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Abstract

Reconstructing the 3D geometry of scenes based on monocular image sequences is

a long-standing problem in computer vision. Structure from motion (SfM) aims at a

data-driven approach without requiring a priori models of the scene. When the scene is

rigid, SfM is a well understood problem with solutions widely used in industry. How-

ever, if the scene is non-rigid, monocular reconstruction without additional information

is an ill-posed problem and no satisfactory solution has yet been found.

Current non-rigid SfM (NRSfM) methods typically aim at modelling deformable

motion globally. Additionally, most of these methods focus on cases where deformable

motion is seen as small variations from a mean shape. In turn, these methods fail at

reconstructing highly deformable objects such as a flag waving in the wind. Addition-

ally, reconstructions typically consist of low detail, sparse point-cloud representation

of objects.

In this thesis we aim at reconstructing highly deformable surfaces by modelling

them locally. In line with a recent trend in NRSfM, we propose a piecewise approach

which reconstructs local overlapping regions independently. These reconstructions are

merged into a global object by imposing 3D consistency of the overlapping regions.

We propose our own local model – the Quadratic Deformation model – and show

how patch division and reconstruction can be formulated in a principled approach by

alternating at minimizing a single geometric cost – the image re-projection error of

the reconstruction. Moreover, we extend our approach to dense NRSfM, where re-

constructions are preformed at the pixel level, improving the detail of state of the art

reconstructions.

Finally we show how our principled approach can be used to perform simulta-

neous segmentation and reconstruction of articulated motion, recovering meaningful

segments which provide a coarse 3D skeleton of the object.
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Chapter 1

Introduction

The ability to recover a 3D description of our world from 2D images has always played

a central role in computer vision research. From Marr’s seminal description [65] of the

visual task of determining 3D shape from images as a 3 step process: from a primal

sketch to a 3D model via a 2.5D sketch; to Maliks’s formulation [62] of the ‘3 R’s’

of vision as three interactive processes – Recognition, Reconstruction and Reorganiza-

tion; the idea of recovering the third dimension, which is lost when an image is formed,

has been key for understanding our world from images.

From the motion of vehicles and people in an urban scene, to natural outdoor scenes

such as a group of trees waving in the wind, our world is essentially dynamic. Objects

can move with various degrees of complexity, ranging from (approximately) rigid mo-

tion, such as cars driving down a road, to the very complex non-rigid motion of a flag

waving in the wind or of the human body. It is precisely this case of complex non-rigid,

deformable or articulated motion that motivates the work in this thesis. This problem

is extremely challenging – in the presence of non-rigid motion the recovery of 3D ge-

ometry from a sequence of images is an inherently ill-posed problem since different

dynamic 3D geometries can give rise to the same images. The problem becomes par-

ticularly challenging when no initial model or prior information is known about the

observed scene.
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Figure 1.1: Example of capturing motions with a MoCap system.

Computer vision algorithms are intrinsically linked to visual sensors used to per-

ceive the world around us. Typically, computer vision systems rely on a human-like

approach to the visual perception task, where a passive sensor (the camera) forms an

image based on the visible light reflected from the objects. However, some approaches

go beyond this conventional view and replace or augment cameras with sensors that

work on different principles. Due to the challenging nature of the 3D reconstruction

problem, some approaches have instead used alternative sensors with relative success.

An example of such methods are Motion Capture systems (MoCap). A typical MoCap

setup includes a set of 6 to 12 infra-red cameras observing a predefined capture vol-

ume. The objects to be reconstructed, which may be rigid or deformable, are placed in

this volume and infra-red reflective markers attached to their surfaces. Given the high

number of synchronized cameras viewing the scene it is possible to recover the 3D

coordinates of the markers in every frame by triangulation, given the 2D coordinates

of the markers in the infra-red images as input (see Figure 1.1). These methods have

been used in a wide range of fields such as the film industry, for animating computer
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generated characters, or in biomechanical studies, for sports or medical analysis, to

accurately measure the motion of subjects. Still, the requirement of a special setup and

reflective markers greatly limits its applicability. For instance, in the study of athletic

performance the requirement to wear reflective markers could result in limitations or

changes in performance.

Recently, structured light cameras have enjoyed great success in particular due to

the advent of Microsoft’s Kinect low-cost sensor (see Figure 1.2). Kinect emits an

infra-red pattern on the scene and observes, with an infra-red camera, the distortions

of the pattern caused by the scene. Observation of the distortion allows the recovery

of a depth value for every pixel in the infra-red camera. This result can be combined

with a regular RGB camera to provide a full colour 3D reconstruction of the scene.

The disadvantages of this system are that it has a relatively low resolution, it provides

noisy output and was designed for small indoor environments, and is therefore unable

to cope with a more challenging setup where different illumination and sources of

infra-red light, such as ambient day light, would need to be taken into consideration.

However, its low cost makes it an attractive alternative to MoCap systems.

Figure 1.2: Left: RGB image. Right: Depth map corresponding to the RGB image on

the left acquired with Kinect.

Other systems are more closely related to the human visual system and rely on

a stereo pair of RGB cameras to infer the depth of the observed pixels [84]. These

systems acquire two images of a scene from slightly different view points, and trian-
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gulate the 3D coordinates of the observed pixels to recover their depth. The biggest

challenge is not so much in the estimation of the 3D position of a pair of pixels but in

establishing the pixel correspondence between the two observed images – the so called

stereo-matching problem.

While these systems with extra sensors have shown substantial success at coping

with the challenges of 3D reconstruction, one of their biggest disadvantages is that,

to this day, the most common setup for artificial vision, from television broadcast to

mobile phones, is a single camera. For this reason, one of the most active areas of

research in 3D reconstruction deals with the problem where the sequence of images is

acquired by a single camera i.e. a monocular video sequence. In this setup, the most

interesting case is when one knows neither the motion of the camera nor the scene

to be reconstructed. The family of methods which provide a data driven approach to

estimating both the camera motion and the 3D geometry of the scene is called Structure

from Motion (SfM).

1.1 Structure from Motion

The most common framework in SfM assumes a single moving camera viewing a

scene. The only input information are the 2D image coordinates of a set of points

observed in the images. The aim is to simultaneously recover the 3D coordinates of

the points while estimating the camera motion. Since recovering the 3D geometry

of a generic non-rigid scene from a monocular sequence is an ill-posed problem, for

many decades SfM approaches have focused on the more constrained problem when

the camera observes a rigid scene.

If the camera is calibrated, i.e. its internal parameters are known, the reconstruction

of a rigid scene is possible when two (or more) views of the scene are available [48].

When the camera is uncalibrated, its internal parameters must also be inferred based

on the image sequence. Although reconstruction in this case was shown to be possi-
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ble [60], and self-calibration methods have also been developed following the seminal

work of Faugeras [33], one of the most influential works in the rigid SfM field was

the factorization method of Tomasi and Kanade [93], which assumed an orthographic

camera model. This camera model is a good approximation of the projective operation

when the range of depths of the points to reconstruct is small when compared to their

distance to the camera. The projection equation simplifies greatly since it becomes lin-

ear and there is no requirement for internal calibration. From this seminal work other

factorization methods have followed, extending it to multiple independently moving

objects [23], rigid objects linked by an articulation [106, 98], and also to the perspec-

tive camera case [88].

Rigid reconstruction from image sequences is now a well understood problem with

several applications in industry. For instance, the commercial software Boujou [13] is

routinely used by film makers in Hollywood as once the camera position and 3D geom-

etry of the scene is known, it is possible to augment it with computer generated charac-

ters (see Figure 1.3). Other successful examples are large scale reconstruction projects,

such as Building Rome in a Day [4]. These methods typically aim at reconstructing

tourist landmarks such as the Coliseum in Rome or the Notre Dame cathedral in Paris,

by processing a large database of pictures available in community photo collections on

the internet (e.g. Flickr). Recent work in 3D reconstruction by Newcombe et al. [67]

has shown how it is possible to acquire very detailed 3D reconstructions from monoc-

ular video in real time.

1.1.1 Non-Rigid Structure from Motion

Intuitively, rigid motion reconstruction from multiple views is possible because with

every new image observed by the camera the knowledge of the underlying fixed 3D

structure increases. On the other hand when dealing with non-rigid motion the under-

lying 3D structure is different every time an image is acquired. This makes the problem
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Figure 1.3: Top row: (a) Unregularized result from Newcombe et al. [67]; (b) Reg-

ularized result from [67], (c) Input video sequence;(d,e) Texture mapped reconstruc-

tions with [67]; Figure from Newcombe et al. [67]. Middle row: examples of film

post-processing where computer generated objects are placed in the scene (right part

of the image) vs the original footage (left part of the image). Image copyright 2d3

Ltd. [13]. Bottom row: Examples of an input image (left) and large scale reconstruc-

tions achieved with [4]. Figure from Agarwal et al. [4]

equivalent to 3D reconstruction from a single image, which, without any other prior

information, is inherently ill-posed.

However objects do not change their shape randomly but instead deform according

to their material properties and the laws of physics, which imposes constraints on the

nature of their motion. This observation has been exploited to constrain the Non-Rigid

Structure from Motion (NRSfM) problem by adding prior information to make the

problem well posed.

The first successful approach to NRSfM was the seminal work by Bregler et al. [18].

In this work, the authors introduced a statistical prior by assuming the deformations of

a non-rigid shape could be described by a low-rank shape basis model. Their assump-
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tion was that non-rigid motion can be seen as small deviations from a mean shape,

and the shape in each instant as a linear combination of K 3D shape bases. The low-

rank shape basis model proved successful in the reconstruction of non-rigid sequences

that fit into these assumptions, in particular face reconstruction. This model was very

well received by the NRSfM community stemming several other works, which im-

proved on [18] by proposing new optimisation strategies or additional model con-

straints [1, 104, 25, 96, 69, 7]. Other statistical priors proposed were a Gaussian dis-

tribution on the deformation coefficients of the model [95] , or a coarse-to-fine prior

on the shape bases where each basis added should explain as much of the non-rigid

motion variance as possible [18, 96, 7].

Another family of priors commonly used in NRSfM are the physical priors. These

include temporal smoothness in the way the camera moves and the object deforms,

and spatial smoothness of the object’s surface [1, 26, 7, 96, 74, 34], inextensibility or

local isometry constraints [100, 90], or assuming a a mixture of rigidly and non-rigidly

moving points [26].

After a number of years when the low-rank shape basis model of Bregler et al. [18]

has dominated the literature, it has become apparent that it can only model small linear

deformations. Stronger linear or non-linear deformations would require a relatively

large number of bases, violating the key low-rank assumption and leading to overfit-

ting. Additionally the shape bases must be computed for every new sequence, and

the reconstruction results are highly sensitive to the choice of K, which is difficult to

estimate.

In response to these problems, other approaches have been recently proposed that

depart from the low-rank shape basis model and target more complex non-rigid defor-

mations [74, 6, 100, 90, 22, 36, 34]. A recent trend in NRSfM has been the emergence

of piecewise approaches [100, 90, 22, 34]. The idea behind these methods is that

in sequences where surfaces display very agile deformable motion with many strong

local deformations, such as a flag waving in the wind, their high complexity makes
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global modelling inherently ambiguous. This limitation applies to the rich body of

work based on the low-rank shape basis model, as the complexity of such non-rigid

motions would require a large number of shape bases which would rapidly lead to

overfitting.

Piecewise methods split the points to be reconstructed into regions, each of which

is modelled independently. Given a solution for each region, spatial consistency can

be enforced between regions by requiring them to overlap and forcing 3D consistency

between overlapping regions to create a continuous global surface. One exception

is [22] where regions do not overlap and consistency is instead applied by forcing the

regions to lie on a smooth surface. These methods differ mostly on the model chosen

for the local regions, which can be rigid, planar [100, 22], locally triangular [89] or

quadratic (see Chapters 4 to 6). However these methods suffer from a very important

drawback as they overlook the problem of providing a principled formulation for the

division of the surface into models. [100, 34] rely on a manual division of the surface,

while in [90] the division comes directly from the choice of model and is formed by

a Delaunay triangulation of the image correspondences. Only [22] provide a Markov

Random Field (MRF) formulation where features are clustered into planar patches.

Following this recent trend of piecewise NRSfM methods, in this thesis we provide

a unified principled formulation for this problem without assuming any division into

local models a priori. Our formulation simultaneously divides the object into overlap-

ping regions and reconstructs their 3D motion by minimizing the same geometric cost,

the image reprojection error, in a hill-climbing approach.

We propose our own model for local regions, the Quadratic Deformation model,

and provide experimental justification for our choice. While current NRSfM approaches

are based on sparse point clouds, we show how our approach can be made computa-

tionally efficient to be used for dense NRSfM by reconstructing at pixel scale.

Finally we show how our principled piecewise approach is suited for simultaneous

segmentation and 3D reconstruction of articulated motion. While with deformable sur-
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faces the chosen regions represent sequence dependent local motion with no semantic

meaning, in articulated motion the segmentation into links is important as it reveals

the underlying 3D skeleton of the articulated object, which can also be automatically

recovered.

1.2 Motivation

The single camera setup remains the most common and reliable form of acquiring im-

ages from a scene. In comparison with MoCap systems or the Kinect, a single camera

setup is more portable, widely available, and works on a passive principle, meaning it

is less invasive and has less influence on the scene we want to reconstruct. Addition-

ally, as cameras have the same working principle as human vision, they can be used

in any circumstances and environments that humans find themselves in. Furthermore,

systems based on alternative sensors have the additional drawback that they can only

deal with newly captured footage, and are unsuitable for the countless hours of archive

footage from television broadcasts and films which display a great variety of subjects

and scenes.

When examining the problem of rigid SfM, we realise that these methods have

reached maturity and are now widely used in industry, which is in contrast with NRSfM

methods. While rigid reconstruction can now be done in very large scale, or with great

detail and even in real time, most non-rigid reconstruction methods are still only able

to reconstruct a very sparse set of points, work mostly in batch approach and can

only handle relatively small deformations. We take the success of rigid SfM as our

motivation to bridge the gap between the rigid SfM and its non-rigid counterpart, as

there is certainly a wealth of potential applications that could benefit from recovering

the non-rigid shape from image sequences.
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1.3 Applications

As mentioned before, rigid SfM methods have found its way into industry, with the

most successful application being the inclusion of computer generated objects into

previously acquired footage. To make the result realistic it is essential to accurately

estimate the camera motion, otherwise the computer generated objects will not move

in accordance with the original footage, or will require extensive manual intervention.

Additionally, instead of building large and expensive sets it is now possible to build

relatively smaller sets that focus on the action, and fill in the remaining scene with

computer generated objects (see Figure 1.4).

Figure 1.4: Example of how a small set can be augmented using computer generated

objects. Image copyright HBO Entertainment and BlueBolt.

However, when it comes to non-rigid scenes such as the high detail deformations of

the human face, state of the art methods rely on more complex and expensive setups.

These setups can consist of: multiple synchronized cameras combined with special

make-up to add texture to the subject [3]; hybrid methods that combine MoCap with

synchronized cameras, resorting to active appearance models [54], or a previously

acquired high density scan [9] to account for details; and coloured light photometric

stereo [49].

The amount of research done in deformable surface reconstruction is a sign of the

demand for these methods. While all these systems can provide good qualitative results

(see Figure 1.5 top and middle) and have already been adopted by the film industry (see

Figure 1.6 bottom), they have the aforementioned limitations of methods that require
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Figure 1.5: Examples of dense face reconstruction methods. Top, from left to right:

Input image with the tracked dots an texture; coarser large-scale reconstruction; recon-

struction with added detail from the video model; realistic skin rendering; realistic skin

rendering with different expression. Images from Bickel et al. [9]. Bottom, from left

to right: dense maker placement for MoCap; motion transfer to animated characters.

Images from Kholgade et al. [54].

additional sensors and setups. NRSfM methods can thus increase the applicability of

such approaches by being less restrictive on the capture process, requiring only a single

camera, resulting in a low-cost and less time consuming solution to this problem.

Reconstructing human deformable and articulated motion in high detail has also

applications in the sports and health domains. In performance analysis or for the de-

tection of pathologies, accurate motion reconstruction is very critical, which is why

MoCap systems have been the main choice so far. As discussed before, MoCap sys-

tems require special setups and the need to attach reflective markers on the body of

the subjects, preventing the analysis of motion in a more natural environment [108].

Ideally, it would be preferable to be able to analyse athletic performance during compe-

tition to have access to more meaningful data. While this is not possible with a MoCap

system, it could be achieved if accurate deformable and articulated motion could be

recovered from video footage of sports events.
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Figure 1.6: Top: Make-up based motion capture where appearance model is learned.

Middle: Stereo setup to record actor’s performance. Bottom, from left to write: Body

actor; Motion transfer to computer generated head; Final result with rendered detail.

Image copyright Digital Domain

In addition, these 3D reconstruction techniques have also recently been applied

to enhance visualisation in medical keyhole surgery. During these interventions, it is

often helpful to be able to perform a 3D mapping of the target area. Since our body

is made of soft tissues that undergo strong deformations, it is then crucial that these

methods can recover the 3D geometry of deformable objects (see Figure 1.7).

1.4 Contributions

The aim of this work is to bridge the gap between rigid and non-rigid SfM. Typically

NRSfM focuses on deformations that can be explained by the low-rank shape basis

model, which means they must be small deviations from a mean shape. Additionally,

this model is usually sensitive to the number of shape basis used, typically relying on
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Figure 1.7: Reconstruction of an uterus from images acquired during a medical inter-

vention. Left: Feature tracks over the sequence. Centre: Rigid reconstruction of the

object. Right: Surface parametrization (top) and example of a non-rigid deformation

the uterus can undergo (bottom).Figure from Bartoli et al. [8]

the user to specify it. In line with a recent trend in NRSfM [100, 90, 34, 22], we ar-

gue that non-rigid motion is best modelled locally. In contrast with other piecewise

approaches, we formulate our piecewise NRSfM problem as a labelling problem, pro-

viding a principled formulation for the simultaneous 3D reconstruction and division

into patches. We now summarise our contributions to the NRSfM problem:

• In Chapter 3 we introduce the Quadratic Deformation (QD) model, a physically

grounded deformation model, into the NRSfM formulation. We show how this

allows the 3D reconstruction of non-linear deformations viewed by an ortho-

graphic camera. Unlike the low-rank shape basis model, the QD model is of

fixed rank, and so there is no need for the user to specify any parameters. We

formulate the NRSfM problem using a non-linear optimisation scheme to mini-

mize image reprojection error and recover the 3D geometry of the object [36].

• In Chapter 4 we argue that local modelling of non-rigid motion leads to more

accurate reconstructions than global modelling in sequences with strong defor-

mations and agile motions. We propose a piecewise NRSfM formulation which

divides the surface into overlapping patches, reconstructs each of them individu-

ally, and finally merges all the patches imposing the constraint that points shared
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by patches must correspond to the same 3D points in space. Our method is

generic in the sense that it does not rely on any specific reconstruction method

for the individual patches. While any SfM method could be used to reconstruct

those patches, we support our choice of the QD model with experiments. We

show how the independent patches can be stitched back together and propose a

final optimisation step to refine the surface reconstruction jointly [34].

• In Chapter 5 we propose an energy-based geometric multiple model fitting for-

mulation to the piecewise NRSfM problem as a principled method to divide the

object into regions fit for local modelling. Inspired by recent advances in multi-

ple model fitting [53], we formulate the NRSfM problem as a labelling problem

where both the labels (model parameters) and their assignment to data points are

computed simultaneously. A fundamental requirement of our piecewise recon-

struction is the need for overlap between models to enforce global consistency,

and to encourage smooth transitions between models. We capture this in our

formulation by changing the classical labelling paradigm and allowing feature

points lying in the boundary between models to have more than one label or,

equivalently, to belong to more than one model [77].

• In Chapter 6 we show how our multiple model fitting approach can be extended

to template-free dense reconstruction by providing asymptotic improvements to

current optimisation approaches, allowing our method to scale to the dense case.

We tackle the limitations of computing a rest shape based on available rigid

motion, making the method applicable in more general sequences and increasing

its robustness [78].

• In Chapter 7 we show how our energy-based geometric multiple model fitting

with overlapping models can also be used to perform simultaneous segmentation

and 3D reconstruction of articulated motion. By treating an articulated object as

a set of rigid links, we show how fitting rigid models to the data provides a
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segmentation of the object where the overlapping regions naturally become the

articulations, allowing to automatically recover a 3D skeleton of the articulated

object [37].
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Chapter 2

Literature Review

As discussed in Chapter 1, recovering the 3D geometry of an observed scene is a key

problem in computer vision. When considering a generic scene which can be com-

posed of multiple objects with a wide range of motion complexities, recovering the 3D

geometry from images without any additional assumptions is an inherently ill-posed

problem, as there are many 3D geometries that can give origin to the same images.

To tackle these limitations, some methods propose the use of alternative sensors (i.e.

not regular RGB cameras) such as MoCap systems or range cameras like Microsoft’s

Kinect (see Chapter 1).

Still, there are other families of methods using different constraints to recover the

3D geometry of a scene. One of such approaches is, for instance, the family of methods

known as photometric stereo [103]. These methods recover surface normals of an

object by establishing a relationship between the light reflected by the object and the

surface normal. By acquiring a set of (at least 3) images from a given viewpoint while

changing the lighting conditions, these methods are able to recover the 3D geometry of

static scenes, as the geometry must be constant while the lighting changes. However it

can be modified for the non-rigid motion case by illuminating a non-rigid object with

three light sources of different colour (usually red, green and blue) which shine from

different positions simultaneously [49]. Other methods such as shape from shading
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Figure 2.1: (a) Orthographic projection assumes rays from the object are parallel to

the image plane I. (b) Perspective projection considers the rays from the object to

converge at the camera centre C. While cameras are mostly perspective, orthographic

projection is a good approximation when the relative depths of the object are small

compared to the distance to the camera.

explore a similar relationship between the reflected light and the surface normal of

objects when when the position and intensity of the light source is known [51].

However, the focus of this thesis is on the 3D reconstruction of non-rigid motion

when viewed by a single moving camera – a problem known as Non-Rigid Structure

from Motion (NRSfM).

2.1 Factorization for Rigid SfM

Before we go into the non-rigid reconstruction literature, we will describe the seminal

work of Tomasi and Kanade [93] as its framework is common to many NRSfM meth-

ods, including the low-rank shape basis model of Bregler et al. [18] and the QD model

we will present in Chapter 3. In the Tomasi and Kanade [93] framework a group of

P points belonging to a rigid object is observed over F images by an orthographic

camera (see Figure 2.1).
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In the orthographic camera case, the projection matrix is defined as:

Π =







1 0 0

0 1 0






, (2.1)

which essentially truncates the contribution to the projection operation played by the

third coordinate of the 3D point. A rigid object composed of P feature points is repre-

sented by a 3× P matrix

Sr =













X1 X2 . . . XP

Y1 Y2 . . . YP

Z1 Z2 . . . ZP













, (2.2)

where the 3D coordinates of the points in a given local referential are stacked column-

wise. Rigid body motion is described by a rotation and translation. Thus the ortho-

graphic projection of a 3D point can be described, at every image i, by

Wi = ΠRiSr + Ti, (2.3)

where Ri describes the 3 × 3 relative rotation (i.e. RiR
T
i = RTi Ri = I3×3) between

the rigid object and the camera, and where Ti is a 2 × P matrix where every column

is equal to ti. Each vector ti can be computed as the centroid of the point cloud Wi

and thus can be easily eliminated by subtracting the coordinates of the centroid of the

point cloud. Therefore, instead of considering Wi, a registered form of this matrix is

used:W̃i = Wi − Ti. Stacking these equations over all i frames results in:

W̃ =



















W̃1

W̃2

...

W̃F



















=



















ΠR1

ΠR2

...

ΠRF



















[

s1 s2 · · · sP

]

= MS, (2.4)
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From Equation 2.4 one can see that if F ≫ 3 and P ≫ 3, which is true for interesting

sequences, then rank(W̃) ≤ 3 (and rank(W) ≤ 4). These rank properties constitute

the basis of the rigid factorization algorithm [93]. Applying the rank constraint, the

rank−3 truncated SVD decomposition of W̃ to factorize it into a product of two terms:

W̃ ≈ U3 Σ3 V
T
3 = U3 Σ

1/2
3 Σ

1/2
3 V

T
3 = M̂ Ŝ, (2.5)

where U3 is a 3F × 3 matrix, V3 a P × 3 matrix and Σ3 is a 3 × 3 diagonal matrix,

all resulting from the truncated SVD decomposition of W̃. The matrices M̂ and Ŝ are

the affine versions of M and S, i.e. they do not preserve the angles and lengths of the

original 3D object, as there is an inherent ambiguity in this factorization:

M̂ Ŝ = M̂ H H
−1

Ŝ = M S, (2.6)

where H is any 3× 3 invertible matrix. Equation 2.4 shows that the desired solution for

the motion matrix M has a very specific structure, which preserves the metric properties.

The ambiguity is then resolved by finding the transformation H that will bring M̂ into

its correct structure – a step commonly referred to as the metric upgrade. This can be

done by enforcing the following metric constraints for every frame i:

m̂
T
ik HH

T m̂ik = 1, (2.7)

m̂
T
ik HH

T m̂il = 0, l 6= k, (2.8)

where m̂ik and m̂il are respectively the k-th and l-th row of matrix M̂i (k, l = 1, 2).

30



2.2 Non-Rigid Structure from Motion and the Low-Rank

Shape Basis Model

Consider a similar framework to that of Tomasi and Kanade [93], where P points

are tracked along F images, captured by an orthographic camera. However, we now

consider a non-rigid shape that varies from frame to frame, i.e. in the non-rigid motion

case one cannot think about a single 3D configuration of the object as this configuration

is, in general, different for every frame i.

Based on Equation 2.3, we can then write the image coordinates of a non-rigid

motion under orthography as

Wi = ΠRiSi + ti. (2.9)

Equation 2.9 shows that in general we must recover both the time-evolving 3D shape

and the relative camera motion matrices per frame. Therefore, for each frame i, we

would have to estimate 3P shape coordinates, 4 independent parameters for the ro-

tation matrix and 2 parameters for the translation, given only 2P equations. In other

words, this problem is equivalent to reconstructing the 3D geometry from a single 2D

image.

Without any other constraints, this problem is ill-posed. However, objects do not

deform randomly and in fact their motions are constrained by the laws of physics.

This implies that the motion of points on a non-rigid surface is bound to be correlated

and not completely independent. Such dependencies can then be explored in order to

include more constraints into the problem and make it well-posed.

The first successful approach to non-rigid structure from motion was the factoriza-

tion approach of Bregler et al. [18]. This method constrained the NRSfM problem by

postulating that the 3D configurations of a non-rigid object can be described as a linear

combination of K shape bases. This method is commonly referred to as the low-rank

shape basis model.
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2.2.1 Low-Rank Shape Basis Model

In the low-rank shape basis model of Bregler et al. [18] the 3D configuration of a

non-rigid object at each frame i can be represented by the linear combination

Si =
K
∑

d=1

aid Bd, (2.10)

where Bd is the 3 × P shape basis matrix, and aid is a scalar deformation weight for

base d at frame i. Stacking these equations over all frames eventually leads to the

trilinear product

W̃ =
















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B1

...

