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5-FU    5-Fluorouracil 

ALDH    aldehyde dehydrogenase 

AML    acute myeloid leukaemia 
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C (°C)    Celsius (degree Celsius) 

CD    cluster of differentiation 
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CO2    carbon dioxide 

CSCs    cancer stem cells 
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ECS    extracapsular spread 
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EGFR    epidermal growth factor receptor 

EMT    epithelial to mesenchymal transition 

ESA    epithelial specific antigen 

FACS    flowcytometry activated cell sorting 

FCS    fetal calf serum 

FITC    fluorescein isothiocyanate 

g    standard gravity 
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Gy    Gray 

h    hour 

HA    hyaluronan 

H&E    hematoxylin and eosin 

HNSCC   head and neck squamous cell carcinoma 

HPV    human papilloma virus 
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HRP    horseradish peroxidase 

i.e.    lat: id est (engl: that is) 

IHC    immunohistochemistry 

kDa    kilo Dalton 

mA    milliampere 

MET    mesenchymal to epithelial transition 

MFI    median fluorescence intensity 

min    minute(s) 

miR    microRNA 

mm    millimeter 

mM    millimolar 

MMP    matrix metallopeptidase 

mRNA    messeger-RNA 

nm    nanometer 

NOD/SCID    non obese-diabetic mice with severe combined 

immunodeficiency disease 

OR    odds ratio 

OSCC    oral squamous cell carcinoma 

OTSCC   squamous cell carcinoma of the mobile tongue 

PBS    phosphate buffered saline 

PE    phycoerythrin 

P-EGFR   phosphorylated epithelial growth factor receptor 

PFA    paraformaldehyde 

RNA    ribonucleic acid 

RND    radical neck dissection 

SCC    squamous cell carcinoma 

SDS    sodium dodecyl sulfate 

sec    second(s) 

SND    selective neck dissection 

SSE    stratified squamous epithelium 

TBS    tris buffered saline 

TBS-T    tris buffered saline with 0.01% Tween-20 

TGFβ    transforming growth factor β 

TNFα    tumour necrosis factor α 
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TNM    tumour-node-metastasis 

U    unit 

VEGF    vascular endothelial growth factor 
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1. Abstract 
 

CD44 has been described as a marker of cancer stem cells in oral squamous 

cell carcinoma (OSCC). The main objective of this study was to characterise 

expression of CD44 in both fresh samples of human OSCC and in cell lines 

generated from them, and to examine its correlation with selected clinico-

pathological parameters of the tumours of origin. 

 

The epithelial fraction in 20 fresh OSCC samples was identified by the 

standard method using the negative selection technique with antibodies 

against non-tumour cells. A novel method of identifying the epithelial fraction, 

termed positive selection, was also developed and used for analysis of 14 

additional OSCC samples. This new method, using epithelial-specific 

antibodies, led to a considerable improvement in the efficiency and the 

accuracy of the procedure. 

 

The frequency of CD44+ cells in the epithelial fraction of the tumour 

specimens was assessed by FACS and varied widely (3-97%). High 

frequency of CD44+ cells in tumour samples was found to be associated with 

high tumour grade, discohesive invasion front and presence of lymph node 

metastases (p<0.01, as calculated with Spearman’s ranked test and Fisher’s 

exact test). 

 

It was also observed, that the percentage of CD44+ cells changes when cells 

isolated from tumour samples are propagated in culture. Nearly all cells in 

cell lines generated from OSCC samples showed CD44 expression when 

analysed by FACS. However, a markedly higher level of CD44 expression 

(as assessed by median fluorescence intensity for cell surface CD44) was 

found for early passage cell lines generated from metastatic OSCC and 

lymph node metastases as compared to cell lines generated from non-

metastatic OSCC. 

 

These findings show that a high frequency of CD44+ cells in fresh OSCC 

tissue and a high level of CD44 expression in cultured OSCC cells correlate 
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with more aggressive tumour behaviour. These results might provide 

important information of prognostic and therapeutic value. 
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2. Aims and Objectives 
 
The aims and objectives of this study were: 

 

• to characterise cancer stem cells (CSCs) in oral squamous cell 

carcinoma (OSCC), assessing the proportion of these cells in 

individual tumours by flow cytometry; 

• to collect clinical and histopathological data and relate the size of the 

CSC fraction to the properties of the tumour in vivo and the clinical 

outcome; 

• to investigate malignant cell lines derived from tumours as suitable 

models for analysis of CSCs. 

 

Analysis of CSCs relies on their accurate identification and isolation from 

tumour tissue. While a lot of research focuses on the properties of these 

cells, the methods of their identification and isolation have not been studied 

in great detail. For epithelial tumours like OSCC, one of the challenges lies in 

distinguishing the tumour cells from the stromal cells present in cell 

suspensions isolated from the tumour specimen. In the present study, I 

tested the standard technique and also tried to develop a new method of 

identifying and isolating epithelial cells from cell suspensions produced from 

tumour samples (section 5.1). I then used both methods to analyse 34 

primary OSCC specimens for CD44 expressing cells and examined the data 

for a statistical correlation with clinical and pathological parameters of the 

tumours of origin (section 5.2). Finally, I examined cell lines that I have 

generated from the tumour specimens and compared these data to the data 

obtained from analysis of cells from fresh tumour samples (section 5.3). 
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3. Introduction 
 

3.1 Organisation of the human oral mucosa 
 

The oral mucosa is a mucous tissue that forms the lining of the oral cavity. 

The main functions of the oral mucosa are protection, sensation and 

secretion. It acts as a barrier preventing pathogens and toxic substances 

from entering the body. It also protects the underlying structures from 

mechanical damage during chewing. The oral mucosa has an extensive 

innervation allowing the mouth to sense hot and cold temperatures and 

contains taste buds on the surface of the tongue that are necessary for the 

recognition of taste. Production of saliva by minor salivary glands embedded 

in the oral mucosa is another important function. Saliva contains enzymes 

essential for digestion of food starches. It also facilitates swallowing by 

lubricating the food particles. 

 

The oral mucosa consists of epithelial tissue, the basement membrane, and 

connective tissue, formed by lamina propria and submucosa (Figure 3.1). 

Human oral mucosa can be divided into three structurally and functionally 

different subtypes: lining mucosa, masticatory mucosa and specialised 

mucosa. Lining mucosa is non-keratinized epithelium found in the cheeks 

(also known as buccal mucosa), the floor of the mouth, the soft tissue at the 

back of the roof of the mouth (soft palate) and the ventral surface of the 

tongue. Masticatory mucosa is a partially or fully keratinized (para- or ortho-

keratinized) epithelium found at the front of the roof of the mouth (hard 

palate) and the gums (gingiva). Specialised mucosae include the dorsal 

surface of the tongue which contains specialised structures such as taste 

buds and papillae. Figure 3.2 shows the distribution of the different mucosal 

subtypes in the oral cavity (Figure 3.2).  
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Figure 3.1*: Schematic representation of the oral mucosa. Human oral mucosa 
is comprised of the following structures: oral epithelium, basement membrane, 
lamina propria and submucosa that joins the underlying bony and muscular tissue. 
*Adapted from [1] 
 

 

 
 
Figure 3.2*: Distribution of the different subtypes of the oral mucosa in the 
oral cavity. Lining mucosa (light grey) covers the largest area of the oral cavity, 
including the inner lining of lips and cheeks, soft palate, the ventral area of the 
tongue and the floor of mouth. Masticatory mucosa (dark grey) forms the lining of 
the hard palate and the gums (gingiva). Specialised mucosa (spotty grey) is found 
on the dorsal surface of the tongue. *Modified from [2] 
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The oral mucosal epithelium is composed of squamous (flattened and thin) 

cells that are arranged in multiple layers and is therefore classified as 

stratified squamous epithelium (SSE). The outermost layer of the skin 

(epidermis), the inner lining of the oesophagus, the anal canal and vagina 

belong to the same type of epithelia. Human stratified squamous epithelia 

usually contain four distinct cell layers. The innermost layer is the basal layer 

(stratum basale, SB); it is followed by the spinous layer (stratum spinosum, 

SS), the granular layer (stratum granulosum, SG) and the outermost cornified 

layer (stratum corneum, SC) (Figure 3.3 A). 

 

3.1.1 Proliferation and differentiation patterns 

 

The stratification of these types of epithelia is a result of finely balanced cell 

proliferation and differentiation. During normal homeostasis the production of 

cells that takes place in the deeper layers of the epithelium is strictly 

balanced by the loss of cells from the surface. The proliferating and the 

differentiating cells are spatially separated, being located in different layers of 

the SSE. The proliferating cells are only present in the inner layers of the 

epithelium and form two distinct populations: stem cells and amplifying cells. 

The stem cells are slow-cycling cells that reside in the basal layer. They 

divide giving rise to amplifying cells, which migrate laterally and upwards 

towards the surface of the epithelium. The function of the amplifying cells is 

to enhance the production of new cells. Proliferation of the amplifying cells 

takes place in the basal layer and, in some epithelia, in a few cell layers 

above the basal layer (termed epi- or para-basal layers) [3] [4] [5]. As these 

cells migrate upwards they gradually lose the ability to proliferate and finally 

undergo terminal differentiation to form the protective dead squames that are 

shed from the surface of the epithelium (process known as desquamation). 

Terminal differentiation is accompanied by degradation of the nucleus, 

autolysis of cell organelles and formation of a cell envelope, which is a rigid 

protein structure that replaces the plasma membrane in terminally 

differentiated keratinocytes of the cornified layer [6] [7]. Depending on the 

type of epithelium, cells in the outermost layer of the stratified squamous 
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epithelia can be fully keratinized (ortho-keratinized), partially keratinized 

(para-keratinized) or non-keratized. 

 

3.1.2 Site-specific variability  

 

Although most types of SSE comprise four distinct cell layers (Figure 3.3 A), 

there is some site-related variability. For example, the cornified layer and the 

granular layer are missing in the non-keratinized oral epithelium. Instead, the 

epithelium contains stratum distendum (SD) and stratum filamentosum (SF) 

(Figure 3.3 B). The upper cell layers of para- and non-keratinised epithelia 

show a partial disintegration of the nucleus and the organelles. The cell 

envelope of para- and non-keratinized epithelia is considerably thinner as 

compared to that of the keratinized epithelium and the whole epithelial cell 

assembly is a lot more flexible.  

 

 

 
 
Figure 3.3*: Site-specific differences in the organisation of the oral mucosal 
epithelia. Tissue sections from two different sites of the oral cavity: hard palate (A) 
and buccal mucosa (B) are shown. The mucosa of the hard palate (A) contains the 
four typical layers of the stratified squamous epithelium: stratum basale (SB), 
stratum spinosum (SS), stratum granulosum (SG) and stratum corneum (SC). The 
cornified epithelial layer and the granular layer are absent from the buccal mucosa 
(B). Instead, the buccal mucosa contains three layers: stratum basale (SB), stratum 
filamentosum (SF) and stratum distendum (SD). *Modified from [4]  
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3.1.3 Malignant transformation  

 

Altered patterns of cell growth and disturbances in the balance between cell 

proliferation and differentiation lead to tumour development. During normal 

homeostasis each stem cell divides, giving rise to one stem cell and one 

amplifying cell. In malignancy there is a shift from asymmetric to symmetric 

cell division, in which both daughter cells remain stem cells. This leads to an 

increase in the proportion of stem cells and the total number of cells 

produced, resulting in formation of a tumour. 

 

The malignant transformation process involves multiple stages: initiation, 

clonal expansion and growth autonomy. During the initiation stage cells 

acquire mutations caused by physical, chemical, viral or genetic factors. 

These initiation events typically involve genes controlling cell proliferation and 

apoptosis. One of the genes involved in malignant cell transformation of oral 

mucosal cells is the tumour suppressor gene TP53. The product of the gene 

(protein 53, known as p53) is involved in cell cycle control at the G1/S as well 

as G2/M stage regulation point [8]. It activates DNA repair proteins and can 

initiate apoptosis if DNA damage cannot be repaired. p53 is mutated in the 

majority of OSCC [9] [10]. Loss of functional p53 results in genetic instability 

and often leads to aneuploidy [11] and generation of cells with abnormal 

DNA. Mutations in genes encoding ErbB family receptor tyrosine kinases and 

Ras family proteins may also be involved in malignant transformation of oral 

epithelial cells. Epidermal growth factor receptor (EGFR), a member of ErbB 

family, is frequently overexpressed in OSCC [12] [13]. This proto-oncogene 

encodes a membrane tyrosine kinase that can be activated by ligands such 

as epidermal growth factor (EGF) and transforming growth factor α (TGFα). 

Its activation triggers signalling pathways that stimulate cellular proliferation 

and migration and inhibit apoptosis [14]. Some members of the Ras 

oncogene family have been found overexpressed in oral cancer [15] [16]. In 

addition, the Ras proto-oncogenes frequently get activated via acquired point 

mutations that result in conformational changes which prevent hydrolysis of 

GTP. Mutated Ras proteins are then locked in a “turned-on” state and lead to 
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a constitutively active mitogenic signalling cascade and uncontrolled cell 

growth [17]. 

 

Initiated cells usually have a prolonged life span, increased proliferative 

capacity and are more resistant to apoptotic stimuli. These selective growth 

advantages lead to hyperplasia, clonal expansion and eventually to growth 

autonomy resulting in the formation of malignant tumours. Multiple genetic 

alterations are acquired during this transformation process and it has been 

estimated that at least five are required to transform a normal cell into a 

cancer cell [18]. 

 

Cancer can develop many years after exposure to a carcinogen. Existence of 

this “latent period” implies that initiated cells remain in the tissue for long 

periods of time during which they are able to acquire further genetic 

alterations that eventually lead to transformation and development of a 

tumour. The long-lived stem cells are able to accumulate mutations whereas 

differentiating cells are soon lost from the tissue. Clinical and experimental 

data also support the notion that mutations in the stem cells rather than the 

differentiating progeny are responsible for cancer development [19]. 
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3.2 Oral Squamous Cell Carcinoma (OSCC) 
 
Squamous cell carcinoma is a form of cancer that arises from the 

uncontrolled growth of malignant cells in squamous epithelium. Squamous 

cell carcinoma (SCC) can develop in many organs including skin, oral 

mucosa, lung, prostate, gut, vagina and cervix. The diversity of its origin 

makes SCC one of the most common types of cancer.  

 

Oral squamous cell carcinoma (OSCC) is a cancer that originates in the oral 

mucosa and belongs to the group of head and neck cancers (also referred to 

as head and neck squamous cell carcinoma, HNSCC). 90% of cancers in the 

head and neck area are SCC with the majority being SCC of the oral cavity. 

The oral cavity includes a number of anatomic structures shown in figure 3.4 

(Figure 3.4). 

 

It is not entirely clear whether tumours developing at different sites of the oral 

cavity differ biologically, but it has been suggested that some types of OSCC 

are more aggressive than others. For example, SCC of the oral mobile 

tongue (OTSCC) is increasingly regarded as a biologically different entity 

compared to other types of OSCC as it is more aggressive and generally 

associated with higher rates of metastasis [20]. 
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Figure 3.4*: Anatomic subsites of the oral cavity. Mouth anatomy showing 
anatomical subsites where cancer can develop. These include lips, lining of the lips 
(including upper and lower alveolar ridge) and cheeks (buccal mucosa), the roof of 
the mouth (hard palate and soft palate), the floor of the mouth, gums (gingiva), gum 
area behind the wisdom teeth (retromolar gingiva or retromolar trigone) and the 
tongue. *Adapted from [21] 
 

 

OSCC is the 6th most common cancer worldwide and is second to lung 

cancer as the most common smoking-related malignancy [22] [23]. It is 

mostly seen in older men. Tobacco and alcohol are the major risk factors, but 

many other factors related to lifestyle, environment and genetics may play a 

role (Figure 3.5). Lifestyle factors include chewing of betel quid (particularly in 

Asia) as well as low intake of fruit and vegetables [24]. Exposure to other 

chemical and physical mutagenic stimuli also drives development of oral 

cancer, especially in individuals with compromised immunity and weakened 

DNA repair ability [25]. In addition, poor oral hygiene and infections of the 

oral cavity are regarded as possible risk factors [26] [27]. A link to infections 

with human papilloma virus (HPV) has been suggested in recent years, 
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although HPV infections have been primarily linked to cancers of the 

oropharynx, tonsils and base of tongue areas, which do not fall into the group 

of oral cancers. Some non-malignant oral lesions tend to undergo malignant 

transformation and lead to the development of OSCC. Leukoplakia, lichenoid 

lesions and erythroplakia are regarded as disorders with the highest risk of 

malignant transformation [23] [25]. 

 

OSCC is an aggressive malignancy, frequently associated with a poor clinical 

outcome. Most commonly, loco-regional metastases from OSCC affect lymph 

nodes in the neck. Distant metastases are rare, but if present, affect bone, 

brain or lungs. 

 

 

 
 
Figure 3.5*: Schematic summary of main OSCC risk factors. Numerous factors 
associated with lifestyle, genetics and environment can increase the risk of 
developing OSCC. *Adapted from [25] 
 

 

3.2.1 Treatment of OSCC 

 

For all types of oral cancer surgical removal of the tumour is the preferred 

method of treatment. Sometimes surgery is preceded by other treatments 

such as radio- and chemo-therapy which reduce the size of the tumour. 

When surgical removal of the tumour is not feasible, radio- or chemo-therapy 

can be administered as palliative treatment with the aim to alleviate 

symptoms and to provide the best possible quality of life for patients. 
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Despite recent advances in treatment of OSCC, the mortality amongst OSCC 

patients remains high. The 5 year survival rate is less than 55% [28] [29]. The 

low survival rate is partly due to advanced disease stage at the time of 

diagnosis as less advanced tumours have higher survival rates. Because 

early stages of oral cancer may not cause any symptoms or pain, cancerous 

lesions in the mouth may not be noticed and over 50% of OSCC are 

diagnosed when they have already metastasised to lymph nodes in the neck 

[30], when prognosis is significantly worse than when cancers are localised 

to an intraoral area.  

 

In many cases, surgical removal of OSCC tumours is a major surgical 

intervention that severely impairs the quality of life for patients. The surgery 

usually includes the removal of the primary tumour in the mouth and, if 

present, removal of clinically diagnosed metastatic lymph nodes in the neck. 

The original type of neck dissection (radical neck dissection, RND) involves 

the removal of all lymph nodes in the dissected side of the neck along with 

non-lymphatic structures including sternocleidomastoid muscle and spinal 

accessory nerve. RND is associated with significant postoperative morbidity 

with the typical permanent shoulder dysfunction. The selective neck 

dissection (SND) is a type of surgery where only selected nodal groups at 

risk for metastatic disease, predictable on the bases of primary tumour 

location and size, are removed. SND guarantees conservation of non-

lymphatic structures leading to improved functional results, while having 

equivalent oncologic outcomes as the RND [31]. 

 

After surgery, patients considered at high risk of tumour recurrence are 

usually administered radio- and/or chemo-therapy, which remain the most 

common adjuvant therapy options in the UK. 

 

In recent years, alternative molecularly targeted therapies have been 

explored. Their development was permitted by identification of typical 

molecular alterations such as overexpression/constitutive activation of 

epidermal growth factor receptor (EGFR), reported for 80-100% of OSCC 

[32]. EGFR is a 170–180 kDa transmembrane glycoprotein tyrosine kinase 
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receptor that is expressed in the basal cell layer of the normal oral mucosa 

and is ubiquitously expressed in cells of HNSCC [33]. EGFR binds several 

ligands including EGF and TGFα. Ligand-binding triggers:  

• receptor dimerization, 

• activation of the intrinsic kinase domain, 

• autophosphorylation of tyrosine residues within the cytoplasmic tail. 

These events result in activation of the receptor and trigger a complex 

signaling cascade that leads to a strong mitogenic activity [34]. 

 

The potential value of EGFR as a therapeutic target is supported by the 

correlation between increased EGFR protein expression or EGFR gene copy 

number amplification and poor outcomes for HNSCC patients [35]. 

Cetuximab (trade name Erbitux) is an EGFR inhibitor that has been shown to 

improve overall survival, progression free survival and tumour response rates 

in patients with advanced HNSCC [36]. Cetuximab is the only molecularly 

targeted therapy that has been approved for use in HNSCC treatment to 

date. 

 

Another molecular target is vascular endothelial growth factor (VEGF) for 

which monoclonal antibodies including bevacizumab (trade name Avastin) 

are being investigated for treatment of HNSCC [37]. Similar to EGFR, 

increased levels of VEGF appear to induce tumour growth, metastatic spread 

and therapy resistance [38] [39] [40]. A direct correlation between high levels 

of VEGF and worse prognosis for OSCC patients has also been reported 

[41]. 

 

Several other drugs are currently being studied in phase III clinical trials. 

These include tyrosine kinase inhibitors, such as erlotinib and gefinitib 

(already approved for treatment of lung cancer, pancreatic cancer, breast 

cancer and other cancers). In addition, the use of COX-2 inhibitors, farnesyl 

inhibitors, and proteasome inhibitors in treatment of head and neck cancers 

is also being investigated [42]. 
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The high mortality amongst OSCC patients is also partly due to the lack of 

patient-tailored treatment options. The therapy (surgery, sometimes followed 

by radio- and chemo-therapy) is highly standardised and often doesn’t take 

into account distinct characteristics of a given tumour and patient. More 

research needs to be done focusing on the properties of individual OSCC 

tumours and on the differences between tumours from different patients. 

Studies performing a more in-depth analysis of individual OSCC tumours 

(investigating cellular and molecular aspects) and examining their correlation 

to the clinical parameters of the respective tumours may lead to a better 

understanding of OSCC and act as guides to development of new 

therapeutic interventions. 

 

3.2.2 Clinicopathological parameters in diagnostics and treatment of OSCC 

 

As with other cancers, tumour tissue is examined by a pathologist after its 

surgical removal from the patient. The aim of this examination is to confirm 

the clinical diagnosis, i.e. diagnosis that has been made prior to surgery 

based on physical and radiological examination of the patient, and usually a 

tumour biopsy. The biopsy (a tissue probe taken from the tumour) or the 

resected tumour itself is examined for the presence of unusual nuclei, 

aberrant motises and presence of invasion, all of which are typical 

characteristics of cancer. In addition, various pathological characteristics of 

the tumour are examined, which are regarded as prognostic factors and play 

a role in determining the choice of the post-surgical treatment. Pathological 

parameters of a particular relevance to prognosis are listed in table 3.1 and 

are discussed in the following sections. 

 

 

 

 

 

 

 

25 



Table 3.1: Pathological and histological parameters of OSCC with prognostic 
value. 
 
Parameter Possible classifications 
TNM stage see below* 
Extracapsular spread Yes/No 
 
Grade 
       

undifferentiated (G4, high grade) 
poorly differentiated (G3, high grade) 
moderately differentiated (G2, intermediate grade) 
well differentiated (G1, low grade) 

Invasion pattern cohesive/discohesive  
Tumour depth [mm] 
Perineural Invasion Yes/No 
Lymphovascular invasion Yes/No 
Excision (surgical margin) complete (clear) (>5 mm) 

close (close) (1-5 mm) 
incomplete (involved) (<1 mm) 

 
*For a detailed description of the TNM staging system see below 
 

 

3.2.2.1 TNM staging system for oral cancer 

 

The tumour-node-metastasis (TNM) staging system was first described in the 

1940s [43]. Some 20 years later the TNM system was adapted by the 

International Union Against Cancer for staging of tumours in 23 body sites. 

With regular revision and constant improvement, the system is still in wide 

use today as an important prognostic tool characterising the severity of the 

disease for many types of cancers including HNSCC. 

 

TNM primarily describes the tumour size and spread. The T stage refers to 

the size of the primary tumour and ranges from 1 to 4 for most cancers. In 

addition, there is “carcinoma in situ” (Tis), which is defined as an early stage 

tumour that is not yet invading adjacent tissue and has not penetrated the 

basement membrane. T1-T4 characterise invasive tumours of a varying size 

(Table 3.2). The N stage refers to regional lymph node metastases and 

characterises location and number of the involved lymph nodes in the neck. 

The M stage describes metastases at distant body sides. TNM staging 

system for OSCC is outlined in the table below (Table 3.2). 
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Table 3.2 TNM staging system for oral squamous cell carcinoma. 
 

Stage Description 
Tx Primary tumour cannot be assessed 
T0 No evidence of primary tumour 
Tis Carcinoma in situ 
T1 The tumour is not larger than 2 cm in its greatest dimension 
T2 The tumour is between 2 cm and 4 cm large in its greatest dimension 
T3 The tumour is larger than 4 cm in its greatest dimension 
T4 The tumour is larger than 4 cm and invades adjacent structures 

  
Nx Regional lymph nodes cannot be assessed 
N0 No lymphatic nodes are affected 
N1 Metastasis in a single ipsilateral lymphatic node, not larger than 3 cm 

N2a Metastasis in a single ipsilateral lymphatic node, between 3 cm and 6 cm 
N2b Metastasis in multiple ipsilateral lymphatic nodes, not larger than 6 cm 
N2c Metastasis in bilateral/contralateral lymphatic nodes, not larger than 6 cm 
N3 Metastasis larger than 6cm 

  
Mx Distant metastases cannot be assessed 
M0 No distant metastasis are present 
M1 The cancer has spread to distant organs 

 

 

3.2.2.2 Other prognostic factors 

 

Together with advanced TNM staging, other parameters such as high grade, 

discohesive invasion pattern and perineural or/and lymphovascular invasion 

(Table 3.1) characterise aggressive tumours. Patients with tumours 

displaying a combination of these characteristics, as well as patients, whose 

tumours have been incompletely excised, have poorer prognosis and are 

considered at high risk of developing recurrent disease. 

 

High grade tumours are cancers that mostly consist of immature 

undifferentiated cells with a great proliferative potential. They are classified 

as poorly differentiated tumours. In contrast, intermediate and low grade 

tumours (classified as moderately and well differentiated, respectively) are 

regarded as less able to proliferate and to drive tumour growth.  

 

The invasion pattern, a property of the invasion front of the tumour, can either 

be cohesive or discohesive. It is cohesive when the entire body of the tumour 

expands and is being pushed into the adjacent tissue as the tumour grows, 
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or discohesive when single cells or groups of cells detach from the main body 

of the tumour and are found at some distance from it in the neighbouring 

non-malignant tissue. 

 

Perineural invasion is present when tumour cells are seen in spaces 

surrounding the nerves. The spread of tumour cells into the blood vessels or 

lympatic vessels is termed lymphovascular invasion. Vascular invasion is the 

spread to the blood vessels only, but the term lymphovascular invasion is 

preferred as it is difficult to distinguish small lymphatic spaces from small 

vascular spaces when assessing the tumour tissue under the microscope.  

 

The depth of tumour is another prognostic indicator, although its significance 

is controversial. In general, deep tumour growth is associated with 

aggressive tumours and poor outcome. A study by O-charoenrat and co-

workers reported that a tumour thickness above 5 mm is a strong predictor of 

metastases in the neck lymph nodes [44]. However, the depth of the tumour 

can be limited by anatomy as tumours are much less likely to invade bony 

tissue than soft tissue. Consequently, tumours, which due to their location in 

the oral cavity are surrounded by bony tissue, are unlikely to reach a large 

depth, regardless of their aggressiveness. 

 

Following surgery, the margin of the resected tissue is examined for the 

presence of tumour cells. The tumour has been “completely excised” if no 

tumour cells are found within a distance of 5 mm from the resection edge. 

The tumour has been “closely excised” or “incompletely excised”, if it is 

present within 1-5 mm or <1 mm from the edge of the resected tissue, 

respectively. Incomplete excisions are also referred to as “involved tumour 

margins”. With close, and especially with incomplete excisions, there is a 

higher risk of post-operative tumour recurrence and spread. 

 

The presence of lymph node metastases in the neck is widely accepted as 

one of the most significant prognostic factors [45] [46] [47] and extension of 

the metastatic deposits beyond the nodal capsule (extracapsular spread, 

ECS ) is associated with even higher rates of locoregional recurrence and 
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distant metastases and lower rates of survival [47] [48]. Greenberg and co-

workers found that the 5 year survival rate is considerably lower in patients 

with multiple ECS+ lymph nodes as compared to patients without ECS [47]. In 

general, patients with involved lymph nodes at the time of diagnosis are 

much more likely to relapse and develop local recurrences or new 

metastases. To reduce the risk of recurrences patients with an advanced N 

stage are usually given adjuvant therapy. 

 

3.2.3 Adjuvant therapy: Mechanisms of action and side effects 

 

Adjuvant therapy is defined as treatment administered in addition to the initial 

main treatment. In the great majority of cases, surgery is the main treatment 

for OSCC with adjuvant therapy being radiotherapy and/or chemotherapy 

[49] [50]. The aim of the adjuvant therapy is to eliminate cancer cells that 

have remained in the patient’s body after the surgery. This can occur either 

due to incomplete removal of the tumour or because cancer cells had 

disseminated to distant body sites prior to the removal of the tumour.  

 

The decision about whether or not an OSCC patient should be treated with 

adjuvant therapy is made by a team of clinicians from different disciplinary 

backgrounds. This multidisciplinary team usually includes surgeons, 

radiologists and pathologists [49] [51]. The main indications for adjuvant 

therapy include positive resection margin and lymph node involvement (in 

particular, lymph node metastases with ECS) [50] [52]. Other indications for 

adjuvant therapy are close resection margin, poorly or moderately 

differentiated tumour, lymphovascular and/or perineural invasion, high T 

stage and uncertainty of histology [52]. 

 

3.2.3.1 Radiotherapy 

 

The type of radiotherapy used in treatment of head and neck cancers is 

photon radiotherapy [52]. Photon radiotherapy is ionising radiation that 

causes DNA damage including an array of lesions such as single-strand 

breaks, base alterations, oxidative damage and double-strand breaks [53]. 
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Radiation can ionize molecules that make up DNA and water molecules 

producing hydroxyl radicals which damage the DNA. 

 

The total dose of radiation administered to OSCC patients is usually 60 Gy 

(Gray). The total dose is fractionated such that the patient is exposed to 2-3 

Gy every day for 5 days a week [52] [50]. This fractionation implies that 

tumour cells in a radiation resistant phase of the cell cycle are allowed to 

progress to a radiation sensitive phase of the cell cycle before the next 

fraction is administered. Consequently, fractionated radiation maximises the 

number of tumour cells damaged by radiation and increases the tumour cell 

death rate.  

 

3.2.3.2 Chemotherapy 

 

The main chemotherapy agents currently used for treatment of OSCC are 

cisplatin and 5-FU (5-Fluorouracil) [52]. Cisplatin is usually administered 

orally in form of tablets, but both Cisplatin and 5-FU can be administered 

intravenously. 

 

Cisplatin belongs to the group of platinum-containing anti-cancer drugs and 

its main mechanism of action relies on binding to DNA and causing DNA 

crosslinking that results in replication stop and ultimately leads to cell death. 

In addition to the DNA there are other cellular targets. Cisplatin can bind to 

phospholipids and phosphatidylserine in the cell membrane when entering 

the cell. In the cytoplasm, cisplatin can bind to RNA, sulphur-containing 

molecules and other platinum-binding sites [54]. Binding to these non-DNA 

target biomolecules enhances the cytotoxic effects of cisplatin. 

 

5-FU is a pyrimidine analogue which is transformed in specific metabolites 

inside the cell that can then be incorporated into DNA and RNA and 

ultimately cause cell cycle arrest and apoptosis [55]. 5-FU also exerts toxicity 

through irreversible inhibition of thymidylate synthase, an enzyme involved in 

the synthesis of thymidine, without which DNA replication comes to a halt 

[56]. 
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3.2.3.3 Side effects 

 

Locally applied radiation severely affects the oral mucosal epithelium that 

becomes thin and/or ulcerated. Ulceration, and sometimes atrophy, can 

develop into a serious, dose-limiting complication of treatment [57]. Over 

80% of OSCC patients receiving radiotherapy suffer from this condition, 

called mucositis, which is defined as a painful inflammation and ulceration of 

mucous membranes [58]. Mucositis lesions primarily appear on the soft 

palate, tongue, and cheeks causing severe pain and dysphagia (swallowing 

difficulty) [59]. 

 

Radiation may also cause damage to salivary glands resulting in reduced 

saliva production and an increased risk of infection by oral 

microorganisms.[60] Increased vascular permeability leading to tissue 

oedema and infiltration of inflammatory cells is another radiotherapy-

associated side effect [61]. Severe blood vessel damage can lead to 

hypovascularity and ischemia of the oral mucosal tissue, which slows down 

the healing process [61]. 

 

Despite the local administration of the radiotherapy to only the head and neck 

area, radiotherapy-related systemic side effects can also occur. These 

include fatigue, nausea, vomiting, loss of appetite, temporary or permanent 

hair loss, changes in skin (blistering and leaking fluid) and blood [62]. Such 

side effects are due to direct damage to fast proliferating stem and progenitor 

cells in various tissues including the gastrointestinal tract, skin, hair follicles 

and bone marrow and can also be caused by chemotherapy. 

 

Pain, dehydration, compromised nutritional status due to painful chewing and 

swallowing and infections are debilitating side effects caused by radiotherapy 

(and chemotherapy) [61]. Compromised function of the oral mucosa may 

persist for a long time after therapy completion [61]. Because of the severity, 

and sometimes long-term persistence of the side effects chemo- and radio-

therapy are only prescribed when benefits clearly outweigh the risks. 
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3.3 Cancer stem cell hypothesis 
 

Adult (somatic) stem cells are defined as immature cells that possess the 

ability to self-renew as well as the ability to produce different types of mature 

cells of a particular tissue. Based on this definition cancer stem cells (CSCs) 

are characterised by: 

 

- indefinite ability to self-renew, 

- ability to initiate formation of a new tumour, 

- ability to reconstitute the phenotypic heterogeneity associated with 

differentiation of the parental tumour. 

 
It is now recognised that tumours comprise heterogeneous populations of 

cancer cells. There are two different models of heterogeneity in solid cancers 

that aim to explain the mechanisms of tumour growth, recurrence and 

spread. In the stochastic model, every proliferative cell of the tumour is 

regarded as capable of indefinite proliferation and of giving rise to new 

tumours (Figure 3.6 A). In the cancer stem cell model only a subpopulation of 

proliferative cells of the tumour have the ability to proliferate indefinitely and 

to initiate new tumour growth (Figure 3.6 B). 

 

The proof for the existence of CSCs (also referred to as tumour-initiating or 

tumourigenic cells) in a particular type of cancer is the ability of some 

proliferative cancer cells, but not others, to initiate the human disease when 

transplanted into immunocompromised mice. Apart from proliferating and 

forming a new tumour in mice, CSCs should also be capable of reconstituting 

the heterogeneity of the parental human tumour, i.e. within the new tumour 

their progeny should be able to differentiate into all the different phenotypes 

found in the human tumour, including the non-tumourigenic cells.  
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Figure 3.6*: Two general models of heterogeneity in solid cancers. Tumours 
are seen as heterogeneous populations of cancer cells with different phenotypic and 
physiological characteristics. Different cell phenotypes are shown in different 
colours. In the stochastic model, every proliferative cell of the tumour is able to self-
renew (curved arrow) and to give rise to new tumours (horizontal arrow) (a). In the 
cancer stem cell model only a subpopulation of tumour cells (named cancer stem 
cells, CSCs, shown in yellow) is able to self-renew and initiate new tumour growth 
(b). *Adapted from [19] 
 

 

The idea that stem cells could be at the origin of cancer was first proposed 

more than a century ago, when Virchow suggested that tumours arise from 

embryonic-like cells [63]. The cancer stem cell hypothesis re-emerged in 

1997 when Bonnet and Dick found that in acute myeloid leukaemia (AML) 

only cells with the CD34+CD38- phenotype were capable of initiating the 

human AML in non-obese-diabetic mice with severe combined 

immunodeficiency disease (NOD/SCID mice). The frequency of these cells in 

patients’ blood samples was low, ranging from as little as 0.2 to 100 cells per 

106 mononuclear cells [64]. 

 

More recently, CSCs have been described in solid cancers including cancers 

of breast, central nervous system (CNS), colon and head and neck. Attempts 

to identify cancer stem cells (i.e. to distinguish them from their more 

differentiated progeny and from stromal cells) have explored different 

approaches based on distinctive properties of these cells. One of these 

properties is the ability to actively efflux dyes like Hoechst 33342 via the 

multidrug transporters. In HNSCC, cells with this ability (also known as the 

side-population) were shown to have greater clonogenicity and a high 

tumourigenic potential [65]. Certain enzymatic functions (e.g. aldehyde 
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dehydrogenase activity) have also been described as specific features of 

CSCs. Aldehyde dehydrogenase (ALDH) is an intracellular enzyme that 

catalyses the conversion of retinol to retinoic acid [66]. ALDH expressing 

cells have been identified in many cancers, including cancers of breast [67] 

brain [68], prostate [69] and head and neck [70]. In these cancers ALDH+ 

cells were found to be able to self-renew and to initiate tumours in 

immunocompromised mice. Anchorage-independent growth is another well-

established attribute of CSCs. It was first described as a distinctive 

characteristic of normal mammary stem cells, when a small fraction of normal 

breast cells was found to survive in non-adherent conditions and formed 

floating spherical colonies, termed mammospheres [71]. These cells were 

able to give rise to all three mammary epithelial progenitors and expressed 

genes associated with stem and progenitor cells [71]. This method of non-

adherent culture was adapted for enrichment of CSCs and has been 

successfully applied in various cancer models such as breast [72], prostate 

[73] and head and neck cancers [74].  

 

With advances in the development of the fluorescent activated cell sorting 

(FACS), identification and isolation of CSCs based on expression of distinct 

cell surface markers has become particularly attractive. Many studies have 

reported the isolation of CSCs on the basis of their surface phenotype (Table 

3.3). 
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Table 3.3*: Cell surface phenotype of CSCs in different types of cancers 
 
Malignancy Molecular phenotype Reference 
AML CD34+CD38- [64] 
Bladder Lin-CD44+CK5+CK20- [75] 
Breast CD44+CD24-/loLin-EPCAM+ [76] 
CNS CD133+ [77] 
Colon CD133+ [78] 
Colon CD133+ [79] 
Colon EPCAMhiCD44+Lin-(CD166+) [80] 
Ewing CD133+ [81] 
Head and neck CD44+Lin- [82] 
Liver CD90+ [83] 
Melanoma ABCB5+ [84] 
Ovarian CD44+CD117+ [85] 
Pancreatic CD44+CD24+EPCAM+ [86] 
Pancreatic CD133+ [87] 

 
* Adapted from [88] 
 

 

3.3.1 Cancer stem cell hypothesis. Clinical implications 

 

One of the reasons for therapeutic failure in cancer treatment is the intrinsic 

or acquired resistance of cancer cells to chemo- and/or radiotherapy. Very 

often there is initial tumour shrinkage at the start of the therapy, but this is 

followed by tumour recurrence at a later stage. Such clinical observations 

suggest that the majority of the tumour cells respond to therapy and die, but 

a small fraction of cells is resistant to therapy and survives the treatment. 

Therapy resistance has been attributed to CSCs rather than the bulk of 

tumour cells [89] [90]. Upon completion of chemo- or radiotherapy surviving 

CSCs are able to drive tumour growth and produce a recurrent tumour 

(Figure 3.7 A). CSCs have also been associated with tumour invasion and 

cancer metastasis [91] [87]. 

 

Cellular and molecular mechanisms that may contribute to the therapeutic 

resistance of CSCs include increased recognition and repair of DNA damage, 

alterations of cell cycle checkpoints, impairment of apoptotic pathways and 

reduced accumulation of cytotoxic chemotherapeutic agents through 

enhanced energy-dependent drug efflux [92]. 
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The presence of therapy-resistant CSCs has been reported in various 

cancers. In glioma CD133+ stem cells were found to be resistant to radiation 

due to enhanced activation of DNA damage response [93]. In breast cancer 

CD44+ stem cells selectively survived radiation [94] and in HNSCC CD44+ 

stem cells have been shown to be resistant to a wide range of apoptotic 

stimuli including UV, TNFα, cisplatin, etoposide and neocarzinostatin [95]. In 

melanoma the ABCB5+ stem cell fraction was shown to possess increased 

resistance to the chemotherapeutic agent doxorubicin as a result of reduced 

intracellular drug accumulation [96].  

 

These findings imply that conventional chemo- and radio-therapies, while 

effective on the bulk of tumour cells, fail to eliminate the stem cell fraction in 

many cancers allowing tumour recurrence after initial decrease of the tumour 

mass (Figure 3.7 A). Elucidating the molecular properties of these resistant 

CSCs may lead to development of CSCs-targeted therapies and contribute to 

development of more successful cancer treatments (Figure 3.7 B). 

 

 

 
 
Figure 3.7*: Conventional therapies vs. CSCs-targeted therapies. Conventional 
therapies target the bulk of tumour cells, but may fail to kill the cancer stem cells 
leading to treatment failure and tumour relapse (A). Novel therapies specifically 
target cancer stem cells leading to a complete elimination of the tumour (B). 
*Adapted from [92] 
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3.3.2 CD44 - a marker of cancer stem cells in HNSCC 

 

CD44 was first identified as a marker of CSCs in breast cancer [76]. Cells 

with the CD44+CD24-/lowlineage- phenotype were isolated from patients and 

xenograft transplantations of as few as 100 of these cells led to initiation of 

tumour growth in immunocompromised mice, whereas tens of thousands of 

cells with alternative phenotypes did not give rise to tumours. A few years 

later similar results were reported for CD44+ cells in SCC of the head and 

neck. Prince and co-workers performed a series of xenograft transplantations 

to compare the tumourigenic potential of CD44+ and CD44- cells isolated 

from samples of human head and neck squamous cell carcinoma. They 

found that 5000 transplanted CD44+lineage- cells were able to initiate 

tumours in mice, whereas CD44-lineage- cells did not have this ability, even 

when cell numbers as large as 500,000 were introduced [82]. Analysis of the 

resulting tumour transplants revealed that transplanted CD44+ cells 

generated both CD44+ and CD44- cells. These findings demonstrated that 

implanted CD44+ human tumour cells are able to produce tumours in mice 

that phenotypically mirror their parental human tumours. Moreover, CD44+ 

cells in human tumours were found to express the transcription factor BMI1 

that is associated with self-renewal functions in embryonic stem cells [97], 

somatic stem cells [98] and was also linked with tumourigenesis [99]. The 

role of CD44 (either alone or in combination with other markers) as a marker 

of cancer stem cells has since been confirmed by several independent 

studies [100] [101]. Krishnamurthy and co-workers reported that introducing 

1000 CD44+ALDH+ cells isolated from human HNSCC resulted in a 

successful xenograft in 13 of 15 implantations, whereas 10,000 CD44-ALDH- 

cells generated tumours only in 2 of 15 implantations [102]. Tumours 

generated by CD44+ALDH+ cells could be serially passaged, whereas 

tumours from the double negative cells could not, indicating self-renewal 

properties of the double positive but not the double negative cells. 

