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Abstract

In the analysis of movement patterns of animals, stochasticprocesses play an im-

portant role, providing us with a variety of tools to examine, model and simulate

their behaviour. In this thesis we focus on the foraging of specific animals - bum-

blebees - and analyse experimental data to understand the influence of changes in

the bumblebees’ environment on their search flights. Starting with a discussion of

main classes of stochastic models useful for the description of foraging animals,

we then look at a multitude of environmental factors influencing the dynamics of

animals in their search for food. With this background we examine flight data of

foraging bumblebees obtained from a laboratory experimentby stochastic analy-

ses. The main point of interest of this analysis is the description, modelling and

understanding of the data with respect to the influence of predatory threats on the

bumblebee’s foraging search flights. After this detail-oriented view on interac-

tions of bumblebees with food sources and predators in the experimental data, we

develop a generalized reorientation model. By extracting the necessary informa-

tion from the data, we arrive at a generalized correlated random walk foraging

model for bumblebee flights, which we discuss and compare to the experimental

data via simulations. We finish with a discussion of anomalous fluctuation rela-

tions and some results on spectral densities of autocorrelation functions. While

this part is not directly related to the analysis of foraging, it concerns a closely

related class of stochastic processes described by Langevin equations with non-

trivial autocorrelation functions.
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Biological Lévy Hypothesis . . . . . . . . . . . . . . . . 33

2 Bumblebee Flights under Predation Threat 37

2.1 Set-up of the Bumblebee Experiment . . . . . . . . . . . . . . . . 38

2.2 Analysis of Bumblebee Flights . . . . . . . . . . . . . . . . . . . 41

2.2.1 Position Distributions . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Velocity Distributions . . . . . . . . . . . . . . . . . . . 43

Maximum Likelihood Estimation . . . . . . . . . . . . . 45

Information Criteria . . . . . . . . . . . . . . . . . . . . 46

Variability between Individual Bumblebees . . . . . . . . 49

Quantile-Quantile Plots . . . . . . . . . . . . . . . . . . . 50

2.2.3 Local Behavioural Changes under Threat . . . . . . . . . 51

2.2.4 Velocity Autocorrelations . . . . . . . . . . . . . . . . . 56

2.2.5 A Potential Model for Threatened Bumblebees . . . . . . 60

Simple Model explaining Anti-Correlations . . . . . . . . 62
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Overview

The desire to understand the behaviour of animals gave rise to a broad field of

research. A specific but still large part of this field is concerned with the analysis

of the movement patterns of foragers. While the topic of foodsearch of animals

has been analysed for a long time, many interesting questions remain under inves-

tigation due to the inherent intricacy of the field: a large variety of environmental

factors, competing evolutionary pressures, and the complexity of the analysed for-

ager itself make the analysis of experimental foraging datachallenging.

Since a complete modelling of all the biological factors relevant to describe

the food search of an animal is typically not feasible, and even such a model

would likely still be non-deterministic, stochastic models have been introduced

into foraging research. Consequently, stochastic processes play an important role

by providing us with a multitude of tools to examine, model and simulate animal

movement patterns.

In the first chapter we start with a discussion of environmental factors influ-

encing the dynamics of animals in their search for food (see section 1.2). We

then present the main classes of stochastic models used to describe the foraging

of animals in section 1.3. At the boundary between optimal foraging theory and

stochastic processes the idea of the optimality of specific random walks to find

randomly distributed targets developed into the Lévy flight hypothesis, which we

discuss in section 1.4 in the context of the biological factors and of its relation to

the alternative foraging models.

In the following two chapters we focus on a specific foraging animal: the

bumblebee. These two chapters are based on a laboratory experiment by Thomas

C. Ings and Lars Chittka [1], who collaborated with me on the topic of preda-

tion threats together with Aleksei V. Chechkin and Rainer Klages (published in

10



OVERVIEW

[2]). In chapter 2 we examine flight data of foraging bumblebees in order to un-

derstand the influence of predatory threats on the bumblebee’s foraging search

flights. While the threat of predation is only one of the biological factors affecting

the foraging behaviour, the set-up of the experiment as described in section 2.1

has the advantage of keeping all other environmental influences constant. After

the main section 2.2 of the chapter, which consists of the analysis and interpreta-

tion of the effects of predators and a partial model thereof,we also connect our

findings to the discussion on the applicability of the Lévy flight hypothesis (see

section 1.4.2) in section 2.3.

From the detail-oriented view on interactions of bumblebees with food sources

and predators in chapter 2, we turn our attention to the search flights between

flower visits in chapter 3. In this chapter the goal is to arrive at a generalized

reorientation model for bumblebee flights, which we developby extracting the

necessary information from the experimental data in section 3.2. After compar-

ison of the resulting generalized correlated random walk foraging model with a

simple reorientation model, the model is validated by simulation and comparison

to the data of the bumblebee experiment in section 3.3. A paper written in collab-

oration with Aleksei V. Chechkin and Rainer Klages with the main results of this

chapter has been published in [3].

A common theme recurring through the previous chapters — apart from for-

aging — are Langevin equations and their generalizations. In chapter 4 we finish

the thesis with a discussion of anomalous fluctuation relations and some results

on spectral densities of autocorrelation functions. Whilethe class of stochastic

processes we investigate here are not directly related to the analysis of foraging,

they are also described by a (differently) generalized Langevin equation with non-

trivial autocorrelation functions. The content of this chapter is closely related to a

publication together with Aleksei V. Chechkin and Rainer Klages [4], who are its

main authors.

11



Chapter 1

Foraging and the Lévy Flight

Hypothesis

1.1 Embedding into Foraging Research

Understanding the behaviour of foraging animals is an endeavour which is chal-

lenging due to the complex environment in which the search for food happens.

Correspondingly broad are the topics in the area of foragingresearch. In the

following two chapters we will analyse experimental data toanswer more spe-

cific questions about foraging bumblebees, i.e. can we understand the interaction

between bumblebees and their predators and how can we model the foraging be-

haviour. However, in this chapter we first want to introduce the relevant biological

factors and the essential stochastic foraging models, as the background to discuss

optimal foraging. Specifically,”What is the best statistical strategy in order to

search efficiently for randomly located objects?”has been used as a guiding ques-

tion to research the movement patterns of foraging animals.A search model was

proposed which predicts thatLévy walks1 are optimal to search for sparse and re-

visitable food sources [5]. The basic idea is that instead ofa random walk with a

constant or normally distributed step lengthl, a random walk whose flight lengths

are distributed as a power-law is used to model the movement of a forager, that is:

1Misleadingly calledLévy flightsin [5]. See also section 1.3.2.

12
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Figure 1.1: Example trajectories (both withn = 5000 steps) of a Brownian
motion (left) and a superdiffusive Lévy walk with typical scale-free step lengths
(right).

ρ(l) ∼ l−β for 1 < β ≤ 3, whereρ is the probability density function of the step

length. As this random walk exhibits the property that very large step length are

much more common than in the case of Brownian motion, leadingto superdiffu-

sive movement dynamics as shown in Fig. 1.1. In section 1.3.2we will look at

Lévy flights, Lévy walks and why they are interesting for modelling diffusion and

especially foraging.

The optimality claim of the Lévy flight hypothesis is interesting from the bi-

ological point of view as one would expect evolutionary pressure on the forager

from the energy and time spent for searching food, which could lead to a cor-

responding adaptation of the forager towards an optimal foraging strategy. It is

however unclear if the Lévy walk model is applicable to realanimals and even if

it is, whether the resulting advantage for survival would beimportant enough in

comparison to other evolutionary pressures to push the animals towards an adapta-

tion of this foraging scheme. A second reason why Lévy walkswere investigated

as a viable strategy were claims that they arise naturally from the interaction of the

forager with the food source distribution [6, 7]. Both reasons lead to the search

for Lévy walks in experimental data. Foraging data of many animals has been

analysed to find evidence for Lévy walks as a search strategy: albatross [6, 8];

deer, bumblebees [5, 8]; Drosophila [9]; tuna, cod, turtles, shark and penguins

13



CHAPTER 1: FORAGING AND THE L ÉVY FLIGHT HYPOTHESIS

[10] – with mixed results, as discussed in section 1.4.2. In quite a few cases the

analysis had to be revised due to errors in the data, insufficient data or method-

ological problems [8]. The evidence for the existence of Lévy walks in foraging

data therefore still remains under discussion.

In this chapter we will begin in section 1.2 with an introduction to the main

biological factors which affect the movement of animals while searching for food.

After this exposition of the complexity of the environment of foragers we will

then introduce common classes of stochastic processes which are typically used

to model animal movement in section 1.3. In section 1.4 we will then concern

ourselves with optimality in foraging, which has been developed under the name

of optimal foraging theory(see section 1.4.1). There we will focus on the neces-

sary assumptions and experimental evidence for theLévy flight hypothesis, which

arose at the interface of the theory of stochastic processesand optimal foraging

theory (see section 1.4.2). This chapter also functions as areference with respect

to stochastic models and the biology of foraging for the following chapters 2 and

3. We will meet the Lévy flight hypothesis again in section 2.3 in the context of

our analysis of experimental data of foraging bumblebees.

1.2 Biological Factors in Foraging

The ability of an animal to forage and the resulting movementpatterns depend

on a large number of biological factors. While some of them are related to the

environment the animal is living in, others are given by the internal constraints

acting on it, e.g., its energy needs and energy storage capacity.

In this section we can only give a short overview of the main aspects which

play a role in the discussion of search strategies of foragers. A nice introduction

to the field of foraging animals presenting the variety of ecological factors and

matching theories can be found in [11].

1.2.1 Habitat and Home Range

Many animals have a limited space in which they can search forfood. There

are different reasons for these spacial limitations of the habitat. On the one hand

14
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the area may be bounded, e.g., by physical barriers or by boundaries to adjacent

territories of rivals. A different kind of spatial restriction is generated if the animal

has to return periodically to a specific location. Examples are sleeping places and

locations where its social group gathers.

When discussing foraging, the effects of bounded motion have to be recog-

nized, and may themselves give rise to interesting technical and also biological

questions, e.g., how boundaries between territories are maintained [12]. For the

discussion of search strategies, in many cases an unboundedforaging space is

assumed and the need to return to the origin is neglected, since the focus on

optimal search strategies is already complicated enough without these compli-

cations. However for the analysis of experimental data these concerns have to be

addressed, e.g., by removing movements from and to a sleeping place [8] – effec-

tively assuming that the dynamics during long search periods is independent from

transient movement phases to access the area of search.

1.2.2 Heterogeneous Environments

Nearly all animals live in a highly complex and heterogeneous environment. One

common cause for a heterogeneous environment is a non-uniform food source

distribution, which therefore has been examined analytically [13, 14, 15, 16] and

experimentally [17, 18, 19] and is of concern when optimal foraging strategies are

investigated (see section 1.4). Even seemingly monotonousenvironments such

as the ocean surface have spatially heterogeneous food sources for a foraging sea

bird, in this case structured plankton which is aggregated by water eddies [18].

External spatially varying parameters, e.g., food availability, temperature or

water depth, can affect parameters of the movement of the foraging animal.

When the internal parameters of the animal can be adequatelydescribed by a

low number of “internal states”, the movement can be modelled by a composite

random walk (see section 1.3.5). However, if the number of states is very large

or even infinite, the idea of switching between different modes might not make

much sense in those models – they are usually not considered when speaking

about composite random walks in the context of foraging animals. The parameter

dependencies in these models might either be phenomenologically treatable, e.g.,

15



CHAPTER 1: FORAGING AND THE L ÉVY FLIGHT HYPOTHESIS

by superstatistical methods[20], or they have to be modelled explicitly. Under-

standing the dependence on heterogeneities is extremely important since neglect-

ing them can lead to a false classification of the movement process.

Destructive Foraging

Depending on the nature of the food, food sources can be described as either re-

plenishing (a flower) or only once visitable (a single fish) bya forager. If the rates

of replenishing the sources are high in comparison to the time between returns of

a forager, the former can also be calledrevisitable. Due to the changes to their

own environment, which can induce heterogeneities,destructiveforagers on the

other hand are also of interest: especially in cases of collective behaviour. We

will see in section 1.4.2 that the ability to revisit sourceschanges optimal search

behaviour drastically.

1.2.3 Risks while Foraging

The search for food is a risky endeavour for many foragers. Especially the risk

from predators has to be considered and weighed against the risk associated with

not foraging, which at some point means starvation. The dynamics of the interac-

tion between predators and their prey has been studied with various approaches,

e.g., by Lotka-Volterra equations. Various analyses in optimal foraging theory

(e.g. [21, 22]) have tried to quantify the risks and benefits of foraging in order to

find foraging strategies with ideal trade-offs.

In chapter 2 we will have a closer look at a specific example of the influence

of predation threat on the movement of a forager.

1.2.4 Heterogeneous Populations

Among many animals cooperative behaviour exists between the individuals. While

we will restrict ourselves in the following to the analysis of the movement of a sin-

gle individual without interaction with its peers, we will look at a few effects of

animal cooperation which can influence the movement of foragers. The analysis

of the movement of animals in a collective, e.g., in swarms, though interesting

16
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on its own [23], is not our focus here since it is strongly governed by in-swarm

interactions and only loosely connected to food search.

The tendency of animals to return to their group can induce restrictions on its

movement similar to those of a habitat or home range (see section 1.2.1). Sev-

eral experimental studies have analysed animal dispersal,i.e., the spreading of

a group of animals from a single source site, finding a decay ofthe population

density which has fat tails [24]. While at first this has been seen as evidence for

super-diffusive movement processes (see section 1.3.2), more detailed analyses

of experimental data revealed the heterogeneity in the animal populations as the

source of the seeming anomalous diffusion [24, 25, 26, 27, 28]. The diffusion

appeared to be anomalous because, while the movement of eachindividual was

well-described by a normal diffusion, the diffusion constant varied between the

individuals. Notice that, while this is not exactly the sameas a composite random

walk (see section 1.3.5), the effect of finding a seemingly anomalous movement

process from averaging over data with an unaccounted parameter is the same.

1.2.5 Perception of the Forager

For the search behaviour of foraging animals their perception plays an important

role. Only through the limits on their senses does it become necessary to move

around in order to search for food. While there are some analyses investigating the

role of perception on search behaviour (see e.g. [23, 15, 29,30]), in most studies

of search behaviour the modelling of the perception is simplified by assuming

that the animal has a fixed range of perceptionr: all targets closer thanr are

automatically recognized, while no other targets are perceived. This assumption

can be interpreted as a simple model for undirected local search whose movement

patterns are too small to be resolved in the larger model. If however this local

search is important enough that it has to be modelled explicitly as a separate and

maybe different stochastic process, intermittent models become a quite natural

choice for the movement analysis (see section 1.3.5).

The range of perception of the forager is an important parameter to take into

consideration when the optimality of stochastic foraging strategies is analysed (see

section 1.4.2). If the range would be large enough that the animal always perceives
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nearby food sources, the problem of foraging shifts away from stochastic search

(see section 1.2.6).

1.2.6 Deterministic Foraging and Memory

When modelling the foraging behaviour of an animal, the question of how much

knowledge the forager possesses about its food sources arises. With complete

knowledge the problem of efficient foraging reduces to finding a solution, or an

approximation thereof, to atravelling salesman problem[31], where the physical

distances between the food sources might be modified by environmental condi-

tions and risks when specifying the corresponding problem.

Another way determinism can enter into the discussion of foraging is if the

forager always has sufficient information to know the nearest food source, e.g.,

due to a large range of perception (see section 1.2.5), and always chooses this

source as the next target. This kind of deterministic foraging in a random environ-

ment has been analysed and compared to stochastic foraging models, e.g., when

analysing the effects of the shape of the home range of the forager ([32, 33], see

also section 1.2.1).

In addition to a small perceptive range, a typical assumption of stochastic

search models is that the forager has no memory of the alreadyexplored part of

its environment. However, while this is reflected in the basic stochastic foraging

models (see section 1.3), most animals do have the capability to gather informa-

tion. The resulting effects on foraging behaviour have beenrecognized as impor-

tant for many foragers, e.g., the spatial memory of bumblebees was analysed [34]

and the effects of learning on movement patterns investigated [2, 31, 35]. For ex-

ample the development of trap lines, i.e. fixed foraging routes between revisitable

targets (see section 1.2.2) has been studied [36, 31, 35, 37].

1.3 Stochastic Movement Models

In order to understand the dynamics of animal movement, a large number of

stochastic models have been developed over time. In this section we can only give

a brief overview of the most essential classes of models which have been studied
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in relation to animal foraging. All the models presented here have in common

that an organism is modelled as an ideal particle without anyinternal structure or

learning capability, usually moving in an unstructured two-dimensional space. For

real animals these assumptions will not always hold. Nonetheless the presented

model classes have been shown to be useful first approximations for the descrip-

tion of animal movement. It should be kept in mind that the models usually have

to be modified to incorporate the main environmental factors(see section 1.2) for

a comparison to experimental data.

1.3.1 Random Walk

The Wiener Process

The Wiener processW (t) for t ∈ R
+ is a time-continuous stochastic process

starting withW (0) = 0, whose incrementsW (t+ τ)−W (t) are independent and

normally distributed with a variance[38]

〈
(W (t+ τ) −W (t))2〉 = τ (1.1)

for all τ ≥ 0 andW (t) is almost surelycontinuous: the probability of a sample

path to be continuous is one. The usefulness of the Wiener Process as a model for

normal diffusion and random searches, e.g., in foraging, isin large parts a result

of the central limit theorem. As experimental data is by construction discrete in

time, a discretised Wiener Process, i.e. a random walk with Gaussian step lengths

and fixed time stepτ , is often used for comparison to experiments.

1.3.2 Lévy Flights and Lévy Walks

Stable Distributions

Given a family of independent random variables{Xi}, i ∈ N, which are all drawn

from the same distribution with finite meanµ and finite varianceσ2, the position

of a random walker2 aftern steps is given bySn =
∑n

i=1Xi. Thecentral limit

2 While the random walk is presented here in one dimension, it can be generalized to more
dimensions, e.g. by choosing a direction uniformly. For a random walker with a normal step
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theoremstates that the distribution ofSn converges to a normal distribution after

scaling:
√
n

(
Sn
n

− µ

)
→ N (0, σ2). (1.2)

In this limit the random walk converges to a Wiener process which is therefore

used to model random motion. For the normal distributions the central limit the-

orem applies as well — as they converge to themselves they arean example of

stable distributions.

A real, non-degenerate distributionD is calledstableiff for all independent

random variablesX,X1, X2 with distributionD and alla, b ∈ R, aX1 + bX2 is

distributed likecX + d for somec, d ∈ R. The central limit theorem ensures

that in the family of distributions with finite mean and variance only the normal

distributions are stable.

If one eliminates this restriction, and considers the partial sumsSn =
∑n

i=1 Yi

of arbitrary independent identically-distributed (i.i.d.) random variablesYi, i ∈ N,

the family of limit distributions is larger. The only distributionsZ which are

possible as limits for the recentred and rescaled partial sums, that isSn−an

bn
→ Z

for suitable coefficientsan, bn are theLévy alpha-stable distributions, also called

thestable laws[39, 40]. These are defined by their characteristic functions [41]

φZ(ω) :=
〈
eiωZ

〉
= exp (iδω − |γω|α (1 + iβsgn(ω)K(α, ω))) (1.3)

where

K(α, ω) =

{
− tan(πα/2) : α 6= 1

2 log |ω|/π : α = 1.
(1.4)

The restricted parameters are the indexα ∈ (0, 2], the skewnessβ ∈ [−1, 1], the

scaleγ > 0, and the locationδ. Here we are only interested in random variables

Yi with an even probability density function, which result in symmetric(β = 0)

and centred(δ = 0) stable distributions with:

φZ(ω) = e−|γω|α . (1.5)

length distributionN (0, σ2) this would be the same as using independent normal step length
distributions in each dimension separately.
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The central limit theorem is generalized in the following way: the stable dis-

tributions attract other distributions when summing theirrandom variables de-

pending on the asymptotic behaviour of the tail probabilities ofYi. For a finite

variance〈Y 2
i 〉 (or y2P [|Yi| > y] → 0) the resulting index isα = 2, giving a nor-

mal distribution as this is the case for the usual central limit theorem. However, if

P [|Yi > y| ∼ cy−α for somec > 0 andα ∈ (0, 2) asy → ∞, thisα is also the

index of the stable distributionZ [39, 40].

One reason why stable distributions for step lengths are of special interest in

movement models is that coarse-graining experimental databy always treating,

e.g., two consecutive movement steps as a single step, does not change the step

length distribution (up to a scale). This is a nice property for the analysis espe-

cially since it might be difficult to define, and hard to determine experimentally,

when a step ends [42, 43, 44]. However this does not mean that,when analysing

animal movement, models based on stable step lengths distributions are the only

available choices (see e.g. sections 1.3.4, 1.3.5).

