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ABSTRACT

The experimental investigation in this work concerns the compression-ignition (CI)

engine combustion process both in normal operation and dual-fuel operation. There is a

bulk of literature reporting thermal efficiencies, brake specific fuel consumption (BSFC)

and emissions under single and dual fueling conditions in CI engines. Most of the studies

lack the full implications of changing load (power output) and speed on these performance

indicators. The studies are either restricted to various loads/powers at one engine speed

(neglecting the effect of engine speed) or one or two load/power conditions at various speeds

(neglecting load variations). There is a scarcity of full engine maps in the open literature

(these are the full contours of thermal efficiency or BSFC plotted throughout the power

versus speed range of the engine, or the torque versus speed range of the engine). This

thesis provides performance and emissions maps for a CI engine using two different fuels

(diesel and rapeseed methyl ester used as single fuels) and two gaseous fuels (natural gas

and hydrogen) used with two different pilot fuels (diesel and rapeseed methyl ester ) under

what is termed dual fueling mode. A novel approach is used to present the performance

and emissions over the entire engines operational range. The results are presented as iso-

contours of thermal efficiency, volumetric efficiency and brake specific NOX, specific HC

and specific CO2 on a power-speed graph throughout the operating range of the engine.

Many studies conclude that the emissions, particularly NOX during dual fueling are

expected to form in the spatial region around the pilot spray. This region is expected to be

subjected to high localised temperatures as the equivalence ratio is close to stoichiometric,

thus maximising heat release from combustion. The effect of changing the pilot fuel quantity

on performance and emissions is rarely reported. This study addresses this scarcity in the

literature and investigates the effect of changing the pilot fuel quantity and type on various

combustion and emission parameters. Diesel and rapeseed methyl ester (RME) have been

used as pilot fuels for both the natural gas as well as hydrogen and three different pilot fuel
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settings have been employed for each of the gaseous fuels. The effect of using a different

pilot fuel quantity to achieve the same brake mean effective pressure (BMEP) for the two

gaseous fuels has been analysed and compared.

This thesis also includes a chapter on the computational modeling of the engine

esmissions. This study uses combinations of different spray and combustion models to

predict in-cylinder pressure, rate of heat release and emissions. The approach employs

two combustion models: Unsteady Flamelet Model (UFM) with PDF method and Finite

Rate Chemistry (FRC) with stiff chemistry solver implemented through In-Situ Adaptive

Tabulation (ISAT) algorithm. Two spray models used include WAVE and Kelvin Helmohltz

Rayleigh Taylor (KHRT) spray models. The UFM coupled with KHRT spray model has

been used to predict NOX , CO and CO2 emissions. The model captures the emissions

trends well. In-cylinder contours of O2, NO and mass average temperature have also been

presented. A chemical mechanism of n-heptane with 29 species and 52 reactions has been

used.
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NOMENCLATURE

Latin

A pre-exponential

D diffusion coefficient

E activation energy

J heat flux vector

k turbulence kinetic energy

kb,kf reaction coefficients

Kc equilibrium constant

Kp equilibrium constant

R universal gas constant

S entropy

T temperature (K)

t time

W molecular weight

Y mass fraction

Greek

µ first viscosity coefficient

∇ difference operator

ρ density

Σ viscous stress tensor

φ equivalence ratio
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χ chemical species

γ specific heat ratio

Abbreviations

ATDC after top dead centre

BP British Petroleum

BSFC brake specific fuel consumption

CA crank angle

CFD computational fluid dynamics

CI compression ignition

CO carbon mono oxide

CO2 carbon dioxide

CR compression ratio

DICI direct injection compression ignition

DME dimethyl ether

FRC finite rate chemistry

HC hydro carbons

IC internal combustion

ISAT in-situ adaptive tabulation

KHRT Kelvin Helmohltz Rayleigh Taylor

NOX oxides of nitrogen

ODE ordinary differential equation

OECD Organisation for Economic Co-operation and Development
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PDF probability density function

RME rape methyl ester

SFC specific fuel consumption

SI spark ignition

UFM unsteady flamelet model
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The reciprocating internal combustion engines is the most common form of engine

or prime prime mover. These are open circuit and quasi-steady flow work producing de-

vices [1]. The modern generation of internal combustion engines is the most efficient but

still there is room for improvement. Rising consumption and fast depletion of the fossil

fuels are major reasons for the improvement in efficiencies. The rise in fuel consumption is

related to population growth across the globe. World population was estimated to be 2.5

billion in 1950 and is projected to be approximately 9 billion in 2050 [2].

Particularly influence of population growth on energy usage patterns is the large in-

crease in urban population compared to the growth in rural population. Coupled with

the emergence of new economic players such as China and India has resulted in a massive

increase in primary energy consumption. The data presented in BP Statistical Review

2012 [3] suggests that growth in global CO2 emissions due to energy usage continued in

2011, but at a slower rate than in 2010.

The oil production and consumption trends from 1986 to 2011 have been shown in

Figure 1.1. At the end of 2011, the world’s proven oil reserves stand at 1652.6 billion barrels.

These reserves are sufficient to meet current world production for 54.2 years. Figure 1.2

shows the current reserves over production ratio as well as its historical trends for different

regions in the world.
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Figure 1.1. Oil production and consumption trends from 1986 to 2011 [3]
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The fluctuations in the crude oil prices have resulted in great public concern from an

energy security perspective. Figure 1.3 depicts historical trends in oil prices along with

major events affecting the prices during a period of 1860 to 2010. Crude oil prices exceeded

$100 per barrel for the first time ever. A number of political developments in oil producing

nations such as Libya have had major influences on the oil price. The growth in world

energy consumption was recorded as 2.5% with 33.1% of the global energy consumption

fueled by crude oil which remains the major contributor, although it continued to lose

market share for the twelfth consecutive year. As IC engines are going to continue as the

major prime mover, their fueling mechanism must be secure, sustainable and cost effective.

1.1.1 Emissions Standards

Apart from ensuring the fuel supplies to operate these IC engines, clean burning of

these fuels is a another major challenge. The standards regulating different emissions from

Standard Year CO HC NOX PM

Euro I 1992 4.5 1.1 8.0 0.612

Euro II 1996 4.0 1.1 8.0 0.36

Euro III 2000 2.1 0.66 8.0 0.15

Euro IV 2005 1.5 0.46 3.5 0.02

Euro V 2008 1.5 0.46 2.0 0.02

Euro VI 2015 1.5 0.13 0.4 0.01

Table 1.1. European emissions standards for heavy duty diesel engines
- steady state testing g/kWh [5]

IC engines are getting stricter every year. These emissions include oxides of nitrogen such as

NO and NO2 (collectively known as NOX), oxides of carbon such as CO2 and CO, unburnt

hydrocarbons (HCs) and soot. A parallel rise in CO2 levels and the global temperature
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Standard Year CO NMHC NOX PM

Euro III 2000 5.45 0.78 5.0 0.16

Euro IV 2005 4.0 0.55 3.5 0.03

Euro V 2008 4.0 0.55 2.0 0.03

Euro VI 2015 4.0 0.16 0.46 0.01

Table 1.2. European emissions standards for heavy duty diesel engines
- Transient testing g/kWh [5]

suggests that the CO2 added into the atmosphere due to different human activities is

causing global warming. It has also been established that the emissions from fossil fuel

combustion contain some carcinogenic compounds, smog causing compounds and acid rain

causing compounds which lead to respiratory problems in humans and general degradation

to the environment. To counter these emissions governments and various agencies have

introduced a range of standards to cap these emissions [4]. The implementation of Euro I

in 1992 to the enforcement Euro VI in 2015 is an example of such an emissions cap placed

on manufactures.

As reflected in the Table 1.1, the standards for different emissions have become pro-

gressively stricter with every new release. Euro I came into force in 1992 and Euro VI

shall be promulgated in 2015 with the standards for various emissions getting tighter and

tighter. For instance, 5.0 g of NOX were allowed per kWh in Euro III for the transient

conditions this is reduced to 0.46 g/kWh in Euro VI.

1.1.2 Realistic Efficiencies

A new generation of power plants is required to achieve the higher thermal efficiencies

and reduced emissions levels. Innovations ranging from improvements in fuel injection tech-

niques, such as introduction of common rail fuel injection system, to the electronic control
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of different events such variable valve timing are just two examples of the developments

made to meet these standards [4]. Low speed marine diesel engines are the largest and the

most advanced reciprocating engines with maximum efficiency between 50% and 55% [6].

Room for any further improvement in these engines can be evaluated by comparing their

current thermal efficiency values against their Carnot coefficients. The Carnot coefficient

provides the maximum efficiency of a heat engine operating between two reservoirs at dif-

ferent temperatures. These reservoirs are generally referred as a hot reservoir and a cold

reservoir. The Carnot coefficient for these engines can be evaluated as follows

η = 1 −
TC

TH

(1.1)

When the Carnot coefficients is calculated between the adiabatic flame temperature (around

2500K) and the room temperature, it comes out to be 88%. The adiabatic flame tempera-

ture is not a true representation of a hot reservoir for IC engines as this occurs over a very

small fraction of the overall cycle time [7, 8]. Also the cold reservoir is generally at much

higher temperature when compared to the environmental temperature. This is because the

temperature of the charge through out the exhaust process is higher than the environmental

temperature [9]. A realistic estimate would be to take the metal temperature (for example

piston top) as representative of the hot reservoir and the cooling water temperature as a

cold reservoir temperature. Taking the temperature of the piston top to be around 900K

and that of cooling water to be 340K, the Carnot coefficient is estimated to be 62% [6, 4].

Internal combustion engines do not follow a thermodynamic cycle, they follow a me-

chanical cycle. However the similarity between the indicator diagrams of the IC engines

and the air standard cycles makes it possible to compare the two thermal efficiencies. The

engine’s indicator diagram is a record of pressure versus instantaneous volume of the cylin-

der. Simple air standard cycles are very useful and it is convenient to compare IC engines

with standard air cycles. One of the reason for this comparison is that one of the main con-

stituent of the working fluid is nitrogen which remain virtually unchanged in both the IC
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engines as well as in these standard air cycles. Non ideal behavior of air/fuel mixture in IC

engines presents one of the limitations of the standard air cycles to explain the former [1].

ηDiesel = 1 −
1

γ
.

αγ − 1

αrγ−1
v − rγ−1

v

= 1 −
1

rγ−1
v

[
αγ − 1

γ(α − 1)
] (1.2)

The efficiency of diesel cycle does not depend only on compression ratio. It also depends

on the load ratio as well. Comparing diesel cycle efficiency to the Otto cycle efficiency,

we can observe an additional term in the formula. [ αγ
−1

γ(α−1)
]. The load ratio α lies in the

range 1< α > rv and due to this reason the term in the square brackets is always greater

than unity and hence the diesel cycle efficiency is always less than the Otto cycle if the

compression ratio is the same. For a compression ratio of 16, the theoretical efficiency

of an otto cycle is around 75%. On the other hand, for the same compression ratio, the

theoretical efficiency of diesel cycle is around 55% if the load ratio is set at 5 and γ is set

at 1.4. Whereas if the compression ratio is set at 25 and the load ratio is set at 10, for a γ

value of 1.4, the theoretical efficiency of the diesel cycle is 65% [12]

Although the efficiency of these marine engines is reaching their theoretical maximum

but they do not represent the majority of the engines. There is a significant room for

improvement in smaller reciprocating engines.

Conventional IC engine fuels are finite source of energy. They have specific properties

that govern IC engine operation inherently limiting the scope of IC engine operation (i.e.

knock limits and NOX emissions). It has been found that various alternative fuels have

been investigated to substitute the conventional liquid fuels in IC engines or at least supply

a fraction of the total energy required. Contradictory claims about the improvement in

thermal efficiency and especially the reduction in emissions have been reported when IC

engines are fueled by these alternatives. This study focuses on the development of perfor-

mance and emissions maps for three different alternate fuels across the full operating range

of the engine. Different performance and emissions parameters have been mapped on the

speed versus power graphs. These maps are a novel approach to present the performance
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and emission data and help to explain differing trends in the literature. Literature has been

reviewed and reported in the following pages covering different aspects of these fuels with

special emphasis on resources, production and storage.

1.2 GENERAL CAUSES AND TRENDS IN ENGINE EMISSIONS

This section covers general causes and trends in various engine emissions.

1.2.1 NOX Emissions

The principle source of NOX is the oxidation of atmospheric nitrogen. NOX is formed

in all places of higher temperature behind the flame front. Chemical reactions between

molecules of oxygen and nitrogen that do not attain equilibrium are responsible for this

NOX formation. Some of the most important variables that contribute to NOX formation

in SI engines include equivalence ratio, burnt gas fraction and spark timing. The burned

gas fraction can further be influenced by load, valve timing, speed, air/fuel ratio and

compression ratio. Due to the diluting effect of the burnt gases, the flame temperature is

reduced as the heat capacity of the cylinder charge per unit mass is increased. Variation in

spark timing significantly affects NOX. Advancing the spark timing results in burning of

more fuel before TDC and hence higher peak cylinder pressure. This higher peak cylinder

pressure results in higher temperature and hence the higher NOX [10].

In CI engines, the fuel distribution is inhomogeneous as the fuel is injected into the

cylinder around TDC. This fuel distribution and variation in fuel distribution with respect

to time strongly affects the engine emissions. Owing to the non-uniform distribution of fuel,

maximum NOX occurs in those regions where fuel/air ratio is close to stoichiometric. Part

of the in-cylinder mixture which burns early in the combustion process results in higher

temperatures and hence plays a pivotal role in NOX formation rate. The NO chemistry is

frozen once the peak pressure point in the cycle is passed as the temperature decreases after

this point. This decrease in temperature is attributed to expansion as well as increased
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heat transfer to the cylinder walls [10].

1.2.2 CO and HC Emissions

Equivalence ratio is the major factor responsible for CO emissions. As SI engines usu-

ally operate close to stoichiometric conditions, they release a significant amount of CO. On

the other hand, CO emissions from diesel engine operations are negligible as they operate

under lean conditions. Unburned Hydrocarbons are a result of incomplete combustion of

hydrocarbon fuel. The magnitude of unburned hydrocarbons is a strong function of fuel

composition. Presence of benzene groups and alkenes result in higher concentration of HC

emissions. For spark ignition engines, there are four possible mechanisms that can result

in the emission of unburned hydrocarbons.

• Flame quenching at the combustion chamber walls

• Filling of crevice volumes with unburned mixture

• Absorption of fuel vapor into oil layer on the cylinder wall during intake and com-

pression processes

• Incomplete combustion in a fraction of engine’s operating cycle

In addition to the reasons stated above, in a CI engine fuel may also avoid normal

combustion via two additional paths: either the fuel air mixture is too lean to auto-ignite

or too rich to ignite. The former condition is known as over-leaning whereas the latter

is termed as under-mixing. During both of these conditions a portion of the fuel remains

unconsumed and is emitted as HC.

1.3 FUELING CI ENGINES

A significant percentage of passenger vehicles and 100 % of goods vehicles and buses

use compression ignition engines [11]. It is therefore important to assess how fuelling of CI

engines may be improved with suitable alternatives to mineral diesel.
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1.3.1 Biodiesel

Biodiesel is a generic name given to different fuels derived from non fossil resources [13].

First-generation or conventional biodiesels are made from sugar, starch, or vegetable oil.

These are usually mono-alkyl esters of long chain fatty acids derived from renewable

sources such as vegetable oils or animal fats. Biodeiesel can be produced from planta-

Figure 1.4. Formation of biodiesel from glycerides and alcohols

tion/vegetation, animal fats, tallow of waste cooking oil. The process through which these

oil are converted into biodiesel is called transesterification [14]. Rapseed, palm and soy-

abeen are generally the sources from which suitable oils are extracted and then converted

into biodiesel through the transesterification process. Triglycerides in the form of raw oil

react with an alcohol (usually methanol) to a methyl ester (biodiesel) and glycerine [15].

Transesterification process occurs at elevated temperature (600C) and a pressure (0.2 MPa)

in the presence of a catalyst (generally an alkali like NaOH or KOH). Transesterification of

rapeseed oil with methanol is done to improve the cetane number and reduce the viscosity.

With this transesteification , the rapeseed oil becomes a promising fuel for compression

ignition engines [16].

Though oils sourced from the agriculture sector present a great potential for biodiesel

production there are major challenges to source it from this route. It is expensive, both

to produce the oil from the raw crops and transesterification to convert the raw oils into
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biodiesel. The commulative cost of these two processes make biodiesel less cost effective

than standard diesel. There is also a debate going on that biodiesel sourced through this

route may interfere with the food chain. To fully appreciate the sustainability of biodiesel,

a full life cycle assessment should be made. A life cycle assessment of input energy to

produce soyabean based biodiesel made through transesterification compared with that of

standard diesel shows that 1 MJ of conventional diesel fuel energy needs 1.2 MJ of overall

input energy whereas the 1 MJ of soyabean biodiesel requires 1.24 MJ of input energy [17].

The input energy requirements vary with feedstock. For instance, if Jatropha oil is used to

produce the biodeisel, the energy requirement varies between 0.68 to 1.43 MJ for every 1

MJ of biodiesel fuel energy [17]. Soil fertility, local weather and irrigation levels are some

of very important factors affecting the energy requirements.

The life cycle assessment of CO2 produced suggests that 1 MJ of standard diesel fuel

produces 95 g of CO2 compared to 41g of CO2 for 1 MJ of biodiesel. The difference in CO2

levels is due to some CO2 being consumed during photosynthesis process while the feedstock

is growing. Some other studies have placed this reduction at 80% and have attributed this

to the same reason [18].

Biodiesels made from the seed crops are generally termed as first generation biofu-

els. 72% of Europe’s cultivable land would be required to meet 10% of its primary energy

requirement. The same amount of energy can be produced if 3% of Brazil’s agricultural

land is utilised [19]. This is one reason why the use of first generation biofuels for energy

production raises the question of competition between food and fuels. It is increasingly un-

derstood that first generation biofuels (produced primarily from food crops such as grains,

sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product sub-

stitution, climate change mitigation, and economic growth. Their sustainable production

is under review, as is the possibility of creating undue competition for land and water used

for food and fibre production. A possible exception that appears to meet many of the

acceptable criteria is ethanol produced from sugar cane. The cumulative impacts of these
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concerns have increased the interest in developing biofuels produced from non-food biomass.

Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and

purpose-grown energy crops such as vegetative grasses and short rotation forests. These

2nd-generation biofuels could avoid many of the concerns facing 1st-generation biofuels and

potentially offer greater cost reduction potential in the longer term.

Biodiesel Properties

Biodiesel exhibit different physical properties when compared to standard diesel.

Lower heating value of biodiesel is lower than diesel (38600 kJ/kg and 42000 kJ/kg respec-

tively) [20]. Apart from lower energy content, slightly higher density as well as viscosity

of the biodiesel also play their role [21, 22]. Viscosity, density and surface tension are

the fuel properties that have been some of the most important physical properties that

affect the atomization in a CI engine. A fuel with higher viscosity can delay atomization

process which in turn affects combustion negatively. High viscosity and high density of

biodiesel compared to mineral diesel fuels can cause problems in pumping and atomiza-

tion of fuel [22]. Transesterification, mixing with lighter oils and heating are all effective

techniques to reduce the viscosity. Owing to its chemical composition, biodiesel has extra

fuel-in oxygen [21, 23, 24, 25]. Biodiesel has a higher cetane number [26, 27].

Combustion of Biodiesel in CI Engines

In a previous study, it has been shown that the brake specific fuel consumption (BSFC)

of a DICI engine increases when rapeseed methyl ester (RME) substitutes diesel [20]. Lower

energy content of biodiesel is held responsible for this trend and hence more fuel needs to

be injected to overcome these power losses. This results in higher BSFC. When biodiesel-

in-diesel blends are tested in CI engine, the BSFC is still higher when compared to the

pure diesel based case. The BSFC have been reported to decrease with increase in engine

load. This trend has been attributed to the fact that higher percentage increase in brake
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power with increasing load dominates the percentage increase in specific fuel consumption.

But Gumus [28] presented different view point and showed that BSFC decreases initially

with increasing load until it reaches a maximum value and then it starts increasing again.

Thermal efficiency has been reported to be maintained with pure biodiesel as well as

with biodiesel-in-diesel blends compared to cases when pure diesel is used [29, 15, 14]. Some

studies have reported slight reduction in thermal efficiency [22] and it has been attributed

to higher viscosity of the biosiesel used.

It has been reported that power outputs are comparable to pure diesel fuelling [29,

15, 14]. Some studies report a slight reduction in power at high power settings [22]. Lin et

al [22] have tested 8 kind of Vegetable Oil Methyl Esters. They reported power difference

ranging between -0.64% to +1.49% and believed that the higher density, higher BSFC ,

higher oxygen content and higher combustion rate are responsible for this power recovery

despite the lower heating value of biodiesel. Similar kind of trend is observed by [30] but

they have explained it differently. According to them, the fuel delivery to the engine is

on volumetric basis and the higher density of biodiesel is responsible for extra supply of

the fuel to compensate lower heating value. Viscosity of biodiesel is higher than diesel fuel

and this fact has been used for and against the power recovery argument. Some authors

believe that higher viscosity of biodiesel enhances fuel spray penetration. This greater fuel

penetration improves air/fuel mixing and has been held responsible for greater power [22].

On the other hand, some other authors [31, 32] are of the view that this higher viscosity

shall serve otherwise. To them, higher viscosity should decrease the combustion efficiency

due to bad fuel injection/atomization and hence power should be lost.

A review article by Xue [33] have concluded that 70.4% of the 27 literatures studied

agree that engine power will drop in case of biodiesel owing to its lower heating value. The

same study has reported that some authors have held the opinion that the loss of power due

to lower heating (when compared to the diesel fuel) value was less than expected and this

has been attributed to power recovery. Yucesu et al [34] have compared the loss of heating
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value to the loss of power. They suggested a 6% power decrease compared to a 5% decrease

in heating value when biodiesel was used in comparison to mineral diesel. The difference

is attributed to difficulties in fuel atomization instead of heating value only. Some authors

have also reported that there is no significant difference in engine power between diesel and

pure biodiesel. Biodiesels exhibit shorter ignition delay compared to pure mineral diesel.

This is a consequence of higher cetane number of biodiesel [31, 32].

Emissions from Biodiesel Combustion in CI Engines

There is an inconsistency in the literature reported on NOX emissions from the com-

bustion of biodiesels compared to pure mineral diesel. The studies which report lower NOX

compared to diesel hold that this is due to higher density and viscosity of the biodiesel which

result in different injection and spray characteristics [33]. Those who have reported higher

NOX rely on higher bulk modulus, shorter ignition delay and higher oxygen content in the

fuel all of which result in higher localised temperatures [21, 23, 24]. Nabi et al [35] reported

15% increase in NOX when pure biodiesel was used at high load conditions. The authors

have attributed this increase in NOX to the 12% increase in oxygen content at that particu-

lar load conditions. In a comprehensive review article by [33], some authors have reported

that the use of pure biodiesel does not make any significant difference to the production of

NOX whereas some other authors (29% of the total literature reviewed) reported reduction

in NOX . Cetane number, injection and combustion advance and higher oxygen content

are commonly reported factors that affect NOX emissions. Biodiesel has a higher cetane

number leading to shorter ignition delay, advancing combustion [26, 27, 36]. The higher

cetane number, higher NOX argument presented above was questioned by [37]. This work

proposed that higher cetane number not only leads to early burning of the fuel but also re-

duces pre-mixed combustion. This reduced pre-mixed combustion results in milder changes

in temperature and pressure and thus leads to lower NOX . Oxygen content in biodiesel is

another factor that is generally accepted to cause an increase in NOX. Labeckas et al [25]
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showed that there was a proportional increase in maximum NOX emission as the oxygen

percentage was increased in diesel-RME blends.

Any increase in load increases overall fuel air ratio and this increased fuel air ratio

results in higher NOX formation [33]. The NOX emissions are also affected by the engine

speed. There are inconsistencies with the effect of engine speed on NOX emissions. One

argument states that as the engine speed increases, it causes an increase in NOX due

to higher combustion temperatures [27]. Other studies have found a reduction in NOX

emissions with increasing engine speed [38]. Shorter residence time available for NOX

formation has been held responsible for this decrease in NOX formation as the engine

speed increases. The higher bulk modulus results in advanced injection timing, higher rate

of pressure rise during premixed combustion phase and higher in-cylinder temperature. It

has been reported that higher bulk modulus helps the sound to travel at a faster speed.

The higher speed of sound transfers the pressure wave from an in-line fuel pump to the

injector needle quickly, resulting in early injection of the fuel [39]. The bulk modulus and

the speed of sound are related through the following Newton- Laplace equation

c =

√

C

ρ
(1.3)

where C is the bulk modulus and ρ is the density of the medium. The bulk modulus of

biodiesel is 10% higher when compared to that of pure mineral diesel but the density of

the biodiesel is also higher. The above equation shows that the speed of sound has weak

dependence on the bulk modulus if the density of the medium is also increased. It can be

concluded that this bulk modulus alone can not explain the higher NOX in case of biodiesel.

There are also some other factors responsible for the higher NOX with biodiesel.

Reduced PM emissions are resulted when CI engines are fuelled by biodiesel instead

of diesel [32, 22, 30, 28]. The order of PM emission reduction has been reported to be 20%

to 50% [29, 40, 14, 21]. The extra oxygen in the fuel is generally held responsible for the

oxidation of more carbon and hence reduction of PM. Low levels of aromatic and sulphur

15



content as well as high cetane number of biofuels have also been reported to influence

PM emission reduction [23, 41]. Biodiesel does not contain any aromatic content which

is generally a PM precursor. Higher cetane number results in advance in combustion and

hence prolongs the residence time of soot particles in the high temperature environment.

This prolonged residence time has been reported as one of the parameters that help oxidize

some further soot. Some studies including [31] have dissented from this perspective and

have reported an increase in PM emission. This increase in PM emissions is explained on

the grounds of higher viscosity of the biodiesel leading to poor fuel atomization reducing

combustion quality.

The engine load has been reported to affect the PM emissions directly [24] as well

as inversely [42]. The increase in PM emissions have been explained on the basis of de-

creased air fuel ratio at higher loads as larger quantities of fuel are injected in to combustion

chamber. The PM emissions are lowered as the engine speed is increased. Greater tur-

bulence at higher speeds improves the combustion efficiency and hence reduce the PM

emissions. Higher fuel consumption due to lower heating value can also cause an increase

in HC emissions in case of biodiesel. Reduction in CO emissions have been reported when

diesel is replaced by biodiesel [31, 23, 32, 24, 30, 28]. It has widely been reported that

this reduction in CO levels is due to increased oxygen content that results in complete

combustion [31, 24, 30]. Higher cetane number has also been pointed out as one of the

reason for this CO reduction as higher cetane number lowers the possibility of fuel rich

zones [37]. Some authors observed no difference in CO levels when a CI engine was fuelled

by biodiesel [27]. Some other authors [43] have observed an opposite trend i.e. increase in

CO emissions when diesel is replaced by biodiesel. The authors explained this trend on the

grounds of higher viscosity and poor atomisation characteristics. Changes in engine load

affect CO emissions. Some authors have reported increase in CO emissions when engine

load was increased. They attributed this trend to a decrease in air/fuel ratio as the load

increases [28]. On the other hand, it has been reported that CO emissions reduced when the
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engine load was increased. This trend was explained on the basis of higher combustion tem-

perature that resulted in more complete combustion [44]. Increase in engine speed causes

decrease in CO mainly due to better air fuel mixing at higher speeds [30]. HC emissions

are reduce when biodiesel replaces diesel, is a predominant viewpoint [24, 22]. Majority

of the authors explain this trend on the basis of better combustion due to excess oxygen

present in case of biodiesel when compared to pure diesel. On the ohter hand, all those

authors who concluded opposite to this popular trend rest their argument on realtievely

poor atomization and lower volatility of biodiesel [45].

