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Abstract

Ontologies provide an explicit conceptualisation of a domain and a uniform framework that

represents domain knowledge in a machine interpretable format. The Semantic Web heavily relies

on ontologies to provide well-defined meaning and support for automated services based on the

description of semantics. However, considering the open, evolving and decentralised nature of the

Semantic Web – though many ontology engineering tools have been developed over the last decade

– it can be a laborious and challenging task to deal with manual annotation, hierarchical structuring

and organisation of data as well as maintenance of previously designed ontology structures. For

these reasons, we investigate how to facilitate the process of ontology construction using semantic

audio analysis.

The work presented in this thesis contributes to solving the problems of knowledge acquisition

and manual construction of ontologies. We develop a hybrid system that involves a formal method

of automatic ontology generation for web-based audio signal processing applications. The pro-

posed system uses timbre features extracted from audio recordings of various musical instruments.

The proposed system is evaluated using a database of isolated notes and melodic phrases

recorded in neutral conditions, and we make a detailed comparison between musical instrument

recognition models to investigate their effects on the automatic ontology generation system. Fi-

nally, the automatically-generated musical instrument ontologies are evaluated in comparison with

the terminology and hierarchical structure of the Hornbostel and Sachs organology system. We

show that the proposed system is applicable in multi-disciplinary fields that deal with knowledge

management and knowledge representation issues.
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Chapter 1

Introduction

1.1 Research Aims

Ontologies have grown to be a dominant subject in Computer Science serving as explicit conceptual

knowledge models to present available domain knowledge to information systems in a meaningful

way. In an effort to annotate websites, they play a key role in the vision of the Semantic Web. In

recent years, the World Wide Web has gone through rapid development both technologically and

in its popularity. It became closely integrated with our lives. The Web exposes vast amounts of

resources including music, photos, video and text contained in unstructured web documents.

However, these documents cannot be interpreted and used by machines directly, since standard

Hyper Text Markup Language (HTML) documents, while being machine readable, do not provide

machine readable information about their content. For this reason, the Web presents an important

challenge in information management. The Semantic Web was conceived in order to resolve these

issues by creating a machine interpretable web of data as an extension to the current Web.

The concept of the Semantic Web was initially proposed by Tim Berners Lee [Berners-Lee



et al., 2001] in order to enable search through explicit specifications of meaning in the content of

web pages. Creating Ontologies to enable formalised description and linking of resources within a

particular application domain is among the first steps towards building this new Web.

The semantic interpretation of music audio analysis relies heavily on the availability of formal

structures that encode relevant domain knowledge. Many research groups built Ontologies manu-

ally to represent different types of data (e.g. music data, social data) within the formation of the

Semantic Web. Some examples of Ontologies in the music domain are the music Ontology (MO)

and the music performance Ontology, grounded in the MO [Raimond et al., 2007; Fazekas et al.,

2010]. The use of Ontological models to access and integrate knowledge repositories is an impor-

tant contribution, improving knowledge-based reasoning and music information retrieval (MIR)

systems alike [Abulaish, 2008]. There are also significant benefits for the discovery of cultural

heritage by exchanging data among diverse knowledge repositories, such as musical instrument

museums, libraries, institutions or repositories. However, knowledge management in the domain

of musical instruments is a complex issue, involving a wide range of instrument characteristics,

for instance, physical aspects of instruments such as different types of sound initiation, resonators,

as well as the player-instrument relationship. Representing every type of sound producing mate-

rial or instrument is a very challenging task since musical instruments evolve with time and vary

across cultures. The domain of musical instruments is broad and dynamic, including both folkloric

instruments made out of non-manufactured items (e.g. blades of grass or conch shells), and new

instruments relying on high technology (e.g. iPad app). Although much work has been done on

instrument classification in organology, there is currently no classification scheme encompassing

such complexity and diversity [Kartomi, 2001]. Thus, there is a need for automated systems that

overcome these problems in knowledge management and Ontology engineering.

16



1.2 Research Questions

In order to solve these issues stated above, we developed a hybrid system for automatically gener-

ating ontologies relying on the acoustical analysis of isolated notes and solo performances played

on various musical instruments. The utility of the system which combines information retrieval

and semantic web technologies will be demonstrated through the following investigations:

• What components are required and how these components should interact with each other

to automatically obtain ontologies based on semantic audio analysis? Most of the systems

proposed to date benefit from semantic richness of textual data. Our system will address

ways to exploit semantic audio for the purpose of automatic generation of ontologies.

• How can we relate acoustic timbral descriptors and ontology definitions in order to represent

them as ontologies? The system should be able to identify musical concepts and their as-

sociations analysing audio content. We will undertake the musical instrument identification

task using the cutting-edge music analysis approaches to extract conceptual metadata from

musical sounds.

• What are the effects of acoustic timbral descriptors and classifiers on the ontology outputs?

Cepstral analysis methods have been used extensively in speech and music analysis over the

past few decades. Our aim will be to identify the effects of different number of cepstral

features and classifier parameters on the ontology generation process and outputs.

• What are the knowledge representation issues that exist in the traditional instrument tax-

onomies? How can we overcome these issues in our system? Traditional designs based on

taxonomy trees which lead to ill-defined knowledge representation, especially in the context

of an ontology for the Semantic Web. We will investigate these issues to obtain well-defined

musical instrument.

• What are the evaluation techniques used for ontologies and which ones can be used to eval-
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uate our system? How can we compare two given ontologies? An essential element that

makes a specific discipline or approach scientific is the capability to assess and compare out-

comes in the area. We will explore the description of measures and methodologies for the

evaluation of the generated ontologies.

1.3 Thesis Overview

We propose a hybrid system in order to automatically obtain ontologies for musical instruments

based on their sound spectral structure. We describe and evaluate a supervised system composed

of two main processing layers: (i) content-based audio analysis involving feature extraction and

machine learning sub-layers, and (ii) conceptual analysis layer where we analyse and represent the

obtained information in a graphical form. Most of the automatic ontology generation systems to

date, such as the ones described in section 5.1, benefit from the semantic richness of the textual data

by using the natural language processing techniques. However, it is a fact that the perception and

interpretation of sound is an important aspect of the categorisation of musical instruments. Hence,

there is a great deal of advantage of utilising audio data in an effort to ground musical knowledge

on the Web and in the real world. This will likely to encompass a greater understanding of the

complex characteristics of musical and natural sounds.

There is a range of levels of control or involvement that people can have in a system. It is worth

to point out that the proposed system is an automatic system which carries out fixed functions on

some available prior knowledge without the intervention of an ontology engineer. Nevertheless, it

is not a dynamic nor an adaptive system to learn about new instruments and re-design ontology. The

approach presented in this thesis provides a novel contribution by presenting a unified methodology

for automatic ontology generation based on semantic audio analysis. Specifically, the focus is on

preserving consistency between the acoustic descriptors computed from waveforms, the algorithms

used for building instrument models, and conceptual analysis techniques used for automatically
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obtaining ontologies.

In chapter 7, we review ontology evaluation techniques, and using various parameters on tim-

bral descriptors (i.e. MFCCs and LSFs) and classifiers (i.e. MLP and SVM) provide a compre-

hensive statistical analysis regarding the effects of the audio analysis component on the ontology

generation process. We examine the obtained ontologies through a comparison to a gold-standard

ontology that has been built by taking H-S system as a base.

In addition to the proposed system, we also argue that the traditional designs based on taxon-

omy trees, widely used to represent musical instruments, lead to ill-defined knowledge represen-

tation, especially in the context of an ontology for the Semantic Web. In chapter 4, we examine

knowledge representation issues of musical instruments on the Semantic Web, by taking musical

instrument classification schemes into account; and an assessment of the OWL representations of

these classification schemes using SPARQL queries.

Publishing structured data in an open format that shares a common conceptual framework is

among the important goals of the Semantic Web. In section 3.4.1, we contribute to the Web of Data

by publishing a large set of music similarity features produced by the SoundBite playlist generator

tool. We explain the process of collecting, organising and publishing the dataset which can be

accessed via a SPARQL end-point and used in Linked Data services.

1.4 Thesis Outline

The core of this thesis focuses on development of an automatic ontology generation system based

on semantic audio analysis. In the following, the thesis is outlined by summarising each chapter.

Chapter 1: Introduction. We introduce and state the problem studied in this thesis. The several

tasks of Ontology engineering such as manual annotation, hierarchical structuring and organisation

of data can be laborious and challenging. Therefore, we investigate how the process of creating
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Ontologies can be made less dependent on human supervision by exploring concept analysis tech-

niques in a Semantic Web environment.

Chapter 2: Ontologies. Beginning with details on philosophical and mathematical background

by taking a cognitive science stance, and continuing with classification of Ontologies, this Chapter

introduces foundational knowledge for Ontologies.

Chapter 3: The Semantic Web. We provide background knowledge on Ontologies from the

Semantic Web standpoint. Therefore, we highlight the connection between the Semantic Web and

Ontologies, and outline the semantic richness of Ontology representation models, the Semantic

Web technologies for Ontology representation, and Ontology engineering on the Semantic Web.

Chapter 4: The Semantic Web and Musical Instrument Ontologies. We outline our investiga-

tion on knowledge representation issues of musical instruments on the Semantic Web, by taking

musical instrument classification schemes into account; and an examination of the OWL represen-

tations of these classification schemes using SPARQL queries.

Chapter 5: Fundamentals for Automatic Ontology Generation System. We discuss the auto-

matic Ontology generation frameworks based on the types of input data and the proposed Ontol-

ogy generation tools to date. We also review basic methods for the content-based audio analysis,

machine learning, and conceptual analysis techniques, which are relevant to both the previously

existing and the original approaches to automatic Ontology generation framework discussed later

on in this thesis.

Chapter 6: A Framework for Automatic Ontology Generation System. The general architec-

ture of the proposed system is described in this Chapter. We also present the analysis of parameters
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for feature extraction and classification algorithms, and application tools that have been used in the

experiments.

Chapter 7: Evaluations. We discuss our Ontology evaluation methodology, providing similarity

metrics that have been used as a basis for evaluating the automatically generated Ontologies against

a gold standard. We empirically support the major theoretical findings of the preceding sections in

this Chapter. More precisely, we provide a thorough evaluation of the proposed system for measur-

ing the musical instrument recognition using Analysis of Variance (ANOVA). For the evaluation

of the generated Ontologies, Hornbostel and Sachs was considered as the basis for instrument ter-

minology and initial hierarchical structure. Additionally, we also give a detailed evaluation for the

conceptual analysis results of the generated Ontologies using Multivariate Analysis of Variance

(MANOVA).

Chapter 8: Conclusions. We summarise, conclude and discuss directions for further research in

terms of a set of open questions and possible technical improvements of the proposed solutions.
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• Dan Tidhar, György Fazekas, Şefki Kolozali, Mark Sandler, Publishing Music Similarity

Features on the Semantic Web, In Proc. The 10th International Symposium on Music Infor-

mation Retrieval, pp. 447-452, 2009.

Journal Papers
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Chapter 2

Ontologies

This chapter is organised in three parts. We provide an overview of the origins of ontologies from a

philosophical point of view in Section 2.1. We then explain the formal definitions of mathematical

modelling of Ontologies with an engineering point of view in Section 2.2. Finally, in Section 2.3

we discuss the classification of ontologies in the context of computer science.

2.1 Ontologies — Knowledge and Language

The term Ontology has its origin in philosophy and can be described as science of existence or

“study of being”. Etymologically, the term “ontology” comes from the Greek, where the word

“onto-” means “to be” and the word “logia” means “word, reason or thought”. The term of “ontol-

ogy” was coined in the 17th century by the philosophers Jacob Lorhard in his Ogdoas Scholastica

and Rudolf Göckel in his Lexicon philosophicum [Guizzardi, 2007].

An ontology is based on explicit specification of a conceptualisation of the objects, concepts,

and other entities that are presumed to exist in some area of interest and the relationships that hold

among them. Thereby, a conceptualisation is an abstract simplified view of the world [Gruber,



1993]. The observation of the physical world is an important aspect of conceptualisation of knowl-

edge. The ability to conceptualise objects and events in the world was one necessary building block

for the evolution of human knowledge and language. However, with the increasing capacity of the

human mind, languages became progressively more complex and ambiguous due to polysemic

structure. This ancient discipline, ever since its inception some 2500 years ago, has led philoso-

phers, to explorations of various ontological theories. For instance, the notions such as categories,

as well as the super-concept and sub-concept referring as “genus” and “subspecies”, was first in-

troduced by Aristotle the Greek; and also presented the idea that ten basic categories could be used

for classifying anything that may be said or predicted about anything: substance, quality, quantity,

relation, activity, passivity, having, situatedness, spatiality and temporality [Ross et al., 1924]. An-

other theory that involves categories for the logically possible ways of combining relationships in

a proposition or judgement – was introduced by Kant. The theory aims to classify anything using

only twelve categories. Later, a meta-level principle, that was based on these twelve categories, had

been proposed by Peirce to generate new categories repeatedly. The principle was based on three

parts, namely, Firstness, Secondness, and Thirdness: Firstness is determined by qualities inherent

in something, Secondness by a relation or reaction directed toward something else, and Thirdness

by some mediation that brings multiple entities into relationship (see [Sowa, 1999; Smith, 2004]

for a thorough review).

Terms must be explicitly defined to be understood and categorised into corresponding concepts.

However, to deal with the inevitable ambiguities of language caused by an implicit exchange of

different meaning is a very complicated task. Understanding such ambiguities of knowledge and

language was a topic that concerned Gottlob Frege (1848-1925), a German philosopher and logi-

cian. Frege introduced the distinction between thought content and referent; his study was later

popularised by Ogden and Richard’s diagram (see Fig 2.1) knowns as the “meaning triangle” or

“semiotic triangle” [Campbell et al., 1998; Lycan, 2006; Richard, 2006].
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Figure 2.1: The meaning triangle is a model that depicts how linguistic symbols are related to the
objects they represent. The diagram is adapted from [Ogden & Richards, 1923]

The meaning triangle illustrates that although a thought (concept) can be inspired by a referent

(thing or object), there is no direct relationship between a symbol and a referent. An interpreter,

therefore, needed to utilise a symbol to invoke a corresponding thought regarding a referent. For

people with the appropriate contextual information who know that the name of a cat is “Yojo”, for

instance, it is apparent that the name “Yojo” (i.e. symbol) evokes the concept of a cat (i.e. reference)

and furthermore denotes a specific cat (i.e. referent) in the world [Sowa, 1999]. It is essential to

explicitly define concepts to avoid this sort of issue in communication among interpreters; for

instance, two interpreters use different symbols or words for the same thought without knowing

that they both refer to the same object. This kind of confusion might cause a serious complication

if machines are in charge of any critical task.

The adoption of ontologies was stimulated by the requirement for knowledge representation

and management in various fields, such as software engineering, database design and artificial

intelligence (AI). This formalised approach to information codification permits abstract represen-

tation of the world by referring to real objects. Thus, an agent can use this knowledge to perform

any task autonomously and systematically by making decisions and incorporating knowledge in a

computational environment. In the next section, we will present the mathematical definitions of
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ontology modelling primitives as a mathematical foundation of the automatic ontology generation

techniques.

2.2 Ontologies — Mathematical Definitions

Ontologies have been used in a variety of areas in computer science. The necessity for knowledge

sharing and reuse in AI triggered the first noteworthy rise in the formal representation of domain

knowledge. The proposed aim of the Advanced Research Projects Agency (ARPA) — Knowledge

Sharing Effort project was to enable knowledge to be shared between agents with a common syntax

and semantics to reach an agreement on the communicated subject. Ontologies, therefore, have

been developed along the same lines as a language, providing axiomatic and textual definitions

representing concepts, objects, and other entities along with the relationships among them that are

presumed to be present in a certain area of interest. When agents decide to use an ontology, they

commit to communicate in this language in accordance with these definitions which specify use of

a specifically developed vocabulary. The problem in constructing such a communication language

is to match abstract theories to the physical world. To describe the formal ontology structure, we

will be using the mathematical definitions in line with the definitions in [Bloehdorn et al., 2005]

throughout this thesis.

The mathematical definition of an Ontology is given below which can easily be mapped onto

existing ontology representation languages.

Definition 1. (Ontology). An ontology is a structure O := (C,≤C ,R,σR,≤R,A,σA,T )

consisting of

• four disjoint sets C,R,A and T whose elements are called concept identifiers, relation iden-

tifiers, attribute identifiers and data types, respectively,

• a partial order, ≤C , on C, is called concept hierarchy or taxonomy,
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• a function σ :R→ C×C, is called signature,

• a partial order, ≤R, onR, is called relation hierarchy,

• a function σA :A→ C×C, is called attribute signature.

Ontologies can be designed in a hierarchical structure, that links entities, such as concepts

and relationships, either horizontally or vertically. In mathematics, especially in order theory, a

partially ordered set formalises the sequencing and arrangement of the nodes of a graph where the

parent node is at the top level and the children of a corresponding node are at the same level, below

their parent. The mathematical definition of this hierarchical structure is given by:

Definition 2. (Subconcepts and relations). If c1 ≤C c2, for c1,c2 ∈ C, then c1 is a subconcept of c2,

and c2 is a superconcept of c1. If r1 ≤R r2, for r1,r2 ∈R, then r1 is a sub relation of r2, and r2 is a

super relation of r1.

Definition 3. (Direct subconcepts and relations). If c1≤C c2 and there is no c3 ∈C with c1≤C c3≤C

c2. Then c1 is a direct subconcept of c2, and c2 is a direct superconcept of c1. Direct superrelations

and subrelations are defined analogously.

Given the identifiers of concepts, a natural step is to attempt to identify and describe relation-

ships between concepts. Defining relationships among concepts is a central feature of almost any

knowledge extraction and management task. For binary relations, the relationships of domain and

range is defined as follows:

Definition 4. (Domain and Range). For a relation r ∈R with |σ(r)|= 2, we define its domain and

its range by dom(r) := π1(σ(r)) and ran(r) := π2(σ(r)). For two relations r1,r2 ∈ R,r1 ≤R r2

implies πi(σ(r1))≤C πi(σ(r2)), where π(σ(.)) denotes the i-th argument specified by σ(.).

In what follows, we provide an explicit representation of a lexical level of ontology structure,

O, which can be defined as follows:
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Definition 5. A lexicon for an ontology O is a structure

L := (LC,LR,LA) (2.1)

three sets LC, LR, and LA whose elements are called lexical entries for concepts, relations, and

attributes, respectively. An ontology is pair with lexicon;

(O,L) (2.2)

where O is an ontology and L is a lexicon for O. Ontologies formalise the intensional aspects

of a domain. The extensional aspects are provided by knowledge bases, which contain assertions

about instances of the concepts and relations.

Definition 6. A knowledge base is a structure for an ontology;

KBO := (I, iC , iR, iA) (2.3)

consisting of

• a set I whose elements are called instance identifiers.

• a function iC : C →B(I) is called concept instantiation,

• a function iR : R → B(I+) is called relation instantiation with iR(r) := iC(dom(r))×

iC(ran(r)), for all r ∈R. The function iR is called relation instantiation.

Example 1. To clarify the definitions, this section contains an ontology example shown in Figure

2.2. The ontology describes a musical item using the Music Ontology [Raimond, 2008]. It is a

simple example, but noticeably helps to explain the basic ontology elements. The concepts are

depicted as ellipses, relations as arrows lines, and instances as round boxes. A relation has an
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Figure 2.2: An ontology sample for a musical item based on the Music Ontology.

incoming arrow from its domain an outgoing arrow to its range. The instantiations of concepts

and relations are depicted as dotted arrow. The subsumption relations are depicted as upwards ar-

rows. The example contains eight concept: Manifestation, MusicalManifestation,

Track, Record, Item, MusicalItem, Medium, CD; two relations: examplarOf,

available as; and two attributes: track number and title.

• C={Manifestation, MusicalManifestation, Track, Record, Release,

Item, MusicalItem, Medium, CD}

• R:={available as, examplarOf}

• A:={track number, title}

According to the direct superconcept relation we have, from left to right: Track ⊂ Musical

Manifestation, Record ⊂ Musical Manifestation, MusicalManifestation

⊂ Manifestation, CD ⊂ Medium, Medium ⊂ MusicalItem, and MusicalItem

⊂ Item. For the relations and attributes in the example ontology we have the following signa-

tures:
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• σR(available as)={MusicalManifestation, MusicalItem}

• σR(examplarOf) = {Item, Manifestation}

• σA(title) = {Li f e on Road, String}

• σA(track number) = {3, Integer}

Further, the axiom that every CD needs to have at least one record is defined. Axioms are not

depicted in the graph, but represented in the paragraphs.

∀x CD(x) ∃ y available as(y,x)∧Record(y) (2.4)

In our example, we have three instances I := {My CD, Mass Nerder, mnli f eontheroad}.

Further, we have the following instantiation relations:

• IC(CD) := {My CD}

• IC(Record) := {Mass Nerder}

• IC(Track) := {mnlifeontheroad}

• IR(available as) := {Mass Nerder, My CD}

• IA(track number) := {mnlifeontheroad,3}

• IA(title) := {mnlifeontheroad, Life on the Road}

In this section the ontology and knowledge base structure have been introduced. Ontologies are

provided a well-defined semantics by improving these definitions with an actual ontology language,

such as OWL in Section 3.1. Axioms allows us to formalise a wide range of associations between

objects. Particularly the expressive semantics completely set ontologies apart from other schema
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structures such as XML trees1, database schemas, or UML2. The semantics of ontologies allow

inferring supplemental knowledge.

2.3 Classification of Ontologies

Ontologies can be classified into four categories: Top-level Ontologies, Core Ontologies, Domain

Ontologies and Application Ontologies.

2.3.1 Top-level Ontologies

Top-level Ontologies provide broad semantic interoperability among diverse knowledge domains

by describing general concepts, such as time, space, events and processes, that are common across

all knowledge domains. The main purpose of ontologies is to support communication among ar-

tificial agents and human being. As one of the main principles of the communication is having a

common syntax and terminology among artificial agents, the top-level ontologies plays an impor-

tant role for establishing consensus in independent ontology population that exists on the Semantic

Web. The concepts of top-level ontologies must be independent from any particular problem or do-

main, it should be as general, reusable, and widely applicable as possible. In this sense, top-level

ontologies stay closest to philosophical ontologies. As an example, the Descriptive Ontology for

Linguistic and Cognitive Engineering (DOLCE)3, Upper Mapping and Binding Exchange Layer

(UMBEL)4 and Standart Upper Ontology (SUO)5, and Cyc6 can be given as comprehensive foun-

dational knowledge representation.

1http://www.w3.org/XML/
2http://www.uml.org/
3DOLCE:http://www.loa-cnr.it/DOLCE.html
4UMBEL:http://umbel.org/
5SUO:http://suo.ieee.org/
6Cyc:http://www.opencyc.org/
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2.3.2 Core Ontologies

Core Ontologies maybe seen as a more general domain ontologies, involving concepts and relation-

ships that allow to subsume any specific domain ontologies under fundamental concepts. Typically

core ontologies define concepts, such as state, event, process, action, component, etc. The Mu-

sic Ontology, the Core Ontology for Multimedia (COMM) [Arndt et al., 2007] and the CIDOC

Conceptual Reference Model (CIDOC CRM) [Crofts et al., 2010] are examples of core ontologies.

2.3.3 Domain Ontologies

Domain Ontologies are the core of any semantic modelling effort. The main purpose of the domain

ontology is defining concepts and their relationships by providing a clear description for a domain

of interest. Thus, the particular meaning of terms applied to the corresponding domain are provided

by a domain ontology. For instance, we may think of an ontology of musical instruments or audio

features as examples in the music domain. More concrete examples include the OWL-Time7 that

describes the temporal concepts (e.g. instants, intervals, duration and date-time) [Hobbs & Pan]

or device ontology describing devices and their services (e.g. printing service, scanning service)

[Bandara et al., 2004].

2.3.4 Application Ontologies

Top-level, core ontologies and domain ontologies are emerging ontology types having a potential

to provide a conceptual foundation for linking diverse application ontologies on the Semantic Web.

Their scope is, however, so large and thus inadequate to cover the specific use case of an applica-

tion. Thereby, an application ontology describes concepts depending on a particular domain or task

by combining, interlinking and enriching knowledge from various sources. Application ontologies

can be developed either by extracting the entire ontology as a subset of one or augmenting the

corresponding application terminology with ontological elements from diverse domain ontologies.

7OWL-TimeOntology:http://http://www.w3.org/TR/owl-time/
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Contrary to the domain ontologies, which are broad and shallow, application ontologies are nar-

row and deep, and most of the application ontologies are developed by domain experts for use in

specific types of applications.

2.4 Summary

In this chapter an introduction and persuasion why computer science needs the “concept” of on-

tology has been presented. The roots of conceptualisation and ontology in philosophy as well as

its core paradigm in line with the meaning triangle have been introduced. Subsequently, it has

been shown how ontologies may support communication and explicit representation of knowledge.

Therefore, the notion that underlies the meaning triangle has been combined with a “semiotic view”

on ontologies resulting in an ontology and knowledge base structure.

A formal mathematical definitions of these structures describing their core elements and their

interaction have been given in Section 2.2 with an engineering standpoint. Finally, we have also

reviewed the classification of ontologies in order to have a detailed information with the purposes

of distinctive kind of ontologies in Section 2.3.
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Chapter 3

The Semantic Web

In this chapter we will consider the concepts of the Semantic Web and Ontology in tandem. We will

begin by presenting the significance of these notions for the distribution of knowledge in section

3.1. We will then highlight the progress that has been made in the semantic richness of ontologies

through our review of ontology representation models, such as taxonomies, thesauruses, conceptual

models, and logical theories, in section 3.2.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) which proposes

standards underlying the technologies of the Web. Therefore, we will present W3C technologies

that are relevant in our examination of issues in ontology design and generation in section 3.3. We

will look at the Semantic Web standards used in this study; namely, RDF, RDFS, SKOS, OWL,

and SPARQL.

Finally, we will outline ontology engineering on the Semantic Web by giving instances from

various application domain studies in section 3.4.



3.1 Ontology Engineering on the Semantic Web

As more people obtain access to better and cheaper digital technologies, most companies and in-

stitutions have begun to reach a wider range of users and reduce cost using internet services and

intelligent agent systems. Ontologies have been applied to a very wide range of fields (e.g. music,

geology, agriculture, defence, robotics, and intelligence agent systems) to enhance communication

among these web agents, reducing content heterogeneity. In this section we introduce the general

problem of information sharing in the presence of heterogenous data. Therefore, we explain the

Semantic Web and Ontologies as a means of dealing with the semantic heterogeneity and identify

open problems that will be addressed in the remainder of this thesis.

3.1.1 The Semantic Web

Considering the fact that language was the earliest instrument to communicate and share human

knowledge, ever since the development of language, there have been attempts to improve the dis-

tribution of knowledge. For example, printing, television and radio are significant inventions in

the history of distribution of knowledge. Though these inventions have their own distinct ways of

sharing information, the World Wide Web (www) brought all these features together, whereby one

can read (e.g. books, articles, or newspapers), listen (e.g. music and audio books), watch (e.g.

documentaries, movies, or videos), and share thoughts easily with other people using social media

such as Twitter1 and Facebook2. The enormous increase in the amount of published data and the

demand for access to different types of information have, however, led to a knowledge management

issue on the Web.

Traditional query engines are not capable of answering any complex queries, such as finding

information about the records of a specific music group released after 1984 or detailed information

about a song — e.g. “how was a song produced?” or “what effects were used to achieve that

1http://www.twitter.com
2http://www.facebook.com
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particular instrumental timbre?”. This seems to be beyond the capabilities of any web query engine.

Web 2.0-based applications obtain metadata, exploiting the power of user communities by allowing

them to share and annotate data, such as last.fm3, youtube4 and flickr5. The annotations, however,

take the form of simple tags, such as “rock”, “guitar”, “fun”, “80s”. The meanings of tags are

typically not well defined, and in some cases it maybe even difficult for human users to understand

them. Though these approaches seem to be practically very convenient to accomplish small-or

large-scale tasks, they don’t provide any solution to the problem of how to locate and integrate

information. The aim of the Semantic Web is to solve these issues.

The Semantic Web is the new WWW infrastructure that will enable describing the formal

semantics and machine processing of current web content. The scope of the Semantic Web has

increased in gradual prevalence as a research area since the original idea was introduced by Sir Tim

Berners-Lee. Contrary to the structure of the current Web, Semantic Web technologies include tools

for interlinking heterogeneous data sources including content and metadata, providing the Web

with Linked Data. The Semantic Web is, therefore, considered as an integrator across different

content, information applications and systems. In the future, consequently, the Semantic Web will

be an excellent domain in which to develop Artificial Intelligence (AI) applications. The machine

processibility that may be achieved on the Semantic Web relies to a great extent on the availability

and proliferation of ontologies.