Lévy Flights

In the context of foraging it was questioned whether a normaldiffusion is a good

model for the random search behaviour of animals. As an alternative which mod-

els a super-diffusive behaviour, random walks in one and twodimensions with

scale-free step lengthsl have been used. Let us assume that the step length dis-

tribution ρ(l) has a power-law tail, that isρ(l) ∼ l−β for large l. Forβ ≤ 1 the

distributionρ(l) cannot be normalised as
∫∞
0
ρ(l)dl diverges. Forβ > 3 the first

and second moments exist. This means that in this case the central limit theorem

applies and the position distributionSn converges to a Gaussian for largen. This

leaves the range of1 < β ≤ 3 where the variance diverges. By the generalized

central limit theorem (see above) the process converges to aLévy stable distribu-

tion which conserves the power-law tail. In these random walks, which are called

Lévy flights, the time used for each step is assumed to be a constant. This means

that the total time is just the number of steps, and the velocity is proportional to

the step length. Since this means that the velocity is unbounded, Lévy flights are

not very useful as a foraging model as animal velocities are always bounded.
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Lévy Walks

A Lévy walkdistinguishes itself from the Lévy flights model by using a constant

speedv0 for the random walker. This means that instead of jumping from one

position to the next in constant time, the walker moves with aspeedv0 from po-

sitionSn to Sn+1 in a time span proportional to the step length. The Lévy walkis

a more realistic foraging model than the Lévy flights even ifthe speed of animals

is rarely constant. The model can be seen as an approximationwherev0 corre-

sponds to the mean speed of an animal. Therefore when scale-free processes are

considered as animal movement models, Lévy walks are nearly always preferred

to Lévy flights. The question of whether Lévy walks are a good description of real

animal movement will be discussed in section 1.4.2.

In a similar way, classic random walks have also been generalized to another

class of stochastic processes:continuous time random walks[45, 46, 47]. For

these models, not only is the step size drawn from a distribution, but the time

between one step and the next is also drawn from another, different distribu-

tion, where both random variables are typically drawn i.i.d. The interpretation

of the random update times is typically that they are inducedby a random envi-

ronment, which causes the object to stick and wait after eachstep. Due to the

additional waiting times continuous time random walks can exhibit subdiffusion,

which makes them interesting in the context of crowded environments [48]. Con-

tinuous time random walks can also be superdiffusive as a result of heavy-tailed

step size distributions, e.g., a Lévy walk can be seen as a special case of a continu-

ous time random walk. However, apart from Lévy walks continuous time random

walks are only rarely [49] used for modelling foraging animals for the same rea-

son as the Lévy flights: the typically unbounded velocitiesdo not match well to

the physics of animal movement.

1.3.3 Correlated Random Walk (Reorientation Models)

Typical candidates for modelling diffusion-like processes are e.g. (generalized)

Langevin equations or continuous time random walks [50]. Inthe case of foraging

models, it has to be taken into account, that animals often have a “front”-direction

in which they move and have to turn their body to change their movement direc-
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tion. This is commonly modelled byreorientation models(also calledcorrelated

random walks(CRW)) and has been analysed [42, 14, 43] and used to describe

the movement of a variety of animals [44, 51].

In (two-dimensional)reorientation models, the movement of an animal, with

position(x, y) ∈ R
2 heading into the direction given by the angleα in a static

frame of reference, is described by:

α(t+ τ) = α(t) + β(t) (1.6)

x(t+ τ) = x(t) + l(t) cos(α(t)) (1.7)

y(t+ τ) = y(t) − l(t) sin(α(t)) (1.8)

wherel is thestep length, τ is the discrete time-step andβ is theturning angle, i.e.

the change in direction in a single time step. Many variations to this description

are used, for example the time-continuous version in [42]. Proportional to the step

length is the speedv(t) := l(t)/τ .

The turning angleβ and the step lengthl ≥ 0 are drawn independently from

probability densitiesp(β) andq(l). These densities are usually estimated from an-

imal trajectories. In some models (e.g. [51]) the analysis is simplified by assuming

a constant step lengthl0 of the animal (and therefore also a constant speed), which

means thatq(l) = δ(l − l0). Most reorientation models ignore autocorrelations

of β andl: each random variable is drawn i.i.d. If the autocorrelations decay fast

enough, i.e. exponentially, the model is diffusive. The diffusive properties, e.g.,

mean squared displacement and diffusion constant have beenderived analytically

for various subclasses of CRWs [44, 43, 52, 25]. However autocorrelations have

been rarely[53] used to analyse experimental movement dataof foragers [54, 55].

Processes with anomalous diffusion are often excluded fromthe class of corre-

lated random walks and treated separately.

Reorientation models are not only used when directional correlations occur

because of an asymmetry of the animal and the necessity to turn its body. In

many applications the CRW is used to model the intended direction of movement

of the animal instead of the orientation of the body. In thesecases, the CRW

describes the dynamics of the intended direction, which cangive rise to directional
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persistence of animals over long time scales even though theanimal changes the

orientation of its body on much shorter time scales.

If the autocorrelation time scale is large it can become difficult to distinguish

a correlated random walk from a Lévy walk. For this determination given a finite

amount of experimental data da Luz et.al. [56] gave a necessary criterion relat-

ing the time scale of the exponential autocorrelation of a Markovian correlated

random walk to the distribution of its turning angles.

1.3.4 Generalized Langevin Equation (Active Brownian

Particles)

While many models of animal movement use a time-discrete description with

clearly discernible movement steps, most time-continuousmodels are in essence

Langevin equations or generalizations thereof.

The Langevin Equation

A Langevin equation is a stochastic differential equation with a deterministic

part, calledf , and an added noise termΓ which is multiplied by the matrixk of

coefficient functions:

d

dt
X(t) = f(X(t), t) + k(X(t), t)Γ(t) (1.9)

whereΓ is called a stochastic force orLangevin force: it is a vector ofwhite noise,

meaning that〈Γi(t)〉 = 0 and 〈Γi(t)Γj(t′)〉 = δi,jδ(t − t′) for all dimensions,

whereδi,j is Kronecker’s delta andδ(t − t′) is the Dirac delta function.3 An

equivalent restatement of Eq. (1.9) is:

dX(t) = f(X(t), t)dt+ k(X(t), t)dW(t). (1.10)

From the Langevin equation alone it is not clear which systemwe describe,

as we have not defined yet how to integrate it. As the Wiener process is nowhere

3There is also the possibility to define the Langevin equationfor stochastic forcesΓ which are
notδ-correlated. Suchcoloured noisewill be used in sections 3.2.6 and 3.2.7.
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differentiable it is not integrable in the Riemann sense. There are two different

ways to define a stochastic integral called theItō integral and theStratonovich

integral4 [38, 46] . While the Riemann integral is independent of the supporting

points of the discretisation, the stochastic integrals differ for varying approxima-

tion approaches.

Both integration methods are defined by

∫ t

0

u(xs, s)dW (s) := lim
n→0

n−1∑

i=0

u(xτi, τi)(W (ti+1) −W (ti)) (1.11)

with 0 = t0 < t1 < . . . < tn = t for any functionu(xs, s) of the Wiener process.

The two definitions of the stochastic integrals differ only in the choice ofτi as a

function ofti andti+1:

• The It ō integral usesτi = ti. It is non-anticipating which means that for

numeric integrationf only has to be evaluated at the previous time step as

described in section A.3.

• The Stratonovich integral usesτi = ti+ti+1

2
and is symmetric in time.

The Stratonovich integral has the advantage that it corresponds to the calculus of

the Riemann integral whereas the It ō integral needs a special one: theItō calculus.

Given that we specify the integration method by saying that we use the It ō

or Stratonovich interpretation of the Langevin equation wecompletely describe a

Markov process (see section 3.2.1). It depends on the process we want to model

which interpretation is appropriate.

Given the Langevin coefficients in one of the interpretations it is possible to

convert them to the other interpretation with the equations[38]:

fi(X, t) = f̃i(X, t) +
1

2

∑

j,l

kj,l(X, t)
∂ki,l
∂Xj

(X, t) (1.12)

4To be precise, there are not only two ways to define a stochastic integral, but an infinite
number, as you are free to choose the supporting points of theapproximation. It ō and Stratonovich
have analytical advantages the other definitions do not have. This means that there is no reason
not to use one of the two.
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wheref is the deterministic part of the Langevin equation in It ō interpretation and

f̃ in the Stratonovich interpretation.k is identical for both interpretations.

From Eq. (1.12) it follows that for givenf andk the It ō and the Stratonovich

interpretation describe the same process ifk(X, t) is constant over phase space.

In this case the non-deterministic term is calledadditive noisein contrast to the

generalmultiplicative noise.

The integration of a Langevin equation makes it possible to generate sample

paths of a Markov process if the Langevin coefficients are known, e.g., with the

Euler-Maruyama approximation (see section A.3). As a special case deterministic

systems are modelled by Langevin equations withk ≡ 0, however the convention

is to restrict the term only to systems with non-trivialf andk.

Langevin Movement Models

One example of how the Langevin equation is used for modelling animal move-

ment areactive Brownian particles. The basic model describes the positionr(t)

of the animal by the dynamics of its velocityv(t) = ṙ(t) via

mv̇ = −γ(v)v +
√

2DΓ(t), (1.13)

wherem is the particle mass,γ(v) is a velocity-dependent “friction” and the diffu-

sion constantD scales the Langevin force (see e.g. [57, 58]). For active particles,

the “friction” γ(v) is allowed to be negative, resulting in an active acceleration

which is usually powered by the metabolism of the animal. A nice introduction

to active Brownian particles including many-particle interactions can be found in

[23].

A variety of different generalizations of the Langevin equation (Eq. (1.9)) re-

lated to active Brownian particles will be used in this thesis. A Langevin equation

with an additional potential will be used in section 2.2.5. In chapter 3 a non-

Markovian version of a generalized Langevin equation in polar coordinates will

be extracted from experimental data to model foraging bumblebees using the con-

nection (see section 3.2.3) of the Langevin equation to the Fokker-Planck equa-

tion (see section 3.2.2). In the final chapter a generalized Langevin equation with

memory kernel will be studied.
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1.3.5 Composite Random Walks and Intermittent Search

One assumption which is common to all animal movement modelsshown above

is that only one process is responsible for generating the path of an animal. While

this focus on a single explanatory mechanism might be aesthetically pleasing, it

has to be questioned when dealing with the movement of highlycomplex organ-

isms in complex environments. It is natural to start from a simple description by

a diffusive random walk (section 1.3.1) and, when observingthat the model is not

consistent with the experimental data, continue by developing more general mod-

els. However insisting that the resulting models stay simple may lead us astray in

understanding animal movement. For example, if one looks ata typical recorded

trajectory of a foraging animal and finds that there are many small step lengths but

also a non-negligible amount of much larger step lengths, one might be tempted to

say: ”Since there are too many large steps for a Brownian random walk, we need

a process with a step length distribution with a heavy tail. And since the steps

should be made of (not observed) sub-steps, only a stable distribution is plausi-

ble. (see section 1.3.2)” This explanation simplifies by assuming that a process

has only one relevant scale. But for many animals, movement serves different

purposes which can have different relevant spacial scales and time scales. There-

fore it is plausible, that animals switch between differentinternal states governing

different movement phases.

Composite random walksexplicitly model these statess1, . . . , sn and switches

between them. The switching between statessi andsj in one time step∆t is then

specified by a (time-independent) switching probabilityp(si → sj) for each pair

i, j, with
∑n

j=1 p(si → sj) = 1 for eachi, and the switching process is usually

assumed to be uncorrelated. These probabilities can sometimes be reconstructed

from time series, e.g., viahidden Markov models(HMM) [59]. Associated to each

state is a stochastic process, which generates the trajectory of the animal while the

state is active. In principle any process could be used for a state, but using Lévy

strategies is only done occasionally [60] as scale-free strategies, while possible,

are a bit of a mismatch when one explicitly wants to explain the scales of the

involved processes.

Although in theory one could use models with many states, often just two
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states are used, with a Bernoulli switching process. In manycases of foraging

animals one movement phase corresponds to a local search forfood while an-

other corresponds to movement with larger step lengths or stronger directional

persistence. Composite random walks are therefore sometimes calledintermittent

search processes, even though the underlying process of the phenomenon is not

directly related to intermittency of dynamical systems.5 These two-state models

can be understood as a compromise betweenexplorationof food abundance and

exploitationof local food sources. However, there are many other reasonswhy

composite random walks are used for modelling since switching between differ-

ent movement phases is a good description for a variety of biological factors. Ex-

amples are spatially inhomogeneous environments leading to a switching between

different kinds of behaviour (see section 1.2.2), switching between directed and

undirected modes of movement [62], and behaviour induced byexternal changes

in the environment, e.g., day and night cycles. In our analysis of experimental

data of foraging bumblebees in chapter 2 we will encounter anexample of inter-

mittency induced by spatial inhomogeneities (see section 2.2.2).

Due to the flexibility in describing different biological aspects for animal

movement, composite random walks have been used to model a variety of exper-

iments [63, 64, 59, 62, 65, 66] and a large number of analyses of their properties

have been done [66, 67]. A review of intermittent search processes can be found

in [48].

The step length distributionρl of a composite random walk is a mixture of the

step length distributions of each of the contributing processes, with weights which

depend on the transition probabilities between the states.Even with very simple

processes for each state, e.g., scaled Wiener processes, the resulting distribution

ρl can be hard to distinguish from other those of other models given experimental

data due to the large variety of possibleρl [67]. This has been especially important

in the search for Lévy walks in animal movement data. Typically a preference of a

power-law tail of a step length distribution over an exponential6 tail has been inter-

preted as evidence supporting the biological Lévy hypothesis (see section 1.4.2),

5Notice that in some cases the term “intermittency” has been used for a model with only one
process. In [61] a Levy Walk model was used and all steps belowa threshold were retroactively
assigned to a local search phase and all other steps to a relocation phase.

6or even thinner
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e.g., in [10, 68]. However, since there are many biological factors which can in

effect lead to a composite random walk, at least a few simple cases of composite

random walks should be excluded before one can attribute experimental data to

a Lévy walk. Otherwise, e.g., if the only alternative modelis a Wiener process,

the step-length distribution of a composite random walk canbe easily mistakenly

identified as the power law of a Lévy walk [69].

1.4 Optimal Foraging

1.4.1 Classical Optimal Foraging Theory

In the long and exciting process of biology developing from anatural science

with a stronger descriptive focus to a more quantitative science, the question of

how to explain the complex behaviour of animals proved to be aresistant one.

While early research gave to questionable descriptions of their behaviour, e.g., the

“bad wolf” or the “greedy cow”, the tables turned with the advent of the theory

of evolution through natural selection [70].Optimal foraging theoryarose as the

attempt to examine foraging through a set of core principles[11]:

• a goal function which will be maximized, e.g., energy,

• options from which the forager can choose and

• environmental constraints acting on the forager, including internal constraints.

With the assumption that the goal function is positively correlated with the chance

of survival of the species of the forager, natural selectionprovides the selection

pressure, such that the animal is pushed towards choosing those available options,

which under the environmental constraints maximize the goal function. While the

field of optimal foraging theory (see e.g. [71, 21, 22, 72]) diversified until today

[11] it also lost its name due to cosmetic reasons [11]. Part of the diversifica-

tion came from considering more complex goal functions, which model survival

chances more realistically. This means that also trade-offs, e.g., between gathered

food and predation risk have been considered [11].
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The Lévy hypothesis (see below in section 1.4.2) integrates nicely into this

framework, by considering different stochastic food search processes as options

of the forager. The constraints are given by the lack of memory of the searcher,

limited perception and a random environment. In this context it is important to

realize that the choice of the goal function plays a decisiverole: it should consider

both gain and costs, typically the food gained per distance travelled for acruise

forager, i.e. a forager which continuously scans the environment while moving.

This might however not be the correct choice of a goal function. Examples are

so-calledsaltatory predator, that switch between predation attempts and “blind”

movement phases, which often has the largest energetic costs associated to feed-

ing, e.g.’ his predation attempts, and not to the travellingbetween attempts ([73],

compare sections 1.2.5, 1.3.5). Another example is an animal which has a very

limited capability to store energy. This animal might want to optimize towards a

more regular/predictable uptake of food at the cost of the total amount of food in

order to avoid starvation [73].

In the context of optimal foraging theory another aspect of the biological Lévy

hypothesis might be of interest to investigate. If the hypothesis would be correct

in case of a specific application, the resulting stochastic movement process would

be scale-free [5, 6, 74]. In its strong interpretation (section 1.4.2) the resulting

dynamics would be quite inflexible: a model with more possible parameters cor-

responding to different temporal or spatial scales might begood for the adapt-

ability of the animal. This is another reason why we might notexpect the strong

interpretation to hold. For example a composite random walkmay not have the

optimal step length distribution for a particular search problem, but might be easy

to produce, compose and be flexible. The differences to some optimal distribution

might not be large enough to give rise to evolutionary pressure [75].

1.4.2 Lévy Hypothesis

In the context of early experiments on foraging animals [6, 76, 9] and some theo-

retical work on Lévy processes [77, 5] and their applicability to movement data of

animals, theLévy hypothesiswas born. However,theLévy hypothesis is actually

two (main) hypotheses, which should be considered separately. Though they are
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usually collectively known as the “Lévy flight hypothesis”, where the “flight”-

part is actually a historical misnomer since most biologically interesting models

are variations of Lévy walks, we give them distinct names here.

Mathematical Lévy Hypothesis

Quantifying foraging behaviour of organisms by statistical analysis has raised the

question of whether biologically relevant search strategies can be identified by

mathematical modelling [71, 78, 79, 75, 80, 48, 74].

In short, the “Lévy flight hypothesis” predicts that a random search with jump

lengths following a power law minimizes the search time for sparsely, randomly

distributed, replenishing food sources [77, 5, 74]. In the following we will call this

the mathematical Ĺevy hypothesis. While this can be examined as a theoretical

question about stochastic processes, it also makes predictions in the context of

optimal foraging theory (section 1.4.1). Here we will first clarify the class of

processes under consideration and the assumptions needed for the hypothesis to

hold. Whether there are actually any organisms which perform Lévy walks (or

try to approximate them) is a different question, which we will look at in the next

subsection.

For all analyses of optimal foraging discussed here, it is assumed that the

foraging animal has no prior knowledge about the position ofthe randomly dis-

tributed food sources, searches stochastically and has no memory (see section 1.2.6):

the step-lengths are drawn i.i.d. from a power-law distribution. The optimized

goal function, i.e. the search efficiency, used here is the visited food sources per

distance travelled (see section 1.4.1).

A major reason why Lévy walks were considered as a model class of interest

is that they fill the gap between ballistic motion and a normaldiffusion depend-

ing on the powerβ of the power-law decay of the step length distribution (see

section 1.3.2). Forβ approximating1 from above, the behaviour of Lévy walks

is dominated by a few largest steps, making it effectively ballistic for most pur-

poses. This limit is ideal in case of destructive foraging (section 1.2.2) since it

decreases the probability to revisit food sources which arenot available any more

[5]. The non-trivial case is thereforenon-destructiveforaging or cases which can
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be approximated by it, e.g. a non-uniform distribution of food sources: if the

food sources are distributedpatchily[81], i.e. in clusters, they can collectively act

as re-visitable food patches for long time scales, even though the individual food

source is destroyed on visits [5].

It has been shown that the search efficiency can only depend onthe chosen

search process if the non-destructive forager stopsduring its movement steps

when a food source is in the range of perceptionrv ([73], see section 1.2.5). These

foraging strategies are also calledtarget-truncated[82]. Since the interest lies in

target-truncated Lévy walks it is important to notice, that the mean free pathλ

to the targets induces an extra decay of the actual step length distribution [5, 82].

The optimal exponent for a target-truncated Lévy walk is

βopt = 2 −
(

ln
λ

rv

)−2

(1.14)

which means that for sparse food sources (λ ≫ rv) a Cauchy distribution (βopt =

2) is the optimal step length distribution, i.e. a target-truncated Lévy walk is better

than Brownian motion and ballistic motion [5]. For this result, after each visit

to a food source the forager has to be placed near the food source at a distance

corresponding to the perception rangerv. If it is placed further and further away,

the relative efficiency of the Lévy walk versus ballistic motion decreases — as

doesβopt [82]. Together with the quite strong assumptions needed, this raises the

question of how robust the hypothesis is.

The result on the optimality is dependent on the restrictionto Lévy walks. If

one allows also, e.g., composite random walks (see section 1.3.5), the situation

gets more complicated. In particular, models have been analysed [66, 7] which

distinguish a fast relocation phase (ballistic or Lévy walk) in which no food is

collected, and a phase of slow local food searches (typically a Brownian walk or a

correlated random walk [83]). The results depended on a variety of model details,

e.g. the time spent in each phase [66, 61]. Overviews of this zoo of different

models can be found, e.g., in [74, 82]. In summary, the required conditions for

the optimality of Lévy walks are very strict, which suggests that the mathematical

Lévy hypothesis should not be seen as a general paradigm forsearch strategies,

but rather as a remarkable exceptional case.
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Biological Lévy Hypothesis

A different hypothesis related to the mathematical Lévy hypothesis is the question

whether any animals actually perform Lévy walks when foraging, which we call

the biological Lévy hypothesis. While this hypothesis is motivated by the opti-

mality of Lévy walks under quite specific conditions (see above), many studies

have tried to find Lévy walks in movement data of animals under a variety of

environmental conditions (e.g. [6, 76, 84, 10, 68, 85]).