Some studies have assessed the effects of long term use of biodiesel in IC engines [29,

40]. 40% less carbon deposits have been reported when biodiesel is used to fuel the CI

engines. Other studies maintain that there is no difference in terms of engine wear due

to long term use of biodiesel. Some soap build up in engine’s lubricating oil have been

reported in such cases [29, 40].

1.4 NATURAL GAS AS AN AUTOMOTIVE FUEL

Natural gas has long been investigated as a possible IC engines fuel. It is the cleanest

of all the crude oil derivatives. Methane is the major constituent of the natural gas (92%).

Table 1.3 summarizes the composition of natural gas. Natural gas can be used in either

spark ignition or compression mode. The spark ignited natural gas engines run at higher

compression ratio when compared to the conventional spark ignition engines and produce

higher thermal efficiency and increased NOX [46, 47, 48]. In compression ignition engines,

an additional source is required to ignite the natural gas. This is generally termed as dual

fuel operation where a high cetane fuel such as standard mineral diesel or RME is used

to ignite the compressed mixture of air and natural gas. The liquid fuel that serves as a

source of ignition is termed as pilot fuel.
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Table 1.3. Composition of natural gas

Constituent Percentage

Methane 92 %

Ethane 3 %

Propane 0.7 %

Butane 0.02 %

Pentane 0.10 %

Cabon Dioxide 0.60 %

Nitrogen 3.58 %

1.4.1 Natural Gas Production and Supply

The proven natural gas resources are more than any other fossil fuel derivative. The

proven reserves of world’s natural gas reserves at the end of 2011 were 208.4 trillion cubic

meters. Figure 1.5 presents production and consumption trends for natural gas in different

regions of the world. These are sufficient to meet 63.6 years of production [3]. Some

major additions in Turkmen reserves pushed the reserve to production ratio for Europe

and Eurasia to 75.9 years.

Natural gas consumption grew by 2.2 % while its production increased by 3.1 %.

Natural gas can not replace the conventional fuels for the near term as there is a lack

of dedicated distribution and re-fueling infrastructure for the automotive vehicles. However

some countries like Brazil do have this distribution network where 2000 refueling exist to

serve around a million natural gas vehicles [49].

Being a derivative of crude oil, the natural gas is not a renewable fuel. Methane

can be produced through some renewable (biological) routes [50, 51]. Landfill or biogas

is a product of anaerobic biological decomposition. Methane constitutes at least 50 % of
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Figure 1.5. Production and consumption trends for natural gas in dif-
ferent regions of the world

the landfill with CO2, traces of hydrogen, hydrogen sulphide and nitrogen making up the

remainder [46]. The composition of the landfill suggests that it needs purification before

use. This adds complexity and cost to the process. The well to wheel (WTW) life cycle

assessment of fossil natural gas suggests that it produces CO2 of the same orders of the

liquid fossil fuels whereas the production of methane from the landfill route produces far

less CO2 (-250 g/Km) [52, 53, 54]. The negative value of CO2 as assessed from the life

cycle assessment suggests that the production of natural gas through this renewable route

can help to reduce the overall CO2 levels.

1.4.2 Use of Natural Gas in Compression Ignition Engines

Natural gas does not auto ignite in compression ignition engines. It is therefore gener-

ally utilized in a dual fuel mode where a liquid fuel pilots the combustion which then ignites

the natural gas and air mixture [55]. Natural gas combustion is pre-dominantly diffusion

phase combustion but higher peak pressures are measured in natural gas dual fuel operation.

Some studies [56, 57] have reported double ignition delay in case of natural gas dual fueling.
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The first delay is associated with the ignition of pilot fuel whereas the second delay is asso-

ciated with ignition of natural gas air mixture. It has been reported that the ignition of the

pilot fuel is slightly delayed when compared to the pilot fuel based single fueling operation.

When operated in compression ignition dual fueling mode, the natural gas combustion pro-

duces lower NOX and higher unburned hydrocarbons [58, 59, 60, 61, 62, 63, 64, 65]. Lower

NOX are generally attributed to lower combustion temperature resulting from the lower

flame speed in case dual fuel mode. It has been reported that most of the NOX formed

during the combustion of natural gas are resulted from the combustion of pilot fuel. Hence

the quantity and type of pilot fuel can significantly affect the formation of NOX. Limited

literature is available to assess the affect of pilot fuel type in general and the pilot fuel

quantity in particular. This thesis addresses this aspect in great detail and assesses the

effect of pilot fuel quantity and type on the combustion and emissions of natural gas in

dual fuel mode.

The natural gas based dual fueling results in lower smoke and particulate matter emis-

sions and some studies have reported that these emissions are not detectable. Lower PM

emissions are generally attributed to lower carbon content and higher hydrogen to carbon

ratio. Induction technique of natural gas also plays its part in reducing PM emissions.

If the natural gas is inducted into the intake manifold, it has more time to mix with air

resulting in a near homogeneous mixture [58, 60, 62, 63, 65]. HC emissions are generally

higher in case of natural gas based dual fueling when compared to the pilot fuel based single

fueling. Most studies agree that HC emissions are generally higher at part load conditions

when natural gas is utilized in a dual fueling mode in CI engines. CO emissions exhibit

similar trends to HC emissions. Some studies have reported that CO levels of natural gas

based dual fueling reach the level of diesel based single fueling at the highest load con-

ditions [59, 61, 62, 63, 64]. Studies have been conducted to improve these carbon based

emissions resulting from the combustion of natural gas dual fueling. Increased quantity

of the pilot fuel and use of EGR have been reported to improve CO emissions in these
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cases [59, 60, 61, 65].

1.5 HYDROGEN AS AN AUTOMOTIVE FUEL

Recently hydrogen has gained a lot of attention as a possible long term substitute to

the conventional IC engine fuels. Production of hydrogen through renewable means is the

chief reason for this attention. With fast depleting resources of fossil fuels, any renewable

source of energy is much likely to be at centre stage of research community. Steam reforming

of hydrocarbons (mostly methane) and electrolysis of water are the common methods of

hydrogen production. Hydrogen is a promising fuel for the future due to:

• Renewability is a plus point for hydrogen [66].

• Significantly larger value of lower heating value

• Hydrogen shows wider flammability range. It shows 0.1≤φ≤7.1 as compared to the

gasoline that shows 0.2≤φ≤4.0. Ultra lean mixtures can be utilized [67].

• Higher flame speed, shorter combustion duration and hence higher thermal efficien-

cies [68].

The life cycle assessment of hydrogen production through various routes reveals that

the amount of green house gases produced varies with the production method but all of

these produce less greenhouse gases compared to the conventional crude oil derivatives [4].

Hydrogen is often projected as a zero emissions fuel, however this statement depends upon

the source from which it is produced. Due to its composition and physical properties

hydrogen combustion produces water and NOX emissions. Although there are no immedi-

ate carbon based emissions from the combustion of hydrogen, higher NOX and abnormal

combustion are serious challenges. Pre-ignition and ”hydrogen knock” generally constitute

abnormal combustion.
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1.5.1 Overview of Hydrogen Gas Production

Hydrogen does not exist as a free element on as earth. It is found in the combined

form in different hydrocarbons and water [58]. There are generally two routes through

which hydrogen is produced [69]: steam reforming of methane and electrolysis of water.

The steam reforming is completed in two steps

• Production of Water Gas

• Oxidation of CO to CO2

Through an endothermic catalytic reaction, methane is converted into CO and H2. This

mixture of hydrogen and carbon mono-oxide is called water gas. The next step is called

water shift reaction which is the oxidation of CO into CO2. Electrolysis of water involves

the passing of a current through pure water to split it into its constituent elements. The

CO2 production during electrolysis depends upon the source of the electricity [70]. Any

life cycle assessment of the use of hydrogen needs to take into account the CO2 produced

irrespective of the method of production [70, 53].

1.5.2 Combustion of Hydrogen in IC Engines

It is difficult to ignite hydrogen in compression ignition engines [71]. Due to hydrogen’s

low cetane number, it can not ignite spontaneously under these conditions. It has been

reported that hydrogen may not ignite even under extreme compression ratios ranging up

to 29:1 [72]. Constant volume bomb experiments reveal that a temperature of more than

1100 K is needed to ignite hydrogen whereas diesel is ignited below 1000 K. The same study

reports that the hydrogen ignition is strongly dependent on the ambient temperature. Like

natural gas, the hydrogen combustion utilizes the dual fueling concept [73, 74, 75, 76, 77,

78, 16, 79, 80, 81]. A high cetane liquid fuel is used to pilot the combustion of hydrogen in

CI engines.

Most of the studies utilizing hydrogen induction into the intake manifold report higher
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thermal efficiencies and lower volumetric efficiencies compared to standard liquid fuel. High

flame speed results in an increased rate of pressure rise and temperature. Hydrogen flames

also exhibit a smaller quechning distance, meaning flame travels closer to cylinder walls,

increasing fuel utilisation. Combustion efficiency is improved leading to an overall improve-

ment in thermal efficiency. The lower volumetric efficiency is due to inducted hydrogen

displacing a portion of the incoming air. The higher temperatures result in higher NOX

emissions [81]. It has been reported that the NOX emissions are strongly affected by the

hydrogen air mixture quality and the residence time [82, 75].

The use of hydrogen as a fuel in compression ignition engine results in lower PM and

CO emissions as a consequence of: the reduction in the amount of carbon present during

combustion and the higher combustion temperatures helps to oxidise PM [73, 76, 77, 80,

81].

1.6 FACTORS AFFECTING VOLUMETRIC EFFICIENCY

In dual fuel mode, the volumetric efficiency of the engine is reduced due to the manifold

induction of the gaseous fuels like natural gas and hydrogen. Volumetric efficiency is a

measure of the effectiveness of an engine’s induction process . This is not used for two

stroke engines as they do not have distinct induction and exhaust process [10].

ηv =
ma

ρa,iVd

(1.4)

where ρa,i is the inlet air density and ma is the mass of air induced. Following equations

describe how some of these performance parameters are inter-related for power output

P =
ηfmaNQHV (F/A)

nR

(1.5)

We can introduce volumetric efficiency for four stroke engines (nR).

P =
ηfηvNVdQHV ρa,i(F/A)

2
(1.6)

The amount of air inducted during a given cycle plays a crucial towards the performance

and power output of a diesel engine.
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Volumetric efficiency is reduced due to interaction between hot residual gases and the

fresh in-coming mixture via heat transfer between these two fluids as a result of mixing.

In an ideal induction process it is assumed that, with same specific heat and molecular

weights, the contraction of the residual gas as it is cooled is equal to the expansion of

incoming gases when they interact. But this theory of ”No change in volume due to mixing

process” does not hold very true with actual induction processes. Since the ports, inlet

valves and the cylinder walls are at higher temperature as compared to the inlet gases,

heat transfer does occur during the process of induction causing a decrease in volumetric

efficiency. Following equation reflects general dependencies of the volumetric efficiency over

different variables [83].

ηv = f(
u

a
,
pe

pi

,R, F/A,
CpTi)

(F/A)Qc

,
CpTc)

(F/A)Qc

) (1.7)

where

• u
a

- Mach index through the inlet-valve opening

• pe

pi
- ratio of exhaust system pressure to the inlet system pressure

• F/A - fuel air ratio

• Ti - inlet temperature

• Tc - coolant temperature

• R - inlet Reynolds index

The Mach Index can be expressed as

u

a
= Z = (

b

Di

)2 s

aCi

(1.8)

where

• b - bore of the cylinder

24



• Di - inlet valve diameter

• s - mean piston speed

• a - inlet sonic velocity

• Ci - inlet-valve average flow coefficient

The inlet Reynolds Index is defined as ρba/µg0 where a is the inlet sound velocity, b is the

cylinder bore, ρ is the density at the inlet and µ is the velocity of the inlet gases. Fuel air

ratio does affect the cylinder pressure during induction and that is why it has been included

in the arguments for volumetric efficiency. The terms involving Ti and Tc have to do with

heat transfer from the engine parts to the inlet and residual gases during induction. Eq. 1.7

can be written as

ηv = f(Z,
ρba

µg0
,
pe

pi

, F/A,
CpTi

(F/A)Qc

,
CpTc

(F/A)Qc

) (1.9)

The engine speed affects the volumetric efficiency through term ”Z” in Eq. 1.9. Volu-

metric efficiency starts to fall off rapidly as Z reaches close to 0.6 [83]. Any change in air

fuel ratio shall change last three terms in Eq. 1.9. As the fuel air ratio increases to 1, the

temperature of the induction system parts increases and more heat is transfered to gases

during the induction process. Due to this reason the volumetric efficiency tends to decrease

as fuel air ratio reaches 0.8. Increasing inlet temperature shall reduce the Mach Index as

temperature affects sound velocity. This increase also reduces the gap between mean inlet

wall temperature and mean gas temperature which in turn reduces the heat transfer to

the walls and hence increases volumetric efficiency. Any increase in coolant temperature

shall result in higher temperature of the induction system and hence increase heat transfer

to the incoming gases. As a result of this the incoming gases shall expand and hence the

volumetric efficiency drops [83]. Apart from heat transfer effects discussed above in brief,

the engine design factors also have considerable influence upon volumetric efficiency. Some

of these design parameters are listed below [83]
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• Inlet valve size and design

• Valve timing

• Exhaust valve size and design

• Stroke to bore ratio

• Compression ratio

• Design of exhaust system

• Cam-contour shape

1.7 THESIS OVERVIEW

The reciprocating internal combustion engines is the most common form of engine

or prime mover [1]. Currently, the automotive community around the globe is facing

two major challenges. Firstly, there is a massive drive to develop new fuels for internal

combustion engines due to fast depleting global reserves of oil and gas. Political turmoil in

oil producing regions and exponentially growing population of the world have put serious

question marks over any kind of balance between the demand and supply of the fossils fuels

in future. Secondly, the community is striving hard to control the emission coming out of

the engine to match the stringent emission standards which are getting strict with each

passing year. Experimental investigations used to be the only way to conduct research

on internal combustion engines till as late as 1980s. The emergence of computer and

successful development of multi-dimensional CFD codes have provided an effective and

alternate means to investigate different fuels and simulate the engine performance and

predict emissions.

The current study involves both the computational as well as experimental work.

Experimental work has been done on fuels that can be used in compression ignition engines

and can contribute to the part of energy which is currently being supplied by the diesel
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alone. Computationally, a commercial CFD codes has been used to predict in-cylinder

pressure, rate of energy release, specific emissions of NOX , CO and CO2.

To achieve the overall key objectives following three sub-objectives were accomplished.

1. Development of performance and emissions maps for compression ignition liquid fuels

like diesel and RME

2. Development of performance and emissions maps for compression ignition gaseous

fuels like natural gas and hydrogen in dual fuel operation

3. Investigation of the effect of pilot fuel quantity and type on different performance

and emissions characteristics of natural gas and hydrogen based dual fueling of com-

pression ignition engines

4. Application of different spray and combustion models to predict in-cylinder pressure,

rate of energy release and specific NOX , CO and CO2 emissions

The thesis is structured as follows. Chapter 1 is dedicated to a background review of

performance and emissions characteristics of internal combustions engines. It also includes

a literature review of different spray, turbulence and combustion models used to predict

different in-cylinder events computationally. Chapter 2 includes a description of the experi-

mental rig and methodology. Experimental and computational results have been presented

in chapter 3 to 5. Chapters 3, 4 and 5 present different performance and emissions char-

acteristics in a novel way. Diesel and RME performance and emissions maps have been

discussed in Chapter 3. Chapter 4 and 5 cover the performance and emissions maps of nat-

ural gas and hydrogen in dual fuel operations respectively. The performance and emissions

maps presented in chapter 4 to 6 include thermal efficiency, volumetric efficiency, specific

NOX specific HC, specific CO2, specific O2 and maps for enthalpy fraction of pilot fuel in

case of dual fueling cases. Chapter 6 discusses in detail the effect of pilot fuel quantity and

type and engine speed on different performance and emissions parameters. A combination
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two pilot fuels and three different pilot fuel settings at two different engine speeds have been

used in this study. Chapter 7 includes a parametric study of two different spray models.

The effect of changing the breakup length have been assessed and discussed for WAVE and

and Kelvin-Helmohltz nand Rayleigh-Taylor (KHRT) spray breakup models. In-cylinder

pressure as well as rate of energy release have been predicted by applying unsteady flamelet

and finite rate chemistry models. The optimized spray breakup constant has been used

along with unsteady flamelet model to predict NOX , CO and CO2 emissions. Conclusions

and future recommendations have been compiled in chapter 8.

28



CHAPTER 2

EXPERIMENTAL APPARTUS DESCRIPTION AND DATA ANALYSIS

2.1 INTRODUCTION

This chapter explains the experimental test rig used in the investigations and the allied

apparatus used to record experimental data for all investigations. Diesel and RME were

used when the engine was run in single fueling mode. Diesel and RME were used as pilot

fuels when a gaseous fuel was tested in a dual fuel mode. Natural gas and hydrogen were

used as gaseous fuels the in dual fueling operations.

2.2 THE TEST RIG

A single-cylinder CI engine was used in the study to collect experimental data. It is

a 1.4 litre four-stroke Gardner 1L2 direct-injection engine. The specifications of the engine

are shown in Table 2.1. Figure 2.1 shows the schematic layout of the experimental rig

showing hydraulic brake, fuel supply lines, various emission analysers and instrumentation.

The RME used was provided by British Petroleum.

A header tank above the lab was used to source diesel fuel during the normal CI

single fueling operations. The fuel was made to flow through a fuel measuring flask before

it entered into the Gardner engine fuel system. The fuel measuring flask comprised of three

segments each measuring 20 ml. When the engine was fueled by neat RME, an auxiliary

fuel supply was used. The auxiliary fuel supply system consisted of a fuel tank and a fuel

measuring flask. This fuel measuring flask was again graduated to measure 20 ml of RME.

Two ball valves were used on the inlet of the Gardner fuel system to facilitate switching

between either fuel source. When natural gas was tested in dual fuel compression ignition

mode, the natural gas was sourced directly from the building mains supply. It was made to

flow through one solenoid valve, two ball valves and two diaphragm valves. The flow rate

of the incoming natural gas was metered through a natural gas flow meter (0-100 litre/min
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No. of cylinders 1

Bore 107.95 mm

Stroke 152.40 mm

Swept volume 1394×10−6m3

Clearance volume 115.15 ×10−6m3

Compression ratio 13.11:1

Max. Power 11 kW @ 1500 rev/min

IVO 10oBTDC

IVC 40oABDC

EVO 50oBBDC

EVC 15oATDC

Start of fuel injection −24.5oATDC

Injection pressure 230 bar

Type of fuel pump In-line

Table 2.1. Specifications of the Gardner 1L2 Diesel Engine

scale). After passing through the flow meter, it was inducted into the engine inlet manifold

via a stainless steel tube along with the incoming air under the engine’s own suction. When

hydrogen was tested in dual fuel compression ignition mode, it was a gaseous hydrogen

with a purity of 99.995%. It was sourced from a 20 MPa compressed hydrogen gas cylinder

supplied by the British Oxygen Company (BOC). A hydrogen pressure regulator with a

flame arrestor fitted to the tank fed the hydrogen fuel line at 0.15 MPa . The hydrogen flow

rate was metered through a flow meter (0 - 44 litre/min scale). After passing through the

flow meter, the hydrogen was fed into the intake manifold of the engine (via a ball valve)

30



Figure 2.1. Experimental Apparatus Lay-Out

under the engine’s own suction via the same stainless steel tube as natural gas. All pilot

fuels were injected directly into the cylinder through the standard engine fuel system.

During natural gas dual-fuel operation the amount of pilot fuel injected is set at a

flow rate providing 0.126 MPa BMEP during normal engine operation. The engine power

output is then increased further by adjusting the flow rate of natural gas inducted by the

engine to reach the high load regions.

During hydrogen dual-fuel operation the amount of pilot fuel injected is set at a flow

rate providing 0.378 MPa BMEP during normal engine operation. The engine power output

is then increased further by adjusting the flow rate of hydrogen inducted by the engine to

reach the high load regions. Whilst operating at the highest load points the engine is unable

to induct the required quantity of hydrogen to provide the power output. This is a result

of manifold injection of the hydrogen and the low energy content of hydrogen on a volume

basis. A consequence of this is that when the engine power output demand is high, a larger

portion of the enthalpy must be met by the pilot fuel. As the pilot fuel quantity is to be

kept constant during data collection, this led to the pilot fuel quantity being set at a level
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that met the low power output demands alone, therefore hydrogen addition at the lower

outputs could not be achieved, only the upper half of the standard engine load range can

be achieved with hydrogen dual-fueling.

To investigate the effect of pilot fuel quantity and type on natural gas and hydrogen

performance and emissions characteristics, following procedure was adopted. Three differ-

ent pilot fuel settings were used for the two pilot fuels (diesel and RME) at two different

speeds (1000 and 1500 rev/min ). The different test conditions can be summarized by a

legend A-B-n-X-Y where A and B represent the type of emission and the type of pilot fuel

respectively , n represents the BMEP setting of the pilot fuel, D and E represent the type

of gaseous fuel and the engine speed respectively.
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So, NOX-D-1-NG-1000 shall be read as NOX emissions produced by diesel piloted natural

gas combustion when the quantity of liquid fuel (diesel in this case) was fixed at a BMEP

value of 0.125 MPa. When the engine was operated on natural gas based dual fueling, only

higher BMEP values were considered for the three different pilot fuel settings and different

emissions from the three cases were compared against each other. When the engine was run

on hydrogen based dual fueling, medium and higher-medium BMEP values were considered.

This is because at n=1, the pilot fuel quantity was set at minimum BMEP and maximum

energy was obtained through the induction of hydrogen. At this setting (n=1), the engine

was misfiring and knocking was observed with any value of BMEP beyond 0.44 MPa. When

the quantity of pilot fuel was increased ( for n=2,3) it became possible to induct more

hydrogen and achieve BMEP values beyond 0.44 MPa without any misfire and knocking.

The following analyzers were used to analyze the exhaust gas sampled from the test

rig through steel and PTFE tubing via a heated filter (maintained at 190 degrees Celsius).

• A Signal 4000VM chemiluminescence analyser used to measure NOx emissions

• Rotork Analysis model 523 flame ionisation detector (FID) used to measure unburnt

HC

• A Servomex 4210C exhaust gas analyser used to measure CO, CO2 and oxygen (O2)

concentrations

Wet gas samples were fed to the NOX as well as HC analyzers via a heated line at 160◦

Celsius. A Servomex 4210C exhaust gas analyser measures CO, CO2 and oxygen (O2)

concentrations on a dry-volume basis. It uses non-dispersive infrared sensors and a param-

agnetic sensor. Any water content in the sample needs to be removed before it is fed to the

Servomex analyzer. This is achieved through a trap and silicon oxide moisture filter. The

combustion chamber pressure data (detected with a Kistler type 6123 water-cooled trans-

ducer), exhaust temperatures (detected using type-K thermocouples) were sampled to a
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National Instruments data acquisition system and fed into a computer running LabVIEW

program.

2.2.1 Experimental Data Analysis

The net energy release rate was calculated on the basis of a single-zone model based

on the principle of energy conservation for a closed system [6]. Following assumptions were

made

• The cylinder charge was assumed to be a single homogeneous fluid having averaged

properties throughout.

• No distinction made between a burnt and unburned zones.

• The charge flowing into the crevices such as between the piston and cylinder walls is

not considered.

With these above mentioned assumptions, the following equation can be written:

Qto + Wto = ∆U (2.1)

Where Qto and Wto are the heat transferred and the work done to the system by the piston.

∆U is the increase in internal energy of the system going from an initial state (prior to

combustion) to a final state (after combustion). The term ∆U can be further subdivided

into three different terms: enthalpy of the fuel (with a subscript f), internal energy of

reactants (with a subscript r) and internal energy of the products (with a subscript p).

∆U = mfuf −mrur − mpup (2.2)

where

mp = mr + mf (2.3)
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as the mass of the products is equal to the sum of the mass of the reactants and the mass

of the fuel. Eq 2.2 can be rewritten as

∆U = (mr + mf)up − mrur − mfhf (2.4)

Substituting enthalpy as

h = u + pv (2.5)

The Eq 2.4 can be written as

∆U = mr(up − ur) + mf(up − hf ) (2.6)

∆U = mr(up − ur) + mf [(up − uf ) − (Pfvf)] (2.7)

where the term (up - uf ) can be written as

(up − uf ) = (up − u0
p) + (u0

p − u0
f) + (u0

f − uf) (2.8)

The terms with a superscript 0 are the standard state reference conditions. The Eq 2.7

and Eq 2.8 together can be written

∆U = mr(up − ur) + mf(u
0
p − u0

f) (2.9)

When Eq 2.9 is substitute into Eq 2.1, it results in

−mf(u
0
p − u0

f) = −Qto − Wto + mr(up − ur) = Ech (2.10)

where Ech is the gross chemical energy that results from the combustion of the fuel. The

term Wto can be replaced by -PdV in equation 2.10 and then the equation can be written

as

Ech + dQto = PdV + mrdu (2.11)
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where du = up - ur. This term du can be replaced cvdT. So the equation 2.11 can be

re-written as

Ech + dQto = PdV + mrcvdT (2.12)

where cv is specific heat capacity at constant volume dT is the temperature change. Sub-

stituting the value of dT from the gas equation, the equation 2.12 can be written as

Ech + dQto = PdV + mrcv(
V dP + PdV

mrR
) (2.13)

The above equation can be re-arranged

dEn = dEch + dQto = (1 +
cv

R
)PdV +

cv

R
V dP (2.14)

The term dEn in Eq 2.14 is the net energy change from the reactants towards the products.

Dividing Eq 2.14 by dt, we obtain the rate of net energy change during this process.

dEn

dt
= (1 +

cv

R
)P

dV

dt
+

cv

R
V

dP

dt
(2.15)

As shown in Eq 2.15, the rate of change in the net energy conversion depends upon following

factors

• The rate of change in cylinder pressure (dP/dt)

• The rate of change in cylinder volume (dV/dt)

• Instantaneous cylinder pressure (P)

• Instantaneous cylinder volume (V )

• Isochoric specific heat capacity of the cylinder charge (cv) and

• Specific gas constant of the cylinder charge (R)
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Complete natural gas combustion in excess air, ignited by a hydrocarbon is illustrated by

the following equation:

CxHyOz+αCH4 + β(x + 0.25y − 0.5z + 2α)(O2 + 3.76N2) → (x + α)CO2 + (0.5y + 2α)H2O

+ β(x + 0.25y − 0.5z + 2α)3.76N2 + (x + 0.25y − 0.5z + 2α)(β − 1)O2

(2.16)

Complete hydrogen combustion in excess air, ignited by a hydrocarbon is illustrated by the

following equation:

CxHyOz+αH2 + β(x + 0.25y − 0.5z + 2α)(O2 + 3.76N2) → (x + α)CO2 + (0.5y + 0.5α)H2O

+ β(x + 0.25y − 0.5z + 2α)3.76N2 + (x + 0.25y − 0.5z + 0.5α)(β − 1)O2

(2.17)

In dual fueling cases, the quantity of pilot is fixed and the quantity of the gaseous fuel is

increased to achieve higher power at a given speed. The term α in the above equations

is introduced to take into account the varied quantity of the gaseous fuel, be it hydrogen

or natural gas. There is another term β in both of these two equations. The β term is

used to take into account the excess air that is present in the exhaust products because

CI engines generally run fuel-lean. Hence the term β is generally always larger than unity.

