
Sparse Representations & Compressed Sensing with application to the

problem of Direction-of-Arrival estimation.
Gretsistas, Aris

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/8463

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/8463


Sparse Representations & Compressed Sensing

with application to the problem of

Direction-of-Arrival estimation

Aris Gretsistas

Thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

School of Electronic Engineering and Computer Science

Queen Mary University of London

April, 2013



2

I declare, as the author of this thesis, that the material contained within this thesis

is to the best of my knowledge, original work, and all references are cited accordingly.

Information from it may be freely used with acknowledgement.

Aris Gretsistas

c© Copyright by Aris Gretsistas 2012.

All rights reserved.



3

Abstract

The significance of sparse representations has been highlighted in numerous signal pro-
cessing applications ranging from denoising to source separation and the emerging field
of compressed sensing has provided new theoretical insights into the problem of inverse
systems with sparsity constraints.

In this thesis, these advances are exploited in order to tackle the problem of direction-
of-arrival (DOA) estimation in sensor arrays. Assuming spatial sparsity e.g. few sources
impinging on the array, the problem of DOA estimation is formulated as a sparse repre-
sentation problem in an overcomplete basis. The resulting inverse problem can be solved
using typical sparse recovery methods based on convex optimization i.e. `1 minimization.
However, in this work a suite of novel sparse recovery algorithms is initially developed,
which reduce the computational cost and yield approximate solutions. Moreover, the
proposed algorithms of Polytope Faces Pursuits (PFP) allow for the induction of struc-
tured sparsity models on the signal of interest, which can be quite beneficial when dealing
with multi-channel data acquired by sensor arrays, as it further reduces the complexity
and provides performance gain under certain conditions.

Regarding the DOA estimation problem, experimental results demonstrate that the
proposed methods outperform popular subspace based methods such as the multiple
signal classification (MUSIC) algorithm in the case of rank-deficient data (e.g. presence
of highly correlated sources or limited amount of data) for both narrowband and wideband
sources. In the wideband scenario, they can also suppress the undesirable effects of spatial
aliasing.

However, DOA estimation with sparsity constraints has its limitations. The com-
pressed sensing requirement of incoherent dictionaries for robust recovery sets limits to
the resolution capabilities of the proposed method. On the other hand, the unknown
parameters are continuous and therefore if the true DOAs do not belong to the prede-
fined discrete set of potential locations the algorithms’ performance will degrade due to
errors caused by mismatches. To overcome this limitation, an iterative alternating de-
scent algorithm for the problem of off-grid DOA estimation is proposed that alternates
between sparse recovery and dictionary update estimates. Simulations clearly illustrate
the performance gain of the algorithm over the conventional sparsity approach and other
existing off-grid DOA estimation algorithms.
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Chapter 1

Introduction

One of the main challenges in many signal processing applications is to furnish compact

and effective representations of high dimensional data that can retain the main struc-

tures inherent in the signal of interest. These compact representations are commonly

referred to as sparse representations and they are concerned with the construction of sig-

nal models that involve the linear combination of a few elementary components (known

as atoms) drawn from a large set of vectors (known as a dictionary). The field of sparse

representations has rapidly evolved to become a very large scientific research area, with

widespread applications, ranging from data acquisition and signal recovery to denoising

and source separation. As an outcome, a significant amount of study has been conducted

in order to give answers to questions such as how to find “good” bases or overcomplete

dictionaries in terms of adaptability for a given class of signals. This extensive study has

led to some interesting theoretical developments, and the birth of related fields such as

compressed sensing. Compressed sensing provides a new revolutionary sampling scheme,

which based on the sparsity assumption goes beyond conventional sampling principles,

posing a challenge to traditional signal processing compression fundamentals. According

to this scheme, compression is achieved by subsampling at very low rates. The under-

lying dimensionality reduction is accomplished by deploying random projections, which

can have great importance from a practical perspective. When the sparsity assumption

holds, the undersampled data can be sufficient for the perfect recovery of the original

signal. In this sense, the framework of compressed sensing promises unification of the
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concepts of sampling and compression.

Notwithstanding that much progress has been made in the field of sparse represen-

tations and compressed sensing, along with their related applications, it is generally

believed that the aforementioned frameworks have not yet reached their full potential,

since many issues in practical applications either have not yet been completely realised

or have remained unexplored. To the best of the author’s knowledge, among various ap-

plications direction-of-arrival (DOA) estimation and source localization is a major field

that the exploitation of sparsity has not been fully utilized.

The main objective in DOA estimation is to find the location of the sources impinging

on an array of sensors. In order to do this, the spatial field is first sampled and then the

obtained measurements are processed in order to retrieve information about the location

of the sources. This information is of crucial importance for many signal processing

tasks. For instance, in an acoustic environmental setting, accurate localization of the

sound sources could lead to audio enhancement or improved source separation.

1.1 Motivations

The groundbreaking work of Malioutov et al. [3] has shown that the source localization

problem can be formulated as an inverse sparse recovery problem when the assumption

of spatial sparsity holds, implying that there are only a few sources to be localized. Un-

like the classic array processing methods that treat the problem of DOA estimation as

a parameter estimation problem, the sparsity based approach has proven to be quite

successful in scenarios where the amount of samples is not sufficient or when the in-

coming sources are highly correlated. However, the sparsity based approach involves

the inversion of a non-trivial underdetermined system of linear equations through the

appropriate regularization. Although recent advancements in sparse regularization have

shown that the optimization task can be tackled using principled methods that perform

global optimization, their convergence might be slow for practical applications dealing

with large scale data, including DOA estimation. On the other hand, heuristic based

greedy approaches might provide faster convergence with the price of lower precision so-

lutions. This is due to the fact that greedy methods are iterative in nature performing a

local optimization at each step instead of minimizing a global criterion. Apart from the



22

sparse regularization, little effort has been made to incorporate further structure to the

problem.

All these observations give rise to questions such as: How one can build more efficient

application oriented methods that could also incorporate additional structures? Could

the compressed sensing framework provide further meaningful insights to the problem of

DOA estimation? Is there any link between the classic array processing methods and the

sparsity based ones?

In this work, all these questions are addressed and for this reason, the problem of

DOA estimation is thoroughly examined from a sparse representation point of view. As a

result, this work contributes on building efficient algorithms that incorporate additional

structures, without overlooking the theoretical aspects of the problem.

1.2 Aim

The aim of this thesis is to investigate sparse recovery methods and their application

to the problem of DOA estimation. To do this, the focus is initially drawn on the

sparse representation problem and an attempt is made to develop novel algorithms of

general use that leverage the benefits of the principled regularization approaches with

the advantages of the greedy approaches. Among the main objectives of this thesis is to

provide algorithms suitable for large scale recovery problems that can also incorporate

additional structure that the signals of interest might exhibit. The goal then is to show

how these developed structures can be applied to the problem of DOA estimation and

source localization. The identification of some limitations of the specific framework leads

to the proposal of novel techniques that serve as improvements to the original sparsity

based approach.

1.3 Thesis overview

Chapter 2 contains the background and existing research with which this thesis is mainly

concerned. First of all, the problem of DOA estimation in sensor arrays is formally intro-

duced. The signal model for the scenario of far-field narrowband propagation is built and

the main array processing methods related to this work are presented. After identifying

the link between the array processing methods and sparsity, a thorough introduction
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to the basic fundamentals and principles of sparse recovery and compressed sensing is

provided.

Chapter 3 focuses on the development of fast sparse recovery algorithms, which are

suitable for large scale inverse problems. More specifically, a fast implementation of

the iterative method of Polytope Faces Pursuit (PFP) [1] is proposed that updates the

solution vector at each iteration using the method of conjugate gradients. Stepwise and

stagewise criteria are adopted in the discussion that follows and rigorous theoretical

findings along with experimental results demonstrate the robustness of the proposed

algorithms.

Chapter 4 investigates the problem of structured sparsity. In more detail, the group

sparse recovery problem is first introduced and alternative constraints that need to be

imposed on the optimization task are examined. Therefore, the conventional sparsity

algorithm is extended to the group sparsity case in order to develop the Group Polytope

Faces Pursuit (GPFP) algorithm. Theoretical and empirical results demonstrate the su-

periority of GPFP over the conventional sparsity approach in the group sparse scenario.

Finally, the problem of joint sparsity over multiple measurement vectors is presented

and accordingly an extension of the original algorithm is proposed. Although theoret-

ical results fail to predict any performance gain over the conventional sparsity model,

experimental results reveal its improved performance in joint sparse recovery.

Chapter 5 investigates the applicability of the developed sparse recovery algorithms

to the problem of DOA estimation and source localization. After the angular space

is appropriately discretized and the importance of various parameters of the problem,

such as spacing and number of sensors, is highlighted, it is shown that under certain

assumptions (i.e. the number of sources or the noise level is known) the developed suite

of algorithms can achieve accurate DOA estimation. Experimental results confirm the

advantages of the proposed approach over the classic array processing techniques. At

the same time, certain modifications of the algorithm also provide enhanced performance

when compared to the sparsity based work of [3]. The problem of wideband DOA estima-

tion assuming far-field and near-field propagation is then examined. The presented work

shows how limitations of the classic array processing methods, such as spatial aliasing

can be overcome in this case by exploiting the underlying structured sparsity.
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Chapter 6 presents a novel algorithm that tackles the problem of off-grid DOA es-

timation under sparsity constraints. The main limitation of the sparsity based source

localization framework is the assumption that the DOAs of the incoming sources exactly

match the ones contained in the discrete angular grid. Instead of constructing a finer grid,

the proposed approach is an iterative algorithm, which at each step attempts to redefine

the dictionary based on the Taylor approximation. Experimental results demonstrate

the performance gain when the DOAs of the sources are off the predefined grid.

Chapter 7 concludes this thesis and summarizes its main contributions. Prospects for

further research are also considered.

1.4 Associated publications

This thesis is partly derived from the following previously published work by the author:

• Parts of Chapter 3 were originally published at the 2010 IEEE International Con-

ference on Acoustics Speech and Signal Processing (ICASSP 2010) [4] and at the

2010 conference on Information Representation and Estimation (INSPIRE 2010)

[5].

• Parts of Chapter 4 were originally presented at the 10th international conference

on Latent Variable Analysis and Signal Separation (LVA/ICA 2012) [6].

• Parts of Chapter 5 were originally presented at the 9th international conference on

Latent Variable Analysis and Signal Separation (LVA/ICA 2010) [7] and at the 2011

workshop on Signal Processing with Adaptive Sparse Structured Representations

(SPARS11) [8].

• Parts of Chapter 6 were originally published at the 20th European Signal Processing

Conference (EUSIPCO 2012) [9].
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Chapter 2

Background

To establish the basis upon which this thesis will be developed, this chapter provides

the background theory of the main research topics related to this work. First of all, the

discussion focuses on the problem of direction-of-arrival (DOA) estimation using sensor

arrays. The signal model is built and the main array processing approaches to spatio-

temporal spectral analysis are presented. A short overview of the methods that attempt

to reformulate the DOA estimation problem as a sparse recovery problem follows.

Then, the purposes and main concepts of sparse signal representations and compressed

sensing are examined. The chapter closes with a brief discussion of their basic theoretical

background and most popular algorithms.

2.1 Direction-of-arrival estimation

Direction-of-arrival estimation using sensor arrays has been an active research field, play-

ing a fundamental role in many signal processing areas such as radar [10], sonar [11],

seismology [12] and acoustic tracking [13]. The main objective in the DOA estimation

or source localization problem is to estimate the spatial energy spectrum and therefore

determine the number and location of the sources of energy. To do this, temporal and

spatial information is first obtained by sampling the wave field with sensor arrays and

then processed with the aim to reveal the directions of the emitting sources that form

this wave field. Put another way, DOA estimation is a parameter estimation problem.

Its origins date back to the 1940s, when the first attempt on spectral analysis using
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spatio-temporally sampled data was conducted [14]. From then onwards, there has been

ongoing research in the field of source localization with the goal of developing methods

that do not only yield accurate estimates under ideal conditions, but more importantly

are robust to non ideal conditions such as noisy measurements, limitations on the number

of measurements, the aperture size of the array or the number of sensors.

What follows serves as a brief introduction to the problem of DOA estimation of

sources that impinge on a linear array of sensors. After the formal description of the

conventional array signal model, an overview of the most popular DOA estimation meth-

ods from the field of array processing is given. Finally, this section outlines that under

certain assumptions a formulation of the DOA problem as an underdetermined inverse

sparse recovery problem is plausible. This has also been highlighted in numerous recently

emerging alternative methods [3, 15, 16, 17, 18, 19, 20].

2.1.1 Signal model & problem formulation

Figure 2.1: Impinging plane wave on a uniform linear array of M sensors with inter-
element spacing d.

Consider a uniform linear array (ULA) of M sensors with inter-element spacing d, as

illustrated in Fig. 2.1. The sensors sample spatially the wave field, which is assumed to

be generated by a finite number of emitting sources. The sources are assumed to have

negligible extent relative to the aperture size of the array, so that they can be modelled

as point sources. The medium is considered homogeneous and therefore the propagating

speed is constant. The propagating waves corresponding to the emitters are considered
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either spherical or planar waves, depending on the distance between the ULA and the

location of the emitting sources [3]. In the former case, which is known as the near-field

case, the sources are located relatively close to the array; while in the latter case, known

as the far-field propagation model, the location of the sources is far with regards to the

aperture size of the array.

For simplicity without loss of generality, it is assumed that one plane wave propagating

from the far-field impinges on the array from an unknown direction (Fig. 2.1). It is

also assumed that the signal is narrowband (i.e. digital modulated signal with carrier

frequency fc). A narrowband source is modelled as a complex envelope (or complex

bandpass signal):

x̂(t) = x(t)ejωct (2.1)

where ωc = 2πfc is the carrier frequency and x(t) is the baseband signal [21, 22]. Each

sensor captures the incoming signal with a time delay. In the noiseless case, the signal

received by the m-th sensor is given by:

ym(t) = x(t− τm)ejωc(t−τm). (2.2)

The narrowband assumption implies that the spectrum of the narrowband signal is

band-limited to the region:

|ωL| ≤ πBs (2.3)

where ωL , ω−ωc and πBs specifies the maximum signal bandwidth. If it happens that

the bandwidth of the signal is much less than 1/τm (Bsτm << 1), then one can make use of

the narrowband approximation, which allows to ignore the delay τm from the baseband

signal x(t − τm) ≈ x(t). This is because in that case the signal changes very slowly

relative to the travel time across the aperture of the ULA. Taking this approximation

into account, equation (2.2) becomes:

ym(t) ≈ x(t)ejωcte−jωcτm , for m = 1, 2, . . . ,M. (2.4)

In practice, the dependence on the term ejωct is usually dropped. It follows that the
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sensors will capture:

y1(t) = x̂(t− τ1) ∝ x(t)e−jωcτ1 = x(t)e−j2πfcτ1

y2(t) = x̂(t− τ2) ∝ x(t)e−jωcτ2 = x(t)e−j2πfcτ2

· · · · · · · · ·

yM (t) = x̂(t− τM ) ∝ x(t)e−jωcτM = x(t)e−j2πfcτM

(2.5)

where τm = (m − 1)d cos(θ)/c if the first sensor of the array is the phase reference, c is

the propagation speed and m represents the sensor index. Therefore, the sensor array

output can be modelled as:

y(t) =


e−j2πfcτ1

e−j2πfcτ2

. . .

e−j2πfcτM

x(t) + n(t) = a(θ)x(t) + n(t) (2.6)

where n(t) = [n1(t), . . . , nM (t)]T is the M×1 vector corresponding to the additive noise

at the sensors and a(θ) is the linear array response to the impinging plane wave that can

be expressed as:

a(θ) =
[
e−j2πfcτ1 , e−j2πfcτ2 , . . . , e−j2πfcτM

]T
(2.7)

or:

a(θ) =
[
1, e−j2πfcd cos(θ)/c, . . . , e−j2π(M−1)fcd cos(θ)/c

]T
(2.8)

after the substitution of the time delays τm for each sensor. Equation (2.6) can be easily

generalized for multiple directions of arrival corresponding to multiple propagating plane

waves:

y(t) =

K∑
j=1

a(θj)xj(t) + n(t) = A(θ)x(t) + n(t) (2.9)

where

A(θ) = [a(θ1), a(θ2), . . . , a(θK)] (2.10)

is the M ×K matrix containing the array responses to all impinging plane waves,

x(t) = [x1(t), x2(t), . . . , xK(t)]T (2.11)
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is the K × 1 vector that contains the K plane waves impinging on the ULA and

θ = [θ1, θ2, . . . , θK ]T (2.12)

is the K × 1 vector that contains the DOAs of the incoming signals.

2.1.2 Spatial aliasing

In the above discussion, a ULA geometry with inter-sensor spacing d was assumed. How-

ever, for the design of a non-degenerate array structure (which is spatial aliasing free) the

spacing d should be chosen appropriately. More specifically, the phase difference should

be restricted to π:

2πfc∆τ ≤ π (2.13)

in order to avoid the undesirable effects of spatial aliasing. This type of aliasing is identical

to the problem of aliasing in time series analysis and can introduce ambiguities to the

non-trivial task of DOA estimation, which may make localization impossible [21]. This

places an important restriction on the geometry of the ULA. Replacing ∆τ = d cos(θ)/c

in equation (2.13) and after some manipulation, it yields:

d ≤ 1

2

c

fc

1

cos(θ)
. (2.14)

The denominator of the right hand side of the above inequality takes its maximum value

at θ = 2kπ, where k = 0, 1, 2, . . .. Therefore, substituting cos(θ) = 1 and the wavelength

λ = c/fc, equation (2.14) reduces to the following inequality:

d ≤ λ/2 (2.15)

which means that the inter-sensor spacing should not exceed half the wavelength of the

narrowband signal.

2.1.3 Array processing DOA estimation methods

The classical array processing methods can be divided into parametric methods, which

are based on the maximum likelihood (ML) paradigm and spectral based approaches

often referred to as non-parametric approaches [13]. The former include deterministic
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maximum likelihood (DML) and stochastic maximum likelihood (SML), where the signal

waveforms are treated as deterministic and stochastic processes respectively. After the

likelihood function has been obtained, the unknown parameters corresponding to the un-

known DOAs are estimated so that the likelihood function is maximized. The parametric

approaches result in accurate estimates at the price of high computational complexity.

Since parametric methods are not the main concern of this thesis, their formal description

has been omitted, but the interested reader can find more details in [13, 21].

On the other hand, non-parametric methods are computationally attractive and can

be divided into two main subcategories; the beamforming techniques and the subspace

based methods. The beamforming techniques attempt to steer the array in one direc-

tion at a time and measure its output power at the specific direction. Therefore, the

locations that yield the maximum power are the DOA estimates. In contrast, spectral

based methods employ subspace analysis and exploit the fact that the noise subspace is

orthogonal to the signal subspace.

Conventional beamformer

The conventional (or Bartlett) beamformer is probably the most classic DOA estima-

tion technique and can be viewed as an extension of the Fourier spectral analysis [23] to

accommodate sensor array data. The task of DOA estimation is accomplished by “steer-

ing” the array at different locations through the appropriate weighting (or shifting) of

the waveforms captured by each sensor of the array. The beamformer output can be

written as:

P (θ) = wHE{y(t)yH(t)}w

= wHRyw

(2.16)

where E{·} is the expectation, Ry = E{y(t)yH(t)} is the spatial autocorrelation matrix

of the zero-mean spatially stationary random variable y(t) and w represents the unknown

complex weight vector. Considering the signal model of equation (2.9), Ry can be written
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as:

Ry = E
{

[A(θ)x(t) + n(t)][A(θ)x(t) + n(t)]H
}

= A(θ)E{x(t)xH(t)}AH(θ) + E{n(t)nH(t)}

= A(θ)RxAH(θ) + σ2I

(2.17)

where the noise is assumed white i.e. n(t) ∼ N (0, σ2I) and Rx is the autocorrelation

matrix of the sources. The problem of maximizing the beamformer power can then be

formulated as:

max
w

wHA(θ)RxAH(θ)w + σ2‖w‖22

subject to ‖w‖22 = 1.

(2.18)

When only one source is present, the solution to the above problem of equation (2.18) is:

wBF =
a(θ)√

aH(θ)a(θ)
=

a(θ)

‖a(θ)‖
. (2.19)

For multiple sources, multiple peaks are expected in the spatial spectrum:

PBF (θ) =
aH(θ)Rya(θ)

aH(θ)a(θ)
(2.20)

and can be obtained by a one dimensional search for the K highest maxima. Nevertheless,

Ry is considered unknown and in practical array processing applications the sample

covariance matrix is used instead as an approximate estimate:

R̂y =
1

Ts

Ts∑
t=1

y(t)yH(t) (2.21)

where Ts is number of time samples or snapshots.

The conventional beamformer, reminiscent of the classic periodogram, is known for

its algorithmic simplicity. However, it has certain limitations. Most notably, it suffers

from the Rayleigh resolution limit, as it cannot resolve two closely spaced sources and

its performance is limited by the aperture size of the ULA. The beampattern of a ULA
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Figure 2.2: Beam pattern |B(θ)| of a uniform linear array of M = 8 sensors with inter-
element spacing d = λ/2 for the range θ ∈ [0◦, 180◦].

of M sensors is defined as:

B(θ) =
1

M

M∑
m=1

e−j2πfcτm =
1

M

M∑
m=1

e−j2πfc(m−1)d cos(θ)/c ⇒

B(φ) =
1

M

M−1∑
m=0

ejmφ =
1

M

1− ejMφ

1− ejφ
(2.22)

where φ is the electrical angle defined as φ = −ωc
c d cos(θ). Fig. 2.2 shows |B(θ)| in dB

of a ULA of M = 8 sensors with half wavelength inter-element spacing and as can be

seen the main lobe is centered at 90◦. The Rayleigh resolution limit is defined as the

distance from the central angle of the main lobe to angle corresponding to the first null

of the beampattern B(θ). A null occurs when the numerator of (2.22) is zero, while its

denominator is different from zero:

B(φ) = 0⇒ 1− e−jMφ = 0⇒ cos(Mφ) = 1. (2.23)

It follows from (2.23):

Mφ = 2kπ, k = 1, 2, . . . (2.24)

The first null occurs at k = 1. The corresponding value of the electrical angle φ = 2π/M

defines the Rayleigh resolution limit. A conventional beamformer will be able to resolve

two plane waves if the peak of second beam pattern lies outside the null of the first beam

pattern. Consequently, for a ULA of M sensors, the conventional beamformer requires
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that:

φ ≥ 2π/M. (2.25)

For example, consider the beam pattern of Fig. 2.2. Since M = 8 the first null occurs

at φ = π/4. In this case, the sensor spacing is d = λ/2 and therefore it holds that

φ = −π cos(θ). After some manipulation, it can be shown that θ ≈ 104.5◦. Considering

that the peak of the main lobe of the beam pattern occurs at 90◦, it turns out that the

Rayleigh resolution limit for this array is ∆θ ≈ 14.5◦. This is the minimum distance

between two plane waves so that they are resolvable by a conventional beamformer. For

a longer ULA of M = 10 sensors the Rayleigh resolution limit is ∆θ ≈ 11.5◦. This shows

how a longer array possesses improved resolution capabilities.

Minimum Variance Distortionless (MVDR) beamformer

The MVDR beamformer proposed in [24] by Capon, also known as Capon’s beamformer,

provides an improved spectral estimation method that resolves the resolution limitations

of conventional beamforming. MVDR replaces (2.18) with the optimization problem:

min
w

wHRyw

subject to wHa(θ) = 1

(2.26)

where a(θ) is defined as in equation (2.8) and wHa(θ) = 1 is the minimum distortion

constraint. In contrast to the conventional beamformer, which attempts to maximize the

output power in the “look direction” θ, the MVDR beamformer attempts to minimize

the noise power and the power contributed by signals impinging on the array from other

directions than θ with the constraint of unit gain in the “look direction” θ. The solution

to problem (2.26) is given in [13] resulting in:

wCAP =
R−1

y a(θ)

aH(θ)R−1
y a(θ)

(2.27)

and the obtained spatial spectrum is:

PCAP (θ) =
1

aH(θ)R−1
y a(θ)

. (2.28)
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Once again the sample covariance matrix R̂y can be used in practical applications.

Capon’s beamformer reduces the spectral leakage caused by closely spaced sources

that limits the resolution capability of the conventional beamformer. It can be viewed as

an optimal beamformer and this is why it has found extensive use in practical applications

[13]. Despite that, its performance is still dependent on the aperture size and the noise

level.

MUSIC algorithm

Subspace based approaches to DOA estimation possess high resolution capabilities and for

this reason they have been studied thoroughly. Among them multiple signal classification

(MUSIC) [25, 13, 21] is a popular, powerful tool for the problem of spectral analysis and

system identification. MUSIC initially obtains an estimate of the covariance matrix of

the observations. This is followed by a subspace analysis, in which the covariance matrix

is firstly decomposed and the space spanned by the received data is then partitioned into

the signal and the noise subspace.

Consider the covariance matrix Ry of equation (2.17). An eigenvalue decomposition

of Ry can reveal that after arranging the eigenvalues in descending order it holds:

λ1 ≥ λ2 ≥ . . . ≥ λK > λK+1 = . . . = λM = σ2. (2.29)

Assuming moderate noise levels, the first K eigenvalues are much larger than the last

M −K eigenvalues. These first K eigenvalues correspond to the signal subspace while

the remaining ones correspond to the noise subspace. Therefore, the covariance matrix

can be decomposed as:

Ry = UxΛxUH
x + UnΛnUH

n (2.30)

where Λx is the K ×K diagonal matrix containing the eigenvalues associated with the

signal subspace and Ux is the M×K matrix that contains the corresponding eigenvectors.

Similarly, the eigenvalues of the noise subspace are contained in the matrix Λn of size

(M −K)× (M −K) and the corresponding eigenvectors in Un. Since the noise subspace

is orthogonal to the steering vectors corresponding to the true DOAs θ, it follows:

AH(θ)Un = 0K×M−K . (2.31)
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Equation (2.31) provides the MUSIC criterion for DOA estimation. In other words, the

K minima of the projection aH(θ)UnUH
n a(θ) over the whole range of values for the

parameter θ will correspond to the unknown DOAs. The MUSIC spectral estimate is

then defined as:

PMUS(θ) =
aH(θ)a(θ)

aH(θ)UnUH
n a(θ)

(2.32)

for which the unknown DOAs will now correspond to its K peaks. As in the case of

conventional and MVDR beamformers, Ry is not available in practice and the sample

covariance matrix is used instead. Its decomposition is given by:

R̂y = ÛxΛ̂xÛH
x + ÛnΛ̂nÛH

n (2.33)

and hence, Un should be replaced by its estimate Ûn in (2.32).

As discussed in [13], PMUS(θ) should be viewed more as a distance between two sub-

spaces and not as a true spectrum estimate. Nevertheless, the MUSIC “pseudo-spectrum”

still exhibits sharp peaks at the values of θ corresponding to the true DOAs. Similar to

the beamforming methods, the algorithm requires a one dimensional search. However,

there is an additional computational cost associated with the eigenvalue decomposition

of the data covariance matrix. MUSIC provides a significant improvement in terms of

estimation accuracy over the beamforming methods and when the time samples captured

by each sensor of the array are sufficiently long, the algorithm provides statistically con-

sistent estimates.

However, the main limitation of MUSIC appears in the so-called coherent source

scenario. When some of the incoming signals happen to be highly correlated, then the

algorithm’s performance degrades dramatically. This is to be expected, as in that case

the eigenvalue decomposition tends to underestimate the number of sources resulting in

signal subspace estimate of reduced dimension. Similar issues can arise when the number

of time snapshots are not sufficient enough. This problem is usually referred to as the

rank-deficient case [26, 13].

2.1.4 Sparsity based approaches to DOA estimation

As stated previously, the MUSIC algorithm can achieve high resolution by focusing on

a small number of “search directions” where the signals are present given the pseudo-
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spectrum estimate. This implies some underlying sparsity in the spatial domain, consid-

ering that the algorithm is based on the assumption of a low dimensional signal subspace.

The emerging field of sparse representations has given renewed interest to the problem

of source localization. The concept of spatial sparsity for DOA estimation was first

introduced in [3], where it was shown that the source localization problem can be cast as

a linear inverse problem, resulting in the development of the `1-SVD method. The specific

method, assuming that only a few sources are present in contrast to the possible spatial

locations, composes an overcomplete dictionary of steering vectors corresponding to each

potential location of a source and estimates the unknown angles via `1 regularization.

More recently, in a similar manner, this spatial sparsity property was also linked to the

theoretical results of the sparse representations framework, utilizing a spatial compressed

sensing approach for DOA estimation [27]. Interestingly, there is strong evidence that

these sparsity based approaches can overcome the limitations of MUSIC algorithm while

providing high resolution estimates. More specifically, the work in [3] showed that `1-

SVD can achieve super-resolution even in the rank-deficient case (i.e. limitation of the

data and/or correlation of the sources) and provide improved robustness to noise.

Since the aim of this thesis is to further investigate the problem of DOA estimation

under spatial sparsity constraints and contribute to improving the specific approach, its

detailed description will be put back until Chapter 5, where the problem is treated sep-

arately. However, the remaining sections of the current chapter serve as an introduction

to the problems of sparse representation and compressed sensing, while at the same time

they provide a detailed description of the main mathematical background on which this

work is based.

2.2 Sparse representations

The concept of parsimony plays a principal role in many scientific areas of engineering

and applied sciences. It implies that the description of a phenomenon by a simple model

based on parsimonious terms is generally preferred over more complicated ones, since it

can be more insightful. The field of signal processing is no exception to this principle. For

the analysis of a family of signals or images, researchers more often than not intuitively

employ transformations (e.g. orthonormal transforms such as the Fourier basis) from the
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signal domain to some other domain, where the signals can be described or represented

in a sparse and efficient way.

Sparse representations are signal expansions that can accurately represent the signal

of interest using a linear combination of a relative small number of significant coefficients

drawn from a basis or a redundant dictionary [28, 29]. In other words, the problem of

finding sparse signal expansions can be redefined as a dimensionality reduction technique

that looks for a compact expression involving only a few elementary components, which

can reveal certain structures of the given signal.

The problem of sparse representations lies at the core of almost every aspect of signal

processing, with a broad range of applications including denoising [30], deblurring [31],

compression [32] and many more. For instance, in compression, the size of a signal can

be reduced by coding only a few nonzero coefficients of the sparse representation [28].

Thus, the sparser a representation the higher the signal-compression factor achieved,

resulting in reduction of the storage requirements or in faster transmission. It follows

that identifying the appropriate transform basis that can yield sparser representations or

better approximations is of vital importance.

Initially, researchers were mainly focused on the design of orthonormal basis dictionar-

ies due to their attractive properties. As nicely put in [33], orthonormal transformations

can be viewed as rotations in a high dimensional space, and hence their inversion is

trivial (e.g. by applying the adjoint operator). Consequently, the ease with which the

data can be transformed from the signal to the transform domain and vice versa makes

orthonormal bases very convenient and effortless to apply in practice. This is the main

reason why transforms such as the Discrete Cosine Transform (DCT), which is a variant

to the discrete Fourier transform (DFT) and Discrete Wavelet Transform (DWT) have

been used extensively over the past decades and eventually found their place in industry

standards for compression, such as MPEG-1, MPEG-2 and JPEG-2000.

However, not all signals can be efficiently represented as a linear combination of el-

ements drawn from an orthonormal basis. In fact, there exist complex signals, which

can be mixtures of different phenomena and for this reason they require different trans-

forms to be accurately described [34]. This has led many researchers to form redundant

dictionaries, typically consisting of unions of orthogonal bases (e.g. concatenation of
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FFT and Dirac basis), which can more efficiently capture the information present in the

signal of interest and thus allow for sparser representations or better approximations

[28, 35]. Furthermore, this redundancy suggests better adaptability and more flexibility

in terms of the sparse representation or the signal approximation. Mallat in [28] very

aptly draws the parallel between these redundant or overcomplete dictionaries, which

are a collection of simple waveforms and language dictionaries. As a richer dictionary

helps people express their ideas in shorter phrases, it has become widely accepted that a

more redundant dictionary can lead to better and more compact signal descriptions. For

instance, FFT may not be sufficient for the analysis of time varying signals such as music

or speech. Redundant transforms (e.g. Gabor transform or STFT) play an important

role for the analysis of these types of signals, as they lead to localized time-frequency

representations. Since audio signals can be viewed as the variation of frequency events

in time, time-frequency representations can better capture their properties. Considering

also that overcomplete time-frequency transforms can result in sparse representations of

audio signals, the appropriate thresholding of such representations of noisy audio signals

could yield efficient denoising algorithms. In fact, redundancy has been proven to be very

beneficial in applications, such as denoising or deblurring. It has also paved the way for

sparse representations to find applicability in many other signal processing applications,

such as feature extraction [36, 37] and source separation [38, 39] opening new horizons

for scientific research.

Another emerging topic in the field of sparse representations that has gained much

interest recently is dictionary learning (DL). DL is concerned with learning the redundant

dictionary from the data, instead of building the dictionary as a concatenation of several

bases. In that way, the dictionary is designed to better fit the model by adapting the

dictionary to a set of training signals [40].

However, this flexibility of choosing elements from the dictionary comes with a price

to pay. In contrast with the straightforward orthonormal transformation case, finding the

sparsest representation in a redundant dictionary is a non-trivial combinatorial problem

that cannot be solved in polynomial time (i.e. NP-hard) [41], as it involves the exhaus-

tive search over all possible combinations of dictionary vectors. Nevertheless, as will

be discussed in following sections, suboptimal methods have been developed, for which
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rigorous theoretical results exist that can guarantee optimality under certain conditions.

2.2.1 The pursuit of a sparse representation

Let y ∈ RM be an observed vector to be decomposed and represented in the dictionary

A using a small number K of significant coefficients corresponding to the columns of the

full rank matrix A. If the dictionary is a square and nonsingular matrix (e.g. Fourier or

wavelets basis) and a sparse representation of y exists in the specific basis, the sparse

representation can be easily estimated by a single matrix inversion. However, as explained

previously redundant or overcomplete dictionaries will result in sparser decompositions.