The interest in Lévy walks was motivated by optimal foraging theory (see

section 1.4.1), that is, by an argument via evolutionary pressure: if Lévy walks

offer animals a more efficient way to forage in a random environment than other

stochastic foraging strategies, then it is likely that animals have evolved which

at least approximate this behaviour. Notice that the evolutionary argument does

not guarantee that the optimum is reached — suboptimal behaviour might be good

enough. This raises the question of whether the biological Lévy hypothesis should

be understood in the sense that the underlying search process actuallyis a Lévy

walk, i.e. that it is directly generated via some bio-chemical or bio-physical pro-

cess. Thisstrong interpretation of the biological Lévy hypothesis is usually not

assumed to be valid since no such process has been found and since in classical

optimal foraging theory (see section 1.4.1) the optima are not assumed to be real-

ized by the organisms [11]. Instead, usually aweakerbiological Lévy hypothesis

is investigated: the assumption is that the animals movement is driven by another

stochastic process, which is well approximated by a Lévy walk. The immediate

question which arises is: how is “very well” measured?

The distinction between the strong and weak Lévy hypothesis is sometimes

discussed as the difference betweenadaptedandemergentbehaviour [32]. the

strong interpretation corresponds to an internal mechanism which the animal de-

veloped to adapt to evolutionary pressure, while in the weakinterpretation the

Lévy movement pattern emerges from the interaction with the environment ([6, 7],

see section 1.2.2).

The problem of finding evidence for or against the Lévy hypothesis is further

complicated by the fact that the animals’ step lengths have to be estimated from

imperfect discretely sampled data giving only the pattern but not the process of the
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movement [42, 43, 44]. This is done either by definition and analysis of turning

points in the recorded trajectory [19, 9], or by only recording the animals’ position

at the turning points when they are well defined, e.g., as landing points of a for-

aging sea bird [6]. In the first corresponding studies of experimental data [6, 76]

after Lévy dynamics were introduced into foraging theory [77], the tail of the step

length histogram was compared to straight lines in log-log plots to find power-

laws in the distribution. This has been shown to be unreliable irrespective of the

binning method used for the histogram [86, 87], instead to reliably distinguish

a power-law tail from, e.g., an exponential tail, maximum likelihood estimation7

has been shown to be necessary [8, 87].

Experimental evidence [6, 84, 10, 68, 76] supporting the weak biological Lévy

hypothesis were challenged by refined statistical data analyses [8, 87, 88, 25].

While in most analyses which claimed to have found Lévy walks the null-

hypothesis was a Wiener process with normal diffusion, thiscomparison is ques-

tionable: a variety of mechanisms (see section 1.2) may naturally lead to different

foraging dynamics on different length and time scales, e.g., individuality of ani-

mals [25, 24, 26], an intermittent switching between quasi-ballistic persistent dy-

namics and localized search modes [88, 48], or the averagingover non-negligible

quantities like the time of day [68]. In section 1.3 we have seen that models like

the reorientation models (section 1.3.3) and especially composite random walks

(section 1.3.5) arise quite naturally from many of these environmental factors. As

ignoring these mechanisms can lead to spurious power laws [8, 87], it is important

to look for the reasons of the occurrence of non-trivial distributions, e.g., animals

switching between different search modes. Only with this additionally gained

knowledge is it then possible to effectively try to answer the biological Lévy hy-

pothesis by excluding that factors other than search efficiency are the reason for

the observed movement patterns.

For more elaborate movement models the velocity autocorrelations play a

large role. Lévy flights and Lévy walks generate trivial (induced) functional forms

for the velocity correlations [89, 90]. Accordingly, experiments testing the biolog-

ical Lévy hypothesis have focused on probability distributions, not on correlation

7We will use a similar technique in section 2.2.2 to reliably distinguish between models de-
scribing experimental velocity distributions.
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decay [6, 84, 10, 68]. In section 2.2.4 we will find an example of a change in au-

tocorrelations induced by changes in the environment, giving another hint that the

Lévy walks, which are inflexible with respect to the autocorrelations, are difficult

to reconcile with data from experiments on the movement of foragers.

Although the evidence for Lévy walks as foraging strategies seems to be get-

ting weaker and weaker [69, 91, 8, 87, 88, 25], the lure of the (weak) biological

Lévy hypothesis as a way to explain experimental data is still present [68, 85].

In some cases the reason for the interpretation of movement data as Lévy walks

is that they were preferred over a limited variety of alternative stochastic models

(e.g. by comparing only to Brownian motion), which match even worse. This

preference is seen as evidence for the Lévy flight hypothesis despite the fact that

some other models would give a much better explanation of thedata. For example

in the case of [68] the seeming similarity to Lévy walks is very likely to be ex-

plained by a bistable day-night cycle for the off-shelf shark movement. Therefore

a bistable model or an approximation of the switching by a composite random

model (see section 1.3.5) would be more appropriate than either a Lévy walks or

a Wiener process.

In summary, while the fundamental question ‘What is the mathematically most

efficient search strategy of foraging organisms?’ has been studied in detail (see

above), the mathematical Lévy flight hypothesis describesonly one case of a va-

riety of foraging situations. Since its necessary conditions are quite restricting it

does not capture the full complexity of a biological foraging problem [74], which

incorporates both the dependence of foraging on ‘internal’conditions of a forager

as well as ‘external’ environmental constraints (see section 1.2). While the biolog-

ical Lévy flight hypothesis has been useful by renewing the interest in cooperation

between biologists and the stochastic processes community, its use for modelling

real animals does not seem to hold up to initial expectations.

A crucial problem is how dispositions of a forager like memory [34], sensory

perception [30] or individuality [25, 24, 26] as well as properties of the envi-

ronment [19, 65, 83, 10, 18, 68], can be tested in a statistical foraging analysis

[71, 78, 79, 80, 74]. Especially for data obtained from foraging experiments in

the wild, it is typically not clear to what extent extracted search patterns are deter-

mined by forager dispositions, or reflect an adjustment of the dynamics of organ-
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isms to the distribution of food sources and the presence of predators [10, 68, 80].

This problem can be addressed by statistically quantifyingsearch behaviour in

laboratory experiments where foraging conditions are varied in a fully controlled

manner [19, 68]. One such experiment has been performed by Ings and Chittka

[1, 92], who studied the foraging behaviour of bumblebees with and without dif-

ferent types of artificial spiders mimicking predators. In the following chapter we

will examine the resulting experimental data in order to gain insight into the effect

of the environment on the movement patterns of foraging bumblebees.
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Chapter 2

Bumblebee Flights under Predation

Threat

In nature the interplay of a variety of factors, ranging fromfood source distribu-

tions and other spatial inhomogeneities in the environmentto sensory capabilities

and memory of the forager, as described in section 1.2, make it very hard to anal-

yse foraging data. An important part before one can attempt to build concrete

foraging models is to figure out which of those environmentalfactors have a large

influence over foraging behaviour.

In the following two chapters we analyse experimental foraging data of bum-

blebees under two different aspects. The experiment will give us the opportunity

to examine the search behaviour of bumblebees in a well-defined environment (see

section 2.1). The goal of this chapter is to analyse the effect that predators have

on the bumblebee flights. Therefore artificial predators have been introduced into

a foraging arena as a controlled environmental variation, such that the reaction of

the bumblebees to the change can be analysed. The main questions are therefore,

whether there are qualitative or quantitative changes in their flight behaviour de-

pending on the presence or visibility of predators, in whichstatistical properties

these changes manifest themselves, and what we can say aboutlearning and mem-

ory of bumblebees. We will also look at the experimental datain the context of

the Lévy Hypothesis, although the experimental data is notsuitable to directly test

it – mainly because of the boundedness of the experiment due to the confinement
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of the bumblebees in the arena (compare section 1.4.2). Nevertheless, the analysis

of the data will give us some indication regarding the applicability of the Lévy

Hypothesis.

In the next chapter we will then step away from the description of the interac-

tion with flowers and predators and construct a bumblebee flight model from the

experimental data focussing on the search flights between flower visits.

We start this chapter with an introduction to the experimentin section 2.1, and

a first overview of the data by examining the position probability density func-

tion (PDF) in section 2.2.1. The main part of the examinationof the bumblebee

data then consists of the analysis of the velocity distributions in section 2.2.2 and

the velocity autocorrelations in section 2.2.4 with respect to their variation under

predation threat. The former also includes a discussion of the individuality of

bumblebees. We will then distinguish different spatially localised effects of the

presence of artificial predators on the foraging behaviour of the bumblebees in

section 2.2.3. In section 2.2.5 we aggregate the gained knowledge about the bum-

blebee flights in a model, which gives a qualitative explanation for the observed

velocity autocorrelations. In section 2.3 we connect the results of our analysis

with the biological Lévy flight hypothesis (see section 1.4.2) and finish by sum-

ming up the chapter in section 2.4.

2.1 Set-up of the Bumblebee Experiment

In the analysed experiment [1] 30 bumblebees (Bombus terrestris) were trained to

forage in a flight arena with side lengths oflx = 1 m, ly = 0.72 m andlz = 0.73 m.

The flight arena included a4 × 4 grid of artificial flowers on one of the walls.

Each of the 16 flowers (see Fig. 2.2) consisted of a landing platform, a yellow

square floral marker and an artificial feeder: a replenishingfood source offering

sucrose syrup at a rate of1.85µl/min [1]. Figure 2.1 shows a diagram of the arena

together with data from a typical flight path of a bumblebee. Given the small size

of the foraging arena compared to the space available to freeflying bumblebees,

the flights should be interpreted as the behaviour of bumblebees when foraging in

a patch of flowers and not as free flights in an unconstrained environment. The

influence of the boundedness of the flight arena on the bumblebee behaviour is
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Figure 2.1:Diagram of the foraging arena. Included is a part of the flight trajec-
tory of a single bumblebee. The bumblebees forage on a grid ofartificial flowers
at one wall of the box. While being on the landing platforms, the bumblebees
have access to a food supply. All flowers can be equipped with spider models and
trapping mechanisms simulating predation attempts.

discussed in section 3.3.2. However, the main confinement ofthe bumblebees

does come from the tendency to return to the food sources, while the walls of the

flight arena are not as important (compare section 2.2.4).

The 3D flight trajectories of the bumblebees were tracked by two cameras with

a temporal resolution of∆t = 0.02 s. The individual bumblebee behaviour was

recorded by letting them fly, one at a time, in the flight arena.Each bumblebee was

approximated as a point mass with a spatial resolution of0.1 cm: internal degrees

of freedom were not recorded. The positions of the bumblebees were estimated

by the centre of mass of all image pixels corresponding to thebumblebee via

background subtraction.

The bumblebees vary individually, e.g., by mass, age and size, measured for

instance by the thorax widths of the bumblebees: they have a mean width of

5.6 mm with a standard deviation of0.4 mm. Therefore the data analyses of this

chapter have been done for each bumblebee separately unlessspecified otherwise

below; the individuality is addressed explicitly in section 2.2.2.

In 7 experimental stages the bumblebees are trained to feed,and their reaction
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Figure 2.2: Image of a single artificial flower (left) consisting of a landing plat-
form, a yellow square floral marker, a replenishing food supply and a trapping
mechanism. The trapping mechanism is present on all flowers,but it is only ac-
tivated on flowers which are additionally marked with a 3D spider model. To
its right: camouflaged crab spiders in situ, waiting on flowers to attack foraging
bumblebees. Photos by Thomas C. Ings.

to — and memory of — the presence of artificial spiders is recorded. The artificial

spiders are mechanical traps, which squeeze and release thebumblebees together

with life-sized (l = 12 mm) models of crab spiders (Misumena vatia), which

simulate predation attempts. The experimental stages are:

(1) Pretraining Feeding without predator threat.

(2) Training Artificial spiders are introduced.

(3) Neutral Feeding with no spider models.

(4) Mid-term Memory Test Spider models visible, but trapping mechanism is blocked.

(5) Reinforcement Training Spiders with active traps.

(6) Remotivation a day later Feeding with no spiders.

(7) Long-term Memory Test Same as Mid-term Memory Test.

The stages used for our analysis are (1)Pretraining, (4) Mid-term Memory Test

and (7)Long-term Memory Test, to see whether the bumblebees learn from pre-

dation attempts and adapt their movements under the threat of predation. The
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Training stages are not useful for an analysis of predationthreatsbecause one

would only measure the agitated flights of the bumblebee after being trapped.

The bumblebees were trained on two kinds of artificial spiders: half of them

on easily visible spiders and half of them on cryptic spiders[1]. In vivo, the spider

type which was emulated here is able to camouflage itself by adapting its colour to

the surroundings (see Fig. 2.2). However for our analysis this difference between

the two types turned out to be irrelevant. We did not see any major differences

between the two groups of bumblebees in any observed variable. Therefore we

will not differentiate between them in the following.

More details on the experimental set-up can be found in [1]. The possibility

to change parts of the environment while keeping all other conditions constant is

the main advantage of this and related [92, 93] experiments.This is in strong con-

trast to in situ experiments which have the advantage to capture the behaviour of

animals in their natural surroundings. However, they rarely offer the opportunity

of completely controlled modifications to the environment,since the number of

influential factors is usually large (see section 1.2).

2.2 Analysis of Bumblebee Flights

In our analysis of the experimental data we examined the velocity distributions

and autocorrelations in the different spatial directions for all stages of the exper-

iment. As we are only interested in the flight behaviour, we excluded all data

corresponding to crawling behaviour of the bumblebees on the artificial flowers

by removing all data within 1 cm of each landing platform, leaving from 2000 to

15000 data points (average: 6000) per bumblebee for each stage.

For our analysis, the experimental flight data was classifieddistinguishing data

near flowers and data away from flowers: for that purpose roughly cubicalflower

zonesaround the artificial flowers have been defined – see section A.2.2 for details.

While we will mainly be using the whole data set in this chapter, in chapter 3 the

data inside flower zones has been removed in order to analyse the foraging search

behaviour, excluding the interaction of the bumblebees with the food sources.

Given that the experimental data contained measurement errors, gaps and

other artefacts, e.g., position data of bumblebees when crawling on flowers, the
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Figure 2.3: Semi-logarithmic plot of estimatedx-position distributions for all
experimental stages. The flower platforms extend from the flower wall atx =
−0.03 m up tox = 0.04 m into the foraging arena.

data had to be cleaned as described in section A.2. Trajectories were split at

larger gaps or when visiting the flowers (see section A.2.3),to exclude correla-

tions induced by flower visits. For individual bumblebees anaverage of51 search

trajectories between flower visits have been sampled and analysed.

In total≈ 170000 data points were available for each experimental stage after

cleaning the data – in cases where complete gap-less trajectories from flower to

flower are needed this reduces to≈ 135000 data points.

2.2.1 Position Distributions

To get an overview of the data, let us start with an examination of the distribution

of bumblebee positions. In all directions the positions concentrate near the flow-

ers and the position distributions decay from there with increasing distance (see

Figs. 2.3 and 2.4). Figure 2.3 shows the dependence of the position-PDFρp on

the distance from the flower wall. While the exact functionalshape ofρp(x, y, z)

is not easy to pin down, first differences between the experimental stages can

be observed. The clearest difference is between the threat-less stage (1) and the

memory test one day later (stage (7)): in all directions, thebumblebees’ posi-
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Figure 2.4: Semi-log plot of estimatedy- andz-position distributions for all ex-
perimental stages.

tion density increases away from the flower positions in stage (7). A plausible

explanation for this effect is that the bumblebees now have been trained on two

occasions (stages (2) and (5)) with dangerous spiders and might therefore be more

motivated to leave the flower patch and search for food elsewhere when they are

again exposed to spider models. This is consistent with the increase ofρp near the

other walls in figures 2.3 and 2.4. The same effect, although less pronounced, can

be observed for the first memory test with predation threat instage (4). It might

seem that in stage (4) the bumblebees have not yet sufficiently trained on artificial

predators to change their behaviour significantly, but we will see in sections 2.2.3

and 2.2.4 that they have already learned from the first training phase and adapted

their flight patterns.

Fig. 2.4 also nicely demonstrates the asymmetry in the vertical z-direction:

approaches to and from flowers and inspections of them happendominantly from

above which can also be seen in Fig. 2.5. The effects of the correlation of the

flight direction inx- andz-direction due to starting and landing bumblebee flights

will be discussed in section 2.2.4.

2.2.2 Velocity Distributions

While the distribution of bumblebee positions already shows some effect of pre-

dation threats on the bumblebees, we expect that the reactions to the artificial
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Figure 2.5: Flight trajectories at a single flower (on the left border) projected on
x andz: bumblebees starting from and approaching flowers are fairly consistent
in their direction.

spiders might show a clearer signal of changed behaviour through changes in the

velocities. We therefore analyse the velocity distributions in the 3 qualitatively

different directions for all the experimental stages. Since we can expect to find

differences between individual bumblebees [1] (see p. 49f), we have to be careful

and look at each bumblebee individually before combining the results. With the

amount of data given, we have to make sure that our results areconsistent and

have a convincing interpretation.

The velocity distributions vary for the different spatial directions due to asym-

metries induced by physical and biological constraints as well as the spatial ar-

rangement of the flowers. Figure 2.6 shows a typical normalized histogram of the

horizontal velocities parallel to the flower wall (cf.y-direction in Fig. 2.1) for a

single bumblebee showing a characteristic peak at low velocities. Direct fitting of

distributions on the histogram and a visual comparison withsome assumed dis-

tribution was shown to be unreliable [87], as is illustratedby Fig. 2.6: only the

power law and the Gaussian distribution can be ruled out by visual inspection.

However, the Gaussian mixture and an exponential function appear to be equally

likely. In the following, we therefore use maximum likelihood estimation for a

number of candidate distributions to obtain the optimal parameters for each can-

44



CHAPTER 2: BUMBLEBEE FLIGHTS UNDER PREDATION THREAT

didate and then compare the different distribution types bytheir weights using the

Akaike and Bayesian information criteria [94, 95].

Maximum Likelihood Estimation

In order to fit candidate distributions to the experimental velocity data we esti-

mated their parameters by maximising the likelihood of eachdistribution [8, 87].

Our candidate distributions are:

a) Exponential:ρλ(v) = ce−λ|v|,

b) Power law:ρµ(v) = c |v|−µ,

c) Normal distribution with zero mean:ρσ(v) = Nσ(v),

d) Mixture of two normal distributions:ρa,σ1,σ2(v) = aNσ1(v)+(1−a)Nσ2(v),

whereNσi
(v) = 1√

2πσ2
i

e
− v2

2σ2
i , i = 1, 2, and0 ≤ a ≤ 1.

Given a set of measured velocitiesD = {v1, v2, . . . , vn} and a probability

density functionρλ(v), whereλ is a vector of k parameters, thelog-likelihoodof

the probability density function for a finite resolution of the data (∆v = 5 cm/s)

simplifies to

lnL(λ|D) =
∑

vj∈D
lnPλ(vj) =

∑

b∈bins

h[b] ln

∫ max(b)

min(b)

ρλ(v)dv (2.1)

whereh(b) is the observed frequency in binb.

For each candidate distributionρiλi
, i ∈ {1, . . . , 4}, we locally maximised the

log-likelihood lnLi with relation toλi with the Nelder-Meaddownhill simplex

algorithm [96].1 We then used a Monte Carlo method to search for global max-

ima. Figure 2.6 shows a typical result of fitted distributions to data of a single

bumblebee.
1This algorithm was chosen as it is quite fast, so that we couldsample for many starting pa-

rameters with Monte Carlo.
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Figure 2.6: Estimated velocity distributions: Semi-logarithmic plot of the nor-
malised histogram of velocitiesvy parallel to they-axis in Fig. 2.1 (black crosses)
for a single bumblebee in the spider-free stage (1) togetherwith a Gaussian mix-
ture (red line), exponential (blue dotted), power law (green dashed), and Gaussian
distribution (violet dotted), fitted via maximum likelihood estimation.

Information Criteria

For checking which of the distributions fits best we used the Akaike information

criterion [8]. We made sure that the results do not depend on the chosen criterion

by also checking the Bayesian information criterion.