For stoichiometric combustion of a neat fuel during normal CI engine operation, the term

α approaches zero while β becomes unity.
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CHAPTER 3

PERFORMANCE AND EMISSIONS MAPS OF DIESEL AND RME

3.1 BACKGROUND AND MOTIVE

Development of alternative fuels to replace the conventional fuels in IC engines is a

most active area of research. Fuels derived from different resources (especially renewable

ones) have been tested in IC engines with their performance and emissions characteristics

investigated to assess their suitability as substitute fuels [84].

Biodiesel is a generic term applied to an ester-based fuel (fatty esters) made from

vegetable oils or animal fats through a simple transesterification process [85, 86]. A number

of researchers have compared different biodiesels, depending on the feedstock that is used to

manufacture the biodiesel. These biodiesels are then investigated as pure fuels or blended

with mineral diesel with performance, emissions and other parameters investigated [87, 88].

The lower heating value of biodiesel is lower than mineral diesel so in all cases the

specific fuel consumption is shown to increase with biodiesel fueling. This is not an ideal

method to examine the combustion performance of the fuels relative to each other. The

thermal efficiency of biodiesel shows a general trend of being lower that standard mineral

diesel [88, 89, 85]. The lower brake thermal efficiency is often attributed to the injection

and atomization character of the biodiesel due to its physical properties such as viscosity,

density, and bulk modulus of elasticity. The presence of oxygen in the biodiesel itself has

an influence on the combustion quality [90]. To fully realize a comparison between the two

fuels, and therefore comment on any effect that the physical properties may have, engine

tests need to be run over the full operating range of the engine.

The major factors affecting NOX formation are: combustion temperature; local oxygen

concentration; and residence time in the high temperature zone. The trend concerning

NOX emissions when fueling with biodiesel is uncertain, with studies giving NOX emissions

results that vary widely dependent on engine design [91]. This is demonstrated by number
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of review articles which have been conducted into the so called biodiesel NOX effect [92,

93, 94, 95, 36]. The reviews identify inconsistent findings.

It is believed that engines equipped with in-line fuel pumps lead to increased NOX

emissions due to an advancing of the combustion process as a result of biodiesel’s higher

bulk modulus [96]. The specific NOX emissions across the entire operational range of an

engine is rarely considered in the literature, and addressing this aspect would be helpful in

elucidating the total effect.

There is general agreement in the literature that fueling with biodiesel leads to a

reduction of carbon monoxide (CO), carbon dioxide (CO2) and unburned hydrocarbon

(HC) emissions compared to standard mineral diesel fuelling [97, 86]. Biodiesel has higher

cetane number and therefore an improved ignition quality compared to standard diesel.

This is believed to lead to the reduction in HC emissions [86]. Biodiesel typically contains

10 to 11% oxygen by weight, which has a significant effect on the combustion stoichiometry

and equivalence ratios. This leads to the measured reduction of CO and particulate matter

(PM) emissions compared to standard mineral diesel [98, 90, 89].

There are few engine “fuel maps” available in the open literature (these are the full

contours of thermal efficiency or brake specific fuel consumption plotted throughout the

power versus speed range of the engine, or the torque versus speed range of the engine).

Sample fuel maps can be found in [99, 10, 1]. One such thermal efficiency map with dual-

fueling has been presented previously to demonstrate the thermal efficiency within the

operating range of the test engine used in this study [100]. Maps showing the thermal

efficiency as well as specific emissions contours on the power-speed plane are not easily

found in the open literature.

The same engine can be used as a power source for different power applications, each

with its own different load characteristics. For instance the same engine can be used to

power: two different-size cars; a small marine vessel; an electricity generator; and in several

other applications. The procedure of selecting the engine (prime mover) while considering
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the engine’s contours of thermal efficiency on the power-speed range of the engine, and

concurrently the load line of the powered device, has been briefly described in [6]. The

automobile sales literature usually quotes maximum torque at one engine speed, maximum

power at another engine speed (though the vehicle is rarely operating at these conditions

even on a race track), and the average fuel consumption and total emissions over one or

two strictly-specified drive cycles (which may or may not be representative of the intended

use of the buyer). In research papers laboratory experiments of engine performance and

emissions are usually conducted at constant equivalence ratio, or constant brake mean

effective pressure, or occasionally at constant speed. All of these representations are of

some use to the average consumer, but they do little to represent or explain the overall

thermal efficiency and emissions characteristics of engines throughout their operating range.

In the current global situation where thermal efficiency and the effect of emissions on

the environment are so prominent in the public and scientific media, it seems very strange

(and it is misguided) that there is little attention paid to these efficiency and emissions

trends throughout the operating range of engines.

In the work presented in this chapter operation of a direct injection CI engine is

considered everywhere in its power and speed operating range while it is fueled with either

diesel or RME. The results are presented as contours of thermal efficiency, volumetric

efficiency, equivalence ratio and specific emissions on a power-speed plane throughout the

operating range of the engine. The engine is a standard test engine, typical of the majority

of such engines used in the developing economies of the world; and though more-modern

engines may have higher thermal efficiency and lower emissions, the shape and regions of

contours presented in this chapter are representative of those shapes for typical CI engines

and are applicable to all engine performance and emissions maps. This is a novel approach

to representing these data, especially for CI engines. As one example of the utility of the

considerations presented in this chapter, the the NOX specific emissions contours presented

later illustrate that the region of high NOX emissions is at intermediate engine speed and
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power, dropping off at high and low values of engine speed and power, helping to explain

the NOX emission trends presented elsewhere in the literature.

3.2 RESULTS AND DISCUSSION

This section presents, compares and discusses the experimentally obtained maps for

different performance and emissions parameters for diesel and RME fuels. As there were

48 data points in the these maps, the in-cylinder pressure and the rate of energy release

data have not been presented here. The in-cylinder pressure and the rate of energy release

for diesel as well as RME on selected points (one lower load and one higher load) have been

presented in appendix A.

3.2.1 Thermal Efficiency and Volumetric Efficiency

Figure 3.2.1 presents the experimentally obtained map of volumetric efficiency for

diesel fuel. The volumetric efficiency measurements for diesel and RME were practically

identical; the values for diesel are shown in figure 3.2.1. Brake thermal efficiency perfor-

mance maps for diesel (figures 3.2(a)) and RME (figure 3.2(b)) should be interpreted in

conjunction with the volumetric efficiency map in figure 3.2.1 and the equivalence ratio

maps shown in figures 3.3(a) and 3.3(b). Apart from the highest power outputs, at each

operating speed the thermal efficiency map of diesel fueled operation reflects an increase

in brake thermal efficiency as the power output increases. This increase in brake thermal

efficiency is caused by higher combustion temperatures as the load is increased. It is no-

ticeable that there is a decrease in brake thermal efficiency at maximum power outputs for

all speeds.

The reduction of volumetric efficiency at higher engine speeds can be attributed to

increased frictional losses between the incoming flow and the intake manifold. It is evident

from the equivalence ratio maps that more fuel is being injected as the load increases.

The combined effect leads to the different directions of the slopes in the iso-contours of
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Figure 3.1. Experimentally obtained Volumetric Efficiency - Diesel

volumetric efficiency and equivalence ratio on the maps. Loss of thermal efficiency at

the highest loads at each speed can be attributed to the air/fuel ratio (figures. 3.3(a)

and 3.3(b)). Less oxygen is available to mix with fuel at the highest loads, causing a local

drop in thermal efficiency.

The thermal efficiency map for RME (figure 3.2(b)) looks similar to the one obtained

for diesel as a baseline fuel (figure 3.2(a)). While producing lower power output at all

speeds, the thermal efficiency of RME is 3.5% (on average) lower than what is obtained with

diesel. As demonstrated in appendix A, at lower loads, RME produces lower peak pressure

when compared to diesel whereas the peak pressures for the two fuels are comparable at

higher load condition. This is consistent with the findings in the literature and is often cited

as an effect of poorer injection qualities. Higher viscosity of biodiesel can reduce combustion

efficiency due to poor atomization characteristics. At the largest power outputs the RME

has a higher brake thermal efficiency (about 3%) than the baseline diesel. This may be

due to a dual effect of under-mixing in the case of diesel and the high oxygen content of

the RME, which may become more significant at the higher temperatures at higher power

output.
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(a) Thermal Efficiency - Diesel (b) Thermal Efficiency - RME

Figure 3.2. Experimentally obtained thermal efficiency contours of
diesel (a) and RME (b)

3.2.2 Specific NOX

The specific NOX map for diesel (figure 3.4(a)) reveals that starting at the location

of maximum specific NOX at mid loads and mid speeds, the specific NOX decreases in all

other directions of the operating regime. The NOX formation is dependent on operating

temperature and therefore on equivalence ratio. For lower and medium speeds, the specific

NOX emissions increases initially as the load is increased and then starts decreasing after

reaching a maximum value. This can be attributed to the fuel-air mixture being leaner

at lower loads and less lean at higher loads. This can be verified from equivalence ratio

maps. At lower loads the in-cylinder temperature is lower than at higher loads as a result

of less fuel being burnt per cycle. The heat transfer to any incoming charge from previous

cycle gases (residuals), cylinder walls, exhaust valves and piston top land is reduced. The

fuel evaporation rate upon injection is reduced leading to a smaller pre-mixed combustion

phase.

This explains lower (both absolute as well as specific) values of NOX at lower loads

at all speeds. As the engine load is increased the thermal efficiency of the engine increases

(resulting in better utilization of the fuel) and volumetric efficiency decreases (resulting in

reduced amount of oxygen available). Although the absolute values of NOX are increasing
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(a) Equivalence Ratio - Diesel (b) Equivalence Ratio - RME

Figure 3.3. Experimentally obtained equivalence ratio maps of diesel (a) and RME (b)

(a) Specific NOX/ g/MJ- Diesel (b) Specific NOX/ g/MJ - RME

Figure 3.4. Experimentally obtained contours of specific NOX of diesel (a) and RME (b)

with any increase power output, the specific values of NOX follow the opposite trend at

higher power outputs. This can be attributed to reduction in volumetric efficiency and an

increase in the brake thermal efficiency at higher powers. These two factors seem to offset

higher temperature effects. It can be concluded that at constant speed, the specific NOX

emissions are influenced by the temperature of the in-cylinder mixture. The reduction in

specific NOX emissions with increasing speed may be due to the decrease in residence time

of the in-cylinder charge and the cooling effect of incoming air.

For RME fuelling, the trend observed in specific NOX emissions (figure 3.4(b)) is
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(a) Specific HC - Diesel/ g/MJ (b) Specific HC - RME/ g/MJ

Figure 3.5. Specific HC of Diesel (a) and RME (b)

(a) Specific CO2 - Diesel/g/MJ (b) Specific CO2 - RME/g/MJ

Figure 3.6. Experimentally obtained contours of specific CO2 of Diesel (a) and RME (b)

similar to diesel fuelling (figure 3.4(a)). RME has resulted in lower specific NOX across

the whole map. The highest power output at all speeds is the only exception to this trend

where RME has resulted in slightly higher NOX. Another difference observed is the range

(the difference between the maximum and the minimum ) of the values that is 0.8 g/MJ

for diesel 0.35 g/MJ for RME.

The lower specific NOX values for RME can be attributed to higher cetane number

of RME, which leads to a reduced ignition delay, advancing ignition and reducing the pre-

mixed phase. Specific NOX contours for RME are widely spread across different speeds
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(a) Specific O2 - Diesel/g/MJ (b) Specific O2 - RME/g/MJ

Figure 3.7. Experimentally obtained contours of specific O2 of diesel (a) and RME (b)

when compared to the diesel baseline.

3.2.3 Specific HC

Specific HC emissions are at their highest at the lower power outputs for all speeds

with both fuels (figures 3.5(a) and 3.5(b)). As the power output increases the specific

HC emission decrease to a minimum which then increases slightly for the very highest

power output made. At the lower powers, the engine is operating under lean conditions

resulting in lower combustion temperatures and a reduction the the brake thermal efficiency

(figures. 3.2(a) and 3.2(b)). This has a combined effect of leading to the higher specific HC

emissions. As the power increases, combustion is improved as the temperature increases

with the engine operating less lean. The slight increase in the specific HC emissions at

the highest powers may be attributed to the reduction in brake thermal efficiency, showing

the combustion has suffered slightly. This is a result of a portion of the fuel not mixing

fully with the air in the cylinder and resulting in slightly poorer fuel combustion. For

similar power outputs, higher specific HC emissions are observed at higher engine speeds.

Combustion quality is deteriorating with increasing speed. This is supported by the lower

specific NOX emissions at higher speeds. This deterioration may be a consequence of the
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combined effect of reduced volumetric efficiency and reduced residence time.

RME fueling compared with diesel has no significant impact on the specific HC emis-

sions (figure 3.5(b)). At lower loads, RME shows slightly higher values of HC emissions.

This can be attributed to relatively poor atomization and lower volatility of RME. Higher

specific fuel consumption can be another reason for this difference between RME and diesel

fuels. Unlike diesel, where HC emissions showed a surge at the highest loads in figure 3.5(a),

the HC emissions for RME decreased even at the highest loads in figure 3.5(b). This shows

that RME combustion is not affected by the under-mixing phenomenon, and enough oxygen

is present to burn the fuel even at the highest loads.

3.2.4 Specific CO2

The absolute values for O2 emission decrease and specific CO2 emissions increase as

the load is increased. This is because more fuel is being injected at higher loads and the

combustion chamber is at higher temperature. Looking at specific CO2 (figure 3.6(a)) and

specific O2 (figure 3.7(a)) emission maps, it is evident that the specific values of these

emissions decrease as the engine load is increased. This again can be attributed to increase

in thermal efficiency and decrease in volumetric efficiency as the engine load is increased.

A 90% drop in specific O2 emissions has resulted in 46% drop in specific CO2 emission.

This is because both the specific as well as absolute emissions of O2 decrease as the load is

increased, whereas for CO2 emissions absolute values increase and specific values decrease

as the load is increased.

In terms of absolute numbers higher CO2 emissions are obtained at higher speeds

because absolute burning rate increases proportionally as the speed is increased. This

increase does not reflect in specific CO2 emission map because this increase in emission is

offset by more power produced at higher speeds. Lower CO2 emissions are obtained with

RME (figure 3.6(b)) when compared to CO2 values obtained with diesel (figure 3.6(a)) for

all ranges of load and speed. This can be due to lower carbon to hydrogen ratio for RME
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in comparison to diesel.

3.3 CHAPTER SUMMARY

Most studies presenting performance and emissions characteristics of compression-

ignition (CI) engines operating with various fuels present these characteristics at a few

load settings and engine rotational speed combinations. In general engine performance and

emissions contours have not been investigated throughout the operating speed and power

range of engines. In this chapter the performance and specific emissions contours of a

diesel and RME fueled CI engine are experimentally investigated, assessed, compared, and

critically discussed. The contours are plotted on load (brake power) versus engine rotating

speed planes over a range of engine operating conditions. The thermal efficiencies of diesel

and RME are comparable for all ranges of speeds and power outputs. At the maximum

power range RME has slightly higher thermal efficiency. From the location of maximum

NOX contours in the central region of the power-speed range, the specific NOX decreases in

all directions across the whole map. RME produces lower NOX compared to the diesel fuel.

At the higher loads RME produces fewer unburned hydrocarbon emissions than diesel, but

at lower and intermediate loads the unburned hydrocarbon emissions are comparable. CO2

is lower with RME than diesel throughout the engine operating range.
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CHAPTER 4

PERFORMANCE AND EMISSIONS MAPS OF NATURAL GAS IN DUAL

FUELING MODE

4.1 BACKGROUND AND MOTIVE

Natural gas has long been considered an alternative fuel for the transportation sector

and has been used to fuel vehicles since the 1930s. Natural gas is the cleanest fossil fuels

available and its proven reserves are 5288.5 trillion cubic feet, much larger than crude

oil [101]. Low carbon content and clean burn features (low soot and smoke) have helped

the proliferation of natural gas as an alternate fuel with the introduction of ever more

stringent emissions standards. Natural gas has properties that are very similar to those of

methane (CH4), which is its primary constituent. It also contains heavier hydrocarbons

such as ethane (C2H6), propane (C3H8), and butane (C4H10), and inert diluents such as

molecular nitrogen (N2) and carbon dioxide (CO2) [102, 103, 104, 6].

Natural gas has a low cetane number (high octane number) [6, 101, 104] and high

specific heat capacity ratio (γ). The poor ignition characteristics (extended ignition delay)

of low cetane number fuels in CI engines often prevents ignition entirely at the temperatures

found under compression in a CI engine. Various ignition strategies are used to ignite

natural gas in unmodified CI engines. A glow plug or a high cetane liquid fuel such as

diesel [6, 60, 105] or RME [6] have been widely used as an initial source of ignition using

the dual fuel concept [106]. The natural gas is most often inducted into the engine in the

air intake manifold with the high cetane fuel directly injected into the cylinder. To ensure

ignition and sustain acceptable combustion there is a lower limit of the quantity of the high

cetane fuel that must be injected [106].

The low cetane number of natural gas affords the opportunity to operate the en-

gine with a higher compression ratio than can be achieved with standard mineral diesel.

Higher compression ratio results in greater brake power, improved thermal efficiency [6]
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and higher in cylinder temperatures. To take advantage of the low cetane number in this

manner requires modification to a standard CI engine to increase compression ratio. This

is infrequently done when testing natural gas in CI engines.

The higher specific heat capacity ratio of natural gas lowers in-cylinder charge tem-

perature and increases ignition delay compared to the baseline diesel operation and hence

is critical from an emissions perspective [84, 100]. Due to these competing factors dual

fueling with natural gas needs to be investigated across a wider range of engine operating

conditions to assess the affect of engine speed and load (power output) in addition to the

above mentioned factors.

Dual fueling of CI engine with natural gas has demonstrated a slight reduction of brake

thermal efficiency when compared to fueling with standard mineral diesel [60, 107, 105, 108,

65] whereas higher thermal efficiency values were reported at higher loads [59]. Concerning

total brake specific fuel consumption, it is revealed that it becomes inferior under dual fuel

operation compared to normal diesel operation at the same engine operating conditions

because of the lower heating value of natural gas. At high load, the values of total brake

specific fuel consumption under dual fuel operation tend to converge with that of normal

diesel operation [60].

NOX is strongly dependent on local temperatures so most NOX is expected to form

in the region around the pilot spray where high temperatures exist and the equivalence

ratio is close to stoichiometric [109]. Earlier and faster combustion events increase the

duration for which in-cylinder conditions are suitable for NOX formation[110]. The use

of natural gas under dual fueling in CI engines has a positive effect on NOX emissions:

the NOX concentration under dual fuel operation is lower when compared to normal diesel

operation. At the same time, a significant decrease in soot emissions under dual fuel

operation has also been reported [102]. On the other hand, CO and HC emissions levels

have been reported to be considerably higher when compared to normal diesel operation

[60, 84, 100, 107, 111].
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Whereas literature has been reported on natural gas combustion and emissions under

dual fueling conditions in CI engines, most of the studies lack one or the other important

aspects. The studies are either restricted to various loads/powers at one engine speed

(neglecting the effect of engine speed) or one or two load/power conditions at various speeds

(neglecting load variations). There is a scarcity of engine “fuel maps” in the open literature

(these are the full contours of thermal efficiency or brake specific fuel consumption plotted

throughout the power versus speed range of the engine, or the torque versus speed range

of the engine). Sample fuel maps can be found in [1, 10, 99]. One such plot of thermal

efficiency contours with dual-fueling has been presented previously to demonstrate the

thermal efficiency within the operating range of the test engine used in this chapter [100].

Maps showing the thermal efficiency as well as specific emissions contours on the power-

speed planes are seldom found in the open literature [107].

The choice of pilot fuel has also been limited to either diesel or biodiesel only and the

performance of these two pilots has hardly been investigated and compared over a wider

range of operating conditions in compression ignition environment. The study presented

here is an effort to fill these gaps in the literature available on natural gas based dual fueling

in CI engines.

In research papers laboratory experiments of engine performance and emissions are

usually conducted at constant equivalence ratio, or constant brake mean effective pressure,

or occasionally at constant speed. All of these representations are of some use to the

average consumer, but they do little to represent or explain the overall thermal efficiency

and emissions characteristics of engines throughout their operating range.

In the work presented in this chapter both speed and power are considered for diesel

and RME piloted natural gas combustion in a direct injection CI engine. The results

are presented as iso-contours of thermal efficiency, volumetric efficiency and brake specific

emissions on a power-speed graph throughout the operating range of the engine. This is

a novel approach to representing these data, especially for CI engines. As one example of
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the utility of the considerations presented in this paper, the the specific NOX emissions

contours presented later illustrate that for the baseline single-fuel diesel configuration the

region of high specific NOX emissions is at intermediate engine speed and power, dropping

off at high and low values of engine speed and power, helping to explain the NOX emission

trends presented elsewhere in the literature; while the dual-fueling specific NOX emissions

contours show monotonically increasing trends with increasing engine load and increasing

engine speed.

4.2 RESULTS AND DISCUSSION - DIESEL PILOTED NATURAL GAS

This section presents thermal efficiency, volumetric efficiency, specific NOX, specific

HC and specific CO2 maps for diesel piloted dual fueling of natural gas and compares them

against the maps obtained with diesel based single fueling. As there were lrge number of

data points used to generate these maps, the in-cylinder pressure and the rate of energy

release data have not been presented here. The in-cylinder pressure and the rate of energy

release for pure diesel and RME as well as diesel and RME piloted natural gas on selected

points (one lower load and one higher load) have been presented in appendix A.

4.2.1 Thermal Efficiency and Volumetric Efficiency

Figure 4.1(a) presents an experimentally obtained map showing iso-contours of thermal

efficiency for diesel based single fueling whereas figure 4.1(b) presents a similar map for

diesel piloted dual fueling of natural gas. While operating in dual fuel mode using diesel-

ignited natural gas
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(a) Thermal Efficiency - Diesel (b) Thermal Efficiency - Diesel Plus NG

Figure 4.1. Experimentally obtained thermal efficiency contours of
diesel single fueling (a) and diesel piloted natural gas dual fueling (b)

(a) Volumetric Efficiency - Diesel (b) Volumetric Efficiency - Diesel Plus NG

Figure 4.2. Experimentally obtained volumetric efficiency contours of
diesel single fueling (a) and diesel piloted natural gas dual fueling (b)
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Figure 4.3. Specific heat at constant pressure, CP/R as a function of
temperature for air and methane

Figure 4.4. Enthalpy fraction of natural gas during diesel piloted nat-
ural gas dual fueling.

no significant difference (overall) is observed in thermal efficiency when compared to

pure diesel operation. At higher power outputs, dual fuel mode produces similar or higher

thermal efficiencies as compared to normal fueling mode whereas at relatively lower power

outputs, lower values of thermal efficiency have been observed (figure 4.1(b)).

The lower thermal efficiency values at lower power outputs may be attributed to

the failure of pilot fuel to ignite and sustain adequate combustion of the natural gas-air

mixture. As demonstrated in appendix A, at lower and medium loads, diesel piloted dual

fueling of natural gas produces lower pressure when compared to diesel based single fueling.

Whilst the local equivalence ratio in the region of the pilot injection may be near unity

(stoichiometric), especially during the initial pre-mixed combustion phase, the overall F/A
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ratio is 0.25% lower than single diesel fueling at the lower power output. This suggests that

the portion of the combustion chamber not in the pilot region contains a lean homogenous

mixture of natural gas and air. At the highest power outputs the dual fuel mode exhibits a

F/A ratio 3.73% higher than that of single diesel fueling. Under these conditions the pilot

fuel is igniting a richer homogenous mixture resulting in a 3.1% (approximately) increase

in thermal efficiency. As demonstrated in appendix A, at higher loads, natural gas dual

fueling exhibit comparable peak cylinder pressure and higher rate of energy release peak

when compared to the respective pilot fuel. As the power output increases the dual fuel

mode recovers the thermal efficiency losses suffered at the lower power outputs with both

modes of operation having similar F/A ratios.

Figure 4.2(a) presents an experimentally obtained map showing volumetric efficiency

trends on a speed-power graph for diesel based single fueling whereas figure 4.2(b) presents

a similar map for diesel piloted dual fueling of natural gas. The volumetric efficiency map

(figure 4.2(b)) reflects the lower values for dual fuel mode. This is to be expected as a

portion of the inducted air is being displaced by the natural gas in the intake, reducing

the air partial pressure below that of the mixture pressure. Also as to be expected is the

drop of volumetric efficiency as the engine speed increases for both modes of operation

(figures 4.2(a) and 4.2(b)). The frictional losses are known to increase as the square of

engine speed [10] . The slope of the volumetric efficiency contours is flatter for natural gas

dual fueling with diesel than for baseline diesel operation and the values are lower. This is

a consequence of the method used to introduce natural gas into the engine. As the natural

gas has been introduced via manifold injection, a portion of the intake air is displaced by

the natural gas, reducing the measured volume flow rate of air into the engine. This leads

to a reduction of the engine’s volumetric flow rate. The slope of the iso-contours differs

due to a change in the scaling of volumetric efficiency with engine speed. As the amount of

natural gas added is increased to meet the increase in speed demand, larger amounts of air

are displaced. As the natural gas is introduced at the manifold and does not flow through
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the entire intake system but the air does, the scaling law as noted by Heywood [10] does

not hold.

4.2.2 Specific NOX

Figure 4.5(a) presents an experimentally obtained map showing iso-contours of specific

NOX for diesel based single fueling whereas figure 4.5(b) presents a similar map for diesel

piloted dual fueling of natural gas. Significant reduction in NOX is noted with diesel

(a) Specific NOX /g/MJ - Diesel (b) Specific NOX/ g/MJ - Diesel Plus NG

Figure 4.5. Experimentally obtained specific NOX contours for diesel
single fueling (a)and diesel piloted natural gas dual fueling (b).

piloted natural gas dual fueling compared to diesel single fueling. The composition of the

in-cylinder mixture prior to combustion in case of dual fueling is different from that during

diesel single fueling. In case of single fueling the major constituent of the in-cylinder mixture

during compression stroke is air along with a fraction of the residual gases from the previous

combustion event. Whereas in case of dual fueling, the mixture during compression stroke

is composed of a homogeneous mixture of air , natural gas and residual gases. Figure 4.3

shows the variation of the specific heat at constant pressure with temperature for air and

methane ( main constituent of natural gas) and figure 4.4 shows enthalpy contribution of

natural gas at different operating conditions.

The specific heat capacity ratio of natural gas is significantly higher than for air.
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An overall increase in the heat capacity of the in-cylinder mixture as is the case for dual

fueling results in a reduced average temperature at the end of the compression stroke.

This will lead to an overall lower combustion temperature. With the formation of NOX

highly dependent on the thermal mechanism, the reduced temperature leads to a level of

reduced NOX. As the combustion of the homogenous mixture propagates from a number

of multi-site ignitions, the increased specific heat capacity will lead to a further reduction

of combustion temperature. Reduction in specific NOX is more significant at lower power

where this reduction ranges between 40%-53%. At lower powers, the engine is running

relatively cooler compared to at higher powers and hence the higher heat capacity has a

more pronounced effect on specific NOX.

As is to be expected, as the power output is increased at a constant speed, the ab-

solute NOX emissions increase due to the increasing in-cylinder temperatures, however

figures 4.5(a)and 4.5(b) show specific NOX emissions across the engine’s operational range.

For diesel single fueling, as the power output increases the NOX levels do not increase at

the same rate, hence the specific NOX at the higher powers is actually lower. The peak

specific NOX emissions are centered around low power and low speed conditions. In terms

of NOX emissions, this region is where the engine’s combustion temperature and power

relationship is at its worst.