In that case, A ∈ RM×N with M < N and subsequently the number of columns is larger

than the dimensionality of the observed signal’s space. Therefore, in the noiseless case,

given y and A, the following ill-posed inverse problem for the unknown vector x has to

be solved:

y = Ax (2.34)

where x = [x1, . . . , xN ]T is K -sparse, namely it has at most K ≥ ‖x‖0 nonzero entries,

with K � N . ‖ · ‖0 denotes the `0 norm defined as:

‖x‖0 = |supp(x)| where supp(x) = {1 ≤ i ≤ N : xi 6= 0} (2.35)

and | · | denotes the cardinality, namely the number of elements of a set.

The above system of linear equations (2.34) is said to be an underdetermined system,

as the number of unknowns or variables is larger than the number of equations. Such a

system yields an infinite number of solutions. In sparse coding, the main interest is to

obtain the sparsest solution, which is the one that has the smallest number of nonzero

elements [42]. This implies minimization of the `0 norm and subsequently the sparse

representation problem can be formulated as:

min
x
‖x‖0 such that y = Ax. (2.36)

The problem of (2.36) is concerned with the noiseless case. In the noisy case, the observed

vector y is corrupted by additive noise such that y = Ax + n. Accounting for the noise,
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the optimization problem of (2.36) becomes:

min
x
‖x‖0 such that ‖y −Ax‖2 ≤ ε (2.37)

where ε is a small constant depending on the noise level.

2.2.2 Uniqueness of the sparse recovery problem

It has been shown so far that the sparse recovery problem in redundant dictionaries

is not as straightforward as dealing with orthonormal bases and additional constraints

need to be employed. However, this does not ensure that the solution obtained by solving

problem (2.36) will be the sparsest possible representation. Donoho et al. in [43] provide

the necessary and sufficient condition for uniqueness of the sparsest representation.

The spark of a matrix A is defined as the smallest possible number of linear dependent

columns from A:

spark(A) = min
z
‖z‖0 such that Az = 0. (2.38)

Although the spark is in a way related to the rank of a matrix A, it is quite different,

since the rank is defined as the maximal number of columns from A that are linear

independent. However, it holds that spark(A) ≤ rank(A) + 1. Using this definition of

the spark, the authors in [43], proved that an upper bound exists on the sparsity level

K, so that the solution to the sparse recovery problem of (2.36) is unique.

Theorem 1. (Donoho & Elad [43]) A representation x of y is the sparsest possible if

‖x‖0 <
spark(A)

2
. (2.39)

Proof. Assume that there exist two sparse representations x1 and x2 of y with x1 6= x2,

both satisfying (2.39). It follows:

y = Ax1 = Ax2 ⇒

Ax1 −Ax2 = 0⇒

A(x1 − x2) = 0⇒

‖x1 − x2‖0 < spark(A) (2.40)
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which is contradictory according to the definition of spark. Therefore, it can only be that

x1 = x2.

2.2.3 Algorithms for sparse recovery

As long as condition (2.39) of Theorem (1) holds, it is guaranteed that the sparse recovery

problem of (2.34) has a unique solution. However, the optimization in (2.36) is not convex

and therefore its solution is computationally intractable, since it is known to be NP-hard

problem [41].

Instead of solving the `0 minimization problem, other suboptimal strategies are

adopted in practice. According to the method of `1 minimization or Basis Pursuit (BP),

[44] one can attempt to solve the convex optimization problem:

min
x
‖x‖1 such that y = Ax (2.41)

which when compared to (2.36), simply replaces the `0 norm with the `1 norm, defined

as the sum of the absolute values of the sparse vector x. The problem of `1 norm

minimization is convex and can be solved using linear programming (LP) methods e.g.

interior-point methods in polynomial time [45]. As explained in [46], in contrast to `2

norm regularization, minimization of the `1 norm promotes sparsity and therefore yields

sparse solutions. This is illustrated geometrically in Fig. 2.3, which shows plots of `p balls

for different values of p (p = 1, p = 2, p = ∞ and p = 1/2) in R2. The red hyperplane

corresponds to the nullspace of the one dimensional subspace A. As can be seen, only

the `p balls with p ≤ 1 (Fig. 2.3(a) and Fig. 2.3(d)) promote sparse solutions. On the

other hand, `p balls with p > 1 (Fig. 2.3(b) and Fig. 2.3(c)) spread the solution to both

coefficients.

Nevertheless, although BP is computationally tractable, its convergence is rather slow

and other faster greedy algorithms such as Matching Pursuit (MP) [47] and Orthogonal

Matching Pursuit (OMP) [48] can serve as alternatives. Both MP and OMP algorithms

are iterative in nature, selecting one atom from the dictionary A at a time; the one that

is most correlated to the residual, which is obtained by subtracting the contribution of

a partial estimate ŷ of the measurements from y. The correlations are computed by

projecting the current residual onto the columns of the dictionary A. OMP provides an
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(a) (b)

(c) (d)

Figure 2.3: Geometry of the `p recovery: Best approximation of a point in R2 by a one
dimensional subspace using the `p balls: (a) `1 ball, (b) `2 ball, (c) `∞ ball and (d)
quasinorm ball p = 1/2.

improved version to MP by orthogonalizing the directions of projection at each iteration.

The main steps of the OMP algorithm are summarized in Algorithm 1.

Similarly, in the noisy case, for Basis Pursuit Denoise (BPDN) the `0 norm in (2.37)

is replaced by the `1 norm and the resulting optimization problem is solved. For OMP

the stopping criterion should be adjusted accordingly [49] to compensate for the additive

noise in the measurements.

BP and OMP stand as the most popular sparse recovery algorithms. However, it

is generally believed that in certain cases BP provides superior recovery performance

[44, 50]. For this reason, many other approaches have been proposed in literature in-

cluding Lasso [51], LARS [52] and GPSR [53] that attempt to bridge the gap between

computational simplicity and optimality. Most of these algorithms attempt to replace

the local optimization performed by OMP with a global optimization criterion and at

the same time retain the fast iterative nature of greedy algorithms.
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Algorithm 1 Orthogonal Matching Pursuit

1: Input: A, y
2: Set stopping conditions lmax and εmin

3: Initialize: k ← 0, Ik ← ∅, Ak ← ∅, xk ← ∅, ŷk ← 0, rk ← y
4: while |Ik| < lmax and ‖rk‖2 > εmin do {Find next atom}
5: k ← k + 1
6: ik ← arg maxi/∈Ik−1 |aTi rk−1|
7: Add constraints:

Ik ← Ik−1 ∪ {ik}, Ak ← [Ak−1, aik ]
8: xk ← (Ak)†y, ŷk ← Akxk, rk ← y − ŷk

9: end while
10: Output: x∗ = xk

2.2.4 Recovery guarantees

Both `1 minimization and OMP are suboptimal methods to the combinatorial problem

of `0 minimization. The question that naturally arises is how well these algorithms can

approximate the sparsest solution or under which conditions the BP and OMP solutions

will be equivalent to the solution of (2.36). This topic has received much attention

within the community of sparse representations and there exist theoretical results that

can guarantee optimality for both algorithms.

The problem of `1/`0 equivalence was initially studied by Donoho and Huo [54]. In

the specific work, it was shown that under some stronger condition than the `0 uniqueness

condition of (2.39), `1 minimization finds the optimal sparsest solution. Their result is

summarized in the following theorem:

Theorem 2. (Donoho & Huo [54]) Let A be a union of two orthonormal bases with

mutual coherence µ. If for the sparse representation x of y holds that

‖x‖0 <
1

2
(µ−1 + 1) (2.42)

then x is the unique solution to both `1 and `0 minimization problems.

In Theorem 2, the dictionary mutual coherence refers to the maximum correlation

between any two dictionary atoms. It is expressed as the largest absolute value of the

inner product between any two different and normalized column vectors of the matrix

A ∈ RM×N :

µ = max
1≤i,i 6=j≤N

|〈ai,aj〉|
‖ai‖‖aj‖

(2.43)
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where ai denotes the i-th column of the dictionary. Hence, the coherence is upper

bounded by the value 1 (µ ≤ 1), which corresponds to a coherent dictionary and lower

bounded by the inequality µ ≥
√

N−M
M(N−1) . A dictionary that meets this lower bound is

called an optimal Grassmannian frame [55]. According to the condition (2.42) of The-

orem 2 the lower the mutual coherence of the dictionary, the larger the bound on the

sparsity level K of x. This is something that should be expected, since low coherence

implies that the dictionary is close to orthogonal and therefore the K subspaces defined

by a subset of its columns can be easily distinguished from other subspaces of the same

dimensionality resulting in efficient recovery of the K-sparse vector x. On the other

hand, if A contains highly correlated atoms and subsequently its coherence µ is high

(close to 1), then there is no guarantee that `1 minimization will efficiently recover the

solution vector. This is the reason why in sparse representations incoherent dictionaries

are always embraced.

Theorem 2 is restricted to redundant dictionaries formed from union of bases. How-

ever, additional work on the topic of `1/`0 equivalence [56, 57, 43, 58] has shown that

this result can be generalized for any redundant dictionary. Regarding OMP, similar

theoretical guarantees exist. More specifically, Tropp in [35] showed that the following

theorem holds.

Theorem 3. (Tropp [35]) Let y be the signal to be decomposed in the redundant dic-

tionary A and S be the support of the sparsest solution vector x (S = supp(x)). If for

any column vector aj with j /∈ S holds

max
j /∈S
‖A†Saj‖1 < 1 (2.44)

OMP will recover the sparsest vector x.

The result of Theorem 3 is the best possible for OMP algorithm and the condition

(2.44) is referred to as Exact Recovery Condition (ERC). As also shown in [35], ERC

implies the following theorem.

Theorem 4. (Tropp [35]) ERC holds for every sparse representation x whenever

‖x‖0 <
1
2(µ−1 + 1).

Theorem 4 reveals that condition (2.42) guarantees optimality for both BP and OMP.
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It can be easily shown that the specific condition is stronger than the `0 uniqueness

condition of (2.39), since the lower bound on the spark of dictionary is spark(A) ≥ 1/µ+1

[56, 43, 46].

The above theoretical result is identical for BP and OMP algorithms and it largely

agrees with empirical results showing that both algorithms offer comparable performance.

However, there have been reported theoretical results, which demonstrate that in certain

scenarios BP succeeds in finding the optimal solution, whereas OMP fails. As also dis-

cussed in [35], ERC provides the best possible condition for OMP but not always for BP.

There are cases, for which `1 minimization recovers the sparsest solution even if ERC is

violated [28]. The exact recovery for `1 minimization can be replaced by a more precise

sufficient criterion introduced by Fuchs in [59]. The so-called Fuchs Condition will be

discussed in more detail in Chapter 3.

Recovery conditions based on the mutual coherence of the dictionary for the noisy

case also exist [60] for both BP and OMP algorithms, that are mostly in favour of `1

minimization.

2.3 Compressed sensing

The extensive study of the sparse representation problem and more general underde-

termined inverse problems, apart from bringing new theoretical insights regarding the

optimality of suboptimal regularization methods, has also opened new avenues for scien-

tific research in several signal processing applications. Among those, compressed sensing

or compressive sampling (CS) has attracted significant attention within the signal pro-

cessing community.

Sampling is a subfield of digital signal processing and it is concerned with the con-

version of a continuous time signal into a discrete sequence of numbers. The most widely

known principle in sampling and data acquisition is the Shannon-Nyquist theorem [61],

which states that if a band-limited signal x(t) has no frequency components higher than

fx Hz, it can be perfectly reconstructed from a set of samples taken at the rate of fs

(≥ 2fx) samples per second. CS is a new technique, which goes against this principle

and does not require that a signal must be sampled at a rate at least twice its highest

frequency. According to this method, initially introduced by Donoho [62] and Candès
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[63], one can sample at a greatly lower rate than traditional methods suggest and under

certain conditions the optimal sparse representation that allows perfect reconstruction of

the original signal can be estimated [64].

The underlying assumption of CS is that the signal is sparse or compressible in some

domain and subsequently it can be accurately or approximately expressed as a linear

combination of a small number of basis functions [65]. Note that unlike the previous

discussion, sparsity here is assumed over an orthogonal transform. This sparsity or com-

pressibility of the signal plays a key role in the CS concept, as it leads to dimensionality

reduction and efficient modeling. In the classical compression approach, the signal is first

sampled densely and then transformed in a domain that is sparse. This allows compres-

sion of the signal by encoding a small number of transform coefficients, which retain most

of the information existing in the signal, while the remaining coefficients are discarded.

CS asserts that this two stage approach of sampling and compression can be merged

into one. Thus, given some highly undersampled data that capture most or all of the

useful information, one can design robust and efficient data acquisition protocols at a

much lower computational cost [63]. These undersampled data correspond to a reduced

set of linear and non-adaptive measurements [66, 67]. Among the practical benefits is

that the measurement or sensing matrix can be a random projection. According to the

CS theory and under certain conditions, this sensing mechanism except for reducing the

dimensionality, preserves all or most of the information when the signal is said to be

sparse or compressible, respectively.

2.3.1 The compressed sensing recovery problem

Consider a linear measurement sensor that obtains M samples or observations of the

discrete signal of interest f ∈ RN with M < N . The observations or measurements

vector can be written as:

y = Φf (2.45)

where Φ ∈ RM×N represents the measurement process.

The main assumption is that the discrete signal f is sparse in some domain and can

be decomposed and accurately represented in the basis Ψ ∈ RN×N using the following
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equation:

f = Ψx (2.46)

where x is a K-sparse representation, meaning that it has only a small number of K

nonzero entries, with K � N .

The CS recovery problem can be formulated by combining equations (2.45) and (2.46).

The resulting system of linear equations is:

y = ΦΨx = Ax (2.47)

where the redundant dictionary M × N dictionary A is given by A = ΦΨ. Therefore,

as in the case of finding a sparse representation, CS requires the inversion of an un-

derdetermined system of linear equations with the additional constraint of sparsity. It

follows that for the CS framework the two critical points are sparsity and incoherence.

For a given sparsity level K, CS is mainly concerned with low coherence pairs, namely

matrices that contain low correlated elements. If the measurement matrix Φ and the

representation matrix Ψ are sufficiently incoherent and the number of measurements is

sufficiently large:

M ≥ Cµ2K logN (2.48)

for some constant C, the sparse vector x and consequently the original signal f can be

exactly recovered with high probability by `1 minimization. The coherence µ of the

overcomplete matrix A can be viewed as a measure of incoherence between the sensing

matrix Φ and the representation matrix Ψ. As can be seen from equation (2.48), a lower

coherence µ (or equivalently higher incoherence) leads to a smaller lower bound on the

number of measurements M for a fixed sparsity level K. Therefore, an incoherent pair of

matrices Φ and Ψ will require fewer measurements for the exact recovery of f . Random

matrices is known to be largely incoherent with any fixed basis that can lead to a sparse

representation. Although the random projection matrix Φ is not square, it preserves the

structure and information present in the signal of interest, when the signal is sparse [68].

When dealing with not exactly sparse signals, it becomes clear that one cannot obtain

perfect recovery of the signal f . In that case, CS should be viewed as a lossy compression

scheme. This can arise in several real world problems, since real world signals are not truly
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exact sparse. However, CS can still be applied if these signals are at least compressible

in some transform domain, meaning that the nonzero entries of the unknown vector x

follow some fast exponential decay [69] and therefore there are only a few significant

coefficients. Although information loss is inevitable, a good approximation of f can still

be obtained.

2.3.2 The Restricted Isometry Property

The CS recovery problem can be viewed as a special case to the more general sparse

recovery problem. Nevertheless, the advent of CS has brought to the world of sparse

representations the concept of random overcomplete matrices, which in turn has resulted

in further theoretical advances that have been proven to be beneficial for both CS and

sparse representations.

Among those, the Restricted Isometry Property (RIP) [70] from a theoretical per-

spective has been proven to be a very powerful tool that has played an important role in

popularizing the CS framework. Given a redundant dictionary A, RIP can be used to an-

swer the question of how near to orthogonal is the column space of A. More specifically,

according to the RIP, if a matrix A obeys:

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (2.49)

where δK is a small constant often referred to as the restricted isometry constant (RIC)

and if δ2K <
√

2−1 then the K-sparse vector x cannot be in the nullspace of A. In other

words, if the RIP holds for a matrix A then all subset of K columns taken from A will

be nearly orthogonal. Therefore, RIP characterizes matrices that are nearly orthogonal

when operating on sparse vectors. It also implies that these matrices will exhibit low

coherence. To see the connection between coherence and RIP, consider the normalized

dictionary A. If its mutual coherence is µ, then A satisfies the RIP of order K with

δ = (K − 1)µ for all K < 1/µ [67].

RIP is a sufficient condition that when satisfied by the dictionary A, it guarantees

the full recovery of a sparse vector. When the RIP holds given a CS recovery problem

in the noiseless case and δ2K <
√

2− 1, then the solution x̂ obtained by `1 minimization
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obeys:

‖x− x̂‖2 ≤ C0K
−1/2‖x− xK‖1 (2.50)

for some constant C0, where xK is the vector x with all but the largest K components

set to zero. Accordingly, in the noisy case for BPDN, it holds:

‖x− x̂‖2 ≤ C0K
−1/2‖x− xK‖1 + C1ε (2.51)

where C0 and C1 are constants and ε is the constant that bounds the noise and depends

on the noise level.

It has been proven that for matrices containing random or partial Fourier entries RIP

holds with high probability [71]. More specifically, when the redundant dictionary A

is randomly generated by sampling its columns from the uniform, normal or Bernoulli

distributions, then it will obey the RIP as long as:

M ≥ CK log(N/K) (2.52)

where C is a constant depending on each instance [68]. The case of a partial random

Fourier ensemble has been also extensively studied and similar results have been shown

to exist [72]. In particular, for a partial Fourier dictionary A the RIP is satisfied with

large probability provided that:

M ≥ CK(logN)4. (2.53)

The result of equation (2.53) for partial Fourier dictionaries is of great importance to the

problem of DOA estimation. As will be discussed in more detail in Chapter 5, under the

appropriate discretization of the angular space and spacing of the array sensors the DOA

dictionary draws resemblance to a partial Fourier matrix.

Note that the lower bounds of (2.52) and (2.53) obtained using an RIP based theo-

retical analysis slightly differ from the result of (2.48) that relies solely on the mutual

coherence of the dictionary. Furthermore, for a matrix that obeys the RIP, the approxi-

mation error is given by the inequality in (2.50) or (2.51). Despite the fact that similar

coherence based guarantees for `1 minimization also exist [60], the advantage of the re-
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sults based on RIP is because they are deterministic and universal. The same does not

hold for the coherence based guarantees. As can be seen, the lower bounds on the number

of measurements M (2.52) and (2.53) are free from any stochastic quantities. However,

the inequality of equation (2.48) depends on the mutual coherence which is a stochastic

bound in nature, since different dictionaries will exhibit different maximal incoherence.

2.4 Discussion

In this chapter, the problem of narrowband DOA estimation in sensor arrays was intro-

duced. After describing the signal model and the resulting parameter estimation problem,

the non-parametric array processing techniques for DOA estimation were presented. The

main idea and motivation behind the formulation of the DOA estimation problem as an

inverse sparse recovery problem was also briefly discussed. This discussion will continue

in following chapters, since it constitutes the main focus of this thesis.

Next, the basic concepts of the sparse representation problem have been presented.

After highlighting the main advantages of using redundant transforms over conventional

orthonormal bases for signal representation, this chapter provided a concise overview of

the most popular algorithms for solving the sparse recovery problem along with vigorous

theoretical guarantees that justify their recovery capabilities. The compressed sensing

framework was also briefly described. The theoretical analysis based on the RIP not

only verifies the robustness of CS as a compression and data acquisition protocol, but it

also shows its potential to provide further insight to the more general problem of sparse

recovery.
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Chapter 3

Sparse representations & compressed sensing

recovery algorithms for large scale problems

In the previous chapter, the main concept of sparse representations was introduced and

briefly described. Before investigating the applicability of the sparse representation

framework to the problem of DOA estimation, a more in depth look at the problem

of sparse recovery is given, which in turn leads to the development of a novel suite of

algorithms that tackle this problem.

As mentioned in Chapter 2, BP possesses certain theoretical properties that justify

its superior performance over greedy algorithms such as OMP. Nevertheless, its conver-

gence is rather slow and for this reason in practical signal processing applications OMP

has been used extensively due to its fast convergence, which comes as a result of its

algorithmic simplicity. This observation has driven the motivation to develop algorithms

with good theoretical properties, as in the case of `1 minimization, and with the ability

to achieve faster convergence exhibiting reduced complexity, as happens in the case of

OMP. Polytope Faces Pursuit (PFP) is a greedy approach that meets these requirements.

The specific algorithm, initially introduced by Plumbley in [1], solves the sparse recovery

problem performing BP with similar order complexity to OMP. PFP adds one vector

basis at a time and adopts a path following approach based on the geometry of the polar

polytope associated with the dual linear program.

In this chapter, the PFP algorithm is first introduced and then an alternative ap-
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proach to its original version of updating the solution vector at each step using direc-

tional updates is proposed. As in the case of OMP, Cholesky factorization, adopted by

the original version of PFP, requires storage of large matrices which can be expensive

when it comes to large scale recovery problems. More specifically, the proposed algorithm

of Conjugate Gradient Polytope Faces Pursuit uses the very well known method of con-

jugate gradients to update the solution vector thereby reducing the storage requirements

of the original algorithm. Theoretical and empirical results demonstrate the robustness

of the proposed sparse recovery method and outline its advantages and shortcomings.

Then, alternative stagewise dictionary atom selection strategies that can further re-

duce the computational complexity are also considered. The resulting Stagewise Con-

jugate Gradient Polytope Faces Pursuit algorithm adds several column vectors at each

stage according to a fixed or weak atom selection criterion.

3.1 Overview of Polytope Faces Pursuit

The traditional `1-minimization problem:

min
x
‖x‖1 such that y = Ax (3.1)

can be converted to its standard form using nonnegative coefficients [2]:

min
x̃

1T x̃ such that y = Ãx̃, x̃ ≥ 0 (3.2)

where 1 is a column vector of ones, Ã = [A,−A] and x̃ is the 2N nonnegative vector:

x̃i =


max(xi, 0) 1 ≤ i ≤ N

max(−xi−N , 0) N + 1 ≤ i ≤ 2N

. (3.3)

The primal linear program (3.2) has a corresponding dual linear program:

max
c

yT c such that ÃT c ≤ 1 (3.4)

such that a bounded solution to (3.4) exists if and only if a bounded solution to (3.2)

exists. Thus, one can initially look for a solution c∗ to (3.4) and use the Karush-Kuhn-
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Tucker (KKT) [2] conditions to solve the resulting system for x̃∗. More formally, the

following lemma provides the optimality conditions for this system.

Lemma 1. (Plumbley [73]) Suppose that the primal problem is feasible. Then the pair

x̃∗, c∗ is an optimum point for both primal and dual linear programs if and only if the

following conditions hold:

Ãx̃∗ = y, x̃∗ ≥ 0 (3.5a)

ÃT c∗ ≤ 1 (3.5b)

(ãTj c∗ − 1)x̃∗j = 0 ∀j, 1 ≤ j ≤ 2N. (3.5c)

The work in [74] looks at the dual linear program (3.4) from a geometrical perspec-

tive, using the geometry of polytopes. The set P ∗ = {c | ±aTi c ≤ 1,ai ∈ A} of feasi-

ble solutions to the inequality ÃT c ≤ 1 defines the so-called polar polytope (bounded

M -dimensional polygon/polyhedron) corresponding to the region bounded by that in-

equality. P ∗ is dual to the primal polytope P = conv{±ai,ai ∈ A}, which is the convex

hull corresponding to the doubled dictionary matrix, as illustrated in Fig. 3.1 (dashed

polytope).

2 1 0 1 2
2

1.5

1

0.5

0

0.5

1

1.5

2

c1,y1

c 2
,y
2

a2 

a2

a1
+,a1  

a2
+      

a2
+     

a1
+, a1

c+

c++

c

c +

P*

Figure 3.1: Example of a 2-D polytope [1]: primal (dashed) and polar (solid) polytopes.

The scaled vectors ±a+
i = ai/‖ai‖2 touch the faces of P ∗ and the vertices c++, c−+,

c+−, c−− correspond to particular sets of selected atoms (Fig. 3.1). It is a standard

result from linear programming that the optimum c∗ will be achieved at one of those
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vertices [75]. Therefore, the Polytope Faces Pursuit algorithm operates in the polar

polytope and attempts to find this optimum c∗. The algorithm starts at c = 0 and

adopts a path following approach towards the measurement vector y until it hits a face

of P ∗. The next face encountered is the one along the current face towards the projected

residual. Hence, for the selection of the next atom, PFP at the k-th iteration follows

the path h = ck−1 + λrk−1, where rk−1 = y − ŷk−1 is the current residual with ŷk−1

being the current estimate, and requires that ãT
ik

h = 1. Accordingly, the next face will
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Figure 3.2: Path of the Polytope Faces Pursuit algorithm [1].

be encountered at the minimum positive value of λ such that:

λk = min
i/∈Ik−1

{
λ > 0 | ãTi (ck−1 + λrk−1) = 1

}
= min

i/∈Ik−1

{1− ãTi ck−1

ãTi rk−1
| ãTi rk−1 > 0

}
. (3.6)

It becomes apparent that at each step PFP uses the maximum scaled correlation (defined

as the inverse of λk):

αk = arg max
i/∈Ik−1

ãTi rk−1

1− ãTi ck−1
(3.7)

as an atom selection criterion, where atoms ãi for which ãTi rk−1 > 0 are only considered.

Atoms that have already been selected are also excluded i.e. i /∈ Ik−1, where Ik denotes

the set of indices corresponding to the already selected atoms at the k-th iteration. Once

a new face has been identified, its index ik is added to the current set i.e. Ik = Ik−1∪{ik}.

After updating the solution vector the algorithm requires releasing of certain constraints,

namely switching out of a basis vector ãj whenever its corresponding entry x̃kj is negative
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i.e. Ik = Ik \ {j}.

Fig. 3.2 shows a polar polytope and its optimum basis vertex c∗, which as expected

is the furthest vertex along the direction of y. The full Polytope Faces Pursuit algorithm

is given in [1] and illustrated in Algorithm 2.

Algorithm 2 Polytope Faces Pursuit (original version)

1: Input: Ã = [ãi], y {If required, set Ã← [A,−A]}
2: Set stopping conditions lmax and θmin

3: Initialize: k ← 0, Ik ← ∅, Ãk ← ∅, ck ← 0, x̃k ← ∅, ŷk ← 0, rk ← y
4: while |Ik| < lmax and maxi ã

T
i rk−1 > θmin do {Find next face}

5: k ← k + 1
6: Find face: ik ← arg maxi/∈Ik−1{(ãTi rk−1)/(1− ãTi ck−1) | ãTi rk−1 > 0}
7: Optionally: λk ← (1− ãTi ck−1)/(ãTi rk−1)
8: Add constraints: Ãk ← [Ãk−1, ãik ], Ik ← Ik−1 ∪ {ik}
9: x̃k ← Ãk†y

10: while x̃k � 0 do {Release retarding constraints}
11: Select some j ∈ Ik such that x̃kj < 0; remove column ãj from Ãk

12: Update: Ik ← Ik \ {j}, x̃k ← Ãk†y
13: end while
14: ck ← (Ãk†)T1, ŷk ← Ãkx̃k, rk ← y − ŷk

15: end while
16: Output: c∗ = ck, x̃∗ ← 0 + corresponding entries from x̃k

{If required, get x∗i ← (x̃∗i − x̃∗i+n), 1 ≤ i ≤ N}

3.2 Polytope Faces Pursuit with directional updates

As mentioned in [1, 76], the most computationally expensive operations of the PFP

algorithm are the dictionary analysis computations ãTi rk−1 and ãTi ck−1 and the Moore-

Penrose pseudo-inverse (Ãk)† calculation required for the update of the solution vector

x̃k and its corresponding ck at each iteration. For the pseudo-inverse estimation, greedy

algorithms such as OMP usually adopt a Cholesky factorization method to update the

matrix. According to this method, which has also been used in the original PFP im-

plementation, if at step k of the algorithm Ãk is a full column rank matrix then its

pseudo-inverse is given by (Ãk)† = [(Ãk)T Ãk]−1(Ãk)T = [(Rk)TRk]−1(Ãk)T , where Rk

is an upper triangular matrix [77]. Although this method can be very efficient for small

scale problems it requires storage of the upper triangular matrix Rk, which grows in size

by one column at each step corresponding to the selected atom of the dictionary. This

storage requirement can be undesirable for large scale problems, as it increases memory

requirements that usually affect the convergence speed of the algorithm. To overcome
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these Cholesky factorization limitations iterative directional updates for the estimation

of the solution vector x̃k and the corresponding ck should be used instead. These meth-

ods have first been addressed by Blumensath et al. in [78, 79, 80] for greedy algorithms.

In particular, the work in [79] proposes a new set of greedy algorithms based on OMP,

which make use of gradient methods to update the solution vector.

At the k-th iteration, the Polytope Faces Pursuit algorithm needs to update the

solution vectors x̃k and ck, respectively. Put another way, the algorithm needs to find

updated solutions for the following inverse problems:

min
x̃k
‖y − Ãkx̃k‖2 and (Ãk)T ck = 1. (3.8)

One way to solve the above systems of linear equations is to use the very well known

method of conjugate gradients [81, 82], which can free the algorithm from the burden

of the storage of large matrices. However, this method requires that the given system

of linear equations is positive-definite and square. In the examined problem, Ãk is non-

square. This can be handled by attempting to minimize the cost function:

J(x̃) =
1

2
x̃T (Ãk)T Ãkx̃k − (Ãkx̃k)Ty (3.9)

which is equivalent to solving the symmetric positive definite system [77]:

min
x̃k
‖(Ãk)Tyk − (Ãk)T Ãkx̃k‖2. (3.10)

Therefore, an approach based on directional updates can be adopted by calculating the

new directions and then updating both x̃k and ck at the k-th iteration of the algorithm.

3.2.1 Conjugate Gradient Polytope Faces Pursuit

The Conjugate Gradient Polytope Faces Pursuit (CG-PFP) algorithm can now be de-

rived. At the k-th step of the CG-PFP, the algorithm should have selected k atoms from

the given overcomplete dictionary Ã and removed 0 6 l < k atoms, corresponding to the

negative entries of the nonnegative vector x̃k. In order to estimate the coefficients vector

the system x̃k = Ãk†y needs to be solved, where Ãk is an M × (k− l) matrix. However,

by selecting a new atom, the dimensionality of the system increases as does the size of
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the matrix defining the system. This increased dimensionality destroys the conjugacy of

the previous directions and therefore at the k-th step of the algorithm a full conjugate

gradient update is required.

The stopping criterion for the full conjugate gradient update is then the number of

iterations, which is chosen to be as many as the size of the subset, namely the number of

selected atoms. Alternatively, an error threshold on the objective function can be used

as the stopping condition. The conjugate gradient update at the first iteration is:

dk0 = (Ãk)T rk−1 (3.11)

x̃k0 = x̃k−1 + ηk0dk0 (3.12)

rk0 = rk−1 − ηk0Ãkdk0 (3.13)

where the step size ηk0 is given:

ηk0 =
(rk−1)T Ãkdk0
(Ãkdk0)T Ãkdk0

. (3.14)

For the next iterations the update formulae becomes:

dki = (Ãk)T rki−1 + βki−1d
k
i−1 (3.15)

x̃ki = x̃ki−1 + ηki d
k
i (3.16)

rki = rki−1 − ηki Ãkdki (3.17)

where the subscript i refers to the internal conjugate gradient iteration at the k-th step

of the PFP algorithm. The step size ηki and the Gram-Schmidt constant βki are given:

ηki =
(rki−1)T Ãkdki

(Ãkdki )
T Ãkdki

(3.18)

βki = −(Ãk(Ãk)T rki )
T Ãkdki

(Ãkdki )
T Ãkdki

. (3.19)

In order to estimate the corresponding ck in (3.8) for the current solution vector x̃k

instead of another conjugate gradient update the algorithm follows a different strategy,

which is summarized in the following theorem.
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Theorem 5. The basis vertex c at step k can be estimated using the iterative formula

ck = ck−1 + λk(r
k−1 − rk), (3.20)

where λk is the inverse atom selection criterion given by

λk = arg min
i/∈Ik−1

1− ãTi ck−1

ãTi rk−1
. (3.21)

Proof. Convenient update formulae for several of the quantities involved in the PFP

algorithm can be calculated, including the quantities B , Ã† = (ÃT Ã)−1ÃT and PÃ ,

ÃÃ† = Ã(ÃT Ã)−1ÃT . Using Ãk =
[

Ãk−1 ãik
]
, it is straightforward to show that

Bk =

[
Bk−1(I− ãikb

T
ik

)

bT
ik

]
(3.22)

where bik = (I − PÃk−1)ãik/|(I − PÃk−1)ãik |2, for any ãik such that (I − PÃk−1)ãik 6=

0. Furthermore, under the same condition, it can also be shown that rk = rk−1 −

bik ã
T
ik

rk−1 = (I − bik ã
T
ik

)rk−1 and ck = ck−1 + bik(1 − ãT
ik

ck−1). Therefore for the

switching in point for ãik , the current point on the path through the polytope is given

by h = ck + λkr
k = ck−1 + λkr

k−1 and hence ck − ck−1 = λk(r
k−1 − rk).

Using the iterative formula of equation (3.20) for the estimation of the basis vertex ck

the algorithm can gain additional computational savings, as there is no longer the need to

update the vector c by solving the computationally expensive linear system (Ãk)T c = 1

i.e. find (Ãk†)T . The resulting algorithm of Conjugate Gradient Polytopes Faces Pursuit

is summarized in Algorithm 3.