To find the preference between the different model distributions whose likeli-

hoodsLi are maximised atλmaxi the information criteria are

ICi = −2 ln(Li(λ
max
i |D)) + s(n)ki (2.2)

with s(n) = 2 for the Akaike information criterion ands(n) = ln(n) for the

Bayesian information criterion as a penalty on the number ofparameterski. The

best model, denoted by∗, is the one which minimises the information criterion

IC∗ = min
i

(ICi). The Akaike/Bayesian weights then give the preference of each
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Table 2.1: Model weights and estimated parameters. Akaike and Bayesian
weights both give preference to the mixture of two Gaussian distributions forvy
for most of the bumblebees. The weights are estimated individually for each bum-
blebee and their mean and standard deviation (in brackets) over all bumblebees are
shown. Below the mean and standard deviation over all bumblebees of the indi-
vidually estimated distribution parameters are given.

Model: a) Expon. b) Power law c) Normal d) Normal Mixture
Akaike weight 0.00 (0.00) 0.00 (0.00) 0.04 (0.19) 0.96 (0.19)
Bayesian weight 0.04 (0.18) 0.00 (0.00) 0.08 (0.26) 0.88 (0.30)
Parameter X λ µ σ a σ1 σ2

mean(X) 5.61 1.11 0.25 0.67 0.06 0.29
stdev(X) 1.07 0.16 0.03 0.13 0.04 0.03

model over the others as a probability

wi = αe−(ICi−IC∗)/2 , (2.3)

whereα normalises the weights to
∑

i wi = 1. In our case, the choice of the

information criterion makes no strong difference for the model selection in this

experiment.

Of our list of candidate distributions the Gaussian mixtureturned out to be

best for all stages of the experiment independent of environmental parameters

(see Table 2.1). With the Akaike information criterion the Gaussian mixture is

chosen with a weight of over 95% for all bumblebees and all experimental stages.

The Bayesian information criterion agrees with the Akaike information criterion

on 90% of all data sets. For the other 10% it prefers a single Gaussian or an

exponential distribution — however, these data sets turnedout to be those with

the least amount of data available.

The mixture of two Gaussian distributions can be biologically interpreted as

two modes of flight: one for flying near flowers and one for ‘free’ search flights,

which bears some resemblance to intermittent dynamics [65,48, 74]. This has

been verified by splitting the data into flights far from the flower wall vs. flights in

the flower zones (see section A.2.2) and examining both data sets separately. With
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Figure 2.7: Semi-log plot of normalized velocity distributions in each direction
in experimental stage (1). The velocity distributions havebeen scaled by their
variance for each bumblebee before accumulating the data ofall bees. (ρ(vy) and
ρ(vz) are shifted down for better visibility.)

a growing risk of overfitting we could continue to increase the “zoo” of candidate

distributions, e.g. by considering exponential mixtures.However, the Gaussian

mixture is not only satisfying because we can explain why it is mixed, but also

because the Gaussians are stable, which is consistent with an interpretation of the

discretely measured flight steps as sums of substeps (see section 1.3.2).

The velocity distributions in the other directions, i.e.vx andvz can be seen in

figure 2.7. For this comparison data from all bumblebees in stage (1) was used.

To allow the use of all data, the velocities had to be scaled bythe variance for

each bumblebee (see below). Fig. 2.7 shows that while they-velocity distribution

is nicely symmetric,ρ(vx) andρ(vz) have asymmetries induced by gravity forvz
respectively by the difference between flying towards the flower wall and flying

away forvx. For an analysis of the causes of the functional shape of these distri-

butions a more comprehensive bio-mechanical model for starting and landing on

flowers would be needed. It is interesting thatρ(vx) is consistently exponential for

negative velocitiesvx over all individual bumblebees, that is, for flights towards

the flower wall – however, the reason is unclear.
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Table 2.2: Weights and estimated parameters of the Gaussianmixture for the dif-
ferent experimental stages. Weights and parameters are estimated for each bum-
blebee. Shown are the mean over all individuals and the standard deviation (in
brackets). The mixture of two Gaussians is the best fit in all stages. In the param-
eters of the distribution we observe no significant effect ofthe threat of predators
on the bumblebees.

Stages Akaike w. Bayesian w. a σ1 σ2

(1) No Risk 0.97 (0.15) 0.93 (0.23) 0.64 (0.11) 0.06 (0.02) 0.29 (0.03)
(4) Pred. risk 0.99 (0.04) 0.90 (0.27) 0.68 (0.13) 0.06 (0.02) 0.29 (0.02)
(7) Risk+1day 0.89 (0.29) 0.80 (0.38) 0.72 (0.16) 0.07 (0.07) 0.30 (0.03)

Variability between Individual Bumblebees

Looking at the parameters of the mixture of two normal distributions, estimated

for ρ(vy) for different bumblebees, we found that there are strong variations be-

tween individuals. This is interesting as heterogeneous populations have been

proposed as one mechanism by which anomalous diffusion at the population level

can be generated even if the individual behaviour is normal [26, 25, 24].

Surprisingly, by comparing the best fits to these distributions for the differ-

ent stages of the experiment, we could not detect any differences in the velocity

distributions between the spider-free stage and the stageswhere artificial spider

models were present, as is shown in Table 2.2. The parametersof the Gaussian

mixture vary between individual bumblebees, as can be seen in figure 2.8, but

there is no systematic change due to the presence of predators. The same is true

for the distributions ofvx andvz. However the observations by the experimen-

talists suggested that the behaviour of the bumblebees changes when threatened

by predators. This means that the changes should be measurable by observables

other than the velocity distributions.

Since the bumblebees vary in their weight and size as measured by their thorax

width, it would be reasonable to assume that their size differences are the reason

for their different speeds. Yet, no such relation has been found in this experiment

as can be seen, e.g., in Fig. 2.9. This is consistent with a previous analysis of the

experimental data, which found no effects of bee size and ageon flight parameters
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Figure 2.8: Individual variation of standard deviations ofthe distribution ofvy
between bumblebees. No systematic change between experimental stages is ob-
served for any velocity distribution.

and learning and memory of the bumblebees [1]. This analysisof a possible size-

dependence used only data outside the flower zones (see section A.2.2) to exclude

any complications due to variations in the time spent near flowers. Including the

data near flowers also did not show any dependence.

Quantile-Quantile Plots

The information criteria only give the preference between the candidate distribu-

tions. However, they do not inform us if the best of the candidates is actually a

good model: if all of the candidates are far off the real distribution, the Akaike

weights (and Bayesian weights) could highlight one of them as the best of the

poor fits. As a supplementary qualitative test to which extent the estimated distri-

bution with the largest Akaike weight deviates from the dataover the whole range

variables, we use Quantile-Quantile (Q-Q) probability plots.

By using 20 surrogate data sets of the same size as the real data, generated

by drawing i.i.d. random numbers from the estimated distribution, we looked

for deviations from the model larger than those expected because of stochastic

variations due to the finite quantity of the data. Figure 2.10shows the typical
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Figure 2.9: Standard deviations ofvy-distributions for each bumblebee depending
on their thorax widths for flights outside the flower zones. Nodependence of the
velocities on the thorax widths has been found.

result for a single bumblebee: the fluctuations of the QQ-Plot of the data lie in the

typical range one would expect for the given amount of data.

For comparison, figure 2.11 shows a Quantile-Quantile plot for a non-matching

distribution, in this case a normal distribution with the correctly estimated param-

eters, for the aggregated data of all bumblebees. The distributions for the bum-

blebees have been normalized by the standard deviation before aggregation as a

result of individual differences (see below).The strong departure from the diag-

onal indicates a clear mismatch of the normal distribution and the experimental

data.

2.2.3 Local Behavioural Changes under Threat

One way to examine the effect of the presence of predation threats is via the prob-

ability of a bumblebee to fly directly in front of a flower. The change in the

bumblebees’ behaviour can be analysed by computing the difference between the

position densities at stage (1) and (4) as a function of the positions parallel to and
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the real data are a discretisation effect of the data. The redlines show 20 surrogate
data sets of the same size.

near (x < 5 cm) the flower wall

∆ρp(y, z) = ρ(4)
p (y, z) − ρ(1)

p (y, z) . (2.4)

Figure 2.12 shows that near the flowers, the position-PDF decreases when intro-

ducing a predation threat.

For a more detailed analysis of the local effects, it is useful to switch to relative

coordinates where the origin is always the position of the flower which is closest

to the bumblebee. Here we want to focus on the change in the behaviour from

threat-less foraging to flights under predation threat and not on the preferences

between individual flowers, we therefore treat all flowers asequivalent:

∆ρp(yrel, zrel) = ρ(4)
p (yrel, zrel) − ρ(1)

p (yrel, zrel) , (2.5)

where the positions(yrel, zrel) are relative to the nearest flower centre. The changes

thus extracted from the experimental data are shown in Fig. 2.13. Here data from

all the individual bumblebees was accumulated: differences between individuals
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Figure 2.11: Quantile-quantile plots ofvy against a normal distribution using data
of all bumblebees. The distributions for the individual bumblebees have been
normalized by the standard deviation before aggregation. The mismatch of data
and distribution is visualized by the departure from a diagonal and disqualifies
the normal distribution as a valid model. The introduction of predation threat in
stages (4) and (7) has no effect on velocity distributions ofthe bumblebees.

have been only found in the velocity distributions, but we did not find a strong

variation in the position-PDFs. Two different types of behaviour can be seen here:

First, there is a small increase in the amount of hovering, i.e. inspection flights

near the flower platform when a spider model is present [93, 97], which is con-

sistent with Ref. [1]. This increased hovering occurs only at flowers occupied

by spiders: see below for an analysis of data in front of spider-free flowers (in

Fig. 2.14). Second and more important is the local minimum representing the

avoidance of flowers infected by spiders. This effect is strongest in an area around

3 cm above the flowers, because the flowers are predominantly approached from

above.

While the increased hovering occurs only on those flowers in stage (4) which

have spiders on them, the avoidance behaviour in stage (4) isalso present in front

of spider-less flowers. This can be seen in figure 2.14, where the comparison of

the position-PDF between stages (1) and (4) is restricted todata in front of flowers
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Figure 2.12: Regions in position space avoided under predation threat (stage (4))
relative to stage (1), i.e., where∆ρp(y, z) < 0. The marked regions correspond to
positions near flowers.

without spiders. As stage (1) is spider-less anyway, this restriction only affects

data from stage (4). The decrease of the position-PDF near spider-less flowers in

stage (4) indicates that the bumblebees adapted to the predation threat by learning

from the training stage (2) before. A purely instantaneous reaction to perceived

spiders could only explain changes at the flowers with spiders. Notice that the

experiment does not tell whether the adapted avoidance behaviour is completely

new: it could be that the bumblebees just learned that this patch of flowers is dense

in spiders and therefore switch to a more careful search mode, which already

existed prior to the learning.

Even while the bumblebees have been shown above to reduce thetime spent

aboveall flowers after learning of the predation threat in the training phase (2),

the avoidance is strongest for spider-occupied flowers. This avoidance behaviour

affects not only flights near the flower wall but can still be detected further away

from it. For stage (4), figure 2.15 compares the differences in the probabilities

ρ4,safe
p , ρ4,spider

p to fly in front of safe flowers without artificial spiders to those in

front of flowers with spiders as a function of the distance to the flower wall. This
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Figure 2.13: Predator avoidance of bumblebees at flowers, Eq. (2.5), extracted
from the experimental data. Increased hovering behaviour (from stage (1) to stage
(4)) in front of a flower is represented by the positive spike directly at the flower
centre, while the negative region behind this spike reflectsthe general avoidance
of flying near flowers in the presence of threats (stage (4)).

relative change is given by

changerel(x) =
ρ4,spider
p (x) − ρ4,safe

p (x)

ρ4,safe
p (x)

. (2.6)

Even up to 30 cm away from the flower wall the bumblebees are observed as less

likely to be in front of flowers with spiders than in front of spider-free flowers.

For larger distances there is not enough data available, making the comparison

less and less reliable.

Figure 2.16 directly compares the corresponding histograms over the distance

x to the flower wall. With the exception of smallx, where relatively less flying

space is available since the bumblebees’ movement is restricted by the flower

platforms, the histograms show a roughly exponential decayaway from the flower

wall, and for10 cm < x < 30 cm the preference of flying in front of spider-free

flowers is again visible.
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Figure 2.14: Avoidance of spider-free flowers in stage (4) incomparison to stage
(1), as extracted from the experimental data. While not as strong as in front
of flowers with spiders, the avoidance of spider-free flowerspoints towards an
adaptation of the bumblebees to the predation threat by learned behaviour. No
increased hovering is found here – this behaviour occurs solely near flowers oc-
cupied by spiders (compare Fig. 2.13).

In total, while other effects occur due to predator presence(e.g. the hovering

detected above), the dominant effect on the bumblebee positions is the relative

flower avoidance, which, while strongest at flowers with spiders, also affects the

behaviour at spider-free flowers by learning.

2.2.4 Velocity Autocorrelations

As the velocity distributions were not affected by the environmental change, we

also examined the autocorrelation functionvac(τ) of the flight velocities

vac(τ) =
〈(v(t) − µ)(v(t+ τ) − µ)〉

σ2
(2.7)

for flights from flower to flower. The autocorrelation has beencomputed by av-

eraging over all bumblebees and over time in all flights that are complete from
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Figure 2.15: Relative difference of positionx-PDFs (both in Stage (4), see
Fig. 2.13) in front of flowers with vs. without spiders:changerel(x) is given rel-
ative to the probability density function in front of flowerswithout spiders (see
Eq. (2.6)). It shows the avoidance of flowers with predators even up to 30 cm
away from the flower wall.

starting on one flower to landing on the next. We exclude flights containing too

long gaps (see section A.2.3) and weighted with the total amount of data available

for each time interval.

Figures 2.17 and 2.18 show the velocity autocorrelation in thex- andy-directions

for different stages of the experiment. In thex-direction (Fig. 2.17) perpendicular

to the flower wall the velocity autocorrelation has no qualitative dependence on

the predation risk: It is always anti-correlated for times around0.5 s, which is due

to the tendency of the bumblebees to quickly return to the flower wall. For longer

times this effect of returning to the flower wall still induces some anti-correlation,

although it gets quickly weaker for largerτ .

However, the flights with long durations between flower visits become more

frequent for stages (2) and (3) where the bumblebees were exposed to predation

risk compared with stage (1) (inset of Fig. 2.17). This is also reflected in a small

shift of the global minimum in the correlations for stages (2) and (3) away from

the origin.

In the verticalz-direction the autocorrelation is similar to the one in thex-

direction. This relation is due to the correlations betweenx andz for the starting
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Figure 2.16: Histogram of bumblebee positions under predation threat (stage
(4)) in x-direction. Shown is the position histogram in front of dangerous flowers
(with spiders, red) and safe flowers (without spiders, green). The former is scaled
by a factor of3 for comparison, to account for the different number of dangerous
and safe flowers.

and landing phases of the flights: bumblebees leaving a flowerlead to a simulta-

neous increase in both position coordinates as can be seen inFig. 2.5.

An important result is thatvy (parallel to the flower wall) is anti-correlated

in the presence of spiders for0.7 s < τ < 2.8 s, while for the spider-free stage

it remains positive up to1.7 s (Fig. 2.18). The autocorrelation function varies

between bumblebees due to the limited amount of data and/or due to differences

between individuals. We therefore re-sampled the result byleaving the data of

each single bumblebee out (jackknifing). The re-sampling (inset of Fig. 2.18)

confirms that the differences in the autocorrelation ofvy are due to the presence

of spiders.

The velocity autocorrelations are consistent with a more careful search: When

no threat of predators is present, the bumblebees forage more systematically with

more or less direct flights from flower to flower, arching away from the flower

wall. Under threat the trajectories become longer and the bumblebees change

their direction more often in their search for food sources,rejecting flowers with

artificial spiders. This reversing of directions generatesthe anti-correlations in

they-direction. By looking at the flight time distributions, i.e. the distribution of
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Figure 2.17: Autocorrelation of the velocities at different experimental stages:
without spiders (red triangles), under threat of predation(green circles), and under
threat a day after the last encounter with the spiders (blue crosses). In thex-
direction the velocities are anti-correlated for small times (≈ 0.5 s) due to short
flights from one flower to a nearby flower back at the flower wall.Inset: the
distribution of flight-durationsTf for each stage shows a corresponding maximum
for these short jumps. Under threat of predation (dotted) long flights become more
frequent.

time intervals between starting on one flower and landing on another, one can rule

out the possibility that the main features of the correlation functions are induced

by the boundedness of the flight arena: in the inset of Fig. 2.17, all flight time

distributions display maxima aroundTf ≈ 0.5 s suggesting that times below≃ 2 s

are primarily related to flights between flowers. Boundary effects are only evident

for flight times that fall within the tail of the distributions. The anti-correlations

in the y-direction thus cannot be induced by the walls but are generated by a

reversal of directions at flowers under predatory threat. For thex- andy-direction,

the return to the flower wall is responsible for the anti-correlation at small delay

times, not the opposite wall, which is too far away to have a significant effect.

A simple model describing this mechanism is given in section2.2.5 below. For

thex-direction, the return to the flower wall is responsible for the anti-correlation
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Figure 2.18: The autocorrelation ofvy shows the effect of the presence of spi-
ders on the flight behaviour of the bumblebees. The inset shows the re-sampled
autocorrelation for the spider-free stage in the region where the correlation differs
from the stages with spider models, which confirms that the differences are due to
predatory threat.

at small delay times.

The distributions of the flight durationsTf themselves also change under threat

of predation: the inset of Fig. 2.17 shows the roughly exponential tails ofP (Tf)

and that the flights with long durations between flower visitsbecome more fre-

quent for stages (4) and (7) compared to the pre-training stage (1).

2.2.5 An Effective Potential Model for the Dynamics

of Threatened Bumblebees

The avoidance of spider-infected flowers seen in sections 2.2.3 and 2.2.4, together

with the spatial switching of flight modes (see section 2.2.2), can be modelled by
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the Langevin Equation:

dr

dt
(t) = v(t)

dv

dt
(t) = −ηv(t) −∇U(r(t)) + ξ(r, t) , (2.8)

where η is a friction coefficient andξ a vector of white Gaussian noise with

standard deviation depending on the flight mode as a functionof the position,

ξ(r, t) = χfz(r)ξ1(t) + (1 − χfz(r))ξ2(t). Herer = (x, y, z)⊤ is the position

of the bumblebee at timet, χfz(r) is the indicator function of the feeding zone,

which is equal to one whenever the bumblebee is in the cube around a flower as

defined before, andξi , i = 1, 2 is Gaussian noise with two different variances.

The potentialU models an interaction between bumblebee and spider in the form

of a repulsive force exerted by the spider onto the bumblebee, for which we as-

sume that the potential maxima are located near infected flowers.

When the mechanism generating the correlation functions shown in figures

2.17, 2.18 is not the focus of the investigation, it suffices to consider a reduced

version of Eqs. (2.8) in the form of theeffectiveLangevin equation

dr

dt
= χfz(r)ζ1(t) + (1 − χfz(r))ζ2(t) . (2.9)

This equation describes the spatially varying hovering andsearch modes by us-

ing noiseζi , i = 1, 2, which models the impact of the potentialU together with

the noiseξ. Further data analysis shows that excluding hovering has nosignifi-

cant impact on the velocity autocorrelations, which are dominated by the search

flights. This is in full agreement with figures 2.17, 2.18, where the time scale for

the predator-induced anti-correlation (Fig. 2.18) is larger than the time scale for

flights between adjacent flowers (Fig. 2.17). Hence, we modelζ1(t) as a vector

of Gaussian white noise with the smaller varianceσ2
1 given in Table 2.1 which

describes the hovering. The search flights from flower to flower are reproduced

by the correlated Gaussian noise vectorζ2(t) with varianceσ2
2 and the autocorre-

lationsvaci (τ) , i = x, y shown in Figs. 2.17, 2.18. While this model is a quite sim-

plistic phenomenological model, the components we arrive at are directly based

on our data analysis.
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Figure 2.19: vy-Autocorrelation for a model with a repulsive potential.
Eqs. (2.10),(2.11) model the predation threat by differentstrengths of the repul-
sion. Shown are results from computer simulations without (u = 0; red triangles,
upper line) and with predation threat (u = 0.5 m2/s2; green circles, lower line).
These results should be qualitatively compared with the experimental findings
Fig. 2.18.

Simple Model explaining Anti-Correlations

We now focus on the different aspect of understanding the biophysical mecha-

nism that generates the anti-correlations of the velocities parallel toy shown in

Fig. 2.18. Starting from the full model Eqs. (2.8), since we have seen above that

the velocity autocorrelations are dominated by the search flights it suffices to se-

lect that mode by settingξ(r, t) = ξ2(t) thus neglecting any spatial variations of

the noise. This yields the Langevin equation

dvy
dt

(t) = −ηvy(t) −
∂U

∂y
(y(t)) + ξ(t) , (2.10)

for the y-velocity only. A rough approximation for the repulsive force is provided

by a periodic potential with maxima at dangerous flowers,

U(r) = u cos

(
2π

y

y0

)
, (2.11)
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wherey0 is the mean distance between spiders andu the strength of the repulsion.