3.1.2 Development of Ontologies

The development of Ontologies is a formalisation process to represent acquired knowledge in an

organised and structured form that both computers and humans can understand. Most of the current

ontology development methods still require tremendous effort and subjective judgments from the

3www.last.fm
4www.youtube.com
5www.flickr.com
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ontology developers to acquire and maintain the ontology. The ability to design and maintain

ontologies requires expertise in both the domain of the application and the ontology language

used for modelling. However, with their growing utilisation, not only has the number of available

ontologies increased considerably, but they are also becoming larger and more complex to manage.

A formal ontologist has to deal with two different tasks: i) metaphysics and ii) system engineering.

The former deals with highly abstract domain information such as Top-level ontologies. The latter

task is largely an empirical endeavour whereby information is gathered and tested over a specific

domain of interest, such as core ontologies, domain ontologies and application ontologies. Here

are the fundamental steps in the ontology construction progress [Morris, 2007]:

• Enumerate all relevant terms that are expected to appear in the ontology. Identify as many

‘things’ and ‘concepts’ in the domain as possible.

• For each concept, enumerate its attributes, properties and specify any restricted values. The

hierarchical relationship of concepts is a very important aspect of ontology design. For

instance, if a concept named “A” is a subclass of another concept called “B” it means that

every property statement that holds for an instance of B must also apply for instances of A.

• For each pair of things or concepts, one needs to decide if there is some relationship between

them, and look for hierarchy, composition, co-operation, and dependence. These can be

defined by using basic set operations on boolean combinations of classes such as Union (∪),

Intersection (∩), and Complement ({). These steps can be enriched using OWL primitives

such as cardinality, required values, and relational characteristics.

Ontology engineering has a rich literature. More detailed account on the process of ontol-

ogy development can be found in [Staab & Studer, 2009] for an overview. The rest of the section

outlines the semantic richness of ontology representation models, and provides the basis for our ex-

amination of the knowledge representation issues in musical instrument ontology design in Chapter
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4.

3.2 Semantic Richness of Ontology Representation Models

Computers need to use ontologies to facilitate automated reasoning, so we have to adapt the com-

munication theory defining a machine readable syntax, to make it interpretable and accessible. To

establish required tasks, thus, every computer/machine can use and interpret a common language

with the same terminology to establish required tasks.

Semantic Web ontologies encompass the open world assumption. This assumption leads to

a partial and modular structure in which an ontology can be merged with another ontology, or

adapted to continuously changing knowledge. Figure 3.1 depicts the semantic richness of various

kinds of ontology representation models, starting from left bottom where the semantics are simple

and weak, and continuing towards to the top right where the semantics are strong and capable of

representing more complex meaning.

Taxonomy

Thesaurus

Conceptual Model

Logical Theory

Weak Semantics

Strong Semantics

Relational Model, 
XML

ER, Extended ER, 
XTM

Modal Logic, 
First Order Logic

Description Logic, 
OWL, DAML+OIL, 

UML

Figure 3.1: The ontology spectrum, adapted from [Daconta et al., 2003]
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3.2.1 Taxonomies

To date, taxonomies that allow us to organise data into a hierarchical structure are very efficiently

and widely used in classification problems, such as search engines and e-library systems. Since

taxonomic design is based on hierarchical structure and supports syntactic interoperability, this

model can search and find the necessary information much faster and compared to other classifi-

cation models. This method has also been used a lot by ethno-musicologists in order to classify

musical instruments. In a taxonomy, however, the relationship between a parent node and a child

node is ill-defined, so taxonomies involve semantically weak structures for expressing knowledge.

Taxonomic relations have usually been defined by using “sub-class” axiom without defining

the detailed relationships among concepts. We will provide more details along with examples of

instrument taxonomy classification studies from ethno-musicology in section 4.1.

3.2.2 Thesauruses

Compared to taxonomies, a thesaurus model provides a different kind of relationship between

concepts such as synonyms, homonyms, the narrower, the broader and associated re-

lations. These relationships improve the semantic richness of this model to a certain extent: for

instance, synonyms describe terms with similar meanings, whereas homonyms describe terms

which are written in the same way but have different meanings. The broader and narrower

relations describe the parent-of and child-of relationships among entities, respectively. Finally,

the associated relation defines the related entities in an ambiguous way. The Entity Relation-

ship (ER) model, Extended Entity Relationship (EER) model and XML Topic Map (XTM) can be

categorised as thesaurus models, since they only support structural interoperability.

3.2.3 Conceptual Models

A conceptual model allows the effective characterisation of knowledge in a particular domain,

thereby providing well-defined meta-model through concept subsumptions, properties and attributes
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of domain classes. For instance, OWL or UML diagrams may be used in such contexts for domain

modelling [Domingue et al., 2011].

3.2.4 Logic Theories

When we move towards to the top right, there are formal approaches in which the level of explicit

meaning and the degree of formality grows along with increasing support for automated reasoning.

Logical languages are semantically interpretable and allow us to specify formalised logical theo-

ries. The open world assumption is crucial for logic theories to infer a new knowledge from another

integrated or heterogeneous ontology by using the common components. Some of the well-known

logic languages are (i) Description Logics (DL) which are strict subsets of first-order logic, and

(ii) traditional logic programming such as F-Logic [Staab & Studer, 2009].

3.3 Semantic Web Technologies for Ontology Representation

The Semantic Web is an initiative of the World-Wide Web Consortium (W3C) which sets underly-

ing standards for the technologies of the World-Wide Web [Matthews, 2005]. The W3C is a forum

that provides information infrastructure between people and organisations. It was set up to prevent

Web standards from being dominated by commercial interests. The W3C investigates how to main-

tain interoperability and universality of the Web using open standards. Some of the well-known

standards and web-based ontology languages are presented in this section. The technologies used

throughout this thesis are listed below:

• RDF: Resource Description Framework,

• RDF schema,

• SKOS: Simple Knowledge Organization System,

• OWL: Ontology Web Language,
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• SPARQL: Simple Protocol and RDF Query Language.

3.3.1 Resource Description Framework (RDF)

RDF6 is a standard for describing content available on the internet. The idea of RDF originates from

the Platform for Internet Content Selection and has been developed by two consecutive working

groups within the World-Wide Web Consortium. The fundamental data structure underlying the

RDF model consists of statements formed by subject, predicate and object terms. These statements

are also called triples. As depicted in Fig 3.2, the representation of a triple is a single edge, labelled

with predicate, connecting two nodes, which are labelled with the subject and object. This describes

a binary relationship between the subject and object via the predicate.

Subject Object

Predicate

Figure 3.2: The fundamental data structure underlying the RDF model: subject, predicate, and
object.

A set of triples is called an RDF graph. In order to facilitate the sharing and exchanging

of graphs on the Web, the RDF specification includes Turtle and Notation 3 (N3) serialisations.

An example representing the details of a track on a band’s music album is given in Listing 3.1.

The band concept is captured by mo:MusicGroup where the namespace prefix mo is associated

with the namespace name http://purl.org/ontology/mo/. This Turtle resource provides

information about the home page, images, and name of the band.

6http://www.w3.org/RDF/
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@prefix io: <http://example.org/io/taxonomyN#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix mo: <http://purl.org/ontology/owl/> .
@prefix ex: <http://example.com/> .

ex:mnlifeontheroad
a mo:Track ;
mo:title "Life on the Road" ;
mo:track_number "3" ;
foaf:maker [

a mo:MusicArtist;
foaf:name "All";
owl:sameAs

<http://dbtune.org/musicbrainz/page/artist/e92547b5-a134-4149-
af9a-c944af9e476f>

] .

Listing 3.1: A Turtle sample based on Music Ontology [Raimond, 2008]

3.3.2 RDF Schema

The RDF vocabulary definition language is called RDF Schema7. RDFS is an extension of RDF

in which a small vocabulary is been included that defines (for instance) rdf:Property or

rdf:type. The core difference is that the terms included in RDF are not sufficient for describing

an ontology. RDFS, however, is a simple ontology language. For example, an RDFS sample given

in Listing 3.2 illustrates two classes – namely, Record and Track – denoting a property link

between them, where “a” is a property representing is-a relationship. The domain and range

properties are specified using rdfs:domain and rdfs:range to represent the property with

mo:track linking the Record class and Track classes.

Although RDFS extends RDF by including basic features needed to define ontologies, it lacks

some important features to describe an ontology in more detail. These include local scope prop-

erties to declare range restriction that apply to only some classes; boolean combination of classes

7http://www.w3.org/TR/rdf-schema/
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mo:Record
a rdfs:Class ;
rdfs:label "Record" .

mo:Track
a rdfs:Class ;
rdfs:label "Track" .

mo:track
a rdf:Property ;
rdfs:label "track";
rdfs:domain mo:Record;
rdfs:range mo:Track .

Listing 3.2: RDF Schema based on Music Ontology [Raimond, 2008]

(e.g. union, intersection, and complement); cardinality restrictions (e.g. how many distinct values a

property may or must take) — and special characteristics of properties (e.g. transitive, unique and

inverse).

3.3.3 Simple Knowledge Organisation System (SKOS):

SKOS8 is a semi-formal model for expressing controlled vocabularies (classification schemes, the-

sauruses, taxonomies) in RDF. It defines skos:Concept, whose individuals may be associated

with one or more lexical labels (skos:prefLabel, skos:altLabel) and placed within a

hierarchy using skos:broader, skos:narrower, or skos:related properties, exhibiting

a thesaurus model [Allemang & Hendler, 2008].

SKOS is defined as an OWL Full ontology: that is, it uses a sub-vocabulary of OWL Full to

define a vocabulary for simple resource descriptions based on controlled structured vocabularies.

It provides a fairly simple set of model constructs that allow the creation of extensible, distributed

information networks. Therefore, information represented in a different language can be easily

transformed into SKOS. Publishing data in SKOS also enables the concepts defined to be refer-

enced on a global scale.

8http://www.w3.org/TR/skos-reference
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SKOS also describes associate relations, for instance skos:related, in a semi-formal way,

thereby providing limited support for other kinds of relationships and more explicit definitions,

even though it is suitable for hierarchical classification schemes. Consequently, it is difficult to

retrieve information without additional knowledge. This point will be discussed further in Chapter

4.

3.3.4 Ontology Web Language (OWL)

In the late 90s, the necessity for a much more expressive ontology language was commonly ac-

cepted within the Semantic Web research community and led to several proposals for new Web

ontology languages, such as Simple HTML Ontological Extensions (SHOE), the Ontology Infer-

ence Layer (OIL), and DAML + OIL. Certain requirements – for instance, interoperability between

disparate data repositories – led to the realisation that a standard ontology language is crucial for

the development of the Semantic Web. The W3C, therefore, established a standardisation research

group to develop an ontology language in 2001. By taking into account earlier proposals (e.g. OIL,

DAML + OIL and RDF), the outcome of this work was the Ontology Web Language (OWL) stan-

dard9. The foundation of OWL is based on open-world semantics, where missing information is

treated as unknown rather than as false. Additionally, axioms may represent inference rules along

with a mixed set of Terminology Box (TBox) and Assertion Box (ABox) axioms. The former

plays the role of a conceptual schema to describe the constraints on the structure of a domain and

the latter asserts facts about concrete situations. In comparison with earlier ontology languages,

OWL allows one to explicitly define and instantiate a web ontology along with a richer vocabulary

description language describing properties and classes.

OWL-Full : allows free mixing of OWL with RDF Schema and, like RDF Schema, does not

enforce a strict separation of classes, properties, individuals and data values.

9http://www.w3.org/TR/owl-features/
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OWL-DL : is based on Description Logics. It is a sublanguage of OWL Full that restricts how

the constructors from OWL and RDF may be used. The advantage of this is that it permits efficient

reasoning support. The disadvantage is that we lose full compatibility with RDF [Antoniou & can

Harmelen, 2008]. The data type properties such as owl:inverseOf, owl:FunctionalProp-

erty, owl:InverseFunctionalProperty, and owl:SymmetricProperty cannot be

specified.

OWL-Lite : excludes enumerated classes, disjointness statements, and arbitrary cardinality. The

advantage of this as a language is that is easier to understand (for users) and easier to imple-

ment (for tool builders). The disadvantage is the restricted expressivity. These constraints are that

the constructors owl:oneOf, owl:disjointWith, owl:unionOf, owl:complementOf

and owl:hasValue are not allowed. Cardinality statements (both minimal, maximal and exact

cardinality) can only be made on the values 0 or 1, and no longer on arbitrary non-negative inte-

gers. owl:equivalentClass statements can no longer be made between anonymous classes,

but only between class identifiers.

3.3.5 Simple Protocol and RDF Query Language (SPARQL):

SPARQL10 defines a standard access protocol for RDF that provides Semantic Web developers

with a powerful tool to extract information from large data sets. A query consists of several graph

patterns, which can be combined recursively to form complex queries. It may be used for any data

source that can be mapped to RDF.

The syntax of SPARQL is based on the same notation for universal quantification that is used

in Turtle and N3. The keywords SELECT identify the variables to appear in the query results and

WHERE indicates a question pattern. In listing 3.3 we construct a simple query to retrieve a list of

tracks of a music artist, called “ALL”.

10http://www.w3.org/TR/rdf-sparql-protocol
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PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
SELECT ?group ?track ?title
WHERE {

?track foaf:maker mo:MusicArtist;
foaf:name "ALL" .

}

Listing 3.3: A SPARQL query for retrieving a list tracks for a music group.

3.3.6 Linked Data

Linked Data is a recent movement that focuses on creating a Web of Data in order to facilitate the

process of publishing structured data in an open format that shares a common conceptual frame-

work, that is, RDF. The principles of Linked Data were first outlined by Berners-Lee in [Berners-

Lee], and extended by technical documents such as [Bizer et al.; Sauermann & Cyganiak] that

provide guidance on Linked Data. Based on these principles, Linked Data URIs must be derefer-

encable, such as HTML for humans and RDF for machines, thus the Web will be used by humans

as well as by machines. This is achieved employing an HTTP mechanism called content negoti-

ation. The basic idea of the content negotiation is to enable servers to identify clients requested

resource format, such as HTML or RDF, through examination of HTML headers, and respond in

appropriate format. The resource content should include links to additional HTTP URIs that also

dereference the additional information. Hence, the Web of Data provides a meaningful navigation

path for users as well as machines, and allows them to access different data resources, that are

connected with RDF links.

The Linking Open Data (LOD) project aims to publish open data sets on the semantic web

following linked data recommendations and appropriate web standards. Figure 3.3 depicts the

Linked Data cloud where each note represents a distinct data set published as Linked Data.
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3.4 Music Information Retrieval on the Semantic Web

The World Wide Web is an excellent resource that enables users to publishing and accessing doc-

uments within a global information space. With the increasing quantity of music content on the

Web, however, there is a need to find ways of improving music retrieval effectiveness. While search

engines index the documents and analyse the structure of links between them to infer potential rel-

evance to users’ search queries, navigating music content is a significantly different information

retrieval task with some unique challenges. The most apparent distinction being that musical data

comprised of not only textual data but also digitally encoded audio signals and symbolic musical

representations. This led to development of Music Information Retrieval (MIR) as a response to

user needs, such as managing, searching or accessing musical audio content on the Web.

Semantic descriptors extracted from audio recordings, such as chords, rhythm and instrumen-

tation, can be applied to a variety of applications including audio collection management or music

recommendation. These descriptors can also be a valuable resource, when interlinked with cultural

or editorial metadata, for instance concerts, tour dates, or artist relations. Linked Data provides

such environment that involves structured data connections from diverse domains and enables nav-

igation between data sources to discover additional data.

In this section we will first overview the present music-related linked data, and describe our

work on collecting, organising and publishing a large set of music similarity features coupled with

valuable editorial meta-data. Secondly, we will review the knowledge based approaches for MIR

systems.

3.4.1 Music-related Linked Data

A wide range of music-related data sources have been interlinked within the Linked Open Data ini-

tiative. The DBTune11 is one of the important project that hosts many music-related linked data sets,

11http://dbtune.org/

48

http://dbtune.org/


such as the Jamendo12, the Magnatune13, the John Peel sessions14, the AudioScrobbler wrapper15,

a MusicBrainz translation, and the BBC playcounts16. For instance, Jamendo is linked to Geon-

ames, therefore it provides geolocation-based mash-up for musical data. Enabling music artists to

publish their works under a creative commons license, the Jamendo and Magnatune datasets allow

users to retrieve information with regards to the music artists, their geographic locations and works.

While Jamendo is more of an open platform, Magnatune is more like a traditional record label that

hand-picks artists and content for publication. BBC is one of the big organisations that contributes

to the open linked data. For instance, BBC released some metadata about the John Peel sessions

that describes metadata related to the various recordings associated with the long running John Peel

BBC 1 radio show in RDF. An additional music-related datasets is the BBC playcount dataset, that

can be used to retrieve information about music artists, which are played on BBC programmes, as

RDF with links to the DBTune and Musicbrainz dataset.

With a straightforward hashing method for generating unique identifiers for music artists, al-

bums, and tracks, the MusicBrainz17 project has constructed one of the most comprehensive mu-

sic metadata repositories on the Semantic Web. Recently, MusicBrainz repository’s content has

been published as Linked Data by converting music metadata into RDF and providing it as Triple-

Store/SPARQL [Dixon et al., 2011]. This allows users to easily search through available data and

integrate information from other repositories. DBpedia18 is another online database containing in-

formation that possesses structured data extracted from Wikipedia. These datasets are linked to

each other. As a contribution to the Linked Open Data project, we published a data set involving

music similarity features produced by the SoundBite playlist generator tool [Tidhar et al., 2009].

12http://www.jamendo.com/
13http://magnatune.com/
14http://dbtune.org/bbc/peel/
15http://dbtune.org/last-fm/
16http://dbtune.org/bbc/playcount/
17http://www.musicbrainz.org/
18http://dbpedia.org/
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The details of the process of collecting, cleaning and publishing of music similarity features are

explained below.

The SoundBite dataset

In this section, we describe the process of collecting, cleaning and publishing music similarity

features from a large user base coupled with valuable editorial metadata. Metadata are verified

against MusicBrainz, a large public database of editorial information on the Web, and published

together with the matching similarity features on the Semantic Web [Tidhar et al., 2009]. The heart

of the data collection system is SoundBite [Levy & Sandler, 2006, 2007], a tool for similarity-based

automatic playlist generation. SoundBite is available as an iTunes plugin. Once installed, it extracts

features from the users’ entire audio collection and stores them for future similarity calculations. It

can then generate playlists consisting of the n most similar tracks to any given seed track specified

by the user. The similarity data currently consist of 40 values per track based on the distribution

of Mel-Fequency Cepstral Coefficients (MFCC) as described in [Levy & Sandler, 2006]. The

extracted features are also reported to a central server, where they become part of the so called

Isophone database. This database is used for aggregating information from SoundBite clients,

consisting of editorial metadata and similarity features for each audio track. The entire system may

therefore be regarded as a distributed framework for similarity feature extraction. The SoundBite

dataset consists of MFCC features and MusicBrainz identifiers for a cleaned-up subset of the data

reported back to the central server by the different instances of the SoundBite client application.

Currently, the database includes metadata for 152,410 tracks produced by 6,938 unique artists.

Prior to publishing, the data needed to undergo a clean-up process. In the first stage of the clean-

up process: title, artist, and album are matched against the MusicBrainz database. The durations

of tracks are used for resolving ambiguities, as well as for sanity check (a large difference between

the reported duration value and the duration retrieved from MusicBrainz may indicate that the other
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fields are erroneously or maliciously wrong). Each matching track is been assigned an ID provided

by the MusicBrainz database, which serves as unique identifier. We found that about 28% of the

entries in our database had exact matches (artist, title, album, and approximate duration) in the

MusicBrainz database. The remaining 72% are stored for possible future use, but do not currently

qualify for publishing. The relatively small proportion of tracks that do qualify can be regarded as

an indication of the poor reliability of textual metadata in end users’ audio collection. As indicated

in [Sigurdsson et al., 2006], MFCC features are more robust at higher bit rates. Therefore, in the

second stage the data is further filtered according to maximum bit rate and best quality audio file

type (e.g. keeping AACs as opposed to MP3s), in order to preserve the highest quality features for

each track. Since these parameters are included in the metadata reported to the server, this doesn’t

require access to the audio files themselves. Once cleaned-up and filtered as described above, the

MFCC features and the obtained MusicBrainz IDs are exported from the database as RDFs using

the D2R Mapping [Bizer & Cyganiak, 2006], with the appropriate linking to the Audio Features19

and SoundBite ontologies (see figure 3.4). They are then made available via a Query Language for

RDF (SPARQL) end-point on our server.

3.4.2 A Knowledge-based approach for MIR applications

Knowledge management is an important issue in the field of music informatics. Researchers usu-

ally use different configuration parameters and data formats. While music information retrieval

community has developed a significant amount of tools and frameworks, it is very difficult to

collaborate and share data meaningfully without having to interpret divergent data formats. This

becomes even a greater problem with the utilisation of data which could be produced, for instance

by audio analysis algorithms providing higher-level representations than the audio signal itself.

Many organisations defined their own standards to encode information for different aspects

of the audio domain. As a result, many incompatible standards and methods were produced in

19http://purl.org/ontology/af/
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Figure 3.4: Accessing the SPARQL endpoint using the SoundBite ontology

different schema and syntax without common grounds and principles. There has been a great

deal of effort to standardise description formats, for example the MPEG-7 International Standard

for Multimedia Content description20, as well as in providing vocabularies for content, tools, and

methods.

The Semantic Web technologies and Linked Data concepts include widely accepted standards

and formats as a knowledge-base approach to inefficiencies in data representation exists in MIR. A

substantial quantity of music-related linked data is already published to date. Using a compatible

framework for data will make it easy to augment results with links to these existing resources.

Thus, researchers can reliably associate analytical results with other information about the source

material, and also use existing implementations for free library code for data structure, storage,

syntax, serialisation, and querying.

Several ontologies have been developed for describing musical metadata for the Semantic Web

within the OMRAS2 project. For instance, the Music Ontology21 provides terms for describing

20http://mpeg.chiariglione.org/standards/mpeg-7/
21http://musicontology.com/
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musical metadata such as artist or performance. It relies on the Event22 and Timeline23 ontologies.

The Similarity24 ontology permits the expression of the similarity between things as a class with

its own properties, such as to describe the quality of that similarity. It is flexible enough to be

able to encompass concepts as diverse as artistic influence and timbral similarity. At a signal and

feature description level, the Audio Features25 ontology provides terms to represent features of

audio signals, such as chromagrams or onset detection function . The Chord26 ontology provides

vocabulary for describing chords and chord sequences.

The utilisation of different programming languages, software libraries and Application Pro-

gramming Interfaces (API) can cause massive issues during data or result exchange. Hence, the

Vamp audio analysis plugin format, which is an audio processing API enhanced with Semantic

Web ontologies, was proposed as an alternative solution to this issue along with an ontology, called

the Vamp Plugin Ontology27. Moreover, RDF representation of the produced data allows it to be

linked to further musical metadata such as title and artist information via further terms from the

Music Ontology.

Another important use case includes instrument identification in a knowledge based environ-

ment. While several instrument classificaiton systems have been proposed by musicologists and

etno-musicologists, there’s no universally accepted system to date. More details will be provided

regarding the musical instrument ontologies in Chapter 4.

22http://purl.org/NET/c4dm/event.owl
23http://purl.org/NET/c4dm/timeline.owl
24http://purl.org/ontology/similarity/
25http://purl.org/ontology/af/
26http://purl.org/ontology/chord/
27http://omras2.org/VampOntology/
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3.5 Summary

In this chapter we have discussed ontology representation models and Semantic Web technologies

and how they have been applied to music-related information and other research fields. Despite

some of the difficulties mentioned in Section 3.4, the utility of Semantic Web technologies for

modelling the complexity of the musical instrument domain remains untouched. In Chapter 4, we

will discuss the knowledge representation issues in musical instrument ontology design and how

the semantic web technologies we discussed in this chapter can be used to model a wide range of

instrument characteristics.
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Chapter 4

The Semantic Web and Musical Instrument Ontologies

This chapter presents our work on musical instruments ontology design, and investigates hetero-

geneity and limitations in existing instrument classification schemes. First, we will provide infor-

mation in knowledge representation issues in music classification schemes based on the investiga-

tions of organologists and museologists in section 4.1. Subsequently, we will highlight the music

related ontologies, i.e. Music Ontology and several musical instrument ontologies, proposed to date

in section 4.2.

Numerous research have focused on representation of musical instrument information. The

works we examined are based on the well known Hornbostel and Sachs classification scheme. In

section 4.3, the knowledge representation issues in musical instrument ontology design discussed

in two categories: taxonomic issues and heterogeneity issues.

We also developed representations of these instrument classification schemes using the On-

tology Web Language (OWL), and compared terminological and conceptual heterogeneity using

SPARQL queries in section 4.4.



4.1 Knowledge Representation Issues in Musical Instrument Ontology Design

Knowledge representation in the domain of musical instruments is a complex issue, involving a

wide range of instrument characteristics, for instance, physical aspects of instruments such as dif-

ferent types of sound initiation, resonators, as well as the player-instrument relationship. Since the

19th century, numerous studies developed systems for representing information about musical in-

struments, for instance, (ethno)musicologists have been working on creating a common vocabulary,

which represents all instruments with relevant characteristics in a systematic way. The classifica-

tion of instruments has also been investigated by organologists and museologists [Kartomi, 2001].

Hornobostel and Sachs [von Hornbostel & Sachs, 1914] proposed a musical instrument classifica-

tion scheme as an extension of Mahillon’s scheme [Lysloff & Matson, 1985], originally designed

to catalogue the worldwide collection of musical instruments housed in the Brussels Conservatory

Instrumental museum.

The Hornobostel and Sachs classification scheme (H-S system) relies on a downward taxon-

omy by logical division. The method later was formed by Drag̈er [1948]. Although many attempts

have since been made by scholars to improve the Hornobostel and Sachs’ Systematik, it is still

predominant in museums around the world. Kartomi [2001] attributes the success of the classifica-

tion system to the fact that it is essentially numerical rather than lexical, making it an international

system (e.g. 211.11-922 refers to the timpani or kettledrum in the H-S system). Elschek [1969],

was the first to propose an upward method of classification based on instrument attributes comple-

menting downward classifications schemes such as the Systematik.

4.2 Core and Domain Ontologies related to Musical Instruments

In this section, our primary aim is to investigate the instrument classification schemes and semantic

richness of instrument domain ontologies proposed to date, which may be used in conjunction with
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a core ontology in music domain, called the Music Ontology1. Therefore, we outline the music

ontology and previously published Semantic Web ontologies of musical instruments.

4.2.1 The Music Ontology

The Music Ontology[Raimond, 2008] provides a unified framework for describing music-related

information (i.e. editorial data including artists, albums and tracks) on the Web. It is built on several

ontologies such as the Timeline Ontology, the Event Ontology2, the Functional Requirements for

Bibliographic Records (FRBR) Ontology3, and the Friend Of A Friend (FOAF) Ontology4. It

subsumes specific terms from these ontologies, useful to describe music related data. The Timeline

and Event ontologies, can be used to localise events in space and time. The FRBR model links

books and other intellectual works with their creators, publishers or subjects, and provides a model

to describe the life cycle of these works. This is reused by the Music Ontology to describe the

music production workflow from composition to delivery. Finally, FOAF defines people, groups

and organisations. The Music Ontology does not cover every music related concept, rather, it

provides extension points where a domain specific ontology, such as a musical instrument or a

genre ontology may be integrated.

4.2.2 Musical Instrument Ontologies

Based on the Musicbrainz instrument tree, Herman5 published a musical instrument taxonomy

expressed in SKOS. This serves as an extension to the Music Ontology. While SKOS is well suited

for hierarchical classification schemes, it provides limited support for other types of relationships;

skos:related for example, may be used to describe associative relations, but only in a semi-

formal way, without a more explicit definition. Moreover, the transitivity of broader and narrower
1http://musicontology.com/
2http://purl.org/NET/c4dm/event.owl/
3http://vocab.org/frbr/core/
4http://xmlns.com/foaf/spec/
5http://purl.org/ontology/mo/mit#
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relations are not guaranteed in SKOS, therefore it is difficult to infer for instance the instrument

family of a given instrument, without additional knowledge not expressed in the model. While this

taxonomy is suitable for applications that require only a semantic label to represent instruments

associated with audio items, it is insufficient if the heterogeneity of instrument relations has to be

explicitly represented.