4.2.3 Specific HC

Figure 4.6(a) presents an experimentally obtained map showing lines of constant spe-

cific HC for diesel based single fueling whereas figure 4.6(b) presents a similar map for

diesel piloted dual fueling of natural gas. There is a significant increase in the specific

HC emissions at lower and medium power outputs for diesel piloted natural gas dual fu-

eling (figure 4.6(b)) compared to diesel single fueling (figure 4.6(a)). The HC emission

iso-contour map reflects that a significant amount of unburnt natural gas is going into the

engine exhaust. One possible explanation for this inefficient burning may be poor flame
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propagation throughout the homogeneous natural gas-air mixture.

(a) Specific HC /g/MJ- Diesel (b) Specific HC/ g/MJ - Diesel Plus NG

Figure 4.6. Experimentally obtained specific HC contours for diesel
single fueling (a) and diesel piloted natural gas dual fueliing (b)

The equivalence ratio (φ) threshold for dual fuel modes is 0.4. Below this threshold

value, the HC emissions increase whereas increasing φ beyond this value results in a decrease

in HC emissions. The equivalence ratio in this case ranges between 0.44 and 0.79 and this

is reflected in gradual decrease of HC emissions as the load increases. When natural gas

contributes approximately 45% of the total enthalpy (figure 4.4) the specific HC emissions

increase by about 800%. As the load is increased, the difference between the two modes

(single and dual fuel modes) in terms of specific HC emissions is narrowed down. At

maximum load conditions when natural gas enthalpy fraction is more than 60%, the dual

fuel case produces 250% more specific HC emissions when compared to the diesel single

fueling which reflects a percentage decrease of about 20% when compared to the case

when natural gas contributed about 45% of the total enthalpy required. These higher HC

numbers in dual fueling case can again be attributed to deteriorated combustion (especially

in the pre-mixed phase) due to low temperature of the in-cylinder mixture as explained in

the NOX section.
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4.2.4 Specific CO2

Figure 4.7(a) presents an experimentally obtained map showing lines of constant spe-

cific CO2 for diesel based single fueling whereas figure 4.7(b) presents a similar map for

diesel piloted dual fueling of natural gas. Diesel piloted natural gas dual fueling produces

less CO2 emissions. CO2 emissions decreases by 23-30% when diesel is substituted by diesel

(a) Specific CO2 /g/MJ - Diesel (b) Specific CO2 /g/MJ - Diesel Plus NG

Figure 4.7. Experimentally obtained specific CO2 contours for diesel
single fueling (a)and diesel piloted natural gas dual fueling (b)

plus natural gas dual fuel. This decrease in CO2 can be attributed to lower carbon to hy-

drogen ratio in case of dual fueling. Stoichiometrically, one gram of methane produces 2.0

g of CO2 as compared to 3.2 g produced by 1.0 g of diesel (37.5% difference)

4.3 RESULTS AND DISCUSSION - RME PILOTED NATURAL GAS

This section presents thermal efficiency, volumetric efficiency,specific NOX, specific

HC and specific CO2 maps for RME piloted dual fueling of natural gas and compares them

against the maps obtained with diesel based single fueling.

4.3.1 Thermal Efficiency and Volumetric Efficiency

Enthalpy contribution of natural gas in an RME piloted dual fueling of the natural gas

across different operating conditions has been shown in figure 4.8. It ranges between 48% at
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relatively lower loads to and 65% at the highest loads across different speeds. Figure 4.9(a)

presents an experimentally obtained map showing iso-contours of thermal efficiency for

RME based single fueling whereas figure 4.9(b) presents a similar map for RME piloted dual

fueling of natural gas. RME piloted dual fueling exhibits slightly inferior thermal efficiency

at lower and medium loads when compared to the single fueling case (figure 4.9(b)). When

compared to RME based single fueling operation (figure 4.9(a)), the RME piloted dual

fueling of natural gas shows a decrease of 13%, 5% and 1.5% in thermal efficiency when

the enthalpy fraction (figure 4.8) of natural gas was 48%, 53% and 58% respectively. No

Figure 4.8. Enthalpy fraction of natural gas during RME piloted natural gas dual fueling.

significant difference in thermal efficiency is observed when the natural gas enthalpy fraction

was 60% or above. As discussed in section 4.2.1, this is believed to be an effect of the pilot

fuel failing to ignite and sustain acceptable combustion in the overall lean homogeneous

mixture of natural gas and air. As with the diesel piloted dual fueling, this argument is

supported by the HC emissions for dual fueling (figure 4.6(b)) which decrease significantly

with increasing power output.

Figure 4.10(a) presents an experimentally obtained map showing lines of constant

constant volumetric efficiency for RME based single fueling whereas figure 4.10(b) presents

a similar map for RME piloted dual fueling of natural gas. The volumetric efficiency map

(figure 4.10(b)) reflects the lower values for dual fuel mode. As with the case for diesel
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(a) Thermal Efficiency - RME (b) Thermal Efficiency - RME Plus NG

Figure 4.9. Experimentally obtained thermal efficiency contours of
RME single fueling (a) and RME piloted natural gas dual fueling (b)

piloted dual fueling as discussed in section 4.2.1 this trend is to be expected as a portion

of the inducted air is being displaced by the natural gas in the intake. The value and slope

of the constant volumetric efficiency lines for RME piloted dual fuel mode (figure 4.10(b))

differ slightly from those for diesel piloted dual fuel mode (figure 4.2(b)). This can be

attributed to the slightly lower heating value of RME compared to diesel. This leads to a

larger portion of the total enthalpy in the cylinder coming from the natural gas, meaning

a larger portion of the intake air is displaced by the natural gas.

4.3.2 Specific NOX

Figure 4.11(a) presents an experimentally obtained map showing iso-contours of spe-

cific NOX for RME based single fueling whereas figure 4.11(b) presents a similar map for

RME piloted dual fueling of natural gas. When compared to RME based single fueling,

the RME based dual fueling results in overall lower specific NOX . This observation holds

very good for all range of speed and load combinations.

Quantitatively, the difference between specific NOX is the lowest at the the junction

of higher loads and medium speeds where it is approximately 7%. At medium loads and

medium speeds, the specific NOX in dual fueling mode are reduced by approximately 40%.
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(a) Volumetric Efficiency - RME (b) Volumetric Efficiency - RME Plus NG

Figure 4.10. Experimentally obtained volumetric efficiency contours of
RME single fueling (a) and RME piloted natural gas dual fueling (b)

At higher speeds for all range of load, the specific NOX reduction ranges between 40-

43%. Another interesting observation is the variation in location of the maximum specific

NOX. While operating in single fuel mode, the maximum specific NOX are approximately

concentrated at the junction of medium loads and medium speeds. This holds good both for

diesel (figure 4.5(a)) as well as RME (figure 4.11(a)). Moving outwards from the position

of maximum NOX results in gradual decrease in specific NOX numbers. On the other

hand, the specific NOX contours for the two dual fueling cases reflect an opposite trend.

Medium load and medium speed combination carries the lowest specific NOX and a gradual

increase in specific NOX is observed on all outward contours. The only exception to this

trend are the specific NOX contours at higher speeds. The specific NOX maps both for

diesel (figure 4.5(b)) and RME (figure 4.11(b)) piloted dual fueling case reflect that the

latter produces slightly higher specific NOX as compared to the former. This difference

in specific NOX numbers for the two dual fueling cases can be explained by relatively

higher absolute NOX numbers in case of RME and a slight variation in thermal efficiency

(figures 4.1(b) and 4.9(b)).
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(a) Specific NOX /g/MJ - RME (b) Specific NOX /g/MJ - RME Plus NG

Figure 4.11. Experimentally obtained specific NOX contours for RME
single fueling (a) and RME piloted natural gas dual fueling (b)

4.3.3 Specific HC

Figure 4.12(a) presents an experimentally obtained map showing lines of constant

specific HC for RME based single fueling whereas figure 4.12(b) presents a similar map for

RME piloted dual fueling of natural gas.

(a) Specific HC /g/MJ - RME (b) Specific HC /g/MJ- RME Plus NG

Figure 4.12. Experimentally obtained specific HC contours for RME
single fueling (a) and RME piloted natural gas dual fueling (b)

When compared to RME based single fueling case, the RME piloted combustion of

natural gas results in higher specific HC emissions. So far as the comparison of these two

modes involving RME is concerned, the explanation put forward in specific HC section

63



(section 4.2.3) of diesel piloted combustion of natural gas holds for RME piloted combus-

tion of natural gas as well. When the two dual fueling cases are concerned, there is no

significant difference in HC values when RME substitutes diesel as pilot fuel for natural

gas combustion in CI engines. When compared to the diesel piloted dual fueling of natural

gas (figure 4.12(a)), a slight reduction in HC values at higher loads when RME pilots the

natural gas combustion can be attributed to higher equivalence ratio at these conditions.

This higher equivalence ratio is caused by extra in-fuel oxygen in case of RME. At lower

and medium loads, RME led combustion of natural gas has resulted in higher specific HC

emissions. This may attributed to the argument proposed in section 4.2.1 with the pilot

fuel unable to ignite and sustain acceptable combustion in an overall lean mixture in the

cylinder.

4.3.4 Specific CO2

Figure 4.13(a) presents an experimentally obtained map showing lines of constant spe-

cific CO2 for RME based single fueling whereas figure 4.13(b) presents a similar map for

RME piloted dual fueling of natural gas. As with the diesel piloted dual fueling natural

(a) Specific CO2 /g/MJ - RME (b) Specific CO2 /g/MJ - RME Plus NG

Figure 4.13. Experimentally obtained specific CO2 contours for RME
single fueling (a) and RME piloted natural gas dual fueling (b)

gas (figure 4.13(b)), RME piloted dual fueling results in lower specific CO2 emissions (fig-

64



ure 4.13(b)) compared to the RME based single fueling (figure 4.13(b)). The difference can

attributed be to the reduction in carbon going into the engine in case of dual fueling with

natural gas. The data used to plot these maps has been used to tabulate the performance

comparison of the two pilot fuels in table 4.1

Table 4.1. Performance comparison of Diesel and RME as pilot fuels
in natural gas combustion

Pilot Fuel
Natural Gas

Enthalpy Fraction

Thermal Efficiency

%ge change

Specific HC

%ge change

Specific CO2

%ge change

Diesel

45% 13.79%↓ 875%↑ 17.5%↓

50% 6.45%↓ 730%↑ 9.3%↓

55% 3.22%↓ 635%↑ 11.9%↓

60% 3.03%↓ 600%↑ 12.2%↓

64% 6.25%↑ 266%↑ 12.5%↓

RME

48% 13.79%↓ 788%↑ 11.90%↓

53% 6.66%↓ 830%↑ 10%↓

58% 3.22%↓ 800%↑ 7.89%↓

61% 0%↓ 500-775%↑ 10.81%↓

65% 0 - 3.03%↑ 280-400%↑ 8.82%↓

4.4 CHAPTER SUMMARY

When natural gas is port/manifold injected into a compression ignition engine, the

mixture of air and the natural gas is compressed during the compression stroke of the

engine. Due to the difference in the values of specific heat capacity ratio between air and

natural gas, the temperature and pressure at the time of pilot fuel injection are different
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when compared to a case where only air is compressed. This significantly affects the

performance as well as emissions characteristics of natural gas based dual fuelling in CI

engine. Natural gas has been extensively tested in a single cylinder compression ignition

engine to obtain performance and emissions maps. Two pilot fuels, diesel and RME, have

been used to ignite natural gas. The performance of the two liquid fuels used as pilots has

also been assessed and compared. Tests were conducted at 48 different operating conditions

(six different speeds and eight different power output conditions for each speed) for single

fueling cases. Both the diesel and RME based single fuelling cases were used as baselines

to compare the natural gas based dual fuelling where data was collected at 36 operating

conditions (six different speeds and six different power output conditions for each speed).

Performance and emissions characteristics were maped on speed vs brake power planes.

The thermal efficiency values of the natural gas dual fueling were lower when compared

to the respective pilot fuel based single fueling apart from the highest powers. The effect

of engine speed on volumetric efficiency in case of the natural gas based dual fueling was

significantly different from what was observed with the single fueling. Contours of specific

NOX for diesel and RME based single fueling differ significantly when these fuels were used

to pilot natural gas combustion. For both of the single fueling cases, maximum specific

NOX were centered at the intersection of medium speeds and medium powers and they

decrease in all directions from this region of maximum values. On the other hand, an

opposite trend was observed with dual fueling cases where minimum specific NOX were

observed at the center of the map and they increase in all direction from this region of

minimum NOX. RME piloted specific NOX at the highest speeds were the only exception

to this trend. Higher specific HC and lower specific CO2 emissions were observed in case

of natural gas based dual fueling.
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CHAPTER 5

PERFORMANCE AND EMISSIONS MAPS OF HYDROGEN IN DUAL

FUELING MODE

5.1 BACKGROUND AND MOTIVE

There is increasing interest in the use of alternative, clean-burning fuels in order

to reduce the dependence on non-sustainable fossil-derived fuels and meet ever stricter

emissions targets. Amongst the numerous alternatives proposed, hydrogen has received

particular interest due to its superior combustion characteristics [112]. Approximately

95% of the hydrogen currently produced is by steam reforming of natural gas (a catalytic

thermochemical conversion process). Renewable hydrogen-production methods, such as

electrolysis of water using renewably generated electricity, pyrolysis, photo-biological water

splitting, photo-electro-chemical water splitting and solar thermo-chemical water splitting

are techniques yet to be fully realized [113] but make hydrogen a viable alternative to fossil

derived fuels, or as a substitute fuel for at least a portion of the overall energy supplied to

these engines, e.g. in dual fuel mode operation [114, 6]

Hydrogen’s high autoignition temperature makes it difficult to ignite a hydrogen/air

mixture on the basis of mixture temperature alone without some additional ignition source.

In SI engines this is achieved by the spark. In CI engines a small amount of high cetane

liquid fuel is injected into the chamber during the compression stroke at the desired point

of ignition. This mode of operation in CI engines is referred to as dual fueling [114, 6].

Studies have been conducted with diesel piloted hydrogen combustion [115] and biodiesel

piloted hydrogen [116, 114, 117]. Comparison between these two pilots has been made [100]

but at a very limited range of engine operating conditions.

Hydrogen has a high burning velocity which leads to increased in-cylinder pressures

and higher temperatures, resulting in increased NOX emissions. This effect may be reduced

by making the mixture leaner using hydrogen’s property to be flammable over a very wide
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range of concentrations in air (from 4% to 75%) [116, 118, 115]. This allows for the

application of learner combustion, resulting in a reduction of temperature and pressure,

and lower NOX emissions [119]. However, the initiation and development of the multiple

turbulent flames requires a H2-air mixture richer than the lean flammability limit [120].

Most studies have limited the enthalpy fraction of hydrogen addition to a maximum of

15% [116, 108]. The upper limit of hydrogen addition with manifold injected hydrogen is

determined by the quenching gap of hydrogen flame which can travel past the nearly-closed

intake valve and more readily backfires into the engine’s intake manifold [121]. There is a

need to examine the performance and emissions of a naturally aspirated CI hydrogen dual

fueled engine at higher hydrogen enthalpy fractions. The maximum enthalpy fraction in

this study is 30%.

Hydrogen has been shown to increase flame stability [108] and improve thermal ef-

ficiency [79]. It is believed that the high diffusion coefficient of hydrogen leads to highly

turbulent flame propagation rate [108]. The addition of hydrogen to increase the flame

stability has been studied extensively because of the belief that flame propagation is the

key factor in improving combustion [108, 122, 119, 123, 96]. Engine speed is often neglected

in these studies, but it is clearly one of the key factors in mixing, flame propagation and

the residence time. Increased engine speed enhances turbulence and hence affects mixing

and flame propagation characteristics. On the other hand the residence time is reduced,

therefore the overall effect of hydrogen addition on combustion should be examined with

changing speeds. Measurement of NOX emissions offers an indirect indication of combus-

tion temperatures. The effect of hydrogen addition on combustion and hence the thermal

efficiency with varying amounts of hydrogen has been studied previously [116, 120, 117]

but often limited to one engine speed and a small range of loads.

A number of studies have examined different emissions of hydrogen in dual fueled

CI engines. Some of these studies have considered engine operation at one speed only

[116, 120, 79, 73, 124, 78]; others have considered two speeds only [125, 114]. The general
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trend exhibited in these studies is an increase in NOX emissions and a decrease in HC, CO

and CO2 when compared to single fueling with their respective pilot fuels. The increase

in NOX emissions with increasing hydrogen addition are attributed to increased flame

temperature, and the reductions in HC, CO and CO2 emissions are attributed to the

reduction in the carbon content of the fuel. The range of applied loads in these studies is

one [125, 73], two [114, 120] three [116], four [79] and five [78].

There is a scarcity of engine “fuel maps” in the open literature (these are the full con-

tours of thermal efficiency or brake specific fuel consumption plotted throughout the power

versus speed range of the engine, or the torque versus speed range of the engine). Sample

fuel maps can be found in [99, 1, 10]. One such plot of thermal efficiency contours with

dual-fueling has been presented previously to demonstrate the thermal efficiency within

the operating range of the test engine used in this chapter [100]. Contours showing the

thermal efficiency as well as specific emissions contours on the power-speed plane are not

easily found in the open literature.

In research papers laboratory experiments of engine performance and emissions are

usually conducted at constant equivalence ratio, or constant brake mean effective pressure,

or occasionally at constant speed. All of these representations are of some use to the

average consumer, but they do little to represent or explain the overall thermal efficiency

and emissions characteristics of engines throughout their operating range.

In the current global situation where thermal efficiency and the effect of emissions on

the environment are so prominent in the public and scientific media, it seems very strange

(and it is misguided) that there is little attention paid to these efficiency and emissions

trends throughout the operating range of engines.

In the work presented in this chapter both speed and power are considered for diesel

and RME piloted hydrogen combustion in a direct injection CI engine. The results are

presented as contours of thermal efficiency, volumetric efficiency and brake specific emis-

sions on a power-speed plane throughout the operating range of the engine. This is a
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novel approach to representing these data, especially for CI engines. As one example of

the utility of the considerations presented in this paper, the the specific NOX emissions

contours presented later illustrate that for the baseline single-fuel diesel configuration the

region of high specific NOX emissions is at intermediate engine speed and power, dropping

off at high and low values of engine speed and power, helping to explain the NOX emission

trends presented elsewhere in the literature; while the dual-fueling specific NOX emissions

contours show monotonically increasing trends with increasing engine load and increasing

engine speed.

The next section has divided into two parts. Diesel piloted dual fueling of hydrogen

has been discussed in the first part whereas the second part focuses on RME piloted dual

fueling of hydrogen.

5.2 RESULTS AND DISCUSSION - DIESEL PILOTED H2

This section presents thermal efficiency, volumetric efficiency,specific NOX, specific

HC and specific CO2 maps for diesel piloted dual fueling of hydrogen and compares them

against the maps obtained with diesel based single fueling. As there were large number of

data points used to generate, the in-cylinder pressure and the rate of energy release data

have not been presented here. The in-cylinder pressure as well as the rate of energy release

data for pure diesel and RME under single fueling whereas for diesel and RME piloted dual

fueling cases of hydrogen have been presented in appendix A.

5.2.1 Thermal Efficiency and Volumetric efficiency

Figure 5.1(a) illustrates the thermal efficiency contours for the engine operating under

normal CI conditions when fueled with diesel. The contours show that at any operating

engine speed the engine’s thermal efficiency increases with increasing power output except

at the highest power levels, where a small reduction in thermal efficiency is observed.

This contour plot is a good example of the advantage of expressing engine data in this
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(a) Thermal Efficiency - Diesel (b) Thermal Efficiency - Diesel Plus H2

(c) Enthaply fraction from hydrogen

Figure 5.1. Experimentally obtained thermal efficiency contours of
baseline diesel (a), diesel-H2 dual fueling operation (b) and percentage
enthalpy from hydrogen in diesel-H2 dual fueling operation (c) where
in all cases the pilot fuel contributes to 0.378 MPa of the total BMEP

manner. The full thermal efficiency contours with respect to both the power and the speed

is expressed. The gradient of the contours indicates that at any value of power below 5

kW, and as engine speed increases, the thermal efficiency is monotonically decreasing. At

higher engine powers, e.g. at 7 kW, the thermal efficiency is 32% at 1,100 r/min, increases

to 33% at 1,250 r/min, and decreases from that maximum value with further increasing

engine speeds.

The thermal efficiency contours of diesel piloted hydrogen dual fueling are shown in

figure 5.1(b). They start from the baseline low-load line with BMEP value of 0.378 MPa
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(a) Volumetric Efficiency - Diesel (b) Volumetric Efficiency - Diesel Plus H2

Figure 5.2. Experimentally obtained volumetric efficiency contours of
baseline diesel (a) and diesel-H2 dual fueling operation (b) where in all
cases the pilot fuel contributes to 0.378 MPa of the total BMEP

(where there is no hydrogen added i.e. all the fuel enthalpy is supplied by the diesel pilot

fuel). Any further increase in power is obtained through the induction of hydrogen in

the intake manifold, and the quantity of diesel pilot fuel is kept constant for that speed

setting. The engine is operating at medium and higher load conditions when it is in dual

fuel operation. The maximum enthalpy fraction from hydrogen in this case is 29% as

illustrated in figure 5.1(c).

In the following comparisons between the various fueling modes are made at the same

speed and power settings. When a smaller amount of hydrogen is inducted into the intake

manifold, for instance when hydrogen is contributing 10% of the total fuel enthalpy, the

thermal efficiency is 1.5% lower than the standard diesel-only fuel operation shown in

figure 5.1(a). When the hydrogen enthalpy fraction was increased to 22% of the total

fuel enthalpy, then the performance of the dual fuel mode deteriorated and the efficiency

difference increased to 3% at the same speed and power settings. When the enthalpy

fraction of H2 was increased beyond 25% (near maximum power), it resulted in higher

thermal efficiencies compared to the baseline diesel-only single fueling case at all speeds

but the highest.
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For different speeds while operating at hydrogen enthalpy fraction of 29% the increase

in thermal efficiency was around 1.6% (at lower and medium speeds speed) but it was

3.0% lower at the highest speed. As demonstrated in appendix A, both diesel and RME

piloted dual fueling cases of hydrogen produce higher peak pressure as well as higher rate

of energy release peaks when compared to the respective pilot fuel based single fueling.

This is in agreement with the literature in stating that the addition of hydrogen leads

to an improvement in the thermal efficiency. However, at lower power outputs there is

a reduction in thermal efficiency with hydrogen addition. At the highest power outputs

the higher thermal efficiency values can be attributed to hydrogen contributing to more

complete combustion due to higher combustion temperatures and pressures.

Comparison of figures 5.2(a) and 5.2(b) indicates that induction of hydrogen into the

intake manifold compromises volumetric efficiency by approximately 5%; but near the peak

loads attainable with dual fueling there is a 1.6% increase in thermal efficiency, especially

at lower and medium speeds. This is because at lower and medium speeds hydrogen

combustion is not affected by the phenomenon of under-mixing as observed in the single

fueling case (the hydrogen is inducted into the intake manifold and it has more time to

mix with air). This could be an advantage of manifold induction over direct injection of

hydrogen into the combustion chamber.

In general, at a given power rating the volumetric efficiency decreases as the en-

gine’s speed increases due to increasing friction of the air flow during the induction and

exhaust phase of the cycle. At a given engine operating speed higher loads mean more

fuel and higher operating temperatures, including higher inlet manifold temperature, thus

heating the intake air and adding to the reduction volumetric efficiency. Comparison of

figures. 5.2(a) and 5.2(b) illustrates that the slope of the volumetric efficiency contours is

flatter for hydrogen dual fueling than for baseline diesel operation. The lower values are

observed because in the dual-fueling case, a part of the incoming air is being displaced by

the hydrogen in the intake manifold, thus reducing the air flow rate. The frictional losses
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are known to increase as the square of engine speed [10]. The slope of the iso-contours of

volumetric efficiency for dual fuel mode differ significantly from those for single fuel mode.

This is due to a larger portion of the intake air being displaced by the increasing addition

of the hydrogen as the engine speed is increased. This increasing amount of displacement

leads to a difference in scaling of volumetric efficiency with engine speed between the two

modes. This is another consequence of the addition of the hydrogen in the intake mani-

fold. As the volumetric efficiency is calculated from the air flow rate, increasing levels of

hydrogen at the manifold displace air from the flow rate. There is less air flowing through

the intake system thus the frictional effects of speed are reduced leading to the variation

in scaling that is observed in the single fueling case.

The volumetric efficiency map as shown in figure 5.2(b) reflects the lower values for

dual fuel mode. This is to be expected as a portion of the inducted air is being displaced

by the hydrogen in the intake, reducing the air partial pressure below that of the mixture

pressure. Also as to be expected is the drop of volumetric efficiency as the engine speed

increases for both modes of operation. This drop in volumetric efficiency between the two

modes is clear when figures 5.2(a) and 5.2(b) are compared. The frictional losses are known

to increase as the square of engine speed [10] . The iso-contours of volumetric efficiency for

dual fuel mode differ significantly from those for single fuel mode. This is due to a larger

portion of the intake air being displaced by the increasing addition of the hydrogen as the

engine speed is increased. This increasing amount of displacement leads to a difference in

scaling of volumetric efficiency with engine speed between the two modes.

5.2.2 Specific NOX

Figure 5.3(a) shows the full contours of specific NOX emissions for the engine operating

on baseline diesel fuel. The absolute values of NOX emissions are increasing with increasing

combustion temperature and increasing residence time. Therefore as engine operating speed

is increased NOX emissions increase up to a maximum in mid operating speed, and then
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decrease as residence time decreases with increasing speed.

(a) Specific NOX /g/MJ - Diesel (b) Specific NOX /g/MJ - Diesel Plus H2

Figure 5.3. Experimentally obtained specific NOX emissions contours
for baseline diesel (a) and diesel-H2 dual fueling (b)

At any engine operating speed the absolute NOX emissions increase with increasing

power, but after the mid-power range the increase in absolute NOX is lower than the

increase in power, so that the specific NOX emissions decrease above the mid-power range.

These combined effects result in a central region of maximum specific NOX in the power-

speed plane. At constant speed as the power output is increased or decreased from this

central region, the specific NOX decreases. Similarly, at constant power as the speed is

increased or decreased past the central region, the specific NOX decreases.

Figure 5.3(b) reflects the higher NOX specific emissions in the diesel-hydrogen dual-

fueling case. Compared to the baseline diesel fueling, hydrogen based dual fueling resulted

in higher NOX at all speed and power combinations. The high diffusivity (ability to dis-

perse in air) of hydrogen makes the combustible mixture more pre-mixed, hence improving

the combustion quality, resulting in higher in-cylinder temperatures. The smaller quench-

ing distance in the case of hydrogen can be another reason for these higher specific NOX

emissions. Smaller quenching distances make it possible for the hydrogen flame to travel

closer to the combustion chamber walls before being extinguished, maintaining higher tem-

peratures longer in the end phases of the combustion process. The range of specific NOX
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values is in a narrow band between 2.8 and 3.2 g/MJ across operating speeds and powers.

This can be attributed to insignificant variation in minimum ignition energy required when

the equivalence ratio varies in range 0.5<φ<1.0, leading in earlier beginning of combustion

and therefore in higher in-cylinder temperature and pressure.