We integrated this Langevin equation via an Euler-Maruyamamethod (see

section A.3) under variation ofu by computing the autocorrelation functionvacy of

the generated data. Figure 2.19 showsvacy by increasing the repulsion strengthu.

The correlation function changes from positive correlations to anti-correlations in

a range of delay timesτ comparable to the changes in the correlation function of

the experimental data of Fig. 2.18. This qualitatively reproduces our experimental

findings from first principles. Note that the oscillations for higherτ in Fig. 2.19

would be suppressed in a higher-dimensional model. The other directions can be

treated analogously, e.g., by including anx-dependent term in the potential for the

attraction of the bumblebees to the flower wall. A stochasticanalysis of Langevin

equations with periodic potentials can be found, e.g., in Ref. [38]. The effect of

the harmonic potential on the creation of negative velocitycorrelations can also

be calculated analytically [38].

We emphasize that our model Eqs. (2.10), (2.11) provides only a qualitative

description of the biophysical mechanism generating the change in the correla-

tions of the bumblebee velocities under predation threat. For a quantitative com-

parison to the experimental data a much more detailed model would be necessary,

which needs to include the random positioning of the spidersand the general

attractive force exerted by the flowers onto the bumblebees.Modelling the three-

dimensional nature of the potential would also be important: notice, e.g., the local

maximum ofvacy aroundτ ≃ 2.5 which is an artefact of the one-dimensional

modelling of spider avoidance. However, as it is difficult toreliably estimate the

parameters of the potential from the given experimental data, we do not attempt

such a quantitative comparison here. Instead of focussing on the local interactions

with the food sources and predators, we will develop a more general model for the

bumblebee behaviour during search flights from flower to flower in chapter 3.

2.3 Connection to the Ĺevy Hypothesis

The motivation for the introduction of Lévy walks into foraging from a theorists’

point of view were the existence of a generalized central limit theorem as dis-

cussed in section 1.3.2 and optimality claims [77, 5], due tobeing scale-free (see
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section 1.4.2). We emphasize that the experiment analysed in this chapter does

not match the conditions of the Lévy flight hypothesis [5] (see section 1.4.2). We

therefore cannot directly support or reject the biologicalLévy hypothesis (sec-

tion 1.4.2) with the given data, but can only argue indirectly over its applica-

bility. Lévy flights and Lévy walks predict scale-free probability distributions

[74] and generate trivial functional forms for the velocitycorrelations [89, 90].

Accordingly, experiments testing this hypothesis have focused on probability dis-

tributions, not on correlation decay [6, 84, 10, 68]. However, our results (see

section 2.2.4) demonstrate that velocity autocorrelations can contain crucial infor-

mation for understanding foraging dynamics, here in the form of a highly non-

trivial correlation decay emerging from an interaction between forager and preda-

tor. Identifying such an emergent property in contrast to adaptive behaviour (see

section 1.4.2), as we do with our simple model, has been highlighted as a crucial

problem in foraging dynamics [68]. In addition, we observe aspatial variation of

the velocity distributions (see section 2.2.2). These findings illustrate the presence

of different flight modes governing the foraging dynamics ondifferent scales of

time and space. Our results thus indicate that taking scale-free distributions as a

paradigm beyond the conditions of validity of the mathematical Lévy flight hy-

pothesis might be too restrictive an approach in order to capture complex foraging

dynamics of animals. This is consistent with our discussionin the previous chap-

ter: in real application in the context of foraging animals,a variety of mechanisms

may naturally lead to much more complicated distributions,e.g., individuality of

animals [25, 24, 26], an intermittent switching between quasi-ballistic persistent

dynamics and localised search modes [88, 48], or quantitiesover which one has

averaged like time of day [68]. It is easy to mistake non-trivial velocity or step

length distributions as a sign of the presence of Lévy walks, while a more de-

tailed data analysis can reveal that seemingly heavy-tailed distributions are only

an effect of, e.g., failing to distinguish different movement modes or ignoring a

food source inhomogeneity (compare sections 1.3.5, 1.2.2,and 1.4.2). The vari-

ety of complications which can arise highlight the need to better understand, and

more carefully analyse, the interplay between forager and environment, which

will yield crucial information for constructing better mathematical foraging mod-

els. From that point of view Lévy walks are probably not a good starting point for
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the analysis of foraging data.

2.4 Summary

In this analysis of an experiment on foraging bumblebees ourmain concerns were

how the search behaviour the bumblebees is influenced by the presence of preda-

tors, in which statistical properties the influence manifests itself, and how and if

the results are related to the Lévy hypothesis.

We found that the velocity distributions of the bumblebees can be described

by Gaussian mixtures which can be interpreted as a switchingprocess between

two flight modes depending on the position of the bumblebee. As expected by

the boundedness of the experiment, we did not find any evidence supporting the

Lévy hypothesis (see section 1.4.2): the velocity distributions and also the flight-

durations show no power law behaviour. The non-trivial velocity autocorrelations

also do not match with a Lévy walk model (see section 1.3.2).In particular, the

observed changes in the autocorrelation due to the introduction of a predatory

threat would be difficult to include in such a model. The presence of different

flight modes and their impact on the velocity distributions,and the changes in

the velocity autocorrelations due to environmental changes show that bumblebee

foraging is governed by different dynamics on different scales of time and space.

We therefore argue (in section 2.3) that scale-free models such as Lévy flights

might thus be a too simplistic approach to foraging.

Regarding the memory of the bumblebees and their adaptationto predation

threat we confirmed an increased hesitation behaviour in front of flowers with

spiders on them (section 2.2.3, [93]). More importantly we found a tendency to

avoid flying near/above both types of flowers, dangerous and safe, under preda-

tion threat. Although not as strong as in front of flowers withspider models, the

effect was also present at flowers without spiders. It is therefore not a direct re-

action to seeing a spider model, but instead an adaptation tothe general threat

of predation. We described this learned flower avoidance behaviour by a repul-

sive potential in a flight model in section 2.2.5, for which wethen discussed a

simplified one-dimensional projection resulting in a qualitative modelling of the

predation-induced velocity anti-correlations which we observed in section 2.2.4.
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While we here concentrated on the effects of a predatory threat and the inter-

action of the bumblebees with the flowers, we will take a closer look at the search

behaviour of the bumblebees outside the flower zones in the following chapter.
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Chapter 3

Modelling Bumblebee Flights

In chapter 2 we analysed experimental data of foraging bumblebees with a focus

on understanding the adaption of the bumblebees to their environment and the ef-

fect of artificial predators on the flight behaviour. In this chapter we want to step

away from a detailed description of the local interaction with flowers and preda-

tors. Instead our aim is to find a good stochastic model for thebumblebee flights

away from the flower wall. As an important aspect of the observed bumblebee

movement is the directional persistence, we use a generalization of the reorienta-

tion model (see section 1.3.3) similar to the generalized Langevin equation in sec-

tion 1.3.4 as our model class. The goal is a biologically and physically plausible

model whose statistical properties should be similar to those of the experimental

data.

In section 3.1 we describe the general set-up of our model, which we then

construct in section 3.2 from the experimental data. With the estimated model

parameters and interdependencies, we then validate the model in section 3.3 by

simulation of its stochastic differential equations (section 3.3.2) and a compari-

son of the resulting simulated data with the experimental data in section 3.3.2. We

conclude the chapter with a discussion of the differences ofour model and reorien-

tation models in section 3.2.8 and a summary in section 3.4. Abrief presentation

of the main results of this chapter can be found in [3].
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3.1 Set-up and Assumptions

In the following we will present a flight model in terms of generalized Langevin

Equations (see section 1.3.4), which we then use to analyse experimental bumble-

bee data. In this chapter we will focus on the horizontal bumblebee movement.

By neglecting the slower vertical movements, which are of more interest when

analysing the starting and landing behaviour near flowers (see section 2.2.3), we

thus restrict ourselves to a two-dimensional model. Since we are not interested

in the interaction with the food sources, we exclude flights near the flowers, i.e.

in the flower zones (see section A.2.2) from the data of the experiment [1, 92]

described in section 2.1.

Given movement data of flying bumblebees available with a constant time

step∆t, the step length is determined by the speeds(t) = |v(t)| of the animal.

As we will be looking at a flying insect in a data recording which uses a small

time step, we may expect to have a deterministic persistencedue to the animals

momentum. A reorientation model would assume thats andβ are drawn i.i.d.,

which is sensible if∆t is large enough. However, for small time steps it cannot

be excluded that the decision of the animal to turn left or right takes longer than

the time step (or persists over a longer time time), which cancorrelate the turning-

anglesβ(t) over a number of time steps. If one wants to arrive at a better stochastic

model for bumblebee flights than the simple reorientation model in section 1.3.3,

one therefore has to capture the dynamics of the turning-angle and the speed in

addition to their distributions. We model the changes in speed and turning-angle

via two coupled generalized Langevin equations (under It ō-interpretation),

dβ

dt
(t) = h(β(t), s(t)) + ξ̃s(t) (3.1)

ds

dt
(t) = g(β(t), s(t)) + ψ(t), (3.2)

where we distinguish between the deterministic partsh andg and stochastic terms

ψ and ξ̃s (whose speed dependence will be discussed in section 3.2.5). We as-

sume that the noise processes are stationary with autocorrelation functions which

may be non-trivial, and we make no further assumptions for the shape of their
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stationary distributions.

While Eqs. (3.1, 3.2) represent a time-continuous description, the turning an-

gleβ yields the change of the directionα (in a non-comoving frame) according to

the fixed time resolution∆t. That is,β(t) relates to a time-continuous angular ve-

locity γ of α viaβ(t) =
∫ t
t−∆t

γ(τ)dτ . The animals’ positionr(t) = (x(t), y(t)) is

then given bydx/dt = s cos(α(t)), dy/dt = s sin(α(t)) anddα/dt = γ(t). The

numerical analysis is done with time-discrete data where the measured turning

angle is given byβ(t) = ∡(v(t),v(t−∆t)), wherev(t) = (r(t+∆t)−r(t))/∆t

at timest = n∆t, n ∈ N.

3.2 Model Construction

The generalized Langevin equations (3.1, 3.2) are an approach to model the bum-

blebee movement, which tries to separate deterministic parts of the dynamics from

stochastic ones. The stochastic terms are not assumed to be originating only from

outside influences, e.g. turbulences. Instead they will also represent the non-

deterministic decision processes of the animal.

In this section we will first look at how one can, assuming stationarity and

Markovianity (see section 3.2.1), extract coefficient functions of a Langevin Equa-

tion from data via a description by a Fokker-Planck Equationin section 3.2.3. In

section 3.2.4 we will then extract and discuss the deterministic terms of our bum-

blebee model from experimental data. After a discussion of the interdependencies

of turning-anglesβ and the speeds in section 3.2.5, we will then determine a

stochastic description ofβ ands.

3.2.1 Stationary and Markov Processes

Two properties we will have to assume of our data, if we want toestimating

Fokker-Planck coefficients, are stationarity and Markovianity.

Let X(t), t ∈ R
+ be ad-dimensional stochastic process andw(X, t) be the

time-dependent probability densities in phase space givena fixed initial distribu-

tionw(X, 0).
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The joint probability densityw(Xn, tn;Xn−1, tn−1; . . . ;X0, t0) is the proba-

bility density to be atXi at timeti for all i = 0, 1, . . . , n. All the joint probability

densities together specify a stochastic process [38].

The processX(t) is calledstationaryif all joint probability densities (for all

n ≥ 0) are independent of any time shiftT :

w(Xn, tn;Xn−1, tn−1; . . . ;X0, t0) = w(Xn, tn+T ;Xn−1, tn−1+T ; . . . ;X0, t0+T ).

(3.3)

The conditional probability densityp(Xn, tn|Xn−1, tn−1; . . . ;X0, t0)
1 is the

probability density to be in stateXn at timetn if the system was inXi at ti for all

i,

p(Xn, tn|Xn−1, tn−1; . . . ;X0, t0) :=
w(Xn, tn;Xn−1, tn−1; . . . ;X0, t0)

w(Xn−1, tn−1; . . . ;X0, t0)
. (3.4)

We call the processX(t) aMarkov processif the conditional probability den-

sity of the process has theMarkov property:

p(Xn, tn|Xn−1, tn−1;Xn−2, tn−2; . . .) = p(Xn, tn|Xn−1, tn−1). (3.5)

This means that the time evolution of the probability density function depends

only on one previous time step. Eq. (3.5) holds for arbitrarytn − tn−1.

3.2.2 The Fokker-Planck Equation

While Langevin equations are stochastic descriptions of Markov processes, the

Fokker-Planck equationis a deterministic way to describe these systems.2 Instead

of analyzing the dynamics of the observables directly, we now change our point

of view on stochastic processes by looking at the dynamics ofthe probability

density of the observables in phase space instead. The Fokker-Planck equation

is an advection diffusion equation for the probability density functionw(X, t) of

1wheretm+k > tm if k > 0
2Of course the Fokker-Planck equation is only deterministicin providing the deterministic

dynamics of the probability density function and not of realizations of the process.
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X(t):

∂

∂t
w(X, t) = −

d∑

i=1

∂

∂Xi

(
D

(1)
i (X, t)w(X, t)

)

+
1

2

d∑

i,j=1

∂2

∂Xi∂Xj

(
D

(2)
i,j (X, t)w(X, t)

)
(3.6)

wherew is the probability density function,D(1) is the drift vector,D(2) is the

diffusion tensor,X is the vector in phase space andd is the dimension of the

system.

The diagonal elements in the diffusion tensor describe the strength of the nor-

mal diffusion in the different directions in phase space while the off-diagonal ele-

ments measure cross diffusion.

We can rewrite the right hand side of Eq. (3.6) by introducingthe Fokker-

Planck operatorLFP so that the Fokker-Planck equation reads:3

∂

∂t
w(X, t) = LFP (X, t)w(X, t). (3.7)

We can integrate the Fokker-Planck equation to compute the evolution of a

given probability density as an initial condition. A special case of an initial con-

dition for a Fokker-Planck equation areδ-peaks as discussed in section 3.2.3 and

leads to a method to extract the Fokker-Planck coefficients from sample paths.

3.2.3 Estimating the Drift- and Diffusion Coefficients

Let us assume that we know the exact stateXs of a Markov process at timets.

From the point of view of a Fokker-Planck equation this meansthat the probability

density function at timets is aδ-peak:

w(X, ts) = δ(X − Xs). (3.8)

3The same can be done in the case of the Kramers-Moyal expansion giving the Kramers-Moyal
operatorLKM .
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The conditional probability density at a timet > ts is then just the probability

density function at that time:

p(X, t|Xs, ts) = w(X, t). (3.9)

As the Fokker-Planck equation is an advection diffusion equation we know that

for short timesτ = t−ts the probability density functionw(X, t) is a multivariate

normal distribution with a mean ofXs+τD(1)(Xs, ts) and a variance (covariance

matrix) of τD(2)(Xs, ts) in the first order ofτ [38]. This means that if we have

a large enough ensemble of sample paths of lenghtτ starting from positionXs at

time ts, we can estimate the mean and the variance ofw(X, ts + τ) to calculate

the Fokker-Planck coefficients at positionXs at timets.

If the process is stationary we can estimate the time-independent drift- and

diffusion coefficients from only one sample pathX̃(t) by [38]:

D(1)(X) = lim
τ→0

1

τ

〈
X̃(t+ τ) −X

〉∣∣∣
eX(t)=X

(3.10)

D(2)(X) = lim
τ→0

1

τ

〈(
X̃(t+ τ) −X

)
·
(
X̃(t+ τ) − X

)⊤〉∣∣∣∣
eX(t)=X

(3.11)

whereX̃(t) is a realization of the Markov process and〈· · · 〉|eX(t)=X
is the condi-

tional time average4 over allt for which X̃(t) = X.

For a numerical estimate from a limited amount of data, the conditional aver-

age has to be taken over allt for whichX̃(t) ∈ U(X) whereU(X) is a neighbour-

hood ofX because we should have enough data to get a reliable average.

The limit for τ in Eq. (3.10) and Eq. (3.11) means that for data with a finite

sampling rate, an approximation is needed in order to get estimates for the Fokker-

Planck coefficients. An approach which is applicable to realdata is given below.

4Ergodicity, which guarantees that the time average is the same as the space average is used
here, too. For stochastic processes this follows from the stationarity with the exception of a patho-
logical process which has a phase space which is split by infinite potential walls. In that case there
would not even be a unique invariant density.
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Connection of the Fokker-Planck Equation and the Langevin Equation

The relation of the coefficients of a Langevin equation (see Eq. (1.9) in sec-

tion 1.3.4) to those of a Fokker-Planck equation depends on the choice of a stochas-

tic integral, because, if we fix the process by the Fokker-Planck equation, the

deterministic terms of the Langevin equation depend on its interpretation (see

section 1.3.4).

For theItō interpretationof a Langevin equation the drift coefficient equals

the deterministic part of the Langevin equation:

D(1)(X, t) = f(X, t). (3.12)

The Stratonovich interpretationof the Langevin equation gives a more compli-

cated result5:

D
(1)
i (X, t) = fi(X, t) +

1

2

∑

j,l

kj,l(X, t)
∂ki,l
∂Xj

(X, t). (3.13)

The additional term is calledspurious driftand is a consequence of the integration

scheme. It is induced by and depends only on thenon-deterministicpart of the

Langevin equation.

The relation between the diffusion and the stochastic part of the Langevin

equation is the same for both interpretations of the stochastic integral:

D(2)(X, t) = k2(X, t). (3.14)

With Eq. (3.14) we can easily getD(2) from k by a matrix multiplication. The

inverse transformation is not as direct: in order to computek from D(2) we have

to compute a root of the diffusion matrix. A rootR of a diagonalizable matrixM

is a matrix satisfyingR2 = M. With a diagonalizationM = PAP−1, whereP is

an invertible matrix andA is a diagonal matrix, a rootR can be computed by6:

R = P
(√

A
)
P−1. (3.15)

5See Eq. (1.12).
6The root of a diagonal matrix is just the matrix of the roots ofall entries.
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The root of a matrix is not unique as we have the choice ofP: for every or-

thonormal matrixO the matrixP̃ := OP gives a diagonalizationM = P̃ÃP̃
−1

,

too. It follows that for every Fokker-Planck equation we have a corresponding

family of Langevin equations for differentO with k(X, t) = k̃(X, t)O. This

normally does not lead to complications as these Langevin equations specify the

same Markov process which can be explained by the fact that the rotated (or mir-

rored) d-dimensional Gaussian white noise processΓ̃ := OΓ is the same as the

processΓ.

The Fokker-Planck equation and the Langevin equation are two equivalent

descriptions for the same class of processes. Equations (3.12), (3.13) and (3.14)

give the means to transform one description to the other and back providing, e.g.,

the possibility to look at probability density functions and to compute invariant

probability densities from the Fokker-Planck equations and integrate the Langevin

equations to get sample paths.

Finite Time Corrections for Diffusion Coefficients

In general time series which originate from measured data have a finite sampling

rate. This means we cannot go to the limit ofτ → 0 but we have to use the

smallestτ available.7 Due to this approximation we have to correct the diffusion

term for the finite time effects induced by the drift term giving [98, 99, 100]:

D(2)(X) = τ−1

〈 (
X̃(t+ τ) − X − τD(1)(X)

)

·
(
X̃(t+ τ) − X − τD(1)(X)

)⊤〉∣∣∣∣
eX(t)=X

.
(3.16)

The drift term is approximated by:

D(1)(X) =
1

τ

〈
X̃(t+ τ) − X

〉∣∣∣
eX(t)=X

. (3.17)

This correction of the diffusion coefficients due to the finite timeτ is only the

7Another way would be to compute the Fokker-Planck coefficients for differentτ and then
extrapolate them toτ = 0.
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first term for a full correction.8 A more elaborate correction and a discussion

of different corrections can be found in [100]. In the case ofτ → 0 this is not

necessary as the mean isτD(1)(X) = 0 and all corrections of higher order vanish,

too. Another aspect of a finite amount of data is that any transient dynamics at the

beginning of the time series should be discarded. Otherwisestationarity would be

broken.

3.2.4 Determining Deterministic Dynamics of Flight Data

We now examine the bumblebee flight data by treating it as datagenerated by

a stationary Markov process with statesX = (β, s)⊤ ∈ [−π, π] × R
+, and nu-

merically estimate [98, 100, 101, 102] the components of thedrift vector field

(drift coefficients)D(1)(β, s) of the corresponding Fokker-Planck equation using

Eq. (3.17).

Since we interpret our model of Langevin equations (3.1, 3.2) under It ō-

interpretation, the drift coefficients of the Fokker-Planck equation are the deter-

ministic terms of the Langevin equations we were looking for(see section 3.2.3):

D(1)(β, s) = (g(β, s), h(β, s))⊤. (3.18)

This estimation of the drift terms is based on a Markov approximation: only

those parts of the dynamics which match to a Markovian description in the state

space variablesβ ands have their deterministic terms reflected inD(1)(X). Any

other parts of the flight dynamics – stochastic as well as deterministic but not

Markovian inβ ands – are captured by the stochastic terms of Eqs. (3.1, 3.2).