The Kanzaki Music Ontology6 also contains a small instrument taxonomy. However, there are

only 5 instrument families defined (e.g. string instruments, woodwind instruments, brass instru-

ments, percussion, and keyboard instruments), with 26 corresponding instrument classes. Although

these works provide instrument taxonomies that can be used on the Semantic Web, there remains

a need for a semantically rich ontology, which represents the heterogeneity as well as different

components and aspects of musical instruments on the Web.

Finally, a recently published XML-based taxonomy serves as an extension to Music XML7.

This system departs form Hornobostel and Sachs, and proposes a classification scheme based on

materials and performance mechanism, instead of the sound production mechanism. However, it

remains at a hierarchical design. Furthermore, XML in itself is insufficient for rich knowledge

representations, therefore it is hard to see how this model may be extended to account for the

heterogeneity and the diverse set of properties of musical instruments, and enable logical reasoning

or answering complex queries.

4.3 Issues in Musical Instrument Ontology Design

Conceptualising a domain is inherent in developing knowledge based systems. In the fields of

ethno-musicology and Music Information Retrieval (MIR), most conceptualisations of the domain

of musical instruments are based on the taxonomical H-S system, and very few studies departed

from this system. Taxonomies allow us to organise data in a hierarchical structure very efficiently.

6http://www.kanzaki.com/ns/music
7http://www.recordare.com/musicxml/

58

http://www.kanzaki.com/ns/music
http://www.recordare.com/musicxml/


However, taxonomies encode a strict relationship between a parent node and a child node by using

sub-class or part-of axioms, without defining the detailed relationships among instrument objects,

therefore they are semantically weak structures for expressing knowledge [Daconta et al., 2003;

Hepp, 2005; Hepp & de Bruijn, 2007]. Musical instruments however have a multi-relational model,

thereby instruments can belong to more than one instrumental family or sub-family. In order to

illustrate the heterogeneity and taxonomic design problems occurring in current knowledge repre-

sentations of instruments, two different instrument classification systems were taken into account:

i) one proposed by Doktorski8 which will be denoted taxonomy ‘A’, and ii) one proposed by Mon-

tagu & Burton [Montagu & Burton, 1971] which will be denoted taxonomy ‘B’. We implemented

both of the taxonomies in OWL, and they can be found at corresponding URL9.

4.3.1 Taxonomic Issues

To overcome the knowledge representation issues in musical instrument ontologies, having a multi-

relational design and providing information about the relationships among concepts is a crucial

necessity. For instance, Figure 4.1 illustrates an example from the ontology design of the chordo-

phones/string instrument family based on taxonomy A.

As shown in Figure 4.1, the violin and cello are classified as bowed instruments, the guitar and

banjo are classified as plucked instruments, and the piano is classified as a struck instrument. How-

ever, violinists can vary their playing technique depending on the expressive intentions: the strings

can be excited by drawing the hair of the bow across them (arco), or by plucking them (pizzi-

cato). For these reasons, the violin should be classified as either a bowed or plucked instrument. In

Figures 4.1 and 4.2, the concepts that occurred multiple times in various instrument families, are

shown using dashed lined shapes ( e.g. struck, plucked and rubbed). We can demonstrate similar

examples in the family of percussion instruments. For instance, in Figure 4.2, the tambourine is

8http://free-reed.net/description/taxonomy
9http://isophonics.net/content/musical-instrument-taxonomies
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Figure 4.1: An example from musical instrument ontology design of chordophone/string instru-
ments based on taxonomy A

classified as a membranophone, whereas if it is only shaken, it jingles, and therefore it could be

classified as an idiophone as well. Many examples may be observer related to taxonomic classifica-

tion problems, not only in the ethno-musicology, but also in other applications that rely on musical

instrument knowledge representation or information management.

In taxonomy B, the use of classifications such as, species, genus, family, sub-order, order,

based on the taxonomical system of Carl Linnaeus. However, this study only provides a termino-

logical departure from the H-S system, since it is still based on the same taxonomy structure. A

partial instrument ontology design of this classification scheme is depicted in Figure 4.3.

4.3.2 Heterogeneity Issues

The use of different words to refer to similar concepts, or different conceptualisations, induce

terminological or conceptual heterogeneities among ontologies, that can be observed from the given

graphical illustrations so far. For instance, in Figure 4.3, the idiophones and the membranophones

are defined as a major instrument family according to taxonomy B, whereas both of these classes

can be seen as sub-classes of the percussion instruments in taxonomy A (Figure 4.2).
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Figure 4.2: An example from musical instrument ontology design of percussion instruments based
on taxonomy A

Figure 4.3: An example from musical instrument ontology design based on taxonomy B
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The heterogeneity among these classes continues downward towards to the sub-class nodes:

For instance, idiophones are divided into unpitched and pitched sub-categories, while membra-

nophones are divided into determinate pitch and indeterminate pitch sub-categories (Figure 4.2).

On the other hand, the idiophones have sub-classes such as struck, shaken, strigilated and plucked

sub-classes, while membranophones have kettle, single head and double head sub-classes (Figure

4.3). Some concepts are present in the same taxonomic level without defining the relationship

among concepts, and the concepts are classified according to sound initiation type (e.g. struck,

plucked, or shaken), whereas others are classified according to the instrument construction type

(e.g. single head, double head, harps, lyres and lutes). Therefore, the taxonomic classifications

applied traditionally are not only heterogeneous in structure, but also provide an arbitrarily prob-

lematic solution to instrument classification, because of the inadequately defined knowledge repre-

sentation.

4.4 Musical Instrument Taxonomies — Query driven evaluation

Both taxonomies described in the previous section were implemented in OWL and tested using

SPARQL queries involving instruments present in both systems. In the following examples, we

query the ontology structure, as well as RDF data corresponding to specific statements about in-

struments. Since in most knowledge-based environments, data and ontology can be represented

in the same graph, these queries also demonstrate real-world use cases for instrument knowledge

representation.

4.4.1 Query Example-1

The first example is based on the tuba, which is available in both taxonomies. The following

paragraph provides a description of the tuba by Olson [1967]:
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The tuba is the lowest pitched Aerophone. Sound is produced by vibrating or buzzing the lips into a large

cupped mouthpiece, which is coupled to a coiled tube about 18 feet in length with a slow rate of conical flare

terminating in a large bell-shaped mouth. The tuba is usually equipped with three valves, each of which

adds a different length of tubing. With piston valves it is possible to change the length of the air column.

Identifying an instrument by its sound can be a difficult task, even for someone with a decent

musical background. For this reason, visual cues can be just as important as hearing in instrument

identification. For example, recognising the characteristic shape of an instrument is important,

since it has a profound effect on the generated sound. Based on these considerations, we prepared

the following four queries to retrieve the information underlined in the definition of the tuba above:

What is the instrument family, the characteristic shape, the sound initiation type and the number of

valves of the tuba?

PREFIX io: <http://example.org/io/taxonomyN#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?x WHERE { io:Tuba rdfs:subClassOf ?x }

Listing 4.1: Retrieving the immediate super class of the tuba.

In the first query the non-determined variable ?x is assigned when the query engine finds the

super class of the entity named Tuba. The query result for taxonomy ‘A’ is io:WithValves,

and for taxonomy ‘B’ is io:ValvesBugles. This demonstrates terminological heterogeneity

immediately on the first upper level. Note that name space prefixes such as io: and rdfs: are

expanded to full URIs by the query engine. In the following queries, they will be omitted for

brevity.

In order to retrieve the instrument family, we can either expand the query until we reach the

corresponding node as shown in listing 4.2, or use a program to do so appropriately. This assumes

knowledge about the depth and organisation of the taxonomy tree, that is, what information is
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SELECT ?sc1 ... ?sc(N)
WHERE { io:Tuba rdfs:subClassOf ?sc1 .
OPTIONAL { ?sc1 rdfs:subClassOf ?sc2 } .

.

.
OPTIONAL { ?sc(N-1) rdfs:subClassOf ?sc(N) } .

}

Listing 4.2: Hypothetical query for finding the instrument family of the tuba.

described on each level given a specific branch. Given this information, a reasoning engine could

infer the instrument family relation, so that a direct query could be written. However, taxonomy

based knowledge organisation systems do not contain this type of information, which is their main

drawback in answering complex queries.

Intuitively, this query graph means that there exists an entity Tuba that is a subclass of ?sc1

having a relation with another entity whose name is non-determined. We may recursively go on

until finding the entity Aerophones, the super-class of the last non-determined class. The query

would succeed at the 4th super-class node for the taxonomy ‘A’ (e.g.WithValves, BrassInstrument,

PipeAerophones, Aerophones), whereas the corresponding result would be obtained at the 10th

node for the taxonomy ‘B’ (e.g.ValvedBugles, SingleBell, Valves, EndBlown, Metal, Conical, Dou-

bleLipReed, Reeds, Aerophones).

The main problem with taxonomical representations is that it’s difficult to answer certain

queries without a more explicit knowledge representation. Taxonomic systems propagate mean-

ing via the parent child relationship. We could infer that the tuba is an (is-a, or rdf:type)

instrument with Valves, a Brass instrument and an Aerophone, according to taxonomy ‘A’. The

instrument family could be directly encoded using a semantically rich ontology. Although both

taxonomies are based on the H-S system, it is easy to observe the diversity among different instru-

ment taxonomies from these query results. The problem is not only the conceptual heterogeneity of

the instruments themselves, but also the terminological heterogeneity among different knowledge
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representation schemes.

4.4.2 Query Example-2

The second query is ’What is the characteristic shape of the tuba?’. To find this information, an

upward recursive query, such as the one in Listing 4.2, or downward recursive query, which starts

from the Conical concept, can be used to verify that the tuba is a conical instrument. However,

both types of queries rely on external knowledge that can not be inferred from the pure taxonomical

relationships directly. While taxonomy ’B’ at least contains the information about the characteristic

shape of the tuba, being Conical, taxonomy ’A’ does not contain this information. In the third and

fourth questions, we ask ’What is the sound initiation type of the tuba ?’ and ’How many valves has

the tuba?’. Unfortunately none of the implemented systems encode these relationships, therefore

it is not possible to write queries to answer these questions that would produce any results.

In our second example shown in listing 4.3, we use the Music Ontology to represent the Com-

position and Performance events from the sentence below, assuming the composer also performed

the piece:

The American accordionist and composer Guy Klucevsek has written a piece for solo accor-

dion, ’Eleven Large Lobsters Loose In The Lobby’, which does not use the reeds of the accordion.

The performer produces sounds by clicking the register switches, tapping the keys, and other per-

cussive means. In this piece the accordion is used as an idiophone and not as a free-reed.10

This example presents a case for knowledge discovery using instrument taxonomies. As shown

in the example, lacking a more detailed ontological representation, we could not describe the ac-

cordion further to take into account the specific playing style. Since none of the taxonomies may be

used to encode information about possible alternative sound initiation types, we may only obtain

the instrument’s default characteristics given a taxonomy, using recursive queries such as query

10http://www.ksanti.net/free-reed/description/taxonomy.html
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@prefix io: <http://example.org/io/taxonomyN#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix mo: <http://purl.org/ontology/owl/> .
@prefix ex: <http://example.com/> .

ex:guy_klucevsek
a mo:MusicArtist ;
foaf:name "Guy Klucevsek" ;
owl:sameAs <http://dbpedia.org/page/Guy_Klucevsek> ;

ex:guy_klucevseks_accordion
a io:Accordion .

ex:ellltl
a mo:Composition ;
dc:title "Eleven Large Lobsters Loose in the Lobby"ˆˆxsd:string ;
mo:composer ex:guy_klucevsek ;
mo:produced_work ex:w_ellltl;
owl:sameAs

<http://dbtune.org/musicbrainz/page/track/8093f69e-194f-4cb1-8943-2
d11fac6dcc6> .

ex:p_ellltl
a mo:Performance ;
rdfs:label "A performance of the composition."ˆˆxsd:string ;
mo:performer ex:guy_klucevsek ;
mo:performance_of ex:w_ellltl ;
mo:instrument ex:guy_klucevseks_accordion .

Listing 4.3: RDF Data based on Music Ontology and Music Instrument Taxonomy (taxonomy
A).

4.2. Given this representation a reasoner can only infer that the Accordion is a Hand blown, Free-

reed, Aerophone instrument. However, in this particular example, the instrument was played using

different techniques, such as clicking the register switches and tapping the keys, which implies its

use as an idiophone. The inductive challenge is to infer statements about the relations and objects

that are true but unobserved. Due to the drawbacks of traditional taxonomies, the reasoner would

not be able to discover new knowledge about the particular individual played as an idiophone in
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this specific example.

4.5 Summary

In this chapter, we have provided our investigation on some issues arising in the representation of

knowledge about musical instruments. In order to demonstrate their drawbacks in complex query

answering, we implemented two instrument taxonomies based on the well-known H-S system in

OWL. We found that many instrument classification schemes exhibit insufficient or ill-defined

semantics for our purposes, thus a more flexible representation is required. We demonstrated us-

ing different SPARQL queries that depending on the terminology and conceptualisation used by

(ethno)musicologists, we obtain different results for the same instrument object. It also became

evident, that ontologies that define relationships between entities are better than traditional tax-

onomies at providing meaningful answers to queries.
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Chapter 5

Fundamentals of Automatic Ontology Generation

This chapter is organised in three parts. In Section 5.1, we will discuss the automatic ontology

generation frameworks based on the type of input data and the proposed ontology generation tools

to date.

In Section 5.2, we present the musical audio texture and timbre features, such as timbral texture

features, rhythmic content features, and pitch content features. We also highlight machine learning

techniques used in musical applications, in particular the Multilayer Perceptron (MLP), Support

Vector Machine (SVM), and K-means algorithm. Subsequently, we will review music classification

tasks (i.e. tag, mood, instrument identification).

Finally, we will overview our work on conceptualisation, and present Formal Concept Analysis

along with examples, in Section 5.3.



5.1 Automatic Ontology Generation Frameworks

Ontology development is an expensive, time consuming and laborious task. There are two kind-of

methods in order to construct an ontology. i) providing tools (e.g. editors, consistency checkers,

and ontology import tools) which are employed by knowledge engineers or domain experts to

construct the ontology, ii) providing semi-automatic or automatic systems depending on machine

learning and natural language processing techniques which are designed to extract concepts and

relations from structured and unstructured data for instance databases and text. In this section, we

will review automatic ontology generation systems.

5.1.1 Types of Input Data

Automatic Ontology Generation Systems use a diverse spectrum of technologies to develop on-

tologies completely from scratch, or enrich or adapt a pre-existing ontology in a semi-automatic

manner working with various resources. Within the last few years, a number of ontology genera-

tion systems have been proposed. These systems can be classified based on the type of data that

they are using in the training phase: structured, semi-structured, and unstructured types.

Unstructured Data: is natural text, such as books and journals. There exists a requirement of

more processing than in the case of semi-structured and structured data. The methods proposed

for learning from unstructured data usually rely on natural language processing. The shallow text

processing with statistical analysis is among the natural language processing techniques. It employs

a shallow parser to acquire noun phrases based on the frequency count of noun and noun phrases

in documents which are retrieved from the web to obtain concepts and taxonomical relations. For

instance, Sanchez & Moreno [2004] proposed a method utilising a search engine to retrieve the

related pages based on keywords, and then analyse these web sites to discover essential candidate

concepts for a domain. Thus, it retrieves the ontology concepts that are related or subsumed by a

keyword.
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There are also systems completely based on NLP. Sabou et al. [2005a] proposed a system which

employs a typed dependency grammar and parser to obtain the relation between syntactic entities.

Additionally, a set of syntactic patterns are used to discover relations among words in order to

create an ontology. Their ontology extraction steps are: dependency parsing, syntactic patterns,

ontology building, and ontology pruning.

Cimiano et al. [2005] developed an automatic approach for acquiring concept hierarchies from

a text corpus. They parse the corpus to tag words with part-of-speech and generate parse trees

for each sentence. The verb/subject, verb/object and verb/prepositional phrase dependencies are

extracted from these parse trees, and then finally, Formal Concept Analysis is used to obtain the

hierarchical structure of ontologies. More information on Formal Concept Analysis will be given

in Section 5.3.

Semi-structured data: is text in HTML, XML files. Building ontology from semi-structure data

uses both traditional data mining and web content mining techniques. Davulcu developed a sys-

tem to detect HTML regularities in the Web documents in order to obtain hierarchical semantic

structures as XML Davulcu et al. [2004]. As complementary they use tree mining algorithms to

identify key domain concepts and their taxonomical relationships. In study [Karoui et al., 2004;

Nacéra Bennacer & Karoui, 2005], HTML documents have been used to identify the candidate

concepts and build a database table with utilisation of clustering method. Considering the fact that

semi-structured data provides more semantics than unstructured data, there isn’t any doubt that

more structured input data yields richer results. However, the vast majority of available knowledge

is available as unstructured data.

Structured data: are the databases and dictionaries. Therefore, it is possible to extract parts of

the ontology using the available structural information. Examples of structured information sources

are database schemas, existing ontologies and knowledge bases. The central problem in learning

from structured data is to determine which pieces of structural information can provide relevant
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knowledge.

5.1.2 Ontology Generation Tools: State of the Art

Ontology generation tools can be divided into two different categories. First, those which mainly

focus on ontology generation from plain text and second, those that mainly focus on ontology gen-

eration from semi-structured data. There are a number of applications of ontology generation tools

which are using unstructured text, taking advantage of automatic acquisition methods to automati-

cally obtain an ontology.

For instance, Wong et al. [2009] proposed a hybrid system that consist of lexical simplifica-

tion, word disambiguation and association inference for obtaining coarse-grained relations among

potentially ambiguous and composite terms based on Web resources. However, the output of the

proposed system is a lightweight ontology which can be seen as a taxonomy with mainly is-a re-

lations. ORE (Ontology Repair and Enrichment) is a semi-automatic ontology enrichment tool

which offers an assistance to knowledge engineers to identify issues in their knowledge base and

fix them [Lehmann & Bühmann, 2010]. ORE combines state of the art techniques from ontology

debugging and supervised learning in OWL, and provides recommendations for repairing and en-

riching a knowledge base through the use of supervised machine learning on the corresponding

dataset.

LexOnt is yet another ontology generation tool — that is a plugin for the Protege ontology

editor — which interacts with the user to facilitate the ontology development process [Arabshian

et al., 2012]. It is based on a semi-automatic approach which builds the ontology iteratively by

utilising external knowledge such as Wikipedia and WordNet. The process involves three steps: i)

match-terms to the Wikipedia page description of the category, ii) find synonymous words from the

Wordnet, and iii) add terms to the ontology and rank in accordance with the external knowledge

base. Subsequently, the user decides on concept names and object properties, that are more suitable

for the ontology. As a result, it allows user to obtain an ontology including concepts and properties
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based on common terms and phrases within a corpus and domain.

Contrary to the ontology generation tools that we reviewed above, RelExt [Schutz & Buitelaar,

2005] and OntoGen [Fortuna et al., 2006] are semi-structured text based ontology generation tools.

RelExt utilises a pre-existing ontology and enhances it for the application domain. It identifies

relevant triples over concepts from an existing ontology. Instead of is-a relations it extracts rele-

vant terms and verbs in an effort to discover concepts and properties from a domain-specific text

collection. On the other hand, OntoGen targets providing concept suggestion and concept naming,

as well as ontology and concept visualisation to an ontology engineer via a fast semi-automatic

ontology construction approach.

5.2 Semantic Analysis of Musical Audio

In this section we introduce the audio features and research areas which are related to our aim. We

start by discussing various acoustic features and their specific characteristics. We then introduce

machine learning techniques which will be used in our experiments, and conclude the section

reviewing the main research fields in music classification.

5.2.1 Musical audio texture and timbre

Extracting information from audio recordings is an essential building block of content-based audio

analysis. For that reason, an outline of the acoustical features is necessary for describing feature ex-

traction techniques we discuss in this work. The following brief review highlights acoustic features

in three categories: timbral texture features, rhythmic content features, and pitch content features.

Timbral textural feature

The musical term timbre is used broadly to refer to the variability in sonic characteristics that dif-

ferent instruments produce. Although its definition has been a matter of some debate, in the context

of music analysis, timbre has been generally interpreted as the time-varying spectral envelope. Two
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most commons ways to obtain spectral envelopes are Linear Prediction and the Cepstrum; both are

well established in speech communication research. Linear Prediction analysis used to derive for-

mant information (e.g. frequency and bandwidth) using the source-filter model of the vocal tract.

In Linear Predictive Coding the production of sound in resonant systems is approximated by a

source-filter model. In this model, an excitation is passed through a resonant all-pole synthesis fil-

ter (inverse of the analysis filter). The analysis filter coefficients are estimated on a short-time basis

from the auto-correlation of the signal. However, much research has focused on deriving more sta-

ble transformations of the parameters, since the LPC coefficients by themselves cannot be reliably

quantised without causing instability. A solution to this problem is provided by using Line Spectral

Frequencies [Kabal & Ramachandran, 1986]. LSFs are popular due to their excellent quantisation

characteristics and consequent efficiency of representation. They are derived from the polynomial

coefficient of the inverse filter associated with Linear Predictive Coding (LPC) analysis. The most

important advantages of LSF features compared to direct form LPC coefficients are their simple

frequency domain interpretation and their robustness to quantisation [Fazekas & Sandler, 2007].

Both LPC and LSF coefficients can be used to characterise the same aspect of timbre: the formant

structure of a sound.

An alternative to the physical modelling used in linear prediction is perceptual modelling. As

a way of replicating many of the behaviours of the components in the human auditory system,

mel-frequency cepstrum is widely used which parameterises the shape of an audio spectrum after

warping the frequency axis to roughly represent the salience of different frequency bands in the

auditory system. In other words, MFCCs are derived from the cepstrum which is the inverse of

the Foruier Transform of the log spectrum. When the log-spectrum is provided in the perceptually

defined Mel Scale, the cepstrum coefficients are called Mel Frequency Cepstral Coefficients. The

Mel-frequency cepstral coefficients are therefore designed to represent perceptually salient aspects

of spectral shape in a few coefficients. They are usually employed compressing and modelling
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frequency distributions [Brown & Deffenbacher, 1979]. Another important feature of MFCCs is

the reduction of data through the elimination of redundancies using the Discrete Cosine Transform

(DCT) [Merhav & Lee, 1990]. It is worth to note that the DCT plays a significant role in audio

analysis and was initially used in speech analysis [Young et al., 1993]. To capture some measure

of temporal variability, the MFCCs are often augmented with their variance, deltas and sometimes

also the double-deltas.

Rhythmic content features

Rhythmic structure and organisation is another essential feature of music. However, computing

the rhythm, tempo and beat of music is a challenging task for automated systems. A beat is a

fundamental rhythmic element of music. The rhythm describes the timing relationships between

musical events within a piece. The feature set for representing rhythmic structure is based on

detecting the most salient periodicities of the signal. In some studies, for instance, it is extracted

from a beat histogram. As introduced in [Tzanetakis, 2002] and [Li et al., 2003], the amplitude

envelop, in time domain, of each band is initially extracted by decomposing the music signal into

a number of octave frequency bands. Subsequently, the autocorrelation is obtained based on the

envelopes and the dominant peaks of the autocorrelation function — corresponding to the various

periodicities of the signal’s envelope — are accumulated into a beat histogram where each bin

corresponds to a time lag.

Pitch content features

Pitch analysis measures the pitch content of music related to fundamental frequency. In some

studies, for instance, the pitch content is extracted from the pitch histograms where the dominant

peaks are accumulated through autocorrelation function, as described in [Martin et al., 1998] and

[Luc et al., 2006]. Each peak can be assigned to a musical note. For example, there are more chord

changes in Jazz music. On the other hand, there is a high degree harmonic variability in classical

music, as described in [Heittola, 2003].
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5.2.2 Machine learning and musical applications

Machine learning is a field of research with the aim of creating computer algorithms that simulate or

approximate human decisions. Making computers learn through the utilisation of machine learning

algorithms facilitates numerous new applications for computers. It also contributes to a greater

comprehension of human learning abilities. There are many algorithms that proved success in

many problems with clearly defined objectives. For comprehensive introductions the reader is

referred to Mitchell [1997], MacKay [2003], Marsland [2009]. Here we introduce some general

concepts in machine learning as well as the application of such techniques to musical data which

we will be used in this thesis.

An important issue in most applications is the amount of data set available for training a clas-

sification algorithm, which means that the algorithm’s ability to generalise correctly will likely to

deteriorate as the dimensionality of the input data becomes large. Machine learning algorithms,

therefore, must be supplied with relatively small number of informative input features and elim-

inate irrelevant input dimensions in order to achieve a greater generalisation from training data.

Thus, it is important to have an feature extraction process which involves simplifying the amount

of resources required to describe a large set of data accurately projecting higher dimensionality

onto a smaller number of dimensions. In previous section we discussed compact feature repre-

sentations such as MFCCs and linear prediction, that allows to compress information from on the

order of 1000 dimensions down to perhaps 8 or 32 dimension intended to capture the important

aspects of the signal.

Other more general dimension reduction strategies attempt to automatically compress high-

dimensional data into a smaller number of dimension. Principal Component Analysis (PCA) is one

of the most common techniques which identifies the largest variance of data. It produces a new

orthogonal basis in which most of the variance is captured in the first few dimensions. As a result,

it achieves a data reduction by keeping only some of the principal components.
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An alternative to dimension reduction is K-means algorithm which does not transform the in-

put features but summarises them. The main idea is to specify in advance how many clusters are

being sought which defines the parameter k. There are three main phases after choosing k points as

cluster centres: i) all instances are assigned to the closest centre point (i.e. centroid); ii) centroids

are calculated by taking average of the samples; iii) these centroids are taken to be new centre

values for their respective clusters. While K-means clustering is a commonly used data clustering

technique for unsupervised learning tasks, it can also be deployed like a data reduction technique

that summarises a signal by partitioning observations into k clusters. Each observation belongs to

the closest cluster which means that they can be represented by the closest cluster centre points.

The obtained centre points can be used as a summary of a signal as well as a codebook vector con-

taining k codevectors. It is extensively used for the vector quantisation of the LSF in speech coders

as a process of redundancy removal that makes the effective use of nonlinear dependency and di-

mensionality by compression of spectral parameters [Paliwal & Atal, 1993]. Vector Quantization

is one of the preferred methods to map vast amount of vectors from a space to a predefined number

of clusters. As a results, a large set of feature vectors are taken and a smaller set of measure vectors

is produced which represents the centroids of the distribution. Similar techniques have been ex-

perimented in speaker identification frameworks, for example in [Rosenberg & Soong., 1986; Gill

et al., 2010; Soong et al., 1985; Pelecanos et al., 2000].

Machine learning algorithms can be divided into two categories: i) supervised algorithms and

ii) unsupervised algorithms. In some pattern recognition problems, the training data includes a set

of input vectors without any corresponding target values. The objective of unsupervised learning

problems is to learn categories of similar samples within the dataset, in this case it is called clus-

tering, or to discover the distribution of data within the input space, generally known as density

estimation, or to transform the data from a high-dimensional space into two or three dimensions

with regards to visualisation. As an unsupervised algorithm, K-means is utilised thoroughly in mu-
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sic information retrieval, see [Kaminskyj & Czaszejko, 2005; Agostini et al., 2003; Fujinaga et al.,

1998; Eronen, 2001].

On the other hand, the success of supervised classification is usually assessed by testing the

trained classification system on an independent set of data, so called test data, in which the true

classifications are known, yet not provided to the machine. The rate of success on test data allows

having an objective way of measurement on how well the classification task has been performed.

Multi-Layer Perceptron (MLP) is among the most common types of neural networks in supervised

pattern recognition algorithms. The algorithm is based on an error-correction learning rule. Its

effectiveness results from parallel and distributed structure, and the ability to learn. The error

back-propagation learning involves two main stages during the learning phase: a forward pass

and a backward pass. In the forward stage, an input vector is applied to the sensory nodes of the

network by propagating its effect through the network layers. This process allows us to obtain a

set of outputs as the actual response of the network. The error signal is then propagated backward

through the network against the direction of syntactic connections. This mechanism in neural

network training is called back-propagation. The main purpose is to modify the synaptic weights

in order to minimise the error between a desired output and an actual response of the network

[Haykin, 1998] The most exhaustive studies on automatic instrument classification using mural

networks can be found in [Kostek, 1999] and [Park, 2004].