Comparing now CG-PFP with the existing stepwise implementation of PFP (Algo-

rithm 2), one can notice that the release of the retarding constraints has been omitted

in the proposed implementation. In other words, the algorithm at iteration k will not

check and remove the appropriate columns of the subset Ãk, which correspond to coef-

ficients of the solution vector x̃k that violate the nonnegativity constraint. Due to the

iterative nature of the conjugate gradient method switching out of these atoms will add

computational cost to the algorithm. Every time a release occurs the algorithm will have

to initialize both the solution vector x̃k and the residual rk and reestimate the current
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Algorithm 3 Conjugate Gradient Polytope Faces Pursuit

1: Input: Ã = [ãi], y {If required, set Ã← [A,−A]}
2: Set stopping conditions lmax and θmin

3: Initialize: k ← 0, Ik ← ∅, Ãk ← ∅, ck ← 0, x̃k ← ∅, ŷk ← 0, rk ← y
4: while |Ik| < lmax and maxi ã

T
i rk−1 > θmin do {Find next face}

5: k ← k + 1
6: Find face: ik ← arg maxi/∈Ik−1{(ãTi rk−1)/(1− ãTi ck−1) | ãTi rk−1 > 0}
7: λk ← (1− ãTi ck−1)/(ãTi rk−1)
8: Add constraints: Ãk ← [Ãk−1, ãik ], Ik ← Ik−1 ∪ {ik}
9: [x̃k, rk]← update with directional updates (conjugate gradients)

10: ck ← ck−1 + λk(r
k−1 − rk)

11: end while
12: Output: c∗ = ck, x̃∗ ← 0 + corresponding entries from x̃k

{If required, get x∗i ← (x̃∗i − x̃∗i+n), 1 ≤ i ≤ N}

solution vector for the whole subset apart from the columns that have been switched out.

This process should repeat until all the entries of the solution vector are nonnegative.

According to the standard implementation of PFP this step is necessary only to provide

exact sparse solutions. If omitted the algorithm searches for approximate solutions that

in practice will not deviate much from the optimal BP solution. In such a case, the path

of the PFP algorithm as discussed in Section 3.3 will be identical to the path followed by

the Least Angle Regression (LARS) algorithm [52], which is an interesting geometrical

approach to solve (3.1), based on the concept of following the path which is equiangular

among all current selected atoms. Nevertheless, as mentioned in [83] empirical findings

show that sign constraint releases appear to be infrequent in practice.

Thus, CG-PFP stands as an alternative to the PFP algorithm when large scale sparse

recovery problems encountered that can approximate the BP solution. In case that no

negative entries are encountered as will be shown in Section 3.3, the convergence of

CG-PFP and PFP will be identical and hence the algorithm will perform BP.

3.2.2 Approximations with directional updates

Although the Conjugate Gradient Polytope Faces Pursuit algorithm, as presented above,

reduces the memory requirements and increases the convergence speed of the original

PFP, it requires a full conjugate gradient solver each time a new face is encountered.

Therefore, suboptimal directional updates can be used resulting in even faster but less

accurate algorithms.

One suboptimal approach could be if the conjugate gradient solver is forced to iterate
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only once at each step of the algorithm. The conjugate gradient solver at the first

iteration will move towards the direction of the residual of the previous step. This is

the same direction that the steepest descent method will follow at the first iteration.

However, a more sophisticated approach is to consider approximate conjugate directions.

In that case, the solution vector is updated by estimating the new direction that will

be “conjugate” to the direction of the previous step of the algorithm. Therefore, the

direction, the solution vector and the corresponding residual at the k-th step of the

algorithm will be:

dk = (Ãk)T rk−1 + βk−1dk−1 (3.23)

x̃k = x̃k−1 + ηkdk (3.24)

rk = rk−1 − ηkÃkdk. (3.25)

where

ηk =
(rk−1)T Ãkdk

(Ãkdk)T Ãkdk
(3.26)

βk = −(Ãk(Ãk)T rk)T Ãkdk

(Ãkdk)T Ãkdk
. (3.27)

The resulting algorithm is called Approximate Conjugate Gradient Polytope Faces Pur-

suit (ACG-PFP).

3.3 Theoretical properties

This section provides the theoretical analysis of the PFP algorithm. After the presenta-

tion of the necessary and sufficient recovery conditions that guarantee uniqueness of the

optimum solution pair (x̃∗, c∗), the relation between the Fuchs Condition [59] and the

Exact Recovery Condition (ERC) [35] is investigated and it is shown that when ERC is

satisfied the PFP and CG-PFP algorithms will be equivalent in the sense that they will

both yield the optimal sparse solution following the exact same path. Empirical findings

verify the theoretical results.
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3.3.1 Fuchs Condition & ERC

Suppose that condition (3.5a) holds for some x̃0 with ‖x̃0‖0 ≤ K nonzero elements and

define S̃ = supp(x̃0) to be the set of indices corresponding to the nonzero entries of

the nonnegative vector x̃0. Then the following result gives the necessary and sufficient

conditions for x̃0 to be the unique optimum of (3.2).

Theorem 6. (Plumbley [73]) x̃0 is the unique optimum point of the primal linear

program if and only if a) ÃS̃ has full rank and b) there exists some c ∈ RM such that

ãTj c = 1, ∀j ∈ S̃ (3.28a)

ãTj c < 1, ∀j /∈ S̃. (3.28b)

Theorem 6 is the equivalent to the Fuchs Condition [59] for the problem (3.1) in its

standard form. Therefore, Theorem 6 guarantees `1-unique-optimality and in addition it

provides the weakest possible conditions for `1-unique-optimality. However, it is rather

hard to test given an underdetermined system of linear equations. As showed in [73], a

stronger condition than necessary for `1-uniqueness holds, which is an extension of the

Fuchs Corollary [84] for the original form of problem (3.1) to its standard form.

Corollary 1. (Plumbley [73]) Let x̃0 be a solution to the primal linear program of

equation (3.2). If ÃS̃ has full rank and

ãTj c < 1, ∀j /∈ S̃ (3.29)

is satisfied with the dual vector c = (Ã†S)T1, then x̃0 is the unique optimum.

Nevertheless, a more well known recovery condition than the Fuchs Condition is the

Exact Recovery Condition (2.44) of Theorem 3, presented in Section 2.2.4. Interestingly,

as pointed out by Gribonval and Nielsen [58], Fuchs Condition and ERC are closely

related to each other. More specifically, by rewriting condition (3.29) of Corollary 1 to its

original form, the inequality becomes |aTj (A†S)T sgn(xS)| < 1, ∀j /∈ S, where S = supp(x)
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and sgn(·) denotes the signum function defined as:

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x < 0

. (3.30)

Therefore, it holds:

max
xS

max
j /∈S
|aTj (A†S)T sgn(xS)|

= max
xS

max
j /∈S
|sgn(xTS )A†Saj |

= max
xS

max
j /∈S
|〈sgn(xS),A†Saj〉|

= max
j /∈S
|〈1,A†Saj〉|

= max
j /∈S
‖A†Saj‖1 < 1. (3.31)

Consequently, the ERC of Theorem 3 can be viewed as a corollary to Corollary 1,

which therefore makes it a stronger condition than both Fuchs Condition and Fuchs

Corollary. In other words, if ERC is met then the conditions in Theorem 6 and Corollary

1 will both be satisfied. It is clear though that the opposite argument does not always

hold.

For the original version of PFP which considers removal of atoms, Corollary 1 is

sufficient for `1 uniqueness [73]. The main result presented here shows that when ERC is

also satisfied then PFP will converge to the optimum solution x̃∗ in only K steps. This

is stated more formally in the following theorem.

Theorem 7. Let x̃∗ and c∗ be the optimum solution pair to the primal and dual linear

programs of (3.2) and (3.4) respectively and define AS as in theorem (3). If

max
j /∈S
‖A†Saj‖1 < 1 (3.32)

then PFP will find the optimum solution pair x̃∗ and c∗ in K steps.

Proof. In order to prove this, it is required to show that the algorithm at the k-th iteration

will select a dictionary atom ãj so that j ∈ S̃ and that no atom removals will occur in
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any of the first K iterations. For the first part, note that at the k-th iteration and for

j ∈ S̃, it holds:

arg max
j /∈Ik−1

ãTj rk−1

1− ãTj ck−1
≥

∑K
i=k xk(i)ã

T
j ãi

1− ãTj [(Ãk−1)†]T1

≥
xk(j)−

∑
i 6=j xk(i)ã

T
j ãi

1 + ‖ãTj [(Ãk−1)†]T ‖
1

≥
xk(j)− µ

∑
i 6=j xk(i)

1 + ‖[(Ãk−1)T Ãk−1]−1‖1‖(Ãk−1)T ãj‖1

≥ xk(j)− µ(K − k)xk(j)

1 + µ(k − 1)/(1− µ(k − 2))
(3.33)

where Ik−1 is the set of indices corresponding to the already selected atoms and µ is the

dictionary mutual coherence. In the above inequalities, it has been used the fact that

the residual at the k-th iteration of PFP can be expressed as a linear combination of

K − k atoms that have not been yet selected and belong to the true support set. Hence,

it is assumed that at the previous k − 1 iterations the algorithm has selected atoms

from the support set i.e. Ik−1 ⊂ S̃. In that case, the residual will be orthogonal to the

k − 1 selected atoms, as the algorithm by definition enforces this orthogonality. For the

denominator, in the last inequality of (3.33), it has been used the fact that according to

the Neumann series for any matrix D such that ‖D‖1 < 1, it holds:

∞∑
l=0

Dl = (I−D)−1. (3.34)

Notice that the Gramian (Ãk−1)T Ãk−1 has ones in its diagonal. It can therefore be

expressed as (Ãk−1)T Ãk−1 = I + D. Using now (3.34), it follows:

‖[(Ãk−1)T Ãk−1]−1‖1 = ‖(I + D)−1‖1

=

∥∥∥∥∥
∞∑
l=0

−Dl

∥∥∥∥∥
1

≤
∞∑
l=0

‖D‖l1

=
1

1− ‖D‖1
≤ 1

1− µ(k − 2)
. (3.35)



64

On the other hand for dictionary atoms ãj with j /∈ S̃, the algorithm requires:

arg max
j /∈Ik−1

ãTj rk−1

1− ãTj ck−1
≤

∑K
i=k xk(i)ã

T
j ãi

1− ãTj [(Ãk−1)†]T1

≤
∑K

i=k xk(i)ã
T
j ãi

1− ‖ãTj [(Ãk−1)†]T ‖
1

≤
µ
∑K

i=k xk(i)

1− ‖[(Ãk−1)T Ãk−1]−1‖1‖(Ãk−1)T ãj‖1

≤ µ(K − k + 1)xk(j)

1− µ(k − 1)/(1− µ(k − 2))
. (3.36)

The combination of equations (3.33) and (3.36) yields:

2µK < 1− µ+ 2µk − µ(k − 1)

1− µ(k − 2)
(1 + µ). (3.37)

Minimizing the quantity q(k) = 2µk − µ(k−1)
1−µ(k−2)(1 + µ) with respect to k can further

bound the sparsity level K. Considering that PFP requires |ãTj ck−1| < 1 and therefore

µ(k−1)
1−µ(k−2) < 1, it is straightforward to show that q(k) will take its minimum value at

k = 1. Consequently, substituting k = 1, equation (3.37) yields:

K <
(1 + µ)

2µ
⇒ K <

µ−1 + 1

2
. (3.38)

The inequality (3.38) implies the ERC. According to Theorem 4 of Section 2.2.4, if ERC

is satisfied then the threshold on the sparsity level K is given by the above inequality.

Therefore, if (3.38) holds then PFP at the k-th iteration will select an atom from the

true support set S̃. It remains to be seen that this condition can guarantee that no atom

removals will occur during the first K iterations. To do this, once again it is assumed

that at the k-th iteration PFP has selected k − 1 atoms from S̃ without any removals.

Note that at any iteration it holds:

ŷTk c∗ = x̂Tk (Ãk)T (Ã†
S̃

)T1 ≤ x̂Tk 1 ≤ ‖x̂k‖1 (3.39)

where ŷk denotes the estimate of y at the end of the k-th iteration. It is clear that if

(3.32) holds for the given system, then the inequality (3.39) will hold only if Ãk contains

dictionary atoms ãj with j /∈ S. However, this is contradictory according to (3.38) and
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thus if (3.32) is satisfied the equality in (3.39) will hold. Subsequently, when equation

(3.32) holds, PFP at the k-th iteration will select an atom from S̃ and also the nonnegative

constraint on x̃ cannot be violated. It follows that the algorithm will find the optimum

solution pair in x̃∗ and c∗ in K iterations.

The result of Theorem 7 has also been observed in [33] for the Homotopy method,

which differs from LARS algorithm by allowing atom removals at each stage. The authors

eventually show that Homotopy and LARS will follow the same path when ERC is met

and recover the sparse solution in K steps. From that point of view, if the atom removal

step is omitted from PFP then its path will be identical to the LARS path. The same

holds for CG-PFP algorithm which by definition does not consider switching out of bases.

In the case now that ERC holds for the given overcomplete dictionary A, then an outcome

of Theorem 7 is the following corollary.

Corollary 2. Consider AS as in Theorem 3. Then if

arg max
j /∈S
‖A†Saj‖1 < 1 (3.40)

PFP and CG-PFP algorithms will be equivalent. Both algorithms will find the optimum

solution pair x̃∗ and c∗ in K steps following the exact same path.

Proof. It follows naturally from Theorem 7.
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Figure 3.3: Support recovery rates (over 100 trials) of the K-term approximation of PFP
and CG-PFP vs the sparsity level K for a dictionary A ∈ RM×N with M = 128 and
N = 256. The dotted line separates the region of sparsity levels K for which ERC is
satisfied from the region where ERC is not satisfied.

The result of Corollary 2 was also verified empirically. This was done by comparing
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the K-term approximation of PFP and CG-PFP algorithms, where both algorithms were

forced to terminate after performing K iterations. The generated dictionary was chosen

to be twice overcomplete A ∈ R128×256 and its columns were drawn from an i.i.d. zero-

mean Gaussian distribution. The sparse vectors x were generated by drawing K elements

from an i.i.d. process and placing them atK random entries of x. The average full support

recovery probabilities over 100 iterations are plotted in Fig. 3.3. As can be seen, as long

as the ERC is satisfied, the rate of full support recovery is 1 for both algorithms, whereas

for larger sparsity levels such that K ≥ 8, ERC is not satisfied and as expected both

algorithms do not converge to the optimum solution in K steps. Hence, these empirical

findings demonstrate the theoretical results of Theorem 7 and Corollary 2.

However, the above performance cannot be guaranteed for both algorithms when only

Fuchs Corollary holds and ERC is not satisfied. This is demonstrated in the following

section using an average case analysis for both algorithms.

3.3.2 Phase transitions of PFP algorithms.

Phase diagrams have been used extensively in order to quantify the performance of com-

pressed sensing and sparse recovery algorithms. Initially introduced by Donoho and

Tanner [85], these phase diagrams depict the performance of an algorithm as a func-

tion of the over-sampling ratio M/N and the under-sampling ratio K/M . Both of these

quantities are chosen to vary within the range [0, 1]. According to the selected perfor-

mance measure (e.g. Euclidean distance between the recovered and the true sparse vector

x) phase diagrams display a phase transition [33]. This phase transition phenomenon

can give more insight on the behaviour of an algorithm between success and failure in

recovering x.

Fig. 3.4 shows the phase diagrams of the original PFP algorithm with and without

atom removals and the proposed CG-PFP. The red curve corresponds to the theoretical

curve for `1 minimization. The shaded area is the number of coefficients that differ more

than 10−4 from the optimal sparse solution. Therefore, the darker the region the lower

the recovery capabilities of the algorithm. The results shown have been obtained using

dictionaries drawn from the random uniform ensemble and the number of dictionary

atoms is N = 256.

The phase transitions of the three diagrams, obtained by these average case results,
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(a) (b)

(c)

Figure 3.4: Phase diagrams of (a) orginal PFP algorithm (b) original PFP algorithm
without atom removals and (c) CG-PFP algorithm.

verify the theoretical results presented in the Section 3.3.1. As expected, for small values

of K/M and for the whole range of the ratio M/N the recovery performance is identical

for all algorithms. However, for larger values of K/M , where ERC is less likely to be

satisfied the original version exhibits slightly better performance.

3.4 Stagewise Polytope Faces Pursuit

Stagewise greedy algorithms such as Stagewise Orthogonal Matching Pursuit (StOMP)

[86] and Stagewise Weak Orthogonal Matching Pursuit (SWOMP) [80] attempt to add

several dictionary atoms instead of one atom at a time. As a result, these algorithms

provide approximate solutions but they achieve faster convergence. In a similar manner to

the aforementioned stagewise versions of OMP, in [76] the authors proposed the Stagewise

Polytope Faces Pursuit (StPFP) algorithm, which allows for a variable number of selected

basis vectors at each stage. More specifically, once the adjusted correlations have been

calculated, the algorithm at the k-th iteration selects qk ≥ 1 atoms according to a basis

selection criterion.
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The basis selection criterion could be either a fixed selection criterion or the weak

selection criterion, which is a modification of the weak-MP [28] selection criterion. The

fixed selection criterion is straightforward; the algorithm at stage k will select the qk = q

atoms with the largest scaled correlation. A more sophisticated approach is to use the

weak selection criterion, similar to the work of Davies and Blumensath for the SWOMP

algorithm [80]. According to this approach, the algorithm at the k-th stage first estimates

the scaled correlation:

θ(ãki ) =
ãTi rk−1

1− ãTi ck−1
(3.41)

for all atoms that have not yet been selected by the algorithm. The weak selection

criterion is then formulated as:

|θ(ãki )| ≥ βmax
i
|θ(ãki )| (3.42)

where 0 < β ≤ 1 is a threshold control parameter. Therefore, the weak selection criterion

applies a threshold relative to the maximum of the scaled correlations.

After the atoms have been selected, the algorithm updates the solution vectors and

the residual and iterates until the stopping conditions are met, similar to Algorithm 2.

3.4.1 Stagewise Conjugate Gradient Polytope Faces Pursuit

This section presents the stagewise version of the algorithm using directional updates.

Once qk new atoms have been identified by the fixed or weak selection criterion, the full

conjugate gradient method is used to update the solution vector x̃k, in a similar way to

that discussed in Section 3.2. The main algorithmic difference between the stepwise and

stagewise versions appears when it comes to the estimation of the corresponding ck to the

current solution vector. This is because the iterative update formula of equation (3.20)

cannot be used in that case, due to the fact that the update for Bk of equation (3.22)

will not hold when adding qk > 1 dictionary atoms. Subsequently, a second directional

update strategy for the estimation of ck is considered.

At the k-th stage, the algorithm needs to solve the system for ck:

(Ãk)T ck = 1k (3.43)
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Algorithm 4 Stagewise Polytope Faces Pursuit with directional updates

1: Input: Ã = [ãi], y {If required, set Ã← [A,−A]}
2: Set stopping conditions lmax and θmin

3: Initialize: k ← 0, Ik ← ∅, Ãk ← ∅, ck ← 0, x̃k ← ∅, ŷk ← 0, rk ← y
4: while |Ik| < lmax and maxi ã

T
i rk−1 > θmin do {Find next face}

5: k ← k + 1
6: qk ← select a suitable number of vectors to be added
7: Find qk faces:

J k ← arg maxq
k

i/∈Ik−1{(ãTi rk−1)/(1− ãTi ck−1) | ãTi ck−1 > 0}
8: Add constraints: Ãk ← [Ãk−1, {ãik | i ∈ J k}], Ik ← J k−1 ∪ J k
9: [x̃k, ck, rk]← update with directional updates

10: end while
11: Output: c∗ = ck, x̃∗ ← 0 + corresponding entries from x̃k

{If required, get x∗i ← (x̃∗i − x̃∗i+n), 1 ≤ i ≤ N}

where the dimensionality of vector 1k increases at each stage by as much as the total

number of the newly selected atoms. Vector ck is estimated using the steepest descent

method with a number of iterations equal to the size of the current selected support

set, as in practice empirical results suggest that the accuracy in the estimation does not

have a large effect in the atom selection criterion. Put another way, an approximate

estimate of ck is often enough for the algorithm to select the correct atoms at each stage.

The Stagewise Conjugate Gradient Polytopes Faces Pursuit (CG-StPFP) is illustrated

in Algorithm 4.

3.5 Experimental results

For the evaluation of the performance of the proposed methods of stepwise and stagewise

PFPs, the algorithms were compared against state-of-the-art algorithms, such as Basis

Pursuit and Gradient Projections for Sparse Reconstruction (GPSR) algorithm. First of

all, all algorithms were tested on synthetic data and then on problems generated using

the benchmarking Matlab toolbox SmallBox [87, 88], including a compressed sensing

and an audio source separation problem.

3.5.1 Experimental evaluation on synthetic data with fixed problem size

For the first set of experiments, a sparse representation problem was generated using

synthetic data. More specifically, the dictionary A ∈ R128×256 was a two times redundant

matrix with normalized columns, generated by drawing its columns from an i.i.d. normal
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(a) (b)

(c)

Figure 3.5: Average SNR values of the estimated sparse coefficient vectors for variable
sparsity levels for the PFP, BP, GPSR, CG-PFP, ACG-PFP and CG-StPFP algorithms.
The observations have been corrupted by additive Gaussian noise resulting in SNR of (a)
100 dB, (b) 60 dB and (c) 30 dB.

distribution. The entries of the sparse vector x ∈ R256 were also drawn from an i.i.d.

normal distribution and the sparsity level K varied from 4 to 64 with a step of size 10.

Next, the observations were generated as y = Ax + n, where n ∼ N (0, σ2) is the i.i.d

Gaussian additive noise with variable variance σ2 resulting in different SNR values (100

dB, 60 dB and 30 dB).

The proposed stepwise and stagewise implementations of PFP based on directional

updates were compared against the SparseLab implementation of Basis Pursuit (SolveBP)

[89, 90] and the GPSR algorithm [53] taken from the Gpsr toolbox (GPSR Basic) [91].

Both toolboxes are included in the SmallBox framework. Parameters, such as number

of iterations or stopping error criterion were left at their default values. After the estima-

tion of the recovered signal for each algorithm, the SNR values were computed and the

results were plotted against the sparsity level (ratio between nonzero entries K and the

dimension of the observations M). All results have been averaged over 1000 iterations.

Fig. 3.5(a)-(c) illustrate the results of the stepwise CG-PFP and ACG-PFP algorithms
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(PFP based on the full conjugate gradient directional update and on the approximate

conjugate gradient update respectively), the stepwise PFP (PFP based on Cholesky

factorization), the stagewise CG-StPFP algorithm under the weak selection criterion,

BP and GPSR at the three different noise levels respectively. The parameter β was set

at 0.8 for the weak selection criterion. As can be seen in Fig. 3.5(a), for the sparsity

level K = 14 and therefore K/M ≈ 0.11, PFP achieves the best performance resulting

in SNR = 86.5 dB followed by CG-PFP and CG-StPFP, which both achieve an SNR

of approximately 72 dB. All three algorithms outperform BP and GPSR, for which the

obtained SNR is 61 dB and 58 dB, respectively. However, the approximate PFP algorithm

exhibits the worst performance with SNR at 47 dB. In the case when the additive noise

in the measurements results in SNR of 60 dB (Fig. 3.5(b)), it can be observed that for

the same ratio of K/M all PFP algorithms perform better than BP and GPSR. In more

detail, the SNR values for PFP, CG-PFP and CG-StPFP is approximately 50 dB and

46 dB for the ACG-PFP algorithm. On the other hand, the performance falls at 39 dB

and 42 dB for BP and GPSR respectively. Finally, at the same sparsity level K = 14

Fig. 3.5(c) (SNR = 30 dB) shows that PFP, BP and GPSR perform close to 9 dB, while

CG-PFP and ACG-PFP achieve SNR values of 8.5 dB and 7.5 dB, respectively. In that

case, the performance of CG-StPFP degrades dramatically, as it drops at only 4 dB. In

general, it could be said that the Cholesky factorization PFP method shows a slightly

better overall performance than the conjugate gradient based one. However, the CG-PFP

algorithm performs quite close to PFP in all three cases. It is worth noting that although

ACG-PFP displays the worst performance in the first case when the noise level is at 100

dB (Fig. 3.5(a)), its performance does not degrade as much as CG-PFP when the noise

level increases. This might be due to the fact that in the noisy case less iterations of the

conjugate gradient step or suboptimal directional updates behave better. On the other

hand, CG-StPFP performs close to CG-PFP in the first two experiments (Fig. 3.5(a)-

(b)), but when the SNR is at 30 dB the algorithm performs poor. This suggests that

when the noise level is higher, choosing more atoms at a time does not necessarily lead

to good approximations.
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3.5.2 Experimental evaluation on synthetic data with variable problem size

In the second experiment, the PFP algorithms’ performance for a variable problem size

was compared. To do this, the number of observations M was increased from 64 to 4,096

while the number of variables was increased proportionally as N = 2M . The sparsity

level K was kept constant at K/M = 0.125. The columns of the overcomplete dictionary

A ∈ RM×N were drawn from an i.i.d. normal distribution. The sparse vector x was

also generated by drawing K elements from an i.i.d. distribution and placing them at

K random entries of x. The observations vector was generated as y = Ax + n, where

n is the i.i.d. Gaussian additive noise. The SNR was kept constant at 90 dB for this

experiment.

(a) (b)

Figure 3.6: (a) Average SNR values of the estimated sparse coefficient vectors and (b)
average elapsed times for the CG-PFP, PFP, ACG-PFP and CG-StPFP (with the weak
selection criterion) against the problem size.

Fig. 3.6(a) shows the SNR performance of the three stepwise PFP methods (original

PFP, CG-PFP and ACG-PFP) and the stagewise based on the weak selection criterion

(CG-StPFP) and Fig. 3.6(b) the elapsed times, respectively. Regarding the signal recov-

ery, the stagewise algorithm achieves the best performance for this experiment, especially

as the problem size increases. It therefore suggests that for large scale problems stagewise

approaches can also improve the recovery. The stepwise algorithms perform closely and

the one using the approximate directional updates shows the worst performance in terms

of SNR but still close to the CG-PFP and PFP functions. Moreover, Fig. 3.6(b) clearly

shows the advantage of using directional updates. Apart from the fact that storage re-
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quirements are decreased significantly, the gain in speed becomes larger as the problem

size increases. When the directional updates and the stagewise approach are combined

the algorithm results in the fastest convergence. For example, when the number of mea-

surements is M = 2048, it can be noted that CG-StPFP requires only 11 sec to yield a

sparse approximation. This makes the algorithm approximately 9 times faster than AC-

PFP, which converges after 99 sec and 14 times faster than CG-PFP, which converges

after 152 sec. PFP is much slower in this case with the average time to convergence being

approximately 1256 sec, which is 8 times slower than the average time of CG-PFP.

3.5.3 Evaluation on SPARCO problems

Sparco [92, 93] is a Matlab framework containing a suite of different signal processing

problems, which makes it suitable for benchmarking sparse reconstruction algorithms.

Sparco is included in the SmallBox toolkit. A compressed sensing, an image deblur-

ring and an audio source separation problem has been chosen to evaluate the proposed

algorithms.

(a)

(b)

Figure 3.7: Original signal, observations and signal recovery by CG-PFP algorithm for (a)
image deblurring Sparco problem 702 and (b) 2D compressed sensing Sparco problem
603.

Sparco problem 702 is an image deblurring problem, consisting of a binary spike

image. The signal is blurred by convolution with an 8 × 8 blurring mask and normally

distributed noise with standard deviation 0.01 is added to the blurred signal. The prob-
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Table 3.1: Signal-to-Nosie-Ratio and Elapsed times (problems 702 and 603)
problem 702 problem 603

SNR (dB) Time (sec) SNR (dB) Time (sec)
BP 17.11 227.24 30.16 287.7

GPSR 19.19 34.25 28.71 22.18
PFP 19.11 13.41 30.81 43.86

StPFP 19.52 8.08 30.88 18.77
CG-PFP 19.11 12.18 30.96 32.05

ACG-PFP 17.67 5.1 30.9 15.88
CG-StPFP 19.24 5.7 30.83 7.54

lem size is M = 16384, N = 16384 and the sparsity level is K = 164. Fig. 3.7(a) shows

the original binary image, the blurred observations and the CG-PFP reconstruction. The

stepwise versions of the Polytope Faces Pursuit algorithm (PFP, CG-PFP, ACG-PFP)

and the stagewise algorithms (StPFP, CG-StPFP) under the fixed selection criterion were

tested against the BP solver and the GPSR algorithm. For all experiments the number

of selected atoms per iteration has been set to 10 for the fixed selection criterion and the

parameter β at 0.8 for the weak selection criterion of the stagewise sparse recovery algo-

rithms. Table 3.1 summarises the results in terms of SNR performance and convergence

time for the tested algorithms.

As can be seen, most of the algorithms SNR performance is close to 19 dB. However,

it is clear that the Polytope Faces Pursuit algorithms based on directional updates con-

verge much faster, with the stagewise version of CG-PFP achieving the best performance

considering both SNR and elapsed time. The SNR recovery of the approximate step-

wise PFP algorithm deteriorates, but it converges much faster outperforming all other

algorithms in terms of convergence speed.

Problem 603 is a 2D compressed sensing problem of the yinyang image shown in Fig.

3.7(b). The original signal size is 64 × 64 and it is measured using a M = 1024 × N =

4096 binary ensemble with unit norm columns. The additive noise in the measurements

is normally distributed with standard deviation 0.01. The original image is not exact

sparse but compressible in the wavelet domain and a square transform matrix containing

Daubechies atoms is used for the decomposition. Most of the compared algorithms

perform similarly regarding the signal recovery. However, their convergence time varies

significantly and once more, Table 3.1 encapsulates the gain of using directional updates,

especially when combined with the stagewise approach.

Finally, the performance of the proposed framework was evaluated on an audio source
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Figure 3.8: Source separation Sparco problem 402, consisting of three audio sources:
guitar, piano and voice (left) and two mixtures (right).

separation problem. Sparco problem 402 is an underdetermined source separation prob-

lem consisting of three audio sources (guitar, piano and voice) and 2 mixtures (Fig. 3.8).

The mixing is instantaneous and a windowed DCT transform is used to provide the sparse

representations of the audio signals. All sources have been initially downsampled to 8

kHz.
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Figure 3.9: Experimental results for the modified Sparco problem 402: the SNR values
for three of the tested algorithms are shown on the left and the elapsed times to separate
the sources of all algorithms on the right.

This problem allowed for variable problem sizes by modifying appropriately Sparco

problem 402. More specifically, experiments were carried out for 10 different problem sizes

(from 768 samples to 3072 in 256 samples increments). The SNR of the reconstruction of
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each instrument separately and the elapsed time to solve the inverse problem were then

compared.

Fig. 3.9 shows the SNR results for three of the tested algorithms (BP, CG-PFP,

StPFP). As can be seen, BP yields slightly better performance, however the difference

in audio quality is indistinguishable. All other tested algorithms resulted in very similar

SNR performance. Regarding the elapsed recovery time of the stepwise algorithms, ACG-

PFP proves to be the fastest algorithm followed by GPSR. However, the stagewise CG-

StPFP algorithm achieves the fastest convergence and shows its clear advantage over

StPFP which is based on Cholesky factorization.

3.6 Discussion

This chapter introduced a suite of new greedy algorithms that find approximate sparse

solutions to underdetermined sparse representations problems, based on the Polytope

Faces Pursuit algorithm using directional updates.

The earlier implementation of the Polytope Faces Pursuit in a greedy fashion identifies

the appropriate atom of the overcomplete dictionary according to the scaled correlation

criterion and then updates the solution vector using the method of Cholesky factoriza-

tion. This method has shown to be inefficient for large scale recovery problems, as it

involves high memory requirements. The proposed method of Conjugate Gradient Poly-

tope Faces Pursuit overcomes this problem using a conjugate gradient update at each step

of the algorithm. Although the specific implementation omits the release of the retarding

constraints, theoretical results showed that when ERC is satisfied both algorithms are

equivalent, converging to the sparsest solution in only K iterations.

However, the dimensionality of the problem, which needs to be estimated by the

conjugate gradient method increases each time the algorithm selects a new atom and

therefore a full conjugate update is required at each step. The proposed Approximate

Conjugate Gradient Polytope Faces Pursuit algorithm considers approximate conjugate

gradient updates, reducing in that way the overall complexity and resulting in faster

convergence but less accurate recovery.

Another option to reduce the complexity of the algorithm is to consider a stagewise

approach. Subsequently, according to some predefined selection criteria (fixed or weak
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selection criterion), the introduced Stagewise Conjugate Gradient Polytope Faces Pursuit

algorithm adds several basis vectors to the already chosen subspace at each stage. The

solution vector is then updated using directional updates similar to the stepwise version.

The performance of the proposed algorithms was first tested on synthetic data, using

a dictionary with fixed size allowing the sparsity level and the additive noise power to

vary. The simulation results showed that the proposed algorithms perform reasonably,

close to the BP and GPSR performance, even in the case of approximate directional

updates. Next, the performance of the proposed algorithms was compared against the

stepwise Polytope Faces Pursuit algorithm based on the Cholesky factorization, in the

scenario where the problem size varies while the sparsity and noise level remain fixed.

The results showed that the time needed for the sparse recovery rises almost linearly with

the problem size for the PFP algorithms based on directional updates, with the stagewise

method being the fastest. On the other hand, the original PFP method rises faster than

linear as the problem size increases.

Finally, the algorithms were tested on an image deblurring, a compressed sensing and

a source separation problem from the Sparco toolbox. The results verified once again

that the Polytope Faces Pursuit algorithm converges faster when the directional updates

are used and especially when combined with the stagewise approach.

To sum up, both theoretical and simulation results have proven the robustness of

the proposed suite of PFP algorithms based on directional updates in recovering sparse

representations. The following chapter focuses on the adaptation of the atom selection

criterion so that the sparsity is enforced in blocks of atoms. In that manner, PFP

is extended in order to incorporate block structures and hence exploit this additional

information to achieve better sparse recovery.
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Chapter 4

Recovery of structured sparse signals

Chapter 3 presented sparse recovery algorithms based on the conventional sparsity model,

which assumes that the nonzero coefficients can be located anywhere in the sparse vector

x. However, recent studies [94, 95, 96, 97] have proposed extensions of the standard spar-

sity model, in order to improve the recoverability of signals exhibiting some underlying

low dimensional structure, which is not necessarily exploited by only the sparsity as-

sumption. The driving force behind these approaches is that if such a structure exists in

the sparse domain for a class of signals, then it could be expressed by signal models that

go beyond standard sparsity and yield better signal representations when this additional

structure is leveraged with the conventional sparsity model. From a compressed sensing

point of view, this might allow for further reduction of the number of measurements

needed for perfect recovery as reported in [60].