By looking at the drift coefficients we can examine the mean behaviour of

the turning-angle and the speeds. The drift vector field (normalised for better

visibility) in Figure 3.1 shows that the drift is quite well-behaved: the drift vectors

quickly push the turning-angleβ towards0, while the dynamics in the speeds

is much slower. We therefore find a timescale separation: thedeterministic part

of the dynamics can be reduced to a regular and fast relaxation of the turning-

angleβ and slow dynamics ins. The nearly horizontal vectors with minimal curl

8The diffusion estimation with this correction is a kind of ’inverse algorithm’ of the Euler-
Maruyama approximation (see section A.3).
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Figure 3.1:Normalised drift vector field D(1)(β, s)corresponding to the deter-
ministic terms of the Langevin equations (3.1, 3.2) estimated via Eq. (3.10). The
regular structure shows the quick relaxation to small angles and the absence of
strong cross-dependencies in the drift.

demonstrate that the cross-dependenciesh(s) andg(β) are weak; in our model we

will neglect them completely.

By projection on the turning-angleβ resp. on the velocityv we examined the

drift of each variable separately:g(s) andh(β).

Examining the drifth(β) of the turning angle in Fig. 3.2 reveals that the drift

term seems linear inβ — indeed we find numerically that its slope−k matches

exactly to a decay of the turning angle to0 in a single observation time step

∆t by k ≈ 1/∆t, disregarding the noise term. This means that by integrat-

ing Eq. (3.1) over a time∆t and approximating the drifth(β) for small ∆t by∫ t+∆t

t
h(β(τ))dτ ≈ h(β(t))∆t, we have

β(t+ ∆t) − β(t) = −kβ(t)∆t+

∫ t+∆t

t

ξ̃s(τ)dτ = −β(t) +

∫ t+∆t

t

ξ̃s(τ)dτ.

(3.19)

With ξs(t) :=
∫ t
t−∆t

ξ̃s(τ)dτ and Eq. (3.19), the time scale separation in the

β-Langevin equation due to the very fast relaxation means that we can simplify
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Figure 3.2:Drift coefficient of the turning-angle. The deterministic drifth(β)
as estimated from data (black, 95% confidence intervals in grey) is in good ap-
proximation linear (Stokes-like) inβ (red diagonal).

Eqs. (3.1, 3.2) to:

β(t) = ξs(t), (3.20)

ds

dt
(t) = g(s(t)) + ψ(t). (3.21)

While this reduction of dynamics fromdβ/dt to β makes the model resemble the

simple reorientation model (section 1.3.3), the turning angles are still correlated,

as we will see in section 3.2.6. Since the turning angles are smaller for high

velocities it would be tempting to useβs as a scaled turning angle to simplify the

geometry of the system.9 However, as we will see in section 3.2.5, the speed-

dependence of the turning angle is more complex.

The speed-driftg(s) displayed in Fig. 3.3 shows that the deterministic part of

the speed-Langevin equation alone is non-linear and would have a stable fixed

point arounds0 = 0.27 m/s. Comparing the slopes above and belows0 reveals

that fors < s0 the force towardss0 is stronger than fors > s0. This is biologically

9This small-angle approximation would assume a purely geometric dependence ofs onβ.
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Figure 3.3:Drift coefficient of the speed. The experimental deterministic drift
coefficientg(s) (black, 95% confidence intervals in grey) has been approximated
by piecewise linear functions from one to three pieces (blue,green,cyan). The
data shows the tendency to quickly increase low speeds. However, speeds above
0.27 m/s decrease more slowly, except for the rare high speeds.

plausible if one interpretss0 as a preferred speed: if the bumblebee is slower it

accelerates, but if it is faster it does not rush to decelerate as it would give up the

energy spent to reach a high velocity. For very high velocities (over 0.55 m/s) the

slope ofg(s) increases again. This might be caused by the limited space available

to the bumblebee in the flight arena. For our model we approximatedg(s) by a

piecewise linear function:

g(s) ≈ (s− s0) ×
{

−d1 for s < s0

−d2 for s ≥ s0

, (3.22)

whered1 > d2 > 0. As the very high velocities are rare, it made no difference

in our model whether we used Eq. (3.22) or a piecewise linear function with three

pieces.
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Beyond Deterministic Bumblebee Dynamics

With the deterministic drift terms (see section 3.2.4) estimated from the experi-

mental data as described in section 3.2.3, we could now go on with an estimation

of the diffusion tensor as described in section 3.2.3. However, we know that the

assumption of the Markov property (see section 3.2.1) is actually not valid for the

analysed data. For example, anti-correlations, as observed in the velocitiesvx and

vy in x- andy-direction in section 2.2.4, cannot be generated by a Fokker-Planck

equation with the drift vector field shown in Fig. 3.1 together with uncorrelated

diffusion terms. Our approach is therefore the following: we estimated the drift

terms assuming that the process is Markovian as described above. Therefore the

drift terms only capture the mean behaviour, and all parts ofthe dynamics which

are not described by the drift have now to be treated as noise.Notice that the full

flight dynamics has been projected on the turning-angleβ and the speeds – should

there be other relevant variables, with our modelling approach their dynamics will

contribute to the noise terms even if their dynamics was actually deterministic.

This means that, in order to get a useful description of the data, we have to al-

low autocorrelations in the noise terms of the Langevin equation. Apart from this

coloured noise, another reason not to use the estimation of the Fokker-Planck dif-

fusion tensor as described above, is the complication of a dependence between

turning-angle and speed. In the following we will at first quantify this dependence

in section 3.2.5 and then discuss the coloured noise termsξs(t) andψ(t) of β and

s separately in section 3.2.6 and 3.2.7 respectively.

3.2.5 Dependencies of Turning-Angle and Speed

The turning-angle of an animal and its speed are often assumed to be independent

for simplicity. Given that the force a bumblebee can use to change directions is

finite, the largest turning-angles have to be smaller when flying with high speeds

(see Fig. 3.4). In our case, this is consistent with the absence of simultaneously

having high speed and large turning-angle in the data, as is evident, e.g., from

the data gaps in Fig. 3.1 in section 3.2.3. However, animals can counteract this

geometric dependence by varying the forces used for changing direction with the

speed.
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Figure 3.4:Schematics of the dependence ofβ on speeds. Assuming a con-
stant maximal force (circle) available to the bumblebee to accelerate during a
time step, the distribution of the turning-angleβ depends on the previous speed
st−1 = |vt−1|. Illustrated is the change from large angles for low speeds (left) to a
stronger concentration around0◦ for higher speeds (right).

In this section we will first discuss an alternative model in which the accelera-

tions of the organism are assumed to be independent of its speed before discussing

the experimental data. In models in which the momentum of theanimal is not

important for the observed directional persistence, this cross-dependence is often

neglected [44].

Turning-Angles in a Model with Speed-independent Accelerations

A simple model showing a dependence of the turning-angles onthe speed (see

Fig. 3.4) is given in the following. Given the velocityv(t) = (v1(t), v2(t))
⊤ of an

animal for each time step∆t, assume that the distribution of acceleration vectors

a(t) = v(t)−v(t−∆t)
∆t

is invariant under rotation with varianceσ2 in all directions,

and the random accelerations are drawn i.i.d. from a binormal distribution and

independent of the speed.

Using the comoving frame of the animal at timet, i.e. centered at the animals

positionx(t) = (x1(t), x2(t))
⊤ = 0 and oriented in the (old) directionv(t−∆t) =

(s(t − ∆t), 0)⊤ for step lengthss(t) = |v(t)|, the position at timet + ∆t is

distributed as

ρ̃(x(t+ ∆t)) =
1

2πσ2
e−

(x1(t)−s(t−∆t))2+x2(t)2

2σ2 . (3.23)
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Changing a volume elementdx to polar coordinates(s(t), β(t)) with the new

step lengths(t) and turning-angleβ(t) betweenv(t− ∆t) andv(t) results in the

probabilityρ(s(t), β(t))dsdβ := ρ̃(x(t+ ∆t))dx via

ρ(s(t), β(t))ds(t)dβ(t) =
1

2πσ2
e−

s(t)2+s(t−∆t)2−s(t)s(t−∆t) cos(β)

2σ2 s(t)ds(t)dβ(t).

(3.24)

The turning-angleβ then depends on the quotientη(t) := s(t−∆t)√
2σ

between the

former speed and the noise strengthσ. Integrating outs(t) the distributionρ(β)

of the turning-angle is given by:

ρ(β) =
e−η

2

2π
+
e−η

2 sin2(β)

2
√
π

η cos(β)(1 + erf(η cos(β))) (3.25)

for −π ≤ β ≤ π. With vanishing relative speedη(t) = 0 the first term gives

a uniform distribution as expected, and forη(t) → ∞ the distribution sharply

peaks atβ = 0 with its varianceσβ approaching0, similar to the behaviour in the

simpler case of a von Mises distribution [42, 103].

Experimental Speed Dependence of Turning-Angles

Analysing the experimental data we find a strong dependence of the turning-angle

on the speed. Figure 3.5 shows the standardσβ(s) of the turning-angle distribution

as a function of the bumblebee speeds. The dependence ofσβ ons is robust over

data collected from the different experimental stages: thevariations seen for high

speedss in Fig. 3.5 are statistical errors due to a lack of sufficiently many data

points for high speedss.

The experimental bumblebee data does not show a decay ofσβ to 0 but to a

finite positive value. Therefore the simple geometric modelwith constant accel-

erations in section 3.2.5 does not hold: the accelerations have to be modelled as

speed-dependent.

While Fig. 3.5 shows that distinguishing between exact functional forms for

σβ(s) is difficult, the double-logarithmic plot in Fig. 3.6 suggests that the decay of

σβ(s) to a constant offset is roughly exponential. The given confidence intervals

are calculated based on theχ2-distributed variance (see section A.1.2). Given the
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Figure 3.5: Speed-dependence of the turning-angle.The standard deviation
σβ of the turning-angle distribution is shown as a function of the speed as esti-
mated from data (black dots) and approximated by shifted power-law (green) and
shifted exponential (blue). The dependence is robust over the different experi-
mental stages (solid, dashed, dotted).

amount of data, the possibility of a power-law decay with thesame constant offset

cannot be reliably excluded, however for large speedss the exponential tail is a

better match to the data.

3.2.6 Stochastic Description of Turning-Angles

As seen in section 3.2.5, the distribution for the turning-angles depends on the

speed of the bumblebee. In theory one would have to estimate its shape for each

range of speeds separately to get a good description of the turning-angle. How-

ever, this would significantly limit the number of usable data points for the esti-

mation. For simplicity we therefore approximated the distribution of the turning-

anglesρs(β) for each given speeds by a normal distribution. This approximation

works best for low speeds, as can be seen from the estimated kurtosis10 of ρs(β)

10 Kurtosis[X ] = E[X4]
E[X2]2 whereE[X4] is the4th central moment andE[X2] is the variance,

since the mean ofX is 0.
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Figure 3.6: Log-log plot demonstrating the speed-dependence of the turning-
angle distribution. The standard deviationσβ of the turning-angle is shown as a
function of the speed as estimated from data from all experimental stages (black)
and approximated by a shifted power-law (green) and a shifted exponential (blue).
95% confidence intervals forσβ based on aχ2-distribution are shown in grey.

shown in figure 3.7. For higher speeds the kurtosis is consistently higher than the

3 expected for a normal distribution. While there are deviations from Gaussian-

ity, we did not find a reliable fit of a better model for the wholedistribution due

to the limited amount of data available. For our model we madethe simplifying

assumption of Gaussian noise.

In total, we therefore model the turning-angles as speed-dependent Gaussian

noise: ξs(t) ∼ N (0, σξ(s))) with σξ(s) = c1e
−c2s + c3 as estimated above in

section 3.2.5. The offsetc3 could either be an effect of the boundedness of the

flight arena, since the bumblebee has to turn more often to avoid walls when flying

fast. Or it could be that the bumblebees use stronger forces for turning during fast

flights to maintain their manoeuvrability. It would be interesting to examine free-

flight data to check for the cause. For the two stochastic parts of the Langevin

equations, we estimated the autocorrelation functions from the data. The turning-

angle autocorrelation is approximated by a power-law as seen in Fig. 3.8, which
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in this case is preferable to the alternative fit by a simple exponential decay.

3.2.7 Stochastic Description of Speed

In addition to the drift termg(s), the dynamics of the speed is governed by a

stochastic term, which we analyse here. By subtraction of our approximation for

the deterministic termg(s) from the observed speed changesds/dt in Eq. (3.21)

we can estimate the distribution and autocorrelation of theacceleration noise term

ψ(t) = ds(t)/dt− g(s(t)).

Strength of the Acceleration Noise Term

The noise termψ(t) is well approximated by Gaussian noise, however the strength

of the noise has to be corrected for discretisation effects.

In order not to overestimate the noise term, discretisationerrors of an approxi-

mate size of∆x/∆t2 due to the finite resolution∆x = 10−3 m of the cameras

have been accounted for. The calculation of the discretisation error is a one-
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Figure 3.8:Log-log plot of the autocorrelation of turning-anglesβ. The exper-
imental data (black crosses) together with an exponential (magenta) and a power-
law (blue) fit is shown with the large-lag standard error (grey). The green circles
show the autocorrelation extracted from the simulated data.

dimensional approximation of the error in accelerations given discretised position

data. The real one-dimensional bumblebee positionsxt for t ∈ 1 . . . n can be de-

scribed byxt = x̃t + ut, wherex̃t is the measured discretised position (i.e. the

center of a bin) andut is uniformly distributed between−∆x/2 and∆x/2 and

is assumed to be drawn i.i.d., representing the uncertain relative position inside a

discretisation bin. Withx′′t = 1
∆t2

(xt+∆t − 2xt + xt−∆t) as an approximation for

the real accelerations, the measured accelerationsx̃′′t = 1
∆t2

(x̃t+∆t − 2x̃t + x̃t−∆t)

have a variance of

V ar(x̃′′t ) = V ar(x′′t ) + V ar(ut+∆t − 2ut + ut−∆t) = V ar(x′′t ) +
∆x2

2∆t4
. (3.26)

Therefore the standard deviation of the real accelerationsis given by:

Stdev(x′′t ) =

√
V ar(x̃′′t ) −

∆x2

2∆t4
. (3.27)

As the bumblebee flights are modelled in two dimensions,∆x has been scaled
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Figure 3.9:Autocorrelation of the non-deterministic speed changesψ(t). The
autocorrelation function ofψ(t) = ds/dt(t) − g(s(t)) estimated from the exper-
imental data (dots) with two times the large-lag standard error (grey) and three
fitted approximations: difference of 2 exponentials (red),difference of 2 power-
laws (green), difference of exponential and power-law (blue).

by
√

2, giving a rough estimate for the strength of the discretisation-induced noise

added toψ(t). Since∆x is quite small in the experimental data, this has been good

enough for our modelling purposes (see section 3.3.2). A full 2-dimensional treat-

ment of the discretisation effects on the accelerations andespecially on turning-

angles would be more cumbersome.

Auto-Correlations of the Acceleration Noise Term

Figure 3.9 shows the autocorrelation function of the noise termψ(t) and a set of

fitted functional shapes. The anti-correlations ofψ(t) can be approximated e.g.

by acfe−eψ (τ) = ae−λ1τ + (1 − a)e−λ2τ . While an autocorrelation function of the

shape ofacfp−pψ (τ) = b(τ +1)−p1 +(1− b)(τ +1)−p2 can be exluded, a difference

between an exponential and a power-lawacfe−pψ (τ) = ce−λ3τ +(1−c)(τ+1)−p2 is

not significantly worse thanacfe−eψ . For our model we chose the simple difference

of exponentialsacfe−e.
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As the observed anti-correlation between delays of0.1 s > τ > 0.3 s happens

on a time scale which is too short to be an effect of the boundedness of the exper-

iment or of residual effects of the presence of the foraging wall [2], it is unclear

where the anti-correlation comes from. One could speculatethat it might be the

result of a stabilising mechanism in the bumblebee dynamics.

3.2.8 The Complete Flight Model

The full set of parameters estimated from the data set which was used for the

simulation is given below. For reference, the model equations and the equa-

tions describing all terms are also collected here. Where not specified other-

wise, the parameters of the functional shapes were estimated with a least-squares

fit (Marquardt-Levenberg algorithm[104, 105]). The (simplified) Langevin equa-

tions (3.20, 3.21) are,

β(t) = ξs(t)

ds

dt
(t) = g(s(t)) + ψ(t).

The parameters for the standard deviationσξ(s) = c1e
−c2s + c3 of the angle noise

ξs(t) ∼ N (0, σξ(s))) arec1 = 126◦, c2 = 12 s/m, c3 = 12.5◦ and its autocor-

relation is given byacfβ(τ) = (τ + 1)−1.5476 (see sections 3.2.5, 3.2.6). For the

deterministic drift of the speed (see Eq. (3.22))

g(s) ≈ (s− s0) ×
{

−d1 for s < s0

−d2 for s ≥ s0

,

the change of slope is ats0 = 0.275 m/s while the slopes ared1 = 0.16 and

d2 = 0.06. The non-deterministic changesψ(t) of the speed (see section 3.2.7) are

assumed to be normally distributed with standard deviationσψ = 3.52 m/s2 and

autocorrelated according toacfe−eψ (τ) = ae−λ1τ + (1 − a)e−λ2τ wherea = 1.44,

λ1 = 25.5 andλ2 = 10.7.
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Comparison to the Reorientation Model

Given the complete flight model we can now compare it to a reorientation model

(see section 1.3.3). In section 3.2.4 we found that the driftterm of the turning

angle is trivial, which is in accord with the reorientation model. If one is not inter-

ested in the bumblebee movement on short time scales, i.e. under≈ 0.3 s where

the autocorrelations of the noise termsξs(t) andψ(t) have not fully decayed yet,

an approximation by a reorientation model would look feasible. However, the

resulting simplification would still include a deterministic speed-driftg(s) which

induces correlations for the speeds, and the dynamics of the turning angle and the

speed are still dependent viaξs(t). Therefore the resulting model should be under-

stood as a variation of active Brownian particle models instead (see section 1.3.4).

3.3 Model Validation

With the information gathered in section 3.2 from the experimental data, we have

now completed our two-dimensional model of bumblebee flights. We can now

simulate it to generate artificial sample trajectories. In this section we will de-

scribe the details of the simulation and compare the resulting flight paths to the

experimental data in order to validate our findings.

3.3.1 Generating Correlated Noise

For the simulation of the bumblebee model above, we need to beable to generate

noise, whose distribution and autocorrelation function match those estimated for

the noise termsξs(t) andψ(t). There are two main ways to generate coloured

noise: the first is to find some stochastic process, whose autocorrelation function

acf(τ) and probability density functionρ(x) coincides with those of the desired

noise, and numerically integrate that process. A variety ofdifferent algorithms

have been used for the simulation of correlated noise [106, 107]. The success of

this approach depends critically on the ability to find a suitable stochastic process

with the desired properties.

The second main source of algorithms to generate coloured noise comes from

the idea to use uncorrelated noise samples, and correlate them by shaping their
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spectra in the frequency domain. A variety of more sophisticated algorithms have

been developed to account for the distortions of the autocorrelations due to sam-

pling and windowing effects, see e.g. [106]. In this work we used a straightfor-

ward method of correlating noise as described below. While the method is not the

most accurate, it is sufficient in our case: The autocorrelation functions, which we

estimated from the experimental bumblebee data, have associated measurement

errors (see Fig. 3.8 and 3.9) which are much larger than the small imprecisions

due to the inaccuracy of the algorithm below.

The algorithm works in the following way: We start by generating an i.i.d.

noise samplex1, . . . , xn of the desired probability density functionρ(x). In case

of the turning-angle and speed noises used for the simulation of bumblebee flights,

ρ(x) is chosen to be a Gaussian — the sample can be generated e.g. bytheBox-

Muller method[104]. The sample is then transformed to the frequency domain

with a discrete Fourier transforminto the sequence:

Xk =

N∑

j=1

xje
−2πi k

n
j . (3.28)

The modulus ofXk is the spectral amplitude which we want to shape — in case

of uncorrelated (white) noise it is the constant1 — and the modulus squared

is called thepower spectral density. The Wiener-Khinchin theorem[38] states

that for (weakly) stationary processes, the power spectraldensity is theFourier

transformof the autocorrelation functionacf(τ):

psd(k) = âcf(k) =

∫ ∞

−∞
acf(τ) e−2πikτdτ. (3.29)

Therefore if we take the power spectral densitypsd(k) corresponding to the de-

sired autocorrelation and multiplyXk by
√

psd(k) we arrive at the desired coloured

noise in the frequency domain:

X̃k = Xk

√
psd(k) for 0 < k < n/2. (3.30)

Note thatX0 is not scaled asX0/n is the mean of thexi, and fork > n/2 the

coefficients have to be kept in symmetry:X̃(k) = X̃(n − k)∗. The result is then
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transformed back to the time domain with theinverse discrete Fourier transform:

x̃j =
1

n

N∑

k=1

X̃ke
2πi k

n
j . (3.31)

For the speed noiseψ the autocorrelation function is approximated by

acfe−eψ (τ) = ae−λ1τ + (1 − a)e−λ2τ (3.32)

as shown in figure 3.9, which corresponds to a power spectral density of:

psdψ(k) =
2λ1a

(λ2
1 + 4π2k2)

− 2λ2(a− 1)

(λ2
2 + 4π2k2)

. (3.33)

For the turning-angle noiseξ the autocorrelation function is approximated by

acfξ(τ) = (τ + 1)L. As the corresponding power spectral density does not have

a particularly pleasant expression11 we calculatedpsdξ(k) numerically with a dis-

crete Fourier transform ofacfξ(τ).