Alternatively, Support Vector Machine (SVM) is a very efficient classifier in pattern recognition

which has been widely used in various machine learning tasks, since it has been popularised by

Vapnik, in [Cortes & Vapnik, 1995]. SVM aims to discover the best separating hyperplane leading

to the largest distance separation between classes [Bishop, 2006]. It determines the data points in

each class that lie closest to the margin (decision boundary), which are called support vectors, and

minimises the probability of error relative to the learnt density model. In some cases, the dataset

may not be linearly separable. The original input space, therefore, needs to be mapped into a high-
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dimensional dot-product space known as the feature space, where each coordinate corresponds to

one feature of the data items, in order to enhance linear separability. This method is called kernel

trick. It is computationally less expensive than the explicit computation of the coordinates. There

are a number of different basis functions for kernels that can be used in Support Vector Machines

models. Some of the important kernels are RBF kernel, Polynomial kernel, Linear kernel. Poly-

nomial kernels are less widely used than the RBF kernel, which maps data to a potentially infinite

dimensional space. In [Chang et al., 2010], it has been suggested that one reason might be that a

polynomial kernel is not as nonlinear as RBF. Moreover, according to their detailed comparison

between polynomial kernel with degree 2 and RBF kernel, the results have shown that the polyno-

mial kernel gives a better accuracy than the RBF kernel which they found consistent with previous

observations.

SVM successfully used in a number of classifications and percussion transcription tasks such

as detection of segment that contains a percussive sound event or an individual drum [Helen &

Virtanen, 2005; Steelant et al., 2004; Gillet & Richard, 2005]. It has been shown that the perfor-

mance of SVM method is much higher than other methods such as KNN, GMM [Lu et al., 2003].

Additonally, it has also been pointed out that SVM is computationally more efficient than the KNN

method. In another study, there has also been a comparison in which SVM classifier without any

sequence modelling performed better than a HMM-based approach [Gillet & Richard, 2004].

Another consideration in machine learning is automated vs autonomous systems. In automated

systems, the parameter setting and the selection of a preprocessing method are conducted by an

external supervisor on a trial and error basis when a learning algorithm is applied to a particular

problem. The automated systems are usually based on batch learning in which training data is pro-

cessed together. On the other hand, autonomous systems involve online learning process in which

new data arrives in a continuous stream and every training instance is processed just once. It is

sometimes desirable to have an online algorithm which learns at the same time as it outputs deci-
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sions. However, it is worth to point out that batch algorithms may be adapted for online application

or algorithms may intrinsically be amenable to online use, as in [Davy et al., 2006; Artac et al.,

2002].

5.2.3 Music classification based on audio analysis

Music Information Retrieval applies machine learning and other techniques to topics related to

musical information. A few of the popular subjects providing a content based audio analysis back-

ground are musical instrument identification, music tag prediction and music mood classification.

In the rest of this section, the above mentioned music information retrieval tasks will be outlined

based on the state-of-the art in each area.

Music Tag Prediction

Tags are useful text-based labels that encode semantic information about music content (Genres,

instrumentation, geographic origins, emotions). Music tag prediction aims to describe the best

terms for a given song [Hoffman et al., 2009]. However, there are numerous ways of collecting

experimental data and perhaps only a few songs and artists have been annotated accurately.

That is, it is often difficult to know what makes a tag accurate and what kind of inaccuracies are

tolerable [Kim et al., 2009]. The popularity bias, thus, results in significant amount of disproportion

for tags. Considering the fact that tags are not annotated by experts, the obtained meta-data is

likely to include misleading information. Moreover, social network users usually prefer using

the most frequent tags rather than contributing new tags to the system. For instance, roughly a

third of 5,265 artists received no tags for any of their tracks, while even amongst the artists with

tagged tracks, roughly a third have no more than five distinct tags per track on average in [Levy &

Sandler, 2009]. Evidently, music recommendation or search systems based on tags will obtain bias

results utilising tracks by well-known and well-liked artists [Lamere, 2008]. Thereby, it provides a

practical motivation to support MIR models with information extracted from audio signals which
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may improve the quality and variety of results returned to set of search queries.

In the context of music tag identification, The mostly used algorithms are standard binary clas-

sifiers, such as Support Vector Machines or AdaBoost [Trohidis et al., 2008b]. These classification

approaches use standard training and testing phases. Thereby, the classifier predicts the musical

tags of a testing dataset. Gaussian Mixture Model (GMM) is another well known technique that

has been widely used in music tag prediction [Turnbull et al., 2008]. The approach has shown

reasonable performance on diverse set of songs and retrieved relevant songs given a text-based

query.

Music Mood Classification

Music is an art form that can influence our mood and even more life style. Social and psychological

outcomes of music have been studied extensively for decades [Li & Ogihara, 2004]. Note that the

classification of conceptual structure of psychological moods of human is an intensely challenging

problem on its own.

Traditionally, MIR approaches have been based on standard meta-data such as the name of

the composer, the album title, the style of music, and so on. However, there is also a need to

use higher level features (e.g., beat, tempo, and mood.) in order to obtain better information.

To extract emotional features in music, numerous studies established to understand what people

might feel when they listen to music. For example, Trohidis et al. [2008a] proposed a multi-label

classification of music emotions utilising four algorithms, including binary relevance (BR), label

powerset (LP), random k-labelsets (RAKEL), and multilabel k-nearest neighbor (MLkNN). These

algorithms were evaluated and compared using rhythm and timbre features. The experiments are

conducted on a set of 593 songs with 6 clusters of music emotions based on the Tellegon Watson-

Clark model. The employed emotions are ‘amazed-surprised’,‘ happy-pleased’, ‘relaxing-calm’,

‘quiet-still’, ‘sad-lonely’ and ‘angry-fearful’. The RAKEL algorithm performed relatively better

than others. In another automatic mood detection approach employed by Luc et al. [2006], where
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a Gaussian Mixture Model is used to model each feature set regarding to each mood cluster such

as contentment, depression, exuberance and anxious/frantic. The dataset has been annotated by

experts. The results indicate that the timbre features are much more important than the rhythm

features in classifying Contentment and Depression, while the rhythm features are slightly more

important to discriminate Exuberance from Anxious/Frantic.

Musical Instrument Classification

To automate musical instrument identification, various approaches have been developed based on

isolated notes, solo performances, or complex mixtures (see [Klapuri & Davy, 2006] for a thor-

ough review). The results obtained depend on three main factors: the databases used during the

learning and testing stages, the features selected to characterize the timbre of the instruments, and

the classification methods.

The isolated note or solo performances present an advantage of simplicity and tractability, since

there is no need to separate the sounds from different instruments. For example, Chétry et al. [2005]

proposed a system based on Line Spectral Frequencies (LSF), which are derived from a linear pre-

dictive analysis of the signal and represent well the formant structure of the spectral envelope. The

instrument identification unit of our system is based on this model. K-means clustering is used to

construct a collection of LSF feature vectors, called codebook. The collection of K codevectors

(LSF vectors) constitutes a codebook, whose function is to capture the most relevant features to

characterise the timbre of an audio segment. Hence, to a certain extent, K-means clustering can

be viewed here both as a classification and a feature selection technique, as described in [Bar-

thet & Sandler, 2010b]. The classification decisions are made by codebook-to-codebook distance

measurement based on the minimisation of an error. The system achieved 95% performance on a

dataset comprising 4415 instrumental sound instances.

In another study, Vincent & Rodet [2004] proposed a system based on Gaussian Mixture Mod-

els (GMM) which were trained and tested on isolated notes and solo recordings. The dataset was
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gathered by extracting 2 excerpts of 5 seconds from each of the 10 solo recordings used in the

experiment. This approach yielded 90% accuracy. Essid et al. [2006] proposed a system tested

on a relatively large dataset. The same classification technique, GMM, was compared to Support

Vector Machines (SVM) with different audio features. Their system obtained a 12% performance

improvement compared to a system based on the SVM classifier, leading up to 87% of accuracy

for 0.5s-long audio segments. Furthermore, the performance of their system increased from 6%

points up to 93% of accuracy, using SVM on “5 s-long audio segments”.

There are, however, only a few studies where instrument recognition produces a hierarchical

instrument structure. For example, Martin [Martin et al., 1998] proposed a system which was based

on three different hierarchical levels: 1) pizzicato (plucked) and sustained sounds, 2) instrument

families such as strings, woodwinds, and brass 3) individual instruments for the corresponding

instrument families. While the dataset consisted of 1023 solo tones samples from 15 instruments,

the recognition rate obtained with this system was 90% for instrument family and 70% for indi-

vidual instruments. Other hierarchical systems have been developed by Eronen & Klapuri [2000],

Kitahara et al. [2003] and Peeters & Xavier [2003]. The overall correct identification rate of these

systems are in the range of 35% to 80% for individual instruments, and 77% to 91% for instru-

ment family recognition. In general, the problem with hierarchical classification systems is that the

errors at each level propagate increasingly to the other levels of the hierarchy.

5.3 Conceptual Analysis

In this section, we discuss the studies on conceptual analysis and automatic ontology generation

to date. Additionally, we will present the Formal Concept Analysis technique that constitutes the

core of our system.
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5.3.1 Concepts and Conceptual Analysis in Ontology Generation Systems

Creating a class hierarchy is an important aspect of ontology design. Establishing such a hier-

archy is a difficult task that is often accomplished without any clear guidance and tool support.

Yet, the most commonly used hierarchical data mining techniques such as Hierarchical Agglomer-

ative Clustering [Cimiano et al., 2005] and Decision Trees [Elsayed et al., 2007] do not take into

account the relationships between objects. For instance, decision trees employed for the discrim-

ination of instrument sounds have usually produced worse results than other classification tech-

niques [Peeters, 2003], [Herrera et al., 2001]. Alternatively, they’ve provided information on the

characteristics of the features and values that discriminate the pitched instrument classes [Jensen

& Arnspang, 1999], [Wieczorkowska, 1999]. Latest improvements to basic decision tree, for ex-

ample Ada Boost [Freund & Schapire, 1996], may deliver success which can be as good as other

classification algorithms. Nevertheless, they do not provide an applicable solution to knowledge

representation issues of ontology systems. This problem becomes even more apparent considering

the multi-relational nature of musical data.

On the other hand, Formal Concept Analysis (FCA) allows to generate and visualise the hierar-

chies relying on the relationships of objects and attributes. FCA, also known as concept lattice, was

first proposed by German mathematician Wille in 1982 [Wille, 1982]. It has been used in many

software engineering topics such as the identification of objects in legacy code, or the identification

and restructuring of schema in object-oriented databases [Snelting, 2003]. In the broad sense, these

works are important since ontologies provide the basis for information and database systems [Yahia

et al., 1996]. Various specification techniques for hierarchical design in object-oriented software

development have been proposed in [Godin & Valtchev, 2005]. This study suggested alternative

designs for FCA by not only utilising attribute-based categorisations but also using different levels

of specification details (e.g., objects, attributes, methods) in order to obtain the class diagram of the

software system. Furthermore, FCA has been used in conceptual knowledge discovery in collabo-
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rative tagging systems [Kang et al., 2009], and web mining studies in order to create adaptive web

sites utilising user access patterns extracted from Web logs [Vasumathi & Govardhan, 2009].

By offering a solution to bridge the gap between data and knowledge automatically, FCA has

generated considerable research interest. Recently one of the influential ideas of automatic on-

tology generation has been proposed by Maedche & Staab [2001] and can be described as the

acquisition of a domain model from data. FCA has also been used in other systems [Cimiano,

2006; Stumme et al., 1998].

5.3.2 Formal Concept Analysis

Formal Concept Analysis is a mathematical theory of concept hierarchies which is based on Lattice

Theory. The keystone of the FCA is the notion of formal context. A formal context is defined as a

binary relation between a set of objects and a set of attributes. In a formal context, a pair, formed

by a set of objects and a set of attributes that uniquely associate with each other, is called a formal

concept. The set of objects are referred to as extent closure, and the set of attributes are referred to

as intent closure. In the reminder of this Section, the notions underlying Formal Concept Analysis

are defined following Ganter et al.’s formalism [Ganter et al., 2005] and illustrative examples are

given.

Definition 7 (Formal Context). A formal context K := (G,M, I) is composed of a set of objects G,

a set of attributes M, and a binary relation I ⊆ G×M. We call I the incidence relation and read

(g,m) ∈ I as the object g has the attribute m. The relation of an object to an attribute is denoted as

gIm.

A formal context can be represented by a cross table where the rows are defined by the object

names and the columns are defined by the attribute names. In Table 5.1, the formal context is

composed of three objects representing three instruments (cello, piano, violin), and three attributes

representing three instrument properties (vibrating string, sound initiation process:Bowed, and
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vibrating string sound initiation
process:Bowed

sound initiation
process:Struck

Cello X X -
Piano X - X
Violin X X -

Table 5.1: Cross table representing a formal context between a set of instruments (cello, piano,
violin) and a set of attributes (vibrating string, bowed, struck).

sound initiation process:Struck). A symbol “X” in row g and column m means that the object

g has the attribute m — that is, the object has the indicated attributes (e.g. the cello instrument has

the attributes “vibrating string’ ’and “sound initiation process:Bowed”).

Definition 8 (Derivation Operators). For a subset A ⊆ G of objects, we define a set of attributes

common to the objects in A as:

A′ := m ∈M | gIm ∀ g ∈ A (5.1)

and reciprocally, for a subset B⊆M of attributes we define a set of objects which have all attributes

in B as:

B′ := g ∈ G | gIm ∀ m ∈ B (5.2)

The following statements are the derivation operators for a given context (G,M, I), its subsets

A,A1,A2⊆ G of objects as well as its subsets B,B1,B2⊆M of attributes:

A1 ⊆ A2⇒ A′2 ⊆ A′1 and B1 ⊆ B2⇒ B′2 ⊆ B′1 (5.3)

A⊆ A′′ and B⊆ B′′ (5.4)

A′ = A′′′ and B′ = B′′′ (5.5)
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A⊆ B′⇔ B⊆ A′⇔ A×B⊆ I (5.6)

The first derivation of the set of objects (A) is the attributes (A′) which are possessed by those

objects, and we can apply the second derivative operator to obtain the objects (A′′) possessed by

these attributes (A′). In addition, if a selected object set is enlarged, then the common attributes of

the larger object set is among the common attributes of the smaller object set. The same principle

applies for the enlarged attribute set.

Definition 9 (Formal Concept). A pair (A, B) is a formal concept of (G,M, I) if and only if

A⊆ G, B⊆M, A′ = B, and B′ = A. (5.7)

The set A is called the extent, and B is called the intent of the formal concept (A, B).

Example 1. Table 5.1 gives an example of formal context based on M={vibrating string, sound ini-

tiation process:Bowed, sound initiation process:Struck}, G={Cello, Piano, Violin} and the binary

relation “I” represented by the “X” (has/has not) in the cross table. As intent(Cello)= {vibrating

string, sound initiation process:Bowed}, and extent(vibrating string, sound initiation process:Bowed)={Cello,

Violin}, ({Cello}, {vibrating string, sound initiation process:Bowed}) is not a formal concept of

(G, M, I). However, intent(Piano)={vibrating string, sound initiation process:Struck}, extent(vibrating

string, sound initiation process:Struck)={Piano}, therefore the pair ({Piano},{vibrating string,

sound initiation process:Struck}) is a formal concept.

Definition 10. Let (A1, B1) and (A2, B2) be two formal concepts of a formal context (G, M, I),

(A1, B1) is called the subconcept of (A2, B2) and denoted as (A1,B1) ≤ (A2,B2), if and only if

A1⊆ A2 (⇔ B2⊆ B1). Equivalently, (A2,B2) is called the superconcept of (A1,B1). The relation

≤ is called the hierarchical order (or simply order) of the formal concepts.
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Example 2. Let C1=({Cello, Violin},{vibrating string, sound initiation process:Bowed}) and

C0=({Cello, Violin, Piano}, {vibrating string}) be two formal concepts by considering Table 5.1.

As {Cello, Violin} ⊆ {Cello, Violin, Piano} and {vibrating string} ⊆ {vibrating string, sound

initiation process:Bowed}, C0 is a superconcept of C1. Equivalently, C1 is called a subconcept of

C0.

Definition 11. The family of concepts which obeys the above mathematical axioms is called a

concept lattice. The lower bound of the concept lattice is called infimum, and its upper bound is

called supremum.

5.3.3 Many valued contexts

In the real world the attribute is not only a property that an object may have nor not have. Attributes

can have values. For instance, the “shape” attribute may have many values, such as “conical”,

“circular” or “rectangular”. As a result the context is also many-valued compared the context we

mentioned before which is one-valued.

Definition 12. A many-valued context is a tuple K := (G,M,(Wm)m∈M, I) where G is a set of

objects, M is a set of attributes, Wm the set of possible values for the attribute m ∈ M, and I is a

relation. I ⊆ G×{(m,w)|m ∈ M,w ∈Wm} with the constraint (g,m,w1) ∈ I indicates that object

g ∈ G has value w ∈Wm for attribute m ∈M.

From a many-valued context, a concept lattice cannot be computed directly. One has to trans-

form it first into a one-valued context. This transformation is called conceptual scaling.

Definition 13. A conceptual scale for a subset B⊆M of attributes is a (one-valued) formal context

SB := (GB,MB, IB) with GB ⊆×m∈BWm.

After interpretation of each attribute by means of a context which is called conceptual scale,

there is a need to perform conceptual scaling. Thus, for any subset S of scales, we can now trans-

form the many-valued context into a one-valued one:
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Definition 14. The derived context KS is defined by KS := (G,
⋃

SB∈S MB, IS) with (g,n) ∈ IS if

there exists a scale SB ∈ S with m ∈MB and w ∈Wm where (g,m,w) ∈ I and (g,n) ∈ IB.

To obtain the scaled context, each many-valued attribute has been replaced by the correspond-

ing row of the scale. We applied this method on instrument many-valued attributes, such as sound

initiation process, reeds no and valves, in order to understand if the property is an ‘object prop-

erty’ or a ‘data property’. A many-valued context example is given in Table 5.2 illustrating the

transformation of the many-valued context into a one-valued context.

Example 3. In Table 5.2, the two attributes Struck and Bowed have been derived from a many-

valued attribute, called sound initiation process, which has a set of possible values Wsound initiation process :=

{Struck,Bowed}. Thus, these attributes have been replaced by scale attributes: e.g., sound initia-

tion process:Bowed, and sound initiation process:Struck.

vibrating string sound initiation process
Chordophone X Struck, Bowed

Cello X Bowed
Violin X Bowed
Piano X Struck

(a) Many-valued context

vibrating string
sound initiation
process:Bowed

sound initiation
process:Struck

Chordophone X X X
Cello X X -

Violin X X -
Piano X - X

(b) Derived one-valued context

Table 5.2: A naive scaling and cross table of a formal context

5.3.4 Lattice Pruning

Lattice Pruning is the process of removal of “empty or unnecessary repetitions” of concepts, ob-

jects or attributes based on any of the necessity and stability notions that are defined by knowledge
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engineers. The concept lattice of (G,M, I) is the set of all formal concepts, ordered as subconcepts-

superconcepts, that depicts particularities and relationships of our data. Each node represents a

formal concept. However, each of these nodes involve object and attribute repetitions in order to

illustrate the relationship among the nodes. Therefore, in order to formally define the transfor-

mation of the lattice into the partial order or a concept hierarchy, to subsequently make it simpler

and more readable, we used a pruning technique called reduced labelling. Figure 5.1 depicts the

representation of a concept lattice for the formal context between a set of instruments and attributes

which was given in table 5.1.

Figure 5.1: A concept lattice for objects consisting of the instruments (i.e. Chordophones,
Cello,Violin, Piano) and attributes (i.e. vibrating string, bowed, struck). Numbers refer to its con-
ceptual order. This graph is produced by using a software called FCA Stone1.

The principle is to have each object entered only once in the hierarchical form [Krohn et al.,

1999]. In other words, we remove any terms from the inner node which are the same as their chil-

dren [Cimiano, 2006]. The objective of lattice pruning isn’t just to acquire a hierarchy to display

the concepts in a correct way, but an ideal output that can be transformed into an OWL represen-

1http://www.fcahome.org.uk/fcasoftware.html
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Thing

E={Chordophones}
I={vibrating_string}

E={Cello}
I={sound_initiation_process:Bowed}

E={Violin}
I={sound_initiation_process:Bowed}

E={Piano}
I={sound_initiation_process:Struck}

Figure 5.2: An illustration of the pruned concept lattice which is depicted in Figure 5.1.

tation. The visible difference, compared to prior Formal Concept Analysis studies, is we remove

the infimum edges of the empty and the non empty sets on the lattice form. Thus, the symmetric

reflection of each superconcept is removed. A simple illustration can be given for the lattice dia-

gram which is depicted in Figure 5.1, We refer to each concept with its numbers, such as C1 for

concept 1. The pruning process consists of the following this steps: i) remove any concept with

no object or attribute; ii) retrieve the union of all objects and attributes from the concepts which

possess the corresponding attribute (e.g. union of objects: Chordophone, Cello, Piano, Violin; at-

tributes: vibrating string, bowed, struck; corresponding attribute: vibrating string.); iii) retrieve

the intersection of all objects from the concepts the which possess the corresponding attribute (e.g.

Chordophone). Therefore, we remove the concept that possess the union of all the corresponding

attributes and the intersection of all objects (e.g. C4). iv) We have also deleted all the intersection

of objects from the concepts which does not subsume each other, such as Chordophone object of

C2 and C3; v) Then, the reduced labelling technique is applied to the lattice diagram in parallel

with the OWL representation. The purpose of this task is to remove any attribute of a concept that

occurs in its superconcept (e.g. vibrating string in C2 and C3). However, we use this information

for OWL representation before we remove it from the lattice, since this is the last remaining feature

providing information about the concept order of lattice.

The final form of the lattice can be summarised as C1 (i.e. objects: Chordophone; attributes:
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vibrating string), C2 (i.e. objects: Cello and Violin; attributes: sound initiation process:Bowed) and

C3 (i.e. objects: Piano; attributes: sound initiation process:Struck). Figure 5.2 depicts the pruned

concept lattice.

5.4 Summary

The algorithms and the research fields which constitute the foundations of our research have been

outlined in this chapter. Firstly, we presented proposed automatic ontology generation frameworks

discussing the type of inputs in conjunction with the utilised ontology generation tools to date.

In Section 5.2, we presented the music audio features (i.e. timbral texture features, rhythmic

content features, and pitch content features). From these audio features, we will concentrate on

the utilisation of the timbral texture features (i.e. MFCCs and LSFs) in our system. Subsequently,

the general machine learning algorithms which have been used in most of the music classification

systems are highlighted. In these algorithms SVM and MLP constitutes the basis for our musical

instrument identification experiments, whereas the K-Means clustering method is used as a data

reduction method in our system, which will be explained in Chapter 6. Furthermore, even though

our experimental setup only involves instrument recognition, due to the fact that the focus of the-

sis is based on semantic audio analysis, we have provided a comprehensive overview on music

classification studies (i.e. tag, mood, and instrument identification tasks).

Finally, previous works on conceptualisation techniques have been outlined. Since the con-

ceptualisation constitutes the core of the automatic ontology generation, we described the small

amount of literature in this section, which indicates that it is a new challenge. As we regard the

Philosophical origin of ontologies, which dates back to Aristotle the Greek, this challenge can be

seen as a new attempt to solve an old problem. Consequently, we have taken FCA as being a core

of the proposed system, therefore we have also provided information on FCA in depth through

examples. In the next chapter, we will outline evaluation techniques for ontologies.
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Chapter 6

Automatic Generation of a Semantic Web Ontology

for Musical Instruments

In this chapter, we introduce the general architecture of the automatic ontology generation sys-

tem. The system is based on the foundations and definitions of the ontology and knowledge base

structure presented in chapter 2.

This chapter is divided into four sections. First, we will briefly present the general architecture

of the proposed system in section 6.1, and identify the data sets that have been used to examine

the ontology generation system–namely isolated notes and solo music. In section 6.2, we will then

describe the content based analysis part of the system. The parameters and methods that have been

used for audio feature extraction and classification will be detailed in section 6.3. This system was

tested on various musical instruments, wind and string families, using timbre features extracted

from audio: namely Line Spectral Frequencies (LSFs), or Mel-frequency Cepstral Coefficients.

Additionally, two classification techniques based on Multi-Layer Perceptron (MLP) neural network

and Support Vector Machines (SVM) were tested to classify the analysed instrument recordings.



Finally, we will describe the conceptual analysis part of the system in section 6.4. With an emphasis

on the formal concept analysis and lattice pruning components of the system, in order to describe

the construction of the hierarchical structure of the obtained ontologies, we describe the method

for converting conceptual hierarchies into a domain ontology.

6.1 The Architecture of the Ontology Generation System

The process of ontology engineering currently involves human supervision at every level. To create

automatic ontology generation systems, we must cope with the rapidly increasing and large datasets

through knowledge acquisition and automatic ontology construction. Thus, we present a hybrid

ontology generation system for musical instruments, which the architecture is shown in Fig 6.1.

Audio Feature 
Extraction

Classification Formal 
Context Table

Formal Concept 
Analysis

Pruning

Instrument samples

Lattice form

Ontology

Figure 6.1: Automatic ontology generation system based on audio features.

The system aims to automatically obtain ontology designs in an OWL representation from pre-

labelled (tagged) music audio collections. As discussed in section ??, the proposed system delivers

a few major contributions. Firstly, it permits the automatic construction of concept hierarchies

of ontologies, and helps domain experts to provide an initial ontology draft to avoid the bulk of

ontology engineering work. Secondly it establishes a formal bridge between concept hierarchies
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and OWL ontologies which fits with established knowledge representation techniques, in order

to deliver a meaningful and beneficial approach. Thirdly, it is based on a domain independent

methodology, so it can be applied to other domains as well.

The input of the system is a pre-labelled music audio collection and the output is an OWL

document that represents the corresponding conceptualised structure of the data collection. The

taxonomy of musical instruments given by Hornbostel and Sachs1 was considered as the basis

for instrument terminology and the initial hierarchical structure. In the architecture of the system

(shown in Figure 6.1), there are five components: feature extraction, classification, formal concept

analysis, lattice pruning, and OWL representation of the concept hierarchies. These components

are tested by two main experimental design: i) content-based analysis and ii) conceptual analysis.

We will outline the components of the automatic ontology generation system within these two

experimental designs.

Content-based audio analysis involves audio feature extraction and classification components,

which we have examined for various musical instruments, wind and string families, extracting

timbre features (i.e. LSF and MFCCs) from audio samples in order to identify the instruments

based on classification techniques (i.e. MLP and SVM). Conceptual analysis also involves FCA,

lattice pruning and OWL representation components. This experimental design is dependent on

the obtained output of the content-based analysis. The system conceptualises the results through

FCA and prunes the obtained lattice form into a conceptual hierarchy. Finally, it converts concept

hierarchies into a domain ontology by using Ontology Web Language. The reminder of this chapter

describes each functional unit of our system in more detail.

1H. Doktorski, http://free-reed.net/description/taxonomy.html
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6.2 Databases

Our experimental dataset consists of two sets of audio samples: one set of instruments’ isolated

notes and another set of solo performances, both collected from the following datasets: the Real

World Computing (RWC) music collection2, University of IOWA’s Musical Instrument Samples

(MIS)3, McGill University Master Samples4, and additional samples recorded at the Centre for

Digital Music, Queen Mary University of London (QMUL).

The isolated note dataset contains recordings of 10 different musical instruments — 15 pre-

defined classes/objects — chordophones5, aerophones6, edge instruments, brass instruments, reed

pipe instruments, bassoon, cello, clarinet, flute, oboe, piano, saxophone, trombone, tuba, violin —

and 12 musical attributes — vibrating string, vibrating air, sound initiation process:Bowed, sound

initiation process:Struck, reeds, edge, lip vibrated, reeds no:1, reeds no:2, valves:With valves,

valves:Without valves, true flutes.

The solo instruments dataset contains recordings of 8 musical instruments — 12 pre-defined

classes/objects — chordophones, aerophones, edge instruments, reed pipe instruments, bassoon,

cello, clarinet, flute, oboe, piano, saxophone, violin — and 9 musical instrument attributes —

vibrating string, vibrating air, sound initiation process:Bowed, sound initiation process:Struck,

reeds, edge, reeds no:1, reeds no:2, true flutes.