The slightly lower specific NOX values at higher speeds can be attributed to the

shorter residence time available. The specific NOX values reflect three parameters: the

in-cylinder temperature; the oxygen available; and the efficiency of the engine (a result

of the specific nature of the measurement). As the power increases at constant speed,

higher absolute NOX results due to higher in-cylinder temperature, and at the same time

the engine is becoming more efficient. At higher powers, the rate at which the in-cylinder

temperature increases is dominated by the rate at which the engine efficiency increases

with any changes in the load applied to the engine. Therefore the lower ignition energy

and wider operating equivalence ratio of hydrogen result in the specific NOX trends in the

diesel-hydrogen fueling case to follow the shape of the thermal efficiency contours.

5.2.3 Specific HC

For the baseline single-fuel diesel case the specific HC emissions shown in figure 5.4(a)

follow the reverse of the thermal efficiency contour shapes. Thus the lowest values of the

specific HC emissions are at the regions of the highest thermal efficiency contours, and the

highest specific HC emissions are measured at the lowest power outputs.

The specific HC emissions map for diesel piloted hydrogen dual-fueling mode is shown

in figure 5.4(b). The specific HC emissions follow similar trends (they follow the reverse of

the thermal efficiency contours for the dual-fueling case). Overall at the same speed and

power settings the specific HC emissions are slightly lower in the dual fuel mode compared

to the baseline diesel single-fuel case. This is because the amount of carbon going into the

engine is not increasing as the pilot fuel quantity is fixed at the base load setting. Better

combustion at higher load due to higher in-cylinder temperature can be another reason

76



(a) Specific HC /g/MJ - Diesel (b) Specific HC /g/MJ - Diesel Plus H2

Figure 5.4. Experimentally obtained specific HC emissions contours for
baseline diesel (a) and diesel-H2 dual fueling (b)

for this significant decrease in specific HC. This shows that unlike diesel, diesel ignited

H2 combustion does not have the problem of under mixing at higher loads. Figure 5.1(b)

illustrates that at the highest power with the enthalpy fraction of hydrogen at 29%, the

dual fueling case is more efficient compared to single fueling at the same operating points.

This demonstrates a higher combustion efficiency as well as producing more brake power.

This is another reason for the reduction of the HC emissions. Fundamental studies of non-

premixed combustion have shown increased flame stability due to higher flame speeds and

improved mixing with increased hydrogen addition [108]. The results presented here are

consistent with this argument. Although the volumetric efficiency of the dual fueling case

is about 5% less than diesel based single fueling, the specific HC values are lower. This can

be attributed to better mixing of the hydrogen and air, the lower carbon content in the

mixture, and the faster reaction rates of hydrogen combustion.

5.2.4 Specific CO2

Figures 5.5(a) and 5.5(b) show specific CO2 maps for the baseline diesel and the

diesel piloted dual fueling of hydrogen respectively. Diesel piloted hydrogen combustion

produces less CO2 when compared to the pure diesel based single fueling . When the
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hydrogen fraction is 22% and 29%, a decrease of 12.5% and 35% in CO2 is observed. When

(a) Specific CO2/g/MJ - Diesel (b) Specific CO2 /g/MJ - Diesel Plus H2

(c) Specific O2 /g/MJ - Diesel Plus H2

Figure 5.5. Experimentally obtained specific CO2 emissions contours
for baseline diesel (a) and diesel-H2 dual fueling (b) and specific O2

emissions for diesel-H2 dual fueling (c)

compared to diesel based normal fueling, lower values of CO2 emissions can be attributed to

the lower carbon to hydrogen ratio. About a 5% loss in volumetric efficiency can be another

reason for this but the specific O2 map for the dual fueling as shown in figure 5.5(c) does

not support this argument. Similar levels of specific O2 are observed both for the single as

well as dual fueling case. This also shows that the improved combustion of hydrogen can

compensate for the oxygen which is displaced by the injection of hydrogen into the intake

manifold.
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5.3 RESULTS AND DISCUSSION - RME PILOTED H2

This section presents thermal efficiency, volumetric efficiency, specific NOX, specific

HC and specific CO2 maps for RME piloted dual fueling of hydrogen and compares them

against the maps obtained with diesel based single fueling.

5.3.1 Thermal Efficiency and Volumetric Efficiency

Figure 5.6(a) illustrates the thermal efficiency contours for the engine operating under

normal CI conditions when fueled with RME. Overall the shape of the thermal efficiency

contours for diesel and RME baselines are very similar, but the thermal efficiency with

RME is marginally higher than with diesel. The thermal efficiency contours with hydrogen

dual fueling and RME pilot fuel are shown in figure 5.6(b).

They start from the baseline low-load line with BMEP value of 0.378 MPa (where

there is no hydrogen added i.e. all the fuel enthalpy is supplied by the RME pilot fuel).

Any further increase in power is obtained through the induction of hydrogen in the intake

manifold, and the quantity of RME pilot fuel is kept constant for that speed setting.

The engine is operating at medium and higher load conditions when it is in dual fuel

operation. The maximum enthalpy fraction from hydrogen in this case is 33% as illustrated

in figure 5.6(c).

Similar to the diesel-pilot case, the engine is operating at high medium and high power

conditions when it is fueled by RME-piloted hydrogen. Comparison of the figures 5.6(a)

and 5.6(b) illustrate that the thermal efficiency has deteriorated with addition of hydrogen,

and the deterioration is slightly higher than what is observed in the diesel piloted hydrogen

dual fueling case. When 15% , 27% and 33% of the total enthalpy is provided by hydrogen,

the thermal efficiency of this dual fueling case decreases by about 5% for all cases at

all speeds. Similar differences are observed when diesel piloted hydrogen combustion is

compared to RME piloted hydrogen combustion. From the thermal efficiency point of view

diesel has proved to be better pilot fuel compared to RME. More hydrogen is inducted when
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(a) Thermal Efficiency - RME (b) Thermal Efficiency - RME Plus H2

(c) Enthaply fraction from hydrogen

Figure 5.6. Experimentally obtained thermal efficiency contours of
baseline RME (a), RME-H2 dual fueling operation (b), and percentage
enthalpy from hydrogen in RME-H2 dual fueling operation (c) where
in all cases the pilot fuel contributes to 0.378 MPa of the total BMEP

RME is used to pilot the hydrogen combustion. The performance comparison of diesel and

RME as pilot fuels is shown in Table 5.1. The inferior performance of RME as a pilot fuel

can be attributed to its poor ignition characteristics. The table shows hydrogen enthalpy

fraction against any improvement or deterioration in thermal efficiency and specific NOX.

The thermal efficiency and NOX columns contain percentage change in these parameters

when compared to the respective single fueling cases with diesel and RME as baselines.

The slopes and values of volumetric efficiency contours for diesel and RME baseline

cases as shown in figures 5.2(a) and 5.7(a) are very similar . The slope of the volumetric
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(a) Volumetric Efficiency - RME (b) Volumetric Efficiency - RME Plus H2

Figure 5.7. Experimentally obtained volumetric efficiency contours of
baseline RME (a) and RME-H2 dual fueling operation (b) at constant
pilot fuel BMEP of 0.378 MPa

efficiency contours for RME piloted combustion of hydrogen as shown in figure 5.7(b) is

flatter than the slope of the volumetric efficiency contours for diesel piloted hydrogen as

shown in figure 5.2(b). This is a consequence of the reduced heating value of RME compared

to diesel. Figures 5.1(c) and 5.6(c) show the enthalpy contribution of hydrogen for diesel

and RME piloted dual fueling of hydrogen. The enthalpy fraction of hydrogen at each

setting is larger with RME as compared to the diesel dual fueling hence a larger proportion

of the intake air is being displaced by the hydrogen, further increasing the change in scaling

between speed and volumetric efficiency as discussed previously at the end of section 5.2.1.

5.3.2 Specific NOX

Figures 5.8(a) and 5.8(b) illustrate the specific NOX contours for the RME baseline and

the RME piloted dual fueling of hydrogen respectively. The overall trends and explanations

for the specific NOX emissions with RME single fueling are analogous to those of baseline

diesel and diesel-piloted hydrogen of the previous section. Comparison of figures 5.8(a)

and 5.8(b) reflect an overall higher NOX with RME piloted hydrogen combustion when

compared to the RME single fueling case.
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(a) Specific NOX /g/MJ - RME (b) Specific NOX /g/MJ - RME Plus H2

Figure 5.8. Experimentally obtained specific NOX emissions contours
for RME baseline (a) and RME-H2 dual fueling (b)

The RME piloted hydrogen combustion results in higher absolute NOX due to higher

in-cylinder temperatures. In addition the comparison of the thermal efficiency contours

suggests that the RME piloted dual fueling is less efficient compared to pure RME single

fueling across the entire contour range. When the two dual fueling cases are compared in

terms of specific NOX emissions, RME piloted hydrogen combustion produces lower specific

NOX compared to the diesel based dual fueling. Reduced volumetric efficiency in case of

RME piloted hydrogen combustion when compared to the diesel based dual fueling case

can be a reason for lower NOX .

5.3.3 Specific HC

Figures 5.9(a) and 5.9(b) illustrate the specific HC maps for the RME baseline and the

RME piloted dual fueling of hydrogen respectively. The overall trends and explanations for

specific HC emissions with RME single fueling and RME piloted dual fueling of hydrogen

are analogous to those of baseline diesel and diesel-piloted hydrogen of the previous section.

Similar or slightly higher specific HC values are recorded when RME substitutes diesel

for piloted hydrogen combustion. This small difference in specific HC numbers can be
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(a) Specific HC /g/MJ - RME (b) Specific HC /g/MJ - RME Plus H2

Figure 5.9. Experimentally obtained specific HC emissions contours for
RME baseline(a) and RME-H2 dual fueling (b)

attributed to the relatively poor atomization and ignition characteristics of RME compared

to diesel for the similar roles.

Although more carbon is being injected at higher power outputs, in the case of single

fueling the specific HC values for both modes (single and dual) are practically the same.

Figures 5.6(a) and 5.6(b) that illustrate the thermal efficiency contours for the two modes

can be used to explain this trend. As discussed earlier, RME based single fueling is shown

to be more efficient compared to RME piloted hydrogen dual fueling. This results in more

brake power thus reducing the magnitude of specific HC emissions despite the fact that the

absolute values of HC are higher.

5.3.4 Specific CO2

Figures 5.10(a) and 5.10(b) illustrate the specific CO2 maps for the RME baseline and

the RME piloted dual fueling of hydrogen respectively. The overall trends and explanations

for specific CO2 emissions with RME single fueling and RME-piloted hydrogen are anal-

ogous to those of baseline diesel and diesel-piloted hydrogen of the previous section. No

significant difference in specific CO2 emissions is observed when the pilot fuel choice was

switched from diesel to RME. This is due to similar hydrogen to carbon ratio for both pilot
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(a) Specific CO2/g/MJ - RME (b) Specific CO2 /g/MJ - RME Plus H2

Figure 5.10. Experimentally obtained specific CO2 emissions contours
for baseline RME (a) and RME-H2 dual fueling (b)

fuels. When compared to pure RME based fueling, CO2 values are higher at all speeds and

powers in the case of RME piloted combustion of hydrogen.

5.4 CHAPTER SUMMARY

This chapter presents performance and emissions contours of a hydrogen dual fueled CI

engine with two pilot fuels (diesel and RME), and compares the performance and emissions

iso-contours of diesel and RME single fueling with diesel and RME piloted hydrogen dual

fueling throughout the engine’s operating speed and power range. Performance and emis-

sions data has been collected at six engine operating speeds and eight different load settings

for single fueling, and four load settings for dual fueling. The load settings have been used

to determine the brake power the engine is producing. The collected data has been used

to produce iso-contours of thermal efficiency, volumetric efficiency, specific NOX, specific

HC and specific CO2 on a power-speed plane. The performance and emissions contours

are experimentally investigated, assessed, compared and critically discussed. Considering

these iso-contours provides greater insight across a wider operational range of a dual fuel

engine. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen

combustion, dual fueling produced lower thermal efficiency everywhere across the map. For
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Pilot Fuel Load/Speed
Enthalpy

Fraction of H2

Thermal

efficiency

Specific

NOX

Diesel

Lower Medium/All 10% 1.5%↓ 3.3%↑

Medium /Low → Medium 22% 3.2%↓ 16%↑

High/Low → Medium 29% 1.5%↑ 31%↑

High/High 29% 3.2%↑ 27%↑

RME

Lower Medium/All 15% 4.5%↓ 4%↑

Medium /All 27% 6%↓ 7%↑

High/All 33% 4.5%↓ 23%↑

Table 5.1. Performance comparison of Diesel and RME as pilot fuels
in hydrogen combustion

diesel and RME single fueling the maximum specific NOX emissions are centered at the

mid speed, mid power region. Hydrogen dual fueling produce higher specific NOX with

both pilots as compared to their respective single fueling operations. The range, location

and trends of specific NOX varied significantly when compared to single fueling cases. The

volumetric efficiency is discussed in detail with the implications of manifold injection of

hydrogen analyzed.
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CHAPTER 6

EFFECT OF PILOT FUEL QUANTITY AND TYPE ON COMBUSTION

AND EMISSIONS OF NATURAL GAS AND HYDROGEN IN DUAL

FUELING MODE

6.1 BACKGROUND AND MOTIVE

Development of alternative fuels to replace the conventional fuels in IC engines is an

active area of research. Fuels derived from different resources (especially but not exclusively

renewable ones) have been tested in IC engines with their performance and emissions

characteristics investigated to assess their suitability as substitute fuels. Both natural gas

and hydrogen have long been considered alternative fuels for the transportation sector and

have fueled vehicles for decades.

When compared to the reserves of crude oil on volume basis, natural gas has much

larger reserves, estimated to be 5288.5 trillion cubic feet [101]. The cleanliness of any

burning process is indicated by the amount of soot or smoke produced, natural gas qualifies

this test owing to its lower carbon content. Natural gas is generally a mixture of primary

alkanes with methane (CH4) contributing around 95%.

An initial source of ignition is required to ignite both natural gas and hydrogen-air

mixtures in unmodified CI engines. This is due to lower cetane number (high octane

number) of natural gas [101, 104] and high auto-ignition temperature of hydrogen. To

ignite these gaseous fuel in compression ignition engine, various ignition strategies have

been employed. A glow plug or a high cetane liquid fuel such as diesel [60, 6, 105, 115] or a

biodiesel [116, 114, 117, 6] have been widely used as an initial source of ignition using the

piloted dual fuel concept [106]. All of these studies consider a fixed quantity of pilot fuel,

hence the effect of varying quantity of pilot fuel remains to be investigated.

Natural gas has high specific heat capacity ratio (γ). Due to this, the temperature

of the in-cylinder charge is lowered and hence ignition is delayed which is critical from
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an emissions perspective [84, 100]. These studies have considered a variety of pilot fuels

but were limited to a fixed quantity of pilot fuel. They present a good comparison of how

different pilot fuels perform under certain operating conditions but lack an account on what

will be the effect if the pilot fuel quantity is varied.

When compared to baseline single fueling case, the natural gas based dual fueling

mode exhibit a slight reduction in brake thermal efficiency at lower loads [60, 107, 105,

108, 65]. Higher thermal efficiency values were reported at higher loads for natural gas

dual fueling [59]. Hydrogen has been shown to increase flame stability [108] and improve

thermal efficiency [79]. It is believed that the high diffusion coefficient of hydrogen leads

to highly turbulent flame propagation rate [108]. The addition of hydrogen to increase the

flame stability has been studied extensively because of the belief that flame propagation is

the key factor in improving combustion [108, 122, 119, 123, 96]. All of these studies highlight

one or the other important aspect of the natural gas and hydrogen based dual fueling cases

but the effect of changing the pilot fuel quantity and type on various combustion and

emissions parameters has not been reported.

Concerning total brake specific fuel consumption, it is revealed that it becomes inferior

under dual fuel operation compared to normal diesel operation at the same engine operating

conditions. At high load, the values of total brake specific fuel consumption under dual

fuel operation tend to converge with that of normal diesel operation [60]. The concept

of multi ignition centers that result from the pilot fuel igniting the gaseous fuels in case

of dual fueling modes requires an investigation on how changing the number of ignition

centers (by injecting a different quantity of pilot fuel) shall affect the total brake specific

fuel consumption and hence power and emissions characteristics. The lower heating value

of the fuel also affects brake specific fuel consumption. It is worth investigating how two

pilot fuels with different lower heating values shall perform in dual fuel mode from the

brake specific fuel consumption perspective.

NOX is a strong function of local temperatures. It has been reported that most of the
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NOX are formed in the region around the pilot spray where high temperatures exist and

the equivalence ratio is close to stoichiometric [109]. Natural gas based dual fueling results

in lower NOX emissions when compared to the NOX concentration under normal single

fuel operation. At the same time, a significant decrease in soot emissions under dual fuel

operation has also been reported. On the other hand, CO and HC emissions levels have

been reported to be considerably higher compared to normal diesel operation [60, 111, 107,

84, 100]. How would these different emissions parameters change if both the quantity as

well as the type of the pilot fuel are changed, remain to be investigated and reported.

Hydrogen has high burning velocity which can lead to increased in-cylinder pressures

and higher temperatures, resulting in increased NOX emissions. Hydrogen is flammable

over a wide range of concentrations in air(from 4% to 75%) [116, 118, 115]. This wider

flammability can be used to prepare leaner mixtures resulting in lower in-cylinder tem-

peratures and pressures and hence reduced NOX emissions [119]. However, the initiation

and development of the multiple turbulent flames requires a H2-air mixture richer than the

lean flammability limit [120]. Most studies have limited the enthalpy fraction of hydrogen

addition to a maximum of 15% [116, 108]. The upper limit of hydrogen addition with man-

ifold injected hydrogen is determined by the quenching gap of hydrogen flame which can

travel past the nearly-closed intake valve and more readily backfires into the engine’s intake

manifold [121]. Using different quantities of the pilot fuels to achieve a certain BMEP in

hydrogen dual fueling can be helpful in quantifying the effect of wider flammability and

smaller quenching gap on different performance and emissions parameters.

Most of the studies reported on natural gas and hydrogen dual fueling lack one or

the other important aspect. They are either confined to one type of gaseous fuel (either

hydrogen or natural gas) or one type of pilot fuel (either diesel or a biodiesel). These two

dual fueling cases with two different pilot fuels have hardly been reported in a single study.

Changing the quantity of pilot fuel in natural gas and hydrogen based dual fueling is yet

to be investigated, compared and reported. This study is an effort to fill all these gaps
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in the literature on natural gas and hydrogen based dual fueling of compression ignition

engines. The study was conducted at two different engine speeds and the effect of variation

in engine speed on different performance and emissions parameters has also been discussed.

6.2 RESULTS AND DISCUSSION - NATURAL GAS

This section is further divided into two parts. The first part discusses the implications

of the change in the pilot fuel quantity and type on in-cylinder pressure,rate of energy

release and ignition delay. The second part discusses the effect of change in pilot the fuel

quantity and type and engine speed on different emissions.

6.2.1 Ignition Delay and Pressure Data

Figure 6.1 reflects the effect of pilot fuel quantity on ignition delay for pure diesel

and pure RME as well as three natural dual fueling cases piloted by each of these two

fuels. When compared to pure diesel and pure RME at 1500 rev/min and 0.503 MPa

BMEP, all of the natural gas based dual fueling cases have shown larger ignition delay. For

all combinations of the pilot fuel quantity , type and engine speed, the lowest pilot fuel

setting (n=1) has exhibited maximum ignition delay and the ignition delay was generally

reduced as the quantity of the pilot fuel was increased. This can be attributed to more

ignition centers being resulting form the injection of greater amount of pilot fuel and hence

shortening the time between the fuel injection and the start of the ignition process. RME

piloted dual fueling of natural gas at 1000 rev/min showed a slightly different trend where

the medium pilot fuel setting (n=2) showed the minimum ignition delay when compared

to the two other pilot fuel settings (n=1,3). At lowest pilot fueling setting (n=1), the

enthalpy contribution of the natural gas is maximum. As n ( the BMEP value where the

pilot fuel quantity is fixed) increases, the pilot fuel is set at a relatively higher BMEP

resulting in relatively lower enthalpy contribution from the natural gas. The specific heat

capacity ratio γ for the natural gas - air mixture is considerably higher than the pure air.
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This higher specific heat capacity ratio results in lower in-cylinder temperatures and hence

an increased ignition delay. The ignition delay for the middle pilot fuel setting (n=2) is
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Figure 6.1. Effect of pilot fuel quantity, type and engine speed on
ignition delay for different pilot fuel settings in diesel and RME piloted
combustion of natural gas at 1000 rev/min and 1500 rev/min

marginally different from the highest pilot fuel setting (n=3). This can be attributed to the

fact that there is only a difference of 0.069 MPa between these two cases when compared

to a difference of 0.127 MPa between the lowest (n=1) and the middle pilot fuel setting

(n=2). Insignificant difference between the ignition delays of the two higher pilot fuel

quantity settings (n=2,3) suggests that increasing the pilot fuel quantity shall not result

in proportional reduction in ignition delay. This view seems to hold good for all cases and

diesel piloted natural gas combustion at 1500 rev/min is the exception where significant

reduction has been observed as quantity of pilot was increased.

Figure 6.2(a) shows the in-cylinder pressure and figure 6.2(b) shows the corresponding

rate of energy release for pure diesel and three cases of natural gas dual fueling with three

different diesel pilot fuel settings to achieve a BMEP of 0.503 MPa and 1500 rev/min.

Figure 6.3(a) shows the in-cylinder pressure and figure 6.3(b) shows the corresponding rate

of energy release for pure RME and three cases of natural gas dual fueling with three

different RME pilot fuel settings to achieve BMEP of 0.503 MPa and 1000 rev/min.
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(a) Cylinder Pressure for pure diesel and three

cases of natural gas combustion with different

diesel pilot fuel settings at a BMEP of 0.503

MPa and 1500 rev/min

(b) Rate of energy release for pure diesel and

three cases of natural gas combustion with dif-

ferent diesel pilot fuel settings at a BMEP of

0.503 MPa and 1500 rev/min

Figure 6.2. Effect of the pilot fuel quantity and type on in-cylinder
pressure (a) and rate of energy release (b) for pure diesel and three
cases of natural gas combustion with different diesel pilot fuel settings
at a BMEP of 0.503 MPa and 1500 rev/min

As reflected in figure 6.2(a), for diesel piloted dual fueling of natural gas, the com-

bustion peaks followed the trend observed for the ignition delays for different fuel combi-

nations. Higher combustion peak was achieved when the ignition delay was reduced. For

1000 rev/min with diesel piloted combustion of natural gas, the ignition delay has shown

similar trends as shown at 1500 rev/min as the lowest pilot fuel quantity has shown max-

imum ignition delay but there was no significant difference noted between the two higher

pilot fuel settings. In figure 6.2(b), P0,1, P0,2 and P0,3 are the points on the rate of energy

release graph pointing towards the first, second and the third (if any) peaks respectively

for diesel piloted dual fueling of natural gas. The highest peak for the rate of energy release

(indicated by P0,1) for different pilot fuel settings has shifted in proportion to the ignition

delay observed. The two higher pilot fuel settings (n=2,3) have resulted in higher peaks
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(a) Cylinder Pressure for pure RME and three

cases of natural gas combustion with different

RME pilot fuel settings at a BMEP of 0.503

MPa and 1000 rev/min

(b) Rate of energy release for pure RME and

three cases of natural gas combustion with dif-

ferent RME pilot fuel settings at a BMEP of

0.503 MPa and 1000 rev/min

Figure 6.3. Effect of the pilot fuel quantity and type on in-cylinder
pressure 6.3(a) and rate of energy release 6.3(b) for pure RME and
three cases of natural gas combustion with different RME pilot fuel
settings at a BMEP of 0.503 MPa and 1000 rev/min

for the rate of energy release when compared to the lowest pilot fuel setting. Although the

two higher pilot fuel settings exhibit similar peaks (point P0,1) for the rate of release peaks

but the two peaks occur at different crank angles. The first peak for the rate of energy

release for pilot setting (n=2) occurs 8.089◦ CA ATDC whereas for pilot setting (n=3), it

occurs at 6.84◦ CA ATDC. For the lowest pilot fuel setting, the the first peak for the rate

of energy release occurs at 9.39◦ CA ATDC. For the two cases (n=2,3), a relatively longer

ignition delay when compared to the diesel based single fueling has retarded the first peak

(P0,1) for the rate of energy release.

The second peak for the rate of energy release (indicated by P0,2) at 11.96◦ is more

clear when the pilot fuel is set at the lowest BMEP (n=1) whereas it is not very clear for

the higher pilot fuel settings (n=2,3). The third peak (indicated by P0,3) is observed for the
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lowest (n=1) at 27◦ and for the middle (n=2) pilot fuel settings at 24◦ whereas the highest

pilot fuel setting (n=3) shows the trend similar to what is observed with pure diesel in the

latter part of the combustion. The latter peaks in case of relatively lower pilot fuel setting

cases can be attributed to the fact that some of the gaseous does not get oxidized in the

earlier phase of combustion and hence cause these latter peaks.

For RME piloted dual fueling of natural gas at 1000 rev/min as shown in figure 6.3(a),

lower peak pressure was recorded for the lowest pilot fuel setting (n=1) whereas similar

rate of pressure rise and the peak pressures were observed with two of the higher pilot fuel

settings (n=2,3). In figure 6.3(b), P0,4, P0,5 and P0,6 are the points on the rate of energy

release diagram pointing towards the first , second and the third peak (if any) respectively

for diesel piloted dual fueling of natural gas. The first rate of energy release peak for the

three RME piloted dual fueling cases (indicated by P0,4) occurs at 4◦ CA ATDC for the

lowest pilot setting whereas 3.2◦ CA ATDC for the two higher pilot fuel settings (n=2,3).

The second rate of energy release peak (P0,5) occurring at 10.12◦ CA ATDC is more clear

for the lowest pilot fuel setting whereas the two higher pilot fuel setting cases, the second

rate of energy release peak occur at 8.14◦ CA ATDC. The two higher pilot fuel settings

show a noticeable third peak (P0,6)in the latter part of the combustion event (24 ◦ CA

ATDC) which is not observed with the lowest pilot fuel setting case.

6.2.2 Specific NOX

Figure 6.4(a) shows specific NOX emissions for diesel piloted combustion of natural gas

at 1500 rev/min. Figure 6.4(b) shows specific NOX emissions for RME piloted combustion

of natural gas at 1000 rev/min. At 1000 rev/min, apart from the highest load condition, the

diesel piloted natural gas combustion produced minimum NOX when the quantity of the

pilot fuel was set at a minimum BMEP value(n=1). Maximum NOX were produced when

the diesel pilot was set at a BMEP value of 0.251 MPa. A linear increase in specific NOX

with any increment in BMEP was observed for pilot fuel settings of n=2,3 whereas for n=1,
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the specific NOX initially dropped then an increase was observed. At similar speed (1000

rev/min), RME piloted natural gas combustion demonstrated different trends as compared

to the diesel piloted case. Any increase in pilot fuel quantity resulted in lower specific NOX.