BK













= M̌ A B = D B,

(2.11)

where W̃ is a 2F × P matrix containing the stack of registered 2D coordinates, M̌ is

a diagonal arrangement of the stack of orthographic projection matrices in M, A is a

2F ×3K matrix which contains the deformation weights aij , and B is a 3K×P matrix

containing a stack of the K shape bases. Instead of the rank − 3 system of the rigid

motion case, this formulation results in a rank − 3K system. Unlike the rigid case,

the value of K is not known a priori as it depends on the degree of non-rigidity of the

motion.

AssumeK is known. In analogy with the rigid factorization of Tomasi and Kanade [93],

the parameters of this model are first estimated by performing a rank − 3K truncated

SVD on the data matrix:

W̃ ≈ U3K Σ
1/2
3K Σ

1/2
3K V

T
3K = D̂ B̂. (2.12)
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As in the rigid factorization case (see Equation 2.6), there is also an ambiguity for

every 3K × 3K invertible matrix G such that

W = DB = D̂GG
−1
B̂. (2.13)

Defining D̂i = [ai1M̂i . . . aiK M̂i] as the affine version of Di where i represents the the

frame index, and M̂i is the affine version of Mi. If D̂i is rearranged into

D̄i =



















ai1r̂i1 ai1r̂i2 . . . ai1r̂i6
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...
. . .

...
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


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(2.14)

one can see that the K×6 matrix D̄i is rank−1, and so the deformation coefficients Ai

and the affine matrices M̂i can be recovered by a performing a rank− 1 truncated SVD

on every sub-matrix D̄i. Finally, the metric upgrade step is performed as in the rigid

case by estimating a single 3×3 matrix H. Once the transformation H is recovered, it is

applied to every basis k as Bk = H−1B̂k, effectively making G a block diagonal matrix

(see reconstruction results in Figure 2.2).

The low-rank linear shape model proposed by Bregler et al. was quickly adopted

by the NRSfM community as it provided a useful formulation to describe non-rigid

motion. However its formulation as a succession of truncated SVD’s means that in the

presence of noise there will be consistent loss of information, which in turn will limit

the methods applicability to the case of small deformations. In addition, their met-

ric upgrade step is only an approximation, as in general G will not be block diagonal.

Finally, it also requires full tracks for all the P points. Nonetheless this representa-

tion of non-rigid motion was well accepted by the community and led to alternative

approaches that tackled its disadvantages. We will classify these approaches accord-

ing to their optimisation strategy into closed-form methods, alternation methods and
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Figure 2.2: Results of a face reconstruction form Bregler et al. [18]. Figure from

Bregler et al. [18].

non-linear least-squares methods.

Closed-form methods

With the success of the non-rigid factorization algorithm of Bregler et al. [18], other

approaches emerged that proposed closed-form solutions to the factorization problem.

These approaches mainly focus on how to estimate the 3K×3K metric upgrade matrix

G explicitly (see Equation 2.13).

Xiao et al. [104] studied the properties of G and the metric constraints and argued

that the orthonormality constraints were insufficient in the case of non-rigid factoriza-

tion as the solution to this equation was ambiguous, containing valid an invalid sets of

basis. To ensure the selection of a valid set of basis, Xiao et al. [104] observed that,

under the low-rank shape basis assumption, the set of possible deformable shapes lie

in a K-bases linear space. Therefore, any K independent bases from that space form

a valid bases set. They thus propose to determine the K basis from the data, requiring
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Figure 2.3: Results form Xiao et al. [104] on three independently moving objects.

(a,d) Two images of the scene. (c,d) Reconstructions from Xiao et al. [104]. (e,f)

Reconstructions from Brand [16]. Figure from Xiao et al. [104].

that each one of the K basis is independently observed in at least one image. The

independent shapes are detected by finding the 2K × P sub-matrix of W̃ which results

in the lowest condition number.

[104] showed exact results in synthetic data when their basis constraints could be

applied. However this method turned out to be very sensitive to the choice of the K

basis set. Additionally, it assumes close to perfect tracking, being its performance

severely affected by noise, and it being unable to handle outliers or missing tracks.

In an attempt to solve the problems with the basis constraint and the sensitivity to

noise, Brand [17] later proposed a different closed-form solution to the NRSfM prob-

lem. In [17], the metric upgrade is computed by estimating GGT via a formulation that

minimizes the deviation of the current motion matrices from orthogonality. This re-

sults in an exact solution for noiseless data, although no such guarantee can be given

for noisy conditions. Brand’s method [17] showed better performance than [104] with-

out the reliance on basis constraints. This was the first work to hint that orthonormality
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constraints were in fact sufficient to impose the metric upgrade. However it still relies

on close to perfect tracks.

It was not until 2009 that Akther et al. [5] in their work “In defence of orthonormal-

ity constraints for non-rigid structure from motion” showed that Xiao et al.’s formula-

tion was incomplete as it failed to impose rank − 3 constraint on the metric upgrade

matrix. The addition of this new result to the orthonormality constraints was shown to

be sufficient to remove the ambiguity in the reconstructed 3D shape . However these

constraints are non-linear and very difficult to optimise, which prevented the authors

from proposing a closed-form solution. Instead they rely on non-linear optimisation

schemes (see Section 2.2.1).

In the case where perspective effects cannot be ignored, Hartley and Vidal [46]

proposed a closed-form linear solution. This algorithm requires the initial estimation of

a multifocal tensor, for which a linear method exists [47]. The tensor is then factorized

into the projection matrices and then simple linear algebraic techniques are used to

enforce constraints on the projection matrices and estimate explicitly the corrective

transformation. Although the entire approach is linear, the authors report that the initial

tensor estimation and factorization is very sensitive to noise.

Closed-form solutions have the advantage of providing exact solutions to the NRSfM

problem in the noiseless case and having, in general, a low computational cost. How-

ever these approaches tend to be very sensitive to noise. Other important limitations

include the need for full tracks and the sensitivity to outliers. While these limitations

can make them unappealing for real world applications, closed-form approaches are

in general a good initialisation for other optimisation schemes and robust formulations

(see Section 2.2.1).
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Alternation methods

Alternation approaches solve the trilinear system of the low-rank shape basis model

by estimating one of the factors (the camera motion matrices M, the linear deformation

coefficients A or the shape bases B), while keeping the remaining two factors fixed. An

alternation of the factor to estimate is performed until convergence.

The first of these approaches was proposed by Torresani et al. [97] who initialized

the camera matrices M using the rigid factorization algorithm of Tomasi and Kanade [93].

The deformation coefficients in A were initialized to small random values, and thus B

could be estimated by least-squares. While A and B are estimated in closed-form, that

was not done for M due to the non-linear constraints of orthonormality. Instead, the

camera matrices were parametrized with exponential map coordinates, and their up-

date computed with a single Gauss-Newton step.

While [97] improved on previous approaches by explicitly imposing the metric

constraints with the exponential map parametrisation of rotation matrices, their camera

update step requires good initial estimates as it is only able to perform small changes to

the initial value. Since the rotation matrices are initialized using the rigid factorisation

method of Tomasi and Kanade [93], there is a strong assumption that the rigid motion

of the object will be dominant as to provide a good estimate of those matrices.

Building on [97], Torresani et al. [96] proposed an approach where the low-rank

basis shape model was replaced by a probabilistic PCA (PPCA) model, assuming a

Gaussian distribution on the deformation weights. This Gaussian prior is an implicit

assumption that the deformation weights will not vary much from the mean, resulting

in small variations from the mean rigid shape. This formulation is solved using an

EM algorithm, where the deformation weights become latent variables and are not

explicitly solved for, resulting in less parameters to optimise.

The PPCA algorithm was also augmented with a Linear Dynamics model of the

shape, where a temporal smoothness prior is added by parametrizing the Z coordinates
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Figure 2.4: Results from Paladini et al. [69]. Left: Reconstruction of a MoCap se-

quence. Green squares show the ground truth positions while the blue crosses show

the reconstruction results. Right: Reconstruction of a real sequence. Image from Pala-

dini et al. [69].

of the points at frame i as a linear function of the coordinates at frame i−1. Since these

methods had state of the art performance and resilience to missing tracks, after the

authors released its source code it quickly became a benchmark for NRSfM. However,

as [97], their method relies on the assumption of a strong rigid component as they

model explicitly for a rigid mean shape.

Paladini et al. [69] proposed an alternation approach where the focus was in effec-

tively recovering the metric structure of the motion matrix M (see Figure 2.4 for results).

The authors showed that given an estimate for D and B (see Equation 2.12) solving for

the camera matrices M with the orthonormality constraints is a non-convex problem. A

tight relaxation of this problem was proposed that results in a semi-definite program

(SDP) which is solved using SeDuMi [87]. Refinements of the estimates are computed

by alternation, with the additional metric upgrade step where the camera matrices are

projected onto the (Stiefel) manifold of orthonormal matrices. Del Bue et al. [27]

later generalized [69] to any bilinear factorization approach under special manifold

constraints.

Alternation methods provided important contributions to the NRSfM scene as they

improved upon closed-form solutions. These algorithms provided the ability to han-

dle missing data and higher resilience to noise on the tracks. Additionally, these ap-

proaches maintain the goal of computing the metric upgrade matrix G explicitly, which

38



the closed-form methods showed to improve the quality of the reconstructions. While

some of the alternation steps can be solved linear, solving for orthonormal camera ma-

trices rely on approximations that result in loss of accuracy and higher convergence

time. In fact, the possibility of low convergence rate due to inadequate initialization or

ambiguities in the motion are one of the major drawbacks of these solutions.

Non-linear least-squares methods

The non-linear optimisation approaches to NRSfM aim at simultaneously recovering

all the parameters of the trilinear problem (M, A, B) in a single optimisation. In this

framework, the NRSfM problem is formulated as the minimization of a geometric

cost, the re-projection error, which measures the sum of squared differences between

the measured image coordinates and the re-projection of the estimated 3D points onto

the image
F
∑

i=1

P
∑

j=1

‖w̃ij − ΠRi

K
∑

d=1

aid bdj‖
2. (2.15)

The number of parameters to estimate in this formulation increases significantly as

the sequences are longer and more points are tracked. This would make the reconstruc-

tion of interesting sequences impractical. However, most of these parameters do not

interact with each other, as the motion parameters are image dependent. This results in

a sparsity of the system, which is exploited by the Bundle Adjustment [99] non-linear

optimisation algorithm to efficiently solve the problem of simultaneous motion and

shape parameter estimation.

Unlike analytical solutions, Bundle Adjustment [99] cannot guarantee convergence

to the global minimum of the cost-function. However, it can be efficiently used to

refine approximate solutions that have been estimated analytically, as these provide

a good initialisation for the non-linear optimisation method. The greatest advantage

of formulating the NRSfM in this way is that prior information on the problem can

be easily integrated into the optimisation by including additional terms into the cost-
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Figure 2.5: Reconstruction results from Bartoli et al. [7]. Left: reconstruction of a pa-

per deforming sequence, with the re-projection of the reconstruction (top), 3D recon-

struction (middle) and augmented reality example (bottom). Left: Augmented reality

example by reprojecting a virtual object. Image from Bartoli et al. [7].

function. These costs need not be linear, and, although they increase the complexity of

the system, in general the overall problem remains sparse and can be efficiently solved.

The first of these approaches was proposed by Aanæs and Khal [1], where they

argued that temporal smoothness priors could be easily added to a Bundle Adjust-

ment [99] formulation to regularise the reconstruction ambiguities of the NRSfM prob-

lem. Del Bue et al. [25], when focusing on face motion reconstruction, introduced a

rigidity prior on the points lying on the head and nose, which was used to better dis-

ambiguate the rigid motion parameter estimation.

Bartoli et al. [7] proposed a different paradigm in the optimisation of the low-rank

shape basis problem. Instead of simultaneously optimising for the parameters of the

K shape basis, the authors proposed this optimisation to be done in a coarse-to-fine

approach. In their formulation, shape basis are added and optimised incrementally so

that every new basis explains as much as possible of the variance of the data that was

not explained by previous basis. In addition, temporal and spatial smoothness terms

were also added to the cost-function.
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2.2.2 Alternative models for non-rigid structure from motion

Even though the low-rank shape basis model has been widely accepted and several

other extensions and optimisation strategies for the problem have been proposed, to this

day there is no generic solution to the NRSfM problem. As several authors argue [74,

45], this model is very sensitive to the choice of K. While an underestimation of

K would result in poor reconstruction, since not enough deformation modes would be

available, an overestimation ofK would lead to overfitting, with the extra modes fitting

to noise in the data. Additionally there is no clear way to determine the ideal value of

K, which in turn is sequence dependent and cannot be fixed a priori. Torresani et al.

also argue that these problems will be more relevant as the rank of the data increases,

as by allowing more deformation modes there will be ambiguity and more ways in

which the model can overfit. Thus, this model has been successfully applied mostly in

non-rigid motions that require a relatively small value forK (typically 3 to 5), such as a

sparse reconstruction of a human face, but cannot provide satisfactory reconstructions

of motions with higher degrees of deformation [34].

After a long period where the low-rank shape basis model dominated the literature,

recently other models have been proposed for NRSfM in order to tackle its limitations.

In this section we will describe these different approaches and analyse their properties.

Low-rank trajectory basis

In the low-rank shape basis model of Bregler et al. [18] the low-rank constraint is

applied to the set of 3D coordinates of the points which compose a non-rigid object to

constrain and relate their positions in space. What Akhter et al. [6] proposed was that

the low-rank constraint could be applied not to the spatial configuration of the object,

but instead to the temporal evolution of its 3D points (i.e. its trajectories). While in

Bregler et al.’s formulation [18] at each instant in time the 3D position of every point

is described as a linear combination of a shape basis, in Akther et al.’s approach [6],
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for each point its 3D position at each instant is a linear combination of trajectory basis,

which spans the F images of the observed sequence. Formally, the data matrix is now

modelled as

W̃i = Ri

(

K
∑

d=1

aidΘd

)

. (2.16)

This model is just a dual representation of the data that does not provide any further

insight into solving the problem. However, the great advantage of this method is that

there are already successful basis representations for temporal signals (i.e. trajectories).

If the basis is known, not only does the trilinear problem reduce to a bilinear one, but

the need to recompute the basis for every different sequence disappears. In their work,

Akther et al. [6] have used the Discrete Cosine Transform (DCT) as the basis repre-

sentation for each coordinate of the point trajectories. This choice of basis makes an

implicit assumption of temporally smooth point trajectories, as the bases are ordered

by increasing magnitude in the frequency domain. This approach does not remove the

need to specify K, which in this case controls which frequencies of the DCT basis are

used. Empirically, in most observed signals, the importance of the DCT components

decrease as their frequency increases. However this is not necessarily true when mod-

elling the trajectories of highly deformable points where the choice of a low value for

K would result in oversmoothing, while overshooting K will, as is the low-rank basis

shape cases, lead to overfitting.

Park et al. [70] studied the reconstruction ambiguities of this model and showed

that there are less ambiguities when the camera motion does not lie in the same sub-

space of the object motion. Given these properties, they showed how the 3D recon-

struction would improve if, for instance, the input images where taken from different

cameras in a variety of locations, and then those images were ordered temporally by

using the timestamp provided by the cameras. This would effectively be equivalent to

a single camera with a very erratic motion satisfying their assumption regarding the

object motion.
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Figure 2.6: Example of the duality of the trajectory and shape basis. Left: the repre-

sentation of each shape as a point in the shape basis space. Right: the representation of

the trajectory of each point over the whole sequence as a point in the trajectory basis

space. Figure courtesy of Sohaib Khan and Yaser Sheikh.

Besides removing the need to compute the basis, [6, 70] have the advantage of

modelling each point independently, which in practice allows these methods to handle

a wider range of motions, such as the motions of human articulated sequence, without

violating the low-rank assumption. However, the aforementioned implicit smoothness

assumption in the choice of DCT basis limits the reconstructions of this method.

Returning to the low-rank shape basis model, Gotardo and Martinez [44] applied

the compact DCT representation to the time evolving shape basis coefficients in Ai (see

Equation 2.16). This combined formulation is very compact, and results in smoothly

varying shape basis coefficients which implicitly imposes temporal smoothness on the

3D point trajectories. This formulation also decouples the number of shape basis K

to use from the number of DCT basis, allowing for high frequency deformation to be

represented without violating the low-rank data assumption. This formulation resulted

in a method that outperformed both low-rank basis shape approaches [96, 69] and the

trajectory basis approach of [6] (see Figure 2.7).
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Figure 2.7: Results of several SfM methods in a human motion sequence of a subject

dancing. Blue circles represent ground truth data and black dots represent the 3D

reconstruction results. Top: Results from Paladini et al. [69]. Middle: Results from

Akhther et al. [6]. Bottom: Results from Gotardo and Martinez [44]. Image from

Gotardo and Martinez [44]

Manifold Learning

Rabaud and Belongie [74] also noted that the linear combination of shape basis model

severely constrains the possible deformations of the object since they need to lie on

a linear subspace of 3D shapes (see Figure 2.8). The authors proposed to relax this

constraint and only represent small neighbourhoods of shapes by a linear subspace,

with the overall set of possible 3D shapes lying in a smooth low-dimensional manifold

of local linear subspaces.

As an initialization, [74] first cluster images that represent similar shapes that can

be well described by a single rigid shape. The non-rigid sequences are represented by

a temporal succession of rigid shapes denoted as Rigid Shape Chain. An optimisation

method follows where the motion and shape parameters are estimated while imposing

temporal smoothness, and also constraining the 3D shapes to lie on a smooth mani-

fold with dimension K. The manifold is estimated using Locally Smooth Manifold

Learning (LSML) [31], although K must be provided.

Zhu et al. [109] propose a similar approach where the set of F images are first
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Figure 2.8: Left: Representation of the linear subspace assumed by the low-rank shape

basis. Right: Manifold interpretation of Rabaud and Belongie [74]. Figure from

Rabaud and Belongie [74].

divided into Q overlapping clusters. Each of these clusters must be ǫ-consistent, i.e.

the rigid SfM reconstruction for that set of images must result in re-projection error

lower than ǫ. In order to lower the computational complexity of forming these clusters,

the authors propose a graph traverse method where, starting from initial seeds of ǫ-

consistent clusters, images are replaced one by one until all images are part of at least

one cluster. Given the multiple possible 3D shape representations that this overlapping

set of clusters might propose for a single image, the shapes are clustered using the

K-means algorithm into K clusters (with K chosen by the user). Finally [109] uses

these K shapes as the shape basis from Bregler et al. [18], and perform a non-linear

least-squares optimisation to refine the model parameters by minimizing re-projection

error (see Section 2.2.1).

Gotardo and Martinez [45] argued that the low-rank shape basis model failed to

handle non-linear deformations as this would require a high number for K, which in

turn violated the low-rank assumption. To solve this problem, they proposed to ap-

ply a kernel trick, a common method for non-linear dimensionality reduction, to the

NRSfM factorization problem. The 3D configurations of the non-rigid body are then

represented as points on a non-liner manifold of dimensions h. The authors claim
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that empirically h is usually very small, with a maximum value of 2 in their exper-

iments. Similar to their other work [44], they further compact their representation

by constraining the 3D configurations to lie on a smooth trajectory on the non-linear

manifold, which is modelled by a linear combination of DCT basis.

Rank reduction via trace-norm minimization

Dai et al. [24] proposed to carry out a theoretical analysis of the factorization ap-

proaches for NRSfM based on the low-rank basis shape model as they felt the addition

of different priors (shape and trajectory bases, temporal and spatial smoothness, in-

extensibility, etc.) added to solve the NRSfM problem proposed in the literature had

prevented a clear understanding of the problem. The main goal of their work was to

provide a prior free factorization approach for NRSfM. Using the theoretical insight

of Akther et al. [5] who proved that metric constraints are sufficient to disambiguate

the camera motion from the deformable motion of the object, they focused on defining

the properties of the metric upgrade matrix. Starting from the non-rigid factorization

approach with a given value for K, and defining E = GGT and Ek as the k-th column

triple of E, the authors showed that Ek could be found as the solution of the metric

upgrade constraints (see Equations 2.7 and 2.8), provided it was positive semi-definite

and had rank − 3. Due to the numerical instability of the rank function [24], the

rank − 3 constraint was replaced by a rank minimization problem (relaxing it to a

trace-norm minimization problem) which can be solved by standard semi-definite pro-

gramming tools (SDP). After computing Ek, the metric upgrade can be performed and

the rotation matrices recovered.

The authors’ main insight is that they then go on to estimate S as the stack of 3F×P

matrices containing the F 3D configurations of the object corresponding to image i (Si)

instead of its explicit decomposition into bases and deformation coefficients. Relying

on the assumption that rank(S) ≤ 3K and given their estimate of M, S is recovered by
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solving W̃ = MS subject to a rank minimization (relaxed as trace-norm minimization) of

S. The authors turn to a result from the compressed sensing community which proves

that this minimization can be achieved via the the Moore-Penrose pseudo-inverse of M,

such that S = MT (MMT )−1 W̃.

As an additional result, Dai et al. [24] showed that if S is reshaped into an F × 3P

matrix S♯, the rank of this new shape matrix is now at mostK. This fact is used in a new

rank minimization problem which will further constrain the shape matrix. However the

size of this SDP problem now depends on P and F , which for large numbers can make

the computational cost prohibitive.

Although the authors claim their method to be prior free, in fact they rely on

the same idea of Bregler et al. [18] that non-rigid objects can be globally explained

by low-rank matrices. In their experiments, Dai et al. [24] have mostly compared

against methods which rely on similar principles [104, 96, 6, 69] and have not ex-

plored how their method copes with stronger local deformations. Even though [24]

outperforms [104, 96, 6, 69], their approach is limited to the cases were the low-rank

assumption is known to provide good 3D reconstructions.

2.2.3 Piecewise Approaches

One of the limitations of the low-rank shape basis model is the breakdown in perfor-

mance when the degree of deformations is increased. To cope with stronger deforma-

tions the rank of the basis must be increased, which can quickly lead to overfitting.

To tackle these limitations, a recent trend in computer vision has been the proposal of

methods that rely on modelling the motion of local regions of points lying on a rigid

object, reconstructing them, and later merging these reconstructions into the global

non-rigid motion. The intuition of these methods is that local motion is more con-

strained than global motion, and can be in fact quite similar between objects even if

the complexity of the global motion is entirely different. We will now describe the
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Figure 2.9: Results of Varol et al. [100], showing the mesh that is fit to the 3D point

cloud and its re-projection on the original images. Image from Varol et al. [100].

different piecewise approaches that have been proposed by the computer vision com-

munity.

Two-frame piecewise planar reconstruction: The first piecewise approach to NRSfM

was proposed by Varol et al. [100] where a piecewise planar model was adopted to de-

scribe non-rigid motion. The regions were chosen by regular division of the surface

into overlapping patches. The approach is valid for a pair of images observed by a

calibrated perspective camera. [100] fit a homography to point correspondences in cor-

responding patches in two images. Since the patches are reconstructed independently

there is a need to merge these reconstructions into a single global surface. Points

belonging to multiple planes are used to resolve the reconstruction ambiguities and

to ‘stitch’ the patches together. As [100] works in the calibrated perspective camera

scenario, imposing 3D consistency is equivalent to solving the depth-scale ambiguity

between the independently reconstructed patches.

Varol et al. [100] note that in the presence of a sequence of images it is useful to

have a consistent representation of the object along the sequence. This is done by fitting

a mesh to the 3D point cloud at every frame. The mesh regularises the reconstruction

by performing spatial smoothness. Temporal smoothness is added by formulating their

optimisation approach over all the frames (see Figure 2.9).
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[100] showed how local planar modelling can lead to plausible reconstructions of

more complex global motions. It has the advantage of only requiring point correspon-

dences between two frames, although it provides smoother results if temporal consis-

tency is added. On the downside, this is done in a post-processing step where a mesh

is added to the set of two-frame reconstructed point clouds, which still results in some

flickering. Additionally, the planar regions are chosen manually, raising the question

of which division is best. While the simplicity of the planar model is an advantage, re-

sults shown in Figure 2.9 hint that it might be too simple, as the reconstructed surface

is visibly piecewise planar.

‘Soup’ of rigid triangles: Taylor et al. [90] formulated their reconstruction method

around the same idea that even complex non-rigid motion could be locally modelled as

rigid planes. In their attempt to model very local motion, Taylor et al. [90] restricted

their local models to sets of rigidly moving triangles. In terms of choice of local

model, this method can be seen as the limiting case of the piecewise planar approach

of Varol et al. [100], where planes are minimally defined by three non-collinear points.

However, [90] does not focus on the two-frame reconstruction problem, and works in-

stead on the framework of P points tracked along F images viewed by an orthographic

camera. Their reconstruction results in a set of independently reconstructed triangles

with overlapping edges with neighbouring triangles, which the authors named a trian-

gle soup. Later these triangles must be merged into the global 3D reconstruction of

one or multiple deforming objects.

One of the contributions of [90] was to formulate the reconstruction problem as the

recovery of the length of the edges of the triangles instead of directly solving for the 3D

positions of its vertices, in what the authors named the Projected Length Equation. The

advantage of this formulation is that this set of equations can be solved linearly. How-

ever, to overcome noise in the measurements, the edge lengths and vertex positions

are used as the initialization of a non-linear least-squares formulation that minimizes
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Figure 2.10: Results from Taylor et al. [90] showing a top view of their reconstruction.

Image from Taylor et al. [90]

re-projection error over all the images while refining the reconstructions.

To conform with the locality constraint, the set of triangles to reconstruct is estab-

lished by 2D Delaunay Triangulation over all F images in the sequence. To further

refine the reconstruction, a rigidity test on the triangles is performed, with triangles

for which the re-projection error exceeds a certain threshold being discarded. How-

ever a re-projection error threshold does not eliminate triangles that overfit, and so two

other criteria are used: no angle on the triangle should be less then 10 degrees; and no

edge length should be greater then 2.5 times the median length of all the reconstructed

triangles.

As triangles are chosen by Delaunay Triangulation they will naturally share ver-

tices, which provides a sufficient constraint to merge them into the overall object re-

construction. However, under orthography, each triangle can only be reconstructed up

to a reflection along the camera axis direction, and a translation along that same axis.

While solving for the translational component is trivial, solving the reflection ambi-

guity such that all triangles are consistent is a NP-hard problem. A heuristic greedy

solution is then proposed that flips the triangles according to two criteria: the angle be-

tween overlapping triangles should be the smallest of the two possible angles; the 3D

pose of each triangle should change as little as possible between consecutive images.

The advantage of this method is that the division into local regions derives naturally

from the choice of local model. However, its reliance on the limit case of triangular

patches leads to an oversegmentation of the objects, increasing the computational load
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of reconstruction and, more importantly, of the registration process of the triangular

patches. Moreover, it relies on a good balance between the distribution and density

of the point tracks, in order to provide a local enough triangle to be well modelled as

rigid, but not so local that the triangles become too small and numerous, overfitting to

the data.