 

Present evidence suggests that CD44 is one of the most frequent markers of 

CSCs in several solid tumours (Table 3.4) and many studies have linked 

37 



CD44 to tumour progression and poor clinical outcome in numerous types of 

cancers.  

 

 
Table 3.4*: CD44 expression by CSCs in different cancers 
 
Tumour type Marker profile References 
AML CD44+CD34+CD38-Thy-1-c-kit-IL3Rα+ [103] [104] 
CML CD44+ [105] 
Stomach CD44+ [106] 
Colon CD44+EPCAM+CD166+ (CD133+) [80] [79] [78]  
Liver CD44+CD90+CD45+ or 

CD44+CD133+ 
[107] [108] 

Gall bladder CD44+CD133+ [109] 
Pancreas CD44+CD24+EPCAM+ [86] 
Breast CD44+EPCAM+CD24+/- or 

ALDH+CD44+CD24- 
[76] [110] [111] [72] 

Cervix uteri CD44+CK17+ [112] 
Ovary CD44+CD117+CD133+ [85] 
Prostate CD44+ or  

CD44+CD24+ or 
CD44+CD133+ 

[113] [114] [115]  

Bladder CD44+lineage-CK5+CK20- or 
CD44v6+EPCAM 

[75] [116] 

Head and neck CD44+lineage-Bmi-1+ or 
CD44v3+ or 
CD44v6+ 

[82] [117] [118] [119] 

Parathyroid gland CD44+CD24- [120] 
Lung CD44+ (SCC)  

CD44+CD133+ (adenocarcinoma) 
[121] [122] 

Bone (sarcoma) CD44+Stro-1+CD105+ [123] 
CNS CD44+ (glioblastoma) 

CD44+CD166+ (meningoma) 
[124] [125] 

 
* Modified from [126] 
 

 

3.3.2.1 Structure of CD44 

 

CD44 is a transmembrane glycoprotein receptor, encoded by the CD44 

gene, typically located in glycolipid-enriched microdomains in the plasma 

membrane. The numerous products of the CD44 gene vary in size due to 

post-translational modifications (N-glycosylation and O-glycosylation) as well 

as alternative splicing [127]. The receptor has 7 extracellular domains, a 

transmembrane domain and a cytoplasmic domain [128]. The human CD44 
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gene contains 20 exons [126]. Exons 1 to 5 and 16 to 20 are used in every 

CD44 isoform (standard exons), whereas exons 6 to 15 (variant exons) are 

inserted by alternative splicing into specific CD44 variant isoforms (Figure 

3.8). The smallest CD44 isoform (known as the standard isoform, CD44s) 

contains only the standard exons and is abundantly expressed by many 

types of vertebrate cells [129]. Variant CD44 isoforms are expressed in 

specific tissues, during embryogenesis, lymphocyte maturation and activation 

and some types of carcinoma [130]. 

 

Products of the five amino-terminal exons build a globular structure, which 

harbours binding sites for CD44 ligands. Hyaluronan (HA), a major 

glycosaminoglycan component of the extracellular matrix (ECM) [131] is 

regarded as the main ligand of the receptor [132] [133]. Additionally, binding 

sites for collagen, laminin [134], and fibronectin [135] have been described. 

Two binding sites for other glycosaminoglucans are also known [136]. CD44 

interaction with HA has been reported to activate signalling pathways linked 

to tumour invasion and metastasis [137] [138]. The 46 amino acids long 

region between the transmembrane domain and the globular ligand binding 

N-terminal domain [139] is heavily glycosylated and contains potential 

proteolytic cleavage sites [140].  

 

The cytoplasmic domain of CD44 can interact with the cytoskeletal proteins 

ankyrin and the ERM protein family members ezrin, radixin and meosin [141]. 

Ankyrin and the ERM proteins link CD44 to the actin cytoskeleton. Through 

this interaction CD44 is implicated in cell adhesion and cell migration [142] 

[143] [144] and is involved in signal transduction, mediated through 

transmembrane and cytosolic kinases and linker proteins [129] [145] [146].  
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Figure 3.8*: Structure and assembly of the CD44 standard and variant 
isoforms. (A) The human CD44 gene consists of 20 exons. Exons 1 to 5 and 16 to 
20 are used in every CD44 isoform (standard exons, green bars). Exons 6 to 15 are 
inserted by alternative splicing into certain CD44 isoforms only (variant exons, red 
bars). (B) Exon composition of some CD44 isoforms is shown. (C) Shematic 
representation of the sterical confirmation of the standard (left) and variant (right) 
CD44 isoforms, showing sites for N-glycosylation (grey circles), O-glycosylation 
(orange circles) and two glucosaminoglycan binding sites (white circles). *Modified 
from [126] 
 

 

Direct involvement of CD44 in the maintenance of stem cell-related 

properties has been demonstrated by many researchers. Our own laboratory 

found that down-regulation of CD44 leads to a reduced rate of population 

expansion and changes in colony morphology indicative of stem cell loss and 

to decreased levels of Oct4A [147]. In a different study examining CD44-

regulated GSK3β signalling pathway, we reported decrease in holoclone and 
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tumour sphere formation and reduced expression of stem cell markers Sox2, 

Oct4 and Nanog upon inactivation of CD44 [148]. This also resulted in up-

regulation of differentiation markers calgranulin B and involucrin. Recently, 

CD44v3 was discovered to mediate the Oct4-Sox2-Nanog pathway to 

stimulate transcription of microRNA-302 leading to self-renewal, clonal 

formation and cisplatin resistance [149]. 

 

3.3.3 Epithelial to mesenchymal transition in cancer metastasis 

 
Epithelial to mesenchymal transition (EMT) is a process, in which epithelial 

cells undergo physiological changes that lead to a partial or a complete loss 

of the epithelial phenotype and to the acquisition of mesenchymal traits. 

Three subtypes of EMT occurring in the three distinct biological settings of 

embryogenesis, wound healing and cancer have been described [150].  

 

EMT is a complex process that involves many molecular events including 

activation of transcription factors, expression of specific cell surface proteins, 

cytoskeleton remodelling, production of ECM degrading enzymes and 

changes in microRNAs expression [151]. Based on such cellular changes a 

wide range of markers has been used to identify EMT occurring in vivo and in 

vitro (Table 3.5). 
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Table 3.5*: Markers of EMT1) 
 

 
 
1) Types of EMT 1: embryonic, 2: wound healing, 3: carcinogenesis 
*Adapted from [150] 
 

 

The changes in gene expression that occur during EMT are influenced by 

environmental factors [152] [153] [154]. In adult tissues, stromal signals such 

as transforming growth factor β (TGF-β) can induce EMT and lead to 

downregulation of epithelial products such as E-cadherin and upregulation of 

EMT-promoting transcription factors including twist and snail [155] [156]. In 

cancer, EMT can be triggered by the inflammatory immune response [157] 

and by the hypoxic tumour environment [158] [159]. EMT in different types of 

cancer cells in vitro leads to increased activity in assays of migration and 

invasion [160] [161]. Collectively, these findings suggest that EMT is likely to 

play a significant role in cancer metastasis by allowing tumour cells to 

migrate away from the primary tumour to initiate metastases at distant body 
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sites. Although in vivo evidence has been lacking for a long time, newer 

studies confirm a role of EMT in cancer spread and metastasis. For example, 

Kallergi and co-workers found circulating cancer cells that stained positively 

for vimentin and twist, both classic markers of EMT, in the blood of breast 

cancer patients [162]. 

 

Some studies have also linked EMT to cancer stem cells [153] [163] and to 

therapy resistance [164] [165]. A link between CSCs and EMT has been 

established for breast-cancer cells, where the CSCs phenotype 

(CD44+CD24low/-) has been found to coincide with the expression of EMT 

markers [166] [152] [153]. Mani and co-workers reported the acquisition of 

stem cell-like phenotype upon induction of EMT [153]. However, our recent 

findings suggest that rather than inducing stem cell functions, EMT can occur 

in CSCs present in tumours to generate an alternative stem cell phenotype 

[160]. We have demonstrated [160] that CSCs that have undergone EMT are 

present both in fresh samples of head and neck cancers and in cell lines 

derived from HNSCC and skin SCC. Thus, CSCs exist as at least two distinct 

phenotypes; one, which is preferentially proliferative, has a CD44highESAhigh 

surface phenotype, and displays epithelial characteristics; and another that 

has a migratory phenotype, is CD44highESAlow/-, and shows mesenchymal 

features. Using EMT and the reverse process of mesenchymal to epithelial 

transition (MET) cells are able to switch between these two phenotypes 

[160]. It is suggested that these properties, if present in tumours in vivo, 

would allow translocation of primary tumour cells to distant body sites and the 

development of metastases.  

 

In summary, the evidence cited above suggests that EMT plays an important 

role in the metastasis of OSCC [158], breast cancer [167], and several other 

types of carcinoma and that EMT, by inducing therapeutic resistance is likely 

to be implicated in tumour recurrence [90]. 
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3.3.3.1 Integrin αVβ6 in carcinogenesis-associated EMT 

 

One of the surface proteins upregulated during EMT is integrin αVβ6 (Table 

3.5). Unlike other integrin heterodimers, αVβ6 is not constitutively expressed 

by adult epithelial cells. However, its expression has been reported on 

epithelial cells after wounding [168] and also in various types of carcinoma 

including carcinoma of the lung, breast, pancreas, colon, oral and skin 

squamous cell carcinoma [169] [170] [168] [171]. For some of these tumours, 

high abundance of integrin αVβ6 has been observed particularly at the 

invading edge of the tumour [172]. In OSCC, integrin αVβ6 has been shown 

to promote migration and matrix metallopeptidase 9 (MMP9)-dependent 

invasion [173] [174], suggesting a role for integrin αVβ6 in the EMT occurring 

during tumour invasion and spread. 
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4. Materials and Methods 
 

4.1 Cell culture 
 

4.1.1 Cell lines and standard culture conditions 

 
4.1.1.1 Cell lines 

 

Established cell lines used in the study are listed in the table below (Table 

4.1). Epithelial and fibroblastic cultures, generated from a number of OSCC 

specimens in course of the study, were also used and are listed in table 4.2 

(Table 4.2). The newly generated cell lines were either given a laboratory 

number or were labelled with a code unique to each OSCC patient. The letter 

“n” at the end of the cell line name indicates that the cell line has been 

produced from cells isolated from a lymph node metastasis. Fibroblastic 

cultures were designated by the code followed by “fibs” in order to distinguish 

them from cultures of primary keratinocytes derived from the same tumour 

(Table 4.2). All fibroblastic cultures were examined for expression of pan-

Cytokeratin to confirm their mesenchymal origin and stained negative. Cell 

lines Luc4 and Luc11 were produced by a colleague (Dr Luke Gammon), the 

remaining cell lines were produced by me. A list of clinical and pathological 

parameters of tumour specimens the cell lines have been generated from 

can be found in the appendix (Appendix Table 1 and Table 2). 
 

 

Table 4.1: Established cell lines and other cell types used in the study 
 

Cell line Tissue of origin Source/comment 
CA1 OSCC of the tongue generated in our laboratory 
5PT laryngeal cancer 

(supraglottis) 
cisplatin resistant; kindly provided by 
Dr. Thomas Carey, University of 
Michigan  

H357 OSCC of the tongue integrin αV negative [175] [176] 
Met2 cutaneous SCC generated in our department [177] 
normal skin 
fibroblasts 

healthy skin biopsy generated in our laboratory 

3T3 
fibroblasts 

mouse embryo 
fibroblasts 

[178] 
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Table 4.2: Tumour-derived epithelial cell lines and fibroblast cultures 
generated in course of the study 
 
Tumour 
cell line 

OSCC tissue of 
origin 

24 floor of mouth 
24*n lymph node 
25 tongue, oropharynx 
30 retromolar region 
33 mandibular alveolus 
42 maxilla 
50 mandible 
54 tongue 
57 buccal mucosa, palate

57n lymph node 
AB floor of mouth 
EM retromolar and 

tonsilar region 
GR tongue 
LK gingiva 
LM mandible 

Luc4 floor of mouth 
Luc11 buccal mucosa 
MKn lymph node 
NA tongue 
NK tongue 
PB mandible 

Fibroblast 
culture 

OSCC tissue of origin 

17fibs manbible, gingiva 
20fibs soft palate 
21fibs cheek, mandible 
22*fibs mandible, palate 
23fibs buccal mucosa 
30fibs retromolar region 
32fibs floor of mouth, mandible 
33fibs mandibular alveolus 
37fibs maxilla, buccal mucosa 
40fibs mandible 
41fibs tongue 
42fibs maxilla 
55fibs gingiva 
56fibs floor of mouth, ventral tongue
57fibs buccal mucosa, palate 
Afibs tongue, oropharynx 

Anfibs lymph node 
ABfibs floor of mouth 
GRfibs tongue 
JFfibs floor of mouth 
JNfibs floor of mouth 
LMfibs mandible 
NAfibs tongue 
NKfibs tongue 
PBfibs mandible 

 

 

 

 

Normal skin fibroblasts and 3T3 fibroblasts were grown in DMEM/Ham’s F12 

medium (PAA laboratories) mixed in a ratio 3:1, supplemented with 

Glutamine (PAA laboratories, final concentration in medium 2 mM), 

penicillin/strepomycin (PAA laboratories, final concentration of 100 U/ml and 

0.1 mg/ml, respectively) and 10% fetal calf serum (FCS, Biosera). This 

medium formulation was termed “E4 medium”. All other cell lines (including 

the newly generated epithelial and fibroblastic cultures) were grown in the 

same medium (E4) with additional supplements (Table 4.3). This medium 

was termed “RM+ medium”. For some experiments, cells were grown in the 

commercially-available CnT24 medium (“CnT24 progenitor cell targeted oral 

epithelium medium”, CellnTec Advanced Cell Systems) supplemented with 

additives provided by the supplier (including 100 U/ml Penicillin, 100 μg/ml 

Streptomycin and 250 ng/ml Amphotericin B). 
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Table 4.3: RM+ supplements 
 
Product name Source Concentration 

in medium 
Cholera toxin Sigma 10 -10 M   
Epidermal 
Growth Factor 
(Mouse) 

Serotec 10ng/ml  

Hydrocortisone Sigma 0.4µg/ml  
Insulin Sigma 5µg/ml  
Transferrin Sigma 5µg/ml 
3,3′,5-Triiodo-L-
thyronine 
sodium salt 

Sigma 2*10-11 M 

 

 

For established cell lines, cells were usually plated at clonal density (2000 

cells per ml or 20,000 cells per T75 plate) in a plastic cell culture flask. For 

the newly generated malignant epithelial cell lines, cells were co-cultured with 

non-proliferative (irradiated) mouse 3T3 feeder cells during the initial few 

passages. In the early passages cells were plated at high density (50-60% 

confluence) and subsequently allowed to become 80-90% confluent. All 

cultures were kept in a humid incubator at 37°C in 5% carbon dioxide. When 

cultures reached 70-80% confluency, they were washed with phosphate 

buffered saline (PBS, without Ca2+ and Mg2+) (PAA laboratories) and 

detached from the dish following a 10 min incubation with trypsin/EDTA (PAA 

laboratories, 0.025% and 2.0 g/l EDTA•4Na in 0.9% sodium chloride) at 

37°C. Trypsin was neutralized by addition of an equal amount of RM+ 

medium. Cells were counted and centrifuged at 380 g for 5 min. The 

supernatant was removed and the cell pellet resuspended in RM+ medium at 

a concentration of 1x106 cells per ml. Cells were then either used for further 

experiments, re-plated, or frozen for long-term storage.  

 

4.1.1.2 Freezing cells for long-term storage 

 

When freezing cells, 10% dimethyl sulfoxide (DMSO) was added to the RM+ 

medium in which the cell pellet was resuspended. Cells were transferred to a 

cryovial and placed in a -80°C freezer. When freezing newly generated cell 

lines, DMSO-containing cryopreservation medium CryoMaxx S (PPA 
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laboratories) was used and, in order to increase the survival rate, cryovials 

were wrapped in tissue paper to allow the cells to cool and freeze slowly. 

After 3-14 days storage at -80°C cryovials were transferred to the liquid 

nitrogen till further use. 

 

4.1.1.3 Thawing cells 

 

Immediately after their removal from liquid nitrogen, cryovials containing cells 

were put in a 37°C water bath for 1 min. When the content had thawed 

completely, 5 ml RM+ medium was added to dilute the toxic DMSO. Cells 

were centrifuged at 1500 rmp for 5 min. Supernatant was aspirated and the 

cell pellet was resuspended in fresh RM+ medium. Depending on the number 

of cells in the cryovial, cells were plated in T25 or T75 flasks. Cells were 

passaged at least once before they were used for flow analysis or other 

experiments. 

 

4.1.2 Growth in non-adherent conditions (sphere formation assay) 

 

4.1.2.1 Poly-HEMA-coated plates 

 

To prevent cells from attaching to the bottom of the culture wells, 48 well 

plates were coated with poly(2-hydroxyethylmethacrylate) (also known as 

poly-HEMA). 300 mg of poly-HEMA (Sigma) was dissolved in 25 ml absolute 

alcohol (Fisher Scientific) using a magnetic stirrer overnight to give a final 

concentration of 12 mg/ml. 250 µl of that solution were added into the middle 

26 wells of a 48 well plate, leaving one row of wells empty at each side. To 

avoid the “edge effect” these wells were not used for growing spheres. The 

plates were left with the lids off in the hood overnight, allowing poly-HEMA to 

solidify. Next morning the plates were removed from the hood, wrapped in 

parafilm (Santa Cruz Biotechnology) and stored at room temperature till 

further use. 
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4.1.2.2 Preparation of cells and media 

 

Cells were first grown at clonal density for 4-6 days and were then detached 

with trypsin/EDTA. Cells were centrifuged and resuspended in RM+ medium 

at a concentration of 1000-10,000 cells per 30 µl. Cells were then put through 

a 70 µm filter to remove clumps. To thicken the culture medium, 

methylcellulose (Sigma) was added to RM+ medium to create a 1% solution. 

To completely dissolve the methylcellulose, the solution was left on a shaker 

overnight. The tube was then left in an upright position with no agitation for a 

few hours to let the remaining undissolved methylcellulose settle. 500 µl of 

methylcellulose in RM+ solution were added to poly-HEMA-coated wells. 

Then 30 µl of RM+ medium containing 1000 to 10,000 cells were added to 

the wells. The number of cells plated per well depended on the size of the 

sphere-forming cell fraction in a given cell line. The empty wells at the edge 

of the plate were filled with PBS. Cells were left to grow until sphere 

formation could be seen, which usually took 2-3 weeks. Spheres were 

counted in each well and expressed as a proportion of the total number of 

cells plated. 

 

4.2 Flow cytometry 
 

4.2.1 Flow analysis 

 

For flow analysis, cells were washed with PBS and detached from culture 

dishes using trypsin/EDTA. Trypsin was neutralized with RM+ medium. Cells 

were counted, centrifuged and resuspended either in PBS or 

unsupplemented DMEM/Ham’s F12 (3:1) medium. Typically 5x105 cells in 

500 µl PBS or DMEM/Ham’s F12 medium were incubated with 5 µl of the 

antibody for 15 minutes at room temperature. 2 ml PBS were then added to 

dilute the antibody. Cells were centrifuged at 380 g for 5 minutes, PBS 

containing the remaining unbound antibody was aspirated and the cell pellet 

was resuspended in 500 µl PBS containing 100 ng/ml DAPI to mark dead 

cells. Cells were then analysed on LSR II analyser or FACS Canto II analyser 

(both by BD Bioscience). 
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All FACS-antibodies (fluorochrome-conjugated and unconjugated) used in 

the study are listed in table 4.4 and table 4.5. When unconjugated primary 

antibodies were used, after the incubation with the primary antibody, cells 

were washed with PBS and resuspended in 500 µl fresh medium. A second 

incubation step with fluorochrome-conjugated secondary antibody was then 

performed at room temperature for 15 min.  

 

 
Table 4.4: Primary antibodies used for flow analysis 
 
Antigen Clone Isotype Conjugate Source 
CD24 ML5 mouse 

IgG2a, κ 
FITC, PE BD Pharmingen 

CD44 C26 mouse 
IgG2b, κ 

PE, FITC, 
APC 

BD Pharmingen 

EGFR EGFR.1 mouse 
IgG2b, κ 

PE BD Pharmingen 

ESA (CD326) HEA-125  mouse 
IgG1 

APC, PE, 
FITC 

MACS 
Miltenyi Biotec 

ESA (CD326) VU-1D9 mouse 
IgG1 

FITC AbD Serotec 

Integrin αVβ6  10D5 mouse 
IgG2a 

-- Millipore 

Integrin β4  439-9B rat 
IgG2b, κ 

PE BD Pharmingen 

Integrin β6  437211 mouse 
IgG2b, κ 

PE R&D Systems 

Human hematopoietic 
cocktail: 
  CD2 (RPA-2.10) 
  CD3 (OKT3) 
  CD14 (61D3) 
  CD16 (CB16) 
  CD19 (HIB19) 
  CD56 (CB56) 
  CD235a (HIR2) 
 

 --  
 
 
 
APC 

 
 
 
 
eBioscience 

PECAM1 (CD31) WM59 mouse 
IgG1, κ 

APC eBioscience 

PDGFRβ (CD140b) 18A2 mouse 
IgG1, κ 

APC Biolegend 

PDGFRβ (CD140b) APB5 rat IgG2a, 
κ 

APC eBioscience 
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Table 4.5: Secondary antibodies used for FACS and immunohistochemistry 
(IHC) 
 

Antigen Species Conjugate Dilution Source 
Mouse IgG Rabbit Alexa-488 1:1000 (FACS) 

1:700 (IHC) 
Invitrogen 

Mouse IgG Goat Alexa-488 1:1000 (FACS) 
1:700 (IHC) 

Invitrogen 

Rabbit IgG Goat Alexa-546 1:700 (IHC) Invitrogen 

 

 

For some assays cells were co-stained with two or three different antibodies. 

If only conjugated antibodies were used, cells were incubated with all the 

different antibodies at the same time. When unconjugated antibodies (i.e. 

anti- integrin αVβ6) were used, staining was carried out sequentially. In the 

first incubation step only the unconjugated primary antibody was added to the 

sample. Second incubation step included the secondary antibody and the 

third incubation step included all the other primary conjugated antibodies. 

After each incubation step 2 ml PBS were added, cells were centrifuged and 

after PBS was aspirated the cell pellet was resuspended in 500 µl of fresh 

PBS. 

 

Flow cytometric analysis of cells isolated from tumour tissue was carried out 

according to the protocol as above, except all antibody incubations were 

performed at room temperature for 30 minutes.  

 

4.2.2 Isotype controls and non-stained control samples 

 

To assess the degree of unspecific cell binding of the FACS antibodies, flow 

analysis was performed on different types of cells (keratinocytes and 

fibroblasts) that were incubated with different fluorochrome-conjugated IgG 

isotypes (Table 4.6). 
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Table 4.6: Isotype controls used for flow cytometric analysis 
 
Isotype Clone Conjugate Source 
mouse IgG1, κ MOPC-21 APC, FITC, PE BD Pharmingen 
mouse IgG2a, κ G155-178 APC BD Pharmingen 
mouse IgG2b, κ 27-35 FITC BD Pharmingen 
mouse IgG2b, κ MPC-11 PE BD Pharmingen 
rat IgG2b, κ R35-95 Pacific Blue BD Pharmingen 

 

 

The signal intensity of the isotype stained control samples was compared 

with the signal intensity of non-stained control samples, which was entirely 

due to auto-fluorescence. None of the isotype controls showed a detectable 

difference in signal intensity compared to the non-stained control sample 

(Appendix Figure 1 and Figure 2). Therefore, it was considered unnecessary 

to use an isotype control sample in each FACS experiment. Instead, a non-

stained control sample containing 1-2x105 cells was used in each experiment 

to set up machine voltages and to draw gates for sample analysis. For 

integrin αVβ6 (unconjugated primary antibody) a sample stained only with the 

secondary antibody was used as negative control to assess non-specific 

background signal. 

 

4.2.3 Compensation 

 

When combinations of fluorochromes were used for which emission spectra 

overlap (e.g. FITC and PE), manual or automatic compensation was carried 

out in order to correct spill-over. Briefly, cells were stained with each antibody 

separately and flow analysed. Spill-over into the wrong channel (i.e. PE 

signal detected in the FITC channel and vice versa) was corrected by 

adjusting the median fluorescence intensity (MFI) in the wrongly detected 

channel by bringing it to the MFI level of the non-stained control sample. 

 

4.2.4 Assessing the CD44 median fluorescent intensity (MFI) 

 

Samples stained for CD44 were flow analysed according to the standard 

protocol. The MFI value for the CD44 signal was determined by the FACS 

machine for both the non-stained control sample and the sample 
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immunolabelled with anti-CD44 PE-conjugated antibodies. The ∆MFI was 

calculated by subtracting the CD44 MFI value of the non-stained sample from 

the MFI value of the labelled sample. Because the MFI depends on the 

calibration and the settings of the FACS machine, all samples were analysed 

during the same session. 

 

4.2.5 Cell sorting experiments to test negative and positive selection 

 

4.2.5.1 Cultured cells 

 

CA1 cells and cultured fibroblasts derived from fresh tumour tissue were 

trypsinised and mixed in a ratio 1:1. After staining the cell mix with epithelial- 

specific antibodies (used in positive selection) or antibodies against non-

epithelial-specific antigens (used in negative selection) epithelial and non-

epithelial cell fractions were sorted. Following sorting, cells were centrifuged 

at 380 g for 5 min and 3*104 – 5*104 cells per well were plated in a 24 well 

plate. The following day cells were fixed with ice-cold acetone-methanol (1:1) 

at -20°C for 5 min and stained for pan-Cytokeratin (see below). 

 

4.2.5.2 Cells isolated from fresh tumour tissue 

  

Tumour cells isolated from fresh tumour tissue were stained and sorted 

according to the same protocol as above. Following sorting, cells were 

deposited on poly-L-lysin coated microscope slides (VWR international) using 

the cytospin centrifuge (Thermo Scientific). Briefly, the slides were labelled 

and mounted with a paper pad. The plastic cuvette was placed on top of the 

paper pad and secured with the metal holder. 250 µl of RM+ medium 

containing the sorted cells were pipetted into the cuvette and centrifuged at 

200 g for 10 min. The slides were left to dry, cells were then fixed with ice-

cold acetone-methanol (1:1) at -20°C for 5 minutes and stained for pan-

Cytokeratin according to the standard protocol (see below). 
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4.3 Immunofluorescence and immunohistochemistry 
 

4.3.1 Cultured cells and cells isolated from tumour tissue 

 

Cells were grown in a 12 well culture plate (VWR International) and, when 

cell colonies reached the required size, the plate was washed with PBS and 

cells were fixed in ice-cold acetone-methanol (1:1) at -20°C for 5 minutes. 

After fixing, cells were washed with PBS three times and the blocking 

solution (1% BSA, 0.5% TritonX100 in PBS) was added for 1 hour at room 

temperature. The primary antibody was diluted in blocking solution and left 

on the cells overnight at 4°C. Plates were then washed with PBS three times 

and the secondary antibody in blocking solution was applied for 3-4 hours at 

room temperature. The plate was then washed with PBS twice and incubated 

with PBS containing 300 ng/ml DAPI. Cells were again washed with PBS and 

mounted with Immumount (Thermo Scientific). All antibody incubations and 

blocking were performed with a slow agitation on a shaker. All primary and 

secondary antibodies and dilutions used are listed in table 4.7 and table 4.5. 

When fresh tumour cells were stained, cells were deposited onto a 

microscope slide prior to staining using the cytospin centrifuge. The area 

containing the cells was delineated with a hydrophobic pen (DAKO) and cells 

stained according to the standard protocol described above. 

 

 
Table 4.7: Primary antibodies used for immunohistochemistry 
 
Antigen Clone Isotype/Species Dilution Source 
CD44 C26 mouse IgG2b, κ 1:100 BD Pharmingen 
Wide spectrum 
cytokeratin 

polyclonal Rabbit, IgG 1:100 Abcam 

Vimentin RV202 Mouse IgG1 1:100 BD Pharmingen 
EGFR 111.6 IgG1 1:100 Thermo 

Scientific 
E-Cadherin polyclonal Rabbit IgG 1:100 Santa Cruz 
β-Catenin 6F9 Mouse IgG1 1:100 Sigma 
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4.3.2 Tumour tissue sections 

 

4.3.2.1 DAB staining for CD44 

 

Resected tumour tissue was fixed in 4% paraformaldehyde (PFA) and 

embedded in paraffin. 5 µm thick sections were cut from tumour blocks and 

put on poly-lysine coated microscope slides. Fixation, embedding and cutting 

of the tissue was done by the staff of the Royal London Hospital pathology 

department. 

 

Tissue sections were first deparaffinised by immersing the slides in xylene, 

two times for 5 min each, and then rehydrated by incubating in decreasing 

strengths of ethanol (100%, 90% and 70%) for two min each. The slides were 

then washed in distilled water for 5 min. Tissue sections were delineated 

using a hydrophobic pen. In a humidified chamber, 300-400 µl of a 3% H2O2 

solution (Sigma) were pipetted onto the tissue sections and left on for 10 min 

to quench the endogenous peroxidase activity. Slides were rinsed in distilled 

water, placed in a container, and immersed in 300-350 ml of 10 mM citrate 

buffer (tri-sodium citrate (dihydrate) in dH2O, pH 6) to unmask antigenic 

epitopes. The container was heated in a microwave at maximum power for 3 

min. The container was removed from the microwave, refilled with citrate 

buffer and allowed to cool down for 20 min at room temperature. 

 

After washing the slides twice for 5 min in PBS, they were placed into a 

humidified chamber and incubated with blocking buffer (10% goats serum in 

PBS) for 1 h to block the non-specific antibody binding sites. The blocking 

buffer was flicked off and 200-300 µl (depending on the size of the tissue 

section) of blocking buffer containing the mouse-anti-human-CD44-antibody 

(BD Pharmingen, diluted 1:70) was added. After incubation at 4°C overnight, 

slides were washed in PBS and incubated with the secondary HRP-

conjugated goat-anti-mouse-antibody (DAKO) for 2 h at room temperature. 

Following two washes in PBS the slides were then treated with 3,3’-

diaminobenzidine (DAB) substrate kit for peroxidase (Vector Laboratories) 

according to the manufacturer’s instructions. Briefly, immediately before use, 
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2 drops of the buffer stock solution, 4 drops of the DAB stock solution and 2 

drops of hydrogen peroxide solution were added to 5 ml of distilled water and 

mixed well. The solution was applied on the tissue sections. The colour 

development was monitored and the reaction was stopped by immersing the 

slides in fresh distilled water. A sufficient staining intensity was observed 

after 3-5 min. The slides were then washed in water and counter-stained with 

hematoxylin and eosin (H&E). 

 

4.3.2.2 H&E staining 

 

Upon completing the DAB staining for CD44 detection, slides were 

submerged in hematoxylin (DAKO) for 2-5 minutes to stain the nuclei. Slides 

were rinsed in tap water for 5 minutes to oxidise the dye and give it the blue 

colour. Slides were then dipped briefly in 1% acid alcohol and counterstained 

with eosin (DAKO) for 2-3 minutes to stain the cytoplasm and connective 

tissue. This was followed by rinsing in water and rehydrating in a series of 

alcohols of decreasing strength (100%, 90%, 70%) for 2 min each. Finally, 

sections were fixed through incubation in xylene for two times, 2 min each. 

Immediately after fixation, slides were mounted with coverslips (VWR 

International) using DPX mounting medium (Sigma). 

 

4.4 Microscopy 
 

Pictures of stained cultured cells or cells isolated from tumours were taken on 

the Nikon eclipse TE 2000 microscope connected to QIClick™ digital CCD 

camera. Typically photographs were taken at 100x or 200x magnification. 

The microscope was used for both fluorescent and bright field photographs. 

Pictures were processed and analysed using QCapture Suit software, Image 

J graphics package and Photoshp CS4.  

 

4.5 Processing the tumour tissue 
 

OSCC tissue was sampled at St Bartholomew’s Hospital and the Royal 

London Hospital with patients’ informed consent under the Ethics approval 
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from East London and The City Research Ethics Committee (study number 

P/03/122, principal investigator: Prof Farida Fortune). The specimens were 

placed in a 15 ml falcon tube containing 6 ml transport medium (RM+ 

medium containing 200 U/ml penicillin and 0.2 mg/ml streptomycin) and were 

kept at 4°C until further use. The tissue was usually processed and analysed 

on the next day after resection. 

 

4.5.1 Isolating cells from tumour specimens 

 

Tissue samples were washed, minced with a scalpel and transferred to a 

falcon tube for dissociation in type III collagenase (Sigma) at a final 

concentration of 200 U/ml for up to 2 hours (Figure 4.1). Every 15 minutes 

the suspension was put through a 5 ml pipette (Fisher Scientific) in order to 

mechanically enhance disintegration of the tissue. Every 30 minutes the 

solution containing the cells that had broken out from the tissue was removed 

and neutralized with RM+ medium. Fresh medium containing collagenase 

was added to the remaining tissue fragments. The last round of digestion 

was performed in 1x trypsin/ETDA for 5 min. 

 

 

 
 
Figure 4.1: Processing of the tumour tissue. After three rounds of washes in PBS 
the tumour tissue was placed on a plastic cell culture dish (A). The tissue was finely 
minced using sterile scalpel and forceps (B). The tissue fragments were transferred 
into a 50 ml Falcon tube containing type III collagenase (200 U/ml) in 
unsupplemented DMEM/F12 medium (C). 
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All procedures were carried out in a laminar flow hood to minimise the risk of 

infecting the isolated tumour cells. Only sterile/autoclaved instruments were 

used to handle the tissue. 

 

Cells extracted from the tissue in this manner were centrifuged at 380 g for 7 

minutes. The supernatant was aspirated and the cell pellet was resuspended 

in 1-2 ml red cell lysis buffer (Sigma), which was left on for 2 min. 10 ml PBS 

was added to the tube and cells were pipetted up and down a few times to 

encourage the lyses of the red blood cells. Cells were then centrifuged at 

1500 for 5 min. After the supernatant was removed, the pellet was 

resuspended in a small volume (500 µl – 1 ml) of PBS or RM+ medium. 

Isolated tumour cells were either plated on a layer of irradiated 3T3 

fibroblasts in RM+ medium or immunolabelled with antibodies for FACS 

analysis. 

 

4.6 Generating cell lines from OSCC specimens 
 

4.6.1 Preparation of feeder cells 

 

In preparation for irradiation, mouse 3T3 fibroblasts were grown in 

DMEM/Ham’s F12 medium supplemented with 2 mM glutamine, 

penicillin/streptomycin (final concentration of 100 U/ml and 0.1 mg/ml, 

respectively) and 10% FCS in T175 flasks. Upon reaching confluency, cells 

were washed in Versene (Gibco) and trypsinised. After centrifugation at 380 

g for 5 min cells were resuspended in fresh medium. For irradiation, typically 

50-60*106 cells were trypsinised and resuspended in 20-25 ml medium. Cells 

were irradiated with γ-rays at a total dose of 60 Gy. Following irradiation, 

cells were frozen in FCS containing 10% DMSO till further use.  
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4.6.2 Establishing tumour-derived cell lines 

 

4.6.2.1 Explant method 

 

The tissue specimen was cut into pieces of approximately 1mm3 in size, 

which were placed on a plastic cell culture dish. When they dried and 

adhered RM+ medium was added. After 4-10 days, epithelial cells started 

growing out from the tissue pieces and could be passaged after reaching 70-

80% confluency. This initial cell expansion step was referred to as “passage 

0”. Successive rounds of trypsinisation and re-plating gave rise to passages 

1, 2, 3 etc. Medium was changed every 2-3 days. For the first few passages 

cells were grown as co-culture with non-proliferative 3T3 feeder cells, but 

from passage 8-10 feeders were no longer required. 

 

4.6.2.2 Enzymatic method 

 

Tumour cells were isolated from the surgical specimens of OSCC using 

collagenase III and trypsin (see section 4.5) and were plated on a 

subconfluent layer of irradiated 3T3 fibroblasts in a T25 flask in RM+ 

medium. Typically, 5x105 – 6x105 feeder cells were plated one day before 

seeding the tumour cells. On following days, 1x105 –2x105 feeder cells were 

added when necessary, to maintain them at a subconfluent level. The 

medium was changed for the first time 3 days after starting the culture. 

Afterwards the medium was changed every 2nd-3rd day. After 4-14 days for 

some cultures epithelial colonies could be seen in the flask amongst the 

feeder cells. When epithelial colonies grew and nearly reached confluency 

(after 10-25 days) cells were trypsinised. Half of the harvested cells was 

frozen and half was re-plated, either on a subconfluent layer of irradiated 3T3 

fibroblasts in RM+ medium or in CnT24 medium without feeder cells. 
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4.7 Immunoblotting 
 

4.7.1 Cell preparation and protein extraction 

 

Flasks or dishes containing up to 70-80% confluent cell cultures were 

washed with PBS. To lyse the cells, RIPA Buffer (50 mM Tris pH 7.3, NaCl, 

0.1% SDS, 1% NP40) containing protease inhibitor (Roche Diagnostics) and 

1% phosphatase inhibitor (Sigma) was added to just cover the surface of the 

flask. After 30 min on ice, cell scrapers (BD Falcon) were used to disrupt the 

cells and release intracellular proteins. The lysates were collected and 

centrifuged at 21,912 g for 20 min at 4°C. The supernatant was collected into 

1.5 ml eppendorf tubes and kept at -80°C till further use.  

 

Protein concentration in lysates was determined using Bio-Rad DC Protein 

Assay (Bio-Rad Laboratories). Briefly, 25 µl of reagent DC were added to 1 ml 

of reagent A producing reagent A’. 25 µl of reagent A’ were pipetted into 

wells of a 96 well plate. Protein lysates were diluted 1:10 with RIPA buffer 

and 10 µl were then added to the wells followed by 200 µl of reagent B. After 

15 min at room temperature absorbance was measured at 595 nm and 

converted to protein concentration in the lysate, using standards of known 

concentrations of bovine serum albumin between 0-10 μg.  

 

4.7.2 Western blotting 

 

7.5 -10 µg of total cell protein were mixed with SDS-PAGE 2x buffer and 

heated at 95°C for 5 min to denature the proteins. Samples were then 

centrifuged for 30 sec and loaded onto the 4-12% NuPAGE Bis-Tris gels (Life 

Technologies). The Precision Plus Protein Standards ladder (Bio-Rad 

Laboratories) was loaded in the first gel slot and the electrophoresis chamber 

was filled with SDS running buffer (Life Technologies). Electrophoresis was 

performed at 200 mV for approximately 1h 40 min until all bands of the 

protein standards ladder have completely resolved. The gel was removed 

from the cassette and placed in a blotting chamber. The blotting sandwich 

was assembled as follows: sponge, two layers of blotting paper, gel, 
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polyvinylfluoride membrane (Hybond-C Extra, Amersham Pharmacia 

Biotech) followed by another two layers of blotting paper. All materials were 

pre-soaked in transfer buffer (Bio-Rad Laboratories) containing 20% 

methanol (Fisher Scientific). Air bubbles were removed by gently rolling a 

FACS tube over the assembly. The blotting sandwich was placed in the 

transfer tank filled with transfer buffer and connected to the power supply in 

such way that the current was flowing through the gel to the membrane. 

Transfer was performed at 400 mA for 90 min. 

 

Following transfer, the membrane was separated from the gel and stained 

with Poinceau (Sigma) red to visualise the proteins and check whether the 

transfer was successful. After rinsing in tris buffered saline (TBS, see below) 

the membrane was incubated with blocking buffer (TBS-T, 5% dry milk 

powder in TBS with 0.1% Tween) on the shaker for 1 h at room temperature 

to block non-specific protein binding sites on the membrane. The membrane 

was then incubated under slow agitation, overnight at 4°C, with the primary 

antibodies diluted (Table 4.8) in blocking buffer.  

 

 
Table 4.8: Primary and secodary antibodies used for western blotting 
 
Antigen Clone Species/Conjugate Dilution Source 
CD44 156-3C11 mouse IgG2a 1:1000 Cell Signalling 
β actin 8226 mouse IgG1 1:10,000 Abcam 
EGFR polyclonal Rabbit IgG 1:1000 Santa Cruz 

Biotechnology 
EGFR-P 
(Tyr 1173) 

9H2 mouse IgG1 1:200 EMD 
Chemicals 

 
mouse 
immunoglobulins 

polyclonal goat, HRP-
conjugated 

1:1000 DAKO 

rabbit 
immunoglobulins 

polyclonal goat, HRP-
conjugated 

1:1000 DAKO 

 

 

Following three 5 min washes in TBS, the membrane was incubated with 

appropriately diluted secondary antibodies conjugated to horseradish 

peroxidase (HRP) for 1 h at room temperature. The membrane was again 

washed in TBS buffer for three times, 5 min each. The membrane (protein 
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side up) was then placed in an X-ray film cassette and up to 1 ml ECL plus 

blotting detection reagent (GE-Healthcare) was pipetted onto the membrane 

covering it completely. The ECL reagent was left on for 2 min and the surplus 

was gently wiped off with a tissue paper. An autoradiography film was placed 

on top of the membrane, left on for 15 sec to 5 min and then developed.  