The data sets that have been used in the experiments summarised according to musical in-

struments in Table6.1. The dataset was randomly divided 4 times for cross-validation. In each

experimental run 75% of the samples were used for training and 25% were used for testing. The

overall results are obtained by averaging the results obtained in the 4 experimental runs.

2http://staff.aist.go.jp/m.goto/RWC-MDB/
3http://theremin.music.uiowa.edu/MIS.html.
4http://www.music.mcgill.ca/resources/mums/html/.
5Chordophone is a musical instrument category in which sounds are initiated by string vibrations.
6Aerophone is a musical instrument category in which sounds are initiated by a vibrating mass of air.
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Instrument Categories
Database

Isolated Notes Solo Music
# Data. # Data.

Chordophone 2994 3162
Aerophone 2742 8550
Brass Instruments 354 -
Reed Pipe Instruments 2004 6564
Edge Instruments 384 1986
Cello 1446 624
Violin 888 1476
Piano 660 1062
Tuba 113 -
Trombone 241 -
Clarinet 648 1746
Saxophone 528 2328
Bassoon 564 1722
Oboe 264 768
Flute 384 1986

Instrument Attributes Isolated Notes Solo Music
# Data. # Data.

vibrating string 2994 3162
sound initiation process:Bowed 2334 2100
sound initiation process:Struck 660 1062
vibrating air 2742 8550
lip vibrated 354 -
reeds 2004 6564
edge 384 1986
reeds no:1 1176 4074
reeds no:2 828 2490
valves:With Valves 113 -
valves:Without Valves 241 -
true flutes 384 1986

Table 6.1: The isolated and solo music datasets that have been used in the experiments according
to instrument categories and instrument attributes.

6.3 Content-based Audio Analysis

Content-based audio analysis aims to process information from audio files according to a classifica-

tion system and identify musical instruments and their properties accurately. The system identifies

the pre-designated musical terms and the hierarchy is deliberately omitted from the input. For the

96



content-based analysis, however, there are three important issues to consider:

• the label inaccuracies in the social-data-based data sets may affect the results for both content-

based and conceptual analysis techniques.

• the lack of actual audio files may reduce the flexibility to extract different type of audio

feature sets for the system.

• the adequate representation of concepts and properties may affect the results of domain cov-

erage for the generated ontology.

In previous experiments [Kolozali et al., 2012] we have encountered some of these difficulties.

Therefore, the quality of data set is crucial to our system since the utilisation of content-based

analysis to obtain the contextual structure of a dataset is a very challenging task on its own. To deal

with these issues, we have grounded our instrument identification experiments in line with Chétry

[2006], due to the fact that his study indicated that using corresponding dataset and audio features

leads to reasonably good results in the context of instrument identification. Content-based audio

analysis involves two stages: feature extraction and classification.

6.3.1 Feature extraction and clustering

The feature extraction component is based on the Short Time Fourier Transform (STFT) time fre-

quency representation of audio signals. The recordings were sampled at 44100 Hz and short-term

audio features were considered on successive frames of 1024 samples, weighted by a Hamming

window [Chétry et al., 2005]. On account of the fact that the spectral envelope provides a good

representation of the spectrum, and the timbre models used in this study rely on features modelling

the spectral envelope which are obtained either from linear prediction (LP) or from Mel-Frequency

Cepstral Coefficients (MFCCs). An illustration of the feature extraction steps is depicted in Figure

6.2.
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Feature Extraction

K-Means Clustering

Line Spectral Frequencies/ 
Mel-Frequency Cepstral 

Coefficients

Overlapping Frames

Timbre Feature Content

Optimised Codebook

Figure 6.2: Illustration of an audio waveform being represented using overlapping frames, where
feature extraction indicates the process of obtaining Line Spectral Frequencies or Mel-Frequency
Cepstral Coefficients, and K-Means Clustering indicates the process of obtaining optimised code-
books as a timbre representation of the audio waveform based on the LSFs/MFCCs.

In order to classify various music performances or isolated notes, we extract Mel-Frequency

Cepstral Coefficients and Line Spectral Frequencies (LSFs) over overlapping audio frames using

the method proposed in [Chétry et al., 2005] and [Barthet & Sandler, 2010b]. The timbre of each

instrument is then characterised by a collection of MFCC and LSF feature vectors. In order to

determine the best feature vector (codebook) dimensions with regard to performance, a different

number of feature coefficients (8, 16, 24 and 32) and number of clusters (K-means) were tested (8,

16, 32, and 64) [Linde et al., 1980]. In total 16 different codebook dimensions were tested for each

spectral feature set (LSFs and MFCCs). The details are given in the statistical analysis section.

6.3.2 Classification

The classification was performed using both a MLP neural network and SVM which are supervised

learning algorithms. Our goal is to associate audio signals related to instrument and attributes. An

illustration of the classification task is depicted in Figure 6.3.
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The input features are the average and variance of the feature vectors obtained from K-means

clustering of LSFs and MFCCs. In the training and testing stages, we use a multi-network system

(one network for each instrument concept or property) consisting of 27 networks for the isolated

notes and 21 networks for the solo music dataset in both the case of the MLP and SVM classifiers.

For this experiment, we used the default Matlab Neural Network Toolbox and the SVM Toolbox

which was published in [Canu et al., 2005].

Timbre Feature 
Contents Classifier #1

Classifier #2

Chordophone samples

Aerophone samples

Timbre Feature 
Contents

Classifier #n

Audio samples of the n-th 
instrumental term

Timbre Feature 
Contents

Mean and Variances of the 
optimised codebooks obtained 

from the feature extraction 
component

Performance
 Analysis

Performance
 Analysis

Performance
 Analysis

Figure 6.3: An illustration of the classification process in which there is only one classifier for
each instrumental concept to predict the output. Timbre feature contents refers to the average (i.e.
mean) and variance of the optimal codebooks obtained from the feature extraction component for
each instrument concept. The classifiers, which are denoted as rectangles, refer to the process of
supervised classification for SVM or MLP classifiers. Classification is based on the inputs obtained
by taking the average (i.e. mean) and variance of the optimised codebooks, which represent the
audio waveforms based on the LFSs/MFCCs.

Multi-Layer Perceptron

The Multi-Layer Perceptron is among the most common types of neural network. Its computing

power results from its parallel and distributed structure, and its ability to learn. Our MLP net-
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works contain two hidden layers, with 10 neurons in each hidden layer and an output layer with

one neuron. The activation function for each neuron in the hidden layer is a tan-sigmoid function,

and a linear transfer function was selected for the output (purelin function in Matlab). The MLP

was trained using the Levenberg-Marquardt (LM) [Hagan & Menhaj, 1994] back-propagation al-

gorithm. For this experiment, the number of iterations was set to 1000 and the parameters for the

learning rate and momentum of the MLP were 0.3 and 0.6 respectively.

Support Vector Machines

Support Vector Machines (SVM) have been widely used as an alternative to Neural Networks in

modern machine learning. Their basic principle is to discover the best hyperplane leading to the

largest distance separation between classes. This formulation embodies the Structural Risk Mini-

mization (SRM) principle used to maximize the margin of separation. SVM algorithms determine

the data points in each class that lie closest to the margin (decision boundary), which are called

support vectors. Intuitively, a good separation is achieved by a margin that has the largest distance

from the support vectors [Bishop, 2006].

There are a number of different kernels that can be used in SVM models. These include linear,

polynomial, radial basis function (RBF), and sigmoid. In our experiments, we focused on the

polynomial kernel functions of various degrees. We only tested one type of kernel in the present

study since the use of different SVM kernels has only resulted in small accuracy differences (2-3%)

in previous musical instrument classification studies [Essid et al., 2004, 2006]. For this experiment,

the lambda kernel parameter (λ ) was set to 1/I as described in [Chétry, 2006], where I is the number

of instruments in the database. The degree of the polynomial in kernel function was set to two

different values, 2 and 3, to test which performed best. Due to the satisfactory results obtained with

a polynomial kernel of degree 3, higher degrees were not tested.
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6.4 Conceptual Analysis

The conceptual analysis comprises two stages: FCA and lattice pruning. FCA is performed using

the Colibri-Java library [Gotzmann & Lindig] in order to generate a hierarchical structure using the

outputs of the classifiers. To determine the binary associations between instruments and attributes

two criteria need to be verified: (i) a candidate relationship is determined as follows:

rel = max(Prec(att|inst)&Prec(inst|att)) (6.1)

where att is the attribute, inst is the instrument, and the Prec is Precision. (ii) the binary

association criteria is given by:

max(Prec(att|inst)&Prec(inst|att))> 0.5 (6.2)

The obtained relationships are used to create the formal context which represents the rela-

tionships between instrument concepts and properties, to generate a graphical representation of

concepts in a lattice form. Finally, in the lattice pruning stage, empty concepts are eliminated and

the hierarchical form is revised in order to generate the OWL output of the system.

6.4.1 Formal Concept Analysis

As mentioned previously, the aim of the instrument identification experiments was to find the as-

sociations between musical instruments and their properties, in order to automatically generate

a Semantic Web ontology for musical instruments. Therefore, the outputs of the best musical

instrument recognition systems for each dataset were used to obtain the associations between in-

strumental attributes. The overall performance of the musical instrument recognition system was

evaluated by computing the average and standard deviation of the system’s precision across instru-

ments. A binarisation process was applied to the obtained results and each network experiment
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was run for 4 different training/testing sets (cross-validation technique), to prevent biased results.

Table 6.2 shows the results for isolated notes and solo music where the mean values are reported

along with the standard deviation in brackets. The precision’s mean and standard deviation for the

correct concept/property associations are shown in bold.

For example in our formal context, high instrument concept/property association Precisions

were obtained for most attributes in isolated notes: e.g., the precision for the Saxophone/single reed

instruments was 0.98, and the mean score for Cello/bowed was 0.96. Lower scores were obtained

for the association Trombone/brass instrument (0.92, on average) and Flute/edge instrument (0.89,

on average).

Slightly lower association scores were obtained for the solo music dataset than for the iso-

lated notes: the mean score for Violin/bowed was 0.87, and the mean score for Oboe/exciterIs:Air

was 0.96. Lower scores were obtained for the association Flute/true flutes (0.88, on average) and

Piano/struck (0.88 on average). The lowest score was obtained for the edge instruments (flute).

The highest recognition scores across all attributes were obtained for valves:With Valves (1.00, on

average), and exciterIs:air (0.98, on average).

In order to generate a binary context for FCA, a threshold of 0.5 was used to determine whether

an instrument possessed an attribute or not, as given in Eq. (6.1-6.2).

The results obtained with SVM (3rd degree polynomial kernel) are satisfactory (on both datasets,

solo music and isolated notes) for the purpose of formal context generation, since all the associa-

tions have been correctly found between instrument attributes and concepts (no errors were made

after binarisation). The formal context obtained after binarisation of the results of the isolated notes

can be seen in Table 6.3. The identified formal context was used as an input to the FCA algorithm.

The formal concepts are extracted by applying FCA to the context generated by the instrument

recognition system. Figure 6.4 shows the extracted formal concepts together with the graphical

representation of the corresponding concepts in a concept lattice form using a line diagram. Each
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Chord. X X X
Aero. X X X X X X X X X
Edge Inst X X X
Brass Inst X X X X
Reed P Inst X X X X
Bassoon X X X
Cello X X
Clarinet X X X
Flute X X X
Oboe X X X
Piano X X
Saxophone X X X
Violin X X
Trombone X X X
Tuba X X X

Table 6.3: Formal context obtained after binarisation of the results for SVM with the 3rd degree
polynomial kernel using 32 LSF features and 64 codevectors for isolated notes.

concept is a cluster of instrument concepts and properties shared by the concepts. The concept

lattice is constructed to interpret the subconcept and superconcept relationships between concepts.

It consists of 17 formal concepts which are represented by the 17 grey rectangles in the diagram.

The labels of the rectangles represent the extent (E) and intent (I) of each formal concept node.

By following the ascending paths and the rectangles connected by edges, the diagram shows the

concepts and their subconcepts.
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6.4.2 Lattice Pruning

As we previously described in Section 5.3.4, in the lattice pruning component, we employ the prun-

ing strategy to eliminate unnecessary repetitions, turning our lattice form into a clean structure that

is human-readable and can be converted into an OWL document. This process aims the removal of

“empty or unnecessary repetitions” of concepts, objects or attributes based on any of the necessity

and stability notions that are defined by knowledge engineers. We have applied this process to the

concept lattice of the extracted concepts — for the results of SVM with the 3rd degree polynomial

kernel using 32 LSF features and 64 code vectors — given for isolated notes in Figure 6.4 . We

again refer to each concept with its numbers, such as C1 for concept 1. The concept lattice labels

are reduced successfully into 12 formal concepts after removing the empty and non empty infimum

concepts, such as C5, C10, C14, C15 and C16.

Another critical factor is the interpretation of the partial order of the lattice in terms of the OWL

representation of the concepts. To avoid information loss, the pruning process was run in parallel

with the OWL representation task, so we have used the information to create OWL Class/Properties

together with the hierarchical structure before removing the attributes from the concept lattice. We

were thereby able to obtain a satisfactory interpretation of the concept lattice.

6.4.3 Many-Valued Context

FCA is a successful technique for analysing data that fits well into the structure of a many-valued

context. It is an important component of the system that allows to represent the relational data in

the formal context. This applies both to relational databases, and else to knowledge bases in the

sense of Conceptual Graphs or RDF. The important point when using the many-valued context is

identification of complex data: that is, the user has to be able to select the most appropriate context

for the data entry to be displayed and understood easily. For example, Toscana7 toolkit solves this

7http://tockit.sourceforge.net/toscanaj/
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problem by predefining a number of context scales to be used.

In order to overcome this issue in the context of Formal Concept Analysis, before the experi-

ment in the tagging stage we identify the type of attribute in a many-valued context, and during the

experiment we use a conceptual scaling technique, the dichotomous scale, to transform a many-

valued context into a one-valued context. The dichotomous scale which defines the negations

among attributes has been used by Ganter [Ganter, 2006; Ganter & Wille., 1989].

We applied this method on instrumental many-valued attributes, such as sound initiation pro-

cess, reeds no and valves, in order to understand if the property is an ‘object property’ or a ‘data

property’. Thus, these attributes have been replaced by scale attributes: e.g., sound initiation

process:Bowed, sound initiation process:Struck, reeds no:1, reeds no:2, valves:With Valves and

valves:Without Valves. A many-valued context example is given in Table 6.4 illustrating the trans-

formation of the many-valued context into a one-valued context.
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(a) Many-valued context
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Piano X - - - -

Clarinet - - X - - -
Bassoon - - - X - -

Trombone - - - - X -
Tuba - - - - - X

(b) Derived one-valued context

Table 6.4: A naive scaling and cross table of the formal context given in Table 6.3
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6.4.4 Converting Conceptual Hierarchies into a Domain Ontology

The representation of instrument classes and attributes in OWL is another important task in on-

tology generation. There are two core concepts used in the experiments: Chordophone and Aero-

phone. As mentioned above, there are 12 formal concepts containing 12 relations, of which 9

relations between Aerophone instruments (i.e. vibrating air, edge, lip vibrated, reeds, reeds no:1,

reeds no:2, valves:Without Valves, valves:Without Valves, true flues) and 3 relations between Chor-

dophones (i.e. vibration string, sound initiation process: Bowed, sound initiation process: Struck)

During the process of transforming the concept lattice into a domain ontology, at first step the

formal concepts are transformed into ontology classes. A class is the most basic concept in an on-

tology and every ontology class is implicitly a subclass of owl:Thing. The fundamental taxonomic

constructor for classes is rdfs:subClassOf, which relates a more specific class to a more

generic class. For instance, if Tuba is a subclass of Brass Instruments, then every instance of Tuba

is also an instance of Brass Instruments. The rdfs:subClassOf relation is transitive, therefore,

if Tuba is a subclass of Brass Instruments and Brass Instruments is a subclass of Aerophone, then

Tuba is a subclass of Aerophone.

Secondly, the system goes across the hierarchical level of concept lattice. Thus, root classes are

parsed first, then their subclasses, and so on. The OWL class is created for every class in concept

lattice with one-to-one relations between classes and their subclasses. It also makes sure that when

a subclass is being created, its parent class in hierarchy has already been created. All the extent

(E) labels are considered to be potential OWL Class after the lattice pruning stage. An example is

given for generated OWL Class sample in Listing 6.1

:Aerophones rdf:type owl:Class .

:Chordophones rdf:type owl:Class .

Listing 6.1: OWL Class sample.
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We need to explicitly define the type of attributes we use as an input. In terms of OWL repre-

sentation of conceptual relationships, basically all intent (I) labels are considered as potential onto-

logical relationships. However, in OWL, there are two kind of properties: object properties – which

relates objects to objects – and data properties – which relates objects to data type values. Since

the basic data type of Formal Concept Analysis is that of a binary formal context (single-valued),

it is difficult to explicitly define whether an attribute is an object or a data property. Therefore, we

relate this issue to the “single-valued and many-valued” representation of data in database design.

In the real world, as we mentioned in 5.3.3, attributes are not only a property that an object either

possess or not; it may have values such as “reeds no” attribute may have various values (i.e. 1, 2,

3). Therefore, we used conceptual scaling and assumed many-valued concepts as “data-properties”

– property that can have data value as object, and single-valued concepts as “object property” –

property that can have resource as object. Since we used a punctuation, “colon” to represent the

single-valued context which are transformed from many-valued context, that is, our system detects

the lexical terms that contains a “colon” to identify the “object” or “data properties”. The system,

therefore, automatically detects the data properties with their corresponding data, as these are easily

identifiable (see right hand side of the table 6.4). Thus, once formal concepts are mapped to OWL

classes, relationships used in concept lattice transformed into object-properties or data-properties.

Extraction of the data properties (i.e. reeds no) and object properties (i.e. vibrating air) are based

on the manual entries. It is worth noting that the extraction of the data properties and the object

properties is a new idea which needs to be supported using natural language processing techniques

based on a text-corpus data set. Listing C.2 depicts an OWL sample from the automatically gen-

erated ontologies for the Aeropehones, Reed Pipe Instruments, Bassoon concepts as well as their

object and data properties.

:reeds rdf:type owl:ObjectProperty .

:vibrating_air rdf:type owl:ObjectProperty .
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:reeds_no rdf:type owl:DatatypeProperty .

:Aerophones rdf:type owl:Class .

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophones

] .

:Basoon rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue ‘’2’’

] .

Listing 6.2: Sample of generated musical instrument ontology.

When we define a property, there is a number of ways to restrict the relation: the domain

and range can be specified; the property can be defined to be specialisation (i.e. sub-property)

of an existing property, and so on. Finally, the system parses nodes having graphical relation

on the concept lattice, and subsequently it parses their properties, and so on. Depending on the

graphical relations of the class property, thus, one-to-one or one-to-many relations between classes

are created. The class hierarchy of the instrument ontology can be transformed to the ontology web

language (OWL) using the OWL API Java library [Horridge & Bechhofer, 2010]. More details
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regarding the generated OWL files can be found online 8.

6.5 Summary

In this chapter, we presented an automatic ontology generation system based on semantic audio

analysis. We have given details for the proposed automatic ontology generation system and the

database that has been used in the experiments. The system has been divided into two main exper-

imental parts: i) content-based audio analysis, and ii) conceptual analysis.

The system was tested using MLP and SVM classifiers by modelling different codebook di-

mensions of the timbre features, LSFs and MFCCs on various instruments for wind and string

families in order to find the best performance. We have provided the parameters of the feature

extraction and audio classification components of the content-based analysis part of the system.

We have exemplified the construction of the conceptual hierarchy based on FCA for the isolated

notes, since the isolated notes data set has a slightly larger terminology than the solo music data

set. The OWL specifications, which have been used in converting conceptual hierarchies into a

domain ontology, have also been explained. Most notably, to the author’s knowledge, this is the

first study to investigate automatic ontology generation in the context of audio and music analysis.

The next chapter will be providing results and evaluations for both the content based analysis and

the conceptual analysis experiments of the system.

8http://www.isophonics.net/content/automatic-ontology-generation-based-semantic-audio-analysis
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Chapter 7

Evaluation of the Ontology Generation System

This chapter evaluates the work contained in the previous chapters including content-based and

conceptual analysis experiments. The automatic ontology generation system is evaluated empiri-

cally by experiments on two different datasets. Our experimental evaluation focuses on suggested

semantic audio based techniques for concept mapping.

Firstly, we review the evaluation techniques that have been used to date. In particular four

different evaluation techniques: i) human assessment, ii) task-based assessment, iii) data-driven

assessment, and iv) gold-standard based ontology evaluation techniques.

Secondly, we present the evaluation metrics employed in the assessment of our ontology gen-

eration system. Within this section, we consider the gold-standard evaluation approach on both a

lexical level and a conceptual level. We describe the metrics utilised for calculations at each level.

Thirdly, we will examine and present the content-based analysis results using a four-way of

Analysis of Variance (ANOVA) in section 7.3. To examine whether any significant differences oc-

cur for the different combinations of codebook dimensions, type of spectral features and classifiers,

ANOVA tests were conducted with the classifiers (i.e. MLP, SVM with polynomial 2nd degree,



SVM with polynomial 3rd degree), the audio spectral features (i.e. LSFs and MFCCs), and the

codebook dimensions ranging from 8 to 32 and 8 to 64, as independent variables. The dependent

variable was the F-Measure.

Finally, we will examine and present the conceptual analysis results using a three-way Mul-

tivariate Analysis of Variance (MANOVA) in Section 7.4. The independent variables for the

MANOVA test were the classifiers (i.e. MLP, SVM with 2nd degree polynomial, SVM with 3rd de-

gree polynomial), and the audio spectral features (i.e. LSFs and MFCCs). The dependent variables

were the evaluation metrics that we present in section 7.2: the Lexical F-measure, the higher level

F-measure (TF’), the taxonomic F-measure (TF) for common semantic cotopy, the higher level

F-measure (TF’) and the taxonomic F-measure (TF) for the semantic cotopy metric. The chapter

finishes with a summary of the experimental results.

7.1 Ontology Evaluation Techniques

An essential element that makes a specific discipline or approach scientific is the capability to

assess and compare outcomes in the area. Evaluations are firmly based on the requirements of

the Semantic Web, when coping with abstractions available as ontologies. The Semantic Web

possesses characteristics such as high interconnectivity, constant change and incompleteness, and

it is possible to develop numerous ontologies conceptualising the same body of knowledge in this

web-like structure. Thus, evaluations allow one to ensure that the resulting ontology meets some

criteria.

The necessity of an ontology metric to assess ontologies and track their evolution has been

revealed by the widespread interest in development and usage of ontologies. A significant number

of evaluation methods have been widely studied, such as human assessment, task-based assessment,

data-driven assessment, and gold-standard evaluation techniques. Several aspects of the current

state of ontology evaluation will be discussed in this section.

113



7.1.1 Human Assessment

In this approach, ontologies are evaluated by considering the ratings of a group of experts according

to a certain criteria. Human assessment depending on a set of criteria has been used in many stud-

ies. There have been many proposals regarding evaluations and quality measurements determined

by schema and instance metrics, design of ontology metrics, and philosophical notions. OntoMet-

ric [Lozano-Tello & Gomez-Perez, 2004], for example, is a tool that allows users to measure the

suitability of the existing ontologies in terms of the requirements of their systems. For human

assessment, however, probably the most widely utilised methodology is OntoClean methodology

[Guarino & Welty, 2000, 2004]. OntoClean is a well-known methodology which formally analyses

the concepts’ intentional content and their subsumption relationships depending on four philosoph-

ical notions dating back to Aristotle. These four notions are: Rigidity (R) , Unity (U) , Dependence

(D) and Identity (I).

Rigidity is based on the notion of essence. Therefore, a concept is called rigid (+R) if and only if

it is essential to all of its instances. On the other hand, a non-rigid concept (-R) is one that is not

essential to some of its instances, and an anti-rigid (∼R) concept is one that is not essential to any

of its instances.

Unity is based on the question “What is part of something and what is not?”. It describes the

parts and boundaries of objects, such that we know in general what is part of the object, what is

not, and under what conditions the object is whole. Concepts carrying a unity are indicated with

+U, no unity with -U , and anti-unity with ∼U.

Dependence describes the dependency of concepts. Thereby, a concept C1 is dependent on an-

other concept C2 when every instance of C1 is an instance of C2. Dependency can be divided into

two criteria, such as intrinsic and extrinsic concepts. Intrinsic concepts are independent, whereas

extrinsic concepts need to be given to an instance by circumstances or definitions. Concepts carry-

ing an externally dependent property are indicated with +D, otherwise with -D.
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Identity refers to the problem of being able to recognise individual entities in the world as being

the same or different. Therefore, a concept with identity is one whose instances can be identified

as being the same at any time and in any world. When a concept is carrying an identity criterion, it

is indicated with +I. Otherwise, it is indicated with -I.

Several tools and ontology editors have been integrated into OntoClean methodology in order

to provide support for cleaning taxonomies and building ontologies, such as ODEClean for We-

bODE [Fernandez-Lopez & Gomez-Perez, 2002], OntoEdit [Sure et al., 2003] and Protege [Noy

et al., 2000]. As long as a taxonomy of concepts are annotated according to philosophical notions,

these tools are capable of automatically analysing an ontology and identifying cases of invalid

generalisations. Nonetheless, it remains a difficult and time consuming approach due to the fact

that these annotations ought to be done manually. In order to solve this issue, Volker et al. [2005]

proposed an approach for automatically tagging concepts with respect to these criteria.

While this approach may evaluate the quality of the conceptual content of ontologies with a

right set of experts, a shortcoming of this evaluation technique is the difficulty of finding the right

set of users to perform the task (e.g. ontology engineers, end-users or musicologists). Besides,

even though some ontology evaluation methodologies involve experts during the validation process,

most of these expert involvements are described rather vaguely.

7.1.2 Task-based evaluation

Another evaluation approach is through performing a particular task to determine the performance

of an ontology. The main principle is to constitute a comparative evaluation to find the optimum

ontology: thus, the more effective ontology is the one that enables the application to acquire good

results on the given task. This kind of evaluation paradigm is a lot like the paradigm employed

in evaluation activities, such as TREC1 or MIREX2 in which diverse frameworks are compared

1http://trec.nist.gov/
2http://www.music-ir.org/mirex/wiki/MIREX_HOME
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against each other according to their capability to fulfil a particular task.

Some ontologies are closely connected with their application, so this kind of ontologies cannot

be simply exchanged. Such ontologies, so-called “application ontologies”, obtain crucial aspects

of the user interface: that is, internal data managements and parts of these ontologies may be hard-

coded into the application. Normally, the best way to gain access to an application ontology, which

is simply an additional component of the employed tool, is via the corresponding application.

Hence, the application ought to be evaluated together with the corresponding ontology, so such

systems can be considered as integrated systems.

The task-based evaluation approach has also been utilised for core or domain ontologies. For

example, in DARPA [Cohen et al., 1998] an evaluation approach is designed for a crisis manage-

ment scenario where evaluators devised test questions and answer keys similar to an exam. The

question and answer keys are rated along with justifications of answers. Porzel & Malaka [2004]

describe a scenario where the ontology including its concepts and relations (i.e. is-a and seman-

tic relations) are used to discover the closeness of the meaning for the corresponding concepts. The

task is a speech recognition problem, where the final output of the task is also compared with a

gold standard.

In the Rapid Knowledge Formation Project3, a similar approach is utilised to evaluate a knowl-

edge framework. In evaluations, domain experts contributed knowledge about DNA transcription

derived from ten pages from a standard textbook on ontological systems (i.e. CYC and SHAKEN)

[Barker et al., 2004]. Independent experts performed subjective ratings on acquired answers. An-

other notable aspect of RFK was the employment of complicated explanation questions.

A task-based evaluation ought to reveal the subsequent weak points depending on is-a and

semantic relations: i) insertion errors signifying unnecessary concepts; ii) deletion errors indicating

absent concepts; iii) substitution errors indicating off-target or ambiguous concepts. However, task-

3http://www.cs.utexas.edu/users/mfkb/RKF/projects/rkf.html
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based evaluation has several drawbacks: i) the evaluations are based on a particular method for a

particular task, so it is difficult to generalise observations; ii) the ontology may be only a small

component of the application and its effect on the outcome may be relatively small and indirect;

iii) evaluating a large number of ontologies is only possible if they can all be plugged into the same

application.