Piecewise planar weak template reconstruction: In similar spirit to Varol et al. [100]

and Taylor et al. [90], Collins and Bartoli [22] proposed an alternative locally planar

approach. Differently from Varol et al. [100] their algorithm takes as input an image

sequence where P points are tracked along F frames (although missing tracks are al-

lowed), and estimates which regions are best described by planar models instead of

relying on manually defined patches. Contrary to [100] and [90], this method does not

rely on overlapping areas for the reconstruction.

The segmentation of point tracks into different regions is solved with an MRF-

based segmentation approach which clusters points that move according to the same

affine motion. This step also allows outlier rejection, where tracks that do not conform

with any of the regions are discarded. This results in regions that are not of pre-defined

or triangular shape, but have a free shape that is determined by the input data.

Similarly to other piecewise approaches [100, 90], each patch is reconstructed in-

dependently by minimizing the re-projection error of the rigidly moving plane. Collins

and Bartoli propose a novel closed-form solution to planar motion under orthography,

which describes the recovery of the 3D configuration of a plane as a metric upgrade

problem, similar to what was described in Section 2.1. Given a relaxation of the non-

linear nature of the metric upgrade (although their problem is different, the equations

are similar to Equations 2.7 and 2.8), the problem simplifies to a set of polynomial

equations that can be solved efficiently. The reflection ambiguity of reconstructing a

plane under orthography is treated in a similar way to [90], where the configuration

that yields lower deformation and better temporal consistency is preferred. Addition-
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Figure 2.11: Representation of the results from [22]. (a) The region of interest as a

blue bounding box. (b) top, each colour represents the points belonging to a given

planar region; bottom, the normals of the planar regions marked in red. (c) Densified

reconstruction by fitting a smooth surface to the planes; (d) retexturing over the initial

image. Figure from Collins and Bartoli [22]

ally, a frame where the configuration is known is used to disambiguate the overall flip

ambiguity. Finally, a mesh is fit to the data (similarly to [100]) and its bending energy

minimized in order to smooth the results from the individual patches into a consistent

surface, and to allow the reconstruction of points that were not directly tracked.

[22] improves over Varol et al. [100] by providing a closed-form solution to the

multi-frame planar reconstruction problem. Their method also uses an MRF formu-

lation for the choice of planar regions, including an outlier rejection step. The main

difference from [22] and the previous piecewise approaches is that these regions do not

share any points. Surface consistency is imposed by fitting a mesh to the planar pieces

and minimizing the deformation energy. This is however not enough to solve the re-

flection ambiguity along the Z axis, and [22] requires a manual input a disambiguated

frame.

2.3 Template-based deformable surface reconstruction

For completeness, we will now describe the state of the art of the problem of template-

based deformable surface reconstruction. This problem is closely related to NRSfM.

Like NRSfM, this problem aims at recovering the 3D description of a a deformable
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object given an image (or set of images) of a deformed configuration of that object.

The difference is that in this problem it is assumed there is a reference image Iref for

which the corresponding 3D shape of the object is fully known. Given the difficulty

to acquire a reliable 3D shape template of a generic object, this family of non-rigid

reconstruction methods is generally applied to planar objects such as paper or cloth, as

their full geometry can be easily recovered in a fronto parallel image. Template-based

approaches allow to reconstruct non-rigid objects using only a pair of images, with

many successful approaches being proposed to this day [80, 83, 81, 82, 72, 21].

Given an input image I , the corresponding 3D configuration is estimated by first

computing P correspondences between I and Iref . Reconstruction is then achieved

by finding the transformation to the 3D template configuration that minimizes re-

projection error on image I . However, as in the NRSfM problem, this problem is

ill-posed as there are several surfaces which can generate the same 2D projections.

Therefore, prior constraints are also needed to disambiguate this problem. Although

mostly formulated as a two image problem, these methods can be extended to work

with image sequences. A common way to represent the surfaces in the template-based

reconstruction is to use a mesh description [83, 82, 80, 72, 21, 8].

One of the priors most commonly used to constrain template-based reconstruc-

tion is the assumption of surface inextensibility [80, 72, 21]. In such cases, it is also

very common to assume smooth surface deformations to better constrain the prob-

lem [21, 72]. Perriollat et al. [72], proposed a non-linear least-squares method that

uses the thin-plate splines (TPS) as the surface representation. The smoothness defor-

mation constraint was applied by minimizing the bending energy of the shape, which

can be easily computed as the second order derivative of the TPS. In a similar ap-

proach, Brunet et al. [21] represented the surface as a free-form deformations (FFD).

Their optimisation method imposed isometry on the solution by imposing an orthonor-

mality constraint on the columns of the Jacobian of the deformation matrix, which

was evaluated on a discrete set of points on the parametric surface. Smoothness was
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applied by adapting the bending energy to the FFD parametrization of the surface.

In a slightly different approach, Salzmann et al. [80] argued that smoothness as-

sumptions on the surfaces prevented the recovery of more complex deformations and

thus proposed a method based on temporal consistency over a longer image sequence.

In their work, shapes were represented as meshes and the temporal constraint acted

on the mesh edges, requiring their orientation to remain similar between consecutive

images. [80] formulated this problem as a convex Second Order Cone Programming

(SOCP). This change of constraint allowed the recovery of creased surfaces, in con-

trast with the smooth reconstructions usually achieved with related methods. However

this approach still relied on long tacks over the video sequence.

Using the insight of local surface description similar to the one used by the Piece-

wise NRSfM approaches (see Section 2.2.3), Salzmann et al. [83] suggested that template-

based reconstruction could improve its accuracy if a model of surface deformation

was known. Keeping the representation of the object as a mesh, Salzmann et al. [83]

learned the possible local deformations of a given surface, using a MoCap system to re-

cover the ground truth 3D positions of a set of tracked points. These points were placed

in a grid like pattern over the surface to allow an easy description of the deformations

in terms of a mesh.

The temporal constraints of [80] were later replaced by geometric constraints by

Salzmann et al. [81] which allowed to formulate the template-based reconstruction

problem as a two-frame problem. Assuming the reconstructed surfaces to be inexten-

sible, [81] formulates the inextensibility prior by restricting the euclidean distance of

neighbouring points to be their geodesic distance, which is measured directly from the

fronto-parallel reference image. This formulation results in a set of quadratic equa-

tions which can be solved in closed-form. This constraint limits the applicability of

this method, as surfaces can only satisfy it if they are deforming smoothly.

Salzmann and Fua [79] later extended [81] to handle surfaces with sharp creases.

This is achieved by proposing the inextensibility constraint as an inequality constraint,
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Figure 2.12: Results from [83]. Top: A solution achieved without using the shape con-

straints of the learned models, which are plausible but not necessarily correct. Middle

and Bottom: Reconstruction with the constraint of the local learned models. Recon-

structions now match what is observed, even for low textured surfaces. Figure from

Salzmann et al. [83].

where the euclidean distance of neighbouring points should be less or equal to their

geodesic distance. This formulation also resulted convex, although it relied on a heuris-

tic where the depth of the points should be maximized to prevent the surface from

collapsing to zero.

Recently Bartoli et al. [8] proposed to study the well-posedness of the template-

based reconstruction problem. The authors considered the popular isometric surfaces

case, and the conformal surface case, which is the family of surfaces that preserve

their angles during deformation. Conformal surfaces have been shown to be a good

approximation to elasticly deformable surfaces [63]. Bartoli et al. [8] showed that

there are in fact analytical solutions to the template-based reconstruction problem for

both the isometric and conformal case. While a single solution exists for the isometric

case (for both the developable and non-developable case), there is a discrete set (at

least two) solutions in the conformal case (see Figure 1.7 for results).

Template-based 3D reconstruction is now a well understood problem for which

55



robust convex formulations exist. However, the need to know the full 3D geometry

of the objects is a very strong assumption which has limited the application of these

methods mostly to planar surfaces. In general cases, computing a 3D template is dif-

ficult or even impossible. This limitation contributes to the attractiveness of NRSfM

approaches, which are template-free.

2.4 Articulated motion reconstruction

Articulated motion has been often addressed in the literature as a special case of non-

rigid motion. In such case, objects are seen as a set of links joined by articulations.

While each link is considered to move rigidly, their motion is dependent due to the

articulations joining them into a single kinematic chain [106, 98, 69]. However, other

NRSfM approaches presented in Section 2.2 do not distinguish between articulated

and deformable motion and reconstruct them in the same framework. [6, 70, 44, 24].

Given the rigid link assumption, A-SfM methods stem from the Tomasi and Kanade

factorization approach [93] and extend it to the articulated case. However such ap-

proaches require an initial motion segmentation step to divide the object into its con-

stituent parts [106, 98, 69]. Additionally, a classical application of A-SfM methods is

human motion reconstruction, approximating it as a set of rigid articulated links. Thus,

in this section we will discuss not only existing A-SfM methods but also related work

in human motion modelling and reconstruction.

2.4.1 3D pose estimation

The problem of 3D pose estimation from a monocular video sequence is an impor-

tant one and evidence of this is the large number of works that have addressed it in

recent years. An exhaustive review is out of the scope of this thesis, but we refer the

reader to [39] for a more complete overview. Two broad classes of strategies have
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been used for 3D pose inference: Generative (top-down) algorithms optimise a cost

function to align an appearance based 3D model with image features [86, 19]; Dis-

criminative (bottom-up or recognition-based) methods [2] use training sets of (pose;

image) pairs to recognise the pose in a specific image. While generative approaches

require prior knowledge of a 3D kinematic model and often require manual initialisa-

tion, discriminative methods are dependent on the amount and quality of the training

data.

2.4.2 Motion segmentation

Motion segmentation is a particularly challenging problem in the case of articulated

motion due to the dependencies between the linked parts. The original solution to

the multi-body segmentation problem of Costeira and Kanade [23], based on rigid

factorization of Tomasi and Kanade [93], was influential but unable to solve problems

containing dependent motions. This was remedied by Zelnik and Irani [107], who built

an affinity matrix from the data and used its dominant eigenvectors to separate depen-

dent motions. However, it performed poorly in the presence of articulated motion. The

GPCA algebraic framework by Vidal et al. [101] can also deal with dependent sub-

spaces and missing data. However, in practice it cannot be applied to more than a few

subspaces as the number of required samples grows exponentially with the number of

subspaces.

Concerning A-SfM methods, Tresadern and Reid [98] used a RANSAC [94] ap-

proach to segmentation, Yan and Pollefeys proposed a segmentation algorithm specif-

ically designed to tackle the articulated motion case [106]. A set of linear subspaces

is estimated through local sampling and an affinity matrix is built computing the prin-

cipal angles between them, followed by spectral clustering to give the segmentation

result. Despite outperforming all other motion segmentation algorithms in the cases of

articulated motion, this algorithm is highly dependent on the correct detection of the
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Figure 2.13: Example of the motion segmentation from [106] on a sequence of a man

waving his arms. Figure from Yan and Pollefeys [106].

rank of the trajectories, and consequently is sensitive to noise [106].

2.4.3 Articulated structure from motion

Articulated structure from motion (A-SfM) algorithms model such motion as a set of

intersecting motion subspaces — the intersection of two motion subspaces implies the

existence of a connection between the two corresponding parts. After segmentation, ar-

ticulation constraints are imposed during factorization to recover the location of joints

and axes [98, 106]. While Tresadern and Reid [98] only deal with articulated pairs,

Yan and Pollefeys go further [106], estimating the kinematic chain of articulated ob-

jects with a more complex structure by building the minimum spanning tree from the

segmented subspaces. Factorization is first used to recover the shape and motion of the

individual parts, then joints and axes are calculated and used to combine parts into a

single coordinate system, and recovering the articulated shape and motion as a whole.

Ross et al. [76] instead propose a probabilistic approach to learn the structure of an

articulated object while inferring its pose given a time series of 2D feature tracks. This

method generally places joints in the middle of segments, rather than at endpoints, and

has difficulty to recover from a poor initialisation.

These A-SfM methods offer an attractive solution to 3D pose estimation since they

are model-free and do not require any training data. However they suffer from a num-

ber of weaknesses: the quality of the motion segmentation step is critical for a suc-
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cessful 3D reconstruction– misclassified points can lead to large errors in the motion

and shape estimates; motion segmentation algorithms on the other hand either require

the number of constituent object parts to be known in advance or are sensitive to its

mis-estimation via the detection of the rank of the trajectories; missing data cannot

be dealt with; and finally, their demonstrations are on simple articulated motions, cru-

cially never on a full body. These algorithms focus less on the full 3D reconstruction of

the body and more on estimating the location of joints and articulation axes to estimate

the skeleton structure.

2.5 Proposed approach

In this thesis we follow the emerging trend of piecewise NRSfM methods and propose

a principled solution to this problem. Instead of relying on a manual division of patches

like [100], or in a model derived division like [90], we provide a formulation for simul-

taneous patch division and reconstruction, where both steps solve the same geometric

cost – the image re-projection error. We propose a division into overlapping patches,

which is ensured by our formulation, and provide an approach to merge the indepen-

dent reconstructions by enforcing the 3D consistency of overlapping points. In addi-

tion, we provide our own local model – the Quadratic Deformation (QD) model – and

show how this formulation scales towards dense NRSfM. Finally, we show how our

principled piecewise approach can be used in the problem of articulated SfM, where

each segment of the articulated structure is modelled as a rigid body.
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Chapter 3

Quadratic Deformation Model for

NRSfM

As discussed in Chapter 2, most approaches to NRSfM [18, 96, 17, 104] modelled

deformations using the low-rank shape basis model. This model has provided plausi-

ble reconstructions in the case of small deformations of objects with a dominant rigid

component, such as the human face [96, 7]. However, not all types of deformations

can be described by this simple shape model. In particular if the shapes are under-

going stretch, bending or twist deformations, a different model is needed to represent

the non-linearity of the motion. A low rank linear shape model would account for the

non-linear deformations simply by adding new basis shapes and this results in over-

fitting and incorrect depth estimates. Only recently have other models been proposed

to tackle non-linear deformations [74, 45]. In this chapter we introduce the Quadratic

Deformation (QD) model which is both compact and physically grounded and can en-

code the non-linear variations that appear in more complex motions.

The QD model was first proposed as a description of non-rigid deformation by

Müller et al. [66]. In this computer graphics work, the QD model was proposed as a

point-cloud based method with geometric grounds, which gives a natural and versatile

description of non-rigid 3D objects as a second order polynomial. The estimation of
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deformation coefficients was stable and computationally efficient. This work showed

how the model can be applied in a piecewise fashion, increasing the range of non-rigid

motions it can handle.

Taking advantage of the natural deformations the QD model describes, Park and

Hodgins [71] proposed to use the QD model in a piecewise fashion to model the de-

formable motion of human skin. In their work, they capture the 3D motion of a human

subject using a set of markers sparsely distributed on the subject’s body, and used the

QD model to reconstruct the skin deformations in higher detail. Their results show that

with the QD model it is possible to recover muscle deformations and high acceleration

skin motions.

Inspired by the work of Park and Hodgins, our previous work [35] used the QD

model to describe human soft-tissue deformation. In biomechanics, the human skele-

ton is often modelled as set of articulated rigid segments (see Chapter 7). Accuracy

in estimating the motion of the articulated skeleton may be affected by the non-rigid

motion of the soft-tissue. [35] attempted to remove these soft-tissue artefacts by re-

covering them with the QD model.

Given the success of the QD model in describing non-rigid deformations in 3D, in

this chapter we formulate how it can be used within a NRSfM framework to perform

non-rigid 3D reconstruction from an image sequence. We analyse the QD model and

its deformation modes, and explain why it is suitable for non-rigid motion description.

3.1 Quadratic Deformation Model for Non-Rigid Bod-

ies

As described in Section 2.1, a rigid body composed of P points is represented as a

3 × P matrix Sr containing the 3D coordinates of those points in the object reference
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frame:

Sr =













X1 X2 . . . XP

Y1 Y2 . . . YP

Z1 Z2 . . . ZP













. (2.2)

The image of a rigid body under orthographic viewing conditions is given by the or-

thographic projective equation

Wi = ΠRiS+ Ti, (2.3)

where Π is the orthographic projection matrix

Π =







1 0 0

0 1 0






, (2.1)

Ri is a 3 × 3 rotation matrix that aligns the reference frame with the correct pose, and

ti a 2-vector accounting for image translation. The orthographic image of a non-rigid

body can be derived in a similar way, except the shape of the object is allowed to vary

from frame to frame:

Wi = ΠRiSi + ti. (2.9)

Here, the QD model is a parametrization of Si which encodes the deformations

that the shape can undergo. More specifically, the model is created by augmenting

the shape matrix with extra terms containing the quadratic and cross-term products of

its entries. The shape of a body can be deformed by manipulating some coefficients

which act on the augmented coordinates. We now analyse the nature of this coordinate

augmentation and the properties of the QD model. We define the augmented shape
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matrix for the QD model as:

Sq =





















































X1 X2 . . . Xp

Y1 Y2 . . . Yp

Z1 Z2 . . . Zp

X2
1 X2

2 . . . X2
p

Y 2
1 Y 2

2 . . . Y 2
p

Z2
1 Z2

2 . . . Z2
p

X1Y1 X2Y2 . . . XpYp

Y1Z1 Y2Z2 . . . YpZp

Z1X1 Z2X2 . . . ZpXp





















































=













S(L)

S(Q)

S(C)













, (3.1)

where S(L) is the 3 × P linear shape matrix which contains the 3D coordinates of a

given point cloud in the object referential, while S(Q) and S(C) are 3×P matrices which

contain respectively the quadratic and cross-term products of those 3D coordinates.

Since we augmented the shape matrix to a 9×P matrix, to keep dimensions consistent

we must define a 3× 9 transformation matrix which maps the system back to 3D. We

define this transformation as the Quadratic Deformation transformation matrix Ai:

Ai =

[

Li Qi Ci

]

, (3.2)

where Li, Qi and Ci are 3× 3 matrices. As will be shown in more detail in Section 3.2,

these matrices contain the coefficients which control the deformation modes allowed

by the QD model. These matrices will be named respectively the linear, quadratic and

cross-term deformation coefficient matrices. Finally the shape matrix at frame i can be

defined in terms of these new parameters as:

Si = AiSq =

[

Li Qi Ci

]

Sq. (3.3)
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Notice that the shape matrix Sq, which encodes the augmented coordinates, is fixed for

all the frames in the sequence while the deformation matrix Ai varies from frame to

frame. As Equation 3.1 shows, S(Q) and S(C) are simply functions of S(L). If Li = I3×3,

Qi = 03×3 and Ci = 03×3 for all frames i, we revert to the case of rigid body motion

with S(L) taking the role of the rigid shape. This observation is indeed important and

implies that S(L) encodes the shape of the object that will be deformed into the different

configurations allowed by the model. For this reason, we will also refer to S(L) as the

rest shape matrix (see 3.3.2), although this is just an intuition and its meaning should

not be taken literally.

3.2 The Quadratic Model Deformation Modes

To simplify the analysis of the deformation modes, we will drop the frame dependency

index i and will refer to the deformation matrix simply as A. For a better understanding

of the model we will analyse the three parts (L, Q and C) independently. For this

analysis it is helpful to define a “default” state of the model from which we will vary

the deformation coefficients, and study the corresponding deformations. In line with

the intuition of the rest shape, we define this “default” state as the one that corresponds

to rigid body motion, where L = I3×3, Q = 03×3 and C = 03×3. We will refer to

the different coefficients as Lmn, Qmn and Cmn∀m,n = 1, 2, 3. To better understand

the effects of this model we apply these transformations to a generic augmented point

x = [x, y, z, x2, y2, z2, xy, yz, zx]T , and visualize the corresponding deformations

of points lying on a 10× 10 grid on the x,y-plane. By deforming a a planar object it is

easier to to infer the deformations modes of the QD model, and the generalization into

3D point clouds is straight forward.
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3.2.1 Linear Deformation Coefficients

The matrix L accounts for affine deformations. To prevent degenerate cases we force

L to be full-rank. A full-rank 3× 3 matrix can always be decomposed into the product

of a rotation matrix and an additional transformation matrix (e.g. QR factorization,

LQ factorization, Polar decomposition, etc. [43]). As shown in Equation 3.10, the

rotation is already modelled explicitly by the camera model. Therefore in the QD

model formulation we define L as having no rotational component i.e. the rotation

matrix of the decomposition is chosen to be the 3 × 3 identity matrix to avoid over-

parametrisation. All choices of matrix decompositions are equivalent in the sense that

they represent the set of all possible 3 × 3 full-rank matrices. However, the polar

decomposition is widely used in physics due to the elegant description it provides of the

relationship between deformation and rotation terms. We will also use this description

in our framework.

Defining A1:3 as the 3 × 3 full-rank matrix containing the first 3 columns of A, by

polar decomposition we say that A1:3 = R L, where R is a 3×3 rotation matrix and L is

a 3×3 symmetric matrix. We define R as the camera rotation matrix and L as the linear

deformation matrix in our formulation. We now analyse the kind of transformations

which result from modifying these coefficients.

Diagonal coefficients:

Given a generic 3D point (x, y, z)T and its corresponding augmented coordinates x =

[x, y, z, x2, y2, z2, xy, yz, zx]T , if we now choose to set the diagonal coefficients

Lnn to any value, and apply the resulting matrix L on the augmented point x, the
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resulting deformed point will be

x′ = Ax =













L11 0 0 0 0 0 0 0 0

0 L22 0 0 0 0 0 0 0

0 0 L33 0 0 0 0 0 0













x =













L11x

L22y

L33z













, (3.4)

which means Lnn has a scaling effect along the n-th axis of the local referential. Fig-

ure 3.1 (b) shows an example of the deformations caused by L11.

(a) (b) (c)

Figure 3.1: Illustration of the deformation caused by the coefficients of the 3 × 3
matrix L on square object. (a) Undeformed square object. (b) Effect of deformation

with L11−0.5. (c) Effect of the deformation of L12 = L21 = 0.5. The deformations on

the other dimensions for a 3D object can be easily generalised from these examples.

Off-diagonal coefficients:

Changing the value of L12 (and consequently of L21 since L is chosen to be symmetric)

the deformed point x′ will now be:

x′ = Ax =













1 L12 0 0 0 0 0 0 0

L21 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0













x =













x+ L12y

y + L21x

z













. (3.5)

The effect of the coefficient pair L12\L21 is a pure shearing deformation along the first

and second axis of the object as shown in Figure 3.1 (c). The deformation caused by

the other two pairs of off-diagonal coefficients are analogous.
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3.2.2 Quadratic Deformation Coefficients

When describing a rigid motion the deformation coefficients of Q and C are set to zero.

Therefore, unlike L, Q need not be full rank. In fact, the deformation coefficients of

Q can be separated into two groups according to the nature of the deformation mode

modelled by them.

Diagonal entries:

If we change the value of the diagonal coefficients Qnn the effect on the augmented

point x is:

x′ = Ax =













1 0 0 Q11 0 0 0 0 0

0 1 0 0 Q22 0 0 0 0

0 0 1 0 0 Q33 0 0 0













x =













x+Q11x
2

y +Q22y
2

z +Q33z
2













. (3.6)

These diagonal coefficients Qnn act in a similar way to Lnn and account for a non-

linear scaling effect along the n-th axis of the local coordinates. When applying this

transformation to the cube shape object shown in Figure 3.2, we note that points where

the x coordinate andQ11 have the same sign will have a non-linear expansion along the

first axis, while points where the x coordinate and Q11 have opposite sign will undergo

non-linear compression. This non-linear compression can lead to points changing their

relative configuration within the object, as points belonging to the outer edges are

deformed into the centre of the object at a faster rate than points belonging to interior

edges in the underformed case (e.g. see Figure 3.2 (c)). Analogous behaviour can be

found if we analyse the effects of Q22 and Q33.

Off-diagonal elements:

Unlike L, there are no symmetry constraints on Q and the off-diagonal deformation

coefficients can be studied independently. Let us vary Q12 and check its effect on the
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(a) (b) (c)

Figure 3.2: Illustration of the deformation caused by the coefficients of the 3×3 matrix

Q on square object defined on the x,y-Plane. (a) In the plane bending deformation cause

by Q12 = 0.5. (b) Out of the plane bending deformation caused by Q12 = 0.5. (c)

Example of the interpenetration of the outer points into the inner points caused by Q11

highlighted by only displaying the outer edges of the square object and enlarging inner

intersection points of the grid. The deformations on the other dimensions for a 3D

object can be easily generalised from these examples.

augmented point x:

x′ = Ax =













1 0 0 0 Q12 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0













x =













x+Q12y
2

y

z













. (3.7)

In this case there is a non-linear scaling along the first axis of the local coordinate

system, only now it depends quadratically on y instead of x. This means that points

that lie further from the first axis when measuring the distance along the second axis

will have a larger scaling factor, which in turn results in a bending motion. There are

six independent bending motions, two per axis. An example of such bending motions

can be seen in Figure 3.2 (b).

3.2.3 Cross-term Deformation Coefficients

Unlike L and Q, the cross-terms cannot be divided into diagonal and off-diagonal coef-

ficients. Still, there are also two distinctive families of deformations: those that depend

on all three coordinates x y and z (C12, C23 and C31), and those that depend on just

two coordinates (C11,C13,C21,C22,C32 and C33).
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Dependency on three coordinates:

We consider a single deformation coefficient as an example and infer the role of the

other deformations by analogy. In this case, if we vary C12 from our “default” config-

uration the resulting deformation is:

x′ = Ax =













1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 C31 0 0













x =













x

y

z + C31xy













, (3.8)

corresponding to a translation of the z coordinate proportional to product of x and

y. This type of deformation corresponds to a twisting motion of the object and is

illustrated in Figure 3.3 (b) and (c).

(a) (b) (c)

Figure 3.3: Illustration of the deformation caused by the coefficients of the 3 × 3
matrix C on square object defined on the x,y-Plane. (a) In the plane deformation cause

by C11 = 0.5. (b) Out of the plane twisting deformation caused by C31 = 0.5. (c)

Another view of the twisting deformation caused by C31 = 0.5 . The deformations on

the other dimensions for a 3D object can be easily generalised from these examples.

Dependency on two coordinates:

If we now choose to vary C11:

x′ = Ax =













1 0 0 0 0 0 C11 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0













x =













x+ C11xy

y

z













, (3.9)

it results in a deformation that translates the x coordinate in proportion to the product
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of x and y. This deformation mode essentially generates a non-linear scaling along

the x coordinate that creates a compression motion on one half of the object while

expanding the other half according to the sign of x and C11 (see Figure 3.3).

3.3 Non-Rigid SfM with a Quadratic Deformation Model

Having described how the QD model can be used to encode non-rigid motion in 3D, we

show how it can be used as a shape model for 3D reconstruction of non-rigid motion

from image measurements. Our approach to NRSfM can be framed in the paradigm of

Tomasi and Kanade [93] where a set of P feature points are observed across F images

by an orthographic camera, and these measurements are factorised into the product

of camera motion and shape matrices. We can simply replace the deformed shape Si

in Equation 2.9 by the corresponding parametrization of the QD model. Writing it in

terms of the i-th frame and j-th point, we have:

wij = Π Ri [Li Qi Ci] sj + ti, (3.10)

where wij is the 2D image position of point j in image i, and sj is the j-th column of

Sq. The translational component can be easily removed by registering the point cloud

at every image i to its centroid. We stack all the sub-block matrices for each image i

obtaining:

W̃=



















ΠR1

ΠR2

. . .