 

4.7.2.1 Buffers and reagents for immunoblotting 

 
Transfer Buffer 1x 
Transfer buffer (Bio-Rad 10x)  200 ml 

Methanol (Fisher Scientific)  400 ml 

        In 2 L dH2O 

TBS 10x 
Tris (500 mM)    60.57 g 

NaCl (1.5 M)     87.66 g 

        in 1 L dH2O, pH was adjusted to 7.6 with HCL 

 

4.8 Clinical data acquisition 
 

Full clinical reports, produced by the pathologist who examined the tumour 

tissue for diagnostic purposes, were obtained for all 34 patients included in 

the study. The names of the patients were coded, but all the other relevant 

information was available. The reports contained information about 

pathological features of the tumour describing TNM staging, extracapsular 

spread, invasion pattern, perineural and lymphovascular invasion, tumour 

depth, tumour grade and host inflammatory response. Sex and age of the 

patient as well as the description of the surgical margin of the tumour were 

also stated.  

 

4.9 Statistics 
 

Clinical and pathological parameters were examined for a correlation with the 

frequency of CD44 expressing cells in tumour samples using statistical 

package “R”. 
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Spearman’s ranked test and Fisher’s exact test (the most common non-

parametric tests) were chosen for the statistical analyses of the data. The 

correlations were considered significant when p-values were below 0.05. 
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5. Results 
 

5.1 Negative and positive selection in analysis of surgical specimens of 
OSCC 
 

In recent years, analysis of cells isolated from fresh tumour tissue has been 

performed for a number of solid cancers. Most of these studies focused on 

identification and isolation of cancer stem cells (CSCs) from cell suspensions 

generated through enzymatic dissociation of the tumour tissue. Flow 

cytometry is the most common approach and has been used in identification 

and isolation of CSCs from various solid malignancies, including cancers of 

breast [76], HNSCC [82], bladder [75], colon [80] and pancreas [86]. To my 

knowledge, the method of selecting the epithelial cell fraction containing the 

CSCs amongst other tumour cells of non-epithelial cell lineages such as 

fibroblasts, endothelial cells, inflammatory cells and pericytes was never 

investigated in great detail. The accuracy of this selection, however, is very 

important as expression of stem cell markers may not be exclusive to the 

epithelial CSCs. Here, I test the standard method (negative selection) and 

attempt to develop a novel method (positive selection) for identifying the 

epithelial fraction amongst cells isolated from the tumour tissue. 

 

5.1.1 Flow cytometric analysis of specimens of OSSC. Negative Selection 

 

Oral squamous cell carcinoma (OSCC) and other solid tumours contain 

multiple diverse cell types, including (epithelial) tumour cells, fibroblasts, 

endothelial cells and infiltrating inflammatory cells. The non-epithelial 

components of the tumour are collectively referred to as tumour stroma 

(Figure 5.1 A). Because SCC is a cancer of epithelial origin, CSCs reside in 

the epithelial fraction of these tumours. Prior to assessing the presence and 

the proportion of CSCs in specimens of OSCC, the epithelial cell fraction 

must be identified within all cells isolated from the specimen through 

enzymatic digestion of the tumour tissue (Figure 5.1 B). The standard 

technique used for identification and isolation of epithelial cells in a mix of 

cells of different lineages by flow cytometry is based on the exclusion of all 
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non-epithelial cells. This technique was described by Al Hajj and co-workers 

for analysing breast cancer tissue [76] and was used in 2007 by Prince and 

colleagues for analysis of HNSCC specimens [82]. Isolated tumour cells are 

stained with a mix of different antibodies against non-epithelial components 

of the tumour, including antibodies against hematopoietic, mesenchymal and 

endothelial antigens. These antigens act as lineage markers for non-

epithelial cells (referred to as “lineage markers”) and the method is known as 

“negative selection”, because the cell fraction of interest (epithelial fraction) is 

not labelled by the antibodies used.  

 

 

 
 
Figure 5.1*: Schematic representation of a carcinoma with its stroma 
consisting of cells of different cell lineages. A carcinoma consisting of different 
cell types is shown. The stroma contains inflammatory cells 
(monocytes/macrophages), granulocytes, fibroblasts and endothelial cells (A). An 
enzymatic digestion of the tumour specimen produces a single cell suspension 
containing cells of all the different cell lineages (B). *Modified from [179] 
 

 

5.1.1.1 Expression of the negative selection markers by CA1 cells 

 

The lineage markers, commonly used in the negative selection, were 

assessed for their specificity using an established OSCC cell line CA1. All 

lineage markers used in this study to identify lineage+ cells are listed in table 

5.1 together with specific cell types by which they are typically expressed 

(Table 5.1). Expression of these lineage markers (CD2, CD3, CD14, CD16, 
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CD19, CD56, CD235a, CD31 and CD140b) by CA1 cells was analysed on an 

mRNA microarray and by flow cytometry. All of these antigens are reported 

to be specific for cells of various non-epithelial cell lineages (Table 5.1) and 

were not expected to be expressed on cells from an epithelial cell line such 

as the tongue SCC-derived cell line CA1. 

 

 
Table 5.1: Lineage markers used in negative selection and cell types by which 
they are typically expressed* 
 

Antigen Cell type 

CD2  
 

T, B lymphocytes, thymocytes 
natural killer cells, monocytes subset 
 

CD3  mature T lymphocytes, thymocytes 
 

CD14  monocytes, macrophages, Langerhans 
cells, granulocytes 
 

CD16  neutrophils, natural killer cells, activated 
monocytes, macrophages, dentritic cells 
 

CD19  B lymphocytes, follicular dentritic cells 
 

CD31 (PECAM) monocytes, platelets, granulocytes, 
endothelial cells, lymphocytes subset, 
dendritic cells 
 

CD56 (NCAM) neural tissues 
 

CD140b 
(PDGF Receptorβ) 

fibroblasts, mesenchymal cells, 
platelets, glial cells and chondrocytes 
 

CD235a  erythrocytes 
 

 
*Antibodies against CD31 and CD140b were supplied as separate monoclonal 
antibodies. All the other antibodies were part of the human hematopoietic cocktail. 
 

 

We performed an mRNA microarray looking at expression of lineage markers 

in several types of CA1 clones and sorted cell populations with different 

phenotypes. Cell preparations and the microarray analysis were performed 

by a colleague (Dr Adrian Biddle), who made the data available to me for 

analysis. The clones were generated through single cell cloning from the 

parental cell line (CA1par). The generated clones differed in their 

morphologies and FACS phenotypes (Table 5.2, Figure 5.2). Clone 1 was a 

purely epithelial clone, whereas clone 23 was a purely migratory clone with 
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an EMT phenotype. In addition to these clones, distinct cell populations with 

epithelial and EMT phenotypes were isolated by flow-sorting the parental line 

and were also included in the microarray. Figure 5.2 and table 5.2 describe 

the sorted populations. All sorted CA1 populations used for the mRNA 

microarray analysis have been extensively studied and are described in 

detail in Biddle et al. 2011 [160]. Because of their different morphological and 

differentiation states, these different CA1 clones and populations can be 

regarded as representing different cell populations present in a tumour. 

 

Surprisingly, expression of the lineage markers CD14, CD31, CD56 and 

CD140b was detected in all or some of the CA1 clones and populations. 

Figure 5.3 summarises the findings. 

 

 
Table 5.2: CA1 clones and cell populations used for the mRNA microarray 
analysis 
 

Clone/cell line Properties/Phenotype 
Clone 1 (C1) CA1 clone 1, epithelial phenotype 
Clone 23 (C23) CA1 clone 23, EMT phenotype 
Parental hihi (Par hihi) CA1par CD44highESAhigh, epithelial phenotype 
Parental hilo (Par hilo) CA1par CD44highESAlow, EMT phenotype 
Parental lo (Par lo) CA1par CD44low, differentiating 
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A          B 
  

 

Gate Phenotype Characteristics 
P3 CD44highESAhigh Epithelial stem 

phenotype: small, 
round, stationary, 
self-renewing 

P4 CD44highESAlow EMT stem 
phenotype: spindle 
shaped, migratory, 
self-renewing 

P5 CD44low Large and flat, no 
self-renewing 
potential, 
differentiating 

 
 
 
 
Figure 5.2: CA1 populations used for the mRNA microarray analysis. Gated 
populations (A) were isolated through flow-sorting. Sorted populations represent cell 
fractions with distinct morphological and behavioural features (B). In P3 and P4 
there are the two types of stem cells with the stationary (CD44highESAhigh) and the 
migratory (CD44highESAlow) phenotypes, respectively. P5 is the differentiating CD44 
low fraction (CD44low).  
 

 

High expression level of CD14 (average signal between 1944 and 3392) was 

observed in all samples (Figure 5.3). Its highest expression (average signal 

above 2000) was detected in samples Par hilo, Par lo and C23. A low level of 

CD31 expression just above the background signal of 100 was detected in all 

samples (average signal between 135 and 165). CD56 was also expressed 

at low levels in all samples (average signal between 179 and 249). CD140b 

was expressed in the samples Par hilo and C 23 (average signal 292 and 

261) (Figure 5.3) 
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Figure 5.3: mRNA microarray analysis of the expression of negative selection 
markers by different CA1 clones and populations (average signal). (A) The 
table shows detected average signal values after normalisation and p value 
corrections. Detectable background signal was around 100. For genes with more 
than one probe on the array, numbers for the probe with the highest expression are 
shown. (B) Above background expression of CD14, CD31 and CD56 was detected 
in all samples. CD14 was expressed at a higher level in the samples Par hilo, Par lo 
and C 23. CD31 and CD56 were expressed at a low level in all samples. CD140b 
signal was detected in the samples Par hilo and C 23. 
 

 

In summary, all samples analysed on the mRNA microarray were found to 

express detectable levels of CD14, CD31 and expression of CD56 and 

CD140b was seen in the samples Par hilo and C 23. Highest CD14 

expression was detected in the differentiating CD44low population of the 

parental CA1 line (Par lo), highest levels of CD56 were observed in clones 

and populations with the epithelial phenotype, whereas the EMT-phenotype 

clones were highest for CD140b (Table 5.2, Figure 5.3). Consequently, in 

each population (epithelial, EMT and differentiating) expression of at least 

one of the putative non-epithelial lineage markers was detected by the mRNA 

microarray. If expression of these non-epithelial markers was also present at 
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the protein level on the cell surface, these cell populations, if present in the 

tumour, would be lost from the epithelial fraction identified for further 

analysis.  
 

To analyse this problem further, expression of negative selection markers by 

CA1 cells was examined at the protein level. CA1 cells were flow-analysed 

for the expression of all lineage markers listed in table 5.1. Antibodies against 

CD2, CD3, CD14, CD16, CD19, CD56 and CD235a were included in the 

human hematopoietic cocktail, whereas antibodies against CD31 (PECAM) 

and CD140b (PDGFRβ) were supplied as two separate monoclonal 

antibodies. Consistent with the mRNA microarray, expression of some of the 

lineage markers by CA1 cells was detected by flow cytometry (Figure 5.4). 

Markers included in the human hematopoietic cocktail were found to be 

expressed by 6.3% of CA1 cells (Figure 5.4, D), PECAM was detected on 

9.9% and CD140b on 7.7% of cells (Figure 5.4 E, F). To confirm that 

detected fluorescence was the result of specific antibody binding, cells were 

stained with two different APC-conjugated isotype controls (Figure 5.4 B and 

C). There was no difference in signal distribution and intensity between the 

non-stained and the isotype-stained samples (compare Figure 5.4 A and B, 

C). 

 

Staining with other isotype controls relevant for flow cytometric experiments 

in this study was also performed (Appendix Figure 1 and Figure 2). Because 

no difference in signal intensities between the non-stained and isotype 

stained samples was observed, the non-stained samples were used to set 

the gates in the subsequent experiments. 
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Figure 5.4: Flow-analysis of CA1 cells for the expression of lineage markers. 
The non-stained negative control is shown in A (A). B and C show cells stained with 
two different APC-conjugated isotype controls, mouse IgG1 κ (B) and mouse IgG2α 
κ (C). There was no difference in signal intensity between non-stained and isotype-
stained samples. 6.3% of all cells were positive for the markers included in the 
human haematopoietic cocktail (D). 9.9% were positive for PECAM (E) and 7.7% 
stained positively for CD140b (F). 
 

 

5.1.1.2 Expression of negative selection markers by tumour-derived cell lines 

 

Because CA1 is a long-established OSCC cell line, it is possible that its cells 

have altered expression of lineage markers as a consequence of prolonged 

cell culture. Ideally, fresh tumour cells should be used to examine whether or 

not lineage markers are present on their surface. However, with fresh tumour 

cells it is difficult to tell whether stained cells are epithelial cells aberrantly 

expressing the lineage markers or belong to non-epithelial cell lineages of the 

tumour stroma. Hence I chose to analyse early passage cell lines derived 

from oral tumours to test the specificity of the lineage markers. Unlike fresh 

tumour tissue these early passage tumour-derived cell lines are not 

contaminated with cells of non-epithelial lineages and are genetically and 

phenotypically much closer to the tumours of origin than the long-established 

OSCC lines such as CA1. 

 

These early passage tumour-derived cell lines contain cells with 

morphologically different phenotypes identified as small, regularly shaped 
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epithelial cells that form tight epithelial colonies or larger, spindle-shaped 

cells that form more loosely spaced colonies or appear as single cells (Figure 

5.5). In some of the early passage cell lines a differentiating cell fraction can 

also be observed. These cells appear larger and flatter. Entire colonies of 

differentiating cells (Figure 5.5 A, C, black arrow heads) as well as single 

differentiating cells that are usually located at the edge of the colony are seen 

(Figure 5.5 D, black arrow head). 

 

 

 
 
Figure 5.5: Morphologically different cell populations in early passage tumour-
derived cell lines. Three morphologically different types of cells are present in all 
four early passage (passage 2 to 4) cultures: 1) small, regularly shaped cells in tight 
epithelial colonies (black arrows), 2) spindle-shaped, loosely packed cells (white 
arrows) and 3) differentiating colonies with large and flat cells (black arrow heads). 
Scale bar 100 µm 
 

 

Expression of the lineage markers was examined in three early passage 

tumour-derived cell lines. In cell line TumNA (generated from a primary non-

metastatic OSCC) 5.9% of cells were found to express the lineage markers 
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(Figure 5.6 B). In cell line TumLM (derived from a primary metastatic OSCC) 

12.2% of cells and in cell line Tum57n 12.5% of cells stained positive for the 

lineage markers (Figure 5.6 D and F).  

 

 

 
 
Figure 5.6: Expression of lineage markers by tumour-derived cell lines. Three 
tumour-derived cell lines were stained with antibodies against human 
haematopoietic cocktail combined with CD31 and CD140b antibodies (all APC-
conjugated). The gates were set using a non-stained negative control sample (A, C 
and E). 5.9% in Tum NA (B), 12.2% in Tum LM (D) and 12.5% in Tum57 node (F) of 
cells stained positively for at least one lineage marker.  
 

 

To test whether expression of lineage markers was linked to a particular 

morphological cell phenotype (Figure 5.5), cells were co-stained with 

antibodies against the lineage markers and CD44. This co-staining 
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established whether the lineage markers were expressed by CD44high or 

CD44low cells and we have previously reported that different levels of CD44 

expression are associated with the morphologically different cell phenotypes 

present in HNSCC lines (Figure 5.5) [160] [180]. Immunohistochemical 

staining of a number of HNSCC lines revealed a strong surface CD44 

expression in cells forming tight epithelial colonies as well as scattered 

spindle-shaped cells. The large and flat differentiating cells had very low 

levels of surface CD44, hardly detectable by immunohistochemistry [160] 

[180]. The association between cell morphology and expression levels of 

surface CD44 was confirmed by examining the morphological phenotype of 

flow-sorted cells with different levels of CD44 expression [160]. These 

observations imply that different levels of CD44 detected by flow cytometry 

give indications about cell and colony morphology. 

 

There was no association between expression of lineage markers and 

expression levels of CD44 in the tumour-derived cell line TumLM with cells 

positive for lineage markers showing a wide range of CD44 expression levels 

(Figure 5.7). Consequently, expression of the lineage markers was not 

associated with a specific morphological phenotype. 

 

 

 
 
Figure 5.7: Co-expression of lineage markers and CD44 in tumour-derived cell 
line TumLM. Cells of the cell line TumLM (passage 5) were stained with antibodies 
against lineage markers and CD44. Lin+ cell fraction, gated in P3 (A) is shown on 
the CD44 plot with CD44 expressing cells gated in P4 (B). 
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5.1.1.3 Expression of negative selection markers by tumour-derived 

fibroblasts 

 

As the negative selection technique relies on the principle of sparing all 

epithelial cells while excluding all cells of all non-epithelial cell lineages, I 

tested the efficiency of negative selection in excluding cells of non-epithelial 

cell lineages using tumour-derived fibroblasts. 

 

It was observed that fibroblasts isolated from oral tumour tissue express high 

levels of CD44 (Figure 5.8). This implies that in cell suspensions containing 

both, fibroblasts and epithelial cells, fibroblasts can be mistaken for CD44+ 

cancer cells leading to wrong estimates of the size of CD44 expressing 

cancer cell fraction. Therefore, fibroblasts and other stromal components 

need to be separated from the epithelial fraction of the tumour. 

 

 

 
 
Figure 5.8: Flow cytometric analysis of CD44 expression on tumour-derived 
cultured fibroblasts. Fibroblasts were isolated from samples of OSCC and grown 
under standard culture conditions. Cells were trypsinised and immunolabelled with 
antibodies against CD44. FACS plots for two primary fibroblastic cultures are 
shown. 90.5% of Tum33 fibroblasts (A) and 96.5% of Tum50(2) (B) are CD44+. 
 

 

Cultured fibroblasts derived from fresh specimens of OSCC were stained 

with antibodies used in the negative selection. Apart from CD140b, which is a 

typical fibroblastic marker [76] [82], the cocktail also included antibodies 

against PECAM and a number of hematopoietic markers (Table 5.1). The 

fraction of cells that stained positively varied between the fibroblastic cultures 
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derived from different tumours with only one out of three cultures being 

completely positive (Figure 5.9).  

 

 

 
 
Figure 5.9: Expression of negative selection markers by tumour-derived 
fibroblasts. FACS plots for early passages of three fibroblastic cultures are shown. 
Expression of lineage markers was detected on 40% of fibroblasts isolated from the 
tumour NA (A), 70.5% of cells from tumour GR (B) and 99% of cells from tumour 42 
(C).  
 

 

From these data it can be seen that the negative selection fails to identify the 

entire epithelial tumour fraction leading to loss of some tumour cell 

populations. Moreover, negative selection can yield an epithelial fraction 

contaminated with cells of non-epithelial cell lineages such as fibroblasts. 

 

5.1.2 Flow cytometric analysis of specimens of OSSC. Positive Selection 

 

As negative selection was not fully efficient in isolating a pure cell fraction 

containing all epithelial cells of the tumour, I tried to use a different approach 

termed “positive selection”. In this method tumour cells were stained with 

antibodies against epithelial-specific antigens such as CD24, ESA and 

epithelial integrins. All epithelial cells present in the total cell suspension 

isolated from the tumour were expected to be positively stained, whereas no 

cells forming the tumour stroma were expected to be labelled. 
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5.1.2.1 Expression of the positive selection markers by established and 

newly generated OSCC cell lines 

 

Similar to negative selection, a combination of epithelial-specific antibodies 

was used for positive selection as all epithelial cells in a tumour might not 

express a given marker, but are likely to express at least one of the epithelial- 

specific antigens selected. This implies that the more epithelial-specific 

antibodies that are included in the positive selection, the more likely is the 

identification of the entire epithelial tumour fraction. Figure 5.10 shows 

passage 11 of the tumour-derived cell line LM stained with different 

combinations of epithelial-specific antibodies: ESA (A), ESA and CD24 (B), 

ESA, CD24 and integrin β4 (C). The more antibodies were included, the 

more cells moved into the positive gate. When labelled with 1, 2 or 3 

antibodies 45.2%, 49,2% and 82.7% of cells appeared positively stained 

(Figure 5.10). However, even by inclusion of three epithelial-specific 

antibodies about 17% of the cells remained unlabelled (Figure 5.10 C). 

 

 

 
 
Figure 5.10: Expression of positive selection markers by tumour-derived cell 
lines. Tumour-derived cell line LM (passage 11) was stained with different 
combinations of epithelial-specific antibodies and analysed by FACS. ESA was 
expressed by 45.2% of cells (A). ESA and CD24 together marked 49.2% of cells (B) 
and the combination of ESA, CD24 and integrin β4 stained 82.7% of cells (C). 
 

 

Recently, we reported that CSCs in HNSCC and skin SCC switch between 

two distinct phenotypes [160]: CD44highESAhigh, which is a preferentially 

proliferative epithelial phenotype, and CD44highESAlow/-, which is a 

preferentially migratory mesenchymal phenotype. CD44highESAlow/- cells were 

found to be cells that have undergone epithelial-to-mesenchymal-transition 
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(EMT cells). Cells with the CD44highESAlow/- EMT phenotype were also found 

in OSCC tumour tissue [160]. Because EMT cells downregulate their 

epithelial markers, it is possible that they will not be recognised by the 

epithelial-specific antibodies used in the positive selection. This is an 

important issue, as the EMT fraction appears to be highly relevant to tumour 

invasion and therapeutic resistance. 

The additional use of markers associated with EMT could help include EMT 

cells. I modified the positive selection by inclusion of an additional antibody 

against integrin αVβ6, which has been reported to promote invasion and 

migration in OSCC and has been associated with EMT in colon carcinoma 

[170] [168] [171]. To confirm expression of integrin αVβ6 by EMT cells, its 

expression pattern was analysed in several established HNSCC and skin 

SCC cell lines known to have an EMT cell fraction (identifiable by the 

CD44highESAlow FACS phenotype). In CA1 (OSCC cell line) and Met2 (skin 

SCC cell line) integrin αVβ6 was expressed on the surface of the great 

majority of cells including EMT cells (Figure 5.11). 

 

 

 
 

Figure 5.11: Integrin αVβ6 expression in NHSCC and skin SCC cell lines. FACS 
plots for CA1 (A-D) and Met2 (E-H) cell lines are shown. The great majority of cells 
in both cell lines stain positively for integrin αVβ6 (gated blue cells in A and E). 
These integrin αVβ6 positive cells are shown in CD44 vs. ESA plot revealing the 
CD44highESAlow/- EMT fraction (B and F, gated in P6). Both, EMT and epithelial 
fractions include integrin αVβ6+ cells. In C and G the EMT cells were gated (pink 
cells) which are shown on the integrin αVβ6 plot in D and H. 
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Next, I tested the combination of epithelial antibodies (ESA, CD24 and 

integrin β4) with the antibody against integrin αVβ6 on the tumour-derived 

cell line LM. When immunolabelled with these four antibodies and analysed 

by FACS, 92% of cells appeared positively stained (Figure 5.12). Figure 5.12 

shows FACS plots of the cell line LM stained with anti- integrin αVβ6 (FITC-

conjugated), ESA, CD24 and integrin β4 (all PE-conjugated). Quadrant Q3 

contains double-negative cells, i.e. cells that did not bind any of the four 

antibodies and were therefore not labelled with FITC or PE. Cells in the 

quadrants Q1, Q2 and Q4 represent cells that have been stained with at least 

one of the four antibodies.  

 

 

 
 
Figure 5.12: Use of integrin αVβ6 in the positive selection technique. A non-
stained control sample is shown in A (A). Cells from the tumour-derived cell line LM 
(passage 11) were immunolabelled with antibodies against integrin αVβ6 (FITC- 
conjugated), ESA, CD24 and integrin β4 (all PE- conjugated) and analysed by 
FACS (B). In the stained sample 8% of cells did not stain for any of the four markers 
(Q3, B). 
 

 

When stained with the three epithelial-specific antibodies only, 82.7% of cells 

were labelled. Inclusion of the integrin αVβ6 antibody led to an increase of 

the positively stained fraction to 92% (compare figure 5.10 C and 5.12 B). 

FACS plots in figure 5.10 and 5.12 show passage 11 of the tumour-derived 

cell line LM. During 11 passages in culture tumour cells might have altered 

expression of their surface antigens. To mimic the fresh tumour, cells as 

closely as possible, I tested the same combination of antibodies on early-

passage (<5) tumour-derived cell lines.  
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Figure 5.13 shows FACS plots of early passage tumour-derived cell lines 

stained with antibodies against ESA, CD24, integrin β4 and integrin αVβ6. 

The non-stained cells account for 2.3% of all cells in the cell line TumNA 

(Figure 5.13 B), 5.4% of cells in cell line TumLM (Figure 5.13 D) and for 1.5% 

of cells in the cell line Tum57n (Figure 5.13 F). 

 

 

 
 
Figure 5.13: Expression of positive selection markers by early passage 
tumour-derived cell lines. Cell lines TumNA (passage 3) TumLM (passage 5) and 
Tum57n (passage 5) were stained with antibodies against ESA (APC-conjugated), 
CD24, integrin β4 and integrin αVβ6 (all FITC-conjugated). The cross-gate was set 
based on the autofluorescence signal of the non-stained control samples (A, C, E). 
In the stained samples the fraction of unlabelled cells (in Q3) was 2.3% in TumNA 
(B) 5.4% in TumLM (D) and 1.5% in Tum57 node (F). 
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5.1.2.2 Expression of positive selection markers by tumour-derived 

fibroblasts 

 

Two tumour-derived fibroblastic cultures were used to assess the specificity 

of antibodies used in the positive selection. Surprisingly, CD24 expression 

was detected on 2.4% of cells in the culture derived from tumour specimen 

NA and on 9% of cells in the culture derived from tumour sample GR (Figure 

5.14 B, F). No other epithelial-specific antigen used in the positive selection 

(ESA, integrin β4 and integrin αVβ6) was found to be present on tumour-

derived fibroblasts (Figure 5.14). 

 

 

 
 
Figure 5.14: Expression of positive selection markers by tumour-derived 
fibroblasts. Fibroblasts derived from tumour NA (A-D) and tumour GR (E-H) were 
cultured under standard conditions. Cells were stained with antibodies against ESA 
(A, E), CD24 (B, F), integrin β4 (C, G) and integrin αVβ6 (D, H). In both cultures a 
fraction of cells was positive for CD24: 2.4% in TumNA fibs (B) and 9% in TumGR 
fibs (F). No other markers were found to be expressed in the two cultures. 
 

 

In summary, antibodies used in the positive selection seem to mark the great 

majority of cells in early passage tumour-derived cell lines. Only 2.3%, 5.4% 

and 1.5% of cells did not stain when immunolabelled with a cocktail of four 

antibodies used in the positive selection (Figure 5.13). Expression of CD24, 

but no other epithelial-specific antigens exploited in the positive selection, 

was detected on 2.4% and 9% of fibroblastic cultures derived from tumour 

specimens (Figure 5.14). 

81 



5.1.3 Positive and negative selection in comparison 

 

In the three cell lines tested for the expression of the negative selection 

markers 5.9%, 12.2%, and 12.5% of cells stained positively (Figure 5.6), 

whereas only 2.3%, 5.4% and 1.5% of cells were non-stained when 

immunolabelled with antibodies used in the positive selection (Figure 5.13). 

In the negative selection from 1% to 60% of fibroblasts could wrongly be 

identified as epithelial cells (Figure 5.9). For the positive selection this 

number is much lower with 2.4%-9% (Figure 5.14 B, F). These observations 

suggest that the positive selection more specifically identifies the epithelial 

fraction amongst cells of different cell lineages isolated from a tumour. 

 

5.1.3.1 Separation of two cell types by FACS using negative and positive 

selection 

 

To be able to compare directly the efficiency and accuracy of the negative 

and the positive selection I performed the following experiment. Separately 

cultured fibroblasts and keratinocytes were mixed in a ratio 1:1. These were 

then immunolabelled with the markers used for negative or positive selection. 

Positive and negative fractions from each tube were collected, representing 

the epithelial (keratinocytes) and the non-epithelial (fibroblasts) fractions as 

identified by the negative or the positive selection. All four collected cell 

fractions were plated on a cell culture dish. 24 hours after plating, cells were 

fixed and stained with an antibody against pan-Cytokeratin to identify 

epithelial cells (Figure 5.15). By counting the cytokeratin+ cells in sorted 

fractions it was possible to quantify the purity/degree of contamination of 

each fraction. 
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Figure 5.15: Separating two cell types using negative and positive selection. 
Separately cultured fibroblasts and keratinocytes were trypsinised, mixed 1:1 and 
stained with the markers used for negative and positive selection. Positive and 
negative fractions were collected from each of the two samples. Cells were plated, 
let to adhere overnight and stained with an antibody recognising pan-Cytokeratin.  
 

 

Fibroblasts used in this experiment were early passage fibroblasts derived 

from an oral tumour biopsy. Cells from an established oral cancer cell line 

CA1 were used as keratinocytes. The two cell types (fibroblasts and CA1 

cells), cultured separately, were first flow-analysed for the expression of the 

negative and the positive selection markers (Figure 5.16). Furthermore, the 

presence of cytokeratin was analysed in the two cultures by 

immunohistochemistry (Figure 5.17). 

 

In agreement with previous observations (see section 5.1.1.1) the cell line 

CA1 revealed a small subpopulation (6.8%) of cells expressing negative 

selection markers (Figure 5.16 A). As expected, when immunolabelled with 

antibodies used in the positive selection, nearly the entire CA1 cell population 

(99.1%) stained positively (Figure 5.16 B). Similarly, almost the entire 
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fibroblastic population (98%) was labelled, when stained with negative 

selection antibodies (Figure 5.16 C). A small fraction of fibroblasts was found 

to be positive when analysed by positive selection (Figure 5.16 D). As 

described above, when the expression of the positive selection markers by 

fibroblasts was analysed for each of the markers separately, CD24 was 

found to be the only detectable antigen (Figure 5.14). 

 

 

 
 
Figure 5.16: Expression of positive and negative selection markers on 
cultured keratinocytes and fibroblasts. Cells were immunolabelled with 
antibodies against lineage markers (A and C) or epithelial-specific antigens (B and 
D). Expression of the lineage markers was detected on 6.8% of CA1 cells (A), 
whereas nearly all cells (99.1%) in the cell line CA1 stained positively for the positive 
selection markers (B). 98% of fibroblasts were positive for lineage markers (C) and 
2% stained positively for the positive selection markers. 
 

 

Expression of cytokeratin was detected in all cells in CA1 (Figure 5.17 A, B), 

whereas no cells in the fibroblast culture stained positively for pan-

Cytokeratin when analysed by immunohistochemistry (Figure 5.17 C, D). 
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Figure 5.17: pan-Cytokeratin expression in CA1 cells and tumour-derived 
fibroblasts. Cells were fixed and stained with a pan-Cytokeratin antibody. 
Expression was detected in all cells in the CA1 cell line (B). No signal was seen in 
tumour-derived fibroblasts (D). A and C show the corresponding brightfield images 
(A, C). Scale bar 50 µm 
 
 

When the two cell types were mixed and flow-analysed, for both selection 

techniques two distinct cell populations were visible on the FACS plot (Figure 

5.18). Interestingly, the positive selection achieved a clearer separation of the 

two cell types with the two distinct populations lying further apart from each 

other and being more clearly defined on the FACS plot as compared to 

populations identified by the negative selection (compare Figure 5.18 B and 

A). 
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Figure 5.18: Separation of keratinocytes and fibroblasts using positive and the 
negative selection methods. Separately cultured keratinocytes and fibroblasts 
were mixed and immunolabelled with antibodies used for negative (A, C) or the 
positive selection (B, D). Positive selection achieved a clearer separation of the two 
cell populaions (B) as compared to the negative selection method (A). C and D 
show the gates from which the fibroblastic population (gated in P3) and the 
keratinocyte population (gated in P4) were sorted. 
 

 

Presence of cytokeratin expressing cells in sorted cell fractions was analysed 

to identify epithelial cells. Figure 5.19 and figure 5.20 show representative 

pictures of the epithelial fraction (keratinocytes) and the non-epithelial 

fraction (fibroblasts) as identified by the negative and the positive selection, 

respectively. 
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Figure 5.19: Presence of cytokeratin+ cells in the epithelial and the fibroblastic 
fractions identified by means of the negative selection. Sorted epithelial (A, B) 
and non-epithelial (C, D) cell fractions were stained for pan-Cytokeratin (red). 
Cytokeratin expression was detected in the majority of cells in the epithelial fraction, 
which contained only a few cytokeratin- cells (A, white arrows; B, white arrows and 
dotted ovals). In the non-epithelial fraction cytokeratin was detected in a small 
number of cells (C, white arrows; D, white arrows and dotted ovals) and was absent 
in most cells. DAPI (blue) (A, C) and brightfiled images (C, D) show location and 
morphology of cells. Scale bar 50 µm 
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Figure 5.20: Presence of cytokeratin+ cells in the epithelial and the fibroblastic 
fractions identified by means of the positive selection. Epithelial (A, B) and non-
epithelial (C, D) cell fractions were stained for pan-Cytokeratin (red). Cytokeratin 
expression was detected in the majority of cells in the epithelial fraction, which 
contained only a few cytokeratin- cells (A, white arrows; B, white arrows and dotted 
ovals). In the non-epithelial fraction cytokeratin was detected in a small number of 
cells (C, white arrows; D, white arrows and dotted ovals) and was absent in most. 
DAPI (blue) (A, C) and brightfiled images (C, D) show location and morphology of 
cells. Scale bar 50 µm 
 

 

For each of the four sorted fractions, pictures were taken from at least 6 

fields of view and a total of approximately 500 cells were counted in each of 

the three separate sorting experiments. The number of contaminating cells 

(cytokeratin- cells in the epithelial fraction and cytokeratin+ cells in the non-

epithelial fraction) was determined and calculated as a percentage of the 

total cells counted (Table 5.3). The purity of sorted fractions identified by the 

two methods was similar. The epithelial fraction was contaminated with 

fibroblasts to 1.60±0.51% and 1.38±0.50% in the negative and the positive 

selection techniques, respectively. The contamination of the fibroblastic cell 

fraction with epithelial cells was slightly higher with 5.75±2.08% and 
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5.05±1.44% for the negative and the positive selection, respectively (Table 

5.3). There was no statistically significant difference in the accuracy of the 

two methods according to the unpaired Student’s t-test. 

 

 
Table 5.3: Quantification of the purity of sorted cell fractions identified by the 
positive and the negative selection techniques* 
 

Negative selection Positive selection 
(-ve) epithelial 

fraction 
(+ve) non-epithelial 

fraction 
(+ve) epithelial 

fraction 
(-ve) non-epithelial 

fraction 
CK- cells/total 
cells counted 

CK+ cells/total 
cells counted 

CK- cells/total 
cells counted 

CK+ cells/total 
cells counted 

8/410 (2.0%) 54/551 (9.8%) 13/548 (2.4%) 11/445 (5.1%)
11/488 (2.3%) 14/490 (2.9%) 9/868 (1.0%) 61/818 (2.5%)

3/498 (0.6%) 24/522 (4.6%) 4/543 (0.7%) 21/517 (0.8%)
 
Average 1.60% 5.75% 1.38% 5.05%
StDev 0.88% 3.61% 0.87% 2.50%
SEM 0.51% 2.08% 0.50% 1.44%

 
* Cell counts for three separate sorting experiments are shown. StDev: standard 
deviation, SEM: standard error of the mean 
 

 

For both selection techniques the contamination of the sorted keratinocyte 

fraction with fibroblasts was below 2% and the contamination of the 

fibroblastic fraction with keratinocytes was between 5% and 6%. However, it 

is reasonable to assume that the error in the negative selection could have 

been much larger than that of the positive selection if a different fibroblastic 

culture had been used. In the fibroblastic culture derived from Tum42 that 

was used in this experiment over 98% of cells expressed the lineage markers 

(Figure 5.9 C and Figure 5.16 C). In comparison, in cultures of fibroblasts 

generated from tumour NA and tumour GR only 40% and 70.5% of cells 

respectively were found to have detectable levels of the lineage markers 

when analysed by FACS (Figure 5.9 A, B). If used in the cell separation 

experiment, the lin- cell fraction of these cultures would probably contaminate 

the sorted keratinocyte fraction to a higher degree. Unlike negative selection, 

positive selection does not rely on lineage marker expression by fibroblasts. 
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Furthermore, the fraction of cells expressing positive selection markers in 

different fibroblastic cultures did not differ considerably across fibroblasts 

derived from three different tumours with 2% in Tum42 fibroblasts (Figure 

5.16 D), 2.4% in TumNA fibroblasts (Figure 5.14 B) and 9% in TumGR 

fibroblasts (Figure 5.14 F). Consequently, for the positive selection, using 

different fibroblasts in the cell separation experiment would probably not 

significantly change the degree of contamination of sorted cell fractions. 

 

5.1.3.2 Testing negative and positive selection on cells isolated from fresh 

tumour tissue 

 

Having established that both positive and negative selection techniques can 

achieve similar efficiency in separating cultured fibroblasts and keratinocytes, 

I tested both methods on cells isolated from fresh tumour samples. 

Cells were isolated from samples of OSCC according to the standard 

protocol. Isolated cells were immunolabelled with antibodies used for 

negative or positive selection. Cells were flow-sorted collecting the positive 

and the negative fractions identified by each selection method. Sorted cells 

were centrifuged onto microscope slides using the cytospin centrifuge, fixed 

and stained for pan-Cytokeratin (Figure 5.21). Photographs of stained cells 

were taken and used to count the cells. The purity of each fraction was 

quantified by expressing the number of contaminating cells (cytokeratin- cells 

in the epithelial fraction and cytokeratin+ cells in the non-epithelial fraction) as 

a percentage of the total cell number counted (Table 5.4; Appendix Table 4). 
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Figure 5.21: Separating epithelial and non-epithelial cell fractions from fresh 
tumour tissue by means of negative and positive selection techniques. Cells 
isolated from large tumour specimens were split into two parts and immunolabelled 
with antibodies used in negative and positive selection techniques, respectively. 
Positive and negative fractions were collected from each of the two samples, 
cytospun onto a microscope slide, fixed and stained for pan-Cytokeratin.  
 

 

Six surgical specimens of OSCC were analysed. Three of the six tumour 

samples (TumLM, TumAB and TumRM) were large enough to allow both 

negative and positive selection techniques to be performed on the same 

specimen. For the remaining three specimens, two (TumABn and TumEG) 

were analysed by negative selection and one (TumGR) by positive selection.  

 

Similar to cultured cells, for some tumour samples (TumLM, TumRM and 

TumGR) a clear separation of the epithelial and the non-epithelial cell 

fractions was achieved with fractions being visible as two distinct cell 
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populations on the FACS plot (Figure 5.22 A, D, C, F and I). For specimens 

TumAB, TumABn and TumEG the separation of the epithelial from the non-

epithelial cell fraction was less clear (Figure 5.22 B, E, G and H).   

 

 

 
 
Figure 5.22: Analysis of fresh tumour cells using the negative and the positive 
selection techniques. Cells isolated from fresh tumour samples were stained with 
antibodies used for positive or negative selection. All FACS plots show cell 
distribution after exclusion of dead cells. For tumour specimens TumLM (A and D), 
TumAB (B and E) and TumRM (C and F) both selection methods were performed. 
Tumour specimens TumABn (G), TumEG (H) were analysed by means of the 
negative and TumGR (I) by means of the positive selection only. The epithelial and 
the non-epithelial fractions were visible as two distinct cell populations for samples 
TumLM and TumRM analysed by both methods (A, D an C, F) and for TumGR 
analysed by the positive selection (I).  
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Gates for sorting the cells were set based on a non-stained sample of cells 

isolated from the same tumour (Figure 5.23 A and D). Tumour specimen 

TumAB was one of the larger samples and a sufficient number of cells could 

be isolated allowing both selection techniques to be performed. The size of 

the putative epithelial cell fraction identified by the negative and the positive 

selection was similar with 58.5% and 56.6%, respectively. The size of the 

non-epithelial cell fraction was also similar with 25.4% and 29.5% for the 

negative and the positive selection, respectively (compare Figure 5.23 B and 

E). For other tumour specimens analysed by both selection techniques, the 

size of the corresponding fractions identified by the two different methods 

was also similar (Table 5.4). 

 

 

 
 
Figure 5.23: FACS-sorting tumour cells using negative and positive selection 
techniques. Cells isolated from tumour specimen TumAB were stained with 
antibodies used in the negative (A-C) and the positive (D-F) selection techniques. 
Positive and negative fractions were sorted from each sample. Gates for cell sorting 
were set based on the non-stained control sample (A and D). When setting the 
gates care was taken for the gated populations not to overlap (count diagrams in C 
and F).  
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Table 5.4: Size of epithelial and non-epithelial cell fractions in fresh tumour 
tissue 
 
 Negative selection Positive selection 
 Epithelial 

fraction 
Non-epithelial 
fraction 

Epithelial 
fraction 

Non-epithelial 
fraction 

TumLM 54.2% 34.7% 52.6% 43.1% 
TumAB 58.5% 25.4% 56.6% 29.5% 
TumRM 68.8% 21.1% 61.5% 21.3% 

 

 

Epithelial and non-epithelial cells isolated from fresh specimens of OSCC, as 

identified either by positive or negative selection, were phenotypically 

distinctly different from each other. Cells of the putative epithelial fraction 

were much larger than cells of the non-epithelial fraction (Figure 5.24). 

Furthermore, for one tumour, cells in the non-epithelial fraction were more 

granular than epithelial cells isolated from the same tumour (compare Figure 

5.24, E and F). 