With pilot fuel set at the minimum (n=1), both RME as well as diesel based combustion

of natural gas showed similar trend as there was an initial decrease and then a serge was

observed although they differed in magnitude as RME resulted in higher specific NOX at

the minimum pilot fuel setting. For the two higher pilot fuel settings (n=2,3), RME piloted
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Figure 6.4. Effect of pilot fuel quantity and type on specific NOX

emissions at 1000 rev/min (a) and 1500 rev/min (b)

combustion of natural gas produced lower specific NOX as compared to the diesel piloted

natural gas combustion. Lower specific NOX resulted for all case six cases at 1500 rev/min

when copmared to the similar conditions at 1000 rev/min At 1500 rev/min, the diesel based

natural gas dual fueling has shown different trends for specific NOX when compared to the

same fuel settings at 1000 rev/min. The specific NOX were observed increasing as the

quantity of pilot fuel was increased. At minimum pilot fuel setting (n=1) for diesel piloted

natural gas combustion, the specific NOX exhibited similar trend at both speed i.e. an

initial decrease and then an increase in specific NOX. For all other cases at 1500 rev/min,
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the specific NOX increased initially and then stayed constant. An offset proportional to

the quantity of pilot fuel was observed for for NOX from diesel piloted natural gas whereas

RME based natural gas dual fueling produced similar (or slightly different) magnitudes of

specific NOX for the two higher pilot fuel settings (n=2,3). The trends of specific NOX

emissions can be attributed to multi-centered ignition of the dual fuelling. At relatively

lower BMEP values, lower values of specific NOX with lower quantity of pilot fuel can be

attributed to the failure of the pilot fuel to ignite natural gas and air mixture properly. The

increase observed in specific NOX attributed to relatively higher in-cylinder temperature.

The higher in-cylinder temperature can ensure timely evaporation of the pilot fuel and

hence better distribution of the ignition centers across the charge. At lower speeds (1000

rev/min in this case), the lower specific NOX with the highest pilot fuel setting (n=3) can

be attributed to the cooling caused as a result of fuel evaporation. Greater quantity of pilot

fuel results in large number of ignition centres and the cooling effect of the fuel evaporation

is more pronounced at this condition as compared to the lower pilot fuel quantities. The

maximum specific NOX with pilot fuel setting at a medium BMEP suggests that there

is a pilot fuel quantity threshold for specific NOX where these are maximum and there

would be lower specific NOX below or above this threshold. There can be many reasons

for this trend. Some of them have been already presented in this section but there may

be some other factors playing their roles. Both for diesel and RME piloted dual fueling of

natural gas at 1000 rev/min and the highest BMEP values, the specific NOX resulted from

the lowest pilot fuel setting ((n=1) supersedes the specific NOX resulted from the highest

pilot fuel setting. This can be attributed to the subsequent rate of energy release peaks

occurring after the highest peak for the lowest pilot fuel quantity case.

Lower values of specific NOX with RME based natural gas operation when compared

to diesel piloted natural gas operation can be explained on the basis of higher cetane

number of RME as compared to the diesel fuel. Premixed combustion is strongly affected

by ignition delay. Lower cetane number has been reported to result in longer ignition delays
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and hence more time for premixed combustion, leading to higher in-cylinder temperature.

In the pre-mixed combustion phase, fuel and air that have already mixed ignite, causing a

rapid rise in temperature and pressure. This temperature and pressure rise depends upon

the amount of fuel that has already been injected, which is related to the length of the

ignition delay. With shorter ignition delays (related to high cetane number), less fuel is

injected and mixed with air before ignition occurs, thus leading to moderate temperature

and pressure increases. This ignition delay dependence of specific NOX explains the trends

in most of the cases considered here.

Table 6.1. Specific NOX and Specific HC variation in different dual
fuelling cases with different pilot fuels

Case Description Specific NOX Specific HC

D-1-NG-1000 15%↑ 59%↓

D-2-NG-1000 7%↑ 22%↓

D-3-NG-1000 7%↑ 26%↓

RME-1-NG-1000 3.5%↓ 32%↓

RME-2-NG-1000 1.5%↓ 38%↓

RME-3-NG-1000 4%↓ 40%↓

D-1-NG-1500 26%↑ 54%↓

D-2-NG-1500 9%↑ 30%↓

D-3-NG-1500 4.5%↑ 27%↓

RME-1-NG-1500 15%↑ 44%↓

RME-2-NG-1500 6.5%↑ 28%↓

RME-3-NG-1500 1.5%↑ 34%↓
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6.2.3 Specific HC

Figures 6.5(a) and 6.5(b) show specific HC emissions for diesel and RME piloted

combustion of natural gas at 1000 rev/min and 1500 rev/min respectively. For diesel

piloted natural gas combustion at 1000 rev/min, any increase in pilot fuel quantity has

resulted in lower specific HC emissions. The highest load condition where the minimum

pilot fuel setting (n=1) have produced lower specific HC as compared to the middle pilot

fuel setting (n=2)is the only exception to the above mentioned trend. This is consistent with
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Figure 6.5. Effect of pilot fuel quantity and type on specific HC emis-
sions at 1000 rev/min (a) and 1500 rev/min (b)

the trends obtained in specific NOX emissions as the minimum pilot fuel setting produced

higher NOX at the highest load so that it resulted in minimum specific HC emissions at the

same operating conditions. Apart from the lowest pilot fuel setting (n=1), the specific HC

emissions vary in very small range. This suggests that when the pilot fuel is set constant

at a relatively lower value of BMEP, a significant portion of the fuel escapes unburnt as

the pilot fuel fails to provide enough ignition sites to launch natural gas combustion. A

comparable (or even lower) value of specific HC emission at the highest load when the pilot

is set at a minimum BMEP can be attributed to a relatively higher in-cylinder temperature.
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This relatively higher in-cylinder temperature can ensure timely evaporation of the pilot

fuel and hence better distribution of the ignition centers across the charge.

At 1000 rev/min, RME piloted combustion of natural gas has generally produced lower

levels of specific HC emissions when compared to the diesel piloted combustion of natural

gas. The highest load condition is the only exception to this trend where diesel piloted

natural gas combustion has resulted in lower specific HC numbers for similar operating

conditions.

At 1500 rev/min, the specific HC have shown similar trends as observed at 1000

rev/min. The only exception is when RME is used to pilot the natural gas combustion

with pilot fuel set at a minimum BMEP value (n=1). RME-1-NG-1500 case has produced

higher levels of HC at all operating condition when compared to all other five cases. This

can be attributed to poor atomization characteristics of RME which become more evident

at lower pilot fuel setting. When the pilot fuel is set at a minimum BMEP value, there

is more natural gas present in the combustion chamber. As natural gas has higher heat

capacity value, it shall result in a lower temperature charge which can further deteriorate the

atomization problems with RME. The effect is more pronounced at higher speed as there is

less residence time available at higher speeds. With diesel as pilot fuel at 1000 rev/min, the

ignition delay decreased initially as the quantity of pilot fuel was increased and then stayed

constant for any further decrease. On the other hand, at 1500 rev/min, a gradual decrease

in ignition delay was observed when the quantity of pilot fuel was increased. With RME as

a pilot fuel, the ignition delay decreased slightly and then stayed the same as the quantity

of pilot fuel was increased. This trend was exhibited at both speeds. Considering the diesel

piloted natural combustion at the peak load conditions at 1000 rev/min, lower specific

HC emission resulted when the ignition delay was shortened. A shorter ignition delay can

afford the fuel mixture and the initial combustion products to have longer residence time

at temperature, thereby reducing the specific HC emissions. At 1500 rev/min for similar

fuel and operating conditions combination; the ignition delay showed a different trend as

98



it decreased gradually as the quantity of pilot fuel increased. This can be attributed to

greater magnitude of vortices of turbulence at higher engine rev/min helping to achieve

better mixing and an early start of ignition and hence a greater reduction in specific HC

values. Like specific NOX, specific HC emissions from diesel and RME piloted combustion

of natural gas also exhibit the pilot fuel quantity threshold phenomenon. At lower speeds,

the specific HC emissions decrease as the quantity of pilot fuel is increased whereas at

higher speeds, there exists a pilot fuel quantity threshold below or above which the specific

HC emissions increase. Also, at relatively lower values of BMEP, the specific HC emissions

vary significantly and the trend lines converge as BMEP is increased. This confirms that

higher temperatures at higher BMEP values make better use of the pilot fuel.

6.2.4 Specific CO2 and CO

Figures 6.6(a) and 6.6(b) show specific CO2 emissions and figures 6.7(a) and 6.7(b)

show specific CO emissions for diesel and RME piloted combustion of natural gas at 1000

rev/min and 1500 rev/min respectively. While operating at 1000 rev/min, specific CO2

emission showed little variation across all BMEP values and the different fuel combination

cases. The highest CO2 magnitudes were recorded when RME piloted the natural gas

combustion at medium (n=2) pilot fuel setting (RME-2-NG-1000). For all other five cases,

the specific CO2 range was 50 g/MJ. More carbon is being inducted as the BMEP value

increases and it results in higher absolute CO2 numbers. The drop in specific CO2 can

be attributed to the fact that there is more power being delivered at higher BMEP values

which causes a drop in specific CO2 numbers. At 1000 rev/min, maximum specific CO2

emissions were obtained with the highest pilot fuel setting (n=3) followed by the medium

pilot setting (n=2) and then the lowest pilot fuel setting (n=3) respectively.

At 1000 rev/min, RME piloted combustion of natural gas exhibited different order in

which the specific CO2 trend lines appear for the three cases involved when compared to

the diesel piloted three cases of natural gas combustion. The highest specific CO2 numbers

99



150

200

250

ci
fi

c 
C

O
2

 /
 g

/M
J

50

100

0.46 0.48 0.5 0.52 0.54 0.56 0.58

S
p
ec

BMEP / MPa

CO2_D_1_NG_1000 CO2_RME_1_NG_1000

CO2_D_2_NG_1000 CO2_RME_2_NG_1000

CO2_D_3_NG_1000 CO2_RME_3_NG_1000

(a) Specific CO2 for natural gas combustion

with three different diesel pilot and RME pi-

lot fuel settings at 1000 rev/min

150

200

250

ci
fi

c 
C

O
2

 /
 g

/M
J

50

100

0.46 0.48 0.5 0.52 0.54 0.56 0.58

S
p

ec

BMEP / MPa

CO2_D_1_NG_1500 CO2_RME_1_NG_1500

CO2_D_2_NG_1500 CO2_RME_2_NG_1500

CO2_D_3_NG_1500 CO2_RME_3_NG_1500

(b) Specific CO2 for natural gas combustion

with three different diesel pilot and RME pilot

settings at 1500 rev/min

Figure 6.6. Effect of pilot fuel quantity and type on specific CO2 emis-
sions at 1000 rev/min (a) and 1500 rev/min (b)

were obtained at medium pilot fuel setting (n=2) followed by the highest (n=3) and the

lowest pilot fuel setting (n=1) respectively. At 1500 rev/min, the specific CO2 exhibited

similar trends as recorded at 1000 rev/min i.e. a small decrease in CO2 numbers as the

BMEP is increased. The range of the specific CO2 numbers was even smaller, 30 g/MJ

against 113 g/MJ at 1000 rev/min across all six fuel combinations. Interestingly, for RME

piloted combustion of natural gas , the order in which the trend lines of the specific CO2

emissions appear at 1500 rev/min was reversed for the two higher pilot fuel settings (n=2,3)

when compared to what was obtained at 1000 rev/min. For both the diesel as well as RME

piloted cases, the specific CO2 numbers have increased as the quantity of the pilot fuel was

increased. The highest load setting with diesel piloted natural gas combustion was the only

exception to this trend.

At 1000 rev/min, specific CO have shown sharp decrease with any increase in BMEP

when compared to the CO2 trends across all fuel combinations at similar operating condi-
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Figure 6.7. Effect of pilot fuel quantity and type on specific CO emis-
sions at 1000 rev/min (a) and 1500 rev/min (b)

tions.

This can be attributed to the fact that any increase in BMEP while operating at a

constant speed shall result in higher absolute CO2 and lower CO numbers due to higher in-

cylinder temperature and better combustion quality. Absolute numbers for CO emissions

decrease and the power output increases as the BMEP is increased. These two trends

together cause a sharp drop in specific CO emissions. At 1000 rev/min for diesel piloted

combustion of natural gas, the specific CO numbers have increased as the quantity of

pilot was increased. For RME piloted combustion of natural gas, no significant change

has been observed in specific CO emissions as the quantity of the pilot fuel was changed.

Overall lower specific CO numbers were achieved when RME was used as a pilot fuel at

1000 rev/min. At 1500 rev/min, the specific CO emissions have exhibited similar trends

as observed at 1000 rev/min. For both of the pilot fuels, any increase in pilot fuel quantity

has resulted in increased levels of CO emissions. The range of specific CO emissions is very
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small with RME (1.14 g/MJ) as compared to the one obtained with diesel as pilot (2.29

g/MJ).

6.3 RESULTS AND DISCUSSION - HYDROGEN

This section is further divided into two parts. The first part discusses the implications

of the change in the pilot fuel quantity and type on in-cylinder pressure, rate of energy

release and ignition delay. The second part discusses the effect of change in the pilot fuel

quantity and type and engine speed on different emissions.

6.3.1 Ignition Delay and Pressure Data

Figure 6.8 shows the effect of the pilot fuel quantity , type and the engine speed on the

ignition delay of different cases of hydrogen dual fueling piloted by either diesel or RME.

Compared to the respective diesel or RME based single fueling, the diesel and RME piloted

combustion of hydrogen has shown longer ignition delays for all combinations of the pilot

fuel quantity, type and engine speed. When the three diesel piloted hydrogen dual fueling
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cases are compared with each other, the ignition delay was shortened as the quantity of pilot

fuel was increased. Relatively smaller difference was observed in terms of ignition delays

for the two higher pilot fuel settings (n=2,3) at 1500 rev/min. Greater number of ignition

centers when the pilot fuel is set at a higher BMEP (n=2 or 3) value (or when the energy

contribution from the hydrogen is lower) causes the ignition delay to be shortened as more

ignition sites are available to ignite the available amount of hydrogen. This can explain the

difference between different ignition delay values for the different cases especially between

the lowest pilot fuel setting and the two higher settings. Smaller difference between the

higher pilot fuel setting cases can be attributed to smaller variation in ignition energy for

hydrogen.

(a) Cylinder Pressure for pure diesel and three

cases of hydrogen combustion with different

diesel pilot fuel settings at a BMEP of 0.44

MPa and 1000 rev/min

(b) Rate of energy release for pure diesel and

three cases of hydrogen combustion with differ-

ent diesel pilot fuel settings at a BMEP of 0.44

MPa and 1000 rev/min

Figure 6.9. Effect of the pilot fuel quantity and type on in-cylinder
pressure 6.9(a) and rate of energy release 6.9(b) for pure diesel and
three cases of hydrogen with different diesel pilot fuel settings at a
BMEP of 0.44 MPa and 1500 rev/min

Similar ignition delays in case of the two higher pilot fuel settings suggest that if the
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(a) Cylinder Pressure for pure RME and three

cases of hydrogen combustion with different

RME pilot fuel settings at a BMEP of 0.44 MPa

and 1500 rev/min

(b) Rate of energy release for pure RME and

three cases of hydrogen combustion with differ-

ent RME pilot fuel settings at a BMEP of 0.44

MPa and 1500 rev/min

Figure 6.10. Effect of the pilot fuel quantity and type on in-cylinder
pressure 6.10(a) and rate of energy release 6.10(b)for pure RME and
three cases of hydrogen combustion with different RME pilot fuel set-
tings at a BMEP of 0.503 MPa and 1000 rev/min

quantity of pilot fuel is set at a BMEP higher than a certain value, the ignition delay will

not be affected significantly. At 1500 rev/min, the RME piloted dual fueling of natural gas

exhibits trends similar to the diesel piloted dual fueling of the natural gas; shortening of

the ignition delay as the quantity of pilot fuel was increased. At 1000 rev/min, the RME

piloted dual fueling of natural has deviated from the trend observed for the rest of the

combinations. When compared to the highest pilot fuel setting (n=3), the medium pilot

fuel setting (n=2) exhibited relatively shorter ignition delay. This can be attributed to the

poor atomization characteristics of the RME which become more evident at lower speeds

due to relatively lower levels of in-cylinder turbulence.

Figures 6.9(a) and 6.9(b) show the in-cylinder pressure and the corresponding rate of

energy release plotted against the crank angle for pure diesel and the three cases of diesel
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piloted combustion of natural gas at 1000 rev/min.

In figure 6.9(b), the first peak in the rate of energy release diagram for the diesel

piloted dual fueling of natural gas at 1000 rev/min is indicated by point (P0,7) whereas

the points (P0,8) indicates the second peak. When the diesel pilot was set at the minimum

BMEP value (n=1), two very distinct peaks were observed. The first peak in the rate of

energy release diagram for this case occurred at 5.95◦ CA ATDC which was similar to the

diesel based single fueling. There was another very obvious peak observed at 12◦ CA ATDC.

The first peak in the rate of energy release diagram for the two higher diesel pilot settings

(n=2,3) occurred at 3.9◦ CA ATDC. The second peak in the rate of energy release diagram

for these two (n=2,3) cases occurred at 7.5◦ CA ATDC and 9.0◦ CA ATDC respectively.

The medium setting (n=2) of the pilot fuel for the diesel piloted dual fueling of hydrogen

produced higher first as well as the second peaks when compared to the highest pilot

fuel setting. The medium pilot fuel setting for the diesel piloted dual fueling of hydrogen

exhibited the highest first peak when compared to all other diesel piloted dual fueling cases.

At 1500 rev/min when compared to pure diesel base case, all diesel piloted hydrogen

combustion cases have shown shorter ignition delay and higher peak cylinder pressure

and higher rate of pressure rise. Relatively smaller difference was observed in terms of

ignition delays for the two higher pilot fuel settings (n=2,3) but the medium (n=2) pilot

fuel setting case showed the highest peak pressure. The lowest pilot fuel setting, when

the amount of hydrogen was maximum, showed the longest ignition delay but the peak

pressure in this case was comparable to the maximum pressure obtained for the case n=2.

Also the occurrence of the peak pressure for the lowest pilot fuel quantity was delayed

proportional to the ignition delay when compared to the other cases with diesel piloted

combustion of hydrogen. Similar ignition delays but different peak pressures in case of the

two higher pilot fuel settings suggest that if the quantity of pilot fuel is set at a BMEP

higher than a certain value, neither ignition delay will be shortened nor a higher peak

pressure will be achieved. A higher peak pressure with the lowest pilot fuel setting can
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be attributed to different combustion properties of hydrogen as a fuel. Higher flame speed

and shorter quenching distances seem to play vital role as more hydrogen is present inside

the combustion chamber so the combustion can occur near the relatively colder cylinder

walls as well due to short quenching distances. Maximum quantity of hydrogen is inducted

when the pilot fuel is set at the lowest BMEP (n=1). A higher second peak for the rate of

energy release for the lowest pilot fuel setting (n=1) suggests that for the for this particular

setting, the hydrogen is burning in two different phases. In the first phase, it is the diesel-

air mixture which gets oxidized along with a small quantity of hydrogen. In the second

phase, the bulk of hydrogen is burnt.

Figures 6.10(a) and 6.10(b) show the in-cylinder pressure and the corresponding rate

of energy release plotted against the crank angle for pure RME and the three cases of

RME piloted combustion of natural gas at 1500 rev/min. When compared to diesel piloted

combustion of hydrogen at 1000 rev/min, RME piloted combustion of hydrogen at 1500

rev/min exhibit different trends when the pressure traces of the two modes are compared.

The medium pilot fuel quantity setting (n=2) produced the maximum pressure followed by

n=1 and n=3 respectively. The comparable peak pressure for the lowest pilot fuel setting

when compared to the middle pilot fuel setting (n=2) when RME piloted the hydrogen

combustion can be explained on the similar grounds as presented for the similar condition

with diesel piloted hydrogen at 1500 rev/min.

In figure 6.10(b), the first peak is the rate of energy release diagram for the diesel

piloted dual fueling of hydrogen at 1000 rev/min is indicated by point (P0,9) whereas the

point (P0,10) indicates the second peak for the rate of energy release. The first peak for

the rate of energy release is the highest for the medium pilot fuel setting (n=2) when

compared to all other RME piloted hydrogen dual fueling cases hydrogen. It occurs at 5.7◦

CA ATDC. As the RME pilot fuel quantity was increased, the occurrence of the first rate

of energy release peak is delayed. It occurs at 4.5◦ CA ATDC for the highest pilot fuel

quantity whereas at 6.5◦ CA ATDC, the lowest pilot fuel setting shows a relatively more
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clear second peak at 10.67◦ CA ATDC when compared to all other cases of RME piloted

dual fueling of hydrogen.

6.3.2 Specific NOX

Figures 6.11(a) and 6.11(b) show specific NoX emissions for diesel and RME piloted

combustion of natural gas at 1500 rev/min and 1000 rev/min respectively. At 1000 rev/min

when RME pilots hydrogen combustion figure 6.11(a), there is clear decrease in specific

NOX numbers as the quantity of pilot fuel is increased. For a particular pilot fuels setting,

any increase in BMEP resulted in higher specific NOX for all cases. The three cases with

RME as pilot fuel resulted in comparable levels of specific NOX when compared to the cases

with diesel as pilot fuel at similar conditions. For the lowest pilot fuel setting (n=1), higher

rate of increase in NOX was recorded when compared to relative higher pilot fuel settings

(n=2,3). This was held for both RME as well as diesel piloted hydrogen combustion cases

at 1000 rev/min. Higher specific NOX at higher BMEP values can be attributed to higher

in-cylinder temperature as the engine is running hotter due to more fuel being injected to

meet the higher power requirement. The larger gradient of specific NOX at lowest pilot

fuel setting (n=1) could be a result of more hydrogen being inducted at these conditions.

Maximum ignition delay was observed when the pilot fuel quantity was set at the minimum

so more pilot fuel was injected during this delay period and results in higher temperature

and pressure. With longer residence time more fuel is injected and mixed with air before

ignition occurs and this explains the higher in-cylinder temperature. Increasing the quantity

of pilot fuel has lowered the ignition delay. The specific NOX seem to be more affected by

the quantity of hydrogen being inducted at a particular condition. Lower ignition energy

and short quenching distances for hydrogen combustion suggest that it may not depend

strongly upon the initial source of ignition to achieve sustainable combustion. The flame

travels faster through hydrogen and hence the initial source of ignition becomes irrelevant

very quickly. This explains the higher specific NOX for lower pilot fuel setting case when
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the hydrogen quantity was maximum.
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Figure 6.11. Effect of pilot fuel quantity and type on specific NOX

emissions at 1000 rev/min (a) and 1500 rev/min (b)

At 1500 rev/min, the specific NOX produced by diesel piloted hydrogen combustion

exhibits different trends to what is observed at lower speed (1000 rev/min in this case).

There is a complete reversal of the orders of the magnitude of the specific NOX for different

cases at these two conditions. At 1500 rev/min, the minimum pilot fuel quantity (n=1)

has produced the lowest specific NOX and these emissions have increased as the quantity

of pilot fuel is increased. This trend holds good for the three diesel based cases apart from

the highest BMEP value where the two higher pilot fuel settings swap their trends. For

the lowest pilot fuel setting, specific NOX are not only lower in magnitude but also vary

differently with any change in the BMEP value when compared to the trends observed at

1000 rev/min. Increase in BMEP value has caused the diesel piloted hydrogen specific NOX

to decrease slightly. For the two higher pilot fuel settings, the specific NOX exhibit similar

trend as observed at 1000 rev/min, although the emissions are lower in magnitude when

compared diesel piloted hydrogen combustion NOX at 1000 rev/min. A larger ignition

108



delay is observed with the lowest pilot fuel setting as was the case at 1000 rev/min, but

the higher engine speed seems to counter the effect of longer ignition delay. With longer

ignition delays, more fuel is supplied during the delay period and causes higher combustion

temperature and pressure. At higher speeds the effective residence time is reduced resulting

in relatively milder combustion pressure and temperature. The pressure and rate of energy

release curves for RME piloted combustion of hydrogen at 1500 rev/min (figures 6.10(a) and

6.10(b)) seem to support this argument. In diesel piloted combustion of hydrogen where

the lowest pilot fuel setting (n=1) showed higher maximum in-cylinder pressure and a very

strong second rate of energy release peak (point P0,8 in figure 6.9(b) when compared to the

two higher pilot fuel setting cases (n=2,3), in contrast, with RME piloted combustion of

hydrogen at 1500 rev/min, all three pilot fuel settings show similar peak cylinder pressure

and the second rate of energy release peak for the lowest pilot fuel quantity is also less strong

(point P0,10 in figure 6.10(b). Hydrogen combustion characteristics ( shorter quenching

distances, faster flame speeds and smaller variation in ignition energy that helped the

lowest pilot fuel settings case at 1000 rev/min exhibit maximum peak cylinder pressure )

seem to be downplayed by this shorter residence at higher engine rev/min. Although the

turbulence levels are increased at higher engine rev/min, but the smaller residence time at

these conditions seems to dominate combustion phenomenon. The variation in specific NOX

with different pilot fuel setting cases can also be explained on this basis. When the ignition

is delayed and overall residence is shortened, it results in relatively lower combustion peak

pressure and temperature and hence lower specific NOX. For the lowest pilot fuel setting,

RME piloted combustion of hydrogen has produced higher NOX as compared to the diesel

piloted combustion of hydrogen. The trend is reversed for the highest pilot fuel setting. For

the medium pilot fuel setting , the specific NOX are comparable for both of the cases. This

can be attributed to relatively poor injection and atomization characteristics of RME, which

become more evident as the combustible mixture become relatively more RME-enriched

and a shorter residence time.
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6.3.3 Specific HC

Figures 6.12(a) and 6.12(b) show specific HC emissions for diesel and RME piloted

combustion of natural gas at 1000 rev/min and 1500 rev/min respectively. While operating

at 1000 rev/min, the diesel and RME piloted hydrogen combustion resulted in sharp de-

crease in specific HC emissions before an increase is observed at the highest BMEP. For the

lowest pilot fuel setting (n=1), RME and diesel piloted combustion of hydrogen produced

similar trends with the diesel piloted case producing higher specific HC numbers for range

of BMEP in investigation. The three diesel cases have produced comparable specific HC

emissions apart from the BMEP value where the lowest pilot fuel setting has increased. For

the lowest pilot fuel setting, the increase in specific HC numbers is consistent with a drop in

specific NOX at the same condition for this case. This can be attributed to some part of the

pilot fuel escaping the combustion event due to lack of oxygen and lower turbulence levels

in the combustion chamber at higher BMEP values. Another valid observation would be

to consider the range of specific HC emissions for the diesel and RME piloted combustion.