ΠRF





































L1 Q1 C1

L2 Q2 C2

...
...

...

LF QF CF































S(L)

S(Q)

S(C)













= M̌ A Sq = M̌S, (3.11)

where W̃ is the 2F × P measurement matrix registered to the centroid at each frame.

As discussed in Chapter 2, factorization approaches have proved practical in solv-
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ing the rigid and non-rigid SfM problems. These methods can be loosely described as a

rank-constrained singular value decomposition followed by fifing a metric upgrade ma-

trix which applies the orthonormality constraints to Ri. As discussed in Section 2.2.1,

computing the metric upgrade matrix is a difficult problem. While Akther et al. [6]

proved that a metric upgrade matrix was sufficient to perform NRSfM via factoriza-

tion, they also stated that the constraints of finding the true solution of that matrix are

non-linear, and did not provide a closed-form solution to that problem. In fact, suc-

cessful NRSfM via factorization always relied on solving a simplified version of the

metric upgrade problem with assumptions that did not hold for every case [104, 17].

Drawing a parallel from the low-rank shape basis model used by previous factoriza-

tion methods and the QD model, we see that although we have the same orthonormality

constraints to impose on R, we still need to account for a very specific structure for both

A and Sq. Looking at the structure of the augmented shape matrix Sq on the QD model,

there are relationships between the terms linear, quadratic and cross-terms that could

be exploited in constraining such upgrade matrices. However these constraints are also

non-linear, for which computing a corrective matrix proves to be hard.

Given the additional difficulty in computing the corrective matrices that arise from

the additional constraints in A and Sq, and the disadvantages of closed-form methods

discussed in Chapter 2, we choose to formulate our NRSfM algorithm as a non-linear

least squares problem. This formulation allows us to estimate our model parameters

explicitly, keeping the desired structure for the model matrices A and Sq. Addition-

ally, the orthonormality of R can also be enforced exactly by choosing an appropriate

parametrization (e.g. quaternion unit vectors).

3.3.1 Non-linear optimization

We formulate NRSfM with the QD model as a non-linear least-squares optimisation

that minimizes the 2D re-projection error of the 3D reconstruction. In particular we
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use the Levenberg-Marquardt non-linear least squares algorithm directly exploiting the

sparse properties of the Jacobian and Hessian matrices computed at each iteration of

the minimization. Starting from Equation 3.10, we can now define the re-projection

error as:

R(wij,qi, ti, Li, Qi, Ci, sj) = ||wij − ŵij||
2 = ||wij − ΠRi(qi) [Li Qi Ci] sj − ti||

2 ,

(3.12)

where Ri(qi) indicates that, internally, the rotations are parametrised using quaternion

vectors qi, which are the actual parameters to estimate. As discussed in Chapter 2,

one of the most important advantages of using a non-linear minimization scheme to

minimize image re-projection error is that the cost function is parametrised explicitly

using all the parameters of the QD model. Therefore, any prior information available

about the nature of the object being observed that has an effect on the values that the

deformation matrices Li, Qi and Ci can take may be incorporated into the cost function.

Similarly to [1], we incorporate temporal smoothness priors over all the parameters:

Rλ(qi, ti, Li, Qi, Ci) = λLQC ||[Li Qi Ci]− [Li−1 Qi−1 Ci−1]||
2

+ λt ||ti − ti−1||
2

+ λq ||qi − qi−1||
2 ,

(3.13)

where λLQC, λt and λq are user defined weights to tune the regularisation. Details on

how these parameters were chosen are presented in Section 3.4.

Finally we can combine Equation 3.12 and Equation 3.13 into the final cost to

minimize:

argmin
qi,ti,Li,Qi,Ci

F,P
∑

i,j

R(qi, ti, Li, Qi, Ci) +
F
∑

i=2

Rλ(qi, ti, Li, Qi, Ci). (3.14)

In addition to good regularization terms (e.g. the temporal smoothness parameters in
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Rλ), the likelihood of falling into local minima can be reduced by providing a good ini-

tialization to the solution, close to the global minimum. Notice that in our formulation

we do not optimize for Sq as empirically we observed lower 3D errors without modify-

ing its values. In Section 3.3.2 we will explain how we can obtain a good initialization

of Sq that improves our solution.

By keeping the shape matrix Sq out of the optimized parameters, our problem re-

duces to a bilinear problem of estimating R and A. At this point, our problem is similar

to [5], where the trilinear problem was reduced to a bilinear problem by assuming

known DCT trajectory basis for the points trajectories over time (see Section 2.2.2 for

details). However, [5] relies on an approximation of the metric upgrade matrix to cor-

rectly factor R. Instead, we will follow our arguments presented in Section 3.3, and

opt for a non-linear optimization framework, where the constraints on R and A can be

imposed explicitly, even though the difficulty in correctly recovering the structure in

Sq has been overcome with our choice for a fixing those terms.

3.3.2 Initialization

As discussed in Chapter 2, the Levenberg-Marquardt algorithm cannot guarantee con-

vergence to the global optimum, relying on the initial estimates being close to the

global minimum to avoid falling into local solutions. In our optimisation problem we

must provide adequate initial values for the rotation matrices Ri, the deformation coeffi-

cients in Li, Qi and Ci, and the shape matrix Sq. As we saw in Section 3.3, the QD model

can easily revert back to the rigid model if the deformation matrices are fixed to prede-

termined values. This also shows that S(L) can be interpreted as the object’s shape with-

out any deformation. In fact, the QD model is idealized as a physically grounded model

where a known object is deformed according to the quadratic deformation modes. Prior

work in computer graphics where the QD model was used [66, 71] supports this view

as both works considered a known 3D configuration as reference from which the ob-
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ject is deformed. This implies that a correct 3D reconstruction greatly depends on a

reasonable choice for S(L). In reality, initializing such shape form the data is a hard

problem when no more information about the object properties is available. Based on

the rest-shape intuition, we propose, for now, to initialize our method assuming that

the object will undergo close to rigid motion for the first few frames to recover a good

initialization for Ri and Sq using a rigid factorization approach such as [64]. We leave

the discussion of other scenarios where a good initialization can be achieved to Chap-

ter 4. Finally, the QD model parameters are initialized as Li = I3×3, Qi = 03×3 and

Ci = 03×3 for every image i.

In the case where a 3D template of the object to reconstruct is available, S(L) can

also be initialized to that 3D shape, making our approach very close to the template-

based reconstruction methods presented in Section 2.3. In truth, it could be argued that

the framework presented in this chapter can be divided into into 3D rest-shape estima-

tion followed by a a template-based reconstruction. However, it is not the goal of this

thesis to develop template-based reconstruction methods, and so we try our best to rely

solely on what can be extracted from the data. This allows us to reconstruct a greater

variety of sequences, as a 3D template is not often available to be used. Addition-

ally, we do not consider the two-frame reconstruction case, always relying on having

stronger temporal information from an image sequence to perform our reconstruction.

3.4 Experiments

We devised a series of experiments to test the robustness and applicability of the

QD model to the NRSfM problem. We measured the 3D reconstruction error on syn-

thetic sequences under different circumstances, and compare our approach with other

NRSfM methods on a motion capture sequence for which ground truth is available.

Finally we show 3D reconstruction results on real image sequences.
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3.4.1 Synthetic cylinder sequence

For the synthetic experiments we created a cylindrical object with 70 points which

we used as the rest shape for our model. We then applied deformations of increasing

maximum strength to the object using the deformation matrices L, Q and C, with mag-

nitudes ranging from from 0 to 1, starting from the value of the rigid motion case. To

account for our model hypothesis we made sure there was enough rigid motion for the

first few frames of each sequence, and that both the deformation coefficients and rota-

tion matrices chosen generated a temporally smooth motion. We generated 50 random

tests for each level of maximum magnitude level, keeping all the other parameters un-

changed. The 3D points were projected onto the image using an orthographic camera

model. The three different λ parameters from Equation 3.13 were tuned based on the

3D reconstruction error on the set of synthetic sequences, and an empirical observation

of how flexible the object was, to avoid a situation overfitting. After running a batch

of tests with the three λ parameters ranging from 10−1 to 10−5, the best compromise

between accuracy and flexibility was found to be λLQM = λt = λq = 10−2.

We compare the results of our new algorithm (Quad) with Torresani et al.’s algo-

rithm [96] (EM-LDS) and with a Bundle Adjustment algorithm (BA-Lin) [26], both of

which are based on the linear low-rank shape model. For a fair comparison, we initial-

ized BA-Lin with the same parameters for camera and shape matrices that we obtain

from our initialization by running [64] on the first 10 images of the sequence in which

the object was not deforming. For the EM-LDS method we used its own initialization,

as it provided better results.

To compute the 3D error we use the same measure as [105, 96, 69]. Defining X as

the 3F ×P matrix containing the 3D ground truth positions of the P points we want to

reconstruct, while X̂ is the 3D reconstruction generated by a given method, we compute

the normalized reconstruction error as
∣

∣

∣

∣X− X̂
∣

∣

∣

∣

F
/ ||X||F , where ||.||F is the Frobenius

norm.
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In Figure 3.4 we show the average 3D reconstruction error as well a box-plot analy-

sis for each of the algorithms. The average error plot was generated after removing the

results from tests considered outliers by our statistical analysis (marked as red crosses

in the box-plots of Figure 3.4). Our new algorithm outperforms the other methods in

two important aspects. First, the box-plots show a lower rate of outliers compared to

the other algorithms. With Quad only 3.09% of all the tests are outliers, while with

EM-LDS as many as 8.91% were considered outliers and 9.45% with BA-Lin. Sec-

ondly, amongst the tests considered as inliers, the average error plot (Figure 3.4 top

left) shows that the lowest 3D error was given by our method.
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Figure 3.4: Results on synthetic data for varying deformation strengths. Top-left: Av-

erage 3D error plot for experiments that converged to a valid solution. Box-plots are

provided to illustrate the rate of convergence of the three different algorithms. Notice

the high rate of convergence failure of the EM-LDS and BA-Lin algorithms.

3.4.2 Experiments with real deformations from MoCap data

In these experiments we used 3D motion capture data of a water Woggle (or swimming

noodle) which is a long and thin polystyrene cylinder that can undergo strong bending

deformations. The 3D data was captured using a MoCap system by tracking 30 mark-

76



ers. Figure 3.5 shows a few images of the object (with the markers) deforming. The

3D points were then projected onto an image sequence 676 frames long using an ortho-

graphic camera model. We evaluated the performance of the algorithm with respect to

noise in the image measurements. Zero mean additive Gaussian noise was applied with

standard deviation σ = n × s/100 where n is the noise percentage and s is defined as

the diameter of the Woggle in pixels. Noise levels of up to 30% were added. Figure 3.5

(right), shows the plot comparing the results obtained with our algorithm with those

achieved using EM-LDS and BA-Lin. The plot depicts the 3D error averaged over 50

random runs after removing the results from tests that failed to converge showing an

improved performance of the Quad algorithm versus EM-LDS and BA-Lin.
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Figure 3.5: Left: Images of the Woggle used in the experiments with motion capture

data. Right: Average 3D error plot for the reconstruction of the Woggle motion cap-

ture sequence , using only experiments that converged to a valid solution, and with

increasing levels of noise. Our method (Quad) outperforms EM-LDS and BA-Lin as it

provides lower 3D error even at the highest level of added noise tested.

Figure 3.6 shows the ground truth (green circles) and reconstructed 3D shapes

(black dots) for five frames of the sequence in the absence of (added) noise using the

three different algorithms. In the case where no noise was added to the motion capture

data, our method recorded a reconstruction error of 5.25%, which is lower than the

reconstruction errors of EM-LDS (9.37%) and BA-Lin (16.69%).

3.4.3 Real experiments

In Figure 3.7 we show the reconstruction of the Cushion sequence, in which 90 points

were tracked during bending and stretching motion. For this sequence we compared
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Figure 3.6: Example frames of the 3D reconstructions of the real Woggle MoCap data

sequence obtained with the 3 different algorithms. The green circles correspond to the

ground truth positions while the black dots correspond to the algorithm reconstruc-

tions.

the reconstruction of our Quad method with Torresani et al.’s EM-LDS algorithm. For

a better visualization a mesh was then fit to the reconstructions with texture added

from the first image where the cushion is facing the camera. While both methods have

a reasonable frontal view reconstruction, which essentially shows that these methods

are minimizing the re-projection error, when comparing the reconstruction on the side

view it is clear that our method provides a more plausible reconstruction.

3.5 Conclusions

We proposed the QD model as a new way to describe non-rigid deformations, and we

showed how that model can be used within a NRSfM formulation. We discussed the

different deformation modes allowed by this model and how these modes can be eas-

ily disabled when prior information on the objects is available. Our proposed NRSfM

method uses a non-linear optimisation scheme to minimize the image re-projection
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Figure 3.7: Top: Selected frames from the Cushion sequence, with bending and

stretching motions. Rows 2 and 3: Front and top views of the 3D shapes for the

selected frames using our new QD model. Rows 4 and 5: 3D reconstructions using

EM-LDS

error given by modelling non-rigid motion with the QD model. As the Levenberg-

Marquardt algorithm does not guarantee convergence to the global optimum, we pro-

posed a good choice of initialization and show how the inclusion of temporal smooth-

ness priors can help to constrain our solution and lower the chances of falling into local

minima.

We presented two sets of quantitative tests, one using synthetically generated data

and another one using real object deformations captured using motion capture technol-

ogy. In our synthetic experiments we showed how the accuracy of our method com-

pares to existing solutions using the low-rank shape basis model (Torresani et al.’s [96]
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and a Bundle Adjustment algorithm [25]). Our results show that our proposed method

has both a higher convergence rate, in terms of a statistical analysis of the 3D recon-

struction error of sequences with a similar degree of deformation, and a lower average

3D reconstruction error for these sequences (see Figure 3.4). On the motion capture

sequence, we used different levels of zero mean additive Gaussian noise to show the

robustness of our method. As Figure 3.5 shows, our method has the lowest 3D recon-

struction error for all the noise levels tested.

Our NRSfM algorithm is formulated assuming an orthographic camera model for

the image acquisition. Such model relies on the the relative depths between the re-

constructed points to be small when compared with the distance from the camera to

the object. In our experiments we have not encountered any reconstruction errors that

would justify using the more complex perspective model. This would increase the

complexity of our cost function and possibly originate ambiguities between perspec-

tive effects and object deformations (e.g. a stretching motion could be confused with a

translation of the object towards the camera). However there is no technical limitation

preventing the usage of the perspective camera model. As a basic setup, the initial-

ization could remain based on the orthographic camera model while the perspective

camera model would be used in the non-linear optimization as a refinement. The study

of the implications of using a perspective camera model are then left as future work.

There are two important limitations of our proposed approach that should be men-

tioned. To begin with, we have presented experiments that are characterized by strong

bending and stretching motions, which are deformation modes present in our model.

These experiments were conducted to show examples of deformations where our non-

linear deformation modes would be preferable to the low-rank shape basis method,

which would probably need a high number of shape basis to cope with such deforma-

tions, leading to overfitting and finally to a degradation of performance. However, we

are aware that our method is only suitable when the object deforms globally in a com-

bination of the deformation modes of the QD model. It cannot be expected that more
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complex motions can be modelled with this approach. The second important limita-

tion is the need for the object to undergo rigid motion in the beginning of the sequence

to allow the recovery of the rest shape. Ideally there should be a way to recover it

automatically from a sequence without constraining the possible motions. In order to

tackle these two problems, we further developed our NRSfM approach by applying the

QD model in a piece-wise approach. This work will be described in detail in Chapter 4.
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Chapter 4

Piecewise Non-Rigid Structure from

Motion with the Quadratic

Deformation Model

As discussed in Chapter 2, piecewise approaches for non-rigid shape estimation are a

recent trend in the NRSfM community [100, 90, 34, 22]. These approaches are based

on the intuition that while the global motion of strongly deforming objects might have

high dimensionality, local motion is more constrained and simpler to model. Local

models require fewer parameters than global ones, and as each model is fitted to fewer

points, they are both easier to optimise and are less prone to over-fitting. Given an

independent solution to each patch, spatial consistency can then be enforced between

these overlapping 3D patches to create a continuous global surface. Various differ-

ent local models have been used in the literature including planar [100, 22] and rigid

triangles [90] (see Section 2.2.3).

In this chapter we tackle the limitations of global models by arguing that local

modelling of the deformations can achieve accurate reconstructions. Although our

proposed method is general and applicable to a wide range of sequences, we focus on

sequences where objects undergo strong deformations which makes the reconstruction
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problem harder for global methods. As a practical example, let us consider the motion

capture sequence acquired by White et al. [102] consisting of a flag waving in the wind

where 450 points are captured during 540 frames. Some examples of the deformation

which the flag undergoes can be seen in Figure 4.1, where texture was added to the

point cloud to make the motion clearer. An object with such complex deformations

cannot be modelled by the method proposed in Chapter 3, as it does not behave globally

as a quadratic surface. Furthermore, when trying to reconstruct such motion with

Torresani et al.’s [96] EM-LDS algorithm or with a Bundle Adjustment optimisation

approach of the low-rank basis shape model [26] these methods also fail and the 3D

error is very high (see Figure 4.7).

Figure 4.1: Some frames of the MoCap Flag [102] sequence with added texture for

better visualisation.

Our proposed algorithm divides the surface into patches, reconstructs each of these

patches individually and finally registers all the patches together enforcing global con-

sistency to give a single smooth surface. Our method is generic in the sense that it does

not rely on any specific reconstruction method for the individual patches. In principle,

any SfM method can be applied locally. However, in our experiments, we have found

that the Quadratic Deformation (QD) model provides the best local reconstructions (see

Section 4.5). Additionally, as discussed in Chapter 3, the QD model has already been
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used in three dimensional piecewise fashion in the field of computer graphics to in-

crease the range of deformations it could model [66, 71]. We tackle the problem of

rest-shape estimation (see Section 3.3.2) by considering three different scenarios, and

providing a different approach for each case. We show results on challenging motion

capture and real video sequences with strong deformations and a very small amount

of camera rotation (which adds to the difficulty of obtaining accurate reconstructions)

and where we show that global methods fail to provide good results.

4.1 Piecewise Non-Rigid Structure from Motion

The piecewise approach we propose draws on the intuition that modelling deformable

objects globally is a very hard and ambiguous problem, while reconstructing local

regions of objects independently is a more constrained problem. This is due to fact

that the deformations these local regions can undergo will be less complex when com-

pared to the global object deformations. Additionally, as described in Chapter 3, the

deformation modes of the QD model have a clear physical meaning, such as stretch-

ing, shearing, bending or twisting. We argue that while these deformations cannot be

expected to model deformable objects globally, they seem naturally suited to model

deformations of local regions.

We formulate this problem in the same context as the NRSfM method described

in Chapter 3, where an object with P points is observed across F frames with an

orthographic camera. Since our goal is to reconstruct local regions independently, our

first step should be to divide the object into local regions (or patches). These regions

are in practice just a subset of the P points that belong to the object. Thus these local

regions can be reconstructed by treating them as independent NRSfM problems. To

reconstruct the original object these local reconstructions must be later merged into a

single 3D point cloud. A simple way to perform this without needing extra constraints

in the independent NRSfM problems is to make sure the patches overlap with each
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other i.e. patches should share points with other patches. In this setup, a given point

j that belongs to more than one patch will have more than one 3D reconstruction.

However as they are all reconstructions of the same physical point, they should ideally

all have the same 3D coordinates. This simple constraint turns out to be enough to

combine all the local reconstructions into a single 3D point cloud. Our algorithm can

be summarised as follows:

Require: 2D correspondences of points tracked through the sequence.

Ensure: 3D reconstruction of the global surface for every frame.

1: Divide surface into N regular patches P = {P1, · · · ,PN}

2: Reconstruct individual patches using the QD model.

3: Combine individual 3D reconstructions.

4: Final optimisation.

Algorithm 1: Piecewise Reconstruction of Highly Deformable Surfaces

4.2 Shape Matrix Estimation and Division of the Ob-

ject into Patches.

The aim of our piecewise approach is to provide a fully automatic method to deal

with any type of 3D non-rigid surfaces, whether planar, such as a piece of paper, or

non planar such as a beating heart or a torso. As we saw in Chapter 3, the NRSfM

algorithm with the QD model can be formulated as a non-linear optimisation problem

of minimizing the re-projection error:

R(wij,qi, ti, Li, Qi, Ci, sj) = ||wij − ŵij||
2 = ||wij − Ri(qi) [Li Qi Ci] sj − ti||

2 ,

(3.12)

together with temporal smoothness prior terms (see Equation 3.13 and Equation 3.14).

As Equation 3.12 shows, the shape matrix Sq is not part of the parameters of the cost-
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function, and thus it is not optimised. Recall that the shape matrix Sq is defined as:

Sq =


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, (3.1)

which means it is fully specified by S(L), the linear shape matrix (or rest-shape since

it represents the shape of the object when no deformation coefficients are active). In

Chapter 3 we recovered the rest-shape by assuming the object does not deform for the

first few frames of the sequence, which was one of the limitations of our approach.

In this section we show how we can relax this constraint under some circumstances.

When performing NRSfM, often some a priori information exists about the nature of

the object being observed. We thus analyse the object properties and provide a solution

to the division of the surface into regular patches in three different situations: when a

reference 3D shape or template is known for a reference image in the sequence, when

the surface is known to be a planar shape but a 3D template is not available, and finally

in the general case where no a priori knowledge is available about the surface. In

every case, patches are obtained by dividing the object into a set of regular overlapping

regions.

When dividing the object into patches, care must be taken so that each patch satis-

fies the reconstructibility requirements of the local NRSfM model chosen. In the case

of the QD model, in order to initialize the patch assuming rigid motion in the first few

86



frames (see Section 3.3.2) the object must have at least 4 non-coplanar points. How-

ever the QD model adds a few more parameters per frame, resulting in an increase in

the minimum number of points. Since after the estimation S it is kept fixed on the

optimisation step, we can reduce our analysis to the reconstruction of a single frame.

In Section 3.2 we have described some constraints applied on the 3 × 9 matrix Ai that

reduce the number of coefficients to estimate from 27 to 21. Additionally, we must also

estimate 3 parameters for each rotation matrix Ri and 2 parameters for each translation

ti, giving a total of 26 parameters to estimate. Every point contributes with 2 additional

equations per frame to the problem. Hence, this algorithm requires a minimum of 13

points to estimate all the deformable motion parameters per frame.

In practice, good quality reconstructions depend not only on fulfilling the minimum

mathematical constraints of the problem, but also in assuring that patches will present

motions consistent with the deformation modes of the model. For instance, if the

minimum number of points for reconstruction with the QD model is fulfilled, but these

points are located very near to each other on the object’s surface, it is very likely that

their motion will be quasi-rigid, failing to take advantage of the power of the QD model.

As a rule of thumb for reasonable reconstruction, the size of the patches should not be

chosen based on the number of points (provided the minimum number constraints are

fulfilled), but on the area of object surface those points represent, and how likely it is

for that area to be well explained by the QD model.

Additional care must be taken when choosing the width of overlap between patches.

If the width is of one point, the constraint of overlapping points having the same 3D co-

ordinates would be fulfilled by every reasonable reconstruction that kept the structure

of the object intact. To guarantee second order smoothness over the patches, a width of

at least two points in the overlap is required. In practice, the size of the overlap again

depends more on the real object overlap area than on the number of points in the width

of the object.
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4.2.1 Known reference shape

As described in Chapter 2, there are a number of approaches to non-rigid shape recon-

struction from monocular sequences that rely on the assumption that the shape of the

object is known in some reference image [83, 82, 72, 21]. For instance, often the sur-

faces of interest are sheets of paper or cloth and it is reasonable to assume that they are

viewed in a planar configuration in the first frame. If this assumption is satisfied, the

rest shape is simply the planar configuration of the planar object, with the Z coordinate

of S(L) (and corresponding entries in S(Q) and S(C)) being zero.

In such a case the object is divided into regular patches by specifying the num-

ber of intervals along the X and Y dimensions, and a percentage of overlap on every

side of the patch. The division is done by creating a regular grid on top of the planar

rest-shape and enlarging each region by the specified percentage of its size in all four

directions. An example of such a division can be seen in Figure 4.2 where each rect-

angle represents the area of the image considered as a patch, and one can clearly see

the overlapping regions amongst them.

(a) (b)

Figure 4.2: (a) Regular division into overlapping regions. Each different rectangle

shows the area from which the patches will be constructed. rectangles have different

sizes because they were cropped at the object boundary. (b) Patches in terms of point

tracks. Different Colours represent different patches. Overlapping regions cannot be

visualised as points and are only plotted with the colour of one of the multiple patches

they “belong” to.
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4.2.2 Planar surfaces

In some situations, we know in advance that the surface being reconstructed is a de-

forming plane (a sheet of paper or a flag waving in the wind), but a reference image for

that shape is not known. In this case, we propose a method based on the isometric low-

dimensional mapping method Isomap [91]. First we reconstruct a mean shape of the

surface i.e. the shape that minimizes the re-projection error of the non-rigid sequence

with rigid motion only, by applying Tomasi and Kanade’s rigid factorization algo-

rithm [93] to a few frames or to the entire sequence. Since the object is non-rigid, this

average rigid surface will not be planar. Therefore it is not straight forward to divide it

into regular patches. However, we can use Isomap [91] to compute an isometric low-

dimensional embedding (the 2D flat surface) of the higher dimensional data (the mean

3D surface). In other words, Isomap will find an isometric mapping of the deformed

mean surface, obtained by rigid factorization, onto a 2D plane. Figure 4.4(a)-(c) illus-

trates the process. Due to noise in the data and to the sparseness of the 2D tracks the

embedding will not be exactly isometric. However, it is a good enough representation

to use for the division of the surface into regular overlapping pieces.

It might be argued that instead of using the more complex Isomap to estimate the

2D embedding, it would be simpler to project the 3D mean shape to 2D or even to

perform a rank-2 factorization and recover a planar shape. However these approaches

do not attempt to preserve the true distance between the feature points. In sequences

such as the Paper, where the object has a strong deformation along the Z axis, these

distances will be shortened to a great extent. This would imply that patches defined

over such shortened regions would require the QD model to ‘rectify’ such distortions

with the deformation coefficients, which could cause problems in the reconstruction.

As we have previously discussed in Section 3.3.2, the QD model relies on a reasonable

initialization for the rest-shape. Thus, we prefer to use the more complex Isomap [91]

approach, which will better preserve the 3D distances recovered from the 3D shape
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obtained by rigid factorization.

Figure 4.3: Comparison between the rest-shape estimated by Isomap [91] (red) and the

rest-shape estimated by projecting the 3D shape recovered by factorization [64] (black)

for the Paper sequence. Note how Isomap [91] better preserves the right angles of the

paper.

Since the object is now planar, we have reverted back to the case of Section 4.2.1

and so we apply the same method do divide the object into regular patches.

(a) (b) (c)

Figure 4.4: (a) Reconstructed mean shape of the Flag sequence (see Figure 4.8) using

rigid factorization. (b) Result of applying Isomap to the surface. (c) Side view of the

shape before and after Isomap.