7.1.3 Data-driven ontology evaluation

An ontology may also be evaluated by comparing its terminology to existing data (i.e. a collection

of text) in the application domain. The principle is to assess whether an ontology completely covers

the domain of interest. A way to evaluate the completeness of an ontology is to apply natural

language processing techniques to discover all relevant terms in a text corpus. Subsequently, the

extracted terms are used to assess the domain coverage of the corresponding ontology. For instance,

Brewster et al. [2004] utilised such an approach for ontology evaluation in which a set of relevant

domain-specific terms are extracted from a text corpus applying latent semantic analysis. Next,

the obtained terms are compared with the terms appearing in the ontology in order to assess the

association between the ontology and the domain specific corpus. But, this approach ignores the

relationships between concepts, and is subject to the standard problems with term-matching. Some

coverage issues regarding term-matching methods are addressed in [Blaschke et al., 2004], where

Gene Ontology4 has been evaluated by mapping onto other classification and database systems.

Also, it is worth noting that entity normalisation is non-trivial in biological domains: for example,

authors have pointed out that the length of the names and ambiguity in the vocabulary have yielded

poorer results for mouse genes compare to yeast genes.

Raimond [2008] introduced a method combining task-based and data driven techniques. The

task was simply to answer a set of musical queries. Likewise other data-driven approaches, it started

from a text corpus and mapped the extracted terms on to the proposed knowledge representation

4http://www.geneontology.org/
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framework. Similarly, Baumann et al. [2002] described an evaluation approach for an ontology

based music search system, whereby they collected 1500 verbalised queries, and clustered them in

several categories in order to analyse them qualitatively.

7.1.4 Gold-Standard — Similarity Based Evaluation

The gold-standard evaluation approach builds on the idea of utilising a similarity measure to com-

pare an ontology with an existing ontology that serves as a reference. This approach is particularly

useful to evaluate automatically obtained ontologies using a golden-standard ontology as a refer-

ence. We have used this approach in our evaluations. A set of measures may be used in order to

describe at the lexical and conceptual levels.

For the lexical term layer, binary measures are often chosen over to assess acquired terms.

They are typically performed depending on an exact match of strings by applying precision and

recall, such as in [Sabou et al., 2005b]. This is known as lexical precision and recall [Sabou et al.,

2005a]. A different illustration of a lexical-level evaluation is the String Matching method which

is presented in [Maedche & Staab, 2002]. This measure is calculated through the Levenshtein edit

distance [Levenshtein, 1966], normalised to [0, 1]. A string-matching measure between two sets of

strings is defined by taking each string of the first set, finding its similarity to the most similar string

in the second set, and averaging this over all strings of the first set. The second set may be regarded

as the terminology of the gold-standard ontology which is considered to be a good representation

of the application domain being assessed.

Taxonomic comparison consists of two parts: i) a local measure is obtained by comparing

the positions of concepts between the acquired ontology and reference ontology; ii) the global

measure is calculated by computing the average of the concept pairs which are obtained by local

measurements. Maedche & Staab [2001] proposed several measures for taxonomic comparison of

ontologies, such as semantic cotopy which allows us to assess structural aspects of two ontologies.

With a gold-standard ontology, these measures can be used for ontology evaluation. The gold-
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standard can be another ontology, as in this study, based on a document-corpus or provided by

experts. More details will be provided about the similarity measures of ontologies in the next

section. Further details on ontology evaluation techniques can be found in [Vrandecic, 2010; Obrst

et al., 2007].

7.2 Similarity Measures for Ontology Evaluation

Entities need to have common characteristics in order to be considered as similar, and the calcula-

tion of the similarity between two items needs to be carried out very carefully to ensure that all the

retrieved items are relevant. A few approaches have been developed in order to calculate the sim-

ilarity between ontologies, but first to formalise the notion of similarity, we refer to the definition

of a similarity function of Ehrig et al. [2005]:

sim :O×O→ [0,1] (7.1)

where sim calculates the degree of similarity between two ontologies, O, in order to obtain

a value between [0,1]. Commonly, these kind of measures are reflexive and symmetric. In an

effort to perform an evaluation, we can compare various ontologies utilising similarity functions at

two different levels: lexical and taxonomic levels. We will first highlight the precision and recall

that constitutes the foundation of the used ontology evaluation metrics; we will then describe the

evaluations at the lexical and taxonomic levels through illustrations.

7.2.1 Precision and Recall

To assess the performance of ontology generation algorithms, standard evaluation metrics are usu-

ally utilised, such as F-measure (F), Recall (R) and Precision (P). Recall is the proportion of rel-

evant material retrieved in answer to a search request, and precision is the proportion of retrieved

material that is actually relevant [van Rijsbergen, 1979; Richter, 1992; Euzenat, 2007]. Precision

119



and recall are defined as follows:

P(Re f ,Comp) =
|Comp∩Re f |
|Comp |

(7.2)

R(Comp,Re f ) =
|Comp∩Re f |
| Re f |

(7.3)

where Re f is the reference ontology that we assume to be a gold-standard ontology, and Comp

is the ontology which is being compared to the reference ontology. Additionally, F-measure is the

harmonic mean of recall and precision. In order to achieve a high F-measure score, the classi-

fier must achieve both high precision and high recall where 1 indicates perfect correlation, and 0

indicates no correlation. The equation for the F-measure is given below5:

F =
2×P(Comp,Re f )×R(Comp,Re f )

P(Comp,Re f )+R(Comp,Re f )
(7.4)

7.2.2 Lexical Comparison

Lexical comparison assesses the similarity between lexicons (set of terms denoting concepts) of the

automatically generated and gold-standard ontology. The metric is called Lexical Overlap (LO)

which is usually evaluated applying precision and recall, which are well-known in information

retrieval. In this context, precision is the fraction of the successfully computed lexical entries to

the overall computed lexical entries, and recall is the fraction of the successfully computed lexical

entries to the gold-standard lexical entries citepZouaq:2007ly. The equations for lexical precision

(LP) and lexical recall (LR) are as follows:

5The F-measure calculation does not take the true negative rate into account which allows to measure
various coefficients such as the Phi coefficient and Matthews correlation coefficient.
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LP(OC,OR) =
|CC ∩CR|
|CC|

(7.5)

LR(OC,OR) =
|CC ∩CR|
|CR|

(7.6)

where OC refers to the computed ontology and OR refers to the reference ontology. Lexical

precision and recall, therefore, reflect how well the computed lexical terms cover the target domain.

It is worth noting that these definitions are based on exact match of the labels, so the comparison

does not deal with different use of hyphens in multi-word phrases.

7.2.3 Taxonomic Comparison

Taxonomic comparison assesses the similarity between the taxonomic structures and the relations

between automatically generated and gold-standard ontologies at the conceptual level. We use the

evaluation metrics proposed by [Dellschaft & Staab, 2006]. This approach is modified version of

one of the most popular approaches in the ontology learning field [Maedche & Staab, 2002]. It

applies Taxonomic Overlap to find the similarity measure, taking into consideration the taxonomic

structures of ontologies. In particular, each concept in a computed taxonomy and a correspond-

ing concept in a reference ontology are compared based on the similarity of their ancestors and

descendants, as described in [A. & K., 2009].

The idea is based on two different measures: i) local taxonomic measure, and ii) global tax-

onomic measure. The local taxonomic measure compares the positions of two concepts, and the

global taxonomic measure compares the entire concept hierarchy of the two ontologies. The local

taxonomic precision is given by the following equation:

t pce(c1,c2,OC,OR) :=
|ce(c,OC)∩ ce(c,OR)|

|ce(c1,OC)|
(7.7)
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where ce is the character extraction that gives the characteristic objects for the position of a

concept c in the hierarchies OC and OR. For the taxonomic overlap measure the semantic cotopy,

sc, and common semantic cotopy, csc are given by:

sc(c,O) := {ci|ci ∈ C ∧ (ci ≤ c∨ c≤ ci)} (7.8)

csc(c,O1,O2) := {ci|ci ∈ C1∩C2∧ (ci <C1 c∨ c <C1 ci)} (7.9)

where∧ and∨ represent AND and OR logical commands. ci≤ c returns all the descendants and

c≤ ci returns all the ancestors for the concept c in taxonomy. The corresponding ontology is defined

by O whereas the corresponding set of concepts for the taxonomy is defined by C. The common

semantic cotopy, csc, is another taxonomy overlap measure which excludes the corresponding

concept from its common semantic cotopy, as well as all the concepts that are not included in the

concept set of the other ontology. The set of concepts for the corresponding ontologies (O1 and

O2) are defined as C1 and C2, respectively. In the optimistic assessment, as in [Maedche & Staab,

2002], the current concept is compared with all the concepts from the reference ontology and the

highest precision is chosen by picking the best match of c in O1. The global taxonomic precision

T P and recall T R are defined by the following equations:

T Psc(OC,OR) :=
1
|CC| ∑

c∈CC


t psc(c,OC,OR), if c ∈ CR

0, if c /∈ CR

(7.10)

T Rsc(OC,OR) := T Psc(OR,OC) (7.11)

where T Psc represents the local taxonomic precision and T Rsc represents the taxonomic recall

of the corresponding ontology based on the semantic cotopy, sc. The local taxonomic precisions
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are summed up and averaged over all the taxonomic overlaps for a set of concepts CC in the corre-

sponding ontologyOC. The common semantic cotopy of the global taxonomic overlap is computed

as follows:

T Pcsc(OC,OR) :=
1

|CC ∩CR| ∑
c∈CC∩CR

t pcsc(c,OC,OR) (7.12)

T Rcsc(OC,OR) := T Pcsc(OR,OC) (7.13)

In the equation (7.12) and (7.13), the local T P and T R are summed up and averaged over all the

taxonomic overlaps according to a common set of concepts of the ontologies. Finally, we used the

taxonomic F-measure (T F) calculating the harmonic average of taxonomic overlap in both Oauto

and Ore f : the automatically generated and reference ontologies, respectively. The equation for the

taxonomic F-measure (T F) is given by:

T F(OC,OR) :=
2 ·T P(OR,OC) ·T R(OR,OC)

T P(OR,OC)+T R(OR,OC)
(7.14)

In addition to the taxonomic F-measure, there is a need for a higher-level metric that involves

not only the quality-of-concept hierarchy but also the lexical measure of the ontologies. Therefore,

a higher-level F-measure, T F ′, has been used in conjunction with the lexical measures to evaluate

ontologies. The equations for the higher level F-measure, T F ′, are given by :

T F ′(OC,OR) =
2 ·LR(OC,OR) ·T F(OC,OR)

LR(OC,OR)+T F(OC,OR)
(7.15)

7.3 Statistical Analysis of the Content-based Analysis System

To determine the level of accuracy of the musical instrument recognition system, F-Measures were

computed for various combinations of classifiers, audio spectral features, and codebook dimensions
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(i.e. no. of coefficients and no. of clusters). The F-measure was traditionally obtained based on the

precision and recall of the identification system.

The effects of the factors along with interaction effects were analysed from one-way up to

four-ways by using the partial eta squared index of effect size. A multiple comparison procedure

(MCP) was conducted in order to identify the interaction affects between factors. The Holm-

Sidak procedure [Holm, 1989] was used here, as in [Barthet et al., 2010a]. The definitions in

[Cohen, 1977] have been adopted to discuss the effect sizes in the following cases: small effect size

(η2 ≤ .01), medium effect size (.01 ≤ η2 ≤ .06) and large effect size (.06 ≤ η2 ≤ .14). ANOVA

levels of significance are reported using the F-statistics and probability the p. A risk α of .05 was

used in all statistical tests.

7.3.1 Results of the Content-based Analysis

The performances of six systems using LSFs and MFCCs are reported in Table 7.1. The total aver-

age correct identification rates ranges from 67.5% to 87.5% for the solo music dataset, from 38.5%

to 90.3% for the isolated notes dataset. For the MLP classifier, the average correct identification

rates were 76 % and 46.7% for the solo music and isolated notes, respectively.

Overall, the best results were found by using SVM polynomial at 3rd degree for both datasets:

for instance, the average correct identification rate was slightly increased up to 83.0% and 86.3%

for the solo music and the isolated notes, respectively. The highest performance for this classifier

was obtained with 32 coefficients and 64 codevectors for both of the feature sets, LSF (87.5%) and

MFCC (83.1%), on the solo music dataset. For the isolated notes, although the highest accuracy

(90.3%) was obtained with the same settings, 32 coefficients and 64 codevectors, for the LSF

feature set, the best performance was obtained with 8 coefficients and 64 codevectors (87.7%) for

the MFCCs feature set.
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No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 75.2 76.2 75.4 77.5 77.9 76.5 76.2 76.4

16 72.2 77.2 74.9 78.0 73.3 77.9 74.9 79.5
24 69.9 79.6 73.2 77.0 74.0 77.3 73.2 80.3
32 73.0 79.7 73.9 79.1 72.9 78.9 74.0 79.6

(a) MLP on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 43.2 45.9 38.8 43.3 37.8 45.9 39.2 47.7

16 48.1 46.3 43.1 52.9 42.9 52.0 47.0 48.8
24 46.4 51.0 42.7 48.3 42.8 49.0 46.1 47.0
32 43.5 52.2 46.3 56.4 41.6 54.3 42.8 53.3

(b) MLP on the Isolated Notes Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 82.9 69.4 83.9 69.1 84.3 67.5 84.5 68.4

16 81.9 76.4 82.0 77.6 83.0 77.7 83.7 76.9
24 80.3 81.5 82.2 81.5 82.3 81.1 82.7 81.9
32 80.5 82.3 82.2 81.3 82.0 81.9 83.0 82.2

(c) SVM w/ 2nd degree Polynomial Kernel on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 84.5 61.1 84.9 60.7 85.7 62.0 87.7 62.1

16 84.7 65.4 84.8 65.7 85.7 67.7 86.3 68.3
24 85.0 69.4 84.9 72.7 85.1 73.3 86.3 73.7
32 84.5 70.0 84.2 71.6 84.7 72.7 87.7 73.7

(d) SVM w/ 2nd degree Polynomial Kernel on the Isolated Notes Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 81.0 79.1 80.6 79.7 81.7 79.3 81.4 79.1

16 80.2 85.1 80.0 84.9 81.4 86.8 82.4 85.8
24 80.3 86.9 81.4 86.6 81.5 86.7 82.2 86.8
32 80.0 87.4 81.6 85.7 81.6 86.5 83.1 87.5

(e) SVM w/ 3rd degree Polynomial Kernel on the Solo Music Dataset

No. of clusters
8 16 32 64

COEF MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 84.5 81.7 84.9 82.2 85.7 83.8 87.7 84.4

16 84.7 86.2 84.8 87.5 85.7 88.1 86.3 88.1
24 85.0 88.0 84.9 89.1 85.1 89.4 86.3 90.0
32 84.5 87.6 84.2 88.8 84.7 90.0 86.8 90.3

(f) SVM w/ 3rd degree Polynomial Kernel on the Isolated Notes Dataset

Table 7.1: Performance of the Musical Instrument Recognition Systems for the Isolated Notes and
Solo Music Datasets. In each case, the best performance is reported in bold. The ontology outputs
of MLP using 16 MFCC features and 8 codevectors corresponds to OC2, and MLP using 32 LSF
features and 16 codevectors corresponds to OC3 in Figure 7.2.
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7.3.2 Comparison of the Classifiers and the Spectral Feature Sets

The results of the four-way analyses of variance for the musical instrument recognition system

are reported in Table 7.2. Highly significant effects of the classifiers (CLSR) were found for

both the solo music and isolated note datasets, F(2,6415) = 243.135, p < .001 and F(2,8352) =

2415.081, p < .001, respectively. The effect size of the classifier factor was medium size (η2 =

.070) on the solo music dataset, whereas a very large effect size (η2 = .366) was found for the

isolated notes.

We also found a significant effect for the audio spectral feature sets (ASFT) on both of the

datasets, F(1,6415) = 9.103, p = .003, for the solo music, and F(1,8352) = 44.006, p < .001, for

the isolated notes. The effects were of small size for both datasets (η2 = .001 and η2 = .005),

respectively.

The posthoc analyses (multiple comparison procedure) conducted for the solo music and the

isolated notes showed that the SVM classifier was significantly better than the MLP classifier

(p <.001) independently of the polynomial degree and the dataset. The average differences be-

tween the MLP classifier and the SVM with polynomial kernels of degree 2 (3.1%≤∆ F-measure ≤

4.6%), degree 3 (6.2% ≤ ∆ F-measure ≤ 7.7%) was significant at the .05 level for the solo mu-

sic dataset. Although a significant difference occurred for the isolated notes as well, the average

F-measure differences between the MLP and SVM-based cases surprisingly increased (28.6% ≤

∆ F-measure ≤ 31.4% for degree 2, and 38.1% ≤ ∆ F-measure ≤ 40.9% for degree 3), respec-

tively. A significant difference between the performance of SVM polynomial kernels of 2nd and

3rd degrees was also found. The SVM with a 3rd order polynomial kernel performed significantly

better than the SVM with a 2nd order polynomial kernel for both datasets: 2.3%≤ ∆ F-measure ≤

3.8% for solo music, and 8.1%≤ ∆ F-measure ≤ 10.9% for the isolated notes.

The LSF feature sets performed slightly better than the MFCC feature set for the solo music

dataset, whereas MFCCs performed slightly better than LSFs on the isolated notes dataset. The
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average F-measure differences between the LSF and the MFCC feature sets were in the range

0.3% ≤ ∆ F-measure ≤ 1.3% for the solo music dataset, 2.3% ≤ ∆ F-measure ≤ 4.2% for the

isolated notes dataset.

7.3.3 Influence of the Codebook Dimensions

The analysis of variance showed that the effect of the number of coefficients (COEN) was highly

significant for the solo music and isolated notes datasets, F(3,6415) = 30.628, p < .001 and

F(3,8352) = 20.237, p < .001, respectively. The effect sizes were found to be small for both

datasets (η2 = .014, solo music, and η2 = .007, isolated notes). There was also a significant effect

of the number of codebook clusters (CLUN) related to the K-means algorithm, on both datasets.

The effect sizes were small (η2 = .002, solo music, and η2 = .001, isolated notes). Conversely,

there was no significant mean differences in F-measures when the number of clusters was varied.

With regard to the codebook dimensions in the case of solo music, the posthoc test revealed that

there was no significant differences, except for 8 coefficients, when the number of feature coeffi-

cients varied by only 8. However, there was a significant difference (p= .010) between experiments

where the coefficient number differed from 16 (e.g. between 16 and 32) with a small average differ-

ence, .2%≤ ∆ F-measure ≤ 2.1%. Highly significant differences (p < .001) were found when the

number of coefficient was small (8) compared to other cases (16, 24, 32) for both type of spectral

features, with small average differences (1.1% ≤ ∆ ≤ 3.0%, 1.8% ≤ ∆ F-measure ≤ 3.7%, and

2.2%≤ ∆F−measure≤ 4.1%, respectively).

For isolated notes, the same pattern occured. The average difference between using 16 and

32 feature coefficients was 0% ≤ ∆ F-measure ≤ 3.6%, and the average differences between us-

ing 8 feature coefficients and a higher number of coefficients (i.e. 16, 24 and 32) were 1.3% ≤

∆ F-measure ≤ 4.9%, 2.4%≤ ∆ F-measure ≤ 6.1%, and 3.1%≤ ∆F−measure≤ 6.7%, respec-

tively.
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Solo Music Isolated Notes
Source d f F η2 d f F η2

CLSR 2 243.135??? .070 2 2415.081??? .395
ASFT 1 9.103?? .001 1 44.006??? .005
COEN 3 30.628??? .014 3 20.237??? .007
CLUN 3 3.488? .002 3 2.844?? .001
CLSR×ASFT 2 141.388??? .042 2 214.478??? .049
CLSR×COEN 6 11.197??? .010 6 1.578 .001
CLSR×CLUN 6 .143 .000 6 .337 .000
ASFT×CLUN 3 2.594 .001 3 .984 .000
ASFT×COEN 3 72.736??? .033 3 8.948??? .003
CLUN×COEN 9 .370 .001 9 .463 .000
CLSR×ASFT×CLUN 6 .265 .000 6 .219 .000
CLSR×ASFT×COEN 6 7.752??? .007 3.286?? .002
CLSR×CLUN×COEN 18 .240 .001 18 .559 .001
ASFT×CLUN×COEN 9 .732 .001 9 .419 .000
CLSR×ASFT×CLUN 18 .217 .001 18 .473 .001
×COEN
Error 6415 8352

Table 7.2: Results of the Four-Way Analysis of Variance for the Musical Instrument Recognition
System. η2 is the partial eta squared measure of effect size. ?p < .05,?? p < .01,??? p < .001.
CSLR: classifier; ASFT: audio spectral feature set; COEF: number of coefficients; CLUN: number
of clusters.

7.3.4 Relationships Between the Factors

The interaction between the classifier factor, the spectral feature sets, and the dimensions of the fea-

ture vector were highly significant for solo music, F(2,6415) = 141.388, p < .001 (CLSR×ASFT )

and F(6,6415)= 11.197, p< .001 (CLSR×COEN), F(6,6415)= 7.752, p< .001 (CLSR×ASFT×

Coen), respectively. Although the effect size of the interaction between classifier and spectral fea-

ture sets was larger than the interaction between the classifier factor and the coefficient factor, both

interaction effects were small (η2 = .042, η2 = .010). There was also a highly significant inter-

action between the classifier and the spectral feature set factors, F(2,8352) = 214.478, p < .001

for isolated notes, with a small effect size (η2 = .049). Nevertheless, there was no significant

interaction effect between the classifier and the dimensions of the feature vectors for the isolated

notes.

The interaction between spectral features and the number of coefficients yielded an F ratio of

F(3,6415) = 72.736, p < .001, and F(3,8352) = 8.948, p < .001 for solo music and isolated notes

respectively, indicating that there were highly significant effects of interaction on both datasets.
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The effect sizes of the interaction were very small (η2 = .033 and η2 = .003) for both datasets.

Finally, the interaction between the classifier, the spectral feature set, and the dimensions of

the feature vectors were highly significant on the solo music dataset, F(6,6415) = 7.752, p < .001,

and significant on the isolated notes dataset, F(6,8352) = 3.286, p = .003. The effect sizes were

small (η2 = .007) for the solo music, and very small (η2 = .002) for the isolated notes.

7.3.5 Discussion

The results of the experiments show that in most cases, classifying the samples with the SVM

classifier increases the performance of the identification for both the isolated notes and the solo

music datasets. This can be explained by the characteristics of the SVM classifier such the use of a

kernel function to map the data into a higher-dimensional space where the classes become linearly

separable as well as the determination of an optimal hyperplane that minimises the probability

of misclassifications. Using inherent nonlinear approximation properties provide the capability to

model very complex patterns for SVM. This is unlike the traditional MLP which relies on linear

basis function architectures with inputs weighted before being summed and have sigmoidal or

step activation functions. MLP obtained good identification rate (76.0%) for the majority of the

instruments in the solo music dataset, whereas there was a very low performance (46.7%) for

the isolated notes dataset. Although reverberation may affect the instrument recognition system

[Barthet & Sandler, 2010a], in this case, it may be inferred that the contextual information obtained

analysing musical phrases rather than isolated notes substantially improved the identification rate.

Thus, there will be reasonably good ontologies with the MLP classifier applied on the solo music

dataset, as we will see in the next section. It could be assumed that ontologies that obtained with

MLP classifier for the isolated notes dataset will be less than ideal compared to the SVM classifiers,

since the identification error will intrinsically be propagated to the conceptual analysis part of the

system. This could be attributed to the characteristics of the SVM classifier, as we discussed

previously.
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Regarding the SVM classifiers, there was also a small difference between the 2nd and 3rd de-

gree polynomial kernels: 2.3% ≤ ∆ F-measure ≤ 3.8% for solo music, and 8.1% ≤ ∆ F-measure

≤ 10.9%. This could be explained by the fact that there was a very low average identification rate

in case of SVM polynomial kernels of 2nd degree with LSFs for a few instrument categories: reeds

no:2 (4%), Edge Instruments (20%), Flute (19%) and TrueFlutes (21%), while the average identi-

fication rates were low only for the Clarinet (46%) and Cello (56%) on the solo music dataset. The

low scores obtained for the edge and reed pipe instruments may be due to the fact that the source/-

filter model of sound production from which the LSFs are derived is not well adapted for these

instruments. Indeed, for edge instruments such as the flute and clarinet, the coupling between the

exciter (the closed-end-of-the flute) and the resonator (the bore) plays an important role regarding

timbre, as for the clarinet [Barthet et al., 2010b]. It is shown that timbral melody and expression

can advantageously be taken into account to build more robust instrument models. However, addi-

tional information on the datasets (i.e. recording conditions, attacks and decays of the notes) should

be required before a complete understanding of the classifiers’ performance can be reached.

Even though there was a significant difference between LSFs and MFCCs for the SVM with

2nd degree polynomial on the isolated notes, there was small difference depending on classifier

for the rest of the cases. The small difference can be explained by the fact that they botch charac-

terise the spectral envelope of the sounds. This is in line with the results of Chétry [2006], where

MFCCs performed better than LSFs with Gaussian Mixture Model (GMM), and vice versa with

the codebook-to-codebook similarity measure based on the K-means clustering algorithm.

We found that the highest performance has been shown by the higher number of coefficients

(COEN) for the datasets This can be attributed to the fact that using a high coefficient number

tends to model too much spectral information such as salient partials and overtones, whereas a

small number of coefficient numbers cannot capture the detailed information carried by the for-

mant structure. Subsequently, the insignificant effect of the number of clusters (CLUN) could be
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associated with the fact that we used the average and variance of the codebook dimensions. This is

likely to affect the accuracy obtained with the codebook dimensions. However, it should be noted

that the use of full codebooks would require implementations of the MLP and SVM classifiers as

current machine learning toolboxes can’t handle multidimensional data structure.

7.4 Quantitative Comparison for the Conceptual Analysis

In this section the automatically constructed concept hierarchies will be evaluated analytically us-

ing measures presented in section 7.2. The level of accuracy estimated by these metrics were

analysed utilising a three-way multivariate analysis of variance. The independent variables were

the classifiers (i.e. MLP, SVM with 2nd degree polynomial, SVM with 3rd degree polynomial), the

audio spectral features (i.e. LSFs and MFCCs), and the number of coefficients (i.e. 8, 16, 24, 32).

The dependent variables were the following evaluation metrics: Lexical Recall (LR), higher level

F-measure (T F ′csc), taxonomic F-measure (T Fcsc) of the common semantic cotopy, higher level

F-measure (T F ′sc), taxonomic F-measure (T Fsc) of the semantic cotopy metric.

Content-based analysis provides an output for each instrument concept or property. We, there-

fore, obtained a large set of output data in line with the amount of our experimental dataset. An

ontology consists of all the corresponding concepts and properties, yet, there is only one output to

be analysed. Thus, there was a small set of output data for the conceptual analysis. Considering the

fact that the number of clusters factor (COUN) did not produce a significant effect in the content-

based analysis part, it was not considered as a dependent variable in order to get a sufficient degree

of freedom to run MANOVA test.

The effects of the factors along with interactions effects were analysed in range of one-way to

three-ways by using the partial eta squared index of effect size. Subsequently, a multiple compar-

ison procedure (MCP) was also conducted for the conceptual analysis results in order to identify

whether there was a significant difference between the parameters of the factors. Similar to the
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ANOVA test conducted for content-based analysis results, the Holm-Sidak procedure and a risk

α of .05 were used in the MANOVA tests. In addition, we have used the same definitions in our

interpretations of the effect sizes: small effect size (η2 ≤ .01), medium effect size (.01≤ η2 ≤ .06)

and large effect size (.06≤ η2 ≤ .14).

7.4.1 Results of the Conceptual Analysis

The performance of six systems using LSFs and MFCCs are reported in Figure 7.1. For more

detailed results regarding the performance of the systems, see Appendix A. For the isolated notes,

overall, the total average identification rates were reasonably good for LR (72.33%). In parallel,

the total average identification rates of the taxonomic relations were slightly lower than the correct

lexical entries for T Fsc (75.8%) and T F ′sc (73.8%). The results shows that the highest total average

identification rates are obtained for the T Fcsc (97.6%). But this improvement on the taxonomic

layer of the ontologies is accompanied by a decrease on T F ′csc (78.7%), after interaction with the

correct lexical entry outputs (see Table A.2).

For the solo music dataset, on the other hand, the total average identification rates were higher

than for the isolated notes dataset. For instance, the total average identification rate was very

high on the lexical layer, LR (99.4%). Similarly, there were also very high performances for the

taxonomic relations of the computed ontologies. For instance, the average identification rates of

T Fsc and T F ′sc, were 97.6% and 98.5%, respectively. In parallel, the average identification rates for

T Fcsc, and T F ′csc, were 97.4% and 98.3%, respectively (see Table A.3).