It is 0.1g/MJ for diesel and 0.22 g/MJ for RME piloted combustion H2 across all values of

BMEP. Generally lower values of specific HC emissions with lower pilot fuel setting can be

attributed to the fact that there are no specific HC emissions from H2 combustion. These

specific HC emissions result from the combustion of the pilot fuel and hence are propor-

tional to the pilot fuel quantity. At 1500 rev/min the specific HC emissions are decreased

when there is any increase in BMEP apart from the lowest pilot fuel setting with diesel

piloted hydrogen combustion. For diesel piloted hydrogen combustion cases, the specific

HC emissions decreased as the quantity of pilot fuel was increased. The reasons presented

to explain higher specific NOX with higher pilot fuel setting hold for lower specific HC

emissions with higher pilot fuel setting. As observed at 1000 rev/min, the diesel piloted

combustion of hydrogen produce higher specific HC emissions when compared RME piloted

combustion of hydrogen.
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Figure 6.12. Effect of pilot fuel quantity and type on specific HC emis-
sions at 1000 rev/min (a) and 1500 rev/min (b)

6.3.4 Specific CO2 and CO

Figures 6.13(a) and 6.13(b) show specific CO2 emissions and figures 6.14(a) and 6.14(b)

show specific CO emissions for diesel and RME piloted combustion of hydrogen at 1000

rev/min and 1500 rev/min respectively. For hydrogen based dual fueling cases piloted by

either diesel or RME, the quantity of pilot fuel is critical to specific HC, CO and CO2

emissions as there is no extra carbon going into the combustion chamber when hydrogen

is inducted after the quantity of pilot is fixed at a certain BMEP value. At 1000 rev/min,

any increase in BMEP has resulted in lower specific CO2. This can be attributed to

better combustion of the pilot fuel being injected at higher BMEP values as the engine is

operating at higher temperature. Also, the amount of carbon going into the combustion

chamber is constant at the BMEP where the pilot fuel quantity is fixed, but the power

produced by the engine is increasing as the BMEP is increased. The specific CO2 produced
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by RME piloted combustion of hydrogen are comparable to what is obtained with diesel

piloted combustion of hydrogen at similar conditions. The specific CO2 offset observed

for different pilot fuel quantity cases is proportional to the quantity of the pilot fuel and

this holds good for both of the pilot fuels. At 1500 rev/min, the specific CO2 trends seem

similar to what is observed at 1000 rev/min although a bit less linear with any change in

BMEP values. Higher specific CO2 were as observed the quantity of pilot fuel was set at a

relatively higher BMEP value. This trend can be explained on similar grounds as presented

for different cases at 1000 rev/min. At 1000 rev/min, the levels of specific CO2 for RME

case description n1 n2 n3

Diesel-H2-1000 0.4 1.45 1.23

Diesel-H2-1500 0.836 1.77 3.91

RME-H2 − 1000 3.4 6.23 6.29

RME-H2 − 1500 4.11 5.95 5.43

Table 6.2. Range of specific CO emissions /g/MJ from diesel and RME
piloted hydrogen dual fueling for different pilot fuel settings at two
different engine speeds

piloted combustion of hydrogen were comparable to diesel piloted combustion of hydrogen

but RME piloted cases have produced lower specific CO2 when compared to diesel piloted

respective cases at 1500 rev/min. The Lower carbon to hydrogen ratio of RME when

compared to diesel seems to become more evident at higher engine rev/min. Like specific

CO2 emissions, specific CO emissions are lowered as BMEP is increased and this can be

attributed to better combustion and the higher power produced at higher BMEP values.

Unlike the specific CO2 emissions where comparable levels of the emissions were obtained

for both diesel and RME piloted combustion of hydrogen, the specific CO emissions form

diesel and RME piloted hydrogen combustion have different regions of occurrence on the

graph of specific CO plotted against BMEP. Although the specific CO emissions increased
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Figure 6.13. Effect of pilot fuel quantity and type on specific CO2

emissions at 1000 rev/min (a) and 1500 rev/min (b)

as the quantity of pilot fuel was increased. The increase in specific CO emissions is not

proportional to the quantity of the pilot fuel which was a case with specific CO2 emissions

at similar conditions. The specific CO emissions do not seem to change for a certain pilot

fuel setting as the BMEP value is changed. The range of specific CO emissions for diesel

piloted hydrogen combustion for different pilot fuel settings has been presented in a two way

table 6.3.4. For all three cases of diesel piloted dual fueling of hydrogen, the variation in

specific CO emissions is small. The higher range of specific CO emissions for RME piloted

dual fueling of hydrogen can be attributed to RME’s poor atomization characteristics.

At 1500 rev/min, specific CO emissions were lowered when there was any increase

in BMEP. This trend is similar to what is obtained at 1000 rev/min but higher levels of

the specific CO emissions were obtained at 1500 rev/min for diesel piloted combustion
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Figure 6.14. Effect of pilot fuel quantity and type on specific CO emis-
sions at 1000 rev/min (a) and 1500 rev/min (b)

of hydrogen. Also, the specific CO emissions from diesel piloted hydrogen combustion

for different pilot fuel settings are no more concentrated to a specific region as observed at

1000 rev/min and the highest pilot fuel setting with diesel has yielded specific CO emissions

comparable to what is obtained with different pilot fuel settings with RME. Higher range

of specific CO emissions for the highest pilot fueling setting for diesel piloted hydrogen

combustion can be attributed to the fact that more pilot fuel is being injected and the

residence time is reduced due to higher engine speed.

6.4 CHAPTER SUMMARY

Natural gas and hydrogen have been extensively tested in dual fuel mode in a com-

pression ignition engine. A high cetane number liquid fuel (mostly diesel or a biodiesel) is

used as an initial source of ignition for the two gaseous fuels which are hard to ignite under
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normal CI conditions. Many studies conclude that the emissions especially NOX resulting

from these dual fueling cases are expected to form in the region around the pilot spray

where high temperatures exist and the equivalence ratio is close to stoichiometric but the

effect of changing the pilot fuel quantity has been hardly reported. This study investigates

the effect of changing pilot fuel quantity and type and assess the effect of this change on

various combustion and emission parameters. Diesel and RME have been used as pilot

fuels for both the natural gas as well as hydrogen and three different pilot fuel settings

have been employed for each of the gaseous fuels. The effect of using a different pilot fuel

quantity of diesel and RME to achieve the same BMEP for the two gaseous fuel has been

analysed and compared. The study was conducted at two engine speeds to assess the effect

of engine speed variation on different combustion and emissions parameters. Dual fueling of

natural gas and hydrogen exhibit an increased ignition delay when compared to the ignition

delay exhibited by the pilot fuel at similar operating conditions. For dual fueling cases, the

ignition delay is reduced as the quantity of pilot fuel is increased. For both diesel as well

as RME piloted combustion of natural gas at higher speeds, the specific NOX have been

generally found proportional to the quantity of pilot fuel. At lower speeds, there exists a

pilot fuel quantity threshold where maximum specific NOX are produced and any pilot fuel

setting below or above the threshold shall result in lower specific NOX. For diesel as well as

RME piloted hydrogen combustion, the ignition delay is shortened as the quantity of pilot

fuel increased but the peak cylinder pressure does not seem to be a very strong function of

this ignition delay in hydrogen dual fueling as similar peak pressure is achieved even when

the pilot fuel is set at a minimum BMEP.
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CHAPTER 7

COMPUTATIONAL PREDICTION OF IN-CYLINDER PRESSURE, RATE

OF ENERGY RELEASE AND ENGINE EMISSIONS

7.0.1 Finite Rate Chemistry and Unsteady Flamelet Approaches

The finite rate chemistry approach computes the chemical source term using Arhenius

expressions. It ignores the effects of turbulence fluctuations. The model is exact for laminar

flames but is generally applied to the situations where there is small chemistry - turbulence

interactions. The net source of chemical species due to reaction is computed as the sum of

the Arrhenius reaction sources over all the reactions that the species participate in [126].

The unsteady flamelet approach achieves significant reduction in calculation time when

compared to the finite rate chemistry approach. This model solves the flamelet species and

energy equations simultaneously with flow equation. The flamelet equations are advanced

for a fractional step using properties from the flow, and then the flow is advanced for the

same fractional time-step using properties from the flamelet [126]. The initial flamelet

distribution is mixed but unburnt. The volume-averaged scalar dissipation, pressure, tem-

peratures of the fuel and oxidizer are passed from the flow solver to the flamelet solver

for the fractional time step solver. The rise in flamelet temperature due to compression

leads towards ignition. After the flamelet equations have been advanced for the fractional

time-step, the PDF table is created. Using the properties of this table, the CFD flow field

is then advanced for the same fractional time-step [126].

7.0.2 PDF and ISAT

Being highly turbulent in nature, the combustion in IC engines is governed by Navier

Stokes equations. Different techniques are used to solve these Navier Stokes equations as

the direct solution of these equations computationally expensive. Reynolds averaging of

these equations is one way to solve these equations. For turbulent chemistry in IC engines,
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the Reynolds averaging approach results in two unknown terms for turbulent scalar flux and

mean reaction rate. ANSYS FLUENT uses gradient diffusion to model turbulent scalar flux

and treats turbulent convection as enhanced diffusion. Laminar, Eddy Dissipation Concept

(EDC) finite rate chemistry models are used to model the mean reaction rate [126].

A transport equation for single-point, joint Probability Density Function (PDF) can

alternatively be derived instead of Reynolds averaging of the species and energy equations.

This PDF represents the fraction of time that the fluid spends at each temperature and

pressure and the fraction of time that each species is present. For N species the PDF has

N+2 dimensions (N arises due to the number of species and +2 arises from the temperature

and pressure). Based on Pope’s work [127], the following transport equation for PDF has

been derived [126].

∂

∂t
(ρP ) +

∂

∂xi

(ρuiP ) +
∂

∂Ψk

(ρSkP )

= −
∂

∂xi

[ρ〈u
′′

|Ψ〉P ] +
∂

∂Ψk

[〈
1

ρ

∂Ji,k

∂xi

〉P ]

(7.1)

Where ρ is density, P and ui are Favre averaged PDF composition and mean fluid velocity,

Ψ and Sk are the composition space vector and rate of reaction for species k respectively.

u
′′

and Ji,k are vectors representing fluctuation in fluid velocity and molecular diffusion flux

respectively. The two terms on the right hand side involves expectation and conditional

probability and can be summarized in the following analogy: 〈 X | Y 〉 represents the

expectation of X occurring provided that Y has occurred. The three terms on the right

hand side of the equation 7.1 represent unsteady rate of change of PDF, change of PDF due

to convection arising from the mean velocity field and the change of PDF due to chemical

reactions. All the terms are closed and hence do not require any modeling. The closure of

this heavily non linear term representing chemical reactions is a great advantage. Changes

in PDF due to turbulent scalar flux and molecular diffusion are represented by the terms

on the right hand side of the equation 7.1. The two terms on right hand side are not closed
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and hence require modeling.

The composition vector φ which is a function of mass fraction of different species,

temperature and pressure can be expressed as follows

φ = (Y1, Y2, Y3....YN, T, p) (7.2)

where YN is the mass fraction of the nth species. Integrating the reaction source term

through reaction fraction step results in following equation.

φ1 = φ0 +

dt
∫

0

Sdt (7.3)

where S is the chemical source term. Some chemical reactions are fast and occur over a

time scale of 10−10 seconds whereas other reactions may be considered slow and occur over

a time scale of 10−3 seconds. The difference in these time scales of results in numerical

stiffness. Direct or pre-integration [128, 129] of chemical results are others options. An

earlier study [130] in the group has used pre-integration approach to map the combustion

response in IC engines. This study used SENKIN, a sub-program in CHEMKIN-II to cal-

culate the detailed chemical kinetic reactions of air/fuel mixtures at different temperatures,

pressure and compositions. These calculations were done prior to the engine simulations.

The reaction results were decoupled from their chemical time scales (order of about 10−10)

and then integrated and saved in physical time scale (order of about 105) in a database file.

The reactions results of different initial conditions (temperature, pressure and composition)

are stored in different zones. The zones were indexed using their respective reaction con-

ditions. These reaction results were retrieved from this database file when needed during

the simulation. It took 29 days to generate the database file.

For a simulation containing 40,000 cells and 15 particles per cell, if the convergence

is achieved in 1500 iterations then 108 stiff ordinary differential equations are required

to be solved. If each integration is done in a few milli seconds, the solution becomes time

expensive. Theoretically, the pre-tabulation of chemical results can help to avoid integration
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via lookup tables but practically the scheme has many pitfalls. Any table constructed in

this manner would have N+3 dimensions, where N stands for the number of species and 3

is for pressure, temperature and time. If each dimension has X points, the total number of

data points will be XN+3. For 10 points in each direction and 10 species , the table would

have 1013 data entries. Another problem with this pre-tabulation is that it stores data on

some reactions that are at unrealistic conditions, i.e. a data entry for OH radical at 300K.

ISAT is reported to be a powerful tool to integrate the realistic chemistry into multi-

dimensional flows in an accelerated way [126]. The simulation starts with an empty ISAT

table. As a first step, direct integration is performed by using ODE solver to integrate

Eq. 7.3. This creates the first entry into the ISAT table. The first entry in the table

consists of the initial composition (φ0), the mapping (φ1), the mapping gradient matrix

(∂φ0/∂φ1) and a hyper ellipsoid of accuracy. The ellipsoid of accuracy is the elliptical

space around a table point φ0 where the linear approximation to the mapping is accurate

to the specified tolerance [126]. The mapping for the next reaction φ1
q can be calculated as

follows

φ1
q = φ1 + (∂φ0/∂φ1)(φ0

q − φ0) (7.4)

φ0
q is the initial composition vector for the second reaction and q stands for query. Whenever

a query is raised, the table is linearly interpolated using the mapping gradient. If the new

query φ1
q is within the ellipsoid of accuracy, the linear interpolation is sufficiently accurate

and mapping is retrieved. If the new query is φ1
q is out side the ellipsoid of accuracy, a

direct integration is performed and the mapping error is calculated. The mapping error is

compared against the error tolerance. If the mapping error < error tolerance, ellipsoid of

accuracy is grown so as to include φ1
q . If the mapping error > error tolerance, a new entry

is added into the table. The ISAT table is structured as leaves in a binary tree. For each

new query φ0
q , the already constructed ISAT table is traversed to identify which leaf has

composition φ0 closer to the composition of the new query.
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7.1 COMPUTATIONAL MODELS

A 90◦ sector mesh is used to take advantage of the symmetry of the four equally spaced

injector nozzle holes. ICEM-CFD, a state of the art mesh generation package, was used to

generate the mesh. With piston at the bottom dead center (BDC), the mesh consists of

26788 cells. The mesh is moved from BDC to the crank angle where intake valve closes.

This is done through the dynamic mesh utility.

7.1.1 Numerical Scheme and Selection of Models

Unsteady flamlet model (UFM) has been used to predict in-cylinder pressure, the rate

of heat release and different emissions. Two different spray breakup models have been used

in the UFM approach; WAVE breakup model and KHRT. Three different values of each

breakup constant were used for the parametric study conducted to assess the effect of the

breakup constants on ignition delay, rate of pressure rise and the maximum in-cylinder

pressure. The optimized set of breakup constants were selected and used in FRC approach

to simulate the in-cylinder pressure and rate of heat release. The FRC approach uses a stiff

chemistry solver with long computational times. To overcome this problem the volumetric

reactions and the species that form during these reactions are switched off as no reaction

can take place before the start of injection. During this time, only flow, turbulence, fuel

(residuals), O2, CO2 and H2O equations are solved. All other reactions are switched off.

A bigger time step is used during compression of the in-cylinder mixture. When injection

starts, the time step is reduced to 0.1◦ CA for injection and combustion events. All reactions

are switched on. The different physical aspects of the fluid are modelled as follows:

• Turbulence: RNG k-ε has been used. It takes into account swirling flow. Its compu-

tational cost is lower than LES model.

• Discrete Phase: Langrangian approach has been used to track individual droplets. It

requires lower computational resource and simulation runtime.
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• Primary breakup: Solid cone injection type has been used due to 3-D nature of the

computational domain. It provides general shape of the spray.

• Secondary breakup model: Both WAVE and KHRT breakup models have been uti-

lized as described in the following section.

• Droplet deformation: Dynamic drag model has been used due to its ability to capture

droplet deformation due to aerodynamic forces.

• Droplet collision and coalescence: Droplet collision and coalescence models have been

been considered. These models capture head-on collision, side collision and multi-

body collision and coalescence. If these models are not used, the prediction of particle

breakup due to collision is not captured.

• Wall-film: This model is used to predict the formation of thin fuel film at contact

regions. This model takes into account the particle splashing, convective heat transfer

from wall to fuel film and the evaporation of the fuel film.

• NOX: Extended Zeldovich mechanism has been used to model the formation of NOX.

Thermal and prompt NOX have been predicted. The effect of turbulence on the

formation of NOX has been considered. Temporal fluctuation of temperature and

species concentration result from the turbulence.
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Figure 7.1. Computational Mesh used in the study
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Figure 7.2. General numerical scheme used in the study
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Figure 7.3. Numerical scheme used in finite rate chemistry approach to
reduce computational time
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7.1.2 Initial and Boundary Conditions

The Table 7.1 summarizes the initial and boundary conditions used in the simulations.

Experimentally obtained values of temperature and pressure have used to initialized the

solution at the time when the inlet valve closes and the simulation starts.

Table 7.1. Initial and boundary conditions used in the simulation

Sr. No Initial or boundary condition Value

1 Start crank angle -1400ATDC

2 Stop crank angle 1300ATDC

3 Time step during compression stroke 0.50 CA

4 Time step during injection, ignition and combustion 0.10 CA

5 Temperature of cylinder wall 545 K

6 Temperature of cylinder cylinder head 610 K

7 Temperature of cylinder piston 650 K

8 Initial pressure 0.16 MPa

9 Fuel inlet temperature 370 K

10 Pressure discretization scheme Standard

11 Turbulent dissipation rate discretization scheme second order upwind

12 Density for diesel 840 kg/m3

13 Saturation vapour pressure schem piecewise linear

14 Droplet surface tension calculation piecewise polynomial
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7.1.3 Parametric Study

Three values (10, 25 and 50) of the breakup model constant B1 are used. Three values

(10, 30 and 50) of the KHRT breakup model constant C3 are used. When unsteady flamlet

model (UFM ) uses WAVE model for the secondary break, the effect of variation in B1 is

significant. Ignition, rate of pressure rise as well the maximum in-cylinder pressure are all

affected by any change in this breakup constant. As the value of this breakup constant is

increased, ignition is slightly delayed and a higher rate of pressure rise as well as higher peak

in-cylinder pressures are observed. The minimum value of B1 produces the best agreement

with the experimental data. Theoretically, a higher value of B1 shall reduce the breakup

and hence increase the penetration length. On the other hand, a smaller value of B1 results

in increased spray atomisation. The increased spray atomisation results in better fuel/air

mixing. Relatively shorter ignition delay for the two lower values of the breakup constant

B1 and a longer ignition delay when B1 was set at 50 can be explained on this basis.

All three cases of UFM with different values of B1 have captured the ignition delay

trend. The peak pressure occurs at the same crank angle position for all three cases. This

can explain the higher rate of pressure rise when the ignition delay is maximum at B1=50.

With shorter breakup length, the fuel is atomised and combustion commences earlier but

the dispersion of the fuel may not cover the whole volume of high temperature air available

at that particular crank angle (reduced air utilisation). With longer breakup length, the

fuel atomisation and hence ignition is delayed but air utilisation is improved. Hence a larger

proportion of the fuel is consumed at the same time leading to higher rate of pressure rise

and hence increased heat release rate. When UFM uses KHRT model to simulate the

secondary breakup model, a very good agreement is noted between the experimental and

the computational results. The effect of change in C3 on ignition delay, rate of pressure rise

and the peak in-cylinder pressure is less pronounced when compared to the effect of change

in WAVE breakup model constant B1. For the two smaller values of C3, no difference was

observed in terms of ignition delay, rate of pressure rise and the peak in-cylinder pressure.
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When C3 was set a very higher number, smaller rate of pressure rise and lower peak in-

cylinder pressure were obtained. According to the model, the breakup will only occur if

the wavelength of the wave growing on the surface of the liquid droplet is smaller than the

droplet diameter. A larger value of C3 shall reduce the breakup and result in larger droplet

diameter. This can explain the smaller rate of pressure rise with increasing value of C3.

Larger diameter droplets shall take longer to evaporate and hence result in slower rate of

pressure rise. For the largest C3 value, the pressure drops more rapidly in the expansion

stroke of the cycle.

7.1.4 In-Cylinder Pressure and Rate of Energy Release

Figures. 7.4 and 7.5 show computationally predicted in-cylinder pressure using UFM

approach utilizing the WAVE and KHRT breakup models respectively. An overall better

agreement is achieved with UFM approach when KHRT breakup model is used. Figures. 7.6

and 7.7 show computationally predicted rate of energy release using UFM approach utilizing

the WAVE and KHRT breakup models respectively. From Figures 7.6 and 7.7, it is clear

that the experimental rate of energy release rises first compared to the computational trend

line which reflects that the model does not predict the ignition behaviour well but the start

of the main combustion event is well predicted. This may be due to limited knowledge of

the injection mass profile, differences between fuel surrogate and the real diesel, cavitation

in the injector, pressure changes in the injector, fuel residuals and injector dribble. With

Chosen value of B1 Peak Combustion Pressure/ MPa

10 6.085

25 6.261

50 6.47

Table 7.2. Effect of Wave breakup constant B1 on peak combustion pressure
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UFM, two rate of energy release peaks are observed. The first predicted rate of energy

release peak occurs 1◦CA before the corresponding peak for the experimentally obtained

rate of energy release curve. All predicted results produced higher second rate of energy

release peak when compared to the experimental results. For the different values of breakup

constants tested within the different models used, B1 = 10 (WAVE model) and C3 = 30

(KHRT model) give better prediction of in-cylinder pressures and the rate of energy release.

Hence these two values have been chosen to be used for the FRC model.

Figure 7.4. Comparison of In-cylinder pressure for different values of
breakup constant B1 using wave breakup model

Figures 7.8 and 7.9 show computationally predicted in-cylinder pressure and rate of

energy release by using FRC approach and utilizing the WAVE (B1 = 10) and KHRT ( C3

= 30 ) breakup models respectively. The FRC model does not show as close agreement to

the experimental data as was observed with UFM. The model fails to simulate the start of

the main combustion event and also produces higher peak pressure for both spray models.

When FRC approach utilizes WAVE breakup model, the start of the combustion is further

delayed and the in-cylinder peak pressure is also higher compared to the results obtained

using the KHRT model.
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Figure 7.5. Comparison of In-cylinder pressure for different values of
breakup constant C3 using KHRT breakup model

Figure 7.6. Comparison of rate of energy release for different values of
breakup constant B1 using wave breakup model
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Figure 7.7. Comparison of rate of energy release for different values of
breakup constant C3 using KHRT breakup model

Figure 7.8. Comparison of In-cylinder pressure for wave breakup model
(B1 = 10 ) and KHRT breakup model ( C3 = 30 ) using using finite
rate chemistry approach
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Figure 7.9. Comparison of rate of energy release for wave breakup
model (B1 = 10 ) and KHRT breakup model ( C3 = 30 ) using using
finite rate chemistry approach
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7.1.5 Prediction of Emissions

Figures 7.10, 7.11 and 7.12 show comparison of experimentally and numerically ob-

tained emissions of specific NOX, CO2 and CO respectively.
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Figure 7.10. Comparison of experimentally and numerically obtained
specific NOX emissions
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Figure 7.11. Comparison of experimentally and numerically obtained
specific CO2 emissions

Of all combinations of combustion and spray models tried with different breakup con-

stants, the UFM produces the best estimate of the in-cylinder pressure and the rate of

energy release when KHRT spray model with a breakup constant (C3) set at 30 is used.

Due to this reason this combination has been chosen to predict three of the in-cylinder
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Figure 7.12. Comparison of experimentally and numerically obtained
specific CO emissions

emissions. The computational results for three emissions were lower than the levels col-

lected experimentally but the UFM approach has captured the trends. The agreement

between the computational and the experimental results improved as the equivalence ra-

tio was increased. The computationally predicted specific NOX was 20% lower than the

experimentally obtained values at an equivalence ratio of 0.5. The agreement between the

computationally and experimentally obtained specific NOX was improved and lie within

10% of each other with an equivalence ratio of 0.68. The agreement between the compu-

tationally and experimentally obtained specific CO2 emissions range between 18% at the

lowest equivalence ratio to 8% at the highest equivalence ratio. The CO emissions were

the least well predicted. The agreement between the computationally and experimentally

obtained specific CO is 25%, 7% and 12% at the three equivalence ratios tested.
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Equivalence ratio Type of emissions %ge difference in prediction

0.50 NOX -20

0.55 NOX -13

0.68 NOX -9.5

0.50 CO2 -18

0.55 CO2 -11

0.68 CO2 -8

0.50 CO -25

0.55 CO -7

0.68 CO -12

Table 7.3. Percentage variation in the predicted emissions when com-
pared to the experimental data across three different equivalence ratios
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach
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7.1.6 Contours of O2 Emissions

Figures 7.13 to 7.19 show the contours of O2 mass fraction from -9◦ ATDC to

18◦ATDC.

Figure 7.13. Contours of O2 from -9◦ATDC to -6◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach

Figure 7.14. Contours of O2 from -5◦ATDC to -2◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach
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Figure 7.15. Contours of O2 from -1◦ATDC to 2◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach

Figure 7.16. Contours of O2 from 3◦ATDC to 6◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach
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Figure 7.17. Contours of O2 from 7◦ATDC to 10◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach

Figure 7.18. Contours of O2 from 11◦ATDC to 14◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach
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Figure 7.19. Contours of O2 from 15◦ATDC to 18◦ATDC using KHRT
breakup model ( C3 = 30 ) and unsteady flamlet approach
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7.1.7 Contours of Mass Averaged In-cylinder Temperature

Figures 7.20 to 7.24 show the contours of mass averaged static temperature from -

6◦ATDC to 10◦ATDC. These mass average temperature contours along with the contours

of oxygen can help to inerprete the contours of NOX .

Figure 7.20. Contours of mass averaged static temperature at -6◦ATDC
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach

Figure 7.21. Contours of mass averaged static temperature at -2◦ATDC
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach
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Figure 7.22. Contours of mass averaged static temperature at 2◦ATDC
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach

Figure 7.23. Contours of mass averaged static temperature at 6◦ATDC
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach
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Figure 7.24. Contours of mass averaged static temperature at 10◦ATDC
using KHRT breakup model ( C3 = 30 ) and unsteady flamlet approach
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7.1.8 Contours of NO Mass Fraction

Figures 7.25 to 7.29 show the contours of no mass fraction from -6◦ATDC to 10◦ATDC.

Figure 7.25. Contours of NO at -6◦ATDC using KHRT breakup model
( C3 = 30 ) and unsteady flamlet approach
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Figure 7.26. Contours of NO at -2◦ATDC using KHRT breakup model
( C3 = 30 ) and unsteady flamlet approach

Figure 7.27. Contours of NO at 2◦ATDC using KHRT breakup model
( C3 = 30 ) and unsteady flamlet approach
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Figure 7.28. Contours of NO at 6◦ATDC using KHRT breakup model
( C3 = 30 ) and unsteady flamlet approach

Figure 7.29. Contours of NO at 10◦ATDC using KHRT breakup model
( C3 = 30 ) and unsteady flamlet approach
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7.2 CHAPTER SUMMARY

Computational fluid dynamics (CFD) has recently been extensively employed to study

different features of internal combustion engines. Modeling diesel combustion under CI en-

vironment remains at the center stage of these CFD studies. This study uses combinations

of different spray and combustion models to predict in-cylinder pressure and rate of heat

release. The approach employs two combustion models: Unsteady Flamelet Model (UFM)

with PDF method and; Finite Rate Chemistry (FRC) with stiff chemistry solver imple-

mented through In-Situ Adaptive Tabulation (ISAT) algorithm. The two spray models

used were WAVE and Kelvin Helmohltz Rayleigh Taylor (KHRT) models. B1 and C3 are

the adjustable constants for the WAVE and KHRT breakup models respectively. Three

different values of each of these two breakup model constants were used in the Unsteady

Flamelet approach. B1 = 10 and C3 = 30 gives better agreement with the experimental

in-cylinder pressure data and hence these values were chosen to be used in FRC model.

The unsteady flamelet model coupled with KHRT spray model have been used to predict

NOX, CO and CO2 emissions. The model captures the emissions trends well. In-cylinder

contours of O2, NO and mass averaged static temperature have also been presented. A

chemical mechanism of n-heptane with 29 species and 52 reactions has been used.
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CHAPTER 8

CONCLSUIONS AND FUTURE WORK

8.1 CONCLUSIONS

Following conclusions can be drawn from the discussion presented above. When the

performance and emissions maps of diesel and RME fuels were compared:

• Thermal efficiencies of diesel and RME are comparable for all ranges of speeds and

power outputs. At the maximum powers, RME has a larger brake thermal efficiency.

For diesel at the maximum power output there is a small drop in brake thermal

efficiency which is not present with RME.