Regarding the problem of DOA estimation and source localization, as it will be ad-

dressed in following chapters, structured sparsity can also be very beneficial. For that

reason, the aim of this chapter is to investigate in detail the problem of structured spar-

sity and develop the appropriate algorithms that can then be directly applied to the

problem of DOA estimation.

4.1 The group sparsity model

According to the general model of union of subspaces [60, 98], there exist signal represen-

tations that exhibit block structures of the nonzero entries of the sparse representation
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vector. These block structures, which imply that the nonzero elements are grouped in

blocks (or clusters) instead of being arbitrarily located throughout the sparse vector x

that satisfies y = Ax, can be encountered in many practical scenarios. For instance, the

sparse coefficients in multi-band signals [99] or harmonic signals [100] can be clustered

in groups of dictionary atoms. In that special case of structured sparsity, the group

sparse (or equivalently block sparse) vector x is treated as a concatenation of groups of

coefficients with equal size d:

x = [x1 . . . xd︸ ︷︷ ︸
xT
1

xd+1 . . . x2d︸ ︷︷ ︸
xT
2

. . . xN−d+1 . . . xN︸ ︷︷ ︸
xT
P

]T (4.1)

where xi denotes the i-th group and N = Pd. In [101] the group K-sparse vector is

defined as the vector x ∈ RN that has nonzero `p norm (e.g. `2, `1 or `∞) for at most K

indices out of P , namely:

‖x‖p,0 =

P∑
i=1

I(‖xi‖p > 0) ≤ K (4.2)

where I(·) is the indicator function. ‖ · ‖p,0 denotes the mixed `p,0 vector norm and ‖ · ‖p

denotes the `p norm. It follows that the redundant dictionary A can also be represented

as a concatenation of P block matrices:

A = [a1 . . . ad︸ ︷︷ ︸
A1

ad+1 . . . a2d︸ ︷︷ ︸
A2

. . . aN−d+1 . . . aN︸ ︷︷ ︸
AP

] (4.3)

where Ai denotes the i-th column block matrix of size M × d.

4.1.1 Approaches to group sparsity

In the conventional model, sparsity can be achieved by the penalization of the cost

function (i.e. least squares) with the `1 norm of the coefficient vector x. In contrast,

structured sparsity may be induced by penalizing with other functions instead of the `1

norm [102]. These functions should take into account this group structure and therefore

select simultaneously all nonzero entries that form a group of coefficients. Most of the

existing literature mainly focuses on norms that can be written as a linear combination

of norms on subsets of the group sparse vector x. More specifically, it has been shown in
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[103] that a regularization norm such as `p,1, defined as:

‖x‖p,1 =

P∑
i=1

‖xi‖p (4.4)

explicitly exploits the underlying group structure and leads to improved recovery per-

formance when the aforementioned group sparsity assumption holds. In practice, the

choice of p = 2 seems to be the most common approach resulting in the mixed `2,1 norm

minimization as proposed by Eldar et al. in [101, 98]:

min
x
‖x‖2,1 such that y = Ax. (4.5)

The problem of (4.5) can be viewed as a natural extension of `1 minimization to the group

sparsity scenario, where sparsity is enforced by minimizing the `1 norm of the P×1 vector

consisting of the `2 norms of each group of coefficients. A less popular approach considers

the problem of `∞,1 minimization, which simply replaces the `2 norm in the objective

function with the `∞ and therefore group sparsity is induced by minimizing the `1 norm

of the maximum absolute value of each group of entries in the group sparse vector x. As

discussed in [103], this method exhibits certain algorithmic benefits especially when it

comes to group structures with overlapping groups of dictionary atoms. Fig. 4.1(a)-(c)

show the `p balls in three dimensions of the objective functions for the conventional (`1

ball) and the group sparsity (`2,1 and `∞,1 balls).

Since the objective function is convex, the problem of (4.5) is a convex optimization

problem and can be solved in polynomial time. Therefore, in [104] (4.5) is cast as a

second order cone program (SOCP), whereas in [105] it was shown that it can also be

appropriately formulated as a semi-definite program (SDP). In both cases the solution

can be efficiently retrieved using standard software packages (i.e. SeDuMi [106], SDPT3

[107]). However, although these packages can yield high precision solutions, they are usu-

ally adopted for low scale problems. As discussed in [103], when dealing with large scale

problems, simpler iterative methods are preferred for their faster convergence. Although

these methods usually tend to yield lower precision solutions, they are sufficient for most

practical applications. For this reason, Block Coordinate Descent algorithms (i.e. group

soft thresholding) and homotopy based methods have been proposed, as discussed in
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(a)

(b)

(c)

Figure 4.1: Three dimensional balls of norms enforcing sparsity: (a) `1 ball, (b) `2,1 ball
and (c) `∞,1 ball.
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[103]. Of particular interest to the motives of this research is the work in [108] and [109],

where the authors proposed the group Lasso and group LARS algorithms respectively,

which stand as extensions of the original conventional sparsity algorithms.

On the other hand, greedy algorithms can serve as alternatives to the optimization

in equation (4.5) e.g. Group Orthogonal Matching Pursuit (GOMP) [101]. As its name

suggests, GOMP is the natural extension of OMP to the group sparsity case. In more

detail, the algorithm at the k-th step selects the group of atoms that best matches the

current residual according to the criterion:

ik = arg max
i/∈Ik−1

‖AT
i rk−1‖2 (4.6)

where rk−1 is the current residual, initialized as r0 = y. Once the index ik has been

identified, it is added to the set of selected indices Ik−1 and then the algorithm updates

the solution vector xk with the solution to the least squares problem:

min
xk

∥∥∥∥∥∥y −
∑
i∈Ik

Aix
k
i

∥∥∥∥∥∥
2

. (4.7)

Next, as in OMP the new residual is estimated rk = y −
∑

i∈Ik Aix
k
i and if rk = 0 the

algorithm terminates. It has been shown in [101], that for both mixed `2,1 minimization

and GOMP recovery conditions exist that unveil their performance gain over the corre-

sponding conventional sparsity algorithms of `1 minimization and OMP, respectively.

In Chapter 3, it has been shown that PFP shares similar theoretical properties with

BP. Experimental results showed that both PFP and its suboptimal version of CG-PFP

in certain cases can yield performance as good as BP. However, PFP in its original version

makes no assumptions about the structure of the sparse coefficients vector x. Therefore,

the question that follows naturally is whether one can build robust algorithms based

on PFP that enhance its performance in the group sparsity scenario and provide faster

alternatives to the existing group sparse recovery methods. In what follows, based on the

GOMP algorithm and the homotopy based method of [109], the group sparse structure

is in more detail investigated and eventually, the standard PFP algorithm is extended to

the group sparsity case. Theoretical and empirical results demonstrate the robustness of

the proposed algorithms.
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4.2 Recovery of group sparse signals via Group

Polytope Faces Pursuit

In this section, the Group Polytope Faces Pursuit (GPFP) is developed using two different

constraints for group sparsity, namely `2,1 and `∞,1. The dual linear program for each

case is first derived and then the corresponding algorithm is developed. In this discussion,

it is assumed that the groups of coefficients are disjoint and of equal length d. Therefore,

overlapping groups are not considered.

4.2.1 Dual linear program of the `2,1 group sparse recovery problem

Before the development of the Group Polytope Faces Pursuit algorithm, it is first re-

quired to derive the dual of (4.5) along with the necessary and sufficient conditions for

primal-dual optimality. To do this, the Lagrangian associated with the problem (4.5) is

considered. The Lagrangian of a constrained problem can be found by augmenting the

objective function with a weighted sum of the constraints [2]. Therefore, for the problem

of equation (4.5), it is given by:

L(x, c) = ‖x‖2,1 + cT (y −Ax) (4.8)

where c is the dual vector of (4.5), containing the Lagrangian multipliers associated with

the equality constraint y = Ax. It is then essential to find the minimum value of the

Lagrangian L(x, c) over x and for that reason the dual function g(c) is defined as:

g(c) = inf
x
L(x, c) = inf

x
{‖x‖2,1 + cT (y −Ax)} = cTy + inf

x
{‖x‖2,1 − cTAx}. (4.9)

Further manipulation of the above equation shows that:

g(c) = cTy − sup
x
{cTAx− ‖x‖2,1} = cTy −


0 if ‖AT c‖2,∞ ≤ 1

∞ otherwise

. (4.10)

This can be easily proven. Define f(c) = supx{cTAx − ‖x‖2,1}, which is the conjugate

function of the objective function as explained in [2]. When ‖cTA‖2,∞ > 1, there exists

a z ∈ RN with ‖z‖2,1 ≤ 1 and cTAz > 1, which follows from the definition of the
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dual norm. Taking x = tz and letting t → ∞, it becomes clear that cTAx − ‖x‖2,1 =

t(cTAz − ‖z‖2,1) → ∞. On the other hand, when ‖cTA‖2,∞ ≤ 1 it holds that cTAx ≤

‖x‖2,1‖AT c‖2,∞ for any x. This implies that cTAx−‖x‖2,1 ≤ ‖x‖2,1(‖AT c‖2,∞−1) ≤ 0.

Consequently, the vector that maximizes cTAx − ‖x‖2,1 is x = 0. Therefore, as shown

in [2] in the more general case, for the conjugate function f(c), it holds:

f(c) =


0 if ‖AT c‖2,∞ ≤ 1

∞ otherwise

. (4.11)

It is obvious that the Lagrangian dual vector c is feasible if ‖AT c‖2,∞ ≤ 1. In any

other case the dual function g(c) is not bounded from above and c is infeasible. In the

feasible case, the dual function g(c) ≤ c∗Ty gives a lower bound on the optimum solution

c∗. In order to obtain the dual program of (4.5), the best lower bound is required. This

leads to the optimization problem:

max
c

yT c such that ‖AT c‖2,∞ ≤ 1. (4.12)

Notice that the constraint in (4.12), considers the mixed `2,∞ norm, which is dual to the

`2,1 norm of the objective function in (4.5). Actually, the `1 and `∞ norms are dual to

each other, while the `2 norm is dual to itself. It follows naturally that the mixed `2,1

and `2,∞ will be dual to each other.

Suppose now that x∗ and c∗ is the primal-dual optimal pair of problems (4.5) and

(4.12) respectively. As it was shown, the Lagrangian L(x, c) takes its minimum value

for the pair x∗ and c∗ and its gradient should vanish at x∗. It follows that the KKT

optimality conditions require that:

y = Ax∗ and ∇xL(x∗, c∗) = 0. (4.13)

After differentiating L(x∗, c∗) with respect to x the second condition becomes:

∇xL(x∗, c∗) = ∇‖x∗‖2,1 −AT c∗ = 0 (4.14)

where ∇‖x∗‖2,1 denotes the subgradient of ‖x∗‖2,1. In general, ∇f is the subgradient of
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a convex function f(x) at x for any z if f(z) ≥ f(x)+∇f(x)T (z−x). When the function

f(x) is convex and differentiable then its gradient is also a subgradient. However, the

subgradient can also exist even if f(x) is not differentiable at some x, as illustrated in

Fig. 4.2. As can be seen, around x1, the convex function f(z) is smooth and therefore

differentiable. As a result, only one subgradient exists at this point. On the other hand,

around x2, f(z) is non-smooth and several subgradients exist. Moreover, it can be noted

that each subgradient specifies an affine function which is tangent to the function f(z)

at any given point.

Figure 4.2: At x1, the convex function f is differentiable, and g1 (which is the derivative
of f at x1) is the unique subgradient at x1. At the point x2, f is not differentiable. At
this point, f has many subgradients: two subgradients, g2 and g3, are shown [2].

Therefore, if f(x) is convex and differentiable, then its gradient is its only subgradient,

whereas if f(x) is not differentiable, there might exist more than one subgradient. In

the latter case, which in practice arises when dealing with non-smooth functions, it is

more convenient to work with subdifferentials. A function f(x) is subdifferentiable at

x if there exists at least one subgradient. This implies that a function f(x) can be

subdifferentialable at x even if it is not differentialable. The subdifferential ∂f therefore

generalizes the concept of subgradients and it is defined as the set of all subgradients of

f at x. The subdifferential of f at x can then be more formally defined as the set:

∂f(x) =
{
g ∈ RN | f(x) + gT (z− x) ≤ f(z), ∀x ∈ RN

}
. (4.15)

Note that if f is differentiable at x, then the set reduces to a unit set (or singleton).

Considering that the function of interest, namely ‖x‖2,1, is not differentiable at x = 0



86

it is more handy to work with subdifferenitals instead of subgradients. More specifically,

it can easily be shown that the gradient of the i-th group ∇‖xi‖2,1 is given by the

expression ∇‖xi‖2,1 = xi/‖xi‖2 when ‖xi‖2 > 0. It follows that when ‖xi‖2 > 0, the

subdifferential is given by ∂‖xi‖2,1 = xi/‖xi‖2. However, for the zero block-elements of

x the gradient is not defined, but ∂‖xi‖2,1 coincides with the set of unit `2 norm vectors

Bd`2 = {u ∈ Rd | ‖u‖2 ≤ 1} [110]. Therefore, for each i = 1, . . . , P , it holds:

∂xi‖xi‖2,1 =


{u ∈ Rd | ‖u‖2 = 1 : u = xi/‖xi‖2} if ‖xi‖2 > 0

{u ∈ Rd : ‖u‖2 ≤ 1} otherwise

. (4.16)

The second KKT condition of (4.13) can then be rewritten as ∂xL(x∗, c∗) ∈ 0 and

equation (4.14) becomes:

∂xL(x∗, c∗) = ∂‖x∗‖2,1 −AT c∗ ∈ 0. (4.17)

Substituting equation (4.16) to (4.17), it yields:

AT
i c∗ ∈ ∂xi‖x∗i ‖2,1 (4.18)

and therefore ‖AT c∗‖2,∞ ≤ 1. It has been shown that for the optimal x∗, there exists a

corresponding optimal c∗. According to the KKT conditions for primal-dual feasibility,

the following lemma holds.

Lemma 2. Suppose that the primal problem of equation (4.5) is feasible. Then the pair

x∗, c∗ is an optimum point for both primal and dual linear programs if and only if the

following conditions hold:

Ax∗ = y (4.19a)

‖AT c∗‖2,∞ ≤ 1 (4.19b)

yT c∗ = ‖x∗‖2,1. (4.19c)

Proof. This follows immediately from KKT conditions. Condition (4.19c) can be derived
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from (4.18). Define v∗ = [∂x1‖x∗1‖2,1 ∂x2‖x∗2‖2,1 . . . ∂xP ‖x∗P ‖2,1]T . Then, from (4.18) it

follows that AT c∗ = v∗ ⇒ (x∗)TAT c∗ = (x∗)Tv∗ ⇒ yT c∗ = ‖x∗‖2,1.

Lemma 2 provides the necessary and sufficient conditions for primal-dual optimality.

More specifically, conditions (4.19a) and (4.19b) concern the primal and dual feasibility.

Condition (4.19c) provides the complementary slackness, which implies zero duality gap

and therefore strong duality holds between the primal and the dual problems. According

to [2], strong duality between the primal and its dual problem suggests that the primal

and dual solutions are equivalent.

Figure 4.3: Geometry of the dual of the mixed `2,1 minimization problem in three di-
mensions. The dictionary atoms a1 and a3 form a group, while a2 is treated as in the
conventional sparsity model assuming also nonnegativity for its corresponding coefficient.
The optimum dual vector c∗ lies on the circumference of the circular surface defined by
a1 and a3 (section of cylinder at c2 = 0).

Fig. 4.3 illustrates the geometry of the dual linear program for the `2,1 minimization

problem in three dimensions, where it is supposed that the dictionary atoms a1 and a3

form a group, while the atom a2 is treated as in the case of conventional sparsity with

the additional nonnegativity constraint, since only positive values along the direction of

a2 are considered. As can be seen, the geometrical entity associated with the dual linear

program is a cylinder and for the given measurements vector y the optimum dual vector

c∗ lies on the unit circle defined by the inequality ‖[a1 a3]T c‖2 = 1. Furthermore, in the

specific case that the measurements vector y bisects the angle between the orthonormal
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grouped atoms, the optimum c∗ falls onto the intersection of y with the unit circle.

As in the case of conventional sparsity, the GPFP algorithm is based on the geometry

associated with the dual linear program and searches the optimum vector c∗ using a path

following approach. In the following section the proposed algorithm is presented.

4.2.2 The proposed algorithm with `2,1 objective

In this section, the proposed algorithm for recovery of block sparse signals based on `2,1

minimization is derived. GPFP is an iterative greedy algorithm that builds the solution

vector in a similar way to the GOMP algorithm. As in the case of the conventional spar-

sity, the algorithm starts from the origin O and follows the path towards the observations

vector y. Therefore, at the first iteration the algorithm will move along the path h = λy

and the first curved face of the corresponding polytope (or more precisely intersection of

cylinders) will be encountered at:

λ1 = min
i/∈I0

{
‖AT

i h‖2 = 1
}

= min
i/∈I0

{
‖AT

i (λy)‖2 = 1
}
. (4.20)

Further consideration shows that equation (4.20) becomes:

λ1 = min
i/∈I0

{
‖AT

i (y)‖2 = 1/λ
}

= 1/max
i/∈I0
‖AT

i y‖2. (4.21)

Note that at the first iteration GPFP incorporates the `2 norm of the residual correlations

of each group and therefore this step is identical to the GOMP algorithm. It turns out

that both algorithms will select the same group of dictionary atoms at the first iteration.

After adding the selected group into the active set, the algorithm will update the solution

vector x1 and the corresponding vector c1. As in the case of the standard sparsity

algorithm, the estimation of x1 requires a single least squares inversion, whereas for the

update of c1 the algorithm needs to solve ‖(A1)T c1‖2 = 1, so that condition (4.19b)

is satisfied. This is a quadratic system and can be solved, using trust-region methods

[111, 112].

As opposed to GOMP, at the next iteration instead of projecting along the current

residual r1 starting again from the origin, the algorithm projects along the first curved

surface, defined by the selected group of atoms at the first stage, towards r1. In that
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way, although its path is specified by the direction of the residual it is constrained to be

within the polar polytope so that it always satisfies condition (4.19b) of Lemma 2. Thus,

the next group of dictionary atoms Ai will be encountered at:

λ2 = min
i/∈I1

{
‖AT

i h‖2 = 1
}

= min
i/∈I1

{
‖AT

i (c1 + λr1)‖2 = 1
}

(4.22)

where r1 is the current residual. Hence, more generally the algorithm at the k-th step

needs to solve the above quadratic equation of (4.22) for each group of atoms that has not

already been selected in previous iterations and find the minimum λ among all potential

groups. Next, the algorithm adds the selected group of atoms to the active set and

updates the solution vector xk, the residual rk and the corresponding ck. The algorithm

iterates till the stopping criteria are met. The resulting algorithm of GPFP is given in

Algorithm 5.

Algorithm 5 Group Polytope Faces Pursuit (GPFP - `2,1) with quadratic updates

1: Input: A = [ai], y
2: Set stopping conditions lmax and θmin

3: Initialize:
k ← 0, Ik ← ∅, Ak ← ∅, ck ← 0, xk ← ∅, ŷk ← 0, rk ← y

4: while |Ik| < lmax and maxi a
T
i rk−1 > θmin do {Find next group}

5: k ← k + 1
6: Find group of atoms:

ik ← arg mini/∈Ik−1{‖AT
i (ck−1 + λrk−1)‖2 = 1}

7: Add constraints:
Ak ← [Ak−1

i , Ak
i ], Ik ← Ik−1 ∪ {ik}

8: xk ← (Ak)†y, ŷk ← Akxk, rk ← y − ŷk

9: ck ← {ck | ‖(Ak)T ck‖2 = 1}
10: end while
11: Output: x∗ ← xk

Thoroughly inspecting Algorithm 5, it can be noted that GPFP at each iteration will

satisfy the primal and dual feasibility conditions ((4.19a), (4.19b)) of Lemma 2, but it is

not guaranteed that the complementary slackness condition of equation (4.19c) will be

satisfied. In other words, Algorithm 5 does not guarantee convergence to the optimum

c∗, when the conditions of Lemma 2 is met. In order for the GPFP algorithm to satisfy

condition (4.19c), the a priori knowledge of the unknown optimum sparse vector x∗ should

have been required, so that the algorithm can estimate the subdifferential of equation

(4.16) and hence update the solution vector ck by solving the following least squares
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problem:

(Ak)T ck = vk (4.23)

where vk is a vector containing the concatenation of subdifferentials of the selected k

groups of atoms, defined as:

vki = ∂xi‖x∗i ‖2,1 = x∗i /‖x∗i ‖2 (4.24)

for i = 1, . . . , k. The same also applies for the step of identifying the new group of

atoms to enter the active set. Ideally, the atom selection criterion should be posed as

min{AT
i (ck−1 + λrk−1) = vki }. For that reason, Algorithm 5 should be viewed as a

suboptimal greedy method to the problem of equation 4.5. Nevertheless, as it will also

be addressed in Section 4.3, stronger conditions than the ones of Lemma 2 exist that can

give some more insight into the theoretical properties of the proposed method.

Despite that, the above observation can lead to a valuable realization that can in

turn result in decreasing the computational cost of Algorithm 5. First of all, notice

that the most computationally expensive operations are the quadratic problems encoun-

tered at the group selection step and the update of vector c. More specifically, at each

iteration GPFP needs to solve P − k quadratic problems required for the group selec-

tion criterion involving one unknown parameter at a time and an additional quadratic

problem to compute ck ∈ RM . Having mentioned that this approach is already sub-

optimal, one can attempt to find an approximate estimate of the subdifferential vector

∂xi‖x∗i ‖2,1 and therefore reduce the specific quadratic problems to typical linear least

squares problems. To do this, an obvious choice is to consider the normalized correlation

AT
i rk−1/‖AT

i rk−1‖2 so that its `2 norm is unit as required by the algorithm. In that

case, equation (4.22) becomes:

λk = min
i/∈Ik−1

{
AT
i hk = AT

i rk−1/‖AT
i rk−1‖2

}
= min

i/∈Ik−1

{
AT
i (ck−1 + λrk−1) =

AT
i rk−1

‖AT
i rk−1‖2

}

= min
i/∈Ik−1

{
(rk−1)TAiA

T
i (ck−1 + λrk−1) = ‖AT

i rk−1‖2
}

(4.25)
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and accordingly the selection criterion at the k-th iteration will be:

αk = arg max
i/∈Ik−1

‖AT
i rk−1‖22

‖AT
i rk−1‖2 − (rk−1)TAiA

T
i ck−1

(4.26)

where the scalar αk is defined as the inverse of λk. Note that when the block size is d = 1

equation (4.26) reduces to the maximum scaled correlation of equation (3.7). In accor-

dance with Algorithm 5, after the new group of atoms has been selected the algorithm

will proceed in updating the solution vectors xk, rk and ck. Thus, the vector vk can

be constructed by concatenating the vectors AT
ik

rk−1/‖AT
ik

rk−1‖
2

containing normalized

correlations for any group indexed by ik that is added in the active set at each iteration

of the algorithm, namely:

vk =

[
AT
i1r

0

‖AT
i1

r0‖
2

AT
i2r

1

‖AT
i2

r1‖
2

. . .
AT
ik

rk−1

‖AT
ik

rk−1‖
2

]T
. (4.27)

One can then substitute vk to equation (4.23) and solve the resulting system of linear

equations for ck. The modified GPFP algorithm is illustrated in Algorithm 6.

Algorithm 6 Group Polytope Faces Pursuit (GPFP - `2,1)

1: Input: A = [ai], y
2: Set stopping conditions lmax and θmin

3: Initialize:
k ← 0, Ik ← ∅, Ak ← ∅, ck ← 0, xk ← ∅, ŷk ← 0, rk ← y, vk ← ∅

4: while |Ik| < lmax and maxi a
T
i rk−1 > θmin do {Find next group}

5: k ← k + 1
6: Find group of atoms:

ik ← arg maxi/∈Ik−1 ‖AT
i rk−1‖22/(‖A

T
i rk−1‖2 − (rk−1)TAiA

T
i ck−1)

7: Add constraints:
Ak ← [Ak−1, Ak

i ], Ik ← Ik−1 ∪ {ik}
8: xk ← (Ak)†y, ŷk ← Akxk, rk ← y − ŷk

9: vk ← [vk−1, AT
ik

rk−1/‖AT
ik

rk−1‖
2
], ck ← [(Ak)†]Tvk

10: end while
11: Output: x∗ ← xk

For the implementation of Algorithm 6, Cholesky factorization has been used for

updating both xk and ck vectors. As has already been discussed in the previous chapter

for the conventional sparsity PFP algorithm, directional updates could be used (e.g. the

method of conjugate gradient) when dealing with large scale systems.
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4.2.3 Dual linear program of the `∞,1 group sparse recovery problem

Another possibility for recovery of group sparse signals arises by considering minimization

of the `∞,1 instead of the `2,1. As already mentioned and discussed in more detail

in [103], in certain cases `∞,1 minimization might exhibit better group sparse recovery

performance than `2,1 minimization. Since the appropriate design of the norms that

induce group sparsity structures seems to be an open problem with ongoing research,

in what follows, based on the analysis of the previous section, the GPFP algorithm is

modified by replacing the objective function with the `∞,1 norm.

In the case of `∞,1 minimization, the primal group sparse recovery problem can be

formulated as:

min
x
‖x‖∞,1 such that y = Ax. (4.28)

Following a similar analysis as in Section 4.2.1, the dual function is defined as:

g(c) = inf
x
L(x, c) = inf

x

{
‖x‖∞,1 + cT (y −Ax)

}
= cTy + inf

x

{
‖x‖∞,1 − cTAx

}
(4.29)

for which it holds:

g(c) = cTy − sup
x

{
cTAx− ‖x‖∞,1

}
= cTy −


0 if ‖AT c‖1,∞ ≤ 1

∞ otherwise

. (4.30)

In that way, using equation (4.30) it can be easily shown that the dual linear program of

(4.28) is given by:

max
c

yT c such that ‖AT c‖1,∞ ≤ 1. (4.31)

Comparing now (4.31) with the dual for the `2,1 norm minimization case given in (4.12),

it can be noted that the main difference emerges when it comes to the constraint. This

implies that the geometry associated with the dual of (4.28) will also differ from what

presented in Section 4.2.1 regarding the `2,1 objective.

It is noted that the KKT optimality conditions this time require that y = Ax and

∂‖x‖∞,1 −AT c ∈ 0, where the subdifferential ∂xi‖xi‖∞,1 denotes the set of all subgra-
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dients and it is given by:

∂xi‖xi‖∞,1 =



{u ∈ Rd : ‖u‖1 = 1 :


ulxl ≥ 0 if |xl| = ‖xi‖∞

ul = 0 otherwise

} , ‖xi‖∞ 6= 0

{u ∈ Rd : ‖u‖1 ≤ 1} , ‖xi‖∞ = 0

(4.32)

where the index l refers to the l-th entry of the vectors xi ∈ Rd and u ∈ Rd.

Therefore, for the optimal x∗ there exists a corresponding optimal c∗ and according

to the KKT conditions for this primal-dual optimal pair, the following lemma can be

more formally stated.

Lemma 3. Suppose that the primal problem of equation (4.28) is feasible. Then the pair

x∗,c∗ is an optimum point for both primal and dual linear programs if and only if the

following conditions hold:

Ax∗ = y (4.33a)

‖AT c∗‖1,∞ ≤ 1 (4.33b)

yT c∗ = ‖x‖∞,1. (4.33c)

Proof. This follows immediately from KKT conditions.

Consequently, as in the case of `2,1 minimization (Lemma 2), the conditions (4.33a)

and (4.33b) impose the primal and dual feasibility respectively, while condition (4.33c)

expresses the complementary slackness. These conditions are sufficient and necessary for

the primal-dual optimality.

For the problem of Fig. 4.3, if the `2,1 norm objective function is replaced by the `∞,1

norm the resulting polytope is the one depicted in Fig. 4.4. In this case, the optimum

vector c∗ lies on the intersection of the measurements vector y with the `1 ball de-

fined by the orthonormal vectors a1 and a3, which ensures that the optimality condition

‖[a1 a3]T c‖1 = 1 holds.
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Figure 4.4: Geometry of the dual of the mixed `∞,1 minimization problem in three
dimensions. The dictionary atoms a1 and a3 form a group, while a2 is treated as in the
conventional sparsity model assuming also nonnegativity for its corresponding coefficient.
The optimum dual vector c∗ lies on one of the four faces of the surface defined by a1 and
a3 (section of the polytope at c2 = 0).

4.2.4 The proposed algorithm with `∞,1 objective

Once more, the geometry of the dual problem of equation (4.31) can be used to develop

a GPFP algorithm for the `∞,1 norm case in a similar manner to the `2,1 minimization

algorithm. In the same way, using inequality (4.33b) a path following algorithm can be

developed that at the k-th iteration will select the group of atoms Ai for any i /∈ Ik−1

for which:

λk = min
i/∈Ik−1

{
‖AT

i (ck−1 + λrk−1)‖1 = 1
}
. (4.34)

On that account, after adding the selected group of atoms Aik to the current active set

Ik−1, the algorithm will move to updating vectors xk, rk and ck. For the latter, it is

required that ‖(Ak)T ck‖1 = 1. In that manner, the algorithm will iterate until some

stopping threshold (e.g. `2 norm of the cost function) has been exceeded.

This implementation exhibits evident weaknesses. Indeed, from a theoretical view-

point, the fact that the proposed algorithm cannot assure that condition 4.33c is always

satisfied is one shortcoming that relegates this method to suboptimal. On the other hand,

from a practical perspective, the algorithm requires to solve nonlinear least squares prob-
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lems for the update of c and the identification of the next group of atoms to be added in

the active set. These operations can add significantly to the computational complexity of

the algorithm and when dealing with large scale systems they can even be unaffordable.

Therefore, as described in Section 4.2.2 for the `2,1 minimization problem, one could

attempt to approximate the unknown subdifferential of equation (4.32) by considering

the subdifferential of the residual correlations AT
i rk−1 for each group. It follows that at

the k-th iteration, the GPFP algorithm will require that:

λk = min
i/∈Ik−1

{
AT
i (ck−1 + λrk−1) = vki

}
(4.35)

where vki ∈ Rd such that ‖vki ‖1 = 1 and:

vki =


vl(A

T
i rk−1)l ≥ 0 if |(AT

i rk−1)l| = ‖AT
i rk−1‖∞

vl = 0 else

. (4.36)

Hence, the `∞,1 group selection criterion will be:

αk = arg max
i/∈Ik−1

(vki )TAT
i rk−1

‖vki ‖
2
2 − (vki )TAT

i ck−1
. (4.37)

Accordingly, the update for vector ck can be estimated by solving the least squares

problem of equation (4.23), where vk is now given by:

vk = [v1
i1 v2

i2 . . . vkik ]T (4.38)

where ik is the index of the group of atoms selected by the algorithm at the k-th iteration.

The full algorithm is shown in Algorithm 7.

4.3 Theoretical properties

This section attempts to give some more insight into the theoretical properties of the

proposed GPFP algorithms. First of all, the sufficient and necessary conditions for

uniqueness of the optimum primal-dual pair x∗ and c∗ are provided. Next, based on

the fact that the proposed greedy algorithms, as addressed in Section 4.2, cannot guar-

antee convergence to the optimum solution pair, it is shown that stronger conditions
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Algorithm 7 Group Polytope Faces Pursuit (GPFP - `∞,1)

1: Input: A = [ai], y
2: Set stopping conditions lmax and θmin

3: Initialize:
k ← 0, Ik ← ∅, Ak ← ∅, ck ← 0, xk ← ∅, ŷk ← 0, rk ← y, vk ← ∅

4: while |Ik| < lmax and maxi a
T
i rk−1 > θmin do {Find next face}

5: k ← k + 1
6: Find group of atoms:

ik ← arg maxi/∈Ik−1 vTi AT
i rk−1/(‖vi‖

2
2 − vTi AT

i ck−1)
7: Add constraints:

Ak ← [Ak−1, Ak
i ], Ik ← Ik−1 ∪ {ik}

8: xk ← (Ak)†y, ŷk ← Akxk, rk ← y − ŷk

9: vk ← [vk−1, vk
ik

], ck ← [(Ak)†]Tvk

10: end while
11: Output: x∗ ← xk

exist, which provide guarantees for convergence of the GPFP algorithms to the optimum

solution vector x∗.

4.3.1 Uniqueness & recovery conditions

Lemmas 2 and 3 provide the optimality conditions for primal-dual feasibility for the

group sparse recovery problem. Nevertheless, in agreement with the theoretical results

for the joint sparsity case and the MMV problem presented in [110] they do not guarantee

uniqueness of the optimum solution pair x∗ and c∗.

Suppose now that x0 has ‖x0‖2,0 ≤ K nonzero groups of length d. Let xS be the

Kd-dimensional vector containing all nonzeros entries of x0 and AS be the M × Kd

matrix such that y = ASxS . The following theorem gives the necessary and sufficient

conditions for x0 to be the unique optimum solution of problem (4.5).

Theorem 8. x0 is the unique optimum point of the primal linear program of (4.5) if

and only if a) AS has full rank and b) there exists some c ∈ RM such that

AT
j c = x0j/‖x0j‖2, ∀j ∈ S (4.39a)

‖AT
j c‖

2
< 1, ∀j /∈ S. (4.39b)

Proof. For the if argument, note that x0 satisfies condition (4.19a) of Lemma 2. Subse-

quently, conditions (4.39a) and (4.39b) ensure that c satisfies the dual feasibility condi-

tion of Lemma 2. Moreover, the complementary slackness condition of equation (4.19c)
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suggests that:

yT c = ‖x0‖2,1 ⇒
N/d∑
j=1

(Ajx0j)
T c−

K∑
j=1

‖x0j‖2 = 0⇒

N/d∑
j=1

[
xT0jA

T
j c− ‖x0j‖2

]
= 0⇒

xT0jA
T
j c− ‖x0j‖2 = 0 for j = 1, . . . N/d. (4.40)

It is therefore straightforward to show that equation (4.40) will be satisfied. Obviously,

(4.40) holds for any group of coefficients x0j with zero entries. For the groups with

nonzero entries, equation (4.39b) holds. Finally, since AS is a full rank matrix then it

follows that x0 must be unique.