 

Sorted cells were fixed and stained for pan-Cytokeratin to quantify the degree 

of contamination of each fraction. For both selection methods, the majority of 

cells in the putative epithelial fraction was found to express cytokeratin, 

whereas no cytokeratin was present in most cells of the putative non-

epithelial fraction (Figure 5.25, Figure 5.26). For some samples, sorted cells 

deposited on a microscope slide for immunohistochemical staining were lost 

in course of the staining procedure. This was probably due to the frequent 

washing of the slides in PBS after the incubation with primary and secondary 

antibodies and DAPI. Loss of cells resulted in low cell numbers available for 

quantification. Samples, in which less than 200 cells were counted per 

fraction (samples TumLM, TumRM and TumEG) were excluded from the final 

statistical analysis, as such low cell numbers might not be representative of 

the complete sorted fraction (for the full list of samples see Appendix Table 

4). 
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Figure 5.24: Morphology of epithelial and non-epithelial tumour cells identified 
by negative and positive selection. Cells isolated from tumour AB were subjected 
to both negative (A, B) and positive (C, D) selection, cells from tumour GR were 
analysed by means of the positive selection only (E, F). Photographs were taken 
from sorted epithelial (A, C and E) and non-epithelial (B, D and F) fractions as 
identified by means of negative (A, B) or positive (C-F) selection. Cells of the 
putative non-epithelial fraction were a lot smaller and for TumGR more granular than 
cells of the putative epithelial fraction. Scale bars 50 µm  
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Figure 5.25: Cytokeratin expression in epithelial and non-epithelial tumour 
cells identified by the negative selection. Putative epithelial (A-D) and non-
epithelial (E-H) tumour cell fractions were sorted and stained with antibodies against 
pan-Cytokeratin (red). A few cytokeratin negative cells were present in the epithelial 
fraction (white arrows, A-D). A small number of cytokeratin positive cells were seen 
in the non-epithelial fraction (white arrows, E-H). DAPI (B, F) and brightfield (D, H) 
images show the localisation and the shape of cells. 
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Figure 5.26: Cytokeratin expression in epithelial and non-epithelial tumour 
cells identified by the positive selection. Putative epithelial (A-D) and non-
epithelial (E-H) tumour cell fractions were sorted and stained with antibodies against 
pan-Cytokeratin (red). A few cytokeratin negative cells were present in the epithelial 
fraction (white arrows, A-D). A small number of cytokeratin positive cells were seen 
in the non-epithelial fraction (white arrows, E-H). DAPI (B, F) and brightfield (D, H) 
images show the localisation and the shape of cells.  
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Despite keeping the FACS staining and sorting conditions as consistent as 

possible, the purity of sorted fractions varied considerably between the 

individual tumour specimens (Table 5.5). The cell fraction with the highest 

purity was the putative epithelial fraction of the tumour GR identified by 

positive selection. 94.4% of cells in this fraction were found to express 

cytokeratin and were therefore classified as epithelial cells. The epithelial 

fraction of the tumour ABn, identified by negative selection, consisted to 

68.5% of cytokeratin expressing cells. The proportion of cytokeratin+ cells 

contaminating the non-epithelial fraction was 4.6% for tumour GR and 1.8% 

for tumour ABn (Table 5.5). For the tumour specimen AB both selection 

methods were performed. The epithelial fraction identified by positive 

selection had a higher purity (75.9%) than the same fraction identified by 

negative selection (62.9%). The contamination of the non-epithelial fraction 

identified by negative and positive selection methods was 8.8% and 3.1%, 

respectively (Table 5.5). 

 

In summary, the purity of the epithelial cell fraction identified by negative 

selection was on average 65.7±2.8%, whereas the epithelial fraction 

identified by positive selection consisted to 85.2±3.6% of cytokeratin+ cells 

(Table 5.6). These numbers suggest that the positive selection yielded a 

purer epithelial fraction than the negative selection. However, this difference 

has not been found to be statistically significant (according to the Student’s t-

test), which was probably due to the small number of samples. No directional 

trend was present in the degree of contamination of the putative non-

epithelial fraction. In the direct comparison (negative and positive selection 

performed on cells isolated from the same specimen) positive selection 

seemed slightly more accurate with the degree of contamination of the non-

epithelial fraction with cytokeratin+ cells of 8.8% for the negative and 3.1% for 

the positive selection respectively. In the indirect comparison (two selection 

methods performed on cells from two different samples) negative selection 

appeared superior with 1.8% of contamination cells as compared to 4.6% for 

the positive selection (Table 5.6). 
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Table 5.5: Quantification of the purity of epithelial and non-epithelial fractions 
of tumour cells separated by the negative or the positive selections (selected 
samples)* 
 
 Negative selection Positive selection 

CK- cells in 
negative (epi) 
fraction 

CK+ cells in 
positive (non-
epi) fraction 

CK- cells in 
positive (epi) 
fraction 

CK+ cells in 
negative (non-
epi) fraction 

 
Tum AB 

 
117/315 
(37.1%) 
epi 62.9% 

 
20/226 (8.8%) 
epi 8.8% 

 
67/278 (24.1%) 
epi 75.9% 

 
14/458 (3.1%) 
epi 3.1% 

 
Tum GR 

 
NA 

 
NA 

 
40/709 (5.6%) 
epi 94.4% 

 
17/367 (4.6%) 
epi 4.6% 

 
Tum ABn 
 

 
177/562 
(31.5%) 
epi 68.5% 

 
11/627 (1.8%) 
epi 1.8% 

 
NA 

 
NA 

 
* Cells in up to 8 different fields of view were counted. The number of contaminating 
cells per total number of cells counted in each sorted fraction is shown and degree 
of contamination is given in brackets as a percentage. The percentage of epithelial 
cells (epi) in each sorted fraction is also shown in bold. NA: not analysed 
 

 
Table 5.6: Purity of the sorted cell fractions identified by negative and positive 
selection (summary) 
 

  
  

Negative selection 
 

Positive selection 
 

negative 
fraction 

positive 
fraction 

positive 
fraction 

negative 
fraction 

 CK+ cells 
62.9% 

(TumAB)
8.8%

(TumAB)
75.9% 

(TumAB) 
3.1%

(TumAB)
 CK+ 
cells 

68.5% 
(TumABn)

1.8% 
(TumABn)

94.4% 
(TumGR) 

4.6%
(TumGR)

Average 65.7% 5.3% 85.2% 3.9%
StDev 4% 4.9% 13.1% 1.1%
SEM 2.8% 2.2% 3.6% 1%
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5.1.4 Discussion 

 

In the above sections I aimed to test and compare two methods used to 

identify the epithelial fraction of a tumour amongst cells of non-epithelial 

lineages. I tested the antibodies used in negative and positive selection on a 

number of OSCC cell lines, including cell lines that I had recently generated 

from fresh tumour specimens. 

 

The longer cells isolated from a tumour specimen are maintained in culture, 

the more likely they are to undergo physiological changes under the influence 

of growth conditions imposed by cell culture medium [181] [182]. These 

changes might be associated with down- or up-regulation of certain surface 

antigens. Cells, that have been grown in culture for a few passages only, are 

more likely to resemble the original tumour cells in their physiological and 

biological characteristics than cells that have been passaged many times. 

Testing the two selection techniques on early passage tumour-derived cell 

lines offers a unique opportunity to work with a pure epithelial cell fraction (as 

opposed to a mix of cells of different cell lineages isolated from the tumour) 

that closely parallels the tumour cells of origin. 

 

Cells from early passage tumour-derived cell lines were not expected to be 

immunolabelled with antibodies used in negative selection, because these 

antibodies are specific for cells of non-epithelial lineages. In contrast, all cells 

were expected to be positively stained when immunolabelled with antibodies 

used in positive selection, as these antibodies recognise epithelial-specific 

antigens. However, in the three cell lines tested for the expression of the 

negative selection markers 5.9%, 12.2%, and 12.5% of epithelial cells 

stained positively (Table 5.7). In the same cell lines, 2.3%, 5.4% and 1.5% of 

cells were unstained when immunolabelled with antibodies used in positive 

selection (Table 5.7). This shows that neither of the two methods is flawless. 

However, the size of the cell fraction that was mistakenly identified as non-

epithelial (positively stained in the negative selection and unlabelled in the 

positive selection) suggests that the positive selection is more accurate 

(compare 5.9%, 12.2% and 12.5% vs. 2.3%, 5.4% and 1.5%).  

100 



Table 5.7: Expression of negative and positive selection markers by early 
passage tumour-derived epithelial and fibroblastic cultures* 
 

Culture Negative selection 
(lineage markers) 

Positive selection 
(epithelial markers) 

positive negative positive negative 
TumNA 5.9% ~94.1% ~97.7% 2.3% 
TumLM 12.2% ~87.8% ~94.6% 5.4% 
Tum57n 12.5% ~87.5% ~98.5% 1.5% 
     
TumNA 
fibs 

40% ~60% 2.4% (CD24) ~97.6% 

TumGR 
fibs 

70.5% ~20.5% 9% (CD24) ~91% 

Tum42 fibs 99% ~1% 2% (CD24) ~98% 
 
*Numbers given in italics have been calculated by subtracting the experimentally 
determined numbers describing the size of the reciprocal fraction from 100%. 
 

 

An accurate analysis of CD44+ cells in tumour samples requires selection of 

the entire epithelial cell fraction and efficient exclusion of cells of non-

epithelial cell lineages, particularly CD44 expressing lymphocytes and 

fibroblasts. In a reverse strategy, the specificity of antibodies used in 

negative and positive selection was tested on fibroblasts, a cytokeratin-

negative cell type forming a major component of the tumour stroma. Three 

tumour-derived fibroblast cultures were flow-analysed for their surface 

expression of negative and positive selection markers. Surprisingly, only one 

of the three cultures showed labelling of the entire culture (99% of cells) with 

antibodies used in negative selection (Table 5.7). In the other two tumour-

derived fibroblast cultures the fraction of stained cells was 40% and 70.5% 

(Table 5.7). Thus, for some tumours analysed by negative selection, a large 

fraction of unlabelled fibroblasts could contaminate the epithelial fraction. Of 

the positive selection markers, only CD24 was expressed by fibroblasts (at 

2%, 2.4% and 9%, Table 5.7). This antibody could be removed from analyses 

but as CD24 is strongly expressed by a large fraction of tumour cells (Figure 

5.27) the risk of CD24 leading to fibroblastic contamination was thought to be 

outweighed by its potential to assist identification of the complete epithelial 

fraction.  
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Figure 5.27: Expression of CD24 on established OSCC cell lines. Cells were 
trypsinised, counted and stained for CD24. 49.3% of cells stained positively in the 
cell line CA1 (A) and 38.7% of cells were labelled in the cell line Luc4 (B). 
 

 

In summary, the size of the fibroblastic fraction in the three cultures that was 

identified as epithelial (not labelled in the negative selection and labelled in 

the positive selection) was ~0%, 29.5% and 60% for the negative selection 

and 2%, 2.4% and 9% for the positive selection. These numbers suggest that 

the positive selection is more specific for epithelial cells, producing an 

epithelial fraction with a lower extent of fibroblastic contamination. 

 

It is important that epithelial tumour cells that have undergone EMT are also 

included in the epithelial fraction identified for further analysis, as these cells 

appear to be highly relevant to tumour invasion and therapeutic resistance. 

Because EMT cells downregulate expression of epithelial antigens their 

detection by epithelial-specific antibodies was uncertain. Antibodies known to 

recognise EMT cells need to be used and integrin αVβ6 was therefore 

included (Figure 5.11). Individual OSCC lines differed in their expression 

patterns of integrin αVβ6. For the skin SCC line Met2 all EMT cells 

expressed integrin αVβ6, whereas for the OSCC line CA1 some EMT cells 

were negative, localising to an area outside the gate encompassing the 

integrin αVβ6+ fraction on the FACS plot (Figure 5.11, pink cells in H and D). 

An additional cell-surface antibody specific for EMT cells could be added to 

enhance selection of EMT cells present in the tumour, but in an extensive 

literature search did not identify a marker that would select epithelial EMT 

cells and would not be expressed by fibroblasts. 
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5.1.4.1 Assessing the efficiency of positive and negative selection methods 

 

Tests on cultured cells showed that both selection methods appropriately 

identify cells of epithelial and non-epithelial lineages. Testing the two 

methods on fresh tumour cells is more relevant for their potential use in 

research studies and clinical applications but, unfortunately, quantification of 

the two methods on fresh tumour cells proved technically difficult. The small 

size of tumour samples available for analyses was a major limitation. Only a 

small number of cells could be isolated and loss of sorted cells occurred for 

some samples during immunohistochemical staining. This did not happen for 

cultured cells, because these cells could be plated to adhere to the culture 

dish. They could then be easily fixed, stained and counted. The tumour cells 

did not adequately survive the process of cell isolation to give uniform 

adhesion and a cytospin centrifuge was therefore used to deposit sorted cells 

onto microscope slides. However, cells did not adhere well and for some 

samples many cells were lost during subsequent staining procedures. Only 

for three out of six samples could a sufficient number of cells be counted to 

quantify the purity/degree of contamination of the sorted fraction. 

 

5.1.4.2 Positive selection. Implications in research and clinics 

 

The use of flow cytometry for analysing cells isolated from fresh tumour 

tissue has not been used as frequently as detection of antigens of interest by 

immunohistochemistry (IHC) on sectioned tissue. Many studies have 

attempted to establish correlations between CD44 expression (detected by 

IHC) and pathological parameters of the tumour and the clinical outcome for 

the patient. A study by Wang reported a positive correlation between 

expression levels of CD44 (standard and/or variant isoforms) and advanced 

T stage, regional and distant metastasis and perineural invasion [183]. Other 

studies observed a negative correlation, i.e. a reduced expression of CD44 in 

aggressive HNSCC tumours. For example, reduced CD44 expression in the 

primary tumour was reported to be associated with the presence of cervical 

lymph node metastases [184] [185]. Reduced expression of one or more of 

the variant CD44 isoforms in OSCC samples, in particular in poorly 
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differentiated tumours, has also been described [186]. Some studies did not 

find any correlation with aggressive tumour features such as T or N stage 

[187] or with 5 year survival of OSCC patients [188]. These discrepancies are 

possibly due to the heterogeneity of the examined patient cohorts, the use of 

different antibodies, and different fixation and staining techniques. 

 

Assessing CD44 expression by FACS offers a number of advantages over 

immunohostochemistry as it relies on the analysis of single isolated tumour 

cells. The complete exposure of surface antigens allows better antibody 

binding compared to epitopes in tissue sections. There is also less confusion 

concerning the surface staining of adjacent cells. As signal intensity can be 

more easily and accurately analysed, FACS analysis is expected to produce 

more accurate and consistent results. However, there are two major 

limitations that can lead to false estimates of the size of a CD44 expressing 

fraction. First, cell surface antigens can be damaged or destroyed by 

enzymatic dissociation of the tissue employed to obtain cell suspensions. 

Second, the identity of CD44+ stromal cells cannot be determined by their 

position in relation to the tumour. We recently reported that trypsinisation 

causes destruction of some CD44 epitopes and that this can be avoided by 

alternative non-enzymatic treatments [189]. To exclude stromal cells the 

epithelial fraction of the tumour needs to be identified by either negative or 

positive selection. The findings described above suggest that, with existing 

antibodies and technologies, the standard method (negative selection) is 

imperfect with the average purity of the epithelial fraction obtained being only 

65% (Table 5.5). The novel method described here (positive selection) 

improved the average purity of the epithelial fraction to 85% (Table 5.5). 

 

Discrepancies in published data also suggest that the standard selection 

technique (negative selection) may be inconsistent. The first study to use 

negative selection to analyse CD44 expression on cells isolated from 

HNSCC tumours reported that the CD44+ cell population in 25 tumour 

samples was less than 10% of all epithelial cells [82]. A later article published 

by the same group reported that the CD44+ cell fraction varied from 0.4% to 

81% in 31 HNSCC samples [190]. As the size of the patient cohort was 
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similar and the same selection technique was used (negative selection with 

the same antibodies), statistically the frequency of CD44 expressing cells 

ought to be of a similar range. Due to inaccuracy of the negative selection, 

the putative epithelial fraction may have been contaminated with CD44+ 

and/or CD44- non-epithelial cells. This would lead to wrong estimates of the 

size of the CD44+ cell fraction detected in the putative epithelial fraction of 

the tumour. Contamination with CD44+ non-epithelial cells would result in 

larger numbers and contamination with CD44- cells in lower numbers 

describing the size of the CD44+ cell fraction. However, it is unclear to which 

extent the large differences between the two studies were due to inconsistent 

identification of the epithelial fraction and to biological variability of the tumour 

samples. 

 

Contamination with non-epithelial cells could significantly distort results when 

analysing small sub-fractions of tumour cells and such studies make accurate 

identification of the tumour fraction particularly necessary. For a few tumours 

I attempted to assess the size of the EMT cell fraction as defined by the 

CD44+ESAlow/- FACS phenotype, which ranged from 0% to 27% in the 11 

samples analysed (see section 5.2.5, Table 5.14 and Figure 5.39). The 

CD44+ESAlow/- phenotype is also typical for fibroblasts (Figure 5.28) and 

fibroblasts contaminating tumour cell suspensions can be mistaken for 

CD44+ESAlow/- EMT tumour cells leading to wrong estimates about presence 

and proportion of EMT cells in the tumour. 
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Figure 5.28: CD44 and ESA expression by tumour-derived cultured fibroblasts. 
Cells were detached with EDTA and immunolabelled with antibodies against ESA 
(APC-conjugated) and CD44 (PE-conjugated). FACS plots for two primary fibroblast 
cultures are shown. Detected ESA positivity is below 1% in both cultures (A, D). 
90.5% of Tum33 fibroblasts (B) and 96.5% of Tum50(2) (E) are CD44+.  
 

 

The average purity of the epithelial tumour fraction identified by negative or 

positive selection was 65.7±2.8% and 85.2±3.6% respectively (Table 5.6). 

Consequently, the epithelial fraction was contaminated with cells of non-

epithelial cell lineages to 34.3% and 14.8% respectively. Given the small size 

of the EMT fraction (0-27%) relative to the degree of contamination, presence 

of fibroblasts (or other cells with CD44+ESAlow/- phenotype) amongst the 

contaminating cells would significantly falsify estimates of the size of the EMT 

cell fraction of the tumour.  

 

In conclusion, while FACS analysis of fresh tumour cells may offer a more 

reliable way of examining expression levels of the antigens of interest as 

compared to IHC, the identification of the epithelial fraction needs further 

improvement. This study could provide an important milestone by introducing 

a new selection technique which seems more efficient and reliable than the 

standard method currently used. 
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5.2 The CD44+ cell population is associated with aggressive features of 
OSCC 
 

One of the objectives of this study was to examine the frequency of CD44 

expressing cells in samples of OSCC and to assess the findings for a 

possible correlation to clinical and pathological parameters of tumours of 

origin. Having tested negative and positive selection on cultured cells and on 

cells isolated from tumours (described in 5.1), here I used both methods to 

identify the epithelial fraction in tumour samples prior to its assessment for 

the presence and the size of CD44+ cell fraction. 

 

The frequency of CD44 expressing cells was analysed in 34 surgical 

specimens of oral squamous cell carcinoma and 5 specimens of lymph node 

metastases. Tumour specimens were obtained with informed consent from 

patients who were undergoing surgical resection of their tumour at St 

Bartholomew’s Hospital and the Royal London Hospital. Tumour tissue was 

sampled for research whenever the size of the resected tumour allowed. 

Samples were usually analysed on the next day after the surgery. Tissue was 

dissociated into single cells using Collagenase and/or Trypsin according to 

the protocol described in detail in section 4.3. After disintegration of the 

tumour tissue the isolated cells were analysed by flow cytometry. The 

epithelial fraction of each specimen was identified using either negative or 

positive selection and was then analysed for the presence and the size of the 

CD44 expressing cell fraction. For all 34 primary OSCC samples analysed in 

this study full clinical reports could be obtained from the hospital. The 

proportion of CD44 expressing cells was evaluated for a correlation with the 

following clinical and pathological parameters: T stage, N stage, 

extracapsular spread, invasion pattern, perineural and lymphovascular 

invasion, tumour depth and tumour grade. 
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5.2.1 Patient cohort and tumour specimens 

 

The patient cohort examined in this study consisted of 14 female (41.2%) and 

20 male (58.8%) patients. Patients’ mean age at the time of diagnosis with 

OSCC was 66 years with the youngest patient being 40 and the oldest being 

88 years old. 

 

The OSCC tumours, with which these patients were presented varied widely 

in their location, size and spread (Table 5.8). Primary tumour sites included 

tongue, mandible, floor of mouth, buccal mucosa, maxilla and the retromolar 

region. All five lymph node metastases were surgically removed at the same 

time as the primary tumours they were associated with which were also 

included in the study. Table 5.8 summarises clinical and pathological features 

of all patients and tumour specimens.  
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Table 5.8: Summary of samples and parameters analysed in the study. 
 

Parameter No of 
samples % 

Grade 
      poorly 
      differentiated 3 8.8 
      poor to moderately 
      differentiated 17 50.0 
      moderately 
      differentiated 8 23.5 
      moderate to well 
      differentiated 4 11.8 
      well differentiated 2 5.9 
Invasion Pattern
      cohesive 10 29.4 
      discohesive 24 70.6 
Tumour depth  
      ≤ 8 mm 11 32.4 
      9-16 mm 14 41.2 
      < 16 mm 6 17.6 
      unknown 3 8.8 
Perineural Invasion 
      yes 16 47.1 
      no 18 52.9 
Lymphovascular 
Invasion
      yes 6 17.6 
      no 28 82.4 
Surgical margin 
      clear (> 5 mm) 16 47.1 
      close (1 - 5 mm) 13 38.2 
      involved (< 1mm) 5 14.7 
 

Parameter No of 
samples % 

Sex 
      female 14 41.2 
      male 20 58.8 
Age  
      40-55 years 4 11.8 
      56-70 years 19 55.9 
      71-88 years 11 32.4 
Tumour site 
      Tongue 15 44.1 
      Mandible 7 20.6 
      Buccal 4 11.8 
      Flour of mouth 4 11.8 
      Maxilla 3 8.8 
      Retromolar 
      region 1 2.9 
T classification 
      T1 5 14.7 
      T2 15 44.1 
      T3 2 5.9 
      T4 12 35.3 
N classification 
      N0 11 32.4 
      N1 8 23.5 
      N2 15 44.1 
      N3 0 0 
Extracapsular 
spread   
      Yes 15 65.2 
      No 8 34.8 

 

 

The clinical and pathological parameters summarised in the table above 

existed as many different permutations in the patients included in the study. 

For example, patient “EB” was a 79 year old man who was diagnosed with 

squamous cell carcinoma of the mandible. His tumour was staged as T4N0. 

It was moderately differentiated with no perineural or lymphovascular 

invasion and showed a largely cohesive invasion front. The patient 

underwent a unilateral selective neck dissection and no metastatic deposit 

109 



was detected in the 33 lymph nodes removed from the neck. Patient “56” was 

a 47 year old female patient presented with the squamous cell carcinoma of 

the tongue, which was diagnosed as a T2N2c moderately differentiated 

tumour with no perineural or lymphovascular invasion and a discohesive 

invasion front. The bilateral selective neck dissection yielded 34 lymph 

nodes, of which metastatic disease was detected in 3 of 15 lymph nodes on 

the left and 3 of 19 lymph nodes on the right. Extracapsular tumour spread 

was found in two lymph nodes. Many other different types of OSCC tumours 

with varying clinical and pathological parameters were also amongst the 

specimens examined. For a full list of tumours analysed in the study see 

Appendix Table 3. 

 

5.2.1 Variable frequency of CD44+ cells in samples of OSCC 

 

Cell suspensions isolated from the tumour tissue were co-stained with 

antibodies against CD44 and antibodies used in either negative or positive 

selection. DAPI was used to exclude dead cells. Amongst all DAPI- cells the 

epithelial fraction was identified and examined for the presence of CD44 

expressing cells (Figure 5.29 and Figure 5.30).  
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Figure 5.29: Flow cytometric analysis of a typical OSCC sample using 
negative selection to identify the epithelial fraction. All cells (A) were 
sequentially gated on viable cells (B) with DAPI as a dead cell marker. Within all 
viable cells the epithelial cell fraction was gated (C) based on the absence of signal 
for lineage markers CD2, CD3, CD14, CD16, CD19, CD56, CD235a CD32 and 
CD140b (all APC-conjugated). Finally, linage-negative cells were assessed for the 
presence of CD44+ cells with an anti-CD44 antibody conjugated to FITC (D, gated in 
P4). 
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Figure 5.30: Flow cytometric analysis of a typical OSCC sample using positive 
selection to identify the epithelial fraction. All cells (A) were sequentially gated 
on viable cells (B) with DAPI as a dead cell marker. Within all viable cells the 
epithelial cell fraction was gated (C) based on positivity for epithelial markers ESA, 
CD24, integrin β4 and integrin αVβ6 (all FITC-conjugated). Finally, FITC-positive 
cells were assessed for the presence of CD44+ with an anti-CD44 antibody 
conjugated to APC (D, gated in P4). 
 

 

The frequency of CD44+ cells was highly variable amongst individual tumour 

specimens (Table 5.9, Figure 5.31). The proportion of CD44+ cells in the 

primary tumour samples varied between 3% and 97.7% (Table 5.9 A). The 

frequency of CD44 expressing cells in metastatic lymph node specimens 

varied between 21.7% and 96.8% (Table 5.9 B). Figure 5.31 shows 

representative FACS plots with a small (Figure 5.31 A-B), a medium (Figure 

5.31 C-D) and a large (Figure 5.31 E-F) CD44 expressing cell fraction.  
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Table 5.9: Frequency of CD44 expressing cells in samples of primary OSCC 
and associated lymph node metastases* 
 
A              B 
 

Tumour 
(primary) 

CD44+ 
cells [%] 

42 (2) 3 
27 3.9 
PB 5 
IS 5.3 
LK 5.4 
47 5.9 
23 6.1 
NA 7 
21 7.7 
EB 8.5 
52 9.2 
18 9.9 
24 10.5 
46 10.8 
56 11.6 
KR 13.1 
MB 16.3 

Tumour 
(primary) 

CD44+ 
cells [%]

 46 (2) 19.1 
48 22.2 
30 22.7 

56 CM 23.3 
RA 23.7 
MP 25 
CB 25 
A 27.2 

MK 31.5 
NK 34 
AB 43.1 
IV 51.9 
25 65.2 
60 67.1 

57JK 74.3 
44 77.5 

BKK54+ 97.7 

Lymph 
node 

CD44+ 
cells [%]

NKn 21.7 
Bn 31.7 
24n 43.3 
MKn 54.9 
57n 96.8 

 

 
* A: frequency of CD44+ cells in fresh samples of human OSCC. B: frequency of 
CD44+ cells in samples of lymph node metastases. 
 

 

The size of the epithelial fraction of the examined tumour specimens varied 

between 30% and 85% of all cells isolated from the tissue sample. The CD44 

expressing fraction varied between 3% and 97.7% as described above. The 

size of CD44+ cells in the non-epithelial fraction varied from 2% to 83% of all 

non-epithelial cells. This means that for some tumours a large proportion of 

cells identified as non-epithelial by either negative or positive selection was 

expressing CD44, whereas for others only a small fraction of non-epithelial 

cells was CD44+. In some specimens the proportion of CD44+ cells was 

higher in the epithelial fraction, in others it was higher in the non-epithelial 

cell fraction. 
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Figure 5.31: Different size of the CD44+ fraction in the epithelial fraction in 
OSCC specimens. Representative FACS plots are shown for tumours with small 
(B), medium (D) and large (F) fraction of CD44 expressing cells in the epithelial 
fraction. Gates were set based on autofluorescence signal of non-stained control 
samples (A, C, E).  
 

 

5.2.2 Frequency of CD44+ cells in primary metastatic and non-metastatic 

tumours 

 

Visual examination of the data indicated a different distribution of the 

frequency of CD44 expressing cells in primary metastatic tumours as 

compared to primary non-metastatic tumours. All OSCC specimens were 

grouped based on the absence (N0) or the presence (N1 and N2) of lymph 
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node metastasis. The frequency of CD44 expressing cells in the non-

metastatic tumours (N0) varied between 3% and 23.3% (Table 5.10 A). In 

metastatic tumours (N1/2) the proportion of CD44+ cells ranged from 5.9% to 

97.7% (Table 5.10 B). The median values for each group were 7% for N0 

and 25% for N1/2, respectively. Values representing proportions of CD44+ 

cells in samples in N0 and N1/2 groups were plotted in a scatter plot shown 

in figure 5.32.  
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Table 5.10: Frequency of CD44 expressing cells in metastatic vs. non-
metastatic tumours* 
 
A              B 
 

Tum 
No 

TNM % CD44+ 
cells 

Selection
method 

42 T4 N0  3 + 
27 T4 N0  3.9 + 
PB T4a N0  5 + 

IS T2 N0  5.3 - 
LK T2 N0  5.4 - 
NA T2 N0  7 - 

EB T2 N0  8.5 - 
18 T4 N0  9.9 - 
46 T2 N0  10.8 - 
MB T1 N0 16.3 - 

56CM T1 N0  23.3 + 
 
 
C 
 

 N0 N1+N2 

Median 
(%CD44+ cells) 

7% 25% 

n > 10% CD44+ 3 / 11 
(27%) 

19 / 23 
(83%) 

n > 15% CD44+ 2 / 11 
(18%) 

16 / 23 
(70%) 

 
Tum
No 

TNM % CD44+ 
cells 

Selection
method 

47 T2 N2b  5.9 - 
23 T4a N1  6.1 - 
21 T4 N2b  7.7 - 
52 T2 N2b  9.2 - 
24 T2 N2b  10.5 - 
56 T2 N2c  11.6 - 
KR T2 N1 13.1 + 

46(2) T4 N2b  19.1 - 
48 T4 N2a  22.2 + 
30 T2 N1  22.7 + 
RA T2 N1 23.7 - 
MP T3 N2b  25 - 
CB T2 N2b  25 - 
NK T3 N2a  26.4 + 
A T4a N1 27.4 - 

MK T4a N2c 31.5 + 
AB T2 N1 43.1 - 
25 T2 N2b  51.7 + 
IV T1 N1  51.9 - 
60 T2 N2b  67.1 + 
44 T4 N2b  77.5 + 

57JK T1 N2a  77.9 + 
54 T1 N1  97.7 +  

 
 
*A: non metastatic tumours (N0), B: metastatic tumours (N1/2); C: median values 
and number of samples in each group with proportion of CD44+ cells higher than 
10% or higher than 15%. 
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Figure 5.32: Scatter plot showing proportions of CD44+ cells in the groups N0 
and N1/2. Values representing frequencies of CD44+ cells in non-metastatic (N0, 
red) and metastatic (N1/2, blue) tumour samples are shown. The horizontal line with 
error bars shows the median value for each group. Plot and calculations were made 
using the GraphPad Prism 5 software.  
 

 

These observations show that primary oral tumours that have formed early 

lymph node metastases have a higher proportion of CD44 expressing cells 

than primary tumours that did not metastasise. Presence of a possible 

correlation between the proportion of CD44+ cells and other clinical and 

pathological parameters could not be as easily established and statistical 

tests were needed to examine this. 

 

5.2.3 Correlation between the proportion of CD44+ cells and clinical and 

pathological parameters  

 

To examine other possible correlations between the proportion of CD44 

expressing cells and clinical and pathological parameters of the tumour, the 

data was analysed using the statistical package “R”. To choose a suitable 

statistical test it was first established how the data was distributed. The 

numbers, representing the frequency of CD44 expressing cells in tumour 

samples were plotted as a cumulative function of the number of specimens 
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analysed (Figure 5.33). The plot showed that the probability function of the 

data points does not correspond to that of a normal distribution. 

 

 

 
 
Figure 5.33: Distribution of data points describing the proportion of CD44+ 
cells in fresh samples of primary OSCC. The frequency of different proportions of 
CD44+ cells (A) and the corresponding probability density function (B) show that the 
data points are not normally distributed. 
 

 

Because the data points were not normally distributed Spearman’s ranked 

test and Fisher’s exact test, which are the two most common non-parametric 

tests, were chosen for the statistical analyses of the data. Clinical parameters 

examined for a correlation with the frequency of CD44 expressing cells 

included T stage, N stage, grade of the tumour, depth of the tumour, nature 

of the invasion front, presence of perineural and lymphovascular invasion 

and extracapsular spread. With both tests, the positive correlation observed 

between the frequency of CD44 expressing cells in OSCC specimens and 

the presence of lymph node metastases (see above) was confirmed. 

Moreover a correlation between high proportion of CD44+ cells and 

discohesive invasion front as well as high tumour grade (poorly differentiated 

tumours) was found. 

 

Figure 5.34 shows the Spearman correlation matrix from which the presence 

or the absence of a correlation between the frequency of CD44+ cells and 

selected clinical and histological parameters can be seen (for a full matrix, 

including all parameters mentioned above, see Appendix Figure 3). The 
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parameters of interest are shown in squares forming the diagonal of the 

matrix. Every other square gives the relationship between the two 

parameters framing the square in question. For example, the third square 

from the left in the first row represents the relationship between the T stage 

and the frequency of CD44+ cells in OSCC samples (shown as “CD44” in the 

matrix) (Figure 5.34). Different shades of green of the squares represent 

different strengths of correlation between the two parameters in question, 

with dark green showing a strong correlation and white showing no 

correlation. The numbers (Spearman's rank correlation coefficients) also 

quantify the strength of the correlation with 1 and -1 representing the 

strongest positive or negative correlation and numbers close to 0 showing no 

correlation. The p-values for the established correlations are given in 

brackets. The strongest correlation was observed between the frequency of 

CD44+ cells and the presence of lymph node metastases (p=0.0001). The 

proportion of CD44 expressing cells also correlated with a discohesive 

invasion front (0.009) and with a high tumour grade (representing poorly 

differentiated tumours, p=0.05) (Figure 5.34). No correlation was observed 

with the T stage (Figure 5.34), the depth of the tumour, perineural and 

lymphovascular invasion and extracapsular spread (Appendix Figure 3).  

 

With the Fisher’s exact test the strongest correlation was observed between 

the frequency of CD44+ cells and high tumour grade (odds ratio: 23.1, p-

value 0.001). Figure 5.35 shows the distribution of the data points describing 

the frequency of CD44+ cells in tumour samples (depicted on the y-Axis) 

arranged in five groups representing the different differentiation states of the 

tumour (shown on the x-Axis) (Figure 5.35). A weaker but statistically 

significant correlation was found with the presence of lymph node 

metastases (odds ratio: 20.6, p-value: 0.002) and discohesive invasion front 

(odds ratio: 12.6, p-value 0.02). The representative plots are shown in figure 

5.36 and figure 5.37, respectively.  
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Figure 5.34: Spearman correlation matrix. Different shades of green represent 
different strengths of correlation between high frequency of CD44 expressing cells 
and the clinical parameter in question (see text for a detailed explanation). The p-
values for each correlation are given in brackets. The strongest correlation (dark 
green) was found with the presence of lymph node metastases. A weaker but 
significant correlation (lighter green) was found with the discohesive invasion front 
and high grade of the tumour. No correlation (white) was observed with T stage. 
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Figure 5.35: The frequency of CD44+ cells in samples with a different tumour 
grade. Tumour specimens were grouped into 5 groups based on their grade. The 
majority of the specimens in the groups containing poorly and poor to moderately 
differentiated tumours showed a proportion of CD44+ cells above the cut-off point of 
22.5% (grey horizontal line). No specimens in the groups with moderately, 
moderately to well and well differentiated tumours contained more than 22.5% of 
CD44+ cells. 
 

 

 
 
Figure 5.36: Frequency of CD44+ cells in non-metastatic and metastatic 
tumours. The proportion of CD44+ cells in tumour samples without (N0) or with 
(N1/2) lymph node metastases is shown. The majority of samples in the N1/2 group 
and only one sample in the N0 group had a frequency of CD44+ cells above the cut-
off point (grey horizontal line) of 17.5%.  
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Figure 5.37: The frequency of CD44+ cells in samples with different invasion 
pattern. The tumour specimens were grouped into 3 groups based on their invasion 
pattern. In the group with a discohesive invasion front the majority of samples 
showed a high proportion (above the cut-off point of 20%, grey horizontal line) of 
CD44+ cells. Only 3 samples with a cohesive invasion front and no samples with a 
largely cohesive invasion front had a proportion of CD44+ cells higher that 20%.  
 

 

Mann-Whitney U test is another commonly used statistical test for 

comparison of two sets of samples. It is used when the sample data are not 

normally distributed and when they cannot be transformed to a normal 

distribution. The Mann-Whitney U test (also known as Mann-Whitney-

Wilcoxon test, Wilcoxon rank-sum test or Wilcoxon–Mann–Whitney test) 

combines and ranks the data from sample set 1 and sample set 2 and 

calculates a statistic on the difference between the sum of the ranks of 

sample set 1 and sample set 2. A cut-off value for the independent variable 

‘frequency of CD44+ cells’ was determined to differentiate the two sample 

sets: CD44 high and CD44 low. This cut-off CD44 value was calculated so as 

to minimize the p-value and maximize the effect size for each sample set. 

 

Similar to the Spearman’s ranked test and the Fisher’s exact test, the Mann-

Whitney U test, when performed on the data set described above, showed a 

statistically significant correlation between the frequency of CD44+ cells in the 
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tumour sample and the presence of lymph node metastases, discohesive 

invasion front and the tumour grade (Table 5.11). In addition, a statistically 

significant correlation was observed between high frequency of CD44+ cells 

and perineural invasion, which was not established when Spearman’s ranked 

test or the Fisher’s exact test were used (Table 5.11). 

 

In summary, all three tests (Spearman’s ranked test, Fisher’s exact test and 

Mann-Whitney U test) showed that OSCC tumours with a high frequency of 

CD44+ cells are more likely to have lymph node metastases, a discohesive 

invasion front and a high tumour grade. In addition, using the Mann-Whitney 

test, the high frequency of CD44+ cells was also found to correlate with 

perineural invasion. Table 5.11 gives the p-values for the different 

correlations as established by the three different tests. Differences in p-

values calculated for the same parameter/correlation by the different tests 

are likely due to the tests’ methodological differences.  

 

 

Table 5.11: P-values for statistically significant correlations established 
by three different tests 
 
Tumour 
parameter 

Spearman’s 
ranked test 

Fisher’s exact 
test 

Mann-Whitney U 
test 

Lymph node 
metastases 

0.0001 0.002 0.0002 

(discohesive) 
Invasion front 

0.009 0.02 0.004 

(high) Tumour 
grade 

0.05 0.001 0.0006 

Perineural 
invasion 

Not significant Not significant 0.02 

 

 

The statistical analysis described above was performed on all 34 samples, 

pooling the samples where negative or positive selection was applied to 

identify the epithelial fraction of the tumour. In the previous section (5.1) 

positive selection was described as more efficient and accurate than the 

negative selection. Because the two selection techniques were different in 

their efficiency, the selection method used might have affected the detection 
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of CD44+ cells. To justify pooling the samples despite different selection 

techniques, I looked at whether there was a statistically significant difference 

in the proportion of CD44 expressing cells between samples analysed by 

positive and negative selection. Figure 5.38 shows the proportion of CD44 

expressing cells in tumour samples in relation to the selection method used 

(Figure 5.38). A trend line fitted to the data points is an ascending line 

suggesting a positive correlation between the frequency of CD44 expressing 

cells and the positive selection technique. This would mean, that a sample 

analysed with positive selection might be expected to show a higher 

proportion of CD44 positive cells than if analysed with negative selection. 

However, this correlation was not found to be statistically significant.  

 

 

 
 
Figure 5.38: Frequency of CD44+ cells in relation to the selection method used 
to identify the epithelial fraction. The tumour specimens were grouped according 
to the selection method used. Specimens analysed by negative selection are shown 
on the left, samples analysed by positive selection are shown on the right. The trend 
line fitted to the data points indicates that samples analysed by positive selection 
were more likely to have a higher proportion of CD44+ cells. However, this trend was 
not statistically significant.  
 

 

Because of the observed trend between the proportion of CD44 positive cells 

in tumour samples and positive selection, the Fisher’s exact test was run on 

the two sets of data separately. The results for the two data sets were 

essentially similar to those obtained from the analyses of the combined data 

set. Due to a smaller number of samples, the correlations observed using a 
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single selection method were statistically weaker (Table 5.12), but for the 

group analysed by negative selection, which included 20 samples, all three 

correlations were still statistically significant (p≤0.05). For the group analysed 

by positive selection, including 14 samples, only the correlation with lymph 

node metastases was found to be statistically significant.  

 

 
Table 5.12: Statistical analyses of samples analysed by negative and positive 
selection* 
 

Combined data set 
(34 samples) 

Negative selection 
(20 samples) 

Positive selection 
(14 samples)  

Tumour grade OR: 23.1 (p=0.009) OR: Inf (p=0.01) OR: 8.4 (p=0.22) 

Lymph node 
metastases 

OR: 20.6 
(p=0.0024) OR: Inf (p=0.04) OR: 18 (p=0.04) 

Discohesive 
invasion front OR: 12.6 (p=0.02) OR: 9.3 (p=0.046) OR: 9.5 (p=0.09) 

 
* OR: odds ratio, inf: infinity 
 

 

5.2.4 Frequency of CD44 expressing cells in lymph node metastases 

 

Five pairs of matching primary OSCC and associated lymph node 

metastases were analysed in this study. Due to their small number, a 

statistical analysis could not be performed on lymph node samples. However, 

as seen in Table 5.13, no consistent difference in the proportion of CD44+ 

cells appeared related to the sample origin from either a primary tumour or a 

lymph node metastasis. For some pairs the frequency of CD44+ cells was 

higher in the primary tumours, for others it was higher in the lymph node 

metastases (Table 5.13). 
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Table 5.13: Frequency of CD44+ cells in primary tumours vs. associated 
lymph node metastases 
 

Sample Sample type %CD44+ 
cells 

Selection 
method 

∆ %CD44+ cells 

A Primary OSCC 27.2  -  
Bn Lymph node 31.7  - +4.5 
25 Primary OSCC 51.7 +  

24n Lymph node 43.3 + -8.4 
57 Primary OSCC 74.3 +  

57n Lymph node 96.8 + +22.5 
MK Primary OSCC 31.5 +  

MKn Lymph node 54.9 + +23.4 
NK Primary OSCC 26.4 -  

NKn Lymph node 21.7 - -4.7 
 

 

5.2.5 Frequency of CD44+ESA-/low EMT cells in OSCC specimens 

 

Cell suspensions isolated from fresh OSCC tumours were also examined for 

the presence of EMT cells that can be identified by their CD44+/ESAlow/- 

FACS phenotype. The epithelial fraction of the tumours was identified either 

by negative or positive selection as described above prior to examining the 

EMT cell fraction.  