Regarding the average identification rates of the classifiers, the MLP obtained reasonably good

results for LR (51.4%) on the lexical layer. There was slightly higher performances for T Fsc

(58.5%) and T F ′sc (54.5%) on the taxonomic layer. However, the taxonomic relations were very

high for T Fcsc (95.9%), whereas the results again dramatically dropped from an initial high value

to a much lower value for T F ′csc (54.5%) on the isolated notes dataset. On the contrary, the MLP

performed very well on the solo music dataset. The average correct identification rate of LR was
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(a) Isolated Notes Dataset (b) Solo Music Dataset

Figure 7.1: Summary of the evaluation results for the isolated notes (Figure 7.1a) and solo music
(Figure 7.1b) datasets. The bars refer to the following evaluation metrics: Lexical Recall (LR),
higher level F-measure (T F ′csc), taxonomic F-measure (T Fcsc) of the common semantic cotopy,
higher level F-measure (T F ′sc), taxonomic F-measure (T Fsc) of the semantic cotopy metric, respec-
tively.

98.3%. Similarly, there was a very high performance for T Fsc (96.8%) and T F ′sc (97.6%) on the

taxonomic layer. In parallel with the semantic cotopy results, the MLP also obtained a very high

performance for T Fcsc (97.3%) and T F ′csc (97.8%).

The results show that the MLP classifier obtained the highest performance with 32 LSF and 16

codevectors, and 16 MFCCs and 64 codevectors on the isolated notes dataset. The highest perfor-

mance of the MLP classifier was obtained with various codevector dimensions, for both LSFs and

MFCCs on the solo music dataset. When using the SVM with a polynomial kernel of 2nd degree,

the average correct identification rate increased up to 65.6% for LR on the lexical layer. There was

also a reasonable increase for T Fsc (75.8%) and T F ′sc (73.8%) in terms of semantic cotopy, and a

reasonable increase for T Fcsc (97.6%) and T F ′csc (78.7%) in terms of common semantic cotopy, on

the taxonomic layer of the generated ontologies for the isolated notes dataset. For the solo music

dataset, there was a very small increase up to 99.7% for LR on the lexical layer of the generated
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ontologies. Likewise, there was also a very small increase up to 97.6% and 98.5% for T Fsc and

T F ′sc in terms of semantic cotopy, and up to 97.4% and 98.3% for T Fcsc and T F ′csc, in terms of

common semantic cotopy, on the taxonomic layer of the generated ontologies for the solo music

dataset.

Overall, the best performance was obtained with the SVM using a polynomial kernel of 3rd

degree. The results are almost identical for both the isolated notes and the solo music datasets.

On the lexical layer, the average identification rate is 100% for LR on both of the datasets. On the

taxonomic layer, the average identification rates were 98.4% and 99.2% for the T Fsc and the T F ′sc,

in terms of semantic cotopy, and 97.9% and 98.9% for T Fcsc and T F ′csc, in terms of the common

semantic cotopy on the isolated notes dataset. Likewise, the average identification rates were 98.0%

and 99.0% for T Fsc and T F ′sc, in terms of semantic cotopy, and 97.4% and 98.7% for T Fcsc and

T F ′csc, in terms of the common semantic cotopy on the solo music dataset.

With regards to the ASFT , the best overall performance was obtained with the MFCC on the

isolated notes dataset, while the average identification rates were similar for both the MFCC and

LSF on the solo music dataset. For instance, the best performance of LSF and MFCC feature sets

were found mostly with 16 MFCCs and 64 codevectors and 32 LSFs and 16 codevectors for the

isolated notes; for the solo music dataset MFCCs and LSFs yielded the best performance with

various numbers of coefficients and codevectors dimensions.

7.4.2 Comparison of the Classifiers and the Spectral Feature Sets

The results of the three-way analyses of variance results for the conceptual analysis is reported in

Table 7.3. The interaction between CLSR and ASFT was highly significant for the isolated notes

dataset, whereas only CLSR and its interaction with the spectral feature sets (CLSR×ASFT ) had a

significant effect on the solo music dataset. These factors and the influence of their interactions are

detailed in this section.
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Classifier

For the isolated notes dataset, highly significant effect of the classifiers (CLSR) was found on LR

of the generated ontologies on the lexical layer with very large effect size ((p < .001,η2 = .733).

With regard to the taxonomic relations, there were also highly significant effects of the classifier on

the T Fsc and T F ′sc with very large effect sizes for the semantic cotopy, and highly significant effect

only on T F ′csc with a very large effect size for the common semantic cotopy (all p < .001). The

post-hoc analysis, however, revealed that there was no significant effect of the classifiers on T Fcsc

(p > .05).

For the solo music dataset, the post-hoc test also revealed that there was significant effect of

the classifiers on LR of the generated ontologies with a large effect size. Regarding the taxonomic

relations, similarly, there was also significant effect of the classifiers on T Fsc and T F ′sc with large

effect sizes for the semantic cotopy, and significant effect on T Fcsc and T F ′csc with large effect sizes

for the common semantic cotopy (all p < .05).

On the lexical layer, the post-hoc analyses (multiple comparison procedure) conducted for the

isolated notes dataset revealed that the SVM classifier with a polynomial kernel of degree 2 was

significantly better than the MLP classifier (p <.05), and the SVM classifier with a polynomial

kernel of degree 3 was highly significantly better than the MLP classifier (p <.001) on LR. Con-

sequently, the average difference on LR was large between the MLP and the SVM classifiers with

both 2nd order and 3rd order polynomials for the isolated notes dataset. The results indicates that

there was also significant difference on LR between the MLP and the SVM classifiers with 2nd

order and 3rd order polynomials for the solo music dataset (p < .05).

On the taxonomic layer, subsequently, post-hoc analysis revealed that the MLP was signifi-

cantly different than the SVM classifier with a 2nd order polynomial kernel (p <.05), and highly

significantly different than the SVM with 3rd order polynomial on T Fsc, T F ′sc and T F ′csc (p <.001)

. There was no significant effect on the T Fcsc for any classifier utilised on the isolated notes dataset

136



(p > 0.5). Additionally, the difference for these classifiers was large on T Fsc, T F ′sc, and T F ′csc, and

smaller on the T Fcsc.

There was a significant difference between the MLP and the SVM classifiers (p< 0.5) indepen-

dent from the polynomial degree on all the outcome variables for the solo music dataset. Compared

to the isolated notes dataset, the difference was small between the MLP and the SVM classifiers

with a 2nd order polynomial T Fsc, T F ′sc, T Fcsc, and T F ′csc for the solo music dataset. Similarly,

there was also a small difference between the MLP and the SVM classifier with degree 3 on T Fsc,

T F ′sc, T Fcsc, and T F ′csc.

Audio Spectral Feature Set

The post-hoc test has not been used for the examination of the ASFT, since the number of groups

(MFCCs and LSFs) were less than three. Instead, the pairwise comparison test has been used to

analyse the effect of the Spectral Feature Sets at the .05 level based on Holm-Sidak procedure.

There was a highly significant effect of the ASFT on LR, T Fsc, T F ′sc, and T F ′csc (all p < 001), and

no significant effect on T Fcsc (p > 0.5). Unlike the isolated notes dataset, there was a significant

effect of the ASFT on LR, T Fsc, T F ′sc, T Fcsc and T F ′csc (all p < 05).

Contrary to the results obtained with content-based analysis, the LSF feature sets performed

slightly better than the MFCC feature set on the isolated music dataset, whereas MFCCs performed

slightly better than LSFs for the conceptual analysis on the solo music dataset.

7.4.3 Relationships Between the Factors

Interaction between the Classifier (CLSR) and Audio Spectral Feature Set (ASFT ) factors was

highly significant on LR with a very large effect size for the isolated notes and significant on LR

with a large effect size for the solo music dataset.

Regarding the taxonomic relations, there was also highly significant effect of the interaction of

CSLR and ASFT with very large effect sizes on T Fsc and T F ′sc in terms of the semantic cotopy, and
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T F ′csc in terms of the common semantic cotopy. There was no significant effect on the T Fcsc for the

isolated notes. There was significant effect of interaction with large effect sizes on T Fsc and T F ′sc

in terms of the semantic cotopy, and similarly, significant effects with large effect sizes on T Fcsc

and T F ′csc in terms of the common semantic cotopy.

Contrary to the content-based analysis results, there was no significant effects of interaction be-

tween factors CLSR and COEN, as well as ASFT and COEN for the conceptual analysis results on

datasets. Although both of the factors have indicated significant effects for instrument recognition,

these do not affect the conceptual analysis as the identifications are good enough in all cases.

7.4.4 Discussion

Instrument recognition performances in range of 43.5% and 90.3% for the isolated notes dataset,

and 69.9% and 87.5% for the solo music dataset, have been obtained. The hand-crafted ref-

erence concept hierarchy (based on Hornbostel and Sachs’ system) is denoted, ORe f 1, and the

automatically-generated concept hierarchies associated with the highest to lowest recognition sys-

tem performance are denoted as OC1, OC2 and OC3 for the isolated notes. Likewise, the ORe f 2

denote the hand-crafted reference concept hierarchy, and OC4, OC5 and OC6 the automatically

generated concept hierarchies for the solo music dataset. Figure 7.2 and Figure 7.3 illustrate the

automatically generated and reference ontologies for isolated notes and solo music, respectively.

Compared to ORe f 1 and ORe f 2, the values of the taxonomic measures are slightly lower than

the corresponding values of the lexical measures of the isolated notes and the solo music datasets,

since there is no error on the lexical term layer. It should be noted that the {Brass Instruments,

Tuba, Trombone} concepts was not taken into account in the evaluations of solo music, since these

instruments were not present in the solo music dataset.

As can be seen in Table A.1, the semantic cotopy of the ontology OC1 is almost identical to

the reference ontology ORe f 1. For example, the semantic cotopy of the concept Aerophones in the

hand-crafted ontology (Ore f ) in Fig. 7.2a is {Thing, Aerophones, Edge instruments, Brass Instru-
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ments, Reed Pipe Instruments, Flute, Trombone, Tuba, Clarinet, Saxophone, Bassoon, Oboe} and

the semantic cotopy of the Aerophones in the automatically generated ontology in Fig 7.2b, OC1,

is {Thing, Aerophones, Edge instruments, Brass Instruments, Reed Pipe Instruments, Flute, Trom-

bone, Tuba, Clarinet, Saxophone, Bassoon, Oboe}. That is, the semantic cotopy of the concept

Aerophones is identical in both ontologies. It is possible to see the same identical overlap for other

concepts as well. However, for the concepts Edge Instruments and Flute the semantic cotopy in

Ore f is {Thing, Aerophones, Edge Instruments, Flute}, whereas for the concept Edge Instruments,

the semantic cotopy in OC1 is {Thing, Aerophones, Edge Instruments}, and for the Flute, it is

}Thing, Aerophones, Flute}.

Parallel to this, there were slightly lower results for the common semantic cotopy of ontology

OC1. It is possible to see the same problem with this metric as well, for example, the common

semantic cotopies of the concept Aerophones and many other concepts are identical (e.g., {Thing,

Edge instruments, Brass Instruments, Reed Pipe Instruments, Flute, Trombone, Tuba, Clarinet,

Saxophone, Bassoon, Oboe}). However, the conceptual hierarchy dissimilarity of the Edge In-

struments and the Flute concepts were also reflected on common semantic cotopy measurements;

for instance, for the Edge Instruments and the Flute in Ore f , the common semantic cotopies are

Thing, Aerophones, Flute and Thing, Aerophones, Edge Instruments, whereas in OC1, for both of

the concepts, it is Thing, Aerophones.

In fact, except the concepts Edge Instruments and Flute, every leaf concept in the reference

concept hierarchy has a maximum overlap with the corresponding concept hierarchy inOC1. Thus,

it is evident from the results shown by OC1, in terms of arrangement of the leaf nodes and by

making abstraction of the inner nodes, obtained fairly high results as shown in Fig. 7.2b. The good

correspondences obtained from the instrument identification system lead to a high precision and

recall with respect to the taxonomic overlap.

There was an important distinction for the conceptual analysis results shown by OC2 and OC3,
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as the obtained musical instrument identification results were 48.1% and 56.4% for OC2 and OC3,

respectively. In the case of the MLP classifier for OC2, the incorrect instrument identifications

led to some contradictions in the pruning stage for the concept Aerophones. The contradiction was

mainly caused by the concept Edge Instruments which did not possess the {vibrating air} property.

The system, therefore, couldn’t identify the right infimum edge to establish necessary pruning on

the lattice form. In parallel, in case of the SVM classifier for O2, a similar problem occurred for

the concept Aerophones which did not possess the {reed no:2} property.

On the contrary, although the instrument identification results were low for the O3, there was

no issues on removing the infimum edges in the lattice form. However, as a result of the low

identification ratio, different issues occurred, such as missing associations, which resulted in the

loss of two concepts (i.e. Bassoon, and Tuba). Since, there was low accuracy results for the concept

Tuba, the system was not able to dentify the concept Trombone alone as a subclass of the concept

Brass Instruments, despite the fact that the concept Trombone and Brass Instruments were predicted

correctly along with their properties.

When compared toORe f 1, eleven concepts are missing inOC2, and two concepts are missing in

OC3, but the hierarchy of the remaining concepts are not changed for OC2. This leads to very low

(31.3%) Lexical Recall (LR), result forOC2, and very good LR result (87.5%) forOC3. On the other

hand, a perfect (T Fcsc=100%) taxonomic F-measure for the common semantic cotopy of OC2 and

an excellent taxonomic F-measure (T Fcsc=95%) for OC3 were obtained. For instance, the common

semantic cotopy of the concept Chordophones forORe f 1 in Fig.7.2a is {Thing, Cello, Violin, Piano}

and the common semantic cotopy of the Chordophones in the automatically-generated ontology,

OC2 in Fig 7.2c, is {Thing, Cello, Violin, Piano}; it is identical in both ontologies. It is possible to

see the same identical overlap for other concepts, such as Thing, Cello, Violin and Piano of OC2.

This pattern is repeated for all the concepts of OC3 as well. The errors on the lexical term layer of

the learned ontologies are fairly smaller than the T Fcsc result for OC2 and slightly smaller than the
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T Fcsc result forOC3. Consequently, T F ′csc ofOC2 dramatically dropped from 100% T Fcsc to 47.6%

T F ′csc with the influence of the lexical measure in the calculation. On the contrary, the effect of the

lexical measure was slightly smaller on OC3 which led to a 91.1% T F ′csc performance.

However, it is worth pointing out that the influence of the lexical measure is higher on the

common semantic cotopy compared to the semantic cotopy taxonomy measures in OC2. As a re-

sult, 42.5% T Fsc and 36.0% T F ′sc performances were obtained forOC2, and 87.4% T Fsc and 87.4%

T F ′sc for OC3. This is mainly due to the fact that the common semantic cotopy considers only the

common semantics for the reference ontology and the automatically generated ontology, whilst the

semantic cotopy takes into account the complete semantics present in the corresponding ontolo-

gies. For instance, the local taxonomic recall and precision for the common semantic cotopy, T Rcsc

and T Pcsc, of the concept Brass Instruments in the automatically-generated ontology, OC3 in Fig

7.2d, are {Thing, Aerophones, Trombone} and {Thing, Aerophones}. This identical overlap led to

66.6% local taxonomic recall and 100% local taxonomic precision for the concept Brass Instru-

ments. On the other hand, the local taxonomic recall for the semantic cotopy, T Rsc, of the concept

Brass Instruments in the automatically-generated ontology, OC3, is {Thing, Aerophones, Brass In-

struments, Tuba, Trombone}. And the local taxonomic precision for the semantic cotopy, T Psc, of

the concept Brass Instruments in OC3, is {Thing, Aerophones, Brass Instruments}. Consequently,

T Rsc dropped to 60% while T Psc was unaffected (100%).

For the SVM classifier-based ontologies, independent from the degree of polynomial kernel,

the average correct ontology identification rates were very high on the solo music dataset (see

Table A.1). Therefore, it is highly probable that the conceptual terms successfully passed the

predefined threshold (50%) regarding the binary context. This evidence suggests that the SVM-

based ontologies generated from the solo music dataset were unaffected by the changes in spectral

feature sets and the codebook dimensions. As can be seen in the fourth ontology (OC4) in Fig.

7.3b, the hierarchy of the ontology was not changed except for the concepts of Edge Instruments

142



1
2

B
o

w
e
d

S
tr

u
c
k

T
h
in

g

C
h

o
rd

o
p

h
o

n
e
s

rd
fs

:s
u

b
C

la
s
s
O

f

A
e
ro

p
h

o
n

e
s

rd
fs

:s
u

b
C

la
s
s
O

f

C
e
ll

o

v
ib

ra
ti

n
g
_
s
tr

in
g

P
ia

n
o

v
ib

ra
ti

n
g
_
s
tr

in
g

V
io

li
n

v
ib

ra
ti

n
g
_
s
tr

in
g

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

E
d
g
e
 I

n
s
tr

u
m

e
n
ts

R
e
e
d

 P
ip

e
 I

n
s
tr

u
m

e
n

ts

B
a
s
s
o

o
nre

e
d

s

O
b

o
e

re
e
d

s

C
la

ri
n
e
t

re
e
d

s

S
a
x

o
p

h
o

n
e

re
e
d

s

v
ib

ra
ti

n
g
_
a
ir

v
ib

ra
ti

n
g
_
a
ir

F
lu

te

v
ib

ra
ti

n
g
_
a
ir

re
e
d

s
_

n
o

re
e
d

s
_

n
o

re
e
d

s
_

n
o

re
e
d

s
_

n
o

(a
)O

R
ef

2:
,g

ro
un

d-
tr

ut
h

ba
se

d
on

H
or

nb
os

te
la

nd
Sa

ch
s’

in
st

ru
m

en
tc

la
ss

ifi
ca

tio
n

te
rm

in
ol

og
y

1
2

B
o

w
e
d

S
tr

u
c
k

T
h
in

g

C
h

o
rd

o
p

h
o

n
e
s

rd
fs

:s
u

b
C

la
s
s
O

f

A
e
ro

p
h

o
n

e
s

rd
fs

:s
u

b
C

la
s
s
O

f

C
e
ll

o

v
ib

ra
ti

n
g
_
s
tr

in
g

P
ia

n
o

v
ib

ra
ti

n
g
_
s
tr

in
g

V
io

li
n

v
ib

ra
ti

n
g
_
s
tr

in
g

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

E
d
g
e
 I

n
s
tr

u
m

e
n
ts

R
e
e
d

 P
ip

e
 I

n
s
tr

u
m

e
n

ts

B
a
s
s
o

o
nre

e
d

s

O
b

o
e

re
e
d

s

C
la

ri
n
e
t

re
e
d

s

S
a
x

o
p

h
o

n
e

re
e
d

s

v
ib

ra
ti

n
g
_
a
ir

v
ib

ra
ti

n
g
_
a
ir

F
lu

te

v
ib

ra
ti

n
g
_
a
ir

re
e
d

s
_

n
o

re
e
d

s
_

n
o

re
e
d

s
_

n
o

re
e
d

s
_

n
o

(b
)O

C
4:

,S
V

M
w

ith
th

e
3r

d.
de

gr
ee

po
ly

no
m

ia
lk

er
ne

lu
si

ng
32

L
SF

fe
at

ur
es

an
d

64
co

de
ve

ct
or

s
fo

rs
ol

o
m

us
ic

1
2

B
o

w
e
d

S
tr

u
c
k

T
h
in

g

C
h

o
rd

o
p

h
o

n
e
s

rd
fs

:s
u

b
C

la
s
s
O

f

A
e
ro

p
h

o
n

e
s

rd
fs

:s
u

b
C

la
s
s
O

f

P
ia

n
o

v
ib

ra
ti

n
g
_
s
tr

in
g

V
io

li
n

v
ib

ra
ti

n
g
_
s
tr

in
g

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

ro
c
e
s
s

E
d
g
e
 I

n
s
tr

u
m

e
n
ts

R
e
e
d

 P
ip

e
 I

n
s
tr

u
m

e
n

ts

B
a
s
s
o

o
n

re
e
d

s

C
la

ri
n
e
t

re
e
d

s

S
a
x

o
p

h
o

n
e

re
e
d

s

v
ib

ra
ti

n
g
_
a
ir

v
ib

ra
ti

n
g
_
a
ir

F
lu

te

v
ib

ra
ti

n
g
_
a
ir

re
e
d

s
_

n
o

re
e
d

s
_

n
o

re
e
d

s
_

n
o

(c
)O

C
5:

,M
L

P
us

in
g

24
M

FC
C

fe
at

ur
es

an
d

16
co

de
ve

ct
or

s
fo

rs
ol

o
m

us
ic

.

1
2

B
o

w
e
d

S
tr

u
c
k

T
h
in

g

C
h

o
r
d

o
p

h
o

n
e
s

r
d

f
s
:s

u
b

C
la

s
s
O

f

A
e
r
o

p
h

o
n

e
s

r
d

f
s
:s

u
b

C
la

s
s
O

f

P
ia

n
o

v
ib

r
a
ti

n
g
_
s
tr

in
g

V
io

li
n

v
ib

r
a
ti

n
g
_
s
tr

in
g

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

r
o

c
e
s
s

s
o

u
n

d
_

in
it

ia
ti

o
n

_
p

r
o

c
e
s
s

E
d
g
e
 I

n
s
tr

u
m

e
n
ts

R
e
e
d

 P
ip

e
 I

n
s
tr

u
m

e
n

ts

B
a
s
s
o

o
n

r
e
e
d

s

O
b

o
e

r
e
e
d

s C
la

r
in

e
t

r
e
e
d

s

S
a
x

o
p

h
o

n
e

r
e
e
d

s

v
ib

r
a
ti

n
g
_
a
ir

v
ib

r
a
ti

n
g
_
a
ir

F
lu

te

v
ib

r
a
ti

n
g
_
a
ir

r
e
e
d

s
_

n
o

r
e
e
d

s
_

n
o

r
e
e
d

s
_

n
o

r
e
e
d

s
_

n
o

(d
)O

C
6:

,M
L

P
us

in
g

8
M

FC
C

fe
at

ur
es

an
d

32
co

de
ve

ct
or

s
fo

rs
ol

o
m

us
ic

.

Fi
gu

re
7.

3:
A

ut
om

at
ic

al
ly

ge
ne

ra
te

d
co

nc
ep

th
ie

ra
rc

hi
es
O

C
4,

C
5,

C
6,

co
m

pa
re

d
to

th
e

re
fe

re
nc

e
co

nc
ep

th
ie

ra
rc

hy
O

R
ef
−

2

143



and Flute. Due to the fact that there is only one leaf for the Edge Instruments, and that every data in

the concept of Flute is most likely to be the same as for the Edge Instruments, it may be reasonable

to assume that this case represent a challenge for generating ontologies by FCA using audio signals.

The Flute could only be separated from Edge Instrument if there was at least one more instrument

concept with an identical attribute. Thus, the problem could be solved in the lattice pruning phase

by removing the corresponding lower bound, infimum edge, of the Edge Instruments.

For the MLP classifier-based ontologies, on the other hand, the average correct identification

rates were reasonably lower to that obtained with the SVM classifier based systems (see Table A.2

and Table A.3). The average instrument identification rates were slightly higher (77.9%) for OC6,

in Fig7.3d, than (73.2%) for OC5, in Fig. 7.3c, in line with the average ontology identification

rates. The higher taxonomic F-measures T F ′csc and T F ′sc were 90.3% and 85.5% for OC5, respec-

tively; whereas the higher taxonomic F-measures T F ′csc and T F ′sc were 94.7% and 92.5% for OC6,

respectively.

When compared toORe f 2, two concepts are missing inOC5, and one concept is missing inOC6.

This leads to 84.6% and 92.3% Lexical Recall (LR) forOC5 andOC6, respectively. For instance, the

common semantic cotopy of the concept Reed Pipe Instruments for ORe f 2 in Fig. 7.3a is {Thing,

Aerophones, Saxophone, Clarinet, Bassoon} and the common semantic cotopy of the Reed Pipe

Instruments in the automatically generated ontology,OC5 in Fig. 7.3c, is {Thing, Aerophones, Sax-

ophone, Clarinet, Bassoon}. That is, the taxonomic recall and precision for the common semantic

cotopy of the concept Chordophones are 100% and 100%, respectively. On the other hand, the

concept Oboe is missing from the OC6, thus, the common semantic cotopy of the concept Reed

Pipe Instruments for ORe f 2 is {Thing, Aerophones, Saxophone, Clarinet, Oboe, Bassoon}, and the

common semantic cotopy of the concept Reed Pipe Instruments for O6 is {Thing, Aerophones,

Saxophone, Clarinet, Oboe, Bassoon}. Consequently, the taxonomic recall and precision for the

common semantic cotopy of the concept Reed Pipe Instruments for O6 are 100% and 100%, re-

144



spectively. Although the errors of the taxonomic overlaps look similar, overall more concepts are

predicted for O6 on the lexical layer, which led to obtain slightly better results on T Fcsc.

The problems in the lattice form of OC5 were caused by the low accuracy in the identification

of associations, such as the fact that the concepts Cello and Oboe didn’t pass the 0.5 threshold to be

associated with their corresponding properties {vibrating string, sound initiation process:Bowed}

and {vibrating air, reeds no:2}, respectively. In case ofO6, on the other hand, the missing concepts

were caused by similar identification problems, yet only for the concept Cello. A complete listing

of the generated ontologies are available in Appendix D.

7.5 Discussion

The proposed automatic ontology generation system is based on content-based audio analysis. Mu-

sical instrument identification has been investigated as an application domain. Given that musical

instrument identification is a very difficult task on its own, extraction of ontologies from musical

instruments makes the work even more complicated. For that reason, in an effort to accomplish

a good performance, we grounded our system on the prior studies by Chétry [2006] and Barthet

& Sandler [2010b], who investigated musical instrument identification using the LSF and MFCC.

We have evaluated the system performance at identifying and conceptualising musical instruments

extracted from isolated notes and solo music. The performance of our system was compared to a

gold-standard ontology based on H-S terminology. The results revealed that the models comprising

average spectral envelopes determined using K-means algorithm were able to capture the essential

information about the musical instruments, and it has also indicated how well FCA performed in

conceptualisation of musical instruments.

As we discussed in section 7.3.5 and 7.4.4, when we compared the performance of the SVM

classifiers with the ones that can be achieved with the MLP classifier, the results has shown that a

classification approach using SVM yielded better performance than a learning approach using MLP,
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and musical instrument identification based on the traditional MLP classifier was inappropriate to

deal with perceptual scales for the isolated notes. On the one hand, this can be explained by the

characteristics of the SVM classifier such the use of a kernel function to map the data into a higher-

dimensional space where the classes become linearly separable as well as the determination of an

optimal hyperplane that minimises the probability of misclassifications. Using inherent nonlinear

approximation properties provide the capability to model very complex patterns for SVM. This is

unlike the traditional MLP which relies on linear basis function architectures. On the other hand,

while reverberation may affect the instrument recognition system [Barthet & Sandler, 2010a], in

this case, it can also be explained by the contextual information obtained analysing musical phrases

that substantially improved the identification rate compared to isolated notes.

Overall, we obtained promising ontology results for the system. In essence, the CLSR was the

only factor that has shown significant effect with a very large effect size on the ontology outputs,

whereas there was no significant effect for the rest of the factors (i.e. ASFT , COEN, CLUN),

although they have established significant effects with small or medium effect size on the content-

based analysis part of the system. However, the challenge in the proposed system is that it is

dependant on a supervised learning. As a result, it requires a new training and determination of

new instrument models once a new instrument has been included in the database. This should

be further replicated with an adaptive and dynamic learning algorithm, as it is not how learning

process is developed in real life: it is actually a dynamic and interactive process.

The acoustic timbral descriptors were also chosen based on a prior knowledge, and experi-

mentally further verified for automatic ontology generation process. Spectral envelope descriptors,

both the LFSs and MFCCs, have been found to be a significant contributor with a small effect

size to modelling the timbre of sound as can be seen in the content-based analysis part of the sys-

tem. Obtaining small difference between these audio descriptors can be explained by the fact that

they both characterise the spectral envelope of the sounds. High performance of both descriptors
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could be also partly attributed to the utilisation of “5 s-long audio segments”, which enabled to

capture a better representation of cepstral features, as described in [Essid et al., 2006]. While in

this experiment we have obtained a very efficient instrument family discrimination, future work

should include different audio descriptors to be able to identify different instrument families, for

instance membraphones or idiophones. Moreover, it should be investigated with multi-descriptor

based approaches including automatic feature selection algorithms.