For the only if argument, suppose that AS is not full rank. Consider then a small

nonzero vector xNS 6= 0 in the null space of AS such that ASxNS = 0. The vectors xS−xNS ,

xS + xNS can then be constructed so that both satisfy (4.19a) of Lemma 2. Therefore,

if AS does not have full rank xS (and consequently x0) will not be a unique solution.

Finally, assume that the second condition of Theorem 8 does not hold, namely the vector

c does not satisfy equations (4.39a) and (4.39b). This is contradictory to Lemma 2 and

by strong duality of problem (4.5), it is concluded that conditions (4.19b) and (4.19c)

will be violated.

Similarly, for the case of `∞,1 norm minimization the following can be stated.

Theorem 9. x0 is the unique optimum point of the primal linear program (4.28) if and

only if a) AS has full rank and b) there exists some c ∈ RM such that

AT
j c = vj , j ∈ S (4.41a)

‖AT
j c‖

1
< 1, j /∈ S (4.41b)

where vj is given as vj ∈ Rd : ‖vj‖1 = 1 :


vlx0l ≥ 0 if |x0l| = ‖x0j‖∞

vl = 0 otherwise

.

Proof. Following the same principle as in Theorem 8, it is simple to prove Theorem 9.
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Suppose now that for x0 as defined in Theorems 8 and 9, a vector v exists containing

the subdifferentials for `2,1 and `∞,1 minimization respectively. Then, an outcome of

Theorems 8 and 9 is the following corollary.

Corollary 3. Let x0 be a solution to the problem Ax = y and p = 2 and p = 1 for the

`2,1 and `∞,1 minimization problems respectively. If AS has full rank and

‖AT
j c‖

p
< 1, ∀j /∈ S (4.42)

is satisfied with the dual vector c = (A†S)Tv, then x0 is the unique optimum.

Corollary 3 is for the group sparsity case the equivalent of Fuchs Corollary for the

conventional sparsity model. Therefore, in a similar way as in the standard sparsity ap-

proach, condition (4.42) can be used in order to find recovery conditions for the GPFP

algorithm. Note that although the conditions specified by Theorems 8 and 9 and Corol-

lary 3 are general conditions for primal-dual uniqueness, it is not guaranteed that they

will be satisfied by the proposed suite of algorithms, as explained in the previous section.

In what follows, the `2,1 and `∞,1 minimization problems are treated separately and

stronger efficient recovery conditions than (4.42) for GPFP algorithms are provided.

Interestingly, the results for GPFP with the `2,1 objective function seem to be the same

with the ones reported in [101] for the GOMP algorithm.

4.3.2 Efficient recovery conditions for `2,1 minimization with GPFP

Define first the quantity ρc(A) as in [101]:

ρc(A) = max
j

∑
i

ρ(Aij) (4.43)

where ρ(A) = ‖A‖2 = λ
1/2
max(ATA) is the spectral norm of matrix A, λmax is the maxi-

mum eigenvalue and Aij denotes the (i, j)-th d× d block of A. Define also the set S̄ to

be the complement of the true support set S. Then the following theorem can be stated.

Theorem 10. Let x0 be a group sparse solution to the problem of (4.5) and suppose that

AS has full rank. If

ρc(A
†
SAS̄) < 1 (4.44)
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then x0 is the unique solution to (4.5).

Proof. In order to prove this, consider the inequality (4.42) from Corollary 3. The dual

vector c is given by c = (A†S)Tv, where the vector v is the concatenation of the subdiffer-

entials of the groups belonging to the true support set S. For any j /∈ S (or equivalently

j ∈ S̄), it holds:

‖AT
j c‖

2
= ‖AT

j (A†S)Tv‖
2

≤
∑
i

‖[AT
j (A†S)T ]i‖2‖vi‖2

=
∑
i

‖[AT
j (A†S)T ]i‖2‖∂xi‖xi‖2,1‖2

=
∑
i

‖[AT
j (A†S)T ]i‖2‖xi/‖xi‖2‖2

=
∑
i

‖[AT
j (A†S)T ]i‖21

=
∑
i

‖[A†SAj ]i‖2 (4.45)

where the triangular inequality and equation (4.16) have been used. [AT
j (A†S)T ]i is the

submatrix corresponding to the i-th group. It follows that:

‖AT
S̄c‖

2,∞ ≤ max
j

∑
i

‖(A†SAj)i‖2 = max
j

∑
i

ρ([A†SAS̄ ]ij) = ρc(A
†
SAS̄) (4.46)

where [A†SAS̄ ]ij denotes the element corresponding to the i-th row and j-th column of

the matrix. Combining now equations (4.46) and (4.42), it is straightforward to see that

if ρc(A
†
SAS̄) < 1 is satisfied then (4.42) will always be satisfied.

Although Theorem 10 provides a stronger condition than Corollary 3, it is intuitive in

quantifying the robustness of GPFP algorithm with the `2,1 constraint. First of all, note

that (4.44) does not depend on the optimum dual vector c∗. Furthermore, as can be seen

from (4.45) the quantity
∑

i ‖(A
†
SAj)i‖2 is an upper bound not only for the optimum

vector v, but for any vector v that spans the row space of AS as long as it satisfies

that ‖vi‖2 = 1 for any i = 1, . . . ,K. Subsequently, the condition (4.44) of Theorem 10

provides the recovery condition for GPFP using the `2,1 constraint. Therefore, if (4.44)

holds the proposed method will find the optimum solution vector x0.
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The result of Theorem 10 was first introduced by Eldar et al. [101], where it was shown

to be the efficient recovery condition for GOMP and mixed `2,1 minimization. Further-

more, in the specific work, it was also shown that if (4.44) holds for an overcomplete

dictionary A then the group sparsity level is bounded by:

Kd <
1

2

(
µ−1
g + d− (d− 1)

µs
µg

)
(4.47)

where d is the size of the group and µg and µs is the group coherence and sub-coherence

of A respectively, given by:

µg = max
1≤i,i 6=j≤N

d

1

d
ρ(AT

i Aj) (4.48)

and

µs = max
1≤i≤N

d

max
1≤l,l 6=r≤d

|aTl ar|, al,ar ∈ Ai (4.49)

where the dictionary A is assumed to have normalized columns. It follows that as long

as Theorem 10 is satisfied then the sparsity threshold given by (4.47) will also hold for

GPFP. This result can be viewed as an extension of (2.42) to the group sparsity case.

Indeed, if the size of group is set to be d = 1, the inequality K < (µ−1 +1)/2 is obtained.

4.3.3 Efficient recovery conditions for `∞,1 minimization with GPFP

For the case of `∞,1 minimization, define the quantity qc(A), which is given by:

qc(A) = max
j

∑
i

‖Aij‖∞ (4.50)

where ‖A‖∞ = max1≤i≤M
∑N

j=1Aij is the infinity matrix norm, Aij denotes the (i, j)-th

d× d block of A and Aij the (i, j)-th element of A. Then the following theorem can be

stated.

Theorem 11. Let x0 be a group sparse solution to the problem of (4.28) and suppose

that AS has full rank. If

qc(A
†
SAS̄) < 1 (4.51)

then x0 is the unique solution to (4.28).
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Proof. To prove this, consider the inequality (4.42) from Corollary 3. The dual vector

c is given by c = (A†S)Tv, where vector v is the concatenation of the subdifferentials

∂xi‖xi‖∞,1 of the groups belonging to the true support set S. For any j /∈ S (or equiva-

lently j ∈ S̄), it holds:

‖AT
j c‖

1
= ‖AT

j (A†S)Tv‖
1

≤
∑
i

‖[AT
j (A†S)T ]i‖1‖vi‖1

=
∑
i

‖(AT
j [A†S)T ]i‖1‖∂xi‖xi‖∞,1‖1

=
∑
i

‖[AT
j (A†S)T ]i‖11

=
∑
i

‖[A†SAj ]i‖∞ (4.52)

where the triangular inequality and equation (4.32) have been used. It follows that:

‖AT
S̄c∗‖

1,∞ ≤ max
j

∑
i

‖(A†SAj)i‖∞ = max
j

∑
i

‖[A†SAS̄ ]ij‖∞ = qc(A
†
SAS̄). (4.53)

Combining now (4.53) and (4.42), it can be shown that as long as qc(A
†
SAS̄) < 1 is

satisfied (4.42) will be also satisfied.

Similar to case of `2,1 minimization, Theorem 11 provides the theoretical guarantees

for the GPFP algorithm with the `∞,1 constraint. The inequality (4.51) will hold for any

vector v that spans the row space of AS and satisfies ‖vi‖1 = 1. Therefore, considering

that GPFP does not guarantee convergence to the optimum vector c∗, if condition (4.51)

is satisfied then the algorithm will converge to the optimum solution x0.

Comparing Theorems 10 and 11, which give the efficient recovery conditions for `2,1

and `∞,1 minimization using the GPFP algorithm, it can be observed that the spectral

norm in (4.43) is replaced by the ‖.‖∞ matrix norm in (4.50). Therefore, considering

the fact that for the spectral and infinity norms of a matrix A ∈ RM×N the inequality

1√
N
‖A‖∞ ≤ ‖A‖2 ≤

√
M‖A‖∞ holds, it is expected that the recovery performance of

the two approaches will differ from a theoretical point of view. In Section 4.3.5, the

algorithms’ performance is examined using an average case analysis.
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4.3.4 Interpretation of GPFP recovery conditions

Consider once again the geometry of the dual problem associated with the primal linear

program for both conventional and group sparsity models. For simplicity and without

loss of generality, consider the case of sparsity K = 2. When no assumptions on the

structure of the coefficients vector are made and sparsity is enforced by the `1 norm, the

feasible points for the dual vector c are the vertices of the polar polytope corresponding

to the dictionary atoms that belong to the true support set (i.e. ai ∈ AS). As can be

seen in Fig. 4.5, in the special case of nonnegative coefficients the vertex c1 is the only

feasible solution for the dual vector c. However, when the group structure is considered

the corresponding optimum vector c can lie anywhere on the first quadrant of the unit

circle for the problem of mixed `2,1 norm minimization. On the other hand, if the `∞,1

norm is set to be the objective function, it turns out that there are only three feasible

solutions for c in the nonnegative setting, as illustrated in Fig. 4.5. This can be easily

verified by taking into account condition (4.41a) of Theorem 9. Note that the `p balls

shown in Fig. 4.5, coincide with the duals to the norms of the objective function for each

case.
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Figure 4.5: Dual balls and feasible points for the dual vector c in the case of `1, `2,1
and `∞,1 minimization. As can be seen, in the nonnegative setting (corresponding to the
first quadrant of the cartesian coordinate system), there is only one feasible point for `1
minimization, three feasible points for `∞,1 minimization, while for `2,1 minimization c
can lie at any point on the unit `2 ball.

Therefore, one way to interpret the results of Theorems 10 and 11 for the case of `2,1

and `∞,1 minimization from a geometrical point of view is to deduce that as long as the

corresponding conditions (4.44) and (4.51) hold, then GPFP for any feasible vector c2

and c∞ will identify the true support set.
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4.3.5 Phase transitions of GPFP algorithms

In this section, the performance of the proposed method is quantified by empirically

measuring the success of GPFP algorithms in group sparse recovery problems. To do

this, synthetic group sparsity problems were generated for variable over-sampling (M/N)

and under-sampling (Kd/M) ratios, which were allowed to be in the range of [0, 1]. The

dictionary columns were drawn from the random uniform ensemble and their dimension

was set at N = 256. They were also clustered in groups of equal size d = 4 atoms. For

each problem instance, namely each set of parameters M , N and K the experiment was

repeated 100 times.

(a) (b)

Figure 4.6: Phase diagrams of (a) GPFP with `2,1 constraint and (b) GPFP algorithm
with `∞,1 constraint.

Fig. 4.6(a)-(b) illustrate the resulting phase diagrams for GPFP with `2,1 and `∞,1

constraints respectively. The shaded area is the number of coefficients that differ more

than 10−4 from the optimal sparse solution. Both algorithms display a significantly

improved performance over `1 minimization and subsequently the original conventional

sparsity PFP algorithm. As can be seen, the phase transitions, in both cases, are shifted

notably above the theoretical red curve, corresponding to `1 minimization. Between the

two GPFP algorithms, it can be observed that GPFP based on the `2,1 constraint shows

a slightly better performance, achieving superior phase transition in the examined case

with the group size being equal to d = 4.

4.4 Experimental results for the group sparsity model

This section presents further experimental results based on synthetic data that demon-

strate the group sparse recovery capability of the GPFP algorithm . Its performance is
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also compared against SparseLab’s implementation of PFP and other existing meth-

ods that incorporate the group sparsity structure such as Block Orthogonal Matching

Pursuit (BOMP) and Group Orthogonal Matching Pursuit (GOMP), as implemented

in the Matlab toolbox GroupSparseBox. The main difference between BOMP and

GOMP appears at the group of atoms selection criterion step, for which and according to

this implementation BOMP selects a new group based on the highest correlation of each

group while GOMP’s group selection is based on largest `2 norm of residual correlations

of each group. Regarding the proposed method, both versions of GPFP with the `2,1 and

`∞,1 objective functions are considered.

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f s
up

po
rt

 re
co

ve
ry

Kd (sparsity level)

 

 
GOMP
BOMP
GPFP(!2 ,1)
GPFP(!∞ ,1)
PFP

(a)

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f s
up

po
rt

 re
co

ve
ry

Kd (sparsity level)

 

 
GOMP
BOMP
GPFP(!2 ,1)
GPFP(!∞ ,1)
PFP

(b)

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f s
up

po
rt

 re
co

ve
ry

Kd (sparsity level)

 

 

GOMP
BOMP
GPFP(!2 ,1)
GPFP(!∞ ,1)
PFP

(c)

Figure 4.7: Support recovery rates (over 100 trials) of GOMP, BOMP, GPFP (with `2,1
and `∞,1 constraints) and PFP vs sparsity level Kd for a dictionary A ∈ RM×N with
M = 128, N = 256 and group size (a) d = 2, (b) d = 4 and (c) d = 8.

For the first experiment, dictionaries of size 128 × 256 with columns drawn from an

i.i.d. zero-mean Gaussian distribution were randomly generated. The block K-sparse

vector x with block size d was generated by selecting uniformly at random the support

of the nonzero groups of atoms and filling the corresponding values by sampling from

the normal distribution. The block sparsity level K was variable ranging from 1 to

M/d. Fig. 4.7(a)-(c) show the average support recovery rates over 100 iterations for all
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tested algorithms against the sparsity level Kd for d = 2, d = 4 and d = 8, respectively.

The probability of support recovery stands for the proportion of the 100 sparse vectors

that are exactly recovered. For exact recovery, it is required that the support of the

recovered vector x̂ perfectly matches that of the true solution vector x. Hence, if a single

false detection occurs due to a wrong atom selection, it is considered that the tested

algorithm has failed. As can be seen, in all plots for sparsity levels less than Kd = 40 all

algorithms achieve the same recovery performance, whereas for sparsity levels Kd > 40

it can be noticed that the group sparsity algorithms perform better in all cases and

this performance gain increases with the block size. Among the group sparsity versions

of OMP and PFP, BOMP and GOMP outperform both GPFP algorithms in the case

when the group size is d = 2, with GOMP achieving the best overall recovery rates.

However, this performance gain vanishes as the block size becomes larger. In fact, for

group sizes d = 4 the GPFP algorithm based on `2,1 minimization has a slight edge

in terms of performance over GOMP while outperforming all other algorithms tested.

The performance of GPFP based on the `∞,1 minimization also improves, as the specific

algorithm achieves recovery rates very close to the ones obtained for the BOMP algorithm.

Although it still displays the worst performance among the group sparsity methods, its

performance gain over the conventional PFP algorithm cannot be considered negligible.

In Fig. 4.8(a)-(c), the average elapsed times over 100 iterations are plotted in log-scale

for all algorithms tested against the sparsity level Kd for group sizes d = 2, d = 4 and

d = 8 respectively. As can be seen, in all cases BOMP achieves the fastest convergence.

From the remaining algorithms, when d = 2 GOMP is the fastest for sparsity levels

Kd > 20, while for Kd < 20 PFP shows the fastest convergence. As expected, due

to the additional computational cost in the group selection criterion step, the proposed

GPFP methods are the slowest for the specific setting. For instance, when the sparsity

level is Kd = 56 BOMP converges after 1.8 sec, GOMP after 8.4 sec and PFP after 26.1

sec. However, the average elapsed time values corresponding to GPFP (`2,1) and GPFP

(`∞,1) are 28.3 sec and 61.4 sec, respectively. Nevertherless, as the group size increases

their convergence speed decreases. As illustrated in Fig. 4.8(a)-(c), for group sizes d = 8

and sparsity levels Kd > 50 the average elapsed time for GPFP (`2,1) is less than the

time needed for the convergence of GOMP. GPFP (`∞,1) is somehow slightly slower than
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Figure 4.8: Average elapsed time (in log-scale) over 100 trials for GOMP, BOMP, GPFP
(with `2,1 and `∞,1 constraints) and PFP vs sparsity level Kd for a dictionary A ∈ RM×N
with M = 128, N = 256 and group size (a) d = 2, (b) d = 4 and (c) d = 8

the rest of the group sparsity algorithms, however when compared to the original PFP

algorithm the gain in computational time is evident. For the value of sparsity Kd = 56,

BOMP is the fastest algorithm requiring an average time of 0.6 sec to converge, followed

by GPFP (`2,1) with an average elapsed time of 1.2 sec. The convergence times for GOMP

and GPFP (`∞,1) in that case are 1.5 sec and 2.5 sec, respectively. PFP achieves the

slowest convergence with an average time of 24.5 sec. Therefore, apart from the increase

in performance gain the group sparse algorithms can also reduce the computational time

as opposed to the standard sparsity approach when the group size becomes larger.

Fig. 4.9 presents simulation results for the same experimental setting as above, but

using a four times overcomplete dictionary A ∈ R64×256. Fig. 4.9(a)-(b) illustrate the

recovery rates and the average elapsed times respectively of all algorithms tested for

groups of size d = 2. Fig. 4.9(c)-(d) show the analogous results for the case of d = 4. It

can be observed that all results for the four times overcomplete dictionary are in almost

full agreement with the ones obtained in the first experiment using a twice overcomplete

dictionary.
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Figure 4.9: Support recovery rates (over 100 trials) and average elapsed times of GOMP,
BOMP, GPFP (with `2,1 and `∞,1 constraints) and PFP vs sparsity level Kd for a
dictionary A ∈ RM×N with M = 64, N = 256 and group sizes d = 2 ((a)-(c)) and d = 4
((b)-(d)).

In the previous tests, the sparse vector x was synthesized by sampling from the nor-

mal distribution, which generally favours greedy algorithms such as MP and OMP in

the conventional sparsity case [113]. On the other hand, the least favourable distribution

appears to be the equiprobable distribution. Based on that the last experiment attempts

to investigate the performance of all tested algorithms in the scenario when the entries

of the sparse vector x follow the equiprobable distribution in {−1, 1}. This was done by

keeping the same setting as in the first experiment and using a twice overcomplete dictio-

nary of size 128× 256. As can be seen in Fig. 4.10(a) for group sizes d = 2, the proposed

methods achieve the best recovery rates. However, this performance gain diminishes as

the group size increases and especially GPFP (`∞,1) exhibits similar shortcomings as in

the previous tests (Fig. 4.10(b)-(c)). Nevertheless, GPFP (`2,1) achieves the best overall

performance for almost all problem suites examined.

Regarding the GPFP algorithms, GPFP with the `2,1 exhibits the best performance

in all cases and for all group sizes, which is in agreement with the phase transitions shown
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Figure 4.10: Support recovery rates (over 100 trials) of GOMP, BOMP, GPFP (with `2,1
and `∞,1 constraints) and PFP vs sparsity level Kd for a dictionary A ∈ RM×N with
M = 128, N = 256 and group size (a) d = 2, (b) d = 4 and (c) d = 8.

in Fig. 4.6.

4.5 Joint sparse recovery with PFP

All previous sections of the current chapter presented efficient recovery algorithms for

the problems of sparse representations and compressed sensing. In this discussion, the

single measurement vector (SMV) sparsity model was considered, implying that the ob-

servations are given by the single channel vector y ∈ RM . In compressed sensing this

measurement vector is obtained by projecting the discrete K-sparse high dimensional

vector x ∈ RN to a lower M dimensional space using random projections. It has been

already discussed that the main assumption for efficient recovery is that x is sufficiently

sparse or group sparse. However, in many practical signal processing applications emerg-

ing in fields such as array processing [3, 114] or magnetoencephalography [96, 115, 116],

multiple measurement vectors, corresponding to multiple unknown vectors that share a

common sparse support, might be encountered. The specific setting can be viewed as
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another type of structure where rather than attempting to recover a single sparse vector

x at a time, the aim is to simultaneously recover all jointly sparse vectors that comprise

the multiple measurements. Therefore, a natural extension of the SMV model is the so-

called multiple measurement vector (MMV) model [117], which addresses the underlying

joint sparse recovery problem. It has been shown in [60] that this problem formulation

attempts to simultaneously recover the unknown signal support set exploiting this joint

sparsity in the sparsity pattern and it is a special case of the group structure. More specif-

ically, it can be proven that any MMV sparse recovery problem can be reformulated as

a group sparse vector recovery problem by appropriately interleaving the measurements

matrix and constructing the corresponding single vector of measurements [98]. However,

the opposite does not always hold.

Suppose now that Y ∈ RM×L is a collection of L measurement vectors yLi=1 that are

obtained through the common compressed sensing matrix A ∈ RM×N and X ∈ RN×L is

the jointly K-sparse matrix. In other words, it is assumed that there are at most K rows

in X containing nonzero values. Therefore, the assumption of the MMV model is that

‖X‖0 = |supp(X)| ≤ K, where |supp(X)| is the size of the support set supp(X) which is

defined as in [118] to be:

supp(X) =

L⋃
j=1

supp(xj) (4.54)

with the support of each individual column be given by supp(xj) = {i, xij 6= 0}, where

xij corresponds to the i-th element of the j-th column of matrix X. Therefore, in the

noiseless case the joint sparse recovery problem is to identify the row support of the

unknown jointly sparse matrix X given the MMV matrix Y defined as:

Y = AX. (4.55)

After determining the unknown support set, the nonzero entries of the sparse matrix X

can be recovered by a Moore-Penrose inversion. In a similar way to the SMV problem,

the MMV sparse recovery problem can be cast as a constrained optimization problem:

min
X
‖X‖0 such that Y = AX. (4.56)
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However, the MMV `0 minimization problem of (4.56), as happens to be in the SMV

case, is combinatorial (e.g. NP-hard) [67]. Nevertheless, several suboptimal approaches

with polynomial complexity have been proposed that under certain conditions can recover

the unknown jointly sparse matrix X. The authors in [119] propose the mixed `2,1

minimization problem defined as:

min
X
‖X‖2,1 such that Y = AX (4.57)

where ‖X‖2,1 =
∑N

i=1 ‖Xi‖2 and Xi denotes the i-th row of X. The minimization problem

of (4.57) is convex and can be tackled using interior-point methods (or SOCP methods).

This can be viewed as an extension of the BP algorithm to the multiple vectors scenario,

since when L = 1 the problem is reduced to the standard `1 minimization problem. As

in the case of union of subspaces and group structured sparsity, greedy algorithms such

as OMP have also been extended to the MMV problem providing faster alternatives to

(4.57). The so-called Simultaneous Orthogonal Matching Pursuit (SOMP), is an iterative

greedy algorithm, which operates adding one dictionary atom at a time that has been

identified according to the criterion:

ik = arg max
i/∈Ik−1

‖aTi Rk−1‖2 (4.58)

where Rk−1 is the current residual, initialized as R0 = Y. Similar to OMP, SOMP

proceeds with updating the residual matrix R and the solution matrix X. The whole

process is repeated until there is no residual left.

Theoretical guarantees of greedy algorithms and convex optimization for the MMV

problem have been studied extensively in recent literature [95, 120, 98, 119]. Although

these theoretical results suggest equivalence between MMV and SMV models showing

no performance gain, in practice and according to empirical results both `2,1 minimiza-

tion and SOMP can vastly improve the recovery ability of the conventional sparsity

approaches.
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4.5.1 Dual linear program of the MMV problem & MMV-PFP algorithm

The Lagrangian to the problem of equation (4.57) is given by:

L(x, c) = ‖X‖2,1 −CT (AX−Y). (4.59)

After minimizing the Lagrangian L(x, c), it is straightforward to show that the dual to

the MMV problem is given by:

max
C

tr(YTC) such that ‖ATC‖2,∞ ≤ 1. (4.60)

The KKT conditions require that Y = AX and ∂XL(X,C) ∈ 0. A similar analysis

as presented in Section 4.2.1 for the group sparsity problem, yields the following lemma,

which provides the necessary and sufficient conditions for the optimum primal-dual pair

X∗ and C∗.

Lemma 4. Suppose that the primal problem of equation (4.57) is feasible. Then the pair

X∗, C∗ is an optimum solution pair for both primal and dual linear programs if and only

if the following conditions hold:

AX∗ = Y (4.61a)

‖ATC∗‖2,∞ ≤ 1 (4.61b)

YTC∗ = ‖X‖2,1. (4.61c)

Proof. This follows immediately from KKT conditions.

Lemma 4 suggests that once again the underlying geometry can be exploited to derive

an algorithm for the MMV problem that promotes joint sparsity across the rows of X.

Adopting a similar approach as described in Section 4.2.2 for the group structure, at the

k-th step the algorithm requires that aTi (Ck−1 + λRk−1) = vki , where it is chosen that

vki = aTi Rk−1/‖aTi Rk−1‖2 such that ‖vki ‖2 = 1. It turns out that the atom selection

criterion for the MMV-Polytope Faces Pursuit (MMV-PFP) algorithm is given by:

αk = arg max
i/∈Ik−1

‖aTi Rk−1‖22
‖aTi Rk−1‖2 − aTi Ck−1(Rk−1)Tai

. (4.62)
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where Rk denotes the residual at the k-th step of the algorithm. It can be easily verified

that when the number of channels is L = 1 equation (4.62) reduces to the maximum

scaled correlation of equation (3.7). The resulting algorithm of MMV-PFP is given in

Algorithm 8.

Algorithm 8 MMV-Polytope Faces Pursuit

1: Input: A, Y
2: Set stopping conditions lmax and θmin

3: Initialize:
k ← 0, Ik ← ∅, Ak ← ∅, Ck ← 0, Xk ← ∅, Ŷk ← 0, Rk ← Y

4: while |Ik| < lmax and maxi a
T
i Rk−1 > θmin do {Find next face}

5: k ← k + 1
6: Find face:

ik ← arg maxi/∈Ik−1{‖aTi Rk−1‖22/(‖a
T
i Rk−1‖2 − aTi Ck−1(Rk−1)Tai)}

7: Add constraints:
Ak ← [Ak−1, aik ], Ik ← Ik−1 ∪ {ik}

8: Xk ← (Ak)†Y, Ŷk ← AkXk, Rk ← Y − Ŷk

9: vk = [vk−1,aT
ik

Rk−1/‖aT
ik

Rk−1‖
2
], Ck ← [(Ak)†]Tvk

10: end while
11: Output: X∗ = Xk

4.5.2 Uniqueness & recovery conditions

The following theorem, based on Lemma 4 provides the necessary and sufficient conditions

for X0 to be the unique optimum solution of problem (4.57).

Theorem 12. X0 is the unique optimum point of the primal MMV linear program if

and only if a) AS has full rank and b) there exists some C ∈ RM×L such that

aTj C = X0j/‖X0j‖2, ∀j ∈ S (4.63a)

‖aTj C‖
2
< 1, ∀j /∈ S. (4.63b)

Proof. The proof is similar to the one for Theorem 8.

Define now the matrix v containing the subdifferentials of a potential solution X0 to

the MMV problem. An immediate consequence of Theorem 8 is the following corollary:

Corollary 4. Let X0 be a solution to the MMV problem AX = Y. If AS has full rank

and

‖aTj C‖
2
< 1, ∀j /∈ S (4.64)
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is satisfied with the dual vector C = (A†S)Tv, then X0 is the unique optimum.

Corollary 4 provides a uniqueness recovery condition (4.64) for the MMV mixed norm

minimization problem. Nevertheless, following a worst case analysis in order to find a

more handy condition than (4.64), one arrives at the result of the single channel problem,

namely the ERC of (2.44). To see this, consider (4.64). For any j /∈ S, it holds:

‖aTj C‖
2

= ‖aTj (A†S)Tv‖
2

≤
∑
i

|[aTj (A†S)T ]i|‖vi‖2

=
∑
i

|[aTj (A†S)T ]i|1

= ‖A†Saj‖1. (4.65)

Equation (4.65) is quite pessimistic as it shows no performance gain between the SMV and

MMV versions of PFP algorithm. Interestingly, similar results exist for other algorithms

such as SOMP and mixed `2,1 minimization under this worst case analysis approach.

Actually, the worst case analysis assumes that the multiple jointly sparse vectors will

contain the same discrete signals and in that case, it is clear that the MMV model will

not provide additional information and consequently no advantage in comparison to the

SMV problem. This observation is in total agreement with Chen and Huo’s elegant

result, summarized in the following theorem.

Theorem 13. (Chen and Huo [120]) A sufficient condition for the measurements

Y = AX to uniquely determine the jointly sparse matrix X is

K = |supp(X)| < spark(A)− 1 + rank(Y)

2
. (4.66)

It is noted that in the worst case scenario, where rank(X) = 1, it is rank(Y) = 1 since

rank(Y) ≤ rank(X) and therefore (4.66) reduces to the single channel sparsity threshold

as given in equation (2.39) of Theorem 1 (Chapter 2). Nevertheless, the worst case

scenario hypothesis might be a very restrictive and unrealistic assumption for practical

applications. For instance, in the problem of source localization and DOA estimation,

the sources to be localized in most cases happen to vary in the time or time-frequency

domain. As will be seen in the following chapter, in this case X is a jointly sparse
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matrix and its nonzero rows, corresponding to the location of the sources to be localized,

contain the signals of interest. Consequently, it is quite unlikely that all channels of

the sparse matrix X will contain the same exact information. Hence, an average case

analysis could give more insight to the practical advantages of the MMV model. Indeed,

as shown in [121, 119] an average case analysis not only explains the performance gain

of the MMV model over the SMV but it also provides better recovery conditions under

certain probabilistic assumptions.

Another important asset of Theorem 13 is that it clearly indicates what the worst case

theoretical analysis fails to reveal. Inequality 4.66 suggests that as long as rank(Y) > 1,

there will be notable benefits from the exploitation of the joint sparsity property. One

crucial benefit in that case will be the fact that the threshold on the sparsity level K

will be increased. Thus, it is expected that the MMV algorithms will lead to enhanced

recovery performance, allowing less sparse signals to be perfectly recovered. In the best

case scenario, it is obvious that the rows of the sparse matrix X that correspond to its

support set supp(X) will be linear independent and hence the rank of X will be equal to

the cardinality of the support, namely rank(X) = K. From its definition, it hods that

spark(A) ≤ rank(A) + 1 ≤M + 1. Assuming that A is a full spark and well conditioned

matrix the equality will hold. Since rank(Y) ≤ rank(X), in the best case scenario the

sparsity level is bounded by:

K < (M +K)/2⇒ K < M ⇒ K ≤M − 1. (4.67)

The sparsity threshold of equation (4.67) admits a great improvement in the per-

formance of the MMV model over the SMV. It suggests that for a given measurement

matrix Y ∈ RM×L, the MMV model can recover sparse vectors with sparsity levels up to

M − 1 as opposed to the value M/2 of the SMV model. On the other hand, for a given

sparsity level K inequality (4.67) shows that from a compressed sensing point of view

the length of measurement vectors M can be decreased, achieving further dimensionality

reduction.

To conclude, although the theoretical guarantees for the proposed MMV-PFP algo-

rithm are worse than the ones obtained for the standard PFP algorithm, it is expected

that in practical application scenarios, i.e. in DOA estimation, where the use of multiple
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channels is usually concerned with additional information, MMV-PFP will be capable

of exploiting this additional information providing better performance recovery of the

unknown support of X.

4.6 Experimental results for the MMV model

In this section, the performance of MMV-PFP in the scenario of joint sparsity is evaluated

and its recovery capabilities are compared against standard PFP and SOMP algorithms.

Fig. 4.11(a)-(b) show plots of the support recovery rate achieved by MMV-PFP,

SOMP and PFP as a function of the sparsity level K when the number of the mea-

surement vectors is L = 2 and L = 50 respectively. In the case of PFP, each single

channel sparse recovery problem was solved separately. The problem size was chosen

to be M = 50 and N = 100 and the corresponding dictionary A ∈ RM×N was gener-

ated by drawing its columns from the normal distribution. The jointly sparse matrix X

was synthesized by selecting K rows at random each time and filling the corresponding

nonzero entries with values drawn from the normal distribution. All results have been

averaged over 100 times. As shown in all plots, although the theoretical guarantees for

MMV-PFP are no better than PFP for the SMV model, MMV-PFP displays a significant

gain in recovery performance, which increases with the number of measurements. When

compared to SOMP, MMV-PFP shows better performance for L = 50, but slightly worse

for L = 2.
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Figure 4.11: Support recovery rates (over 100 trials) of SOMP, MMV-PFP and PFP vs
sparsity level K for a dictionary A ∈ RM×N with M = 50, N = 100 and number of
channels (a) L = 2 and (b) L = 50.

The average elapsed times of all tested algorithms against the variable cardinality
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Figure 4.12: Average elapsed time (over 100 trials) for SOMP, MMV-PFP and PFP vs
sparsity level K for a dictionary A ∈ RM×N with M = 50, N = 100 and number of
channels (a) L = 2 and (b) L = 50.

of the support set are depicted in Fig. 4.12(a)-(b). In the first experimental setting for

which the number of multiple vectors was set at L = 2, it can be noted that SOMP

achieves the fastest convergence for all sparsity levels examined. Regarding the PFP

algorithms, MMV-PFP does not lead to any significant computational savings in this

case, but as shown in Fig. 4.12(b) its convergence speed remains almost unaffected as

the number of vectors increases, which results in MMV-PFP being the fastest algorithm

for sparsity levels K > 20.
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Figure 4.13: Probability of support recovery (over 100 trials) of SOMP and MMV-PFP
vs the number of channels L for a dictionary A ∈ RM×N with M = 32, N = 256 and
fixed sparsity level at K = 16.