 

Because three different fluorophores were used when examining the EMT 

fraction, compensation needed to be done and therefore a lot of cells were 

required. Hence, detection of the EMT cell fraction was only possible for 

large tumours from which a sufficient number of cell could be isolated. In the 

11 OSCC specimens analysed the EMT cell fraction varied in size from 0% to 

27% of all epithelial cells (Table 5.14). Figure 5.39 depicts examples of FACS 

plots showing the CD44+ cell fraction and the EMT cell fraction of three 

different tumour specimens. 

 

There was no statistically significant correlation between the size of the EMT 

fraction and the clinical and pathological parameters of the respective 

tumours, which was probably due to the small number of specimens 

analysed. Presence of EMT cells in these tumour samples gives evidence of 
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EMT occurring in human tumours in vivo, a topic that has been, and still 

remains, highly controversial [191].  

 

 

Table 5.14: EMT cell fraction in fresh tumour specimens 
 

Tum No TNM % EMT cells 
Tum30 T2 N1 ~0 
Tum47 T2 N2b 2.0 
TumMK T4a N2c 4.8 
Tum23 T4a N1 5.7 
TumC unknown 5.2 
Tum48 T4 N2a 9.7 
Tum24 T2 N2b 7.3 
Tum25 T2 N2b 12.8 
Tum54 T1 N1  20.1 
TumA T4a N1 20.4 
TumJK T1 N2a 27.0 
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Figure 5.39: CD44+ and EMT cells in fresh tumour tissue. Cells were isolated 
from 3 different OSCC specimens. The epithelial fraction was identified using 
negative selection for the specimens TumC and TumA and using positive selection 
for the specimen Tum48. The EMT cell fraction constituted 5.2% of all epithelial cells 
in TumC (B), 9.7% in Tum48 (D) and 20.5% in TumA (F). 
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5.2.6 Discussion  

 
5.2.6.1 Sampling the tumour tissue 

 
A major limitation of the study was the scarce availability of tumour tissue. 

Usually the OSCC tumours were not very large in size and tissue sufficient 

for a full pathological examination was required before a resected tumour 

could be sampled for research. For pathological analysis of fresh tumour 

tissue, part was usually processed for embedding in paraffin and part snap-

frozen in liquid nitrogen. These two ways of tissue processing were used to 

reduce the uncertainty of histology. After tissue sampling for pathological 

examination, often there was no or very little tissue to spare for research. 

Another limiting factor in tissue acquisition was the often necrotic area in the 

centre of the tumour, which further reduced the size of the available usable 

tissue. The pathologist attempted consistent sampling from the tumour edge 

to make the samples less necrotic and to collect as many viable cells as 

possible. Sampling was always performed by the same pathologist and the 

risk of contamination with normal oral mucosal cells, was similar for all 

tumour samples. All other variables that related to processing and analysing 

the tissue (such as the choice of enzyme, incubation time, etc.) were kept 

unchanged for all tumour specimens to provide maximum possible 

consistency.  

 

5.2.6.2 Distinguishing between normal and malignant oral mucosa 

 

During sampling, the tumour margin was located macroscopically by the 

pathologist and tissue was always sampled from the edge of the tumour. 

There was thus a chance of including adjacent non-malignant oral mucosa in 

the samples. The distribution of CD44+ cells in the normal oral tissue might 

be different from that in the malignant tissue. Consequently, presence of 

normal cells in the tumour cell fraction could falsify the estimates about the 

proportion of CD44+ tumour cells. Reports of tumour cell analysis found in the 

literature do not seem to have approached this problem and it is not clear 

whether antibodies capable of consistently distinguishing normal from 
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malignant epithelial cells exist. T and Tn antigens are precursors in normal 

complex carbohydrate chains, and, in normal tissues, these antigens are 

masked and not accessible to the immune system. However, they have been 

reported as uncovered and immuno-reactive in most carcinomas [192] [193]. 

Possibly antigens of this type could be used to distinguish normal from 

malignant epithelial cells. However, further work in this direction is needed. 

 

5.2.6.3 Influence of the selection method on detection of CD44+ tumour cells 

 

The frequency of CD44 expressing cells in individual tumour samples varied 

widely and independently of the selection method used to identify the 

epithelial fraction. The slight differences in the strength of the correlations 

(Table 5.12) observed in the analysis of the combined data set and the 

analysis of the two groups of data separately are most likely due to a smaller 

number of specimens included. Although not statistically significant, samples 

analysed with the positive selection tended to have a higher proportion of 

CD44+ cells (median 27.4%) that samples analysed with the negative 

selection (median 10.7%) (Figure 5.38). As described in section 5.1 the 

positive selection seems to be slightly more accurate in identifying the 

epithelial cell fraction. The larger proportions of CD44+ cells in samples 

analysed with the positive selection could be explained through the negative 

selection yielding an impure epithelial fraction contaminated with CD44- cells 

of non-epithelial cell lineages. The presence of CD44- non-epithelial cells in 

the putative epithelial fraction would dilute the epithelial fraction and lower the 

estimates of the proportion of CD44+ cells.  

 

5.2.6.4 The use of CD44 as a prognostic marker in OSCC 

 

The present study established a statistically significant correlation between 

high frequency of CD44 expressing epithelial tumour cells and the presence 

of neck lymph node metastases, discohesive invasion front and high tumour 

grade. In a recent study by Joshua and co-workers, the frequency of lin-

CD44+ cells was analysed in 31 samples of primary human OSCC using 

negative selection, and was found to correlate with T stage and local 
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recurrence of the tumours according to the Spearman’s ranked test [190]. A 

strong correlation was also observed with successful xenograft implantation 

(p=0.001). There was a trend towards higher proportion of CD44+ cells in 

poorly differentiated tumours as compared to moderately and well 

differentiated tumours (p=0.09) and tumours with perineural invasion 

(p=0.12). In contrast to the present study the work by Joshua did not find a 

correlation with the presence of lymph node metastases. The disparity 

between the findings of the two studies could be based on the heterogeneity 

of the tumour samples. The study by Joshua was performed on head and 

neck tumours, which included cancers of the oral cavity but also cancers of 

the oropharynx, larynx and hypopharynx, nose and sinuses, whereas the 

current study examined tumours of the oral cavity only. Importantly, both 

studies found correlations between the frequency of CD44+ epithelial cells in 

tumour samples and aggressive features of the tumours stressing the role of 

CD44 in cancer progression. 
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5.3 Analysis of malignant cell lines derived from surgical specimens of 
OSCC and lymph node metastases 
 
Major limitations of analysing fresh tumour cells include the usually small size 

of the specimen and the inaccuracy of the epithelial selection. Cell lines 

generated from fresh tumour tissue can provide large numbers of cells and 

allow a more standardised analysis of the progeny of cells isolated from the 

tumour. 

 

In this section I describe generation, cultivation and analysis of malignant cell 

lines derived from specimens of primary OSCC and associated lymph node 

metastases. Furthermore, the data obtained from analysis of cells isolated 

from fresh tumour tissue, presented in the previous chapter (section 5.2), is 

compared with the data obtained from the analysis of cell lines generated 

from these tumours and malignant cell lines are evaluated as suitable models 

for studying cancer stem cells. 

 

5.3.1 Influence of the medium composition on cultured cells  

 

To find the optimal conditions for isolation and cultivation of cells form OSCC 

tissue I first compared growth, proliferation and differentiation patterns of 

established head and neck cancer cell lines grown under different culture 

conditions. Cell and colony morphology as well as proliferation and 

differentiation pattern were examined in established cell lines cultured in the 

routinely used RM+ medium and in a serum-free, low-calcium medium 

formulation, termed CnT24 medium  (CellnTec Advanced Cell Systems). 

Both, adherent as well as non-adherent culture conditions were tested. 

 

5.3.1.1 Colony morphology, proliferation and differentiation patterns in 

established head and neck cancer cell lines 

 

Cell and colony morphology have been extensively studied in primary 

cultures of keratinocytes isolated from many epithelial tissues. Three types of 

colonies characteristic for cell lines derived from epithelial tissues were first 
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discovered by clonal analysis in primary epidermal keratinocytes [194]. 

These colony types, termed holoclone, meroclone and paraclone, were 

reported to be formed by cells with distinct morphological features and 

different proliferative capacities. Holoclone colonies contained small, round, 

tightly packed cells, which had a great reproductive capacity. Paraclone 

colonies contained loosely spaced, large cells with a low reproductive 

capacity. Meroclone colonies were identified as a transition state between 

holoclone and paraclone colonies, containing a mix of cells of different sizes 

and different reproductive capacities [194]. Holo-, mero- and para-clones 

were classified as stem cells, amplifying cells and early differentiating cells, 

respectively [194] [195].  

 

Holo-, mero- and para-clone colonies have been since described in cell lines 

derived from many epithelial tissues including hair follicles [196], ocular 

surface epithelium [197] and the oral mucosa [198]. Our own laboratory was 

first to provide evidence for the existence of the three colony types in cancer 

cell lines [180]. Similar to epidermal primary keratinocytes, holo-, mero- and 

para-clones in head and neck cancer cell lines displayed morphological 

differences and had different proliferative potential. In addition, Harper and 

co-workers reported a distinct expression pattern of stem cell-related and 

differentiation-related markers for each type of colony [180]. The holoclone 

colonies showed strong expression of the stem cell-related markers CD44, β-

catenin and integrin β1. In contrast, markers associated with differentiation, 

such as keratin 6 [180] were mainly present in paraclone colonies. Vimentin 

expression was detected in meroclone colonies [180]. These findings 

extended the proposed hierarchy model of epithelial differentiation to head 

and neck cancer cell lines with holo- mero- and para-clones corresponding to 

stem, transit amplifying and early differentiating cells, respectively.  

 

Studies describing the existence of the three characteristic colony types in 

cell lines derived from epithelial tissues have been performed on cells 

cultured in a standard serum-containing medium [199]. The method of serial 

cultivation of keratinocytes, including composition of the standard medium 

formulation, was described almost 30 years ago [199]. Although the original 
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method is still successfully and widely used, today, there exist many 

alternative commercially-available cell culture media. Some of these media 

have been developed to support the growth of epithelial cells isolated from 

specific tissues. For example, the “CnT24 progenitor cell targeted oral 

epithelium medium” (CellnTec Advanced Cell Systems) has been specifically 

designed for isolating and culturing oral mucosal keratinocytes. CnT24 is a 

fully-defined, serum-free medium that contains low levels of calcium (0.07 

mM). According to the manufacturer CnT24 supports the growth of oral 

epithelial stem and early progenitor cells, maintaining their undifferentiated 

and immature state by causing a delay in the onset of terminal differentiation. 

 

It is well known that the composition of the culture medium has a significant 

impact on cell growth, cell differentiation and maturation state. I tested the 

suitability of the CnT24 medium for culturing established head and neck 

cancer cell lines available in our laboratory, comparing CnT24 to the routinely 

used RM+ medium. Cells were seeded at clonal density in both media and 

cultures were monitored daily. A marked difference in colony morphology 

was observed for cells grown in CnT24 medium as compared to growth in 

RM+ medium. Grown in RM+ medium cell lines for CA1, 5PT and H357 

formed the three characteristic types of colonies: holoclones, meroclones and 

paraclones previously described (Figure 5.40). In contrast, in the CnT24 

medium this pattern of colony formation was not observed. Instead, the cell 

lines formed three distinct types of colonies (termed colony types I, II and III) 

containing one, two or three morphologically distinct cell types (cell type 1, 2 

and 3) arranged in concentric rings (termed zones 1, 2 and 3) (Figure 5.41, 

Figure 5.42). Each of the three cell lines grown in the CnT24 medium showed 

colonies with such morphologies (Figure 5.43). 
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Figure 5.40: Different types of colonies in head and neck cancer cell lines 
grown in RM+ medium. Oral cancer cell lines CA1 (A-C), 5PT (D-F) and H357 (G-
I) were grown in RM+ medium. In each cell line three morphologically different types 
of colonies were present: holoclone colonies with a circular outline and tightly 
packed “cobblestone” cells (A, D and bottom G), meroclone colonies containing 
larger irregularly sized cells (B, E, H) and paraclone colonies with large loosely 
spaced cells (C, F, I). Scale bar 100 µm 
 
 

 
 
Figure 5.41: Type I and II CA1 colonies present in the CnT24 medium. Cells 
were grown at clonal density in CnT24 medium for 14 days before photographs 
were taken. The type I colony contained irregularly shaped, loosely spaced type 1 
cells (A). Type II colony consisted of smaller tightly packed type 2 cells in the centre 
and type 1 cells in the periphery (B) Scale bar 100 µm (A ), 50 µm (B) 
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Figure 5.42: Type III 5PT colony present in CnT24 medium. Type III colony 
contained three different types of cells arranged in concentric circles or zones. The 
outer circle (zone 1) is formed by type 1 cells which are large and loosely spaced. 
Small and round type 2 cells form the intermediate circle (zone 2). The central zone 
(zone 3) consists of yet smaller and more closely packed type 3 cells. Scale bar 50 
µm 
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Figure 5.43: Colony morphology of head and neck cancer cell lines in CnT24 
medium. All three cell lines H357, CA1 and 5PT (A, B and C, respectively) formed 
colonies consisting of cells with different morphologies arranged in concentric 
circles. The centre of the colony was made up of very small, round cells that were 
tightly packed type 3 cells (zone 3). It was surrounded by larger irregularly shaped 
type 2 cells (zone 2). The outer circle (zone 1) consisted of even larger, more 
loosely spaced type 1 cells. Scale bar 50 µm 
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Similar colony morphologies have been described for murine epidermal and 

oral epithelium grown under serum-free, low-calcium culture conditions. 

Tudor and co-workers reported colonies of keratinocytes comprising three 

different types of cells arranged in concentric circles [200]. They also studied 

the differentiation and proliferation patterns in these colonies. They observed 

that type 3 cells did not express keratins associated with differentiation but 

expressed keratin 15, a keratin that is found in some epidermal and mucosal 

stem cell zones [201] [202]. On the contrary, type 1 and type 2 cells stained 

for mucosal (Keratin 4, Keratin 13) or epidermal (Keratin 1 and Keratin 10) 

differentiation markers. Clonogenic assays and BrdU labelling revealed that 

type 2 and in particular type 3 cells were highly proliferative, whereas type 1 

cells could only divide once or twice. Furthermore, Tudor and co-workers 

reported that qPCR indicated expression of Oct-4, considered a classic stem 

cell marker, to be restricted to type 3 cells, and c-myc expression, which is 

associated with commitment of stem cells to differentiation [203], was found 

in type 1 and type 2 cells only. Based on these findings the authors proposed 

a model in which zone 3, zone 2 and zone 1 cells correspond to stem cells, 

amplifying cells and early differentiating cells, respectively [200]. 

 

To determine whether this model could be applied to human malignant oral 

keratinocyte cultures grown in a serum-free, low-calcium medium formulation 

such as CnT24, I examined their expression patterns of markers associated 

with stemness and differentiation. Expression patterns of CD44, EGFR, β-

catenin, E-cadherin and vimentin were examined by immunohistochemistry. 

Differential expression of each of these markers was observed across the 

different cell zones. In zone 3 cells a high level of markers associated with 

stemness (CD44, EGFR, membrane β-catenin and E-cadherin) was detected 

(Figures 5.44, 5.45, 5.46 and 5.48). Nuclear β-catenin, which has been linked 

to increased proliferation in basal cell carcinoma [204] and observed in 

differentiated keratinocytes [205] was found in zone 2 cells. High levels of 

vimentin were observed in zone 1 cells (Figure 5.47). A striking reciprocal E-

cadherin and vimentin localisation in zone 3 and zone 2/1 was seen in 

concentric colonies (Figure 5.48). 
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Figure 5.44: CD44 expression pattern in a concentric CA1 colony. CA1 cells 
were grown in CnT24 medium for 14-20 days. Cells were fixed and stained with 
DAPI and an antibody against CD44. Concentric rings (zones 1-3) of the colony are 
outlined, with zone 3 in top left and zone 1 in bottom right corner of the image. 
Immunostaining for CD44 (green, A, C) shows a strong membrane staining in cells 
in zones 3 and zone 2 in the middle of a colony. The signal gets weaker towards the 
periphery of the colony and is only present in a few cells in the outermost area (zone 
3) of the colony. DAPI and brightfield images (B and D) reveal concentric colony 
morphology. Scale bar 50 µm 
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Figure 5.45: EGFR expression pattern in a concentric CA1 colony. Concentric 
rings (zones 1-3) of the colony are outlined, with the central zone 3, intermediate 
zone 2 and peripheral zone 1. Immunostaining for EGFR (green, A, C) shows a 
strong membrane staining in cells in the innermost zone in the middle of the colony. 
In zone 2 EGFR is also present in some cells. Almost no signal is seen in cells in the 
outermost zone 1 at the periphery of the colony. DAPI and brightfield images (B and 
D) reveal concentric colony morphology. Scale bar 50 µm 
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Figure 5.46: β-catenin expression pattern in a concentric CA1 colony. 
Concentric rings (zones 1-3) of the colony are outlined, with zone 3 in top right and 
zone 1 in bottom left corner of the image. β-catenin (green, A, C) is seen in the 
membrane of most zone 3 cells and some zone 2 cells. β-catenin is also present in 
the nuclei of zone 2 cells and a few zone 1 cells. Neither nuclear nor membrane β-
catenin is seen in zone 1 cells. DAPI and brightfield images (B and D) reveal 
concentric colony morphology. Scale bar 50 µm 
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Figure 5.47: Vimentin expression pattern in a concentric CA1 colony. 
Concentric rings (zones 1-3) of the colony are outlined, with the central zone 3, 
intermediate zone 2 and peripheral zone 1. Vimentin expression (green, A, C) is 
seen in zone 1 cells at the periphery and a few zone 2 cells. No vimentin is present 
in zone 3 in the centre of the colony. DAPI and brightfield images (B and D) reveal 
concentric colony morphology. Scale bar 100 µm 
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Figure 5.48: Reciprocal E-cadherin and vimentin expression patterns in a 
concentric CA1 colony. Concentric rings (zones 2 and 3) of the colony are 
outlined, with the central zone 3 and the peripheral zone 2. Dapi signal (A) reveals a 
concentric colony with small tightly packed cells in the centre. Immunostaining for E-
cadherin (red, B) shows a strong signal in the middle of a colony. Vimentin 
immunostaining (green, C) reveals a bulk of vimentin negative cells in the centre 
and strongly positive cells at the periphery of the colony. A merged picture of all 
three channels shows reciprocal expression of E-cadherin and vimentin (D). Scale 
bar 50 µm 
 

 

Expression patterns of stem cell-related and differentiation-related markers in 

different types of colonies observed in RM+ medium (as previously published 

by Harper et al. [180]) and in CnT24 medium are summarised in table 5.15. 
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Table 5.15: Expression of stemness- and differentiation-related markers in 
head and neck cancer cell lines grown under different culture conditions 
 
Medium Marker Cell type Marker 

association 
Reference 

 
 

CnT 24 

CD44 3 stemness [82] 
EGFR 3 stemness [206] 

β-catenin 3 (membrane) 
2 (membrane, nuclear)

proliferation, 
differentiation 

[204], [205] 

E-cadherin 3 stemness [207] 
Vimentin 1 differentiation [208] 

 
 

RM+ 

CD44 holoclone stemness [82] 
Integrin β1 holoclone stemness [209], [210] 
β-catenin holoclone (membrane) stemness [204], [205] 
Keratin 6 paraclone differentiation [180] 
Vimentin paraclone  differentiation [180] 

 

 

Expression patterns of the various marker proteins suggest that the three cell 

types found in concentric colonies in CnT24 medium (type 1, 2 and 3 cells) 

correspond to the paraclone, meroclone and holoclone cells present in RM+ 

medium, respectively. The analogy between zone 3 cells and holoclones, 

zone 2 cells and meroclones and zone 1 cells and paraclones is backed up 

by similarities in cell morphology, such as cell size and cell spacing within the 

colony. In RM+ cultures the progression from holoclones to mero- and then 

paraclones is associated with increase in cell size and cell spacing and a 

decrease in the nuclear-to-cytoplasmic ratio. The same changes can be 

observed in CnT24 medium during progression from type 3 cells to type 2 

and type 1 cells. Consequently, type 3 cells appear to represent stem cells, 

type 2 cells represent transit amplifying cells and type 1 cells correspond to 

early differentiating cells. 

 

These findings indicate that head and neck cancer cell lines have different 

colony morphology when cultured in adherent conditions in RM+ medium and 

CnT24 medium. However, the same three cell types with distinct proliferation 

and differentiation patterns are present in both media. 
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5.3.1.2 Non-adherent growth of established head and neck cancer cell lines 

 

In addition to adherent growth on a plastic cell culture dish, some cells in 

head and neck cancer cell lines are capable of growth in non-adherent 

culture condition as so called tumour spheres [71]. I examined the sphere- 

forming ability of established head and neck cancer cell lines in RM+ and 

CnT24 medium. All three cell lines included in this experiment were able to 

form spheres when grown in non-adherent conditions on poly-HEMA coated 

plates in RM+ medium (Figure 5.49). The fraction of sphere-forming cells 

varied between the cell lines and was highest for H357, intermediate for 5PT 

and lowest for CA1 (Figure 5.50). Spheres formed by the different cell lines 

also varied in size with larger spheres being formed by H357 and 5PT and 

with CA1 spheres being much smaller (Figure 5.49). Interestingly, the size of 

the sphere-forming fraction in a cell line directly correlated with the size of its 

EMT fraction. 

In CnT24 medium the sphere growth was considerably reduced in all cell 

lines. A marked decrease in the number of spheres as well as their size was 

observed for CA1 and 5PT. For both cell lines the size of the sphere-forming 

fraction was too low to quantify and H357 did not produce any spheres in 

CnT24 medium (Figure 5.49). 

 

In summary, serum-free low-calcium CnT24 medium proved suitable for 

culturing established head and neck cancer cell lines in adherent conditions, 

but did not support their non-adherent growth. In comparison, RM+ medium 

was found to support adherent and non-adherent growth of established head 

and neck cancer cell lines. 
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Figure 5.49: Ability of head and neck cancer lines to grow in non-adherent 
culture conditions as tumour spheres in RM+ and CnT24. Cells were grown on 
poly-HEMA coated plates in RM+ medium (A, C, E) or CnT24 medium (B, D, F) 
containing 1% methyl-cellulose. Photographs show spheres 14 days after plating. 
Lines H357 and 5PT formed large, round spheres in RM+ (A and E), whereas CA1 
formed very small irregularly shaped spheres in this medium (C). In CnT24 medium 
CA1 and 5PT produced very small irregularly shaped spheres (D and F), H357 did 
not produce any spheres at all (B). Scale bar 100 µm 
 

 
A      B 
 

Cell 
line 

Average no 
of spheres 
per 1000 

cells 

% sphere- 
forming 

fraction (± 
SEM) 

CA1 16±3 1.6±0.3 
5PT 79±8 7.9±0.8 

H357 92±7 9.3±0.7 

 

 
 
 
 
Figure 5.50: Number of spheres formed by CA1, 5PT and H357 in RM+ 
medium. CA1, 5PT and H357 cells were seeded in poly-HEMA coated 96-well 
plates at a density 1000 cells per well. Spheres were counted 14 days after plating. 
The table (A) and the graph (B) show the average number of spheres counted in 
each well (A).  
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5.3.1.3 Epithelial to mesenchymal transition under different culture conditions   

 

Another comparison between the two culture media (RM+ and CnT24) was 

made by examining the EMT cell fraction present in cell lines cultured in RM+ 

and CnT24. I examined established oral cancer cell lines for the presence of 

the two distinct cell populations: the epithelial population, which is 

characterised by the CD44+ESA+ FACS phenotype, and the EMT cell 

population, that can be identified by its CD44highESAlow/- phenotype. Figure 

5.51 shows expression of CD44 and ESA and the EMT cell fraction identified 

by these two markers in the established oral cancer cell line CA1 cultured in 

RM+ or in CnT24. There was no significant difference in the size of the CD44 

expressing and the ESA expressing cell fractions between the RM+ and the 

CnT24 media (Figure 5.51). The size of the EMT fraction was also similar in 

RM+ and CnT24 with 6.9% and 7.4% of cells, respectively (Figure 5.51 E, F). 

However, in the RM+ medium there was a clearer separation between the 

EMT fraction and the epithelial fraction on the FACS plot. The clearly defined 

EMT fraction was gated (p9 in Figure 5.51 E) in RM+ medium and the same 

gate was used to identify the EMT fraction in CnT24. There were no distinctly 

separate EMT and epithelial cell populations visible on the FACS plot in the 

CnT24 culture (compare Figure 5.51 E and F). 

 

An early passage tumour-derived cell line was also examined for the 

expression of CD44 and ESA and the presence of EMT fraction when grown 

in RM+ or CnT24. No difference was observed in the size of the CD44 

expressing fraction with all cells being CD44 positive (Figure 5.52 A, D). The 

ESA expressing fraction was smaller in CnT24 with 64.4% of cells as 

compared to 85.9% in RM+ (Figure 5.52 B, E). In both types of cultures there 

was no distinct EMT cell fraction seen on the FACS plot (Figure 5.52 C, F). 
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Figure 5.51: Expression of CD44 and ESA in CA1 line cultured in RM+ and 
CnT24 media. In both media CD44 expression was detected in the vast majority of 
cells: 99.8% and 99.9% of cells in RM+ and CnT24, respectively (A, B). Size of the 
ESA expressing fraction was also similar in both media 93.8% and 93.9% in RM+ 
and CnT24, respectively (C, D). The ESA positive and ESA negative populations 
were more clearly separated in RM+ medium (compare C and D). The size of the 
EMT cell fraction (gated in P9 in E and F) was comparable in the two media with 
6.9% and 7.4% in RM+ and CnT24 respectively. The EMT cell fraction was more 
clearly separated from the epithelial fraction in RM+ medium (Compared E and F). 
 

 

 
 
Figure 5.52: Expression of CD44 and ESA in early passage tumour-derived cell 
line cultured in RM+ and CnT24 media. Tum42 cells, passage 3, grown in RM+ or 
CnT24 were trypsinised and stained with antibodies against CD44 and ESA. In both 
media CD44 expression was detected in 99.9% of cells (A, D). 85.9% and 64.4% of 
cells were positive for ESA in RM+ and CnT24 respectively (B, E). In neither 
cultures was a distinct EMT fraction was detectable on the CD44 vs. ESA FACS plot 
(C and F). 
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In summary, the FACS phenotype of cells cultured in RM+ and in CnT24 did 

not differ significantly. However, it appeared that the EMT cell fraction could 

be easier identified by flow cytometry in cell lines grown in RM+. 

 

In conclusion, adherent growth of the established head and neck cancer cell 

lines was supported by both, the routinely used RM+ medium as well as the 

serum-free, low-calcium CnT24 medium. In both media there existed a 

similar hierarchy of epithelial proliferation and differentiation, which included 

stem cells, amplifying cells and early differentiating cells. For non-adherent 

growth RM+ medium seemed to be more suitable than CnT24. RM+ medium 

also proved superior in maintaining a distinct CD44highESAlow/- EMT fraction in 

established oral cancer cell lines. 

 

I next compared the suitability of the RM+ medium and the CnT24 medium 

for isolation and cultivation of primary malignant keratinocytes isolated from 

samples of oral squamous cell carcinoma. 
 

5.3.2 Expansion of tumour cells in cell culture and generation of cell lines 

 

5.3.2.1 Isolation and initial expansion of tumour cells from OSCC samples 

 

I attempted to generate cell lines from the tumour specimens I received from 

the hospital. There are two techniques that are commonly used to isolate 

cells from normal oral tissue: the direct explant technique [211] and the 

enzymatic technique [199] (for a detailed description see section 4.6.2).  

I tested both methods for culturing malignant oral keratinocytes. The direct 

explant method, although widely used for normal epidermal and oral 

keratinocytes, did not prove successful for malignant keratinocytes. Out of 18 

specimens only 4 grew in an explant culture (Figure 5.53). For 2 of the 4 

specimens growth arrest occurred after initial expansion and it was not 

possible to maintain cells in culture for prolonged periods of time. Most 

specimens grown as explants gave rise to pure fibroblastic cultures. On the 

contrary, the enzymatic method produced a number of viable cultures. 
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Dissociated cells from 19 out of 54 specimens grew on irradiated 3T3 feeder 

cells in RM+ medium. This method allowed viable, fibroblast-free 

keratinocyte clones to be isolated and propagated in culture (Figure 5.54). 

 

 

 
 
Figure 5.53: Explant cultures from surgical specimens of OSCC. Tissue 
samples were cut into pieces of 1 mm3 in size and placed on a plastic culture dish. 
After the tissue pieces adhered to the dish RM+ medium was added. After 4-10 
days keratinocytes outgrowth could be seen around the tissue pieces, which are 
seen as dark, opaque structures in the bottom left corner (A, B). Scale bars 50 µm 
 

 

 
 
Figure 5.54: Co-cultures of primary keratinocytes isolated from a tumour 
biopsy with 3T3 feeder cells in RM+. The tumour biopsy was digested with 
trypsin-EDTA. Isolated tumour cells were plated in RM+ medium together with 
irradiated 3T3 feeder cells. The figure shows photographs of cell colonies 15 days 
(A) and 24 days (B) after plating. Scale bar 50 µm (A), 100 µm (B) 
 

 

The choice of the enzyme(s) for the enzymatic method did not appear to be 

crucial. Three different dissociation conditions have been tested: trypsin (with 

or without EDTA), collagenase and the enzyme free buffer. All three 
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protocols allowed isolation of viable cells that were able to form colonies of 

keratinocytes when plated together with irradiated 3T3 feeder cells in RM+ 

medium. 

 

Surprisingly, isolated tumour cells failed to adhere to the culture dish when 

plated in CnT24 medium straight after their isolation from the tumour tissue. 

However, after the initial expansion on 3T3 feeder cells in RM+ medium for 

2-3 passages, tumour-derived keratinocytes could be switched to the CnT24 

medium and propagated in culture without the use of feeder cells for at least 

8 passages. 

 

It was also attempted to grow tumour cells in non-adherent conditions as 

spheres. Cells isolated from tumour tissue were plated on poly-HEMA coated 

plates in RM+ medium or in CnT24 medium. In RM+ medium, for 2 out of 5 

tumour samples, spheres formed within 2 weeks after plating. For the 

remaining 3 tumours no spheres could be seen. Figure 5.55 shows 

representative pictures of sphere growth in RM+ medium. There were 

differences in number and size of the formed spheres between cells isolated 

from different tumours (Figure 5.55). Similar to observations made with 

established cell lines (see section 5.3.1.2), sphere formation in CnT24 

medium could not be detected for any of the tumours. 

 

 

 
 
Figure 5.55: Cells isolated form fresh tumour tissue grown as spheres in RM+ 
medium. Tissue was dissociated with trypsin/collagenase and the isolated cells 
were plated on poly-HEMA coated plates in RM+ medium. After 2 weeks spheres 
have formed from cells isolated from tumour specimens tum1 (A) and tum2 (B) but 
not tum24n (C). Scale bar 50 µm  
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The sphere formation assay was performed with the total cell suspension 

isolated from the tumour, which could contain cells of different cell lineages 

present in the tumour and the tumour stroma. To find out which type(s) of 

cells gave rise to spheres, spheres were transferred to an uncoated plastic 

culture dish and grown in RM+ medium. Adherent growth allowed the cell 

morphology, which is indicative of the cell lineage, to be examined. Within 24 

h after plating spheres adhered to the plastic surface and cells forming the 

spheres switched to adherent growth migrating away from the sphere body 

(Figure 5.56 A). Eventually, the sphere completely dissolved giving rise to a 

confluent layer of adherent cells (Figure 5.56 D). In all repetitions of this 

experiment, including spheres formed by cells isolated from different 

tumours, cells growing out of spheres had a spindle-shaped morphology 

strongly resembling fibroblasts (Figure 5.56). Alternatively, the spindle-

shaped cells could be epithelial cells that have undergone an epithelial to 

mesenchymal transition. To reveal their lineage, cells were stained for 

cytokeratin as an epithelial marker and vimentin as a fibroblastic marker 

(Figure 5.57). All cells from each examined sphere had high expression 

levels of vimentin (Figure 5.57 A, C), but were negative for cytokeratin 

(Figure 5.57 B, D). This suggests that none of the tumour spheres were 

formed by keratinocytes. 

 

To test whether sphere-forming ability is a feature of cancer associated 

fibroblasts or all fibroblasts regardless of their association with malignant 

epithelia, the sphere formation assay was performed with normal skin 

fibroblasts. Formation of many round spheres of different sizes was observed 

within 2 weeks after the normal skin fibroblasts were plated on poly-HEMA 

coated plates in E4 medium (Figure 5.58). These results suggested that 

malignant as well as normal fibroblasts have the ability to grow in non-

adherent conditions as spheres.  

 

 

152 



 
 
Figure 5.56: Growth of tumour spheres after their transfer to a non-coated 
culture dish. The spheres were transferred to a non-coated culture dish. 24 h later 
spheres attached and gave rise to adherent cells with a spindle-shaped morphology 
(A). Within the next few days in culture more cells adhered and migrated out of the 
sphere body (B, C) which eventually completely dissolved (D). Scale bar 100 µm 
(A), 50 µm (B-D) 
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Figure 5.57: Vimentin and cytokeratin expression in cells that grew from 
spheres in adherent conditions. Cells growing out from spheres formed by tumour 
cells isolated from two different OSCC samples are shown. In both cultures all cells 
were positive for vimentin (green) (A, C). No cytokeratin (red) expression was 
detected in the two cultures (B, D). Scale bar 50 µm  
 

 

 
 
Figure 5.58: Normal skin fibroblasts grown in non-adherent conditions as 
spheres. Normal skin fibroblasts were plated on poly-HEMA coated plates in E4 
medium. Sphere formation was observed within 2 weeks after plating. Many small 
and large round spheres with a smooth edge were formed (A, B). Cells that didn’t 
form spheres appear as small, slightly transparent dots (A, B).  
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Based on the observations described above the enzymatic dissociation 

method followed by cell cultivation in RM+ medium together with non-

proliferative 3T3 feeder cells appeared to be the most efficient approach for 

culturing cells isolated from samples of OSCC. 

 

5.3.2.2 Establishment of long-term cultures 

 

Cells were isolated from surgical specimens of OSCC according to the 

enzymatic method described above. As described above the initial expansion 

of these cells was only possible in RM+ medium as a co-culture with non-

proliferative 3T3 feeder cells. After 2-3 passages in the initial culture system 

cells were trypsinised and re-plated either under the same conditions or in 

CnT24 medium. For a few cultures a feeder-free expansion in RM+ medium 

has also been attempted. 

 

Differences in cell and colony morphology between the different culture 

systems became apparent from the first passage. Colonies present in RM+ 

medium with feeder cells had a round shape and a smooth edge and 

contained very small, round, tightly packed cells (Figure 5.59 A, B). Colonies 

in RM+ without feeders were made up of cells with varied morphological 

features. As well as small, round cells these colonies contained larger, 

elongated cells (Figure 5.59 C, D). In the CnT24 cultures, cells of different 

morphologies were also present: small round cells along with larger 

elongated cells could be seen (Figure 5.59 E, F). Colonies consisting of 

morphologically different cells arranged in concentric circles could also 

sometimes be observed in CnT24 (Figure 5.59 F). 

 

Cultures that were switched to the feeder free system in RM+ at the first 

passage (i.e. after only one round of initial expansion on feeder cells) lost 

their proliferative capacity and could not be maintained in culture beyond 

passage 1. The other two systems (RM+ with feeder cells and CnT24) 

seemed to produce viable cultures that could be propagated in culture for a 

prolonged period of time. A switch to a feeder free RM+ based system was 
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attempted at a later stage again and proved successful for nearly all cultures 

if performed after passage 8-10. 

 

 

 
 
Figure 5.59: Cells isolated from an OSCC sample (Tum30) cultured under 
different conditions. After initial expansion in RM+ medium with feeders, cells 
were trypsinised and re-plated in RM+ with or without feeders and in CnT24. All 
three cultures were photographed a few days after plating. Cells in CnT24 were 
larger and more loosely spaced than cells in RM+ medium with feeders (compare A, 
B and E, F). In CnT24 colonies with concentric morphology were present (F). 
Colonies in RM+ without feeders showed heterogeneous morphology with small and 
round cells as well as larger elongated cells. Scale bar 50 µm 
 

 

Based on the findings described above, the enzymatic technique was chosen 

as a routine method of isolating cells from fresh tumour tissue. RM+ medium 

was chosen as the standard culture medium. Non-proliferative 3T3 feeder 

cells were used to support the initiation of keratinocytes cultures up until 
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passage 7-8. Hereafter, the newly generated cell lines were routinely grown 

in RM+ without the need of feeder cells. 

Using isolation and cultivation techniques described above, cell line 

generation was attempted with a total of 91 specimens of OSCC and lymph 

node metastases (Figure 5.60). 19 early cultures were lost due to bacterial or 

fungal infections, presumably caused by microorganisms present in the 

patient’s mouth. 2 out of 18 specimens gave rise to viable cultures when 

plated as explants. 19 out of 54 grew when the enzymatic digestion of the 

tumour tissue was performed, followed by co-culture of the isolated cells with 

non-proliferative 3T3 feeder cells in RM+ medium. Growing cells isolated 

from the tumour tissue in non-adherent conditions as spheres in either RM+ 

or CnT24 did not result in generation of viable epithelial cultures (Figure 

5.60). 

 

 

 

Figure 5.60: Number of cell lines generated from OSCC and lymph node 
samples with the different techniques used.  
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5.3.3 Expression of the cancer stem marker CD44 in tumour-derived cell 

lines 

 

It is now well established that tumours are heterogeneous and consist of 

different cell populations. It is highly controversial, however, whether cell 

lines generated from the tumour tissue mirror the heterogeneity of the 

tumours of origin. Here, I describe data obtained from analysis of malignant 

cell lines generated from specimens of oral squamous cell carcinoma 

(OSCC) and lymph node metastases. The available cell lines are compared 

with each other and also compared with the data obtained from analysis of 

fresh tumour tissue (see section 5.2). 

 

5.3.3.1 Frequency of CD44 expressing cells in tumour-derived cell lines 

 

Tumour-derived cell lines were analysed for the expression of the cancer 

stem cell marker CD44. For these assays, the cell lines used had been 

maintained in culture for 10 or more passages, a point at which cells have 

acclimatised to culture conditions and show a stable phenotype. All cell lines 

were cultured under standard cell culture conditions in RM+ medium. Upon 

reaching 70-80% confluency cells were trypsinised, immunolabelled with an 

antibody against CD44 and analysed by flow cytometry. A series of FACS 

experiments with all relevant isotype controls was initially performed 

(Appendix Figure 1 and Figure 2) and showed no difference between the 

autofluorescence signal of non-stained control samples and samples stained 

with the isotype control. Therefore, non-stained control samples were used 

for all subsequent FACS experiments. 

 

Figure 5.61 shows FACS plots for 3 different tumour-derived cell lines 

generated from lymph node metastases (cell line 24n), primary metastatic 

(cell line LM) and primary non-metastatic (cell line NA) oral tumours, 

respectively (Figure 5.61 A-C). Large fractions of CD44 expressing cells 

(>90%) were found in all tumour-derived cell lines, including cell lines that 

had been generated from tumours with a low frequency of CD44+ cells in the 
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fresh tumour specimen (Table 5.16). For example, tumour specimens PB, LK 

and NA had low fractions of CD44 expressing cells (5%, 5.4% and 7%, 

respectively) in the fresh tumour tissue, whereas cell lines derived from these 

specimens showed 98.6%, 93.6% and 99.8% of cells expressing CD44 

(Table 5.16). 

 

 

 
 
Figure 5.61: CD44 expression in tumour-derived cell lines. FACS plots for three 
different tumour-derived cell lines are shown (A-C). Gates were set based on the 
autofluorescence signal from a non-stained control sample. The CD44 expressing 
cell fraction amounts to 96.1% in cell line 24n (A), 94.5% in cell line LM (B) and 
99.8% in cell line NA (C). 
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Table 5.16: CD44 expression in tumour specimens and cell lines derived from 
them* 
 

Tum line % CD44+ 
in tumour 

% CD44+ in 
cell line 

PB 5 97.3 
LK 5.4 98.1 
NA 7 99.8 
42 3 99.8 
25 51.7 98.3 
30 22.7 98.9  
33 NA 96.3 
50 10.2 97.9 
54 98.6 97.7 
57 77.9 94.2 
AB NA 97.6 
LM NA 98.3 
NK 34 88.9 (P1) 

Luc4 NA 98.2 
Luc11 NA 99.7 
MKn 21.7 98.1 
24n 18.6 97.3 
57n 94.7 95.5 
NKn 29.8 91.2 (P2) 

 
* Frequency of CD44 expressing cells refers to cell lines that have been passaged 
for at least 5 passages, unless otherwise stated. “n” (node) annotates cell lines 
derived from lymph node metastases. NA: not analysed. 
 