4.2.3 Generic surfaces

If we know the object performs a rigid motion for the first few frames of the sequence

we can apply the rigid factorization algorithm [93] to those frames to obtain a rest

shape. If such knowledge is not available we can in turn perform rigid factorization

over the whole sequence to obtain a mean shape. The regular division must now be into
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regular volumes, and not regular planar regions. An ellipsoid is fitted to the rest-shape

in order to estimate the volume of the object. Finally a bounding box of that volume is

computed and divided into regular overlapping pieces. Figure 4.5 shows this process

being applied to the Woggle sequence presented in Section 3.4.2.

(a) (b)

Figure 4.5: (a) Volume bounding box. (b) Division of volume into pieces.

4.3 Reconstruction of Individual Patches

Once the surface has been divided into a set of regular patches, each of these becomes

an independent NRSfM problem. We highlight once again that the overall piecewise

approach for NRSfM that we design does not imply the use of the QD model presented

in Chapter 3 to solve these independent problems. Still, our intuition is that the QD

model can encode bending, stretching, shearing and twisting modes of deformation

which are natural ways in which objects deform locally.

4.4 From Local Patches to a Global Reconstruction

The algorithm described in the previous section allows us to reconstruct the set of 3D

patches P = {P1, · · · ,PN} independently. After solving the set of NRSfM problems

we are left with the problem of combining them into a single object. As mentioned

in Section 4.1, by dividing the patches into overlapping regions we can now use the
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constraint that these regions of overlap (and corresponding points) are in fact the same

3D surface and must have the same 3D coordinates.

4.4.1 Resolving ambiguities: patch alignment

When performing reconstruction assuming an orthographic camera there are two am-

biguities that cannot be resolved. To begin with, it is not possible to recover an absolute

value for the translation along the camera viewing axis (the Z axis) as any translation

along that axis results in the same 2D projection. In addition, there is an ambiguity

regarding a concave or convex reconstruction of a given set of 2D tracks. If we imag-

ine a solution X̂ that resulted from a given NRSfM method, due to the properties of the

orthographic projection matrix, if at any instant i we replace the Z coordinate of X̂i by

its symmetric value, the resulting cost will still be the same. Since our set of patches is

reconstructed independently, each in their own reference frame, these reconstructions

will not necessarily agree with each other (see Figure 4.6).

(a) (b)

Figure 4.6: (a) Reconstruction of shared points in different patches differ by a transla-

tion on the Z axis. (b) Representation of the ambiguity on the sign of the Z coordinate

of the reconstructions.

While solving for the relative translation ambiguity is trivial given overlapping re-

gions, correctly recovering the set of N − 1 relative flips is an NP-hard problem (note

that there is always a global flip ambiguity that cannot be recovered from, which is

equivalent to fixing the flip of a given patch as a reference). We note that this ambi-

guity affects every frame independently. However, we rely on our smoothness terms

92



to impose flip consistency on a single patch, leaving only the global flip ambiguity to

resolve. However, temporal smoothness cannot guarantee to resolve all the local ambi-

guities. For instance, in the case where a patch becomes fronto-parallel to the camera

during the sequence the algorithm cannot distinguish between a concave or a convex

deformation from that point onwards. In other words, every time a patch becomes

fronto-parallel there will be a segment of the sequence for which a different flip ambi-

guity can arise. Our proposed approach only deals with a single global flip ambiguity

and will in general fail if such more complex ambiguities arise.

To solve the relative flip and translation ambiguities we propose a greedy heuristic

algorithm. Without loss of generality let us consider we have only two 3D surface

patches to be aligned over the whole sequence, here named patch A and patch B. The

alignment is done focusing on the PAB points lying on the overlap of both patches.

Each candidate 3D reconstruction of those points is represented by the 3×PAB matrices

X̂
(A)

and X̂
(B)

. As discussed in Section 4.2 we assume there is always a sufficient

number of overlapping points that allow disambiguation. Since the image coordinates

X and Y of every point are optimised by our formulation, only the Z axis will be

altered in this process.

To solve the ambiguities we treat every candidate reconstruction as equally valid.

We start the disambiguation process by registering the centroid of the overlapping

areas for every frame. Once in this configuration, the choice of reflection ambiguity

parameter can be formulated as follows:

argmin
X=
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, (4.1)

which essentially minimizes the 3D distance between the shared points, after their

centroids have been aligned at Z = 0. After this ambiguity is resolved, we translate
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both X̂
(A)

and X̂
(B)

along the Z axis back to the original position of X̂
(A)

. Overlapping

regions between patches have multiple 3D candidate reconstructions of the same 2D

point. However, a one to one match between 2D and 3D points is desired. Thus, after

registration, we merge both candidate reconstructions for each overlapping point by

averaging them. Non-overlapping points of patch A and patch B are transformed in

the same way. However there is no need for merging coordinates these points have

only one reconstruction.

Although solving for the ambiguities is NP-hard, we encountered no problem with

our heuristic algorithm provided that enough overlap between patches exists. Given

the quadratic nature of our patches, the 3D distance between the overlapping points

proved to be good disambiguation criterion as the curvature of correctly and incorrectly

aligned patches results in very different values for our error measure.

4.4.2 Final Optimization

Once individual patches are reconstructed and initially aligned, a final global optimi-

sation step is used to refine the results. This refinement is achieved by imposing the

constraint that shared points must have the same 3D coordinates. This is done by ap-

plying the original cost function defined in Equation 3.14 to all the patches and adding

a prior term that penalises reconstructions in which the 3D coordinates of shared points

between patches are distant:
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, (4.2)

where w
(n)
ij are the 2D coordinates of point j in frame i in patch (n), Θj is the set of

N patches that contain point j, and X̂
(n)

ij are the 3D coordinates of point j in frame i

reconstructed from patch (n) using the QD model described in Chapter 3. This problem

is solved using the Levenberg-Marquardt non-linear least-squares algorithm.
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One could argue that this new optimisation step is able to solve the whole piecewise

problem from an initial estimate of the set of parameters, without having to solve the

ambiguities referred to in Section 4.4.1. However, non-linear least-squares requires the

initial parameters to lie close to the solution, otherwise it can become trapped in local

minima. Therefore, this final step is only used as a refinement of previous estimations

to avoid possible ambiguities.

4.5 Experiments

Our approach aims at reconstructing highly deformable sequences where NRSfM meth-

ods based on global shape models fail. To be able to provide quantitative results and

to allow comparisons with other methods, we have chosen to use a challenging exam-

ple of a motion capture (MoCap) sequence of a flag waving in the wind [102]. This

sequence is particularly difficult as it contains strong, rapidly varying deformations ap-

pearing through the whole surface. We show some frames of the MoCap Flag sequence

with added texture in Figure 4.1.

4.5.1 Local vs Global modelling

Our first set of experiments was designed to show that current NRSfM models based

on global models fail to achieve good reconstructions on a sequence of an object un-

dergoing strong, agile or complex deformations. In Figure 4.7 we show ground truth

3D data together with some examples of 3D reconstructions obtained using 4 different

global SfM methods: 1) (Quad) original global formulation of the QD model as de-

scribed in Chapter 3, 2) (BA-Lin) linear combination of basis shape model with Bundle

Adjustment optimisation [26], 3) (EM-LDS) NRSfM method proposed by Torresani et

al. [96] and 4) Metric Projections method [69]. Note that the apparent stripe-like struc-

ture of the points on the Flag is not due to our piecewise reconstruction. It is present
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in the ground truth 3D data as a consequence of the regular way in which the markers

were placed. Table 4.1 (right) shows the reconstruction error given by the different

algorithms. These experiments reveal that state of the art NRSfM methods based on

global models fail to reconstruct this highly deforming object.
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D
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Figure 4.7: Reconstructions of the Flag sequence [102] using the Quad, BA-lin, EM-

LDS and MP methods. Ground truth is represented by green circles while reconstruc-

tions are represented as black dots.

Justification of quadratic model as best local model

In this section we justify our choice of the QD model as the most adequate local model

to express strong, natural local deformations. In Table 4.1 (middle column) we show

the 3D reconstruction error (measured with respect to ground truth values) averaged

over all the patches in the Flag for each of the algorithms mentioned in the previous

96



section. The 3D error is computed as described in Section 3.4.

It is clear from our results that the QD model outperforms all the other methods

(4.05% error vs. errors between 15% and 29%). Each reconstruction algorithm was

ran with its out of the box initialization. In the left column of Table 4.1 we show the

average patch 3D errors when the mean shape for algorithms (BA-Lin) and (EM-LDS)

and the rest shape for the (Quad) algorithm were initialized with the known ground

truth flat shape given by the motion capture data. This experiment shows that a priori

knowledge of the 3D shape of the surface improves the reconstructions. The quadratic

model continues to outperform others by an order of magnitude (3.18% error vs. errors

between 15% and 19%).

4.5.2 Piecewise quadratic reconstruction of MoCap sequences (flag

and cylinder)

Applying the piecewise quadratic deformation model to the MoCap Flag sequence

results in the reconstructions show in Figure 4.8 where the coloured points are the

reconstructed points (colour encodes the patch they belong to) and the circles are the

ground truth values. The rest shape was initialised from rigid factorization of 5 frames

followed by flattening of the shape using Isomap. The object was divided into 36

overlapping patches.

Patch size ranges from 21 to 75 points, with an average size of 54.2 points, with

the total number of points in the object being 540. A pair of overlapping patches share,

on average, 17.6 points.

The 3D reconstruction error can be found in Table 4.1 (right column). Results

show that in this challenging sequence, our model is able to provide a very accurate

reconstruction, with only 3.25% of 3D error. Recall that the other NRSfM methods

gave errors ranging between 15% and 26%.

In Figure 4.9 we show reconstructions (cyan dots) and ground truth values (black
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circles) of the MoCap cylinder used in [36]. We report an average 3D error of 1.97%

compared to a 3D error of 5.25% obtained in Chapter 3. Therefore the piecewise

approach greatly improves the results of the global algorithm.

In this sequence the object was divided into 4 overlapping pieces, with two having

16 points and the other two 19 points, from a total of 39 points. A pair of overlapping

pieces share, on average, 7.8 points.

Figure 4.8: Reconstruction of 4 frames of the Flag sequence with our new piece-

wise quadratic deformations model. Ground truth is presented as black circles, recon-

structed points are shown as coloured dots where the colour indicates the patch they

belong to.

Table 4.1: 3D Reconstruction error for different NRSfM methods on the Flag sequence

Algorithm Patch GT init (%) Patch Own init (%)
3D error

whole Flag (%)

Quad[36] 3.18 4.05 15.79

BA-Lin [26] 17.48 16.51 26.29

EM-LDS [96] 15.34 15.85 17.09

MP [69] - 29.77 18.57

Piecewise-Quad - - 3.25
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4.5.3 Piecewise quadratic reconstruction of real sequences (paper

and back)

Figure 4.10 (top and middle rows) shows the reconstruction of the Paper sequence

where a sheet of paper is bent [100]. Reconstructed points are represented in different

colours representing the 36 patches used in the reconstruction.

In this case, the size of the patches ranges between 38 and 167 points, with an aver-

age size of 113 points, from a total of 871 points. A pair of overlapping patches share

on average 31.47 points. The rest shape was obtained running rigid factorization on 8

frames and then using Isomap to obtain the 2D embedding plane. We also provide a

qualitative comparison with the mesh obtained with Varol et al.’s method [100] (Fig-

ure 4.10,bottom row). When the deformation is strongest (last frame of the sequence)

our reconstruction provides a more realistic curved shape, whereas Varol et al.’s ap-

pears to be a piecewise planar approximation. In addition, we present an example of

augmented reality that illustrates the accuracy of our surface estimation. We show 5

pyramidal objects on top of the surface of the Paper that follow the bending motion.

The re-projection of those objects over the original image fits appropriately, while the

top vertex of each pyramid gives a notion of the surface normals at those points.

Figure 4.9: Results of the reconstruction of the (MoCap cylinder) sequence used

in [36]. Blue dots are reconstructed points and black circles are ground truth values.

In addition, we evaluate our method on the Back sequence. This sequence shows
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Figure 4.10: Reconstruction of Paper sequence [100]. The different colours show

the different patches. First row: 2D re-projection of the points. Second row: 3D

reconstructions with our piecewise reconstruction. Third and Fourth row: Comparison

of our reconstruction (blue point cloud) with Varol et al.’s method [100] (mesh with

green vertices). Fifth row: An example of augmented reality, where 5 pyramids are

placed on top of the surface and their projected motion shown over the original image.

a man viewed from the back while he moves his torso to create natural non-rigid mo-

tion. This dataset comes from [85], where the coloured dots on the garment are meant

to be reconstructed using stereo pairs. We use the 2D tracks provided by [85] as in-

put and measure a reconstruction error of 15.2% when considering the stereo-based

reconstruction as ground truth. Figure 4.11 illustrates our reconstructions.
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Figure 4.11: Reconstructions of the Back sequence from [85]. Top row shows the point

correspondences. Different colours represent different patches. Middle and bottom

rows show the results from our 3D reconstruction. The reconstruction error is 15.2%.

4.6 Conclusions

In this chapter we analysed how several state of the art NRSfM methods that model

non-rigid objects globally behave when reconstructing sequences that are characterized

by strong and agile deformations. We formulated a hypothesis that such deformations

lead to overfitting when modelled globally and provided some experimental results

to support our claim. Following this view, we proposed that such deformations are

better modelled locally and thus proposed a piecewise approach for NRSfM which

divides the object into overlapping patches, solves NRSfM problem of reconstructing

each patch independently, and later stitches them back together into the 3D global
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reconstruction of the non-rigid object. We provided experimental results to justify the

Quad algorithm presented in Chapter 3 as our local NRSfM approach, although any

other NRSfM method can be used in our piecewise formulation.

We provided quantitative experimental results by using motion capture sequences

to measure the 3D reconstruction error. We compared with the state of the art global

methods and showed that our Piecewise-Quad algorithm outperformed these global

approaches, including the (global) Quad algorithm presented in Chapter 3. We also

provided qualitative analysis in challenging real sequences and compared our results

with the piecewise planar approach from Varol et al. [100], showing that the Quadratic

Deformation Model has an advantage of providing smoother reconstructions for the

kind of sequences such as the Paper sequence shown in Figure 4.10. A comparison of

the algorithms presented so far can be found in Table 4.2

Table 4.2: Summary of presented algorithms.

Algorithm Piecewise Model Initialization

Quad

(Chapter 3)
No QD

Rigid SfM

(from first few frames)

Piecewise-Quad

(Chapter 4)
Yes QD

Rigid SfM

(+ Isomap if known to be flat)

Throughout this chapter our piecewise formulation acted on a set of overlapping

patches that were generated by manually controlled regular division. Although experi-

mentally the reconstruction results with regular patches were good, it is clear that they

depend on a good choice of patch division. Intuitively, it is easy to see how regions

of different sizes and shapes might be a better fit to a generic non-rigid motion. In

Chapter 5 we propose a principled approach to determine the number and shape of the

patches without prior information on the deformable motion being observed.
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Chapter 5

Networks of Overlapping models for

Non-Rigid Structure from Motion

In Chapter 4 we saw how global methods for NRSfM have trouble reconstructing

non-rigid motion with strong deformations in multiple local regions, as they require

a substantial increase in the number of basis shapes used, which tends to cause over-

fitting. This limitation of global methods pushed us to develop a piecewise approach

for NRSfM where the key idea is to split the object to be reconstructed into overlap-

ping regions, each of which is modelled independently. Local models require fewer

parameters than global ones, and as each model is fitted to fewer points, they are both

easier to optimise and are less prone to over-fitting. Despite proving effective at recon-

structing highly deformable surfaces, this piecewise method suffers from an important

drawback. The problem of providing a principled formulation for the division of the

surface into models was overlooked, with the patches chosen by dividing the object

into regular overlapping patches.

In this chapter we formulate the problems of model assignment and model fitting

as minimizing a geometric fitting cost, subject to a spatial constraint that neighbouring

points should also belong to the same model. Under this formulation, we are able to

jointly optimise the assignment of points to models, and the fitting of models to points,
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to minimize this fitting cost. This gives a principled joint formulation for patch division

and 3D reconstruction which results in an adaptive method where the size and shape of

patches are optimized based on the observed 3D motion. This in turn leads to simpler

3D reconstructions with substantially lower 3D errors.

A fundamental requirement for piecewise reconstruction is the need for overlap

between models to enforce global consistency, and to encourage smooth transitions

between models. We capture this in our formulation by allowing feature points on

the border between models to have more than one label or, equivalently, to belong

to more than one model. Such overlaps are unsupported by current approaches that

follow the Expectation-Maximization (EM) [30] paradigm such as PEARL [53], or

K-means [61]. To meet this requirement, we will use the Networks of Overlapping

Models formulation developed by Russell et al. [77], which allows for points that lie

at the boundary of two models to have more than one label. This approach differs

from standard soft assignment clusterings [58, 61], in that: (i) neighbours adjoining

a point are encouraged to belong to the same models as this point; (ii) the sum of

fractional assignments over a point need not add up to 1; and (iii) it incorporates a

minimum description length (MDL) cost. This energy for fitting overlapping models

can be optimised effectively with a simple hill climbing approach which makes use of

a variant of the graph-cuts based algorithm α-expansion [77].

5.1 Graph-cuts Based Model Assignment

In these applications, rather than labels representing a fixed set of object classes or

stereo disparities, the labels represent parameters of a model that must be fitted to

the data. The parameters, and the assignment of points to an instance, are chosen to

minimize some form of fitting error, and to respect spatial constraints which say that

neighbouring points should normally belong to the same model, or that changes in

labelling should vary smoothly.
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Another problem arises in the fitting of models to their assigned points: The algo-

rithm PEARL [53], uses an EM approach which alternates between assigning points

to models, and fitting models to points (see also Algorithm 2). However, the presence

of the previously discussed pairwise terms of [10] which penalize curvature between

neighbouring points, means that fitting a model to its set of assigned points may in-

crease the cost of an assignment. Consequently, an optimal choice of model to mini-

mize the cost of assignment cannot be found. Because of this, in [10], re-fitted models

must be treated as new models rather than as a correction of the original model, and

this further increases the complexity of inference.

In our formulation we will use the approach by Russel et al. [77] which proposes

a simple alternative to the use of such ‘smoothing’ terms between points belonging to

separate models. Instead of relying on pairwise energy minimization terms to smooth

disparities, and fitting disjoint models to separate patches, Russellet al. [77] propose a

novel energy minimization framework which fits overlapping models. In this frame-

work, these smoothness constraints between multiple models, which are difficult to

optimise, are replaced with an analogous constraint that these models must explain

some of the same data. The resulting cost function can be easily optimised.

5.1.1 Minimum Description Length (MDL) costs

The approaches we have discussed propose new models to explain different regions of

the image, by selecting from the best set of proposals. Consequently, they are prone to

over-fitting, and often propose near identical models for disjoint regions of an image

that should share the same model. To overcome this, a penalty cost may be imposed,

based on the number of models present in an image [10, 29, 50]. This model cost may

be a monotonically increasing cost which is linear (proposed in [50] and used in [10]),

concave [29] with optimal moves proposed by α-expansion, or an arbitrary monotone

increasing with sub-optimal moves by α-expansion [57].
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Figure 5.1: A simple grid structured graph, and a possible assignment of models, that

satisfies constraints (5.2, 5.3). See Section 5.2 for more details. Best viewed in colour.

A significant contribution of these works, was in proving that these label set costs

could be efficiently solved with α-expansion. We make use of this in Sections 5.2 and

5.3.1 by showing how the costs induced by overlapping patches can be reformulated

as costs on the labels present in various neighbourhoods in the graph.

5.2 Formulating Multiple Model Assignment

To describe the problem of multiple model assignment, we require some notation:

Given a set of points P , for each p ∈ P we define a neighbourhood set Np of adjacent

points1. Assuming we have a set of models M, we wish to assign a subset of these

models mp to each point p ∈ P . This assignment should: (i) Cover the set P . Every

point p ∈ P , should belong to at least one model, i.e. mp 6= ∅. (ii) Adjacent models

must overlap i.e. they must explain some of the same points. (iii) Minimize the accu-

1For notational convenience, we assume that each point belongs to its own neighbourhood.
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Figure 5.2: A transformation of the higher-order potentials into a pairwise graph. The

top layer shows overlapping assignments of points (stars) to models (green and or-

ange), below this can be seen the pairwise form of the cost function. In the pairwise

form, we associate a single interior label with each point (again the stars), while the

circles are auxiliary binary variables that indicate if a point belongs to a particular

model. The strong black lines indicate active connections that currently force a binary

variable to turn on, because one of the neighbouring points has an interior label that

matches the model associated with a binary variable. To make the cost of the pairwise

graph correspond to the higher-order costs of Equation 5.5 we give a binary variable

that corresponds point p belonging to model α a cost of Up(α) if it is turned on and 0
if it is turned off.

mulated error. This error is defined as the difference between the predicted 2D location

of a point by its assigned models, and the observed position of the point (see Section

5.3.2 for details). As these terms are analogous to unary potentials, we will refer to the

cost of fitting model α to point p as Up(α). Note that Up(α) ≥ 0 ∀α, p. We will use m

to refer to an assignment of a set of models to every point.

A naive formulation of the overlap constraint would simply say that all neighbours

of a point must be assigned to the same models. However this constraint would prop-

agate throughout the neighbourhood graph and force all connected components to be

assigned to the same models.

Instead, we introduce the concept of interior points. As in topology, we define an

interior point q of a model α as one whose neighbours p must also belong to the model
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α, but not necessarily as an interior point 2. Just as we use m to refer to the model

assignment of every point, we use I to refer to the assignment of the interior of models

to each point. Unlike our earlier formulation, the constraint that a point p belongs to

the interior of model α does not force every other point to belong to α. However, as this

supports a degenerate solution in which every p is not an interior point, andmp = ∅ ∀p,

we enforce the constraint that every pmust be an interior point of some model, or more

formally, ∀p ∃α : p ∈ Iα. This constraint also guarantees that adjacent models must

overlap. See Figure 5.1 for an example of a valid labelling of such models.

As the accumulated fitting error is simply the sum over all points and models of the

unary term Up(α), we can write down a cost function C(·) to minimize. We seek

argmin
m∈(2M)P

C(m) =
∑

p∈P





∑

α∈mp

Up(α)



 , (5.1)

subject to the constraints

∀p ∈ P ∃α : p ∈ Iα, (5.2)

and

∀q ∈ Np ∧ q ∈ Iα =⇒ α ∈ mp. (5.3)

Although well formulated, this problem is extremely challenging to optimise. Typ-

ically, the inference algorithms used in vision function under the assumption that ex-

actly one model is fitted to a point, and this restriction gives a search space of size

|MP | versus the |(2M)P | of our formulation. Moreover, the techniques used to effi-

ciently solve large scale discrete problems such as α-expansion [15] or TRW-S [55] are

designed to optimise pairwise cost functions over an unconstrained label space, and

unable to optimise complex higher-order constraints such as (5.3) defined over large

cliques. To make the above cost function tractable, we require two results:

2The mathematical formulation of this constraint is given in eq. (5.3).
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Lemma 1. A minimal cost solution m exists such that for all p, there exists a unique

model α such that p ∈ Iα and p 6∈ Iβ, ∀β 6= α.

Proof. By definition, every valid solution satisfies the constraint that ∃α : p ∈ Iα.

Consider a valid solution of minimal cost, where p ∈ Iα, p ∈ Iβ and α 6= β. Removing

p from Iβ does not violate constraints (5.2) or (5.3) and does not increase the cost of

(5.1), which only depends on m. Ergo, it is also a valid minimal cost solution. As the

set of points and models we consider is finite, by repeated application of this technique,

we can arrive at a solution in which for all p, there exists a unique model α such that

p ∈ Iα and p 6∈ Iβ, ∀β 6= α. ⊓⊔

Lemma 2. If m is a minimal cost solution we can rewrite the cost C(m) as

C(m) =
∑

p∈P





∑

⋃

q∈Np
{α:q∈Iα}

Up(α)



 . (5.4)

Proof. As the error Up(α) ≥ 0, following (5.3), a minimal cost solution occurs when

mp has as few elements in it as possible i.e. mp =
⋃

q∈Np
{α : q ∈ Iα} for all points p.

This gives rise to the cost (5.4). ⊓⊔

Together, these two results suggest an optimisation strategy. We can eliminate the

terms mp from the equation and optimise over Ip in its reduced form, given in lemma

2. This results in an unconstrained cost function of the form

argmin
I∈MP

C(I) =
∑

p∈P





∑

⋃

q∈Np
{α:q∈Iα}

Up(α)



 . (5.5)

Although this cost is higher-order, it is much closer to standard optimisation problems,

and functions in a significantly reduced space. In fact, this cost function is equivalent

to a unique label set cost defined over each neighbourhood, where a cost Up(α) is

added for every new label α introduced to a neighbourhood. We will make use of this
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Figure 5.3: Evolution of the labels during α-expansion. The stars represent the points

we want to label. The circles represent the models. First, all points are labelled with the

blue model. Second, the green model is swept, changing the interior point assignment

according to the cost, and creating the overlapping region. Finally the orange label is

swept, ending the labelling process.

in showing that this reduced form energy can be optimised effectively using graph-cuts

based α-expansion (see Figure 5.3).

5.2.1 Adjusting the Framework

Encouraging Overlap

In practice the cost function we have described penalizes overlapping regions too

harshly for our purposes. Faced with a large region of overlapping models, our ap-

proach is likely to eliminate the overlap by removing one model entirely. To allow

large areas of overlap to form, we use a variant on the cost function of (5.1),

C(I,m) =
∑

p∈P



λ
∑

α∈mp

U ′
p(α) + (1− λ)

∑

α∈Ip

U ′
p(α)



 (5.6)

such that constraints (5.2, 5.3) hold, and λ ∈ [0, 1].

A small value of λ down-weighs the cost paid by overlapping regions relative to the

cost of assigning an interior point to a model, and allows for large regions of overlap

to form. Note that the new term (1 − λ)
∑

α∈Ip
U ′
p(α) can be seen as a unary poten-

tial defined over Ip, and its presence does not alter the reduction of the cost function
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described in section 5.2, nor the inference in section 5.3.1. Following the derivation

given in section 5.2, the reduced and unconstrained form of this weighted cost function

is

C(I) =
∑

p∈P



 λ
∑

⋃

q∈Np
{α:q∈Iα}

U ′
p(α) + (1− λ)

∑

α∈Ip

U ′
p(α)



 . (5.7)

Note that if λ 6= 1, the model fitting described in section 5.3.2 minimizes the

weighted image re-projection error, where the interior points of a model have a weight

of 1 and all other points a weight of λ. In all experiments, we uniformly set λ = 0.1.

Minimum Description Length (MDL) costs

As with the works discussed in section 5.1.1, we also wish to discourage over-fitting,

and to encourage disconnected regions to share the same model where appropriate.

This can be done with an MDL based cost over the set m. Using the same arguments

as in lemmas 1, 2 it can be shown that if the MDL cost is monotone increasing [57],

this is equivalent to an MDL cost over the set I, in a minimal cost labelling.