3.3.2 Simulation of the Bumblebee Model

Given the complete model specification in section 3.2.8 we can now generate ar-

tificial bumblebee flight trajectories. To simulate the bumblebee model, we in-

tegrate its Langevin equations (3.20, 3.21) using the correlated noise termsξs(t)

andψ(t) from section 3.3.1 and the estimated driftg(s) from section 3.2.5. These

Langevin equations are the stochastic differential equations of anItō process. If

instead a Stratonovic interpretation of the SDEs had been used, the estimation

of of the drift terms would have needed a correction due to an inducedspuri-

ous drift, as described e.g. in [38]. The numerical integration for the Langevin

equations therefore has to be done with an It ō scheme. One ofthe most basic It ō

integration schemes is theEuler-Maruyama-scheme(see section A.3), which we

use here. Writing the Langevin equations (3.20, 3.21) of ourmodel in It ō form,

11psdξ(k) =
2 1F2(1;1−

L

2
, 3
2
−L

2
;−π2k2)

L−1 +
(2π)L|k|L−1 csc(πL) sin( π

2
(L+4|k|))

Γ(L)

where 1F2 is a generalized hypergeometric function andΓ(L) is the gamma function.
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Figure 3.10:Simulated trajectory of a bumblebee. The complete model (see
section 3.2.8) is simulated for 200 s (= 105 time steps) with an Euler-Maruyama
scheme using the noise samples forξ and ψ correlated beforehand (see sec-
tion 3.3.1).

and discretising time with a time step∆t gives the following integration scheme:

β(t+ ∆t) = ξs(t), (3.34)

s(t+ ∆t) = s(t) + g(s(t))∆t+ ∆ψ(t). (3.35)

Notice that the noise strength of∆ψ(t) has to be scaled in consistence with the

time-step∆t used for the integration. In our simulations we used the timereso-

lution ∆t = 0.02 s of the experimental data as a time delay for the integration,

as it is already small enough. In rare cases where the Gaussian noiseψ(t) would

lead to a negative speed despite the positive driftg(s) for s < s0, we enforce a

non-negative speed by settings(t) = 0.

The dependence of the turning-angle distribution on the speeds(t) adds a com-

plication to the simulation. While the acceleration termψ(t) can be simply added

to the speed in each time step of the integration, the turning-angle noiseξs(t) is

speed-dependent and cannot be generated in advance as described in section 3.3.1.
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Figure 3.11:Comparison of the speed-distributions.The green (dashed) line
shows the probability densitypdf(s) extracted from the simulated data, the black
(solid) line shows the experimental data of all bumblebees (≈ 45000 data points).

Instead the correlated Gaussian noise has to be scaled by itss-dependent standard

deviationσβ(s) for each step (see section 3.2.6). As this happens after correlating

the noise, this does not reproduce the autocorrelation of the turning-angle exactly.

However the error made is acceptable in our case, as it is lessthan the errors from

the estimation ofacfβ. The resulting scheme for the turning-angleβ can be written

as

β(t+ ∆t) = ξs(t) = σβ(s(t))ξ(t) (3.36)

whereξ(t) is the unscaled correlated Gaussian turning-angle noise.

A sample trajectory of a bumblebee simulated for 200 s using105 time steps

is shown in Fig. 3.10. The trajectory shows the typical switching of flight patterns

between localized flights with low velocity and large turning angles, and faster

movement with low sinuosity. Using the generated data we cannow check the

validity of the model by comparison to the experimental dataof all bumblebees.
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Model Comparison to Experimental Data

Figure 3.11 compares the probability density functionpdf(s) of the speed ex-

tracted from the simulated data with the corresponding probability density func-

tion from the experimental data. Despite the fact that we made quite a lot of

simplifications when building the bumblebee model, e.g. ignoring the influence

of vertical movement, and that we used rather simple approximations for the esti-

mated properties, e.g. the speed driftg(s), the distribution of speeds in the model

matches the experimental data rather well.

Apart from the correct variance, the resulting turning angle distributionpdf(β)

does not match the experimental data very well. This is not astonishing since the

model simplified the turning angle noiseξs(β) by assuming that its distribution is

normal for all values ofs. As discussed in section 3.2.6, the Gaussian approxi-

mation is only valid for low speeds. While this could have an effect for the short

term dynamics, over a few time steps the accumulated sum of the turning angles

becomes normal again due to the central limit theorem (see section 1.3.2).

The autocorrelation function of the turning-angle is shownin figure 3.8. There

is a good (and not so astonishing) agreement between the autocorrelation ofβ

in the experiment and in the model, which mostly shows that the generation of

coloured noise works.

The autocorrelationacfs(τ) of the speeds, which is shown in figure 3.13, has

to be looked at in more detail. While the model is in nice agreement with the

autocorrelation from experimental stage (4) as can be seen in figure 3.12, it differs

from stage (7) and especially stage (1), which show a stronger (positive) correla-

tion for larger delay timesτ . This difference can be explained by the following:

the dynamics in stage (1), meaning without predation threatat the flowers, is dom-

inated by short systematic flights between flowers. There theregular flights mean

that the speed is autocorrelated over longer times. Under threat of predation in

stage (4) the bumblebee reacts to the predators by breaking the regular search pat-

tern, leading to a quicker decay of the autocorrelation. Thedata from stage (7)

lies in the middle between the other two, since the bumblebees were trained, but

have already partially forgotten about it. For evidence of the flower avoidance see

section 2.2.3 and for the predator-induced anti-correlations see sections 2.2.4 and
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Figure 3.12: Autocorrelation of bumblebee speed. The green (dashed) line
shows the autocorrelation extracted from the simulated data, the black (solid) line
from the experimental data (from stage (4)) with two times the large-lag standard
error (grey).

2.2.5. Since we are in this chapter not so much interested in the systematic flights

from flower to flower, but rather on the free search flights awayfrom the flowers,

which are more pronounced in stage (4), we are happy with the matching of the

data from stage (4) and the model. With regard to an application of the model to a

bumblebee in a natural habitat, the presence of predators isalso the default state.

Mean Square Displacement

Figure 3.14 shows the mean squared displacement (MSD) of thebumblebee po-

sition as determined from each experimental stage and from the simulated model

data. While both, the experimental results and the simulation, show well-matching

ballistic dynamics for low delay timesτ < 0.5 s, the diffusive behaviour for large

τ , as emphasized by a linear fit, can only be seen in the model. Instead, the ex-

perimental data shows a saturation of the MSD around0.08 m2 for τ > 1.6 s. The

saturation is to be expected, since the movement of the bumblebees is hindered

by the flower zones and bounded by the walls. In the model the bumblebee flights
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Figure 3.13: Autocorrelation function of the bumblebee speed for different
experimental stages.The black line shows the autocorrelation extracted from the
simulated data, the other lines show its estimates from the experimental data in
stages (1),(4),(7) in red, green and blue respectively.

are however not constrained, leading to the deviation of theMSD for large delays.

3.4 Summary

The family of reorientation models has been often used to describe the corre-

lated random walk of animals. We therefore tried to examine their suitability as a

model to describe the foraging behaviour of bumblebees in consistency with the

observed data. Instead of looking only at the distributionsof the turning angleβ

and the speeds, we generalized the reorientation model by explicitly modelling

their dynamics via generalized Langevin equations. Analysing movement data

of the bumblebee experiment, we extracted information on the deterministic and

stochastic terms of Eqs. (3.1, 3.2). We examined a deterministic part of the dy-

namics of(β, s) using a Markov approximation by estimating the drift coefficients

of the Fokker-Planck equation corresponding to the Langevin equation. Any ef-

fects not captured by this drift term contributed to the correlated noise terms (see
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Figure 3.14: Mean squared displacement. The measured mean squared dis-
placement of a bumblebee is shown for different experimental stages: stage (1)
(green), stage (4) (blue), stage (7) (violet). In addition the MSD of the simulated
data is shown (black), together with a linear fit (dashed grey) of its diffusive be-
haviour for large delays and a quadratic fit (dotted grey) of its ballistic short term
behaviour.

sections 3.2.6, 3.2.7) in the resulting model (section 3.2.8). With the estimation

of the turning angle drifth(β) we found that while the usual assumption of i.i.d.

turning angles is not valid in our case, the lack of a non-trivial drift and the weak

autocorrelation ofξs are consistent with the usual reorientation model (see sec-

tion 3.3.2). However, our generalized model exhibits significant differences in

the non-trivial deterministic partg(s) of the speed changeds/dt and the speed

dependence of the turning angles. In terms of active Brownian particle models

([23, 58], see section 1.3.4) we described the two-dimensional bumblebee move-

ment by a particle with a non-linear friction termg(s) depending and acting only

on the speed, driven by multiplicative coloured noise with different correlations

for the angle component and the speed component of the velocity. While this com-

bination of complications might make it difficult to treat the system analytically,

progress in this direction has been made [108, 57].

To validate the bumblebee flight model, we simulated it by stochastic integra-
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tion using correlated noise in section 3.3. The comparison to the data has shown

that the resulting model agrees very well with the experimental data despite the

approximations we made for the model.

Given that the experiment which yielded our data is rather small and provided

the bumblebees with an artificial environment, it would be interesting to apply our

new model to free-flying bumblebees to reveal how much the results depend on

the specific set-up. This would clarify whether the flight behaviour seen in the

laboratory experiment survives as a flight mode for foragingin a patch of flowers

in an intermittent model, with an additional flight mode for long flights between

flower patches. The analysis of data from other flying insectsand birds by using

our model could be interesting in order to examine whether the piecewise linear

nature of the speed drift and the trivial drift of the turningangle are a common

feature. In view of understanding the small-scale bio-mechanical origin of flight

dynamics, our model might serve as a reference point for any more detailed dy-

namical modelling. That is, we would expect that any more microscopic model

should reproduce our dynamics after a suitable coarse graining over relevant de-

grees of freedom.
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Fluctuation Relations

In this chapter we will at first briefly motivate fluctuation relations (see section 4.1).

We then summarize a study of the interplay of fluctuation dissipation relations and

fluctuation relations for a concrete class of stochastic processes in section 4.2. The

main results of this study were done by A. V. Chechkin and R. Klages [4], I con-

tributed with work on spectral densities of autocorrelation functions as shown in

section 4.3, and some discussions. Specifically I focused onthe non-negativity of

spectral densities for given autocorrelation functions.

While the aim of this study — examininganomalous fluctuation relations, that

is deviations from (normal) fluctuation relations — is not related to foraging, the

set-up has similarities to our data analysis in chapters 1 and 3 and some related

foraging models: a stochastic process described by a generalized Langevin equa-

tion albeit a different generalization than discussed here, see section 1.3.4 and a

non-trivial autocorrelation function where anti-correlations (see e.g. section 2.2.4)

and heavy tails play a decisive role. In contrast to the previous chapters, here the

Langevin equation will be generalized through a friction kernel (Eq. (4.3) in sec-

tion 4.2) giving another way to model autocorrelated processes.

4.1 Introduction to Fluctuation Relations

For isolated systems, thesecond law of thermodynamicsstates that the entropy

of the system cannot decrease. While the second law is fundamental, the restric-
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tions on its applicability made it desirable to find more general and more precise

relations for the entropy production. From statistical mechanics the second law

has been understood to be strictly valid only in the thermodynamic limit. How-

ever, given any real systems of finite size the law has to be interpreted proba-

bilistically: for large sizes the probability of a violation of the second law de-

creases and becomes effectively negligible. However, withthe increased interest

in smaller systems, e.g. single macromolecules, those probabilities become im-

portant.1 Therefore there was a need to find laws which hold for small systems,

too, and preferably these laws would be also applicable in non-equilibrium situa-

tions since many systems of interest, e.g. all biological systems, are not isolated

but externally driven systems.

Consequently the probability density functionp(ξt) of the entropy produc-

tion ξt over a time intervalt starting from an equilibrium state and ending in a

non-equilibrium steady state has been studied in more detail. For large classes

of systems [109, 110, 111, 112] it has been shown that the second law can be

generalized to the so-calledfluctuation relation[113, 114, 115]

ln
p(ξt)

p(−ξt)
= ξt , for ξt ≥ 0 . (4.1)

This means that negative entropy productions are less likely than positive produc-

tions by a factorexp(ξt). The expectation of the entropy production is therefore

still non-negative which then leads to the second law in the thermodynamic limit:

< ξt >=

∫ ∞

−∞
ξtp(ξt)dξt =

∫ ∞

0

ξtp(ξt)
(
1 − exp−ξt) dξt ≥ 0 . (4.2)

While the quantity of interest is often the entropy production, similar laws

exist for related quantities, e.g., the accumulated work toswitch between two

equilibrium steady states [114]. Since the fluctuation relation gives quite detailed

information aboutp(ξt), it is interesting for which processes it holds under which

conditions. We therefore examine its validity for the classof Gaussian stochastic

1 A simple example is an ideal gas ofn particles with uniformly drawn initial positions in a
cubical container. Without external forcing the probability to find all particles in the left half of
the cube after a timet converges to2−n for t → ∞, which is only insignificant for largen.
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processes in the next section.

4.2 Fluctuation Relations in Gaussian Stochastic

Processes

Let us look at aGaussian stochastic processgiven by ageneralized Langevin

equation[116]: ∫ t

0

ẋ(t′)γ(t− t′)dt′ =
F

m
+ ξ(t) (4.3)

with a constant forceF , massm and a friction kernelγ(t). The noiseξ(t) should

be stationary, Gaussian and have an ensemble average〈ξ(t)〉 = 0 for all t, but

it does not have to be uncorrelated (white), i.e. coloured noise is allowed. The

question of interest is, under which conditions the workW := Fx obeys the

(normal)transient work fluctuation relation[113]:

ln
p(W, t)

p(−W, t) =
W

kBT
(4.4)

wherep(W, t) is the probability density function of the work,kB is the Boltzmann

constant andT is the temperature of the system. This depends critically onthe

autocorrelation function2 acf(τ) := 〈ξ(t)ξ(t+ τ)〉t of the noise and if and how

it relates to the friction kernel. For these Gaussian stochastic processes it can be

shown that:

ln
p(W, t)

p(−W, t) =
2 〈x(t)〉
Fσ2

x(t)
W (4.5)

which means that whether the fluctuation relation (Eq. (4.4)) holds depends on

the mean displacement〈x(t)〉 and the mean square displacement (MSD)σ2
x(t).

In cases where the MSD does not scale linearly in timet, the diffusion is called

anomalous.

The fluctuation relation (4.4) does not hold in general without further restric-

tions onacf(τ) andγ(τ). For internal noisethe source of the friction and the

noise are the same, which gives rise to thefluctuation-dissipation relation of the

2In contrast to the other chapters,acf(τ) is not normalized here.
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second kind (FDR II):

acf(τ) =
kBT

m
γ(τ) . (4.6)

In [4] we show that the fluctuation relation follows in this situation, and which

implications exist between the transient fluctuation relation and the fluctuation-

dissipation relations. A special case of a model with internal noise isBrownian

motion, where the friction is proportional to a delta function:γ(τ) = 2γδ(τ) with

the friction constantγ, and the noise is white:acf(τ) = (2γkBT/m)δ(τ).

For external noisethere is no FDR II, which means that in general one can-

not expect the fluctuation relation to hold for arbitrary autocorrelationacf(τ) and

friction γ(τ). But even for a simple frictionγ(τ) = 2γδ(τ) there is a variety of

behaviour in the MSD which we investigated. The behaviour can lead to normal

and anomalous diffusion and varying validity of the fluctuation relation: we give

an overview of the results in section 4.4 (see [4] for details). The results depend

on the properties of the autocorrelation function: power law tails are needed for

anomalous diffusion and the MSD and the fluctuation relationcritically depend

on its exponent. The behaviour also depends on whether the autocorrelation is

persistent(decay to 0 from above for largeτ ) or anti-persistent(anti-correlation

and convergence to 0 from below), and in the case of anti-persistence whether it

is pure (see section 4.3.2). In the following section we therefore look at suitable

classes of autocorrelation functions.

4.3 Spectral Densities of Autocorrelation Functions

For an autocorrelation functionacf(τ) of a stochastic process the corresponding

spectral density:

S(ω) :=

∫ ∞

−∞
e−iωτacf(τ)dτ (4.7)

has to be non-negative for allω ≥ 0 for consistency [117]. Since we want to

construct examples for different classes of stochastic processes by choosing the

distribution of the noise and the autocorrelation, we checked the non-negativity

for a few classes of autocorrelation functions. In this casewe are interested in

anti-correlations and/or heavy-tailed correlations (see[4]), which we investigate
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in the following.

4.3.1 Power-Law Decay

A simple class of autocorrelation functions with power-lawdecay and a finite

valuecβ = acfβ(0) is:

acfβ(τ) =
cβ(

1 + |τ |
δ

)β (4.8)

where0 < β <∞, cβ ≥ 0, δ > 0. The corresponding spectral density is:

Sβ(ω) = 2cβδ
βωβ−1

(
cos(ωδ)

∫ ∞

ωδ

cos x

xβ
dx+ sin(ωδ)

∫ ∞

ωδ

sin x

xβ
dx

)
. (4.9)

In order to test the non-negativity of the corresponding spectral density the con-

stantscβ andδ (which is effectively just a scaling factor for the frequenciesω) are

not important. For convenience we setcβ = 1
2

andδ = 1 giving:

Sβ(ω) = ωβ−1

(
cos(ω)

∫ ∞

ω

cosx

xβ
dx+ sin(ω)

∫ ∞

ω

sin x

xβ
dx

)
. (4.10)

Asω ≥ 0 it suffices to examineIβ(ω) := ω1−βSβ(ω) which then can be simplified

as follows:

Iβ(ω) = cosω

∫ ∞

ω

cosx

xβ
dx+ sinω

∫ ∞

ω

sin x

xβ
dx (4.11)

=

∫ ∞

ω

cosx cosω + sin x sinω

xβ
dx (4.12)

=

∫ ∞

ω

cos(x− ω)

xβ
dx (4.13)

=

∫ ∞

0

cosx

(x+ ω)β
dx (4.14)

=
sin(x)

(x+ ω)β

∣∣∣∣
∞

0

+ β

∫ ∞

0

sin x

(x+ ω)β+1
dx (4.15)

= β

∫ ∞

0

sin x

(x+ ω)β+1
dx (4.16)
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which is positive because the denominator is strictly increasing: the integral over

each positive part from root2πk to root 2πk + π is always larger than the next

negative part from2πk + π to 2π(k + 1) for all natural k, as shown below:

Iβ(ω) = β

∫ ∞

0

sin x

(x+ ω)β+1
dx (4.17)

= β

∞∑

k=0

(∫ 2πk+π

2πk

sin x

(x+ ω)β+1
dx+

∫ 2π(k+1)

2πk+π

sin x

(x+ ω)β+1
dx

)
(4.18)

= β

∞∑

k=0

(∫ 2πk+π

2πk

sin x

(x+ ω)β+1
dx+

∫ 2πk+π

2πk

sin(x+ π)

(x+ π + ω)β+1
dx

)
(4.19)

= β
∞∑

k=0

∫ 2πk+π

2πk

(
sin x

(x+ ω)β+1
+

− sin x

(x+ π + ω)β+1

)
dx (4.20)

= β
∞∑

k=0

∫ 2πk+π

2πk

sin x

(
1

(x+ ω)β+1
− 1

(x+ π + ω)β+1

)
dx > 0 (4.21)

sincesin x ≥ 0 for x ∈ [2πk, 2πk + π] and 1
(x+ω)β+1 >

1
(x+π+ω)β+1 . This means

the spectral density is non-negative for allβ.