 

There are several possible explanations for the percentage of CD44+ cells 

isolated fresh tumours not corresponding with the frequency of CD44 

expressing cells in cell lines generated from them. It could be, that only the 

CD44 expressing cell fraction of a tumour is capable of growing and 

proliferating in cell culture. Alternatively, expression of CD44 could be 

induced in cells, which were initially CD44 negative, by the components of 

the culture medium. In the first case, all cells, surviving the transition from the 

tissue to the culture dish, would initially express CD44, i.e. from passage 0. 

In contrast, the second possibility would be associated with a gradual 

increase in the size of the CD44 positive fraction with passaging, at a rate 

depending on how fast cultured cells adapt to their new environment. CD44 

expression was analysed at different passages of several tumour-derived cell 

lines, three of which are shown in figure 5.62. Initially (e.g. P0 or P2) a very 

large CD44 positive population was detected by FACS in all three cell lines 
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(Figure 5.62 A, D and G). There was a slight increase in the size of the CD44 

expressing population in the later passages of these lines so that by passage 

10 the CD44 expressing cell fraction reached 97.3% in cell line TumPB, 98% 

in cell line TumLK and 99.5% in cell line Tum50 (Figure 5.62 C, F and I) 

 

 

 
 
Figure 5.62: CD44 expression in different passages of tumour-derived cell 
lines. Different passages of tumour-derived cell lines TumPB, TumLK and Tum50 
were FACS-analysed for CD44 expression. In cell line TumPB the CD44+ cell 
fraction increased from 79.5% in passage 0 to 96.2% in passage 2 to 97.3% in 
passage 10 (A-C). In cell line TumLK 95.5% of cells in passage 2, 94% of cells in 
passage 4 and 98% of cells in passage 10 stained positively for CD44 (D-F) and in 
cell lne Tum50 the CD44+ cell fraction increased from 94.5% in passage 2 to 97.1% 
in passage 3 to 99.5% in passage 9 (G-I). 
 

 

Because of the large CD44 positive cell fraction in the very early passages, it 

seems likely, that only CD44 positive cells have the extensive ability to grow 

and proliferate in culture and that, under these conditions, they produce only 

a few differentiating cells that are losing their CD44 expression. 
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In summary, all tumour-derived cell lines were found to have a large fraction 

of CD44 expressing cells which did not correspond to the frequency of CD44 

expressing cells in the tumours of origin and did not correlate to the type of 

tumour (primary non-metastatic, primary metastatic, lymph node metastasis). 

A slight increase in the size of the CD44 positive cell population was 

observed in the later passages of tumour-derived cell lines as compared to 

earlier passages of the same lines.  

 

5.3.3.2 Expression level of CD44 in early passage tumour-derived cell lines  

 

As well as the frequency of the CD44 expressing cells, the level of CD44 

expression was also assessed in tumour-derived cell lines. Analysing cells by 

flow cytometry, I looked at the median fluorescent intensity (MFI) for the 

CD44 signal, a value that can be regarded as a measure of CD44 expression 

level. The MFI value for each sample was taken as a reading from the FACS 

machine and the ∆MFI was calculated as a difference between the MFI value 

of the stained sample and the MFI value of the non-stained control. The 

∆MFI values detected for various cell lines were then compared. 

 

The median fluorescence intensity for cell surface CD44 found in early 

passage cell lines generated from metastatic OSCC and from lymph node 

metastases was considerably higher than for cell lines generated from non-

metastatic OSCC specimens (Table 5.17). Cell lines generated from non-

metastatic specimens (N0 stage), metastatic primary tumours (N1/2 stage) 

and from lymph node metastases had average ∆MFI values of 2127.33, 

5337.33 and 3977.33, respectively (Table 5.17). 
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Table 5.17: CD44 median fluorescence intensity (MFI) in early passage 
tumour-derived cell lines. 
 

Tum line  Passage TNM % CD44+ 
cells 

∆ MFI 
(CD44) 

Mean ± STDev
∆ MFI (CD44)

P3 T2 N0 88.7 1613 2127.33 
±451.947 

LK  
P3 T2 N0 92.6 2308 NA  
P2 T4a N0 79.7 2461 PB  

      
P5 T1 N1 86 3894 5337.33 ± 

1284.3 
54  

P2 T2 N2b 78.4 5764 25  
P5 T4a N2b 91.1 6354 LM  

      
P5 Node 90.3 3531 3977.33 ± 

391.881 
24n  

P2 Node 85.4 4136 MKn  
P4 Node 87.4 4265 57n  

 

 

This difference in CD44 MFI between the cell lines could only be observed in 

early passage cell lines (passage < 5). At later passages, when the CD44 

positive cell fraction increased in size, no distinct difference between the cell 

lines generated form metastatic and non-metastatic tumours could be 

detected. At later passages all cell lines showed relatively high MFI value for 

extracellular CD44. 

 

5.3.4 Epithelial to mesenchymal transition in tumour-derived cell lines 

 

A very important aspect of cancer progression is cancer metastasis. High 

mortality figures are reported particularly for types of cancer that are highly 

metastatic. In other words, metastases are usually the reason why cancer is 

so difficult to treat. Cell lines derived from cancerous tissue might represent 

suitable models to study cancer metastases allowing the elucidation of 

mechanistic traits of the metastatic tumour progression. Epithelial-to-

mesenchymal-transition (EMT) has been associated with cancer metastasis 

as the first step of the metastatic process (see also 3.3.3). Therefore, the 

presence of cells that have undergone EMT (EMT cells) in tumour-derived 

cell lines could indicate the ability of a given tumour to metastasise. 
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5.3.4.1 Variable size of the EMT fraction in tumour-derived lines 

 

I analysed 10 tumour-derived cell lines for the presence of EMT cells. All cell 

lines had been maintained in culture for at least 8 passages and were grown 

in RM+ medium without feeder cells. Four of these cell lines were generated 

from primary non-metastatic tumours, three from primary metastatic tumours 

and the remaining three were derived from lymph node metastases. Four of 

the primary tumours had a discohesive invasion pattern, three had a 

cohesive invasion pattern and all three lymph node metastases had 

extracapsular spread. EMT cells in OSCC lines cells can be identified by flow 

cytometry by their CD44highESAlow/- phenotype [160].  

 

The size of the EMT fraction varied considerably between individual cell 

lines. A few tumour-derived cell lines did not have an EMT fraction at all, 

whereas others contained a very large fraction of EMT cells amounting in one 

case to 72% (cell line Luc4). Figure 5.63 shows examples of FACS plots 

depicting the EMT cell fraction and table 5.18 summarises these findings. 

 
 

 
 
Figure 5.63: Variable size of the EMT cell fraction in tumour-derived cell lines. 
Cell lines were stained with antibodies against CD44 and ESA and analysed by 
FACS. In cell line 54 no cells with the CD44highESAlow EMT phenotype were present 
(A). In cell line Luc11 the EMT fraction formed 7.3% of the total cell population (B) 
and in cell line LM 49% of all cells were EMT cells (C). 
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Table 5.18: Highly variable size of the EMT cell fraction in tumour-derived cell 
lines 
 

Tum line TNM Passage Invasion front % EMT cells 
T2 N0 Mx 13 discohesive,  0 NA 
T2 N0 Mx 12 discohesive 38 LK 

T4a N0 Mx 10 discohesive 57 PB 
T2 N0 Mx >10 cohesive 9 Luc11 

54BBK T1 N1 Mx 9 cohesive 0 
T4a N2b Mx 10 cohesive 49 LM 

Luc4 T3 N2b Mx >10 discohesive 72 
57n node 9 ECS 29 
24n node 14 ECS 36 
MKn node 9 ECS 43 

 
ECS: extracapsular spread 
 

 

The size of the EMT fraction in tumour-derived cell lines was reflected in their 

morphological phenotype. Differences in cell size, cell shape and the shape 

of cell colonies were found (Figure 5.64). The proportion of spindle-shaped 

fibroblastic-like cells seen on the culture dish corresponded to the size of the 

EMT cell fraction detected by flow cytometry. 

 

The size of the EMT fraction in tumour-derived cell lines is determined by the 

ability of the cultured cells to undergo EMT in cell culture. From the 

observations described above it becomes apparent, that despite being 

cultured under identical growth conditions, some cell lines are able to 

undergo EMT to a greater extent than others, resulting in considerable 

differences in the size of the EMT cell fraction in individual cell lines. These 

findings imply that there exist intrinsic differences between the tumour-

derived cell lines cultured under the standard cell culture conditions.  
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Figure 5.64: Morphological differences of cells in tumour-derived cell lines. 
Cells of the line NA are oval, medium-sized cells forming irregularly shaped 
epithelial colonies (A). Cell line 57n contains two types of cells: small round cells 
that form tightly packed epithelial colonies and larger elongated cells that are loosely 
spaced or seen as single cells (B). The epithelial colonies in the line LM consist of 
larger, oval, relatively loosely packed cells (black arrow head), whereas spindle-
shaped cells are also seen (black arrow) (C). In Luc4 most of the cells have a 
spindle-shaped fibroblastic appearance; the few epithelial colonies consist of small, 
round, closely-packed cells (black arrow head) (D).  
 

 

5.3.4.2 EMT fraction in correlation to clinical parameters 

 

Our recently published findings indicate that EMT cells are much more 

migratory than cells with a purely epithelial phenotype [160] and it can be 

therefore assumed that cell lines with a larger EMT fractions are more 

migratory than cell lines with a small EMT cell fraction. If the ability of cell 

lines to migrate is predetermined by the invasiveness of the tumour from 

which they were generated, then cell lines with the largest EMT fraction 

would be expected to arise from the most invasive tumours. 
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I examined a possible correlation between the size of the EMT fraction in cell 

lines and the nature of the invasion front as well as the spread of the tumour 

of origin to neck lymph nodes. Against my expectations, there was no 

obvious correlation between the presence or the size of the EMT fraction in 

the cell line and the discohesive invasion front or the presence of neck lymph 

node metastases in the patient (Table 5.18, Figure 5.65). For example, cell 

line NA from the N0 group and cell line 54 from the N1/2 group were found to 

have fairly small EMT cell fractions (Figure 5.65 A and C). Furthermore, in 

both groups there were cell lines containing a very large EMT fraction, e.g., 

cell line LK (belonging to the N0 group) and line LM (belonging to the N1/2 

group) (Figure 5.65 B and D). Similarly, cohesive and discohesive invasion 

pattern did not correlate to the presence or the size of the EMT cell fraction 

(Table 5.18).  

Interestingly, a large EMT cell fraction was consistently found in all cell lines 

derived from lymph node metastases. For example, cell lines 24n and 57n 

contained quite a large, clearly defined EMT cell fraction (Figure 5.65 E and 

F).  

 

 

167 



 
 
Figure 5.65: Variable size of the EMT fraction in cell lines generated from 
specimens of primary OSCC and lymph node metastases. Representative 
FACS plots for cell lines generated from primary non-metastatic tumours (A, B), 
primary metastatic tumours (C, D) and lymph node metastases (E, F) are shown. 
Cell line NA and cell line 54 had a very small EMT fraction of 0.2% and 0.4%, 
respectively (A, C).The EMT cell fraction in cell line LK amounted to 38.3% and in 
cell line LM to 25.1% of cells (B-D). Both cell lines derived from lymph node 
metastases (24n and 57n) had a well-defined EMT fraction with 28.7% and 33.1%, 
respectively (E, F). 
 

 

5.3.4.3 Changes in the EMT cell fraction with passaging 

 

Next, I tried to establish whether the size of the EMT fraction changes with 

prolonged passaging. In order to do so, cells from different passages of 

tumour-derived cell lines were flow analysed for the expression of CD44 and 
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ESA. An increase in the size of the EMT fraction in later passages in some 

cell lines but not in others was observed. Figure 5.66 shows FACS plots for 

three different passages of three tumour-derived cell lines. In the lines LK 

and PB the EMT fraction (CD44highESAlow/- cells gated in P5) gradually 

increased over the passages (Figure 5.66 A-C and D-F), whereas in the line 

NA an EMT fraction did not develop even after14 passages (Figure 5.66 G-I). 

 

 

 
 
Figure 5.66 Changes in the size of the EMT fraction in tumour-derived cell 
lines with passaging. FACS plots for three different passages of three tumour-
derived cell lines are shown: passage 2, 7 and 10 for the line LK (A-C); passage 2, 3 
and 7 for the line PB (D-F) and passage 6, 11 and 14 for the line NA (G-H). The size 
of the EMT cell fraction (gated in P5) increased from 3.5% to 25.1% to 38.3% in the 
cell line LK (A-C) and from 4.8% to 25.9% to 60.3% in the cell line PB (D-F), but 
remained unchanged for the line NA (G-I).  
 

 

These observations suggest that EMT is induced and/or enhanced in culture, 

but that some cell lines are not responsive to stimuli imposed by the cell 

culture and do not develop or increase their EMT cell fraction. 
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In summary, the size of the EMT cell fraction varied from 0% to 72% between 

individual tumour-derived cell lines. There seemed to be no correlation 

between the size of the EMT cell fraction and the TNM stage and the nature 

of the invasive front of the tumour. However, a large EMT fraction was 

consistently found in all cell lines generated from lymph node metastases. 

This observation supports the role of the epithelial to mesenchymal transition 

in metastatic tumour progression. The size of the EMT fraction changed with 

passaging for some cell lines but not for others. This and differences in size 

of the EMT fraction suggest, that tumour-derived cell lines may retain 

biological and physiological features that are predetermined by the tumour of 

origin. 

 

5.3.4.4 High levels of cellular CD44 and phosphorylated EGFR in cell lines 

with a large EMT fraction 

 

To examine the intrinsic differences in tumour-derived cell lines, and more 

specifically to establish what may account for the considerable differences in 

size of the EMT cell fraction, I performed a series of western blotting 

experiments. Protein lysates were isolated from 10 cell lines derived from 

primary metastatic and primary non-metastatic tumours as well as from 

lymph node metastases. Levels of cellular CD44 and phosphorylated 

epidermal growth factor receptor (P-EGFR) were analysed. Expression levels 

of the total EGFR were also examined. Western blotting revealed that all 10 

cell lines had detectable levels of all three proteins (Figure 5.67 A, note that 

CD44 could also be detected in cell lines 54 and NA after a longer exposure). 

In cell lines MKn, Luc4, LM, LK and PB a much higher level of P-EGFR was 

detected as compared to the remaining cell lines. The level of the total EGFR 

was also higher in these five cell lines, but the difference to the level of the 

total EGFR in the remaining cell lines was less pronounced. The same five 

cell lines were found to have very high levels of cellular CD44 (Figure 5.67 A) 

and a comparatively large EMT cell fraction (Figure 5.67 B). In cell lines 

where no distinct CD44 band was seen on the blot after a short exposure 

time (cell line 54 and cell line NA), no EMT cells could be detected by FACS 
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(Figure 5.67 A and B). These observations suggest a role of CD44 and 

EGFR in the process of EMT. 

 

 

 A B

EGFR

 
 
Figure 5.67: Western blot analysis for EGFR, P-EGFR and CD44 levels in 
tumour-derived cell lines. (A) Western blotting was performed on protein lysates 
isolated from 10 tumour-derived cell lines. Strong signal for total EGFR, P-EGFR 
and CD44 was seen in the lines MKn, Luc4, LM, LK and PB. Apart from the 
standard CD44 isoform (80-90kDa) these five cell lines also contained detectable 
amounts of larger variant CD44 isoforms, seen as a smear. (B) In the same five cell 
lines a large EMT cell fraction was present as detected by FACS. 

Tum TNM Pass % EMT 
cells 

24n Node 14 36 
MKn Node 9 43 
57n Node 9 29 

Luc11 T2 N0 >10 9 
Luc4 T3 N2 >10 82 
54 T1 N1 9 0 

LM T4a 
N2 10 49 

NA T2 N0 13 0 
LK T2 N0 12 38 

PB T4a 
N0 10 57 

 

 

 

CD44 glycoproteins vary in size due to extensive post-translational 

modification (N- and O-glycosylation in the extracellular domains) and to 

alternative splicing. The estimated molecular mass of the smallest isoform 

known as the standard isoform (CD44s) is 80-90 kDa [212]. The human 

CD44 gene contains at least 10 exons that can be alternatively spliced to 

generate multiple variant CD44 isoforms with a molecular mass of up to 250 

kDa [212] [145].  

 

Apart from the prominent signal for the standard CD44 isoform, cell lines 

MKn, Luc4, LM, LK and PB also contained a number of variant CD44 

isoforms, seen as a smear (Figure 5.67 A).  The differences in the detected 

levels of EGFR, P-EGFR and CD44 present another finding that suggests 

that individual tumour-derived cell lines, even when grown under identical cell 
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culture conditions, express distinct biological and physiological 

characteristics. 
 

 

5.3.5 Discussion 

 

5.3.5.1 Generation of malignant cell lines 

 

This section addressed several technical aspects related to the process of 

generating cell lines from surgical specimens of oral squamous cell 

carcinoma and their associated lymph node metastases. Two different 

methods of isolating cells from tumour samples were tested and two different 

culture media were assessed for their suitability for culturing primary 

keratinocytes isolated from the tumour tissue. The enzymatic dissociation 

technique followed by cultivating isolated tumour cells in RM+ medium as a 

co-culture with non-proliferative 3T3 feeder cells achieved the highest 

success rate in generating stable cell lines (Figure 5.60). 

 

As well as different culture media, different growth conditions (i.e. adherent 

and non-adherent growth) were tested. Attempts to expand epithelial cells 

isolated from patient tissues in non-adherent conditions were unsuccessful, 

although this has been reported by others [213]. It could be that the 

proportion of sphere-forming keratinocytes was so low that it was technically 

difficult to detect this cell fraction when performing a sphere formation assay 

using the total cell suspension isolated from the tumour. Enrichment of 

epithelial cells could possibly facilitate detection of the sphere-forming 

keratinocyte fraction. Purification of the epithelial fraction of the tumour was 

attempted through either excluding cells of all other cell lineages by flow 

sorting using antibodies against lineage markers (negative selection) or 

selecting epithelial cells using epithelial-specific antibodies (positive 

selection). Unfortunately, all efforts to recover epithelial cells after the sort 

were unsuccessful. Despite the lowest flow rate settings on the FACS sorter 

and the minimal time cells spent in the collection tube before being 

transferred into a pre-warmed medium (for adherent or non-adherent 
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growth), the isolated tumour cells never seemed to survive the sorting 

procedure. 

 

In total, cell line generation was attempted from 91 tumour specimens that 

were received from the Royal London Hospital and the St Bartholomew’s 

Hospital in course of the study (Figure 5.60). 19 out of 91 early cultures, 

corresponding to 21%, were lost at the initial expansion stage due to 

bacterial and/or fungal infections. These infections were presumably caused 

by microorganisms present in the patients’ mouths. Despite multiple rounds 

of thorough washing of the tumour tissue with PBS prior to cell isolation, 

microorganisms were sometimes carried over to the culture dish where they 

infected the entire culture. Addition of antibiotic and antimycotic drugs to the 

culture medium in order to prevent bacterial and fungal contamination 

seemed only to delay the onset of infection and the subsequent culture loss. 

 

The success rate of generating cell lines from tumour tissue could possibly 

be improved by using other methods of isolating and cultivating primary 

keratinocytes, for example, growing cells isolated from the tumour as 

organotypic cultures [214]. In the organotypic gel culture system tumour cells 

are plated on a synthetic stroma composed of a collagen gel and fibroblasts, 

creating an environment similar to the natural environment of the tumour in 

the patient’s body. This method might improve cell survival during the 

transition from human tissue to the culture dish. 

 

5.3.5.2 CD44 expression in tumour-derived cell lines 

 

A very large CD44+ cell fraction (>90%) was detected in all passages of all 

cell lines generated from samples of OSCC and associated lymph node 

metastases. A slight increase occurred during early passaging bringing the 

CD44+ fraction to over 95% by passage 3-4. In all cell lines the frequency of 

CD44 expressing cells was markedly higher than the frequency of CD44+ 

cells in the tumour tissue the cell lines had been derived from (Table 5.16). 

Interestingly, cultured keratinocytes isolated from normal oral mucosa also 

contained a very large fraction of CD44 expressing cells (Figure 5.68).  

173 



 

 

 
 
Figure 5.68: CD44 expression patterns in normal oral keratinocyes. Normal oral 
keratinocytes (passage 2) were trypsinised and stained with a PE-conjugated 
antibody against CD44. The gate (P3) was set based on autofluorescence of the 
non-stained control sample (A). CD44 expression was detected on 94.6% of cells in 
the stained sample (B). 
 

 

In the normal oral mucosa, CD44 expression was observed to be restricted to 

the basal and the epi/para-basal layers of the epithelium (Figure 5.69 A, B) 

where the undifferentiated stem and amplifying cells are located (see section 

3.1). Figure 5.69 shows the pattern of CD44 expression detected in paraffin-

embedded sections of tumour-adjacent normal tissue (A, B) and of an OSCC 

of the floor of mouth and the ventral tongue (C, D). In malignant epithelium 

CD44 expression was not restricted to the basal and para-basal layers, but 

was also present in cells of the supra-basal layers of the epithelium (Figure 

5.69 C, D). 
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Figure 5.69: CD44 expression in normal and malignant epithelium of the floor 
of mouth/ventral tongue. Cross-sections through the tumour-adjacent normal 
epithelium (A, B) and OSCC of floor of mouth/ventral tongue (C, D) were stained 
with an antibody against CD44 using the DAB detection kit. In the normal epithelium 
CD44 (brown) is only present on the surface of cells in the basal and the para-basal 
layers, at the edge of the epithelial ridges (A, B). In malignant epithelium CD44 
expression is also present in the suprabasal layers of the epithelium (C, D). Scale 
bar 100 µm (A, C), 50 µm (B, D) 
 

 

In the hierarchical model postulated for continuously regenerating epithelia, 

such as the oral mucosa, the epithelium consists of a series of clonal units 

with each unit representing the progeny of a single stem cell (Figure 5.70 A) 

[215] [216] [217]. There are three types of cells in each clonal unit, stem 

cells, amplifying cells and post-mitotic terminally differentiating cells that are 

separated by two transitions (Figure 5.70 A, dotted lines). In normal 

homeostasis each stem cell division usually generates one stem cell and one 

amplifying cell which undergoes a series of further divisions and eventually 

produces terminally differentiating cells [218]. The first transition (T1) controls 

stem cell homeostasis; lack of T1 would lead to augmentation of stem cells 

and increased transition would lead to stem cell loss [218]. The T2 transition 
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determines the number of differentiated cells generated per stem cell 

division. Loss or gain of amplification rounds before T2 would result in 

decrease or increase in the total number of cells produced [218]. In mouse 

epidermis the stem cell fraction has been estimated to be 1 in 10 to 1 in 30 of 

basal cells [219]. The CD44 expression levels are high in stem cells and 

decrease with differentiation (Figure 5.69). In culture, it appears that only 

stem cells and less differentiated CD44+ cells are present and that 

senescence or cell death occur before cells reach a terminally differentiated 

state where they lose their CD44 expression. The balance between stem 

cells and differentiating cells appears to be shifted with a greater proportion 

of stem and immature amplifying cells and with fewer early and late 

differentiating cells being present per total number of cells (Figure 5.70 B). 

Presumably this shift occurs due to the increased number of symmetric 

divisions by stem and amplifying cells and a reduced rate of terminal 

differentiation in vitro. 
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Figure 5.70: A model of hierarchical cell renewal in normal epithelia in vivo 
and in vitro. (A) In normal homeostasis in vivo each stem cell divides 
assymmetrically giving rise to one stem cell and one other cell that goes through the 
T1 transition point and enters a differentiation programme. This amplifying cell 
undergoes a series of divisions and finally crosses another transition point T2 to 
terminally differentiate and eventually die. (B) In cell culture the balance is shifted 
towards stem and amplifying cells through increased number of their symmetric 
divisions. The majority of cells does not undergo terminal differentiation but die 
before reaching the T2 transition point. In both systems CD44 expression is high in 
stem cells and decreases with differentiation. 
 

 

Similar to normal oral mucosa, as well as to other types of cancers, OSCC 

tumours have a distinct hierarchy of cells. There is only a small sub-

population of cells that can initiate new tumour growth [82]. The bulk of 

tumour consists of rapidly dividing cells and post-mitotic differentiated cells 

which arise through differentiation of CSCs and do not possess a tumour-

initiating ability. It has been demonstrated through xenograft transplantation 

experiments that the immature tumourigenic cells of the tumour express 

CD44, whereas the differentiating, non-tumourigenic cells do not [82]. CD44- 

cells although abundantly present in the tumour tissue as detected by flow 

cytometry and immunohistochemistry are not present in later passages of cell 

lines generated from the tissue. Similarly to normal oral keratinocyte cultures, 

there appears to be a shift towards the immature, undifferentiated cells in 
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cultures of malignant keratinocytes compared to the hierarchical organisation 

of cells in the tissue. 

 

Concomitant with the increase in the CD44+ fraction during early passaging, 

the CD44- fraction decreases and almost completely disappears in later 

passages (Figure 5.62). This suggests that some CD44- cells in the tumour 

tissue are able to survive the transition from the tissue to the culture dish and 

to undergo a limited number of cell divisions. These cells are present in 

culture during the first few passages. However, when these cells further 

differentiate and die they are not replenished from the pool of amplifying/early 

differentiating cells as it would be the case in vivo, presumably because 

culture conditions do not allow the cells to fully differentiate in vitro. 

 

Interestingly, some authors observed abundant expression of CD44 in the 

great majority of cells in normal and malignant head and neck tissues 

reporting that on average two thirds of the thickness of normal mucosa 

samples were positive for CD44 as detected by immunohistochemistry [220]. 

Other studies found decreased levels of CD44 in cell lines as compared to 

head and neck cancer tissues [221]. Both observations contradict the 

findings of the present study. This is probably due to inclusion of other head 

and neck squamous cell carcinoma samples such as oro-pharyngeal 

cancers, which are known to behave differently from oral cancers. [222]. 

 

In summary, cells isolated from normal or malignant oral epithelium can be 

maintained in cell culture for prolonged periods of time. Standard cell culture 

conditions seem to enrich for cells with phenotype of stem cells and of 

immature amplifying cells, both of which express CD44. In vitro terminal 

differentiation of keratinocytes occurs at a much reduced rate resulting in 

very small numbers of CD44- cells present in cell lines. 

 

5.3.5.3 Changes in tumour-derived cell lines during prolonged passaging 

 

Early and later passages of tumour-derived cell lines were compared with 

regard to the size of their CD44+ cell fraction and the size of the EMT cell 
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fraction. In all lines an increase of the CD44 expressing cell fraction was 

observed with passaging. The CD44+ cell fraction increased from around 

80% at passage 0 to over 95% in all cell lines analysed at passage 10 

(Figure 5.62, Table 5.16). An increase of the EMT fraction with passaging 

was also seen in the majority of cell lines with exception of lines where no 

EMT cells were present at the start of the culture (Figure 5.66). Both CD44+ 

and EMT cell fractions stabilised by passage 8-10 and no further changes 

occurred beyond this point. 

 

The changes that occurred in cells under culture conditions facilitated the 

development of feeder-independent cell lines. Tumour-derived cell lines were 

not able to grow without feeder cells during the early passages but acquired 

this ability by passage 8-10. After passage 10 cells appeared to have 

completely acclimatised to the culture conditions becoming feeder-

independent and showing a stable phenotype. 

 

The differences in the median fluorescent intensity (MFI) for CD44 between 

cell lines derived from primary metastatic tumours, non-metastatic tumours 

and lymph node metastases were only detected in early passages and were 

not seen in the later passages of the same lines. In the early passages the 

MFI values were higher for cell lines generated from primary metastatic 

tumours and lymph node metastases as compared to lines generated from 

primary non-metastatic tumours.  

 

The observations described above indicate that cells change when 

maintained in culture for long periods of time. However, different cell lines 

cultured under the same conditions remain different in some aspects such as 

the presence/size of the EMT fraction and the levels of intracellular CD44 as 

detected by western blotting (Figure 5.67). These distinctive features are 

probably indicative of genetic and/or epigenetic characteristics of fresh 

tumour cells the cell lines have been generated from.  
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6. General Discussion 
 

Recognition of cancer stem cells has changed our understanding of cancer 

progression and spread, opening up new avenues to improving cancer 

diagnostics and treatment. Analysis of cancer stem cells requires their 

accurate identification and it is surprising that this topic has not received 

more attention. 

Here I showed that the isolation technique used for analysis of epithelial 

cancers can be improved by performing positive selection with epithelial-

specific antibodies instead of the commonly used negative selection with 

lineage markers. Negative selection was used in identification of CSCs in a 

number of solid malignancies including cancers of the bladder [75], breast 

[76], colon [80], liver [83], pancreas [86] and head and neck [82]. These 

studies identified CSCs based on their ability to give rise to tumours in 

immunocompromised mice and postulated the surface phenotype of these 

cells as the CSCs phenotype for the particular type of cancer. However, 

these findings need to be interpreted carefully, as the flow sorted cell 

fractions that were isolated from tumours and injected into mice might have 

contained stromal cells, that may influence the tumour-initiating ability of 

cancer cells [223]. 

 

The new method described here (positive selection) is more accurate, 

bringing the purity of the epithelial cell fraction to 85% (as compared to 65% 

achieved by the negative selection), but still needs further improvement in 

order to accurately identify/isolate the entire epithelial fraction of the tumour. 

Inclusion of more epithelial-specific antibodies would possibly lead to binding 

of different antibodies to every epithelial cell and would therefore increase the 

signal intensity of labelled cells detected by flow cytometry. This would result 

in a clearer separation of labelled (epithelial) and non-labelled (non-epithelial) 

cells and improve the purity of sorted cell fractions. 

 

In this study both selection methods were used to examine the proportion of 

the CD44+ cell fraction in fresh OSCC specimens. It is unclear to which 

extent the imperfectness of the selection methods affected the data 
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presented in this work. There was no statistically significant correlation 

between the size of the CD44+ cell fraction in the tumour sample and the 

selection method used. Furthermore, correlations observed with the 

combined data set were also observed when samples examined by positive 

or negative selection were analysed separately. This suggests that the 

selection method did not bias the size of the CD44 expressing cell fraction 

detected in cell suspensions isolated from tumour specimens. 

 

The present study linked high frequency of CD44 expressing cells in OSCC 

tumours to aggressive tumour features, such as discohesive invasion front, 

high tumour grade and presence of lymph node metastases. These findings, 

in particular the association with the presence of metastatic lymph nodes, 

could be clinically relevant and could present a useful tool in the diagnosis of 

metastatic deposits in the neck lymph nodes. Up to 95% of metastatic lymph 

nodes can be diagnosed prior to surgery by both clinical examination and 

imaging techniques such as ultrasonography (US), computed tomography 

(CT), magnetic resonance (MR), positron emission tomography (PET) [224]. 

However, it was reported that in up to 50% of lymph nodes, clinically 

diagnosed as negative, micrometastases were found in OSCC patients 

undergoing a neck dissection [224]. At present, no clinical tests, imaging 

techniques or biological markers are available to diagnose nodal 

micrometastases. Molecular markers such as CD44, which I found to be 

expressed by a larger proportion of cells in metastatic primary tumours 

compared to non-metastatic primary tumours, could be used to predict the 

risk of lymph nodes involvement and help make informed decisions about the 

necessity of a neck dissection. 

Association of CD44 with aggressiveness of HNSCC tumours has also been 

described by others. Joshua and co-workers reported that HNSCC tumours 

containing a high proportion of CD44 expressing cells had an advanced T 

stage, higher xenograft implantation efficiency and were more likely to recur 

[190], confirming a role for CD44 in cancer progression. A study by Wang 

found expression of variant CD44 isoforms to be associated with advanced T 

stage, regional and distant metastases, radiation failure and shorter disease-
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free survival [183]. In larynx cancer expression of CD44 variant isoforms 

correlated with local recurrence after radiotherapy [119]. 

 

Stem cell properties such as self-renewal are extremely difficult to study in 

vivo. Therefore, since the discovery of CSCs in tumour tissue, many studies 

have aimed to develop cancer cell lines and to validate their use to study 

cellular and molecular characteristics of these cells. A cell fraction with 

characteristics of CSCs has been described in cell lines generated from 

many different cancers including breast [225] [226], head and neck [227] and 

prostate [228] [229]. These studies identified populations of cells in cancer 

cell lines that possess the defining properties of malignant stem cells 

including self-renewal, expression of stem cell-related markers and tumour 

initiation ability upon xenograft transplantation. Furthermore, mutations 

similar to those discovered in primary HNSCC tumours (such as mutations in 

TP53) were found in HNSCC cell lines, suggesting that CSCs present in 

culture very closely mirror the CSCs found in tumour tissue [230]. 

 

However, whether or not stem cells persist in cell lines derived from tumour 

tissue has also been questioned and some investigators point out that 

therapeutically relevant information derived from cell lines has to be 

interpreted with caution [231]. It has been suggested that the cellular diversity 

observed in cancer cell lines was due to genetic instability [232]. This, and 

the uncertainty about the effects of cell adaptation to in vitro conditions [233] 

led to doubts about the value of cell lines for studies of cancer stem cell 

properties [231]. 

 

Present work supports the notion that tumour cells change in culture. For 

example, I found that the proportion of CD44+ cells increased when OSCC 

cells were maintained in vitro. In all newly generated cell lines the CD44+ cell 

fraction was a lot larger than in samples of OSCC that cell lines were 

generated from. This suggests that one of the differences between behaviour 

of CSCs in vitro and in vivo is the shift towards more frequent symmetric cell 

division occurring in culture, resulting in a larger fraction of (CD44 

expressing) stem cells and amplifying cells.  
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The intrinsic mechanisms controlling CSC proliferation and the type of cell 

division are likely to be the same in vivo and in vitro. Signalling pathways 

regulating symmetric and asymmetric cell division during embryonic 

development such as Notch, Hedgehog and Wnt may be involved. Hijioka 

and co-workers observed an accumulation of the Notch intracellular domain 

in the nucleus of cells in OSCC cell lines and in OSCC biopsies and reported 

that blocking the Notch signalling pathway prevents growth of OSCC cells in 

vitro [234]. In a different study, Notch1 and Notch3 were found to be 

overexpressed in OSCC of the tongue and their expression directly 

correlated with pathological grade of the tumours [235]. An additional study 

also reported Notch1 to be upregulated in OSCC, particularly at the invasive 

front of tumours, and to correlate with their T stage [236]. 

 

In contrast, other investigators reported that active Notch signalling inhibited 

proliferation of OSCC cell lines and that the Notch pathway is defective in 

66% of OSCC patients [237]. Whole-exome sequencing of 32 OSCC 

specimens identified loss-of-function mutations in the components of the 

Notch pathway in a large proportion of specimens [238] [239], suggesting 

that NOTCH1 may function as a tumor suppressor gene rather than an 

oncogene in this tumour type. Evidence supporting this idea has also been 

reported for breast cancer. It was reported that CSCs in breast tumours 

exhibit loss of the two components of the Notch signalling pathway, Musashi1 

and Notch1. Both factors are the key regulators of asymmetric cell division 

and both are abundantly expressed in the normal breast stem cells [240]. 

Downregulation of Musashi1 and Notch1 could lead to an increase in the 

frequency of symmetric cell division and an increase in the size of the stem 

cell fraction in breast cancer tissue as compared to stem cells in normal 

tissue. 

 

The contradictory findings described above indicate that more work needs to 

be done to elucidate the role of Notch and possibly other developmental 

pathways in OSCC in vitro and in vivo. 
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In addition to developmental pathways, ErbB signalling could also be 

responsible for the expansion of the pool of stem (and amplifying) cells in cell 

cultures of OSCC. ErbB signalling activation has been shown to play an 

important role in stem-cell proliferation in the intestinal crypts [241]. EGFR 

(ErbB1, ErbB family member) is strongly expressed in OSCC cell lines and 

its activated form (phosphorylated EGFR) was detected by western blot in all 

cell lines examined (Figure 5.67). The constitutive activation of the EGFR 

signalling by EGF that is present in culture medium could explain the 

expansion of the stem cell pool occurring in vitro. Similarly, other growth 

factors and cytokines present in the culture medium as well as epithelial 

autocrine factors produced by the cells themselves could activate signalling 

pathways that promote proliferation and stem cell maintenance in cell lines. 

 

The fact that OSCC cell lines contain a much larger fraction of CD44 

expressing cells than the tumours of origin could be explained with an 

expansion of the pool of stem cells and amplifying cells in vitro as compared 

to in vivo. Due to the enrichment of CSCs in vitro, and their parallels to the 

CSCs present in tumours in vivo, cell lines can be used to investigate drugs 

targeting CSC-specific processes. New ways of targeting and killing CSCs 

would potentially contribute to the development of new therapies for 

treatment of OSCC. 

 

Although nearly all cells in OSCC cell lines were CD44+, there was a large 

difference (several units on a log scale) in the CD44 expression levels among 

individual cells detectable by FACS. There is extensive evidence that low 

CD44 expression is associated with differentiation [160] [180]. Thus, cell lines 

could be used to study molecular mechanisms associated with differentiation, 

which in turn can be easily measured via changes in the CD44 expression 

levels. The potential of known drugs and other chemical and biological 

compounds to induce differentiation could also be explored. Induced 

differentiation could lead to a complete depletion of the CSC pool resulting in 

elimination of a tumour.  
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Changes occurring in cultured cells are likely to be of genetic as well as 

epigenetic nature. These changes occur over time and it is reasonable to 

assume that cells in early passage cell lines are closer to the cells of the 

tumour of origin in their genetic and epigenetic make-up than the later 

passages of the same cell lines. Elucidating these changes would provide 

useful information to further support the use of cell lines as suitable models 

for studying tumour behaviour.  
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7. Conclusions and Future Work 
 

Today, over 15 years after their discovery in haematological malignancies 

[64], the concept of CSCs in solid tumours is widely accepted. We now need 

to focus on the characterisation of the properties of these cells that could be 

exploited for developing new therapeutic interventions. One of these 

properties concerns the stability of the CSC phenotype. The question 

whether differentiated cells can de-differentiate and return to a stem cell state 

is of tremendous importance for our understanding of tumour growth and 

spread and consequently for developing anti-tumour therapies. Another 

relevant question is the plasticity of the CSC phenotype. Our work showed 

that CSCs in head and neck SCC and SCC of the skin exist in at least two 

distinct phenotypes (EMT and epithelial phenotype) [160]. The EMT CSC 

phenotype is regarded as the only CSC phenotype by many investigators. 

This notion emerged due to the wide utilisation of the sphere formation assay 

for identification and isolation of CSCs. However, it is important to remember 

that the sphere assay predominantly identifies the EMT CSC population, 

which forms a fraction of the total CSC pool [160]. Alternative CSC 

phenotypes might also exist and more CSC-specific markers and isolation 

assays need to be developed for the identification of other CSC sub-types. 

 

These finer discriminations of CSC phenotypes require isolation of purer cell 

populations for analysis. To date, negative selection has always been the 

method of choice for isolation of CSCs from fresh tumour specimens. The 

present study showed the negative selection to be less than satisfactory in 

identifying the epithelial fraction of the tumour. The positive selection 

described here, yielded better results but still needs further improvement in 

order to accurately identify/isolate the epithelial tumour fraction. 

 

This work presents evidence that CD44 is associated with CSC properties in 

OSCC. The proportion of CD44+ cells in OSCC tumours was found to 

correlate with a poor differentiation state, presence of neck lymph node 

metastasis (and a discohesive invasion front). These findings are perhaps 

not surprising as CD44 has many functions [126] and we (amongst others) 
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show that its expression is related to control of CSC phenotype and 

differentiation [148]. More specimens need to be examined to confirm the 

findings described in this study. Expression of CD44 variant isoforms, 

properties of the EMT population and other potentially relevant CSC 

phenotypes could also be studied in fresh tumour tissue and may prove 

associated with tumour invasion and metastases. Investigating MET 

associated mechanisms would also add to our understanding of the 

metastatic process. 

 

HNSCC is the 6th most common type of cancer worldwide. Current therapies 

are lacking efficacy, leaving HNSCC patients with a poor prognosis. The 

concept of CSCs provides a better understanding of tumour biology and 

might help elucidate mechanisms responsible for tumour growth, tumour 

dissemination and resistance to therapy. Cell lines derived from tumour 

specimens, in particular in their early passages, present valuable models for 

studying CSCs in OSCC. In the past, in vitro studies have significantly 

contributed to our understanding of mechanisms driving cell division and 

ultimately tumour growth in vivo. Continued use of cell lines would allow 

studying therapeutic responses and resistance mechanisms leading to the 

discovery of new therapeutic targets and may ultimately improve clinical 

outcomes for OSCC patients. 
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9. Appendix 
 
 

 
 
Figure 1: FACS isotype control antibodies tested on the HNSCC cell line CA1. 
CA1 cells were trypsinised and stained with isotype control antibodies conjugated to 
different fluorophors. Each stained sample (in B, D, F, H, J, L) was compared to a 
sample with no added antibody (“CA1 NS” in A, C, E, G, I, K) analysed at the same 
time. Three different mouse IgG1 ĸ isotype control antibodies conjugated to PE (B) 
APC (D) and FITC (F) were tested. There was no difference in signal intensity 
between these samples and the non-stained control samples (compare A and B, C 
and D, E and F). Similarly, immunolabelling with APC conjugated mouse IgG2a (H), 
pacific blue conjugated rat IgG2b (J) and PE conjugated mouse IgG2b (L) did not 
result in an increase in signal intensity (compare G and H, I and J, K and L). 