Additionally, another important question remains for the evaluation of the threshold which was

manually determined as 50%. During the experiments, we have realised that threshold value also

offers a crucial impact on the ontology results. Even so, we haven’t taken this factor into consid-

eration due to excessive number of variables that have been used in the statistical analysis. Thus,

possible research direction should also include an investigation for threshold value, for instance in

the range 10-90%, to re-examine the effects of the factors that haven’t shown any significant effect

in the conceptual analysis part, thereby on the ontology outputs.

Our system can be applied to a wide range of content-based audio applications. For instance,

machine recognition of animal sounds may be another interesting application domain for our sys-

tem. Identification of animals by their sounds is a valuable resource for biological research and

environmental monitoring applications, particularly in detecting, locating and ecological census-

ing animals. Due to the fact that birds and their sounds are in many ways important for our culture,

and birdsong has long been a significant source of inspiration for many composers, musicians, and

writers: identification of birdsong has also taken a particular interest in the MIR field. For bird-

song identification similar techniques that are designed for human speech analysis are commonly

used, such as Short-Time Fourier Transforms, power spectral density, linear predictive coding. and

cepstral analysis. MFCCs are widely used in several studies [Chou et al., 2008] and [Graciarena

et al., 2010]. For instance, Lee et al. [2006] used MFCCs and LPCCs as the vocalisation feature in

the syllables; and exploited a codebook comprising a number of features to model the variant char-
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acteristics of different syllables segmented from the same bird songs. In another study, Fagerlund

[2007] compared three cepstral representations based on linear prediction, Mel spectra or percep-

tual liner prediction, in which it has been suggested that there was very small difference between

these features for a classification task. Of course a throughout review of birdsong identification

is beyond the scope of this thesis, however, it provides an interesting research opportunity and a

second example for the possible use of our audio analysis-based automatic ontology generation

system. The birdsong identification has a rich literature, and a detailed overview can be found in

[Stowell & Plumbley, 2011].

7.6 Summary

The evaluation approaches and the applied research fields have been reviewed in this chapter. In

the core, we have highlighted the human assessment, task-based, data-driven, and gold-standard

based ontology evaluation techniques. As a result, considering the limited number of instrument

categories in the automatically generated instrument ontologies in our system, and the difficulty of

finding labeled music pieces with a single instrument, we have chosen to use gold-standard base

evaluation rather than a task-based evaluation.

Thus, we have subsequently described the gold-standard based evaluation metrics used in our

system. The gold-standard evaluation metric have been explained by considering the lexical and

the conceptual level analysis of ontologies. We have also given some examples along with the

evaluation metrics.

Next, we provided the evaluations of the content-based analysis and conceptual analysis of

the automatic ontology generation system presented in the previous chapter. The system has been

evaluated with two different datasets. The system was tested using MLP and SVM classifiers by

modelling different codebook dimensions for the timbre features, LSFs and MFCCs, on various

instruments for the wind and string families in order to find the best performance.
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We found that in all cases the system succeeded to generate a very good ontology for the solo

music dataset. Contrarily, significant effects of the classifier type and the number of codebook

vectors on the ontology generation were highlighted for the isolated notes dataset. Overall, the best

results were obtained for the SVM with a polynomial kernel of the 3rd degree using 32 LSF and

dictionaries of 64 codevectors in both the solo music (87.5%) and isolated notes (90.3%) datasets

for the content based analysis.

In terms of the conceptual analysis, the highest performance were obtained with SVM clas-

sifiers independent from the degree of the polynomial on both the isolated notes and solo music

datasets. For instance, the SVM classifiers were obtained 100% LR on the lexical layer, and 98.9%

for T F ′csc and 99.2% for T F ′sc on the taxonomic layer of the isolated note-based ontologies. Sim-

ilarly, the best results were obtained for both of the classifiers on the solo music dataset. On the

lexical layer, the highest results were 100%, and 98.7% for T F ′csc and 99.0% for T F ′sc on the tax-

onomic layer of the solo music dataset based ontologies. Even though the results were varied

depending on a few codebook dimensions for the MFCCs, generally there seemed to be very good

results also for the MLP classifier on the solo music dataset.

With regards to the spectral feature set, the LSF feature set were yielded lower performance

with the SVM classifier with a polynomial kernel of the 2nd degree on the isolated notes dataset,

whereas the results were very good, like the MFCC feature set, except in the case of the 8 LSF with

8 codebook vectors. In general, reasonable results were obtained with regard to the hierarchical

design of the instrument ontology on both datasets.
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Chapter 8

Conclusions

Our research is motivated by the fact that current music ontology design processes do not in-

corporate automated learning systems. This makes the design of ontologies highly difficult and

dependent on human supervision. To date, only manually-created ontologies have been proposed,

therefore, we have presented a hybrid system to build an ontology supported by the OWL using

timbre-based automatic instrument recognition techniques and Formal Concept Analysis.

In general, reasonable results were obtained with regard to the hierarchical design of the in-

strument ontology on the isolated notes and solo music datasets. In the context of the Semantic

Web, these findings confirm that the proposed hybrid system enables a novel methodical design for

automatic ontology generation. Most notably, to the author’s knowledge, this is the first study to

investigate automatic ontology generation in the context of audio and music analysis. In addition,

the proposed system can be applied to a broad range of research fields investigating knowledge

exploitation and management. In this chapter we will summarise our work, discuss its limitations

and present ideas for future work.



8.1 Review of contents

In chapter 3, in order to better understand the connection between the Semantic Web and ontolo-

gies, we provide a survey on the semantic richness of ontology representation models, and then

present the semantic web technologies for ontology representation that have been used throughout

the thesis. Afterwards, we review the ontology engineering works to date on the semantic web.

In chapter 4, we investigate the heterogeneity and limitations in existing instrument classifi-

cation schemes. We develop representations of the taxonomic instrument classification schemes,

based on Hornbostel and Sach’s classification scheme, using OWL and compare terminological and

conceptual heterogeneity using SPARQL queries. We demonstrate that traditional designs based

on taxonomy trees lead to ill-defined knowledge representation, especially in the context of an

ontology for the Semantic Web.

In chapter 5, we review fundamental studies are related to the automatic ontology generation

systems. We review the input data types and the state of the art frameworks for automatic ontology

generation (section 5.1). Next, we review machine learning (section ??), content-based audio anal-

ysis (section 6.3), and conceptual analysis techniques (section 5.3) that are employed for musical

instrument identification to date.

In chapter 6, we present the proposed ontology generation framework describing each com-

ponent along with examples using experimental datasets. We provide the analysis of parameters

for the feature extraction and the audio classification components of the content-based analysis

part of the system. We also illustrate the automatic process of generation of ontologies based on

the proposed framework for isolated notes, since the isolated notes dataset involves slightly larger

terminology compare to the solo music dataset. We present the OWL specifications used in our ex-

periments together with a sample from a generated ontology. We treat every concepts as an OWL

class and every property as either OWL object properties or OWL data properties. The instrument

audio signals are modelled using our framework and are generated corresponding ontologies for

151



each combination of the analysis parameters. We describe how our framework could provide a con-

ceptual hierarchy along with properties as a solution to the ill-defined knowledge representation of

instrument classification schemes presented in chapter 4.

In chapter 7, we review ontology evaluation techniques (section 7.1), and present the methodol-

ogy used in experiments (section 7.2). The introduced methodology evaluates how well a machine-

based ontology is similar to a ground truth ontology in terms of conceptual hierarchy. We also show

illustrations of the various ontology metrics used for assessment of the system. Our framework is

evaluated by Analysis of Variance for the content-based analysis results and Multivariate Analysis

of Variance for the conceptual analysis results in order to assess the main effects and interactions

occurs combinations of factors. Additionally, we discuss the quantitative evaluations together with

the visual ontology graphs.

8.1.1 Contributions of this work

This research aims to investigate how the process of developing ontologies can be made less de-

pendent on human supervision by exploring conceptual analysis techniques in a Semantic Web

environment. The contributions of this work are as follows:

• It addresses the question, how to embed content-based audio analysis techniques in the on-

tology engineering process by providing a comprehensive framework for automatic ontology

generation.

• It provides a detailed analysis on the effects of the various combinations of the classifiers,

audio spectral feature sets, and codebook dimensions for the automatically generated on-

tologies. A particular emphasis is placed for each factor and its influence on the quality of

ontology outputs.

• It shows how to evaluate automatically generated ontologies using several different measures

applied within a gold standard setting.
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• It gives suggestions on other possible application domains that audio analysis-based auto-

matic ontology generation system can be used.

• It reveals knowledge representation issues of musical instruments on the SemanticWeb, by

taking musical instrument classification schemes into account; and an assessment of the

OWL representations of these classification schemes using SPARQL queries.

• It contributes to Linked Data by filtering and publishing a large set of music audio similarity

features produced by the SoundBite playlist generator tool.

8.2 Limitations and future work

The study presented here has some limitations and there are also numerous possibilities for future

work.

8.2.1 Formal Concept Analysis

In our proposed system we deal with conceptual hierarchies in order to automatically obtain ontolo-

gies for musical instruments. Modified version of the reduced labelling technique has been used in

order to obtain conceptual hierarchies in the pruning stage. However, our system does not deal with

very complex graphical knowledge representations. Even though the findings are promising, future

work should be carried on by a more in-depth examination of the reduced labelling techniques on

more complicated conceptual graphs to tackle knowledge management issues.

Moreover, It should be noted that our system does not automatically deal with many valued

context issue. We provide information regarding the data properties simply using a colon between

the property and data value. Future work could therefore be aimed at retrieving necessary charac-

teristics for every properties through SPARQL queries made from available knowledge-bases data,

such as DBpedia, on the Web.

153



8.2.2 The effect of threshold on the concept/property associations

The formal context was the phase in which outcome of content-based analysis were assessed by

a threshold (50%) to determine the associations among instrumental categories and properties.

During our preliminary results, we found that threshold variations might affect the system which

may lead to obtain different ontology outputs. Therefore, although it is evident that the findings are

promising, there is an important opportunity for future studies to examine the effects of threshold

parameters.

8.2.3 Adaptive and dynamically learning system

The proposed system is based on batch learning, and it is an automatic system which carries out

fixed functions on some available prior knowledge without the intervention of an ontology engineer.

However, it is not a dynamic nor an adaptive system to learn about new instruments and re-design

ontology. Future work should, therefore, include an investigation on which algorithms should be

used to obtain an adaptive and dynamically learning system, since it is how learning process is

developed in real life.

8.2.4 Multimodal data

In our experiments, we have used two different audio collections in order to examine our system.

Further work, nonetheless, is needed towards incorporating a wider set of musical instruments and

attributes and utilising more OWL language features. Additionally, there is also a great deal of

advantage of utilising multimodal data (e.g. textual, audio and visual) in an effort to cope with

the wide diversity of data available on the Web (e.g. text, sound, photos, and videos). This will

likely encompass a greater understanding of the complex nature of human language, expressions

and associated actions for potential smart devices.
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8.2.5 Application Scenarios

As we pointed out within the introduction, exchanging data among diverse knowledge reposito-

ries has substantial positive aspects for the discovery of cultural heritages, such as musical instru-

ment museums, libraries, and institutions. Thus, there is a huge potential for machines to exploit

the growing quantity of information and ontologies on the internet. Having an explicitly defined

knowledge repository is a necessity for an effective control system in which machines can share

and re-use their data-driven knowledge representations through machine readable languages, such

as Ontology Web Language (OWL). For these reasons, the system could be further developed by

implementing autonomous and dynamic systems in which smart devices and robots can take ad-

vantage of the vast amount of data available on the Web.

As a possible use case scenario, the proposed system may be used as a plugin tab for ontology

editor applications, such as Protege, in order to facilitate the ontology development process for

ontology engineers. Due to the fact that different sounds can indicate different characteristics of

musical instruments, the processing of information directly derived from audio content contains

very important clues for the retrieval and management of musical instrument knowledge. There-

fore, the proposed system may also be used to overcome issues in current musical instrument

classification schemes developed in organology and musicology.

In addition, our system may be examined in the machine recognition of animal sounds, such

as birdsong identification. Many animals generate sounds either for communication or their living

activities such as eating, moving, or flying; most of the animal vocalisations have evolved to be

species-specific. Identification of their sounds could offer a great deal of benefit for biological

research and environmental monitoring. Since similar audio descriptors are used in birdsong iden-

tification (i.e. MFCCs), it provides an interesting research opportunity and a second example for

the possible use of our audio analysis-based automatic ontology generation system.
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Appendix A

Detailed results of the conceptual analysis

The performance of the six systems using LSFs and MFCCs are reported in Table A.1. The perfor-

mance of MLP-based systems are reported for the isolated notes dataset in Table A.2, and for the

solo music dataset in Table A.3.



Clsr Asft Coen Clun LR T F ′
csc T Fcsc T F ′

sc T Fsc

MLP ∀ ∀ ∀ ∗ ∗ ∗ ∗ ∗

SVM w/ 2nd deg. poly. MFCC ∀ ∀ 100 98.9 97.9 99.2 98.4
LSF ∀ ∀ 31.3 47.6 100 36.0 42.5

SVM w/ 3rd deg. poly. ∀ ∀ ∀ 100 98.9 97.9 99.2 98.4

(a) Isolated Notes Dataset

MLP ∀ ∀ ∀ ∗ ∗ ∗ ∗ ∗

SVM w/ 2nd deg. poly.
MFCC ∀ ∀ 100 98.7 97.4 99.0 98.0

LSF 8 8 92.3 94.7 97.1 92.4 92.4
16-32 16-64 100 98.7 97.4 99.0 98.0

SVM w/ 3rd deg. poly. ∀ ∀ ∀ 100 98.7 97.4 99.0 98.0

(b) Solo Music Dataset

Table A.1: Summary table for the evaluation results of the isolated notes and solo music datasets.
The performance of factors given for all parameters: ∀ indicates all parameters of a factor and
∗ indicates that corresponding results are detailed in the Table A.2 and Table A.3. The ontology
outputs of SVM 3rd order polynomial kernel correspond to OC1 for isolated notes in Figure 7.2,
and OC4 for solo music in Figure 7.3. For the isolated notes dataset, the ontology output of the
SVM with the 2nd degree polynomial kernel using 24 LSF and 64 codevectors and MLP using 16
MFCC features and 8 codevectors correspond toOC2 in Figure 7.2. In each case, the corresponding
performance is reported in bold.
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No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 68.8 31.3 18.8 68.8 50.0 31.3 56.3 -

16 31.3 81.3 68.8 31.3 31.3 31.3 93.8 31.3
24 68.8 31.3 68.8 31.3 75.0 81.3 68.8 68.8
32 31.3 87.5 31.3 87.5 62.5 31.3 62.5 31.3

(a) LR — MLP on the Isolated Notes Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 81.5 47.6 31.6 81.5 66.7 47.6 72.0 -

16 47.6 87.7 81.5 47.6 47.6 47.6 95.7 47.6
24 81.5 47.6 81.5 47.6 84.6 88.6 81.5 80.4
32 47.6 88.5 47.6 91.1 76.9 47.6 76.9 47.6

(b) T F ′
csc — MLP on the Isolated Notes Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 100 100 100 100 100 100 100 -

16 100 95.3 100 100 100 100 97.7 100
24 100 100 100 100 97.1 97.4 100 96.9
32 100 89.5 100 95.0 100 100 100 100

(c) T Fcsc — MLP on the Isolated Notes Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 73.2 36.0 19.4 72.0 53.3 36.0 59.4 -

16 36.0 82.5 72.0 36.0 36.0 36.0 93.3 36.0
24 71.1 36.0 71.5 36.0 77.3 82.6 72.3 71.1
32 36.0 84.9 36.0 87.4 66.9 36.0 65.6 36.0

(d) T F ′
sc — MLP on the Isolated Notes

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 78.2 42.5 20.1 75.6 57.2 42.5 62.8 -

16 42.5 83.7 75.6 42.5 42.5 42.5 92.8 42.5
24 73.7 42.5 74.6 42.5 79.8 84.0 76.3 73.7
32 42.5 82.5 42.5 87.4 71.9 42.5 69.1 42.5

(e) T Fsc — MLP on the Isolated Notes Dataset

Table A.2: Performance of the Automatic Ontology Generation System for MLP on the isolated
notes datasets. The ontology outputs of MLP using 16 MFCC features and 8 codevectors corre-
sponds to OC2, and MLP using 32 LSF features and 16 codevectors corresponds to OC3 in Figure
7.2. In each case, the corresponding performance is reported in bold.

158



No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 100 100 100 100 92.3 92.3 100 100

16 100 100 100 100 100 100 92.3 100
24 100 100 84.6 100 100 100 92.3 100
32 100 100 100 100 92.3 100 100 100

(a) LR — MLP on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 98.7 98.7 98.7 98.7 94.7 94.7 98.7 98.7

16 98.7 98.7 98.7 98.7 98.7 98.7 94.7 98.7
24 98.7 98.7 90.3 98.7 98.7 98.7 94.7 98.7
32 98.7 98.7 98.7 98.7 94.7 98.7 98.7 98.7

(b) T F ′
csc — MLP on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 97.4 97.4 97.4 97.4 97.1 97.1 97.4 97.4

16 97.4 97.4 97.4 97.4 97.4 97.4 97.1 97.4
24 97.4 97.4 96.9 97.4 97.4 97.4 97.1 97.4
32 97.4 97.4 97.4 97.4 97.1 97.4 97.4 97.4

(c) T Fcsc — MLP on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 99.0 99.0 99.0 99.0 92.5 92.5 99.0 99.0

16 99.0 99.0 99.0 99.0 99.0 99.0 92.5 99.0
24 99.0 99.0 85.5 99.0 99.0 99.0 92.5 99.0
32 99.0 99.0 99.0 99.0 92.5 99.0 99.0 99.0

(d) T F ′
sc — MLP on the Solo Music Dataset

No. of clusters
8 16 32 64

Coen MFCC LSF MFCC LSF MFCC LSF MFCC LSF
8 98.0 98.0 98.0 98.0 92.7 92.7 98.0 98.0

16 98.0 98.0 98.0 98.0 98.0 98.0 92.7 98.0
24 98.0 98.0 86.4 98.0 98.0 98.0 92.7 98.0
32 98.0 98.0 98.0 98.0 92.7 98.0 98.0 98.0

(e) T Fsc — MLP on the Solo Music Dataset

Table A.3: Performance of the Automatic Ontology Generation System for MLP on the solo music
datasets. The ontology outputs of MLP using 24 MFCC features and 16 codevectors corresponds
to OC5, and MLP using 8 MFCC features and 32 codevectors corresponds to OC6 in Figure 7.3. In
each case, the corresponding performance is reported in bold.
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Appendix B

Namespaces

The following namespaces are used throughout this work:

@prefix : <http://www.semanticweb.org/ontologies/sio#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@base <http://www.semanticweb.org/ontologies/sio> .

<http://www.semanticweb.org/ontologies/sio> rdf:type owl:Ontology .

Listing B.1: The set of prefixes that are assumed in the turtle listings throughout this work.
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Appendix C

Musical Instrument Taxonomies

Here we provide the corresponding turtle listings that model the examples described in Chapter 7.

The complete modelling can be found at corresponding URL1.

# prefixes in Appendix A are assumed.

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Idiophones

:Idiophones rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Membraphones

:Membraphones rdf:type owl:Class .

1http://www.isophonics.net/content/musical-instrument-taxonomies/

http://www.isophonics.net/content/musical-instrument-taxonomies/


### http://www.semanticweb.org/ontologies/sio#Strigilated

:Strigilated rdf:type owl:Class ;

rdfs:subClassOf :Idiophones.

### http://www.semanticweb.org/ontologies/sio#Kettle

:Kettle rdf:type owl:Class ;

rdfs:subClassOf :Membraphones.

### http://www.semanticweb.org/ontologies/sio#Single_Head

:Single_Head rdf:type owl:Class ;

rdfs:subClassOf :Membraphones.

### http://www.semanticweb.org/ontologies/sio#Pair

:Pair rdf:type owl:Class ;

rdfs:subClassOf :Kettle.

### http://www.semanticweb.org/ontologies/sio#Sets

:Sets rdf:type owl:Class ;

rdfs:subClassOf :Kettle.

### http://www.semanticweb.org/ontologies/sio#Single

:Single rdf:type owl:Class ;

rdfs:subClassOf :Single_Head.

Listing C.1: Turtle representation of OEX2 (Figure ??)

# prefixes in Appendix A are assumed.
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#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Idiophones

:Idiophones rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Membraphones

:Membraphones rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Shaken

:Shaken rdf:type owl:Class ;

rdfs:subClassOf :Idiophones.

### http://www.semanticweb.org/ontologies/sio#Strigilated

:Strigilated rdf:type owl:Class ;

rdfs:subClassOf :Idiophones.

### http://www.semanticweb.org/ontologies/sio#Kettle

:Kettle rdf:type owl:Class ;

rdfs:subClassOf :Membraphones.

### http://www.semanticweb.org/ontologies/sio#Single_Head

:Single_Head rdf:type owl:Class ;

rdfs:subClassOf :Membraphones.

### http://www.semanticweb.org/ontologies/sio#Double_Head

:Double_Head rdf:type owl:Class ;
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rdfs:subClassOf :Membraphones.

### http://www.semanticweb.org/ontologies/sio#Pair

:Pair rdf:type owl:Class ;

rdfs:subClassOf :Kettle.

### http://www.semanticweb.org/ontologies/sio#Sets

:Sets rdf:type owl:Class ;

rdfs:subClassOf :Kettle.

### http://www.semanticweb.org/ontologies/sio#Single

:Single rdf:type owl:Class ;

rdfs:subClassOf :Kettle.

Listing C.2: Turtle representation of OJM2 (Figure ??) reference ontology based on Jeremy
Montagu & John Burton’s instrument classification system.
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Appendix D

Automatically Generated Ontologies

These are the automatically generated ontologies which are presented in Chapter 7. For more

details regarding the complete OWL files generated in the experiment, see this link1.

# prefixes in Appendix A are assumed.

#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#lip_vibrated

:lip_vibrated rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#reeds

:reeds rdf:type owl:ObjectProperty .

1http://www.isophonics.net/content/auto-ontology-generation

http://www.isophonics.net/content/auto-ontology-generation


### http://www.semanticweb.org/ontologies/sio#vibrating_air

:vibrating_air rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds_no

:reeds_no rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#valves

:valves rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Aerophone

:Aerophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Bassoon

:Bassoon rdf:type owl:Class ;
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rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Brass_Instruments

:Brass_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Cello

:Cello rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .
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### http://www.semanticweb.org/ontologies/sio#Clarinet

:Clarinet rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] .

### http://www.semanticweb.org/ontologies/sio#Edge_Instruments

:Edge_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Flute

:Flute rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Oboe

:Oboe rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;
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owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] .

### http://www.semanticweb.org/ontologies/sio#Reed_Pipe_Instruments

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Saxophone

:Saxophone rdf:type owl:Class ;

169



rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] .

### http://www.semanticweb.org/ontologies/sio#Trombone

:Trombone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :lip_vibrated ;

owl:someValuesFrom :Brass_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :valves ;

owl:hasValue "Without_Valves"

] .

### http://www.semanticweb.org/ontologies/sio#Tuba

:Tuba rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :valves ;

owl:hasValue "With_Valves"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :lip_vibrated ;

170



owl:someValuesFrom :Brass_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] .

Listing D.1: OWL representation ofOC1 (Figure 7.2b) for SVM with the 3rd order polynomial
kernel using 32 LSF features and 64 codevectors for the isolated notes dataset.

# prefixes in Appendix A are assumed.

#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################
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### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Cello

:Cello rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] ,
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[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

Listing D.2: OWL representation of OC2 (Figure 7.2c) for MLP using 16 MFCC features
and 8 codevectors — and SVM with the 2nd degree polynomial kernel using 24 LSF and 64
codevectors for the isolated notes dataset.

# prefixes in Appendix A are assumed.

#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds

:reeds rdf:type owl:ObjectProperty .
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### http://www.semanticweb.org/ontologies/sio#vibrating_air

:vibrating_air rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds_no

:reeds_no rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#valves

:valves rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Aerophone

:Aerophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Bassoon

:Bassoon rdf:type owl:Class ;
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rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Brass_Instruments

:Brass_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :valves ;

owl:hasValue "Without_Valves"

] .

### http://www.semanticweb.org/ontologies/sio#Cello

:Cello rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;
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owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Clarinet

:Clarinet rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Edge_Instruments

:Edge_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Flute

:Flute rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone
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] .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Reed_Pipe_Instruments

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Saxophone

:Saxophone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments
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] .

### http://www.semanticweb.org/ontologies/sio#Trombone

:Trombone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :valves ;

owl:hasValue "Without_Valves"

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] .

Listing D.3: OWL representation of OC3 (Figure 7.2d) for MLP using 32 LSF features and 16
codevectors on the isolated notes dataset.

# prefixes in Appendix A are assumed.
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#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds

:reeds rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_air

:vibrating_air rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds_no

:reeds_no rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################
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### http://www.semanticweb.org/ontologies/sio#Aerophone

:Aerophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Bassoon

:Bassoon rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Cello

:Cello rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Clarinet
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:Clarinet rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Edge_Instruments

:Edge_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Flute

:Flute rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Oboe

:Oboe rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"
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] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Reed_Pipe_Instruments

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Saxophone

:Saxophone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments
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] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] .

Listing D.4: OWL representation of OC4 (Figure 7.3b) for SVM with the 3rd. degree
polynomial kernel using 32 LSF features and 64 codevectors on the solo music dataset.

# prefixes in Appendix A are assumed.

#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds

:reeds rdf:type owl:ObjectProperty .
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### http://www.semanticweb.org/ontologies/sio#vibrating_air

:vibrating_air rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds_no

:reeds_no rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Aerophone

:Aerophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Bassoon

:Bassoon rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

184



] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Clarinet

:Clarinet rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Edge_Instruments

:Edge_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Flute

:Flute rdf:type owl:Class ;
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rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] .

### http://www.semanticweb.org/ontologies/sio#Reed_Pipe_Instruments

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Saxophone

:Saxophone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,
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[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

Listing D.5: OWL representation of OC5 (Figure 7.3c) for MLP using 24 MFCC features and
16 codevectors on the solo music dataset.

# prefixes in Appendix A are assumed.

#################################################################

# Object Properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds

:reeds rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_air
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:vibrating_air rdf:type owl:ObjectProperty .

### http://www.semanticweb.org/ontologies/sio#vibrating_string

:vibrating_string rdf:type owl:ObjectProperty .

#################################################################

# Data properties

#################################################################

### http://www.semanticweb.org/ontologies/sio#reeds_no

:reeds_no rdf:type owl:DatatypeProperty .

### http://www.semanticweb.org/ontologies/sio#

sound_initiation_process

:sound_initiation_process rdf:type owl:DatatypeProperty .

#################################################################

# Classes

#################################################################

### http://www.semanticweb.org/ontologies/sio#Aerophone

:Aerophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Bassoon

:Bassoon rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,
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[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] .

### http://www.semanticweb.org/ontologies/sio#Chordophone

:Chordophone rdf:type owl:Class .

### http://www.semanticweb.org/ontologies/sio#Clarinet

:Clarinet rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Edge_Instruments

:Edge_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Flute

:Flute rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;
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owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Oboe

:Oboe rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "2"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] .

### http://www.semanticweb.org/ontologies/sio#Piano

:Piano rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Struck"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

### http://www.semanticweb.org/ontologies/sio#Reed_Pipe_Instruments

:Reed_Pipe_Instruments rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;
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owl:onProperty :vibrating_air ;

owl:someValuesFrom :Aerophone

] .

### http://www.semanticweb.org/ontologies/sio#Saxophone

:Saxophone rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :reeds ;

owl:someValuesFrom :Reed_Pipe_Instruments

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :reeds_no ;

owl:hasValue "1"

] .

### http://www.semanticweb.org/ontologies/sio#Violin

:Violin rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :sound_initiation_process ;

owl:hasValue "Bowed"

] ,

[ rdf:type owl:Restriction ;

owl:onProperty :vibrating_string ;

owl:someValuesFrom :Chordophone

] .

Listing D.6: OWL representation of OC6 (Figure 7.3d) for MLP using 8 MFCC features and
32 codevectors on the solo music dataset.
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NACÉRA BENNACER, L.K.N.B.L.K.N.B.L.K.N.B.L.K.N.B., LOBNA KAROUI NACÉRA BEN-
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