This gives the cost

C ′(I) = C(I) + MDL(I) (5.8)

where C is defined in equation (5.7), and MDL(·) is an MDL cost as described in [29,

50, 57].

Robustness to Outliers and Unwanted Model Overlap

Outliers may be handled in multiple ways. In particular it is not clear if a point should

be considered an outlier of just one model at a time, or of all models simultaneously.

We choose to describe points as outliers with respect to particular models as this brings

several advantages. Even though outlier classification is done per model, a point can

still be an outlier of every model simultaneously. This allows us to recover from erro-

neous point tracks, which would not be explained by any of the QD model patches.
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Most importantly, the ability to label points as outliers of individual models al-

lows us to avoid model overlap between neighbouring models that have too different

motion. For instance, it is possible that when building the neighbourhood structure

some points of the background are connected to points in the object surface. When

reconstructing such points with a model from the object, their reprojection error will

be high. By thresholding high 2D reprojection errors, we can label the background

points as outliers of object models, and the object points as outliers of the background

model. In this way, these models will not overlap, but points will still be reconstructed

by the models for which they are inliers.

In order to do this, we say that a point p, may belong to a model α with a cost of

Up(α) or it may belong to model α as an outlier, with a cost of lim. In point assignment,

this is equivalent to replacing the terms Up(α) in equation (5.5) with

U ′
p(α) = min(Up(α), lim). (5.9)

If a point belongs to a model as an outlier, we no longer fit the model to this point (see

section 5.3.2), but only to the set of inliers associated with the model.

5.3 Simultaneous Point Assignment and Model Fitting

We wish to find an optimal assignment of points to models and an optimal choice of

model parameters to explain their assigned points. Our proposed solution is in line

with EM approach [30] as we repeatedly alternate between finding a better assignment

of points which satisfies the constraints of section 5.2, with the fitting of models to

their assigned points. As discussed, this differs from conventional EM approaches in

that points are assigned to multiple models. The algorithm halts when the accumulated

error no longer decreases (see Algorithm 2). We discuss the efficient assignment of

points in section 5.3.1 and the fitting of the model to the points in section 5.3.2.
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∆ = −1;

while (∆ < 0) do

CurrentError = GetError();

Points = BestAssignment(CurrentModels);

CurrentModels = BestFit(Points);

NewError = GetError();

∆ = NewError−CurrentError;

end

Algorithm 2: Model Fitting following the EM paradigm [30].

5.3.1 Point Assignment

α-expansion functions by ‘sweeping’ out a model hypothesis α across a graph, poten-

tially replacing the current interior model γp, at any point p, with some pre-chosen α.

The best possible expansion move is chosen, and this process is repeated on the re-

sulting labelling, with different choices of α ∈ M, until convergence (see Figure 5.3).

To demonstrate that α-expansion over I can be efficiently computed, we show that

computing the optimal expansion move can be formulated as the minimization of a

pairwise sub-modular energy and consequently can be solved using graph-cuts.

Formulating the expansion costs as a pairwise energy requires us to restructure the

higher-order cost of (5.4) as a pairwise cost via the introduction of auxiliary indicator

variables. To do this we note that cost

∑

⋃

q∈Np
{α:q∈Iα}

Up(α) (5.10)

is an MDL or label-set cost on I within the neighbourhood Np i.e. if we consider the

cost (5.10) and the neighbourhood Np in isolation, we pay a fixed cost of Up(α) for the

presence of a particular label α in that neighbourhood. As this cost is monotonically

increasing and linear, optimal moves can be computed using the techniques of [29, 50].

As we must solve many of these overlapping problems simultaneously, we are unable

to use the efficient move proposal technique of [29], which halves the number of edges

required in the graph and instead use the standard construct shown in Figure 5.4.
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Figure 5.4: An example graph construct used to encode the costs of an α-expansion

move in a single neighbourhood about point p, if one point in the neighbourhood cur-

rently takes label γ, and two take label β. Values of the form: Up(α) indicate the

capacity of edges. If the minimum cut leaves variables attached to the sink (bottom)

these variables do not change label. If the minimum cut ties them to the source (top),

they transition to take label α. See Section 5.3.1 for more details.

5.3.2 Fitting the model

Similarly to our piecewise approach from Chapter 4, one of the clear advantages of

this new formulation is its independence from the model chosen to describe the defor-

mations of individual patches. However in Chapter 4 we justified our choice for the

QD model described in Chapter 3 as our local deformation model. Not only does this

model have physically grounded deformations that seem intuitively quite suitable for

local deformation modelling, but we also backed our claim with experimental results

on challenging deformable motion.

After the point assignment step, each patch will then be reconstructed using the

QD model based algorithm described in Chapter 3. In this formulation, the object is

represented by an augmented shape matrix Sq containing a linear, quadratic and cross-

terms shape matrices (see Equation 3.1). This matrix is entirely described by the choice

of the Linear Shape matrix S(L) which we have also named the rest-shape. This shape

matrix Sq represents the set of points we want to label, as Sq is estimated once before

the alternation and kept fixed. For more details on how to estimate Sq see Chapter 4.
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The QD model is then characterized, at each image i, by a rotation matrix Ri, a

translation ti, and the three deformation coefficient matrices Li, Qi and Ci. These coef-

ficients are fit to the points by minimizing the re-projection error

R(wij,qi, ti, Li, Qi, Ci, sj) = ||wij − ŵij||
2 = ||wij − ΠRi(qi) [Li Qi Ci] sj − ti||

2 ,

(3.12)

using the Levenberg-Marquardt non-linear least-squares algorithm (for more details

see Chapter 3), where wij is the image position of point j at image i and sj the j-th

column of Sq. As mentioned in Section 5.2, we will also use the re-projection error as

our unary potentials in the labelling problem. To keep notations consistent, we can now

formulate the cost of assigning point p to a specific model α with QD model parameters

{qα
i , t

α
i , L

α
i , Q

α
i , C

α
i } ∀i ∈ 1 . . . F , where F is the number of images in the sequence,

as:

Up(α) =
F
∑

i=1

R(wip,q
α
i , t

α
i , L

α
i , Q

α
i , C

α
i , sp) (5.11)

which now describes the re-projection error for point p and the model parameters of

label α. In practice, we use the adjusted cost used in equation (5.7) which accounts for

outliers and assigns different weights to interior points and points in the overlap.

Finally, the fitting of a model to all its assigned points is performed via bundle

adjustment optimising the cost defined in equation (5.7) for all the points in the model.

As done in Chapter 3 and Chapter 4 we also include temporal smoothness priors on

the model parameters.

Once all local regions are reconstructed they must be registered together into the

global 3D reconstruction of the non-rigid object (see Section 4.4.1). We note that in

this approach we do not perform the refinement step presented in Section 4.4.2, as it is

very time consuming in comparison and provides little to no benefit in terms of error

minimization.

115



5.3.3 Neighbourhood Structure

Based on the assumption that our graph should be approximately grid structured, we

used the following heuristic: We define an edge E as two points p1, p2, and the av-

erage 2D distance d,over the whole sequence, between point tracks. We first sort the

edges based on this distance, then we traverse this sorted list from smallest to largest,

symmetrically adding p1 to Np2 and p2 to Np1 , providing they do not: (i) increase the

size of a neighbourhood to more than 4; (ii) create a triangle, or cycle of 3 nodes in

the neighbourhood structure; (iii) are not overly large i.e. an edge should not span the

graph. Providing the overly large edges are discarded before sorting, the procedure is

relatively fast and takes approximately half a second to form a neighbourhood structure

of 900 points.

5.4 Experiments

We will evaluate our new algorithm on the Flag, Paper and Back data-sets already

presented in Chapter 3.

5.4.1 Flag sequence

We begin by providing a quantitative analysis on the motion capture Flag sequence,

which was already used in Chapter 4 (see Figure 4.1). In Figure 5.5 we show heat maps

of the log 3D error for each point, where the colours range from dark blue (lowest error)

to dark red (highest error), comparing the reconstructions obtained with the Piecewise-

Quad algorithm presented in Chapter 4, with the triangle soup method [90], and with

our formulation described in this Chapter, which we will name NOM-Picewise-Quad.

In Table 5.1 we show the numerical results of the relative 3D error, with 3D errors com-

puted as presented in Section 3.4. Note that even though we are using the Quadratic

Deformations (QD) model for our local model, as we had done in the Piecewise-Quad
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method, once we apply our principled formulation for the choice and optimisation of

the patches (NOM-Piecewise-Quad) the 3D reconstruction error drops by a factor of 2.

Our new approach also improves [90] by a factor of 1.6 which proves the effectiveness

of our approach.
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Figure 5.5: A heat map of the log 3D error, on frames 29, 236, and 441 of the flag

sequence. The errors vary from dark blue (lowest) to dark red (highest).

5.4.2 Back sequence

We remind that for this sequence we use the stereo reconstruction of [85] as the

ground truth 3D values for the points tracked. Figure 5.6 compares the reconstruc-

tions from NOM-Piecewise-Quad, triangle soup [90] and our Piecewise-Quad method

from Chapter 4, by showing the log 3D error as heat maps.

Interestingly, when we evaluated this new sequence with the triangle soup method

of [90], due to the locally non-rigid motion, most of the points and triangles were
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Figure 5.6: A heat map showing the reconstruction and the average log 3D error, on

frames 21, 91, 119 and 140 of the Back sequence. The errors vary from dark blue

(lowest) to dark red (highest). The second column shows the detail of the lower back,

the only area that could be recovered by [90].
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Table 5.1: 3D Errors (%) on the Flag and Back MoCap sequences.

Data set [36] [34] [90] Our work

Flag 17.09 3.25 2.63 1.59

Back - 15.20 - 9.17

discarded by the algorithm and the result was a very sparse reconstruction which we

were unable to evaluate numerically. Other numerical results for the 3D error can be

seen in Table 5.1.

5.4.3 Paper sequence

As was done in Chapter 4, we present a qualitative comparison in the Paper sequence

between our new NOM-Piecewise-Quad method, the piecewise planar method from

Varol et al. [100], and the triangle soup form Taylor et al. [90]. As also happened on

the Back sequence, emph triangle soup discarded some triangles as non-rigid, being

otherwise a comparable reconstruction. As seen in Section 4.5.3, the piecewise planar

algorithm [100] suffers from a lack of smoothness on the surface due to the choice of

model.

5.4.4 Choice of models and parameters

As noted previously, our algorithm can be integrated with many different choices of

model, and supports the fitting of multiple types of models in the same optimisation.

We integrate rigid, and QD model, fitting them as described in section 5.3.2. This is

done by alternating between assigning points and fitting models as described in Al-

gorithm 2, but with one important provision. Rather than just refitting one model to

each set of points, we fit two models, one linear and one quadratic. We then use the

optimisation strategy of Section 5.3.1, to pick a good assignment of models. To com-

pensate for the fact that the QD model always fit regions better than linear models we

impose a different MDL cost on each type of model. We use the weighting associated

119



R
aw

im
ag

es
P

la
n
ar

M
o
d
el

[1
0
0
]

T
ri

an
g
le

so
u
p
[9

0
]

Figure 5.7: Visualization of paper sequence. The 20th, 40th and 60th frames of the paper

sequence. The graphics in the two bottom rows show the reconstruction of [100] and

[90] (black) overlaid with our results (green). The mesh overlaying our work and of

[90] is the neighbourhood structure of section 5.3.3, shown to clarify th structure.

with the Bayesian Information Criterion [29], which suggests that as the intrinsic di-

mensionality of a quadratic model is three times that of linear model, its MDL penalty

should also be 3 times as much. As the ideal choice of absolute MDL cost, and lim

(the truncation value) varies with the amount of noise in the data-set, these are set on

a per sequence basis. The initial set of proposed models was formed by fitting a linear

model and a QD model to each point and its 9 nearest neighbours and then running the

model assignment procedure.

Execution of the graph-cuts stage of our algorithm took approximately 1 second;

the fitting of models which was performed with unoptimised Matlab code took ap-

proximately 10 minutes. As the code typically took about 3 iterations to converge, the
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average run time for fitting around 900 points over 500 frames (the flag sequence) was

about 30 minutes. By way of comparison, triangle soup [90] took approximately six

hours on the same sequence.

5.5 Conclusion

In this Chapter we showed how the NOM framework from Russell et al. [77] can be

used as a principled method for adaptive division of a non-rigid object into overlapping

patches. These patches can then be reconstructed by our piecewise algorithm presented

in Chapter 4 (Piecewise-Quad). The NOM framework formulates the patch division

problem as a labelling problem, with the additional property that it enforces patches

to overlap, as it is required by our reconstruction algorithm. In our combined frame-

work (NOM-Piecewise-Quad), each label is the set of parameters of a local quadratic

model (the choice for the QD model was justified in Chapter 4), and the cost is the

re-projection error of the 3D reconstruction with such parameters. By minimising the

same cost both in the labelling/patch division step and the patch reconstruction step, we

formulate this problem as an alternation optimisation where reconstruction and patch

division are performed in turns, which is guaranteed to converge to a local optimum.

We provided experiments on the motion capture data-sets that were used in Chap-

ter 4. Our experiments showed how the NOM-Piecewise-Quad principled formulation

for patch division enhances the 3D reconstruction results achieved when using only the

Piecewise-Quad algorithm and a manual regular patch division. Additionally, we com-

pared with with other piecewise approaches from Varol et al. [100] and Taylor [90],

showing that our method provides better quantitative results in these data-sets. We also

presented a qualitative comparison on real image sequences.

A summary of algorithms proposed so far is presented in Table 5.2.
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Table 5.2: Summary of presented algorithms.

Algorithm Piecewise Model Adaptive Initialization

Quad

(Chapter 3)
No QD No

Rigid SfM

(from first few frames)

Piecewise-Quad

(Chapter 4)
Yes QD No

Rigid SfM

(+ Isomap if known to be flat)

NOM+Piecewise-Quad

(Chapter 5)
Yes

QD

(supports multiple types)
Yes

Rigid SfM

(+ Isomap if known to be flat)

1
2
2



Chapter 6

Dense Non-Rigid Structure from

Motion

Non-Rigid Structure From Motion (NRSfM) algorithms have reached a degree of

maturity that has allowed them to move away from reconstructing simplistic defor-

mations and step up to the challenge of modelling strong, realistic non-rigid motion

such as those exhibited by the human body [37] or by a flag waving vigorously in the

wind [90, 77].

However, all existing NRSfM approaches are sparse – they scale poorly and can

only reconstruct a small number of salient points that are tracked in advance from

frame to frame. In this respect, they lie far behind their rigid Structure from Motion

(SfM) counterparts which are even capable of a real time dense 3D reconstruction of

static scenes that provides accurate depth information for every pixel in the image [67].

Regarding dense 3D reconstruction of non-rigid surfaces from image sequences,

Brand’s work on 3D morphable models from video [16] is the approach that comes

closest to achieving this goal. The algorithm performs simultaneous 3D reconstruction

and optic flow estimation by applying the low rank constraint to the 2D correspon-

dences. The strength of this approach is that it does not need 2D tracking data to be

provided in advance. Instead, the only inputs to the 3D reconstruction are the image
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intensities and their spatial and temporal gradients. The algorithm then computes both

the 3D reconstruction and the 2D matching for a sparse set of P points selected in a

reference frame. A small regular image patch R is used around the selected points

to compute the derivatives and a pure translation model is used for the patch at each

point. The focus of this work is on being able to track and 3D-reconstruct non-rigid

points with little texture. The results of Brand’s approach on a video sequence of 61

frames of an actor talking while moving the head are shown in Figure 6.1.

However, Brand’s approach has several drawbacks. First, the optimisation does not

include any pairwise smoothness terms. Secondly, although in principle the approach

could be applied to all the pixels in the reference frame, this is never demonstrated in

practice and instead only a small set of sparse pixels (typically about 100) is recon-

structed. Only the sparse points shown in Figure 6.1(b) (90 in this case) are actually

reconstructed while the visualization in Figure 6.1(a) is the result of texture mapping

the interpolated sparse 3D reconstruction.

(a) (b)

Figure 6.1: (a) One of the images in the input sequence, with the corresponding inter-

polated 3D reconstruction from [16]. (b) Set of P sparse points used with examples of

3 different deformation modes represented by red, green and blue arrows. Figure from

Brand [16].

As discussed in Chapter 2, a further drawback of almost all existing 3D recon-

struction algorithms is that they either rely on a known 3D template [21, 83], or need

either to estimate a shape basis [18, 96], or rest-shape (Chapters 3 to 5). This reliance

on known templates frequently imposes limitations on the kinds of sequences that the
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method can be applied to. For example, our approaches discussed over Chapters 4

and 5 perform Isomap upon the first few frames of the video sequence. This relies

upon two assumptions: firstly that camera motion in the first frames is substantially

greater than object deformation, and secondly that the object being reconstructed can

be unwrapped by Isomap i.e. that it is a developable surface.

In this chapter we will address these limitations and propose an algorithm for dense,

template-free non-rigid reconstruction from video. While this work is the first to per-

form dense NRSfM, in the sense that every pixel is treated as an individual point, there

has been substantial progress in both dense structure from motion (SfM) and sparse

NRSfM. Dense approaches to Multi-view stereo (MVS) [40, 84], piecewise rigid [41]

or live dense reconstruction [67] are able to acquire impressive and accurate 3D models

of rigid scenes.

The reconstruction of non-rigid surfaces from monocular sequences remains sig-

nificantly behind in terms of performance, due to its ill-posed nature – it is equivalent

to 3D reconstruction from a single image which cannot be solved without the use of

additional priors on the deformations or the camera motion. Our contributions can be

summarised as:

A 3D template-free approach: Inspired by Marr’s observation that reconstruction

from a single camera is essentially a 2.5D problem [65], we recast the problem of

NRSfM as the reconstruction of a set of overlapping flexible surfaces; We compute a

piecewise mapping ft(x, y) which maps from a location in a reference image R
2 into

a 3D location R
3, at time t. This removes the need for a known 3D template or rest-

shape and allows the use of one of the images in the sequence as the reference for the

R
2 → R

3 mapping.

Dense NRSfM: Building on the work presented in Chapter 5, we adopt a piecewise

quadratic approach for 3D reconstruction. The primary bottleneck in the previously

presented approaches is the 3D reconstruction of individual quadratic patches. This

involves solving a non-linear least squares optimisation problem to minimise the im-

125



age re-projection error of all the image points belonging to a patch simultaneously. In

existing implementations this scales poorly with the number of points. Here, we take

advantage of the fact that the predicted location of each point is completely governed

by the surface parameters. This observation allows us to integrate over points belong-

ing to the patch, and derive a more efficient cost function that does not use the location

of the points directly.

This allows us to replace this computationally intensive optimisation, with a fast,

linear time, pre-processing step followed by the minimisation of a quadratic problem

of fixed complexity. As a result of these simplifications, the final run-time of our dense

NRSfM algorithm is extremely low, and takes approximately 10 minutes to reconstruct

a 90 frame sequence of 76, 000 pixels. This compares favourably with existing sparse

methods: Our method from Chapter 5 took around 30 minutes to generate a sparse

reconstruction (fewer than 0.25% of the points) of the same sequence, while [90] took

approximately 7 hours to do the same.

Finally, we provide novel techniques for optimisation: we show how to initialise

the Quadratic Deformation (QD) model to avoid poor-quality local minima; and how

globally optimal solutions to local sign flip ambiguities can be found efficiently, using

pre-existing techniques.

This results in a dense template-free approach that provides complete 3D-models

and makes use of all the pixels in the image, bringing NRSfM a step closer to its dense

rigid SfM counterparts [40, 84, 41] (see Figure 6.2).

6.1 Problem Formulation

In this chapter we will follow the same inference presented in Chapter 5 where we

defined the problem of piecewise 3D reconstruction of deformable surfaces as an al-

ternation between (i) assigning points to local QD models and (ii) fitting of models to

the points. This hill-climbing approach is initialised with an excess of models to avoid
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Frame 1 Frame 40 Frame 70 Frame 70 side view

Varol et al. [100] Taylor et al. [90] Russell et al. [77] Our Method

Figure 6.2: Top: Input images from the paper sequence. Middle: Our reconstruction.

Bottom: Reconstructions with state of the art NRSfM sparse methods [100, 90, 77].

poor local minima.

Our proposed speed-ups to the optimisation of the QD models allows us to use

completely dense optical flow as an input resulting in the first approach to NRSfM to

estimate completely dense 3D models. Additionally, our approach does not rely on a

pre-computed rest shape – instead we directly estimate a mapping from a location in a

given image to its 3D location in any frame.

We also modify the assignment stage, by imposing an additional form of pairwise

regularisation. This results in an energy to be optimised that contains a unary term

expressing the cost of assigning points to models, measured as image re-projection er-

ror, a hard constraint enforcing that neighbouring models must overlap, a soft pairwise

regulariser, and a minimum description length (MDL) prior [57, 28] used to favour

more compact representations that use fewer models.

6.1.1 Global Model Assignment

Consider a sequence of images I1, . . . , In where Ir is chosen as the reference frame.

The input to our algorithm is the dense optical flow field from the reference frame Ir
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input: Dense optical flow;

Initialise models with an excess of candidate regions;

Fit homographies to models (sec 6.2.1));

Perform overlapping model expansion (sec 6.1.1);

∆ = −1;

while (∆ < 0) do

CurrentError = GetError();

Fit QD model to regions (sec 6.2.3);

Perform overlapping model expansion (sec 6.1.1);

NewError = GetError();

∆ = NewError−CurrentError;

end

Flip Patches (sec 6.3.1);

Stitch Patches;

Algorithm 3: Dense NRSfM

to every frame in the sequence. This gives us dense 2D trajectories for every point

visible in the reference frame over the entire sequence. We denote this set of points P .

For each image point p we define a 4-connected neighbourhood structure Np.

Given a set of candidate QD models M (parametrised according to the definition in

Equation 6.5) we will estimate the subset of models mp that each point p ∈ P belongs

to. We seek the best assignment of a set of models M to every pixel p ∈ P in the

image m = {m1,m2, . . . ,mP} such that it: (i) minimises a geometric fitting error and

(ii) guarantees that adjacent patches overlap, or more formally, that they share points.

Defining the individual cost associated with assigning point p to a fixed model α as

Up(α), Chapter 5 estimated the labelling m by minimising the following error

argmin
m∈(2M)P

C(m) =
∑

p∈P





∑

α∈mp

Up(α)



+MDL(m), (6.1)

We seek a low cost solution that satisfies the constraints

∀p ∈ P ∃α : p ∈ Iα, (5.2)
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and

∀q ∈ Np ∧ q ∈ Iα =⇒ α ∈ mp. (5.3)

Note that this differs from a conventional Markov Random Field in that each point

p ∈ P is being assigned a set of models mp ∈ 2M, rather than a single model m ∈ M.

The requirement for adjacent models to overlap is expressed in the second constraint

if a point p is an interior point of a model α (denoted as p ∈ Iα) its neighbours must

also belong to that model. Constraint 5.2 enforces that every point must belong to the

interior to at least one model.

In practice, our approach from Chapter 5 relied upon neighbouring points being

sufficiently far apart as to have substantially different tracks. This created an implicit

form of regularisation, that smooths the boundaries of patches. When the tracks are

densely sampled from the image, changes between adjacent tracks are much less pro-

nounced and we require additional regularisation to select large regions as belonging

to a single model, and to prevent the selection of oddly shaped patches which over-fit

to the optical flow.

To do this, we extend cost 6.1 with pairwise potentials defined over the assignment

of points to the interior of models. As these pairwise potentials must be defined over

sets of labels rather than labels, they take a non-standard form. If we denote yp as the

assignment of points to the interior of models, our pairwise potentials can be written

as:

ψp,q(yp,yq) = wp,q

∑

α,β∈M,

α 6=β

∆(α ∈ yp ∧ β ∈ yq), (6.2)

where ∆(·) is an indicator function taking value 1 if statement · is true, and 0 other-

wise, and wp,q is an image dependent weighting of the pairwise potentials based on the
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difference in appearance of the pixels p, and q. This gives a cost of the form:

argmin
m∈(2M)P

C(m) =
∑

p∈P





∑

α∈mp

Up(α)



+MDL(m) (6.3)

+
∑

p∈P

q∈Np

ψp,q(yp,yq)

To optimise over this cost function, we note that a minimal cost solution will have

each point assigned to the interior of exactly one model. This follows from the proof

presented in Chapter 5 that a cost of the form 6.1, will have a minimum in which

each point is assigned to the interior of at most one model, and the fact that cost 6.2 is

sparsity inducing and will further penalise points belonging to the interior of more than

one model. Thus, we will follow the same procedure and minimise 6.1 using a variant

of α-expansion [15] defined over interior labels. As we know a priori, each point

belongs to the interior exactly one model, the costs of 6.2 can be written in the same

form as a generalised Potts model [14], and we augment our previous graph construct

with the conventional pairwise potentials used in α-expansion, and solve using graph-

cuts [14].

The initial set of candidate models M is proposed by sampling the image points

densely and fitting a model to a small patch around each point. We initialise with an

excess of models to avoid convergence to a local minimum, and rely on the MDL prior

to remove unnecessary models.

6.2 Template-free Non-rigid Structure from Motion

With the exception of [90] and [100], existing works on NRSfM formulate recon-

struction as finding either a sequence of consistent interpolations between static basis

shapes [18, 96, 69], or a sequence of deformations of a template [21] or rest shape

(Chapter 3 to 5).
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As discussed in Chapter 3, the QD model assumes we have prior knowledge of a

static rest shape which can be matched under local quadratic deformations to its current

shape. To satisfy these assumptions, our approaches from Chapter 3 to 5 required that

the deformable shape remains static for the first few frames of the film, while the cam-

era moves. The estimation of the rest shape lies outside the shape fitting optimisation,

and if it fails, 3D reconstruction is not possible.

The insight which allows us to eliminate the rest shape is the idea that, in many

ways, the QD model is over-expressive. Not only does it encode the location of an

observed point in 3D, but it also allows you predict the trajectory of unobserved points,

lying in the interior of an object in 3D. For reconstruction from a single view point,

this is unneeded. The only question we are interested in asking is:

Given a point p in the reference image, what is its 3D location at time t?

As first observed by Marr [65], this question is inherently a 2.5D one, and best an-

swered by a set of functions ft(x, y) that map from the image plane R
2 into a 3D

location R
3, at time t. If the object we are modelling has hard edges, ft is unlikely to

be smooth, while if we are modelling multiple disjoint objects, ft need not be contin-

uous. However, given dense real world data, ft will be piecewise smooth, and can be

approximated by decomposing the image plane into a set of regions, and using a local

quadratic function to approximate ft for each region.

We will keep making use of the QD model as people are highly sensitive to sudden

changes in the gradient of reconstructed surfaces, and to avoid these sudden changes,

we must use piecewise models who’s gradient can vary. QD models are the simplest

polynomial with a variable gradient, and their use provides a balance between robust-

ness via not over-fitting, and the avoidance of visible artefacts in the reconstruction.

The problem of simultaneously estimating local QD model and regions is challeng-

ing. However,we have already shown in Chapter 5 that the combination of graph-cuts,

and greedy model fitting are well suited for such problems.