 

 
 
 
 
 
 
 
 
 
 
 

200 



 
 
Figure 2: FACS isotype control antibodies tested on tumour-derived 
fibroblasts. Cultured tumour fibroblasts were trypsinised and stained with isotype 
control antibodies conjugated to different fluorophors. Each stained sample (in B, D, 
F, H, J, L) was compared to a sample with no added antibody (“CA1 NS” in A, C, E, 
G, I, K) analysed at the same time. Three different mouse IgG1 ĸ isotype control 
antibodies conjugated to PE (B) APC (D) and FITC (F) were tested. There was no 
difference in signal intensity between these samples and the non-stained control 
samples (compare A and B, C and D, E and F). Similarly, immunolabelling with APC 
conjugated mouse IgG2a (H), pacific blue conjugated rat IgG2b (J) and PE 
conjugated mouse IgG2b (L) did not result in an increase in signal intensity 
(compare G and H, I and J, K and L). 
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Figure 3: Spearman correlation matrix. Different shades of green represent 
different strengths of correlation between high frequency of CD44 expressing cells 
and the clinical parameter in question. The p-values for each correlation are given in 
brackets. The strongest correlation (dark green) was found with the presence of 
lymph node metastases. A weaker but significant correlation (lighter green) was 
found with the discohesive invasion front and high grade of the tumour. No 
correlation (white) was observed with T stage. 
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Table 1: Clinical and pathological parameters of OSCC samples that gave rise to epithelial cell lines* 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

24 T2 N2b floor of mouth, 
tongue M 70 6,5 moderately diff. N N N largely 

cohesive complete 

24*n T2 N2b lymph node M 72 NA NA NA NA N NA NA 

T2 N2b retromolar region M 72 4,5 moderate to 
poorly diff. N Y Y discohesive, 

infiltrative complete 25 

T2 N1 floor of mouth M 76 12,5 moderate to 
poorly diff. Y N Y discohesive close 30 

33 T2 N1 tongue M 66 10.5 moderately diff N N N cohesive complete 

42 T4 N0 oral mucosa, 
maxilla M 57 12 moderate to well 

diff Y N NA discohesive complete 

50 T2 Nx mandible 8 moderately diff N N NA cohesive close 

57 T1 N2a buccal mucosa, 
palate F 83 20 poorly diff. Y N Y discohesive close 

57n T1 N2a lymph node F 83 NA NA NA NA Y NA NA 

T4a N2c floor of mouth F 58 30 moderate to 
poorly diff N unknown Y discohesive incomplete AB 

EM T3 N2b retromolar region M 55 6 poorly diff Y Y Y discohesive close 

T2 N1 ventral tongue M 48 4.5 moderate to 
poorly diff N Y N discohesive close GR 

LK T2 N0 mandible, 
gingiva M 56 10 moderately diff. N N NA discohesive complete 

LM T2 N2b mandible F 65 20 moderately diff. N N Y cohesive incomplete 

T3 N2b Floor of mouth M 78 23.5 moderate to 
poorly diff. Y N Y descohesive incomplete Luc4 

T2 N0 buccal mucosa M 38 9 moderate to 
poorly diff N N NA cohesive complete Luc11 

 
 

203 



Table 1 (continued) 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

MKn T4a N2c lymph node M 61 NA NA NA NA Y NA NA 

NA T2 N0 tongue, (oral 
mucosa) M 40 7 moderate to 

poorly diff. Y N NA discohesive, 
infiltrative complete 

NK T3 N2a tongue M 56 20 poorly diff. Y N Y discohesive incomplete 

T4a N0 oral mucosa, 
mandible M 60 24,5 moderate to 

poorly diff. Y N NA discohesive close PB 

 
*diff.: differentiated; N: no; NA: not applicable; Y: yes 
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Table 2: Clinical and pathological parameters of OSCC samples that gave rise to fibroblastic cultures* 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

17fibs T4 T2 mandible M59 4 moderately diff N N Y cohesive close 
20fibs unknown Soft palate M 58 unknown poorly diff N Y unknown discohesive unknown 

T4 N2b cheek and 
mandible M 56 6 moderate to 

poorly diff. N N Y discohesive complete 21fibs 

T4a N2b palate, madible M 74 15 moderate to 
poorly diff. Y N Y discohesive close 22*fibs 

T4a N1 buccal mucosa F 64 12 moderately diff. Y N N largely 
cohesive incomplete 23fibs 

T2 N1 floor of mouth M 76 12,5 moderate to 
poorly diff. Y N Y discohesive close 30fibs 

T4a N1 
 

floor of mouth, 
mandible M 57 25 moderate to 

poorly diff. Y Y N cohesive close 32fibs 

33fibs T2 N1 tongue M 66 10.5 moderately diff N N N cohesive complete 

T4 N0 Maxilla, buccal 
mucosa F 50 10 moderate to well N N NA discohesive close 37fibs 

T4a N2c mandible M 57 6.5 moderate to 
poorly diff. N N Y cohesive close 40fibs 

unknown maxilla F41 18 moderate to well 
diff. Y Y unknown discohesive close 41fibs 

T4 N0 oral mucosa, 
maxilla M 57 12 moderate to well 

diff Y N NA discohesive complete 42fibs 

55fibs unknown gingiva M 65 unknown moderately diff. unknown unknown unknown unknown unknown 

T1 N0 floor of mouth M 60 13 moderate to 
poorly diff. N N NA discohesive complete 56fibs 

T1 N2a buccal mucosa, 
palate F 83 20 poorly diff. Y N Y discohesive close 57fibs 

T4a N1 tongue, 
oropharynx M 56 23 moderate to 

poorly diff. Y N Y largely 
cohesive close Afibs 

 
205 



Table 2 (continued) 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

Anfibs T4a N1 lymph node M 56 NA NA NA NA Y NA NA 

T4a N2c floor of mouth F 58 30 moderate to 
poorly diff N unknown Y discohesive incomplete ABfibs 

T2 N1 ventral tongue M 48 4.5 moderate to 
poorly diff N Y N discohesive close GRfibs 

JFfibs T1 N0 floor of mouth M 65 2.5 moderately diff N N NA discohesive close 

T2 N0 floor of mouth M 54 8.5 moderate to 
poorly diff. N N NA discohesive close JNfibs 

LMfibs T2 N2b mandible F 65 20 moderately diff. N N Y cohesive incomplete 

T2 N0 tongue, (oral 
mucosa) M 40 7 moderate to 

poorly diff. Y N NA discohesive, 
infiltrative complete NAfibs 

NKfibs T3 N2a tongue M 56 20 poorly diff. Y N Y discohesive incomplete 

T4a N0 oral mucosa, 
mandible M 60 24,5 moderate to 

poorly diff. Y N NA discohesive close PBfibs 

 
*diff.: differentiated; N: no; NA: not applicable; Y: yes 
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Table 3: Clinical and pathological parameters of tumour samples analysed by flow cytometry for expression of CD44.* 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

18 T4 N0 mucosa of the 
mandible F 56 11 moderately diff. N N NA cohesive complete 

21 T4 N2b cheek and 
mandible M 56 6 moderate to 

poorly diff. N N Y discohesive complete 

T4a N1 buccal mucosa F 64 12 moderately diff. Y N N largely 
cohesive incomplete 23 

24 T2 N2b floor of mouth, 
tongue M 70 6,5 moderately diff. N N N largely 

cohesive complete 

T2 N2b retromolar region M 72 4,5 moderate to 
poorly diff. N Y Y discohesive, 

infiltrative complete 25 

27 T4 N0 oral mucosa, 
mandible M 88 unknown moderate to 

poorly diff. Y N NA discohesive, 
infiltrative close 

T2 N1 floor of mouth M 76 12,5 moderate to 
poorly diff. Y N Y discohesive close 30 

42 T4 N0 oral mucosa, 
maxilla M 57 12 moderate to well 

diff Y N NA discohesive complete 

44 T4 N2b mandibular 
alveolus F 76 8 poorly to 

moderately diff. Y Y Y discohesive incomplete 

46 T2 N0 buccal mucosa M 62 3 well diff. N N NA cohesive complete 

T4 N2b maxilla M 85 unknown moderate to well 
diff. N N N discohesive complete 46 (2) 

47 T2 N2b lateral boarder of 
the tongue F 81 12 moderately diff. Y N Y cohesive close 

T4 N2a maxilla F 61 10 moderate to well 
diff. N Y Y focally 

discohesive complete 48 

52 T2 N2b floor of mouth, 
gingiva M 86 6 moderate to 

poorly diff. Y Y Y cohesive incomplete 

54 T1 N1 tongue, oral 
mucosa F 50 4 well diff. N N N cohesive complete 
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Table 3 (continued) 
 

TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision Patient 

56 T2 N2c tongue F 47 15 moderately diff. N N Y discohesive close 

pT1 N0 flour of mouth, 
ventral tongue M 60 13 moderate to 

poorly diff. N N NA discohesive complete 56 CM 

57JK T1 N2a buccal mucosa, 
palate F 83 20 poorly diff. Y N Y discohesive close 

60 T2 N2b
buccal mucosa, 

mandibular 
alveolus 

F 85 4 well to 
moderately diff. N N Y discohesive incomplete 

A T4a N1 tongue, 
oropharynx M 56 23 moderate to 

poorly diff. Y N Y largely 
cohesive close 

T2 N1 tongue M 64 14,5 moderate to 
poorly diff. N N Y discohesive complete AB 

T2 N2b tongue F 63 10,5 moderate to 
poorly diff. Y N Y largely 

cohesive close CB 

T4a N0 mandible M 79 unknown moderately diff. N N NA largely 
cohesive close EB 

T2 N0 tongue F 88 10 moderate to 
poorly diff. Y N NA discohesive close IS 

IV T1 N1 tongue F 69 9 poorly diff. N N N discohesive complete 
KR T2 N1 tongue F 57 7 moderately diff. N N N cohesive,  complete 

T4a N0 oral mucosa, 
mandible M 60 24,5 moderate to 

poorly diff. Y N NA discohesive close PB 

T2 N0 mandible, gingiva M 56 10 moderately diff. N N NA discohesive complete LK 

T1 N0 tongue F 67 9,5 moderate to 
poorly diff. N N NA discohesive complete MB 

T4a 
N2c 

tongue, oral 
mucosa M 61 18 moderate to 

poorly diff. Y N Y discohesive close MK 

MP 
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T3 N2b tongue M 54 19,5 moderate to 
poorly diff. Y Y N discohesive close 
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Table 3 (continued) 
 

Patient TNM Oral cavity site Gender/
Age 

Depth 
[mm] Grade Perineural 

invasion 
Lymphovasc. 

invasion 
Extracaps. 

spread 
Invasion 

front Excision 

NA T2 N0 tongue, (oral 
mucosa) M 40 7 moderate to 

poorly diff. Y N NA discohesive, 
infiltrative complete 

NK T3 N2a tongue, slective 
neck diss M 56 20 poorly diff. Y N Y discohesive incomplete 

RA T2 N1 tongue M 66 6 moderate to 
poorly diff. N Y N discohesive close 

 
*diff.: differentiated; N: no; NA: not applicable; Y: yes 
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Table 4: Quantification of the purity of epithelial and non-epithelial fractions of 
tumour cells separated by the negative or the positive selections (full sample 
list)* 
 

 Negative selection Positive selection 
CK- cells in 
negative (epi) 
fraction 

CK+ cells in 
positive (non-
epi) fraction 

CK- cells in 
positive (epi) 
fraction 

CK+ cells in 
negative (non-
epi) fraction 

 
 
 
 
Tum AB 

 
32/62 
7/47 
20/51 
16/41 
9/46 
33/68 
 
 
117/315 (37.1%) 
 
epi 62.9% 

 
1/46 
7/38 
4/37 
0/35 
5/36 
3/34 
 
 
20/226 (8.8%) 
 
epi 8.8% 

 
7/28 
13/45 
12/46 
16/41 
1/33 
5/43 
13/42 
 
67/278 (24.1%) 
 
epi 75.9% 

 
3/91 
3/51 
3/90 
3/86 
0/47 
2/93 
 
 
14/458 (3.1%) 
 
epi 3.1% 

 
 
 
 
Tum LM 

 
1/17 
1/19 
1/13 
 
 
 
 
3/49 (6.1%) 
 
epi 93.9% 

 
2/8 
5/8 
5/21 
4/8 
8/41 
3/20 
 
27/106 (25.5%) 
 
epi 25.5% 

55/119 
40/72 
21/64 
9/40 
 
 
 
125/295 
(42.4%) 
 
epi 57.6% 

5/5 
6/10 
4/7 
6/15 
6/10 
 
 
27/47 (57.4%) 
 
epi 57.4% 

 
 
 
 
 
Tum GR 

 
 
 
 
 
NA 

 
 
 
 
 
NA 

 
10/183 
9/115 
7/165 
5/126 
2/43 
2/45 
5/32 
 
40/709 (5.6%) 
 
epi 94.4% 

 
2/100 
5/76 
7/56 
3/135 
 
 
 
 
17/367 (4.6%) 
 
epi 4.6% 

 
 
 
 
Tum ABn 
 

 
34/86 
32/102 
28/104 
38/105 
27/97 
9/38 
9/30 
 
 
177/562 (31.5%) 
 
epi 68.5% 

 
2/105 
1/109 
1/124 
3/58 
2/70 
1/104 
1/28 
0/29 
 
11/627 (1.8%) 
 
epi 1.8% 

 
 
 
 
 
NA 

 
 
 
 
 
NA 
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Table 4 (continued): 
 

 Negative selection Positive selection 
CK- cells in 
negative (epi) 
fraction 

CK+ cells in 
positive (non-
epi) fraction 

CK- cells in 
positive (epi) 
fraction 

CK+ cells in 
negative (non-
epi) fraction 

 
 
 
Tum RM 

 
1/6 
0/8 
1/9 
 
2/23 (8.7%) 
 
epi 91.3% 

 
7/28 
9/17 
6/18 
 
22/63 (34.9%) 
 
epi 34.9% 

 
 
 
NA 

 
 
 
NA 

 
*Cells in up to 8 different fields of view were counted. Each line shows the number of 
contaminating cells per total number of cells counted in one field of view. The sum of all 
fields of view counted per sorted cell fraction is also shown and degree of 
contamination is given in brackets as a percentage. The percentage of epithelial cells 
(epi) in each sorted fraction is also shown and highlighted in yellow. NA: not analysed 
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Cancer Stem Cells in Squamous Cell Carcinoma Switch
between Two Distinct Phenotypes That Are Preferentially
Migratory or Proliferative

Adrian Biddle1, Xiao Liang2, Luke Gammon2, Bilal Fazil1, Lisa J. Harper1, Helena Emich1,
Daniela Elena Costea2, and Ian C. Mackenzie1

Abstract
Epithelial-to-mesenchymal transition (EMT) is an important driver of tumor invasion and metastasis,

which causes many cancer deaths. Cancer stem cells (CSC) that maintain and initiate tumors have also been
implicated in invasion and metastasis, but whether EMT is an important contributor to CSC function is
unclear. In this study, we investigated whether a population of CSCs that have undergone EMT (EMT CSCs)
exists in squamous cell carcinoma (SCC). We also determined whether a separate population of CSCs that
retain epithelial characteristics (non-EMT CSCs) is also present. Our studies revealed that self-renewing CSCs
in SCC include two biologically-distinct phenotypes. One phenotype, termed CD44highESAhigh, was prolife-
rative and retained epithelial characteristics (non-EMT CSCs), whereas the other phenotype, termed
CD44highESAlow, was migratory and had mesenchymal traits characteristic of EMT CSCs. We found that
non-EMT and EMT CSCs could switch their epithelial or mesenchymal traits to reconstitute the cellular
heterogeneity which was characteristic of CSCs. However, the ability of EMT CSCs to switch to non-EMT
character was restricted to cells that were also ALDH1þ, implying that only ALDH1þ EMT cells had the ability
to seed a new epithelial tumor. Taken together, our findings highlight the identification of two distinct CSC
phenotypes and suggest a need to define therapeutic targets that can eradicate both of these variants to
achieve effective SCC treatment. Cancer Res; 71(15); 5317–26. �2011 AACR.

Introduction

Several studies have implicated cancer stem cells (CSC) in
tumor invasion and metastasis (1, 2) and have related tumor
recurrence after therapy to therapeutic resistance of CSCs
(3, 4). Typically, CSCs are defined as a subpopulation of tumor
cells having both tumour-initiating ability and the ability
to reconstitute the cellular heterogeneity typical of
the original tumor (5). For solid tumors, CSCs with these
properties were first shown in breast cancers as cells with a
CD44highCD24lowESAþ staining pattern (6). As for several
other malignancies, a subpopulation of CD44high cells with
CSC properties has been identified within oral squamous cell

carcinoma (OSCC; Ref. 7). In breast cancer and OSCC, sub-
populations of cells with CSC properties have also been
identified by positive activity of the detoxifying enzyme
ALDH1 (8, 9).

Epithelial-to-mesenchymal transition (EMT) is a develop-
mental process that creates mesoderm during gastrulation,
in which epithelial cells acquire a migratory mesenchymal
phenotype (10). In adult tissues, several stromal signals
including TGF-b can induce EMT and lead to downregula-
tion of epithelial products such as E-cadherin and upregula-
tion of EMT-inducing transcription factors, such as Twist
and Snail (11, 12). EMT has been proposed to play important
roles in cancer and mutations in receptor tyrosine kinase or
Wnt signaling pathways can predispose cells to undergo
EMT (13). In cancer there is further promotion of EMT by
both the inflammatory immune response (14) and by the
hypoxic tumor environment (15). Breast-cancer cells with
the CD44highCD24low tumor-initiating phenotype express
EMT markers, a finding that established a link between
CSCs and EMT (16) and it is now increasingly recognized
that EMT plays an important role in the metastasis of OSCC
(15), breast cancer (17), and several other types of carci-
noma. EMT has been implicated in therapeutic resistance
and tumour recurrence (4, 18, 19) and is associated with
resistance to EGFR inhibitors (20) and evasion of host
immune responses to tumors (17, 21).
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Normal epithelial tissues are maintained by a proliferative
stem-cell hierarchy and, when epithelial cells are seeded at low
density in vitro, the stem cell fraction generates proliferating
colonies termed holoclones that can be distinguished from the
abortive colonies of differentiating cells, termed paraclones
(22). Similar clonal patterns are present in cell lines generated
from OSCC (23) and also from prostate cancers where holo-
clone cells, but not paraclone cells, are capable of forming
tumors in mouse xenograft models (24). Here we show that, in
addition to a holoclone-forming CSC population, cell lines
derived from human oral and cutaneous SCC contain a novel
CSC population that has undergone EMT and is migratory.
The EMT and non-EMT CSC populations both show high
expression of CD44 and the two populations coexist by switch-
ing between the two phenotypic states through EMT and
the reverse process of mesenchymal-to-epithelial transition
(MET). Both cell types are also present in cells freshly generated
from OSCC tumors. We also show a further novel hierarchy
within the EMT cell subpopulation itself that is related to
the ability of cells to switch back to the non-EMT state.

Materials and Methods

Cell culture
The CA1 cell line was previously derived in our laboratory

from a biopsy of OSCC of the floor of the mouth (25). The PM1,
Met1, and Met2 cell lines were derived from matched pre-
malignant and malignant cutaneous SCC tissues (26). All cell
lines were grown in the highly supplemented epithelial growth
medium (termed FAD) with 10% FBS (23). For suspension
cultures, 0.75 cm2 tissue culture wells were coated with
polyhema (Sigma) (12mg/ml in 95% ethanol). Cells were then
plated at a density of 1000 cells/ml with addition of 1%
methylcellulose (Sigma) and incubated (37�C, 5% CO2) and
monitored for sphere growth. For TGF-b experiments, 20 ng/
ml TGF-b (R&D systems) was added to the culture every 24
hours for 5 days. For inhibition, 10 mmol/L SB431542 (Sigma)
was added either simultaneously with the TGF-b additions or
for 5 days following 5 days of TGF-b treatment.

Fluorescence-activated cell sorting and
immunofluorescence

For fluorescence-activated cell sorting (FACS), cells were
detached using either trypsin-EDTA (PAA) or enzyme-free cell
dissociation buffer (Invitrogen) at 37�C and then stained with
antibodies at 1:100 dilution in PBS (PAA). The DAPI nuclear
dye (Sigma) was used at 1 ug/ml to exclude dead cells. FACS
sorted cells were collected into FAD medium for plating or
into buffer RLT for RNA extraction. To test for ALDH1 activity,
cells were stained with Aldefluor reagent (Aldagen) according
to the manufacturers instructions prior to FACS. For immu-
nofluorescence, cells were fixed in 4% paraformaldehyde,
stained with antibodies at 1:100 dilution in PBS with 0.25%
BSA, then permeabilized with 0.1% Triton-X prior to addition
of DAPI at 1 ug/ml prior to imaging. The PE-CD44 (clone G44-
26) and PE-Integrin b4 (clone 439-9B) antibodies were from
BD biosciences; the APC-ESA (clone HEA-125) antibody was
from Miltenyi Biotec.

RNA extraction, cDNA synthesis, and qPCR
RNA was extracted using the RNeasy micro kit (Qiagen).

Reverse transcription into cDNA was conducted using
the superscript III first strand synthesis supermix (Invi-
trogen), with inclusion of RT controls. QPCR was con-
ducted in an ABI 7500 real-time PCR system (Applied
Biosystems) using Power SYBR green mix (Applied Bio-
systems). GAPDH was used as a reference mRNA control.
See supporting information for QPCR conditions and pri-
mer sequences.

Migration assays
10,000 cells were placed in FAD medium with 2% FBS in

Transwell tissue culture inserts (8 mmmembrane, Corning) in
24-well plates, with FAD medium containing 10% FBS in the
bottom of the well. After 24 hours, the membranes were fixed
in 4% paraformaldehyde, stained with crystal violet, the non-
migrated cells on the top of the membrane removed with a
cotton-wool bud, and the migrated cells on the underside of
the membrane counted.

Generation of cells from primary human samples
Fresh OSCC tissue samples were collected following pro-

tocols approved by the local NHS Research Ethics Committee.
They were minced into small pieces in tissue culture dishes,
allowed to adhere, and FAD medium then added. Outgrowths
of cells arising from the tumor pieces were dissociated and
FACS sorted for the epithelial-specific marker Integrin b4 to
collect fibroblast-free populations prior to examination.

Single-cell cloning
For single-cell cloning of the CD44highESAhigh and CD44high-

ESAlow populations, cells were sorted by FACS and then
allowed to recover in culture before being resuspended,
counted, and single-cell cloned in 48-well plates by limiting
dilution. Wells were examined microscopically and those
containing only a single clone were grown up for analysis.
For single-cell cloning of the CD44highESAlow/þ and CD44high-

ESAlow/� populations, cells were sorted directly into 96-well
plates using the single-cell plate sorting function of the
FACSAria FACS sorter (BD biosciences). Clones were then
checked and grown up as described above.

Tumourigenesis assays in mice
For these assays, which were performed at the Gade Insti-

tute in Bergen, nonobese diabetic/severe combined immuno-
deficiency (NOD/SCID) mice were used with all animal
procedures approved by the Norwegian Animal Research
Authority. Subpopulations of FACS-sorted CD44highESAhigh

and CD44highESAlow CA1 cells were suspended in 50 mL of
Matrigel (BD Biosciences) and transplanted into the tongue.
Immunohistochemical staining was carried out using the
Autostainer universal staining system (DAKO-USA; Ref. 27).
Five-mm formalin-fixed, paraffin-embedded sections from the
tongues and neck lymph nodes of mice injected with different
subpopulations of CA1 cells were stained with H&E or for p53
protein with a monoclonal specific antibody (DO-7 clone,
titration 1:50; DAKO-Denmark).
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Statistical analysis
All data are based on at least three experimental repeats

unless otherwise stated, and are reported as mean �SEM.

Results

A CD44highESAlow subpopulation exists in oral
squamous cell carcinoma
Flow cytometric analysis of the CA1 cell line showed that a

combination of staining for CD44 and ESA (epithelial-specific
antigen, also known as EpCAM) consistently identified a
CD44highESAlow subpopulation (Fig. 1A). The coexpression
of high CD44, typical of a CSC, together with low expression
of the epithelial marker, ESA, suggested the possible corre-
spondence of this population to an EMT CSC subpopulation.
Cells with CD44highESAhigh, CD44highESAlow, and CD44low

expression patterns were therefore examined to establish their
relationships respectively to (a) holoclone-forming, non-EMT
CSCs, (b) CSCs that have undergone an EMT, and (c) para-
clone-forming cells that lack the capacity to self-renew.

Morphological and behavioral differences between cell
subpopulations in adherent and suspension cultures
point to two distinct cancer stem cell phenotypes

As previously described, OSCC cells (including the CA1
cell line) plated at low density in adherent cultures form a
range of colony morphologies, including self-renewing
CD44highESAhigh holoclone and differentiating CD44low para-
clone colonies (23, 28). However, when cultures were exam-
ined in more detail, individual elongated cells lying outside
the compact holoclone colonies could be identified (Supple-
mentary Fig. S1A) and were found to have a CD44highESAlow

staining pattern (Supplementary Fig. S1B). When cell subpo-
pulations were isolated by FACS and replated in culture, the
CD44highESAlow cells displayed an elongated fibroblast-like
appearance and dispersal as individual cells, character-
istics of cells having undergone EMT (Fig. 1B, middle).
CD44highESAhigh cells grew as holoclones (Fig. 1B, left) and
the CD44low cells formed small abortive paraclone colonies
(Fig. 1B, right). Counting the number of holoclones formed
after plating the two non-EMT populations at clonal density

Figure 1. The CA1 OSCC cell line contains cancer stem cells that have undergone EMT. A, FACS sorting of CA1 cells by expression of CD44 and ESA.
Sorted populations are gated. B, phase-contrast images of the populations shown in (A), after being plated at clonal density (1,000 cells/ml) and allowed to
grow for 7 days. C, holoclone counts for the CD44highESAhigh and CD44low populations, after plating at clonal density. D, cell counts (cells/ml) for the
CD44highESAhigh and CD44highESAlow populations, 10 days after plating at clonal density. E, the number of migrated cells from the CD44highESAhigh and
CD44highESAlow populations in Transwell migration assays. F, Left, sphere counts for the populations shown in (A). Right, a typical CA1 sphere. G, QPCR
analysis of the populations shown in (A). Top, gene expression in CD44highESAlow cells relative to that in CD44low cells. Bottom, gene expression in
CD44highESAhigh cells relative to that in CD44low cells. H, the size of the CD44highESAlow population (as % of total cell number) after 5 days of treatment with
TGF-b or the TGF-b inhibitor SB431542.
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confirmed that the CD44highESAhigh cells represent the holo-
clone-forming CSC type (Fig. 1C).

Sorted populations of CD44highESAlow cells grew slower in
adherent culture conditions than the CD44highESAhigh cells
(Fig. 1D). Time-lapse video showed the high motility of these
cells (Supplementary Movies S1A and S1B) and also suggested
the generation and escape of motile cells at the periphery of
holoclone colonies. CD44highESAlow cells showed a much
higher rate of migration in 3-dimensional in vitro transwell
migration assays (Fig. 1E and Supplementary Fig. S1C).

As ability to grow as floating spheres is a characteristic of
CSCs in breast (29) and brain tumors (30), we counted the
number of spheres formed when the three populations were
seeded in suspension culture using nonadherent plates
(Fig. 1F). The CD44highESAlow cells formed 10 times more
spheres than the CD44highESAhigh cells, and 80 times more
than the CD44low cells. The CD44highESAlow cells therefore
represent a subpopulation of CSCs greatly enriched for
sphere-forming ability. Laser capture of central and peripheral
cell areas of epithelial colonies, followed by their transfer to
suspension culture, indicated that the cells around colony
peripheries form spheres (Supplementary Fig. S1D), whereas
those in the center of colonies yield no spheres, a further
confirmation of the presence of CD44highESAlow EMT CSCs at
the colony peripheries.

An epithelial-to-mesenchymal transition–related gene
expression pattern in the CD44highESAlow cells

To investigate the expression of EMT-related genes, we
undertook quantitative RT-PCR of the CD44highESAlow,
CD44highESAhigh, and CD44low populations. This showed
(Fig. 1G) that the CD44highESAlow cells have greater expression
of Vimentin, Twist, Snail, and Axl, all markers of EMT, and
lower expression of the epithelial-specific genes E-cadherin,
Calgranulin B, Involucrin, and Keratin 15. Expression of
Integrins a5 and b1 was moderately greater and expression
of Integrin a6, C-myc, and the Erbb2 and Erbb3 receptors
was lower. Far smaller differences were seen between
the CD44highESAhigh and CD44low populations although
CD44highESAhigh cells showed moderately greater expression
of Axl, and lower expression of Calgranulin B and Involu-
crin indicating less expression of epithelial-differentiation
markers. Antibody staining for Vimentin (Supplementary
Fig. S1E) showed that the elongated cells around colony
peripheries express Vimentin, whereas those inside the colo-
nies do not.

TGF-b is a known inducer of EMT and, for further con-
firmation that the CD44highESAlow population represents cells
having undergone EMT, we added TGF-b to cell cultures and
examined the CD44 and ESA cell surface-staining pattern
(Fig. 1H). After TGF-b addition the CD44highESAlow population
approximately tripled in size, indicating that enhanced induc-
tion of EMT causes cells to acquire the CD44highESAlow

staining pattern. Addition of SB431542, a potent and selective
TGF-b inhibitor, completely reversed the ability of TGF-b to
drive an enlargement of the CD44highESAlow population. Inter-
estingly, however, SB431542 did not cause the size of the
CD44highESAlow population to drop below that seen in the

control cells, nor did it reverse the TGF-b induced EMT once
established, indicating that TGF-b is not required for the
maintenance of the EMT phenotype.

Epithelial-to-mesenchymal transition cancer stem cells
are present in cell lines generated from progressive
stages of cutaneous squamous cell carcinoma

We next investigated whether the CD44highESAlow EMT CSC
population identified in OSCC is also present in cell lines
derived from cutaneous SCC. Such cells were present in 3
matched specimens derived from the same patient (26) and
measurement of the size of the CD44highESAlow populations in
each of these three cell lines revealed stark differences
between different stages of malignancy (Fig. 2A). PM1, a cell
line derived from premalignant dysplastic skin, did not con-
tain a detectable CD44highESAlow population. Met1, a line
derived from a primary SCC, contained a CD44highESAlow

population representing 2.2 � 0.25% of the total population
(Fig. 2B). Met2, a line derived from a recurrent SCC arising
at the same site, contained a CD44highESAlow population
representing 29.7 � 5.73% of the total (Fig. 2C).

Quantitative RT-PCR of FACS sorted populations from
Met1 and Met2 (Fig. 2D) showed patterns similar to those
for OSCC. In both cell lines, the CD44highESAlow cells show
greater expression of Vimentin than the CD44highESAhigh and
CD44low cells, and have lower expression of E-cadherin, Cal-
granulin B, Involucrin, Keratin 15, Integrin a6, C-myc, Erbb2,
and Erbb3. In Met2, the CD44highESAlow cells also have greater
expression for Twist, Snail, and Axl, perhaps suggesting that
they have undergone a more complete EMT than the corre-
sponding population in Met1. As with the CA1 OSCC line, only
small differences were seen between the CD44highESAhigh and
CD44low populations in Met1 and Met2 (Fig. 2D, bottom).

Adherent cultures of CD44highESAlow cells of both cell lines
showed an elongated, fibroblast-like appearance (Fig. 2E,
middle), whereas CD44highESAhigh cells grew as holoclones
(Fig. 2E, left), and CD44low cells formed small paraclone
colonies (Fig. 2E, right). As with OSCC, holoclone counts
confirmed that the CD44highESAhigh population represents
the non-EMT CSC type (Fig. 2F) and sphere formation
in suspension culture indicated that in both lines the
CD44highESAlow cells represent a subpopulation of CSCs
greatly enriched for sphere forming ability (Fig. 2G). In com-
parison to CD44highESAhigh cells, CD44highESAlow cells prolife-
rated at a slower rate in adherent culture (Fig. 2H) and
had a greater ability to migrate in a 3D in vitro Transwell
migration assay (Fig. 2I and Supplementary Fig. S2), with the
latter ability considerably more pronounced in Met2. The
FACS sorted CD44highESAhigh and CD44highESAlow cells could
be passaged indefinitely, further indicating their ability to
self-renew.

Epithelial-to-mesenchymal transition cancer stem cells
are present in cell populations freshly isolated from
oral squamous cell carcinoma tumors

To determine whether an EMT CSC population exists
in OSCC tumors in vivo, populations of cells were generated
as explants from fresh samples of OSCC. After removal of
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fibroblasts, cells were FACS sorted on the basis of expression
of CD44 and ESA, and were analyzed by RT-PCR. Cells
explanted from each of three tumors were found to contain
a CD44highESAlow population that represented 28.0%,
8.2%, and 5.1% of the total population (Fig. 3A–C). The
CD44highESAlow cells of all three tumors showed greater
expression of Vimentin and Twist and less expression of
E-cadherin (Fig. 3D).

The two cancer stem cell phenotypes exhibit distinct
in vivo behaviors that reflect their in vitro properties

Upon orthotopic injection into NOD/SCID mice, both CSC
phenotypes show tumor initiating ability (Fig. 4A). However,
only the EMT CSCs exhibited any lymph node infiltration after
26 days (Fig. 4A and Supplementary Fig. S3A). Conversely, the
non-EMT CSCs exhibited faster tumor growth at early time
points (Fig. 4B). Examination of tumors produced by both
CSC phenotypes after 26 days by FACS (Supplementary
Fig. S3B) and H&E staining (Supplementary Fig. S3C) showed
a return to a heterogenous cell population and no apparent

difference in tumor histology, indicating that each CSC pheno-
type can repopulate the other in vivo.

There is switching between the two cancer stem cells
phenotypes, and single-cell cloning identifies a
hierarchy of bipotent and unipotent epithelial-to-
mesenchymal transition cells

CD44highESAhigh and CD44highESAlow populations from CA1
and Met1 were FACS sorted and single-cell cloned to deter-
mine whether such clones give rise to both EMT and non-EMT
cells, thus indicating bipotency of the clonal cell of origin.
Clones were grown up, stained for CD44 and ESA, and
analyzed. The results (Fig. 5) indicated that 100% of CD44high-

ESAhigh clones were bipotent as indicated by the production of
both non-EMT and EMT cell populations. Conversely, not all
CD44highESAlow clones were bipotent; only a fraction of the
CD44highESAlow clones (50% in CA1 and 29% in Met1) pro-
duced mixed populations. The rest were unipotent and,
despite several subsequent rounds of passaging, gave rise only
to EMT cells.

Figure 2. Cell lines from progressive stages of cutaneous SCC contain cancer stem cells that have undergone EMT. A, graph showing the % of cells in
the CD44highESAlow population of three cell lines representing progression of cutaneous SCC. B and C, FACS sorting of MET1 (B) and MET2 (C) cells
by expression of CD44 and ESA. Sorted populations are gated and shown as% of total cells. D, QPCR analysis of the populations shown in (B) and (C). Top,
gene expression in CD44highESAlow cells relative to that in CD44low cells. Bottom, gene expression in CD44highESAhigh cells relative to that in CD44low cells.
E, phase-contrast images of the populations shown in (B) and (C), after being plated at clonal density (1000 cells/ml) and allowed to grow for 7 days.
F, holoclone counts for the CD44highESAhigh and CD44low populations, after plating at clonal density. G, sphere counts for the populations shown in (B) and
(C). Representative MET1 and MET2 spheres are shown. H, cell counts (cells/ml) for the CD44highESAhigh and CD44highESAlow populations, 10 days after
plating at clonal density. I, the number of migrated cells from the CD44highESAhigh and CD44highESAlow populations in transwell-migration assays.
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CD44highESAlow/þ marker expression identifies the
bipotent epithelial-to-mesenchymal transition cancer
stem cells

We investigated whether differences in levels of ESA expres-
sion might distinguish bipotent from unipotent EMT cells

present in SCC. We FACS sorted CD44highESAlow/þ and
CD44highESAlow/� cell populations from CA1 for single-cell
cloning (illustrated in Fig. 6A). Clones were grown up and
assessed by FACS for the presence of both non-EMT and EMT
cell populations. The results indicated that none of the
CD44highESAlow/� clones were bipotent but that heterogeneity
was regenerated by 44% of the CD44highESAlow/þ clones
(Fig. 6B), showing that the EMT CSCs capable of undergoing
MET lie at the ESAhigh end of the CD44highESAlow population.
Analysis of sphere forming abilities for each of the CA1, Met1,
and Met2 cell lines indicated similar numbers of spheres
produced by CD44highESAlow/þ and CD44highESAlow/� popula-
tions (Fig. 6C). Therefore, despite differences in plasticity
these populations have similar abilities to grow as floating
spheres. A single-cell clone created from a CA1 bipotent
EMT CSC was FACS sorted for single cell cloning of the
CD44highESAlow/þ and CD44highESAlow/� cell populations
(Supplementary Fig. S4A). 92% of the CD44highESAlow/þ clones
were bipotent whereas only 17% of the CD44highESAlow/�

clones were bipotent. The presence of a proportion of clones
that were unipotent shows that the cloned bipotent EMT
CSC gave rise directly to unipotent EMT cells.

The CD44highESAlow/þ bipotent epithelial-to-
mesenchymal transition cancer stem cells are ALDH1þ

Interestingly, we found that CD44highESAlow/þ cells
show considerably higher activity than CD44highESAlow/�

cells for the CSC marker ALDH1 (Fig. 6D). We therefore
investigated a possible link between the bipotency of
EMT CSCs and their ALDH1 activity. For each cell line,
CD44highESAlow cells were fractionated on the basis of
ALDH1 activity (Fig. 6E) and then assayed for the number
of non-EMT cells they produce in culture. The results

Figure 3. EMT CSCs in fresh
OSCC tumors. A, B, and C, FACS
sorting by expression of CD44 and
ESA for cells generated from 3
OSCC tumors, termed (A) LUC4,
(B) LUC9, and (C) LUC11. The
CD44highESAlow population is
gated and shown as % of total
cells. D, QPCR analysis of the cells
generated from the 3 tumors; gene
expression in the gated
CD44highESAlow population
relative to that in the rest of the
cells.

Figure 4. EMT CSCs drive metastatic dissemination and non-EMT CSCs
drive tumor growth in vivo. A, tumor incidence and rate of lymph node
infiltration from orthotopic tongue injections of CA1 cells. B, tumor growth
rate after orthotopic tongue injection of 5000 CA1 cells. n ¼ 2.
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(Fig. 6F) show that after growing up from clonal density
the percentage of non-EMT cells was consistently grea-
ter for the CD44highESAlowALDH1þ cells than for the
CD44highESAlowALDH� cells; 6.9 times, 27.4 times, and 5.9
times greater in CA1, Met1, and Met2, respectively. There-
fore, high ALDH1 expression marks bipotent EMT CSCs.
As for CD44highESAlow/þ and CD44highESAlow/� cells,
both bipotent CD44highESAlowALDHþ cells and unipotent
CD44highESAlowALDH� cells formed similar numbers of
spheres in suspension culture (Fig. 6G). Suspension culture
did not enable the unipotent CD44highESAlowALDH� cells
to change their phenotype (Supplementary Fig. S4B), indi-
cating that their unipotent state is not an artefact of
adherent culture. Assessment of 4 bipotent and four uni-
potent single cell clones formed from CD44highESAlow Met1
cells indicated that the CD44highESAlow cells in the bipotent
clones had consistently greater ALDH1 activity than those
in the unipotent clones (Supplementary Fig. S4C), further
confirming a link between bipotent EMT CSCs and ALDH1
positivity.

Discussion

Our investigations show that cultures of malignant cell
populations consistently contain motile cells with a fibro-
blast-like morphology and that such cells stain strongly for
CD44 but only weakly for ESA. Cells with a CD44highESAlow

phenotype isolated fromOSCC cell lines, from fresh samples of
OSCC tumor, and from primary and recurrent cutaneous SCC,
express Vimentin, Twist and Axl, genes that act as markers of
EMT, and show reduced expression of epithelial markers such
as e-cadherin, Involucrin and CK15. These cells proliferate
slowly, are more migratory, and when grown in suspension
culture they display the sphere forming ability that has pre-
viously been associated with stem cells (31). We also show a
separateCD44highESAhigh cell population that,when isolated by
FACS, is highly proliferative and forms holoclone colonies in
adherent culture that are indefinitely self-renewing and typical
of epithelial stem cells. Injection into NOD/SCID mice indi-
cates that the attributes showed by these cells in vitro are
maintained in vivo. Taken together, these findings indicate that
SCCs contain CSCs with two distinct phenotypes, one similar
to normal epithelial stem cells, and another similar to the EMT
CSCs described by Mani and colleagues (16). These findings fit
well with the "migrating cancer stem cell" concept of Brabletz
(32) which requires malignant stem cells to acquire two
phenotypes; one that is associated with growth and another
that is migratory and characterized by "transient expression of
epithelial to mesenchymal transition-associated genes, which
can be reversed by a mesenchymal to epithelial transition
(MET), leading to epithelial redifferentiation," and thus enables
secondary tumor formation at a metastatic site.

We propose a malignant stem cell model that defines the
hierarchical cellular relationships within the tumor. In this

Figure 5. Single cell cloning of the
CSC populations. A, FACS sorting
of CA1 (top) and MET1 (bottom)
cells by expression of CD44 (y-
axis) and ESA (x-axis), for single
cell cloning of the gated
populations. To the sides are
representative FACS plots of
populations produced by the
single cell clones. B, table
showing the number of single cell
clones from the two FACS sorted
populations which were able to
give rise to both non-EMT and
EMT cells.