• From the location of maximum NOX in the central region of the maps, the specific

NOX decreases in all directions across the whole map. For lower and medium speeds,

the specific NOX emissions increases initially as the power output is increased, and

then starts decreasing after reaching a maximum value. RME produces lower specific

NOX as compared to the diesel fuel.

• The operating speed of the engine affects NOX formation, and lower specific NOX

are produced at higher speeds. Shorter residence time for NOX formation can be

responsible for this trend.

• Higher HC values are obtained with RME at lower and lower medium values of the

power at all speeds. This can be attributed to relatively poor atomization and lower

volatility of RME

• RME produced lower CO2 due to lower carbon to hydrogen ratio as compared to

diesel.

For the diesel and RME piloted combustion of natural gas in CI engines:
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• Apart from the highest power outputs, the natural gas dual fueling case was less

efficient as compared to the respective pilot fuel based single fueling. These efficiency

losses at lower powers can be attributed to the under-utilization of the pilot fuel.

The lower thermal efficiency values at lower power may be attributed to the failure of

pilot fuel to ignite and sustain adequate combustion of the natural gas-air mixture.

Whilst the local equivalence ratio in the region of the pilot injection may be near

unity (stoichiometric), especially during the initial pre-mixed combustion phase, there

can exist some areas with in the combustion chamber away from the pilot region

where there is a lean homogeneous mixture of natural gas and air. This argument is

supported by relatively lower Fuel to air ratio obtained in case of dual fueling. As

the power output increases the dual fuel mode recovers the thermal efficiency losses

suffered at the lower power outputs with the dual fuel mode exhibiting slightly higher

F/A ratios at these conditions.

• The slope of the constant volumetric efficiency is flatter for natural gas dual fueling

with diesel than for baseline diesel operation and the values are lower. This is a

consequence of the method used to introduce natural gas into the engine. As the

natural gas has been introduced via manifold injection, a portion of the intake air is

displaced by the natural gas, reducing the measured volume flow rate of air into the

engine. This leads to a reduction of the engine’s volumetric flow rate. The slope of the

constant volumetric efficiency lines differs due to a change in the scaling of volumetric

efficiency with engine speed. As the amount of natural gas added is increased to meet

the increase in speed demand, larger amounts of air are displaced. As the natural gas

is introduced at the manifold and does not flow through the entire intake system but

the air does, the scaling law as noted by Heywood [10] does not hold.

• Natural gas based dual fueling has resulted in significant reduction in NOX when

compared to the diesel and RME based single fueling cases. This reduction in NOX
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is a direct consequence of difference in the in-cylinder mixture composition prior to

ignition and combustion events. Significantly higher specific heat capacity of natural

gas raises the overall specific heat capacity of the mixture and results in lower temper-

atures during compression stroke. With the formation of NOX highly dependent on

thermal mechanism, the lower in-cylinder temperature results in lower specific NOX

as compared to the single fueling.

• Specific NOX emissions in case of both single fueling cases are centered in the middle

of the map and they decrease in all direction from this region of maximum specific

NOX. On the other hand, an opposite trend is observed with natural gas dual fueling

where minimum specific NOX are centered at the middle of the map and they increase

in all directions from this region of minimum NOX .

• The specific NOX emissions contours have similar trends, and those with RME are

lower than those with diesel.

• At lower power outputs across all speeds, the specific HC emissions were significantly

higher in case of dual fueling when compared to the respective pilot fuel based sin-

gle fueling. This can be attributed to low in-cylinder temperature due to relatively

higher specific heat capacity of the mixture. As the power was increased at constant

speed, the specific HC emissions were significantly reduced, though still higher than

the respective single fueling cases. Also, the equivalence ratio threshold for dual fuel

modes is 0.4. Below this threshold value, the HC emissions increase whereas increas-

ing equivalence ratio beyond this value results in a decrease in HC emissions.The

equivalence ratio in this case ranges between 0.44 and 0.79 and this is reflected in

gradual decrease of HC emissions as the load increase.

• Studying the specific NOX and specific HC maps together has revealed that the of

junction of lower powers and lower speeds is a region in the maps where the engine
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shows the worst trade-off between the NOX and HC emissions as the two emissions

are higher in this region.

For the diesel and RME piloted combustion of hydrogen:

• In dual fuel mode the maximum thermal efficiency reached with RME is marginally

lower than the maximum thermal efficiency reached with diesel.

• In general, at a given power rating the volumetric efficiency decreases as the engine’s

speed increases due to increasing friction of the air flow during the induction and

exhaust phase of the cycle. At a given engine operating speed higher loads mean more

fuel and higher operating temperatures, including higher inlet manifold temperature,

thus heating the intake air and reducing volumetric efficiency. The combined effect

results in the slope of volumetric efficiency contour lines shown in the figures. The

slope of the volumetric efficiency contours is flatter and values are lower for hydrogen

dual fueling when compared to diesel and RME based single fueling cases This is

a consequence of the method used to introduce hydrogen into the engine. As the

hydrogen has been introduced via manifold injection, a portion of the intake air is

displaced by the hydrogen, reducing the measured volume flow rate of air into the

engine. This leads to a reduction of the engine’s volumetric flow rate. The slope of

the iso-contours differs due to a change in the scaling of volumetric efficiency with

engine speed. As the amount of hydrogen added is increased to meet the increase in

speed demand, larger amounts of air are displaced. As the hydrogen is introduced

at the manifold and does not flow through the entire intake system but the air does,

the scaling law as noted by Heywood [10] does not hold.

• Hydrogen addition has been shown to increase specific NOX emissions with both of

the pilot fuels when compared to the respective single fueling cases. The lower ignition

energy and wider operating equivalence ratio of hydrogen result in the specific NOX
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trends in the diesel piloted dual fueling to follow the shape of the thermal efficiency

contours.

• RME piloted hydrogen shows slightly reduced NOX emissions compared to diesel

piloted hydrogen at higher speeds.

• Lower specific HC emissions were recorded at highest loads attributed to reduction

in carbon to hydrogen ratio and improved combustion with increasing hydrogen ad-

dition.

• Overall diesel has shown better performance as a pilot fuel for hydrogen.

When the effect of pilot fuel quantity and type on the combustion and emissions of natural

gas and hydrogen was investigated:

• Dual fueling of natural gas exhibit an increased ignition delay when compared to

the ignition delay exhibited by the pilot fuel when tested in single fueling mode at

similar operating conditions. For dual fueling cases, the ignition delay is reduced as

the quantity of pilot fuel in increased.

• For a certain operating condition, there exists a pilot fuel quantity threshold beyond

which any increment in the pilot fuel quantity shall not result in reduced ignition

delay and higher maximum in cylinder pressure.

• Both for diesel as well as RME piloted combustion of natural gas at higher speeds,

the specific NOX have been generally found proportional to the quantity of pilot fuel

where as at lower speeds, there exists a pilot fuel quantity threshold where maximum

specific NOX are produced and any pilot fuel setting below or above the threshold

shall result in lower specific NOX.

• Like specific NOX, specific HC emissions from diesel and RME piloted combustion

of natural gas also exhibit the pilot fuel quantity threshold phenomenon. At lower
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speeds, the specific HC emissions decrease as the quantity of pilot fuel is increased.

At higher speeds, there exists a pilot fuel quantity threshold below or above which

the specific HC emissions increase with any increase in the pilot fuel quantity.

• At relatively lower values of BMEP, the specific HC emissions vary significantly and

the trend lines converge as BMEP is increased.

• For RME piloted combustion at 1500 rev/min, the specific CO2 emissions increase as

the quantity of pilot fuel is increased across all values of BMEP. The diesel piloted

combustion of natural gas exhibit similar trends with an exception at the highest

load.

• For diesel as well as RME piloted hydrogen combustion, the ignition delay is shortened

as the quantity of pilot fuel increased but the peak cylinder pressure does not seem

to be a very strong function of ignition delay. Similar peak pressure is achieved even

when the pilot fuel is set at a minimum BMEP for diesel piloted hydrogen combustion

at 1000 rev/min.

• When the hydrogen is piloted by diesel at 1000 rev/min, similar first rate of energy

release peaks are observed for all pilot fuel settings. The lowest pilot fuel setting

(n=1) shows a clearly large second rate of energy release peak when compared with

the two higher pilot fuel setting cases(n=2,3).

• Specific NOX has shown different trends at different speeds when hydrogen dual

fueling is piloted by either diesel or RME. At lower speeds, the specific NOX decrease

as the quantity of pilot fuel is increased. At higher speeds, the specific NOX increase

as the quantity of pilot fuels is increased.

• Diesel piloted combustion of hydrogen has shown higher specific HC emissions when

compared to the RME piloted combustion of hydrogen at both speeds. Lower BMEP

values are an exception to this trend. At 1000 rev/min, smaller variation is observed
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in specific HC emissions when diesel pilots the hydrogen combustion. At higher engine

speed, lower specific HC emissions were resulted when the quantity of pilot fuel was

increased. This trend was held for both pilot fuels.

• For CO and CO2 emissions, a proportional increase in the emissions have been ob-

served when the pilot fuel quantity was increased owing to the fact that the gaseous

fuel (hydrogen in this case) does not have any carbon in it. So, any carbon based

emissions have to come from the liquid pilot fuel (either diesel or RME in this case).

• Unlike specific HC emissions where diesel and RME piloted combustion of hydrogen

occupied different islands at both 1000 and 1500 rev/min, the specific CO and CO2

do not exhibit this trend. At 1000 rev/min, similar specific emissions were obtained

for the corresponding pilot fuel setting for both pilot fuels. At 1500 rev/min, diesel

piloted combustion of hydrogen resulted in higher specific CO2 as compared to RME

piloted combustion of hydrogen at the corresponding conditions.

The numerical part of this thesis applies two different approaches to predict in-cylinder

pressure and rate of energy release. Unsteady flamelet approach utilizes two spray breakup

models with changing spray breakup constant to assess the effect of breakup length on the

in-cylinder pressure and the rate of energy release.

• When unsteady flamlet model (UFM ) uses wave model for the secondary break,

the effect of variation in B1 is significant. Ignition, rate of pressure rise as well the

maximum in-cylinder pressure are all affected by any change in this breakup constant.

The minimum value of B1 produces the best agreement with the experimental data.

The peak pressure occurs at the same crank angle position for all three cases with

different value of B1. This can explain the higher rate of pressure rise at B1=50. With

shorter breakup length, the fuel is disintegrated and ignited quickly but the dispersion

of the fuel may not cover the whole volume of high temperature air available at

that particular crank angle. With longer breakup length, the fuel disintegration and
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ignition is delayed but when it disintegrates and ignites it covers the whole volume of

air available. Hence more fuel is burned together and more energy is released leading

to a higher rate of pressure rise.

• For KHRT breakup model, no difference was observed in terms of ignition delay, rate

of pressure rise and the peak combustion pressure for the two smaller values of C3.

When C3 was set a very higher number, smaller rate of pressure rise and lower peak

combustion pressure were obtained. A larger value of C3 shall reduce the breakup

and result in larger droplet diameter. This can explain the relatively smaller rate

of pressure rise for a higher value of C3. Larger diameter droplets shall take longer

to evaporate and hence shall result in relatively slower rate of pressure rise. For the

largest C3 value, the pressure drops more rapidly in the expansion stroke of the cycle.

• Of all combinations of combustion and spray models tried with different breakup

constants, the unsteady flamelet models produces a better estimate of the in-cylinder

pressure the rate of energy release when KHRT spray model is utilized with breakup

constant C3 set at 30.

• The agreement between the computational and the experimental results got better

as the equivalence ratio was increased.

• The computationally predicted specific NOX were 20% lower than the experimen-

tally obtained values at an equivalence ratio of 0.5. The agreement between the

computationally and experimentally obtained specific NOX was improved for higher

equivalence ratios and it was under 10% which is very reasonable.

• The agreement between the experimental and the computational results for specific

CO2 emissions range between 18% at the lowest equivalence ratio to 8% at the highest

equivalence ratio.
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• The CO emissions were the least well predicted among all. The agreement between

the experimental and the computation is 25%, 7% and 12% at the three equivalence

ratios that were tested.

In the next section recommendations for the future work are discussed which are

worthy of further investigations based on the work presented here.

8.2 FUTURE WORK

The dual fueling cases involved in this study were restricted to the intake manifold

induction of the gaseous fuels. Direct injection of these gaseous fuels is an area that can

be explored. Injection timing as well as injection duration were also not changed during

this study because of the in-line pump injection system. Applications of the common rail

to investigate of the change in injection duration as well as injection timing can be worth

investigating. The model applied to study the n-heptane combustion and emissions utilized

a sector mesh and simulated the closed-valve events only becasue of the limited knowledge

of the intake and exhaust system geometrical details. The model can be used simulate the

complete cycle if these geometrical details are available. The same model can be used to

simulate the dual fueling cases if kinetic mechanism and the thermo-chemical databases

are available. It can also help to simulate biodiesel (RME) combustion and emissions if the

kinetic mechanism and the thermo-chemical database for RME are available.
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CHAPTER 9

APPENDICES

9.1 APPENDIX A - PRESSURE AND RATE OF ENERGY RELEASE

DATA FOR CHAPTERS 3,4 AND 5

This section pressure and rate of energy release data to support the claims made in

chapters 3,4 and 5. Figures 9.1(a) and 9.1(b) represents in-cylinder pressure and rate of
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Figure 9.1. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for for diesel and RME at a BMEP of 0.125 MPa
and 1000 rev/min

energy release for diesel and RME fuelling at a BMEP of 0.125 MPa while operating at

1000 rev/min. Whereas Figures 9.2(a) and 9.2(b) represents in-cylinder pressure and rate

of energy release for diesel and RME fuelling at a BMEP of 0.503 MPa while operating at

1000 rev/min. While operating at lower load, higher peak in-cylinder pressure has been

observed when compared to RME. Shorter ignition in case of RME has caused the peak

pressure to occur slightly earlier. When the rate of energy release curves for the two fuels

were compared, diesel has shown clearly higher rate of energy release peaks. Both peaks for

the rate of energy release were lower and occur earlier when compared to the ones obtained
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RME at a BMEP of 0.503 MPa and 1000
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Figure 9.2. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for for diesel and RME at a BMEP of 0.503 MPa
and 1000 rev/min

with diesel. At higher loads, the two fuels have shown similar peak pressures with diesel

producing slightly higher peak pressure but the difference in peak pressures for the two

fuels is reduced when compared to the lower load case. Similar to the lower load case,

the first rate of energy release peak diesel is significantly higher but the second peak for

RME is higher when compared to the second peak obtained with diesel at the higher load.

Figures 9.3(a) and 9.3(b) show in-cylinder pressure and rate of energy release for pure diesel

and diesel piloted natural gas at 0.38 MPa with diesel pilot set at 0.125 MPa for the dual

fuelling case 1000 rev/min. Whereas Figures 9.4(a)and 9.4(b) in-cylinder pressure and rate

of energy release for pure diesel and diesel piloted natural gas at 0.503 MPa with diesel pilot

set at 0.125 MPa for the dual fuelling case 1000 rev/min. At a relatively lower load (0.38

MPa), diesel piloted natural gas has produced lower peak pressure when compared to the

pure diesel based single fueling whereas similar peak pressures are observed when the two

cases are compared at a higher BMEP (0.503 MPa). The rate of energy release peaks for

the dual fueling case are comparable to the ones obtained with diesel based single fueling

but these occur slightly later in the cycle. Figures 9.5(a)and 9.5(b) in-cylinder pressure and
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Figure 9.3. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for pure diesel and diesel piloted natural gas at
0.38 MPa with diesel pilot set at 0.125 MPa for the dual fuelling case
1000 rev/min

rate of energy release for pure RME and RME piloted natural gas at 0.503 MPa with diesel

pilot set at 0.125 MPa for the dual fueling case 1000 rev/min. RME based dual fueling

of natural gas has exhibited similar peak pressure but clearly higher first rate of energy

release peak when compared to the RME based single fueling. Figures 9.6(a)and 9.6(b)

in-cylinder pressure and rate of energy release for pure diesel and diesel piloted hydrogen

at 0.503 MPa with diesel pilot set at 0.315 MPa for the dual fueling case 1000 rev/min.

Figures 9.7(a)and 9.7(b) in-cylinder pressure and rate of energy release for pure RME and

RME piloted hydrogen at 0.503 MPa with RME pilot set at 0.315 MPa for the dual fueling

case 1000 rev/min. When hydrogen is piloted by either diesel RME, it produces higher

peak cylinder pressure when compared to the single fueling cases based on the respective

pilot fuels. Also, the rate of energy release peak are higher in case of hydrogen based dual

fueling when compared to the respective fueling cases.
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Figure 9.4. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for pure diesel and diesel piloted natural gas at
0.503 MPa with diesel pilot set at 0.125 MPa for the dual fuelling case
1000 rev/min
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Figure 9.5. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for pure RME and RME piloted natural gas at
0.503 MPa with diesel pilot set at 0.125 MPa for the dual fuelling case
1000 rev/min
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Figure 9.6. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for pure diesel and diesel piloted hydrogen at 0.503
MPa with diesel pilot set at 0.315 MPa for the dual fuelling case 1000
rev/min
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Figure 9.7. Experimentally obtained in-cylinder pressure (a) and rate
of energy release (b) for pure RME and RME piloted hydrogen at 0.503
MPa with diesel pilot set at 0.315 MPa for the dual fuelling case 1000
rev/min
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9.2 APPENDIX B - SAMPLE CALCULATION

This section shows a list of all experimental parameters and a sample of complete

calculation.

The sample calculations were done for diesel fuel when the test rig was run at 1000

rev/min. All sample calculations throughout this appendix are shown using this operating

condition.

Brake power (Ẇb)/W:

Wb =
LN

0.447
= 7315.436 (9.1)

where L is the dynamometer load (196.2 N), N is engine speed (16.667 r/s), and 0.447 m−1

is equal to 1/2πx, where x is the length of the Gardner dynamometer torque arm (0.356

m).

Brake mean effective pressure (BMEP) / MPa

Wb =
Ẇbn1

VsNσ
= 0.63 (9.2)

where n1 is the number of revolutions per cycle (2), Vs is the swept volume of the cylinder

(0.00139 m3) and σ is the number of cylinders (1).

Mass flow rate of fuel (ṁf)/kg/s

ṁf =
mf

t
(9.3)

where mf is mass of the fuel sprayed into the combustion chamber in t seconds. For dual-

fueling cases, the mf term in equation 9.3 becomes the sum of two flow raes: the pilot fuel

mass flow rate (mpf) and the gaseous fuel mass flow rate (mgf). The gaseous fuel mass flow

rates were converted from volume flow rates read from their respective volume flow meters.

Mass flow rate of intake air (ṁa) / kg/s

ṁa = CdA
√

2ρa∆P = 0.0105 (9.4)
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where Cd is the coefficient of discharge (0.65), A is the area of the orifice (0.000642 m2)

and ∆P and ρa are the pressure difference across (309.015 Pa) and the density of air (1.209

kg/m3) respectively.

Volumetric efficiency

ηv =
ṁan

VsρaN
= 0.75 (9.5)

Specific fuel consumption/ kg/MJ

SFC =
ṁf

Ẇb

= 0.0696 (9.6)

Thermal efficiency:

ηth =
Ẇ

ṁfLHVf

= 0.33 (9.7)

The lower heating value of the diesel fuel was taken as 42.5 MJ/kg.

Equivalence ratio (φ):

φ =
F/A

(F/A)st

(9.8)

The mass flow rates of fuel (ṁf) and air (ṁa) are used to calculate the actual fuel to air

ratio (F/A) whereas the stoichiometric fuel to air ratio ((F/A)st) is calculated from the

stoichiometric combustion equation.

Pilot fuel enthalpy fraction (PEF):

PEF =
ṁpfLHVpf

ṁpfLHVpf + ṁgfLHVgf

= 1 (9.9)

For dual fueling cases, the enthalpy fraction of the gaseous fuel can be calculated by sub-

tracting the enthalpy fraction of the pilot fuel from 1.

Specific emission readings show the mass of a particular exhaust gas species that is

emitted during the production of 1 MJ of brake engine energy. The mass flow rate of each

individual measured exhaust gas species is found using combustion chemical equations as

well as a mass balance drawn between the total mass flow of reactants into the engine
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and the mass flow rate of combustion products in the exhaust gas. The process of specific

emissions calculations (g/MJ) is lengthy and custom made Excel sheets showing these

calculations in detail are available for reference. A sample calculation detailing how to

obtain specific oxygen levels from the Gardner engine during normal CI engine operation

at 1000 r/min and 0.63 MPa BMEP is shown here as an example. At first the term β is

calculated so that it can be used in the relevant combustion equation.

β =
ṅ∗

a

ṅa

= 1.43 (9.10)

where ṅ∗

a and ṅa are measured and computed air flow rates respectively. The net step is

to calculate the mole fraction of water (MFH2O) in the exhaust gas products. This is done

by dividing the moles of water in the exhaust by the total number of moles of the exhaust

products.

MFH2O =
0.5y

x + 0.5y + 3.76β(x + 0.25y − 0.5z) + (β − 1)(x + 0.25y − 0.5z)
= 0.0883

The mole fraction of all of the exhaust species are computed in the similar manner. For

example, the mole fraction of O2 can be calculated as follows

MFO2
=

(β − 1)(x + 0.25y − 0.5z

x + 0.5y + 3.76β(x + 0.25y − 0.5z) + (β − 1)(x + 0.25y − 0.5z)
= 0.0604

The computed mole fraction of the non water products can be found by subtracting the

mole fraction of water products from unity.

MFnon−H2O = 1 − MFH2O = 0.912 (9.11)

The molecular weight of a certain species in the exhaust can be found by multiplying the

mole fraction of that species by its molecular weight. For O2,

MWO2
= MFO2

∗ 32 = 1.933 (9.12)

The same pattern is used to calculate the molecular weight of all other species.

MWtotal = MWO2
+ MWN2

+ MWH2O + MWCO2
= 28.908 (9.13)
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The total mass flow rate of all reactants (ṁtotal) is required to obtain the computed molar

flow rate of all the exhaust gas products. This is derived by holding a mass balance between

the reactants and exhaust products:

ṁtotal = ṁf + ṁa = 0.0111 kg/s (9.14)

Following equation can be used to calculate the molar flow rate (ṅtotal)

ṅtotal =
ṁtotal

MWtotal

= 0.000382 kmol/s (9.15)

The molar flow rate of water in the exhaust products is then calculated through the fol-

lowing equation

ṅH2O = (ṅtotal)(MFH2O) = 0.000037 kmol/s (9.16)

The result of this equation can be used to calculate the mass flow rate of water in the

exhaust products

ṁH2O = (ṅH2O)(18) = 0.000607 kg/s (9.17)

The mass flow rate of the non water products in the exhaust can be calculated as follows

ṁnon−H2O = ˙mtotal − ṁH2O = 0.0104 kg/s (9.18)

The mass flow rate of the non water products in the exhaust as calculated above can be

used obtain a molar flow rate of the dry measured exhaust gas species. In experimental

measurements, O2, CO2 and CO are measured dry whereas NOX and HC are measured wet.

The measured volumetric concentration of the exhaust gas species (either %ge or ppm) are

converted to their mole fraction. At the condition under consideration, the measured %ge

of O2 was 7.445%. It can be converted into the mole fraction of O2 as follows

MF ∗

O2
= (

7.445

100
)(MFnon−H2O) = 0.0679 (9.19)
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The total measured mole fraction can be calculated by adding the mole fraction of all the

species

MF ∗total = MF ∗

O2
+ MF ∗CO + MF ∗

CO2
+ MF ∗

NOX
+ MF ∗

HC = 0.157 (9.20)

Measured mole fraction of nitrogen in the exhaust is required to the total molecular weight

of the measured products. Assuming that N2 is the only remaining species in the exhaust,

the mole fraction N2 can be calculated as

MF ∗

N2
= 1 − MF ∗total = 0.843 (9.21)

The measured mole fraction of each species can be used to obtain the respective molecular

weight. For example, the molecular weight of O2 can be calculated as

MW ∗

O2
= (MF ∗

O2
)(32) = 2.172 (9.22)

The total molecular weight of the exhaust product can be calculated as follows

MW ∗

total = MW ∗

O2
+ MW ∗

CO + MW ∗

CO2
+ MW ∗

NOX
+ MW ∗HC + MW ∗

N2
= 29.676

The mass flow rate of the non water products in the exhasut products and the total molec-

ular weight of the exhaust products can be used to calculate the molar flow rate of the non

water products in the exhaust.

ṅnon−H2O =
ṁnon−H2O

MW ∗

total

= 0.000352 kmol/s (9.23)

For the measured molar flow rate of oxygen (ṅ∗

O2
), following equation is used be

ṅ∗

O2
= (ṅnon−H2O)(MF ∗

O2
) = 0.0000239 kmol/s (9.24)

The measured mass flow rate of oxygen (ṁ∗

O2
) can be

ṁ∗

O2
= (ṅ∗

O2
)(32) = 0.000764 kg/s (9.25)

The measured mass flow rate of oxygen ṁ∗

O2
is divided by the brake power Ẇb to obtain

the specific emissions of O2.

Specific O2 =
ṁ∗

O2

Ẇb

= 104.455 g/MJ (9.26)
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9.3 APPENDIX C - QUANTIFICATION OF ERROR IN MEASURING

EQUIPMENT

Table 9.1 shows the stated accuracies of all measuring instruments used. Table 9.2

presents errors present in specific emissions (in g/MJ) resulting from instrument accuracies

Instrument Measurement Range Accuracy

Digital stop watch - +/- 0.1 s %

Inclined Manometer 0-100 mm of Hg +/- 0.50 %

NOX Analyzer 0 - 4000 ppm +/- 1.00%

HC Analyzer 0-10000 +/- 1.00 %

O2 Analyzer 0-100% +/- 1.00%

CO, CO2 0-10% +/- 1.00 %

Water Break 0-25 kg +/- 0.40 %

Tachometer 0-2500 r/min +/- ¡ 1.00

Natural gas flowmeter 0-100 litre/min +/- 1.25%

Hydrogen gas flowmeter 0-44 litre/min +/- 1.25%

Piezoelectric transducer 0-20 MPa +/- 1.00%

Charge amplifier - +/- 1.00%

Type K thermocouples -40 to 12000C +/- 2.500C

Table 9.1. Quantification of error in measuring equipment

9.4 APPENDIX D - PUBLICATIONS
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and N. A. Malik. Compression-ignition engine performance and emissions in single

and dual fuelling modes with sustainable fuels. Power and Energy Systems and

Applications, Nov 2011, pp.322-327. DOI:10.2316/P.2011.714-130.
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Instrument Specific NOX Specific HC Specific CO Specific CO2

Stopwatch +/- 0.001 +/- 0.000 +/- 0.001 +/- 0.141

Manometer +/- 0.015 +/- 0.001 +/- 0.007 +/- 1.606

NOx analyser +/- 0.124 +/- 0.000 +/- 0.000 +/- 0.000

HC analyser +/- 0.000 +/- 0.169 +/- 0.000 +/- 0.000

CO analyser +/- 0.000 +/- 0.000 +/- 2.086 +/- 0.000

CO2 analyser +/- 0.000 +/- 0.000 +/- 0.000 +/- 3.621

Water-brake +/- 0.002 +/- 0.001 +/- 0.009 +/- 1.844

Tachometer +/- 0.082 +/- 0.007 +/- 0.034 +/- 7.381

Total error +/- 0.224 +/- 0.178 +/- 2.137 +/- 14.593

Table 9.2. Errors present in specific emissions (in g/MJ) resulting from
instrument accuracies
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emissions maps with diesel and RME pilot fuels, International Journal of Hydrogen

Energy, Manuscript (under review) No. HE-D-13-00486.
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