Finally, the recovery rates of MMV-PFP and SOMP algorithms were compared for

a variable number of measurement vectors L, in the case when the sparsity level is fixed

at K = 16 and the overcomplete dictionary A ∈ R32×256 with its column drawn from

the normal distribution. The number of channels varied from L = 2 to L = 32 in

steps of 2. In Fig. 4.13 the recovery results are depicted. As can be seen, although the

performance of SOMP rises rapidly for small values of L, it becomes apparent that this
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increase in performance slows down as L gets larger and it never achieves perfect recovery

probability. On the other hand, the proposed method fails to recover the sparse matrix

X when L ≤ 4, but its performance displays a rapid increase for 4 < L ≤ 12 and stalls

at almost perfect recovery for values of L larger than 14.

4.7 Discussion

This chapter investigated the applicability of structured sparsity, such as block structure

and joint sparsity in the MMV setting, using the method of Polytope Faces Pursuit.

First of all, in the group sparsity case it was shown that the dual to the initial

constrained least squares problem exists and the necessary and sufficient conditions for

primal-dual feasibility were provided. Next, the Group Polytope Faces Pursuit algorithm

was derived. The specific algorithm in analogy with the standard PFP algorithm, is a

path following approach that exploits the geometry of the dual group sparsity problem.

As described, of critical importance in the group sparse recovery problem is the choice

of the objective function to be minimized and for this reason, both problems of `2,1 and

`∞,1 minimization were examined. In spite of the fact that the resulting algorithms are

suboptimal in the sense that they cannot ensure that the KKT conditions will always

be met, it was shown that stronger theoretical guarantees exist for the identification

of the true support of the unknown group sparse vector and hence its perfect recovery.

These theoretical results differ for the two problems considered, namely `2,1 and `∞,1

minimization and they do not reveal which algorithm is expected to perform better

in practice. However, the corresponding phase diagrams showed that although both

algorithms enhance the recovery performance of the original PFP algorithm, GPFP based

on `2,1 minimization achieves the best phase transition. Further experimental results

verified its superiority in recovery performance, while they also showed performance

gains in certain cases against the popular GOMP algorithm.

Finally, the MMV problem under the assumption of joint sparsity was considered.

Following a similar approach, the dual problem was derived and based on its geometry,

PFP was extended resulting in the development of the MMV-PFP algorithm. The the-

oretical analysis presented did not manage to capture the expected performance gains

over the conventional sparsity approach, resulting in rather worse theoretical results for
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MMV-PFP as opposed to PFP. However, simulations on synthetic data demonstrated its

superiority for the problem of joint sparse recovery. This suggests that an average case

analysis that follows a probabilistic approach could give more insight on the performance

gains of the MMV-PFP algorithm over the conventional sparsity approach of PFP.

The following chapters are concerned with the application of the developed sparse

recovery algorithms to the classic problem of DOA estimation. From one point of view,

this will allow the benchmarking of the performance of the proposed methods in a practi-

cal signal processing application, providing in that way new insights on the behaviour of

the algorithms, especially in the noisy case. On the other hand, the developed methods

are expected to provide certain improvements to the problem of DOA estimation and

source localization.
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Chapter 5

DOA estimation with sparsity constraints

As briefly described in Chapter 2, the problem of source localization and direction-of-

arrival estimation appears in a large variety of signal processing applications and for this

reason it has gained much interest among the academic society. Apart from the existing

array processing methods for DOA estimation [13], the field of compressed sensing and

sparse representations has played a crucial role in bringing a new perspective and giving

more insight to the general problem of source localization. This impact has been evident

throughout the recent years and cannot be overlooked when considering the overgrowing

number of publications that attempt to exploit the compressed sensing framework by

directly applying it to the problem of DOA estimation [122, 123, 124, 125, 126, 127]

or by using its recent theoretical advancements in an oblique way as a tool for further

analysis of the problem [128, 129, 130].

Among the aims of this PhD thesis is to develop efficient techniques based on sparse

representations with application to the problem of DOA estimation. In previous chap-

ters, the discussion was mainly concentrated around the more general topic of sparsity.

After pointing out the main principles of the problem, efficient algorithms in terms of

speed convergence and recovery performance were developed. The main objective was

to provide robust algorithms designed to be applicable in real world applications and be

able to exploit certain properties of the signals of interest. The focal point of the current

chapter is to show how these methods and algorithms can be applied to the challenging

problem of source localization.
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For this reason, the problem of DOA estimation is initially formulated as a sparse

recovery problem. In Section 5.3 an analysis of the theoretical properties of the problem

is attempted following a compressed sensing approach. In that way, the advantages and

limitations of this approach are identified, which eventually leads to the proposal of

methods that show certain improvements over the existing sparsity based approaches.

5.1 Far-field DOA estimation with sparsity constraints

The discussion in this section begins with the problem of DOA estimation in the scenario

of far-field propagation assuming narrowband sources impinging on a linear array sensors.

5.1.1 Problem formulation

Consider a uniform linear array (ULA) of M sensors with inter-element spacing d (Fig.

2.1). The sensors of the ULA are assumed to be calibrated. For simplicity and without

loss of generality, it is also assumed that K plane waves propagating from the far-field

impinge on the array from the unknown angles θ1, θ2, . . . , θK . Assuming no multi-path

propagation and that the received signals on the array of sensors are narrowband with

central frequency fc, the m-th sensor captures a superimposition of the incoming signals

with time delays (phase differences) of τm, which are functions of the signals’ DOAs θi.

Therefore, taking as a reference sensor the one in the middle of the ULA, the linear

array response to the impinging plane wave can be expressed as:

a(θi) =
[
e−jωcτ1 , e−jωcτ2 , . . . , e−jωcτM

]T
(5.1)

where ωc is the angular frequency, τm =
(
m− M+1

2

)
d cos(θi)/c is the time delay and c is

the speed of the propagation. The sensor spacing is chosen to be at half the wavelength

i.e. d = λ/2 so that no spatial aliasing occurs. Considering that the wavelength of the

plane wave is given by λ = c/fc, the time delay at the m-th sensor can be expressed

as τm = 1
2

(
m − M+1

2

)
cos(θi)/fc. The substitution of the above expression for τm and

ωc = 2πfc to equation (5.1) yields:

a(θi) =
[
ejπ

M−1
2

cos(θi), ejπ
M−3

2
cos(θi), . . . , e−jπ

M−1
2

cos(θi)
]T
. (5.2)
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Following the concept of spatial sparsity, as introduced by Malioutov et al. [125], the

angular space is discretized into N possible angles of arrival so that N > M and N >> K.

The resulting overcomplete dictionary A ∈ CM×N contains atoms corresponding to the

impulse responses of the array for all potential N angles of arrival, such that:

A =
[
a(θ1), a(θ2), . . . , a(θN )

]
. (5.3)

It follows that the sensor measurements at the ULA can be modelled as:

y(t) = Ax(t) + n(t) (5.4)

where x(t) is a sparse vector containing K nonzero entries corresponding to the unknown

DOAs, while n(t) is the additive noise at the sensors. In principle one could apply any

sparse recovery algorithm i.e. `1 minimization to recover the unknown sparse vector

x(t). However, in order to successfully estimate the parameters θ1, θ2, . . . , θK the exact

support recovery of x(t) is required, namely supp(x̂(t)) = supp(x(t)) where x̂(t) is the

estimated sparse vector at the time instance t. It follows that any false detection on the

estimated support set due to wrong atom selections, will introduce error in the parameter

estimation problem. In other words, the problem of DOA estimation under the sparsity

recovery framework should be viewed as a support recovery problem rather than a sparse

approximation problem. This observation classifies the DOA estimation problem as a

harder problem to the already hard task of sparse approximation.

5.1.2 Existing approaches

Nevertheless, instead of attempting to solve the inverse system of equation (5.4) for

each time instant separately, assuming spatio-stationarity, namely that the unknown

parameters do not vary with time but they rather remain constant and share a common

sparse support of at most K indices, one could exploit the underlying joint sparsity

and solve the inverse problem for several time samples simultaneously. Therefore, as

explained in Section 4.5, the resulting MMV sparse recovery problem is formulated as:

min
X
‖X‖2,1 such that ‖Y −AX‖F ≤ ε (5.5)
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where the Y ∈ CM×T is the matrix containing sensor measurements of T time snapshots

and X ∈ CN×T is the jointly sparse vector. Comparing the problem of equation (5.5) with

the problem (4.57) introduced in Section 4.5, one can notice that the constraint equality

of (4.57) has been replaced by an inequality. This is to account for the additive noise in

the sensor measurements and hence (5.5) illustrates the noisy mixed `2,1 minimization

problem. Even though the MMV formulation can be proven to provide better recovery

performance and be less computational demanding than solving the SMV problem at

each time instant, large numbers of snapshots T can increase dramatically the overall

computational cost.

For that reason, the so called `1-SVD method, proposed in [3], includes a pre-

processing step that reduces the dimensionality of the measurement matrix Y using

the method of singular value decomposition (SVD):

Y = UΣVH (5.6)

where U is an M×M unitary matrix, Σ is a diagonal matrix of size M×N containing the

singular values and VH denotes the Hermitian transpose of the unitary N×N matrix V.

In moderate noise levels, the singular values can provide information about the signal and

the noise subspace. In contrast to the MUSIC algorithm that is merely concerned with the

extraction of the noise subspace, the purpose of `1-SVD is to discard the noise subspace

and keep only the K largest eigenvalues corresponding to the eigenvectors associated with

the signal subspace. As explained in more detail in [3], this dimensionality reduction of

the measurements is achieved by replacing the measurements matrix Y with YSV =

YVK , where VK denotes the truncated matrix, obtained by keeping the K first columns

of V and therefore YSV ∈ CM×K . It follows that the problem of equation (5.5) can be

replaced by the following:

min
XSV

‖XSV‖2,1 such that ‖YSV −AXSV‖F ≤ ε
′ (5.7)

where XSV is an N ×K matrix that relates to X in a similar way to how YSV relates to

the measurements matrix Y.

However, the problem of support recovery in the joint sparsity scenario is no longer
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combinatorial when the number of given snapshots is larger than the support set [118].

If for the number of sources it holds that K < T then the unknown support set can

be identified by the powerful MUSIC algorithm. Therefore, considering the fact that in

(5.7) SVD was used in order to reduce the dimension to K snapshots, one can argue that

MUSIC could be used instead of mixed `2,1 minimization. Nevertheless, the scope of the

work in [118] is limited when it comes to the DOA estimation problem, as the analysis and

the theoretical results presented are only concerned with the noiseless case. On the other

hand, in the rank-deficient case i.e. when the sources impinging on the array are highly

correlated, MUSIC is known to fail to resolve them and its DOA estimation performance

degrades significantly. Moreover, its performance is also known to deteriorate in the

presence of strong noise or when the number of snapshots taken are not sufficient for the

estimation of the covariance matrix.

Fig. 5.1(a)-(b) show the spatial power spectrum for two independent sources imping-

ing on a ULA of M = 8 sensors from the angles 60◦ and 72◦. The noise level is at 15

dB and the available number of snapshots is T = 5. As can be seen, although both MU-

SIC and MVDR beamforming perform better than the classic beamforming method with

regards to separating the sources, their peaks do not fall on the true DOAs and hence

they both introduce error. However, the method based on the joint sparsity framework

- which uses a dictionary of N = 180 atoms resulting from the uniform discretization of

the angular space with resolution 1◦ - is able to perfectly recover the unknown support

showing clear peaks at the true DOAs. On the other hand, in Fig. 5.1(c)-(d), which

illustrate the analogous DOA estimation results in the case where the second source is

located at 68◦, `1-SVD fails to perfectly recover both DOAs. However, it still shows its

superior performance over all other methods, since it depicts two clear peaks.

Because of the above, the following sections of the current chapter attempt to clarify

the trade-off between array processing subspace based approaches and sparsity based

methods and quantify their recovery performance and their limitations. Regarding the

MMV sparse recovery formulation of equation (5.7), a further attempt is made in order

to reduce its computational complexity by applying greedy algorithms that promote joint

sparsity, such as MMV-PFP.



124

50 100 150
30

25

20

15

10

5

0

5

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 
True DOA
BF
MVDR
MUSIC
!1-SVD

(a)

40 60 80 100 120
10

5

0

5

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 
True DOA
BF
MVDR
MUSIC
!1-SVD

(b)

50 100 150
30

25

20

15

10

5

0

5

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 
True DOA
BF
MVDR
MUSIC
!1-SVD

(c)

40 60 80 100 120
10

5

0

5

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 
True DOA
BF
MVDR
MUSIC
!1-SVD

(d)

Figure 5.1: Spatial power estimate using conventional beamforming, MVDR, MUSIC
and `1-SVD algorithms for two closely spaced sources with true DOAs (a)-(b) 60◦ and
72◦ and (c)-(d) 60◦ and 68◦.

5.2 DOA dictionary coherence & discretization of the angular grid

The two most critical points for robust support recovery in compressed sensing are spar-

sity and incoherence. Therefore, regarding the DOA estimation problem, as long as the

spatial sparsity assumption holds, the redundant dictionary A should exhibit low max-

imal coherence among its atoms to enable sparse recovery of the unknown support set

with cardinality equal to the number of impinging sources. Although, in the specific set-

ting the design of the dictionary is out of one’s control due to the fact that its atoms are

associated with the physics of the problem, there are still important parameters such as

the redundancy of the dictionary given by the ratio M/N , the sensor spacing d and the

discretization of the angular space that contribute to the dictionary mutual coherence

and need to be selected with caution.

This section addresses the way of selecting the N -dimensional grid associated with the

discretization of the angular space and shows how it affects the dictionary incoherence.
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First of all, note that the coherence of the parametric dictionary A is given by:

µ = max
1≤i,i 6=j≤N

|aH(θj)a(θi)|
‖a(θj)‖‖a(θi)‖

⇒

µ = max
1≤i,i 6=j≤N

1

M
|aH(θj)a(θi)| ⇒

µ = max
1≤i,i 6=j≤N

1

M

∣∣∣∣∣
M∑
m=1

ejπ(m−M+1
2

) cos θje−jπ(m−M+1
2

) cos θi

∣∣∣∣∣⇒
µ = max

1≤i,i 6=j≤N

1

M

∣∣∣∣∣
M∑
m=1

e−jπ(m−M+1
2

)(cos θi−cos θj)

∣∣∣∣∣⇒
µ = max

1≤i,i 6=j≤N

sin
(
Mπ(cos θi − cos θj)/2

)
M sin

(
π(cos θi − cos θj)/2

) ⇒
µ = max

1≤i,i 6=j≤N

sin(Mπ∆i,j/2)

M sin(π∆i,j/2)
(5.8)

where the exponential sum formula has been used. Equation (5.8) shows that the nearer

the angles θi and θj are, the higher the coherence between them will be. In other words,

for a given grid of N discrete locations, a dictionary atom a(θi) will likely exhibit the

highest correlation with one of each adjacent atoms i.e. a(θi−1) or a(θi+1). Furthermore,

in the case that the grid is selected by uniformly discretizing the angular space, the

overall dictionary coherence µ is expected to occur for two adjacent atoms such that

the quantity ∆i,i+1 = cos θi − cos θi+1 is minimized. Due to the nature of the cosine

function, it follows that adjacent angles close to π/2 will show lower correlations than

adjacent angles around 0 or π. Therefore, as also shown in [18], a better way to obtain the

grid points is to uniformly discretize the cosine function instead of the angle θ. In that

case, the quantity ∆ will be constant for all adjacent angles and subsequently the overall

dictionary coherence will be lower than the one resulting from the uniform discretization

of the angular space.

To show this, note that in the case of uniformly discretizing the u-space (u = cos(θ)),

the quantity ∆ for any two adjacent grid points is constant and equal to 2/N . Substi-

tuting this in equation (5.8), the coherence becomes:

µ =
sin(Mπ/N)

M sin(π/N)
. (5.9)

Therefore, according to (5.9) the dictionary coherence depends only on the redundancy
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ratio M/N . As can be seen, the larger the value of M/N ratio, the lower the coherence µ.

Note also that for large enough values of N , the approximation sin(π/N) ≈ π/N holds.

Therefore, equation 5.9 can be well approximated by the sinc function:

µ ≈ sin(Mπ/N)

Mπ/N
= sinc(M/N). (5.10)

On the other hand, in the case of uniformly discretizing the angular space, for two

adjacent grid points it holds that:

∆i,i+1 = cos θi − cos θi+1 = cos θi − cos(θi + π/N). (5.11)

It is evident from equation (5.11) that the minimum value of ∆i,i+1, which results in the

maximum dictionary coherence, is achieved at θi = kπ. Therefore, after the appropriate

manipulations it can be shown that µ is given by:

µ =
sin
(
Mπ

(
1− cos(π/N)

)
/2
)

M sin
(
π
(
1− cos(π/N)

)
/2
) (5.12)

where the angle sum trigonometric identity has been used. It follows that for values of

N >> π the approximation sin
(
Mπ

(
1 − cos(π/N)

)
/2
)
≈ M sin

(
π
(
1 − cos(π/N)

)
/2
)

holds and hence µ ≈ 1. This means that the uniform discretization of the angular space

will introduce ambiguities due to the near collinearities between atoms corresponding

to the endfire angles, regardless of the redundancy ratio M/N . This could make it

impossible for the CS recovery algorithms to distinguish between the endfire DOAs and

therefore their performance is expected to considerably degrade. On the other hand, if

the sources arrive from the broadside angles then they will be much easier resolved, since

it holds:

cos(π/2)− cos(π/2 + π/N) = sin(π/N) > sin(2/N) ≈ 2/N. (5.13)

This can be also verified by considering the Gram matrix G = |AHA| for both dis-

cretization scenarios. Fig. 5.2 displays as images the gram matrices G in the case of

uniformly discretizing the DOA space (Fig. 5.2(a)) and in the case of uniformly discretiz-

ing the u-space (Fig. 5.2(b)).
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Figure 5.2: Gram matrix of a DOA dictionary corresponding to a ULA of M = 8 sensors
when the grid points are obtained by uniformly discretizing (a) the angular space (b) the
u-space.

It is also worth mentioning that in the latter case, if the number of sensors is equal

to the number of grid points M = N , then the resulting dictionary is a basis i.e. FFT

basis. Hence, as can be seen in Fig. 5.3(b) A exhibits maximal incoherence. However,

the same does not hold in the case of discretizing the angular space (Fig. 5.3(a)).
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Figure 5.3: Gram matrix of a square DOA dictionary (M = N) corresponding to a ULA
when the grid points are obtained by uniformly discretizing (a) the angular space (b) the
u-space.

In what follows, dictionaries obtained by uniformly discretizing of the u-space are

considered, due to their better overall properties.
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5.3 Geometry of the array (spacing and number of sensors)

Consider now the RIP property of (2.49). It is required that δ2K < 1 for the solution to

the combinatorial problem (4.56) to be unique. Given a dictionary A ∈ CM×N and any

subset S of its columns with cardinality K, it also holds:

δ2K = max
S
‖AH

2SA2S − I‖2 ≤ max
S
‖AH

2SA2S − I‖1 ≤ (2K − 1)µ (5.14)

where the first inequality is a result of the fact that the matrix AH
2SA2S − I is Hermitian

[55]. Therefore, it is required that (2K − 1)µ < 1 or after substituting equation (5.10)

sinc(M/N) < 1/(2K − 1). Although, the last inequality cannot be solved algebraically

for M without using approximations such as the Taylor series, one can obtain the value

for M graphically, finding the intersection between sinc(M/N), which is a function of M

for fixed N and the line 1/(2K − 1) for a specified sparsity level K. As can be seen in

Fig. 5.4, for a grid of N = 180 points and sparsity level K = 3 the number of sensors

should be greater than M = 148 for perfect support recovery.
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Figure 5.4: Mutual coherence of the DOA dictionary as a function of the number of
sensors M .

Note that the resulting bound on M using the above analysis is approximate, since one

can precisely identify M by solving maxS ‖AH
2SA2S − I‖2 < 1. This, however, is a much

harder problem, since it involves finding the largest maximum eigenvalue of AH
2SA2S − I

among all possible combinations of atoms of cardinality 2K.

In any case, the resulting lower bound on M based on the RIP is quite pessimistic.

As it will be shown in later sections, even with a much smaller number of sensors M

one can achieve super-resolution, as long as the assumption that the location of the

impinging sources exactly match the ones included in the angular grid and the noise level



129

is moderate. Besides, RIP does not take into account the additional information provided

by the multiple time snapshots, which allow the formulation of the DOA estimation

problem as a joint sparse recovery problem. As explained in Section 4.5.2 of the previous

chapter, although worst case theoretical guarantees fail to predict any performance gain,

empirical findings demonstrated that the MMV model can boost the performance of the

conventional sparsity approach based on the SMV model.

Nevertheless, the recovery capability of the proposed method could still be further im-

proved by considering random non-uniform linear arrays (NLA) (Fig. 5.5), which however

implies longer aperture arrays.

Figure 5.5: Impinging plane wave on a non-uniform linear array of M sensors.

As mentioned previously and also explained in [131], the complete DOA dictionary

A resembles the FFT ensemble. To see this, consider once again the function am(θi) =

exp
{
− jπ

(
m − M+1

2

)
cos θi

}
. The u-space is uniformly discretized into N grid points,

where u = cos θ and u ∈ [−1, 1]. Hence, each angle of the grid is given by:

θi = cos−1

(
2i−N
N

)
. (5.15)

Using now (5.15), the linear array response becomes am(θi) = exp
{
−jπ

(
m−M+1

2

)
2i−N
N

}
,

and after further manipulation, it can be shown that am(θi) is given by:

am(θi) = exp
{
− j 2π

N
dmci

}
for 1 ≤ m ≤M, 0 ≤ i ≤ N − 1 (5.16)
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where dm = m − M+1
2 , ci = i − N/2. Setting M = N , the resulting DOA dictionary is

a Fourier matrix and subsequently, results from the field of compressed sensing can be

used to theoretically demonstrate the advantages of using an NLA over a ULA. More

specifically, considering the complete square matrix and randomly selecting M of its N

rows, the theoretical results in [72] for the uniformly random partial Fourier matrix will

also hold for the NLA DOA dictionary. Therefore, the RIP will be satisfied with high

probability as long as M ≈ Ck log4(N).

The above result has also been improved in [132], where the authors consider a weak-

RIP analysis, which stands as a weaker alternative to the RIP condition and more prac-

tical for applications [133]. A matrix A ∈ KM×N is said to satisfy the weak-RIP if:

(1− δK+t)‖x‖22 ≤ ‖AJx‖22 ≤ (1 + δK+t)‖x‖22 ∀J ⊃ S (5.17)

where |J | = K+t and δK+t denotes the corresponding weak restricted isometry constant.

The work in [132] considers the case with t = 1 and shows that a uniformly random partial

Fourier matrix satisfies the weak-RIP for any ε,δ ∈ (0, 1), if:

M ≥
(

2(3 + δ)

3δ2

){
log

(
2(N −K)

ε

)
+ log(K + 1)

}
(K + 1) (5.18)

with probability P(δK+1 ≥ δ) ≤ ε.

These results suggest that an improved recovery performance should be expected

when employing NLA for the DOA estimation problem for the same number of sensors

M or that the same performance with a ULA array can be achieved using fewer sensors.

5.4 MMV algorithms for DOA estimation

It has already been mentioned that the sparse representations framework was first in-

troduced in the field of DOA estimation and source localization in the pioneering work

in [3]. The specific work mainly focuses on uniform linear arrays and proposes uniform

discretization of the angular space. Therefore, it is expected that the performance of

the `1-SVD method will improve considerably by taking into account the results of the

previous sections.

However, although the SVD decomposition of the multiple measurement vectors Y
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can considerably reduce the complexity of the optimization task, still solving the problem

of equation with SOCP methods can be computationally demanding in practical appli-

cations. To this end, the specific work focuses on the applicability of faster alternative

greedy approaches (i.e. SOMP, MMV-PFP etc.).

5.4.1 Well separated sources

Aside from reducing the overall complexity of the mixed norm minimization problem

using a greedy MMV algorithm, when the number K of sources impinging on the array

is known a priori, this information can be easily incorporated by forcing the greedy

algorithm to terminate after only K iterations. This can be very beneficial especially

in the cases where the variance of the additive noise is unknown. Additionally, it could

further reduce the overall computational cost. Fig. 5.6 shows the estimated spatial power

spectrum using MUSIC and MMV-PFP for a given ULA of M = 8 sensors. The size of

the angular grid is selected to be N = 180 grid points. The number of sources is K = 2

and the corresponding plane waves are assumed to arrive from the angles 46◦ and 88◦. As

can be seen, although both algorithms show two clear peaks, MMV-PFP exactly resolves

the spatial spectrum resulting in accurate localization of both sources (Fig. 5.6(b)).
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Figure 5.6: Spatial power estimate of MUSIC and MMV-PFP algorithms for two well
separated sources with true DOAs 46◦ and 88◦.

5.4.2 Closely spaced sources

However, the proposed MMV-PFP method might fail to resolve closely spaced sources.

To overcome this limitation, inspired by the work in [118], where the authors develop rank

aware joint sparse recovery methods, a similar modification of the MMV-PFP algorithm is

proposed to aid the identification of the support set when the dictionary coherence is high.
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More specifically, after each iteration of the MMV-PFP algorithm, a sensing dictionary

Ã is constructed by orthogonalizing the set of atoms that have not yet been selected, in

order to reduce the dictionary coherence. Then, the residual is also orthogonalized (i.e.

using SVD decomposition) and projected to the sensing dictionary Ã. The resulting Rank

Aware MMV-Polytope Faces Pursuit (RA-PFP) algorithm is summarized in Algorithm

9.

Algorithm 9 Rank Aware MMV-Polytope Faces Pursuit

1: Input: A, Y
2: Set stopping conditions lmax and θmin

3: Set Ã = A
4: Initialize:
k ← 0, Ik ← ∅, Ak ← ∅, Ck ← 0, Xk ← ∅, Ŷk ← 0, Vk ← ∅ Rk ← Y

5: while |Ik| < lmax and maxi a
H
i Rk−1 > θmin do {Find next face}

6: k ← k + 1
7: Orthogonalize residual: Uk ← orth(Rk−1)
8: Find face:

ik ← arg maxi/∈Ik−1{‖ãHi Uk‖22/(‖ã
H
i Uk‖2 − ãHi Ck−1(Uk)H ãi)}

9: Add constraints:
Ak ← [Ak−1, aik ], Ik ← Ik−1 ∪ {ik}

10: Xk ← (Ak)†Y, Ŷk ← AkXk

11: Vk = [Vk−1,aikR
k−1/‖aikRk−1‖2], Ck ← [(Ak)†]HVk

12: Calculate orthogonal projection: P⊥
Ak = I−Ak(Ak)†

13: Ã← P⊥
AkA, Rk ← P⊥

AkY
14: Normalize: ãi ← ãi/‖ãi‖2
15: end while
16: Output: X∗ = Xk
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Figure 5.7: Spatial power estimate of MUSIC, MMV-PFP and RA-PFP algorithms for
two closely spaced sources with true DOAs 46◦ and 58◦.

Fig. 5.7 shows the estimated spatial spectrum of all algorithms including the modified

version of MMV-PFP, using the same setting with the one in Fig. 5.6 apart from the fact

that the two incoming sources arrive from the angles 46◦ and 58◦. RA-PFP shows its
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advantage in identifying the DOAs of the closely spaced sources. In the following sections,

more experimental results are presented in order to better quantify the performance of

the proposed greedy algorithms.

5.5 Experimental results

In this section, further experimental results are presented and the performance of the

MMV-PFP and RA-PFP algorithms is compared against sparsity based approaches such

as `1-SVD and Rank Aware Order Recursive Matching Pursuit (RA-ORMP) [118] and the

classical subspace based MUSIC algorithm. In all following experiments, it is assumed

that the unknown DOAs fall into the predefined discrete set of angles. Both ULAs

and NLAs are employed. Furthermore, it is also assumed that the number of sources,

corresponding also to the spatial sparsity level K, is known a priori.

5.5.1 DOA estimation vs SNR

The first set of experiments attempts to evaluate the performance of DOA estimation for

variable noise levels. For this reason, the specific experiment considers K = 2 narrowband

sources impinging on a linear array of sensors from the far-field. The discrete set of

potential DOAs was obtained by discretizing the u-space and it was assumed that the

sources’ true DOAs exactly match a subset of the N -dimensional discrete set of angles.

N was fixed at 180 potential angles. The true DOAs were selected at random from the

discrete set and the variance of noise level was varied resulting in SNR values ranging

from -25 dB to 30 dB in steps of 5 dB. Fig. 5.8 depicts the DOA estimation performance,

given as a probability of perfect support recovery vs the SNR. In particular, Fig. 5.8(a)-

(b) illustrate the recovery probabilities of a ULA with M = 8 sensors for T = 8 and

T = 200 time snapshots, while Fig. 5.8(c)-(d) show the corresponding results for an

NLA. All results have been averaged over 100 trials.

It can be noted that in the case of a ULA the rank aware versions of MMV-PFP

and SOMP yield the best overall performance. On the other hand, although `1-SVD and

MMV-PFP algorithms perform close to the rank aware sparse methods for noise levels

below 10 dB, for higher values of SNR their performance seems to stall at lower recovery

rates compared to the rank aware algorithms. This might be due to the high mutual

coherence of the DOA dictionary in this setting, resulting in decreased performance most
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Figure 5.8: Probability of exact DOA estimation of K = 2 impinging on a ULA of M = 8
sensors for (a) T = 8 and (b) T = 200 samples and an NLA of M = 8 sensors for (c)
T = 8 and (d) T = 200 vs SNR.

notably affecting MMV-PFP algorithm. Regarding the MUSIC algorithm, as expected

it seems to be more prone to noise and as can be seen its support recovery performance

degrades considerably when the SNR is less than 15 dB. In the case of T = 200 samples

(Fig. 5.8(b)), DOA estimation performance improves for all tested algorithms, but similar

trends are observed.

Fig. 5.8(c)-(d) show the results obtained for linear arrays of sensors with non-uniform

spacing. In this case, all algorithms take advantage of the NLA structure resulting in im-

proved recovery performance in both cases of T = 8 and T = 200 samples. Interestingly,

all tested algorithms perform very close.

Next, the above experiment was repeated for an increased number of sensors M = 16.

Fig. 5.9(a)-(d) summarize the obtained results that show improved recovery rates for all

algorithms with similar trends to the case of M = 8 sensors.
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Figure 5.9: Probability of exact DOA estimation of K = 2 impinging on a ULA of
M = 16 sensors for (a) T = 8 and (b) T = 200 samples and an NLA of M = 16 sensors
for (c) T = 8 and (d) T = 200 vs SNR.

5.5.2 Number of sources

The second experiment tried to assess the DOA estimation performance of all examined

algorithms as a function of the number of sources K, assuming that they arrive on the

linear array from different angles.

To do this, a linear array of M = 16 sensors was considered and K synthetic complex-

valued signals were generated at each instance with DOAs being uniformly at random

selected from the predefined grid of N = 180 potential angles. The noise level was kept

constant at SNR = 20dB. The experiment was initially run for a ULA and then repeated

for NLA structures. The obtained results, depicted in Fig. 5.10, were the averages over

100 trials. It can be noted that in the case of a ULA and for T = 8 time snapshots

(Fig. 5.10(a)) the proposed method of RA-PFP, followed by RA-ORMP, outperforms all

other algorithms and provides a significant improvement over the original MMV-PFP

algorithm, which yields the poorest recovery rates. When the number of snapshots is

increased to T = 200 (Fig. 5.10(b)), all algorithms benefit, providing improved estimates.
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In this specific setting, MUSIC, along with the rank aware joint sparsity algorithms,

provides superior performance over `1-SVD and MMV-PFP.
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Figure 5.10: Probability of exact DOA estimation using a ULA of M = 16 sensors for
(a) T = 8 and (b) T = 200 samples and an NLA of M = 8 sensors for (c) T = 8 and
(d) T = 200 vs the number of sources K corresponding to the sparsity level. The SNR
is fixed at 20 dB.

The support recovery performance improves significantly for NLA structures. As

shown in Fig. 5.10(c) and in agreement with the theoretical analysis presented in Section

5.3, all algorithms improve their recovery ability. The proposed method of RA-PFP

achieves the best overall performance succeeding in almost fully recovering the unknown

DOAs for sparsity levels up to K = 11. Furthermore, the performance of MMV-PFP

and `1-SVD is boosted in that case, with `1-SVD outperforming RA-ORMP and MMV-

PFP. This shows once again the importance of the dictionary mutual incoherence in

solving underdetermined inverse problems. Since using NLAs leads to dictionaries with

lower maximal coherence, the signal subspace becomes more distinguishable and therefore

the sparse recovery algorithms can easier retrieve the unknown support set of atoms.

Taking additional time snapshots (T = 200) on top of that, can further enhance the

performance of joint sparsity algorithms (Fig. 5.10(d)). In particular, `1-SVD achieves
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exact estimation of the unknown directions for all cases examined, verifying the average

case analysis result in 4.5.2, where it was shown that joint sparsity algorithms can recover

supports with up to M − 1 cardinality.
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Figure 5.11: Average elapsed time of DOA estimation using a ULA of M = 16 sensors
for T = 200 snapshots vs the number of sources K corresponding to the sparsity level.

Fig. 5.11 shows the average elapsed time for all algorithms considered in the case of a

ULA of M = 16 and T = 200 time snapshots against the number of sources K. MUSIC

exhibits the fastest convergence, which also remains almost constant with K. This is to

be expected, since the algorithm involves an eigenvalue decomposition for the estimation

of the noise subspace followed by a projection to the column space of the DOA dictionary

A. In contrast, the elapsed time of joint sparsity based algorithms is slightly affected by

the increase of the sparsity level. As can be seen, for all sparse approaches, the average

elapsed time rises almost linearly with a slight slope as the sparsity level K increases.