Cancer Stem Cells Switch between Two Distinct Phenotypes

www.aacrjournals.org Cancer Res; 71(15) August 1, 2011 5323

on May 19, 2013. © 2011 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 17, 2011; DOI: 10.1158/0008-5472.CAN-11-1059 

Paper 1

218

http://cancerres.aacrjournals.org/


model (Fig. 7), CD44highESAhigh holoclone-forming non-EMT
CSCs have division patterns directed largely to self-renewal
but they also generate cells entering two distinct pathways of
differentiation. One type loses CD44 expression, lacks self-
renewal ability and forms paraclones, a change interpreted as
entry into an abortive epithelial terminal differentiation path-
way. The other cell type is CD44highESAlow, is migratory, and
has expression patterns and behavior indicative of EMT. FACS
isolation of populations of non-EMT and EMT cells indicates
that the cells of one population regenerate cells of the other
through reciprocal processes of EMT and MET, and this
phenotypic plasticity is maintained in vivo; therefore, it seems
that CSCs have the ability to take on an EMT phenotype for
migration to a secondary site, before reverting back to the
proliferative non-EMT phenotype to enable formation of a
metastatic tumor at that secondary site. Single-cell cloning
indicates that ability to undergo MET is restricted to a
subpopulation of the EMT cells that is marked by the

CD44highESAlow/þALDHþ expression pattern. Thus, whereas
the non-EMT population shows a differentiation hierarchy
that can be assayed as loss of self-renewal capacity, the
EMT population has a secondary differentiation hierarchy
that can be assayed in terms of the plasticity required to
reconstitute tumor heterogeneity. As migrating EMT cells
undergo an MET to establish a new epithelial metastasis, it
seems that it is the CD44highESAlow/þALDHþ EMT cells that
are endowed with the greatest metastatic potency. These
results may explain the observation that metastatic ability
of breast cancer cells is restricted to ALDH1þ cells (1).

Analyses of the properties of CSCs are largely dependent
on the ability to accurately identify and assay them. We
show that clonogenic assays under adherent conditions
report the content of CD44highESAhigh cells but that tumor
sphere formation represents the CD44highESAlow popula-
tion. As CD44highESAlow cells usually represent only a
minor fraction of the total CSC population, sphere-forming

Figure 6. CD44highESAlow/þALDH1þ

marker expression identifies the
EMT CSCs that are capable of
reconstituting tumour
heterogeneity. A, FACS sorting of
CA1 cells by expression of CD44
(y-axis) and ESA (x-axis), for
single-cell cloning of the gated
CD44highESAlow/þ and
CD44highESAlow/� populations. B,
table showing the number of single
cell clones from the two FACS
sorted populations described in (A)
which were able to give rise to both
non-EMT and EMT cells. C, sphere
counts for the CD44highESAlow/þ and
CD44highESAlow/� populations from
CA1, MET1 and MET2. D, the
percentage of the CD44highESAlow/þ

and CD44highESAlow/� cells that are
ALDH1þ (using the method
described in Fig. 6E) in the CA1,
MET1, and MET2 lines. E,
representative FACS sort for the
CA1 line, showing how the
CD44highESAlow population was
selected and then fractionated on
the basis of ALDH1 expression
(ALDH1-FITC on the x-axis of the
right-hand plots). The Aldeflour
assay inhibitor DEAB was used to
enable negative control staining for
the setting of gates (top right), and
then ALDH1þ and ALDH1� cells
were selected in the absence of the
inhibitor (bottom right). F, the ability
to reconstitute the heterogeneous
population, as shown by the
production of non-EMT cells
10 days after the FACS sorted
populations described in (E) were
plated at clonal density. G, sphere
counts for the populations
described in (E).
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assays will significantly underestimate the total number of
self-renewing CSCs present. Conversely, assays of clono-
genicity may exclude the EMT population. These results
highlight the importance of using multiple methods for
assaying the CSC content within a heterogenous tumor-cell
population.
The demonstration that EMT and non-EMT CSCs co-exist

in pathologic tissues identifies potentially important new
targets for therapeutic interventions intended to halt tumor
recurrence and metastatic spread. EMT cells show resistance
to conventional chemotherapy in breast cancer (4, 19) and
SCC (18), but drug screening has disclosed the existence of
agents that are selectively toxic to EMT cells and suggests that
such resistance can be overcome (4). Differential properties of
EMT and non-EMT cells, such as downregulation of Erbb2 and
Erbb3 in EMT cells, suggests they may also vary in their
resistance to inhibitors of EGFR and other receptor families.
Direct analyses of the responses of EMT and non-EMT CSCs
are required and the ability to assess these in vitromay enable

more rapid development of combinational therapies that act
effectively on the entire CSC population.
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ABSTRACT

Cells sorted from head and neck cancers on the basis of 

their high expression of CD44 have high potency for 

tumor initiation. These cells are also involved in 

epithelial to mesenchymal transition (EMT) and we 

have previously reported that cancer stem cells (CSCs) 

exist as two biologically distinct phenotypes. Both 

phenotypes are CD44
high

 but whereas one is also ESA
high

and maintains epithelial characteristics, the other is 

ESA
low

, has mesenchymal characteristics and is 

migratory. Examining CD44-regulated signal pathways 

in these cells we show that CD44, and also RHAMM, 

act to inhibit phosphorylation of glycogen synthase 

kinase 3  (GSK3  and that such inhibition  reduces 

the formation of both “tumour spheres” and 

“holoclone” colonies, functional indicators of stemness. 

GSK3  inhibition also reduces the expression of stem 

cell markers such as Oct4, Sox2 and Nanog and 

up-regulates expression of the differentiation markers 

Calgranulin B and Involucrin in the CD44
high

/ESA
high

cell fraction. Transition of CSCs out of EMT and back 

to the epithelial CSC phenotype is induced by 

GSK3 knockdown. These results indicate that GSK3

plays a central role in determining and maintaining the 

phenotypes and behavior of CSCs in vitro and are likely 

to be involved in controlling the growth and spread of 

tumours in vivo.

INTRODUCTION

Various reports indicate that many cancers 
contain a subpopulation of cells that is endowed 
with the stem cell properties of self-renewal and 

tumor-initiating capacity [1, 2]. Based on their 
high levels of expression of CD44, enriched 
populations of these cancer stem cells (CSCs) 
have been isolated and enriched from a range of 
solid tumors, including head and neck squamous 
cell carcinomas (HNSCC) [3-7]. Cells that have 
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high expression of CD44 and show stem cell 
properties are also present in cell lines derived 
from HNSCC and other malignancies [8-10]. 
CD44 is a multifunctional and ubiquitously 
expressed glycoprotein adhesion molecule 
derived from a gene with 18 exons, 9 of which are 
expressed in the standard form (CD44s) with 
alternative splicing of the remainder generating a 
great many variant (CD44v) isoforms [11]. CD44 
expression potentially influences stem cell 
behavior by a wide range of mechanisms and 
interactions with hyaluronan, its principal ligand, 
activate several signaling pathways influencing 
tumour growth, motility and metastasis [12, 13]. 
Although CD44 provides a consistent marker for 
some CSCs, the functional significance of its 
expression, and particularly of its roles in CSC 
self-renewal and differentiation, remain 
uncertain. Like CD44, RHAMM (receptor for 
hyaluronic acid-mediated motility) binds 
hyaluronan [14, 15]. Oncogenic expression of 
RHAMM has been reported for HNSCC and it 
has also been implicated in promoting 
proliferation of tumor cells [16]. One of the 
actions of RHAMM is to co-operate with CD44 
in forming complexes that coordinately activate 
the MAP/ERK1,2 pathway [17]. Such complexes 
sustain high motility of breast cancer cells but, 
while RHAMM acts partly as a non-integral cell 
surface hyaluronan receptor, it is also found as an 
intracellular protein that binds to mitotic spindles 
and has less certain functions [18]. 

Several reports have indicated a role for 
epithelial to mesenchymal transition (EMT) in 
metastasis [19, 20] and in generating cells that 
express marker patterns characterizing breast 
CSCs [21] and show enhanced resistance to 
therapeutic killing [22]. We have reported that 
these phenomena are related to the presence of 
two biologically distinct CSC phenotypes both 
of which have high levels of expression of CD44 
but differ in their levels of expression of 
Epithelial Specific Antigen (ESA) [23]. One 
phenotype has a CD44high/ESAhigh marker 
pattern, is proliferative, forms cohesive colonies 
in vitro, and has epithelial characteristics. The 
other has a CD44high/ESAlow marker pattern, is 

migratory, has mesenchymal characteristics, and 
a pattern of gene expression indicative of EMT. 
Brabletz [19] has suggested a role for EMT in 
metastasis during which CSCs undergo EMT to 
escape from the parent tumour, invade locally and 
then migrate to distant sites where they undergo 
mesenchymal to epithelial transition (MET) to 
generate secondary tumours [24]. Although CSCs 
switch both in and out of the EMT phenotype, 
only CD44high/ESAlow cells that also express 
ALDH1 are able to switch back to the 
CD44high/ESAhigh phenotype to reconstitute the 
cellular-heterogeneity typical of the original 
tumour [23]. Interestingly, in head and neck 
cancers, only CD44high cells that also express 
aldehyde dehydrogenase (ALDH) are involved 
in EMT and show high potency for tumor 
initiation [23, 24]. 

HNSCC cell lines plated at low density form a 
range of heterogeneous colony morphologies that 
corresponded to the holoclone, meroclone and 
paraclone colonies that result from the presence 
of hierarchies of cells at different stage of 
maturation [10, 25]. After single cell cloning, the 
small, tightly packed cells of holoclones have a 
persistently high proliferative potential, 
corresponding to stem cell self-renewal [25]. It 
has also been reported that self-renewing stem 
cells have the ability to form tumour spheres 
under suspension culture conditions [26] but we 
previously reported that, in HNSCC, the ability to 
form tumour spheres in suspension cultures is 
associated with EMT CSC whereas the ability to 
form holoclones under adherent condition is 
mainly a property of epithelial CSC [23]. 

Glycogen synthase kinase 3  (GSK3 ) is known 
to regulate cell cycle progression and cell 
proliferation [27]. Several oncogenic signalling 
pathways, e.g., Wnt/AKT, MAP kinase and 
phosphoinositide 3-kinase (PI3-K) pathways, act 

to inhibit the activity of GSK3  [28-29]. 

AKT-mediated inactivation of GSK3  leads to 

nuclear translocation of -catenin [29] and 

inactivation of GSK3 is thought to drive 
oncogenic progression in oral SCC through an 
accelerated cell cycle progression and enhanced 
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tumour invasion and metastasis [30]. However, 

-catenin becomes vulnerable to destruction if 
E-cadherin is lost via EMT [31] and degradation 

of membranous -catenin is necessary for the 
invasion and metastasis of oral SCC [32]. These 

recent observations suggest that GSK3  remains 
active in CSCs that have undergone EMT and 
imply an oncogenic role of GSK3 acting through 
the EMT CSC phenotype. In this study, we 

investigated the influences of GSK3  on the 
self-renewal, switching and differentiation of 

CSCs and report a GSK3 -based mechanism that 
influences these events. 

MATERIALS AND METHODS

Cell Culture 

The CA1 and LUC4 cell lines were established 
from oral SCCs [23] and the MET2 line was 
established from a cutaneous SCC [33]. All cell 
lines were grown in a highly supplemented 
epithelial growth medium (termed FAD) with 
10% FBS under 5% CO2 in air at 37°C. For 
re-plating and for assays, cells were released from 
flasks using Accutase (PAA Laboratories, 
Austria).

Colony and sphere formation assays. 

To test the ability of cells to form holoclone 
colonies [25], 5 X102 cells in 0.5 ml of medium 
were added to each well of 24 well plates and the 
number of holoclones counted 7 days after cell 
plating. For growth as tumour spheres in 
suspension cultures, 0.75 cm2 wells were coated 
with 12 mg/ml PolyHEMA (2-hydroxyethyl 
methacrylate, SIGMA) in 95% ethanol prior to 
seeding cells at a density of 2 X103 cells ⁄ well in 
0.5 ml medium with addition of 1% 
methylcellulose (Sigma) to prevent cell 
aggregation. After two weeks, plates were 
assayed visually for the formation of floating 
tumour spheres and the number of spheres 
counted. Results were expressed as the mean ± 
SD for more than 3 independent cultures. 

In vitro scratch assay 

To assess cell motility, scratch assays were 
performed as described previously [34]. A 

scratch was made on the confluent cell layers 
using 200 l micropipette tip and the wound 
monolayer was washed to remove the dislodged 
cells. The images of the wounded area were 
captured at 0h and 24h by phase contrast 
microscopy and a digital camera. Adobe 
Photoshop Elements version 4.0 software was 
used to quantify migration of cells by subtracting 
the area of the scratch remaining at 24h from the 
original scratch area which provided the 
percentage of scratch occupied by newly 
migrated cells as an index of migration. 

Fluorescence-activated cell sorting 

FACS analyses used an 
anti-CD44-PE-conjugated antibody, an 
anti-ESA-APC-conjugated antibody (both from 
BD Biosciences), and an anti-human RHAMM 
(CD168) rabbit monoclonal antibody (OriGene 
Technologies, 1:150). An anti-human 

phosphorylated-GSK3 rabbit polyclonal, which 
detects inactivating phosphorylation at ser9, was 

used to detect inactivated GSK3  (1:200, Cell 
Signaling Technology). An anti-rabbit 
FITC-conjugated antibody (1:1000, BD 
Biosciences) was used as a secondary antibody at 
dilution. DAPI was used at a concentration of 1 
µg/ml to exclude dead cells. Samples were 
assayed on a Becton Dickenson LSRII FACS 
(Oxford, UK) and sorted using Becton Dickenson 
FACSAria equipment. FACS Diva version 6.1.1. 
(BD Biosciences) software was used to analyze 
the data. Intensities of FITC fluorescent signals 

for RHAMM and phosphorylated- GSK3  were 
measured using FACS Diva version 6.1.1 
software (BD Biosciences) and shown as Mean 
±SEM. For multiple staining procedures, cells 
were fixed with 4% formaldehyde in PBS, stained 
for CD168 (RHAMM) for 1h, washed and then 
stained with an anti-rabbit secondary antibody 
(Alexafluor 488) at 1:1000 for 30 min. 
Anti-CD44 and ESA antibodies were then added. 
For CD44v staining, cells were detached using 
enzyme-free cell dissociation buffer (Invitrogen). 
They were then stained with antibodies at 1:100 
dilution in PBS (PAA). The DAPI nuclear dye 
(Sigma) was used at 1 ug/ml to exclude dead 
cells. The antibodies used were as follows; 
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PE-CD44 (clone G44-26) was from BD 
biosciences; APC-ESA (clone HEA-125) was 
from Miltenyi Biotec; PE-CD44v3 (clone 3G5) 
was from R&D systems; FITC-CD44v6 (clone 
VFF7) was from Bender Medsystems; CD44v5 
(clone VFF8) was from AbD Serotec; the FITC 
rabbit-anti-mouse secondary antibody was from 
Invitrogen. The FITC- and PE- conjugated mouse 
IgG isotype control antibodies were from BD 
Biosciences. 

Quantitative RT-PCR Analysis 

RNA was extracted by the RNAeasy micro kit 
(Qiagen) and reverse transcription into cDNA 
was conducted using the superscript III first 
strand synthesis supermix (Invitrogen). For 
QPCR of Sox2, Nanog, Oct4, Calgranulin B, 
Involucrin, and G3PDH, the quantification of 
mRNA levels was carried out using the ABI 7500 
real-time PCR system (Applied Biosystems, 
Warrington, UK) and Power SYBR green mix 
(Applied Biosystems). The reaction mixture 
contained 1.0 µg of cDNA, 12.5 µl of SYBR 
Green Mix, and 10 µmol of each pair of 
oligonucleotide primers. GAPDH was used as a 
reference mRNA control. The PCR program was 
as follows: initial melting at 95˚C for 10 min 
followed by 40 cycles at 95˚C for 15 sec, 60˚C for 
30 sec and 72˚C for 40 sec. Reverse transcribed 
Human Total Reference RNA (Stratagene, 
Cheshire, UK) was used to make a standard 
curve. PCR for the standard and variant forms of 
CD44 was performed essentially according to 
Rajarajan et al. [35] combining a CD44 standard 
sense primer with an appropriate exon-specific 
antisense primer. The reaction mixture contained 
1.0 µg of cDNA, 2.0 µl of 10X Buffer 
(TOYOBO, Japan), 2 mM of dNTPs, 10µM of 
each primer and 2.5 units/µl of Taq DNA 
polymerase (TOYOBO, Japan). The PCR 
program was as follows: initial melting at 95˚C
for 2 min followed by 35 cycles at 95˚C for 1 min, 
57˚C for 1 min and 72˚C for 2 min. PCR products 
were separated by 1.5% agarose gel 
electrophoresis. DNA ladder (100bp DNA 
Ladder, TOYOBO, Japan) was used for the PCR 
marker. 

Primer details are provided in the Supplemental 
material and the results are expressed as the Mean 
± SD for 3 independent experiments. 

Western Blotting 

The cells were lysed in RIPA buffer [2.5 mM Tris 
pH 7.3, 152 mM NaCl, 0.0005% SDS, 1% NP-40, 
CompleteMini protease inhibitor (Roche 
Diagnostic Ltd, Burgess Hill, UK)]. Protein 
concentrations were measured using a protein 
assay reagent (BIO-RAD). Protein samples (15 
µg) were solubilized in sample buffer by boiling, 
and then run in a 10% polyacrylamide gel and 
blotted onto a nitrocellulose. The bands on 
western blotting were detected using an enhanced 
chemiluminescence western blotting reagent (GE 
Healthcare). The antibodies, all used at 1:1000 
dilution, were an anti-human CD44 mouse 

monoclonal anti-body, an anti-human GSK3
mouse monoclonal antibody, and an anti-human 

phosphorylated- GSK3  (Ser9) rabbit polyclonal 
antibody (all from Cell Signaling Technology), 
an anti-human RHAMM (CD168) rabbit 
monoclonal anti-body (OriGene Technologies), 
an anti-human ERK1/2 rabbit polyclonal 
antibody, an anti-human phosphorylated-ERK1/2 
mouse monoclonal antibody, and anti-human 
GAPDH mouse monoclonal antibody (all from 
Abcam). Also used were an anti-human Vimentin 
mouse monoclonal antibody (BD Pharmingen) 
and an anti-human E-cadherin rabbit polyclonal 
antibody (Santa Cruz Biotechnology). GAPDH 
was used as a loading control in all blots. 

Inhibition of GSK3  CD44 and RHAMM 

functions

To inhibit GSK3  cells were sorted as needed 
into sub-populations and were re-plated in culture 
medium containing the inhibitor 
N-(4-Methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-
yl) urea (Calbiochem 361549) at a concentration 
of 200nM. StealthTM siRNAs were used for 

RHAMM and GSK3  knockdown (Invitrogen). 
siGLO RISC-Free Control siRNA (Thermo 
Fisher Scientific Inc) was used as control. CD44 
proteins were knocked down using siRNA 
ON-TARGET-plus SMARTpool siRNA for 
human CD44 (Thermo Fisher Scientific Inc). 
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Cells were transiently transfected with the 
indicated combinations of the siRNAs using 
HiPerFect transfection reagent (Qiagen), 
according to the manufacturer's 
recommendations. 

Immunofluorescence Microscopy 

Immunofluorescence was performed as described 
previously (16, 25). Cells were seeded onto glass 
Lab-Tek II Chamber Slides (Thermo Fisher 
Scientific Inc) and incubated for a day. The 
growth medium was then removed, and cell 
monolayers were washed three times with a 1% 
PBS solution and fixed with 3.5% 
paraformaldehyde for 10 min at room 
temperature. Cells were washed three times with 
PBS and permeabilized by Triton X-100 (0.2%, 
10 min at room temperature). Nonspecific 
binding sites were blocked by treatment at room 
temperature for 30 min with PBS containing 1% 
BSA. The cells were washed three times with 
PBS before incubating with the following 
antibodies: 1) anti-RHAMM rabbit monoclonal 
antibody (1:200, OriGene Technologies); 2) 
anti-GSK3  mouse monoclonal antibody (1:200, 
Cell Signaling Technology), 3) 
anti-phosphorylated-GSK3  rabbit polyclonal 
antibody (1:200, Cell Signaling Technology). 
Staining for RHAMM and 
phosphorylated-GSK3  used an 
Alexa-Fluor-labeled goat anti-rabbit or 
anti-mouse secondary antibodies (Invitrogen). 
Cells were counter-stained with DAPI for 
visualization of nuclear morphology. 

Statistical Methods 

At least three independent samples were available 
for all data points and statistical analyses were 
performed using a paired Student’s t-test or a 
Welch’s t-test for samples with unequal variance. 
P values less than 0.05 were regarded as 
statistically significant. 

RESULTS

CD44
high

/ESA
high

and CD44
high

/ESA
low

phenotypes are present in SCC cell lines. 

SCC cells were fractionated by 
fluorescence-activated cell sorting (FACS) using 
antibodies against CD44 and ESA (Fig 1A; 
Supplementary Fig S1A) and, as previously 
reported, CSCs include two biologically-distinct 
phenotypes [23]. Each of the cell lines examined 
contained cells with high expression of CD44 that 
were either a) ESAlow and exhibited a spindle-like 
appearance had high expression of Snail, 
Vimentin and Axl and low expression of 
E-cadherin (Fig 1B-D; Supporting Information 
Fig S1B and C) or, b) ESAhigh and formed 
holoclones, had high expression of E-cadherin, 
low expression of Snail and Vimentin and grew 
faster in adherent culture conditions than 
CD44high/ESAlow cells, (Fig 1C, D, F; Supporting 
Information Fig S1C). The CD44high/ESAlow cell 
type had mesenchymal features, generated more 
motile cells in “scratch” assays (Fig 1E; 
Supplementary Fig S1D) and was designated as 
“EMT CSC”. The CD44high/ESAhigh phenotype 
preserved epithelial characteristics, and was 
designated as “EPI CSC”. The CD44low cells 
formed only paraclone-like cells and were unable 
to form self-renewing holoclones or grow 
extensively (Fig 1B; Supplementary Fig S1B). 

GSK3 is necessary for the self-renewal of 

CSCs.

Examining the number of tumour spheres and 
holoclones formed by the EMT and EPI CSCs of 
the CA1, MET2 and LUC4 cell lines we found 
that significantly greater numbers of tumour 
spheres were formed by EMT CSCs, and of 
holoclones by EPI CSCs. The number of tumour 
spheres formed by the EMT CSCs (Fig 2A) 
appeared to correlate with the size of the fraction 
of EMT CSCs present in the unsorted parental 
population (7.5%, 16.5% and 21.0% in CA1, 
MET2 and LUC4, respectively). 

Western blotting to assess total GSK3 and

phosphorylated-GSK3  indicated a relationship 
between the self-renewal ability of CSCs and 
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GSK3  activity. In the high sphere-forming 
MET2 and LUC4 lines, the CD44high/ESAlow cells 

had low levels of phosphorylated-GSK3
whereas in the low sphere-forming CA1 line the 
CD44high/ESAlow cells exhibited higher 

expression of phosphorylated-GSK3 (Fig 2B). 
FACS analyses of EMT CSCs, EPI CSCs and 
CD44low cells for their levels of 

phosphorylated-GSK3  used a triple combination 
of antibodies against CD44, ESA and 

phosphorylated-GSK3  These showed that 
within each line, the EMT CSCs had the lowest 

expression of phosphorylated-GSK3  and 
CD44low cells the highest (Supplementary Fig 
2A). Western blots showed high levels of CD44 

and low levels of phosphorylated-GSK3  in EMT 
cells (Figure 2B). Quantitative analyses indicated 
that these differences were significant and that 
sphere forming ability correlated negatively with 

levels of phosphorylated-GSK3  (Supplementary 

Fig S2 B, C). Given that GSK3 is inactivated by 
phosphorylation at ser9, it appears that tumour 
sphere formation in suspension culture, a 
property indicative of maintenance of a stem cell 

state, is correlated with highly active GSK3 .

To clarify potential roles of GSK3 in the 
self-renewal of CSCs, the formation of tumour 
spheres and of holoclones was examined after 

GSK3  inactivation using either chemical 

inhibition or siRNA knockdown. After GSK3
inactivation, no significant changes in the overall 
growth rates of CD44high/ESAlow or 
CD44high/ESAhigh cells were observed after 7 days 
of adherent culture (Supplementary Fig S3A). 

However, inactivation of GSK3  clearly 
decreased tumour sphere formation by 
CD44high/ESAlow cell fractions (Fig 2C and D; 
Supporting Information Fig S3B-D). After 

inhibition of GSK3  the number of holoclones 
formed by CD44high/ESAhigh cells decreased for 
each of the LUC4, MET2 and CA1 cell lines 
indicating their loss of self-renewal abilities (Fig 
2E; Supplementary Fig S3E and F). Collectively, 

these results indicate that active GSK3 is
necessary for the self-renewal of both EMT and 
EPI CSCs. 

Self-renewing CD44
high

/ESA
low

 cells show less 

GSK3 phosphorylation

Immunofluorescence indicated the uniform 

cytoplasmic presence of GSK3  in nearly all 
CD44high/ESAlow and CD44high/ESAhigh cells (Fig 
2F). However, staining for phosphorylated 

GSK3  showed the lowest expression in 

CD44high/ESAlow cells higher expression in 
CD44high/ESAhigh cells, and the highest 
expression in CD44low cells (Fig 2F). Nuclear 

staining for GSK3 was high in ESAlow cells, 
intermediate in ESAhigh cells, and lowest in 
CD44low cells but nuclear staining for 

phosphorylated GSK3 was generally absent (Fig 
2G). Very few of the cells present in tumour 
spheres showed expression of 

phosphorylated-GSK3 (Fig 2G) These
observations are consistent with the results of 

western blotting for phosphorylated-GSK3 ( Fig
2B) and provide further support for the notion that 

non-phosphorylated GSK3  (i.e., active 

GSK3 plays a central role in maintaining the 
self-renewing state of EMT and EPI CSCs. 

CSC expression of stem cell markers is 

reduced in by GSK3  inhibition. 

To further clarify the role played by GSK3  in 
the maintenance of CSCs, mRNA expression of 
the stem cell markers Sox2, Oct4 and Nanog was 
evaluated by RT-PCR. Except for Sox2 in 

CD44high/ESAhigh cells, inactivation of GSK3
significantly reduced each of these markers in 
both CD44high/ESAlow and CD44high/ESAhigh cells 
(Fig 3A and B). These findings further indicate a 

critical role played by GSK3  in the maintenance 
of the stem cell state of CSCs. 

Inactivation of GSK3  induces cell 

differentiation. 

To examine roles of GSK3  in maintaining the 
EMT and EPI CSC phenotypes, changes in the 
proportions of CD44high/ESAlow,
CD44high/ESAhigh and CD44low cells were 

examined after GSK3  inhibition or knockdown. 
For all cell lines, the percentage of both 
CD44high/ESAlow and CD44high/ESAhigh cells 
decreased, but the percentage of CD44low cells 
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consistently increased (Fig 3C; Supplementary 
Fig S4A). The increase in CD44low cells
suggested a shift of CSCs into differentiation, a 
change that would be expected to increase 
expression of epithelial differentiation markers 
such as Involucrin and Calgranulin B. 

Inactivation of GSK3  produced significantly 
increased levels of expression of these genes in 
CD44high/ESAhigh cells (Fig 3D and E) indicating 

that GSK3 acts to suppress entry of CSC into 
differentiation.

To examine more closely how knockdown of 

GSK3  influences the differentiation of EPI 
CSCs, CD44high/ ESAhigh cells were sorted for 
single cell cloning and clones derived from 
individual CD44high/ESAhigh cells were examined 
after 4 weeks of growth in culture. All clones 
produced CD44low populations (Supplementary 
Fig S5A). For all CD44high/ESAhigh clones, knock 

down of GSK3  reduced the formation of 
holoclones (Supplementary Fig S5A S5A). It also 
increased the size of the CD44low population
identified by FACS analysis (Supplementary Fig 
S5B), supporting the concept that inhibition of 

GSK3 attenuates self-renewal and induces 
differentiation of EPI CSCs. 

Inactivation of GSK3 promotes MET of 

CD44
high

/ESA
low 

cells.

Lack of induction of differentiation markers in 

CD44high/ESAlow cells after GSK3  inhibition 
suggested that EMT CSCs do not directly enter 
terminal differentiation. However, 

GSK3 inhibition was found to lead to a reduced 
percentage of EMT CSCs (Fig 3C; 
Supplementary Fig S4A), less expression of Snail 
and Vimentin, and increased expression of 
E-cadherin (Supplementary Fig S4B). This 
indicated a shift of EMT CSCs into the 
CD44high/ESAhigh phenotype, suggesting 
maintenance of cells in the CD44high/ESAlow cell

compartment requires active GSK3 .

To examine the phenotypic plasticity of EMT 
CSCs in terms of their ability to switch back to 
the EPI CSC phenotype, CD44high/ESAlow cells 
were sorted for single cell cloning. Initially all 

developing clones formed cells with a 
spindle-like appearance. After 8 weeks of culture 
the clonal populations were examined by FACS 
and this showed that of the 17 single cell clones 
examined, 8 maintained an entirely 
CD44high/ESAlow identity without any cells 
switching into the EPI CSC phenotype (Fig 4A). 
These were termed Type 1 clones. The formation 
of tumour spheres by Type 1 clones was 

significantly suppressed by  knockdown of 

GSK3 . However, FACS analyses indicated that 
this was not associated with a switch into the EPI 
CSC phenotype (Fig 4A and B). Nine of the 17 
single cell clones derived from CD44high/ESAlow

cells were able to switch and gave rise to both 
CD44high/ESAlow and CD44high/ESAhigh cell 
populations. These clones initially displayed a 
spindle-like appearance (Fig 4C, left) but by 8 
weeks of culture had visibly generated a mixture 
of both EMT and epithelial cells (Fig 4C, right). 
Interestingly, for all of these clones, termed Type 

2 clones, inactivation of GSK3  greatly 
accelerated the transition into CD44high/ESAhigh

cells and produced a marked shift towards the EPI 
CSC phenotype within 5 days (Fig 4D). 

Inactivation of GSK3 in Type 2 clones 
significantly decreased expression of Snail and 
Vimentin and up-regulated expression of 
E-cadherin (Fig 4E), findings consistent with loss 

of GSK3 activity promoting a switch of EMT 
CSCs back towards the EPI CSC phenotype. 

CD44 and RHAMM are required for 

self-renewal of CSCs and regulate GSK3

CD44high/ESAhigh cells showed considerably 
higher expression of RHAMM than 
CD44high/ESAlow cells (Fig 5A, Supplementary 
Fig S4A) and FACS analysis, using triple staining 
for CD44, ESA and FITC-labeled RHAMM, 
confirmed that RHAMM was most highly 
expressed on CD44high/ESAhigh cells (Fig 5A). 
Immunofluorescent staining confirmed 
expression of both RHAMM and CD44 in 
CD44high/ESAhigh holoclone cells (Fig 5B). Both 
RHAMM and CD44 knockdown resulted in 
phosphorylation (inactivation) of GSK3  and 
phosphorylation (activation) of ERK1/2 (Fig 
5C). Holoclone formation by CD44high/ESAhigh 
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cells was significantly inhibited by both 
RHAMM and CD44 knockdown (Fig 5D). 
Knockdown of CD44 caused a significant 
decrease in the number of tumour spheres formed 
by CD44high/ESAlow cells but, in contrast, 
knockdown of RHAMM did not (Fig 5E). CD44 
and RHAMM knockdown also significantly 
decreased expression of Sox2, Nanog and Oct4 in 
CD44high/ESAhigh cells (Fig 5F) and it also 
up-regulated expression of the differentiation 
markers Involucrin and Calgranulin B (Fig 5G). 
These results support the notion that CD44 is 
required for self-renewal of both EPI and EMT 
CSCs, whereas RHAMM is required for 
self-renewal only of EPI CSCs. Both CD44 and 
RHAMM contribute towards maintenance of 
active GSK3, potentially through blocking the 
activation of ERK1/2, which is a known inhibitor 
of GSK3  [36]. 

Due to alternatively spliced exon products, CD44 
exists as a standard form and as range of variant 
isoforms whose differential expression has been 
linked to the behavior of head and neck cancers 
and to EMT [11, 13, 37]. For the Ca1 and Met 2 
cell lines, Epi CSCs have higher expression of 
variant isoforms than EMT CSCs [37]. Therefore, 
to assess the expression pattern for the LUC4 cell 
line used in the present study, cell subpopulations 
were examined for the expression of standard and 
variant isoforms by flow cytometry and by 
QPCR. Cytometry of cells stained with antibodies 
against total CD44 and ESA showed similar 
levels of CD44 surface expression on both 
ESAhigh and ESAlow cells. However, staining for 
the CD44v3, v5 and v6 isoforms indicated 
markedly less expression of these isoforms on the 
ESAlow EMT cell fraction. QPCR for the v3, v4, 
v5, v6 and v7 isoforms similarly indicated their 
low expression in the CD44high/ESAlow EMT cell 
fraction compared with the Epi CSC, parental or 
CD44low cell fractions, whereas the standard 
CD44 isoform was more highly expressed in the 
EMT and Epi CSC fractions than in the parental 
and CD44low fractions (Figure S6). 

DISCUSSION

The use of CD44 to identify a population of 
highly tumorigenic cells has been described for 
HNSCC as well as for breast, colon, prostate and 
other cancers [3-5, 7]. However, the mechanisms 
maintaining the balance between self-renewal 
and differentiation of CD44high CSCs have been 
uncertain and recently this problem has been 
further complicated by work indicating the 
presence of two biologically-distinct phenotypes 
of CSCs in HNSCC and breast cancers [23, 38]. 
In HNSCC, both CSC phenotypes are relatively 
CD44high but one is ESAhigh and the other ESAlow.
Consequently, three distinct cell sub-populations 
can be identified: CSCs with an EMT phenotype, 
CSCs with an epithelial phenotype, and CD44low

cells that have entered the differentiation pathway 
and lost self-renewal ability [23]. In this study, we 
have begun to examine transitions occurring 
between these cell types and have focused on 

potential roles of GSK3  in mediating the choice 
between their self-renewal and differentiation. 
Assessment of sphere formation and 

clonogenicity after GSK3 inhibition 

demonstrated that GSK3  is required to maintain 
both CD44high/ESAlow and CD44high/ESAhigh cells 
in a self-renewing state. This finding is 
strengthened by the lack of significant levels of 

inactive (phosphorylated) GSK3  in either of the 
self-renewing sphere-forming or 
holoclone-forming populations. The few 
holoclones that continued to grow in the presence 

of GSK3  inhibitor showed lack of 
phosphorylation (Figure 5B) and inactivation of 

GSK3  reduced the population of 
CD44high/ESAhigh cells and shifted cells into the 
CD44low compartment with loss of self-renewal 
ability.

Under various pathological conditions, upstream 
signal pathways such as PI3K/AKT, 
Raf/MEK/ERK and Wnt induce phosphorylation 
and inactivation of GSK3  [29, 30, 39]. Our 
observations indicate that the preservation of 

functionally active GSK3  is required for CSC 
self-renewal and that this is promoted by 
signalling pathways initiated by CD44 and 
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RHAMM. One action of CD44 is to inhibit 
phosphorylation of AKT, thus preventing AKT 
from phosphorylating GSK3  at Ser9 and 
inhibiting its activity [40, 41]. In oral SCC, 
RHAMM has an important role in promoting 
tumor proliferation [42] and, like CD44, 
RHAMM have been shown to act together in a 
hyaluronan-dependent autocrine mechanism to 
co-ordinate signaling that sustains cancer cell 
motility [18]. Knockdown of CD44 induced 
phosphorylation of GSK3  and reduced the 
holoclone forming ability of EPI CSCs and the 
sphere forming ability of EMT CSCs. 
Phosphorylation of GSK3  induced by 
knockdown of RHAMM similarly reduced 
holoclone forming ability but had less effect on 
sphere formation. These results indicate that 
CD44 and RHAMM act upstream to prevent 
GSK3  phosphorylation and maintain activities 
necessary to promote CSC self-renewal. High 
levels of expression of CD44 are associated with 
stem cell properties such as self-renewal [12] and 
also commonly mark CSCs isolated both from 
fresh tumours and from malignant cell lines 
[3-10]. A switch from variant CD44 isoforms to 
the standard isoform appears necessary for EMT 
in breast cancer cells where the epithelial 
phenotype is maintained by the expression of 
ESRP1 (epithelial splicing regulatory protein-1) 
which promotes alternative splicing [43]. The low 
expression levels of variant CD44 isoforms by 
EMT CSCs of our oral cancer cell lines suggests 
that the standard CD44 isoform, which is 
expressed by both CSC phenotypes, may be 
required for the self-renewal of stem cell 
compartments while the variant isoforms are 
associated with maintenance the epithelial 
phenotype.

Brabletz [19] has proposed that invasion and 
metastasis are dependent both on EMT and on the 
reverse process of mesenchymal to epithelial 
transition (MET): whereas EMT initially 
provides cells with the ability to escape from a 
tumour and migrate to distant sites, MET is 
subsequently required to restore the epithelial 
nature of developing secondary tumours. A great 
deal is now known about EMT and about the 

cytokines and growth factors in the tumour 
environment that induce EMT [20, 44, 45]. 
However, much less is known about factors that 
induce MET [46, 47]. Some EMT CSCs have the 
ability to switch spontaneously into the EPI CSC 

phenotype [23] and GSK3 , in addition to its 
roles in self-renewal, also appears to influence 
this transition. When the high levels of active 

GSK3  normally present in CD44high/ESAlow 

cells are knocked down, cells that are capable of 
shifting into the CD44high/ESAhigh phenotype do 
so more rapidly. Signalling through GSK3  may 
thus be a key regulator of the MET shift that 
enables metastatic tumour cells to produce new 
tumours at secondary sites. 

Figure 6 illustrates the proposed roles of active 

GSK3  in promoting the self-renewal of both 
EMT and EPI CSCs and the effects of loss of its 
activity on the MET of EMT CSCs and the 
differentiation of EPI CSCs. Typically, the bulk 
of tumour cells, both in vivo and in cell lines, is 
not self-renewing and consists of CD44 low 

differentiating cells [23]. In the presence of active 

GSK3  the EPI CSC fraction is self-renewing 

but with loss of GSK3  activity this fraction 
generates differentiating CD44low cells. The EPI 
CSC fraction is also able to undergo EMT to 
generate the EMT CSC fraction, a transition 
influenced by autocrine and paracrine actions of 

cytokines such as TGF  [20, 44]. EMT CSCs are 
also able to self-renew and to switch back to the 
EPI CSC phenotype and, although the mechanism 
inducing this change is unclear, it is associated 

with loss of GSK3  activity. GSK3  is thus key 
to the regulation of the choice between CSC 
self-renewal and differentiation. Inducing loss of 

GSK3  activity might therefore be used 
therapeutically to enhance differentiative loss of 
the EPI CSC phenotype. However, blocking 

GSK3  activity may have conflicting results in 
terms of tumour behavior. Its loss, by reducing 
the self-renewal ability of CSCs, should reduce 
the CSC population, but the promotion of MET 

by inactivation of GSK3  may aid development 
of secondary metastatic tumours. However, it 
now seems apparent that tumour growth depends 
on self-renewal of CSCs, and that tumour 
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invasion and metastasis is related to EMT and the 
reverse process of MET. A better understanding 
of how these processes are controlled and 
sustained seems necessary to enable future 
therapies to successfully manipulate loss of both 
EMT CSC and EPI CSC, an effect apparently 
required for eradication of an entire tumour. 
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Figure 1. SCC cell lines contain distinct CSC phenotypes. (A) LUC4 cells show the CD44high/ESAlow,
CD44high/ESAhigh and CD44low populations. (B) Phase contrast appearance of re-plated parent and sorted 
populations. (C) EMT markers assessed by PCR analyses and (D) western blotting. (E) Assay indicating 
greater migration of CD44high/ESAlow cells. (F) Cell counts indicating lower rate of growth of CD44high

/ESAlow cells. 
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Figure 2. GSK3 is essential for tumour sphere and holoclone colony formation. (A) Tumour sphere 
formation by CD44high/ESAlow and CD44high/ESAhigh cells. (B) Total and phosphorylated GSK3 asessed 

by western blotting. (C,D,E) Tumour sphere and holoclone formation reduced by GSK3  inhibition or 

knockdown. IF staining for total (left) and phosphorylated (right) GSK3 in adherent cultures (F). Cell 

sub-populations stained for total (left) and phosphorylated (right) GSK3  to show presence or absence 
of nuclear staining (G, upper 3 sets of panels) (G). Lower panels, tumour spheres stained for total and 

phosphorylated GSK3 , and also DAPI to show nuclei. 
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Figure 3. GSK3 inhibition reduces expression of stem cell markers and increases differentiation 

markers. GSK3 inhibition and knockdown lead to lower expression of Sox2, Oct4, and Nanog (A, B), 
to significant changes in the proportions of CD44high/ESAlow, CD44high/ESAhigh and CD44low cell 
indicated by FACS analyses (C), and altered patterns of expression of Involucrin and Calgranulin B 
(D,E).
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Figure 4. Single cell cloning of CD44high/ESAlow CSCs. Some clones produced only CD44high /ESAlow

spindle-like populations (A) and for these clones GSK3 knockdown (B) did not induce a shift towards 

an EPI CSC population. Other clones generated mixed EMT and EPI CSC populations (C). GSK3
knockdown accelerated their shift towards the CD44high/ESAhigh phenotype (C) and down-regulated 
Snail and Vimentin and up-regulated E-cadherin (E). 
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Figure 5. CSC self-renewal requires CD44 and RHAMM. RHAMM expression was higher in 
CD44high/ESAhigh cells (A). Holoclone cells showed staining for both RHAMM and CD44, and cells of 
the few holoclones continuing to grow in the presence of inhibitor had escaped GSK3  phosphorylation 
(B). Knockdown of RHAMM or CD44 in CD44high/ESAlow cells increased phospho-GSK3  and 
phospho-Erk (C). In CD44high/ESAhigh cells it suppressed holoclone and sphere formation (D,E), reduced 
stem cell markers (F), and increased Calgranulin B and Involucrin (G). 
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Figure 6. GSK3  maintains CSCs in a self-renewing state and its inhibition induces MET or 

differentiation of CSCs. This diagram summarizes changes in CSC populations associated with GSK3
activity. For description see text. 
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