complete trajectories.

front extends into the arena with a depth- 7 cm, including the whole foraging
platform and some space above. For details,See [1]. Ndtatewhile nearly all
crawling behaviour (see sectibn AP.1) of the bumblebeppéaed on the flower
platforms, this data iaotincluded when we speak of data "in flower zones”.

This separation of data is used when distinguishing diffefends of be-
haviour in sectiofi.Z]2, while in chapter 3 all data inside floever zones is ex-
cluded in order to focus on the "free” flight behaviour ingte# on the flower-
bumblebee interaction. This reduces the available dataifaptefB tox~ 49000
data points in a single experimental stage.

A.2.3 Gaps in the Experimental Data

The experimental bumblebee flight data contains quite alagnber of gaps
due to e.g. measurement errors and bumblebees leavinggios rebserved by
cameras: a small region near the wall opposite to the flowdirwas not cap-
tured by the cameras. For calculating quantities which déma the availability
of seamless time series, e.g. autocorrelations, small igaghe time series have
been interpolated linearly, instead of splitting the tcapey into two independent
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Figure A.2:Additional data after gap interpolation. Complete flower-to-flower
trajectories of a single bumblebee in stage (7) withoutpudkation of gaps (blue),
and additional complete trajectories after gap filling (réashed).

parts. As the number of gaps was small the correlations fort $imes were not
affected, however, the interpolation increased the usidtiefor long time delays.
Trajectories were split at larger gaps, for example wheeramg a flower zone, to
exclude correlations induced by flower visits.

Fig.[Ad shows that most of the gaps have a short durationgiwimieans that
a conservative approach of interpolating only gaps no lotigen 5 time steps
(= 0.1s) already gives most of the benefit in making more complejedtaries
available (see Fig._Al2). For the interpolation of longepgia more sophisticated
algorithm would have to be used, but the gain would be muchttesn that of the
filling of small gaps done here.

A.3 The Euler-Maruyama Approximation

The Euler-Maruyama approximation is a simple time discegiproximation of

an It o process. It is the first and simplest strong Tayloramation [121].
Though it is possible to use variable time steps in the EMlaruyama ap-

proximation, we only consider a fixed time st&pso that the discretisation of the
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time interval[ty, t ] is
{to,} ={to+nAt:n=1...N}. (A.1)
For an It o process defined by a Langevin equation:
dX(t) = f(X(t),t)dt + k(X(t),t)dW (t) (A.2)

the scheme of the approximation in the one dimensional casafinitial value
X, = X is:

X(tn—H) = X(tn) + Atf(X(tn)a tn) + k(X(tn)a tn)(W(tn-i-l) - W(tn)) (A-3)

whereWW is the Wiener process. This means that for each time step wetba
compute the incremert/(¢,,.1) — W(t,) which is Gaussian white noise with a
standard deviation of/A_ttI

In the D-dimensional case each component i of the scheménbadsrim:

Xits1) = Xi(ta) + ALFX(tn) 1) + Y kig (X (1), 1) Wy (tsa) — Wi(ta)

J=1

(A.4)
where each componefit; of the vectorW is an independent Wiener process. In
vector form:

X(tns1) = X(t) + AEX (1), 1) + KX(t0), t2) (W (tns1) — W(tn)). (A5)

In the special case &(X, t) = 0 the Euler-Maruyama approximation reduces
to the Euler scheme for deterministic differential equasio

The orderg of weak convergeanor the Euler-Maruyama approximation is
£ = 1 given some conditions oﬁandkH

1See sectiol 3. 1.

2For time discrete approximation$,,; weak convergend® a procesd” means that ensem-
ble averages of nice enough functionals (e.g. moments)eopthcess converge at each time
limat—o (g(Y'(2))) — (9(Xat(t))) = 0. Seell120, p. 327].

3For details on the conditions sée 121, p. 457ff].
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Index of Common Variable Names

normal distribution with meap and variancer?

d-dimensional Wiener process

time delay

discrete time step, temporal resolution of data

drift coefficient vector of a Fokker-Planck equation

diffusion coefficient tensor of a Fokker-Planck equation

deterministic and stochastic terms of a Langevin equation

autocorrelation function

bumblebee position in foraging arena: distance to flowet,wal
position horizontal parallel to flower wall, height

horizontal turning angle

horizontal bumblebee speed

deterministic drift of speed and turning angle

speed-dependent noise term of turning arngyle

non-deterministic (noise) term in changes of speed
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