Among them, RA-ORMP yields the fastest convergence followed closely by MMV-PFP

and RA-PFP algorithms. When the sparsity level is K = 5, the average elapsed times

of MUSIC, RA-ORMP, MMV-PFP, RA-PFP and `1-SVD are 1 msec, 10.6 msec, 15.6

msec, 23.7 msec and 599.8 msec respectively. Therefore, in that case the joint sparsity

algorithms provide a significant speed gain over `1-SVD being at least 25 times faster.

However, they are at the same time at least 10 times slower than MUSIC.

5.5.3 Spacing of the sources in the angular grid

This section presents results that assess the resolution capability of the proposed method

for DOA estimation. For the specific experiment, a ULA of M = 16 sensors was consid-

ered. After uniformly discretizing the u-space, a grid of N = 180 angles was obtained

resulting in the overcomplete dictionary A ∈ C16×180. The number of sources was fixed
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at K = 2. Between the two impinging sources, the first was set at 90◦, while the DOA

of the second was left to vary from 90◦ to 180◦ with the step size equal to the minimum

distance between two consecutive angles of the angular grid. Therefore, in this exper-

iment the goal was to see how the sparse recovery algorithms performance is affected

by the angular spacing of the sources ∆θ. To do this, for each value of ∆θ, the greedy

joint sparsity algorithms was run for n = 100 trials and their recovery performance was

measured using the root-mean-square error (RMSE) defined as:

RMSE(θ̂) =

√√√√E

{
K∑
i=1

(θ̂i − θi)2

}
=

√√√√ 1

n

n∑
j=1

1

K

K∑
i=1

(θ̂ij − θi)2 (5.19)

and the bias function, which is given by:

Bias(θ̂i) = E
{
θ̂i − θi

}
=

1

n

n∑
j=1

(θ̂ij − θi). (5.20)
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Figure 5.12: (a) RMSE and (b) estimation bias as a function of the angular distance
between K = 2 sources impinging on a ULA of M = 16 sensors.

Fig. 5.12(a) shows the RMSE as a function of the angular distance between the

sources’ DOAs. First of all, it can be observed that the rank aware joint sparsity algo-

rithms behave much better in resolving closely spaced sources, as the estimation error

remains at low levels even for the minimum separation ∆θ. For values of ∆θ larger than

5◦ the recovery is always exact. On the other hand, for MMV-PFP, the error grows large

for closely spaced sources and as can be seen even in the case of well separated sources the

algorithm introduces some error occasionally. Although, this error is expected to vanish

with the increase of the number of sensors, the presented experimental results reveal the
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Table 5.1: Probability of exact support recovery in DOA estimation in the coherent
source scenario.

T = M/2 T = 50 T = 200

M = 16

SNR = 10dB

MUSIC 0.01 0.21 0.69
RA-PFP 0.58 0.56 0.76

MMV-PFP 0.98 1 1
RA-ORMP 0.43 0.39 0.72

SNR = 20dB

MUSIC 0.45 1 1
RA-PFP 0.65 1 1

MMV-PFP 1 1 1
RA-ORMP 0.49 1 1

superiority of the rank aware algorithms. In Fig. 5.12(b), the bias of the DOA estimation

is plotted for all algorithms. The bias shows in more detail the average distance of the

estimated DOAs from the true DOAs for each source.

5.5.4 Correlated sources

The last experiment addresses the problem of DOA estimation when the sources imping-

ing on the array are coherent or highly correlated. It is well known that the performance

of MUSIC degrades significantly in this scenario as opposed to the `1-SVD method.

This is one of its main advantages over the classic array processing methods [3]. In

this experimental setting, once again a ULA of M = 16 sensors and an angular grid of

N = 180 potential DOAs were considered. Firstly, two sequences of uncorrelated nor-

mal distributed random numbers x1 and y1 were generated. Next, a new sequence was

generated by combining x1 and y1:

x2 = ρx1 +
√

1− ρ2y1 (5.21)

so that the sequences x1 and x2 have a correlation equal to ρ. For this experiment ρ was

set at the high value of 0.99. The Table 5.1 summarizes the resulting average (over 100

trials) support recovery results.

The obtained average recovery rates show that MMV-PFP is the least affected al-

gorithm by the strong correlation between the incoming sources. Both rank aware al-

gorithms’ performance degrades although the proposed RA-PFP displays slightly better

performance than RA-ORMP. This performance deterioration might be due to the fact

that both algorithms incorporate the step of orthogonalization of the residual at each it-

eration, using SVD decompositon and QR factorization, respectively. Therefore, it seems
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that the orthogonalization step tends to underestimate the signal subspace. However,

when compared to MUSIC algorithm both methods perform considerably better.

5.6 Wideband DOA estimation

All previous sections of the current chapter considered narrowband linear arrays and

assumed either that the propagating sources occupy narrow bands in the frequency spec-

trum or that they are broadband signals, which can be well approximated by digital

modulation over a carrier frequency. However, when dealing with wideband sources i.e.

speech or music signals, this narrowband approximation will no longer hold and conse-

quently the obtained delayed signals cannot be represented by phase shifts.

One straightforward approach that has been extensively used for array processing

methods [135, 136] such as MUSIC, stems from the Fourier transform convolution the-

orem, which states that a convolution in time is a multiplication in frequency and vice

versa. In particular, according to this technique the measured data is initially trans-

formed to the time-frequency domain. The time-frequency spectrum is then divided into

multiple small regions, such that standard narrowband processing can be applied to each

one of those separately. Therefore, after applying the Short-Time Fourier Transform

(STFT), any DOA estimation narrowband algorithm can be utilized at each frequency

bin individually. The final estimate is obtained by combining the individual estimates.

5.6.1 Far-field wideband DOA estimation

The far-field scenario, which allows the assumption of plane wave arrival is first con-

sidered. Suppose that a ULA of M sensors receives K sources propagating from K

distinct angles and each sensor captures a superimposition of time delayed signals. The

measurements at each sensor are partitioned into L time segments and each segment is

transformed into Q frequency regions using the discrete Fourier transform. As long as

the bandwidth of each subband is much smaller than its central frequency, corresponding

to the frequency bin fq, the narrowband assumption holds and it enables the following

approximation [21, 137]:

ym(t, fq) =

K∑
i=1

e−j2πfq(m−M+1
2

)d cos(θi)/cxi(t, fq) + nm(t, fq). (5.22)
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Therefore, it becomes evident that one can apply the narrowband sparse representa-

tion DOA estimation framework at each frequency bin separately. After discretizing the

angular space and forming the overcomplete dictionary Aq ∈ CM×N , one can attempt to

solve the optimization problem:

min
Xq

‖Xq‖2,1 such that ‖Yq −AqXq‖F ≤ ε (5.23)

where it is assumed joint temporal sparsity over the unknown Xq and the subscript q

indicates the q-th frequency bin. Furthermore, it is observed that the cardinality of the

support of the joint sparse matrix Xq will be at most K at each frequency bin. Therefore,

this underlying additional structure of joint sparsity in the frequency domain could be

exploited by merging all different frequency bins that correspond to the same DOA and

appropriately interleaving the entries of the measurement matrix Yq and the unknown

solution matrix Xq. In that case, the dictionary is formed as:

Ā =

Q∑
q=1

Aq ⊗ Iq (5.24)

where ⊗ denotes the Kronecker product and Iq ∈ CQM×QN is a matrix with all elements

zero but the q-th diagonal entry equal to one. The measurements matrix Ȳ can be

obtained equivalently. The corresponding inverse optimization problem can then be

formulated as:

min
X̄

N∑
i=1

‖X̄i‖2,2 such that ‖Ȳ − ĀX̄‖F ≤ ε. (5.25)

The problem in 5.25 reveals additional group structure in the frequency domain as well

as joint sparsity in the temporal domain. Therefore, the greedy MMV sparse recovery

algorithms can be modified appropriately, in order to incorporate this additional struc-

ture.

5.6.2 A greedy algorithm for grouped frequency wideband DOA estimation

The problem of (5.25) is convex and its solution can be accomplished using standard soft-

ware packages (i.e. SeduMi). However, in order to reduce the computational complexity,

a simple greedy algorithm based on the combination of SOMP and GOMP algorithms is

proposed. More specifically, the algorithm is identical to SOMP but uses a modified atom
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selection criterion at each step in order to impose the group sparsity over all frequencies.

The so-called Group Simultaneous Orthogonal Matching Pursuit (G-SOMP) is shown in

Algorithm 10.

Algorithm 10 Group Simultaneous Orthogonal Matching Pursuit

1: Input: A, Y
2: Set stopping conditions lmax and εmin

3: Initialize: k ← 0, Ik ← ∅, Ak ← ∅, Xk ← ∅, Ŷk ← 0, Rk ← Y
4: while |Ik| < lmax and ‖Rk‖F > εmin do {Find next group of atoms}
5: k ← k + 1
6: ik ← arg maxi/∈Ik−1 ‖AH

i Rk−1‖2,2
7: Add constraints:

Ik ← Ik−1 ∪ {ik}, Ak ← [Ak−1, Aik ]
8: Xk ← (Ak)†Y, Ŷk ← AkXk, Rk ← Y − Ŷk

9: end while
10: Output: X∗ = Xk

The stopping criteria of the algorithm can be either a residual threshold or the sparsity

level K. As mentioned previously, Algorithm 10 is mainly applicable to sources that

emit a wide range of frequencies with the assumption that the corresponding signals

occupy multiple frequencies at the frequency spectrum, such as harmonic signals. This

assumption allows the algorithm to form groups of frequency bins and simultaneously

attempt to identify the unknown DOAs. As empirically demonstrated in the following

section, the grouping of frequencies proves to be quite beneficial, since the proposed

method is able to suppress the undesirable effects of spatial aliasing.

In classical array processing, spatial aliasing refers to the ambiguities that arise when

in the case of a ULA the sensor spacing is larger than half the wavelength of the in-

coming plane wave. From a compressed sensing point of view, this means that the DOA

dictionary A will contain linear dependent columns and thus for certain support sets

it will be impossible to distinguish between columns and identify the true DOAs. It is

well known that MUSIC and other array processing methods suffer from the effects of

spatial aliasing [13]. In classical beamforming, in order to avoid spatial aliasing, it is

required that the sensor spacing is at most half the wavelength of the highest frequency.

This can cause limitations in certain applications such as blind source separation (BSS),

since for frequencies less than 16 kHz, the microphone spacing needs to be not larger

than approximately 2 cm. For higher frequencies, sensor spacing requirements could be

impossible to be satisfied.
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Despite the fact that the proposed approach could suppress aliasing and overcome the

above issues, the algorithm does not take into account possible sparsity or disjointness

in the frequency domain and for this reason it is expected that its performance will

degrade in these scenarios. To deal with these issues, further assumptions need to be

made regarding the sources’ energy distribution in the time-frequency domain.

5.6.3 Experimental results
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Figure 5.13: Spatial power spectrum estimate using (a) beamforming, (b) MUSIC, (c)
MMV-PFP and (d) G-SOMP for K = 3 sources arriving on a ULA of M = 8 sensors
with spacing set at half the wavelength corresponding to the middle frequency bin. The
SNR is fixed at 10 dB.

This section presents some experimental results that highlight the advantages of the

proposed approach over existing wideband array processing methods. Individual process-

ing of each frequency bin under the sparse representations framework is also considered.

In that case, the resulting MMV problem is solved at each frequency bin separately using

the RA-PFP algorithm, which showed the best DOA estimation performance for narrow-
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band ULAs. All of the following experiments consider a ULA of M = 8 sensors and the

angular grid contains N = 180 potential DOAs.

For the first experiment, K = 3 wideband sources were considered, which emit waves

with frequencies within the range of 250 Hz and 3 kHz and arrive on the array from

different angles. The target sources were chosen to be located at 60◦, 88◦ and 102◦

respectively. In that way, this experiment consists of two closely spaced sources and

one that is well separated from the others. In order to partition the received signals into

subbands, the data at each sensor were transformed using the STFT with non-overlapping

frames. The sampling frequency was assumed to be 16 kHz and the duration of each time

frame was chosen to be 8 ms. The additive white Gaussian noise (AWGN) at each sensor

was set at SNR = 10 dB. Fig. 5.13 shows the resulting power spectrum estimates for

all tested algorithms, namely classical beamforming, MUSIC, MMV-PFP and G-SOMP

algorithms. The sensor spacing was set at half the wavelength of the middle frequency

bin fc = (fmax− fmin)/2 = 1375 kHz. As can be seen, the methods of beamforming and

MUSIC are both affected by spatial aliasing at the high frequencies above fc. In addition,

beamforming also shows its resoltuion limitations, as it fails to resolve the two closely

spaced sources at all frequencies lower than fc. Regarding the sparsity based methods, the

proposed algorithm that considers grouped frequency bins displays the best performance

showing three clear peaks at the true DOAs at all frequencies, outperforming all other

methods.
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Figure 5.14: Condition number of wideband DOA dictionary as a function of the fre-
quency.

In Fig. 5.13(c), it can be noted that the approach based on separate processing of

each frequency bin introduces ambiguities; at high frequencies, which are possibly due to
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spatial aliasing, and at low frequencies, which are due to algebraic aliasing, as discussed

in [138]. This latter type of aliasing is concerned with ambiguities caused by using a nar-

rowband ULA with geometry designed for a certain frequency at much lower frequencies.

In that case, the resulting dictionary Aflow becomes ill-conditioned and it turns out to

be very hard to distinguish between subspaces, especially in the noisy case. Indeed, as

can be seen in Fig. 5.14, where the condition number of the wideband DOA dictionary

is plotted at all frequencies, the ratio of the largest to the minimum singular value of

matrix Af blows up at the very low frequencies. Both types of ambiguities are overcome

by imposing the group sparsity constraint over all frequency bins.
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Figure 5.15: Spatial power spectrum estimate using (a) beamforming, (b) MUSIC, (c)
MMV-PFP and (d) G-SOMP for K = 3 sources arriving on a ULA of M = 8 sensors
with spacing set at half the wavelength corresponding to maximum frequency. The SNR
is fixed at 10 dB.

Fig. 5.15 displays the spatial spectrum estimates for the same experimental setting,

but using now a ULA with sensor spacing at half the wavelength of the highest fre-

quency, which is the required spacing that eliminates the spatial aliasing for classic array
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processing methods. Indeed, as can be seen, the effects of spatial aliasing at the high

frequencies are not present anymore for both beamforming and MUSIC algorithms with

the price of reduced resolution. As far as the sparsity based approaches are concerned,

it can be noticed that although the resolution remains sharp, in fact both algorithms

fail to identify the correct support set. This experiment demonstrates that the algebraic

aliasing results in the deterioration of the performance of the sparsity based algorithms,

and hence these methods are more sensitive to this type of aliasing rather than spatial

aliasing, as shown in the previous experiment.
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Figure 5.16: Spatial power spectrum estimate using (a) beamforming, (b) MUSIC, (c)
MMV-PFP and (d) G-SOMP for K = 3 sources arriving on a ULA of M = 8 sensors
with spacing set at half the wavelength corresponding to the middle frequency bin. Two
of the incoming sources are highly correlated.The SNR is fixed at 0 dB.

Finally, simulation results are presented for the coherent source scenario. These

results were accomplished by repeating the first experiment for a higher noise level such

that SNR = 0 dB and letting two of the sources to be highly correlated to each other.

Most notably, the MUSIC algorithm shows its limitations in that case, failing to resolve
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all but one of the incoming sources (Fig. 5.16(b)). However, the G-SOMP algorithm

succeeds in resolving all DOAs (Fig. 5.16(d)).

It has been shown how a structured sparse recovery approach can overcome limitations

of conventional wideband DOA estimation methods such as spatial aliasing. Although

these findings are based on empirical results and take advantage of the grouped frequency

assumption, that might not always be met in practice, they show great potential for

further research from both theoretical and practical perspective. The following section

presents some further work that extends the specific wideband model to the near-field

scenario, which is usually encountered in applications such as audio source localization

in room environments.

5.6.4 Near-field wideband DOA estimation

In source separation, one is initially interested in localizing the sources before unmix-

ing and eventually reconstructing them. When dealing with audio sources the far-field

propagation model might not be very accurate considering that the sources lie near the

microphone array. In that case, the wave equation yields a different solution and the

plane wave approximation is no longer valid. For an omnidirectional point source in an

unbounded space, the Green’s function associated with the Helmholtz equation is given

by a spherical wave emitted at r [139]:

g(rm, r, ω) =
exp{−j ωc ‖rm − r‖}

4π‖rm − r‖
(5.26)

where the Euclidean norm ‖rm − r‖ denotes the distance from the source point to the

sensor placed at the point with coordinates rm.

Therefore, similarly to what presented earlier for the far-field case, one can construct

a grid of potential locations ri = [rxi , ryi , rzi ] and use equation (5.26) to compute the

impulse responses from the N grid points to each of the M sensors. It follows that in

the case of wideband sources, several frequency bins need to be utilized, as described in

Section 5.6.1.

To demonstrate the near-field wideband DOA estimation problem, the acoustic source

localization problem was considered. A 1m × 1m × 3m rectangular room was assumed

and M = 4 sensors were located at each corner. The resolution grid was chosen at 10 cm
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Figure 5.17: Impulse response for a simulated room environment with reverberation time
RT60 = 250 msec.

resulting in a grid of N = 81. The number of sources was K = 4 and they were located

at [rx1 , ry1 , rz1 ] = [0.1, 0.9, 1.7], [rx2 , ry2 , rz2 ] = [0.4, 0.7, 1.7], [rx3 , ry3 , rz3 ] = [0.5, 0.4, 1.7]

and [rx4 , ry4 , rz4 ] = [0.6, 0.6, 1.7]. For simplicity, it was assumed that the sources emit

zero-mean white Gaussian signals, which are disjoint in the time domain and the sampling

frequency was chosen to be fs = 8 kHz. The impulse responses for each microphone were

generated using the Matlab package RIR generator developed by Emanuel A.P. Habets

[140]. Fig. 5.17 displays an impulse response for the specific simulated room environment

with reverberation time RT60 = 250 msec.
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Figure 5.18: Source localization of K = 4 sources in a simulated room with reverberation
time of (a) RT60 = 250 msec and (b) RT60 = 500 msec.

The data at each sensor were obtained by superimposing the convolved signals with

the corresponding filters. Next, the measured data were transformed into the time-
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frequency domain using the STFT with non-overlapping segments of 16 msec. It was

assumed that the sources utilize all considered frequency subbands. Subsequently, G-

SOMP was used to localize the sources. The dictionary was generated by sampling the

Green’s function of equation (5.26) at the grid points for each frequency bin. Fig. 5.18

illustrates the localization results for two different reverberant conditions, 250 msec (2000

samples) and 500 msec (4000 samples). In the first case, the source localization is perfect,

whereas in the second G-SOMP succeeds in localizing all but one source.

5.7 Discussion

This chapter has been concerned with the problem of DOA estimation and source lo-

calization in sensor arrays under the sparse representations framework. After presenting

the `1-SVD method, which traces back to the innovative work of Malioutov et al. [3]

and based on the recent theoretical results in the field of compressed sensing, it was

initially shown that different sampling schemes of the impulse response of the array in

consideration can lead to dictionaries with different properties. The presented analysis

considered two different ways of discretizing the angular space in order to form a set of

grid points. For each of those, there is a distinct column vector specified by the impulse

response of the array. In more detail, from a compressed sensing point of view it was

shown that discretizing the u-space, instead of the angular space, yields dictionaries with

lower mutual coherence and better RIP properties.

Secondly, possible benefits in terms of the recovery performance of the jointly sparse

inverse problem using NLA structures instead of typical ULAs were discussed. After

applying the MMV-PFP algorithm, developed in Chapter 4, to the problem of DOA

estimation, it was noticed that although the algorithm performs as good as the computa-

tionally expensive mixed norm minimization of the `1-SVD algorithm for well separated

sources with respect to angular degrees, the algorithm’s recoverability degrades in the

scenario of closely spaced sources. To overcome this issue, the rank aware version of

MMV-PFP algorithm was proposed. Experiments demonstrated that this approach can

be generally beneficial, boosting the recovery performance when the dictionary exhibits

high mutual coherence, while at the same time providing significant speed gains over

`1-SVD due to its low complexity.
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Next, the sparsity based DOA estimation problem was extended to the scenario of

wideband sources. The observed data were transformed in the time-frequency domain

and a “narrowband” approach was followed for each separate frequency bin. Moreover, it

was shown that when the assumption that signals emit at the full frequency band holds,

imposing the additional constraint of group sparsity over all or a subset of frequency bins

can significantly improve the localization performance.

Finally, the problem of source localization of near-field wideband sources was con-

sidered and it was shown that by exploiting further assumptions (i.e. disjoint sources

in the time-domain) localization of equal or more sources than the number of sensors is

possible. However, the specific discussion was limited, considering only joint sources in

the frequency domain. As stated in [141], the wideband near-field DOA estimation based

on the sparse representations framework is a rather unexplored field and further research

might lead to the development of more application oriented algorithms and methods.
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Chapter 6

Off-grid DOA estimation with sparsity

constraints

In Chapter 5, it was first shown how the DOA estimation problem can be formulated

as a sparse recovery problem and then based on the CS framework, algorithms that

can provide fast and efficient recovery under certain assumptions were developed. One

of these assumptions requires that the sources arrive from directions that belong to a

predefined discrete set of possible angles. However, in real applications this assumption

might be very restrictive as in practice the unknown DOAs of the sources are continuous

parameters i.e. θ ∈ [−π, π]. Therefore, if the unknown DOAs do not belong in the angular

grid the performance of the spatial sparsity methods will degrade due to errors caused

by mismatches [142, 143].

A straightforward approach to minimize these model errors, caused by basis mis-

matches, is to increase the spatial resolution by making the grid finer and thus build up

a dictionary with increased redundancy. However, the finer the angular grid the longer

the recovery time needed by the CS algorithm. Besides, more sensors might be needed in

that case, so that the model meets the CS requirement of incoherence for robust recovery,

according to equations (5.10) and (5.18).

Assuming that the impinging sources are well separated (i.e. beyond the Rayleigh

resolution limit) with respect to the given array aperture, it is expected that a finer

grid will result in reducing the error related to algebraic ambiguities, which are due to
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non exact matching of the true subspaces with the considered ones when the sources are

off-grid. In that case, the trade-off between the spatial resolution and the convergence

time poses the main limitation. In [3], the authors propose an adaptive grid refinement

approach, in which the sparse recovery algorithm is applied iteratively starting from an

initial coarse grid and successively making the grid finer around only the support obtained

using the coarse grid and not universally. Although, this approach can significantly reduce

the computational cost, it can still be quite expensive when high precision accuracy of

DOA estimates is desired.

This chapter investigates the problem of off-grid DOA estimation, following a different

route by treating the set of angular grid points as an additional unknown parameter. The

proposed method is a fast iterative alternating descent algorithm, which improves the

performance of the DOA estimation based on sparsity constraints, while keeping the

computational complexity low.

6.1 Basis mismatch in DOA estimation

The problem of basis mismatch in CS and sparse representations has been addressed in

several recent publications [142, 143, 144], as it happens to be a matter of concern in

many applications. As discussed in [142], in compressive imaging the CS framework is

often based on the assumption that the image of interest is sparse in the DFT basis.

However, since this basis is a collection of atoms corresponding to a set of grid points

of a parameter space, no matter how fine the specific grid is chosen to be, there is no

guarantee that the signal of interest will be efficiently represented in the considered basis

or dictionary. This implies that if the set or a subset of the frequencies that contain

most or all of the energy in the signal do not exactly match with any of the grid points

(e.g. a frequency falls in between two points of the grid set), then the CS reconstruction

performance will degrade significantly. In the case of compressible signals, it might even

be that the resulting representation is not sparse or compressible any more.

The DOA estimation problem is concerned with exact sparse representations, since it

assumes that there are only few incoming sources on the array of sensors with regards to

the size of the angular grid. If the choice of the angular grid is not appropriate, it might

have disastrous effects in terms of localization of the sources. As can be seen in Fig. 6.1,
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basis mismatches can result in complete disappearance of one of the impinging sources.
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Figure 6.1: Spatial power spectrum estimate of MUSIC and MMV-PFP algorithms with
basis mismatches due to off-grid DOAs.

Even though this might be the worst case scenario it is not guaranteed by any means

that a finer grid can totally resolve such ambiguities and avoid this underestimation.

However, a finer grid can still improve the DOA estimation performance in terms of

RMSE with the price of an increased computational workload. As reported in [143], this

is mainly due to the processing of a much larger dictionary.

6.2 Existing off-grid DOA estimation methods

Recently, Zhu et al. in [145, 146] addressed the problem of off-grid DOA estimation and

developed a method to solve the total least squares problem with sparsity constraints.

More specifically, this study considers the model:

y(t) = [A + E]x(t) + n(t) (6.1)

where E is a redundant matrix, which in the examined case represents the errors caused

by potential mismatches. The authors propose the sparse regularized total least squares

(SRTLS) algorithm in order to solve the problem:

min
x(t),n(t),E

‖[E,n(t)]‖2F + λ‖x(t)‖1

s.t. y(t) = [A + E]x(t) + n(t).

(6.2)

However, a thorough examination of the problem of equation (6.2) reveals that it requires

the product of the unknown variables E and x to be optimized. In general, this is a non-

convex optimization problem and for this reason a suboptimal method is proposed.
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SRTLS in an iterative fashion alternates between estimates of x and E. It first solves

the Lasso problem for fixed E using the interior point solver SeDuMi and then for the

estimated x it optimizes over E:

min
E
‖E‖2F + ‖y(t)− [A + E]x(t)‖22. (6.3)

It can be shown that the above problem has a closed form solution [145]. Setting the

derivative of (6.3) with respect to E to zero, it can be proven that the matrix E can be

updated using the formula:

E = [y(t)−Ax(t)]xH(t)[I + x(t)x(t)]−1. (6.4)

The algorithm terminates when the difference between two consecutive estimates becomes

smaller than a threshold and/or when the cost function falls under a chosen threshold.

SRTLS consists a more general framework that can be used in any sparse reconstruc-

tion problem, for which the dictionary is approximately known and therefore it might

introduce additional noise.

Another interesting approach to the problem of off-grid DOA estimation is the work

in [147], which also addresses the problem of off-grid DOA estimation from a Bayesian

perspective. The proposed sparse Bayesian inference (SBI) algorithm is an iterative al-

gorithm, applicable in both cases of single and multiple snapshots. SBI enforces joint

sparsity by imposing the same Laplacian prior over all measurements. The off-grid mis-

matches are modelled as a first order Taylor approximation problem. Other related work

includes the Continuous Basis Pursuit algorithm [148], which makes use of a variety of

approximation schemes, but it constrains the coefficient set to be nonnegative.

6.3 The proposed approach

In what follows, the SOMP-LS algorithm is proposed, which is an alternating descent

algorithm in the vein of SRTLS. The algorithm uses Simultaneous Orthogonal Matching

Pursuit at the first stage and then updates the dictionary with a least squares (LS)

inversion.

The algorithm differs from SRTLS in how the mismatch errors are modelled. Fol-
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lowing a similar approach with SBI, the problem of off-grid dictionary update is cast as

an approximation problem. In that way, the developed method is a fast algorithm that

exploits the parametric DOA dictionary to provide better estimation in the more general

off-grid scenario.

6.3.1 Taylor approximation

Generally speaking, for any dictionary that is constructed by sampling a parametric

function, as happens to be the case when it comes to DOA estimation, similar problems

due to mismatches might arise.

Figure 6.2: Illustration of approximation of the translational manifold M with a first
order Taylor interpolation around the grid points (red dots).

Fig. 6.2 shows the nonlinear manifoldM defined by the function f(θ) with θ ∈ [−π, π].

The red dots correspond to the value of the function f(θ) at the selected grid points after

the discretization of θ. Therefore, the set of vectors f(θi), f(θi+1), etc. constitutes the

overcomplete dictionary, which provide an approximation of this manifold [148].

In the off-grid case a single element of the manifold M will require the superimpo-

sition of several elements of the dictionary. One remedy to this problem is to augment

the dictionary including interpolation functions that allow better approximation of the

continuously shifted waveforms. It follows that if the function f(θ) and some of its

derivatives are known at some point θi, then the function can be approximated at nearby
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points using the Taylor series expansion:

f(θ) ≈ f(θi) + (θ − θi)f ′(θi) + (θ − θi)2 f
′′(θi)

2
+ (θ − θi)n

f (n)(θi)

n!
+ . . . (6.5)

The best linear Taylor approximation is given by the first order expansion, where the

first two terms of the right hand side of the formula of equation (6.5) are only considered:

f(θ) ≈ f(θi) + (θ − θi)f ′(θi) +O((θ − θi)2). (6.6)

6.3.2 Problem formulation

Suppose now that the i-th plane wave impinges on the array from the angle θ̃i that is not

contained in the selected angular grid, namely θ̃i /∈ {θ1, . . . , θN}. In such a case, as de-

scribed in [147], the corresponding vector a(θ̃i) for the off-grid DOA can be approximated

by the first order Taylor expansion:

a(θ̃i) ≈ a(θi) + b(θi)(θ̃i − θi) (6.7)

where θi ∈ {θ1, . . . , θN} is the nearest angle of the grid and b(θi) is the first derivative

of a(θi) with respect to θi:

b(θi) = −jπ sin(θi)p� a(θi) (6.8)

where p =
[
− M−1

2 , −M−3
2 , . . . , M−1

2

]T
and ◦ denotes the element wise Hadamard

product. It follows that one can define the redundant M ×N matrix B with atoms b(θi)

for all N angles of the grid. The off-grid DOA model can then be formulated:

y(t) = [A + B∆θ]x(t) + n(t) (6.9)

with ∆θ = diag(δ), δ = [δ1, . . . , δN ]T and δi = θ̃i − θi. In the above system of equations,

both δ and x(t) are unknowns and therefore after taking multiple time snapshots, the

optimization problem can be formulated as:

min
X,δ
‖δ‖22 + ‖Y − [A + B∆θ]X‖2F + λ‖X‖1,2. (6.10)
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However, the problem of equation (6.10), similar to (6.2) is non-convex and therefore

it cannot be tackled using convex optimization. Thus, in the following, an alternating

descent algorithm is proposed that iteratively shifts between estimates of X and δ until

the update of the specific matrices is no longer significant (e.g. falls below a predefined

threshold).

6.3.3 Proposed alternating descent algorithm

A suboptimal way to solve the non-convex optimization problem in equation (6.10) is to

reduce the problem to convex by minimizing over one parameter at a time. To do this,

one can first look for a solution to the reqularized least squares problem by keeping the

unknown vector δ fixed and solve for X. Therefore, at the k-th iteration, the algorithm

needs to solve the MMV sparse recovery problem:

min
Xk
‖Xk‖1,2 s.t. ‖Y − [A + B∆k−1

θ ]Xk‖
F
≤ ε. (6.11)

The sparse MMV problem (6.11) can be solved by mixed `2,1 minimization or alternatively

by greedy approaches such as SOMP or MMV-PFP, enforcing joint sparsity over the

multiple vectors.

Once X has been updated, equation (6.10) is minimized over δ keeping the current

estimate of X fixed. In this case, the problem of equation (6.10) reduces to:

min
δk
‖δk‖22 + ‖Y − [A + B∆k

θ ]X
k‖2F . (6.12)

The problem (6.12) can be proven to have a closed form solution [145]. However, instead

of taking the derivative and solving for δk, it is noted that for a single snapshot and as

long as the cardinality of the support of x(t) is not larger than the number of sensors

(K < M), the problem of (6.12) is equivalent to the least squares problem:

y(t)−Axk(t) = B∆k
x(t)δ

k (6.13)

where ∆k
x(t) = diag

{[
xk1(t), . . . , xkN (t)

]}
.

Considering now T time snapshots, it is straightforward to vectorize the resulting T
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least squares problems:


y(1)−Axk(1)

...

y(T )−Axk(T )

 =


B∆k

x(1)
...

B∆k
x(T )

 δk. (6.14)

Therefore, at the k-th iteration the update to δ will be:

δk = B†
∆k

X

Rk (6.15)

where B∆k
X

=
[
B∆k

x(1), . . . ,B∆k
x(T )

]T
and Rk = Y −AXk.

The proposed algorithm assumes that the sparsity level, namely the number K of

the impinging on the ULA sources is known a priori. Therefore, after obtaining T time

snapshots, the dimensionality of the MMV problem can be reduced by applying singular

value decomposition (SVD) to the M×T measurement matrix Y, as discussed in Chapter

5.

Algorithm 11 RA-PFP-LS Alternating Descent algorithm

1: Input: A, B, Y, K, lmax

2: Initialize: k ← 0, δ0 ← 0,
3: while k ≤ lmax do
4: k ← k + 1
5: Xk ← RA-PFP([A + B∆k

θ ],Y,K)

6: Rk ← Y −AXk, B∆k
X

=
[
B∆k

x(1), . . . ,B∆k
x(T )

]T
7: δk ← B†

∆k
X

Rk

8: if ‖δk − δk−1‖ ≤ ε then exit; end if
9: end while

10: Output: X, δ

The proposed alternating descent algorithm (Algorithm 11) is initialized with δ0 = 0

and the K-term approximation to the problem (6.11) is obtained by running the RA-

PFP algorithm for K iterations. Next, δ is updated through equation (6.15). The

algorithm iterates between these two steps and terminates when the difference between

two consecutive updates of δ falls below some chosen threshold. The final values of δ

provide an approximate estimate of the difference between the nearest θi ∈ {θ1, . . . , θN}

and the true DOAs θ̃i /∈ {θ1, . . . , θN} for i = 1, . . . ,K. Fig. 6.3 illustrates an example of

off-grid DOA estimation of K = 2 sources impinging on the array from the angles 61◦ and

88◦, using an overcomplete dictionary of size 8 × 91. Although, the RA-PFP algorithm
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yields the solution with minimum error, since the algorithm selects the dictionary atoms

that correspond to the nearest angles, RA-PFP-LS further reduces this error by exploiting

the Taylor approximation, providing better DOA estimates.