4.3.2 Anti-Correlation

An example for autocorrelation functions which show anti-correlation is given by:

acf(τ) = ke−a|τ | − (k − 1)e−b|τ | (4.22)

for a > b > 0 andk > 1. Since the autocorrelation function is an even function,

the integral of the product with the odd functionsin yields0, so the corresponding

spectral density is:

S(ω) = F(acf)(ω) = 2

∫ ∞

0

cos(ωτ)
(
ke−aτ − (k − 1)e−bτ

)
dτ . (4.23)

Using
∫∞
0
e−px cos(qx)dx = p

p2+q2
for all p > 0:

S(ω) = 2k
a

a2 + ω2
− 2(k − 1)

b

b2 + ω2
. (4.24)
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S(ω) ≥ 0 iff

2k
a

a2 + ω2
≥ 2(k − 1)

b

b2 + ω2
(4.25)

⇔ a

b
≥ k − 1

k

a2 + ω2

b2 + ω2
, (4.26)

which means thatS(ω) ≥ 0 for all ω iff

a

b
≥ max

ω

(
k − 1

k

a2 + ω2

b2 + ω2

)
(4.27)

⇔ a

b
≥ k − 1

k
max
ω

(
1 +

a2 − b2

b2 + ω2

)
(4.28)

⇔ a

b
≥ k − 1

k

(
1 +

a2 − b2

b2

)
(4.29)

⇔ a

b
≥ k − 1

k

a2

b2
(4.30)

⇔ a

b
≤ k

k − 1
. (4.31)

In this case the consistency of the corresponding stochastic process depends

on a proper choice of parametersa, b andk. The condition is quite restrictive; a

positive example is:a = 84, b = 67/2, k = 158/153. However, the integral over

the autocorrelation
∫∞
0

acf(τ)dτ is only non-negative fora
b
≥ k

k−1
, which means

the only valid case is thepure anti-persistentcase with
∫∞
0

acf(τ)dτ = 0 where
a
b

= k
k−1

.

4.3.3 Anti-Correlation and Power-Law Tail

Similar in shape (starting positive, then with anti-correlation which converges to

0 from below) but with a power-law tail is the following autocorrelation function

(Fig. 4.1):

acf(τ) = (1 + α)e−|τ |/δ − α(1 + |τ |)−β (4.32)

whereδ > 0, α > 0 andβ ≥ 1 + α
(1+α)δ

to ensure that
∫∞
0

acf(τ)dτ ≥ 0.

In this case we did not find an analytical proof for the non-negativity of the

spectral density but could only show it numerically for a wide range of parameters.
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Figure 4.1:Autocorrelation with anti-correlation and power-law tail . Shown
is an example for the class of autocorrelations with an anti-correlated heavy tail
given in Eq. (4.32). The chosen parameters are:α = 1

2
, β = 3

2
, δ = 1

4
.

A closed form expression of the spectral density can still becomputed, e.g. by

Mathematica, but it leads to an expression which is not easy to analyze:

I(ω) =
(1 + α)δ

1 + w2δ2
+
α 1F2(1; 1 − β

2
, 3

2
− β

2
; −w2

4
)

1 − β
− απw−1+β sin(w + πβ

2
)

Γ(β) sin(πβ)
.

(4.33)

HereΓ is thegamma functionΓ(z) :=
∫∞
0
tz−1e−t dt and 1F2 is a generalized

hypergeometric function[118] given by:

1F2(a1, a2; b; x) :=

∞∑

x=0

(a1)k(a2)k
(b)k

xk

k!
(4.34)

with thePochhammer symbol(a)k := Γ(a+ k)/Γ(a).

PlottingI(ω) for a many different parameters (Fig. 4.2) gives evidence for the

non-negativity of the spectral density. While this is no proof that the autocorrela-

tion function is suitable for all possible parameters, it gives some indication that

this choice ofacf(τ) is of use in building stochastic models with anti-persistence

and anomalous diffusive behaviour.
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Figure 4.2: Numerical evidence for the non-negativity ofI(ω). Plotted are
the spectral densities (see Eq. (4.33) corresponding to theanti-correlated auto-
correlations with power-law tail given by Eq. (4.32) for a variety of parameters:
searching through many valid combinations of parameters weconsistently found
thatI(ω) ≥ 0 for all ω.

4.4 Fluctuation Relations and MSD for External

Noise

After checking the consistency of different classes of autocorrelation functions via

their spectral density in section 4.3, we can now finish this chapter by discussing

the validity of the transient work fluctuation relation for Gaussian stochastic pro-

cesses given by the Langevin equation (4.3) for the case ofexternal noise(see

section 4.2). Here we restrict ourselves to friction kernelsγ(τ) = 2γδ(τ) without

memory – the analysis would be severely more complicated by simultaneously

considering friction kernels and noise autocorrelations which are unrelated and

both non-trivial. This section is an overview of the resultsin [4], where a more

detailed discussion can be found. Notice that the main results of this paper were

not derived by me: they are included below only to complete the discussion in sec-

tion 4.2. For external noise, interesting anomalies of the diffusion can occur due to

autocorrelation functionsacf(τ) whose tail can be approximated by a power-law.
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We therefore examine autocorrelation functions of the following shape:

acf(τ) =





acf1(|τ |) for |τ | ≤ ∆

acf2(|τ |) for |τ | > ∆
, (4.35)

with acf1(0) > 0, ∆ > 0, acf1(∆) = acf2(∆), and tails

acf2(τ) = Cβ

( |τ |
∆

)−β
. (4.36)

The autocorrelations discussed in section 4.3.1 and 4.3.3 are examples with the

same asymptotic behaviour for the persistent case withCβ > 0 and0 < β < ∞,

and for the anti-persistent case withCβ < 0 and1 < β <∞ respectively.

The diffusive behaviour, i.e. the mean squared displacement, and the validity

of the fluctuation relation fort≫ ∆ now depend on the sign ofCβ and onβ. The

right hand side of the fluctuation relation (Eq. 4.4) and the MSD can both be cal-

culated explicitly [4]. The results, which are discussed below, are summarized in

Table 4.1 using the following constants as abbreviations:D :=
1

γ2

∫ ∞

0

acf(τ)dτ ,

Teff :=
mD

kBγ
, andR :=

∫ ∞

0

τacf(τ)dτ .

For persistent external noise with fast enough correlationdecay (β > 1) the

process exhibits normal diffusion and ageneralized fluctuation relationholds,

where the temperatureT is replaced in Eq. (4.4) with aneffective temperature

Teff . Forβ ≤ 1 the process is instead superdiffusive and the fluctuation relation is

anomalous, i.e. it does not hold.

Given anti-persistent external noise, an exponentβ ≤ 1 would be inconsistent

withD ≥ 0 (compare section 4.3.3), and is therefore excluded. Additionally, ifD

is strictly positive, then the MSD shows normal diffusion for larget and a gener-

alized fluctuation relation as above. For the remaining purely anti-persistent cases

(with D = 0) the fluctuation relation does not hold and the diffusive behaviour

ranges from subdiffusion for1 < β < 2 to localization, i.e. an asymptotically

constant MSD, forβ > 2.

The transition points between different types of behaviour, i.e.β = 1 for per-

sistent andβ = 2 for anti-persistent noise, show additional logarithmic terms in
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Table 4.1:Work fluctuation relation and MSD for Gaussian stochastic pro-
cesses with external noise.Shown are the mean squared displacement and the
right hand side of the fluctuation relation (4.1) fort≫ ∆ depending on the expo-
nentβ of the autocorrelation decay for persistent and purely anti-persistent noise.

persistent (Cβ > 0) pure anti-persistent (Cβ < 0, D = 0)

β MSD ln
p(W, t)

p(−W, t) MSD ln
p(W, t)

p(−W, t)
0 < β < 1 ∼ t2−β ∼ W

t1−β This regime does not exist.
β = 1 ∼ t ln

(
t

∆

)
∼ W

ln(t/∆)

1 < β < 2

∼ 2Dt ∼ W

kBTeff

∼ t2−β ∼Wtβ−1

β = 2 ∼ ln

(
t

∆

)
∼ Wt

ln(t/∆)

β > 2 ∼ 2

γ2
|R| ∼ γ

m|R|Wt

both the MSD and the fluctuation relations. In [4] it is shown that these terms also

appear when looking at processes with exponentsβ near the transition points, if

one does not consider the asymptotic behaviour for larget, but instead examines

the MSD or the fluctuation relation at intermediate times. This is of relevance to

the analysis of experimental data, since the time scales which can be explored ex-

perimentally are typically restricted. This means that theasymptotic regime might

be out of reach and only behaviour on intermediate time scales are accessible. The

topic of experimental observations of anomalous fluctuation relations – including

logarithmic corrections – is discussed in more detail in [4].

In summary, it has been shown that a large variety of diffusive behaviours

can occur for Gaussion stochastic processes given by the generalized Langevin

equation (4.3). We discussed the role of the autocorrelation function of the ex-

ternal noise for the flucutation relation and for the mean squared displacement.

We also checked the non-negativity of corresponding spectral densities in order

to find consistent classes of autocorrelations, which can beused as examples for

Gaussian stochastic processes showing different kinds of anomalous behaviour.
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Thesis Summary

In this thesis we investigated how the movement of foraging bumblebees can be

analysed in terms of stochastic models. Specifically, we examined the effect the

presence of predators has on the search patterns of the bumblebees, and the appli-

cability of a generalised reorientation model to describe experimental flight data.

A large part of the difficulty in the field of foraging is the multitude of dif-

ferent biological factors which influence foraging behaviour. We therefore started

our discussion in chapter 1 with a general introduction to the most relevant fac-

tors. As a variety of stochastic models has been proposed forthe analysis of

animal movements, we also described the most common classesof foraging mod-

els. On this background we discussed the idea of optimal foraging – in particular

the mathematical Lévy flight hypothesis. We argued that thestrict conditions

of the hypothesis on the specific foraging situation under investigation make it

doubtful whether much evidence for the hypothesis should beexpected when ex-

amining experimental data. The validity of the biological Lévy flight hypothesis,

i.e., whether real animals perform Lévy walks on their foodsearch, has been an

influential question in the last years. We ended the chapter with the conclusion

that, while the Lévy flight hypothesis has been influential in spurring the cooper-

ation between the research communities on foraging and the stochastic processes,

its usefulness as a paradigm under which foraging animals are studied is limited.

In chapter 2 and 3 we analysed data of a laboratory experimenton bumblebee

search flights from two different points of view. In chapter 2, our focus was the

influence that the threat of predation has on the movement behaviour of foraging

bumblebees. Interestingly we found that the predatory threat affects the bumble-

bees’ movement, which already showed two different flight modes before intro-

ducing any threats. While we found local changes in the behaviour near the food
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sources due to the introduction of artificial spiders as predators, its effect on the

search flights from flower to flower was more interesting: we found that change of

behaviour was primarily visible in the velocity autocorrelation functions, which

we explained by a simple stochastic model, and not in velocity distributions, as

we originally expected. We also discussed the connection ofthe importance of the

autocorrelation in this case study with the Lévy flight hypothesis.

We switched our point of view in chapter 3 to the question of how to develop

a stochastic model for the bumblebee movements from the experimental data. We

approached the problem by generalising a reorientation model and extracting the

coefficients of its generalised Langevin equations from thedata. After a discussion

of the main differences of the resulting model — which is a variation on active

Brownian particles — and simpler reorientation models, we validated our model

by simulation and comparison to the observed data.

After the analysis of foraging animals and especially bumblebees in the first

chapters, the second theme of generalised Langevin equations reappeared in chap-

ter 4. Here we gave a brief introduction to fluctuation relations and discussed

them for Gaussian stochastic processes given by a differentgeneralisation of the

Langevin equation. In this context we came back to the analysis of autocorrela-

tion functions, that is to say, we checked specific examples of functions for their

validity as autocorrelation functions of Gaussian stochastic processes by examin-

ing the corresponding spectral densities, and we finished the chapter with a short

discussion of fluctuation relations for external noise.
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Appendix A

Appendix

A.1 Error Analysis

A.1.1 Standard Error of the Mean

Let x1, . . . , xn ben random variables all drawn independently from one distribu-

tion with population meanµ, population standard deviationσ and varianceσ2.

Unbiased estimators ofµ andσ2 are thesample meanm =
∑n

i=1 xi/n and the

sample variances2 = 1
n−1

∑n
i=1(xi −m)2, giving the (biased)sample standard

deviations. Thestandard errorSE of a statistic is the standard deviation of the

statistic, and describes the size of the error made when estimating the underlying

statistical parameter by the statistic. In the case of the estimation of the population

meanµ by the sample meanm the standard errorSEm can be approximated by

SEm =
s√
n
,

which is related to the standard deviationσm of the sample mean. The standard

error can be used to derive confidence intervals for the mean,e.g. the 95% confi-

dence intervalsCI = [m−1.96SEm, m+1.96SEm] , where1.96 is approximately

the0.975-quantile of a Gaussian distribution.
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A.1.2 Confidence Intervals for Standard Deviations

To compute 95% confidence intervals for the sample standard deviations (see

section A.1.1) we first compute the confidence intervals for the sample variance

s2. Under the assumption that the random variablesx1, . . . , xn are drawn from a

normal distribution, the sample variances2 has aχ2 distribution withn−1 degrees

of freedom

s2 ∼ χ2
n−1 =

1

2
n−1

2 Γ
(
n−1

2

)x
n−1

2
−1e−

x
2

with quantilesqi. For a confidence level ofα = 0.95 the confidence interval

of s2 is then given byCIs2 = [s2(n − 1)/q(1+α)/2, s
2(n − 1)/q(1−α)/2] and the

corresponding interval fors is given by taking the square root of the boundaries.

A.1.3 Large-Lag Standard Error of Autocorrelation

Functions

When computing confidence intervals for an autocorrelationfunction

acf(τ) =
〈(xt −m)(xt+τ −m)〉

s2

at time-lagτ = k∆t for a given time seriesx0, xτ , . . . , x(n−1)τ with meanm and

variances2, it is important to realize that the coefficients for different time-lags

are not necessarily independent – and neither are their errors. Instead of assuming

an uncorrelated time-series for the error analysis, which is unrealistic for many

applications, the underlying assumption for thelarge-lag standard errorfor a

time-lagτ is, that the autocorrelation coefficients for higher lags are negligible

while the ones for lower lags might not be zero. This assumption [119] gives the

following approximationSEacf(τ), called large-lag standard error[120], of the

error of the autocorrelation function at lagτ :

SEacf(τ) = SEacf(k∆t) =

√√√√ 1

n

(
1 + 2

k−1∑

l=0

acf (l∆t)2

)
.

112



APPENDIX A: A PPENDIX

A.2 Data Cleaning

The experimental flight data contained various artefacts, which had to be ac-

counted for. The recorded time series have been visually inspected to check for

obvious recording errors, e.g., single data points which lie far from the otherwise

smooth trajectory immediately before and after the outlier. These errors have been

marked as invalid and treated as a gap in the data. Other sources of artefacts could

be dealt with automatically, e.g., the times when the bumblebees were not flying

but crawling on a surface (see section A.2.1), and gaps in therecorded data (see

section A.2.3).

A.2.1 Exclusion of Crawling

For the analysis of the bumblebee flights, parts of the experimental data had to

be excluded: the cameras tracking the bumblebees not only recorded the flight

trajectories, but also the crawling of the bumblebees on theobjects in the flight

arena: the walls of the arena and especially the artificial flowers (see section 2.1).

Therefore the data has been filtered: all recorded positionsof bumblebees within

1 cm of the flowers, including the landing platform and the mechanical traps, have

been excluded from any analysis to capture bumblebee flightsonly. The size

of this boundary is based on the size of the bumblebees, whichhave a height

of approximately 1 cm. While a smaller cut-off would not exclude all crawling

behaviour, the cut-off can be increased robustly within reasonable bounds. We

have checked that, e.g. a 2 cm cut-off does not have any influence on any of the

analysed quantities, as the amount of the data which would beexcluded in addition

is very small.

A.2.2 Flower Zones

Analysing the experimental bumblebee flight data, a distinction had to be made

between the space near foraging flowers and the space away from them in the rest

of the flight arena (see section 2.1). For that reasonflower zoneswere defined as

the following: for each flower a rectangular box with width and heightw = h =

9 cm is centred on the flower. The back side is at the foraging wall,while the
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Figure A.1: Distribution of gap-lengths in the experimental data. The gaps
with small gap-lengths (counted in missing data points/frames) can be interpolated
to gain more complete trajectories.

front extends into the arena with a depthd = 7 cm, including the whole foraging

platform and some space above. For details, see [1]. Notice that, while nearly all

crawling behaviour (see section A.2.1) of the bumblebees happened on the flower

platforms, this data isnot included when we speak of data ”in flower zones”.

This separation of data is used when distinguishing different kinds of be-

haviour in section 2.2, while in chapter 3 all data inside theflower zones is ex-

cluded in order to focus on the ”free” flight behaviour instead of on the flower-

bumblebee interaction. This reduces the available data forchapter 3 to≈ 49000

data points in a single experimental stage.

A.2.3 Gaps in the Experimental Data

The experimental bumblebee flight data contains quite a large number of gaps

due to e.g. measurement errors and bumblebees leaving the region observed by

cameras: a small region near the wall opposite to the flower wall was not cap-

tured by the cameras. For calculating quantities which depend on the availability

of seamless time series, e.g. autocorrelations, small gapsin the time series have

been interpolated linearly, instead of splitting the trajectory into two independent
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Figure A.2:Additional data after gap interpolation. Complete flower-to-flower
trajectories of a single bumblebee in stage (7) without interpolation of gaps (blue),
and additional complete trajectories after gap filling (red, dashed).

parts. As the number of gaps was small the correlations for short times were not

affected, however, the interpolation increased the usabledata for long time delays.

Trajectories were split at larger gaps, for example when entering a flower zone, to

exclude correlations induced by flower visits.

Fig. A.1 shows that most of the gaps have a short duration, which means that

a conservative approach of interpolating only gaps no longer than 5 time steps

(= 0.1 s) already gives most of the benefit in making more complete trajectories

available (see Fig. A.2). For the interpolation of longer gaps a more sophisticated

algorithm would have to be used, but the gain would be much less than that of the

filling of small gaps done here.

A.3 The Euler-Maruyama Approximation

The Euler-Maruyama approximation is a simple time discreteapproximation of

an It ō process. It is the first and simplest strong Taylor approximation [121].

Though it is possible to use variable time steps in the Euler-Maruyama ap-

proximation, we only consider a fixed time step∆ so that the discretisation of the
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time interval[t0, tN ] is

{tn} = {t0 + n∆t : n = 1 . . . N}. (A.1)

For an It ō process defined by a Langevin equation:

dX(t) = f(X(t), t)dt+ k(X(t), t)dW(t) (A.2)

the scheme of the approximation in the one dimensional case for an initial value

Xt0 = X0 is:

X(tn+1) = X(tn) + ∆tf(X(tn), tn) + k(X(tn), tn)(W (tn+1) −W (tn)) (A.3)

whereW is the Wiener process. This means that for each time step we have to

compute the incrementW (tn+1) −W (tn) which is Gaussian white noise with a

standard deviation of
√

∆t.1

In the D-dimensional case each component i of the scheme has the form:

Xi(tn+1) = Xi(tn) + ∆tfi(X(tn), tn) +

D∑

j=1

ki,j(X(tn), tn)(Wj(tn+1) −Wj(tn))

(A.4)

where each componentWj of the vectorW is an independent Wiener process. In

vector form:

X(tn+1) = X(tn) + ∆tf(X(tn), tn) + k(X(tn), tn)(W(tn+1) −W(tn)). (A.5)

In the special case ofk(X, t) ≡ 0 the Euler-Maruyama approximation reduces

to the Euler scheme for deterministic differential equations.

The orderβ of weak convergence2 for the Euler-Maruyama approximation is

β = 1 given some conditions onf andk.3

1See section 1.3.1.
2For time discrete approximationsX∆t weak convergenceto a processY means that ensem-

ble averages of nice enough functionals (e.g. moments) of the process converge at each timet:
lim∆t→0 〈g(Y (t))〉 − 〈g(X∆t(t))〉 = 0. See [121, p. 327].

3For details on the conditions see [121, p. 457ff].
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A.4 Index of Common Variable Names

N (µ, σ) normal distribution with meanµ and varianceσ2

W(t) d-dimensional Wiener process

τ time delay

∆t discrete time step, temporal resolution of data

D(1)(X) drift coefficient vector of a Fokker-Planck equation

D(2)(X) diffusion coefficient tensor of a Fokker-Planck equation

f(X),k(X) deterministic and stochastic terms of a Langevin equation

acf(τ) autocorrelation function

x, y, z bumblebee position in foraging arena: distance to flower wall,

position horizontal parallel to flower wall, height

β horizontal turning angle

s horizontal bumblebee speed

g(s), h(β) deterministic drift of speed and turning angle

ξs(t) speed-dependent noise term of turning angleβ

ψ(t) non-deterministic (noise) term in changes of speeds
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88(8):1962–1969, AUG 2007.

118



BIBLIOGRAPHY

[8] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy,

V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley,

and G. M. Viswanathan. Revisiting Lévy flight search patterns of wander-
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