131



6.2.1 Quadratic Local Model Fitting

As seen in Chapter 4, shape fitting for each individual patch is formulated as a problem

of non-linear least squares regression. The objective, which we seek to minimise, over

all points belonging to the model, takes the per-point form:

Up(α) =
F
∑

i=1

R(wip,q
α
i , t

α
i , L

α
i , Q

α
i , C

α
i , sp), (5.11)

where R is the re-projection error:

R(wij,qi, ti, Li, Qi, Ci, sj) = ||wij − ŵij||
2 = ||wij − ΠRi(qi) [Li Qi Ci] sj − ti||

2 .

(3.12)

Since in this chapter we seek a mapping ft(x, y) from location in a reference image R2

into a 3D location R
3, we will implicitly assume sp = [x, y, x2, y2, xy]T ∈ R

5 as there

is no need to define the terms corresponding to the z coordinate of the shape. Li and Qi

will now be 3× 2 matrices, while Ci is a 3-vector. However, for the sake of simplicity

we will keep the same notation as this problem is equivalent to fixing the z coordinate

in the formulation of previous chapters to a constant value. We note that x and y are

now the image coordinates of point p in the reference image.

We choose these components of A = [LQC] by initially approximating the 2D tracks

belonging to each patch as being the orthographic projection of a local rigid plane.

Then we define these components of A as corresponding to the mapping from x and

y in the reference image to coordinates of the rigid plane. Unlike template based

approaches, we allow this method to fail and occasionally to produce bad estimates.

Any bad models proposed will have a high re-projection error, and will be discarded

by the graph-cuts optimisation.
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6.2.2 Initial Model Estimation

To initialize our deformation coefficients, we start by applying [75] to the tracks con-

tained in local 10 by 10 pixel patches, which returns an embedding of those tracks into

2 dimensions. Lets denote this embedding as I′j = [x′j; y
′
j]
T for every point j, whereas

the coordinates of point j in the reference image are denoted by I = [xj; yj]
T . Since

I′ was computed just for a small patch of 10 by 10 pixel, it is not practical to use

this matrix to compute our augmented shape matrix S, in line to what was done with

Isomap in Chapter 4. As our model fitting approach requires to evaluate each model

on every point we want to reconstruct, it is advised to have a common representation

for all the points, which is chosen to be their 2D coordinates in the reference image.

We thus use the information in I′ as a way to initialize the first two rows of the linear

deformation matrix Li at each frame, by computing the 2 × 2 such that I′ = L1:2,: I,

where L1:2,: denotes the sub-matrix of the first two rows of L, and the frame index i

was dropped for notation simplicity. The rigid motion of each patch {Ri, ti} is then

initialised using [68].

Treating A as fixed, the initial motion and planar shape parameters for each patch

are refined using bundle adjustment [99] to minimise the following cost function:

min
Ri,ti,x,y

F
∑

i=1

P
∑

j=1

||wij − ΠRiAi[xj yj]
T − ti||

2. (6.4)

Both the warping techniques of [75] and bundle adjustment scale poorly with the

number of points in the models. However these optimisations are done once for each

initial patch proposal, which are usually very small and consequently does not slow

the overall optimisation significantly.
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Figure 6.3: The use of local quadratic deformations with a rest shape is more robust to

arbitrary choices of patches, while our surface based models require a good assignment

of points to models Leftmost: A deformation can be represented by a single quadratic

deformation of the rest shape, that maps from R
3 → R

3. Rightmost: Modelling the

deformation as a set of surfaces requires points to be correctly assigned to three sepa-

rate models. Describing the object as a set of overlapping smooth surfaces becomes an

increasing accurate approximation as we increase track density.

6.2.3 Fast Dense Fitting of the Quadratic Model

The QD model of an individual patch α can be parametrised as α = {Aα, Rα, tα}.

Adopting index j ∈ α for points in the reference image belonging to model α, we use

wij to denote the projection of point j in frame i. We define the per-frame/model cost

C i,α as

C i,α(Ai, Ri, ti) =
∑

j∈α

||wi,j − ΠRiAisj − tt||
2, (6.5)

being the aggregate cost for all the points belonging to model α in frame t. Evaluating

the cost in this form requires computing a cost for every combination of point j and

frame i. In the dense case the number of points to reconstruct can be several orders of

magnitude higher than in the sparse cases studied on previous chapters, rendering such

algorithms impractical. However, our formulation ensures that the matrices S for every

patch are constructed from the reference image and are thus a constant factor in our
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optimisation. Making use of this observation, it is possible to redefine Equation 6.5 as

C i,α(Ai, Ri, ti) =
∑

j∈m

||wj||
2 + tr(RA(

∑

j∈m

sjs
⊤
j )(RA)

⊤) +
∑

j∈m

||t||2 (6.6)

− 2〈
∑

j∈m

wj, t〉 − 2tr((
∑

j∈m

wjs
⊤
j )(RA)

⊤)

+ 2〈
∑

j∈m

sj, (RA)
⊤t〉,

where, the summation over j can be separated from non-rigid motion parameters in R,

A and t, revealing such constant factors (for details on the derivation, see Appendix A).

This new formulation allows us to pre-compute the summations over j before optimis-

ing the model parameters, which in turn makes our optimisation step independent of

the number of points to reconstruct. In the case where P ≫ F , the usual scenario

for the dense 3D reconstruction problem, the efficiency gained in the optimisation step

overcomes the added cost from performing the precomputation of the terms depending

on j. It is this observation that provides the key to performing dense NRSfM.

6.3 Post Processing

As each patch is reconstructed in its own reference system we must resolve ambiguities

inherent to orthographic cameras: translation in the Z axis and reflection ambiguities.

6.3.1 Flip Resolution

As discussed in Section 4.4.1, the 3D reconstruction from an orthographic camera

carries ambiguities regarding the relative translation along the Z axis, and a sign am-

biguity on the reconstructed depths, making it impossible to determine if an object

is either convex or concave without prior knowledge. Although solving this problem

is NP-hard, in Section 4.4.1 a greedy heuristic algorithm was proposed to solve this

problem with satisfactory results when considering sparse data. However, we experi-
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enced problems when using it with our dense patch reconstructions and thus resort to

a different approach to solve this problem. The main difference between the sparse

and dense cases is in the real surface area corresponding to the overlapping regions.

Considering the object area corresponding to a two point width overlap in the sparse

case, to achieve the same overlap area in the dense case far more points would be

needed, resulting in a prohibitive increase in complexity in the NOM approach. By

relying on smaller overlap area, it becomes harder to disambiguate the correct flips,

and so we must use a method that takes more information from neighbouring patches

into account.

Taylor [90] proposed solving the NP-hard problem of flip resolution using a com-

bination of fusion moves [59], and heuristic move proposals. Following Taylor [90]

we consider a flip cost F (z):

argmin
z∈{−1,+1}M×F

F (z) =

∑

i∈F

∑

α,β∈M

∑

j∈α∩β

||∇i
α(j)zα,i −∇i

β(j)zβ,i||
2
2 +λ

∑

α∈M

∑

i∈F,

i≥1

||∇i
α(j)zα,i −∇i

α(j)zα,i−1||
2
2

where M is the set of models, F the set of frames, and z describes the set of proposed

flips or sign changes, j ∈ α∩β is a point j lying in the overlap of the points belonging

to models α and β, and ∇α(j) is the gradient of the depth of point j according to the

quadratic model α.

While, as Taylor [90] noted, this formulation of resolving patch flips is NP-hard,

in practice we observed that a globally optimal solution was always found by using a

combination of QPBO [11] with the probe technique [12], as implemented by [56].

Owing to the relatively small number of patches1, a consequence of active assign-

ing of points to patches, using the techniques of [77], and a better choice of optimisa-

tion technique, flip resolution took approximately one minute to converge.

1In a typical problem, see Section 6.4, a reconstruction uses fewer than 70 active models.
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6.3.2 Global Shape Ambiguities

The globally optimal solution found in the previous section can still suffer from ambi-

guities. In [90], the authors observed that it was not possible to resolve the ambiguity

between an ‘S’-shaped developable surface, and a concave or convex surface, and sug-

gested user intervention to resolve this ambiguity (see Figure 6.4). These ambiguities

are a limitation of the orthographic camera model, and thus require prior knowledge to

be resolved. Instead of relying a direct user intervention, the desired shape by applying

a global sign flip to the depth of the points in the object as a post processing step.

However, in the case the object deforms by going from convex to concave (or vice-

versa) our prior will guide the deformation back to the convex state after reaching the

“middle” point. In this case, the user would be require to define which section of

the sequence the object remains convex, and which section the object will be turned

concave via means of the depth sign flip.

Figure 6.4: Left: The monotonic increasing solution found using graph-cuts. Right:

The solution found with convex priors.

In this section, we will focus on the gradient with respect to x, ∇x. Naturally,

the same potentials would also be generated for the gradient with respect to y, and

summed.

Two possible approaches suggest themselves for encouraging solutions found to be

convex. We could modify the pairwise costs to be of the form

||∇i
x,α(j)zα −∇i

x,β(j)zβ − k||22, (6.7)
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where k expresses a preference that the gradient of model α be k smaller than the gra-

dient of model β. This matches the definition of convexity, as a twice-differentiable

function is convex if and only if its second derivative is non-negative, and an appropri-

ate ki,j encourages the change of gradient between overlapping patches to be negative.

Alternatively, we may use a unary potential to express a weak expectancy that the

gradient with respect to x of those patches on the left side of the image to be increasing

and decreasing on the right hand side of the image. These potentials, based on the

gradient of a Gaussian, take the form:

U(ziα) = −γ(j − µ) exp(−σ2(j − µ)2)∇i
αz

i
α (6.8)

where γ, and σ are arbitrary constants governing the strength and range of the

prior. Of the two approaches, the pairwise convex prior was found to overly smooth

most sequences, if it was strong enough to enforce convexity. Instead the second unary

based prior was uniformly imposed on all sequences.

Resolution of the translation/depth ambiguity We follow our approach described

in Chapter 4 and use the shared points in the overlapping region to align the patches

along the Z axis since their 3D coordinates should agree. We perform a per frame

greedy stitching where the depth of single patches are iteratively fixed to minimise the

sum of squared distances between the depths predicted by the current patch and the

predictions of the fixed patches.

Interpolation Even after performing flip resolution and depth alignment, local mod-

els still disagree about the precise location of points in the overlap, and making a hard

assignment of point to models leads to discontinuities in the surface. To eliminate dis-

continuities in the reconstruction, we estimate the depth of each point as a weighted

average between the depth estimate of each model. These per model weights are cho-
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sen as the inverse of the L1 distance of the point we are averaging from the nearest

point belonging to the interior of the model, with the distances being computed per

patch, using the fast distance transform of [38].

6.4 Experimental evaluation

Our approach to dense NRSfM requires dense pre-computed tracks. We make use

of multi-frame optic flow algorithms [42, 92] to extract these from video. One of the

major difficulties we faced was in how to evaluate the quality of dense NRSfM, as there

are very few videos of non-rigid moving objects with dense ground truth available. As

such, the majority of our evaluations are qualitative rather than quantitative.

Figure 6.2 shows 3D reconstructions of the Paper sequence of [100] and a com-

parison with existing sparse reconstructions. In Figure 6.6 a reconstruction of a face

sequence from the TV series LOST is shown.

We evaluate our algorithm on a synthetic variant of the 540-point 3D Flag se-

quence [34]. In [42], the authors synthetically interpolated this sequence with b-splines

to create a denser 9,620 point sequence. This sequence is projected into a top-down

view, and we reconstruct this dense sequence in 3D. Renderings of the ground-truth

and our reconstruction from a novel-view point can be seen in Figure 6.5. We obtain

4.72% error on this dense sequence, vs. the reported errors of 3.25% of our approach

from Chapter 4, 2.63% of [90], and 1.59% of our approach from Chapter 5 on the

sparse sequence.

Even though our dense NRSfM algorithm takes advantage of more data points (i.e.

more information) its 3D reconstruction error is 2 to 3 times higher than the sparse

state of the art approaches. As we move from sparse to dense reconstructions, such

increase in 3D reconstruction error can originate from a failure in one or several of our

algorithm components. Possible causes for failure could be:

1. Poor quality 3D reconstruction of each patch by the model fitting step.

139



Frame 1 Frame 23 Frame 277 Frame 444

Figure 6.5: Reconstruction of the dense 9,000 point flag sequence based upon a top

down orthographic projection. Top: Ground truth motion of the flag. Bottom: Our

reconstruction.

Frame 1 Frame 4 Frame 18 Other views

Figure 6.6: LOST sequence. Despite restricting the algorithm to a sub-sequence

containing only minor rotations (this is required to preserve optic flow), we are able to

reconstruction the face including the nose.

2. Overfitting of the QD model due to complex object boundaries.

3. Difficulties in correctly resolving the convex/concave and depth ambiguities dur-

ing patch registration.

To better understand the cause of this discrepancy, our experiments aim at isolating

the contributions of these three factors. We perform a side by side comparison of the

dense NRSfM algorithm presented in this chapter and the sparse NRSfM algorithm

presented in Chapter 4. To simplify, we begin our analysis by reverting to the regular

patch division proposed in Chapter 4.
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Figure 6.7: Left: Illustration of the division into 36 patches of the Flag sequence used

in Chapter 4, where each colour represents a different patch. Right: Illustration of the

dense Flag sequence with the patch division corresponding to the sparse division of

Chapter 4.

Figure 6.8: Comparison of the 3D reconstruction error per patch, normalized by the

Frobenius norm of the full data matrix.

Patch reconstruction Given the regular division of Figure 6.7, each dense patch is

initialized and reconstructed with the dense formulation presented in this chapter. It

is not expected that every patch should have the same 3D reconstruction error for the

sparse and dense cases. Such measures should, though, be comparable. As expected,

the use of dense information generally provides a small boost in the quality of patch

reconstruction, although this need not always be the case (see Figure 6.8 for a per patch

comparison of the 3D reconstruction error and Table 6.1 for per point mean error and

standard deviation, normalized by the Frobenius norm of the full data matrix).
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Table 6.1: Summary of the 3D reconstruction errors per patch for the sparse and dense

flags.

Sequence
Average

Error (%)

Standard

Deviation (%)

Maximum

Error (%)

Minimum

Error (%)

Sparse

Flag
0.0103 0.0031 0.0195 0.0054

Dense

Flag
0.0080 0.0040 0.0221 0.0040

Patch division using NOM formulation To test if our formulation for adaptive di-

vision leads to overfitting, we reconstruct the patches as described in this chapter, but

use the ground truth data information to resolve a single concave/convex ambiguity,

and the patch depth ambiguity. Table 6.2 presents a summary of the comparison of

the alignment methods for five different reconstruction scenarios for the dense Flag

sequence: simple reconstruction of the regular patch division from Chapter 4; a single

iteration of our dense NRSfM algorithm presented in this chapter after initializing with

the regular patches from Chapter 4; multiple iterations of our dense NRSfM method

after initializing with the regular patches from Chapter 4; and the complete pipeline

presented in this chapter for two different values of the MDL cost – 106 and 105.

As can be seen in Table 6.2, when correctly aligning the dense patches the re-

construction is considerably lower. Additionally, the lowest 3D reconstruction error

reported in Table 6.2 (1.18%) is comparable to our state-of-the-art sparse reconstruc-

tion results presented in Chapter 5 (1.59%). We conclude that our formulation provides

very accurate 3D reconstructions of the local regions. However, the alignment of the

patches into the final reconstruction is deficient, as it performs poorly when compared

to the sparse case.

Patch alignment and stitching Comparing the patches obtained by regular division

(from Chapter 4) and the patches obtained by the adaptive division with the NOM

142



Table 6.2: 3D reconstruction error of our registration algorithm vs. alignment to the

ground truth data.

Reconstruction

Conditions

Our Alignment

3D error (%)

Ground Truth Alignment

3D error

Regular Patches

(No patch optimisation)
3.55 2.13

Regular Patches

(single NOM iteration)
4.12 2.12

Regular Patches

(NOM patch optimisations)
4.14 1.71

Dense NRSfM

(MDL = 106)
8.42 2.93

Dense NRSfM

(MDL = 105)
4.72 1.18

formulation, the later have a much smaller area of overlap even when increasing the

size of the local neighbourhoods. Consequently, we must analyse how well our align-

ment methods scale to dense data, and how the area of overlap influences the final 3D

reconstruction results.

When aligning the reconstruction of dense patches given by regular division (with

large overlap area), our 3D reconstruction error for the dense case (3.55%) is compa-

rable to the value obtained for the sparse algorithm in Chapter 4 (3.25%). This shows

that our method has no problem scaling to dense patches, provided the overlapping

area remains the same.

In the second row of Table 6.2 we show the effect of transforming the patches ob-

tained from the regular division into a division returned by the NOM formulation. The

effect of the reduction in the overlapping area is an immediate increase in the 3D recon-

struction error. This is caused by the difficulty in correctly aligning the patches, given

such a small area of overlap. Still, as the alignment to the ground truth data shows, our

local reconstructions retain the same quality, with the 3D reconstruction error practi-

cally unchanged. These results, together with the 3D reconstruction errors found in
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other scenarios shown in Table 6.2, show that our alignment algorithm breaks down in

performance if the area of overlap greatly decreases, as the available information for

resolving the ambiguities is too small.

Conclusions of sparse vs dense algorithm comparison After analysing our three

possible causes for the breakdown in performance of our dense NRSfM algorithm

presented in this chapter, we can safely conclude that, individually, every step of our

previous sparse formulation can scale to the dense case. We obtained very accurate

local 3D reconstructions, with errors comparable to the state-of-the-art sparse cases

when ground truth alignments are provided. However, the area of overlap returned by

the NOM formulation proved to be too small for our proposed algorithm to resolve

the patch ambiguities and correctly stitch them together. Our experiments show that

correct alignment is possible if the area of overlap is increased. A possible solution to

this breakdown in performance, without changing the NOM formulation, is to perform

the multiple model assignment based on superpixels, instead of each pixel in the im-

age. This would simultaneously reduce the number of required variables, decrease the

run-time of the optimisation and increase the overlapping area of neighbouring model

assignments.

6.5 Conclusion

In this chapter we present an approach to perform dense non-rigid structure from mo-

tion, and we show how the QD model can be used for template-free reconstruction.

In breaking this new ground, we found several technological hurdles that had to be

overcome.

We modified the formulation presented in Chapter 5 to improve the regularisation

of patches formed from dense tracks; and proposed a novel pre-processing step to

allow the fast fitting of quadratic models; we showed how local minima in QD model
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may be avoided by better initialisation; and we showed how the problem of patch

resolution, previously been solved using heuristics can be solved exactly using existing

techniques.

Our results show a substantial qualitative boost over existing sparse reconstruc-

tions, and gives vivid reconstructions on real world sequences. However, our reported

error on the dense Flag sequence is 3 times higher than the state of the art sparse

methods. After comparing the dense and sparse algorithm step by step, we showed

that locally our reconstructions are still very accurate. However the breakdown in

performance arises from poorer patch registration and stitching, which is caused by

a relative smaller are of overlap between the patches when compared to the sparse

case. A solution to this problem can be to perform our formulation on superpixels,

effectively decreasing the number of point to label and increasing the area of overlap.

A summary of the algorithms proposed throughout the chapters is presented in

Table 6.3.
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Table 6.3: Summary of presented algorithms.

Algorithm Piecewise Dense Model Adaptive Initialization Missing Data

Quad

(Chapter 3)
No No QD No

Rigid SfM

(from first few frames)

Can lose tracks in Sq

Cannot incorporate new tracks

Piecewise-Quad

(Chapter 4)
Yes No QD No

Rigid SfM

(+ Isomap if known to be flat)

Can lose tracks in Sq (per patch)

Cannot incorporate new tracks

NOM+Piecewise-Quad

(Chapter 5)
Yes No

QD

(supports

multiple

types)

Yes
Rigid SfM

(+ Isomap if known to be flat)

Can lose tracks in Sq (per patch)

Cannot incorporate new tracks

NOM+Piecewise-Rigid

(Chapter 7)
Yes No Rigid Yes Rigid SfM Can lose and incorporate new tracks

Dense-Piecewise-Quad

(Chapter 6)
Yes Yes QD Yes

Per patch Unwrap Mosaic

+

BA on affine motion

Can lose tracks in Sq (per patch)

Cannot incorporate new tracks

1
4
6



Chapter 7

Networks of Overlapping Models for

Articulated Structure from Motion

One problem of particular interest in the computer vision community is human motion

analysis. Estimating the 3D pose of the human body purely from image data has im-

portant applications ranging from bio-mechanics to cinema post-production, computer

gaming, animation and human behavior analysis. Following the theme of this thesis,

we focus on the specific case of full 3D reconstruction using only the 2D positions

of P interest points tracked over time, along a sequence of F images acquired under

orthographic viewing conditions.

Most algorithms for 3D pose estimation of articulated bodies require prior knowl-

edge of a model of its underlying structure, usually given by a kinematic chain [86,

19, 89], which requires manual intervention to create. This high level of intervention

is undesirable in many circumstances. For example in animation or gaming, an ac-

tor should be able to pick up and interact with a rigid object, effectively augmenting

their skeletal structure, without the need for a graphical artist to generate a new model.

Given this predefined 3D skeleton model, these approaches track the articulated mo-

tion, estimating the joint angles, but do not usually recover the full 3D shape of the

object. Instead, we take a different approach and demonstrate how the estimation of
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the full 3D shape, motion, and underlying skeletal structure of one or more articulated

bodies can be derived directly from 2D correspondences in a video sequence acquired

with a single camera without the need for any prior models.

Articulated motion is typically formulated as a special case of NRSfM where the

non-rigid bodies are seen as a set of rigidly moving links connected by articulations

(or joints). Previous approaches to recovering both articulated structure and motion

purely from 2D tracking data include factorization methods [106, 98] which model

articulated motion as a set of intersecting motion subspaces. These methods require

two steps: first a motion segmentation algorithm separates the 2D trajectories into

different articulated parts; and second a factorization approach is used to estimate joint

positions and articulation axes. Yan and Pollefeys [106] follow this with a third step

that builds the kinematic chain automatically from the segmented subspaces. Each

articulated part can be recovered as a rigid shape using the factorization method [93].

Such pipeline approaches are inherently unstable. A failure in any of the early

stages of reconstruction cannot be recovered from, and such difficulties are often un-

apparent until the final reconstruction fails. As an alternative to this multi-stage for-

mulation, we propose an algorithm which performs a simultaneous decomposition of

the articulated body into its constituent parts and reconstructs the full 3D shape of the

object, revealing its skeletal structure.

Following the trend of energy-based multiple model fitting described in Chapter 5,

we tackle articulated reconstruction from 2D tracks using a piecewise approach. We

keep the assumption that an articulated object can be approximated by a set of rigid

segments linked by articulations. We also assume that these articulations can be de-

scribed as the overlap between rigid links. The key idea is to segment the object into

its constituent rigid segments, while enforcing overlap between neighboring segments.

Similarly to other piecewise approaches [100, 90, 22, 34, 77], segments are recon-

structed independently and points in the overlapping regions are then used to stitch

them together to create a full 3D articulated body.
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Figure 7.1: Example of the overlapping model assignment. Each circle represents a

point. Each colour represents an interior point lable. Red lines represent the neigh-

bourhood connections. Coloured ellipses represent the overlapping model assignment.

As seen in Chapters 4 to 6, piecewise solutions have been applied with success to

deformable surface reconstruction [100, 90, 34, 77]. In this chapter we demonstrate

that they are equally applicable to the problem of Articulated Structure from Motion

(A-SfM). Our approach distinguishes itself from these as, on articulated data, it esti-

mates semantically meaningful rigid parts and gives the location of joints, rather than

returning surface regions. Compared to the algorithms described in Chapter 4 and

Chapter 5 this approach does not require an initial estimate of a rest shape.

As discussed in Chapter 5, the strength of our approach [77] comes from viewing

both the decomposition into parts and the 3D reconstruction as the optimisation of a

single cost function, namely the image re-projection error, subject to a spatial con-

straint that neighbouring points should also belong to the same model. This gives us

the ability to switch back and forth from the assignment of points to parts, and fitting
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a rigid model to the parts, in a hill-climbing approach, allowing us to recover from

previous mistakes and refine our current model estimates as we go.

Two significant advantages of our formulation over previous motion segmentation

algorithms [101, 32] are: (i) that it does not require the number of motions to be

known in advance; (ii) we exploit the spatial prior that points which are physically

close are likely to belong to the same model. Our only necessary assumptions are that

we find a minimum of three tracked interest points on each rigid part, which is needed

to perform 3D reconstruction, and that at least one point is located in the intersection

of body parts — this last constraint is due to the fact that we rely on points belonging

to multiple models to guarantee the spatial consistency of the global 3D shape. Both

of these constraints are guaranteed by our inference model, provided that each point

has at least two neighbours, and that the graph of points in the human skeleton is path

connected. See section 7.1.1 for more details.

7.1 Problem Formulation

The typical framework of A-SfM methods stems from the Tomasi and Kanade [93]

paradigm: an articulated object described by a set of P point tracks, observed by an

orthographic camera in a sequence of F image frames. We assume this articulated ob-

ject can be accurately approximated by a set of rigid segments that form an articulated

forest1. We make no assumption about the number of segments of the object nor which

feature points belong to each segment. Our goal is to recover the 3D coordinates of the

corresponding 2D point tracks, given the assumption of articulated motion.

Given either the model parameters, or the assignment of points to models, the prob-

lem of reconstruction is straightforward. Given an assignment of points to rigid models

1Again, this is a simplifying assumption, the fact that the graph formed is a forest (i.e. contains

no cycles) is not used in either the fitting of points to models or the assignment of models to points.

However, the absence of cycles does guarantee that there are no impossible to resolve constraints, when

stitching the parts together.
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(body parts), the 3D coordinates of those points can be reconstructed using SfM ap-

proaches such as [64]. Similarly, if we knew the rigid motion parameters of each

model (rotations and translations), segmentation could be easily performed by using

the technique described in Chapter 5 to find which overlapping sets of points better fit

the available models. This naturally suggests a hill climbing approach to the problem,

where we by turn optimise model parameters and point assignment. Normally, the

presence of many local optima is a concern with hill climbing approaches, as it makes

such schemes highly dependent on the choice of initialisation. However, several recent

works, including [77, 53], have shown that graph-cut based methods can be initialised

with an excess of models making them much more robust to the choice of initialisation.

7.1.1 Assigning Points to Links

We consider a set of point tracks P , and assume that tracks spatially adjacent to one

another are connected in a graph structure. We express this by writing that each point

track p is connected to a set of neighbours Np (see section 7.1.3 for details on how the

neighbourhood is built). This problem follows the formulation of the NRSfM prob-

lem described in Chapter 5: given this graph and a set of models M, we choose an

overlapping assignment of models to points m = {m1,m2, . . . ,mP} by optimising

the following cost function:

argmin
m∈(2M)P

C(m) =
∑

p∈P





∑

α∈mp

Up(α)



+MDL(m), (6.1)

subject to the constraints

∀p ∈ P ∃α : p ∈ Iα, (5.2)

and

∀q ∈ Np ∧ q ∈ Iα =⇒ α ∈ mp. (5.3)
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where mp is the subset of models assigned to point p and Up(α) is the cost associ-

ated with assigning point p to model α (computed as the re-projection error defined

in Equation 7.2). To avoid oversegmentation, we add a minimum description length

prior [57, 29] MDL(m), which penalises the total number of active models2 used to

explain the data (for more details refer to Section 5.2.1).