0 50 100 15025

20

15

10

5

0

5

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 

True DOA
RA PFP LS
RA PFP

(a)

60 70 80 90 1001.5

1

0.5

0

DOA (degrees)

Po
w

er
 (d

B
)

Spatial Power Spectrum

 

 

True DOA
RA PFP LS
RA PFP

(b)

Figure 6.3: Spatial spectrum estimate of K = 2 off-grid sources impinging on a ULA of
M = 8 sensors using RA-PFP and RA-PFP-LS.

When compared to SRTLS, the proposed method replaces the Lasso solver at the

regularization step with the greedy algorithm that allows for faster convergence especially

in the case that multiple snapshots are considered. Therefore, the K-term approximation

of RA-PFP provides faster convergence due to its algorithmic simplicity. It is evident

that any greedy algorithm with joint sparsity structure could be used instead and the

choice of RA-PFP is mainly based on the overall better performance that the algorithm

displayed in the problem of DOA estimation, as seen in the previous chapter.

At the second step of dictionary update, the algorithm exploits the interpolation

dictionary B and estimates the vector δ of size N×1 instead of the M×N matrix E. As

shown in the following section, experiments favour the updating rule of equation (6.15)

instead of the SRTLS update of (6.4).

6.4 Experimental Results

This section presents experimental results for the evaluation of the proposed off-grid DOA

alternating descent algorithm. The algorithm is compared against the SBI algorithm and

the `1-SVD algorithm, which assumes that K sources arrive from angles that exactly

match K DOAs from the selected angular grid. For a fair comparison with the SRTLS

approach, the RA-PFP-TLS algorithm is also derived, which under the same update rule
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with the proposed method for X replaces equation (6.15) with:

δk = diag
{

B†
[
Y −AXk

](
Xk
)H[

I + XkXk
]−1
}
. (6.16)

In the following experiments, ULA structures of M = 8 and M = 16 sensors were

considered and the u-space was uniformly discretized, resulting in a grid of N = 91

potential angles of arrival.

6.4.1 Sources with off-grid DOAs

For the first experiment, two zero mean narrowband far-field sources with equal power

levels arriving on the ULA from directions 60.3◦ and 88.3◦ were considered and therefore

the sparsity level was set at K = 2. The closest angles included in the grid were at 60.73◦

and 88.72◦. The number of time snapshots was fixed at T = 50. For all tested algorithms,

it was assumed that the sparsity level K is known a priori and the dimensionality of

the measurements was reduced using the SVD method and thresholding the largest K

singular values corresponding to the signal subspace. The additive noise at the sensors

was white Gaussian and the noise level varied from -25 dB to 50 dB with a step size of

5 dB.
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Figure 6.4: Average RMSE of DOA estimation of K = 2 sources with off-grid directions
(dB) vs SNR (dB) for (a) M = 8 and (b) M = 16 given T = 50 time snapshots.

Fig. 6.4 illustrates the average RMSE of the DOA estimation problem for all tested

algorithms against the noise level for the two considered cases of ULA with M = 8

and M = 16 sensors. The results have been averaged over 100 trials. As expected,

`1-SVD displays the worst performance with the largest error in most of the cases as the

directions of the sources do not fall into the predefined angular grid. Among the off-grid
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Table 6.1: Elapsed times (sec) of tested algorithms.

M = 8 M = 16
Alg/SNR 10dB -10dB 10dB -10dB

RA-PFP-LS 0.0321 0.0534 0.0216 0.0359
RA-PFP-TLS 0.0265 0.0316 0.0270 0.0447

SBI 0.5025 1.5335 0.2866 0.9246
`1-SVD 0.7501 0.6586 0.7849 0.7139

DOA estimation algorithms, the proposed method achieves the best overall performance.

On the other hand, it can be seen that RA-PFP-TLS shows the poorest performance,

not managing to achieve any significant performance gain over `1-SVD. This implies

that the update rule of equation (6.15) results in better approximations than the one in

(6.16). RA-PFP-LS also performs slightly better than the SBI algorithm in the case of

M = 8 sensors especially for SNR values above 30dB (Fig. 6.4(a)). This performance

gain increases for M = 16 sensors (Fig. 6.4(b)), as for some reason the RMSE of SBI

algorithm suddenly degrades for SNR values higher than 15dB and eventually stalls at

a much lower level when SNR becomes larger than 20dB. Although, one can argue that

the first order Taylor interpolation might not provide the best approximation especially

as the dimensionality of each column increases (i.e. by considering a larger number of

sensors), it does not seem to be the case for RA-PFP-LS algorithm, since its performance

remains intact. The dotted (mustard) line corresponds to the Cramér-Rao lower bound

(CRB) for the specific DOA estimation problem, which is associated with the Fisher

information and expresses a lower bound on the variance of any estimator. It is expected

that the gap between the RA-PFP-LS algorithm curve and CRB line can be reduced if a

higher order Taylor approximation is utilized. However, this will result in the inversion

of a nonlinear least squares problem, which is computationally more demanding.

The average convergence time of each algorithm for two noise levels (10 dB and

−10 dB) is shown in Table 6.1. In both cases examined (M = 8 and M = 16), the

proposed approach along with RA-PFP-TLS was the fastest and when compared to SBI,

RA-PFP–LS was at least 10 times faster.

6.4.2 Sources with on-grid DOAs

The second experiment kept the same settings, but this time it was assumed that the

K = 2 sources arrive on the ULA from the directions 60.73◦ and 88.72◦, which are
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Table 6.2: Elapsed times (sec) of tested algorithms.

M = 8 M = 16
Alg/SNR 10dB -10dB 10dB -10dB

RA-PFP-LS 0.0176 0.0560 0.0196 0.0499
RA-PFP-TLS 0.0133 0.0320 0.0198 0.0620

SBI 0.3797 1.5009 0.2647 1.4525
`1-SVD 0.7093 0.6613 0.8832 0.7872

included in the angular grid. Subsequently, the specific experiment attempted to examine

the error introduced by the off-grid DOA estimation, when the set of DOAs of the sources

is a subset of the discrete angular grid.
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Figure 6.5: Average RMSE of DOA estimation of K = 2 sources with on-grid directions
(dB) vs SNR (dB) for (a) M = 8 and (b) M = 16 given T = 50 time snapshots.

The simulation average results over 100 iterations are summarized in Fig. 6.5. As

can be seen in Fig. 6.5(a), `1-SVD introduces error only for high noise levels (below

0 dB), but when the SNR is larger than 0 dB, it achieves perfect estimation of the

unknown parameters. On the other hand, the off-grid DOA estimation methods introduce

estimation error in all noise levels examined. Among them, RA-PFP-TLS performs

better and closer to the CRB. This might be due to the underestimation, noticed in

the off-grid case, which in the examined scenario proves to be beneficial. However, this

performance gain reduces in the case when the number of sensors is M = 16 (Fig. 6.5(b)).

Regarding the proposed RA-PFP-LS method and SBI algorithm, both perform closely

in this experiment. It is worth noting that RA-PFP-LS performs similar to the case of

the off-grid sources.

Table 6.2 summarizes the average convergence times for all algorithms. Once again

RA-PFP-LS and RA-PFP-TLS provide the fastest convergence.
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6.4.3 Off-grid DOA estimation with correlated sources

Next, experiments were carried out to evaluate the algorithms’ performance in the sce-

nario when the impinging sources are highly correlated. To do this, the first experiment

was repeated, considering K = 2 highly correlated sources with directions 60.3◦ and

88.3◦. The sources were generated as described in Section 5.5.4 of Chapter 5.
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Figure 6.6: Average RMSE of DOA estimation of K = 2 correlated sources with off-grid
directions (dB) vs SNR (dB) for (a) M = 8 and (b) M = 16 given T = 50 time snapshots.

While `1-SVD performance remains almost intact, the performance of the off-grid

DOA estimation methods deteriorate, as shown in Fig. 6.6(a). RA-PFP-LS achieves the

lowest RMSE values for low noise levels, but its performance degrades considerably when

the noise is high (i.e. below 10dB). However, with the increase of the number of sensors,

these ambiguities at the low SNR values seem to be resolved (Fig. 6.6(b)).

6.4.4 Variable number of off-grid sources

In the last experiment, an attempt was made to evaluate the off-grid DOA estimation as

a function of the number of impinging sources, namely the sparsity level. For this reason,

a ULA of M = 8 sensors was considered and the number of sources K varied from 1 to

7. In all cases, the sources arriving on the ULA were off-grid. The additive noise at the

sensors was white Gaussian and the resulting SNR was fixed at 20 dB.

Fig. 6.7(a)-(b) show the RMSE as a function of the number of sources for T = 50

and T = 200 snapshots, respectively. The proposed method of RA-PFP-LS provides the

best performance in both cases. More specifically, although its estimation performance is

very close to the performance of the SBI algorithm for low sparsity levels, as the number

of sources increases the RMSE also increases but not as much as for SBI.
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Figure 6.7: Average RMSE of DOA estimation (dB) vs the number of sources K with
off-grid directions for (a) T = 50 and (b) T = 200 snapshots.

6.5 Discussion

This chapter considered the problem of off-grid DOA estimation under the sparse rep-

resentation framework. After pointing out the undesirable effects that errors caused by

basis mismatches can have in the problem of DOA estimation, a brief overview of the

main existing approaches that tackle this problem was provided.

The proposed method is inspired by the SRTLS and SBI algorithms. Therefore, it

attempts to instantaneously estimate the unknown support set, by identifying the appro-

priate subspace of the dictionary and update the dictionary by appropriately shifting its

columns. However, this problem is non-convex and for this reason the proposed approach

is based on a suboptimal alternating descent algorithm, which at the first stage attempts

to identify the nearest directions of the sources to the ones included in the initial grid

using the RA-PFP algorithm. It then updates the dictionary and the corresponding an-

gular grid using a first order Taylor expansion. The process is repeated in an iterative

fashion until the overall error has converged to some predefined threshold.

Experimental results have proven that RA-PFP-LS can overcome the resolution lim-

itations of the standard sparsity model. When compared to other off-grid DOA methods

such as the SBI algorithm, it also achieved slightly better performance, while in the coher-

ent sources scenario the proposed algorithm outperformed all other tested methods. The

simplicity of the greedy algorithm at the first stage combined with a single least squares

inversion at the second stage of the algorithm resulted in the fastest convergence among

the compared algorithms. More specifically, experiments showed that RA-PFP-LS con-

verges at least 10 times faster than both SBI and `1-SVD, when two sources impinge on
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an array of M = 8 sensors for all noise levels examined, regardless of whether the DOAs

of the considered sources were off-grid or they were a subset of the initial angular grid.
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Chapter 7

Conclusions & Future Work

This chapter concludes this thesis and summarizes its main contributions. Possible ex-

tensions for further work are also discussed.

7.1 Thesis summary

In this thesis, the general sparse recovery framework has been examined and its applica-

bility to the problem of DOA estimation and source localization has been investigated.

For this purpose, after providing the background related to this thesis(Chapter 2),

in Chapter 3, the problem of sparse representations and compressed sensing was studied

from a practical point of view with the aim to develop fast recovery algorithms that ex-

hibit good theoretical properties and are suitable for large scale problems. The Polytope

Faces Pursuit algorithm was considered and its solution update strategy was modified

appropriately, using the method of conjugate gradients. The resulting Conjugate Gradi-

ent Polytope Faces Pursuit algorithm proved to be efficient for large scale sparse recovery

problems reducing the overall memory requirements of the original algorithm. Exper-

imental and theoretical results demonstrated its robustness. The Stagewise Conjugate

Gradient Polytope Faces Pursuit was also proposed, which further reduces the complex-

ity, by allowing for several dictionary atoms to be added at each iteration.

In Chapter 4, the problem of structured sparsity was considered. Under the assump-

tion that the dictionary coefficients form groups of atoms, the Group Polytope Faces

Pursuit algorithm considering both `2,1 and `∞,1 minimization problems was developed.
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Although the theoretical results did not seem to favour a particular algorithm, empirical

findings clearly showed the superiority of the GPFP algorithm based on the `2,1 mini-

mization criterion in the examined case, which only considered non-overlapping groups

of equal size. Finally, the problem of joint sparsity that arises in the MMV sparse recov-

ery context was investigated. Despite the fact that the worst case scenario theoretical

results for the proposed MMV-PFP algorithm did not reveal any performance gain over

the conventional sparsity algorithm, the experimental results indicated that the proposed

algorithm provides improved recovery performance when the assumption of joint sparsity

is met. In certain cases MMV-PFP also showed clear benefits over popular joint sparse

recovery algorithms such as GOMP.

Chapter 5 thoroughly investigated the problem of DOA estimation under the spatial

sparsity constraint, which makes the assumption that the number of sources to be local-

ized is somewhat smaller than the number of grid points corresponding to the potential

locations of the sources. The far-field and narrowband propagation model for uniform

linear array structures was first considered. Adopting a compressed sensing approach, it

was shown that the uniform discretization of the u-space can lead to dictionaries with

better properties than the ones obtained by uniformly discretizing the angular space.

Furthermore, the role of the geometry of the linear array to the sparse DOA recov-

ery model was also examined. Although, the proposed MMV-PFP algorithm displayed

its shortcomings in resolving closely spaced sources, the modified version of RA-PFP

showed improved performance outperforming state-of-the-art sparsity based DOA esti-

mation methods. Finally, the proposed framework was extended to the wideband and

near-field scenarios, where it was shown how additional structure, if exploited, can result

in the suppression of the undesirable effects of spatial aliasing.

In Chapter 6, the problem of off-grid DOA estimation was addressed. Considering

that the assumption that the DOAs of the sources belong in a predefined set of grid

points may not be realistic in practical situations, an alternating descent algorithm was

developed, which at the first stage attempts to identify the nearest directions of the

sources to the ones included in the initial grid using the RA-PFP algorithm and at the

second stage updates the angular grid utilizing a first order Taylor expansion. Experi-

mental results demonstrated the benefits of the proposed approach for the off-grid DOA
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estimation problem.

7.2 Contributions

The principal contributions of this thesis are:

• the development of the stepwise and stagewise CG-PFP algorithms, as well as the

analysis of the theoretical properties of the stepwise CG-PFP method (Chapter 3).

• the extension of the PFP algorithm to the group and joint sparsity scenarios (GPFP

and MMV-PFP algorithms) and the investigation of their theoretical recovery guar-

antees (Chapter 4).

• the analysis of the DOA estimation problem based on the spatial sparsity assump-

tion using tools from the field of compressed sensing (Chapter 5).

• the development of the modified version of MMV-PFP algorithm for the narrow-

band DOA estimation scenario (RA-PFP algorithm) and the proposal of a greedy

method based on OMP in the wideband case (Chapter 5).

• the development of an alternating descent approach (RA-PFP-LS) to the problem

of off-grid DOA estimation (Chapter 6).

7.3 Future work

Further work could follow on from the research of this thesis. This section suggests

some possible new research avenues that have been identified throughout the work of

this thesis.

Extensions of Polytope Faces Pursuit

Regarding the sparse recovery PFP algorithm several future directions could be possible.

First of all, the investigation of the theoretical properties of the MMV-PFP algorithm,

similar to the work presented in [119] for mixed `2,1 norm minimization suggests one

possibility for future research. A probabilistic average case analysis might explain the

superior performance of MMV-PFP in the joint sparsity scenario, providing a formal

description of the empirical findings presented in this thesis.
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The work in [74] apart from the original PFP proposes an extension of the algorithm

to the noisy scenario. Therefore, another potential route for further research would be

the extension of the proposed PFP algorithms for conventional and structure sparsity

to the noisy scenario. Investigation of the geometry and the theoretical properties of

the noisy problem might provide better understanding of the problem and result in the

development of efficient recovery methods.

Furthermore, one might consider the new alternative model of analysis sparsity [149],

which has been proven to be of great potential especially in the field of compressed sensing

[150]. Therefore, an attempt to explore the underlying geometry of the problem using

the PFP method for the recovery of analysis sparsity inverse problems could bring new

insight to this rather unexplored but promising area.

Extensions of the source localization sparse method

As discussed in Chapter 5, the problem of wideband source localization using arrays of

sensors has not yet been fully explored. Although, in this thesis an effort was made to ad-

dress several aspects of the problem, additional work could lead to further improvements.

More specifically, investigating and deploying new more realistic assumptions regarding

the structures in the frequency domain is one attractive direction. Furthermore, consid-

ering that this work focused only on point sources, the examination of the scenario of

spatially spread signals, which happen to be the case in many physical situations, such as

acoustic environments might serve as another promising research direction. This might

pave the way for developing a spatial sparsity based scheme that tackles the problem of

source localization in room environments.

Another consideration with potential for further improvements arises in the case of

circular array geometries, which as discussed in [134] possess certain advantages over

linear arrays. Since the focus of this thesis was on linear arrays, the extension of the

results presented and the developed algorithms to the case of circular arrays is of great

research interest for further work on this topic.

Extensions of the off-grid DOA estimation algorithm

The challenging problem of off-grid DOA estimation, which could also be viewed as

a special case of the more general problem of basis mismatch in compressed sensing,
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undoubtedly shows great potential for future research. With regard to the proposed sub-

optimal alternating descent formulation of the original non-convex problem, a theoretical

analysis has yet to be conducted and explained. Furthermore, the investigation of the

proposed method’s link with parametric dictionary learning (DL) approaches could be

very beneficial, allowing further improvements in terms of accuracy in DOA estimation.

7.4 Closing remarks

The importance of sparse representations in signal processing is indisputable. Along

with its relative field of compressed sensing, sparse representations have opened up new

horizons for scientific research.

This thesis tackled the challenging problem of DOA estimation with arrays of sensors

following a sparsity based approach, inspired by the recent advances in this field. Many

issues were addressed resulting in the development of novel schemes for the problem of

DOA estimation, that could also be of more general use in applications where spare

inverse problems are encountered. Empirical findings indicate that the exploitation of

the spatial sparsity assumption can overcome limitations of popular methods, such as

the MUSIC algorithm in scenarios when the number of available samples is deficient,

the sources are coherent or the noise level is too high. Furthermore, the algorithmic

simplicity of greedy algorithms such as Polytope Faces Pursuit, especially when they in-

corporate additional structure, led to the development of low complexity DOA estimation

algorithms that exhibit very fast convergence.

At the same time, this study gave rise to many other questions and highlighted critical

points that could offer new possibilities for further research in the topic.
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[108] L. Meier, S. Van De Geer, and P. Bühlmann, “The group Lasso for logistic regres-

sion,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 70, no. 1, pp. 53–71, 2008.

[109] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped

variables,” Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), vol. 68, no. 1, pp. 49–67, 2005.

http://arxiv.org/pdf/1008.4220v3.pdf


182

[110] E. Berg and M. P. Friedlander, “Joint-Sparse Recovery from Multiple Measure-

ments.” preprint, arXiv:0904.2051, http://arxiv.org/pdf/0904.2051v1.pdf,

2009.

[111] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “A trust region algorithm for non-

linearly constrained optimization,” SIAM Journal on Numerical Analysis, vol. 24,

no. 5, pp. 1152–1170, 1987.

[112] M. R. Celis, J. E. Dennis, and R. A. Tapia, “A trust region strategy for nonlin-

ear equality constrained optimization,” in Proceedings of the SIAM Conference on

Numerical Optimization, pp. 71–82, June 12–14 1984.

[113] B. L. Sturm, M. G. Christensen, and R. Gribonval, “Cyclic pure greedy algorithms

for recovering compressively sampled sparse signals,” in Proceedings of the 45th

Asilomar Conference on Signals, Systems and Computers, pp. 1143–1147, Novem-

ber 6–9 2011.

[114] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and reconstruc-

tion of multiband signals,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 1996), vol. 3, pp. 1688–1691,

May 7–10 1996.

[115] I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic source imaging

with FOCUSS: A recursive weighted minimum norm algorithm,” Electroencephalog-

raphy and Clinical Neurophysiology, vol. 95, no. 4, pp. 231–251, 1995.

[116] J. W. Phillips, R. M. Leahy, and J. C. Mosher, “MEG-based imaging of focal

neuronal current sources,” in Proceedings of the IEEE Nuclear Science Symposium

and Medical Imaging, vol. 3, pp. 1746–1750, October 21–28 1995.

[117] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, “Dis-

tributed compressed sensing of jointly sparse signals,” in Proceedings of the 39th

Asilomar Conference on Signals, Systems and Computers, pp. 1537–1541, October

30–November 2 2005.

[118] M. E. Davies and Y. C. Eldar, “Rank awareness in joint sparse recovery,” IEEE

Transactions on Information Theory, vol. 58, no. 2, pp. 1135–1146, 2012.

http://arxiv.org/pdf/0904.2051v1.pdf


183

[119] Y. C. Eldar and H. Rauhut, “Average case analysis of multichannel sparse recovery

using convex relaxation,” IEEE Transactions on Information Theory, vol. 56, no. 1,

pp. 505–519, 2010.

[120] J. Chen and X. Huo, “Theoretical results on sparse representations of multiple-

measurement vectors,” IEEE Transactions on Signal Processing, vol. 54, no. 12,

pp. 4634–4643, 2006.

[121] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, “Atoms of all chan-

nels, unite! Average case analysis of multi-channel sparse recovery using greedy

algorithms,” Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 655–

687, 2008.

[122] V. Cevher, M. Duarte, and R. G. Baraniuk, “Distributed target localization via

spatial sparsity,” in Proceedings of the 16th European Signal Processing Conference

(EUSIPCO 2008), (5 pages), August 25–29 2008.

[123] A. C. Gurbuz, J. H. McClellan, and V. Cevher, “A compressive beamforming

method,” in Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP 2008), pp. 2617–2620, March 30–April 4 2008.

[124] V. Cevher, A. C. Gurbuz, J. H. McClellan, and R. Chellappa, “Compressive wireless

arrays for bearing estimation,” in Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 2497–2500, March

30–April 4 2008.

[125] D. M. Malioutov, M. Cetin, J. W. Fisher III, and A. S. Willsky, “Superresolution

source localization through data-adaptive regularization,” in Proceedings of the

IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 194–198,

August 4–6 2002.

[126] J. Zheng, M. Kaveh, and H. Tsuji, “Sparse spectral fitting for direction of arrival

and power estimation,” in Proceedings of the IEEE/SP 15th Workshop on Statistical

Signal Processing (SSP 2009), pp. 429–432, August 31–September 3 2009.

[127] G. Tzagkarakis, D. Milioris, and P. Tsakalides, “Multiple-measurement Bayesian

compressed sensing using GSM priors for DOA estimation,” in Proceedings of



184

the IEEE International Conference on Acoustics Speech and Signal Processing

(ICASSP 2010), pp. 2610–2613, March 14–19 2010.

[128] A. C. Fannjiang, “The MUSIC Algorithm for Sparse Objects: A Compressed Sens-

ing Analysis.” preprint, arXiv:1006.1678, http://arxiv.org/pdf/1006.1678v4.

pdf, 2011.

[129] L. Carin, “On the relationship between compressive sensing and random sensor

arrays,” IEEE Antennas and Propagation Magazine, vol. 51, no. 5, pp. 72–81,

2009.

[130] J. M. Kim, O. K. Lee, and J. C. Ye, “Compressive MUSIC: Revisiting the link

between compressive sensing and array signal processing,” IEEE Transactions on

Information Theory, vol. 58, no. 1, pp. 278–301, 2012.

[131] Z. Weng and X. Wang, “Support recovery in compressive sensing for estimation

of direction-of-arrival,” in Proceedings of the 45th Asilomar Conference on Signals,

Systems and Computers, pp. 1491–1495, November 6–9 2011.

[132] K. Lee, Y. Bresler, and M. Junge, “Subspace methods for joint sparse recovery,”

IEEE Transactions on Information Theory, vol. 58, no. 6, pp. 3613–3641, 2012.

[133] E. J. Candès and Y. Plan, “A probabilistic and RIPless theory of compressed

sensing,” IEEE Transactions on Information Theory, vol. 57, no. 11, pp. 7235–

7254, 2011.

[134] J.-J. Fuchs, “On the application of the global matched filter to DOA estimation

with uniform circular arrays,” IEEE Transactions on Signal Processing, vol. 49,

no. 4, pp. 702–709, 2001.

[135] K. Varma, Time-Delay-Estimate Based Direction-of-Arrival Estimation for Speech

in Reverberant Environments. PhD thesis, Virginia Polytechnic Institute and State

University, 2002.

[136] N. Mitianoudis and M. E. Davies, “Using beamforming in the audio source sep-

aration problem,” in Proceedings of the 7th International Symposium on Signal

Processing and Its Applications (ISSPA 2003), vol. 2, pp. 89–92, July 1–4 2003.

http://arxiv.org/pdf/1006.1678v4.pdf
http://arxiv.org/pdf/1006.1678v4.pdf


185

[137] T. Yoshioka, T. Nakatani, M. Miyoshi, and H. G. Okuno, “Blind separation and

dereverberation of speech mixtures by joint optimization,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 19, no. 1, pp. 69–84, 2011.

[138] Z. Tang, G. Blacquiere, and G. Leus, “Aliasing-free wideband beamforming using

sparse signal representation,” IEEE Transactions on Signal Processing, vol. 59,

no. 7, pp. 3464–3469, 2011.

[139] E. Habets, “Room Impulse Response (RIR) Generator,” tech. rep., Univeristy of

Erlangen-Nuremberg, September 2010.

[140] E. Habets, “Room Impulse Response (RIR) Generator.” http://home.tiscali.

nl/ehabets/rir_generator.html, (software).

[141] P. T. Boufounos, P. Smaragdis, and B. Raj, “Joint sparsity models for wideband

array processing,” in Proceedings of SPIE: Wavelets and Sparsity XIV, vol. 8138,

81380K, September 27 2011.

[142] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to basis

mismatch in compressed sensing,” IEEE Transactions on Signal Processing, vol. 59,

no. 5, pp. 2182–2195, 2011.

[143] L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations

in compressed sensing,” in Proceedings of the 45th Asilomar Conference on Signals,

Systems and Computers, pp. 744–748, November 6–9 2011.

[144] D. H. Chae, P. Sadeghi, and R. A. Kennedy, “Effects of basis-mismatch in com-

pressive sampling of continuous sinusoidal signals,” in Proceedings of the 2nd In-

ternational Conference on Future Computer and Communication (ICFCC 2010),

vol. 2, pp. 739–743, May 21–24 2010.

[145] H. Zhu, G. Leus, and G. B. Giannakis, “Sparse regularized total least squares for

sensing applications,” in Proceedings of the 11th IEEE International Workshop on

Signal Processing Advances in Wireless Communications (SPAWC 2010), pp. 1–5,

June 20–23 2010.

http://home.tiscali.nl/ehabets/rir_generator.html
http://home.tiscali.nl/ehabets/rir_generator.html


186

[146] H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total least-squares for

perturbed compressive sampling,” IEEE Transactions on Signal Processing, vol. 59,

no. 5, pp. 2002–2016, 2011.

[147] Z. Yang, L. Xie, and C. Zhang, “Off-Grid Direction of Arrival Estimation Using

Sparse Bayesian Inference.” preprint, arXiv:1108.5838, http://arxiv.org/pdf/

1108.5838v4.pdf, 2011.

[148] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of sparse translation-

invariant signals with continuous basis pursuit,” IEEE Transactions on Signal Pro-

cessing, vol. 59, no. 10, pp. 4735–4744, 2011.

[149] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in signal pri-

ors,” Inverse Problems, vol. 23, no. 3, pp. 947–968, 2007.

[150] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with

coherent and redundant dictionaries,” Applied and Computational Harmonic Anal-

ysis, vol. 31, no. 1, pp. 59–73, 2011.

http://arxiv.org/pdf/1108.5838v4.pdf
http://arxiv.org/pdf/1108.5838v4.pdf


187

Appendix A

Vector & matrix norms

A.1 Vector norms

Given a vector space V , then a norm, denoted by ‖ · ‖, is defined as a function f : V → R

which satisfies the following properties:

(i) f(x) ≥ 0 x ∈ V

(ii) f(x) = 0 if and only if x = 0

(iii) f(ax) = |a|f(x) a ∈ R, x ∈ V

(iv) f(x + y) ≤ f(x) + f(y) x,y ∈ V .

Therefore, a norm f is a mapping of the vector space onto R and designates a measure

of the size of the vector x. Properties (i) and (ii) require that the size of the norm is

nonnegative, property (iii) known also as positive homogeneity, requires its size to be

scaled as the vector is scaled and property (iv) is the triangle inequality.

Consider the N -dimensional space V = RN . An obvious class of vector norms for RN

are the `p-norms defined by:

‖x‖p =

(
N∑
i=1

|xi|p
)1/p

, p ≥ 1 (A.1)
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where x = [x1, x2, . . . , xN ]T . Among the `p norms, `1, `2 and `∞ are the most important:

‖x‖1 = |x1|+ |x2|+ · · ·+ |xN | (A.2a)

‖x‖2 = (|x1|2 + |x2|2 + · · ·+ |xN |2)1/2 (A.2b)

‖x‖∞ = max
1≤i≤N

|xi|. (A.2c)

A.2 Properties of vector norms

An immediate consequence of the triangle inequality is that for any vectors x,y ∈ RN ,

it also holds:

‖x− y‖ ≥ ‖x‖ − ‖y‖. (A.3)

Another interesting property concerning `p-norms is the Cauchy-Schwarz inequality:

|xTy| ≤ ‖x‖2‖y‖2 (A.4)

which is a special case of the more general Holder inequality:

|xTy| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1. (A.5)

All `p norms on RN are equivalent. In particular, it holds that:

‖x‖2 ≤ ‖x‖1 ≤
√
N‖x‖2 (A.6a)

‖x‖∞ ≤ ‖x‖2 ≤
√
N‖x‖∞ (A.6b)

‖x‖∞ ≤ ‖x‖1 ≤ N‖x‖∞. (A.6c)

A.3 Matrix norms

As with the vector norms, a matrix norm on the RM×N vector space is defined as a

function f : RM×N → R, for which the following properties hold:

(i) f(A) ≥ 0 A ∈ RM×N

(ii) f(A) = 0 if and only if A = 0M×N
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(iii) f(aA) = |a|f(A) a ∈ R, A ∈ RM×N

(iv) f(A + B) ≤ f(A) + f(B) A,B ∈ RM×N .

The most frequently used matrix norms in linear algebra are the Frobenius norm, defined

by:

‖A‖F =

√√√√ M∑
i=1

N∑
j=1

|aij |2 =
√

tr(ATA) =

√√√√min{M,N}∑
i=1

σ2
i (A.7)

where σi represents the i-th singular value of A, and the induced `p norms defined by:

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

. (A.8)

Therefore, for p = 1 it is:

‖A‖1 = max
0≤j≤N

M∑
i=1

|aij | (A.9)

while for p =∞:

‖A‖∞ = max
0≤i≤M

N∑
j=1

|aij |. (A.10)

In the special case that the induced norm is the p = 2 norm, known also as the spectral

norm, it holds:

‖A‖2 =
√
λmax(ATA) = σmax(A) (A.11)

where σmax denotes the maximum singular value of A and λmax the maximum eigenvalue

of ATA.

A.4 Properties of matrix norms

For the spectral and Frobenius norms it holds that:

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2 (A.12)

where r = rank(A). Other equivalence properties include:

1√
N
‖A‖∞ ≤ ‖A‖2 ≤

√
M‖A‖∞ (A.13a)

1√
M
‖A‖1 ≤ ‖A‖2 ≤

√
N‖A‖1. (A.13b)
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Appendix B

The Cramér-Rao bound for DOA estimation

In estimation theory, the Cramér-Rao bound (CRB) provides the lowest bound on the

covariance matrix of any unbiased estimator of the parameter θ. More precisely, CRB

states that for the covariance matrix of an unbiased estimator θ̂ it holds that:

C(θ̂) , E
{[

θ̂ − θ
][
θ̂ − θ

]T} ≥ CCRB(θ̂) , J−1 (B.1)

where J represents the Fisher information matrix [21]. The Fisher information is a

measure of the amount of information that an observed random variable y contains

about the unknown parameter θ upon which the probability of y depends. It is defined

by:

J = E

{[
∂ log py(y|θ)

∂θ

]T[∂ log py(y|θ)

∂θ

]}
= −E

{[
∂2 log py(y|θ)

∂2θ

]}
(B.2)

where py(y|θ) is the conditional on θ probability density function of the random variable

y or equivalently the likelihood function for θ. Any unbiased estimator that achieves the

CRB of inequality (B.1) and therefore yields the lowest possible RMSE, is a minimum

variance unbiased estimator. Such an estimator is usually referred to as an efficient

estimator.

For the DOA estimation problem using arrays of sensors, the following model is
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considered:

y(t) = A(θ)x(t) + n(t) (B.3)

where y(t) is the M -dimensional observations vector, θ ∈ RK is the vector containing the

unknown parameters corresponding to the DOAs of the incoming K signals x(t) and n(t)

is the additive at the sensors zero-mean Gaussian noise i.e. n ∼ N (0, σ2). Therefore, the

observations covariance matrix is given by:

Ry , E
{
y(t)yH(t)

}
= A(θ)E

{
x(t)xH(t)

}
AH(θ)+E

{
n(t)nH(t)

}
= A(θ)RxAH(θ)+σ2I.

(B.4)

According to [21], the elements of the Fisher information matrix for the specific model

are given by:

Jij = tr

[
R−1

y

∂Ry

∂θi
R−1

y

∂Ry

∂θj

]
. (B.5)

Combining equations (B.4) and (B.5) and after further manipulation, the CRB for the

DOA estimation problem is calculated and it is given by:

CCRB(θ̂) =
σ2

2Ts

{
Re
[[

RxAH(θ)RyA(θ)Rx

]
�
[
BH(θ)P⊥A(θ)B(θ)

]]}
. (B.6)

where Ts is the number of snapshots taken, P⊥A(θ) is the orthogonal projection onto the

noise subspace and B(θ) ∈ CM×K is the matrix given by:

B(θ) =

[
∂a(θ1)

∂(θ1)
,
∂a(θ2)

∂(θ2)
, . . . ,

∂a(θK)

∂(θK)

]
. (B.7)

When the incoming signals are uncorrelated, the sources are not too closely spaced and

the covariance matrix Rx is not close to singular, then the CRB for the DOA estimation

problem of equation (B.6) can be well approximated by:

CCRB(θ̂) ∼=
σ2

2Ts

{
Re
[
Rx �

[
BH(θ)P⊥A(θ)B(θ)

]]}
. (B.8)
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