The notation p ∈ Iα is short-hand for “p is an interior point of model α”, where,

as in topology, an interior point of a model or set α is defined as one whose neigh-

bours must also belong to α. As such, constraint 5.3 defines an interior point; while

constraint 5.2 states that every point must be an interior point of at least one model.

As discussed in Chapter 5, this differs from a conventional MRF formulation in

that: firstly, while a particular point must belong to at least one model, it may belong

to multiple models if it lies at the border between two models; and secondly, two

neighbouring points in the graph must always share at least one model in common –

this condition is enforced by constraints (5.2 and 5.3). This condition that neighbouring

points must share models functions as a smoothing constraint, eliminating outliers

and encouraging the use of a single model to explain spatially coherent regions. To

optimise this problem we use the NOM formulation presented in Section 5.2.

7.1.2 3D Reconstruction of Rigid Segments

As is common on the A-SfM framework, we will use an orthographic camera model, a

good mathematical approximation of the imaging process when the relief of the object

is small considered to its distance to the camera — a valid assumption in the case of

the human body (see Chapter 2). The problem of reconstructing a rigid object from an

orthographic image stream was reviewed in Chapter 2. We now summarise the most

important steps, and refer the reader to Section 2.1 for more details.

The 2D coordinates of a rigidly moving object Sr viewed by an orthographic cam-

2We use the term active model, to refer to a model which has at least one point belonging to it.
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era are defined by:

Wi = ΠRiSr + Ti, (2.3)

where Π is the 2 × 3 orthographic projection matrix, Ri is a 3 × 3 rotation matrix (i.e.

RiR
T
i = RTi Ri = I3×3) and Ti is a 2× P matrix describing the image translation. In the

case of full data, if the image coordinates Wi are registered to the image centroid, the

translation can be eliminated, resulting in W̃i = Wi − Ti. Stacking the registered image

coordinates of all P points in all F frames gives the registered measurement matrix

W̃ =



















W̃1

W̃2

...

W̃F



















=



















ΠR1

ΠR2

...

ΠRF



















[

s1 s2 · · · sP

]

= MSr, (2.4)

Estimating the model parameters R and Sr for each rigid segment can be formulated as

the factorization problem [93] which minimizes image re-projection error:

argmin
R,Sr

F
∑

i=1

∣

∣

∣

∣W̃− ΠRSr

∣

∣

∣

∣

2
s.t. RiR

T
i = R

T
i Ri = I3×3. (7.1)

In this thesis, instead of using the classical solution to factorization [93], we solve the

problem via the Bundle Adjustment [99] non-linear optimisation approach (for more

details see Section 2.2.1). We initialise our Bundle Adjustment formulation using the

solution of Marques and Costeira [64] which has the advantage of providing rotation

matrices that are guaranteed to lie on the manifold of matrices with orthonormal rows,

and allows us to deal with missing data.

As was done in Equation 5.11 for the QD model on the NRSfM case, for the A-SfM
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problem we define Up(α) as the re-projection error of a rigid model α:

Up(α) =
F
∑

i=1

P
∑

p=1

R(wip,q
α
i , t

α
i , s

α
p )

=
F
∑

i=1

P
∑

p=1

∣

∣

∣

∣wip − ΠR
α
i (q

α
i )s

α
p − tαi

∣

∣

∣

∣

2
,

(7.2)

where qα
i is the quaternion 4-vector parametrizing the 3×3 rotation matrix Rαi at frame

i, sαp = [XpYpZp]
T are the the 3D coordinates of points p in a local referential, and tαi

is the 2-vector containing the translation component at frame i.

As discussed in Section 4.4.1, when performing piecewise reconstruction the global

3D object is recovered by aligning the shared points between segments and imposing

the constraint that they must have the same 3D coordinates. This step is recurrent in

piecewise reconstruction methods [34, 77, 90, 100]. In this case, the heuristic algo-

rithm presented in Section 4.4.1 provided satisfactory results, for which it was chosen

over the more complex algorithm from Section 6.3.1.

7.1.3 Guaranteeing a Valid Reconstruction

Our approach has two requirements, (i) to perform a reconstruction at least 3 points

must belong to each active model, and (ii) to reduce the sign, or depth ambiguity,

to a single binary decision per skeletal structure, models must be path connected by

overlapping regions i.e. if model A intersects with B and B intersects with C, there is

only one sign ambiguity to resolve for the entirety of A, B, and C.

Both of these properties are guaranteed by our inference approach. Property (i)

holds for any neighbourhood structure in which every point has at least two neighbours.

For a model α to be active, it must be an interior model of at least one point, i.e. α ∈ Ip.

If this point p is neighbours with at least two points q and r then α ∈ mq and α ∈ mr

by constraint (5.3) ⊓⊔.

Property (ii) holds providing the underlying neighbourhood structure is path con-
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nected. This is a consequence of the fact that, if two points p1 and pn are path connected

by the sequence {p1, p2, . . . , pn}, the models α1 and αn are also path connected by the

sequence of models {α1, α2, . . . , αn} where αk ∈ Ipk . This last statement holds as

constraint (5.3) guarantees that the interior models of neighbouring points must over-

lap ⊓⊔. Neither of these properties need hold in a conventional MRF, such as those used

by [53] where each point only belongs to exactly one model, and an active model may

only have one point assigned to it.

Choice of neighbourhood structure

The neighbourhood structure used by our algorithm depends on both the distance mea-

sure chosen to tell how far apart points are, and a graph-building technique such as

k-nearest neighbours, or minimum spanning tree. As we only want a plausible neigh-

bourhood, and are uninterested in the physical or geodesic distance between points, we

take the distance between points xt and yt in frame t as:

dt(xt,yt) = w1||xt − yt||+ w2||ẋt − ẏt|| (7.3)

i.e. as a weighted average of velocity and image distances. We take the final distance

d(x,y) over all frames as the median of the 5% of greatest distances dt(xt,yt) divided

by the number of frames both tracks occur in simultaneously.

Our choice of measure is robust to outliers, and separates tracks that (a) are spa-

tially distinct; (b) move with different velocity; or (c) rarely occur in common frames.

To guarantee that properties (i) and (ii) hold, some care must be taken when choos-

ing the neighbourhood structure of the graph. For example, the use of k-nearest neigh-

bours where k ≥ 2 would guarantee property (i), while use of a minimum spanning

tree would guarantee property (ii). There seems to be no standard method that guaran-

tees both required properties, and does not lead to an over-connect graph, so in practice

we use 6-nearest neighbour as an initialisation and add to it additional minimum cost
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edges, until we force the existence of at least two paths that do not share edges between

every pair of points.

The existence of such paths connecting all points could potentially create problems

in the reconstruction. For instanece, if our scene consists of different objects, these new

paths would join them into the same neighbourhood structure. Given that our method

relies on overlapping patches, these neighbourhood edges could force different objects

to overlap, at the expense of the quality of the 3D reconstructions. Creating such edges

can be avoided by only connecting points where the egde length is above a certain

treshold, which coud be adaptively estimated from the data (e.g. the maxium allowed

egde length for the additional paths could be the average edge length created by the 6-

nearest neighbour connections plus 3 standard deviations). When this results in disjoint

sets of points, we treat each of the sets independently, and continue to create the two

paths between all pairs of points in each set. However, it is possible that such treshold

is not enough to separate different objects in the neighbourhood structure. In such

cases, we rely on the objects having different motion, such that the outlier rejection

step would be able to correctly ‘break’ such connections and not create the overlap.

In pracitce, the addition of paths connecting every point was shown to be a per-

form well in the recovery from sparse point track data where the 6-nearest neighbour

edges were not enough to correcly connect points belonging to the same articulated

structure, while our smoothness constraints and outlier detection step prooved suitable

in separating the few undesirable connections that appeared in our tests.

Initialisation

To initialise our approach we must propose a set of possible labels and corresponding

model parameters to each of the P points. To avoid becoming stuck in a bad local

optimum, we initialise with an excess of models, choosing the initial set M by fitting

one model to each point p ∈ P , and all of its neighbours. Given these initial labels the
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Images and Neighbourhood(2) Reconstruction(3) Skeleton(4)

Segmentation(1)

Figure 7.2: Reconstruction results from the Dance dataset [106]. From left to right

(1) Original image and point location and decomposition). (2) Generated neighbour-

hood structure using the technique described in section 7.1.3. (3) Resulting decompo-

sition into rigid overlapping models and estimated 3D reconstructions. (4) Estimated

skeletal structure, and model assignment. Note that each node represents an inter-

section between two rigid models, and each edge the connecting model between two

points. The location of the nodes is found by averaging all points which lie in the

intersection.

initial model parameters are recovered by using the factorization approach of Marques

and Costeira [64].

7.1.4 Missing Data and Multiple Articulated Objects

Neither the graph-cut based inference of section 7.1.1, nor the reconstruction algo-

rithm of 7.1.2 requires complete point tracks, and can be applied to partial tracks. The

only difficulty with the use of partial tracks is the generation of their neighbourhood

structure. As some points are only visible for a short period of time, they may well

be linked to the wrong section of the body, for example, points on the arm may be

mistakenly linked to those on the torso, and while this may give a good reconstruction

for the frames in which the points are visible, in other frames it can leave artefacts. To

avoid these difficulties, we include points with more than 30% missing data directly in

our framework, but give them an empty neighbourhood. Because of the MDL prior,

these points without neighbours will belong to a common model used elsewhere in
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Our approach Yan and Pollefeys [106]

Figure 7.3: Two frames showing a comparison of our approach vs [106] on the digger

dataset [106]. Compared to [106] we successfully segment the third digger at the back

(magenta points), and decompose the right most digger into 3 components rather than

the two found by [106]. See discussion in section 7.2.

the reconstruction. The procedure is equivalent to assigning partial tracks to the active

model which minimises the re-projection error.

7.2 Experimental Results

We evaluate our approach on some of the more challenging articulated sequences in

the literature. First, against the Dance (Figures 2.13 and 7.2), Digger (Figure 7.3),

and Toy (Figure 7.4) sequences from [106], and further on the Marple 13 sequence

from [20] (Figure 7.7), the Cat sequence from [73] (Figure 7.5) and the Skin sequence

of [71] (Figure 7.6), which has 3 dimensional ground truth. Despite the relatively poor

quality, and under connected neighbourhoods (in both human cases, the torso can be

separated into two sections linked only by a single point); the neighbour structure is

sufficient to guarantee properties (i), and (ii) of section 7.1.3, and the decomposition

into models and final reconstruction is convincing. Compared to [106], our assignment

of points to models is much smoother, with no outliers. This can be attributed to our

requirement that adjacent models must overlap, which functions as a smoothing term,
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Frame 1 Frame 48

Frame 1 (side view) Frame 1 (front view) Frame 48 (side view)

Figure 7.4: Decomposition and reconstruction of the Toy sequence from [106]. The

two parts which move separately are successfully identified, while the ‘tail’ of the dig-

ger which is static with respect to the movement of the main body remains unseparated.

Lines are added to improve visualization of results. See section 7.2 for more details.

suppressing outliers. Our failure to identify the head, as a model separate from the

body in the Dance dataset (Figure 7.2) can be attributed to the same smoothing. In this

sequence, the points on top of the head are incorrectly tracked, and [106] labels them

as belonging to the torso (see Figure 2.13). With few points belonging to the head, and

the points surrounding it belonging to the torso, its segmentation is suppressed.

We perform substantially better than [106] on the Digger dataset (Figure 7.3),

showing our approach to be both more robust to outliers (c.f . blue point bottom row,

far left), and more discriminative, as we both detect the motion of the bucket on the

rightmost digger, and successfully separate movement of the third digger in the back-

ground. In this sequence, we followed [106] in thresholding the size of connecting

edges – allowing multiple disconnected objects.

The dataset from [20] provides point tracks in several sequences of shots from de-

tective stories. In Figure 7.7 we show qualitative results of our method on the Marple

13 sequence using the provided tracks as input. Background tracks were removed

using the segmentation results from [20]. Our method is once again able to provide
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Figure 7.5: First row: Tracks for the Cat sequence provided by [73] – tracks estimated

with [20]. Second, third and fourth rows: respectively the frontal, side and top views

of the 3D reconstruction. Points are shown with the colour value of the first image

when they are tracked.

reliable segmentation and reconstruction of the motion of the head, torso/neck, arm

and forearm.

The Cat dataset from [73] is particularly challenging, as half of the head of the cat

is occluded in the initial frames of the sequence. In addition, there are several points

in the background that are stationary, which create outliers in the tracks. We show our

reconstruction results in Figure 7.5, where the head of the cat is fully reconstructed

and correctly merged into its body. The background as merged to the body of the cat

as there are several static points in both cases and so it is impossible to segment them.

The Skin dataset from [71] was acquired using a Motion Capture setup consist-

ing of 12 infra-red cameras tracking the 3D positions of approximately 350 reflective
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Figure 7.6: Top Our segmentation and reconstruction results on the dataset [71]. (a)

Comparison between original ground truth (green) and 3D reconstruction (black) from

a novel view point. (b) Generated neighbourhood structure using the technique de-

scribed in section 7.1.3. (c) Resulting decomposition into rigid overlapping models

and estimated 3D reconstructions. (d) Estimated skeletal structure from different view

points. Note that each node represents an intersection between two rigid models, and

each edge the connecting model between two points. Bottom Reconstruction and seg-

mentation results using [106]. (e) and (g) Comparison between ground truth (green)

and 3D reconstruction (black) using 14 and 15 segments respectively. (f) and (h) Seg-

mentation results shown on GT data, with points discarded by RANSAC represented

as black crosses.

markers – resulting in 467 tracks, some full and some partial. We project the 3D se-

quence using an orthographic camera model, and use our method to recover the 3D

coordinates. Our results are shown on the first two rows of Figure 7.6. We use all

tracks, full and partial. Measuring the error as the Frobenious norm of the difference

between ground truth and reconstructed 3D points, divided by the Frobenious norm

of the ground truth, we obtain a mean reconstruction error of 7.13% on this sequence.
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Crucially, our algorithm does not misclassify any points, therefore there are no outliers

to remove via RANSAC. Ignoring the hands (see Figure 7.6 column 1), which leaves

357 tracks, the error falls to 4.87%.

The third row of Figure 7.6 shows the segmentation of [106]. As only their spectral

clustering code was available and not their automatic rank detection, we tested multiple

parameters for the rank, number of neighbours, and number of segments and chose

those that provided best results. RANSAC was then performed on the segmentation

results to remove outliers. To measure the error we aligned the reconstruction of each

segment with the corresponding ground truth points, bypassing the estimation of the

kinematic chain as no code was available. This method can only use full tracks.

Figure 7.7: Segmentation and 3D reconstruction results from the data-set Marple

13 [20] using the provided tracks.

In Figure 7.6 (third row) we show two of the best results achieved with [106].

Using rank 6, 14 neighbour points and 14 segments (Figure 7.6, (e) and (f)) 195 out of

the 219 full tracks available were reconstructed with a reconstruction error of 5.09% –

over all 219 tracks the error was 6.15%. Note that the resulting segmentation has the

right knee as an extra object, combines the left foot with the left lower leg, and merges

the inner region of both legs. Using rank 6, 18 neighbours and 15 segments (Figure 7.6,

(g) and (h)) [106] reconstruct 204 out of the 219 points, (15 points were rejected by

RANSAC), with a reconstruction error of 6.96% or 8.01% over the complete tracks.

This segmentation also combines part of both legs as one object, merges each foot

162



with its corresponding lower leg and treats the right elbow as a new object. As we

aligned each segment obtained with [106] with ground truth, their error measures are

artificially low and relied upon knowledge of the true 3D positions.

7.3 Conclusion

In this chapter we have shown how the NOM formulation presented in Chapter 5 can

be used in a data-driven approach for the problem of simultaneous segmentation and

3D reconstruction of articulated motion. Without any assumptions about the skele-

tal structure of the object we reconstruct, we are able to obtain both high quality 3D

reconstructions, and a semantically meaningful decomposition into articulated parts.

Compared to existing motion segmentation approaches, we strongly benefit from spa-

tial smoothing priors, which both increase our robustness to outliers, and make it easier

for us to recover semantically informative segmentations.

We improve substantially on previous articulated SfM methods which were only

demonstrated on simple two part articulated sequences with full data, by demonstrat-

ing our complete system on challenging full body human articulated sequences and

providing a principled solution to dealing with missing data.

We performed 3D reconstructions on a range of real sequences where we compared

qualitatively with existing methods for articulated motion reconstruction. These exper-

iments showed how versatile our approach is, reconstructing not only human motion

but also other articulated objects such as construction diggers. Additionally we show

qualitative results on two realistic sequences, where a significant amount of missing

tracks and outliers are present.

Quantitative analysis is performed on a full human body motion sequence where

ground truth was provided by a MoCap system. Our results showed improved 3D

reconstruction performance over the state of the art in addition to a more plausible

segmentation of the rigid parts.
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A summary of our proposed methods is presented in Table 7.1.
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Table 7.1: Summary of presented algorithms.

Algorithm Piecewise Model Adaptive Initialization Missing Data

Quad

(Chapter 3)
No QD No

Rigid SfM

(from first few frames)

Can lose tracks in Sq

Cannot incorporate new tracks

Piecewise-Quad

(Chapter 4)
Yes QD No

Rigid SfM

(+ Isomap if known to be flat)

Can lose tracks in Sq (per patch)

Cannot incorporate new tracks

NOM+Piecewise-Quad

(Chapter 5)
Yes

QD

(supports multiple types)
Yes

Rigid SfM

(+ Isomap if known to be flat)

Can lose tracks in Sq (per patch)

Cannot incorporate new tracks

NOM+Piecewise-Rigid

(Chapter 7)
Yes Rigid Yes Rigid SfM Can lose and incorporate new tracks

1
6
5



Chapter 8

Conclusions

This thesis tackled the problem of non-rigid structure from motion (NRSfM): recover-

ing the 3D geometry of a deformable scene observed by a single moving camera. In

particular, we focus on the case where the observed scene consists of an object with

strong local deformations, such as a flag waving in the wind, and studied the limita-

tions of state of the art methods in such scenarios. We argue that methods that model

highly deformable objects globally fail to reconstruct such scenes due to the high com-

plexity of the observed motion. In particular, methods based on the low-rank basis

shape model of Bregler et al. [18], which have dominated the NRSfM literature in the

last decade, overfit to the data due to the high number of bases need to deal with such

complex deformations.

As part of a recent trend in the NRSfM community, we argue that reconstructing

such complex deformations is a problem better solved by modelling objects locally.

These methods [100, 90, 22], like the solutions we propose in Chapters 4 to 6, per-

form 3D reconstruction in a piecewise fashion where each local region is reconstructed

independently and later merged into the global object reconstruction.

Typically, piecewise methods divide the scene into local regions by requiring man-

ual input [100] or relying on the chosen local model to provide a implicit division such

as Taylor et al.’s triangle soup approach [90]. Instead, we show how the division into
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regions (or patches) and local reconstruction can be formulated in a principled way.

We formulate the patch division and local reconstruction problem as an alternating

approach, where the same geometric cost – the image re-projection error of the 3D

reconstruction – is minimised. This is possible by formulating the patch division prob-

lem as a labelling problem, with the additional requirement that neighbouring patches

must overlap. This is needed to provide cues to merge the individual patches in 3D,

which is done by enforcing consistency between the reconstructions of overlapping

regions.

In addition to this framework, we provide our own local reconstruction model – the

Quadratic Deformation (QD) model – and support our choice with a set of experiments

on synthetic and real data, comparing to benchmark methods based on the low-rank

shape basis model and other piecewise approaches [100, 90]. Finally, we show how

the reconstruction with this model can be scaled to dense data, where instead of re-

constructing a set of sparse feature point tracks we work directly on multi-frame optic

flow [42, 92].

Our piecewise approaches to non-rigid reconstruction proposed in Chapters 3 to 6

can easily deal with points that go out of view throughout a sequence by only consider-

ing the costs where image data is available in the non-linear least-squares optimisation.

However, incorporating new points into the reconstruction that were not initially

in the neighbourhood structure requires future improvements. When considering the

dense NRSfM approach described in Chapter 6, the observation that allows for the

pre-computation of the shape and image factors also limits us to reconstruct only the

points that are visible in the first frame. When that is not the case, the number of tracks

is different at every frame, meaning a different shape and image factor is needed, thus

preventing their pre-computation.

This limitation has forced us to work on relatively short sequences since most

tracking methods drift over a long period of time. Moreover, situations where ini-

tially occluded parts of the object might become visible, due either to external or self-
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occlusions or where a new object comes into view are frequent in real life sequences.

It is thus desirable to account for new tracks in our formulation, as it would add ro-

bustness and increase the applicability of our NRSfM solution to more challenging

sequences.

While our approach to 3D reconstruction of articulated structure (see Chapter 7)

addresses this problem by incorporating a strategy to add new points into the neigh-

bourhood structure to allow their reconstruction and we have provided experimental

evaluations on a challenging real-life sequence of a cat, the non-rigid case requires

more careful attention. Future work will address this problem by analysing how new

tracks can be incorporated into existing models. The image location of these new tracks

in the frame they first appear is a strong cue as to which existing model is should be-

long. After assigning these new tracks to existing models, we have two options to deal

with the reconstruction problem in the current framework: either we compute different

sets of transformations relative to different images for every model, which is unlikely

to be efficient; or we use the model parameters based on known tracks to compute a

reverse warp of new tracks towards our reference image, enabling us to keep referring

the model parameters to the same image, which results in a more efficient solution.

Computing a reverse-warp is not trivial, and thus other constraints to help solve the

problem need to be investigated.

Contemporary NRSfM methods rely on previously computed point tracks or op-

tic flow, and assume tracking to be an independent problem. However, it is common

in the tracking community to use motion subspace constraints [52, 97, 42] to provide

better estimates for feature tracks or multi-frame optic flow. Similarly to Brand’s ap-

proach for the low-rank shape basis model [17], reconstruction and tracking could be

integrated into the same framework. Following the success of our simultaneous patch

division and reconstruction, it would be advantageous to include the tracking step in

the same optimisation, where the tracking of points in the image sequence is guided

by the 3D non-rigid geometry of the scene, and vice-versa. In our approach, we have
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shown how the key to solve this problem is the formulation of a common geometric

cost for both the patch division and reconstruction step. Further work in this direction

would require the design of common geometric cost that would unify piecewise track-

ing, segmentation and reconstruction which would allow to perform 3D reconstruction

directly from the raw video instead of from point matches.

Our principled formulation for simultaneous segmentation and reconstruction can

also be linked to Malik’s ‘Recognition, Reconstruction and Reorganisation’ paradigm

for vision [62]. In this light, our approach can be seen as performing simultaneous

reconstruction and reorganisation by optimising a single geometric cost to solve both

problems. It then becomes clear that our approach is lacking the recognition step. An

interesting thread for future research is how to perform recognition based on the re-

covered 3D shape, motion and scene segmentation. For instance, when applying the

approach described in Chapter 7, the set of segments and the underlying 3D skeleton

can be used as a cue to recognise the type of object being observed. On the other hand,

knowledge about the class of object being observed could constrain the reconstruction

and segmentation process. As an example, when dealing with human motion, such

knowledge could be used to guide the segmentation process to provide an articulated

tree that matches a prior model of human articulated skeleton. This knowledge could

potentially provide information to resolve ambiguities and further refine the recon-

struction process, leading to better overall results in all three steps.
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Appendix A

Efficient Quadratic Surface fitting

We show how C i,α(Ai, Ri, ti) =
∑

j∈α ||wij − RiAisj − Ti||
2
2 (the aggregate cost for a

singleframe i over all the points belonging to model α) can be efficiently calculated.

For clarity, throughout this derivation we drop the index i. 〈a, b〉 is the inner product

between two vectors a and b of the same size, and satisfies the properties:

〈a, b〉 = a⊤b = ⊤(ab⊤), 〈a, a〉 = ||a||22, and 〈ac, b〉 = 〈c, a⊤b〉. (A.1)
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Then,

||wj − RAsj − t||22 (A.2)

=〈wj − RAsj − t,wj − RAsj − t〉 (A.3)

=||wj||
2
2 − 2〈wj, RAsj + t〉+ ||RAsj + t||22 (A.4)

=||wj||
2
2 − 2〈wj, t〉 − 2〈wj, RAsj〉+ ||RAsj + t||22 (A.5)

=||wj||
2
2 + ||RAsj||

2
2 + ||t||22 − 2〈wj, t〉 − 2〈wj, RAsj〉+ 2〈RAsj, t〉 (A.6)

=||wj||
2
2 + ||RAsj||

2
2 + ||t||22 − 2〈wj, t〉 − 2〈wj, RAsj〉+ 2〈sj, (RA)

⊤t〉 (A.7)

=||wj||
2
2 + ||RAsj||

2
2 + ||t||22 − 2〈wj, t〉 − 2⊤(wj(RAsj)

⊤) + 2〈sj, (RA)
⊤t〉 (A.8)

=||wj||
2
2 + ||RAsj||

2
2 + ||t||22 − 2〈wj, t〉 − 2⊤(wjsj

⊤(RA)⊤) + 2〈sj, (RA)
⊤t〉 (A.9)

=||wj||
2
2 +

⊤(RAsj(RAsj)
⊤) + ||t||22 − 2〈wj, t〉 − 2⊤(wjsj

⊤(RA)⊤) + 2〈sj, (RA)
⊤t〉

(A.10)

=||wj||
2
2 +

⊤(RAsjsj
⊤(RA)⊤) + ||t||22 − 2〈wj, t〉 − 2⊤(wjs

⊤
j (RA)

⊤) + 2〈sj, (RA)
⊤t〉

(A.11)

=||wj||
2
2 +

⊤(RAsjsj
⊤(RA)⊤) + ||t||22 − 2〈wj, t〉 − 2⊤(wjs

⊤
j (RA)

⊤) + 2〈sj, (RA)
⊤t〉

(A.12)

Consequently,

∑

j∈m

||wj − RAsj − t||2 =
∑

j∈m

||wj||
2 + tr(RA(

∑

j∈m

sjs
⊤
j )(RA)

⊤) +
∑

j∈m

||t||2 (A.13)

− 2〈
∑

j∈m

wj, t〉 − 2tr((
∑

j∈m

wjs
⊤
j )(RA)

⊤)

+ 2〈
∑

j∈m

sj, (RA)
⊤t〉. (A.14)

This allows the cost function C i,α = (Ai, Ri, Ti) and its derivatives to be computed in

constant time given the pre-computed values:
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∑

j∈m

||wj||
2
∑

j∈m

sjs
⊤
j ,

∑

j∈m

1,
∑

j∈m

wj,
∑

j∈m

wjs
⊤
j , and

∑

j∈m

sj.

See Section 6.2.1 for discussion.
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